
Accelerating Q-ary Sliding-Window Belief
Propagation Algorithm with GPU

Bowei Shan(B) , Sihua Chen, and Yong Fang

School of Information Engineering, Chang’an University, Xi’an, China
{bwshan,fy}@chd.edu.cn,1543275321@qq.com

Abstract. In this paper, we present a parallel Sliding-Window Belief
Propagation algorithm to decode Q-ary Low-Density-Parity-Codes. The
bottlenecks of sequential algorithm are carefully investigated. We use
MATLAB platform to develop the parallel algorithm and run these bot-
tlenecks simultaneously on thousands of threads of GPU. The experiment
results show that our parallel algorithm achieves 2.3× to 30.3× speedup
ratio than sequential algorithm.

Keywords: SWBP · LDPC · GPU · MATLAB

1 Introduction

As a very good error-correcting code [1], Low-Density-Parity-Codes (LDPC)
codes are wildly used in Fifth Generation (5G) telecommunication and Internet
of Things as s Service (IoTaaS). It was first invented by Gallager [2] in 1962,
and unfortunately ignored by information society for more than 30 years. The
renaissance of LDPC was triggered by MacKay and Neal in 1996.

Originally, binary LDPC has been decoded by belief propagation (BP) algo-
rithm (also known as “sum-product” algorithm) [1]. In 1998, MacKay et al. [3]
generalized the binary LDPC to finite fields GF (Q = 2q) and proposed a Q-ary
LDPC. The Q-ary BP algorithm is used to decode Q-ary LDCP. To improve the
performance of BP algorithm, Fang presented a Sliding-Window Belief Propa-
gation (SWBP) algorithm. A lot of experiments [6] show that SWBP achieves
better performance with less iteration times. In addition, it is very easy to imple-
ment and insensitive to the initial settings. Incorporating fast Q-ary BP with
SWBP is a nature way to attain better performance and robustness, while it
still suffers from heavy computing complexity.

Invented by NVIDIA, Graphics Processing Unit (GPU) [7] has demonstrated
powerful ability for general-purpose computing. NVIDIA also presented a C-like
languages interface named Compute Unified Device Architecture (CUDA) which
is a useful tool for researchers to develop the parallel algorithms. Inspired by
GPU’s amazing ability, we propose a parallel algorithm of Q-ary SWBP and
accelerate it by GTX 1080Ti. Although we has used GPU to accelerate parallel

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

B. Li et al. (Eds.): IoTaaS 2019, LNICST 316, pp. 3–8, 2020.

https://doi.org/10.1007/978-3-030-44751-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44751-9_1&domain=pdf
http://orcid.org/0000-0002-7980-2553
http://orcid.org/0000-0002-3345-8259
https://doi.org/10.1007/978-3-030-44751-9_1

4 B. Shan et al.

binary SWBP algorithm developed by CUDA C++ [8], to our best knowledge,
parallel Q-ary SWBP algorithm has still not been presented.

The rest of this paper is organized as: Sect. 2 describes the sequential Q-ary
SWBP algorithm. Section 3 analyses the bottlenecks of sequential algorithm and
presents the parallel algorithm. Section 4 uses GPU to accelerate the parallel
algorithm and gives the experiment results. We concludes this paper in Sect. 5.

2 Q-ary SWBP Algorithm

2.1 Correlation Model

Let A = [0 : Q) denote the alphabet. Let x, y ∈ A denote the realization of X
and Y , which are two random variables. Let Xn be the source to be compressed
at the encoder. Let Y n be the Side Information (SI) that resides only at the
decoder. Let Xn = Y n + Zn. We model the correlation between input Xn and
output Y n as a virtual channel with three properties:

(1) Additive: Y n and Xn are independent with each other;
(2) Memoryless: pZn(zn) =

∏n
i=1 pZi

(zi), where pX(x) denotes the Probability
Mass Function (pmf) of discrete random variable X;

(3) Nonstationary: pmfs of Zi’s may be different, where i ∈ [0 : n].

We use Truncated Discrete Laplace (TDL) distribution to model Zi:

pXi|Yi
(x|y) ∝ 1

2bi
exp

(

−|x − y|
bi

)

(1)

where bi is the local scale parameter. Since
∑Q−1

x=0 pXi|Yi
(x|y) = 1, we can obtain

pXi|Yi
(x|y) =exp

(

−|x − y|
bi

)/

LQ(bi, y) (2)

where LQ(b, y)=
∑Q−1

x=0 exp (−|x − y|/bi). To reduce the computing complexity,
we use integration to approximate the summation. When b and Q are reasonably
big, this approximation is precise enough by

LQ(b, y) ≈ ∫ Q−1

0
exp

(

−|x − y|
b

)

dx

= 2b

(

1 − 1
2

exp
(

y − (Q − 1)
b

)

−1
2

exp
(
−y

b

)) (3)

The encoder uses Q-ary LDPC codes to compress source x ∈ [0 : Q)n to get
syndrome s ∈ [0 : Q)n. The decoder seeds source nodes x according to SI y, and
runs Q-ary BP algorithm to recover x. For the belief propagation between source
nodes and syndrome nodes, we give following definitions: ξi(x) is intrinsic pmf of
source node xi; ζi(x) is overall pmf of source node xi; ri,j(x) is the pmf passed
from source node xi to syndrome nodes sj ; and qj,i(x) is the pmf passed from
syndrome nodes sj to source node xi, where j ∈ Mi and i ∈ Nj . The encoding
and decoding process of Q − ary BP has been stated in [6], and we omit it in
this paper.

Accelerating Q-ary Sliding-Window Belief Propagation Algorithm with GPU 5

2.2 SWBP Algorithm

In Q-ary BP, the source nodes need be seeded with local scale parameter b of
virtual correlation channel. In [4] and [5], the parameter of virtual correlation
channel is estimated by SWBP algorithm. In this paper, we will use expected L1

distance between each source symbol and its corresponding SI symbol defined
as

μi
Δ=

Q∑

x=1

(ζi(x) · |x − yi|) (4)

Then, the estimated local scale parameter b̂ is calculated by averaging the
expected L1 distances of its neighbors in a window with size-(2η + 1)

b̂i(η) =
ti(η) − μi

min(i + η, n) − max(1, i − η)
(5)

where

ti(η) Δ=
min(i+η,n)∑

i′=max(1,i−η)

μi′ (6)

To calculate (13), we first calculate t1(η)=
1+η∑

i′=1

ui′ . Then for i ∈ [2 : n],

ti(η)=

⎧
⎨

⎩

ti−1(η) + μi+η, i ∈ [2 : (η + 1)]
ti−1(η) + μi+η − μi−1−η, i ∈ [(η + 2) : (n − η)]
ti−1(η) + μi−1−η, i ∈ [(n − η + 1) : n]

(7)

Same as [4] and [5], the main purpose of SWBP is to find a best half window
size η̂. We define an expected rate:

γ(η) Δ= −
n∑

i=1

Q−1∑

x=0
ζi(x) · ln

exp(−|x − yi|
/

b̂i(η))

LQ(b̂i(η), yi)

=
n∑

i=1

(

ln LQ(b̂i(η), yi)+
μi

b̂i(η)

) (8)

where LQ(b̂i(η), yi) is defined by (3). The best half window size η̂ is chosen by

η̂= arg min
η

γ(η), (9)

It is a natural idea that best half window size should minimize the expected
rate. The flowchart of Q-ary SWBP algorithm was illustrated in Fig. 1.

6 B. Shan et al.

3 Parallel SWBP Algorithm

In sequential SWBP algorithm, each window size setup iteration generates an
expected rate γ(η), which is calculated by (15). Any two expected rate γ(η1)
and γ(η2) (η1 �= η2) are uncorrelated, and can be computed in parallel. In our

Fig. 1. Flowchart of Q-ary SWBP

Fig. 2. (a) Sequential SWBP algorithm, (b) parallel SWBP algorithm

Accelerating Q-ary Sliding-Window Belief Propagation Algorithm with GPU 7

parallel algorithm, all γ(η), η ∈ {
1, 2, . . . ,

⌊
n−1
2

⌋}
are calculated simultaneously

by thousands of threads on GPU. Once γ(η), η ∈ {
1, 2, . . . ,

⌊
n−1
2

⌋}
are obtained,

we use min() function in MATLAB to get the smallest γ and corresponding best
η from array γ(η). The sequential and parallel algorithm are illustrated in Fig. 2.

4 Experiment Results

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Codeword length

0

50

100

150

200

250

300

350

0

5

10

15

20

25

30

35

Fig. 3. Running time and speedup ratio under Q=256

In our experiments, we use Intel Core i7 with 3.60Ghz as our CPU and NVIDIA
GTX 1080Ti as our GPU. We use MATLAB 2014b as our development platform.
We perform numerical experiments to evaluate the performance of our parallel
algorithm.

We set Q=256, and use 4 different regular LDPC codes as our input. The
parameters of these LPDC codes are listed in Table 1. To eliminate the random
errors, we perform 100 tests and average these outputs as our final results. The
experiment result is illustrated in Fig. 3, which shows that parallel Q-ary SWBP
algorithm achieves 2.9× to 30.3× accelerating ratio than sequential Q-ary SWBP
algorithm. The longer the codeword length, the higher the accelerating ratio.

8 B. Shan et al.

Table 1. Different LDPC code parameters (N is codeword length, K is information
bit number)

Test 1 2 3 4

N 256 512 1024 2048

K 128 256 512 1024

Maximum degree 4 4 4 4

Code Type Regular Regular Regular Regular

5 Conclusion

We propose a parallel Q-ary SWBP algorithm to decode regular LDPC codes
with different codelength and Q value. This algorithm can address the bottlnecks
of sequential Q-ary SWBP and be accelerated by GPU. Experiment results show
that parallel algorithm achieves 2.9× to 30.3× speedup ratio under Q=256. The
longer codeword length leads to higher speedup ratio.

References

1. MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE
Trans. Inf. Theory 45(2), 399–431 (1999)

2. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28
(1962)

3. Davey, M.C., MacKay, D.: Low-density parity check codes over GF(q). IEEE Com-
mun. Lett. 2(6), 165–167 (1998)

4. Fang, Y.: LDPC-based lossless compression of nonstationary binary sources using
sliding-window belief propagation. IEEE Trans. Commun. 60(11), 3161–3166 (2012)

5. Fang, Y.: Asymmetric Slepian-Wolf coding of nonstationarily-correlated M-ary
sources with sliding-window belief propagation. IEEE Trans. Commun. 61(12),
5114–5124 (2013). https://doi.org/10.1109/TCOMM.2013.111313.130230

6. Fang, Y., Yang, Y., Shan, B., Stankovic, V.: Joint source-channel estimation via
sliding-window belief propagation. IEEE Trans. Commun. (2019, submited)

7. NVIDIA. http://www.nvidia.com/object/what-is-gpu-computing.html
8. Shan, B., Fang, Y.: GPU accelerated parallel algorithm of sliding-window belief

propagation for LDPC codes. Int. J. Parallel Program. (2019). https://doi.org/10.
1007/s10766-019-00632-3

https://doi.org/10.1109/TCOMM.2013.111313.130230
http://www.nvidia.com/object/what-is-gpu-computing.html
https://doi.org/10.1007/s10766-019-00632-3
https://doi.org/10.1007/s10766-019-00632-3

	Accelerating Q-ary Sliding-Window Belief Propagation Algorithm with GPU
	1 Introduction
	2 Q-ary SWBP Algorithm
	2.1 Correlation Model
	2.2 SWBP Algorithm

	3 Parallel SWBP Algorithm
	4 Experiment Results
	5 Conclusion
	References

