
Antonio Brogi
Wolf Zimmermann
Kyriakos Kritikos (Eds.)

LN
CS

 1
20

54

8th IFIP WG 2.14 European Conference, ESOCC 2020
Heraklion, Crete, Greece, September 28–30, 2020
Proceedings

Service-Oriented
and Cloud Computing

Lecture Notes in Computer Science 12054

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Antonio Brogi • Wolf Zimmermann •

Kyriakos Kritikos (Eds.)

Service-Oriented
and Cloud Computing
8th IFIP WG 2.14 European Conference, ESOCC 2020
Heraklion, Crete, Greece, September 28–30, 2020
Proceedings

123

Editors
Antonio Brogi
Università di Pisa
Pisa, Italy

Wolf Zimmermann
Martin-Luther-Universität Halle-Wittenberg
Halle (Saale), Germany

Kyriakos Kritikos
University of the Aegean
Karlovasi, Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-44768-7 ISBN 978-3-030-44769-4 (eBook)
https://doi.org/10.1007/978-3-030-44769-4

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2020
The chapters “Identification of Comparison Key Elements and Their Relationships for Cloud Service
Selection” and “Technology-Agnostic Declarative Deployment Automation of Cloud Applications” are
licensed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/). For further details see license information in the chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2048-2468
https://orcid.org/0000-0001-9633-1610
https://doi.org/10.1007/978-3-030-44769-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface

Service-oriented and cloud computing have made a huge impact both on the software
industry and on the research community. Today, service and cloud technologies are
applied to build large-scale software landscapes as well as to provide single software
services to end users. Services today are independently developed and deployed as well
as freely composed while they can be implemented in a variety of technologies, quite
an important fact from a business perspective. Similarly, cloud computing aims at
enabling flexibility by offering a centralized sharing of resources. The industry’s need
for agile and flexible software and IT systems has made cloud computing the domi-
nating paradigm for provisioning computational resources in a scalable, on-demand
fashion. Nevertheless, service developers, providers, and integrators still need to create
methods, tools, and techniques to support cost-effective and secure development as
well as the use of dependable devices, platforms, services, and service-oriented
applications in the cloud.

The European Conference on Service-Oriented and Cloud Computing (ESOCC) is
the premier conference on advances in the state of the art and practice of
service-oriented computing and cloud computing in Europe. The main objectives of
this conference are to facilitate the exchange between researchers and practitioners in
the areas of service-oriented computing and cloud computing, as well as to explore the
new trends in those areas and foster future collaborations in Europe and beyond. The
8th edition of ESOCC, ESOCC 2020, was held in the city of Heraklion in Crete,
Greece, during September 28–30, 2020, under the auspices of FORTH-ICS.

ESOCC 2020 was a multi-event conference aimed to cover both an academic and
industrial audience. The main event was associated with the main research track, which
focused on the presentation of cutting-edge research in both the service-oriented and
cloud computing areas. In conjunction, an industrial track was also held bringing
together academia and industry by showcasing the application of service-oriented and
cloud computing research, especially in the form of case studies, from industry.
Overall, 20 submissions were received, out of which 6 outstanding full and 8 short
papers were accepted.

Each submission was peer-reviewed by three main reviewers, either directly from
the PC members or their colleagues. Due to the high quality of the manuscripts
received, additional discussions were conducted, both among the PC members as well
as between the two PC chairs, before the final selection was performed. The PC chairs
would like to thank all the reviewers that participated in the reviewing process not only
for enabling to increase the quality of the received manuscripts but also for sharing
particular ideas on how the respective work, even if rejected in its current form in the
ESOCC conference, could be substantially improved.

The attendees of ESOCC had the opportunity to follow two outstanding keynotes
that were part of the conference program. The first keynote was conducted by Massimo
Villari, Professor and Rector Delegate for ICT as well as Head of the Computer Science

School in the University of Messina, Italy. This keynote concerned recent research
advances and trends towards realizing the vision of Osmotic Computing. The second
keynote was conducted by Joseph Spillner, Head of the Service Prototyping Lab and
Associate Professor at Zurich University of Applied Sciences in Switzerland. This
second keynote concerned the presentation of methods for developing
production-ready, Function-as-a-Service applications concentrating on scalable
event-driven data processing that are well-suited for highly dynamic environments with
varying loads.

The additional events held in ESOCC 2020 included the PhD symposium, enabling
PhD students to present their work in front of real experts, as well as the EU projects
track, supplying researchers with the opportunity to present the main research results
that they have achieved in the context of currently operating EU projects. Further,
ESOCC 2020 included the organization of satellite workshops. All these events were
accompanied by respective proceedings which were published separately.

Finally, this 8th edition of ESOCC included a novel track dedicated to the con-
duction of tutorials. This enabled the workshop participants to get acquainted with the
latest results of specific European projects as well as of specific European research
groups in a practical manner which included demonstrations of research prototypes.

The PC chairs and the general chair would like to gratefully thank all the persons
involved in making ESOCC 2020 a success. This includes both the PC members and
their colleagues that assisted in the reviews as well as the organizers of the industry
track, the PhD symposium, the EU projects track, and the workshops. A special
applause should also go to the members of the Local Organizing Committee for their
devotion, willingness, and hospitality. Finally, a special thanks goes to all the authors
of all the manuscripts submitted to ESOCC 2020, the presenters of the accepted papers
who made interesting and fascinating presentations of their work, as well as the active
attendees of the conference who initiated interesting discussions and gave fruitful
feedback to the presenters. All these persons not only enabled a very successful
organization and execution of ESOCC 2020, but also formulate an active and vibrant
community which continuously contributes to the research in service-oriented and
cloud computing. This also encourages ESOCC to continue contributing with new
research outcomes to further facilitate and enlarge its community as well as have a
greater impact and share in both the service-oriented and cloud computing research.

September 2020 Antonio Brogi
Wolf Zimmermann
Kyriakos Kritikos

vi Preface

Organization

ESOCC 2020 was organized by FORTH-ICS, Greece.

Organizing Committee

General Chair

Kyriakos Kritikos FORTH-ICS and University of the Aegean, Greece

Program Chairs

Antonio Brogi University of Pisa, Italy
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany

Industry Track Chair

Marco Aiello University of Stuttgart, Germany

Workshop Chairs

Christian Zirpins University of Applied Sciences Karlsruhe, Germany
Iraklis Paraskakis City College, Greece

EU Project Space Chairs

Pierluigi Plebani Politecnico di Milano, Italy
Giuliano Casale Imperial College, UK

PhD Symposium Chairs

Jacopo Soldani University of Pisa, Italy
Massimo Villari University of Messina, Italy

Steering Committee

Antonio Brogi University of Pisa, Italy
Schahram Dustdar TU Wien, Austria
Paul Grefen Eindhoven University of Technology, The Netherlands
Winfried Lamersdorf University of Hamburg, Germany
Frank Leymann University of Stuttgart, Germany
Flavio de Paoli University of Milano-Bicocca, Italy
Cesare Pautasso University of Lugano, Switzerland
Ernesto Pimentel University of Malaga, Spain
Pierluigi Plebani Politecnico di Milano, Italy
Ulf Schreier Hochschule Furtwangen University, Germany
Massimo Villari University of Messina, Italy

John Erik Wittern IBM T. J. Watson Research Center, USA
Olaf Zimmermann HSR FHO Rapperswil, Switzerland
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany

Program Committee

Marco Aiello University of Groningen, The Netherlands
Vasilios Andrikopoulos University of Groningen, The Netherlands
Farhad Arbab CWI, The Netherlands
Luciano Baresi Politecnico di Milano, Italy
Giuliano Casale Imperial College, UK
Marco Comuzzi Ulsan National Institute of Science and Technology,

South Korea
Schahram Dustdar TU Wien, Austria
Robert Engel IBM Almaden, USA
Rik Eshuis Eindhoven University of Technology, The Netherlands
Ilche Georgievski University of Groningen, The Netherlands
Paul Grefen Eindhoven University of Technology, The Netherlands
Thomas Gschwind IBM Zurich Research Lab, Switzerland
Martin Henkel Stockholm University, Sweden
Einar Broch Johnsen University of Oslo, Norway
Ernoe Kovacs NEC Europe Network Labs, Germany
Patricia Lago VU University Amsterdam, The Netherlands
Winfried Lamersdorf University of Hamburg, Germany
Kung-Kiu Lau The University of Manchester, UK
Welf Loewe Linnaeus University, Sweden
Zoltan Adam Mann University of Duisburg-Essen, Germany
Guadalupe Ortiz University of Cadiz, Spain
Claus Pahl Free University of Bozen-Bolzano, Italy
Iraklis Paraskakis City College, Greece
Ernesto Pimentel University of Malaga, Spain
Pierluigi Plebani Politecnico di Milano, Italy
Dumitru Roman Sintef, Norway
Ulf Schreier University of Applied Sciences Furtwangen, Germany
Stefan Schulte TU Wien, Austria
Jacopo Soldani University of Pisa, Italy
Massimo Villari University of Messina, Italy
Mandy Weissbach Martin Luther University Halle-Wittenberg, Germany
Stefan Wesner University of Ulm, Germany
Robert Woitsch BOC Asset Management, Germany
Gianluigi Zavattaro University of Bologna, Italy
Christian Zirpins University of Applied Sciences Karlsruhe, Germany

viii Organization

Contents

Formal Methods

Testing Conformance in Multi-component Enterprise Application
Management. 3

Jacopo Soldani, Lars Luthmann, Malte Lochau, and Antonio Brogi

Formalizing Event-Driven Behavior of Serverless Applications 19
Matthew Obetz, Anirban Das, Timothy Castiglia, Stacy Patterson,
and Ana Milanova

Probabilistic Verification of Outsourced Computation Based on Novel
Reversible PUFs . 30

Hala Hamadeh, Abdallah Almomani, and Akhilesh Tyagi

Cloud Service and Platform Selection

Multiplayer Game Backends: A Comparison of Commodity
Cloud-Based Approaches . 41

Nicos Kasenides and Nearchos Paspallis

Are Cloud Platforms Ready for Multi-cloud? . 56
Kyriakos Kritikos, Paweł Skrzypek, and Feroz Zahid

Identification of Comparison Key Elements and Their Relationships
for Cloud Service Selection . 74

Anis Ahmed Nacer, Olivier Perrin, and François Charoy

Deployment and Workflows

Deployable Self-contained Workflow Models . 85
Benjamin Weder, Uwe Breitenbücher, Kálmán Képes, Frank Leymann,
and Michael Zimmermann

Technology-Agnostic Declarative Deployment Automation
of Cloud Applications . 97

Michael Wurster, Uwe Breitenbücher, Antonio Brogi,
Lukas Harzenetter, Frank Leymann, and Jacopo Soldani

Blockchain-Based Healthcare Workflows in Federated Hospital Clouds 113
Armando Ruggeri, Maria Fazio, Antonio Celesti, and Massimo Villari

Monitoring

Monitoring Behavioral Compliance with Architectural Patterns
Based on Complex Event Processing . 125

Christoph Krieger, Uwe Breitenbücher, Michael Falkenthal,
Frank Leymann, Vladimir Yussupov, and Uwe Zdun

Towards Real-Time Monitoring of Data Centers Using Edge Computing 141
Brian Setz and Marco Aiello

Modeling Users’ Performance: Predictive Analytics in an IoT Cloud
Monitoring System . 149

Rosa Di Salvo, Antonino Galletta, Orlando Marco Belcore,
and Massimo Villari

Data Distribution and Analytics

Multi-source Distributed System Data for AI-Powered Analytics 161
Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati,
Soeren Becker, Jorge Cardoso, and Odej Kao

Blockchain- and IPFS-Based Data Distribution for the Internet of Things. . . . 177
Simon Krejci, Marten Sigwart, and Stefan Schulte

Author Index . 193

x Contents

Formal Methods

Testing Conformance in Multi-component
Enterprise Application Management

Jacopo Soldani1(B), Lars Luthmann2, Malte Lochau2, and Antonio Brogi1

1 University of Pisa, Pisa, Italy
{soldani,brogi}@di.unipi.it

2 TU Darmstadt, Darmstadt, Germany
{lars.luthmann,malte.lochau}@es.tu-darmstadt.de

Abstract. Modern enterprise applications integrate various heteroge-
neous components, which management has to be suitably coordinated.
Being able to check whether the management allowed by the implemen-
tation of an application component conforms to a given specification
hence becomes crucial. One may indeed wish to replace component spec-
ifications with conforming implementations, by ensuring that already
planned management can be enacted, or that no additional (potentially
undesired) management activities get enabled. In this perspective, we
propose a parametric relation for testing the conformance of the man-
agement of application components, based on an existing formalism to
model multi-component application management (i.e., management pro-
tocols). We also discuss how such relation can be exploited to ensure
that replacing a specification with a conforming implementation contin-
ues to enable all already allowed management activities, and/or that no
additional (potentially undesired) management activity gets enabled.

1 Introduction

Automating the management of enterprise applications is currently a major
issue in IT [13]. Enterprise applications indeed integrate various components,
and automating the management of an application requires to suitably coordi-
nate the deployment, configuration and operation of its components [8]. This
must be done by considering all dependencies and interactions occurring among
application components, and the possibility of such components to fail or get
stuck [15].

Replaceability is also to be supported [14], as application administrators may
wish to replace the specification of desired components with suitable implemen-
tations. In this perspective, for suitably replacing a component specification, a
candidate implementation must not only implement the specified business logic,
but also conform to the specified management. The latter would indeed mean
that the implementation of a component can be managed by executing the speci-
fied management operations in the specified order, that it properly interacts with
the other components forming an application, and that it handles potential fail-
ures as specified. In other words, a proper notion of “management conformance”
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-44769-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-44769-4_1

4 J. Soldani et al.

would hence allow application administrators to replace the specification of a
component with implementations that can be managed as specified, by also get-
ting guarantees on the way the implemented component interacts with the rest
of the application (and on the overall application management automation).

To this end, we define the notion of management conformance based on
management protocols [6], an existing approach for modelling multi-component
application management. Intuitively, a management protocol specifies the man-
agement behaviour of a component by means of a finite state machine, which
states model component states, and which transitions indicate which manage-
ment operations can be performed in a state. States and transitions are enriched
with conditions on the requirements of a component, and on the capabilities
it offers to satisfy the requirements of other components (bound to such capa-
bilities). Such conditions indicate which requirements must be satisfied while
residing in a state or to perform a transition, and the capabilities offered during
such state or transition to satisfy the requirements of other components. If some
requirements assumed in a state stop being satisfied, a fault handler explicitly
specifies how the component should react to such failure.

To define management conformance, we follow Tretmans’ idea of
input/output (I/O) conformance testing [21], by expressing the semantics of
management protocols in terms of I/O labelled transition systems (IOLTS). We
then exploit such semantics to define a parametric relation for testing manage-
ment conformance, which can be instantiated into four different conformance
testing relations. We focus on I/O conformance testing rather than on formal
verification for two main reasons. I/O conformance testing is known to (i) be
more suited for black-box scenarios [21]. It indeed allows us to test whether an
existing third-party component conforms to a given specification, even if the
such component is a “black-box”, with the tester having no clue on how it has
been implemented. Conformance testing is also known to (ii) provide a higher
degree of implementation freedom, as it delegates to developers the choice of
how to implement some under-/non-specified behaviour [19].

We then show how to instantiate the parametric relation for testing manage-
ment conformance into four different relations. We also discuss how such relations
can be used to check the replaceability of the specification of a component with
a conforming implementation, as well as how they constitute different trade-offs
among implementation freedom and guarantees obtained after replacing a spec-
ification with a conforming implementation. The choice of which conformance
relation to employ hence depends on the context and requirements of the tester,
who can reduce the amount of conforming implementations by considering rela-
tions fully preserving already allowed application management, or ensuring that
no novel, potentially undesired management activity gets allowed.

To summarise, the contributions of this paper are threefold. We provide (a)
an IOLTS semantics for the management protocols modelling the management
behaviour of application components. We present (b) a parametric relation for
testing management conformance (i.e., testing whether the management protocol
of a component implementation conforms to that of a component specification),

Testing Conformance in Multi-component Enterprise Application 5

which permits instantiating four different conformance testing relations. We dis-
cuss (c) whether/how each relation ensures preserving the overall management
of an application after replacing a component specification with a conforming
implementation, or avoiding that undesired management activities gets enabled.
The rest of the paper is organised as follows. Sections 2 and 3 provide some
background and a motivating scenario, respectively. Section 4 illustrates how to
test management conformance in multi-component applications. Sections 5 and
6 discuss related work and draw some concluding remarks, respectively.

2 Background: Management Protocols

Topology graphs allow to model multi-component applications [3]. Each node in
a topology graph represents an application component, by describing its require-
ments, the operations to manage it, and the capabilities it features. Arcs then
model inter-component dependencies, by associating the requirements of a node
to the capabilities of other nodes that are used to satisfy such requirements.

Management protocols [6] describe how the management operations of a node
N depend on (i) other operations of the same node N and on (ii) operations
of other nodes providing the capabilities that satisfy the requirements of N .
The first kind of dependencies is described by a transition relation τ specifying
whether an operation o can be executed in a state s, and which state is reached
by executing o in s. The second kind of dependencies is described by associating
transitions and states with sets of requirements and capabilities. The require-
ments associated with a transition must be satisfied to allow its execution, while
those associated with a state must continue to be satisfied in order for N to
continue to work properly. The capabilities associated with a transition or state
are those offered by N during such transition or while residing in such state.

Management protocols also specify how N reacts when a fault occurs,
i.e. when N is in a state assuming some requirements to be satisfied, but some
other node stops satisfying such requirements. This is described by a transition
relation ϕ modelling the fault handling of N by specifying that its state changes
from s to s′ when some of the requirements it assumes in s stop being satisfied.

Definition 1 (Management protocol). Let N = 〈SN , RN , CN , ON ,MN 〉 be
a node, where SN , RN , CN , and ON are the finite sets of its states, requirements,
capabilities, and management operations. MN = 〈sN , ρN , χN , τN , ϕN 〉 is a finite
state machine defining the management protocol of N , where:

– sN ∈ SN is the initial state,
– ρN : SN → 2RN is a function indicating, for each state s ∈ SN , which

conditions on requirements must hold,
– χN : SN → 2CN is a function indicating which capabilities of N are concretely

offered in a state s ∈ SN ,
– τN ⊆ SN ×2RN ×2CN ×ON ×SN is a set of quintuples modelling the transition

relation, i.e., 〈s, P,X, o, s′〉 ∈ τN denotes that in state s, and if condition P
holds, o is executable and leads to state s′ (by maintaining the capability in
X during the transition), and

6 J. Soldani et al.

– ϕN ⊆ SN × SN is a set of pairs modelling the fault handling for a node, i.e.,
〈s, s′〉 ∈ ϕN denotes that the node will change its state from s to s′ if some
of the requirements in ρN (s) − ρN (s′) stop being satisfied.

We hereafter assume management protocols to be complete (i.e., handling
all possible faults in all possible states) and race-free (i.e., handling faults so
that the simultaneous removal of multiple requirements has the same effect on
a node as any sequential removal of the same requirements). Construction rules
for ensuring both properties on any management protocol can be found in [6].

3 Motivating Scenario

Consider the (toy) web-based application illustrated in Fig. 1. The application is
composed by a gui to which clients connect, and which relies on a backend api to
serve them. The api manages application data, by accessing the database where
such data is stored. The connections from gui to api and from api to database are
represented by arrows connecting a requirement of the source node to a capability
of the target node, hence modelling which component is offering the capability
used to satisfy a requirement of another component (i.e., the requirement db of
api is satisfied by the homonym capability of database, while its capability endp
is used to satisfy the homonym requirement of gui). The operations for managing
the lifecycle of each component are instead listed next to it.

Suppose that the overall application management has been planned by
assuming that the allowed management behaviour for api is that specified by
the management protocol of api in Fig. 2(a). The latter indicates that the pos-
sible states of api are unavailable (initial), installed, started and failed. Operation
transitions allow the component to transit from a state to another by executing
the corresponding operation, with configure self-looping on state installed and
requiring db to be satisfied for being executable. No requirements are needed to
reside in states unavailable and failed, while requirement db is needed to reside
in states installed and started (hence requiring database to provide its capability
db to satisfy such requirement). If requirement db stops being satisfied while api
is installed or started, api gets failed. No requirement is instead needed by api to
perform any other transition or reside in any other state. Finally, state started
is the only state where api is actually providing its capability endp, hence also
being able to satisfy the requirement endp of gui.

Suppose now that we have a candidate implementation of api, provided by a
third-party and whose internals are not known. Suppose also that we observed

Fig. 1. Example of multi-component application.

Testing Conformance in Multi-component Enterprise Application 7

that such implementation can be managed according to the management proto-
col in Fig. 2(b). Can we use the candidate implementation of api in place of its
specification? If yes, which guarantees would we get on the overall application
management when enacting the replacement? For instance, we may wish to be
sure that the overall management behaviour of the application is preserved, so
that already developed management plans will continue to work properly.

4 Testing Conformance in Application Management

I/O conformance is usually defined between two IOLTS defining the operational
semantics of the formalism under consideration [21]. Thus, before defining man-
agement conformance, we first need to introduce an IOLTS semantics for man-
agement protocols.

4.1 IOLTS Semantics of Management Protocols

Given a node N = 〈SN , RN , CN , ON ,MN 〉, we consider two kinds of input
actions for each state s ∈ SN , i.e., operation-invocation actions and requirement-
set actions. An operation-invocation action o↑ denotes the input due to the
invocation of an operation o ∈ ON in a state, while a requirement-set action R
(with R ∈ RN) denotes a subset of the requirements of N that are satisfied by
capabilities provided by other components in the application.

Fig. 2. Examples of management protocols. States are denoted by circles, operation
transitions by solid arrows, and fault-handling transitions by dashed arrows. Conditions
on requirements and capabilities are specified by sets R and C, respectively.

8 J. Soldani et al.

We instead consider three different kinds of output actions for a node N ,
for observing outputs possibly occurring after input actions. An operation ter-
mination action o↓ notifies the completion of a previously invoked operation
o ∈ ON . A capability-set action allows to denote the set of capabilities that are
provided by N to the rest of the application. In addition, a special output symbol
⊥ �∈ (RN ∪ CN ∪ ON) is used to denote fault-handling actions, i.e., to explicitly
observe the activation of fault handlers.

Definition 2 (Input/output actions). Let N = 〈SN , RN , CN , ON ,MN 〉.
The I/O actions labelling alphabet is a set ActN = InN ∪ OutN where

InN = {o↑ | o ∈ ON} ∪ 2RN and OutN = {o↓ | o ∈ ON} ∪ 2CN ∪ {⊥}.

We now define the IOLTS semantics of the management protocol MN =
〈sN , ρN , χN , τN , ϕN 〉 of a node N . The configurations XN of the IOLTS denoting
the semantics of MN are given by the set of states SN of N , to which we add a
set of fresh configurations denoting the execution of operation and fault-handling
transitions, i.e., XN = (SN ∪ τN) ∪ ϕN . The initial configuration of the IOLTS
corresponds to the initial state of MN , i.e., sN .

The transition relation over the configurations of the IOLTS semantics of
MN are instead obtained as follows.

– For each state s ∈ SN , two self-looping IOLTS transitions on s indicate the
sets of assumed requirements and capabilities provided by N in s.

– For each management protocol transition t = 〈s,R,C, o, s′〉 ∈ τN , four IOLTS
transitions are added. An input transition corresponding to the invocation
of o outgoes from s and targets t, while an output transition notifying the
completion of o outgoes from t and targets s′. Two transitions self-looping on
t instead indicate the sets R and C of requirements and capabilities associated
with t, i.e., the input requirement-set and output capability-set.

– For each fault handler f = 〈s, s′〉 ∈ ϕN , and for each subset of requirements
assumed in s and handled by 〈s, s′〉, two IOLTS transitions are added. An
input transition labelled with the set R of remaining requirements (i.e., the
requirements that were assumed in s and that continue to be satisfied by
the rest of the application) goes from s to f , modelling the reaction of N to
the handled fault (i.e., the requirements in ρN (s) − R). An output transition
labelled with ⊥ instead goes from f to s′, allowing to explicitly observe the
issuing of a fault handler.

Definition 3 (IOLTS semantics). Let N = 〈SN , RN , CN , ON ,MN 〉 be a
node, with MN = 〈sN , ρN , χN , τN , ϕN 〉. The IOLTS semantics of the manage-
ment protocol MN of N is defined as a triple IN = 〈sN ,XN ,→N 〉 where

XN = SN ∪ τN ∪ ϕN and →N ⊆ (XN × ActN × XN),

with →N being the least relation such that

Testing Conformance in Multi-component Enterprise Application 9

Fig. 3. IOLTS semantics of the management protocols in Fig. 2. Transitions labelled
with input actions are solid, while those labelled with output actions are dashed. Con-
figurations corresponding to states of management protocols are highlighted in grey.

– ∀s ∈ SN . {〈s, ρN (s), s〉, 〈s, χN (s), s〉} ⊆→N ,
– ∀t = 〈s,R,C, o, s′〉 ∈ τN . {〈s, o↑, t〉, 〈t, R, t〉, 〈t, C, t〉, 〈t, o↓, s′〉} ⊆→N ,
– ∀f = 〈s, s′〉 ∈ ϕN .

∀R ⊂ ρN (s) : (ρN (s′) ⊆ R ∧ (�〈s, s′′〉 ∈ ϕN . ρN (s′) ⊂ ρN (s′′) ⊆ R)) .
{〈s,R, f〉, 〈f,⊥, s′〉} ⊆→N .

Example. Figure 3 illustrates the IOLTS semantics of the management protocols
for api in our motivating scenario (Fig. 2). In both IOLTS, configurations are
given by the union of the sets of states and transitions of the original management
protocol. One can readily observe how intermediate configurations allow to split
operation transitions into operation-invocation and operation completion.

Self-loops then model the conditions on requirements and capabilities associ-
ated with states and transitions. For instance, the configuration (corresponding
to state) started has two self-loops. The dashed self-loop models the fact that the
node is offering the capability endp while residing in state started, since it can
produce {endp} as output. The solid self-loop instead indicates that the node
keeps residing in state started if the requirement db continues to be satisfied,
since the configuration does not change when {db} is given as input.

10 J. Soldani et al.

The figure also shows how fault-handling transitions are split into two transi-
tions. Consider again started, whose corresponding state assumes db to be satis-
fied. If no requirement is given as input, this means that db stops being satisfied
and the configuration of the IOLTS changes from started to failing, from which
(the configuration corresponding to) state failed can be reached by producing
the output ⊥. The two transitions in the IOLTS model the corresponding fault-
handling transition in the original management protocol.

4.2 Input-Enabledness

A crucial assumption in I/O conformance testing is input-enabledness of imple-
mentations under test, i.e., a candidate implementation under test will never
block any input action [21]. During our case, this means that a management
protocol is input enabled if its IOLTS semantics accepts any possible input in
any configuration corresponding to a state in the original management protocol.

Notation. Given the IOLTS semantics IN = 〈sN ,XN ,→N 〉 of a management
protocol MN and a configuration x ∈ XN , x

σ−→N x′ and x
σ−→N (with σ ∈ Act∗N)

denote traces σ corresponding to valid paths in IN .

Definition 4 (Input-enabledness). Let IN = 〈sN ,XN ,→N 〉 be the IOLTS
semantics of the management protocol of a node N . IN is input-enabled iff

∀x ∈ SN .∀i ∈ InN : x
i−→ .

The input-enabledness of a given management protocol can be ensured auto-
matically. Intuitively, its IOLTS semantics can be automatically completed by
adding an input transition targeting a distinct sink configuration s⊥ (with
s⊥ /∈ XN) for each unspecified input of each state s ∈ SN . Namely, an input
transition labelled with the set R of requirements is added if there is no input
transition outgoing from s and labelled with R. An input transition labelled with
the invocation of operation o is instead added if o cannot be invoked in s.

The sink state s⊥ is also made input-enabled, by adding a self-looping input
transition for each possible input. Furthermore, a self-looping output transition
on s⊥ is added, which is labelled with the special symbol ⊥. This allows to
explicitly observe that an unspecified input has been provided to the IOLTS,
as whenever this happens the IOLTS can provide ⊥ as output. Any unspecified
input action hence results in an (implicit) fault handling under input completion.
Example (cont.). Consider again the (a) management protocol specification and
(b) candidate implementation in our motivating example (Fig. 2). By looking at
their corresponding IOLTS semantics, shown in Fig. 3, one can readily observe
that both management protocols are not input-enabled, as each configuration
corresponding to a state of the protocol lacks some outgoing input transitions.
More precisely, there are some operation-invocation actions that are available in
each of such configurations, e.g., in the IOLTS semantics of both protocols there
is only one out of five operation-invocation actions defined for started.

Testing Conformance in Multi-component Enterprise Application 11

Fig. 4. Input-enabled version of the IOLTS in Fig. 3(b), obtained by input completion.

I/O conformance testing requires implementations to be input-enabled [21].
To be able to test whether the candidate implementation of api conforms to
its specification, we hence need to make the IOLTS in Fig. 3(b) input-enabled.
The latter can be obtained by applying it to the above listed construction rules,
which results in the IOLTS shown in Fig. 4.

4.3 Conformance Testing Based on Management Protocols

We now introduce a formal framework for testing management conformance
between application components. Suppose N to constitute the (fully known)
specification of the intended management behaviour of an application component
and N ′ to constitute a candidate (black-box) implementation for N , both defined
over the same sets of requirements, capabilities and operations. Intuitively, we
wish to formally define an I/O conformance relation on management protocols
(mpioco), such that N ′ mpiocoN denotes that the management behaviour imple-
mented by N ′ conforms to that specified by N , i.e., given the same inputs, N ′

can produce the outputs specified by N . Given how we relate input and out-
puts to requirements, operations and capabilities (Definition 2), this intuitively
means that given the same requirements and operations, N ′ can offer the capa-
bilities expected in N , hence meaning that N ′ can be used to replace N in a
multi-component application.

For defining mpioco, we first need to introduce the notions of quiescence and
suspension traces. We introduce a special output symbol δ /∈ (RN ∪ CN ∪ ON)
denoting quiescence, i.e., the observable absence of any output. In the IOLTS
semantics of a management protocol, quiescence occurs whenever a configuration
corresponds to a state not providing any capability. Suspension traces are then
defined by extending existing traces and allowing to explicitly observe quiescence.

12 J. Soldani et al.

Definition 5 (Quiescence and suspension traces). Let N = 〈SN , RN , CN ,
ON ,MN 〉 be a node and let IN = 〈sN ,XN ,→N 〉 be the IOLTS semantics of
MN . Let also x ∈ XN be a configuration in IN .
− x is quiescent, denoted by δ(x) iff ∀C ⊆ CN : C �= ∅ . x � C−→N , and
− straces(x) = {σ | x

σ−→N}, where ∀x′ ∈ XN . x′ δ−→N x′ if δ(x′).

We also need to introduce the notions of enabled outputs and reachability, to
identify the set of output symbols enabled by a set of configurations, and the
configurations that can be reached by performing a trace σ in a configuration x.

Definition 6 (Enabled outputs). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node
and let IN = 〈sN ,XN ,→N 〉 be the IOLTS semantics of MN . The set of outputs
enabled in a configuration x ∈ XN is the least set out(x) such that

C ⊆ out(x) if x
C−→ and {⊥} ⊆ out(x) if x

⊥−→ and {δ} ⊆ out(x) if δ(s).

We also write out(X) to denote the outputs enabled in at least one of the con-
figurations in the set X ⊆ XN , i.e., out(X) =

⋃
x∈X out(x).

We define two different versions of reachability, distinguished by parameter γ. If
γ is “=”, transitions involving a set of requirements or capabilities are considered
only if the trace is delivering exactly that set of requirements or capabilities. In
the relaxed version with γ set to “≥”, a transition labelled with a set R′ of
requirements is considered if the trace is delivering at least the requirements in
R′, while one labelled with a set C ′ of capabilities is considered if the trace is
delivering at most the capabilities in C ′. Operation-invocation and operation-
completion transitions are instead always considered, independently of γ.

Definition 7 (γ-reachability). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node
and let IN = 〈sN ,XN , →N 〉 be the IOLTS semantics of MN . Let also x ∈ XN

be a configuration in IN and σ ∈ straces(x) be a suspension trace for x. The set
of γ-reachable configurations from x with σ is reachγ(x, σ) ⊆ XN , i.e., the least
set satisfying the following recursive rules:

−x ∈ reachγ(x, ε),

−x ∈ reach=(x′, σ) if x′ R′
−→N x′′ ∧ R′ ⊆ RN ∧ σ = R′ · σ′′ ∧ x ∈ reach=(x′′, σ′′),

−x ∈ reach≥(x′, σ) if x′ R′
−→N x′′∧R′ ⊆ R ⊆ RN ∧σ = R·σ′′∧x ∈ reach≥(x′′, σ′′),

−x ∈ reach=(x′, σ) if x′ C′
−→N x′′ ∧ C ′ ⊆ CN ∧ σ = C ′ · σ′′ ∧ x ∈ reach=(x′′, σ′′),

−x ∈ reach≥(x′, σ) if x′ C′
−→N x′′∧C ⊆ C ′ ⊆ CN ∧σ = C ·σ′′∧x ∈ reach≥(x′′, σ′′),

−x ∈ reachγ(x′, σ) if x′ o↑
−→ x′′ ∧ o ∈ ON ∧ σ = o↑ · σ′′ ∧ x ∈ reachγ(x′′, σ′′), and

−x ∈ reachγ(x′, σ) if x′ o↓
−→ x′′ ∧ o ∈ ON ∧ σ = o↓ · σ′′ ∧ x ∈ reachγ(x′′, σ′′),

where · denotes concatenation (i.e., α · ω denotes an I/O action α followed by a
sequence ω of I/O actions).

Testing Conformance in Multi-component Enterprise Application 13

We now formally define how to test the management conformance between
application components, by means of a parametric relation for testing manage-
ment conformance, which allows to obtain four different testing operators. The
latter are distinguished based on (a) the employed notion of γ-reachability and
on (b) the way non-deterministic output-behaviour is handled. Concerning (b),
we introduce some shorthand notations for comparing sets of sets, i.e., we write
Z ′ � Z ′′ to indicate that Z ′′ contains all sets in Z ′, and Z ′ � Z ′′ to indicate
that Z ′′ contains a superset of each set in Z ′.

Notation. Let Z ′ and Z ′′ be two sets. We write Z ′ � Z ′′ iff ∀z′ ∈ Z ′ : (∃z′′ ∈
Z ′′ : z′′ = z′), and Z ′ � Z ′′ iff ∀z′ ∈ Z ′ : (∃z′′ ∈ Z ′′ : z′′ ⊆ z′).

Intuitively, the implemented management of a node conforms to its specification
if, given a set of inputs, it can produce the expected outputs.

Definition 8 (mpioco). Let N = 〈SN , RN , CN , ON ,MN 〉 be a node, with
MN = 〈sN , ρN , χN , τN , ϕN 〉. Let N ′ = 〈S′

N , RN , CN , ON ,M′
N 〉 be another node,

with MN = 〈s′
N , ρ′

N , χ′
N , τ ′

N , ϕ′
N 〉 being input-enabled. Let also β ∈ {�,�} and

γ ∈ {=,≥}.
N ′ mpiocoβ,γ N ⇔ ∀σ ∈ straces(sN) . out(reachγ(s′

N , σ))β out(reachγ(sN , σ)).

Note that if γ is = and β is �, an implementation conforms to a specification
only if it produces the set of desired capabilities given exactly the same sets
of requirements. Setting γ to ≥ or β to � results in more flexibile relations
of management conformance. With γ set to ≥, conformance occurs also if the
implementation needs less requirements and provides more capabilities. With β
set to �, conformance occurs also if the implementation can produce at least
one of the expected sets of capabilities, hence allowing specifications to exhibit
non-deterministic output behaviour.

Example (cont.). Consider again our motivating scenario, where we have a spec-
ification of api and a possible implementation for such component, which we
hereafter denote with apiS and apiI , for simplicity. The IOLTS semantics of the
management protocol of apiS is in Fig. 3(a), while the input-complete IOLTS
semantics of the management protocol of apiI is in Fig. 4.

By applying the different conformance testing relations to both IOLTS, one
can check that apiI mpioco�,≥ apiS and apiI mpioco
,≥ apiS (while the same does
not hold for the relations with γ set to =). This means that the candidate imple-
mentation apiI can be used to replace the desired specification apiS . However,
which guarantees on the overall application management are given when enact-
ing the replacement? Is every possible trace of management preserved? Is there
any (potentially undesired) additional trace that gets enabled?

4.4 Which Conformance Tests to Run?

The different notions of mpioco not only allow to check management confor-
mance, but they can also ensure different properties while replacing a component

14 J. Soldani et al.

Table 1. Additional guarantees on overall application management, after replacing a
specification with a conforming implementation, with mpioco varying on β and γ.

γ set to = γ set to ≥
β set to � existing traces preserved existing traces preserved

no additional traces

β set to � no additional traces −

specification with a conforming implementation. More precisely, mpioco relations
vary based on the parameters γ and β, and stricter mpioco relations are obtained
when employing stricter constraints on γ and β, i.e., setting γ to = and β to
�. Both restrictions induce additional guarantees on the overall management
behaviour of a multi-component application (Table 1).

Whenever the implementation of a node conforms to a specification with γ
set to =, this means that the implementation needs the same sets of requirements
in states and transitions, and that it provides the same sets of capabilities. As
a result, after replacing the specification with the conforming implementation
in an applicaton, no additional trace in the overall management behaviour is
introduced. This intuitively holds since the execution of operations and fault
handlers is constrained by conditions on requirements and capabilities, which do
not change after enacting the replacement.

On the other hand, the implementation of a node can conform to a spec-
ification with β set to � only if such specification is deterministic in its out-
put behaviour. The latter happens only if the specification does not contain
non-deterministic branches, and (given Definition 8) it can be proved that this
means that any conforming implementation implements all its viable paths. This
in turn means that setting β set to � results in preserving all possible traces in
the overall management behaviour of an application.

Which of the restrictions to employ strictly depends on the guarantees that an
application administrator wishes to have. If an application administrator wishes
to replace the specification of a component by preserving the overall management
behaviour of the application it appears in, she must test the management confor-
mance of a candidate implementation with β set to �. The latter was precisely
the case in our motivating scenario, and since the candidate implementation of
api shown to be conforming to the desired specification with β and γ set to �
and ≥, we can use such implementation to replace the given specification.

Alternatively, if an application administrator wishes to replace the speci-
fication of a component by ensuring that no additional management trace is
introduced, she has to test for management conformance with γ set to =. This
is not to be underestimated, as enabling additional management activities while
considering interdepedent components may result in some undesired situation.
For instance, suppose that a component specification requires a VPN in some
state to encrypt its communications. By employing the relaxed version of γ, an
implementation not requiring any VPN would conform the specification, even

Testing Conformance in Multi-component Enterprise Application 15

if it this would mean that after enacting the replacement the component would
not be exploiting any VPN to encrypt its communications.

5 Related Work

Various approaches allow to check whether an existing implementation can be
used to replace the specification of a desired application component, e.g., [4], [5],
[9], [11], and [12] just to mention some. Such approaches typically consider an
implementation as suitable to replace a specification if the implementation can
provide (at least) the desired outputs if provided with (at most) the same inputs,
by also providing techniques for adapting matching implementations to exhibit
the specified I/O behaviour. Their goal is indeed to enact the replacement of a
component specification with a suitable implementation, by ensuring that the
overall application behaviour is preserved, which in our case can be obtained by
exploiting mpioco with β restricted to �. Our approach is instead intended to
support application administrators in a wider set of scenarios, varying on the
guarantees she wishes to get on the overall management of an application.

Similar arguments apply to the approach proposed in [17]. The latter pro-
pose an approach for checking that the interactions with a service in a multi-
service application (including the handling of potential exceptions) conforms the
behaviour specified by the service itself, hence focusing on preserving the overall
application behaviour. Our approach applies to a wider set of scenarios, depend-
ing on desired guarantees on the overall application management behaviour.

To offer such a wider support, we exploit the potentials of Tretmans’ I/O
conformance testing theory [21]. There exists various heterogeneous extensions
and variations of the I/O conformance testing theory, and the closest to ours
are those dealing with (i) the implementation freedom given by specifications
with non-deterministic output behaviour, with (ii) fault handling, and with (iii)
guarantees on the overall application behaviour after replacing a component
specification with a conforming implementation.

Approaches worth mentioning for what concerns implementation freedom are
[2,10,18]. [2] extends I/O conformance testing for dealing with software product
lines, by allowing them to exhibit a fine-grained behavioral variability controlled
by feature selection. [10,18] give implementation freedom by introducing modal-
ity in I/O conformance testing, i.e., allowing to distinguish between mandatory
and optional output behaviour. Various other existing approaches define modal
conformance as alternating simulation relations [1], where conformance is lifted
from simple trace inclusion to an alternating simulation preorder [16,22]. How-
ever, none of the above approaches allows to capture the implementation freedom
characterising conformance testing on management protocols, e.g., allowing an
implementation to conform to a given specification even if the former needs less
requirements or provides more capabilities.

To the best of our knowledge, ours is also the first approach for testing con-
formance for software systems with explicit fault-handling. Only [19,20] consider
explicit failure states, but for different purposes. They indeed consider failure

16 J. Soldani et al.

states as forbidden states, to suspend test runs in case of forbidden inputs. How-
ever, [19,20], as well as no other approach for conformance testing, currently
support the explicit specification and testing of fault-handling mechanisms such
as those provided by management protocols.

In summary, to the best of our knowledge, ours is the first approach for testing
conformance of the management allowed by the implementation of a component
with respect to that of its specification. Our approach distinguishes from exist-
ing solutions for checking behaviour-aware replaceability in terms of supported
scenarios, enabled by the proposed relation of conformance testing. The latter
is itself the first relation providing the freedom to implement a specification by
requiring less and offering more, as well as dealing with explicit fault-handling
and with different operators for combining the behaviour of application compo-
nents.

6 Conclusions

We have presented an approach for testing management conformance in multi-
component applications. More precisely, we proposed a parametric relation for
testing whether the management allowed by an existing component conforms to
a desired specification, modelled with management protocols [6]. Our paramet-
ric relation can be instantiated into four different conformance testing relations,
spanning from that giving higher implementation freedom, to more restricting
relations ensuring that replacing a specification with a conforming implementa-
tion continues to enable all already allowed management activities, and/or that
no additional (potentially undesired) management activity gets enabled.

We also discussed how the different conformance testing relations can be used
to check the replaceability of the specification of a component with a conforming
implementation, and how the choice of which relation to exploit strictly depends
on the desiderata of an application administrator. She may decide to reduce
implementation freedom (hence restricting the set of implementations conform-
ing to a given specification), if she wishes to ensure that the overall application
management is fully preserved after replacing a specification with a conforming
implementation, or that no undesired management activity gets enabled.

We now plan to provide a first prototype for testing management confor-
mance in multi-component applications and to use such a prototype to validate
our approach in practice. We also plan to extend the supported conformance
tests, by relying on more expressive versions of management protocols (e.g.,
truly concurrent management protocols [7]), and by extending the degree of
implementation freedom (e.g., by introducing modality, as [10,18] do for differ-
ent purposes). We also plan to investigate whether and how to adapt our con-
formance testing approach to other approaches for modelling the management
of multi-component applications, e.g., the Aeolus component model [13].

Acknowledgments. This work is partly funded by the projects AMaCA (POR-FSE,
Regione Toscana) and DECLware (PRA 2018 66, University of Pisa). This work was
funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project.

Testing Conformance in Multi-component Enterprise Application 17

References

1. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055622

2. Beohar, H., Mousavi, M.R.: Input-output conformance testing for software product
lines. J. Log. Algebr. Methods Program. 85(6), 1131–1153 (2016)

3. Binz, T., Fehling, C., Leymann, F., Nowak, A., Schumm, D.: Formalizing the cloud
through enterprise topology graphs. In: 2012 IEEE Fifth International Conference
on Cloud Computing, pp. 742–749. IEEE (2012)

4. Bonchi, F., Brogi, A., Canciani, A., Soldani, J.: Simulation-based matching of cloud
applications. Sci. Comput. Program. 162, 110–131 (2018)

5. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A net-based approach to web
services publication and replaceability. Fundam. Inform. 94(3–4), 305–330 (2009)

6. Brogi, A., Canciani, A., Soldani, J.: Fault-aware management protocols for multi-
component applications. J. Syst. Softw. 139, 189–210 (2018)

7. Brogi, A., Canciani, A., Soldani, J.: True concurrent management of multi-
component applications. In: Kritikos, K., Plebani, P., de Paoli, F. (eds.) ESOCC
2018. LNCS, vol. 11116, pp. 17–32. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99819-0 2

8. Brogi, A., Rinaldi, L., Soldani, J.: TosKer: a synergy between TOSCA and Docker
for orchestrating multicomponent applications. Soft. Pract. Exp. 48(11), 2061–
2079. https://doi.org/10.1002/spe.2625

9. Brogi, A., Soldani, J.: Finding available services in TOSCA-compliant clouds. Sci.
Comput. Program. 115–116, 177–198 (2016)

10. Bujtor, F., Sorokin, L., Vogler, W.: Testing preorders for dMTS: deadlock-and
the new deadlock-/divergencetesting. ACM Trans. Embed. Comput. Syst. 16(2),
41:1–41:28 (2016)

11. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5), 19:1–19:61 (2009)

12. Cavallaro, L., Di Nitto, E., Pradella, M.: An automatic approach to enable
replacement of conversational services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.)
ICSOC/ServiceWave -2009. LNCS, vol. 5900, pp. 159–174. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10383-4 11

13. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model
for the cloud. Inf. Comput. 239, 100–121 (2014)

14. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and
Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

15. Durán, F., Salaün, G.: Robust and reliable reconfiguration of cloud applications.
J. Syst. Softw. 122, 524–537 (2016)

16. Gregorio-Rodŕıguez, C., Llana, L., Mart́ınez-Torres, R.: Input-output conformance
simulation (iocos) for model based testing. In: Beyer, D., Boreale, M. (eds.)
FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 114–129. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38592-6 9

17. Heike, C., Zimmermann, W., Both, A.: On expanding protocol conformance check-
ing to exception handling. Serv. Oriented Comput. Appl. 8(4), 299–322 (2013).
https://doi.org/10.1007/s11761-013-0146-2

18. Luthmann, L., Mennicke, S., Lochau, M.: Towards an I/O conformance testing
theory for software product lines based on modal interface automata. In: Formal
Methods and Analysis in SPL Engineering. EPTCS, vol. 182, pp. 1–13 (2015)

https://doi.org/10.1007/BFb0055622
https://doi.org/10.1007/978-3-319-99819-0_2
https://doi.org/10.1007/978-3-319-99819-0_2
https://doi.org/10.1002/spe.2625
https://doi.org/10.1007/978-3-642-10383-4_11
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-642-38592-6_9
https://doi.org/10.1007/s11761-013-0146-2

18 J. Soldani et al.

19. Luthmann, L., Mennicke, S., Lochau, M.: Compositionality, decompositionality
and refinement in input/output conformance testing. In: Kouchnarenko, O., Khos-
ravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 54–72. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57666-4 5

20. Luthmann, L., Mennicke, S., Lochau, M.: Unifying modal interface theories and
compositional input/output conformance testing. Sci. Comput. Program. 172, 27–
47 (2019)

21. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft.
Concepts Tools 17(3), 103–120 (1996)

22. Veanes, M., Bjørner, N.: Input-output model programs. In: Leucker, M., Morgan,
C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 322–335. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03466-4 21

https://doi.org/10.1007/978-3-319-57666-4_5
https://doi.org/10.1007/978-3-642-03466-4_21

Formalizing Event-Driven Behavior
of Serverless Applications

Matthew Obetz, Anirban Das, Timothy Castiglia, Stacy Patterson,
and Ana Milanova(B)

Rensselaer Polytechnic Institute, Troy, NY 12180, USA
{obetzm,dasa3,castit,pattes3,milana2}@rpi.edu

Abstract. We present new operational semantics for serverless com-
puting that model the event-driven relationships between serverless func-
tions, as well as their interaction with platform services such as databases
and object stores. These semantics precisely encapsulate how control
transfers between functions, both directly and through reads and writes
to platform services. We use these semantics to define the notion of the
service call graph for serverless applications that captures program flows
through functions and services. Finally, we construct service call graphs
for 12 serverless JavaScript applications, using a prototype of our call
graph construction algorithm, and we evaluate their accuracy.

Keywords: Serverless computing · Formal semantics · Call graph

1 Introduction

Serverless computing has grown significantly in recent years and so has the
need for abstractions and program analysis tools that target serverless appli-
cations [8]. Existing abstractions emphasize unique features of the environment
where serverless functions execute [4,6]. However, these abstractions do not con-
sider effects of transmitting data to other services and functions. Data transmit-
ted in this fashion triggers new executions of serverless functions that spawn in
response to a change in state on their associated service. Without operational
semantics that capture this behavior, program analysis cannot construct a pre-
cise call graph and cannot reason about dataflow between parts of a serverless
application. The lack of formal semantics also hinders more advanced reasoning
about data privacy, application correctness, and resource usage.

To address this gap, we propose new operational semantics for event-driven
serverless computation. These semantics describe how writes and reads to plat-
form services create inter-function control transfer in serverless applications. Our
semantics formalize the most common platform services including object stores,
databases, notification services, queues, and stateless services. The semantics
gives rise to the service call graph, which extends the classical call graph to
include new nodes and edges. The new nodes represent the platform services
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 19–29, 2020.
https://doi.org/10.1007/978-3-030-44769-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-44769-4_2

20 M. Obetz et al.

written to or read by application code; the new edges represent the writes and
reads to services from serverless functions.

We make the following contributions:

– We formulate new operational semantics for the execution of serverless pro-
grams. These semantics model (1) interactions of serverless functions with
platform services, including event triggers that cause additional functions to
execute, and (2) function composition.

– We extend the traditional notion of a call graph with new types of nodes
and edges that represent event-driven behavior on serverless platforms. These
new nodes and edges capture the inter-function control and state transfer
represented in our operational semantics.

– We design and implement an algorithm for constructing service call graphs
and evaluate its accuracy on 12 serverless programs collected from GitHub.

Related Work. Our semantics for the lifecycle of a single serverless function
are closely related to those used in a recent formalization of serverless comput-
ing [6]. That work focused on modeling low-level behavior of serverless systems.
Such models are useful for capturing behavior such as program non-determinism
that can arise from reading state from previous executions of serverless functions.
Our semantics start from this model to describe initiating requests, language-
agnostic computation steps, and generated responses. However, the semantics
defined in [6] do not capture inter-function communication and program flows
that span multiple serverless functions. Specifically, these semantics limit data
persistence to a locking transactional key-value store. Our semantics introduce
several new state domains that model common services. More importantly, the
previous semantics also lack a conceptualization of serverless events, which initi-
ate execution of a serverless function when state is manipulated on a data storage
service. We model these interactions with a new collection of event semantics
that capture state transfer between serverless components.

The service call graph shares some features of message flow graphs for dis-
tributed event-based systems that communicate through publish-subscribe mid-
dleware [5], however, retrieval of data from databases and object stores cannot be
succinctly captured in publish-subscribe semantics. Our work considers not only
notification-based communication, but also messages that pass through other
channels available to serverless applications.

In preliminary work [10], we introduced the notion of the service call graph.
In this paper, we formalize the definition in terms of our new operational seman-
tics. Further, we design and implement a call graph construction algorithm and
present experimental results on 12 real-world serverless applications.

Outline. Section 2 summarizes the operational semantics, and Sect. 3 presents
our serverless call graph construction. We evaluate the call graph construction
accuracy in Sect. 4 and conclude in Sect. 5. Our technical report [9] presents an
expanded discussion on the serverless model and our semantics and algorithms.

Formalizing Event-Driven Behavior of Serverless Applications 21

2 Semantics for Serverless Computation

We introduce operational semantics for the execution of serverless applications.
The goals of these serverless semantics are to: (1) precisely model the semantics
of communication between serverless functions and platform services, and (2)
capture program flows that are introduced as a result of this communication.

f ∈ F defined functions
σ ∈ Σ internal state
init ∈ F × V → Σ initial state
v := ... value

x := ... request ID
y := ... instance ID
C := F(f, σ, y) executing serverless function

| R(f, x, v) received request
| S(x, v) generated response

stepf ∈ F × Σ → Σ computational step

x is freshRECEIVE
C ⇒ CR(f, x, v)

START
CR(f, x, v) ⇒ CR(f, x, v)F(f, init(f, v), y)

stepf (σ) = σ′
COMPUTE

CF(f, σ, y) ⇒ CF(f, σ′, y)

stepf = respond(v′)
RESPOND

CR(f, x, v)F(f, σ, y) ⇒ CS(x, v′)F(f, σ, y)

DIE
CF(f, σ, y) ⇒ C

Fig. 1. In-process semantics models the sequence of steps in an individual serverless
functions. A full serverless application C is modeled as a set of requests R, executing
functions F, and generated responses S. Functions and requests are appended to C as
they become active, and are removed from C as they terminate or are responded to.

2.1 In-process Semantics

In-process semantics are defined in Fig. 1. These semantics capture the sequence
of steps in an individual serverless function. When an external gateway service
initiates a request for the execution of the serverless program, the platform
applies the RECEIVE rule which adds a new request R. The request contains
a serverless function f and a data value v that is passed to the function. Most
commonly, RECEIVE represents a request made to a public web endpoint for the
serverless application. When an unhandled request exists, the platform applies
the START rule which initializes f with an initial state init(f, v) and starts the
execution of f . We note that init(f, v) captures both initial state at cold and
warm start. COMPUTE models the execution steps in function f . Similarly to
[6], COMPUTE is a language agnostic representation of transitions on state σ.
COMPUTE absorbs interactions with platform services, e.g., upload to object
stores (see Sect. 2.2). A serverless function may issue a response, in which case the
platform applies the RESPOND rule. This rule removes the unhandled request
R(f, x, v) from the system and replaces it with a response S(x, v′), where v′ is the
value provided by the responding serverless function. Responses represent data
which is sent back to the external service that initiated the request; they are
terminal states and are not used for further computation within the platform.

22 M. Obetz et al.

Finally, functions may terminate through the application of the DIE rule. The
system reaches a stable state when all requests have been responded to and no
serverless functions are still executing.

2.2 Event Semantics

We extend the in-process semantics with an event semantics to capture interac-
tion of functions with platform services, as well as direct invocation. We develop
semantics for each service: object stores, databases, notifications, queues, and
stateless services. These semantics detail how serverless functions interface with
that specific service during execution. In this section, we detail the semantics of
object stores. We include the semantics for the remaining services in the techni-
cal report [9]; these semantics follow the structure of the object store semantics,
however, each details behavior specific to the service they model.

The semantic rules can be broadly grouped into rules that write the state
of a service (UPLOAD and REMOVE for object stores; INSERT, UPDATE,
and DELETE, for databases; and ENQUEUE for queues), and rules that read
data from a service into the state of an executing serverless function (READ for
object stores, SELECT for databases, and DEQUEUE for queues).

f un c t i on s :
p ro c e s s o r :

handler : index . p roce s s
events :
- s3:

bucket: photos
event: s3:ObjectCreated:∗

Fig. 2. An example event configuration. The serverless function processor is triggered
when an object is added to the photos bucket. In the semantics, this event is represented
as the fact e(c, processor) where c = (photos, upload).

Our semantics introduce a domain of events E that captures function invoca-
tions due to service state transitions. An event e(c, f) ∈ E consists of two parts:
a triggering condition c and an associated serverless function f . Triggering condi-
tions are generally defined by a unique service identifier sid and an operation op
(e.g, upload to an object store); we write c = (sid , op). Program configurations
unambiguously reference their associated services and the associated serverless
functions. We reduce configurations to set of events e(c, f) during static analy-
sis. We present an example configuration in Fig. 2. An event is triggered when a
serverless function performs a step that fires the event condition. For instance,
an upload to an object store b will activate all events tied to upload to b. To
capture the effect of these triggering events, our semantics introduce the function
trigger . This function accepts a triggerring condition c = (sid , op), and returns

Formalizing Event-Driven Behavior of Serverless Applications 23

the set of functions f for which there is e(c, f), i.e., the set of functions that will
execute when a function runs operation op on service sid . We note that some
types of triggering conditions defined in our semantics are officially supported by
serverless platforms but rarely occur in practice, such as the trigger associated
with a REMOVE from an object store.

Our semantics distinguish between functions triggered by external requests
and functions triggered by events on services. The platform applies RECEIVE
followed by START on functions triggered by external requests. It immediately
applies START on functions triggered by “internal” events on services. Our
semantics allow that any function that is part of the serverless application may
issue a response to the external request. RECEIVE and RESPOND define the
“boundary” of the serverless application, although functions may continue to
execute and modify services after a RESPOND.

C :=
| B(b, v) object store

b ∈ B object store name
e(c, f) ∈ E defined events
op := store operation

| upload
| remove

c := event condition
| (b, op) object store name

trigger(c) :=
{f |e(c, f) ∈ E} triggered functions

stepf = upload(b, (vid, vobj)) trigger(b, upload) = {f1...fn}
UPLOAD

F(f1, init(f1, vid), y1)...F(fn, init(fn, vid), yn)
CF(f, σ′, x)B(b, v ∪ (vid, vobj))
CF(f, σ, x)B(b, v) ⇒

stepf = remove(b, vid) trigger(b, remove) = {f1...fn}
REMOVE

F(f1, init(f1, vobj), y1)...F(fn, init(fn, vobj), yn)
CF(f, σ′, x)B(b, vorig − (vid, vobj))

CF(f, σ, x)B(b, vorig) ⇒

stepf = read(b, vid)
READ

CF(f, σ, x)B(b, v) ⇒ CF(f, σ′, x)B(b, v)

Fig. 3. Object store event semantics.

We define semantics for object stores in Fig. 3. Each object store has a unique
identifier b ∈ B, the set of object stores defined for the application. Object stores
provide a filesystem-like interface for writing and reading data. In the semantics,
this interaction is encoded by allowing serverless functions to write or overwrite
some value v in a named bucket by applying the UPLOAD rule. When a file is
uploaded, all events triggered by state transition on the receiving bucket initialize
their respective function(s). Serverless functions can also delete data contained in
a bucket through application of the REMOVE rule. When a function retrieves
a data value from a bucket, the READ rule accesses the associated data and
assigns it to a variable inside the function’s local state.

Our event semantics are synchronous in the sense that a request to a service
and the execution of the request by the service happen in “one step”. This facili-
tates static reasoning. In practice, a request is decoupled from the execution; we
conjecture that the synchronous semantics are sufficient as programs implicitly
synchronize events on services: a read in f2 is triggered by a write in f1. Further,

24 M. Obetz et al.

for reads and writes within the same function, standard libraries typically pro-
vide only synchronous methods for interacting with platform services. We will
formalize sufficiency conditions on programs in future work.

2.3 Platform Behavior Encoded in Semantics

Our semantics are sufficiently expressive to capture features of serverless plat-
forms that impact system state in unintuitive ways. We illustrate below.

export . shortenUr l = function (event , context , c a l l b a ck) {
let u r l = event . body ;
let s l ug = crypto . randomBytes (8) . t oS t r i ng (. . .) . r ep l a c e (. . .) ;
c a l l b a ck (null , { shor tUr l : context . domainName + s lug }) ;
dynamodb . put ({

TableName : "ShortUrls" ,
Item : { s l ug : s lug , l o n g u r l : u r l }

}) ;
}

Fig. 4. Example of execution continuing after response. RESPOND is applied when
the callback passed in to the serverless function is invoked, but a database is written
to after this response. Code adapted from the url-shortener project [11].

Non-finality of RESPOND. Unlike return statements in normal functions,
responses from a serverless function do not return from the function. Consider
the example in Fig. 4. This serverless function accepts a URL string and generates
a random short slug for that URL. It immediately responds with the generated
shortened URL, then afterward, writes the association between the slug and the
original URL to a database. Our semantics models the execution of this serverless
function by the following transitions (D represents the database service. INSERT
has semantics similar to UPLOAD in Fig. 3):

CD(ShortUrls, v)

=⇒ CD(ShortUrls, v)R(f, x, v1) by rule RECEIVE (f, x, v1)

=⇒ CD(ShortUrls, v)R(f, x, v1)F(f, σ, y) by START(y)

=⇒ CD(ShortUrls, v)R(f, x, v1)

F(f, σ′ = σ[url ← ev.body, slug ← rand()], y) by COMPUTE(f)

=⇒ CD(ShortUrls, v)S(x, v′)F(f, σ′, y) by RESPOND(x, v′ = σ′[slug])

=⇒ CD(ShortUrls, v′ ∪ v)S(x, v′)F(f, σ′, y) by INSERT(ShortUrls, v′)
=⇒ CD(ShortUrls, v′ ∪ v)S(x, v′) by DIE(y)

The application of the INSERT rule affects the final state of the system C by
introducing the value v′ to the database D. This insertion occurs even though
the serverless function has already generated a response in an earlier step.

Formalizing Event-Driven Behavior of Serverless Applications 25

Failures and Retried Executions. A serverless function may fail during
execution for two reasons: (1) the function code enters an error state as the
result of an uncaught exception, or (2) the container runtime kills the function,
either because execution has timed out, or because the language interpreter fails
with an error. When a function fails, the platform can retry the function by
starting a new execution with a clone of the data from the original request [1].

Our semantics capture the effects of failures and retried executions that may
impact system state. In particular, serverless functions that are not idempotent
may emit messages to platform services that are repeated in retried executions,
affecting final system state. In our semantics, these retries are modeled as an
application of the DIE rule, followed by a subsequent application of START to
handle a still-unsatisfied request. Consider a serverless function that uses the
UPDATE rule to increment a view count. It is retried due to a spontaneous
failure in the data center where the function is executing. This series of events
are modeled under our semantics as:

CD(ViewCount , v)

=⇒ CD(ViewCount , v)R(f, x, v) by RECEIVE(f, x, v)

=⇒ CD(ViewCount , v)R(f, x, v)F(f, σ, y) by START(y)

=⇒ CD(ViewCount , v + 1)R(f, x, v)F(f, σ, y) by UPDATE(ViewCount , (v) → v + 1)

=⇒ CD(ViewCount , v + 1)R(f, x, v) by DIE(y)

=⇒ CD(ViewCount , v + 1)R(f, x, v)F(f, σ, y′) by START(y′)
=⇒ CD(ViewCount , v + 2)R(f, x, v)F(f, σ, y′) by UPDATE(ViewCount , (v) → v + 1)

=⇒ CD(ViewCount , v + 2)S(x, v)F(f, σ, y′) by RESPOND(x, {})
=⇒ CD(ViewCount , v + 2)S(x, {}) by DIE(y′)

Following these state transitions, ViewCount has been incremented twice, despite
only a single request being made to the serverless function. Such faults are
representative of data inconsistencies that exist in real serverless applications
that violate the idempotency recommended by serverless providers [1].

2.4 Platform Supported Function Composition

Function composition frameworks, such as AWS Step Functions, allow develop-
ers to statically define pathways for messages through a serverless application.
When one of these pathways is defined, the return value of a serverless function
implicitly becomes a message passed to the serverless function or service follow-
ing it in the composition. Our semantics are expressive enough to capture such
behavior using the same set of state transitions as other serverless events.

Consider a Step Function composition that defines a chain of two serverless
functions, f1 and f2. ([9] shows the real-world Step Function declaration that
we model in this example.) Our semantics models the execution as follows:

26 M. Obetz et al.

C

=⇒ CR(fstep , x, v) by RECEIVE(fstep , x, v)

=⇒ CR(fstep , x, v)F(f1, σ, y) by START(y)

=⇒ CR(fstep , x, v)F(f1, σ
′, y) by COMPUTE(f1)

=⇒ CR(fstep , x, v)F(f1, σ
′, y)F(f2, σ

′′, y) by INVOKE(f2, v
′)

=⇒ CR(fstep , x, v)F(f2, σ
′′, y) by DIE(f1, σ

′, y)

=⇒ CR(fstep , x, v)F(f2, σ
′′′, y) by COMPUTE(f2)

=⇒ CS(x, v′′)F(f2, σ
′′′, y) by RESPOND(x, v′′)

=⇒ CS(x, v′′) by DIE(f2, σ
′′′, y)

This execution illustrates an important difference between standalone server-
less functions and those defined as part of a composition chain. The platform
starts the Step Function chain by issuing a request R(fstep , x, v) by RECEIVE.
Only the final serverless function in the chain RESPONDs to the request. The
“return” of all other functions in the chain is encoded into an event rule that
INVOKEs the next function in the chain. Since compositions are static, the tar-
get of each INVOKE in the composition is known. To preserve the connection
to the originating Step Function request that started F(f1, σ, y), f2 inherits the
identifier y from f1 when it is invoked (the semantics assume that y reflects the
request identifier x). Thus, the lifecycle of the first function in the composition
chain is RECEIVE, START, COMPUTE, DIE; the lifecycle of the final one is
START, COMPUTE, RESPOND, DIE.

3 Service Call Graphs

Our semantics enable construction of a service call graph that explicitly mod-
els interaction between services and serverless functions. The service call graph
extends the classical call graph by adding nodes that represent platform services
and edges that represent reads from services, writes to services, and transfer of
control to functions triggered by state transition on services. Our graphs treat
an entire intra-function call graph as a single node in order to clearly capture
the interaction between serverless functions and platform services.

Construction of the service call graph proceeds in two phases: configuration
analysis and code analysis. Configuration analysis processes configuration files
and identifies the serverless functions and services for the given application.
Each serverless function f ∈ F , and each service b ∈ B (object store), d ∈ D
(database), q ∈ Q (queue), and t ∈ T (notification topic) becomes a node in the
service call graph. In addition, configuration analysis also identifies the set of
events e(c, f) ∈ E and triggering conditions c = (sid , op) (recall Sect. 2 for the
explanation of e and c); each event e(c, f) ∈ E where c = (sid , op) gives rise to
an edge from sid to f .

Formalizing Event-Driven Behavior of Serverless Applications 27

Code analysis processes each serverless functions f ∈ F . It constructs the
standard interprocedural control flow graph (ICFG) of f (here, “interprocedural”
refers to the local helper functions in f). The analysis tracks the set of service
identifiers sid that flow to call sites in the ICFG corresponding to rules of the
event semantics (such as UPLOAD, ENQUEUE, INSERT, or NOTIFY). At each
such call site, the analysis adds an edge from the current serverless function f
to each service sid that may reach the call site corresponding to the event rule.

4 Call Graph Implementation and Evaluation

We implement service call graph construction as an extension of the Type Anal-
ysis for JavaScript (TAJS) framework [7]. We employ a branch of TAJS that
supports reasoning about asynchronous behavior [12]. Our analysis includes code
that summarize the effects of third party libraries, including the AWS SDK. We
constructed summaries of library functions to overcome limitations in TAJS that
prevented us from performing standard whole-program analysis. We searched
GitHub for repositories that included serverless configuration files that defined
more than one serverless function, sorted by repository popularity. We analyze
the top 12 applications that fit these criteria. To evaluate the accuracy of our
generated call graphs, we compare the output of our analysis against call graphs
drawn by manual inspection of the programs.

Table 1. Service call graph results.

Application Lines of code # Functions Sound? Missed edges

Hello-retail 2288 14 Y 0

Citizen-dispatch 865 3 N 6

Galleria 641 5 Y 0

Rating-service 412 2 Y 0

LEX 323 2 Y 0

Lending-app 258 4 Y 0

Url-shortener 172 3 Y 0

Zen-beer 155 4 Y 0

Greeting-app 99 2 Y 0

Lane-breach 98 2 N 1

Wombat 88 2 Y 0

Serverless-chaining 28 2 Y 0

28 M. Obetz et al.

Fig. 5. Comparison of service call graph generated by our analysis for the galleria
serverless application [3], and pipeline diagram provided in the repository’s user doc-
umentation. In the call graph at left, the GET and POST API gateway events trigger
the app-dev-uploader serverless function. This function then writes to the ORIGINALS

S3 bucket, which in turn triggers the app-dev-rotate serverless function. This function
reads from its triggering bucket then writes to a ROTATED bucket. The process repeats
for two more image processing functions before the final image is uploaded to THUMBS.

Table 1 presents the analysis results. For 10 of the 12 applications, our anal-
ysis produced a service call graph identical to the ground truth. One such com-
parison is shown in Fig. 5. For two applications, our analysis missed edges. In
the case of lane-breach, the missed edge corresponded to a web request made
directly to another function through the external web API. We note that it is
not possible, in general, to determine whether a web address belongs to the
application under analysis or a third-party web site. Fortunately, this behavior
represents a discouraged pattern [2]; the program could be made more efficient
using a direct invocation, which would be captured through our INVOKE rule.

In the case of citizen-dispatch, the analysis missed edges from server-
less functions to a set of database tables that corresponded to database queries
made by third-party library calls. This program violated our assumption that
third-party libraries do not interact with services. Though constant service iden-
tifiers flow to the library calls, it is difficult to statically infer which tables will
be accessed by a particular call due to the nature of the query inference engine.
Future versions of our tool could safely over-approximate this behavior by assum-
ing that any library call has the potential to query all tables. If we could perform
standard whole-program analysis, interactions with the database through the
library would have been soundly detected. (Whole-program analysis is trivially
supported in tools for languages such as Java, but it is not supported by TAJS
due to the difficulty of analyzing JavaScript.)

Formalizing Event-Driven Behavior of Serverless Applications 29

5 Conclusion

We introduced new operational semantics for serverless computing and demon-
strated how these semantics give rise to the service call graph. Finally, we pre-
sented a prototype of our service call graph construction algorithm and showed
its efficacy on real-world serverless programs. In future work, we will construct
analyses for improving performance and security of serverless applications.

References

1. Amazon Web Services: AWS Lambda Documentation (2019). https://docs.aws.
amazon.com/lambda/index.html

2. Baldini, I., et al.: Serverless computing: current trends and open problems. In:
Chaudhary, S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Com-
puting, pp. 1–20. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-
5026-8 1

3. Chiu, E.: Serverless galleria (2019). https://github.com/evanchiu/serverless-
galleria

4. Gabbrielli, M., Giallorenzo, S., Lanese, I., Montesi, F., Peressotti, M., Zingaro,
S.P.: No more, no less. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION
2019. LNCS, vol. 11533, pp. 148–157. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-22397-7 9

5. Garcia, J., Popescu, D., Safi, G., Halfond, W.G.J., Medvidovic, N.: Identifying
message flow in distributed event-based systems. In: Proceedings of the 9th Joint
Meeting on Foundations of Software Engineering, pp. 367–377 (2013)

6. Jangda, A., Pinckney, D., Brun, Y., Guha, A.: Formal foundations of serverless
computing. PACMPL 3(OOPSLA), pp. 149:1–149:26 (2019)

7. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for Javascript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 17

8. Jonas, E., et al.: Cloud programming simplified: a berkeley view on serverless
computing. Technical report, University of California at Berkeley (2019)

9. Obetz, M., Patterson, S., Milanova, A.: Formalizing event-driven behavior of
serverless applications. CoRR abs/1912.03584 (2019). http://arxiv.org/abs/1912.
03584

10. Obetz, M., Patterson, S., Milanova, A.: Static call graph construction in AWS
lambda serverless applications. In: HotCloud (2019)

11. Onan, M.: URL-shortener (2019). https://github.com/mdonan90/url-shortener/
blob/master/create/index.js

12. Sotiropoulos, T., Livshits, B.: Static analysis for asynchronous JavaScript pro-
grams. CoRR abs/1901.03575 (2019). http://arxiv.org/abs/1901.03575

https://docs.aws.amazon.com/lambda/index.html
https://docs.aws.amazon.com/lambda/index.html
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://github.com/evanchiu/serverless-galleria
https://github.com/evanchiu/serverless-galleria
https://doi.org/10.1007/978-3-030-22397-7_9
https://doi.org/10.1007/978-3-030-22397-7_9
https://doi.org/10.1007/978-3-642-03237-0_17
http://arxiv.org/abs/1912.03584
http://arxiv.org/abs/1912.03584
https://github.com/mdonan90/url-shortener/blob/master/create/index.js
https://github.com/mdonan90/url-shortener/blob/master/create/index.js
http://arxiv.org/abs/1901.03575

Probabilistic Verification of Outsourced
Computation Based on Novel Reversible

PUFs

Hala Hamadeh1(B), Abdallah Almomani2, and Akhilesh Tyagi1

1 Iowa State University, Ames, IA 50010, USA
hamadeh@iastate.edu

2 Jordan University of Science and Technology, Irbid 22110, Jordan

Abstract. With the growing number of commercial cloud-computing
services, there is a corresponding need to verify that such computa-
tions were performed correctly. In other words, after a weak client out-
sources computations to an untrusted cloud, it must be able to ensure
the correctness of the results with less work than re-performing the com-
putations. This is referred to as verifiable computation. In this paper
we present a new probabilistic verifiable computation method based on
a novel Reversible Physically Unclonable Function (PUF) and a bino-
mial Bayesian Inference model. Our scheme links the outsourced soft-
ware with the cloud-node hardware to provide a proof of the compu-
tational integrity and the resultant correctness of the results with high
probability. The proposed Reversible SW-PUF is a two-way function
capable of computing partial inputs given its outputs. Given the ran-
dom output signature of a specific instruction in a specific basic block
of the program, only the computing platform that originally computed
the instruction can accurately regenerate the inputs of the instruction
correct within a certain number of bits. To explore the feasibility of the
proposed design, the Reversible SW-PUF was implemented in HSPICE
using 45 nm technology. The probabilistic verifiable computation scheme
was implemented in C++, and the Bayesian Inference model was utilized
to estimate the probability of correctness of the results returned from
the cloud service. Our proof-of-concept implementation of Reversible
SW-PUF exhibits good uniqueness compared to other types of PUFs
and exhibits perfect reliability and acceptable randomness. Finally, we
demonstrate our verifiable computation approach on a matrix computa-
tion. We show that it enables faster verification than existing verification
techniques.

1 Introduction

Verifiable computations (VC) have attracted enormous interest and attention
with the recent growth in cloud computing. The concept of verifiable computa-
tion allows a lower-resource client to outsource the computation of a program to
an untrusted cloud. With a proof provided by the cloud, the client can verify that

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 30–37, 2020.
https://doi.org/10.1007/978-3-030-44769-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-44769-4_3

VC Based on PUF 31

the results produced are consistent with the program specification and that the
computations were performed correctly. To be viable, the effort of performing
the verification must be negligible compared to the actual computation. Three
main solutions were proposed to support verifiable computation: VC based on
Trusted Computing [2]. The main drawback of this approach was the assump-
tion that the physical protections cannot be defeated. A second method, VC with
a Non-Interactive Argument, is described in [8]. This approach is not practical
because it relies on complex Probabilistically Checkable Proofs (PCPs) or fully-
homomorphic encryption (FHE). Finally, VC with Interactive Proofs [9] has
been propose. While this approach is often efficient, it applies to only a narrow
class of computations.

In recent years, interest in physically-unclonable functions (PUFs) has
evolved. PUFs have been deployed in different applications because of their abil-
ity to generate “digital fingerprints” of unique identities for a physical system.
SW-PUF [6] is a specific type of PUF that binds software execution to the exact
hardware platform and produces unique signatures at various points in the soft-
ware’s execution. The SW-PUF signature is a promising candidate for providing
a proof that a specific computation was performed on a specific platform. By
expanding the capabilities of a SW-PUF to include invertibility and commu-
tativity, we achieve elements of verifiable computation. Invertibility is achieved
by capturing a physical attribute such as time when an output bit settles using
reversible functions. Reversibility is obtained with transmission gates.

2 The Reversible SW-PUF

The design of the Reversible SW-PUF is an extension of our previous work
on the SW-PUF [6]. As in the original SW-PUF, the ALU signatures of an
instruction on the reversible SW-PUF are generated from an early sampling of
the ALU results. However, in the reverse mode, the roles of inputs and outputs
are reversed, and the early sampling is done on the original input end. Reversible
SW-PUF has two modes: forward and reverse. The forward mode is similar to the
SW-PUF where it generates a unique signature by capturing the delay variations
of carry propagation in ripple-carry adders (which is a basic component in an
ALU). The delay variation is caused by instruction input values and the silicon
fabrication foundry variations. The reverse mode computes the partial inputs
from the signature and the instruction output. Early sampling captures a subset
of original input bits correctly in a platform specific manner, which itself is a
platform specific secret. Only the computing platform that originally computed
the instruction can regenerate the inputs of the instruction accurate within a
certain number of bits. In this design, Reversible SW-PUF is implemented in
reversible logic. Fredkin gate [4] is used as the Boolean basis for conservative
logic because it is universal.

Since Fredkin gates are based on transmutation gates, and TGs are slow
compare to a regular gate, we propose to use two ALUs (fast-ALU, rev-ALU).
The actual computation values consumed by the following program instructions
occur at the fast-ALU. The rev-ALU is used only for verification.

32 H. Hamadeh et al.

3 Verifiable Computation Scheme

In this section an efficient Verifiable Computation Scheme based on Reversible
SW-PUF is proposed. The proposed scheme fits with a probabilistic consistency
guarantee. In this scheme, we are interested in estimating the probability of a
cloud service to return a correct result for the outsourced function. The main idea
is to bind the verification scheme to the cloud service hardware by entangling
the computation with the SW-PUF. When the cloud computes the function,
an instruction sequence for each instruction generates relevant attributes which
are the two data inputs for the lth instruction - X l

0, X
l
1, the instruction output

Y l, and the PUF output Pl. Effectively, the cloud node generates a signature
(response) for each instruction (challenge) in the execution path. This entire
sequence of challenge-response pairs will be returned to the client as a proof of
computational consistency.

For the verification process, the client can verify the behavior of a program of
variable granularities. Most straightforward granularity is to verify an individ-
ual instruction behavior. Pick a random challenge-response (Ck, Rk) pair of an
instruction Ik to verify. The client needs to send the response part (the instruc-
tion output Y k, and the PUF output Pk) to the cloud node. The cloud instan-
tiates the reversible SW-PUF to re-compute the challenge from the response
(the data inputs of the instruction (X ′ k

0 ,X ′ k
1). Only the cloud node that com-

puted the original signature will be able to compute the inverse PUF, so that
(X ′ k

0 ,X ′ k
1) is consistent with the (Xk

0 , Xk
1) in the original computation’s proof

of consistency within a large number of bits. We assume that over all the clients
and programs, the amount of data is too large to be archived by the cloud node
preventing a look-up based response to the verification step.

Repeating this verification process for all the n instructions is not feasible
because a large number of instructions could be executed during a program run.
As we discuss later, an alternative approach to pick a subset of instructions is
used to increase the confidence interval for the verification while maintaining an
efficient verification.

Static program slices raise this granularity naturally. It is a technique for
reducing a program to a minimal form that still retains the original program
computation for a given variable at a chosen point. Merging the program slicing
technique with our verification scheme leads to a more efficient Verifiable Com-
putation. A program slice’s input/output consistency can be established with
the Reversible SW-PUF method. For a program slice, all of the instructions in
its execution flow can be verified leading to a deterministic verification. The
program slices can be extracted to maximize certain static properties.

Figure 1 describes an example of a client that wants to run the program on
a cloud server using the proposed protocol:

For choosing the slice set in our scheme, two elements are critical: the size
of the slice, and the number of slices. Since small slices result in more efficient
verification, we propose to use a selection method based on the super-node [10]
algorithm to reduce the verification effort. However, certain types of program
control flow graphs may not be amenable to small slices, and in such a case,

VC Based on PUF 33

Fig. 1. The proposed protocol

different methods could be applied. As in any interactive proof system, increasing
the number of slices will increase confidence in the computed results. To provide
a desired probabilistic proof about the server’s results, we propose to use a
Bayesian Inference [3] model to determine the appropriate number of static
slices required.

Slices Selection:
Given a program P that contains a set of instructions S, our goal is to find a
subset of S called M such that M exhibits the same behavior as S with respect
to one of the program outputs. Once we find M , while we want to generate
static slices SS that go through M , the selection of M must be based in some
randomized algorithm to prevent an adversary from producing the same M to
cheat. For choosing M , we used the algorithm in [10], for selecting all the super-
nodes in P as our set of desired nodes. A super-node is formed from a strict
dominator-post-dominator pair. A node X is defined as a dominator to a node
Y if every path from the start node to Y goes through X. Similarly, a node
X is defined as a post-dominator to a node Y if all paths to the exit node of
the graph starting at Y go through X. The super-node method will reduce the
proposed verification scheme overhead. Verifying at least one instruction from
each super-node block will be sufficient to verify the entire slice.

Probabilistic Verification Algorithms:
In this section, we propose use of a Bayesian inference on a binomial proportion
method to verify the outsourced computation statistically. Bayesian inference
is a statistical technique to update our subjective beliefs as new evidence or
data becomes available. Our objective here is to characterize the probability
density function for the outsourced computation correctness given that a set of
slices were run correctly. In particular, we are interested in estimating confidence
in verifying the correctness of the calculation results returned by an untrusted
cloud server. Bayesian computation of probability distributions starts with a

34 H. Hamadeh et al.

prior belief about a model parameter, then updates this distribution based on
observed data to produce new posterior beliefs. The mathematical definition of
the Bayesian method is as follows:

p(H|D) =
p(D|H) × p(H)

p(D)
(1)

4 Evaluation of the Reversible SW-PUF

We evaluate 32-bit Reversible SW-PUF in HSPICE using predictive technology
model. We studied three metrics: uniqueness, randomness, and reliability.

Uniqueness:
Uniqueness measures the capability to distinguish between different devices.
Hamming distances (HD) between PUF responses are used to measure unique-
ness. An ideal HD between any two PUF responses is 50% (16-bit). To evaluate
the uniqueness of the Reversible SW-PUF on the same ALU under different data
inputs (Intra-chip), we measured the average HD distribution between a pair of
output data on the same device PUF instance with different set of input data.
The uniqueness of the forward signature for the Reversible SW-PUF has been
measured the same way as the regular SW-PUF [6]. Figure 2(A) shows the HD in
Forward mode. For the reverse computation, both ALU inputs were measured on
ten different PUF instances with identical output (response, which constitutes
the input for a reversible PUF in reverse mode). The HD between each pair of
different ALUs was calculated. Figure 2(B) shows the HD in Reverse mode.

Fig. 2. Hamming distance distribution of reversible SW-PUF: (A) Forward mode; (B)
Reverse mode

Randomness: Randomness evaluates a PUF signature by analyzing the distri-
bution of 0’s and 1’s. The standard statistical test suite of the National Institute
of Standard and Technology (NIST) was used to evaluate the responses of the
reversible SW-PUF. We have applied the NIST tests to 512-bit stream that
was produced from the 16 PUF instances. Only two categories (rank and linear
complexity), out of fifteen statistical tests, failed.

VC Based on PUF 35

Fig. 3. The reliability of reversible SW-PUF against temperature variations.

Reliability: Reliability measures robustness of a PUF in the presence of envi-
ronmental variations. Temperature variations are the main factor that affect
the stability of a PUF response. Figure 3 shows the reliability results for the
responses of the Reversible SW-PUF for both the forward and backward com-
putations. The reversible PUF is very stable under the temperature variation
from −10 ◦C to 65 ◦C.

Case Study: Verification of Matrix Multiplication
We evaluate the proposed method thorough a matrix multiplication experiment,
a widely-used example in Verifiable Computation Systems. We considered the
following scenario: a client C needs to multiply two large scale matrices A(n×n)
and B(n × n) using a cloud service S. However, since the client C does not
completely trust the cloud S to return the correct results for multiplication,
the client C could verify the results in many ways. A naive algorithm could
replicate the multiplication using another cloud service and compare the results,
but this method is expensive, e.g., multiplying n×n matrices execute O(n3) time
using the standard method. A faster check could use Freivalds’ algorithm [5], a
probabilistic randomized algorithm that verifies matrix multiplication in O(kn2)
with a probability of failure less than 2−k. Our approach improves Freivalds’
algorithm by reducing the running time of the verification process by a factor of
O(n). Finally, we compare the execution time of our approach with the Verifiable
Computation method proposed in [11].

Experimental Setup: We implemented a C++ tool to generate the random
slices and perform the verification, and a LLVM compiler framework to compile
the matrix multiplication program into LLVM Immediate Representation (IR).
We used the Symbiotic 3 tool [1] to obtain the backward static slice for the
program. Symbiotic 3 linked with C++ code to generate the random slices in
which the slicing criterion was one element of the output matrix. The number
of slices was chosen based on the Bayesian Inference model. For simplicity, we
assumed that client C challenges must completely match the server signatures,
and any failure will result in rejection of the verification. Finally, a Pin tool

36 H. Hamadeh et al.

was used to generate the desired instruction traces, while HSPICE was used to
represent the Reversible SW-PUF to generate the signatures.

Performance Evaluation: We performed the experiments for evaluating our
scheme and present the computation time cost for each of its elements. The
resultant time cost was obtained by averaging the outcomes of testing 10 dif-
ferent randomly generated inputs of the matrix multiplication code for matrix
sizes ranging from 1000 to 7000. Table 1 shows a computational cost comparison
between the server S (i.e. Matrix Multiplication, Reverse computations) and the
client C (i.e. Slices Generation “the number of slices was picked to produce a
probability of more than 0.97”, Signatures Verification) sides.

We evaluate the advantage of our scheme by comparing our experiment with
the PVCBMM scheme proposed in [11]. Both of the experiments are performed
on the same computer properties. However, we used the Strassen’s algorithm [7]
to reduce the time required to multiply matrices. We studied seven dimensions
size ranging from 1000 to 7000. As shown in Table 2, the experimental results
reveal that our scheme is more efficient than the PVCBMM scheme.

Table 1. Computation cost of proposed scheme for different problem size.

Dimension Verification at client side Computations at server side

Slices generation Signatures
verification

Matrix
multiplication

Reverse
computations

n = 1000 10.025 ms 0.570 ms 0.201 s 0.008 s

n = 2000 11.504 ms 0.684 ms 2.129 s 0.078 s

n = 3000 12.753 ms 0.746 ms 6.372 s 0.183 s

n = 4000 15.025 ms 0.866 ms 12.479 s 0.366 s

n = 5000 16.875 ms 0.925 ms 20.692 s 0.675 s

n = 6000 17.752 ms 0.990 ms 29.668 s 1.065 s

n = 7000 20.057 ms 1.136 ms 44.050 s 1.523 s

Table 2. Computation and verification cost between two schemes.

Dimension The proposed scheme PVCBMM scheme [11]

Computations
cost

Verification
cost

Computations
cost

Verification cost

n = 1000 0.201 s 0.018 s 1.75 s 6.94 s

n = 2000 2.12 s 0.090 s 4.36 s 14.86 s

n = 3000 6.37 s 0.19 s 8.35 s 32.26 s

n = 4000 12.47 s 0.38 s 24.62 s 61.37 s

n = 5000 20.69 s 0.69 s 36.31 s 85.03 s

n = 6000 29.66 s 1.08 s 65.16 s 178.54 s

n = 7000 44.05 s 1.54 s 105.28 s 193.86 s

VC Based on PUF 37

5 Conclusions

We present reversible SW-PUF, a novel PUF design for computing partial inputs
given a set of outputs. We implemented the reversible SW-PUF in HSPICE and
established its desirable properties (uniqueness, randomness, and reliability).
We then provided an efficient interactive verifiable computation scheme based
on the proposed PUF and based on the Bayesian method. Our approach links
outsourced computation with server cloud node hardware to provide proof of
correctness of the results with high probability.

References

1. Chalupa, M., Jonáš, M., Slaby, J., Strejček, J., Vitovská, M.: Symbiotic 3: new
slicer and error-witness generation. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 946–949. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 67

2. Chen, L., Landfermann, R., Löhr, H., Rohe, M., Sadeghi, A.-R., Stüble, C.: A pro-
tocol for property-based attestation. In: Proceedings of the First ACM Workshop
on Scalable Trusted Computing (STC 2006), pp. 7–16. ACM, New York (2006)

3. Dempster, A.P.: A generalization of Bayesian inference. J. Roy. Stat. Soc. Ser. B
(Methodol.) 30(2), 205–232 (1968)

4. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3), 219–253
(1982)

5. Freivalds, R.: Fast probabilistic algorithms. In: Bečvář, J. (ed.) MFCS 1979. LNCS,
vol. 74, pp. 57–69. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-
09526-8 5

6. Hamadeh, H., Tyagi, A.: Physical unclonable functions (PUFs) entangled trusted
computing base. In: 2019 IEEE International Symposium on Smart Electronic
Systems (iSES)(Formerly iNiS). IEEE (2019)

7. Huss-Lederman, S., Jacobson, E.M., Johnson, J.R., Tsao, A., Turnbull, T.: Imple-
mentation of strassen’s algorithm for matrix multiplication. In: Supercomputing
1996: Proceedings of the 1996 ACM/IEEE Conference on Supercomputing, p. 32.
IEEE (1996)

8. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. Commun. ACM 59(2), 103–112 (2016)

9. Vu, V., Setty, S.T.V., Blumberg, A.J., Walfish, M.: A hybrid architecture for inter-
active verifiable computation. In: IEEE Symposium on Security and Privacy, pp.
223–237. IEEE Computer Society (2013)

10. Zhang, M., Gu, Z., Li, H., Zheng, N.: WCET-aware control flow checking with
super-nodes for resource-constrained embedded systems. IEEE Access 6, 42394–
42406 (2018)

11. Zhang, X., Jiang, T., Li, K.-C., Castiglione, A., Chen, X.: New publicly verifiable
computation for batch matrix multiplication. Inf. Sci. 479, 664–678 (2019)

https://doi.org/10.1007/978-3-662-49674-9_67
https://doi.org/10.1007/978-3-662-49674-9_67
https://doi.org/10.1007/3-540-09526-8_5
https://doi.org/10.1007/3-540-09526-8_5

Cloud Service and Platform Selection

Multiplayer Game Backends:
A Comparison of Commodity

Cloud-Based Approaches

Nicos Kasenides(B) and Nearchos Paspallis

University of Central Lancashire—Cyprus Campus,
12-14 University Avenue, 7080 Pyla, Cyprus
{nkasenides,npaspallis}@uclan.ac.uk

Abstract. The development of resource-intensive complex distributed
systems such as the backend side of Massively Multiplayer Online Games
(MMOGs) has shifted towards cloud-based approaches in recent years.
Despite this shift, researchers and developers have mostly utilized pro-
prietary clouds to provide services for such applications—thus leaving
the area of commodity clouds largely unexplored. The use of proprietary
clouds is almost always applied at the Infrastructure-as-a-Service layer,
thereby enforcing restrictions on the development of MMOGs. In a pre-
vious work we focused on the characteristics of MMOGs, outlining cer-
tain factors that prohibit their deployment on commodity clouds. In this
paper, we evaluate the suitability of common public cloud platforms in
developing and deploying the backend side of MMOGs. In our approach,
we implement a simple MMOG over three popular public cloud plat-
forms. Then, we evaluate their performance by measuring the latency of
the game over each platform as well as the maximum size of game worlds
supported by each approach. Our measurements show that approaches
based on the Infrastructure-as-a-Service layer perform better than those
based on the Platform-as-a-Service layer—which was expected. However,
our results indicate that MMOGs based on the Platform-as-a-Service
layer can also perform relatively well and within the bounds of real-time
latency. Coupled with accelerated development and lower maintenance
costs, Platform-as-a-Service technology paves the way for further devel-
opment of MMOG specific Backend-as-a-Service platforms.

Keywords: Software engineering · Distributed systems · Cloud
computing · MMOG · Backend · Commodity clouds

1 Introduction

The use of commodity cloud platforms to power enterprise applications has
become the default choice in recent years. Cloud computing offers numerous
advantages, most notably scalability, elasticity, and cost efficiency [6]. Despite
their scale, enterprise applications exhibit moderate synchronization require-
ments that rarely cause any significant issues with their scalability. On the

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 41–55, 2020.
https://doi.org/10.1007/978-3-030-44769-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_4&domain=pdf
http://orcid.org/0000-0002-1562-3839
http://orcid.org/0000-0002-2636-7973
https://doi.org/10.1007/978-3-030-44769-4_4

42 N. Kasenides and N. Paspallis

other hand, resource-intensive applications such as Multiplayer Online Games
(MOGs) and especially Massively Multiplayer Online Games (MMOGs) typi-
cally limit their scale using game-imposed constraints—such as game “rooms”
with specific capacities—to cope with the very high resource demands. Such
games have traditionally pushed the limits of cloud computing: they have cer-
tain peculiarities and present a different set of challenges that must be tackled
before they can be enabled to run on commodity clouds [16,18,24,37]. In the
past, the resource-intensive nature of such applications has led game providers
to opt for on-premise rather than for public cloud solutions to host their game’s
backend [13,38,45]. However, trends emerging from a recent study we conducted
[28] show that the use of cloud technology has become the most popular option
for deploying MMOGs, and also that it is moving towards higher abstraction
layers such as Platform-as-a-Service (PaaS).

In this paper, we assess how commercial-grade, public cloud solutions can be
used to realize the backends of MOGs and MMOGs. While Backend-as-a-Service
(BaaS) technology has already been used for secondary functionalities—such as
analytics, score-keeping, etc.—we investigate how PaaS-based backends can be
used for core tasks that cover the state management and core operations typically
placed at the backend. We believe there is an opportunity to utilize these higher
layers of cloud computing to provide inherent scalability, offer higher abstraction
during development and decrease maintenance costs for game producers.

Our approach realizes a simple MOG which is implemented and tested on top
of commodity cloud services at the Infrastructure-as-a-Service (IaaS) and PaaS
layers. By implementing the game in multiple layers, we aim to identify some
of the constraints, peculiarities, and challenges presented when moving from on-
premise solutions to private clouds and then to public clouds. Our main objective
is to allow a comparison between these approaches, based on their performance.
Performance—frequently measured in terms of latency—significantly affects the
Quality of Experience (QoE) perceived by players and can have a remarkable
impact on a game provider’s success in the market. We evaluate each approach
by running tests that give insight into their performance and enable comparison
between them. First, we compare their data stores in terms of the maximum
size of game worlds supported. Secondly, we conduct simulations to measure
the latency in each service and thus the performance of each approach. Our
results show that approaches based on the IaaS layer perform better than those
based on the PaaS layer in terms of latency—as we initially expected. However,
the PaaS-based approach still performed reasonably well and within the bounds
of real-time MMOG latency. Consequently, we believe that the PaaS layer can
offer a viable alternative for the development of MMOGs on commodity cloud
platforms which pushes the development boundaries of cloud-enabled MMOGs
past the IaaS layer. Our results motivate us to explore the possibility of utilizing
alternative emerging technologies to enable MMOGs at progressively higher lev-
els of abstraction: PaaS, BaaS and Function-as-a-Service (FaaS). The utilization
of these higher-level solutions may offer additional advantages to those offered
by current cloud solutions based on IaaS. For instance, PaaS, BaaS and FaaS

Multiplayer Game Backends: A Comparison of Cloud-Based Approaches 43

solutions can offer significantly higher levels of abstraction—therefore facilitating
faster, more efficient and more sustainable development of MMOG backends.

The rest of this paper is organized as follows: We first discuss related work
in Sect. 2. Then we describe our experimental approach and enumerate which
platforms we evaluate in Sect. 3. Our pilot implementation of a Minesweeper-
themed MOG and its related architecture are discussed in Sect. 4. Then, our
evaluation and results are critically presented in in Sect. 5. Finally, we list the
conclusions and discuss future work in Sect. 6.

2 Related Work

As good performance is one of the most important features of MOGs and
MMOGs [16,38], a large number of related studies have focused on evaluating
their platforms using various techniques, such as those we have discussed in a
previous work [28]. In their evaluations, various authors also focus on measuring
different types of metrics such as:

– Latency – [10,16,17,23,27,32,39,42].
– Bandwidth – [27].
– Network distance between peers/servers – [16,43].
– The number of players – [31].
– Messages per second – [31].
– Moves per second – [27].
– The number of connections – [42].

According to [16], “ensuring an acceptable Quality of Experience (QoE) for
all players is a fundamental requirement [for cloud-based games]”. By proposing
a mathematical model for measuring the QoE in MMOGs, the authors identify
the global response delay as the most notable metric. Global response delay—
also known as latency—is highly dependent on several other parameters such as
the CPU and memory capacity. Furthermore, they argue that other factors, such
as network distance between the players and the servers can significantly affect
latency. These authors evaluate: (i) the performance of a cloud-based MMOG
in terms of latency using simulations, and (ii) the degradation of the QoE as
a function of the number of allocated Virtual Machines (VMs) and the num-
ber of players, using an empirical approach. Similarly, the authors of [22] state
that to maintain the quality of experience, game state updates “must be deliv-
ered within specific time bounds”, depending on the type of MMOG. The study
points to the players’ flocking behavior in certain hotspots as a significant chal-
lenge because of the high bandwidth load it places on servers. DynFilter [22], a
game-oriented message processing middleware based on the publisher-subscriber
pattern, filters out state-update messages from entities located far away to reduce
bandwidth demand. Experiments on Amazon’s EC2 platform have proven that it
can maintain bandwidth use within quotas while maintaining the QoE. Another
approach is CloudFog [30], a system utilizing fog computing in conjunction with
cloud computing to distribute intensive tasks—such as graphics rendering—to

44 N. Kasenides and N. Paspallis

powerful super-nodes which are located closer to the end-user. As a result of its
offloading strategy and closer proximity to the players, CloudFog manages to
reduce latency, bandwidth consumption and to improve user coverage.

3 Experimental Approach

As argued earlier, developers and researchers alike have used a plethora of
approaches to implement, deploy and evaluate the performance of backends for
MMOGs. To compare various on-premise and native cloud approaches, we have
implemented a version of Minesweeper [9], modified to run as a multiplayer
game. While Minesweeper is a relatively simple game in terms of complexity
and graphics, it still demonstrates the requirement for a backend which can be
used to maintain consistence, persistence, and push updates to the clients—all
while maintaining an acceptable performance. This section describes the general
architecture of our implementation and enumerates the approaches we have used.
Last, it discusses how we developed the necessary software to evaluate them.

Minesweeper is a game in which the player has to clear a rectangular board
that contains hidden mines, without detonating them. It was initially created
in the 1960s as a single-player game and gained wide popularity when it was
included in Microsoft Windows [14]. As a result, it has seen many offshoots
including ones that feature multiplayer competitive gameplay [35].

3.1 Game State

The game state of Minesweeper can be represented as a two-dimensional grid/
array—also known as a tilemap [15]—which is a common type of game state.
Examples of other popular games based on 2D grids are Pac Man, the Civiliza-
tion series, and the more recent Clash of Clans. Our research focuses on this
type of games because their worlds are persistent in the long run, meaning that
their state is sustained in memory and does not cease to exist after certain con-
ditions are met. In contrast, other types of games such as Call of Duty (first
person shooter) are not persistent, which means their state is lost when certain
conditions are met and the game is over.

Rather than using match-based gameplay, persistent worlds allow play-
ers to control entities that co-exist in a common world which is constantly
updated—thus meeting the requirements of our target systems. Theoretically,
a Minesweeper game could feature a very large game board with a large num-
ber of players accessing it simultaneously and either competing or co-operating
with each other to solve the puzzle. Based on previously implemented games, we
created several classes which represent the main elements of the game, such as:
BoardState, CellState, GameState, etc.

3.2 Actions and Rules

We chose to implement Minesweeper because of the relative simplicity of its
components, such as its actions and rules. In terms of actions, the player can

Multiplayer Game Backends: A Comparison of Cloud-Based Approaches 45

either reveal, flag or unflag a selected cell on the board. We have also identified
and implemented the following rules: (a) A player can make a single move on a
single cell per turn, (b) when an empty cell is revealed, the game displays the
number of mines in adjacent cells, (c) if the revealed cell has no adjacent mines,
all adjacent cells without a mine are also revealed recursively, (d) when a cell
containing a hidden mine is revealed, a penalty is applied, and (e) the game ends
when there are no hidden mines left.

3.3 Evaluation Strategy

Our evaluation strategy is to develop nearly identical multiplayer Minesweeper
games, targeting a set of popular public cloud platforms and use them to compare
their performance in terms of latency—the most notable performance metric
according to the related work. We specifically target the following platforms
which are widely considered to be the most popular/widely used:

– Amazon Web Services: EC2 and DynamoDB (IaaS).
– Microsoft Azure: VM and CosmosDB (IaaS).
– Google Cloud Platform: App Engine and Cloud Datastore (PaaS).

We have chosen these platforms because they allow a meaningful comparison
between the services of three major, commodity cloud providers. For this exper-
iment, we kept the same code base for every project but we modified the rules
to allow for longer simulations. For instance, we have introduced a score element
and award players with points when they reveal an empty cell, and deduct points
when they erroneously reveal a cell with a hidden mine. Consequently, instead
of ending the game when all mines are flagged (win) or when the player reveals
a mine (loss), we consider a game as finished when all cells have been revealed.
Our simulations can therefore run for longer periods and allow for a bigger range
of tests to take place.

4 Implementation

All projects were developed using Java 8 and are based on the client-server
architecture, which is the preferred choice for most MMOG systems [23,27,29].
We identify several architectural components necessary to build an MMOG sys-
tem: a client application, a server/backend application, a data store, and a state
update mechanism.

Our client applications have been kept completely identical throughout the
three approaches. The objectives of the client are: (a) to allow visualization of
the game state, (b) initiate simulations with multiple players, and (c) gather
data regarding performance and save it in a local files.

The purpose of the backend is to provide access to services of the game so
that the clients can perform in-game actions. The functionality of the backend
is exposed through a set of commands that can be accessed through an Applica-
tion Programming Interface (API). When a client issues a request, the backend

46 N. Kasenides and N. Paspallis

resolves it, executes the logic that enforces the game’s rules, and performs the
necessary actions by updating the state stored in the data store.

The data store component is used to persistently store the game worlds/states
as well as information about the players and their game sessions. Lastly, the
state-update mechanism component is responsible for updating the client’s view
of the game state, once an update to the game state has occurred, or periodically
when latency allows for it. Figure 1 summarizes the general architecture used in
our implementations.

Fig. 1. General architecture for all approaches.

To allow communication between the clients and the servers, we provide a
command interface that allows clients to issue commands to servers as requests,
and servers to respond with the corresponding data after retrieving the state from
their data store. We use the following minimal interface which contains five core
functions. /createGame creates a new Minesweeper game, /join allows a player
to join a game, /list lists all the available games, /getState allows players
who have joined a game to get its state, and /play allows players in a game to
perform an action on a selected cell.

All of our implementations utilize the Area of Interest (AoI) [7,20,23,40]
concept to reduce the bandwidth required to communicate the game’s state. We
use a class called BoardState to store the state of each game’s board, which is
an abstract class that can store game cells. We use FullBoardState and Partial-
BoardState, which are both derived from BoardState, to distinguish states which
contain the full game state from those containing a specific, partial part of the
game state. While the server utilizes the former for storage and computation,
each client can only see a part of that full state—they receive a partial state
based on their location in the game. The location of each client’s partial state
can be moved by issuing a move command to the /play service and specifying
the new desired location within the game board. To support game state updates
for the clients we use Ably, a real-time WebSocket infrastructure [1] that enables
a publish-subscribe mechanism supporting the concept of AoI.

Multiplayer Game Backends: A Comparison of Cloud-Based Approaches 47

Client-Side. Our client application uses Java Swing forms to visualize the
Minesweeper board for testing purposes. To carry out simulations, we have cre-
ated a simple Minesweeper solver—with no GUI—that tries to solve the game by
opening cells sequentially – i.e. moving rightwards and then downwards as the
game progresses. Naturally this is a sub-optimal approach to play Minesweeper,
but our study focuses on the performance of the backend in terms of serving
player requests rather than the efficiency of solving the game.

We run our simulations by initializing the client programs with information
such as the width and height of the game board, the number of players in the
game, the size of their partial states and the delay between the execution of
moves by each player. Our simulations instantiate a new thread for each player
in the game, with each player going through a series of steps that simulate real
player actions in a multiplayer game. Firstly, our bot players request a list of
all available games from the server by calling the /list service. Upon acquiring
this list, they always select the first available game and try to join it by calling
/join and specifying their name. The names of players are automatically set
when created (e.g. Player1, Player2,. . . PlayerN). After successfully joining
the game, a player requests the initial partial game state using/getState. Upon
receiving the initial game state, the players run the solver and submit their
moves—reveal or flag/unflag—using the /play call. When all cells in their visible
area have been revealed, the players try to shift their position rightwards and
then downwards by calling /play and issuing a move command.

To allow multiplayer gameplay, we define an additional entity called Session,
which couples a certain player to a specific game that the player has joined.
Using sessions, we track the locations and actions of players, award or deduct
points for their actions, and choose which players to send game state updates
to, based on their proximity to those updates.

Our client records the time the request is sent and the response is received
for each of these calls, using timestamps. The time taken for the round trip of
the request-response (latency) is found in terms of milliseconds, by subtracting
the two timestamps. The recorded values are stored in memory and saved in a
comma-separated value (CSV) file, as shown in Table 1.

Amazon Web Services Backend. Our Amazon Web Services (AWS) project
is hosted by an Amazon EC2 t2.micro instance, running on Linux Ubuntu 18
and features 1 vCPU, 1GB of RAM and “low to moderate” network performance
[3]. Our server does not store any game data but instead utilizes an instance of
DynamoDB with a provisioned capacity within the free tier [4]. DynamoDB is
Amazon’s NoSQL data store which stores data in tables that contain items con-
sisting of key-value pairs. Amazon claims that DynamoDB has “single-digit mil-
lisecond performance at any scale” [4]. We have implemented our project using
Java Servlets running on Apache Tomcat 9 [21], with each Servlet implementing
an endpoint of the API. Client-server communication occurs through the HTTP
protocol, with each client issuing requests to the server and the server carrying
out the request and responding with the necessary information. To retrieve data

48 N. Kasenides and N. Paspallis

Table 1. The format used for the simulation results file.

players endpoint latency(ms)

2 GAME LIST 1414

2 JOIN 310

2 STATE GET 141

2 PLAY 335

.

from DynamoDB we use DynamoDBMapper [5], a library which maps client-
side classes to DynamoDB tables using code annotations. As with all platform
setups, we use Ably [1] for state updates. Ably allows state update messages to
be sent from the server through a channel in real time. Clients subscribe to a
channel once they have an active game session and listen for state updates from
the server. For these experiments, we used the free package of Ably [2].

Microsoft Azure Backend. Our Microsoft Azure backend project is powered
by a B1S-type virtual machine running on Linux Ubuntu 14 and featuring 1
vCPU and 1 GB of RAM [33]. As in the AWS project, we achieve client-server
communication using HTTP and Java Servlets powered by Apache Tomcat 9.
The two projects are almost identical (i.e. we use the same endpoints, algorithms,
etc.). The only difference is the code which utilizes the data store since we opt to
use an Azure product in this approach. To store data, we use Azure’s CosmosDB
[34], a NoSQL data store that saves data in documents as key-value pairs. In
terms of performance, Microsoft also claims that projects utilizing CosmosDB
can “take advantage of fast, single-digit-millisecond data access” [34]. Just as
in our AWS project, we realize server-to-client state updates using Ably’s free
package, and identical code in our state update function.

Google App Engine Backend. Our third and last approach is based on a
server-less PaaS infrastructure. We use Google App Engine (GAE) [25], a fully-
managed platform that allows application development without the need to deal
with server configuration—i.e. realizing serverless computing [11]. App Engine
allows applications to scale seamlessly and without developer supervision, which
is a major advantage over the other approaches. The serverless architecture of
this approach lets App Engine manage the server resources—we only had to
create an App Engine instance and select our environment (Java 8). App Engine
Java projects utilize Jetty 9 [19], an HTTP server that is similar to Apache
Tomcat, which also enables clients to communicate with the server using Java
Servlets. Our web-based API is kept identical to the other two native cloud
approaches, with the only difference being the code utilizing the data store.
In this approach, we use Google’s NoSQL solution, the Cloud Datastore [26].
Google claims that its Cloud Datastore “scales seamlessly [...] with your data

Multiplayer Game Backends: A Comparison of Cloud-Based Approaches 49

allowing applications to maintain high performance as they receive more traffic”
[26]. The Cloud Datastore saves data in documents called Entities that contain
key-value associations. To easily interact with the Cloud Datastore we utilize a
Java library called Objectify [41], which allows us to annotate classes as entities
and easily perform CRUD operations. Just like with the other approaches, we
have implemented game state updates using Ably. Figure 2 shows the selection
of architectural components for all three approaches.

Fig. 2. Architectures used for all three platforms: (1) Amazon Web Services, (2)
Microsoft Azure, (3) Google Cloud Platform.

5 Evaluation

Our evaluation is driven by the performance aspect of MMOGs. We evaluate each
approach independently, while maintaining identical secondary components such
as game-solving algorithms and game logic. We focus on performance because we
believe it is the most important performance metric, as also indicated in several
related works [10,16,17,23,27,32,39,42].

In our data collection experiments we aimed to keep secondary factors in
control as follows:

– We aimed to keep the network conditions as similar as possible by running
the experiments within the same wired network. We also (a) monitored the
network, verifying that it was not being utilized by other programs at the
time and (b) ran the experiments at similar times and days of the week to
avoid different network conditions.

– We kept the client device conditions as similar as possible by running all
simulations on the same computer while it was initially idle.

– We used comparable data center locations (Eastern United States) for all
experiments.

– We used NoSQL data stores for all cloud approaches to allow a comparison
between them. We use this type of persistence because it can be easily scaled
and appears to better match the needs of MMOG backends [8,12,44].

50 N. Kasenides and N. Paspallis

– We created virtual machines with similar specifications to keep the backend
processing power as comparable as possible.

– We conducted our experiments based on a set of identical commands and
made sure that the parameters and logic of those calls stayed the same
throughout all simulations.

To establish a base latency for each approach, we created a Servlet that per-
forms no operations and returns an empty result. The purpose of the BaseServlet
is to allow us to establish a minimum latency for each approach. Given that our
code is kept the same for game logic, this helps compare the latency between
calls that utilize the backend extensively and those that do not—thus determin-
ing the latency caused by our backend implementations. Secondly, we measured
the latency of each endpoint in our API by running our simulations and obtaining
the data from a local file, as shown in Table 1. In each case, we ran simulations 10
times for each endpoint, including the base latency endpoint and took averages
from these results. We ran the base latency test first, which yielded an average
of 97.2 ms for Google’s App Engine, 144.2 ms for Microsoft Azure and 167.3 ms
for the Amazon Web Services approach.

Before testing each of the actual backend services, we performed several tests
to establish the maximum size of the game board state possible in each approach.
In our approach, the size of game state is limited by the size of the unit element
used in the corresponding data store. While there exist ways to circumvent these
limitations to create bigger game sizes, we kept our implementations free of
these modifications for three reasons: First, state modeling is beyond the scope
of this paper. Second, a workaround implemented on a specific platform may
not necessarily work on all platforms – thus making it harder to compare our
results. Third, we aimed to keep our implementations as simple and consistent
as possible.

We conducted these tests by creating square-sized boards where the width
is the same as the height. Initially, we attempted to create games of size 100 ×
100 – if that game size could be created we incremented the size by 50% and
tried again. When the game could not be created anymore because of platform-
enforced limitations, we reduced the size by 25% and tried again until we found
the exact size of game boards supported by each approach. Our experiments
showed that Microsoft’s CosmosDB supports a game state up to 229 × 229
cells, Google’s Cloud Datastore takes the middle ground, with up to 158 × 158
game boards and Amazon’s DynamoDB supports a maximum size of up to 98 ×
98 board states for Minesweeper. These hard limitations are subject to change
from game to game and are dependent on each platform.

Upon establishing the maximum state size for each approach, we used
the minimum of those values as input to evaluate the performance of the
/createGame service. We performed HTTP GET requests by specifying the
administrator password, the maximum number of players allowed, the game size
and the difficulty of the game. We kept the parameters of all these calls constant
throughout all experiments by using a game size of 98—the minimum out of the
three approaches—setting the difficulty to Easy and the maximum number of

Multiplayer Game Backends: A Comparison of Cloud-Based Approaches 51

players to 10. Our results from ten calls indicate an average latency of 332.7 ms
for AWS, 346.3 ms for Azure and 496.6 ms for App Engine.

Our next test focused on the /list service, which returns a list of all available
games. It is important to indicate that the list service only retrieves information
about a game (such as its ID, width and height) but not its actual state. To
conduct this test, we created two games in each of the three data stores and
called the list service. Our results from ten rounds of simulations show that
Azure took 555 ms to respond, AWS took 568.5 ms, while App Engine took
1153.2 ms.

To test the /join, /getState and /play services, we ran ten simulations with
the following configuration: a game size of 10 × 10 with two players, difficulty set
to easy and a partial state of 5 × 5 for each player. AWS performed best in joining
the game, with a latency of 201.8 ms, compared to Azure’s 234.8 ms and App
Engine’s 554.6 ms. AWS also performed marginally better when retrieving the
initial state of the game at 176.3 ms, while App Engine took 176.7 ms and Azure
245.4 ms. When calling the play service, Azure performed marginally better with
175.8 ms while AWS took just a bit longer at 176.9 ms. App Engine took an
average of 201.2 ms to respond to play requests. Table 2 summarizes our latency
test results.

Table 2. A summary of average latencies for all approaches for various API calls. All
time measurements are in milliseconds.

Approach Base latency Create game List Join Get state Play

Amazon EC2 167.3 332.7 568.5 201.8 176.3 176.9

Microsoft Azure 144.2 346.3 555 234.8 245.4 175.8

Google App Engine 97.2 496.6 1153.2 554.6 176.8 201.2

Data gathered during the evaluation shows that IaaS-based approaches gen-
erally performed better than their PaaS counterpart, which was expected because
of the larger overhead of computational layers being present in the PaaS app-
roach. From the latency results of our game service calls, we observe that AWS
IaaS approach performed better in three of those services (create game, join and
get state), while Azure performed better in two (list and play).

In contrast, App Engine performed significantly better—about 33% faster—
compared to the other two approaches in the base latency test, something that
may reveal a higher latency caused by Google’s Cloud Datastore which was
utilized in the Minesweeper services but not in the base latency test.

In the create game service, the AWS approach performed slightly better
(4%) compared to the Azure approach. The opposite applies for the list service,
where Azure performs marginally better (3%) compared to AWS. The difference
between the two is more significant when joining the game, with AWS scoring
a 15% improvement compared to Azure. In these services, App Engine scores
relatively poorly compared to the two IaaS approaches.

52 N. Kasenides and N. Paspallis

In the get state service, App Engine performs better and almost ties AWS’s
better-performing service – the two have a negligible difference (1%) with Azure
falling behind by a relatively large margin (-28%).

The most significant test is conducted on the play service which we regard as
the most important of all services because it is the one which is most frequently
called by the players during a game. This means it can impact the performance
of the MMOG most significantly. In this test, AWS and Azure performed within
1% difference of each other, with Azure performing better by about 1ms. App
Engine also scores a relatively low latency (201.2 ms) but ends up performing
about 13% worse than Azure.

By combining this relatively good performance with (1) inherent elasticity,
(2) code abstraction and (3) the elimination of infrastructural management from
developers, the PaaS layer appears to offer a viable alternative development
approach for cloud-enabled games—one that many game developers could benefit
from in the future.

6 Conclusions and Future Work

In this paper, we selected a set of public cloud platforms to assess the suitability
of public clouds for developing MMOG backends. To do this, we implemented
a modified version of Minesweeper in each of three selected approaches. Our
implementation extended a traditionally single-player game to run as an MMOG
on the infrastructure of three major cloud providers: Amazon Web Services,
Microsoft Azure and Google App Engine. Our findings suggest that MMOGs
can be engineered to run on high-level commodity cloud platforms, something
that game providers have generally avoided so far. We compare the performance
of our game’s services in terms of latency, using simulations. Our results show
that the two IaaS approaches (AWS and Azure) have performed better than
the PaaS approach (App Engine), which is what we initially expected. Based on
related work, the expected latency of real-time MMOGs is near or below 250ms
[23,36,46]. From our results, we conclude that the PaaS layer offers acceptable
performance which indicates that it could provide a suitable environment for
realizing MMOG backends—at least for game types that do not require very low
latency. While not as good as in IaaS, the performance of our PaaS approach puts
it within the limits even of real-time MMOGs. With its extra benefits—easier,
faster and more economical development—we argue that PaaS is becoming a
competitive option for realizing MMOG backends.

For the future, we aim to improve our understanding of developing and
deploying MMOGs on public clouds by studying related models, methods and
tools. Our priority is to complement our work by exploring another important
aspect of MMOGs—scalability—through the evaluation of models that allow
varying sizes of game worlds. Due to technical limitations, our approach was lim-
ited to ten players, which is not representative of MMOGs but rather of MOGs.
Furthermore, Minesweeper is a turn-based game and is therefore different from
more popular types of online games. It does not fall into popular categories such

Multiplayer Game Backends: A Comparison of Cloud-Based Approaches 53

as First Person Shooter (FPS), Real-Time Strategy (RTS) and so on, which is
not the focus of this research. Lastly, our approach utilizes various data stores.
Some of these may be optimized towards read operations, while others may be
optimized towards write operations—perhaps skewing the latencies scored by
some approaches. Despite that, we argue that our work is a good starting point
and showcases the possibilities that lie ahead, especially when more work is done
with respect to scalability. Such an advancement will allow MMOGs running on
public clouds to handle workloads with far larger numbers of players and game
world sizes than what we have used in the present study.

References

1. Ably: Ably realtime (2019). https://www.ably.io/. Accessed 10 Dec 2019
2. Ably: Pricing — ably realtime (2019). https://www.ably.io/pricing. Accessed 10

Dec 2019
3. Amazon Web Services: Amazon ec2 instance types (2019). https://aws.amazon.

com/ec2/instance-types/. Accessed 10 Dec 2019
4. Amazon Web Services: Dynamodb - overview (2019). https://aws.amazon.com/

dy-namodb/pricing/provisioned. Accessed 10 Dec 2019
5. Amazon Web Services: Dynamodbmapper - amazon dynamodb (2019). https://

docs.aws.amazon.com/amazondynamodb/latest/developerguide/Dynamo-DBMa
pper.html. Accessed 10 Dec 2019

6. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

7. Assiotis, M., Tzanov, V.: A distributed architecture for massive multiplayer online
role-playing games. In: Proceedings of 5th ACM SIGCOMM Workshop on Network
and System Support for Games (NetGames’ 06), Article no. 4 (2005)

8. Baker, J., et al.: Megastore: providing scalable, highly available storage for interac-
tive services. In: Proceedings of the Conference on Innovative Data system Research
(CIDR), pp. 223–234 (2011)

9. Becker, K.: Teaching with games: the minesweeper and asteroids experience. J.
Comput. Sci. Coll. 17(2), 23–33 (2001)

10. Burger, V., et al.: Load dynamics of a multiplayer online battle arena and simula-
tive assessment of edge server placements. In: Proceedings of the 7th International
Conference on Multimedia Systems, p. 17. ACM (2016)

11. Castro, P., Ishakian, V., Muthusamy, V., Slominski, A.: The rise of serverless com-
puting. Commun. ACM 62(12), 44–54 (2019). https://doi.org/10.1145/3368454

12. Chang, F., et al.: Bigtable: a distributed storage system for structured data. ACM
Trans. Comput. Syst. (TOCS) 26(2), 4 (2008)

13. Chu, H.S.: Building a simple yet powerful MMO game architecture. Verkkoarkkite-
htuuri, Part (2008)

14. Cobbett, R.: The most successful game ever: a history of minesweeper, May
2009. https://www.techradar.com/news/gaming/the-most-successful-game-ever-
a-history-of-minesweeper-596504. Accessed 12 Dec 2019

15. Coleman, R., Roebke, S., Grayson, L.: Gedi: a game engine for teaching videogame
design and programming. J. Comput. Sci. Coll. 21(2), 72–82 (2005)

16. Dhib, E., Boussetta, K., Zangar, N., Tabbane, N.: Modeling cloud gaming experi-
ence for massively multiplayer online games. In: 2016 13th IEEE Annual Consumer
Communications & Networking Conference (CCNC), pp. 381–386. IEEE (2016)

https://www.ably.io/
https://www.ably.io/pricing
https://aws.amazon.com/ ec2/instance-types/
https://aws.amazon.com/ ec2/instance-types/
https://aws.amazon.com/dy-namodb/pricing/provisioned
https://aws.amazon.com/dy-namodb/pricing/provisioned
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Dynamo-DBMapper.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Dynamo-DBMapper.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Dynamo-DBMapper.html
https://doi.org/10.1145/3368454
https://www.techradar.com/news/gaming/the-most-successful-game-ever-a-history-of-minesweeper-596504
https://www.techradar.com/news/gaming/the-most-successful-game-ever-a-history-of-minesweeper-596504

54 N. Kasenides and N. Paspallis

17. Dhib, E., Zangar, N., Tabbane, N., Boussetta, K.: Resources allocation trade-off
between cost and delay over a distributed cloud infrastructure. In: 2016 7th Inter-
national Conference on Sciences of Electronics, Technologies of Information and
Telecommunications (SETIT), pp. 486–490. IEEE (2016)

18. Ducheneaut, N., Yee, N., Nickell, E., Moore, R.J.: Building an MMO with mass
appeal: a look at gameplay in world of warcraft. Games Cult. 1(4), 281–317 (2006).
https://doi.org/10.1177/1555412006292613

19. Eclipse: Jetty - servlet engine and http server (2019). https://www.eclipse.org/
jetty/. Accessed 10 Dec 2019

20. El Rhalibi, A., Al-Jumeily, D.: Dynamic area of interest management for massively
multiplayer online games using OPNET. In: 2017 10th International Conference
on Developments in eSystems Engineering (DeSE), pp. 50–55. IEEE (2017)

21. Foundation, A.: Apache tomcat (2019). http://tomcat.apache.org/. Accessed 10
Dec 2019

22. Gascon-Samson, J., Kienzle, J., Kemme, B.: DynFilter: limiting bandwidth of
online games using adaptive pub/sub message filtering. In: Proceedings of the
2015 International Workshop on Network and Systems Support for Games, p. 2.
IEEE Press (2015)

23. GauthierDickey, C., Zappala, D., Lo, V.: Distributed architectures for massively
multiplayer online games. In: ACM NetGames Workshop. Citeseer (2004)

24. Ghobaei-Arani, M., Khorsand, R., Ramezanpour, M.: An autonomous resource
provisioning framework for massively multiplayer online games in cloud environ-
ment. J. Netw. Comput. Appl. (2019). https://doi.org/10.1016/j.jnca.2019.06.002

25. Google Cloud: App engine - google cloud (2019). https://cloud.google.com/
appengine/. Accessed 10 Dec 2019

26. Google Cloud: Datastore - nosql schemaless database (2019). https://cloud.google.
com/datastore/. Accessed 10 Dec 2019

27. Jardine, J., Zappala, D.: A hybrid architecture for massively multiplayer online
games. In: Proceedings of the 7th ACM SIGCOMM Workshop on Network and
System Support for Games, pp. 60–65. ACM (2008)

28. Kasenides, N., Paspallis, N.: A systematic mapping study of MMOG backend
architectures. Information 10, 264 (2019). https://doi.org/10.3390/info10090264.
Switzerland

29. Kavalionak, H., Carlini, E., Ricci, L., Montresor, A., Coppola, M.: Integrating peer-
to-peer and cloud computing for massively multiuser online games. Peer-to-Peer
Netw. Appl. 8(2), 301–319 (2015)

30. Lin, Y., Shen, H.: Cloud fog: towards high quality of experience in cloud gaming.
In: 2015 44th International Conference on Parallel Processing, pp. 500–509. IEEE
(2015)

31. Lu, F., Parkin, S., Morgan, G.: Load balancing for massively multiplayer online
games. In: Proceedings of 5th ACM SIGCOMM workshop on Network and system
support for games, p. 1. ACM (2006)

32. Meiländer, D., Gorlatch, S.: Modeling the scalability of real-time online interactive
applications on clouds. Future Gener. Comput. Syst. 86, 1019–1031 (2018)

33. Microsoft Azure: Introducing B-series, our burstable VM size (2019). https://az
ure.microsoft.com/en-au/blog/introducing-b-series-our-new-burstable-vm-size/.
Accessed 10 Dec 2019

34. Microsoft Azure: Introduction to Azure Cosmos DB (2019). https://docs.microsoft.
com/en-us/azure/cosmos-db/introduction. Accessed 10 Dec 2019

35. Minesweeper.io: Minesweeper.io (2019). https://minesweeper.io/. Accessed 10 Dec
2019

https://doi.org/10.1177/1555412006292613
https://www.eclipse.org/jetty/
https://www.eclipse.org/jetty/
http://tomcat.apache.org/
https://doi.org/10.1016/j.jnca.2019.06.002
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://doi.org/10.3390/info10090264
https://azure.microsoft.com/en-au/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-au/blog/introducing-b-series-our-new-burstable-vm-size/
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://minesweeper.io/

Multiplayer Game Backends: A Comparison of Cloud-Based Approaches 55

36. Nae, V., Iosup, A., Prodan, R.: Dynamic resource provisioning in massively mul-
tiplayer online games. IEEE Trans. Parallel Distrib. Syst. 22(3), 380–395 (2011)

37. Nae, V., Prodan, R., Fahringer, T., Iosup, A.: The impact of virtualization on
the performance of massively multiplayer online games. In: Proceedings of the 8th
Annual Workshop on Network and Systems Support for Games, p. 9. IEEE Press
(2009)

38. Nae, V., Prodan, R., Iosup, A.: Massively multiplayer online game hosting on cloud
resources. In: Cloud Computing: Principles and Paradigms, pp. 491–509 (2011)

39. Najaran, M.T., Krasic, C.: Scaling online games with adaptive interest manage-
ment in the cloud. In: 2010 9th Annual Workshop on Network and Systems Support
for Games (NetGames), pp. 1–6. IEEE (2010)

40. Negrão, A.P., Veiga, L., Ferreira, P.: Task based load balancing for cloud aware
massively multiplayer online games. In: 2016 IEEE 15th International Symposium
on Network Computing and Applications (NCA), pp. 48–51. IEEE (2016)

41. Objectify: Objectify (2019). https://github.com/objectify/objectify. Accessed 10
Dec 2019

42. Plumb, J., Kasera, S., Stutsman, R.: Hybrid network clusters using common game-
play for massively multiplayer online games, pp. 1–10, August 2018. https://doi.
org/10.1145/3235765.3235785

43. Plumb, J.N., Stutsman, R.: Exploiting Google’s edge network for massively multi-
player online games. In: 2018 IEEE 2nd International Conference on Fog and Edge
Computing (ICFEC), pp. 1–8. IEEE (2018)

44. Shabani, I., Kovaçi, A., Dika, A.: Possibilities offered by Google App Engine for
developing distributed applications using datastore. In: 2014 Sixth International
Conference on Computational Intelligence, Communication Systems and Networks
(CICSYN), pp. 113–118. IEEE (2014)

45. Shaikh, A., Sahu, S., Rosu, M.C., Shea, M., Saha, D.: On demand platform for
online games. IBM Syst. J. 45(1), 7–19 (2006)

46. Shea, R., Liu, J., Ngai, E.C.H., Cui, Y.: Cloud gaming: architecture and perfor-
mance. IEEE Netw. 27(4), 16–21 (2013)

https://github.com/objectify/objectify
https://doi.org/10.1145/3235765.3235785
https://doi.org/10.1145/3235765.3235785

Are Cloud Platforms Ready
for Multi-cloud?

Kyriakos Kritikos1(B), Pawe�l Skrzypek2, and Feroz Zahid3

1 ICS-FORTH, Crete, Greece
kritikos@ics.forth.gr

2 AI Investments, Skierniewice, Poland
pskrzypek@aiinvestments.pl

3 Simula Research Laboratory, Fornebu, Norway
feroz@simula.no

Abstract. Multi-cloud computing is getting a momentum as it offers
various advantages, including vendor lock-in avoidance, better client
proximity and application performance improvement. As such, various
multi-cloud platforms have been developed, each with its own strengths
and limitations. This paper aims at comparing all these platforms to
unveil the best one as well as ease the selection of the right platform
based on the user requirements and preferences. Further, it identifies
the current gaps in the platforms to be covered so as to enable the full
potential of multi-cloud computing. Finally, it draws directions for fur-
ther research.

1 Introduction

Cloud computing promises the on-demand delivery of infrastructural and other
kinds of services to assist in the applications development, deployment and
adaptive provisioning. Further, it promises the reduction of costs, flexibility in
resource management plus the ability to supply a potentially infinite amount
of resources. As such, it has been widely adopted, leading to a multitude of
applications being migrated to the Cloud. However, the initial Cloud computing
platforms and providers offered services that encouraged vendor lock-in while
these services performance was not always as expected or promised.

To this end, multi-cloud computing popped up [1], promising to address the
above issues. This computing kind enables applications to be deployed in multi-
ple clouds, one at a time. This allows not only to avoid vendor lock-in but also
to achieve customer proximity via application spreading across different phys-
ical locations. Further, it enables application providers to select more reliable
cloud providers in terms of the service level being delivered by their services.
In addition, it allows to better satisfy application requirements and preferences,
leading to applications with improved performance. A certain form of multi-cloud
computing, cross-cloud computing, [1,2] has been also introduced, promising to
deploy applications each time in not one but multiple cloud providers. This has

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 56–73, 2020.
https://doi.org/10.1007/978-3-030-44769-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-44769-4_5

Are Cloud Platforms Ready for Multi-cloud? 57

the inevitable advantage of achieving true optimality, as application developers
can select the best cloud services to realise their applications’ functionality.

Based on the above analysis, multi-cloud computing is now getting a momen-
tum such that a multitude of multi-cloud management platforms (MCMPs)
have been developed. Such MCMPs are either extensions of existing platforms
(see Google Anthos1) or new ones that rushed to cover the respective market
gap. These MCMPs have their own strengths and weaknesses. For instance, one
MCMP can support a diversity of clouds while another deployment automation.
Thus, users find it difficult to select the MCMP best suiting their needs.

As such, this paper attempts to review all these MCMPs by adopting an
hierarchical criteria set, organised according to three main aspects: (a) how well
the orchestration of multiple clouds is supported; (b) what is the support level for
multi-cloud applications; (c) what is the MCMP intelligence extent for increasing
the automation in application provisioning. All these aspects complement each
other and together lead exploiting the full potential of multi-cloud computing.

The MCMP review based on the aforementioned set fulfills multiple pur-
poses: (a) it enables to nominate one MCMP as the best; (b) it facilitate MCMP
selection based on user requirements and preferences; (c) it unveils those func-
tional gaps in MCMPs which need to be covered to fully support multi-cloud
computing. Another contribution is the supply of interesting challenges, which,
when addressed, can further boost the MCMP adoption.

The rest of the paper is structured as follows. The next section explains
the MCMP selection process. Section 3 introduces the hierarchical set of criteria
which can be regarded as multi-cloud computing goals. Section 4 presents and
analyses the evaluation results. Finally, the last Sect. 5 concludes the paper and
supplies some research challenges for further boosting the MCMP adoption.

2 Platform Selection Process

We aimed at assessing only proprietary MCMPs, as these are complete products
which can be actually exploited by users in the cloud market. To this end, our
simplified MCMP selection process involved the following two main steps:

MCMP Search. To conduct the MCMP search, we have relied on: (i) using
sophisticated web search engines (e.g., Google) by applying the following query
string: “Multi-cloud AND Platform”; (ii) the snowball crawling method [3] where
forwarding links are visited from the main web site currently inspected – use-
ful in case the web site was suggesting or evaluating multiple from these plat-
forms/tools; (iii) our own knowledge about some well-known MCMPs. While
conducting (i) and (ii), we also came across two articles from Forrester [4] and
Gartner [5] which enabled us to both identify MCMPs and validate those already
discovered.

Filtering. Apart from the fact that the MCMPs should be either proprietary
or offered in dual licensing mode, we have applied additional selection criteria
1 https://cloud.google.com/anthos/

https://cloud.google.com/anthos/

58 K. Kritikos et al.

which included: (i) the MCMP should be still in operation; (ii) it should have
existing clients; (iii) it should support multi-cloud and not just hybrid application
deployment; (iv) finally, it should also support application reconfiguration.

In result, 17 MCMPs were discovered (see Appendix 1 in https://tinyurl.
com/rby7m37). In fact, the MCMP market is overruled by US companies and
only 2 MCMPs reside in Europe and just one in Canada. Further, with the
exception of Google, no other major cloud provider is offering a MCMP. A subset
of these MCMPs (see Table 1), the top-7, will be reviewed in Sect. 4 based on
the criteria identified in the next section due to paper length restriction reasons.

Table 1. Overview of assessed MCMPs

Platform Location-
Cloud

Description

Cisco Cloud Center
Suitea

US Multi-cloud management platform with special
focus on cost optimisation and CI/CD

Rackware Hybrid
Cloud Platformb

US A multi-function solution for workload migration
to the cloud, disaster recovery, and multi-cloud
resource management

Morpheus Datac US A multi-cloud management platform for hybrid
IT and DevOps automation with special focus on
cost and performance optimisation

CloudBoltd US A multi-cloud and hypervisor management
platform featuring continuous infrastructure
testing and blueprints for repeatable and
standardised application deployment

Google Anthos US Hybrid application management platform for
on-premise and public clouds with support for
service mesh, containers, micro-services and
functions as well as strong focus on security and
workload migration

Cloudifye US End-to-end modular orchestration platform that
abstracts applications and networks from
underlying infrastructures. Provides also support
for edge computing

Melodicf Poland Cross-cloud, data-intensive application
management platform with strong focus on
utility- and model-driven application
reconfiguration

ahttps://www.cisco.com/c/en/us/products/cloud-systems-management/cloudcenter/
index.html
bhttps://www.rackwareinc.com/platform-1
chttps://www.morpheusdata.com/
dhttps://www.cloudbolt.io
ecloudify.co/
fmelodic.cloud/

https://tinyurl.com/rby7m37
https://tinyurl.com/rby7m37
https://www.cisco.com/c/en/us/products/cloud-systems-management/cloudcenter/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/cloudcenter/index.html
https://www.rackwareinc.com/platform-1
https://www.morpheusdata.com/
https://www.cloudbolt.io
https://cloudify.co/
https://melodic.cloud/

Are Cloud Platforms Ready for Multi-cloud? 59

3 Requirements

To evaluate the selected MCMPs, a sophisticated evaluation framework in form
of an assessment criteria hierarchy was devised. The main focus is on three main
dimensions: (a) cloud orchestration support – the degree of cloud service orches-
tration support and automation even across multiple abstraction levels; (b) cloud
application support – the degree and level of management for cloud applications;
(c) platform intelligence – what knowledge is derived from intelligent mecha-
nisms to optimise the multi-cloud application provisioning. In the following, we
present all dimensions and their hierarchy of criteria in separate sub-sections.

3.1 C1 – Cloud Orchestration Support

This criteria category evaluates the capability of an MCMP to orchestrate cloud
services, even coming from different providers and/or different abstraction levels.
It also covers aspects like the possibility to orchestrate private clouds in hybrid
deployment scenarios and the support to cloud-related standards.

C1.1 – Cloud Support. This sub-category assesses the orchestration support that
a certain MCMP has on different clouds.

C1.1.1 – Cloud Diversity. This criterion assesses the diversity of public
clouds that can be supported. As such, the evaluation of this criterion on a
MCMP can take the following values: (a) low : only two public clouds are sup-
ported; (b) medium: three to six clouds are supported; (c) good : six to nine
clouds are supported; (d) high: ten or more clouds are supported by the MCMP.

C1.1.2 – Private Cloud. This criterion assess the capability of an MCMP
to support application deployment in private clouds to cover hybrid application
provisioning scenarios. This capability can be assessed as follows: (a) no: it is
not exhibited by an MCMP; (b) yes: it is indeed featured.

C1.1.3 – Cross-Cloud. As indicated in Sect. 1, cross-cloud computing
enables to achieve true optimisation of application deployment. As such, an
MCMP can be evaluated on this as follows: (a) no: the MCMP does not support
cross-cloud computing; (b) yes: otherwise.

C1.2 – Resource Diversity. Due to various factors, including better workload
and security isolation, other deployment alternatives have been presented apart
from Virtual Machines (VMs) like containers and specialised resources kinds
(e.g., GPUs) which enable boosting the performance of compute-intensive appli-
cations. As such, the more resource kinds are handled, the more kinds of work-
loads can be supported. Thus, an MCMP can be evaluated as follows here: (a)
low : only the traditional resource of a VM is supported; (b) medium: also con-
tainers are supported; (c) good : three to four resource kinds are supported; (d)
high: more than four resource kinds are supported.

60 K. Kritikos et al.

C1.3 – BYON. Users might have existing resources hosted in specialised infras-
tructures or private clouds. Thus, if an MCMP is able to exploit and manage such
resources, it can increase the alternative deployment options for applications plus
cater for hybrid application provisioning scenarios. As such, it can be evaluated
on this criterion as follows: (a) no: this BYON capability is not featured by the
MCMP; (b) yes: the MCMP can support deployment on user-specific resources.

C1.4 – Service Support. This criteria sub-category assesses the kinds of services
supported by an MCMP and the support versatility per each handled service
kind with the rationale that the diversity of services in different abstraction levels
leads to covering more advanced multi-cloud application provisioning scenarios.

C1.4.1 – Service Kinds Versatility. This criterion assesses the different
abstraction levels (i.e., IaaS, PaaS, SaaS & BPaaS) covered by an MCMP in
terms of respective cloud services. The rationale is that higher abstraction levels
coverage enables to reduce administration burden and cost while facilitates com-
pleting the functionality of multi-cloud applications. As such, an MCMP can be
evaluated as follows: (a) low : one service kind is only supported; (b) medium: two
to three service kinds are supported; (c) high: all service kinds are supported.

C1.4.2 – Service Versatility. This criterion attempts to assess the versa-
tility of support for the same service kind to enable moving or selecting multiple
services of the same kind in the context of multi-cloud application provisioning.
C1.1 covered this for infrastructural but not higher-level of services. As such, an
MCMP can be evaluated as follows: (a) low : only one service is supported for
a higher-level service kind; (b) medium: two to five services are supported; (c)
high: more than five services are supported.

C1.5 – Automation. This criterion assesses the level of automation in cloud
service orchestration. Ideally, it is expected that based on a model of the user
application, an MCMP could derive and execute a concrete orchestration plan
to relieve users from manually specifying it and the burden to delve into cloud-
specific details. As such, an MCMP can be evaluated as follows: (a) low : the
orchestration is manually conducted by the user; (b) medium: some orchestration
parts can be automated by the MCMP; (c) good : the MCMP can orchestrate a
plan given by the user; (d) high: it can automatically derive and execute a plan
based on the user input (e.g., an application model).

C1.6 – Standards. The conformance to standards comes with various benefits,
also related to multi-cloud computing, like the ability to operate software plus
exchange information and knowledge across different technologies, platforms and
infrastructures. Already multiple cloud standards exist spanning, e.g., how cloud
applications can be specified (e.g., TOSCA [6]) and the format of VM images
(e.g., OVF), although their adoption level by the providers is not as expected.
As such, we can evaluate a MCMP on this as follows: (a) no: no cloud standard
is supported; (b) low : one standard is supported; (c) medium: two to three
standards are supported; (d) high: more than three standards are supported.

Are Cloud Platforms Ready for Multi-cloud? 61

3.2 C2 – Cloud Application Support

An outmost MCMP goal is to support the multi-cloud applications’ management,
spanning their whole lifecycle. This support needs to be built under solid bases,
like model-driven engineering, which abstract from low-level technicalities and
increase the automation level. Applications could also process and produce data,
which can be large in volume in many cases. As such, these data should be
also managed accordingly by the MCMPs. Finally, an MCMP must allow for
high-levels of management flexibility plus cater for the continuous application
evolution. All these aspects are covered by the following categories of criteria.

C2.1 – Modelling Support. An MCMP should provide the right support level for
multi-cloud application modelling, spanning the supply of a modelling frame-
work, the capturing of multiple component configuration kinds, the rich resource
specification plus the re-use of existing model parts for new application models.

C2.1.1 – Modelling Language. An MCMP should use a modelling lan-
guage for the specification of multi-cloud applications which is rich enough to
cover all relevant application management aspects (e.g., deployment, monitoring)
while providing the right abstraction level. As such, an MCMP can be evaluated
as follows: (a) no: no modelling language is offered; (b) low : it is offered but
covers only one aspect; (c) medium: the MCMP’s modelling language covers two
to three management aspects; (d) high: it covers all necessary aspects;

C2.1.2 – Configuration Diversity. To support true multi-cloud comput-
ing, application components in one form need to be coupled with different cloud-
specific configuration specifications. Further, the same functionality/component
can take different forms (e.g., functions or big data processing tasks), each com-
ing with its own configuration alternatives. Thus, an MCMP must support as
many of these configuration kinds as possible to increase its applicability level.
So, it can be evaluated on this criterion as follows: (a) low : the MCMP supports
only one configuration kind; (b) medium: the MCMP supports two or three con-
figuration kinds; (c) high: more than three configuration kinds are supported.

C2.1.3 – Resource/Service Modelling. Cloud service offerings must be
modelled to support matching service requirements and capabilities and the
selection of the best possible services. This modelling is also imperative to realise
BYON scenarios. However, it needs to cover all service kinds across multiple
clouds. As such, an MCMP can be evaluated as follows: (a) no: the MCMP does
not support service modelling; (b) low : it features a language via which only
one service kind can be modelled; (c) medium: the language covers two service
kinds; (d) high: the language covers the modelling of any service kind.

C2.1.4 – Policy Modelling & Enforcement. User organisations can have
non-functional requirements and policies that should hold for any of their appli-
cations or for specific ones. For instance, due to privacy low conformance reasons,
any data manipulated by any application must reside in its origin country. Fur-
ther, an application’s response time could be restrained to be lower than an
upper bound. Besides, different requirement kinds might need to be specified,
like location, scaling, and quality requirements. Thus, an MCMP can be evalu-

62 K. Kritikos et al.

ated as follows: (a) no: it does not support requirement modelling; (b) low : only
one requirement kind is supported; (c) medium: two to three requirement kinds
can be modelled; (d) good : more than three kinds can be specified; (e) high: same
as (d) but requirements are enforced at both the global and application level.

C2.1.5 – Editing Capabilities. Cloud modelling languages mostly adopt
representation formats like YAML or JSON coming with their own generic edi-
tors. However, language-specific editors must be used instead so as: (a) to cover
the modelling preferences and habits of the main target users (devops); (b) to
have specialised language features (e.g., error highlighting, auto-completion) that
enhance user experience and speedup the modelling process. Thus, an MCMP
can be evaluated as follows: (a) no: no modelling language is supplied; (b) low :
no editor is offered but generic editors exist for the language representation for-
mats; (b) medium: a language editor exists with no special features; (c) high: a
sophisticated editor is offered with the aforementioned added-value features.

C2.1.6 – Model Re-use. Model re-use is essential to not only allow the
rapid creation of language models but also to reduce the learning curve. It can
also lead to a community-lead effort where both complete multi-cloud application
models plus model fragments covering common elements like metrics become
available. As such, we evaluate a MCMP as follows: (a) no: no model-reuse is
allowed; (b) low : complete models can be re-used by just copying their parts; (c)
medium: whole models and some complex model elements can be re-used/cross-
referenced; (d) high: any kind of model element can be re-used/cross-referenced.

C2.2 – Lifecycle Management. Suitable support to any application manage-
ment activity (e.g., design and deployment) reduces the management burden
and enables devops to focus more on the core application functionality and its
improvement. As such, we can assess an MCMP as follows: (a) low : only one
activity (usually deployment) is covered; (b) medium: two to three activities are
covered; (c) good : four to five activities are covered; (d) high: all activities are
supported.

C2.3 – Data Management. (Big) Data are becoming a critical asset for organ-
isations which strive to derive added-value knowledge from them to improve
existing products and services. Due to their importance, they need to be prop-
erly managed to increase the automation level in data manipulation and reduce
operational costs (e.g., by moving computation near data to save communica-
tion cost). With this criteria sub-group, we assess the pure data management
activities offered by an MCMP.

C2.3.1 – Data Creation. Data sources can already exist outside the appli-
cation management scope. However, in other cases, data sources and their encap-
sulated data must be created before a specific application can be deployed and
executed. To this end, an MCMP can be evaluated as follows: (a) no: no data
(source) creation facility is offered; (b) yes: otherwise.

C2.3.2 – Secure Data Migration. Data are not always bound to a cer-
tain place and might require to be moved for various reasons; e.g., the level of

Are Cloud Platforms Ready for Multi-cloud? 63

availability of the node currently storing them has been greatly reduced. How-
ever, data migration is not a simplified activity while it needs to be properly
secured for privacy and protection reasons. As such, an MCMP can be assessed
as follows: (a) no: data migration is not supported; (b) medium: only insecure
data migration is supported; (c) high: secure data migration is fully supported.

C2.3.3 – Secure Data Destruction. While output data can be moved to
a new place or intermediate data can be deleted, a new user of the same host
or the cloud provider could still read them. As such, for security and privacy
reasons, an MCMP must securely destruct data when they are no more needed
and can be, thus, evaluated as follows: (a) no: data are simply destructed; (b)
yes: data are securely destructed by utilising state-of-the-art mechanisms.

C2.3.4 – Data Source Versatility. Data can be encapsulated in different
data source kinds, including relational or NoSQL DBs, and triples stores. Thus,
data management should be conducted across all such kinds. As such, an MCMP
can be evaluated as follows: (a) no: no data source is supported; (b) low : only
one data source kind is supported; (c) medium: two to three data source kinds
are supported; (d) high: the MCMP supports more than three data source kinds.

C2.4 – Workflow Support. With this sub-group of activities, we assess the sup-
port level towards management and application workflows.

C2.4.1 – Management Flexibility. In many cases, MCMPs encode the
management of application lifecycle activities in code form. This is inflexible as
each time the handling of such activities must be modified, the code must be
re-engineered. However, if lifecycle activities are encoded in a workflow form, the
highest possible flexibility is achieved as workflows can be easily and effortlessly
modified by using well-known workflow editors without changing any kind of
code. Thus, we can evaluate an MCMP with: (a) no: management workflows are
not directly supported; (b) yes: such workflows can be both edited and executed.

C2.4.2 – Workflow Automation. Applications do not take just the form
of component agglomerations. They could also be BPaaSes realised in form of
workflows that must be properly provisioned and managed. Thus, we can assess
an MCMP as follows: (a) no: it does not support application workflows; (b) yes:
it offers specialised workflow facilities and services.

C2.5 – Containerization. By adopting the well-known and used micro-service
paradigm, modern cloud applications are built and deployed as containers which
can be easily managed in separation. With the following two criteria, we assess
the support level towards building and managing a diversity of container forms.

C2.5.1 – Container Versatility. Docker is the most widely used container
form. However, new container forms were recently developed (e.g., singularity
[7]), which are more secure and lightweight, specializing for particular workload
kinds (i.e., high performance ones). Thus, an MCMP must support handle all
these container forms during application deployment to increase its applicability.
So, it can be evaluated as follows: (a) no: containers are not supported; (b)
low : only one container form is supported; (c) medium: two container forms are
supported; (d) high: the MCMP handles more than two container forms.

64 K. Kritikos et al.

C2.5.2 – Container Image Management. An MCMP must offer suitable
facilities to manage container images; this is handy in the context of manipulat-
ing and building containerised application components. Thus, we can evaluate it
as follows: (a) no: container images are not managed; (b) yes: the MCMP offers
tools or facilities to manage container images.

C2.6 – CI/CD Support. Applications can evolve over time due to market com-
petition, requirements change and the advent of new technologies. Thus, an
MCMP must support this evolution by adopting different continuous integra-
tion and deployment (CI/CD) paradigms. For instance, it could allow old and
new application versions to be concurrently provisioned. As such, an MCMP
can be assessed as follows: (a) no: CI/CD is not supported; (b) low : it is not
directly supported but users can push new application versions for deployment;
(c) medium: it directly supported; (d) high: it can also be properly configured.

3.3 C3 – Platform Intelligence

An MCMP must derive extra knowledge to optimise the client’s application in
terms of its initial deployment and its continuous reconfiguration. The ability to
derive new knowledge plus exploit it relates to monitoring & runtime capabilities
covering the user application’s functionality and data. As such, respective criteria
categories were devised to assess MCMPs with respect to such capabilities.

C3.1 – Optimisation. This criterion assesses how well a multi-cloud application
is continuously optimised by an MCMP.

C3.1.1 – Utility Functions. Optimisation is usually accompanied by util-
ity functions to derive a candidate solution’s utility. This enables checking the
solution space to discover the solution with the highest utility, i.e., the optimal
one. The formulation of such utility functions must be rich and precise via the use
of complete mathematical specifications. As such, an MCMP can be evaluated
as follows: no: it does not consider any optimisation objective; low : the objective
is rather fixed; medium: the objective is indirectly produced via the user specifi-
cation of partial objectives (e.g., metrics) and their relative importance (in form
of weights); high: a complete mathematical formula can be expressed.

C3.1.2 – Objective Versatility. Even if an optimisation objective is math-
ematically defined, we argue that apart from mathematical operators and func-
tions, its content should include as variables: (a) metrics: these connect with
the monitoring feedback to properly compute a solution’s utility; (b) attributes:
they denote some quantities related to the solution space or the current applica-
tion configuration. For instance, one attribute could express the maximum cost
among all candidate offerings of an application component. Thus, an MCMP can
be evaluated as follows: no: metrics and attributes cannot be used in objective
specification; low : only fixed metrics can be used; medium: also fixed attributes
can be used; high: any kind of metric or attribute can be involved.

C3.1.3 – Continuous Reasoning. An MCMP must continuously reason
to derive new application deployment plans that more optimally address the

Are Cloud Platforms Ready for Multi-cloud? 65

current situation. This is an essential ability in the dynamic cloud environments
under which applications operate (as various functional and non-functional faults
can occur) while allows grabbing new opportunities for optimisation when they
appear (e.g., better offerings for application components). As such, an MCMP
can be evaluated with: no: reasoning is performed once for initial application
deployment; medium: it is also performed at runtime for very limited occasions
(e.g., SLO violations); high: deployment reasoning is continuously performed.

C3.2 – Monitoring. This criterion assesses an MCMP’s monitoring features,
including the monitoring and aggregation of any kind of metric plus the proper
configuration of such measurement.

C3.2.1 – System Metrics. By allowing the automatic computation of
some metrics, the client’s development effort in terms of application monitor-
ing is reduced. This signifies the need to support system metrics across different
abstraction levels. Thus, an MCMP is evaluated with: no: no system metric is
offered; low : only infrastructural metrics are covered; medium: metrics at two
abstraction levels are offered; high: system metrics cover all possible levels.

C3.2.2 – Custom Metrics. An MCMP cannot realise any metric kind,
especially domain-specific ones, so clients must be able to inject their own metrics
in the MCMP. Such an injection must be properly performed by defining sensor
components within the application model and subsequently installing them in
the application’s deployment infrastructure. Thus, an MCMP can be evaluated
on this criterion with: no: no custom metrics can be exploited; low : only external
sensors (to the application deployment infrastructure) can be utilised; medium:
also internal sensor components can be indirectly incorporated but the devops
must properly install them in the deployment infrastructure and integrate them
with the MCMP’s monitoring sub-system; high: internal sensor components are
properly installed and integrated with the MCMP’s monitoring sub-system.

C3.2.3 – Metric Aggregation. Application requirements rely on high-level
measurements as aggregations of raw-level ones. Such an aggregation must be
computed via mathematical formulas that apply basic or statistical functions
over metrics and attributes. This enables to compute any kind of composite
metric, mapping to the outmost monitoring flexibility. Thus, an MCMP can be
evaluated with: no: measurement aggregation is not supported; low : only fixed
statistical functions can be applied on raw measurements; medium: mathematical
expressions using fixed statistical functions can be expressed; high: any kind of
mathematical expression including any kind of function can be utilised.

C3.2.4 – Metric Configuration. Metric measurement should be properly
configured based on: the measurement schedule, i.e., how often to conduct it;
the measurement window, i.e., how many measurement values are used to com-
pute the aggregated measurement. While such information could be specified by
users, this may lead to situations where mistakes can be performed or the mon-
itoring sub-system becomes overloaded. Thus, an MCMP must optimally derive
this information by finding the best trade-off between monitoring accuracy and
performance. So, it can be evaluated with: no: it does not allow specifying such
information and cannot derive it; low : it has a fixed mapping of metrics to sched-

66 K. Kritikos et al.

ules and windows based on their type (raw or composite); medium: it allows the
user to specify this information; high: it automatically derives this information
by respecting user preferences (e.g., bounds on both information pieces).

C3.3 – Runtime Adaptation. An MCMP must globally adapt the user application
according to the current situation and across multiple abstraction levels.

C3.3.1 – Scaling Support. Local application reconfiguration can be con-
ducted in less critical situations through application (component) scaling. Differ-
ent scaling kinds (horizontal and vertical) must be supported to cover different
local reconfiguration scenarios. As such, an MCMP can be evaluated on this
criterion as follows: no: scaling is not supported at all by the MCMP; medium:
only horizontal scaling is supported; high: also vertical scaling is supported.

C3.3.2 – Global Reconfiguration. In more critical situations, single appli-
cation component scaling does not suffice; a more radical application reconfig-
uration must be performed, even across multiple clouds, which can be guided
through utility functions for discovering the best possible application deploy-
ment solution. As such, an MCMP can be evaluated as follows: no: it does not
support global reconfiguration; yes: it does support it.

C3.3.3 – Higher-Level Adaptation. Problematic situations relate to
issues which occur in one abstraction level and can be propagated up to higher
levels. To this end, a workflow of level-specific adaptation actions must be exe-
cuted in a coordinated manner to avoid conflicting action effects. As such, we
can evaluate an MCMP on this as follows: no: it does not offer higher-level
adaptation actions; low : adaptation actions at two levels are offered; medium:
adaptation actions in all possible levels are supplied; high: workflows of level-
specific adaptation actions can be specified to address problematic situations.

C3.4 – Event Management. Problematic situations need to be detected before
they can lead to triggering any kind of adaptation action. Thus, any kind of
event needs to be captured, to cover all possible situation kinds, irrespectively
of whether it is within the MCMP’s control sphere or not.

C3.4.1 – Event Versatility. As different kinds of events might occur in
an application system spanning both functional and non-functional aspects, an
MCMP must capture them all. As such, an MCMP can be assessed on this as
follows: no: it cannot capture any event kind; medium: it is able to capture either
functional or non-functional events; high: it can capture both event kinds.

C3.4.2 – Complex Events. In many cases, a problematic situation cannot
be characterised by a single but multiple events, related to each other in differ-
ent ways. This requires capturing hierarchical compositions of events on which
time and logic-based operators can be applied. Thus, an MCMP can be evalu-
ated with: no: composite events cannot be captured; low : only time or logical
operators can be used in the event composition; medium: a limited set of both
operator kinds can be used; high: a rich operator set of both kinds can be used.

C3.4.3 – External Event Integration. A diversity of applications might
receive from as well as propagate events to their environment. In the context
of cloud & edge computing, the environment could comprise sensors or external

Are Cloud Platforms Ready for Multi-cloud? 67

services like message queues. Thus, all such (external) entities must be properly
integrated with an MCMP in a provider-independent way to support multi-cloud
application deployment. So, an MCMP can be evaluated with: no: integration
with external services is not possible; medium: there is a provider-specific inte-
gration; high: external event integration is realised across multiple providers.

C3.5 – Data Management. Data may not be just consumed by an application
but may have to be migrated for various reasons (e.g., they must move towards
external sources). As such, data must be properly maintained and accounted for
in application deployment optimisation.

C3.5.1 – MetaData Maintenance. To control and manage data, there
is a need to support their continuous characterisation in terms of metadata.
Such metadata could cover static information about the data like what is their
origin plus dynamic information like their current size. As such, an MCMP can
be evaluated as follows: no: metadata are not kept at all; medium: only static
metadata are maintained; high: both static and dynamic metadata are preserved.

C3.5.2 – Data Monitoring. Dynamic metadata observation and data qual-
ity measurement require suitable data monitoring mechanisms, independent of
the data source and format to increase an MCMP’s applicability in handling
different data-intensive application kinds. Thus, an MCMP can be evaluated
with: no: data monitoring is not supported at all; medium: data monitoring is
supported but only for certain data sources and/or formats; high: the MCMP
features a data-source and format-independent data monitoring mechanism.

C3.5.3 – Data-aware Optimisation. Data placement could have a tremen-
dous effect on both application cost and performance as well as the component
placement. Thus, there is a need to support data-aware optimisation of appli-
cation deployment. This can be realisable by: (a) considering resource, platform
and other kinds of constraints for the nodes on which data should be placed; (b)
incorporating data-related metrics in the optimization objective(s). As such, an
MCMP can be evaluated with: no: it does not support data-aware optimisation;
medium: it only accounts for constraints on data nodes; high: it also incorporates
data-related metrics in the optimisation objectives.

C3.6 – Dynamic Resource Offering Discovery. Due to the dynamicity in cloud
environments plus the periodic upgrading of cloud offerings, cloud services might
go down or cease to exist. Thus, if these services’ offerings are not properly
observed, an MCMP might propose deployment solutions that do not work or
are not optimal. Further, cloud providers do not advertise all possible infor-
mation for such services, especially their non-functional capabilities. As such,
there is a need for mechanisms (e.g., benchmarking, monitoring) that enhance
the service performance profiles with the missing knowledge. Thus, an MCMP
can be evaluated with: no: it does not support dynamic resource offering discov-
ery; medium: it does support this but cannot derive extra performance-oriented
knowledge; high: both dynamic resource offering discovery and enhancement are
supported.

68 K. Kritikos et al.

4 Evaluation

Before we supply and analyse the evaluation results, we first explain how they
were produced, especially in terms of aggregating the raw assessment values per
each individual criterion. To this end, the following approach has been adopted:

– Per each individual criterion, the qualitative values are mapped to quantita-
tive ones. As such, the following mappings were introduced:

• no → 0.0
• low → 1.0
• medium → 3.0
• high → 5.0

– we aggregate the evaluation results via a weighted sum in the two higher
hierarchy levels. First, aggregation is conducted on the composite criteria
level, where each individual criterion gets the same weight (same relative
importance with the others). Then, aggregation is performed on the global
dimensions level, where each component criterion gets again the same weight.

– Finally, for the global level the aggregated quantitative values are mapped to
qualitative ones as follows:

• [0.0, 1.0) → very low
• [1.0, 2.0) → low
• [2.0, 3.0) → medium
• [3.0, 4.0) → good
• [4.0, 5.0] → high

For presentation purposes, the above mapping is also applied to composite cri-
teria as we regard that qualitative values better represent evaluation results in
the eyes of the prospective reader. Please also note that due to paper length
restriction reasons, the evaluation of all individual criteria is not shown (please
follow the URL in the last paragraph of Sect. 2 to view the complete results).

Table 2. Overall evaluation results

MCMP C1 – Cloud
orchestration
support

C2 – Cloud
application
support

C3 – Platform
intelligence

Cisco Cloud Center Suite Good Medium Medium

Rackware Hybrid Cloud Platform Good Very low Low

Morpheus Data Good Medium Low

CloudBolt Good Low Low

Google Anthos Good Medium Medium

Cloudify Good Medium Low

Melodic Good Medium Good

Are Cloud Platforms Ready for Multi-cloud? 69

4.1 Overall Results

Table 2 depicts the evaluation results at the global level, indicating that Melodic
is the best MCMP as it reaches a good score level for two out of three dimensions.
Melodic is then followed by Google Anthos and Cisco Cloud Center Suite, which
have attained medium score levels for two dimensions and a good level for one.
Finally, Rackware Hybrid Cloud Platform seems to be the least performant,
focusing mainly on supporting just the first from the three dimensions.

4.2 Cloud Orchestration Support

Table 3 depicts the overall results for this dimension which are quite encouraging
as all MCMPs seem to attain a good score level. Further, there is some evaluation
uniformity as most MCMPs seem to attain the same score for each criterion in
the second hierarchy level (the intermediate one). Exceptions to this rule can be
observed in the last three criteria of that level.

Table 3. Cloud orchestration support evaluation results

MCMP C1.1 C1.2 C1.3 C1.4 C1.5 C1.6

Cisco Cloud Center Suite Good Good Yes Good Good No

Rackware Hybrid Cloud Platform High Good Yes Medium Good No

Morpheus Data High Good Yes Medium Good No

CloudBolt High Good Yes Medium Good No

Google Anthos High Good Yes Good Good No

Cloudify High Good Yes Medium Good Low

Melodic High Good Yes Medium High No

In particular, for the service support, Google Anthos and Cisco Cloud Center
Suite attained a good score due to their ability to support a multitude of services
at the platform level. This makes them ideal for applications requiring multi-
cloud support crossing multiple abstraction levels. Melodic is distinguished in
the automation criterion as it can derive and execute automatically an applica-
tion deployment plan. All other MCMPs can just execute a user-supplied plan.
Much improvement is needed for the standards support as only one MCMP just
supports one standard, the TOSCA [6] cloud application modelling language.

Finally, we should remark the high support level for the first dimension cri-
terion, which, in conjunction with the second one, highlights the main focus of
MCMPs towards supporting the infrastructure level over a great diversity of
cloud providers. In addition, cross-cloud support (not visible in Table 3) should
be also highlighted. As such, we can conclude that the support level for this
dimension is satisfactory but there is a need for further improvement in some
criteria, especially the fourth and sixth ones (service support & standards).

70 K. Kritikos et al.

4.3 Cloud Application Support

Table 4 depicts the overall results for this dimension which can be regarded as
moderate such that much improvement is needed. This also unveils the current
focus of MCMPs on supporting cloud orchestration and not providing any kind
of additional support to cloud applications. Compared to the first dimension,
there is also a high diversity of evaluation results per criterion.

Table 4. Cloud application support evaluation results

MCMP C2.1 C2.2 C2.3 C2.4 C2.5 C2.6

Cisco Cloud Center Suite Good Low Medium High Very low Medium

Rackware Hybrid Cloud Platform Low Low Medium No No No

Morpheus Data Medium Low Low Medium Very low High

CloudBolt Medium Low Low Medium Very low Low

Google Anthos Medium Low Good No Good High

Cloudify Good Low Low Medium Very low High

Melodic High Low Medium Medium Very low Low

Concerning the dimension criteria in the intermediate level, the worst perfor-
mance is over the lifecycle management and the containerisation ones. For the
first, this result seems logical as the MCMP focus is mainly on a few activities in
the lifecycle (the deployment and provisioning ones). For the second, the result
highlights that MCMPs expect that devops exploit already existing, external
tools while Docker is the current container form & technology widely adopted.
This indicates that other container forms, more suitable for high-performance
computing (HPC) like Singularity [7], are not currently supported.

We now concentrate on the rest of the criteria where usually one MCMP pre-
vails. For the modelling support, Melodic achieves the highest possible score as it
adopts CAMEL [8], a rich multi-cloud application modelling language, covering
multiple aspects related to the application lifecycle. Melodic obtains the high-
est score for all modelling support criteria apart from the policy modelling one
as CAMEL concentrates on defining application-specific policies. More details
about the way CAMEL covers multi-cloud computing can be found in [9].

Google Anthos obtains the highest score in data management as it features
data creation and secure data migration while exhibiting a medium data source
diversity. On the other hand, Cisco Cloud Center Suite achieves the highest
score in workflow support as it enables both to edit management workflows and
execute application workflows by using specific (PaaS-based) workflow engines.

Finally, it seems that CI/CD support has been well recognised as multi-
ple MCMPs supply CI/CD capabilities to devops. This then enables to rapidly
deploy new versions of multi-cloud applications to achieve fast time-to-market,
an essential characteristic to survive in a very competitive business world.

Are Cloud Platforms Ready for Multi-cloud? 71

4.4 Platform Intelligence

Melodic prevails in this dimension (see Table 5). This is due to its core ability
to support the continuous optimisation of multi-cloud applications at the global
level which presupposes appropriate support also to application monitoring and
event management as the cornerstones for adaptive application provisioning.
The rest of the MCMPs only support application component scaling. Melodic is
superior also in data management where it supports maintaining metadata about
the data manipulated by applications while it is the only MCMP accounting for
(big) data features and optimisation objectives during application deployment
reasoning. Lastly, Melodic is the only MCMP allowing the complete, mathe-
matical specification of both metrics and optimisation objectives, thus covering
essential measurability gaps and achieving true optimality by considering mul-
tiple optimisation objectives, spanning traditional cost & performance-oriented,
data-specific and reconfiguration-specific objectives.

Table 5. Platform intelligence evaluation results

MCMP C3.1 C3.2 C3.3 C3.4 C3.5 C3.6

Cisco Cloud Center Suite Low Low Low Medium Good Medium

Rackware Hybrid Cloud Platform No Low Low Low Good No

Morpheus Data Low Medium Low Low No Medium

CloudBolt No Low Low Medium No Medium

Google Anthos No Medium Low Good Good No

Cloudify No Medium Low Good Medium No

Melodic High Medium Medium Good High Medium

We now concentrate on the criteria requiring more improvement than the
rest. In the monitoring (composite) criterion, the medium level reached by some
MCMPs is related to the inability to support system metrics on all abstraction
levels and the automatic derivation of metric configuration knowledge. From
these MCMPs, Melodic is distinguished as it enables specifying any metric kind
due to the use of a rich mathematical language while Google Anthos as it enables
incorporating user sensors in a cloud application’s monitoring infrastructure.

For the runtime adaptation, no MCMP supports adaptation based on higher-
abstraction-level actions. However, Melodic is distinguished as it supports global
reconfiguration while Google Anthos prevails in terms of scaling support as it
features both vertical and horizontal scaling of containerised components.

Finally, more than half of the MCMPs can dynamically discover cloud service
offerings via cloud-specific APIs. However, they cannot also derive these services’
non-functional profile. While the latter could have been an important knowledge
to assist in selecting the right cloud services for a multi-cloud application.

72 K. Kritikos et al.

5 Conclusions and Challenges

Due to the advantages that multi-cloud computing offers, various multi-cloud
management platforms (MCMPs) have been developed, each with its own advan-
tages and weaknesses. This paper attempted to review all these MCMPs based
on a hierarchical criteria framework covering the dimensions of cloud orchestra-
tion support, cloud application support and platform intelligence. The review
relied on a two-level aggregation approach over the assessment of individual cri-
teria at the lowest hierarchy level. In this aggregation, equal weights were given
to the criteria to signify their equal relative importance. This can be altered to
better reflect the individual preferences of different users.

The evaluation results clearly showed that there is one MCMP that prevails,
namely Melodic, providing the unique feature in terms of platform intelligence
of continuous, global multi-objective application optimisation. They also showed
which are those criteria requiring better support across all MCMPs, like those
of monitoring and runtime adaptation as well as application lifecycle support.

We believe that the next challenges will further boost MCMPs’ adoption.

BPaaS Management. MCMPs focus on traditional multi-tier applications.
However, business processes (BPs) are currently moving to the cloud and require
complete management support. Prototypes like CloudSocket [2,10] demonstrate
that it is feasible to support such a management across multiple clouds and levels.
However, there is still a need for further automation while the known business-
to-IT gap must be better closed. Apart from this, technological developments
like computational capability enhancement and serverless computing make more
eminent the need to support a new breed of (multi-) cloud-based BPs (so called
BPaaSes) which are adaptive and flexible as well as incorporate a mixture of
different tasks kinds (service-, function-, user- and analytics-based).

Polymorphic Applications. As indicated in Sect. 3, components might have
cloud-specific configurations in one form but could also appear in different forms
(e.g., micro-services, functions). Thus, the configuration diversity is quite large.
Further, different component forms might exhibit different service levels when
encountering the same workload. This requires not only to specify but also select
and configure the right form of a component depending on user requirements.
Such a selection could be also conducted either at design or even at runtime,
leading to the era of polymorphic components and applications. In our view, this
represents the next breed of multi-cloud applications which will be adaptive to
both their context and requirements, whenever these change.

High-Performance Multi-Cloud Computing. Traditional HPC infrastruc-
tures lead to long turnaround delays, especially in cases of high load. Recent work
[11] identified that cloud computing resources can be used instead to attain a
similar service level with a reduced cost and turnaround time. To further satisfy
the ever increasing thirst for more computing power for heavy analytics tasks,
the need to move HPC workloads in the cloud is recognized by some providers
who rush to supply specialised and high-performant resources (e.g., GPUs and

Are Cloud Platforms Ready for Multi-cloud? 73

virtualised FPGAs) plus ultra-fast networks to provide suitable compute and
networking support for HPC applications. This trend must be well covered by
MCMPs to provide the right abstraction means enabling to properly select HPC-
compatible resources that best fit application requirements. This also requires
to properly specify this resources kind by the MCMPs’ modelling languages
[9] to support their matching with component requirements. Besides, MCMPs
must support different container forms, like Singularity [7], stated as superior to
Docker container forms, especially for HPC applications.

Acknowledgements. This work has received funding from European Union’s Horizon
2020 programme under grant agreement No. 731664 (MELODIC).

References

1. Petcu, D.: Multi-cloud: expectations and current approaches. In: MultiCloud,
Prague, Czech Republic, pp. 1–6. ACM (2013)

2. Kritikos, K., Zeginis, C., Griesinger, F., Seybold, D., Domaschka, J.: A cross-layer
BPaaS adaptation framework. In: FiCloud, Prague, Czech Republic, pp. 241–248.
IEEE Computer Society (2017)

3. Goodman, L.A.: Snowball sampling. Ann. Math. Statist. 32(1), 148–170 (1961)
4. Nelson, L.E., O’Donell, G., Caldwell, J., Reese, A.: The Forrester WaveTM: hybrid

cloud management, Q2 2018. Technical report, Forrester research (2018)
5. Cheung, M., Fletcher, C., Byrne, P., Smith, D.: Magic quadrant for cloud manage-

ment platforms. Technical report G00369275, Gartner (2019)
6. Rutkowski, M., Boutier, L., Lauwers, C.: Topology and orchestration specifica-

tion for cloud applications (TOSCA). Technical report V1.2, Organization for the
Advancement of Structured Information Standards (OASIS), January 2019

7. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: Scientific containers for
mobility of compute. PLoS ONE 12(5), e0177459 (2017)

8. Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Com-
put. Surv. 51(1), 22:1–22:38 (2018)

9. Kritikos, K., Skrzypek, P.: Are cloud modelling languages ready for multi-cloud?
In: 12th International Conference on Utility and Cloud Computing Companion
(UCC 2019 Companion), Auckland, New Zealand. IEEE/ACM (2019)

10. Woitsch, R., Utz, W.: Business process as a service model based business and IT
cloud alignment as a cloud offering, October 2015. In: ES. IEEE (2015)

11. Netto, M.A.S., Calheiros, R.N., Rodrigues, E.R., Cunha, R.L.F., Buyya, R.: HPC
cloud for scientific and business applications: taxonomy, vision, and research chal-
lenges. ACM Comput. Surv. 51(1), 8:1–8:29 (2018)

Identification of Comparison Key
Elements and Their Relationships

for Cloud Service Selection

Anis Ahmed Nacer(B), Olivier Perrin, and François Charoy

Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
anis.ahmed-nacer@inria.fr, {olivier.perrin,francois.charoy}@loria.fr

Abstract. Nowadays, the cloud computing industry is enjoying an
exponential growth, where several cloud service providers compete to be
one of the market leaders. Usually, providers offering similar services use
different non-functional attributes to describe them. Thus, given the het-
erogeneity and diversity of services descriptions, the selection process of
the appropriate cloud service becomes challenging. Architects no longer
know what criteria to use to make the suitable cloud services selection.
In this paper, we highlight the challenge of identifying key elements of
comparisons and their relationship for selecting cloud services. Further,
we propose a methodology to solve this issue based on real data available
from service providers and benchmark work. Our methodology is vali-
dated based on two case studies of cloud relational databases and cloud
queuing services.

Keywords: Cloud computing · Cloud service selection · Microservices

1 Introduction

Nowadays, cloud service providers present their services as Add-ons plans that
are described according to a set of Non-Functional Attributes (NFAs). NFAs
are settings that describe how a service is configured. They can influence Non-
Functional Requirements (NFRs) such as performance, security and availability.
The competition between the providers and the lack of standard have led them
to describe their services differently to attract consumers. Service plans descrip-
tions are different, incomplete, and use different designation for the same NFA.
Further, these descriptions do not specify the relationship or impact between the
comparisons’ key elements (NFAs and NFRs). Thus, Choosing the most appro-
priate service to meet the NFR of architects becomes a challenging task. The
selection of the most appropriate cloud service depends heavily on the choice
of comparisons’ key elements and their relationships. The comparisons’ key ele-
ments of service plans are a set of NRFs and NFAs. In practice, incorrect selec-
tion of comparisons’ key elements and their relationships results in an incorrect
service evaluation. Therefore, comparisons’ key elements and their relationships
must be carefully described at the outset of the assessment.

c© The Author(s) 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 74–82, 2020.
https://doi.org/10.1007/978-3-030-44769-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-44769-4_6

Identification of Comparison Key Elements and Their Relationships 75

The main challenge when selecting cloud services is to determine what are
NFRs and NFAs that should be considered and how NFAs influence NFRs. In this
paper, we propose a method that relies on architect input and service analysis. It
consists of the following steps: (1) Understand the architects’ requirements and
how they reason regarding the choice of service plans for their applications. To do
so, we propose to conduct semi-structured interviews with architects; (2) Identify
the key elements of the comparison that meet the architects’ requirements and
the relationship between them. For that we propose to review service provider
plans, works on cloud service benchmarks and literature reviews (3) Ensure the
completeness of the list of key elements for comparison and their relationship.
To do so we propose to conduct an empirical study with the architects. The
outcomes of our methodology are the identification of a set of NFAs, NFRs and
their relationships that we can use to evaluate cloud services.

The paper is organized as follows: Sect. 2 describes the proposed methodol-
ogy for selecting the comparisons’ key elements and their relationships to the
selection of cloud services. Section 3 presents the validation of our methodology
Sects. 4 and 5 present respectively the related work and the conclusion.

2 Proposed Method

An important step in selecting cloud services is to identify NFR, NFA and their
relationships. Figure 1 gives an overview of the proposed methodology.

Fig. 1. Methodology for identifying NFAs and NFRs and their relationships for cloud
service selection problems

76 A. A. Nacer et al.

2.1 Identification of Architects’ Requirements

As a primary step, we organized interviews with some architects to clarify their
minimum requirements and expectations from the different services. We asked
them about their overall service requirements through open-ended questions like
“what questions should they answer to choose the best plans from cloud service
providers for their applications?” From these interviews, we have compiled a list
of questions that architects consider when choosing cloud services, including the
following as examples: how to predict capacity? Are performance specifications
aligned with architects’ expectations for cloud services? Do service plans provide
replication and fail-over support?

The aim of this study is twofold: (1) group common issues for the generic
evaluation of different services offered by different providers; and (2) establish
the NFR that are used to assess services. The questions are grouped according
to their influence on these requirements.

2.2 Identification of Attributes from Service Plans

As a second step, we need to identify the attributes that help to evaluate and
match cloudware service plans to architect’s requirements. Depending on plans,
service provider indicates the presence or absence of some operational config-
uration. Evaluating plans on an absolute scale remains difficult. We identified
attributes associated to service plans from providers that give access to their
services on Heroku, IBM Cloud and Azure. We classified them into 4 cate-
gories, which are as follows: (1) Capacity attributes that provide information
about the performance and the capacity of the service. We can use them to cali-
brate the plan according to the requirements of the application; (2) Functional
attributes that give information about the functional coverage of the service.
A database service for instance may include supplementary functions, including
monitoring of certain features or auditing of functions; (3) Service attributes
provide information on service level agreements (SLAs) such as SLA on support
availability, SLA on service availability and protocols supported by the service;
(4) Technical attributes include the attributes that describe how the service
is deployed or operated. They have different impact on NFR of the service. To
determine the impact of NFAs on NFRs, we first discussed with architects about
their experiences with service deployment. Also, we reviewed the technical doc-
umentation of cloud services to understand why a NFA was advertised by cloud
providers. By this way, we understand its influence on the NFR of the service.
Determining the rate of influence of NFAs on NFRs is difficult. It depends on fac-
tors whose information is not available from the service providers. This includes
the deployment of the provider’s architecture: the number of nodes on which the
service is deployed and the technologies used to develop the service. In addition,
the influence of NFAs on NFRs depends on the nature of the applications for
which the service is intended. Due to these difficulties, we only indicate the pos-
itive, neutral or negative impact on the technical attribute (+, =, −). Table 1
gives an example of a database service’s technical attributes and their impact
on NFRs.

Identification of Comparison Key Elements and Their Relationships 77

Table 1. Example of the influence of certain NFAs on NFRs for relational cloud
database services

Attributes Performance Availability Reliability Security Scalability

RAM + = = = =

IOPS + = = = =

Backup − + + = =

Rollback = + = = =

Replication − + + = =

2.3 Identification of Attributes Based on Benchmark Works

All NFRs, except performance, can be assessed from the NFAs supplied by cloud
service providers. Performance should be considered as a particular NFR. The
only way to identify the attributes that have an impact on this NFR, is to
refer to benchmarks. In order to understand the attributes that influence ser-
vice performance, we reviewed previous benchmarking work1 that compares the
performance of different cloud services for different use cases, under different
constraints and experience configurations. This study is interesting but incom-
plete because most benchmarking works do not provide all the attributes that
influence performance in their experiments. In experiments for the same use case,
with the same constraints and experimental configurations, we observed that the
performance results are different. We do not know if this is due to external fac-
tors undeclared attributes or technical inaccuracies. To complete our study, we
reviewed previous work that focused on a structured analysis of the fundamental
principles of variation and predictability of service provider performance.

2.4 Selection of NFAs and NFRs from an Empirical Study

To ensure the completeness and the relevance of the collected technical
attributes, we propose to conduct an empirical study. The aim is to understand
how architects decide the types of components to develop a new application,
and the criteria that guide their choices. We are particularly interested in core
components (database, messaging, caching, indexing, monitoring...) that can be
deployed as servers or consumed as services in the cloud. We conducted a semi
structured interview, as done in [1], on a general perception of services with
seven software architects. All of them have more than four years of experience in
cloud computing environments and have participated in several projects covering
different application areas such as data engineering, software/systems develop-
ment, engineering systems and test infrastructure. Individual interviews were
performed. Each lasted around one hour. The interviews are recorded, tran-
scribed and synthesized. The architects’ responses are assessed on the basis of
their technical knowledge and experience. The survey for this study is built on
1 https://www.2ndwatch.com/blog/benchmarking-amazon-aurora/.

https://www.2ndwatch.com/blog/benchmarking-amazon-aurora/.

78 A. A. Nacer et al.

37 questions divided into three parts: questions on the architect’s experience,
questions on the overall application and questions on each service/component2.
For example, when asked: “Why do you want to move from IBM’s provider
database service to Amazon for your application?” Architects A1, A2, A3, A4
and A6 replied: “IBM does not provide Virtual Private Cloud (VPC) for its ser-
vices and this motivates us to switch to Amazon services” and architects A5 and
A7 replied: “We consider VPC important but not important enough to migrate
our service to another cloud service provider”. These responses conclude that
the NFA “VPC” is necessary for the architects’ application. Therefore, VPC
can be an important NFA for cloud service evaluation according to the archi-
tects’ application requirements. We asked the same types of questions about
service selection and collected the NFA that were missing for service evaluation,
ensuring at the same time that the list of NFA we had collected was complete for
service evaluation. To summarize, we filtered the NFA that were collected in the
previous steps and retained only the ones that are relevant to the evaluation of
services. In addition, we identify missing attributes that could not be collected
in the previous steps. Using our methodology, we aim to identify a relevant list of
NFAs, NFRs and their relationships for which cloud services will be evaluated.

3 Empirical Validation of the Method

To validate the approach described in Sect. 2, we conducted two case studies:
SQL database services and queue services. We examine these services on the
basis of actual configuration data available from service providers and bench-
marking works. Due to space limitation, only the first use case (SQL database)
is presented. The second use case is shared here 3. In the rest of this section, we
apply our methodology to identify the key elements of the comparison and their
relationships to the SQL cloud service.

– Identification of Architects’ Requirements: For this step, we focus
on questions raised in Subsect. 2.1. The questions are grouped according to their
influence on the two NFRs reliability and availability. Regarding availability,
architects raised a set of questions such as: What are the regions available for
service? Are they adequate in terms of legal and regulatory requirements? Do
service plans provide replication and fail over support? For reliability, the archi-
tects raised a set of questions such as: What is the frequency/severity of failures
for the service? What is the mean time between failures (MTBF)? What is the
mean time to repair the system (MTTR)? Note that the findings of this study
are generic and can be reused for all types of services. The full results of this
study are described in4.

2 https://docs.google.com/document/d/11LTsFJCTSqNlX5DJPYgdU9NRW8IFyd6e
GiRimiY2JeQ/view.

3 https://drive.google.com/file/d/1tBouKaagH8lMJdoYDPDri7U7Oo iHUSY/view?
ths=true.

4 https://drive.google.com/file/d/1s7xy3u-voLkO9XKo3K5s2yqdHgaHYfFi/view?
usp=sharingforacompleteanddetailedlistofthequestionsofthisstudy.

https://docs.google.com/document/d/11LTsFJCTSqNlX5DJPYgdU9NRW8IFyd6eGiRimiY2JeQ/view
https://docs.google.com/document/d/11LTsFJCTSqNlX5DJPYgdU9NRW8IFyd6eGiRimiY2JeQ/view
https://drive.google.com/file/d/1tBouKaagH8lMJdoYDPDri7U7Oo_iHUSY/view?ths=true
https://drive.google.com/file/d/1tBouKaagH8lMJdoYDPDri7U7Oo_iHUSY/view?ths=true
https://drive.google.com/file/d/1s7xy3u-voLkO9XKo3K5s2yqdHgaHYfFi/view?usp=sharingforacompleteanddetailedlistofthequestionsofthisstudy
https://drive.google.com/file/d/1s7xy3u-voLkO9XKo3K5s2yqdHgaHYfFi/view?usp=sharingforacompleteanddetailedlistofthequestionsofthisstudy

Identification of Comparison Key Elements and Their Relationships 79

– Result of Identification of NFAs and their influence on NFRs:
Many SQL database service solutions are available and are deployed by differ-
ent cloud service providers. The interesting attributes of these services are the
following: (1) The capacity attributes: the only ones that can be identified are:
(i) Storage capacity in Gb; (ii) IOPS that corresponds to the underlying disk
performance; (iii) The maximum simultaneous connection to the database; and
(iv) The row limit. (2) The functional attributes: include the monitoring and the
audit. (3) The technical attributes: are more diverse and heterogeneous and they
may have different impact on NFA. As explained previously, with the exception
of performance, for which additional benchmarking may be required, there are
only two ways to determine the impact of NFAs on cloud services NFRs: use
the expertise of the architects who deployed the service or consult the technical
documentation5,6,7. Given the difficulty of determining the level of influence of
the NFA on NFRs (explained in Sect. 2.2), we present in Table 2 the technical
attributes with the estimated positive, neutral or negative impact of NFR (+,
=, −). At this stage this is all we can say about this impact.

Table 2. Influences of NFAs on NFRs for relational cloud database services

Attributes Performance Availability Reliability Security Scalability

RAM + = = = =

IOPS + = = = =

SSD + = = = =

Server cores + = = = =

Backup − + + = =

Rollback = + = = =

Replication − + + = =

Single tenant + = = + =

Multi tenants − = − + =

Encryption = = = + =

VPC = = = + =

Multi region = + + = =

Scaling auto increase = = = = +

Scaling not supported = = = = −
Scaling converted to
other storage types

= = = = +

Read replicas − = = = +

5 https://docs.oracle.com/cloud/latest/mysql-cloud/UOMCS/UOMCS.pdf/.
6 https://cloud.google.com/sql/docs/mysql/.
7 https://medium.com/@lakshmanLD/comparison-of-mysql-across-aws-azure-and-

gcp-19af2d208d9a.

https://docs.oracle.com/cloud/latest/mysql-cloud/UOMCS/UOMCS.pdf/
https://cloud.google.com/sql/docs/mysql/
https://medium.com/@lakshmanLD/comparison-of-mysql-across-aws-azure-and-gcp-19af2d208d9a
https://medium.com/@lakshmanLD/comparison-of-mysql-across-aws-azure-and-gcp-19af2d208d9a

80 A. A. Nacer et al.

– Result of identification of attributes based on benchmarks: Cloud
SQL services run on providers’ virtual machines. These virtual machines have a
direct impact on the SQL services that run on them. Therefore, NFAs that influ-
ence the performance of virtual machines also influence the performance of SQL
services. So we reviewed previous work [7] that conducted a large-scale litera-
ture review to collect and codify existing research on the predictability of public
IaaS cloud performance. We identified the following attributes are relevant to
assess the performance of cloud SQL services: (1) the CPU model, the hardware
heterogeneity and the tenancy model; (2) temporal and geographic (region) fac-
tors; (3) the number of nodes and the number of containers on which the service
is deployed. To complete our study, we reviewed previous benchmarking work
that has been done directly on cloud SQL services [2,6]. We collected the follow-
ing attributes in addition to those we previously identified on the performance
of cloud SQL services: (1) user connections are a resource that can limit per-
formance; (2) replication and failover significantly reduce service performance;
(3) the location of the data center influences performance; (4) number of read
replicas improves performance of SQL cloud database services.

– Result of selection of NFAs and NFRs from an empirical study
We carried out an empirical study with the architects on cloud SQL database
services. A set of responses are collected. For example, to the question: “Why
did you choose the High Availability (HA) option for your service when it costs
about twice as much as a regular instance? architects A1, A2, A5 and A6 replied:
“The MySQL service is a business service in our application. It should be very
available. This is the critical part of the application. A failure of this service will
cause the failure of the entire application. A fail over is necessary to maintain
this service available when the instance is “blocked”. It has happened that the
primary instance is “blocked” and that a restart of the instance takes up to
30 min (supplier ticket). To avoid these downtimes, we have opted for the HA
option” and architects A4, A3 and A7 replied: “A complete failure of a zone
is probably very rare, so HA is an important option, but not so important as
to be indispensable.” We asked several questions about the selection of cloud
SQL database services and ensured that the list of NFAs previously collected
was relevant to our study. Based on previous studies and the architects answers,
a relevant list of NFAs and their influences on NFRs was developed (as shown
in Table 2) to select SQL cloud services based on the application requirements
of the architects.

4 Related Work

Several approaches have been proposed to select the best service provider plans.
These approaches use NFAs to evaluate cloud services. In this section, we exam-
ine the NFAs used in these approaches. We identified two main approaches,
non-benchmark-based and benchmark-based. On one hand the Non-benchmark-
based approaches [5,9,10] use different attributes such as: availability rate, exe-
cution time, instance starting time and mean time between failures (MTBF).

Identification of Comparison Key Elements and Their Relationships 81

These attributes are difficult to express and can be addressed in several ways.
Thus using them to solve the cloud service selection problem is of little relevance.
On the other hand, several benchmark-based studies have been conducted. In
[4], Smart CloudBench, a generic benchmarking tool allows to compare the offers
available on the IaaS cloud market and monitor their performance. However, it
is limited to IaaS and does not consider more heterogeneous middleware ser-
vices. In [8], CloudCmp, a benchmarking tool is presented for cost comparison
and performance measures of many services between different providers. In [3],
a benchmarking methodology is applied to only four cloud storage service offers
for specific workloads. The shortcoming of these approaches lies in a consider-
ation of performance and price only, without considering other NFRs such as
security, availability, reliability or security.

5 Conclusion

In this paper, we proposed a methodology for identifying key elements of com-
parisons and their relationship for cloud service selection. It is based on actual
data available from service providers and benchmarks. First, we conducted a
survey among architects to understand their requirements for selecting cloud
services. Further, we identified issues that interest architects and we ranked
them according to their influence on NFRs. Then, we identified the attributes of
the service provider plans that answer the architects’ questions and their influ-
ence on the NFRs from the technical documentation. Moreover, we reviewed the
work on cloud benchmarking to collect the attributes that influence performance.
Finally, we conducted an empirical study to ensure that the list of attributes we
identified was complete and to add those that were missing. As a future work,
we will use the results of this study to assess cloud services and cloud service
composition by application type.

References

1. Ameller, D., Ayala, C., Cabot, J., Franch, X.: Non-functional requirements in archi-
tectural decision making. IEEE Softw. 30(2), 61–67 (2012)

2. Bernstein, P.A., et al.: Adapting microsoft SQL server for cloud computing. In:
IEEE 27th International Conference on Data Engineering, pp. 1255–1263. IEEE
(2011)

3. Bocchi, E., Mellia, M., Sarni, S.: Cloud storage service benchmarking: method-
ologies and experimentations. In: IEEE 3rd International Conference on Cloud
Networking (CloudNet), pp. 395–400. IEEE (2014)

4. Chhetri, M.B., Chichin, S., Vo, Q.B., Kowalczyk, R.: Smart CloudBench–a frame-
work for evaluating cloud infrastructure performance. Inf. Syst. Front. 18(3), 413–
428 (2016)

5. Karim, R., Ding, C., Miri, A.: An end-to-end QoS mapping approach for cloud
service selection. In: IEEE Ninth World Congress on Services (SERVICES), pp.
341–348. IEEE (2013)

82 A. A. Nacer et al.

6. Lang, W., Bertsch, F., DeWitt, D.J., Ellis, N.: Microsoft Azure SQL database
telemetry. In: Proceedings of the Sixth ACM Symposium on Cloud Computing,
pp. 189–194. ACM (2015)

7. Leitner, P., Cito, J.: Patterns in the chaos–a study of performance variation and
predictability in public IaaS clouds. ACM Trans. Internet Technol. (TOIT) 16(3),
15 (2016)

8. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, pp. 1–14. ACM (2010)

9. Wagle, S.S., Guzek, M., Bouvry, P., Bisdorff, R.: An evaluation model for selecting
cloud services from commercially available cloud providers. In: IEEE 7th Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom), pp.
107–114. IEEE (2015)

10. Zheng, X., Martin, P., Brohman, K., Da Xu, L.: CLOUDQUAL: a quality model
for cloud services. IEEE Trans. Ind. Inf. 10(2), 1527–1536 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Deployment and Workflows

Deployable Self-contained Workflow
Models

Benjamin Weder(B), Uwe Breitenbücher, Kálmán Képes, Frank Leymann,
and Michael Zimmermann

Institute for Architecture of Application Systems, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany

{benjamin.weder,uwe.breitenbuecher,kalman.kepes,frank.leymann,
michael.zimmermann}@iaas.uni-stuttgart.de

Abstract. Service composition is a popular approach for building soft-
ware applications from several individual services. Using imperative
workflow technologies, service compositions can be specified as workflow
models comprising activities that are implemented, e.g., by service calls
or scripts. While scripts are typically included in the workflow model
itself and can be executed directly by the workflow engine, the required
services must be deployed in a separate step. Moreover, to enable their
invocation, an additional step is required to configure the workflow model
regarding the endpoints of the deployed services, i.e., IP-address, port,
etc. However, a manual deployment of services and configuration of the
workflow model are complex, time-consuming, and error-prone tasks. In
this paper, we present an approach that enables defining service compo-
sitions in a self-contained manner using imperative workflow technology.
For this, the workflow models can be packaged with all necessary deploy-
ment models and software artifacts that implement the required services.
As a result, the service deployment in the target environment where the
workflow is executed as well as the configuration of the workflow with
the endpoint information of the services can be automated completely.
We validate the technical feasibility of our approach by a prototypical
implementation based on the TOSCA standard and OpenTOSCA.

Keywords: Service composition · Workflow technology · Service
deployment automation · Configuration automation

1 Introduction

A popular approach for building applications by combining several individual
services is called service composition, which can reduce the time and cost to
develop new services or applications significantly [7,13]. Service compositions can
be specified using imperative workflow languages, such as the Business Process
Execution Language (BPEL) [14], to benefit from their robustness and features
like automatic recovery [12]. Imperative workflow models usually comprise activ-
ities that can be executed in the workflow engine, like script calls, and invocations

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 85–96, 2020.
https://doi.org/10.1007/978-3-030-44769-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-44769-4_7

86 B. Weder et al.

of services that run in the environment. The endpoints of available services can
be retrieved using a service registry. Then, the services have to be bound to the
workflow, which means the workflow is configured with the required information
to access the services, such as the used protocols or the service endpoints [13].

However, for the successful binding, the required services must be running
and accessible by the workflow [18]. Services that are provided over the inter-
net are usually always on and can be accessed from any place if they are not
protected by security mechanisms, like firewalls [8,12]. Thus, in general, the
binding is feasible independent of the execution environment, e.g., the network
of the workflow engine executing the workflow. However, if a workflow requires
a service that is not publicly available, the service binding, and therefore, the
workflow execution fails. Hence, the missing services have to be deployed by the
user to execute the workflow successfully. However, a manual determination of
the services that are required, as well as the deployment of these services, is a
complex, time-consuming, and error-prone task and not suited for non-technical
users [2]. Additionally, the service binding with the deployed services has to be
performed by the user, or the service has to be registered correctly with the
service registry. An error in the configuration, like a wrong IP-address, leads to
the failure of the overall workflow. Furthermore, if a service is migrated, e.g.,
to another virtual machine, the workflow configuration and the service registry
have to be updated correspondingly. Otherwise, the service is no longer acces-
sible, and the workflow execution fails. Therefore, this process leads to a lot of
manual work, which is error-prone and should be automated as far as possible.

Many services are not offered over the internet, and therefore, the user of the
workflow is in charge of deploying these services. Furthermore, there may also
be technical reasons to deploy a service that is available over the internet close
to the workflow engine executing the workflow, e.g., to reduce the latency of the
service interactions or the required network bandwidth. An example is a workflow
processing big data, which would overload the network if the used services are
deployed outside the local environment. Thus, to enable the execution of such
workflows, the required services must be deployed in the target environment by
the user before the workflow execution. However, this leads to the previously
described problems, such as erroneous configurations due to human errors.

In this paper, we tackle these challenges by an approach, which allows pack-
aging imperative workflows with all necessary deployment models to deploy the
required services of the workflow as a self-contained archive. It consists of the
workflow model and a set of deployment models for the required services, which
are attached to the activities of the workflow that invoke the services. Addition-
ally, our approach addresses the automatic deployment of all required services
in the target environment. Finally, the approach includes the automatic config-
uration of the workflow with the endpoint information of the deployed services,
and therefore, enables defining imperative workflows in a self-contained manner
without additional manual tasks to set up required services in the environment.

Deployable Self-contained Workow Models 87

2 Fundamentals and Problem Statement

In this section, we introduce fundamentals about service composition approaches,
imperative workflow technologies, and the deployment of services. Furthermore,
we present the problem statement which underlies our approach.

2.1 Service Composition

The creation of new applications by combining existing services is denoted as
service composition [11]. Service composition can reduce development time and
cost significantly as existing functionality is reused instead of implementing it
again. In static service composition, the required service functionalities and the
order in which they have to be invoked are specified at the design time of the
service composition [3]. Furthermore, the concrete service implementation must
be selected for each required functionality, and the service composition has to
be configured to invoke them, which is referred to as binding [13]. The binding
includes the configuration of the required protocol to invoke the service, the mes-
sage format, and the endpoint, i.e., the IP address and port of the service. The
available services can be retrieved using a service registry, which provides bind-
ing information for running services to a requester [9]. Thereby, the selection and
binding of services during the development of the service composition is called
static binding. In contrast, the binding at runtime is referred to as dynamic bind-
ing, which allows to dynamically select a suited service based on non-functional
requirements. In this paper, we focus on the static binding of services.

2.2 Imperative Workflow Technology

Service compositions can be specified using imperative workflow languages, such
as the Business Process Execution Language (BPEL) [14]. An imperative work-
flow consists of a predefined set of activities that have to be executed to achieve
the goals of the workflow [5]. Activities can be divided into different categories,
e.g., activities that invoke web services or activities that require an human action.
The different activities are connected by control flow and data flow edges [12].
Control flow edges specify a partial order in which the activities of the workflow
have to be executed. In contrast, data flow edges define which parts of the output
data of an activity must be transferred to which other activities. Two benefits of
using workflow technologies are scalability and robustness [5]. Another advantage
is the comprehensive error handling mechanisms implemented in most workflow
languages and engines. These mechanisms, e.g., allow executing activities in a
transactional manner and role changes back in case of an error. Thus, workflows
can be executed robustly and provide high-availability to the user.

Due to these advantages, workflows are essential for the implementation of
long-running business processes [12]. Such business processes have to be executed
(i) reliably, (ii) robustly, (iii) in parallel, and (iv) provide high-availability to the
user to achieve the maximum business value. The implementation of programs,
e.g., written in programming languages such as Java or C, that fulfill these

88 B. Weder et al.

mAWS

VMVM

App DB
…Create

VM
Start
App

(a) Declarative Deployment Model (b) Imperative Deployment Model

Deployment
System

Process
Engine

Fig. 1. Deployment model approaches.

properties is a complex and time-consuming task, as they have to be designed
specifically with these non-functional properties in mind. In contrast, workflow
management systems are general-purpose systems and provide the needed prop-
erties directly to the user without the need to implement or adapt them for a
certain use case. Hence, they ease the development of workflows implementing
business processes [5]. Therefore, workflow technology is of vital importance for
the implementation and execution of long-running business processes.

2.3 Service Deployment

For our approach, we distinguish between provided services, that are offered by
a provider over a network, e.g., the internet, and self-hosted services, for which
the required software artifacts for the deployment are available, but for which
the user is in charge of deploying them. Provided services are “always-on”, which
means the user can directly use them and is not in charge of creating or deleting
them [12]. Examples of this kind of service are Google Maps, Dropbox, or Spotify.
In contrast, self-hosted services do not always run on the infrastructure of some
provider, and thus, must be deployed by the user before using them in a workflow.
All utilized services must be available to execute a workflow successfully. This
means the services have to respond to requests and return correct results [12]. We
focus on self-hosted services in our approach as the user is in charge of deploying
them and keeping them available as long as they are needed.

However, the deployment of the required self-hosted services is a complex,
time-consuming, and error-prone task [2]. The infrastructure, such as a virtual
machine, has to be prepared, the dependencies of the service have to be installed,
and the software artifacts of the service have to be transferred to the prepared
infrastructure. Furthermore, the service must be configured with the required
certificates, and the needed authentication has to be set up. Additionally, the
workflow models have to be configured using the endpoint information of the
deployed services to access them during runtime [12]. Therefore, a lot of manual
work has to be done, and this process should be automated as far as possible.

In recent years several technologies for automating the deployment and man-
agement of applications have been developed, such as Terraform1 or Kuber-
netes2 [20]. Using these technologies, applications are described as reusable

1 https://terraform.io.
2 https://kubernetes.io.

https://terraform.io
https://kubernetes.io

Deployable Self-contained Workow Models 89

deployment models, which can be used to instantiate the application fully auto-
matically. Depending on the modeling approach, deployment models can be
divided into two classes, as shown in Fig. 1: declarative and imperative deploy-
ment models [6]. A declarative deployment model describes the structure of an
application, including all software and hardware components and their relations.
In contrast, imperative deployment models express the deployment process in a
procedural manner and contain all activities that have to be executed to deploy
the application, as well as the execution order of these activities. Such imperative
deployment models can be defined using workflow languages such as BPEL.

Thus, deployment automation technologies can be utilized to deploy required
self-hosted services automatically in the target environment. However, the
deployment automation technologies are not integrated with workflows and do
not update the endpoint information of the activities invoking the services.
Hence, the user has to trigger the deployment of the services using a deploy-
ment system, retrieve the endpoints from the deployed services, and configure
the workflow according to the endpoints. As outlined previously, this process is
complex and time-consuming for non-technical users and can lead to configura-
tion errors.

2.4 Problem Statement

As described in the previous subsections, workflow technology is essential for the
execution of long-running business processes. However, some of the used services
are usually not available over the internet and have to be deployed by the user.
Hence, (i) the deployment models for the required self-hosted services have to be
determined first. This is complex if there are repositories with lots of deployment
models, as it is unclear for non-technical users how to search and select appro-
priate deployment models. Additionally, (ii) the determined deployment models
must be transferred into the target environment for the workflow execution.
Further, (iii) required services have to be deployed by passing the corresponding
deployment models to a deployment system. Finally, (iv) the services have to be
bound to the workflow to access them on runtime. Hence, a lot of complex and
time-consuming work has to be performed to prepare the target environment and
the workflow for the execution and this process should be automated. Therefore,
the resulting research question for this work can be formulated as follows: “How
can business processes be modeled in a self-contained manner and be deployed in
the target environment fully automatically including all required services?”

3 Self-contained Workflow Models

To enable packaging and deploying workflow models that require services that are
not provided with the “always-on” property over the network, a self-contained
packaging format is needed. Without such a packaging format, the required self-
hosted services of a workflow have to be determined manually and deployed

90 B. Weder et al.

Imperative Deployment Model

Legend
Service Task

Script Task

Declarative Deployment Model

D

D

D

D
End Event

Start Event Parallel Gateway

D

Fig. 2. Our new modeling approach: self-contained imperative workflow models.

in the environment to execute the workflow successfully. Thus, our goal is to
develop a packaging format that enables bundling all required information.

The conceptual structure of a self-contained workflow model is depicted in
Fig. 2. It contains the workflow which can be modeled, e.g., using a standardized
workflow language such as BPEL. In the example, the workflow starts, performs
two sequences of two activities in parallel, and terminates afterward. However,
in contrast to existing workflow archives, deployment models can be added and
linked by the activities in the self-contained workflow model. For example, the
activity on the top-left references a declarative deployment model. This deploy-
ment model can be used to deploy the service that is invoked by the activity. If
multiple deployment models for services with the same functionality exist, they
can all be linked by the invoking activities (see top-right activity). E.g., one
deployment model could deploy the service on a private cloud, while the other
could use a local workstation. Further, different deployment models can imple-
ment the same service providing various non-functional properties, like response
time or security. Hence, a selection based on non-functional requirements of the
user or available hardware in the target environment can be performed.

In addition to declarative deployment models, imperative deployment models
can be referenced by activities of the self-contained workflow model too (see
bottom-left activity). While declarative deployment models simplify common
and non-complex application deployments and require only limited technical
expertise, imperative deployment models can be modified arbitrarily [6]. Hence,
they are better suited for complex deployments with a lot of custom-tailored
components. Therefore, our approach allows utilizing both kinds of deployment
models to deploy a required service to be generally applicable.

Finally, a self-contained workflow model can also contain activities that do
not require the deployment of a service, and thus, have no reference to a service
deployment model. For example, an activity that is implemented by a script can
be executed within the workflow engine and has no external dependency on a
service (see bottom-right activity). Additionally, some activities have to be per-

Deployable Self-contained Workow Models 91

5
Self-Contained

Modeling

1
Archive

Deployment
Service

Provisioning
Workflow
Execution

3

Workflow
Engine

ServiceDeployment
Orchestrator

5

2 3 4

2
4

Workflow
Deployment

Hosting
Environment

Deployment
System

Deployment
Models

Self-Contained Workflow Model

D D D

1 D

Fig. 3. Overview of the approach for self-contained imperative workflow models.

formed by humans, such as the physical set up of a device. Hence, depending on
the required software tools to perform the human task, deployment models may
be referenced. Further, activities can invoke provided services that are accessible
over the network and do not have to be deployed before the workflow execution.

Self-contained workflow models enable to define imperative workflows imple-
menting service compositions in a self-contained manner with all required service
deployment models. Hence, the required services do not have to be determined
and transferred into the target environment by the user, which can be a com-
plex task if there are many deployment models available. However, the user is
still in charge of deploying the services and configuring the workflow with the
endpoints. Therefore, an approach to automate these tasks is required.

4 Automatic Service Deployment

After transferring the self-contained workflow model into the target environment,
the required services must be deployed by using the included service deployment
models. Furthermore, the endpoints of the deployed services have to be retrieved,
and the services have to be bound to the workflow using this endpoint informa-
tion. In this section, we present an approach to automate these tasks.

Figure 3 gives an overview of our approach. It covers all steps from the defini-
tion of the self-contained workflow model to the workflow execution. In the first
step, the user models his workflow utilizing a suited modeling tool. The modeling
tool presents the available service deployment models to the user, and therefore,
allows referencing them within activities of the workflow. After finishing the
modeling, the workflow is packaged as a self-contained workflow model. Subse-
quently, the self-contained workflow model can be transferred into the target
environment for the workflow execution without the need to transmit additional
files. In the target environment, it is passed to the deployment orchestrator,
which handles the upload of the deployment models to a suitable deployment
system (step 2). Thereby, the required deployment system depends on the kind
of deployment models that are referenced by the activities. E.g., if they are
imperative or declarative and based on a standard, such as TOSCA [15], or a

92 B. Weder et al.

proprietary format. However, the deployment orchestrator can use any deploy-
ment system by providing a plugin system to enable easy extensibility.

Before deploying the services, the deployment orchestrator has to select one of
the referenced service deployment models per service if multiple alternatives are
available. Therefore, the available computing infrastructure can be registered
at the deployment orchestrator by a system administrator. This information
can be used to exclude deployment models that utilize infrastructure that is
not available in the target environment. In case, that no deployment models
remain, the deployment must be aborted and the user has to be informed. If
multiple alternative deployment models still exist, the selection can be continued
by comparing the non-functional requirements, that can be specified by the user,
with the non-functional properties of the different deployment models [21].

After selecting the service deployment models, the deployment orchestrator
triggers the deployment of all required self-hosted services (step 3). For the cre-
ation of the services, different input parameters, such as user name and password
for the deployment on a private cloud, can be required. These input parameters
have to be provided by the user in step 3. Alternatively, all parameters can
already be included in the deployment models that are contained in the self-
contained workflow model. This eases the instantiation of the workflow model.
However, it can reduce the portability if, e.g., a deployment model using a locally
installed hypervisor is part of the self-contained workflow model. Therefore, the
endpoint of the hypervisor should be provided by the user after transferring
the archive into the target environment. After deploying the services, they are
bound to the workflow by the deployment orchestrator. Subsequently, the cor-
rectly configured workflow can be deployed into the workflow engine (step 4).
Finally, the workflow engine executes the workflow, and the activities access the
deployed services (step 5). Thus, the workflow can be executed with no manual
task except the upload of the self-contained workflow model to the deployment
orchestrator in the target environment despite the usage of self-hosted service.

5 Prototype

This section presents the prototypical implementation of our approach. Due to
its wide distribution, the workflow language BPEL and the open-source work-
flow engine Apache ODE 3 were selected to model and execute the workflows.
For the specification of the service deployment models, the Topology and Orches-
tration Specification for Cloud Applications (TOSCA) [15] is used. TOSCA is
an OASIS standard, which allows describing cloud applications in a vendor-
neutral way, and therefore, eases portability and interoperability of modeled
applications. The prototype is based on the open-source TOSCA modeling tool
Winery4. We extended Winery to enable the modeling of BPEL-based service
compositions and the attachment of declarative service deployment models to

3 https://github.com/apache/ode.
4 https://github.com/OpenTOSCA/winery.

https://github.com/apache/ode
https://github.com/OpenTOSCA/winery

Deployable Self-contained Workow Models 93

the activities. The resulting workflow can be packaged by Winery into a self-
contained workflow archive. Furthermore, the services and the workflow can be
deployed automatically using the workflow engine Apache ODE and the Open-
TOSCA Container5, an open-source TOSCA-compliant runtime, which is part
of the OpenTOSCA ecosystem [1]. After the service deployment is successful,
the services can be bound to the workflow by Winery. Therefore, the required
services can be deployed and the workflow can be configured fully automati-
cally. The created enhancements are plug-in based and can easily be extended
to support other workflow engines or deployment systems.

6 Related Work

Research works from different research areas focus on the development of self-
contained archives or packaging formats. The TOSCA [15] standard can be used
to define cloud applications in a portable and self-contained manner. For this, all
required information for the application deployment is packaged in a Cloud Ser-
vice Archive (CSAR), which can be executed by any TOSCA-compliant runtime.
Qasha et al. [16] provide a framework for scientific workflow reproducibility and
portability in the cloud. For this, they propose to use TOSCA to define scientific
workflows together with the specification of the hosting environment. Hence, the
resulting CSAR can be used by a TOSCA runtime to automatically deploy the
required services and to enact the workflow. However, every workflow activity, its
execution environment, and control or data connections between different activ-
ities have to be modeled using TOSCA. This can lead to a cluttered model that
gets incomprehensive. Furthermore, benefits from classical workflow languages
and engines, like widely known graphical notations or automatic scaling, can not
be reused directly and have to be provided additionally.

Different approaches use virtual machine images to provide workflows in
a portable and reproducible manner [10,17]. This means, they create virtual
machine images from the running services, which can then be utilized to exe-
cute the workflow in other environments. For this, new virtual machines are
created from each required image. However, the virtual machine images often
depend on provider-specific extensions, which are used to improve the perfor-
mance, and therefore, the portability is reduced. Additionally, services running
on other infrastructures, like local workstations, are not considered. Another
problem is the size of the virtual machine images that impedes their transmis-
sion.

Several scientific workflow management systems provide capabilities to sub-
mit tasks to available computing resources and to set up required services auto-
matically when they are invoked by a workflow. Pegasus [4] separates the descrip-
tion of the scientific workflow from the execution environment to allow the speci-
fication of portable workflows. Additionally, it enables the runtime optimization
of workflows regarding the performance or reliability by selecting appropriate

5 https://github.com/OpenTOSCA/container.

https://github.com/OpenTOSCA/container

94 B. Weder et al.

computing resources for the given requirements. Thus, Pegasus contains a map-
per component that searches and assigns computational resources to activities
of the abstract workflow provided by the user. However, Pegasus is only capa-
ble to use existing resources and prepares them by transferring files or needed
executables. In contrast to our approach, it is not possible to deploy required
services using arbitrary deployment models employing Pegasus.

Kepler [19] is an open-source scientific workflow management system, that
was extended to enable the usage of EC2 resources within workflows. Therefore,
it is possible to deploy services on cloud resources in scientific workflows. How-
ever, this extension is provider-specific and not suited for services that should
be hosted on different infrastructure. Furthermore, every task, including the
deployment of virtual machines, the setup of needed programs and the copy-
ing of data, has to be modeled within the workflow. This can quickly lead to a
cluttered model that gets incomprehensive and decreases the reusability.

Vukojevic-Haupt et al. [18] introduce an approach for the on-demand deploy-
ment of services that are required by a workflow. This means the services are
deployed when they are invoked by the workflow and decommissioned afterward
to save computing resources. Therefore, they proposed the extension of an enter-
prise service bus to enable the deployment of services. However, they assume that
all required services are available as so-called service packages in a local service
repository. The service packages include all artifacts needed to deploy the ser-
vices, and therefore, correspond to deployment models in our approach. Hence,
in contrast to our approach, the workflow archives are not self-contained, and
new service packages must be registered by the service registry manually before
the workflow is initiated, which reduces the portability of the workflows.

7 Conclusion

In this paper, we presented an approach (i) to specify service compositions in
a self-contained manner using imperative workflow models and (ii) to support
the automatic deployment of services that are required in the environment. For
this, we defined self-contained imperative workflow models, which contain the
workflow, and additionally, the deployment models of the required services that
are attached to the corresponding activities of the workflow. Hence, the user
is no longer responsible for determining the required services for a workflow,
transferring the corresponding deployment models into the target environment,
initiating the deployment, and configuring the workflow with the service end-
points before executing it. Instead, these time-consuming and error-prone tasks
can be automated completely. Further, our approach eases the execution of the
workflow in another environment, as all required software artifacts are contained
in the self-contained imperative workflow model. We prototypically implemented
our approach using the TOSCA standard to model declarative deployment mod-
els and BPEL as the workflow language to specify the service compositions.

Deployable Self-contained Workow Models 95

Acknowledgement. This work was partially funded by the DFG project DiStOPT
(252975529), the DFG’s Excellence Initiative project SimTech (390740016), and by the
BMWi project Industrial Communication for Factories – IC4F (01MA17008G).

References

1. Binz, T., et al.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
692–695. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-
1 62

2. Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F., Wettinger, J.:
Combining declarative and imperative cloud application provisioning based on
TOSCA. In: International Conference on Cloud Engineering (IC2E), pp. 87–96.
IEEE (2014)

3. Bucchiarone, A., Gnesi, S.: A survey on services composition languages and models.
In: International Workshop on Web Services-Modeling and Testing, p. 51 (2006)

4. Deelman, E., Vahi, K., Rynge, M., Juve, G., Mayani, R., da Silva, R.F.: Pegasus
in the cloud: science automation through workflow technologies. IEEE Internet
Comput. 20(1), 70–76 (2016)

5. Ellis, C.A.: Workflow technology. Comput. Support. Coop. Work Trends Softw.
Ser. 7, 29–54 (1999)

6. Endres, C., Breitenbücher, U., Falkenthal, M., Kopp, O., Leymann, F., Wettinger,
J.: Declarative vs. imperative: two modeling patterns for the automated deploy-
ment of applications. In: Proceedings of the 9th International Conference on Per-
vasive Patterns and Applications, pp. 22–27. Xpert Publishing Services (2017)

7. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

8. Freelon, D.G.: ReCal: intercoder reliability calculation as a Web service. Int. J.
Internet Sci. 5(1), 20–33 (2010)

9. Gottschalk, K., Graham, S., Kreger, H., Snell, J.: Introduction to Web services
architecture. IBM Syst. J. 41(2), 170–177 (2002)

10. Jiang, F., Castillo, C., Schmitt, C., Mandal, A., Ruth, P., Baldin, I.: Enabling
workflow repeatability with virtualization support. In: Proceedings of the 10th
Workshop on Workflows in Support of Large-Scale Science, p. 8. ACM (2015)

11. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of
techniques and tools. ACM Comput. Surv. (CSUR) 48(3), 33 (2016)

12. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall PTR, Upper Saddle River (2000)

13. Leymann, F., Roller, D., Schmidt, M.T.: Web services and business process man-
agement. IBM Syst. J. 41(2), 198–211 (2002)

14. OASIS: Web Services Business Process Execution Language (WS-BPEL) Ver-
sion 2.0. Organization for the Advancement of Structured Information Standards
(OASIS) (2007)

15. OASIS: Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0. Organization for the Advancement of Structured Informa-
tion Standards (OASIS) (2013)

16. Qasha, R., Ca�la, J., Watson, P.: A framework for scientific workflow reproducibility
in the cloud. In: IEEE 12th International Conference on e-Science (e-Science), pp.
81–90. IEEE (2016)

17. Stodden, V., Leisch, F., Peng, R.D.: Implementing Reproducible Research. CRC
Press, Boca Raton (2014)

https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1007/978-3-642-45005-1_62

96 B. Weder et al.

18. Vukojevic-Haupt, K., Karastoyanova, D., Leymann, F.: On-demand provisioning of
infrastructure, middleware and services for simulation workflows. In: Proceedings
of the 6th IEEE International Conference on Service Oriented Computing and
Applications, pp. 91–98. IEEE (2013)

19. Wang, J., Altintas, I.: Early cloud experiences with the Kepler scientific workflow
system. Procedia Comput. Sci. 9, 1630–1634 (2012)

20. Wurster, M., et al.: The essential deployment metamodel: a systematic review
of deployment automation technologies. Softw. Intensive Cyber Phys. Syst., 1–13
(2019). https://doi.org/10.1007/s00450-019-00412-x

21. Yu, T., Lin, K.J.: Service selection algorithms for Web services with end-to-end
QoS constraints. IseB 3(2), 103–126 (2005)

https://doi.org/10.1007/s00450-019-00412-x

Technology-Agnostic Declarative
Deployment Automation of Cloud

Applications

Michael Wurster1(B), Uwe Breitenbücher1, Antonio Brogi2,
Lukas Harzenetter1, Frank Leymann1, and Jacopo Soldani2

1 Institute of Architecture of Application Systems, University of Stuttgart,
Stuttgart, Germany

{wurster,breitenbuecher,harzenetter,leymann}@iaas.uni-stuttgart.de
2 Department of Computer Science, University of Pisa, Pisa, Italy

{brogi,soldani}@di.unipi.it

Abstract. Declarative approaches for automating the deployment and
configuration management of multi-component applications are on the
rise. Many deployment technologies exist, sharing the same baselines for
enacting declarative deployments, even if based on different languages
for specifying multi-component applications. The Essential Deployment
Metamodel (EDMM) Modeling and Transformation Framework allows
to specify multi-component applications in a technology-agnostic man-
ner, and to automatically generate the technology-specific deployment
artifacts allowing to deploy an IaaS-based application. In this paper,
we propose an extension of the EDMM Modeling and Transformation
Framework to PaaS and SaaS by allowing to deploy application compo-
nents on PaaS platforms or to implement them by instrumenting SaaS
services. Given that not all existing deployment technologies support
PaaS and SaaS deployments, we also propose the new EDMM Decision
Support Framework allowing us to determine which deployment tech-
nologies can be used to deploy an application specified with EDMM.

Keywords: Deployment modeling · Deployment automation · Cloud
application

1 Introduction

The widespread of cloud computing and DevOps resulted in a plethora of differ-
ent deployment technologies being proposed. These aim at establishing highly
automated deployment processes, as manual deployments of complex multi-
component applications is cumbersome and error-prone [18,25]. By describing
the components and infrastructure of an application in reusable deployment
models, a repeatable end-to-end deployment automation can be established.

This is typically done by following a declarative approach, i. e., by specifying
the structure of an application and the desired state into which an application
c© The Author(s) 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 97–112, 2020.
https://doi.org/10.1007/978-3-030-44769-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-44769-4_8

98 M. Wurster et al.

or parts thereof have to be transferred [15]. The declarative approach is indeed
considered the most appropriate for application deployment and configuration
management [6,17,31], as also witnessed by the multitude of existing deployment
technologies following such an approach, e. g., AWS CloudFormation, Chef, Juju,
Kubernetes, Puppet, and Terraform, just to mention some.

At the same time, existing declarative deployment technologies differ in sup-
ported features and mechanisms, as well as in the modeling language for describ-
ing the application and its desired state. Open standards (e. g., TOSCA [23,24])
have been proposed to ensure the portability of cloud application deployments
from a provider/technology to another. However, major providers and deploy-
ment technologies are currently not supporting such standards. This makes it
difficult to compare technologies based on their capabilities, select a deployment
technology that is suited to accomplish given requirements, and to migrate a
deployment model from one technology to another.

In our previous work, we tackled the aforementioned issue by starting from
most used declarative deployment technologies and by distilling their essential
parts into what we called the Essential Deployment Metamodel (EDMM) [31].
We also implemented a concrete YAML-based language for modeling applica-
tions with EDMM. Further, we proposed the EDMM Modeling and Transforma-
tion Framework [30] allowing to exploit EDMM as a “normalized metamodel”
to deploy the same application with different technologies: After specifying the
application with EDMM, the transformation framework can automatically gen-
erate the deployment artifacts needed to deploy the application with the selected
target deployment technology. Notably, by simply re-running the transformation
framework with a different target deployment technology, the same application
specification can be used to migrate the deployment of an application from one
technology to another [30].

The EDMM Modeling and Transformation Framework, however, currently
supports the deployment of multi-component applications only on virtual com-
pute resources such as virtual machines or containers (i. e., IaaS). In this paper,
we overcome this limitation by providing the following two main contributions:

1. We extend the EDMM Modeling and Transformation Framework to deploy
application components also on PaaS platforms, as well as to exploit existing
SaaS services to implement components.

2. We present the EDMM Decision Support Framework allowing us to determine
which declarative deployment technologies can be used to deploy a given
EDMM model.

The latter is intended to help application developers to avoid trying to deploy an
application with a deployment technology not offering the needed features, e. g.,
Juju is intended to automate the deployment of multi-component applications
over IaaS-based virtual machines, but it cannot be used to deploy application
components on PaaS platforms.

The rest of the paper is organized as follows. Section 2 presents the fundamen-
tals and motivations for our work. Section 3 introduces our approach and Sect. 4
presents the overall system architecture on which our contributions are based

Technology-Agnostic Declarative Deployment Automation 99

on. Section 5 describes the prototypical implementation while, finally, Sect. 6 and
Sect. 7 discuss related work and draw some concluding remarks, respectively.

2 Background and Motivations

We hereafter introduce the fundamental notions and terms needed in the rest
of this paper. We also illustrate a simple yet effective example motivating our
work.

2.1 Deployment Models and Deployment Technologies

For automating the deployment of an application, deployment models are typi-
cally used to describe the desired result: In general, there is a distinction between
imperative deployment models and declarative deployment models [15]. Declara-
tive models, in general, declare exactly what the desired state into which an appli-
cation or parts thereof are transferred to. In contrast, imperative models define
the exact process of how the desired state is reached using executable workflows
or programmatic actions. Hence, a declarative deployment model specifies the
structure of components to be deployed and defines the desired state in the form
of properties or configurations for those components, but it requires a deployment
technology that interprets the model and derives the exact order of operations to
reach this state. For example, in Terraform an application developer creates a set
of files defining the cloud resources the foreseen application requires. Terraform,
when executing the application deployment, analyzes the resource definitions
and derives a workflow having exact steps and actions required to roll-out the
desired state defined by the application developer.

In industry and research, declarative deployment models are widely accepted
as the most appropriate approach for application deployment and configura-
tion management [17]. As a result, a plethora of different technologies have
been developed following this approach such as Chef, Puppet, AWS CloudFor-
mation, Terraform, and Kubernetes. However, application systems are often in
constant change and, besides the major effort for adapting the application itself,
the associated deployment models must be adapted using different or additional
deployment technologies. Deployment technologies are heterogeneous regarding
supported features and modeling languages, and this could result in major efforts
whenever an application and its actual deployment have to be adapted to changes
or evolutions in the application requirements. Therefore, it is crucial to postpone
as late as possible the choice of which deployment technology to use. An even
better approach for application developers is to define their application struc-
ture and desired state in a technology-agnostic manner, e.g., by exploiting a
normalized metamodel. With a normalized modeling of the application and of
its desired state, one can indeed automatically generate the deployment artifacts
needed to deploy the application using a given deployment technology.

In our previous work [31], a systematic review of widely used declarative
deployment technologies revealed the Essential Deployment Metamodel

100 M. Wurster et al.

Pet Clinic
(Java Application)

Database
(MySQL DB)

App Platform
(AWS Beanstalk)

Authentication
(Auth0)

DB Platform
(Amazon Aurora)

(ConnectsTo)

(HostedOn)

(ConnectsTo)

(HostedOn)

Fig. 1. Simple cloud application which can only be deployed by using a subset of one
of the top-most deployment technologies.

(EDMM). EDMM provides a normalized metamodel as a technology-
independent baseline for deployment automation research and provides a com-
mon understanding of declarative deployment models. EDMM comprises the
essential parts supported by well-known technologies and facilitates the trans-
formation in different concrete technologies by a semantic mapping, which avoids
deployment technology lock-in.

2.2 Motivating Scenario

As a motivating scenario for our work, we consider a rather simple cloud appli-
cation. Figure 1 depicts the scenario and shows a Java application, named “Pet
Clinic”, in the center that is hosted on AWS Beanstalk, the platform as a service
(PaaS) offering by Amazon Web Services (AWS). This application connects to a
fully managed database platform, Amazon Aurora which is a managed MySQL
database as a service (DBaaS) offering by AWS. Both the Java application as
well as the Database component have an artifact attached (cf. Fig. 1), which is,
for example, a packaged JAR file in case of the Java application and a SQL file
containing the actual database schema and initial data in case of the database
component. The left hand side of Fig. 1 depicts a software as a service (SaaS)
offering. For this scenario, we envision the usage of a managed authentication
service to provide single sign-on between different applications. The Java appli-
cation, therefore, needs to connect or redirect users to this authentication service
to authenticate and authorize them.

Even if simple, this application cannot be deployed by various deployment
technologies (and by almost all of the most popular technologies we analysed
in our previous work [31]). This scenario, as it is, is only fully supported by
Terraform, as Terraform provides different plugins for different cloud providers
and services. Indeed, parts of the application structure are supported by other
deployment technologies as well. For example, AWS CloudFormation, Ansible,
and Chef are capable to deploy applications to AWS Beanstalk. However, SaaS
hosted components are not widely supported—Terraform supports many popular
SaaS offerings. Alternatively, custom deployment automation tools are required
that are most likely offered by SaaS providers.

Technology-Agnostic Declarative Deployment Automation 101

To fully automate the deployment, a decision support system is needed to
determine which declarative deployment technologies can be used to fully deploy
a given application deployment model. It is important that application develop-
ers receive early deployability feedback immediately while modeling the applica-
tion. Further, to overcome the technology-specific differences, EDMM as a nor-
malized metamodel provides a solid baseline for deployment automation research
and a common understanding of declarative deployment models. The knowledge
of essential parts supported by well-known technologies facilitates transforma-
tion to different deployment technologies, which avoids deployment technology
lock-in.

2.3 Essential Deployment Metamodel

The EDMM was introduced as the result of a systematic review of technolo-
gies that contain the essential elements of declarative deployment models to
enable the comparison and selection of appropriate technologies [31]. The EDMM
enables a common understanding of declarative deployment models and, thus,
eases the comparison and selection of appropriate technologies. It defines Com-
ponents as physical, functional, or logical units of an application. Further, Rela-
tions are defined as directed physical, functional, or logical dependencies between
exactly two components. Both can be typed using Component Types and Rela-
tion Types to express reusable entities that specify a certain semantic. Further,
EDMM defines Properties as a way to describe the current state or prescribe
the desired target state or configuration of a component or relation. Moreover,
Operations are used in declarative deployment models to define executable pro-
cedures performed to manage a component or relation. Such operations provide
hook points and are executed by deployment technologies to implement certain
requirements during application deployment. Finally, the EDMM also defines
Artifacts such that an artifact implements a component or operation and is
therefore required for the execution of the application deployment as well as the
final application system. The terminology of EDMM is considered as baseline in
the course of this paper.

3 Transforming EDMM Models into Deployment
Technology-Specific Models

In this section, we introduce our approach to transform a technology-independent
application deployment model based on EDMM into a deployment technology-
specific model (DTSM) while ensuring supportability by respective deployment
technologies. As depicted in Fig. 2, the approach is structured in four steps: (1)
Create EDMM Model, (2) Check Supportability with Different Technologies, (3)
Transform EDMM Model into DTSM, and (4) Execute DTSM. In the following,
we will provide details on each of such steps. Notably, the grey-dashed boxes
represent already existing building blocks [30] that are extended in this work,
while dark boxes highlight the new main contributions of this work.

102 M. Wurster et al.

Deployment Technology
Decision Support System

EDMM Transforma on
Framework

IaaS PaaS SaaS

Check Supportability with
Different Technologies

Transform EDMM
Model into DTSM

Create EDMM
Model

Execute
DTSM

DTSM
EDMM Modeling

Environment

P

S

P

1 2 3 4

Fig. 2. Transformation of EDMM Models while ensuring their transformability to spe-
cific deployment technologies (based on [30])

3.1 Step 1: Technology-Independent Application Modeling

The modeling of the application is done in EDMM to provide a normalized and
technology-independent model. The model is composed graphically by using the
EDMM Modeling Environment that we proposed in our previous work [30]. The
application developer uses the modeling environment to compose a cloud appli-
cation that, for instance, has the structure as depicted in Fig. 1. The creation
of certain EDMM components is based on existing types that are provided by
the modeling environment. At any time, the resulting model is compliant to the
EDMM in YAML specification1 and can be exported. To improve the model-
ing experience and to tackle the issue that an application developer needs live
feedback whether a certain deployment technology is capable of deploying the
current model, the modeling environment uses the Deployment Technology Deci-
sion Support System, which is presented next.

3.2 Step 2: Check Deployment Technology Support

In this work, we introduce the Deployment Technology Decision Support Sys-
tem building block as shown in Fig. 2. Having this, an application developer can
immediately check whether a EDMM model can be transformed into a deploy-
ment technology-specific model (DTSM) used by a certain deployment technol-
ogy. The latter obviously holds if the EDMM model includes entities and features
supported by a deployment technology. For example, the user gets immediate
feedback if a modeled application is supported by Terraform, AWS CloudForma-
tion, Juju, or Ansible, to name just a few. Hereby, the EDMM modeling environ-
ment triggers the decision support module whenever an application developer
changes the EDMM model. This module consumes the current EDMM model
and checks whether and to which degree the model is transformable into a DTSM
of a specific deployment technology. The decision support module generates a

1 https://github.com/UST-EDMM/spec-yaml.

https://github.com/UST-EDMM/spec-yaml

Technology-Agnostic Declarative Deployment Automation 103

report that is presented to application developer. Based on this report, we facil-
itate decision support by checking transformability into a specific deployment
technology.

3.3 Step 3: Transform EDMM Model into DTSM

For transformation, the EDMM model is consumed by the EDMM Transforma-
tion Framework module. In this work, we build on top of the existing EDMM
Transformation Framework, which we proposed in a previous work [30]. This
system is already able to transform EDMM models containing virtual compute
resources (IaaS), i. e., operating systems, virtual machines, or containers, and
the software that needs to be deployed on them including their configuration
and orchestration. To further support cloud application scenarios, we extend the
module to comprise certain transformation rules for PaaS and SaaS component
types such that EDMM models containing these can be transformed into respec-
tive deployment technology-specific models (DTSM). For example, there are
transformation rules for AWS CloudFormation to transform possibly modeled
PaaS components. Further, we provide rules, e. g., for Terraform, to transform
respective SaaS components into the deployment technology’s counterpart. Due
to the extensibility and pluggable architecture of the EDMM Transformation
Framework, this only leads to changes in the respective plugins to implement
the transformation rules accordingly for PaaS and SaaS.

3.4 Step 4: Technology-Specific Deployment Execution

The output of the EDMM Transformation Framework is a deployment
technology-specific model (DTSM). For example, in Terraform this will be a con-
figuration that consists of one or more *.tf files referencing respective artifacts
to deploy. In our approach, we deliberately output technology-specific models to
facilitate DevOps activities such as infrastructure as code (IaC) in modern soft-
ware development environments. By producing human- and machine-readable
model files, we enable that transformed results are managed using version control
system, e. g., to trigger Git-based continuous integration and delivery (CI/CD)
workflows. Notably, by simply re-running the EDMM Transformation Frame-
work targeting a different deployment technology, the same EDMM model can
be used to generate the respective technology-specific deployment model [30].

4 System Architecture of the EDMM Modeling, Decision
Support, and Transformation System

Figure 3 shows the overall system architecture of the proposed approach. To
support the depicted approach from above, several components are required.
The Modeling Tool is a web-based modeling environment that uses a REST API
to retrieve and update its data. The Types Repository contains reusable EDMM
component types that an application developer can use for modeling and provide

104 M. Wurster et al.

REST API

Decision Support
Framework

Transforma on
Framework

Chef Plugin

Terraform Plugin

CLI

Model Parser

Repository

Modeling Tool

Types

Models

Fig. 3. System architecture supporting modeling, decision support, and transformation
of EDMM models into DTSMs.

the respective technical and platform abstractions. An application developer uses
these types through the Modeling Tool to graphically compose the structure of
the EDMM model, which are stored and manged in the Models Repository.

To check the transformation support and facilitate decision support, the Deci-
sion Support Framework is introduced as depicted in Fig. 3. To transform an
EDMM model the Transformation Framework is envisioned. Both components
employ a plugin architecture that supports the integration of various deploy-
ment technologies in an extensible and pluggable way. Each plugin employs the
knowledge whether a certain EDMM component is supported for transformation
or not. The Decision Support Framework is able to utilize the plugins to check a
given EDMM model and to produce a report what components (or component
types) are not supported. Further, the plugins carry the logic and transformation
rules to transform an EDMM model into a deployment technology-specific model
(DTSM), which includes the creation of respective technology-specific directory
structures, files, and artifacts. The Model Parser consumes a textual EDMM
model in YAML and creates an internal data structure used by the Decision
Support Framework, the Transformation Framework, and the respective plugins.

In addition, the system offers a command-line interface (CLI) that can be
either used directly by the user or integrated into any automated workflow, e. g.,
to facilitate IaC by using it within a CI/CD pipeline. Either way, using the CLI
or the web-based interface, an application developer can select the desired target
deployment technology in which an EDMM model should be transformed.

5 Validation: Prototypical Implementation

In this section, we illustrate a prototypical implementation of the proposed app-
roach and the foreseen system architecture. As mentioned before, we base our
prototype on two existing components: (i) Eclipse Winery [21] as the EDMM
Modeling Environment and (ii) the EDMM Transformation Framework [30].

Technology-Agnostic Declarative Deployment Automation 105

Decision Support and Transformation

1
Live Modeling

Feedback
P

S

P

...

Select
Deployment
Technology

2

> tf _
4

Execute
Deployment

Model

Transform
Deployment

Model

3

Winery

Decision Support
Framework

Transformation
Framework

Chef Plugin

Terraform Plugin

Fig. 4. Prototype flow demonstrating the modeling, decision support, and transforma-
tion of an EDMM model to Terraform.eps

5.1 Overview

Eclipse Winery is a web-based environment to graphically model TOSCA-based
application topologies. It provides a back-end to manage component and relation
types, their property definitions, operations, and artifacts. Further, it provides a
Topology Modeler component which enables the graphical composition of appli-
cation deployment models including the specification of the components’ proper-
ties. Even though Winery was initially developed as TOSCA modeling environ-
ment, in previous work we showed that EDMM can be mapped to TOSCA [31].

First of all, we extended the EDMM modeling language and introduced new
built-in types to respectively cover the motivation scenario depicted in Fig. 1.
We extended Winery’s Topology Modeler in order to provide a live checking
of application models. Winery calls the Decision Support Framework when-
ever the application developer changes the EDMM model, e. g., when adding or
removing components. For this purpose, the EDMM Transformation Framework
was extended by the Decision Support Framework component. Due to the fact
that the EDMM Transformation Framework employs a plugin architecture, we
extended the existing plugin interface and its checkModel() lifecycle method
to return a respective result set that highlights the components that are not
supported. The communication between Winery and the EDMM Transforma-
tion Framework is achieved using REST over HTTP. In addition to the existing
CLI of the EDMM Transformation Framework, we now also provide a REST
API over HTTP to trigger the transformation for a certain target deployment
technology.

106 M. Wurster et al.

components:
other components
omitted for brevity
authentication:

type: auth0
properties:

domain: example.test
identifier: ...
scopes: user,admin
client_id: abc
client_secret: xyz123abc

resource "auth0_resource_server" "authentication" {
name = "authentication"
identifier = "..."
signing_alg = "RS256"
scopes {

value = "user"
}
scopes {

value = "admin"
}
...

}

EDMM in YAML Transformation to Terraform

Fig. 5. Terraform transformation mapping.

To use the prototype2, we created a Docker Compose configuration able to
start a pre-configured and ready-to-use EDMM Modeling, Decision Support,
and Transformation System. All changes and improvements in the course of this
paper have been merged to the master branches of the respective repositories.

5.2 Modeling and Transformation Flow

In this section, we show the overall modeling, decision support, and transforma-
tion flow of our implemented prototype. The flow is explained based on a mod-
eling example that follows our motivating scenario in Fig. 1. Further, we chose
Terraform to describe the flow based on a concrete deployment technology.

Application developers start the integrated EDMM Modeling, Decision Sup-
port, and Transformation System. By using the EDMM Modeling Tool, users
are able to model their desired application structure. As depicted in Fig. 4, the
user composes the structure by drag-and-drop desired components to the can-
vas. Additionally, users define respective relations between them by connecting
the components. To facilitate decision support, we implemented live modeling
feedback directly in the modeling environment (cf. 1 in Fig. 4). Whenever, the
overall model is changed, the EDMM Decision Support Framework is triggered.
All available plugins of the Decision Support and Transformation Framework
are queried to check if the current model contains unsupported components.
The modeling environments retrieves the result and presents it to the appli-
cation developer. For example, a model that reflects the scenario depicted in
Fig. 4, can be transformed into “Terraform” but not into “Chef”. If a model is
supported by one or more deployment technologies, application developer can
export the model according to the EDMM in YAML specification. From here,
the user executes the transformation, i. e., using the EDMM CLI, and selects
the desired and supported deployment technology (cf. 2 in Fig. 4). The output
of the system is the transformed output according to the need a corresponding
deployment technology requires. For example, in case of Terraform, it will be a

2 https://github.com/UST-EDMM.

https://github.com/UST-EDMM

Technology-Agnostic Declarative Deployment Automation 107

ready to use working directory containing Terraform configuration files (cf. 3 in
Fig. 4). Lastly, the application developer is able to execute the actual deploy-
ment using the tools and interfaces provided by the deployment technology. For
instance, Terraform provides a CLI to “apply” the generated configuration. At
this point, application developers can use their well-known development envi-
ronments and tools to deploy and manage their applications (cf. 4 in Fig. 4). For
example, the generated deployment artifacts can be versioned in revision control
systems, such as Git, to facilitate the use of automated CI/CD pipelines.

We executed the modeling and transformation flow according to our moti-
vation scenario from Sect. 2.2 (the full EDMM modeling example in YAML is
available online3 on GitHub). In Fig. 5, we show an excerpt a modeled EDMM-
based SaaS component and its mapping to the actual Terraform resource. In
such cases, the system generates a respective auth0 resource server resource
that maps to the corresponding properties. For this special case, the Terraform
plugin comprises a special transformation rule to split the comma-separated list
of the EDMM property scopes into separate scopes blocks.

6 Related Work

The problem of automating the deployment of multi-component applications
on cloud platform is well-known [29], with most of existing approaches being
declarative [6]. The OASIS standard TOSCA [23,24] is one of the most known
approaches in this direction, as it provides a standardized language for specify-
ing multi-component application in a portable way. Specified applications can
then be deployed on cloud infrastructures, provided that the latter support the
declarative processing of TOSCA application specifications, e. g., by featuring
the OpenTOSCA runtime [7]. Our approach differs from TOSCA, as we aim at
automatically generating the deployment artifacts needed to deploy an applica-
tion with an existing technology as it is.

Similar considerations apply to other approach à la TOSCA, e. g.,
CAMEL [1], MODAClouds [12], Panarello et al. [26], SeaClouds [8] and trans-
cloud [9], just to mention some. Starting from a vendor-agnostic specification
of a multi-component application, all such approaches enable its deployment on
heterogeneous clouds. This is done by relying on additional components offered
by the targeted clouds or on ad-hoc middleware platforms processing the appli-
cation specification to deploy their components on heterogeneous clouds. Our
approach also starts from agnostic representations of multi-component applica-
tions, but it rather automatically generates different deployment artifacts for
different deployment technologies, in order to directly utilize them to deploy
applications on heterogeneous clouds.

In this perspective, closer approaches to ours are those by Di Cosmo et
al. [10,11] and by Guillén et al. [16], which both share our baseline idea of
generating concrete deployment artifacts from a vendor-agnostic specification of
a multi-component application and of its desired configuration. Di Cosmo et al.
3 http://bit.ly/3akWSYR.

http://bit.ly/3akWSYR

108 M. Wurster et al.

indeed propose a solution for automatically synthesizing a concrete deployment
for a multi-component application in a cloud environment, based on a high-level
specification of the application and its desired state. Their solution is however
targeting OpenStack cloud deployments, while we target 13 different production-
ready deployment technologies, each allowing to deploy applications on various
different cloud infrastructures [30].

Guillén et al. [16] instead present a framework for developing multi-service
application that are decoupled from the architecture, services, and libraries pro-
vided by cloud vendors. Based on additional metadata indicating application
requirements, the framework generates cloud compliant software artifacts that
are deployed in each cloud platform. This approach is even closer to ours, as the
same application can be deployed differently by re-running the framework and
instructing it to target different clouds. The approach by Guillén et al. however
differs from ours since it is intended to process applications whose sources are
available to the framework, while our approach only considers the application
specification and the final packaged software artifact. This allows us to process
a wider set of applications, as we allow developers to reuse black-box third-party
software or SaaS services to implement the components of an applications. Sim-
ilar considerations apply to the solution proposed by Alipour and Liu [3], who
exploit model-to-model transformation to obtain a cloud specific application
deployment from a vendor-independent application.

Other solutions worth mentioning are OAM [22], Kompose [28] and Compose
Object [13]. The OAM has recently been proposed to allow developers and oper-
ators to separately describe containerized applications with a vendor-agnostic
representation. It indeed allows developers to describe what containerized com-
ponents do and how they should be configured, while operators can complete
application specifications by configuring runtime environments. Obtained appli-
cation specifications can then be run on Kubernetes with Rudr4. Our approach
can be used for the same purposes, and it can be used not only for running
containerized applications on Kubernetes, but also for running other types of
applications on other deployment technologies. Similar considerations apply to
Kompose and Compose Object, both enabling the deployment of containerized
applications on Kubernetes. Kompose does so by automatically generating a
Kubernetes deployment for containerized applications specified in Docker Com-
pose, while Compose Object is a Kubernetes plugin for directly running such a
kind of applications on Kubernetes clusters.

It is worth noting that our approach of transforming EDMM models to
deployment artifacts is essentially a M2M (Model-to-Model) transformation [20].
We could have hence implemented our approach by suitably configuring exist-
ing frameworks, e. g., ATL [19], QVTd [14], or ADOxx [2], which already come
with tooling for graphical modeling and transformation. However, we decided
to implement our solution as a lightweight command-line tool, as it offers a
convenient way to be integrated in CI/CD pipelines and supporting DevOps [5].

4 https://github.com/oam-dev/rudr.

https://github.com/oam-dev/rudr

Technology-Agnostic Declarative Deployment Automation 109

It is also worth noting that our approach is inspired by the work by Papa-
zoglou and van den Heuvel [27], who firstly outlined the possibility of blueprinting
cloud-based application deployments, i. e., specifying the deployment of multi-
component applications in a reusable way, and to exploit such specifications
to automate application deployments. Such a foundational idea is the rationale
behind our EDMM modeling and transformation framework. Our framework was
also inspired by Andrikopoulos et al. [4], who firstly investigated the commonali-
ties among existing cloud modeling languages and collected them in the so-called
GENTL topology language. In our previous work [31] we followed a similar app-
roach for obtaining the EDMM itself, which we then exploit in this and former
work to develop the EDMM modeling and transformation framework.

In summary, to the best of our knowledge, ours is the first approach auto-
matically generating the artifacts needed to process multi-component applica-
tions using different existing deployment technologies by also allowing to reuse
third-party software and SaaS services to implement some components of an
application. It does so by starting from the widely accepted idea of specifying an
application in a technology-agnostic way, without requiring cloud providers to
support additional runtimes, and by piggybacking on existing, production-ready
deployment technology to actually enact application deployments.

7 Conclusions and Future Work

The EDMM modeling and transformation framework [30,31] allows to deploy
a multi-component application using different, existing declarative deployment
technologies. It indeed features a YAML-based language distilling the essentials
of existing technologies, which allows to describe a multi-component application
and its desired state. Deploying an application or migrating from a deployment
to another then only requires to feed the EDMM transformation framework with
the application specification. By selecting the target deployment technology, the
transformation framework will automatically generate the deployment artifacts
needed to deploy the specified application using such technology. This currently
comes at the price of only exploiting IaaS-based virtual machines or containers
as compute nodes where to deploy the components of an application.

In this paper, we presented an extension of the EDMM Modeling and Trans-
formation Framework allowing to deploy application components on PaaS plat-
forms and to exploit existing SaaS services to implement components of an appli-
cation. We also proposed a decision support system allowing to determine which
declarative deployment technologies can actually be used to deploy an applica-
tion specified with EDMM, as some existing technology may not be offering all
features needed to deploy the specified application (e. g., Juju and CFEngine are
not supporting the deployment application components on PaaS platforms). To
illustrate the helpfulness of our extension, we also shown how it was exploited
on a running example, which, despite simple, would have not be addressed by
the original EDMM Modeling and Transformation Framework.

The contributions in this paper present a first step towards cloud-native
application deployments using EDMM. However, in future work, it needs to be

110 M. Wurster et al.

analyzed which general features a declarative deployment technology has to sup-
port to deploy arbitrary cloud-native applications comprising, e. g., FaaS compo-
nents and arbitrary other managed services such as message queues. Therefore,
we will first analyze the requirements on deployment technologies to support
deploying arbitrary cloud-native applications and integrate required mechanisms
and plugins afterwards into our system. Further, we plan to extend the intelli-
gence of the decision support system by allowing to measure the distance from
an application specification to its deployment on a given technology, e. g., in
terms of the least amount of adaptation updates that must be applied to the
application to allow its deployment on such technology. We also plan to include
an adaptation recommender in the decision support system, capable of indicat-
ing to the application developer the changes to apply to an application to allow
its deployment on a desired technology, e. g., indicating to replace the PaaS plat-
form used to host some components with a IaaS-based software stack, so as to
enable the deployment of an application on Juju and CFEngine.

Acknowledgements. This work is partially funded by the EU project RADON
(825040), the DFG project SustainLife (379522012), and the projects AMaCA (POR-
FSE) and DECLware (University of Pisa, PRA 2018 66).

References

1. Achilleos, A.P., et al.: The cloud application modelling and execution language. J.
Cloud Comput. 8(1), 1–25 (2019). https://doi.org/10.1186/s13677-019-0138-7

2. ADOxx: ADOxx.org (2020). https://www.adoxx.org. Accessed 13 Feb 2020
3. Alipour, H., Liu, Y.: Model driven deployment of auto-scaling services on multiple

clouds. In: 2018 IEEE International Conference on Software Architecture Compan-
ion (ICSA-C), pp. 93–96 (2018)

4. Andrikopoulos, V., Reuter, A., Gómez Sáez, S., Leymann, F.: A GENTL approach
for cloud application topologies. In: Villari, M., Zimmermann, W., Lau, K.-K.
(eds.) ESOCC 2014. LNCS, vol. 8745, pp. 148–159. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44879-3 11

5. Belmont, J.M.: Hands-On Continuous Integration and Delivery, 1st edn. Packt
Publishing, Birmingham (2018)

6. Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Com-
put. Surv. 51(1), 1–38 (2018)

7. Binz, T., et al.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
692–695. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-
1 62

8. Brogi, A., et al.: EU project seaclouds - adaptive management of service-based
applications across multiple clouds. In: Proceedings of the 4th International Con-
ference on Cloud Computing and Services Science (CLOSER 2014), pp. 758–763.
SciTePress (2014)

9. Carrasco, J., Durán, F., Pimentel, E.: Trans-cloud: CAMP/TOSCA-based bidi-
mensional cross-cloud. Comput. Stand. Interfaces 58, 167–179 (2018)

https://doi.org/10.1186/s13677-019-0138-7
https://www.adoxx.org
https://doi.org/10.1007/978-3-662-44879-3_11
https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1007/978-3-642-45005-1_62

Technology-Agnostic Declarative Deployment Automation 111

10. Di Cosmo, R., Eiche, A., Mauro, J., Zacchiroli, S., Zavattaro, G., Zwolakowski, J.:
Automatic deployment of services in the cloud with Aeolus Blender. In: Barros, A.,
Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp.
397–411. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-
0 28

11. Di Cosmo, R., et al.: Automated synthesis and deployment of cloud applications.
In: Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, pp. 211–222. ACM (2014)

12. Di Nitto, E., Matthews, P., Petcu, D., Solberg, A. (eds.): Model-Driven Develop-
ment and Operation of Multi-Cloud Applications: The MODAClouds Approach.
SAST. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46031-4

13. Docker Inc: Compose Object (2020). https://github.com/docker/compose-on-
kubernetes. Accessed 13 Feb 2020

14. Eclipse Foundation: Eclipse QVTd (QVT Declarative) (2020). https://projects.
eclipse.org/projects/modeling.mmt.qvtd. Accessed 13 Feb 2020

15. Endres, C., Breitenbücher, U., Falkenthal, M., Kopp, O., Leymann, F., Wettinger,
J.: Declarative vs. imperative: two modeling patterns for the automated deploy-
ment of applications. In: Proceedings of the 9th International Conference on Per-
vasive Patterns and Applications (PATTERNS), pp. 22–27. Xpert Publishing Ser-
vices (2017)

16. Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: A service-oriented framework
for developing cross cloud migratable software. J. Syst. Softw. 86(9), 2294–2308
(2013)

17. Herry, H., Anderson, P., Wickler, G.: Automated planning for configuration
changes. In: Proceedings of the 25th International Conference on Large Instal-
lation System Administration (LISA 2011), pp. 57–68. USENIX (2011)

18. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley, Boston (2010)

19. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1), 31–39 (2008)

20. Kahani, N., Bagherzadeh, M., Cordy, J.R., Dingel, J., Varró, D.: Survey and clas-
sification of model transformation tools. Softw. Syst. Model. 18(4), 2361–2397
(2018). https://doi.org/10.1007/s10270-018-0665-6

21. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45005-1 64

22. Microsoft and Alibaba Cloud: Open Application Model (2020). https://oam.dev.
Accessed 13 Feb 2020

23. OASIS: Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0. Organization for the Advancement of Structured Informa-
tion Standards (OASIS) (2013)

24. OASIS: TOSCA Simple Profile in YAML Version 1.2. Organization for the
Advancement of Structured Information Standards (OASIS) (2019)

25. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail,
and what can be done about it? In: Proceedings of the 4th Conference on USENIX
Symposium on Internet Technologies and Systems (USITS 2003). USENIX (2003)

https://doi.org/10.1007/978-3-662-48616-0_28
https://doi.org/10.1007/978-3-662-48616-0_28
https://doi.org/10.1007/978-3-319-46031-4
https://github.com/docker/compose-on-kubernetes
https://github.com/docker/compose-on-kubernetes
https://projects.eclipse.org/projects/modeling.mmt.qvtd
https://projects.eclipse.org/projects/modeling.mmt.qvtd
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/978-3-642-45005-1_64
https://oam.dev

112 M. Wurster et al.

26. Panarello, A., Breitenbücher, U., Leymann, F., Puliafito, A., Zimmermann, M.:
Automating the deployment of multi-cloud applications in federated cloud envi-
ronments. In: Proceedings of the 10th EAI International Conference on Perfor-
mance Evaluation Methodologies and Tools, pp. 194–201. Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering (ICST) (2017)

27. Papazoglou, M.P., van den Heuvel, W.J.: Blueprinting the Cloud. IEEE Internet
Comput. 15(6), 74–79 (2011)

28. The Kubenetes Authors: Kompose (2020). https://kompose.io. Accessed 13 Feb
2020

29. Wettinger, J., Andrikopoulos, V., Leymann, F., Strauch, S.: Middleware-oriented
deployment automation for cloud applications. IEEE Trans. Cloud Comput. 6(4),
1054–1066 (2018)

30. Wurster, M., et al.: The EDMM modeling and transformation system. In: Service-
Oriented Computing – ICSOC 2019 Workshops. Springer, December 2019

31. Wurster, M., et al.: The essential deployment metamodel: a systematic review
of deployment automation technologies. SICS Softw.-Intensive Cyber-Phys. Syst.
(2019). https://doi.org/10.1007/s00450-019-00412-x

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://kompose.io
https://doi.org/10.1007/s00450-019-00412-x
http://creativecommons.org/licenses/by/4.0/

Blockchain-Based Healthcare Workflows
in Federated Hospital Clouds

Armando Ruggeri1, Maria Fazio1,2(B), Antonio Celesti1,3, and Massimo Villari1

1 MIFT Department, University of Messina, Messina, Italy
{armruggeri,mfazio,acelesti,mvillari}@unime.it

2 IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
maria.fazio@irccsme.it

3 INdAM - GNCS Group, Rome, Italy

Abstract. Nowadays, security is one of the biggest concerns against the
wide adoption of on-demand Cloud services. Specifically, one of the major
challenges in many application domains is the certification of exchanged
data. For these reasons, since the advent of bitcoin and smart contracts
respectively in 2009 and 2015, healthcare has been one of the major sec-
tors in which Blockchain has been studied. In this paper, by exploiting
the intrinsic security feature of the Blockchain technology, we propose a
Software as a Service (SaaS) that enables a hospital Cloud to establish a
federation with other ones in order to arrange a virtual healthcare team
including doctors coming from different federated hospitals that cooper-
ate in order to carry out a healthcare workflow. Experiments conducted
in a prototype implemented by means of the Ethereum platform show
that the overhead introduced by Blockchain is acceptable considering the
obvious gained advantages in terms of security.

Keywords: Blockchain · Smart contract · Healthcare · Cloud · SaaS ·
Hospital · Federation

1 Introduction

The demographic growth of the last century combined with the increased life
expectancy and shortage of specialized medical personnel in Europe [1,2] has
made the access to proper medical treatments one of the major concerns of the
last decade. The recent advancements brought by the Cloud computing paradigm
have been only partially taken in consideration by hospitals and more in general
medical centers so far, in spite of a considerable number of scientific initiatives in
eHealth [3]. In particular, a crucial aspect that have slowed the “Cloudisation”
of hospitals has regarded security of exchanged data. It is essential that shared
pieces of healthcare data are certified and their integrity guaranteed in order to
prevent that pieces of clinical information are either intentionally or accidentally
altered.

In recent years different solutions have been proposed to solve such an issue:
among these, the Blockchain technology, thanks to its intrinsic features of data
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 113–121, 2020.
https://doi.org/10.1007/978-3-030-44769-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-44769-4_9

114 A. Ruggeri et al.

non-repudiation and immutability, has aroused a great interest in both scientific
and industrial communities. Founded in 2009 as the technology behind Bitcoin
[4], it has completely revolutionized traditional encryption-based security sys-
tems, introducing a new approach able to apply hash-based encryption in which
information is saved on blocks and each block is linked to the previous one via a
hash coding. One of the major applications of Blockchain regards smart contract,
i.e., a computer protocol aimed at to digitally facilitate, verify, and enforce the
negotiation of an agreement between subjects without the need of a certification
third party.

Blockchain technologies have been increasingly recognized as a technology
able to address existing information access problems in different applications
domains including healthcare. In fact, it can potentially enhance the perception
of safety around medical operators improving access to healthcare services that
are guaranteed by a greater transparency, security and privacy, traceability and
efficiency.

In this paper, by exploiting the intrinsic security feature of the Blockchain
technology, we propose a clinical workflow that:

– enables to create a virtual healthcare team including doctors belonging to
different federated hospitals;

– enables to share patients’ electronic health records among virtual healthcare
team members preserving sensitive data;

– adopts smart contracts in order to make the transactions related to applied
therapies trackable and irreversible;

– enables security in electronic medical records when they are accessed by
patients and medical professionals;

– guarantees the authenticity of whole federated healthcare workflow.

In general, the proposed solution allows tracking the treatment of patients that
can take place in different federated hospitals from the hospitalization to the
dismissal, supporting the whole medical personnel in planning treatments. More-
over, we discuss a Software as a Service (SaaS) that allows to apply the workflow.

The remainder of this paper is organized as follows. A brief overview of most
recent initiatives about the adoption of Blockchain in healthcare is provided in
Sect. 2. Motivations are discussed in Sect. 3. The design of the SaaS is presented
in Sect. 4, whereas its implementation adopting Flak, MongoDB and Ethereum
is described in Sect. 5. Experiments demonstrating that the overhead introduced
by Blockchain is acceptable considering the obvious gained advantages in terms
of security are discussed in Sect. 6. In the end, conclusions and light to the future
are discussed in Sect. 7.

2 Related Work

In recent years numerous research studies have been conducted in healthcare
domain with particular attention to the application of the Blockchain technology
[5].

Blockchain-Based Healthcare Workflows in Federated Hospital Clouds 115

Blockchain can drastically improve the security of hospital information sys-
tems as discussed in many recent scientific works [6–9]. However, up to now, most
of scientific initiatives are either theoretical or at an early stage and it is not
always clear which protocols and frameworks should be used in order to carry out
system implementation that can be deployed in real healthcare environments.

Blockchain has been increasingly recognized as a tool able to address existing
open information access issues [10]. In fact, it is possible to improve access to
health services by using the Blockchain technology in order to achieve greater
transparency, security and privacy, traceability and efficiency. In this regard, a
solution adopting Blockchain with the purpose to guarantee authorized access to
the patients’ medical information is discussed in [11]. In particular, mechanisms
to preserve both patient’s identity and the integrity of his/her clinical history is
proposed.

Another application of Blockchain regards the supply chain in the phar-
maceutical sector and the development of measures against counterfeit drugs.
While the development of new drugs involves substantial costs related to stud-
ies in order to evaluate the safety and updating of the drug, the use of smart
contracts guarantees informed consent procedures and allows in certifying the
quality of data [12].

Differently from the above mentioned most recent scientific initiatives, this
paper describes a practical implementation of how Blockchain can be used to
improve medical analysis treatments empowering collaboration among a group
of federated hospitals.

3 Motivation

This paper aims at recommending new approaches able to harmonize health pro-
cedures with new technologies in order to guarantee patients’ safety and thera-
peutic certification, verifying that every doctor’s choice is immutably recorded,
with the purpose to guarantee and track that all hospital protocols have been
scrupulously followed. Furthermore, the proposed system was designed and
implemented in order support a virtual healthcare team including a selected
group of doctors in order to make a clear picture about the patient’s clinical
status especially in a critical condition. The anonymized patient’s health data
and clinical analyses are shared among doctors participating in the federation of
hospitals while the patient’s data are never shared.

Figure 1 describes a scenario where patient’s clinical data is shared across
participants to a federation of hospitals for cooperation and knowledge sharing,
and the data exchanged is certified on a private Blockchain where all participants
are known and trusted.

Specifically, the proposed healthcare workflow adopted in the proposed sys-
tem includes the following phases:

1. Hospitalization: patient reaches the hospital and personal details, date and
type of visit are recorded;

116 A. Ruggeri et al.

Fig. 1. Federation of hospitals: clinical data is shared across participants for coopera-
tion

2. Analysis: patient follows the procedures to ascertain the nature of the disease
(e.g., blood tests, clinical examinations, possible CT scans, RX laboratory
tests, etc) and the results of the analyzes are saved on a Cloud storage space
inside the hospital Cloud managed on a dedicated directory for the patient
identified by a visit identification code;

3. MD evaluation: doctor analyzes the results of clinical analysis and prepares
a report with the therapy to be followed;

4. Federated teleconference: a selected pool of doctors belonging to the hos-
pital federation is invited to participate to a virtual healthcare team in a
teleconference in order to clarify the patient’s clinical situation. The patient’s
health data and clinical analysis are shared with the other doctors belonging
to the virtual healthcare team; patient’s details are never shared;

5. Drug administration: the hospitalized patient is constantly monitored by
nurses who apply treatments based on therapeutic indications; each treatment
is recorded.

4 System Design

Once the virtual healthcare team has identified the disease, it writes a prescrip-
tion for the treatment indicating the disease itself to cure and a drug description
including dosage and mode of use. It is important to guarantee that only autho-
rized doctors are allowed to create a new prescription or to update an existing
one because a wrong diagnosis can lead to a worsening of clinical condition or
death and so it becomes mandatory to know who created a new electronic health
record.

The system was designed as a Software as a Service (SaaS) in order to store:
(i) patient’s electronic health records; (ii) treatments for specific diseases result-
ing from medical examinations. The objective of the whole system is to harmo-
nize health procedures by means of the following technologies:

Blockchain-Based Healthcare Workflows in Federated Hospital Clouds 117

– Blockchain engine: to use the features of a decentralized and distributed
certification system with the technology offered by the development and cod-
ing of smart contract;

– Cloud storage: to use an open-source and open-architecture file hosting
service for file sharing managed with authorizations to archive all the files
required to support the analysis of the nature of the disease such as blood
tests, CT scans and laboratory tests;

– NoSQL database: to exploit the potential of a document-oriented database
to store and manage patient data and diseases through tags for a fast and
efficient search and to store blockchain transaction hashes and links to files
stored in Cloud Storage.

5 Implementation

The SaaS was designed in order in order to apply the previously described health-
care workflow supporting a virtual healthcare team whose members are doctors
belonging to different federated hospitals. Figure 2 shows the main software com-
ponents used to implement the SaaS.

Fig. 2. SaaS software components.

A graphical web interface implemented with HTML5, CSS and JavaScript
serves as an entry point of the SaaS. All requests coming from patients and
doctors flow through such an interface and are elaborated by a server built in
Python3 leveraging Flask as Web Server Gateway Interface (WSGI) and Guni-
corn to handle multiple requests with a production-ready setup. All the compo-
nents are configured as Docker containers in order to take the advantages of the
virtualizaiton technology allowing service portability, resiliency and automatic
updates that are typical of a Cloud Infrastructure as a Service (IaaS).

The Python web server provides a front-end that allows retrieving all existing
patients’ information (such as personal details, disease and pharmaceutic codes,

118 A. Ruggeri et al.

links to documentation and Blockchain hash verification); adding new patients;
and submit new treatments specifying all the required pieces of information.
Specifically, a web page is dedicated to register a new patient, saving his/her
primary personal information, and a separate web page is dedicated to the regis-
tration of a new treatment. It is possible to select the medical examination date,
patient and doctor who does the registration to be chosen from the patients
already registered and available in the database.

Since patients’ sensitive data must be anonymized and health records and
treatments must be trackable and irreversible, related pieces of information
where stored combining a NoSQL DataBase Management System (DBMS) with
a Blockchain system. Therefore, all pieces of information are stored in the Mon-
goDB NoSQL DBMS and in the Ethereum private network through a smart
contract developed in solidity. It has been chosen to use Ethereum with a private
network installation considering what has been reported in Blockbench [13] high-
lighting the impossibility for Hyperledger Fabric, i.e., an alternative Blockchain
platform, to scale above 16 nodes, which results in an important limitation for
the scope of this scientific work which aims at creating a trusted and federated
network among multiple hospital Clouds, and considering that Ethereum is more
mature in terms of its code-base, user-base and developer community.

The smart contract accepts the input parameters such as anonymized patient
id and doctor id, disease and pharmaceutic codes and stores these pieces of
information in a simple data structure. The hash code resulting from the mining
of each transaction is stored in the MongoDB database and can be used for
verification using services like etherscan.io.

All the clinical documentation produced is uploaded in a local instance of
NextCloud storage using a folder per treatment which does not contain any
patient’s personal data rather than the patient’s anonymized identification num-
ber in order to be compliant with the General Data Protection Regulation
(GDPR). Every change in the files or content of the folder will be tracked making
it possible to keep a history of the documentation and its modifications.

This service is capable of detecting any modification occurred to files or folder
using a listener called External script. It is then possible to store the fingerprint
and timestamp of each modification in the database thus making it possible to
track the history of the treatment. This is important to guarantee the system
overall anti-tampering feature.

6 Performance Assessment

Experiments were focused on Blockchain mechanism of our SaaS implementation
in order to asses the performance of the certified treatment prescription system.
In particular, the system assessment has been conducted analysing the total
execution time required to perform a varying number of transactions, i.e., treat-
ment registrations through Ethereum in combination with a varying number of
accounts of doctors. The testbed was arranged considering a server with follow-
ing hardware/software configuration: Intel R© Xeon R© E3-12xx v2 @ 2.7GHz, 4
core CPU, 4 GB RAM running Ubuntu Server 18.04.

Blockchain-Based Healthcare Workflows in Federated Hospital Clouds 119

All analyses have been performed by sending transactions to the server vary-
ing the number of total and simultaneous requests. Specifically, each request
invokes a new treatment registration and an Ethereum transaction mining for
that. Experiments were conducted considering 100, 250 and 500 transactions
and 25, 50 and 100 accounts. Each test has been repeated 30 times considering
95% confidence intervals.

To simulate a real private instance of Ethereum Blockchain, all tests have
been performed using Ropsten Ethereum public test network, leveraging 300+
available nodes with a real server load status. It must be considered that
Ethereum Blockchain Ropsten environment is based on Proof of Work (PoW)
consensus protocol which makes difficult to obtain scalability and system speed.

Figure 3(a) describes a new treatment registration request without sending
transactions to Ethereum Blockchain. This demonstrates how the server scales as
the execution time is consistent for simultaneous requests (25, 50, 100) in spite of
the total number of requests. Figure 3(b) shows an expected degradation of the
system as compared to the requests made without Ethereum Blockchain mining
and to the total number of sent transactions. This is the worst-case scenario
based on the number of accounts as one account can only send one transaction
at a time due to the nonce preventing replay attacks.

(a) Test execution without Blockchain
mining.

(b) Test execution with Blockchain
mining.

Fig. 3. Total execution time variation.

7 Conclusion and Future Work

This project demonstrates how Blockchain can be used in the healthcare environ-
ment to improve hospital workflow guaranteeing the authenticity of stored data.
Experimental results highlight that the performance of the certified treatment
prescription system introduce an acceptable overhead in terms of response time
considering the obvious advantages introduced by the Blockchain technology.

Definitely, the Blockchain technology is destined to evolve in the near future
improving system capabilities and robustness, and public test instances with

120 A. Ruggeri et al.

different consensus protocols will be made available with benefits on performance
and scalability.

In future developments, this work can be extended integrating a comprehen-
sive healthcare scenario with different involved organizations, such as pharma-
ceutical companies registering in the Blockchain all the phases of drug production
until sealing of final package and shipment, Thus, when patient buys a prescribed
medicine it is possible to link the patient with the medicine box, which would
mean an important step towards the end of drugs’ falsification and an important
assurance for the end-user who can be identified in case a specific drug package
has been recalled.

Acknowledgment. This work has been partially supported by the TALISMAN Ital-
ian PON project and by the Italian Healthcare Ministry founded project Young
Researcher (under 40 years) entitled “Do Severe acquired brain injury patients ben-
efit from Telerehabilitation? A Cost-effectiveness analysis study” - GR-2016-02361306.

References

1. Hassenteufel, P., Schweyer, F.X., Gerlinger, T., Henkel, R., Lückenbach, C., Reiter,
R.: The role of professional groups in policy change: Physician’s organizations and
the issue of local medical provision shortages in France and Germany. European
Policy Analysis (2019)

2. Dubas-Jakóbczyk, K., Domaga�la, A., Mikos, M.: Impact of the doctor deficit on
hospital management in Poland: a mixed-method study. Int. J. Health Plann.
Manag. 34, 187–195 (2019)

3. Jha, A.K., et al.: How common are electronic health records in the United States?
A summary of the evidence. Health Aff. 25, W496–W507 (2006). PMID: 17035341

4. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009)
5. Griggs, K., Ossipova, O., Kohlios, C., Baccarini, A., Howson, E., Hayajneh, T.:

Healthcare blockchain system using smart contracts for secure automated remote
patient monitoring. J. Med. Syst. 42(7), 130 (2018)

6. Chakraborty, S., Aich, S., Kim, H.: A secure healthcare system design framework
using blockchain technology. In: 2019 21st International Conference on Advanced
Communication Technology (ICACT), pp. 260–264 (2019)

7. Dasaklis, T.K., Casino, F., Patsakis, C.: Blockchain meets smart health: towards
next generation healthcare services. In: 2018 9th International Conference on Infor-
mation, Intelligence, Systems and Applications (IISA), pp. 1–8 (2018)

8. Srivastava, G., Crichigno, J., Dhar, S.: A light and secure healthcare blockchain
for IoT medical devices. In: 2019 IEEE Canadian Conference of Electrical and
Computer Engineering (CCECE), pp. 1–5 (2019)

9. Hossein, K.M., Esmaeili, M.E., Dargahi, T., khonsari, A.: Blockchain-based
privacy-preserving healthcare architecture. In: 2019 IEEE Canadian Conference
of Electrical and Computer Engineering (CCECE), pp. 1–4 (2019)

10. Zhang, P., White, J., Schmidt, D., Lenz, G., Rosenbloom, S.: FHIRchain: applying
blockchain to securely and scalably share clinical data. Comput. Struct. Biotechnol.
J. 16, 267–278 (2018)

11. Ramani, V., Kumar, T., Bracken, A., Liyanage, M., Ylianttila, M.: Secure and
efficient data accessibility in blockchain based healthcare systems. In: 2018 IEEE
Global Communications Conference (GLOBECOM), pp. 206–212 (2018)

Blockchain-Based Healthcare Workflows in Federated Hospital Clouds 121

12. Razak, O.: Revolutionizing pharma – one blockchain use case at a time (2018)
13. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: BLOCKBENCH:

a framework for analyzing private blockchains. In: Proceedings of the 2017 ACM
International Conference on Management of Data, Association for Computing
Machinery, pp. 1085–1100 (2017)

Monitoring

Monitoring Behavioral Compliance
with Architectural Patterns Based

on Complex Event Processing

Christoph Krieger1(B), Uwe Breitenbücher1, Michael Falkenthal1,
Frank Leymann1, Vladimir Yussupov1, and Uwe Zdun2

1 Institute of Architecture of Application Systems, University of Stuttgart,
Stuttgart, Germany

{krieger,breitenbuecher,falkenthal,leymann,yussupov}@iaas.uni-stuttgart.de
2 Faculty of Computer Science, University of Vienna, Vienna, Austria

uwe.zdun@univie.ac.at

Abstract. Architectural patterns assist in the process of architectural
decision making as they capture architectural aspects of proven solu-
tions. In many cases, the chosen patterns have system-wide implications
on non-functional requirements such as availability, performance, and
resilience. Ensuring compliance with the selected patterns is of vital
importance to avoid architectural drift between the implementation and
its desired architecture. Most of the patterns not only capture struc-
tural but also significant behavioral architectural aspects that need to
be checked. In case all properties of the system are known before run-
time, static compliance checks of application code and configuration files
might be sufficient. However, in case aspects of the system dynamically
evolve, e.g., due to manual reconfiguration, compliance with the archi-
tectural patterns also needs to be monitored during runtime. In this
paper, we propose to link compliance rules to architectural patterns that
specify behavioral aspects of the patterns based on runtime events using
stream queries. These queries serve as input for a complex event pro-
cessing component to automatically monitor architecture compliance of
a running system. To validate the practical feasibility, we applied the
approach to a set of architectural patterns in the domain of distributed
systems and prototypically implemented a compliance monitor.

Keywords: Architecture compliance · Architectural patterns ·
Behavioral compliance monitoring · Complex event processing

1 Introduction

While designing complex software systems, various architectural decisions need
to be made by software architects and later implemented in code by software
developers. Architectural patterns can assist in the process of architectural deci-
sion making and documentation, as they capture structural and behavioral
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 125–140, 2020.
https://doi.org/10.1007/978-3-030-44769-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-44769-4_10

126 C. Krieger et al.

architectural aspects of proven solutions that are documented in a generic and
technology-independent way [9,22,23]. An example of an architectural pattern
in the domain of distributed systems is the Circuit Breaker pattern [13]. This
pattern describes how to avoid cascading failures in case of network or remote
services failures by wrapping remote function calls with a proxy that monitors
failures and reacts in a similar way as an electrical circuit breaker.

However, the correct realization of the architectural decisions is often not
ensured during the entire life-cycle of a software system. Reasons for this are
inadequate implementation by application developers, non-compliant deploy-
ment of application components, and also operator errors during manual con-
figuration of the running system. As a consequence, the software system drifts
apart from the original design specification, which is commonly referred to as
architectural drift [16]. This is particularly problematic in the case of the chosen
architectural patterns as they are concerned with essential aspects of the soft-
ware architecture that often have system-wide implications on quality aspects
such as availability, performance, and resilience. For example, a non-compliant
realization of the aforementioned Circuit Breaker pattern can lead to cascading
failures of services which harm the reliability of the overall system. Thus, archi-
tectural compliance checks are needed to ensure the correct implementation,
deployment, and configuration of architectural aspects described by the chosen
patterns. In case behavioral aspects of the system dynamically evolve during
runtime, architectural compliance can not be guaranteed by simply checking
the application code and configuration files during design-time. For example,
operator errors during configuration of a running system may cause behavioral
deviation from the intended architecture. In such cases, it is of vital importance
to not just check architectural compliance during design-time but also monitor
the compliance during run-time.

Therefore, the research question of this work is: “How can we automati-
cally monitor a system’s architectural compliance based on behavioral aspects
described in architectural patterns?”. To tackle this issue, we present an app-
roach for architectural compliance monitoring based on complex event process-
ing. We propose to specify behavioral aspects described by architectural patterns
as so-called Pattern Compliance Rules that serve as input for an architectural
compliance monitoring system to monitor the compliance of an application with
the specified patterns. Thereby, we show how behavioral compliance aspects
described in architectural patterns can be specified based on events using stream
query languages and how the runtime events can be automatically monitored
while the system executes. Moreover, to validate the practical feasibility of the
presented approach, we applied the concept to a set of architectural patterns
for designing distributed systems and prototypically implemented a compliance
monitor using Esper.

Monitoring Behavioral Compliance with Architectural Patterns 127

2 Fundamentals and Motivation

In this section, we describe fundamentals required for understanding this paper.
Moreover, we introduce a motivating scenario that is used throughout the paper
to explain the presented approach.

2.1 Patterns and Design Decisions

Patterns describe proven solutions for problems that frequently reoccur in a
certain context [2]. Patterns are documented in an abstract way and typically
follow a well-defined structure comprising a pattern’s name, a problem descrip-
tion, details about the context in which they can be applied, and a proven solu-
tion. In the domain of software architecture, various pattern languages exist that
describe proven solutions for designing application architectures. For example,
the Circuit Breaker pattern [13] tackles the problem of cascading failures in
distributed systems when networks or remote services fail. Here, function calls
to remote services are wrapped with a proxy that monitors failures and reacts
similarly as electrical circuit breakers. In case a given threshold of consecutive
failures is exceeded, the circuit breaker trips and for a specified timeout period
all attempts to invoke the remote service will fail immediately. Another archi-
tecture pattern useful for distributed applications is the Watchdog pattern [7]
that describes how failing application components can be detected and replaced
automatically to ensure high availability. Thus, using such patterns significantly
helps in the architectural decision making as problems at hand can be solved
by using proven solutions. Moreover, as patterns provide developers with infor-
mation about the rationale and consequences of a solution, they can be used to
assist the documentation of architectural design decisions (ADD) [21].

2.2 Motivating Scenario

In this section, we introduce a motivating scenario that is used throughout the
paper to motivate and explain our approach. When designing microservice-based
applications, development teams are faced with the complexity of a distributed
system and need to make various design decisions to build fault tolerant ser-
vices. Patterns provide an effective way to help making and documenting such
important design decisions as they capture architectural aspects of proven solu-
tions together with their rationale and consequences. The following are com-
mon pattern-based design decisions made in practice to design highly available
microservice-based applications (see e.g. [8]):

ADD01: To prevent the application from excessive load, caused by malicious or
misconfigured clients, the Rate Limiting pattern [18] needs to be implemented
that enforces a request limit of four requests per second for each client.

ADD02: To prevent cascading failures, the Circuit Breaker pattern [13] needs
to be implemented for all remote function calls. A circuit breaker needs to
trip in case three consecutive calls of the remote function fail. The specified
timeout for an open circuit breaker is five seconds.

128 C. Krieger et al.

ADD03: To ensure sufficient availability, the Watchdog pattern [7] should be
applied to detect and replace failed application component instances.

The implementation and configuration of the documented architectural pat-
terns is done manually by software developers which is error-prone, meaning
that parts of the patterns may be misconceived, accidentally overlooked, or even
intentionally ignored due to time pressure. Such configuration and implemen-
tation errors can have an implication on the overall resilience and availability
of the system. For example, behavioral non-compliance of circuit breakers, e.g.,
to the specified threshold of consecutive failures defined in the aforementioned
ADD, can lead to cascading failures and eventually jeopardize the whole appli-
cation. Just as critical for ensuring availability of the application is the correct
implementation of the Watchdog pattern. A watchdog is often implemented by
simply configuring an existing monitoring component. As an example, in case of
virtual machines running on Amazon EC2, an auto scaling group can be con-
figured that specifies a minimum number of virtual machine instances in that
group. By replacing failed component instances, Amazon’s EC2 Auto Scaling
ensures that the group never goes below the specified minimum. However, creat-
ing such configurations or reconfiguring existing ones can become a complex and
error-prone task which often results in non-compliant system behavior [14]. Thus,
architecture compliance checks are needed to ensure the correct implementation,
deployment, and configuration of a system’s architectural aspects [20]. In case
all application components, their relationships, and architectural decisions to be
implemented are known before runtime of the application, checking compliance
using static analysis might be enough. However, in case behavioral aspects of
the system can be dynamically reconfigured during runtime the compliance can
no longer be guaranteed by static compliance checks alone. For such applica-
tions, it is of vital importance to not just check architectural compliance during
design-time but also monitor the compliance during run-time. In this paper, we
propose to specify behavioral aspect of architectural patterns based on run-time
events which can be used to automatically monitor architecture compliance.

2.3 Complex Event Processing

Complex Event Processing (CEP) is a set of techniques and tools for analyz-
ing and controlling complex series of interrelated events, e.g., produced by dis-
tributed systems [11]. This technique can be used to monitor behavioral archi-
tecture compliance aspects of a system based on runtime events. Stream query
languages, are used to configure CEP engines to observe live data streams of
events and aggregate so-called low-level events into complex (high-level) events
to enable discovery of event patterns having semantic significance in a specific
context [12]. For example, a typical low-level event is a network event, such as an
HTTP request sent by a service or the response to that request. While a single
request provides no significant behavioral information, multiple ones observed
in particular order and time can provide more insights into the system behav-
ior and help to recognize non-compliant behavior. One frequently used Stream

Monitoring Behavioral Compliance with Architectural Patterns 129

Query Language is Esper Event Processing Language (EPL) which is included as
a part of Esper’s open source CEP engine [4]. Statements in Esper EPL have an
SQL-like syntax containing standard query clauses such as SELECT , FROM,
and WHERE. In this context, event streams represent data sources, whereas
events serve as the basic unit of data. Moreover, Esper EPL provides multiple
event pattern operators and time windows to facilitate querying of event data.
For example, Listing 1.1 shows an EPL statement that can be used to analyze
network events emitted by a running application to detect HTTP responses that
exceed a response time of 1 second. The statement demonstrates the idea of
emitting a high-level ResponseTimeout event in case a HttpRequest event is not
followed by a corresponding HttpResponse event within a time window of 1 sec-
ond. For a complete overview of the Esper EPL, we refer to the documentation
provided by Esper [4].

1 insert into ResponseTimeout
2 from pattern [every a=HttpRequest −> not b=HttpResponse(a.sender = b.receiver)
3 and timer:within(1 sec)];

Listing 1.1. An example of an EPL statement for analyzing a stream of HTTP events.

3 An Approach for Monitoring Behavioral Compliance
with Architectural Patterns

The main idea of our approach is to introduce so called Pattern Compliance
Rules which serve as configuration code for monitoring behavioral compliance
with architectural patterns. A Pattern Compliance Rule (PCR) contains a set
of stream query language statements that specify behavioral aspects of an archi-
tectural pattern based on runtime events which can be automatically monitored
while a system executes. The overall concept of our approach is shown in Fig. 1.
There, Pattern Compliance Rules are managed in a Pattern Compliance Rule
Repository. Similar to the patterns itself, the PCRs managed in the repository are
application-agnostic which has the advantage that existing PCRs can be reused,
hence reducing the required effort for the creation of compliance monitoring code.
In addition, Instrumentation Templates are associated with each Pattern Com-
pliance Rule providing program or configuration code that can be used for the
instrumentation of a monitored application to emit the necessary runtime events.
Thereby, each Instrumentation Template targets a specific technology, e.g., pro-
gramming language and instrumentation mechanism. Based on the architectural
patterns that should be monitored, a set of corresponding Pattern Compliance
Rules are selected from the repository and bound to application-specific details
of architectural design decisions. The resulting application-specific PCRs serve as
configuration code for a complex event processing engine of a specialized software
component, called a Pattern Compliance Monitor. Moreover, the Instrumenta-
tion Templates associated with the chosen PCRs can be used as a basis for the
instrumentation of the monitored application to create the necessary runtime

130 C. Krieger et al.

Fig. 1. Conceptual overview of the approach for monitoring behavioral compliance
with architectural patterns.

events. Each event represents the occurrence of an activity within the moni-
tored application. For example, an event may represent a request sent between
application components and contain information about the source and target
of the request. While the application executes, the runtime events are continu-
ously sent to the Pattern Compliance Monitor. There, the stream of events is
observed to monitor compliance with the expected behavior described by the
Pattern Compliance Rules.

3.1 Method

Figure 2 depicts a step-wise method for the configuration of the monitoring envi-
ronment. The method consists of five steps, namely (i) identifying architectural
patterns to be implemented in an application, (ii) selecting the correspond-
ing Pattern Compliance Rules from the Pattern Compliance Rule Repository,
(iii) optionally creating Pattern Compliance Rules that are not already contained
in the repository, (iv) binding the selected PCRs to application-specific details,
and (v) using the resulting application-specific PCRs as configuration code for
behavioral architecture compliance monitoring and instrument the monitored
application to emit the necessary runtime events. In the following, we describe
every step in more detail and exemplify the method based on the Rate Limiting
pattern described in the motivating scenario.

Step 1: Identify Patterns. In the first step, the architectural documentation,
which is created during the system design phase, is analysed to identify a set
of architectural patterns that need to be realized by the implementation and
deployment of the application. For example, in case of the motivating scenario
presented in Sect. 2.2, the three architectural patterns Rate Limiting, Circuit
Breaker, and Watchdog can be identified by analysing the documentation of
ADD01, ADD02, and ADD03. Other data sources potentially containing pattern
descriptions could be design diagrams or other formats of architecture documen-
tation. The resulting set of identified patterns is then passed as an input to the
next step.

Monitoring Behavioral Compliance with Architectural Patterns 131

Identify
Patterns

Create
PCR

Architectural
Patterns

Architectural
Design Decisions

1

Application-agnostic
PCRs

Application-specific PCRs

optional

Select
PCRs

2
ADD P

3
Bind
PCRs

4
!

!
Configure Pattern

Compliance Monitor

5a

Instrument Application

5b

Instrumentation Templates
</>

Fig. 2. An overview of the step-wise method for the configuration of the monitoring
environment.

Steps 2 and 3: Select or Create PCRs. In the second step, for each identi-
fied pattern a corresponding PCR is chosen from the PCR Repository as shown
in Fig. 2. The PCRs managed in the repository are so-called application-agnostic
PCRs, meaning that instead of application-specific implementation details, they
contain placeholders in the form of variables. This has the main advantage that
PCRs managed in the repository can be reused, hence reducing the required
effort for the creation of monitoring code. Optionally, in case a corresponding
PCR for one of the identified architectural patterns does not already exist, a new
one is created and added to the repository. For example, in the case of the Rate
Limiting pattern, an application-agnostic Rate-Limiting PCR is selected or cre-
ated that describes the expected behavior of application components implement-
ing this pattern based on runtime events. The pattern states that the number
of requests that can be made by a client should be restricted to a defined limit.
Listing 1.2 depicts an exemplary Rate-Limiting PCR described using the Esper
EPL. There, variables are marked in bold. The PCR describes an event pattern
of HTTP requests that violates the behavior described by the Rate Limiting
pattern. There, each request made by a client is represented by an HttpRe-
quest event containing the source the request originates from, e.g. the client’s
IP address, and the responseCode returned by the server. The EPL statement
(line 3–7) observes the stream of HttpRequest events per client and selects the
aggregation of events as a RateLimitViolation in case the number of accepted
HTTP requests observed in a given time interval exceeds a predefined limit. The
request limit and the time interval for rate-limiting are defined as variables and
can be bound to concrete values based on application-specific details.

1 c r e a t e schema HttpRequest (source , r e sponseCode)
2
3 @Name(’ Rate L im i t i n g V i o l a t i o n ’)
4 i n s e r t i n t o R a t e L im i tV i o l a t i o n
5 s e l e c t count (∗) from HttpRequest#t ime ba t ch (i n t e r v a l s e c)
6 where re sponseCode = ’200 ’
7 group by sou r c e hav ing count (∗) > requestL imi t ;

Listing 1.2. An exemplary application-agnostic PCR for the Rate Limiting pattern
defined using the Esper EPL.

132 C. Krieger et al.

Step 4: Bind PCRs. In the fourth step, the application-agnostic PCRs are
bound to application-specific details to (i) align them with application-specific
design decisions and (ii) to serve as executable configuration code for the Pattern
Compliance Monitor shown in Fig. 2. This means all variables, contained in a
rule, are replaced with application-specific data, e.g., documented in architec-
tural design decisions. For example, to align the Rate Limiting PCR with the
architectural design decision ADD01 documented in the motivating scenario, the
requestLimit is defined as four requests and the interval is set to one second.

Step 5: Configure Monitoring Environment. In step 5, the set of previ-
ously created application-specific PCRs are used as configuration code for the
Pattern Compliance Monitor as shown in Fig. 1. Also, depending on the type
of events defined in the selected PCRs, the components of the monitored appli-
cation need to be instrumented to emit the necessary runtime events into the
stream observed by the Pattern Compliance Monitor. For example, in case of
the Rate Limiting PCR, each HTTP request needs to be reported as an event
that comprise an identifier of the client that sent the request, e.g., an IP address
or access token and the response code of the request. The instrumentation can
be achieved by different mechanisms depending on technology specific details
of the monitored application. Thereby, Instrumentation Templates linked to the
selected PCRs can be used to reduce the instrumentation effort. For example, to
instrument a Java application using Aspect-oriented Programming [10], a tem-
plate can be used that implements the functionality for emitting a certain event
type in an aspect written in Java’s aspect-oriented extension AspectJ. Aspects
can be easily added to the existing code of the to be monitored application
without modifying the application code itself. As another example, in case a
service mesh infrastructure layer is used, a template can be used that provides
configuration code for the service mesh to create a log entry for each request
sent between application components. The logs can then be aggregated and sent
to the Pattern Compliance Monitor.

3.2 System Architecture

The system architecture of the Pattern Compliance Monitor is depicted in Fig. 3.
A Web UI provides access to the functionality of the Pattern Compliance Moni-
tor. The business logic layer comprises the five major components CEP Engine,
Violation Subscriber, Event Handler, PCR Manager, and Instrumentation Tem-
plate Manager. The CEP Engine implements a complex event processing engine
that can be configured based on Stream Query Language statements to analyze
a series of events. The PCR Manager is responsible for retrieving application-
agnostic Pattern Compliance Rules stored in the Pattern Compliance Rule repos-
itory, binding them to application-specific details as described in Sect. 3.1, and
configuring the CEP Engine using the resulting application-specific Pattern
Compliance Rules. The Event Handler provides the functionality for consum-
ing events from a given destination, e.g., a message queue, and adding them

Monitoring Behavioral Compliance with Architectural Patterns 133

Violation Subscriber

Business Logic Layer

Presentation Layer
Web UI

CEP Engine

PCR Manager

Ev
en

t H
an

dl
er

Instrumentation
Template Manager

Pattern Compliance Rule
Repository

Instrumentation Template
Repository

Resource Layer

Fig. 3. The system architecture of the Pattern Compliance Monitor

to the event stream analyzed by the CEP Engine. The Violation Subscriber
subscribes to the Pattern Compliance Rules used as configuration for the CEP
engine and receives updates about compliance violations detected by the engine.
The Instrumentation Template Manager is used to manage Instrumentation
Templates stored in the Instrumentation Template Repository and to retrieve
a set of Instrumentation Templates based on the chosen Pattern Compliance
Rules and technology-specific details of the application to be monitored.

4 Applying the Approach to the Motivating Scenario

In this section, the presented approach is applied to the motivating scenario
described in Sect. 2.2. We will discuss how the behavioral aspects contained in
the textual description of the patterns Circuit Breaker and Watchdog can be
specified as application-agnostic PCRs using EPL statements that serve as con-
figuration code for architecture compliance monitoring. We point out that the
application-agnostic PCR for the Rate Limiting pattern is described in Sect. 3.1.
Furthermore, we will discuss how we validated our approach of architecture
compliance monitoring using the created Pattern Compliance Rules. We describe
how we prototypically implemented the Pattern Compliance Monitor and instru-
mented a microservice-based application to be monitored to emit the necessary
runtime events.

4.1 Circuit Breaker

The Circuit Breaker is a common architectural pattern used in microservice-
based applications. It describes how to avoid cascading failures by wrapping
functions that call remote services with a proxy that monitors failures and reacts
similarly to an electrical circuit. The pattern states that when the number of
consecutive failures crosses a given threshold the circuit breaker needs to trip
and for the duration of a timeout period all attempts to invoke the function will
fail immediately [13]. Conversely, the Circuit Breaker pattern is violated in case,
even though the number of consecutive failed attempts to call a remote service is

134 C. Krieger et al.

exceeded, the defined timeout is ignored and calls to the remote service are still
executed. An application-agnostic Circuit Breaker PCR that describes this vio-
lation using EPL statements is shown in Listing 1.3. There, each call to a remote
service is represented by an HttpRequest event containing the event properties
source, which identifies the wrapped function the request originates from, and
responseCode, which provides the returned response code of the request (line 1).
In our example, we distinguish between the response code 200, which means that
the request has succeeded and response code 503, which means that the request
failed due to unavailability of the remote service. First, to monitor the behavior
of each circuit breaker in an application separately, the HttpRequest events in
the observed event stream are partitioned based on their source (line 3). Refer-
ring to this partition, a complex event called FailureRateExcessEvent is emit-
ted if there is a consecutive sequence of failed HTTP requests that exceed the
threshold defined by the variable failureThreshold (line 5–7). In other words,
the event is emitted in case the defined threshold of consecutive failures for
a particular remote function call is exceeded. Finally, a violation statement is
defined indicating a non-compliant behavior of a circuit breaker (line 9–12). The
violation is emitted if a FailureRateExcessEvent is followed by a HttpRequest
event within the period defined by the variable timeout . This means that even
though the number of consecutive failed attempts to call a remote service is
exceeded, the defined timeout is ignored and calls to the remote service are still
executed. Hence, the behavior described by the Circuit Breaker pattern is vio-
lated. The concrete timeout and failure threshold for the rule can be set based on
application-specific decisions. For example, in the case of the architectural design
decision (ADD02), described in the motivating scenario, the failure threshold is
set to three and the timeout is specified as five seconds.

1 create schema HttpRequest(source, responseCode)
2
3 create context SegmentedByCB partition by source from HttpRequest;
4
5 context SegmentedByCB insert into FailureRateExcessEvent
6 select ∗ from HttpRequest#length(failureThreshold + 1)
7 where statusCode = ”503” having count(∗) > failureThreshold;
8
9 @Name(’Timeout Violation’)

10 select b.id as circuitBreakerId from pattern
11 [every (a = FailureRateExcessEvent −> b=HttpRequest(id = a.id)
12 where timer:within(timeout msec))];

Listing 1.3. An exemplary application-agnostic PCR for the Circuit Breaker pattern.

4.2 Watchdog

The Watchdog pattern describes a component that detects and replaces failing
application component instances automatically to ensure sufficient availability
of the application [7]. The pattern states that failing application component

Monitoring Behavioral Compliance with Architectural Patterns 135

instances have to be replaced in case of failures. One possible information source
for detecting failures are periodic heartbeats sent by the instances that verify
proper functioning. Listing 1.4 depicts an application-agnostic Watchdog PCR
that analyzes the periodic heartbeats sent by application components to monitor
if failing application components are detected and replaced. Each Heartbeat sent
by an application component is represented by a Heartbeat event, containing the
event properties id, which identifies the running instance of an application com-
ponent that sent the heartbeat, and groupId, which defines a logical grouping of
running instances to identify replicas of a component instance (line 1). The sec-
ond statement (line 3–4) defines an InstanceCount event to count the amount of
uniquely identifiable running instances for a given replica group, i.e., the current
number of replicas of a component instance. To filter out terminated instances,
the statement only counts events that are emitted less than five seconds ago.
The next definition statement (6–7) emits a DecreaseCountEvent if there is a
sequence of two InstanceCount events where the first event contains a higher
number as the second event. In other words, every time the amount of running
instances in a replica group is decreased, a DecreaseCountEvent is emitted. Sim-
ilar, an IncreaseCountEvent is defined which is emitted every time the amount
of running instances is increased (line 9–10). Finally, a violation statement is
defined (line 12–14), emitting an event that indicates a non-compliant behavior
of the Watchdog component. This event is emitted if a DecreaseCountEvent is
not followed by an IncreaseCountEvent within a given time threshold, i.e., failed
component instances are not replaced within a certain time. The variables moni-
toredGroupId and timeThreshold allow customization of the statements and can
be defined based on application-specific data, e.g., contained in architectural
design decisions.

1 create schema Heartbeat(id, groupId)
2
3 insert into InstanceCount select count(∗) as number
4 from Heartbeat(groupId = monitoredGroupId).std:unique(id)#time batch(5 sec);
5
6 insert into DecreaseCountEvent select a.number as number
7 from pattern [every a=InstanceCount −> b=InstanceCount(a.number > b.number)];
8
9 insert into IncreaseCountEvent select a.number as number

10 from pattern [every a=InstanceCount −> b=InstanceCount(a.number < b.number)];
11
12 @Name(’Watchdog Violation’)
13 select ∗ from pattern [every DecreaseCountEvent −>

14 not IncreaseCountEvent and timer:interval(timeThreshold msec)];

Listing 1.4. An exemplary application-agnostic PCR for the Watchdog pattern.

4.3 Prototypical Implementation

For the validation of our approach, we prototypically implemented the system
architecture of the Pattern Compliance Monitor described in Sect. 3.2 using Java

136 C. Krieger et al.

and Esper1. We used the message broker software RabbitMQ2 as a messaging
layer. The application to be monitored can send events as messages to the broker.

The Event Handler component of the Pattern Compliance Monitor listens
for new messages sent to the broker and adds them to the event stream observed
by the CEP Engine. For the test setup, we have created Pattern Compliance
Rules for the three patterns Rate Limiting, Watchdog, and Circuit Breaker as
described in Sects. 3 and 4. We have evaluated the feasibility of architecture com-
pliance monitoring using the created Pattern Compliance Rules based on both,
automated unit tests simulating a synthetic data set of events and a manual test
based on a prototypical implementation of a microservice application using Java.
We used Java’s aspect-oriented extension AspectJ for realizing unified logging
of run-time events without modifying the application code itself. We created
aspects for logging the run-time events described by the Pattern Compliance
Rules, which were then woven into the application code. Advices in the aspects
implemented the logging functionality and pointcuts associated with the advices
defined the execution points at which the they should run. For example, Listing
1.5 shows an excerpt of the aspect that implements unified logging of HTTP
requests as events. The aspect defines an @AfterThrowing advice that generates
a log entry for a failed HTTP request in case a method of the application’s
REST client does not complete normally and an HttpStatusCodeException is
thrown. Similarly, an @AfterReturning advice was implemented in the aspect
that generates a log entry for each succeeded HTTP request.

1 @AfterThrowing(pointcut = ”execution(restclient.∗.∗(..))”, throwing = ”exception”)
2 void after(HttpStatusCodeException exception) throws Throwable {
3 generateHttpRequestEvent(exception);
4 }
Listing 1.5. Excerpt of the Aspect implemented to provide unified logging of HTTP
requests.

We used Logback as a logging framework and added a configuration for pushing
all logs necessary for monitoring to the RabbitMQ message broker. For the
deployment, we packaged each application component as a docker3 container
image. Docker Swarm was used to deploy the application as a multi-container
docker application and scale services of the application during runtime. During
runtime of the application we caused compliance violations by manually changing
the behavioral aspects of the application that are concerned with the realization
of architectural aspects described by the aforementioned patterns.

5 Related Work

Different works are concerned with behavioral compliance checking or moni-
toring of software systems. Mulo et al. [12] propose a compliance monitoring
1 https://github.com/ckrieger/ADDComplianceChecking.
2 https://www.rabbitmq.com/.
3 https://www.docker.com/.

https://github.com/ckrieger/ADDComplianceChecking
https://www.rabbitmq.com/
https://www.docker.com/

Monitoring Behavioral Compliance with Architectural Patterns 137

approach for verifying that business processes adhere to specified compliance
controls. They provide a DSL that can be used to define compliance monitoring
directives based on business activities and translate them into an event-based
sequence that serve as compliance monitoring code. Similar to our work, com-
plex event processing is used to implement the approach. However, their work
focus on compliance concerns in the context of laws and regulations, whereas
our work is concerned with checking behavioral compliance with architectural
patterns. Ackermann et al. [1] compare UML sequence diagrams, which describe
the intended interaction of components in a software system, against the actual
behavior implemented in the system to construct a behavioral reflexion model
that shows potential drift between the desired behavior of a system and the
actual implementation. In contrast to ours, their work does not focus on con-
straints described by architectural patterns. Wendehals et al. [19] present an
approach to recognize behavioral aspects of object-oriented design patterns in
legacy systems by instrumenting relevant method calls and monitoring them at
runtime. In contrast to our work, they use finite automata to describe behavioral
aspects of the patterns. Moreover, their work focus on the detection of design
patterns in object-oriented software, whereas, our work focus on architectural
patterns that are relevant in the domain of distributed cloud applications. Bre-
itenbücher [3] proposes the formalization of management patterns, e.g., patterns
for the management of cloud applications, to allow their automated execution
for individual applications. In contrast to ours, this work is not concerned with
automated compliance monitoring but with the automated execution of the man-
agement steps described in the patterns. Saatkamp et al. [17] propose to formal-
ize the knowledge contained in architecture and design patterns to automatically
detect problems in restructured topology-based deployment models. The formal-
ization and automated detection are based on the logic programming language
Prolog. This approach is concerned with structural problem detection during
design time of deployment models. In contrast, our work monitors behavioral
compliance during the runtime of an application. Fahland et al. [5] provide a
formalization of Enterprise Integration Patterns based on Coloured Petri Nets.
Similar work is presented by Ritter et al. [15]. They propose a new formalism
called timed db-nets to formally describe Enterprise Integration Patterns. Both
works are exclusively concerned with the formalization of Enterprise Integration
Patterns, whereas our work describes a general approach to define behavioral
directives described in architectural patterns. Related in the broader sense is
the work by Falkenthal et al. [6]. They introduce the concept of Solution Imple-
mentations as concrete implementations of patterns. Selection Criteria added
to the relations between Solution Implementations and patterns allow to deter-
mine the most appropriate implementation for a specific use case. The concept
of Solution Implementations can be used to provide a set of reusable compliant
pattern implementations.

138 C. Krieger et al.

6 Conclusion and Future Work

Monitoring the system for architectural compliance helps to quickly detect incon-
sistencies between the intended behavior and its actual implementation. In this
paper, we proposed to apply behavioral directives described by architectural
patterns as input for architecture compliance monitoring of an application. For
this, we presented (1) how stream query languages can be used to specify the
intended behavior described in architectural patterns using runtime events, (2)
how the resulting rules can be transformed into application-specific, machine-
processable instructions, (3) and how a system can be automatically monitored
for behavioral compliance violations using such rules. We applied the presented
rule configuration approach to the Rate Limiting, Circuit Breaker, and Watch-
dog pattern. Further, for validating the feasibility of our approach, we proto-
typically implemented a Pattern Compliance Monitor based on Esper’s complex
event processing engine. The presented approach is not limited to the discussed
patterns and can be extended to monitor compliance with other architectural
patterns. However, one possible limitation to this is that some architectural pat-
terns might comprise insufficient behavior or the described behavioral directives
cannot be sufficiently expressed using stream query languages. In future work,
we plan to investigate different pattern languages to identify suitable architec-
tural patterns for extending the presented approach. Another limitation is that
the approach presumes knowledge about stream query languages, e.g., the Esper
EPL. Translating the intended behavior described in patterns into EPL state-
ments can become a complex and non-trivial task. It is left for future work to
ease this process, e.g., by developing a domain-specific language and tool support
for the creation of Pattern Compliance Rules.

Acknowledgments. This work was partially funded by the DFG project ADDCom-
pliance (636503), the European Union’s Horizon 2020 research and innovation project
RADON (825040), FWF (Austrian Science Fund) project ADDCompliance: I 2885-
N33, and FFG (Austrian Research Promotion Agency) project DECO, no. 846707.

References

1. Ackermann, C., et al.: Towards behavioral reflexion models. In: Software Reliability
Engineering, ISSRE 2009, pp. 175–184. IEEE, November 2009

2. Alexander, C., et al.: A Pattern Language: Towns, Buildings, Construction. Oxford
University Press, Oxford (1977)

3. Breitenbücher, U.: Eine musterbasierte Methode zur Automatisierung des Anwen-
dungsmanagements. Dissertation, Universität Stuttgart, Fakultät Informatik,
Elektrotechnik und Informationstechnik (2016)

4. EsperTech: Esper (2019). http://www.espertech.com/esper/
5. Fahland, D., Gierds, C.: Analyzing and completing middleware designs for enter-

prise integration using coloured petri nets. In: Salinesi, C., Norrie, M.C., Pastor,
Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 400–416. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38709-8 26

http://www.espertech.com/esper/
https://doi.org/10.1007/978-3-642-38709-8_26

Monitoring Behavioral Compliance with Architectural Patterns 139

6. Falkenthal, M., et al.: From pattern languages to solution implementations. In:
Proceedings of the 6th International Conferences on Pervasive Patterns and Appli-
cations (PATTERNS 2014), pp. 12–21. Xpert Publishing Services, May 2014

7. Fehling, C., et al.: Cloud Computing Patterns: Fundamentals to Design, Build,
and Manage Cloud Applications. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-7091-1568-8

8. Hackernoon: Designing a microservices architecture for failure (2017). hackernoon.
com/designing-a-microservices-architecture-for-failure-a57f34ded646

9. Harrison, N., et al.: Using patterns to capture architectural decisions. Software
24(4), 38–45 (2007)

10. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

11. Luckham, D.: The power of events: an introduction to complex event processing
in distributed enterprise systems. In: Bassiliades, N., Governatori, G., Paschke, A.
(eds.) RuleML 2008. LNCS, vol. 5321, p. 3. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88808-6 2

12. Mulo, E., et al.: Domain-specific language for event-based compliance monitoring in
process-driven SOAs. SOCA 7(1), 59–73 (2013). https://doi.org/10.1007/s11761-
012-0121-3

13. Nygard, M.T.: Release It!: Design and Deploy Production-ready Software. Prag-
matic Bookshelf, Raleigh (2007)

14. Oppenheimer, D.: The importance of understanding distributed system configu-
ration. In: Proceedings of the 2003 Conference on Human Factors in Computer
Systems Workshop. Citeseer (2003)

15. Ritter, D., et al.: Formalizing application integration patterns. In: 2018 IEEE 22nd
International Enterprise Distributed Object Computing Conference (EDOC), pp.
11–20. IEEE (2018)

16. Rosik, J., et al.: Assessing architectural drift in commercial software development:
a case study. Softw. Pract. Exp. 41(1), 63–86 (2011)

17. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: An approach to auto-
matically detect problems in restructured deployment models based on formalizing
architecture and design patterns. SICS Softw.-Intensiv. Cyber-Phys. Syst. 34, 85–
97 (2019). https://doi.org/10.1007/s00450-019-00397-7

18. Stocker, M., et al.: Interface quality patterns - communicating and improving the
quality of microservices APIs. In: 23rd European Conference on Pattern Languages
of Programs 2018, July 2018

19. Wendehals, L., Orso, A.: Recognizing behavioral patterns at runtime using finite
automata. In: Proceedings of the 2006 International Workshop on Dynamic Sys-
tems Analysis, pp. 33–40. ACM, May 2006

20. Zdun, U., Navarro, E., Leymann, F.: Ensuring and assessing architecture confor-
mance to microservice decomposition patterns. In: Maximilien, M., Vallecillo, A.,
Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 411–429. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 29

21. Zimmermann, O., et al.: The role of architectural decisions in model-driven service-
oriented architecture construction. In: Proceedings of the OOPSLA 2006 Workshop
on Best Practices and Methodologies in Service-Oriented Architectures. Unipub
(2006)

https://doi.org/10.1007/978-3-7091-1568-8
https://doi.org/10.1007/978-3-7091-1568-8
https://hackernoon.com/designing-a-microservices-architecture-for-failure-a57f34ded646
https://hackernoon.com/designing-a-microservices-architecture-for-failure-a57f34ded646
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/978-3-540-88808-6_2
https://doi.org/10.1007/978-3-540-88808-6_2
https://doi.org/10.1007/s11761-012-0121-3
https://doi.org/10.1007/s11761-012-0121-3
https://doi.org/10.1007/s00450-019-00397-7
https://doi.org/10.1007/978-3-319-69035-3_29

140 C. Krieger et al.

22. Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., Schuster, N.: Reusable
architectural decision models for enterprise application development. In: Overhage,
S., Szyperski, C.A., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880,
pp. 15–32. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77619-
2 2

23. Zimmermann, O., et al.: Combining pattern languages and reusable architectural
decision models into a comprehensive and comprehensible design method. In: Sev-
enth Working IEEE/IFIP Conference on Software Architecture (WICSA 2008),
pp. 157–166. IEEE, February 2008

https://doi.org/10.1007/978-3-540-77619-2_2
https://doi.org/10.1007/978-3-540-77619-2_2

Towards Real-Time Monitoring of Data
Centers Using Edge Computing

Brian Setz(B) and Marco Aiello

Department of Service Computing, University of Stuttgart, Stuttgart, Germany
{brian.setz,marco.aiello}@uni-stuttgart.de

Abstract. Introducing the Internet of Things paradigm to data centers
enables real-time monitoring on a scale that has not been seen before.
Real-time monitoring promises to reduce the data center’s operational
costs and increase energy savings. As data centers can house over a hun-
dred thousand servers, the potential number of data points that can be
collected every minute is in the order of hundreds of millions. In this
work-in-progress paper, we stipulate about the impact that real-time
monitoring of data centers has on the network infrastructure, and demon-
strate that the impact is indeed significant enough to disrupt the data
center’s network. We therefore propose a preliminary solution based on
edge computing that minimizes the load on the network when performing
real-time monitoring of a data center.

Keywords: Data centers · Real-time monitoring · Edge computing

1 Introduction

Data centers form the backbone of the modern Internet, it is their computational
resources that enable many of the services that are present on the World Wide
Web today. Modern data centers are massive in size, covering areas of tens of
thousands square meters, housing many thousands of individual server racks [3].
It is therefore not surprising that data centers are responsible for almost 3% of
the energy consumption in the United States [9]. Monitoring data centers assists
in improving the energy efficiency by discovering comatose or zombie servers.
These comatose servers are performing no useful work, yet still consume energy.
It is estimated that up to 30% of servers are comatose [10]. Monitoring is also
critical in preventing outages, which can have a wide-spread global effect [14].
Preventing outages is also critical for upholding the Quality of Service as is
specified in the Service Level Agreements. Furthermore, monitoring also aids
the expansion planning process of data centers by predicting future cooling and
space requirements as the data center grows.

The presented research is funded by the Netherlands Organisation for Scientific
Research (NWO) in the framework of the Indo-Dutch Science Industry Collaboration
programme with project NextGenSmart DC (629.002.102).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 141–148, 2020.
https://doi.org/10.1007/978-3-030-44769-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_11&domain=pdf
http://orcid.org/0000-0002-9750-2888
http://orcid.org/0000-0002-0764-2124
https://doi.org/10.1007/978-3-030-44769-4_11

142 B. Setz and M. Aiello

The emergence of the Internet of Things (IoT) paradigm enables monitoring
of data centers at a scale that was not possible in the past. A wide variety of
hardware and virtual sensors can be utilized to collect different types of data,
which in turn can be used to evaluate dozens of sustainability and performance
metrics [12]. As a result, the amount of data that can be collected in this envi-
ronment is of massive proportions: a data center of 100 000 servers, each of
which report 50 distinct metrics every second, would result in 300 000 000 data
points every minute. Collecting data at such fine granularities enables the real
time monitoring of the data center in its entirety. However, if this data would
be collected at the high frequencies required for real-time monitoring, a different
problem arises: the quantity of transmitted data would be sufficiently large to
negatively impact the data center’s network infrastructure.

The question we pose in this work is: how can we leverage a data center’s
network infrastructure to efficiently monitor a data center in real time by utilizing
the edge computing paradigm? With the goal of answering this question, we first
analyse the common network architectures found in data centers. Next, we look
at the potential data sources that can be found in a data center in order to
determine the size of the raw data and the required network throughput. This is
followed by a preliminary design of an edge-based data collection platform that
takes advantage of a data center’s network infrastructure to reduce the load on
the network. Finally, we discuss the results we have obtained thus far, as well as
the steps we have planned for our future research.

The remainder of this paper is organised as follows. Section 2 introduces the
related work, followed by a description of data center network architectures in
Sect. 3. An analysis of the data that can possibly be collected in a data cen-
ter is made in Sect. 4. Next, in Sect. 5 the proposed edge-based architecture is
introduced. Followed by the conclusion in Sect. 6. We note that, since this is a
work-in-progress paper, there is no evaluation section.

2 Related Work

Real-time monitoring is a technique that has become more popular in several
domains with the emergence of the Internet of Things. In smart grids, for exam-
ple, real-time monitoring promises to assist in the prevention of severe safety
accidents by automatically identifying threats. The authors of [6] identified that
real-time monitoring of smart grids would cause an increase in data that would
be too large to handle using the traditional cloud computing paradigm. In their
solution they introduce edge computing as a key component of their real time
monitoring solution, reducing the network load by more than 50%.

In our previous work, a data set of 2.5 billion data points was collected from a
data center [11]. A total of 13 different data types were collected from more than
160 servers every 10 s. The type of data collected includes CPU temperature and
utilization, network utilization, air temperatures, power consumption, and more.
The data is used to train models that can estimate the status of a server. This
work provides a glimpse into the potential amount of data that can be collected
in a data center.

Towards Real-Time Monitoring of Data Centers Using Edge Computing 143

The authors of [8] developed a method for real-time monitoring of data cen-
ters using an IoT approach. The data is environmental data, such as the temper-
ature and the humidity level. These values are collected every 10 s, a total of 1.4
million data points were collected. Their IoT platform is based on a simple web
service which accepts data collected by the custom-built sensors. The monitoring
takes place on the level of individual racks.

In the work of [7], an approach is proposed for monitoring a data center in
real time using low-power wireless sensors. The collected data includes tempera-
ture, humidity, airflow, air pressure, water pressure, security status, vibrations,
and the state of the fire systems. The need for collecting data from servers for
monitoring purposes is also recognized. The authors envision that some type of
IoT platform is required for the collection, processing, storage, and management
of the data. The envisioned platform is not designed or implemented.

In [5], the authors describe the role that edge computing has in the Internet of
Things. They propose a layered model in which millions of IoT devices connected
to thousands of edge gateways, which in turn connect to hundreds of cloud data
centers. The authors also recognise the need for data abstraction, which uses
edge gateways to reduce the volume of the raw data before sending it to the
data center. However, deciding the extent by which the data should be reduced
is an open problem, according to the authors.

The related work shows that some effort has been made to introduce hardware
sensors and virtual sensors to data centers. The type of data that has been
collected thus far is limited, however. In this work, an architecture is described
that allows the collection of a much wider variety of data. None of the related
work consider the increased network load when introducing real time monitoring
to data centers.

3 Data Center Network Infrastructure

Data centers are facilities containing large amounts of computational, storage,
and networking resources. These resources are mounted in 19-inch racks, which
are metal enclosures with standardized dimensions. The capacity of a rack is
expressed in Rack Units (U), and determines the quantity of equipment it can
house. The standard full height rack is 42U tall. Rack equipment such as servers
and switches often occupy between 1U to 4U of space, with blade server enclo-
sures consuming up to 10U of space. Efficiently connecting all the rack equipment
to the network can be a challenge, and the design of the data center network
affects the networking efficiency at which the connected equipment operates.

The most widely used network architecture in data centers is the 3-layer
data center network architecture [2], shown in Fig. 1. As the name suggests, this
architecture consists of 3 distinct layers: a core layer at the top, an aggregation
layer in the middle, and an access layer at the bottom. Equipment, such as
servers, that require network access are connected to the access layer, usually
with 1 or 10 Gigabit links. The access layer is commonly implemented as a
network switch located at the top of a rack (ToR switch) or at the end of a row

144 B. Setz and M. Aiello

of racks (EoR switch). The aggregation layer aggregates the different ToR and
EoR switches, to enable network connectivity between racks. The links between
ToR and EoR switches are commonly 10 or 40 Gigabit. The aggregation layer
switches all connect to the core layer, these links can often be up to 100 Gigabit.
The core layer is responsible for providing uplinks to the Internet.

Internet
Core Layer

Aggregation Layer

Access Layer

Fig. 1. An example of a 3-layer data center network architecture.

There are also other network architectures currently in use in data center,
such as Facebook’s data center fabric approach [4]. This approach is similar to
approaches taken by Google and eBay. The notion of a server pod is introduced,
which is essentially a standalone cluster consisting of racks and servers, contain-
ing up to 48 ToR switches and 4 special fabric switches. These fabric switches are
responsible for interconnecting the servers in a single pod. To connect different
pods, a network spine is introduced consisting of up to 48 spine switches per
spine plane. This approach is highly scalable, as computational resources can be
increased by introducing more pods, and the network capacity can be increased
by introducing more spine planes.

Another approach is the Fat Tree data center network [1]. This approach is
similar in design to the 3-layer approach, but provides guarantees regarding the
available bandwidth for each server in a rack. This is done by carefully planning
the numbers of switches in each layer, and increasing the number of links between
individual switches the higher up the hierarchy they are. Any horizontal slice in
the network graph has the same amount of bandwidth available.

Despite the significant differences between the available data center network
architectures, they all contain an access layer with ToR and EoR switches in
one form or another. As we show later in our proposed architecture, these ToR
switches are excellent candidates to become edge gateways due to their proximity
to the servers that are being monitored.

Towards Real-Time Monitoring of Data Centers Using Edge Computing 145

4 Impact on Network Load

To understand the significance of the additional load that is associated with real
time monitoring of a data center, a number of steps have to be taken. First, the
number of servers per rack and the number of racks per data center have to be
identified. Next, the data types that can be collected from a server have to be
investigated, as well as their data size. And finally, the load on the network that
is generated by real time monitoring has to be calculated.

The number of servers that can be placed inside a rack is not only limited by
the size of the servers, but also by the data center’s cooling capacity and power
limitations. A standard full height rack offers space for up to 40 servers, leaving
2U for other equipment. In practice this number is between 25 to 35 servers per
rack. Using blade servers, the density of a rack can be increased much further.
A typical high performance 10U blade server enclosure contains 16 servers. This
increases the density to 64 servers per rack. There are also 3U blade servers
enclosures for low performance blade servers that house 20 blade servers. This
results in a maximum density of 260 servers per rack. In all cases at least 2U are
left for the ToR switch and a Keyboard Video Mouse switch.

The largest data center in the world is China’s Range International Informa-
tion Group data center, covering over 500 000 m2. More commonly, data centers
are between 10 000 and 20 000 m2 in size. For example, Google’s Dallas data
center is 18 000 m2 and contains 9090 server racks [3]. Applying the previously
determined server density numbers, it can be extrapolated that a data center
containing 9090 server racks can house anywhere between 318 000 and 2 363 400
servers. A report from Gartner estimates that Google had around 2.5 million
servers in July 2016, spread across 13 data centers, which equates to around
192 000 servers per data center [13].

There are two categories of sensors required to monitor a data center: hard-
ware sensors and virtual sensors. The hardware sensors are used to monitor the
temperature and humidity, as well as power consumption. These measurements
can be made on a global level for the whole data center, as well as on individ-
ual server level. Virtual sensors are software-based sensors, they can be agents
interacting with the operating system to gather information about the CPU,
memory, networking interfaces, storage devices, and more. There are software
agents available that can collect and publish this type of data, popular solutions
include: Telegraf, StatsD, collectd, Zabbix, Prometheus, and Nagios.

In this work, Telegraf is used to represent the virtual sensors, because of its
popularity and its ability to integrate with a multitude of platforms. Telegraf is
a plugin-based software solution for collecting and transmitting a wide variety
of data. It consists of four plugin types: input plugins, processor plugins, aggre-
gator plugins, and output plugins. Input plugins collect data from the system,
processor plugins transform the data, aggregator plugins aggregate the data, and
output plugins transmit the data to other systems. Only the input plugins that
collect generic system information are included in our experiments.

To determine the bandwidth required to monitor the generic metrics mea-
sured by Telegraf, experiments are performed using a real server. The server

146 B. Setz and M. Aiello

is a Dell PowerEdge R7425 with dual AMD EPYC 7551 32-core processors,
512 GB of RAM, and six 960 GB Intel S4510 SSD’s. The operating system is
Proxmox, a Debian-based virtualization environment. Telegraf is installed on
the operating system and configured to collect the selected metrics. MQTT, a
lightweight publish-subscribe network protocol, is configured as the output plu-
gin. An MQTT broker is deployed on a second host. Wireshark, a network packet
analyser, is also installed on this second host in order to monitor the network
usage. The traces produced by Wireshark are analysed to calculate the required
bandwidth for real time monitoring of a data center. An overview of the setup
is shown in Fig. 2.

Telegraf MQTT
Output Plugin

Input Plugins

Wireshark Analysis of
Wireshark traces

MQTT BrokerServer MQTT
Host

Fig. 2. Setup to analyse the bandwidth usage when performing real time monitoring.

To determine the load on the infrastructure, network packets were col-
lected for a duration of 600 s. During this period, 185 400 messages were sent
to the MQTT broker. In total, 55.3 megabytes of data were transmitted, an
average of 92.2 kB/s. While seemingly insignificant for one server, however
when we extrapolate this and use Google’s Dallas data center and a rack den-
sity of 25 servers per rack as an example, the total bandwidth would equal
25 servers per rack × 9090 racks × 92.2 kB/s = 167.62 Gbit/s. In practice this
number is conservative, as the servers per rack density is ever increasing, and
data centers are becoming ever larger.

5 Proposed Edge-Based Architecture

One method to reduce the overall load on a data center’s network is bringing
the computations closer to the source of the data. This reduces the amount of
hops required for the data to reach their destination, and in turn limits the load
to the access layer instead of overloading the aggregation and core layers. The
architecture we propose is shown in Fig. 3. As each rack as a ToR switch, the
goal is to leverage the computational power of the switch to turn it into an edge
gateway. Every edge gateway is responsible for processing and analysing the
data of their rack only. Therfore, the edge gateway would only have to handle
the network traffic of a limited amount of servers. The network load for the
gateway ranges between 18 Mbit/s and 47 Mbit/s, for 25 servers and 64 servers
per rack respectively. At these loads the impact on the switch itself is minimal.

Towards Real-Time Monitoring of Data Centers Using Edge Computing 147

Edge Gateway

Server #1

Server ...

Server #25

Top of the Rack
Switch X

Edge Gateway

Server #1

Server ...

Server #25

Top of the Rack
Switch Y

Aggregation Layer
Switch

Cloud

Fig. 3. Proposed edge-based architecture using Top of the Rack switches.

Because edge gateways are close to the source of the data, the network latency
is also greatly reduced. This is crucial for real-time monitoring, as the data center
operator should be informed as soon as possible about critical events. The edge
gateway can also be used to automatically interact with the servers. For example,
when a server is overheating, the gateway could inform the server to reduce the
load, or even lower the frequency at which the CPU cores are operating. This
allows the edge gateways to act as autonomous agents. The proposed architecture
also improves the scalability of the data center. As the data center grows and
more racks are placed and filled with servers, the impact that monitoring these
new servers has will be minimized as the majority of the data remains at the
ToR switch. It also possible for multiple racks to be clustered together, such
that the edge gateways of these racks communicate with each other in a peer-
to-peer fashion. Another benefit of this approach concerns the privacy. In case a
rack is dedicated to processing sensitive data, the edge gateway will ensure that
monitoring data collected from these sensitive servers does not leave the rack.
Or, when the data does have to be transmitted outside the rack, it is anonymised
and privacy sensitive data is removed before it is sent across the network.

Using edge computing instead of traditional cloud computing to perform
real-time monitoring in data centers has a number of benefits. From reducing
the network load, to increasing the responsiveness, enabling autonomous control,
as well as improved scalability and privacy. These advantages come at the cost
of increased deployment complexity, and more complex ToR switches.

6 Conclusion

Real-time monitoring of a data center comes at a cost: the increase in network
traffic is significant enough to influence the performance of a data center. We esti-
mated the additional load that is placed on a data center’s network, and have

148 B. Setz and M. Aiello

shown that the additional load is significant. To counteract this problem, we
proposed an architecture based on edge computing that enables real-time mon-
itoring while reducing the required bandwidth, leveraging the network infras-
tructure of the data center by relying on ToR switches. In our future work, we
aim to implement the proposed architecture and perform a quantitative evalua-
tion of the performance of the architecture, compared to monitoring based on a
traditional cloud computing approach.

References

1. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network
architecture. SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)

2. Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer: an introduc-
tion to the design of warehouse-scale machines (2013)

3. Chen, T., Gao, X., Chen, G.: The features, hardware, and architectures of data
center networks: a survey. J. Parallel Distrib. Comput. 96, 45–74 (2016)

4. Farrington, N., Andreyev, A.: Facebook’s data center network architecture, pp.
49–50 (2013)

5. Hassan, N., Gillani, S., Ahmed, E., Yaqoob, I., Imran, M.: The role of edge com-
puting in Internet of Things. IEEE Commun. Mag. 56(11), 110–115 (2018)

6. Huang, Y., Lu, Y., Wang, F., Fan, X., Liu, J., Leung, V.C.M.: An edge computing
framework for real-time monitoring in smart grid. In: 2018 IEEE International
Conference on Industrial Internet (ICII), pp. 99–108, October 2018

7. Levy, M., Hallstrom, J.O.: A new approach to data center infrastructure moni-
toring and management (DCIMM). In: 2017 IEEE 7th Annual Computing and
Communication Workshop and Conference (CCWC), pp. 1–6, January 2017

8. Medina-Santiago, A., et al.: Adaptive model IoT for monitoring in data centers.
IEEE Access 8, 5622–5634 (2020)

9. Mills, M.P.: The cloud begins with coal-an overview of the electricity used by the
global digital ecosystem. Technical report, Digital Power Group (2013)

10. Ngoko, Y., Cérin, C.: Reducing the number of comatose servers: automatic tun-
ing as an opportunistic cloud-service. In: 2017 IEEE International Conference on
Services Computing (SCC), pp. 487–490, June 2017

11. Setz, B., Rao, G.S.V., Lazovik, A., Aiello, M.: A data-driven approach to monitor-
ing colocation data centers. In: 2019 IEEE International Conference on Big Data
Intelligence and Computing (2019, to appear)

12. Vemula, D., Setz, B., Rao, G.S.V., Gangadharan, G.R., Aiello, M.: Metrics for
sustainable data centers. IEEE Trans. Sustain. Comput. PP(99), 1 (2017)

13. Zaman, S.K., Khan, A.U.R., Shuja, J., Maqsood, T., Mustafa, S., Rehman, F.: A
systems overview of commercial data centers: initial energy and cost analysis. Int.
J. Inf. Technol. Web Eng. 14, 42–65 (2019)

14. Zeck, A., Bouroudjian, J.: Real-world experience with a multicloud exchange. IEEE
Cloud Comput. 4(4), 6–11 (2017)

Modeling Users’ Performance:
Predictive Analytics in an IoT Cloud

Monitoring System

Rosa Di Salvo1(B), Antonino Galletta1, Orlando Marco Belcore2,
and Massimo Villari1

1 MIFT Department, University of Messina, Messina, Italy
{rdisalvo,angalletta,mvillari}@unime.it

2 Department of Engineering, University of Messina, Messina, Italy
obelcore@unime.it

Abstract. We exploit the feasibility of predictive modeling combined
with the support given by a suitably defined IoT Cloud Infrastructure
in the attempt of assessing and reporting relative performances for user-
specific settings during a bike trial. The matter is addressed by introduc-
ing a suitable dynamical system whose state variables are the so-called
origin-destination (OD) flow deviations obtained from prior estimates
based on historical data recorded by means of mobile sensors directly
installed in each bike through a fast real-time processing of big traf-
fic data. We then use the Kalman filter theory in order to dynamically
update an assignment matrix in such a context and gain information
about usual routes and distances. This leads us to a dynamical rank-
ing system for the users of the bike trial community making the award
procedure more transparent.

1 Introduction

In last years, Smart Cities are becoming more and more popular. There are sev-
eral definitions of Smart Cities: according to Giffinger et al. [1] a city becomes
smart only if the performance indicators improve for several interconnected
areas, such as economy, people, governance, environment, living and mobility;
according to [2] and [3], e-health is a sub-area of the ICT strategies of smart
cities. Smart mobility is emerging as a solution for many issues related to air
and noise pollution, traffic congestion [4], transport and goods distribution slow-
ness. In order to boost in this direction several initiatives have been proposed
from local municipalities such as: (i) discounts on the purchase of season tickets
for public transport; (ii) car pooling; (iii) free loan for the use of bikes, etc. In
this paper, considering as starting point the project “A scuola e a lavoro con il
TPL”, an Italian project funded by the ministry of the environment, we propose
a model to quantify and predict the use of bikes in order to assign penalties or
awards to users based on their behaviour. Aim of the paper is therefore to define
a forecasting system based on real information as accurate as possible to be used
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 149–158, 2020.
https://doi.org/10.1007/978-3-030-44769-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-44769-4_12

150 R. Di Salvo et al.

for evaluating the level of activity of trail users on usual routes by monitoring
behavior consistencies or progresses towards a more bike-friendly attitude com-
pared to previous habits. More specifically, we proposed a system that, starting
from the analysis of usual routes and distances (gathered by means of IoT sensors
installed on bikes), by using Kalman filtering techniques inside a discrete-time
dynamical system formulation let us to properly simulate traffic flows. In view
of the growing development of Smart City technologies, the IoT Cloud system
for traffic monitoring described in this paper accounts for real-time information
and provides prompt availability of a rich source of data to be exploited within
a Kalman filtering approach in order to improve real-time path predictions and
properly simulate traffic flows.

The remainder of the paper is organised as follows: Sect. 2 describes related
works. Background and basic technologies are described in Sect. 3. Motivation
are discussed in Sect. 4, proposed reference architecture and algorithms are dis-
cussed in Sect. 5. Finally, conclusions and our future directions are summarised
in Sect. 6.

2 Related Work

It is well-known how the use of statistical methods in predicting specific param-
eters offers the opportunity to analyse huge amount of data and optimise a wide
set of resources. In particular, a vast number of contributions dealing with the
process of modelling traffic characteristics and developing short-term traffic fore-
casting algorithms have been proposed and presented in the literature (see [5]
for a critical discussion concerning the selection of the proper methodological
approach). Moreover, in the last few years, numerous research studies have been
conducted in order to address the relevant issue of collecting traffic data coming
from sensors installed on roads and possibly sending alert messages to users.
IoT Cloud systems with connected vehicles integrated with mobile sensors for
traffic monitoring aimed at big traffic data processing, that is vehicular Cloud
computing, actually assume a relevant role in road traffic management [6]. In [7],
where an IoT Cloud system for traffic monitoring and alert notification based
on OpenGTS and MongoDB is described, it turns out how the need to resort to
big data and Internet issues appears as a necessary requirement when dealing
with data recovery and data processing related to sensing systems in urban sce-
narios. This matter becomes especially important because of the exponentially
increasing of information to be stored and dynamically recovered to control and
manage vehicular traffic (see also [8] and [9] further details). In the emerging
field of systems and computing paradigms for big data storage and analytics
[10], the traffic monitoring approach proposed in [7] offers a flexible, scalable
and inexpensive way to collect sensor data from private vehicles.

Since traffic forecasting represents in general an important learning task in
the transportation domain intended as a dynamic environment, a large amount of
literature has been concerned with the development of Intelligent Transportation
Systems (ITS) technologies [11], as well as with producing predictions from time
series models ranging from ARIMA to nonlinear multivariate modeling [12], or

Modeling Users’ Performance 151

involving neural networks [13]. Possible frameworks for producing short-term
traffic forecasting models in real-time intelligent transportation systems may
be based on several methodological approaches, such as Kalman filtering [14],
exponential filtering [15], non-parametric statistical methods [16], multivariate
state space analyses [17] or sequential learning [18].

In this direction, kept in mind the overwhelming progress of technologies,
a composite modeling approach mixing tools derived from statistical analysis
and ITS services would seem to provide an appealing setting with interesting
perspectives.

3 Background

The development of the theoretical framework in which we are moving begins
from both the setting of elastic Cloud-based designed micro-services and the
traffic flows estimation approach adopted in [19]. Thus the system developed
in this paper combines the advantages of a scalable Cloud-based infrastructure
with a mesoscopic approach, where the kind of considered vehicles can be suit-
ably defined, so that it can be applied to the considered case. Among dynamic
traffic assignment models, classic mesoscopic approach, where packets of users
belonging to the same mode move following a path, benefits from dynamic dis-
aggregated traffic modelling (since the packets can be at least composed by a
single vehicle modeled individually) adding the possibility of using macroscopic
speed-density functions. In the following a short description of the theoretical
assumptions and of the procedure is given.

3.1 Estimation of Origin-Destination Flows

Several methods for analyzing and forecasting traffic counts based on other avail-
able information, such as historical information, and the issue of the off-line
estimation of the OD (Origin Destination) demand matrices for link flows in
a freeway network (a directed graph that represents local streets or groups of
streets), are deeply analyzed in [20]. In transportation systems, the modelization
of assignment problems allows to simulate how demand and supply interact in a
transportation network. Starting from origin-destination demand flows, the cal-
culation of performance measures and user flows for each supply element enables
the description of path choice behaviors. In particular, in the context of a simu-
lation model of a system of real-time traveler information providing short time
forecasts of time-dependent link flows in a network, the iterative application of a
sequential method combining observed traffic counts with historical information
represents an interesting way to perform effectively the estimation/updating of
an Origin-Destination trip table for the last interval. Consider an interval h, and
let dH

h be the historical demand, while fh and fO
h represent the assigned and the

observed link flows. Following [19], the estimated demand for the current inter-
val, dE

h , is obtainable by means of a generalized least square (GLS) estimator,
say

dE
h = argmin

dh≥0
[(fh − fO

h)T (fh − fO
h) + θ(dh − dH

h)T (dh − dH
h)], (1)

152 R. Di Salvo et al.

where the parameter θ is related to the weight of flows with respect to the
demand.

To deal with problems of traffic simulation-assignment and dynamic network
loading (DNL) map by means of assignment matrices in order to estimate Origin-
Destination demand flows based on the evaluation of assigned flows, depending
on the link flows fh, the solution of a fixed-point problem is therefore required.

3.2 Prediction of Origin-Destination Flows

For solving the important and hard problem of predicting Origin-Destination
(OD) tables for the forthcoming time intervals of a fixed predictive horizon
either a direct or an indirect approach can be used. In the former case, statistical
methods or filtering techniques are applied so that estimates of the OD matrices
for the actual time slices are derived from historical data series, whereas in the
later case the prediction of traffic counts for the future time intervals is estimated
before the computation of the demand matrices is performed. According to the
direct approach described in [19], once introduced the variables dH

h , dE
h , and

dP
h , representing the historical, the estimated, and the predicted demand at the

interval h, the predicted OD values can be estimated by means of the law

dP
h+1 = α

[
dE

h

dH
h

dH
h+1

]
+ (1 − α)dH

h+1, (2)

where α is a smoothing parameter, whereas the ratio dE
h /dH

h has the meaning of
taking into account possible unprecedented future events.

3.3 Dynamic Traffic Assignment

Let us divide the simulation period into subintervals and assume that all the
travelling users experience the same traffic conditions. Moreover, for the sake
of simplicity, we make the assumption that the length of each time interval t is
the same, and we consider a uniform distribution of the departures within the
intervals. The network where the users are supposed to move is represented by
means of a graph, composed of nodes and arcs. From a functional point of view,
each arc a, of a certain length La, is thought of as divided into a running and a
queuing segment.

The mesoscopic approach allows the evaluation of relevant traffic indicators
by grouping the vehicles into packets made up, in general, by several users having
homogenous characteristics. We describe a mesoscopic model based on a packet
approach (in which every packet is considered as a unique entity), providing an
efficient way to carry out the dynamic traffic assignment (DTA) [21], by using
the following general notation and terminology. In such a framework, the packet
P (t, k, u) represents in general a number of vehicles x(t, k, u), belonging to class
u, which depart during the same interval t and move along path k. We shall
here consider the specific case where the generic packet P is made up by a
single bike, that is x(t, k, u) = 1. Thus, the moment a new departure interval t

Modeling Users’ Performance 153

starts, a certain number of concurrently leaving packets (corresponding to the
amount of means of transportation belonging to class u which follow path k) is
generated. When the time interval t elapses, the evaluation of the outflow arc
characteristics of interest for the purposes of the analysis, say queues, densities,
speed, occupancy, is performed, and the obtained values are then used in view of
the assignment of the outflow modalities of the points in the subsequent interval.

3.4 Kalman Filtering

The Kalman filter [22] is a recursive procedure for computing the optimal esti-
mator within the class of linear estimators of a state vector at a certain time,
based on the available (even noisy) past information. It is based on the assump-
tion of normality of the noise and the process. Let us introduce the matrices
Ak ∈ R

n × R
n, connecting the state xk−1 ∈ R

n at the previous time step
(k − 1) to the one at the current step (k) (measurement sensitivity matrix),
Bk ∈ R

n × R
�, relating some optional control input uk ∈ R

� to the state, and
Hk ∈ R

m ×R
n, establishing the relation between the state and the measurement

zk ∈ R
m. According to the original formulation, the measurements are obtained

at each discrete point in time k by means of the measurement model

zk = Hkxk + vk, (3)

and the Kalman filter provides an estimate of the state of the controlled process
that is governed by the the linear stochastic difference equation (system dynamic
model)

xk = Akxk−1 + Bkuk + wk−1, (4)

the normally distributed independent random variables wk and vk (i.e., E <
wkvT

j >= 0 for all k and j) representing the process and the white measurement
noise, respectively, say p(wk) ∼ N(0, Qk), p(vk) ∼ N(0, Rk) with Q,R covariance
matrices. Once introduced the Kalman gain matrix

K̄k = Pk(−)HT
k [HkPk(−)HT

k + Rk]−1, (5)

the state estimate observational update at time k

xk(+) = xk(−) + K̄k[zk − Hkxk(−)] (6)

returns an a posteriori value of the estimate (x̃k(+)) from the a priori estimate
(x̃k(−)) of the state xk of the system based on the information provided by the
observation.

4 Case Study

The framework described above fits into a pilot bike trial with the aim of pro-
viding a possible tool for evaluating the users’ commitment. The definition of
the IoT Cloud monitoring system modeling users’ performance presented in this
paper makes for predictive analysis in order to address the problem of establish-
ing a dynamical ranking system by means of an algorithm designed considering
that:

154 R. Di Salvo et al.

– each user is assigned the same starting score (depending on the duration of
the experimental phase), which represents his/her initial rating;

– the usual routes of each user and the average distances traveled during work-
ing days are estimated by employing traffic flows estimation techniques on
actual geo-location data collected in real-time by a GSM/GPRS/GPS TK103
tracker based system, forwarded to a GeoJSON parsing micro-service, and
then analyzed by means of an IoT Cloud system providing fast big traffic
data processing;

– the users’ rankings are dynamically updated as a result of the comparisons
with the individual averages (once fixed a suitable tolerance).

To further clarify how the mechanism driving the reward/penalty assignments
works, consider the case of a pilot trial during a fixed number of weeks, and
suppose that we do expect that, at least for a certain percentage of this time
interval, the user reports a regular use of the bike provided in concession. After
that each individual initial score has been assigned when the trial starts, at
every check, if the user did not appear to be virtuous, his/her ranking would be
decreased (alternatively, his/her score would increase), on condition that in case
of negative scores the user loses the lease of the bike.

5 Architectural and Algorithm Design

A suitably defined IoT Cloud Infrastructure for managing and mining sensor
data, in a Smart City perspective, supports access to real-time urban data

(a) (b)

Fig. 1. (a) The IoT Cloud-based Monitoring System described in [7]. (b) A view of the
functional diagram of the model.

Modeling Users’ Performance 155

streams by exploiting interconnections in order to effectively approach a pre-
dictive traffic analysis.

The traffic flow estimation approach used in this paper is defined as follows.
Let S be the system made up of the N individuals which are the users of the
bike trial community, say S = {uk}k=1,...,N . With the aim of studying the OD
flows in the five working days from Monday to Friday daily for each week, we
define the state vector of the system S by considering the OD flows for each user
recovered from the data produced by the IoT Cloud system for traffic monitoring
and alert notification described in [7]. Such a kind of Cloud-based system, whose
possible scheme is depicted in Fig. 1(a), is designed by considering mobile sen-
sors based on tracker devices gathering movement data from the transportation
vehicles (in our case the bikes), and proved able to elastically scale up/down
its internal micro-services thanks to Docker containers and send all geo-location
data (in real-time by means of a 4G network connection) to an OpenGTS server
storing them in a SQL database. In addition, incoming unstructured geo-location
data are forwarded to a GeoJSON parsing micro-service in order to be inserted
in a MongoDB distributed database (the unstructured data guarantees a good
flexibility for further data analysis and manipulation, [7]). This compact size
and simple management system for tracking mobile objects, besides supporting
security, positioning, monitoring, GPRS data transmission and geo-localization,
suitably provides historical OD data in the initialization phase of our approach.
The variables {dk,�}k=1,...,N, �=1,...,7 are thus associated to the distances traveled
by each user on working (� = 1, . . . , 5) and non-working (� = 6, 7) days. As a
start, we focus on the users’ activity during the working days and consider the
mean values d̄k (� = 1, . . . , 5, k = 1, . . . , N) of the distances travelled at the end
of every week of the trial.

The methodology described below allows us to achieve good results in pre-
dicting flows also for few steps ahead. During each time slice (most likely every
day) the values of the Origin-Destination (OD) matrices are estimated based
on the acquired information on traffic movements during the time interval just
elapsed, and the prediction of the OD matrices for the subsequent time intervals
within the prediction horizon are estimated. At this point, suitable assignment
matrices, to be intended as fractions of the OD matrices corresponding to the
leaving time intervals that are related to the flow along the given link during
the current interval, are derived by using a Dynamic Network Loading (DNL)
approach, and then their entries are used within a filtering framework in order to
produce flow forecasts. This approach (whose scheme, shown in Fig. 1(b), refers
to procedures clarified in Sect. 3) lets us to model the usual paths of the var-
ious users in order to produce an estimate of the average distances which are
intended as individual standards of use during the trial. After that, the dynamic
traffic assignment (DTA) is carried out by means of a mesoscopic model based
on packet approach (see [21] and references therein for more in-depth details)
and traffic flow forecasting is directly related to the obtained results by means
of a Kalman filtering technique. In particular, once at each step the transition
matrix A and an assignment matrix B are evaluated within the DTA procedure

156 R. Di Salvo et al.

on the basis of the speeds observed at the current and previous intervals, the
transition and observation equations of the filter read

fE
k+1 = AkfE

k + Bkuk + wk,

fO
k = HkfE

k + vK ,
(7)

where the subscript k indicates the time interval we are referring to, the vari-
ables f

E/O
k represent the estimated/observed flow, uk is the historical variation

of demand, whereas wk and vk are the process and the measurement errors,
respectively.

To apply the Kalman filter and search for the optimal estimates, we perform
the following steps: after the phase of initialization, in which we assign a starting
value to the state vector and the covariance matrix based on the traffic data
recovered and processed through vehicular Cloud computing, during the phase
of correction we compute the Kalman gain matrix through which we update the
a priori estimate and covariance; then, during the final phase of prediction, we
obtain forecasts of the future state (through the correct a posteriori estimate)
and of the covariance of the estimation error.

The application of the methods outlined above for the motivations and the
reasoning set forth in Sect. 4 results in carrying out the following steps:

1. Ranking initialization: r
(0)
k = r̃k for each k = 1, . . . , N ;

2. State vector initialization: the state vector of the system is initialized by
taking into account the OD data provided by a scalable Cloud-based infras-
tructure for the processing of big traffic data;

3. Kalman filtering : through the application of a discrete KF the historical series
of the state vector values is filtered so as to obtain forecasts on the future
states of the system;

4. Tolerance definition: individual tolerances are established based on the aver-
age of the distances mk traveled by each user from the beginning of the trial:
τk = τk(mk);

5. Check : every time step t, the users’ ranking system is updated by adopting
the rule acting as follows:

– if d̄
(t−1)
k < mk − τk, then r

(t)
k = r

(t−1)
k − 1;

– if d̄
(t−1)
k ∈ [mk − τk,mk), then r

(t)
k = r

(t−1)
k ;

– if d̄
(t−1)
k > mk, then r

(t)
k = r

(t−1)
k + bk, bk being some bonus related to

the individual empowerment.

6 Conclusions and Future Work

The modeling approach described in this paper introduces a flow forecasting
technique combined with an IoT Cloud Infrastructure for managing and mining
sensor data in order to produce a predictive traffic analysis by taking advantage
both of simulative and statistical methods. The valuable features in terms of per-
formance of both information insertion and retrieval in MongoDB which charac-
terize the scalable Cloud-based infrastructure used to implement an intelligent

Modeling Users’ Performance 157

traffic monitoring system, where both OpenGTS server and micro-services were
deployed by means of Docker containers, confer the implemented solution the
advantage of supporting an efficient dynamic system update. Planned implemen-
tation and evaluation, immediately following the start of the trial, include the
application of the IoT cloud system to storage and processing of geo-location his-
torical data of the users of the community provided by tracker devices attached
to the bikes and the use of the described dynamic network loading model for
path forecast evaluation in order to obtain an efficient management of the merit
ranking. Further investigations related to the application of this framework to
concrete situations are planned with the goal of testing the practical application
of the framework and extending the analysis and the services to more general
and rich scenarios.

Acknowledgment. This work has been partially supported by the Italian project “A
scuola e a lavoro con il TPL”. Authors would like to thank for their valuable work
Alessio Catalfamo, Francesco Martella and all partners of the project.

References

1. Giffinger, R., Gudrun, H.: Smart cities ranking: an effective instrument for the
positioning of the cities. ACE Architect. City Environ. 4(12), 7–26 (2010)

2. Al-Azzam, M., Alazzam, M.: Smart city and smart-health framework, challenges
and opportunities. Int. J. Adv. Comput. Sci. Appl. 10, 171–176 (2019)

3. Ji, Z., Ganchev, I., O’Droma, M.: A generic IoT architecture for smart cities, pp.
196–199 (2014)

4. Filocamo, B., Galletta, A., Fazio, M., Ruiz, J.A., Sotelo, M.A., Villari, M.: An inno-
vative osmotic computing framework for self adapting city traffic in autonomous
vehicle environment. In: 2018 IEEE Symposium on Computers and Communica-
tions (ISCC), pp. 01267–01270 (2018)

5. Vlahogianni, E.I., Golias, J.C., Karlaftis, M.G.: Short-term traffic forecasting:
overview of objectives and methods. Transp. Rev. 24, 533–557 (2004)

6. Ahmad, I., Noor, R.M., Ali, I., Imran, M., Vasilakos, A.: Characterizing the role of
vehicular cloud computing in road traffic management. Int. J. Distrib. Sens. Netw.
13 (2017)

7. Celesti, A., Galletta, A., Carnevale, L., Fazio, M., Lay-Ekuakille, A., Villari, M.: An
IoT cloud system for traffic monitoring and vehicular accidents prevention based
on mobile sensor data processing. IEEE Sens. J. 18(12), 4795–4802 (2017)

8. Al-Najada, H., Mahgoub, I.: Big vehicular traffic data mining: towards accident
and congestion prevention (2016)

9. Lay-Ekuakille, A., Giannoccaro, N.I., Casciaro, S., Conversano, F., Velázquez, R.:
Modeling and designing a full beamformer for acoustic sensing and measurement.
Int. J. Smart Sens. Intell. Syst. 10, 718–734 (2017)

10. Fazio, M., Celesti, A., Villari, M., Puliafito, A.: The need of a hybrid storage
approach for IoT in PaaS cloud federation, pp. 779–784 (2014)

11. Figueiredo, L., Jesus, I., Machado, J., Ferreira, J.R., de Carvalho, J.L.M.: Towards
the development of intelligent transportation systems. In: Proceedings of 2001
IEEE Intelligent Transportation Systems, ITSC 2001 (Cat. No.01TH8585), pp.
1206–1211 (2001)

158 R. Di Salvo et al.

12. Armstrong, J.S. (ed.): Principles of Forecasting: A Handbook for Researchers and
Practitioners. International Series in Operations Research and Management Sci-
ence. Springer, Dordrecht (2001). https://doi.org/10.1007/978-0-306-47630-3

13. Zhang, P.: Time series forecasting using a hybrid ARIMA and neural network
model. Neurocomputing 50, 159–175 (2003)

14. Emami, A., Sarvi, M., Asadi Bagloee, S.: Using Kalman filter algorithm for short-
term traffic flow prediction in a connected vehicle environment. J. Mod. Transp.
27, 222–232 (2019)

15. Ross, P.: Exponential filtering of traffic data. Number 869 in Transportation
Research Record. National Academy of Sciences (1982)

16. Clark, S., Grant-Muller, S., Chen, H.: Using non-parametric tests to evaluate traffic
forecasting performance. J. Transp. Stat. 5, 47–56 (2002)

17. Stathopoulos, A., Karlaftis, M.: A multivariate state space approach for urban
traffic flow modeling and prediction. Transp. Res. Part C Emerg. Technol. 11,
121–135 (2003)

18. Chen, H., Grant-Muller, S.: Use of sequential learning for short-term traffic fore-
casting. Transp. Res. Part C Emerg. Technol. 9, 319–336 (2001)

19. Di Gangi, M., Croce, A.: Combining simulative and statistical approach for
short time flow forecasting. In: Proceedings of ETC 2005, Transport Policy and
Operations-Traffic Engoneering and Street Management-Intergrated Traffic Man-
agement II, Strasbourg, France, 18–20 September 2005 (2005)

20. Cascetta, E., Inaudi, D., Marquis, G.: Dynamic estimators of origin-destination
matrices using traffic counts. Transp. Sci. 27, 363–373 (1993)

21. Di Gangi, M.: Modeling evacuation of a transport system: application of a multi-
modal mesoscopic dynamic traffic assignment model. IEEE Trans. Intell. Transp.
Syst. 12, 1157–1166 (2012)

22. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans.
ASME J. Basic Eng. 82(1), 35–45 (1960)

https://doi.org/10.1007/978-0-306-47630-3

Data Distribution and Analytics

Multi-source Distributed System Data
for AI-Powered Analytics

Sasho Nedelkoski1(B), Jasmin Bogatinovski1, Ajay Kumar Mandapati1,
Soeren Becker1, Jorge Cardoso2,3, and Odej Kao1

1 Technische Universität Berlin, Berlin, Germany
{nedelkoski,jasmin.bogatinovski,ajaykumar.mandapati,

soeren.becker,odej.kao}@tu-berlin.de
2 Huawei Munich Research Center, Munich, Germany

jorge.cardoso@huawei.com
3 Department of Informatics Engineering/CISUC, University of Coimbra,

Coimbra, Portugal

Abstract. The emerging field of Artificial Intelligence for IT Opera-
tions (AIOps) utilizes monitoring data, big data platforms, and machine
learning, to automate operations and maintenance (O&M) tasks in com-
plex IT systems. The available research data usually contain only a single
source of information, often logs or metrics. The inability of the single-
source data to describe precise state of the distributed systems leads to
methods that fail to make effective use of the joint information, thus,
producing large number of false predictions. Therefore, current data lim-
its the possibilities for greater advances in AIOps research. To over-
come these constraints, we created a complex distributed system testbed,
which generates multi-source data composed of distributed traces, appli-
cation logs, and metrics. This paper provides detailed descriptions of
the infrastructure, testbed, experiments, and statistics of the generated
data. Furthermore, it identifies how such data can be utilized as a step-
ping stone for the development of novel methods for O&M tasks such as
anomaly detection, root cause analysis, and remediation.

The data from the testbed and its code is available at https://zenodo.
org/record/3549604.

Keywords: AIOps · Distributed system · Dataset · Tracing ·
Metrics · Logs · Anomaly detection · Root-cause analysis

1 Introduction

AIOps refers to multi-layered technology platforms that automate and enhance
IT operations by using analytics and machine learning [6]. AIOps was introduced
to reduce the cost and increase the effectiveness of O&M tasks on ever-increasing
complex public, private, edge, mobile, and hybrid cloud environments. The
transition from mainframes, to virtual machines, to containers, and serverless
computing made existing approaches and tools which rely on simple statistical
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 161–176, 2020.
https://doi.org/10.1007/978-3-030-44769-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_13&domain=pdf
https://zenodo.org/record/3549604
https://zenodo.org/record/3549604
https://doi.org/10.1007/978-3-030-44769-4_13

162 S. Nedelkoski et al.

methods obsolete due to the increasing complexity and communication patterns
between services. Notable examples include Zabbix, Cacti, and Nagios [17,33].

Monitoring data is a key element of new AIOps tools and one of the corner-
stones of research. The data generated by distributed IT systems can be classified
into three main categories: metrics, application logs, and distributed traces [30].
Metrics are numeric values measured over a period of time. They describe the
utilization and status of the infrastructure, typically regarding CPU, memory,
disk, network throughput, and service call latency. Application logs enable devel-
opers to record what actions were executed at runtime by software. Service,
microservices, and other systems generate logs which are composed of times-
tamped records with a structure and free-form text. Distributed traces record
the workflows of services executed in response to requests, e.g., HTTP or RPC
requests. The records contain information about the execution graph and per-
formance at a (micro)service level.

Recently, various approaches – focusing on a wide range of datasets, O&M
tasks, and IT systems – have been proposed. This includes variety of tasks, which
extract knowledge from a specific type of data. For example, anomaly detection
has been applied to metrics (numeric) [11,26,27], logs (unstructured numeric and
text data) [4,7,24], and also to distributed system traces (unstructured numeric
and text data) [18,19].

The existing research has mainly explored publicly available data, which usu-
ally captures only a single data source category. This limits both the development
of new methods that could extract knowledge from multi-source data and their
proper evaluation. The absence of data repositories capturing the three data cat-
egories from modern distributed systems prevents the development of methods
for multi-source mining, knowledge extraction, semantic information learning
from the naturally linked data sources. Furthermore, enables fault detection,
root-cause analysis, and remediation that could give advances in the field as
existing approaches typically produce a large number of false positives.

We address this issues by producing the following contributions:

– A new data of metrics, logs, and traces generated by a distributed system
based on microservice architecture.

– Description of the approach developed to generate the multi-source system
data and its statistics.

– Analysis of existing datasets utilized for the evaluation of AIOps algorithms,
highlighting their benefits and their limitations.

– Applications of the multi-source data to develop new algorithms to support
additional O&M tasks.

Specifically, during the development and data generation process, we derived
the following requirements.:

R1 Originality. The data should fill the gaps in existing datasets for vari-
ous AIOps tasks including anomaly detection and root-cause analysis. Moreover
should open new possibilities for the development of novel methods for O&M
tasks.

Multi-source Distributed System Data for AI-Powered Analytics 163

R2 Reusability. The data should be modular and open for and adaptable
to various use cases. Next to that, the system should be easy to handle. This
should allow development of single- and multi-source methods.

R3 Quality. The data should be analyzed before publishing, free of errors,
and directly usable.

R3 Extendability. The testbed generating the data should allow differ-
ent system configurations, fault injections, workloads, and thus data generation
which suits the real production scenario of various interested parties.

2 Related Work

Metrics, logs, and traces are important data sources that are fundamental to the
operation of complex distributed systems. In following we study related work for
these data accordingly.

The metric data is a common way to extract useful information for describ-
ing the state of the system. However, often it is not sufficient and reliable to
model the complex systems. The metrics data are obtained from monitoring of
the resources such as CPU, memory, disk and network throughput and latency.
A plethora of available collections of datasets containing metric data can be
found in Stonybrook [31], where multiple datasets for different tasks related to
anomaly detection can be found. Numenta [1] predominantly contains datasets
from streaming and real-time applications, while Harvard [9], ELKI [8], LMU [15]
store network intrusion data. Recently, there are multiple studies which utilize
these datasets for anomaly detection, root-cause analysis, and remediation. In
Subutai et al. [1], a novel anomaly detection method based on hierarchical tem-
poral memory (HTM) is introduced. It enables anomaly detection in the stream-
ing setting to tackle the problems of concept drift and the problem of multiple
streaming sources utilizing metrics data. In Schmidt et al. [26], an unsupervised
anomaly detection framework is developed and applied to real-time monitoring
data in a distributed environment.

The main challenge that AIOps systems analyzing log data are facing is the
unstructured nature of the logs. This problem usually requires prior and proper
preprocessing and/or inclusion of domain knowledge. Often, approaches extract
log key identifiers for the logs and are modeling their sequences. There exist two
resources of log data for cluster systems available. The CFDR resource [3] stores
links or 19 log datasets grouped in 11 data collections. The datasets cover both
hardware and software logs. The second resource is the loghub data resource [35].
It consists of 16 datasets describing systems spanning across distributed sys-
tems, supercomputers, operating systems, mobile systems, server applications
and standalone software. The datasets cover a different time from a few days
until a few months. From the perspective of the system description, these data
have weakness in providing just a single aspect of the system. In Meng et al. [16]
the LogAnomlay system for detection of anomalies from logs is introduced. It
utilizes a novel template2vec technique to encode the logs. Further, it extracts
quantitative patterns from the logs. It uses LSTMs to detect the sequential and

164 S. Nedelkoski et al.

quantitative anomalies in the logs. In Zheng et al. [7] the DeepLog system is
introduced. It tries to model the logs as natural language sequences. It allows to
update the model by the operator and provides an automatic reconstruction of
the workflows to enable root cause analysis.

In microservice architectures, traces are graph-like structures composed of
events or spans [22]. The traces represent the system execution workflow, hence
detailed information for individual services and the causal relationship to other
related services can be inferred. Nedelkoski et al. [18,19] introduce novel anomaly
detection methods for distributed tracing data. They proposed a multimodal
neural network with long short-term memory (LSTM) to enable the learning
from the sequential nature in the tracing data. They describe how the data
is obtained, but the datasets are not publicly available. Azure Public dataset
composes of two datasets representing two representative traces of the virtual
machine of Microsoft Azure [5]. It is mostly utilized to improve resource man-
agement in large cloud platforms. Alibaba’s cluster data is a collection of two
datasets from real-world production [2,14,28]. In Zhen et al. [28] a novel system
which automatically diagnoses stragglers for jobs is introduced. Li et al. [14]
propose a deep reinforcement learning approach towards the job scheduling
task. It can automatically obtain a fitness calculation method that optimizes
the throughput of a set of jobs from experience. Google’s collection of two trac-
ing datasets originates from parts of Google cluster management software and
systems [10].

Limitation for all the above-mentioned datasets is the absence of multi-source
(view) data describing a single system. The lack of data from all observability
components from one system does not allow the development of holistic systems
for fault detection, root-cause analysis and remediation that consider multi-
ple sources of data simultaneously. Our collection of data, describing the same
system from the 3 perspectives of logs, metricise and traces, to the best of our
knowledge, is the first of its kind. This enables building models with diverse com-
plementary information, hence making AIOps systems to perform better [19].

3 Dataset Generator

In this section, we describe the infrastructure, experiments, workload, and the
injected faults as part of the testbed for data generation. The testbed and the
generated data follow the requirements stated above, as every parameter stated
in following can be easily changed, satisfying part of R2, and R4.

3.1 Infrastructure

An OpenStack [29] testbed based on a microservice architecture that is run-
ning in a dockerized environment called Kolla-Ansible [13] was first deployed.
OpenStack is a cloud operating system that controls large pools of computing,
storage, and networking resources throughout a data-centre, all managed and
provisioned through APIs with common authentication mechanisms.

Multi-source Distributed System Data for AI-Powered Analytics 165

The experimental testbed setup is shown in Fig. 1 and for the purpose of
the generation of the data it consists of one control node named wally-113 and
four compute nodes: wally-122, wally-123, wally-124, and wally-117. It was
deployed on bare-metal nodes of a cluster where each node has RAM 16 GB, 3x
1TB of disks, and 2x 1Gbit Ethernet NIC. Three hard disks were combined to
a software RAID 5 for data redundancy.

API Services
API Services

API Services

Trace generation and
collection

MQDB

Lo
ad

 b
al

an
ce

r

Compute nodes
wally x

117, 122, 123, 124

Services

Control node
wally 113

Faults

Kibana

Fluentd

Elastic-search

Metrics
(glances)

Monitorinig and Logging

UI / DashboardsWorkloads and faults

Redis

Logs
Metrics
Traces

Rally
Execution of

workloads
and injection of faults

Fig. 1. Illustration of the infrastructure from where the data was generated.

3.2 Workloads and Faults Injected

To generate workloads and inject faults into the infrastructure we used Rally
[25]. Rally docker image was used to create the load and inject os-faults [23]
appropriately. Jasmin: We selected a list of workloads and faults that are close
representatives to real production faults. The listed workloads and faults in
following cover user request that is served by the main Openstack projects.

– Create and delete server. Jasmin: Creates and deletes a server (virtual
machine). Nova project is mostly affected and present in the data. We injected
a compute fault which is restarting the api container that run on the compute
nodes.

– Create and delete image. Jasmin: The task for creating and deleting images
accepts the image-location locally/ over the internet, format of the output
image once created. It creates and deletes an image. The glance project of
Openstack provides a service where users can upload and discover data assets
that are meant to be used with other services. Here we inject the fault in the
glance-api running on the controller node.

166 S. Nedelkoski et al.

– Create and delete network. Jasmin: Rally provides task that accepts the for-
mat for creating and deletion of networks for various configurations such as
multiple users and tenants. Neutron is an OpenStack project to provide net-
working as a service between interface devices (e.g., vNICs) managed by other
Openstack services (e.g., nova, heat etc). There are various components that
we focus on while injecting faults such as disrupting the below-mentioned ser-
vices running in docker containers: neutron metadata agent, neutron l3
agent, neutron dhcp agent, neutron openvswitch agent and neutron
server.

We performed two different experiments. In the first experiment, the user
actions as a workload were executed in a sequential way, when one finishes then
the next is started. This experiment was performed for 750, 1000, and 1000
iterations (create and delete server, create and delete image, create and delete
network), where faults were injected every 250 iterations respectively. The fault
was injected in only one iteration, however, we noticed that some of the faults
take time and propagate the errors to other iterations as well. In the second
experiment, the rally workloads were concurrently executed. This experiment
was performed for 2000, 3000, and 6000 iterations for create and delete server,
create and delete image and create and delete network, respectively. The faults
were injected at different rates, 250 for create and delete server and create and
delete image and 500 iterations for create and delete network. The number of
the iterations for each action was chosen so that all workloads approximatelly
finish in the same time. The data from the second experiment is slightly more
suited for multi-source methods utilizing distributed log data, as it was generated
with that as a goal. Also, HTML reports were collected which correlates all the
events of creations, failures and which injections were made. This report serves
as ground truth for the normal and anomalous state of the system.
Jasmin:

3.3 Data Collection

In following we describe the technologies and the methods used to collect the
generated data.

Metrics. For the metrics collection across the physical nodes in the infrastruc-
ture, we utilize Glances [20], a cross-platform monitoring tool which aims to
present a maximum of information into a minimal space through curses or Web-
based interface. Glances is written in Python and uses the psutil library to
get information from a system. It can adapt dynamically the displayed informa-
tion depending on the terminal size. It can also work in client/server mode, also
remote monitoring could be done via terminal, Web interface or API (XMLRPC
and RESTful). Glances was used to gather information such as CPU, MEM and
load of the machine (either controller or the compute nodes). These metrics were
saved into a CSV file via the glances-cli.

Multi-source Distributed System Data for AI-Powered Analytics 167

Logs. OpenStack services use standard logging levels. For aggregating logs from
all services running across the physical nodes, was used ELK (Elasticsearch,
Logstash, and Kibana). Elasticsearch is a search and analytics engine which
resolves the search requests. Logstash is a server-side data processing pipeline
that ingests data from multiple sources simultaneously, transforms it, and then
sends it to Elasticsearch. For this Fluentd, which is an open-source data collector
for the unified logging layer, was utilized. It allows unifying data collection and
consumption for better use and understanding of data. Kibana is a dashboard
that gives the ability to the users to visualize data with charts and graphs
using data that is collected by Elasticsearch. Finally, for exporting data from
Elasticsearch into CSV a CLI tool, es2csv [32] was utilized. The benefit we
obtain from this tool is that it can query bulk docs in multiple indices and get
only selected fields, this reduces query execution time and enhances the speed of
aggregating these logs that are existing on various physical nodes. We provide
both, the aggregated logs as well as the raw logs to cover possible development
of methods that process raw logs, such as log parsing.

Traces. OpenStack consists of multiple projects, where each project is com-
posed of multiple services. To process user requests, e.g., creating a virtual
machine, OpenStack uses multiple services from different projects. To sup-
port troubleshooting, OpenStack introduces a small but powerful library called
osprofiler that is used by all OpenStack projects and their Python clients [21]
to generate traces. It generates one trace per request, that goes through all
involved services, and builds a tree of calls which captures a workflow of service
invocations. To identify workflows, we monitor the following call types:

– HTTP. Captures HTTP requests, the latency of service, and projects
involved.

– RPC. Represent the duration of parts of request related to different services
in one project.

– DB API. The time that the request spent in the DB layer.
– Driver. In the case of nova, cinder and others we have vendor drivers.

The osprofiler library collects these records in a trace per request and
stores them in a database (e.g., Redis). From Redis, we can query and analyze
traces.

4 Dataset Description

The workloads and faults described in the previous section were executed on the
testbed. As explained, the execution generated three main categories of observ-
ability data: distributed traces, metrics, and application logs. These data were

168 S. Nedelkoski et al.

recorded in concurrently in order to provide the state of the system from multi-
ple points of view, which satisfies the R1 for originality as no such dataset exists
in previous work. In the following two sections, we describe the main attributes,
properties, and statistics of each data category of the first experiment. Due to
page limitations, we refer the reader to the above link in the abstract for the
code for extracting the data statistics from the second experiment. All other
properties hold for both experiments.

4.1 Metrics

The metrics data category contains data for the 5 physical nodes in the infras-
tructure. The 5 files are named metrics wally N, where N is either the controller
node or one of the compute nodes. Each of these files has 7 features:

– now. The timestamp of the recording.
– cpu.user. Percent time spent in userspace. The user CPU time is the time

spent on the processor running your program’s code (or code in libraries).
– mem.used. The RAM usage of the physical host.
– load.cpucore. The number of cores of the physical host.
– load.min1, min5, min15. Linux load averages are system load averages that

show the running tasks demand on the system as an average number of run-
ning plus waiting threads. This measures demand, which can be greater than
what the system is currently processing.

A small sample of the metrics data for the wally113 is shown in Table 1
where we can see part of the metrics data.

Table 1. Metrics from the controller node (wally 113)

timestamp cpu.user mem.used (B) load.
cpucore

load.
min1

load.
min5

load.
min15

2019-11-19 16:56:32 11.5 10221035520 8 0.8 1.02 1.18

2019-11-19 16:56:32 10.4 10221117440 8 0.8 1.02 1.18

2019-11-19 16:56:33 11.1 10222948352 8 0.8 1.02 1.18

2019-11-19 16:56:33 14.3 10223144960 8 0.8 1.02 1.18

2019-11-19 16:56:34 10.7 10222866432 8 0.8 1.02 1.18

2019-11-19 16:56:34 10.7 10223480832 8 0.8 1.02 1.18

4.2 Logs

The log files are distributed over the infrastructure and they are grouped in
directories by the OpenStack projects (e.g., nova, neutron, glance, etc.) at the
wally nodes. At each of the physical nodes, there are different project running.
The control node has more services running and thus has more log files for the

Multi-source Distributed System Data for AI-Powered Analytics 169

OpenStack projects. Each project on the physical hosts has its log directory
where the logs are stored. Inside each of the log directories for the projects,
there are several log files. Important to note here is that even the log files are
highly distributed over projects and physical nodes, they all represent the state
of the system. We provide the raw log directories in this dataset along with the
aggregated log file. Using the elastic search and Kibana stack we can aggregate
all the logs into a central database which can serve as a starting point for the
analysis.

The log entries have in total of 23 features. Not all the features are always
present for all the log entries. The features: id, index, score are added meta-
data from Kibana. The type is fluent, the collector which is responsible for
sending all the metrics and logs to Kibana. In the following, we describe the
main features present in the log data.

– hostname. Name of the physical host (e.g., wally113)
– user id, project domain, tenant id, request id, user domain,
domain id. Are features describing the user request to Openstack.

– timestamp, @timestamp. The time when the record was created.
– log level. Describes the level of the log entry. It can be info, error, warning,

etc.
– pid. Process ID.
– Payload. Gives the most important information of the log i.e., the body of

the log entry.
– programname. The OpenStack project that generated the log entry.
– python module The module responsible for generation of the log entry, and

the
– logger Tells which project logs the event.
– http * related fields. Are only present if there is an HTTP call describ-

ing the endpoint, status core, version, and the method.

For the parsing of the logs, template matching, and analysis we suggest using
the aggregated file described instead of the directories with raw log files, as all
of the information is preserved and more structured for direct analysis. For
multi-source log anomaly detection, if the aggregated file is utilized, we sug-
gest splitting by “logger” in order to obtain entries which are grouped by their
corresponding service.

4.3 Traces

The traces in the dataset are contained in 3 directories: boot delete, cre-
ate delete image, and network create delete. Each of the directories contains the
scripts for running the workload and the fault injections along with the actual
tracing data. These directories contain JSON files of the traces. This structure
is preserved among all types of workloads (Rally actions).

Every trace has its features in the JSON entries or events. These features
depend on multiple factors such as the user request, infrastructure, load bal-
ancers, and caching. An event is a vector of key-value pairs (ki, vi) describing

170 S. Nedelkoski et al.

the state, performance, and further characteristics of service at a given time ti.
In following we describe the main features of the events in a trace:

– host. Name of the physical host.
– name. Event name (e.g., compute apistop).
– service. Service name (e.g., osapi compute).
– project, Openstack project (e.g., nova).
– timestamp. The time when the event is recorded.
– trace id. ID of the span (contains two events, e.g., compute api-stop and

compute api-start).
– parent id. The parent id gives the ID of the parent event. This attribute can

be used to represent the trace in a graph.
– base id. ID of the trace, different events and spans with same base id belong

to one trace.

Two start and stop events (e.g., compute apistart and compute apistop) with
the same trace id. The subtraction between the stop timestamp and the start
timestamp gives the duration of the span. The above features together with
the duration are the most important in describing the structure, preserving the
parent-child causal relationship, and the duration which represents the response
time of the service invoked.

The events also contain other attributes that can be found for specific types.
For example, path, scheme, method for HTTP calls, where the path and scheme
represents the HTTP endpoint and HTTP scheme and method can be GET or
POST. Further, the db statement in DB calls gives information about the SQL
query, while the function, name, args, kwargs in RPC calls tell which function
was invoked with the its corresponding arguments.

4.4 Ground Truth Labels

The workloads described along with the faults injected are both recorded in Rally
HTML and JSON reports which are located at each of the directories containing
trace data. These reports provide pseudo ground truth labels for the traces,
metrics, and logs. They contain information for the times when the faults were
injected and the resulting high level error messages. Taking the period when the
anomaly was injected and merging it with the timestamps of the data files can
give us true labels for the evaluation. We suggest to use the ground truth labels
to evaluate algorithms and methods which are based on unsupervised learning,
as in production systems injection of anomalies and access to labeled data is
restricted.
Jasmin:

5 Dataset Statistics

This section provides a descriptive statistic of the datasets generated. It quan-
titatively describes the properties of the trace, metrics, and log datasets.

Multi-source Distributed System Data for AI-Powered Analytics 171

Additionally, it ensures the R3 and R2 requirements. In following, due to page
limitations, we discuss the statistics for the first experiment only. The code for
extracting the statistics for the second experiment is provided in the data repos-
itory.

5.1 Metrics

The number of recordings of the utilization of the resources, more specifically the
CPU, memory and the load, per node varies in the range of (108900, 298251).
The average number of recordings is 239127. The total number of the metric
recordings is 1195637. All of the nodes have 8 CPU cores. It is important to
note that the metrics data cover a time span larger than the period of execution
of the experiments.

As depicted in Figs. 2 a and b, in general, the wally113 experience the greatest
CPU and memory load as observed by the distribution of these two features. Fur-
thermore, the correlation analysis of the load.min1, load.min5 and load.min15
show that they exhibit high correlation given their relatedness through time.
The correlation analysis also shows quite distinct behaviour for the load.min5,
load.min10, load.min15 correlations between the control node and the remain-
ing nodes. Regarding the dependence between the cpu.user, memory.used and
load.min features, no significant correlation can be identified. Roughly 3 groups
of features emerge - the load.CPU, mem.used and the load.min group.

(a) Control node load (b) Compute node load

Fig. 2. Traces: counts of services per rally action

5.2 Logs

Since the logs are semi-structured data, first we try to organize them and observe
the range of interesting features that can appear in them. There are 139799

172 S. Nedelkoski et al.

Table 2. Traces information: count of operations per workload execution.

wsgi db comp.
api

nova
image

neutron
api

neutron
db

rpc

image create delete 11436 81321 0 0 0 0 0

network create delete 4692 14101 0 0 0 125321 855

boot delete 46591 125975 21572 752 313744 46642 36560

Table 3. Traces information: median time of a service per iteration

wsgi db comp.
api

nova
image

neutron
api

neutron
db

rpc

image create delete 0.046 0.001 0 0 0 0 0

network create delete 0.285 0.001 0 0 0 0.001 0.001

boot delete 0.0410 0.001 0.039 0.035 0.001 0.002 0.009

log messages appearing in the sequential execution of the operations. We used
Kibana to identify the different features describing them. Each log has its unique
identifier referenced by the label id. The Timestamp feature has 8 missing val-
ues. However, the timestamps provided by Kibana, stored in @timestamp contain
the relevant information for the moment where the logging happened.

There are a total of 6 services recording their logs in the OpenStack logger:
nova, neutron, keystone, glances, placement and cinder. Nova and neutron are
services with the greatest number of logs appearing. The logs contain 3 levels of
logging (INFO, WARNING and ERROR). There are 5 operation host nodes -
Hostname (wally113, wally117, wally122, wally123, wally124). Most of the logs
originate from the control node wally113. The python module contains the name
of the 61 modules that are logging their information into the logs with wsgi
related modules being the most frequent ones (neutron wsgi, nova.osapi wsgi
and server wsgi). The programname refers to the program which operations are
being executed. There are a total of 127654 different Payloads happened in the
system and the most frequent is related to the GET operation.

For the realized HTTP calls there is information for the http status with
6 different code values, http method with 4 possible values (GET, POST,
DELETE and PUT), http urls with a total of 3655 values and the ver-
sion of the http protocol stored ins http version. There are columns such
as domain id, user domain, tenant id, request id, user id, score, type,
project domain, Pid and domain id that have either very large or very small
variance in the number of unique values per feature. They represent start and
end point in form of IP address or a result from a hash function.

Multi-source Distributed System Data for AI-Powered Analytics 173

5.3 Traces

Table 2 represents the total number of services for each of the traces for the
three sequential operations being executed. It is given as a total sum over all the
repetition of the experiment. One can be observe that there are different service
invoked per operation. For example, for the image create delete operation the
open stack service involved is completely on the controller node, hence the com-
pute nodes are contacted and there is no operation related to them. The most
frequently occurring invocation is split between db and wsgi. Second the opera-
tions are ordered by complexity and it can be seen that the boot delete task
involves all of the 7 services.

Table 3 represents the median time of execution for each of the invoked ser-
vices. The median is chosen since the distributions are skewed and the mean is
not representative of the sample distribution. As it can be observed, the wsgi
services are slower than the db calls since wsgi relays on http communication.
It is interesting to observe that for the network create delete operation the rpc
is quite small. One explanation for this is the small rate of rpc call per individ-
ual execution. This means that not all executions of this operation involve rpc
calls. Since multiple workloads involve invoking different number of individual
operation the times should be compared with caution.

We inject the fault in the glance-api running on the controller node.

6 Applications of Multi-source AIOps

While previous work has been generally done on single-source data, we believe
that to develop robust, holistic approaches for anomaly detection, root-cause
analysis, self-healing, resource optimization, and performance analysis a multi-
source data is highly desirable.

In this section, we shortly describe possible AIOps approaches that can
exploit the benefits of processing multi-source observability data.

Multi-source Anomaly Detection. The distributed logs over projects and phys-
ical hosts enable multimodal end-to-end learning and more robust log anomaly
detection. Of course, this adds complexity for data integration and fusion, as
the distributed logs are produced with different timestamps. Together, the dis-
tributed logs and metrics can again be combined into more complex model or
network of models. Lastly, the graph-like structures of the tracing data can
be incorporated to complete the robust anomaly detection where all available
observability data is considered.

Root-Cause Analysis. The integration of multi-source observability data can
be exploited by using some kind of Fishbone diagrams [12] to find the root-cause
of problems. A method can start with simple metric-only anomaly detection,
which typically provides little information about the root-causes of problems,
and drill down to more complex data structures which are richer in explaining
anomalies. For example, one can start by analyzing the latency of microservices

174 S. Nedelkoski et al.

endpoints. If anomalies are detected after processing metrics, one can use the
timeframe when the anomaly occurred to select and analyze structural changes
in traces. Traces can provide information about which servers are possibly faulty.
Afterwards, application logs can be accessed to find the root-cause of problems.

Precision Increase. Ensemble learning [34] can be used to machine learning
algorithm results by combining several models applied to the three correlated
data sources categories. Such an approach would allow the production of algo-
rithms with better predictive accuracy when compared to the algorithms which
process single-data sources.

Feature Extension. Many machine learning algorithms rely on features, which
for AIOps are individual measurable characteristics of the behaviour of IT dis-
tributed systems at a given time. By using multi-source data, the spectrum of
available features to an algorithm is dramatically increased. Thus, we expect the
quality of algorithms and their results to increase in the future.

7 Conclusion

AIOps systems rely on suitable observability data. We released a multi-source
data containing distributed metrics, logs, and tracing data obtained from a
complex distributed system based on microservice architecture. We describe in
details the infrastructure, experiments performed, and the fault injection. Fur-
thermore, we provided descriptive statistical properties of the data.

Furthermore, we motivated possible applications of this data for improve-
ments in anomaly detection, root-cause analysis, remediation, and feature exten-
sion. We hope that this dataset will foster advances in the research of AIOps,
which has been limited mainly to explored data capturing only a single data
source category.

References

1. Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detec-
tion for streaming data. Neurocomputing 262, 134–147 (2017)

2. Alibaba trace data (2019). https://github.com/alibaba/clusterdata
3. CFDR (2019). https://www.usenix.org/cfdr-data
4. Correia, J., Ribeiro, F., Filipe, R., Arauio, F., Cardoso, J.: Response time charac-

terization of microservice-based systems. In: 2018 IEEE 17th International Sympo-
sium on Network Computing and Applications (NCA), pp. 1–5. IEEE, New Jersey
(2018)

5. Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., Bianchini, R.:
Resource central: understanding and predicting workloads for improved resource
management in large cloud platforms. In: Proceedings of the International Sym-
posium on Operating Systems Principles (SOSP) (2017)

6. Dang, Y., Lin, Q., Huang, P.: AIOps: real-world challenges and research innova-
tions. In: Proceedings of the 41st International Conference on Software Engineer-
ing: Companion Proceedings, pp. 4–5. IEEE Press (2019)

https://github.com/alibaba/clusterdata
https://www.usenix.org/cfdr-data

Multi-source Distributed System Data for AI-Powered Analytics 175

7. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diagnosis
from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1285–1298. ACM, New
York (2017)

8. ELKI (2019). https://elki-project.github.io/datasets/outlier
9. Goldstein, M.: Unsupervised Anomaly Detection Benchmark (2015). https://doi.

org/10.7910/DVN/OPQMVF
10. Google trace data (2019). https://github.com/google/cluster-data
11. Gulenko, A., Schmidt, F., Acker, A., Wallschlager, M., Kao, O., Liu, F.: Detect-

ing anomalous behavior of black-box services modeled with distance-based online
clustering. In: 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), pp. 912–915. IEEE, New Jersey (2018)

12. Ishikawa, K.: Guide to Quality Control. JUSE, Tokyo (2012)
13. Kolla-ansible’s documentation. https://docs.openstack.org/kolla-ansible/latest/
14. Li, F., Hu, B.: DeepJS: job scheduling based on deep reinforcement learning in

cloud data center. In: Proceedings of the 2019 4th International Conference on Big
Data and Computing, pp. 48–53. ACM, New York (2019)

15. LMU (2019). https://www.dbs.ifi.lmu.de/research/outlier-evaluation/
16. Meng, W., et al.: LogAnomaly: unsupervised detection of sequential and quantita-

tive anomalies in unstructured logs. In: Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China,
10–16 August 2019, pp. 4739–4745 (2019)

17. Nagios enterprises. https://github.com/NagiosEnterprises
18. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection and classification using

distributed tracing and deep learning. In: 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 241–250.
IEEE, New Jersey (2019)

19. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection from system tracing data
using multimodal deep learning. In: 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), pp. 179–186. IEEE, New Jersey (2019)

20. Nicolargo: nicolargo/glances (2019). https://github.com/nicolargo/glances
21. Openstack: openstack/osprofiler. https://github.com/openstack/osprofiler
22. OpenZipkin: openzipkin/zipkin (2018). https://github.com/openzipkin/zipkin
23. Performa: os-faults. https://opendev.org/performa/os-faults
24. Pina, F., Correia, J., Filipe, R., Araujo, F., Cardoso, J.: Nonintrusive monitoring

of microservice-based systems. In: 2018 IEEE 17th International Symposium on
Network Computing and Applications (NCA), pp. 1–8 (2018)

25. Rally. https://rally.readthedocs.io/en/latest/
26. Schmidt, F., et al.: IFTM - unsupervised anomaly detection for virtualized network

function services. In: 2018 IEEE International Conference on Web Services (ICWS),
pp. 187–194. IEEE, New Jersey (2018)

27. Schmidt, F., Suri-Payer, F., Gulenko, A., Wallschläger, M., Acker, A., Kao, O.:
Unsupervised anomaly event detection for cloud monitoring using online arima.
In: 2018 IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), pp. 71–76. IEEE, New Jersey (2018)

28. Shen, H., Li, C.: Zeno: a straggler diagnosis system for distributed computing using
machine learning. In: Yokota, R., Weiland, M., Keyes, D., Trinitis, C. (eds.) ISC
High Performance 2018. LNCS, vol. 10876, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-92040-5 8

29. Shrivastwa, A., Sarat, S., Jackson, K., Bunch, C., Sigler, E., Campbell, T.: Open-
Stack: Building a Cloud Environment. Packt Publishing, Birmingham (2016)

https://elki-project.github.io/datasets/outlier
https://doi.org/10.7910/DVN/OPQMVF
https://doi.org/10.7910/DVN/OPQMVF
https://github.com/google/cluster-data
https://docs.openstack.org/kolla-ansible/latest/
https://www.dbs.ifi.lmu.de/research/outlier-evaluation/
https://github.com/NagiosEnterprises
https://github.com/nicolargo/glances
https://github.com/openstack/osprofiler
https://github.com/openzipkin/zipkin
https://opendev.org/performa/os-faults
https://rally.readthedocs.io/en/latest/
https://doi.org/10.1007/978-3-319-92040-5_8

176 S. Nedelkoski et al.

30. Sridharan, C.: Distributed Systems Observability: A Guide to Building Robust
Systems. O’Reilly Media, Sebastopol (2018)

31. Oregon (2019). http://odds.cs.stonybrook.edu/
32. Taraslayshchuk: taraslayshchuk/es2csv (2018). https://github.com/taraslayshchu

k/es2csv
33. Zabbix. https://github.com/zabbix
34. Zhang, C., Ma, Y.: Ensemble Machine Learning: Methods and Applications, 1st edn,

p. 332. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-9326-7
35. Zhu, J., et al.: Tools and benchmarks for automated log parsing. In: Proceedings of

the 41st International Conference on Software Engineering: Software Engineering
in Practice, pp. 121–130. IEEE Press, Piscataway (2019)

http://odds.cs.stonybrook.edu/
https://github.com/taraslayshchuk/es2csv
https://github.com/taraslayshchuk/es2csv
https://github.com/zabbix
https://doi.org/10.1007/978-1-4419-9326-7

Blockchain- and IPFS-Based Data
Distribution for the Internet of Things

Simon Krejci, Marten Sigwart, and Stefan Schulte(B)

Distributed Systems Group, TU Wien, Vienna, Austria
{s.krejci,m.sigwart,s.schulte}@dsg.tuwien.ac.at

https://www.dsg.tuwien.ac.at

Abstract. Distributing data in a tamper-proof and traceable way is a
necessity in many Internet of Things (IoT) scenarios. Blockchain tech-
nologies are frequently named as an approach to provide such function-
ality. Despite this, there is a lack of concrete solutions which integrate
the IoT with the blockchain for data distribution purposes.

Within this paper, we present a middleware which connects to IoT
devices, and uses a blockchain to distribute IoT data with guaranteed
integrity. Furthermore, the middleware also offers that data is distributed
in real-time via a second channel. We implement our solution using the
Ethereum blockchain and the InterPlanetary File System (IPFS).

Keywords: Internet of Things · Blockchain · Data distribution · IPFS

1 Introduction

The Internet of Things (IoT) is a worldwide network of interconnected devices,
which are able to process and store data, and in many cases provide sensor and
actuator capabilities [3]. Blockchains are well-known as the underlying tech-
nology for cryptocurrencies like Bitcoin [16], but have also been named an
enabling (and potentially disruptive) technology for application areas like supply
chains [14], smart healthcare [12], or smart factories [8]. In a lot of these areas,
it has been proposed to combine blockchains with IoT technology in order to
store data from objects like sensor nodes in a tamper-proof, decentralized way,
to process this data using smart contracts or off-chain, to distribute IoT data,
and to provide services on top of this data [5,7,23].

Despite the manifold options to use blockchain technologies in the IoT, there
are a number of challenges which complicate the wide-spread uptake of block-
chains in this area. To start with, IoT devices are often hardware- or energy-
constrained, and therefore do not provide the computational power necessary
to participate in a blockchain network. Also, executing transactions and stor-
ing data in blockchains is expensive, which is not in line with the large number
of interactions and the large amount of data to be distributed in typical IoT
scenarios [30].

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Brogi et al. (Eds.): ESOCC 2020, LNCS 12054, pp. 177–191, 2020.
https://doi.org/10.1007/978-3-030-44769-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44769-4_14&domain=pdf
http://orcid.org/0000-0001-6828-9945
https://doi.org/10.1007/978-3-030-44769-4_14

178 S. Krejci et al.

Therefore, one particular question is how lightweight IoT devices can inter-
act with blockchains in order to exchange data. Current research focuses on
building specific blockchains for the IoT [6], with the explicit goal to provide
more lightweight blockchain protocols. However, novel blockchain protocols do
not only contribute to a significant fragmentation of the blockchain research and
development field [24], but may also suffer from a smaller user base as well as
a higher likelihood of bugs [17]. Therefore, it would be favorable if IoT devices
could use existing, mature blockchains.

To achieve this, the work at hand presents a middleware for IoT applications,
which facilitates the distribution of data via a blockchain, in case data integrity
needs to be ensured. Because of the inherent overhead of using blockchain tech-
nologies for data distribution, the middleware explicitly facilitates data exchange
also via a second channel. The second channel allows data distribution in (near)
real-time, but does not provide the same integrity guarantees as the on-chain
data exchange. We implement the middleware and test its performance in a fog
setting, i.e., take into account that in many IoT scenarios, it is useful to host
such a middleware at the edge of the network.

The remainder of this paper is organized as follows: In Sect. 2, we discuss the
related work. In Sect. 3, we present the design and implementation of the mid-
dleware. Afterwards, we evaluate the middleware in Sect. 4. Finally, we conclude
the paper in Sect. 5.

2 Related Work

The utilization of blockchains in the IoT has been proposed in many different
papers. Typical IoT-related use cases are the utilization of blockchains to enable
a tamper-proof log of IoT events, e.g., [21,27], the management of access control
data, e.g., [18], or the purchase of assets, such as IoT sensor data, e.g., [30,31].

With regard to the storage and distribution of IoT data, Huh et al. [9] propose
the utilization of Ethereum-based smart contracts in order to enforce policies
for smart devices. Prybila et al. [21] present a solution to exchange data about
distributed events in supply chains via the Bitcoin blockchain. Liu et al. [13]
introduce a blockchain-based data integrity framework for IoT data, based on
Ethereum smart contracts. Pešić et al. [19] present a high-level concept for apply-
ing blockchains in the IoT, following a blockchain-as-a-service model. Amongst
other topics, the authors mention that this could be used for data sharing pur-
poses. The concept has not been implemented so far. Shafagh et al. [25] propose a
blockchain-based data management solution for the IoT, but also do not provide
an implementation. However, such a proof-of-concept is presented by Sharma et
al. [26] in their work on establishing a fog- and blockchain-based infrastructure
for data exchange and computational tasks in the IoT.

Ali et al. [2] discuss the utilization of blockchains to enable data privacy in
the IoT. Data items are stored in the IPFS, while the according data hashes are
stored on the chain. The IPFS [4] is a Peer-to-Peer (P2P) distributed file system.
It combines concepts of Distributed Hash Tables (DHTs), the Self-certifying File
System (SFS), BitTorrent, and the version control system Git. The aim of the

Blockchain- and IPFS-Based Data Distribution for the IoT 179

IPFS project is to connect all computing devices with one common file system.
An advantage of the distributed architecture of IPFS is that the nodes in the
network do not have to trust each other and no user or node is privileged. This
makes the IPFS an obvious choice to be used as a distributed file system together
with a blockchain. Therefore, we also utilize IPFS in the work at hand.

Notably, Ali et al. [2] provide a decentralized data access model for the IoT,
while in our work, the focus is on a middleware which helps to use blockchain
capabilities in applications to distribute IoT-based data items. The data man-
agement part including the IPFS integration of data items presented by Ali et al.
has not yet been implemented by the authors. Nevertheless, this concept comes
closest to the work at hand.

To the best of our knowledge, none of the so-far discussed approaches to dis-
tribute IoT data via blockchains provides a proof-of-concept implementation for
blockchain-based data distribution. However, this is done by Meroni et al. [15],
who focus on artifact-driven process monitoring and apply both the Ethereum
blockchain and IPFS for this.

A second important field of related work is the enhancement of current
blockchain technologies to provide more lightweight solutions with regard to
the computational power and energy consumption needed by a blockchain. One
particular drawback of standard Proof-of-Work (PoW)-based blockchains is the
extensive energy consumption [28]. This is especially an issue in the IoT, where
devices may be battery-powered. Different specific-purpose blockchains for the
IoT have been proposed to overcome this issue: Dorri et al. [6] present a hierar-
chical blockchain architecture consisting of multiple private immutable ledgers
which IoT devices can connect to. A public overlay blockchain links the indi-
vidual private ledgers. Zyskind et al. [32] present the Enigma platform, which
uses a DHT to store data and to perform heavyweight, costly computational
tasks off-chain. The IOTA Foundation [20] follows an entirely different approach
for providing the benefits of distributed ledgers in the IoT. They deploy the so-
called tangle, which does not organize transactions in blocks. Instead, individual
transactions reference each other, forming a Directed Acyclic Graph (DAG).

As pointed out in Sect. 1, we believe that the utilization of already existing
blockchain protocols is beneficial because of the more mature technology and
the bigger user base, compared to novel protocols [17,24]. Nevertheless, the con-
ceptualization and implementation of IoT-specific blockchain protocols is surely
a promising research direction.

3 Solution Architecture

As pointed out in Sect. 1, blockchain technologies can provide different benefits
in IoT settings, including, but not limited to (i) exchanging computational power
through decentralized smart contracts, (ii) the tamper-proof record of transac-
tions on the blockchain for auditing or accounting purposes or simply for data
distribution, and (iii) increasing the trust in distributed data [7,11,23]. Within
the work at hand, we focus on blockchain-based data distribution in the IoT.

Besides the opportunities the blockchain may provide to the IoT, there are
also challenges which need to be addressed. As pointed out above, the energy and

180 S. Krejci et al.

resource demands of state-of-the-art blockchain protocols may be problematic
for constrained IoT devices.

Latency is another challenge: In many cases, IoT-based applications need to
react to real-world events in a timely manner. However, contemporary block-
chains possess long block times, which means that it may take a certain amount
of time until a transaction is added to a block: A frequently named example
is Bitcoin’s median inter-block time of 10 min, but even Ethereum’s inter-block
time of 13 to 20 s1 might be too long for time-sensitive IoT applications. Notably,
even a short inter-block time does not guarantee that a transaction is added to
a block in due time, since a number of different factors play a role by when a
transaction is actually added to a blockchain, e.g., the current load of the min-
ers, the number of transactions in the transaction pool, transient connectivity
issues, and the transaction fee a participant might be willing to pay [29].

Taking into account the potential benefits as well as challenges when using
blockchain technologies, it should be foreseen that the blockchain does not
become the only means to provide a particular functionality, e.g., data distri-
bution, in the IoT. In order to achieve this, we conceptualize and implement a
middleware which is able to collect data from IoT-based data sources like sensor
nodes, and to distribute the data via two different channels.

The middleware provides the means to handle the demands of time-sensitive
IoT applications, and to distribute data on- and off-chain. For this, the following
functional requirements need to be fulfilled:

– Allow data collection from arbitrary IoT-based data sources: Naturally, the
middleware should allow interested stakeholders to collect data from different
types of IoT data sources, most notably sensor nodes.

– Access data in a time-sensitive manner: Data from the data sources should
be accessible within a given, guaranteed timeframe, if necessary.

– Access data with guaranteed integrity: The data which is collected should be
provided to stakeholders with guaranteed integrity. Notably, this functional
requirement may contradict the need for time-sensitive data access.

3.1 Architecture

Figure 1 gives an overview of the designed and implemented IoT-blockchain mid-
dleware. As it can be seen, the middleware provides the means to integrate arbi-
trary sensors via so-called sensor drivers. The middleware itself allows IoT clients
to communicate with the sensors via two dedicated data distribution channels,
i.e., the integrity channel and the real-time channel. The IoT client could be
an arbitrary software interested in the IoT data and may get data via any of
the two channels. Within the work at hand, we have implemented an IoT client
which is able to measure different performance metrics and therefore provides
the foundation for our evaluation (see Sect. 4).

1 https://etherscan.io/chart/blocktime, as of January 2020.

https://etherscan.io/chart/blocktime

Blockchain- and IPFS-Based Data Distribution for the IoT 181

MIDDLEWARE

Sensor Driver

Sensor Driver

Sensor Driver

Sensor Driver

IOT CLIENT

Broker

Storage

Blockchain Client Smart Contract

RE
AL

-T
IM

E
CH

AN
N

EL
IN

TE
G

RI
TY

 C
H

AN
NE

L

Fig. 1. Architecture overview

Notably, the middleware may run in the cloud or close to the IoT sensors,
i.e., at the edge of the network. A cloud-based middleware provides the bene-
fit that additional computational resources are available. The latter option can
be used in order to decrease the communication delay between the sensors and
the middleware, to benefit from a distributed architectural approach which mir-
rors the distribution of data sources in the IoT, and to allow the utilization of
lightweight, IoT-specific communication protocols, e.g., the Constrained Appli-
cation Protocol (CoAP) [1]. The basic approach to use computational devices in
the vicinity of the IoT-based data sources is also known as fog computing [22].

In the following subsections, we discuss the core components of our architec-
ture, i.e., the sensor drivers and the middleware including the data distribution
channels, in more detail.

Sensor Driver. A sensor driver acts as the interface between an arbitrary IoT
sensor and the middleware. Thus, it is responsible to collect the data from a
specific sensor, with every sensor having its own driver. It may be the case that
one sensor senses several phenomena, e.g., temperature and humidity. In such a
case, one sensor driver collects the values for all supported phenomena.

The collected data is provided via an interface to the middleware. For this, the
driver provides a phenomenon’s data via IoT-suitable data distribution channels.
In order to be able to differentiate the channels for different phenomena, each
phenomenon gets its own channel. In the further course of this paper, a sensed
phenomenon which is distributed via its own channel is referenced as data source.

Before the exchange between the driver and the middleware can be realized,
the driver has to register at the middleware. The idea behind this process is
that sensors can be added to the middleware dynamically, i.e., during system
runtime. This avoids a hard coding of driver connections into the middleware
and therefore adds flexibility. The registration workflow is made up from the
steps depicted in Fig. 2:

182 S. Krejci et al.

register

discover

data source links

Loop

[All data sources are observed]

Loop

[All data sources are observed]

Loop

[Until one actor terminates]

Loop

[Until one actor terminates]
notify

Sensor
Driver
Sensor
Driver MiddlewareMiddleware

observe data source

Fig. 2. Interactions between sensor drivers and middleware

1. When registering a new sensor, a driver sends a registry request to the mid-
dleware containing its own address.

2. The middleware answers with a discovery request.
3. The driver responds with a list of data source links it offers to the middleware,

i.e., one link per phenomenon.
4. For every data source link, the middleware sends an observe request. That

means in case the observation is accepted by the driver, the middleware is
notified if a new value is received from the sensor.
While we do so far not provide the means to negotiate Service Level Agree-
ments (SLAs) between sensor drivers (i.e., data providers) and IoT clients
(i.e., the data sinks) via the middleware, we foresee that SLAs could be inte-
grated. Also, we facilitate the payment of penalties by a data provider if an
SLA is violated. For instance, in case a data provider promises to deliver a
data update every n time units, the provider needs to pay a penalty fee if
such a data update is not provided by a sensor in time.

5. The notify message from the sensor driver to the middleware contains both
the actual notification as well as the sensor reading, i.e., the new value. Thus,
a push-based data distribution scheme is provided. As long as the middleware
and the driver are running, sensor data is delivered to the middleware.

Middleware and Data Distribution Channels. The main functionality of
the middleware is to receive data from the sensors (via the sensor drivers), and
to distribute this IoT data via the two data distribution channels.

The integrity channel is used in order to distribute data items while guaran-
teeing their integrity. Since the blockchain is a tamper-proof distributed ledger,
data integrity is ensured once data items are stored in it. However, storing com-
plex data items in a blockchain may become expensive. To reduce the amount
of data which is stored on-chain, our middleware only stores the hash of a data

Blockchain- and IPFS-Based Data Distribution for the IoT 183

item on the blockchain, while the data itself is saved in a content-addressable
storage.

The basic workflow of storing data via the integrity channel is depicted in
Fig. 3. As it can be seen, the middleware is able to store data via the storage
client (not depicted in Fig. 1), which is in turn responsible for the storage process.
Once the storage client has successfully persisted a data item, the hash value of
the persisted data item is returned to the middleware.

MiddlewareMiddlewareStorage
Client

Storage
Client

Blockchain
Client

Blockchain
Client

store

hash

hash

Smart
Contract

Smart
Contract

transaction

event

IoT
Client

IoT
Client

get data

data

event

observe

observe

Fig. 3. Storage of data via the integrity channel

The middleware forwards the hash to the blockchain client in order to store
the hash value in a blockchain. As the figure shows, the actual storing of the
hash is done via a smart contract (discussed below) running on the blockchain,
i.e., by sending a transaction containing the hash as a parameter to a function
in the smart contract. Once the function is successfully executed, i.e., the hash
is stored in the blockchain, the smart contract generates an event, which can be
observed by the blockchain users, e.g., the IoT client. With this hash value, the
IoT client is now able to get the data from the storage (via the storage client).

The blockchain client and the storage client are loosely-coupled to the mid-
dleware. In our proof-of-concept implementation, we use Ethereum for the block-
chain and IPFS for the content-addressable storage, and use the according clients
provided by these systems (see below). However, the middleware could also be
used with other storage solutions and blockchain protocols. In this case, it is
necessary to integrate according clients into the middleware.

For the real-time channel, we use a publish/subscribe mechanism. Via this
channel, interested clients are able to subscribe to different data sources and to
receive data items in (near) real-time. As Fig. 1 shows, the middleware sends the
data to a publish/subscribe broker, which is responsible for the publication of the
data and the subscriptions of interested stakeholders. Notably, data items can

184 S. Krejci et al.

Listing 1.1. Update-Function in Smart Contract “IntegrityService”

1 event MeasurementUpdate (

2 address indexed sender ,

3 u int8 funct ion code ,

4 u int8 d i g e s t l eng th ,

5 bytes32 d i g e s t

6) ;

7

8 func t i on update (u int8 funct ion code , u int8 d i g e s t l eng th , bytes32 d iges t ,

9 bytes32 id hash) onlyBy (c l i e n t) pub l i c {
10 r equ i r e (r e g i s t e r e d == true && penaltyPaid == f a l s e) ;

11 i f (lastUpdates [id hash] > 0

12 && block . timestamp > l a s tUpdates [id hash] + maxDelay) {
13 penalty += 1 ;

14 }
15 lastUpdates [id hash] = block . timestamp ;

16 emit MeasurementUpdate (msg . sender , funct ion code , d i g e s t l eng th , d i g e s t) ;

17 }

be distributed via the real-time channel, and at the same time via the integrity
channel. While this is only possible with a certain delay, this allows to verify the
integrity of data items distributed via the real-time channel.

Smart Contract. Listing 1.1 provides the core function of the implemented
smart contract shown in Fig. 3. The excerpt checks the update rate of a data
source, calculates penalties in case an SLA is violated, and emits an event to
indicate the reception of new data. As programming language, Solidity is used.
The function is called by the middleware (the caller) in order to provide the
hashes of data items to an IoT client in a push-based manner. Notably, the smart
contract is established between one particular data provider and one single IoT
client (i.e., data consumer).

As it can be seen in Lines 2–5, the function gets a number of parameters, with
function code, digest length and digest forming the hash used by IPFS to identify
data items, and sender providing the address of the caller of the update function.
Together, these variables constitute the event MeasurementUpdate (Lines 1–6).
As the name implies, this event comprises a hash representing an update of a
measurement from an IoT sensor.

The core functionality of the smart contract is provided by the function
update (Lines 8–17). Apart from the already mentioned parameters, the function
also is provided with the id hash, which is the hash of the data source’s ID. The
identification of the data source is necessary to track the update rates of every
single data source. The function modifier onlyBy(client) (Line 9) controls the
access to the function.

In Line 10, we make use of Solidity’s require construct to check conditions.
In case the condition is not true, an exception is thrown and all changes on the
state of the smart contract are undone. More concretely, we check if the caller
of the function is registered, and if a penalty has already been paid out by the
caller. As pointed out above, a penalty is due in case a data item (or rather

Blockchain- and IPFS-Based Data Distribution for the IoT 185

hash) is not delivered in time, and despite this having been specified between a
data provider and a data sink (via sensor nodes and middleware) in an SLA.

Notably, more than one SLA violation may occur during data distribution,
leading to multiple penalties. However, the total penalty fee is only disbursed
once, i.e., when an authorized person calls an according function (not shown
in the listing) in the smart contract. If the total penalty has been paid, no
further updates are accepted, and the function is aborted. The reason for a
defined ending of the contract is the limited validity of an agreement between
the middleware and an IoT client, i.e., that a client is not able to get data items
from a source for an indefinite amount of time.

Lines 11–12 are used to check if a penalty needs to be paid: When update is
called and the last update timestamp plus a maximum allowed delay (defined in
the SLA) is less than the current timestamp, i.e., an update is delayed, a penalty
is calculated in line 13. In the current implementation, we make use of a fixed
penalty fee, i.e., one Wei, which is the smallest unit of currency in Ethereum.
The penalty could also be calculated in a more sophisticated way, e.g., following
a linear penalty function, but since the penalty function is not in the focus of
the work at hand, we opted for a simplified approach.

Line 15 sets the timestamp for the last update from a particular data source
to the timestamp of the block where the hash of this data item has been added
to. Notably, the time a transaction is added to a block depends on the chosen
blockchain and other factors not under the control of the sensor driver (see
above). This can be problematic, since a penalty may become due even though
a data item has been delivered in time, but its hash having been added to a
block too late. This is a general problem if blockchains are used in potentially
time-sensitive settings. Solutions for this are part of our future work. At the
moment, the allowed delay has to be chosen so that blockchain-inherent delays
do not become an issue.

By calling the emit-command (Line 16), the event MeasurementUpdate is
broadcast. Events exploit the logging facilities of the Ethereum Virtual Machine.
These logging facilities can be used to create callbacks in applications (here: an
IoT client) which listen to the events. The events are stored in the transac-
tion’s log whereas the logs are associated with the smart contract which emitted
the events. Parameters of the event can have the attribute indexed. Thus, these
parameters are not stored themselves, but it is possible to search for the param-
eters and filter them.

When a listening IoT client receives the event, the client is able to build the
hash of a data item and retrieve the data item from IPFS.

3.2 Implementation

Our approach to IoT-blockchain integration has been realized in a proof-of-
concept implementation, using Python for the sensor drivers and Java for the
middleware and IoT client.

The communication protocols applied by the integrity channel are determined
by the used blockchain and storage technologies, i.e., Ethereum and IPFS. For

186 S. Krejci et al.

the data exchange between the sensor drivers and the middleware and for the
real-time channel, suitable communication protocols have been selected. Regard-
ing the former, it is necessary to take into account typical communication issues
in the IoT, e.g., potentially lossy links and the need for low-power communica-
tion [10]. Hence, we select CoAP as communication protocol [1].

Notably, CoAP offers the necessary request/response mechanism for the reg-
istration of new sensor drivers as well as the publish/subscribe mechanism used
for value updates. Also, CoAP already provides mechanisms for device discovery
and device registration, as needed by the middleware. However, CoAP’s pub-
lish/subscribe mechanism is rather basic. Therefore, we select MQTT for the
real-time channel [1].

We use Californium2 as CoAP framework and Mosquitto3 for the MQTT
broker. For connecting the middleware as well as the IoT client to the Ethereum
network, Web3j4 and the Geth client5 are used.

As pointed out above, the presented approach could be realized for other
blockchain protocols and storage technologies, but for our proof-of-concept
implementation, Ethereum and IPFS have been selected. To use different tech-
nologies, it is necessary to integrate according blockchain and storage clients into
the middleware, and to implement a smart contract for the chosen blockchain.

The presented middleware is available as open source software at Github6.

4 Evaluation

The goal of the evaluation is to test the performance of the implemented solution.
We assume that the middleware runs on an edge device, i.e., we apply a fog-
based system architecture. We use a single-board computer, i.e., a Raspberry
Pi 3 Model B, as a typical IoT edge device.

To test the performance, we measure message delays using the real-time and
integrity channels, i.e., the delay from the occurrence of a new data item in a
sensor driver to the point of time it is received by a user (here: the IoT client).

4.1 Evaluation Setup

In order to execute performance tests, we have implemented a virtual driver,
i.e., a sensor driver which has no connection to a physical sensor, and therefore
represents a number of simulated data sources which regularly emit data items.
Hence, the virtual driver generates artificial messages with hard-coded values.
The amount of data sources and the amount of sent messages can be user-
specified in the virtual driver, allowing us to use the virtual driver in order to
execute reproducible performance tests. To be able to test varying loads, we use
2 https://www.eclipse.org/californium/.
3 https://mosquitto.org/.
4 https://docs.web3j.io/.
5 https://geth.ethereum.org/.
6 https://github.com/mcmon-dev/iot-middleware.

https://www.eclipse.org/californium/
https://mosquitto.org/
https://docs.web3j.io/
https://geth.ethereum.org/
https://github.com/mcmon-dev/iot-middleware

Blockchain- and IPFS-Based Data Distribution for the IoT 187

virtual drivers with 2, 7, 11, and 22 data sources in the evaluation setup. In
addition, we use GrovePi+ in connection with the Raspberry Pi to also evaluate
the setup with a real-world sensor which emits two different phenomena (i.e.,
represents two data sources).

For the Raspberry Pi, we use Raspbian 8.0 as operating system. The IoT
client is a desktop application, running on a standard desktop PC. As blockchain,
we make use of the Ethereum test network Ropsten7. In order to mitigate the
influence of varying network loads, IPFS and the real-time channel are installed
in a local network. The experiments are repeated three times to further mitigate
varying loads in the local network and on the nodes.

During each experimental run, each (physical and virtual) data source emits
a data item every 5 s. This is repeated 60 times, leading to an overall duration
of 5 min per experimental run.

We use different statistical metrics, i.e., median, mean, quantiles, and stan-
dard deviations in order to assess the evaluation results. In addition, we make
use of notched boxplots to compare the data.

Table 1. Delays in the real-time channel (in ms)

Min Q1 Median Mean Q3 Max σ

Phy (2) 21.00 37.00 45.00 86.93 63.00 1785.00 169.234

2 21.00 39.00 50.00 96.26 73.00 3238.00 258.605

7 20.00 67.00 109.00 200.90 189.00 1856.00 268.4895

11 24.00 69.00 131.00 253.80 261.00 2407.00 350.524

22 26.00 129.00 321.00 2628.80 864.50 146121.00 15662.40

4.2 Results

Table 1 provides an overview of the delays for the real-time channel, i.e., the
MQTT-based data distribution, which does not provide data integrity guaran-
tees, for the 2 physical data sources (Phy (2)) and the 2, 7, 11, and 22 virtual
data sources. The numbers provide the minimum, Q1, median, mean, Q3, and
maximum for the abovementioned three evaluation runs. Figure 4a visualizes the
delays of the real-time channel8, but does not show a boxplot for the 22 data
sources. The reason for this is the high increase of the median for 22 data sources,
which would make the differences between the boxplots very difficult to identify.

As it can be seen in Fig. 4a, the median is increasing with the amount of
data sources. Also, it can be seen that the boxes for the 2 physical data sources
and the 2 virtual data sources provide similar results, indicating that the virtual
driver resembles the performance of the physical data sources in a sufficient way.
Another observation is that the upper whisker of the boxplot increases with the
number of data sources, while the lower whisker is almost stable.
7 https://ropsten.etherscan.io.
8 With the boxplot notch indicating a 95% confidence interval.

https://ropsten.etherscan.io

188 S. Krejci et al.

Physical (2) 2 7 11

0
10

0
20

0
30

0
40

0
50

0

Data Sources

D
el

ay
 (

m
s)

(a) Real-time Channel

Physical (2) 2 7 11

0
20

0
40

0
60

0
80

0

Data Sources

D
el

ay
 (

s)

(b) Integrity Channel

Fig. 4. Delays

The mean numbers shown in Table 1 confirm the results from the median and
boxplot analysis. Interestingly, the maximum numbers for 2 virtual data sources
are a significant outlier, but are compensated by other evaluation runs, i.e., do
not influence the overall numbers significantly.

It should be noted that the usage of 22 data sources led to a quite high
number of missing values for the real-time channel. In fact, roundabout 18% of
the data updates were lost in the real-time channel when using 22 data sources.
This indicates that this number of data sources might put a too high load on
the Raspberry Pi, since for the other three test scenarios, no data items got lost.
This shows that the implemented solution is suitable only for a limited number
of data sources, which can be traced back to the limited computational resources
of the used IoT device, i.e., the Raspberry Pi, and the high resource demand of
some of the used APIs, especially the IPFS client.

Table 2 shows the numbers for the integrity channel, i.e., where the data
hashes are stored in the blockchain, and the actual data items in IPFS. Not
surprisingly, this leads to a large overhead, since it takes time until a transaction
is added to the blockchain. Hence, the numbers in Table 2 (as well as Fig. 4b)
are given in seconds, while the numbers for the real-time channel in Table 1 and
Fig. 4a are given in milliseconds.

Table 2. Delays in the integrity channel (in s)

Min Q1 Median Mean Q3 Max σ

Phy (2) 4.302 29.858 53.499 99.600 221.404 316.739 97.614

2 5.739 31.448 45.538 51.359 63.503 143.668 29.289

7 20.15 197.19 224.95 238.71 280.20 513.61 115.634

11 52.11 422.03 539.03 526.52 641.58 1180.60 217.532

22 47.45 723.11 992.98 1172.06 1503.20 3409.93 694.025

Blockchain- and IPFS-Based Data Distribution for the IoT 189

As it can be seen in Table 2 as well as Fig. 4b, similar to the real-time channel,
the median increases with the number of data sources. However, for the integrity
channel, the median increases stronger. This indicates that the integrity channel
scales not as well as the real-time channel. This is also confirmed by the number
of missing data items for the 22 virtualized sensor, which is about 33% and
therefore significantly higher than for the real-time channel.

4.3 Discussion

In general, the real-time channel provides acceptable delays in case the number
of data sources is not too high, i.e., with up to 11 data sources, the mean delay
is roundabout 254 ms, which is acceptable for many IoT scenarios.

As originally assumed, the usage of blockchain technologies in the integrity
channel leads to a very high overhead, with the mean delay being roundabout
527 s in the case of 11 data sources. Hence, the blockchain-based data distribution
should not be used in scenarios where latency is critical. For scenarios where both
data integrity and low delay times are needed, it is necessary to develop novel
blockchain technologies (see Sect. 2).

However, it should be noted that the presented solution allows to distribute
data in real-time, and to store hashes of these data items also in the blockchain,
thus allowing to validate the data integrity afterwards.

Due to space constraints, we do not discuss the confirmation delays caused by
the blockchain. However, we have made such measurements, which show that the
blockchain delays do not differ significantly for the different evaluation scenarios.
Therefore, the abovementioned delays for the integrity channel are influenced
in a similar vein by the blockchain confirmation delays, and the increase in the
overhead (compared to the real-time channel) can be traced back to the restricted
amount of resources the hosting node (i.e., the Raspberry Pi) provides.

5 Conclusions

Blockchain technologies are frequently named as an enabler for data integrity in
IoT scenarios, as well as facilitator of other functionalities in the IoT. Despite
this, there is still a lack of proof-of-concepts which show how blockchain tech-
nologies can be used to distribute data between data sources and data sinks in
the IoT. Therefore, within this paper, we have proposed a middleware which is
able to collect data from IoT sensors and to distribute data via two different
channels. The first data distribution channel utilizes IPFS as data storage, and
stores data hashes within an Ethereum blockchain. The second channel is based
on MQTT and therefore allows to distribute data in a timely manner. We have
implemented the middleware and evaluated it with regard to its capability to
be run at the edge of the network, i.e., on a single-board computer like a Rasp-
berry Pi, and the overhead introduced by the usage of a blockchain for data
distribution purposes.

190 S. Krejci et al.

In our future work, we want to extend the presented middleware in order
to investigate further research questions in the blockchain/IoT realm. As has
already been stated above, it would be interesting to discuss the integra-
tion of full-fledged SLAs including SLA negotiations, while also allowing more
sophisticated penalty schemes. Especially, the applied penalty scheme should be
extended by a mechanism to reflect the blockchain-inherent transaction delays,
i.e., that a penalty does not become due because of such a delay.

Acknowledgements. The work presented in this paper has received funding from
Pantos GmbH within the TAST research project.

References

1. Al-Fuqaha, A.I., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet
of Things: a survey on enabling technologies, protocols, and applications. IEEE
Commun. Surv. Tutorials 17(4), 2347–2376 (2015)

2. Ali, M.S., Dolui, K., Antonelli, F.: IoT data privacy via blockchains and IPFS. In:
Seventh International Conference on the Internet of Things, pp. 14:1–14:7. ACM
(2017)

3. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

4. Benet, J.: IPFS - Content Addressed, Versioned, P2P File System (DRAFT 3).
CoRR abs/1407.3561 (2014)

5. Christidis, K., Devetikiotis, M.: Blockchains and smart contracts for the Internet
of Things. IEEE Access 4, 2292–2303 (2016)

6. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: LSB: A Lightweight Scalable
Blockchain for IoT security and anonymity. J. Parallel Distrib. Comput. 134, 180–
197 (2019)

7. Fernández-Caramés, T.M., Fraga-Lamas, P.: A review on the use of blockchain for
the Internet of Things. IEEE Access 6, 32979–33001 (2018)

8. Fernández-Caramés, T.M., Fraga-Lamas, P.: A review on the application of block-
chain to the next generation of cybersecure Industry 4.0 smart factories. IEEE
Access 7, 45201–45218 (2019)

9. Huh, S., Cho, S., Kim, S.: Managing IoT devices using blockchain platform. In: 19th
International Conference on Advanced Communication Technology, pp. 464–467.
IEEE (2017)

10. Ko, J., Terzis, A., Dawson-Haggerty, S., Culler, D.E., Hui, J.W., Levis, P.: Con-
necting low-power and lossy networks to the internet. IEEE Commun. Mag. 49(4),
96–101 (2011)

11. Kshetri, N.: Can blockchain strengthen the Internet of Things? IT Prof. 19(4),
68–72 (2017)

12. Li, M., Xia, L., Seneviratne, O.: Leveraging standards based ontological concepts
in distributed ledgers: a healthcare smart contract example. In: 2019 IEEE Interna-
tional Conference on Decentralized Applications and Infrastructures, pp. 152–157.
IEEE (2019)

13. Liu, B., Yu, X.L., Chen, S., Xu, X., Zhu, L.: Blockchain based data integrity service
framework for IoT data. In: 2017 IEEE International Conference on Web Services,
pp. 468–475. IEEE (2017)

Blockchain- and IPFS-Based Data Distribution for the IoT 191

14. Lu, D., et al.: Reducing automotive counterfeiting using blockchain: benefits and
challenges. In: 2019 IEEE International Conference on Decentralized Applications
and Infrastructures, pp. 39–48. IEEE (2019)

15. Meroni, G., Plebani, P., Vona, F.: Trusted artifact-driven process monitoring of
multi-party business processes with blockchain. In: Di Ciccio, C., et al. (eds.) BPM
2019. LNBIP, vol. 361, pp. 55–70. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30429-4 5

16. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System, Whitepaper (2008)
17. Nofer, M., Gomber, P., Hinz, O., Schiereck, D.: Blockchain. Bus. Inf. Syst. Eng.

59(3), 183–187 (2017)
18. Novo, O.: Blockchain meets IoT: an architecture for scalable access management

in IoT. IEEE Internet of Things J. 5, 1184–1195 (2018)
19. Pešić, S., Tošić, M., Iković, O., Radovanović, M., Ivanović, M., Bošković, D.: Con-

ceptualizing a collaboration framework between blockchain technology and the
Internet of Things. In: 20th International Conference on Computer Systems and
Technologies, pp. 56–61. ACM (2019)

20. Popov, S.: The tangle, IOTA Whitepaper v1.3 (2017)
21. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification for business

processes utilizing the bitcoin blockchain. Future Gener. Comput. Syst. (2020, in
press). https://doi.org/10.1016/j.future.2017.08.024

22. Puliafito, C., Mingozzi, E., Longo, F., Puliafito, A., Rana, O.: Fog computing for
the Internet of Things: a survey. ACM Trans. Internet Technol. 19(2), 181–1841
(2019)

23. Reyna, A., Mart́ın, C., Chen, J., Soler, E., Dı́az, M.: On blockchain and its inte-
gration with IoT. Challenges and opportunities. Future Gener. Comput. Syst. 88,
173–190 (2018)

24. Schulte, S., Sigwart, M., Frauenthaler, P., Borkowski, M.: Towards blockchain inter-
operability. In: Di Ciccio, C., et al. (eds.) BPM 2019. LNBIP, vol. 361, pp. 3–10.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30429-4 1

25. Shafagh, H., Burkhalter, L., Hithnawi, A., Duquennoy, S.: Towards blockchain-
based auditable storage and sharing of IoT data. In: 2017 Cloud Computing Secu-
rity Workshop, pp. 45–50. ACM (2017)

26. Sharma, P.K., Chen, M.Y., Park, J.H.: A software defined fog node based dis-
tributed blockchain cloud architecture for IoT. IEEE Access 6, 115–124 (2017)

27. Sigwart, M., Borkowski, M., Peise, M., Schulte, S., Tai, S.: Blockchain-based data
provenance for the Internet of Things. In: 9th International Conference on the
Internet of Things, pp. 15:1–15:8. ACM (2019)

28. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies. IEEE Commun. Surv. Tutorials 18(3), 2084–2123 (2016)

29. Weber, I., et al.: On availability for blockchain-based systems. In: 36th IEEE Sym-
posium on Reliable Distributed Systems, pp. 64–73. IEEE (2017)

30. Wörner, D., von Bomhard, T.: When your sensor earns money: exchanging data
for cash with bitcoin. In: The 2014 ACM Conference on Ubiquitous Computing
Adjunct, pp. 295–298. ACM (2014)

31. Zhang, Y., Wen, J.: The IoT electric business model: using blockchain technol-
ogy for the Internet of Things. Peer-to-Peer Netw. Appl. 10(4), 983–994 (2016).
https://doi.org/10.1007/s12083-016-0456-1

32. Zyskind, G., Nathan, O., Pentland, A.: Enigma: Decentralized Computation Plat-
form with Guaranteed Privacy. CoRR abs/1506.03471 (2015)

https://doi.org/10.1007/978-3-030-30429-4_5
https://doi.org/10.1007/978-3-030-30429-4_5
https://doi.org/10.1016/j.future.2017.08.024
https://doi.org/10.1007/978-3-030-30429-4_1
https://doi.org/10.1007/s12083-016-0456-1

Author Index

Aiello, Marco 141
Almomani, Abdallah 30

Becker, Soeren 161
Belcore, Orlando Marco 149
Bogatinovski, Jasmin 161
Breitenbücher, Uwe 85, 97, 125
Brogi, Antonio 3, 97

Cardoso, Jorge 161
Castiglia, Timothy 19
Celesti, Antonio 113
Charoy, François 74

Das, Anirban 19
Di Salvo, Rosa 149

Falkenthal, Michael 125
Fazio, Maria 113

Galletta, Antonino 149

Hamadeh, Hala 30
Harzenetter, Lukas 97

Kao, Odej 161
Kasenides, Nicos 41
Képes, Kálmán 85
Krejci, Simon 177
Krieger, Christoph 125
Kritikos, Kyriakos 56

Leymann, Frank 85, 97, 125
Lochau, Malte 3
Luthmann, Lars 3

Mandapati, Ajay Kumar 161
Milanova, Ana 19

Nacer, Anis Ahmed 74
Nedelkoski, Sasho 161

Obetz, Matthew 19

Paspallis, Nearchos 41
Patterson, Stacy 19
Perrin, Olivier 74

Ruggeri, Armando 113

Schulte, Stefan 177
Setz, Brian 141
Sigwart, Marten 177
Skrzypek, Paweł 56
Soldani, Jacopo 3, 97

Tyagi, Akhilesh 30

Villari, Massimo 113, 149

Weder, Benjamin 85
Wurster, Michael 97

Yussupov, Vladimir 125

Zahid, Feroz 56
Zdun, Uwe 125
Zimmermann, Michael 85

	Preface
	Organization
	Contents
	Formal Methods
	Testing Conformance in Multi-component Enterprise Application Management
	1 Introduction
	2 Background: Management Protocols
	3 Motivating Scenario
	4 Testing Conformance in Application Management
	4.1 IOLTS Semantics of Management Protocols
	4.2 Input-Enabledness
	4.3 Conformance Testing Based on Management Protocols
	4.4 Which Conformance Tests to Run?

	5 Related Work
	6 Conclusions
	References

	Formalizing Event-Driven Behavior of Serverless Applications
	1 Introduction
	2 Semantics for Serverless Computation
	2.1 In-process Semantics
	2.2 Event Semantics
	2.3 Platform Behavior Encoded in Semantics
	2.4 Platform Supported Function Composition

	3 Service Call Graphs
	4 Call Graph Implementation and Evaluation
	5 Conclusion
	References

	Probabilistic Verification of Outsourced Computation Based on Novel Reversible PUFs
	1 Introduction
	2 The Reversible SW-PUF
	3 Verifiable Computation Scheme
	4 Evaluation of the Reversible SW-PUF
	5 Conclusions
	References

	Cloud Service and Platform Selection
	Multiplayer Game Backends: A Comparison of Commodity Cloud-Based Approaches
	1 Introduction
	2 Related Work
	3 Experimental Approach
	3.1 Game State
	3.2 Actions and Rules
	3.3 Evaluation Strategy

	4 Implementation
	5 Evaluation
	6 Conclusions and Future Work
	References

	Are Cloud Platforms Ready for Multi-cloud?
	1 Introduction
	2 Platform Selection Process
	3 Requirements
	3.1 C1 – Cloud Orchestration Support
	3.2 C2 – Cloud Application Support
	3.3 C3 – Platform Intelligence

	4 Evaluation
	4.1 Overall Results
	4.2 Cloud Orchestration Support
	4.3 Cloud Application Support
	4.4 Platform Intelligence

	5 Conclusions and Challenges
	References

	Identification of Comparison Key Elements and Their Relationships for Cloud Service Selection
	1 Introduction
	2 Proposed Method
	2.1 Identification of Architects' Requirements
	2.2 Identification of Attributes from Service Plans
	2.3 Identification of Attributes Based on Benchmark Works
	2.4 Selection of NFAs and NFRs from an Empirical Study

	3 Empirical Validation of the Method
	4 Related Work
	5 Conclusion
	References

	Deployment and Workflows
	Deployable Self-contained Workflow Models
	1 Introduction
	2 Fundamentals and Problem Statement
	2.1 Service Composition
	2.2 Imperative Workflow Technology
	2.3 Service Deployment
	2.4 Problem Statement

	3 Self-contained Workflow Models
	4 Automatic Service Deployment
	5 Prototype
	6 Related Work
	7 Conclusion
	References

	Technology-Agnostic Declarative Deployment Automation of Cloud Applications
	1 Introduction
	2 Background and Motivations
	2.1 Deployment Models and Deployment Technologies
	2.2 Motivating Scenario
	2.3 Essential Deployment Metamodel

	3 Transforming EDMM Models into Deployment Technology-Specific Models
	3.1 Step 1: Technology-Independent Application Modeling
	3.2 Step 2: Check Deployment Technology Support
	3.3 Step 3: Transform EDMM Model into DTSM
	3.4 Step 4: Technology-Specific Deployment Execution

	4 System Architecture of the EDMM Modeling, Decision Support, and Transformation System
	5 Validation: Prototypical Implementation
	5.1 Overview
	5.2 Modeling and Transformation Flow

	6 Related Work
	7 Conclusions and Future Work
	References

	Blockchain-Based Healthcare Workflows in Federated Hospital Clouds
	1 Introduction
	2 Related Work
	3 Motivation
	4 System Design
	5 Implementation
	6 Performance Assessment
	7 Conclusion and Future Work
	References

	Monitoring
	Monitoring Behavioral Compliance with Architectural Patterns Based on Complex Event Processing
	1 Introduction
	2 Fundamentals and Motivation
	2.1 Patterns and Design Decisions
	2.2 Motivating Scenario
	2.3 Complex Event Processing

	3 An Approach for Monitoring Behavioral Compliance with Architectural Patterns
	3.1 Method
	3.2 System Architecture

	4 Applying the Approach to the Motivating Scenario
	4.1 Circuit Breaker
	4.2 Watchdog
	4.3 Prototypical Implementation

	5 Related Work
	6 Conclusion and Future Work
	References

	Towards Real-Time Monitoring of Data Centers Using Edge Computing
	1 Introduction
	2 Related Work
	3 Data Center Network Infrastructure
	4 Impact on Network Load
	5 Proposed Edge-Based Architecture
	6 Conclusion
	References

	Modeling Users' Performance: Predictive Analytics in an IoT Cloud Monitoring System
	1 Introduction
	2 Related Work
	3 Background
	3.1 Estimation of Origin-Destination Flows
	3.2 Prediction of Origin-Destination Flows
	3.3 Dynamic Traffic Assignment
	3.4 Kalman Filtering

	4 Case Study
	5 Architectural and Algorithm Design
	6 Conclusions and Future Work
	References

	Data Distribution and Analytics
	Multi-source Distributed System Data for AI-Powered Analytics
	1 Introduction
	2 Related Work
	3 Dataset Generator
	3.1 Infrastructure
	3.2 Workloads and Faults Injected
	3.3 Data Collection

	4 Dataset Description
	4.1 Metrics
	4.2 Logs
	4.3 Traces
	4.4 Ground Truth Labels

	5 Dataset Statistics
	5.1 Metrics
	5.2 Logs
	5.3 Traces

	6 Applications of Multi-source AIOps
	7 Conclusion
	References

	Blockchain- and IPFS-Based Data Distribution for the Internet of Things
	1 Introduction
	2 Related Work
	3 Solution Architecture
	3.1 Architecture
	3.2 Implementation

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Results
	4.3 Discussion

	5 Conclusions
	References

	Author Index

