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Abstract Substance abuse (including illicit and prescription drugs) has become a
significant public health and economic burden. Acute and chronic substance use
often leads to a pathologic pattern of behaviors as well as physiologic manifesta-
tions, such as tolerance and withdrawal, collectively called substance use disorders
(SUDs). Clinical and animal studies have demonstrated that SUDs are heritable in
both humans and rodents. The exact molecular mechanism(s), however, is mostly
unclear. Long noncoding RNAs (lncRNAs) have emerged as pivotal epigenetic
regulators of gene expression in various human diseases, including SUDs. This
chapter summarizes current findings and thoughts on the dysregulation as well as
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the role of lncRNAs in the context of the use of substances, such as morphine,
cocaine, methamphetamine, alcohol, etc. The potential applications of lncRNAs in
SUDs will also be discussed in this chapter.

Keywords Substance use disorders · Long noncoding RNAs · Opioids · Morphine ·
Fentanyl · Cocaine · Methamphetamine · Marijuana · Alcohol · Tobacco/nicotine

1 Introduction

Abused drugs are threatening human health, and many drugs can alter a person’s
thinking and judgment, leading to health risks including addiction, drugged driving,
and infectious disease. The use of substance(s) causes significant clinical and
functional impairments which is a medical condition called substance use disorder
(SUD), also known as drug use disorder or substance dependence (Goplerud et al.
2017). In terms of information released from the National Institute on Drug Abuse,
the commonly abused drugs include alcohol, ayahuasca, central nervous system
depressants, cocaine, heroin, inhalants, ketamine, marijuana (cannabis), metham-
phetamine, prescription stimulants, prescription opioids, psilocybin, Rohypnol®

(flunitrazepam), Salvia, steroids (anabolic), synthetic cannabinoids, synthetic
cathinones (“bath salts”), and tobacco. Currently, SUDs are among the most com-
mon and costly health conditions affecting the population around the world, and
rates of substance use disorders vary by nation and by substance, but the overall
prevalence is high. On a global level, men and younger individuals are affected at a
much higher rate than women and older adults, respectively (Kuerbis et al. 2014;
Morisano et al. 2014). Strikingly, drug overdose is one of the leading causes of death
of young people in the United States. According to the National Center for Health
Statistics at the Centers for Disease Control and Prevention, national deaths from
drug overdose have increased significantly from 16,849 in 1999 to over 70,237
in 2017.

The symptoms of SUDs include, but not limited to, behavioral changes, physical
changes, and social changes characterized by a series of mental, physical, and
behavioral signs and symptoms (Schulte and Hser 2014). SUDs impose an enormous
medical, financial, and emotional burden on society in the form of overdose and
health complications, family disintegration, loss of employment, and crime. The
National Institute on Drug Abuse (NIDA) estimates that the total cost of drug abuse
in the United States exceeds $600 billion annually. Additionally, a sharp increase in
the abuse of prescription drugs and drug abuse by teenagers has also been observed.
These data suggest the urgent need for research into the effects of drugs of abuse and
the mechanisms of addiction, in the expectation of uncovering novel targets for
treating and preventing SUDs.

Increasing evidence from clinical and animal studies has demonstrated that SUDs
are heritable in both humans and rodents, which are a result of the interplay of
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multiple genetic and environmental factors (Kendler et al. 2007; Mayfield et al.
2008; Wong and Schumann 2008; Zahr and Sullivan 2008; Agrawal et al. 2012; He
and Wang 2012; Volkow and Muenke 2012; Verhulst et al. 2015). Indeed, genetic
factors have demonstrated a major role in a person’s risk of developing SUD (Prom-
Wormley et al. 2017; Demontis et al. 2019; Palmer et al. 2019). Although the genetic
contribution to the risk for substance abuse is 40–60% (He and Wang 2012), the fact
that chronic exposure of drugs induces structural and functional changes of the brain
suggests that dysregulation of gene expression could contribute to the addictive
phenotype (Robison and Nestler 2011). Currently, many SUD-associated genes have
been identified and shown to be dysregulated in the context of substance abuse. The
expression of SUD-associated genes is regulated at various levels, including the
epigenetic, transcriptional, and posttranscriptional levels (Robison and Nestler 2011;
Nestler 2014). The epigenetic regulation of addiction is mainly through three
different mechanisms such as posttranslational modifications of histone proteins
(such as acetylation, ubiquitination, SUMOylation, methylation, phosphorylation,
and ADP-ribosylation) and DNA methylation (Robison and Nestler 2011; Nestler
2014). Interestingly, the transcriptional mechanism is classically through the actions
of transcription factors controlling gene expression in addiction. The transcription
factors, including DeltaFosB (Hiroi et al. 1997; Nestler 2008; Perrotti et al. 2008),
CREB (Carlezon et al. 1998; Barrot et al. 2002; Pluzarev and Pandey 2004; Edwards
et al. 2007), NF-κB (Sullivan et al. 2004; Russo et al. 2009), and MEF2
(Pulipparacharuvil et al. 2008), have been directly linked to addiction-related behav-
iors, neuronal excitability, drug tolerance, and dependence. Recently, emerging
evidence suggests that noncoding RNAs, especially long noncoding RNAs
(lncRNAs), function as additional regulatory machinery of the genome controlling
both transcriptional and posttranscriptional events in progression of SUDs.

2 Long Noncoding RNAs

It is well known that DNA sequences in the human genome corresponding to
protein-coding exons and untranslated regions all together comprise only 1.5–2%
(Alexander et al. 2010). Increasing evidence suggests that the non-protein-coding
portion of the genome is not junk but has functional importance. With the develop-
ment of advanced deep sequencing and other analysis technologies, the detection of
ncRNAs has facilitated the in-depth research of different classes of ncRNAs. In
terms of their length, localization, and function, these ncRNAs are divided into two
groups: small ncRNAs (sncRNAs), such as microRNAs which have demonstrated
predominating roles in different biological processes of higher eukaryotes, and
numerous classes of long ncRNAs which have been broadly categorized as long
intergenic ncRNAs, long intronic ncRNAs, telemetric ncRNAs transcribed from
subtelomeric promoters, pseudogene transcripts, circular RNAs, enhancer RNAs,
and transcribed ultraconserved regions (Kumarswamy and Thum 2013; Kung et al.
2013). lncRNAs are generally greater than 200 nucleotides in length, and numerous
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studies have revealed a huge number of long noncoding RNAs (lncRNAs) coded by
the genome (Quinn and Chang 2016; Chang et al. 2017), which have been recently
discovered to mediate diverse biological processes such as in the central nervous
system (CNS) during normal development and under various pathological condi-
tions (DiStefano 2018; Cao et al. 2019a; Fernandes et al. 2019).

The biogenesis of lncRNAs shares similar features with that of mRNA, such as
transcribed by RNA polymerase II, processed by RNA splicing, and polyadenylated
(Brannan et al. 1990). Differently, the lncRNAs can be transcribed with or without
polyadenylation, and alternative cleavage, polyadenylation, and splicing also lead to
different isoforms from the same locus (Fernandes et al. 2019). In addition, similar to
the regulation of coding genes, some of lncRNAs, such as large intervening non-
coding RNAs (lincRNAs), can also be transcriptionally regulated by key transcrip-
tion factors, such as p53, NF-κB, Sox2, Oct4, and Nanog, and these lncRNAs are
functional, highly conserved, and implicated in diverse biological processes
(Guttman et al. 2009). The first described and identified mammalian lncRNA was
H19 which was found in 1990 during liver development and shares the common
features with mRNAs. Up to now, bioinformatic studies have revealed that tens of
thousands of lncRNAs do not code for proteins and can also be mapped to the
genome (Rinn and Chang 2012; Engreitz et al. 2016; Lee et al. 2016; Quinn and
Chang 2016; Ransohoff et al. 2018). Although lncRNAs have emerged as regulators
of diverse biological processes, the functional relevance of most lncRNAs remains
unknown. Currently, lncRNAs have been found to involve in diverse biological
processes, including X-chromosome inactivation, such as Xist and Tsix (Brown
et al. 1991; Lee et al. 1999); pluripotency and reprogramming (Guttman et al. 2011;
Yan et al. 2017); maintenance of genomic stability, such as LINC00657 (NORAD)
and ionizing radiation-inducible lncRNA (lnc-RI) (Arainga et al. 2016; Agrahari
et al. 2019); imprinting, such as H19 and air (Sleutels et al. 2002); lineage commit-
ment and apoptosis, such as HoxA-AS3 and lncRNA MEG3 (maternally expressed
gene 3) (Zhu et al. 2016; Li et al. 2019b); mammalian cell differentiation, such as
LncRNA HOTAIRM1 and LncKdm2b (Fu et al. 2019; Li et al. 2019a); and adult
neurogenesis, such as RMST and Sox2OT (Ng et al. 2012; Tosetti et al. 2017). A
recent breakthrough in identifying the roles of lncRNAs during the development of
SUDs underscores the importance of lncRNAs in SUDs.

3 LncRNAs in SUDs

SUDs are a typical behavioral condition resulted from structural and functional
alterations in various brain regions of drug abusers (Robinson and Kolb 2004; Zhu
et al. 2012). Drugs involved in SUDs include alcohol, opioids, methamphetamine,
cocaine, tobacco/nicotine, etc. Genome-wide computational analyses have revealed
that lncRNA genes from the human genome are one of the most abundant classes of
ncRNAs (Jia et al. 2010) and are involved in diverse biological processes as
described above. Additionally, the analyses using a transcriptomic atlas of mouse
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neocortical layers and in situ hybridization data from the Allen Brain Atlas have
revealed that lncRNAs are highly abundant in the brain (Mercer et al. 2008; Belgard
et al. 2011). Although the roles of lncRNAs, in addition, remain unclear, increasing
evidence has suggested that lncRNAs play important roles in the development of
SUDs. We here summarize the regulatory mechanisms of lncRNAs in SUDs.

3.1 LncRNAs in Alcohol Use Disorders

Alcohol addiction has become the second most impactful psychiatric disorder, which
is characterized as compulsive alcohol seeking and taking despite adverse conse-
quences (Hyman and Malenka 2001; Koob and Le Moal 2008; Collins et al. 2011).
In addition, alcohol addiction can also cause various somatic diseases and is
responsible for a mortality rate of about 6% worldwide (Friedmann 2013). Using
human and animal models, the widespread alterations in brain gene expression have
been observed during chronic alcohol exposure, and epigenetic regulations including
histone methylation, histone acetylation, and ncRNA expression have been found to
be involved in the expression of multiple genes in various types of brain cells
contributing to the pathogenesis of brain related with alcohol abuse and dependence
(Ponomarev 2013). Increasing evidence has suggested that lncRNAs play important
roles in the synaptic plasticity alterations during drug abuse and dependence. Thus,
the role of lncRNAs in the regulation of disease progression of alcohol use disorder
(AUD) is gaining attention (Table 1). Although more than 130 differentially
expressed lincRNAs have been observed with significant alterations in the postmor-
tem alcoholic brain tissue across different brain regions (Mayfield 2017), the precise
role and mechanism of these lincRNAs in alcohol abuse and dependence remain
unclear. However, several lncRNAs have been identified with the dysregulation
during chronic alcohol exposure. For example, nuclear-enriched abundant transcript
2 (NEAT2), also known as MALAT1, was significantly increased in specific regions
including the cerebellum, hippocampus, and brain stem of the human alcoholic brain
rather than in other regions, such as frontal or motor cortices. Differently, there was
no significant increase of NEAT2 in cerebellum and cortex of alcohol-treated rats;
however, NEAT2 was significantly upregulated in rat cortex following alcohol
withdrawal (Kryger et al. 2012), suggesting that the dysregulation of lncRNAs
induced by chronic alcohol exposure contributes to alcohol actions in the CNS. In
addition, H19 as the first identified lncRNA is located at specific loci with normal
hypermethylation and contributes to cell proliferation and imprinting. Increased
demethylation in the offspring after prenatal exposure to alcohol has been demon-
strated (Ouko et al. 2009; Stouder et al. 2011; Liang et al. 2014), suggesting that
chronic alcohol use regulates some epigenetic modifications of genomic regions that
are critical for embryonic development. Genome-wide association studies of alcohol
dependence also revealed that another large antisense-overlapping lncRNA, called
LOC100507053, was found to be located within an alcohol dehydrogenase (ADH)
cluster and cover multiple loci for ADH genes and form a risk-genomic region for
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alcohol dependence and has a significant impact on cellular responses to alcohol
(Zuo et al. 2014; Xu et al. 2015).

The liver is the principal organ for the metabolism of alcohol. Alcohol-induced
hepatic steatosis and apoptosis play a primary role in direct alcohol-related morbid-
ity. Using a mouse model of chronic plus single binge ethanol gavage to mimic the
chronic alcohol exposure, one study has demonstrated that lncRNA MEG3 was
significantly increased in either mouse with alcohol exposure or alcohol-treated
in vitro hepatocytes, and further mechanistic studies revealed that lncRNA MEG3
serves as a sponge for let-7c-5p which in turn enhances the expression of NLRC5, a
target of let-7c-5p, and ultimately induces hepatic steatosis and apoptosis (Wang
et al. 2018b).

In addition to liver, alcohol consumption also contributes to many other diseases
related to extrahepatic tissues. Recent evidence suggests that alcohol-induced
upregulation of lncRNAs-HOTAIR and MALAT1 in endothelial extracellular ves-
icles (EVs) plays a significant role in mediating pro-angiogenic effects of these
vesicles (Lamichhane et al. 2017; Patel et al. 2019). In these studies, the authors
demonstrated that ethanol conditioning upregulates the vascularization bioactivity of
endothelial cell-derived EVs. Interestingly, both HOTAIR and MALAT1 were
found to be significantly upregulated in EVs isolated from ethanol-exposed
HUVECs (human umbilical vein endothelial cells) compared with control HUVECs
(Lamichhane et al. 2017). To determine the specific roles of these lncRNAs, the
authors transfected HUVECs with siRNAs targeting HOTAIR and MALAT1, or
both HOTAIR and MALAT1, and then assessed the vascularization bioactivity of
the EVs isolated from the transfected HUVECs using endothelial gap closure assays.
The findings from this study demonstrated that downregulation of MALAT1 alone
and MALAT1 and HOTAIR together significantly abrogated the ethanol-induced
vascularization bioactivity in HUVEC EVs (Lamichhane et al. 2017), indicating that
lncRNAs in endothelial EVs may contribute to the pathogenesis of remote organs
during the chronic alcohol exposure.

Chronic alcohol exposure or alcohol abuse also contributed to the pathogenesis of
cancers. Recent RNA-seq analysis of clinical data has identified another two alcohol-
associated lncRNAs – lnc-PSD4-1 and lnc-NETO-1 (Yu et al. 2016). The
dysregulation of these two lncRNAs has been implicated in the pathogenesis of
head and neck squamous cell carcinoma. Specifically, the authors demonstrated that
low expression of lnc-PSD4-1:14, an isoform of lnc-PSD4-1, showed a strong
correlation with high survival rates in a Cox proportional hazards regression
model (Yu et al. 2016). Increasing evidence has suggested that lncRNAs play critical
roles in brain development and synaptic plasticity (Wu et al. 2013; Karpova et al.
2017; Wang et al. 2017). It was well known that neurotrophic factors (NTFs) play
important roles not only in the neuronal survival of the peripheral nervous system
but also in the synaptic plasticity of the brain. Brain-derived neurotrophic factor
(BDNF), one of the most studied NTFs, is a central neurotrophin involved in many
neuronal processes and has been linked to several psychiatric diseases as well as
addictive disorders (Koskela et al. 2017). Increasing evidence from human subjects
and experimental animal models suggested that the BDNF level is negatively
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correlated with adverse phenotypes associated with harmful alcohol consumption.
For example, the alcohol addiction or the mental illness and compulsive behavior
resulting from alcohol dependency are associated with the low plasma levels of
BDNF (Joe et al. 2007; Zanardini et al. 2011). Consistent with the clinical data, the
low levels of BDNF in the prefrontal cortex of mice and in the nucleus of the stria
terminalis and in the central extended and medial amygdale of rats also contribute to
the development of alcohol dependence compared with animals without alcohol
addiction (Prakash et al. 2008; Logrip et al. 2009).

Furthermore, the reduction of BDNF expression or inhibition of BDNF signaling
pathway in mice will increase the consumption of alcohol (Hensler et al. 2003;
Jeanblanc et al. 2006; Logrip et al. 2015), whereas the activation of BDNF signaling
pathway will decrease the consumption of alcohol (Pandey et al. 2006; Jeanblanc
et al. 2009, 2013; Warnault et al. 2016). These studies revealed that BDNF is a
critical determinant of compulsive alcohol drinking. Interestingly, one lncRNA
called BDNF-AS (BDNF antisense lncRNA) has recently been shown to inhibit
BDNF expression via epigenetic modifications at regulatory regions in the BDNF
gene in the early-onset alcohol use disorder (AUD) group rather than in late-onset
AUD group. Further molecular mechanism studies revealed that alcohol drinking
during adolescence increases the BDNF-AS expression in the amygdala of AUD
group, which results in increased recruitment of EZH2 and subsequently the increase
of repressive H3K27 trimethylation (H3K27me3) at regulatory regions in the BDNF
gene contributing to a significant decrease in BDNF expression and signaling. On
the other hand, adolescent alcohol drinking also decreases the expression of the
activity-regulated cytoskeleton-associated protein (ARC) and signaling by increased
EZH2 deposition of repressive H3K27me3 at the ARC synaptic activity response
element. These BDNF-AS-mediated epigenetic mechanisms contribute to decreased
synaptic plasticity, higher risk of developing alcohol use disorder in adulthood, and
the increased comorbidity with other psychiatric disorders (Bohnsack et al. 2019).

3.2 LncRNAs in Opioid Use Disorders

Opioids are a class of drugs including illegal drug heroin, synthetic opioids such as
fentanyl, and prescription pain relievers, such as oxycodone, hydrocodone, codeine,
morphine, and many others. A computational and annotation pipeline has been
developed to identify the alteration of lncRNA transcripts in the human nucleus
accumbens (hNAcc) of heroin abusers (Michelhaugh et al. 2011). In this study,
Michelhaugh et al. developed a computational and annotation pipeline to identify
lncRNA transcripts represented on Affymetrix U133 arrays followed by assessing a
previously published dataset derived from hNAcc of heroin abusers and controls.
The authors demonstrated that the expression of five lncRNAs – MIAT, MEG3,
NEAT1, NEAT2, and EMX2OS – was upregulated in heroin abusers compared to
matched, drug-free controls (Table 2). Myocardial infarction-associated transcript
(MIAT) is a lncRNA predominantly expressed in heart and fetal brain tissues.

472 C. Tian and G. Hu



T
ab

le
2

ln
cR

N
A
s
in

op
io
id

us
e
di
so
rd
er
s

S
U
D

L
nc
R
N
A

R
es
ea
rc
h

m
od

el
R
eg
ul
at
io
n

F
un

ct
io
ns

M
ec
ha
ni
sm

of
ac
tio

n
T
ar
ge
t

R
ef
er
en
ce
s

H
er
oi
n

M
IA

T
,M

E
G
3,

N
E
A
T
1,

N
E
A
T
2

H
um

an
su
bj
ec
ts

U
pr
eg
ul
at
ed

in
N
A
c
of

he
ro
in

ab
us
er
s

U
nk

no
w
n

U
nk

no
w
n

U
nk

no
w
n

M
ic
he
lh
au
gh

et
al
.

(2
01

1)

F
en
ta
ny

l
M
IA

T
M
ic
e

D
ow

nr
eg
ul
at
io
n

P
ro
-a
po

pt
os
is

of ca
rd
io
m
yo

cy
te
s

A
m
iR
N
A

sp
on

ge
m
iR
-1
45

Z
ha
ng

et
al
.(
20

16
b)

an
d
Z
ha
o
et
al
.

(2
01

7)

M
or
ph

in
e

ln
cR

N
A
-C
ox

2
C
el
l
an
d

m
ic
e

U
pr
eg
ul
at
io
n

M
ic
ro
gl
ia
l

ph
ag
oc
yt
os
is

N
eg
at
iv
e
re
gu

la
tio

n
of

ph
ag
oc
yt
os
is

P
ha
go

cy
to
si
s-

re
la
te
d
ge
ne
s

H
u
et
al
.(
20

18
)

O
pi
at
e

B
D
N
F
-A

S
H
um

an
su
bj
ec
ts

U
pr
eg
ul
at
io
n

In
hi
bi
tio

n
of

B
D
N
F

ex
pr
es
si
on

E
pi
ge
ne
tic

m
od

ifi
ca
tio

ns
at
re
g-

ul
at
or
y
re
gi
on

s
in

th
e
B
D
N
F

ge
ne

B
D
N
F

P
al
m
a-
A
lv
ar
ez

et
al
.

(2
01

7)

M
IA
T
m
yo

ca
rd
ia
l
in
fa
rc
tio

n-
as
so
ci
at
ed

tr
an
sc
ri
pt

Long Noncoding RNAs in Substance Use Disorders 473



Increasing evidence suggests that MIAT functions as a competing endogenous RNA
(ceRNA) and also acts as a sponge for miRNAs in mediating microvascular dys-
function, diabetic cardiomyopathy, and advanced atherosclerosis (Yan et al. 2015;
Zhou et al. 2017; Ye et al. 2019). Recently, MIAT has been found to play
cardioprotective effects of fentanyl in myocardial ischemia-reperfusion injury by
negatively regulating miRNA-145/Bnip3 pathway axis (Zhang et al. 2016b; Zhao
et al. 2017). In addition, neuronal enriched lncRNAMEG3 is a maternally imprinted
lncRNA and plays an essential role in GABA neuron neurogenesis. Studies have
demonstrated that MEG3 regulates the formation of brain microvessels through
controlling the expression of angiogenesis genes (McLaughlin et al. 2006; Gordon
et al. 2010; Mercer et al. 2010), which in turn modulates the vulnerability to heroin
addiction (Nielsen et al. 2008). Interestingly, Gao et al. demonstrated that MEG3 is
upregulated in morphine-exposed mouse hippocampal neuronal HT22 cells com-
pared with control cells (Gao et al. 2019). Furthermore, the authors demonstrated
that knockdown of MEG3 reduced morphine-mediated upregulation of autophagy
through inactivating ERK pathway in HT22 cells (Gao et al. 2019). Brain-enriched
lncRNAs – NEAT1/2 and EMX2OS – play a pivotal role in controlling the expres-
sion of synaptic genes at transcriptional level as well as posttranslational level such
as mRNA splicing, which subsequently regulates synaptic density (Hutchinson et al.
2007; Bond and Fox 2009; Bernard et al. 2010; Spigoni et al. 2010). Although these
lncRNAs have been associated with heroin abusers, the mechanism of the action and
targets in the brain remain, however, to be elucidated.

Opioids, such as morphine, are used extensively in the clinical setting for pain
management owing to their beneficial effects. However, opioid use often leads to
tolerance and dependence on the drug. Recently, two independent groups have
identified differentially altered lncRNAs in the spinal cord using a rat morphine
tolerance model. Shao et al. performed lncRNA microarray analysis and demon-
strated that the expression of 136 lncRNAs was significantly altered in the spinal
cord of morphine tolerance rats compared with saline controls (Shao et al. 2018). In
another study, Qiu et al. demonstrated that the expression of five LncRNAs,
XR_006440, XR_009493, AF196267, MRAK150340, and MRAK037188, was
downregulated and the expression of five lncRNAs, MRAK046606, XR_005988,
DQ266361, uc.167�, and uc.468+, was upregulated in the spinal cord of morphine
tolerance rats compared with controls (Qiu et al. 2019). These results suggest that
lncRNAs could play a pivotal role in the development of morphine tolerance,
although the function and the underlying mechanisms of the lncRNAs remain
largely unknown.

Opioid use also manifests deleterious side effects in the brain including, but not
limited to, neuroinflammation. Recent studies suggest that the long intergenic
noncoding RNA (lincRNA)-Cox2 (proximal to the Cox2 gene with no overlap)
plays an important role in the pathogenesis of neuroinflammation-dependent dis-
eases including auto-inflammatory and neurodegenerative diseases. Upon immune
stimulation, lincRNA-Cox2 is upregulated via the NF-kB signaling pathway and is
required for the transcription of inflammatory genes (Carpenter et al. 2013; Hu et al.
2016; Liao et al. 2019; Xue et al. 2019). In addition, microglial dysfunctions, such as
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impaired phagocytosis and immune responses, also contribute to the pathogenesis of
neurodegenerative diseases. Recently, lincRNA-Cox2 has been found to be involved
in morphine-mediated neurodegeneration through regulating microglial phagocyto-
sis activity (Agrahari et al. 2019). In response to morphine stimulation, astrocytes
will release EVs that are taken up by microglial endosomes resulting in the
upregulation of lincRNA-Cox2 in microglia by activating Toll-like receptor
7 (TLR7) and the impairment of microglial phagocytic activity, suggesting that
lncRNA-Cox2 may indirectly contribute to the pathogenesis of SUDs.

As discussed above, BDNF is a critical determinant of compulsive alcohol
drinking. Interestingly, clinical study also suggests that the decreased plasma level
of BDNF is correlated with the increased risk of compulsive behavior and BDNF
Val66Met polymorphism in heroin users which has been proved to contribute to the
increased compulsive alcohol drinking in animals (Warnault et al. 2016; Rovis et al.
2018). Moreover, it has been reported that opiate-induced neurotoxicity in the CNS
may be correlated with modifications in BDNF expression, and peripheral BDNF
level may also be correlated with opiate use disorders in humans (Palma-Alvarez
et al. 2017), suggesting that lncRNA BDNF-AS mediated the epigenetic regulation
of BDNF that may also contribute to not only alcohol use disorder but also opiate
addiction.

3.3 LncRNAs in Cocaine Use Disorders

Cocaine is a CNS stimulant that affects the brain by increasing the levels of
dopamine, a brain chemical associated with pleasure and reward. Studies have
demonstrated that cocaine negatively affects every part of the body along with
many severe long-term effects. Cocaine use leads to alterations of gene expression
in CNS cells, in addition to other permanent effects including talkativeness, excite-
ment, alertness, anxiety, and overconfidence (Novikova et al. 2005; Repantis et al.
2010). Using cocaine-conditioned mice, a transcriptome analysis of lncRNAs of the
nucleus accumbens (NAc) has been performed and revealed that cocaine adminis-
tration results in genome-wide alterations of lncRNAs in the NAc, suggesting these
RNA transcripts may play roles in cocaine-induced neural plasticity and addiction
(Bu et al. 2012). Data analysis using Affymetrix arrays revealed that four brain-
enriched lncRNAs – MIAT, MEG3, NEAT2, and EMX2OS – were significantly
upregulated in the NAc of human cocaine abusers compared to matched drug-free
control subjects (Sartor et al. 2012). Although upregulation of these lncRNAs has
been observed in the NAc of human cocaine abusers, the potential targets and precise
mechanisms remain unknown.

Increasing evidence suggests that these lncRNAs play important roles in the
cardiovascular dysfunctions (Yan et al. 2015; Zhou et al. 2017; Ye et al. 2019),
neurogenesis (McLaughlin et al. 2006), angiogenesis (Gordon et al. 2010), and
synaptic density and gene transcription (Hutchinson et al. 2007; Bond and Fox
2009; Bernard et al. 2010; Spigoni et al. 2010); however, the mechanism of action
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and targets in the brain of cocaine abusers remain largely unknown. Interestingly,
similar aberrations in lncRNA expression in response to cocaine and heroin abuse
have been observed in human abusers (Michelhaugh et al. 2011; Bannon et al. 2015).
For example, Bannon et al. performed a custom lncRNA microarray analysis of
postmortem human midbrain specimens from chronic cocaine abusers and control
subjects (Bannon et al. 2015). This study demonstrated a group of lncRNAs
dysregulated in chronic cocaine abusers. Importantly, using in situ hybridization
histochemistry (ISHH), the researchers have demonstrated that the cocaine-
associated lncRNAs exhibit dopamine cell-specific expression, different subcellular
distributions, and covariance of expression with known cocaine-regulated protein-
coding genes. Specifically, the expression of LINC00162 and TRAF3IP2-AS1
transcripts was visualized nearly exclusively in dopamine neurons. Furthermore,
the results of qPCR and Pearson’s correlation analysis suggest that TRAF3IP2-AS1
transcript abundance positively correlated with the levels of TRAF3IP2 protein-
coding transcript, indicating a potential role of TRAF3IP2-AS1 in regulating the
expression of its cognate protein-coding gene (Bannon et al. 2015). In addition to
TRAF3IP2-AS1, the authors also demonstrated that the expression of 32 well-
annotated lncRNAs was differentially expressed in the midbrains of human cocaine
abusers, such as upregulated lncRNAs HOTAIRM1, RPPH1, and WDR11-AS1 as
well as downregulated lncRNAs RNF219-AS1, PRKCQ-AS1, STX18-AS1,
LINC00540, and LINC00403 (Bannon et al. 2015) (Table 3). These lncRNAs may
mediate broader downstream changes in gene expression arising within the dopa-
mine neurons of chronic cocaine abusers through epigenetic alterations of chromatin
state at gene loci. For example, as discussed by Bannon et al. (2015), given that both
TRAF3IP2 and PRKCQ proteins are master mediators in regulating the activity of
the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB), TRAF3IP2-AS1 and PRKCQ-AS1 lncRNAs could play a key role in
NF-kB signaling in cocaine abuse.

BDNF is one of the neurotrophic factors and also plays a critical role in the
growth, survival, and differentiation of developing neurons. It has been reported that
cocaine exposure induced the synthesis and release of BDNF from NAc neurons that
contributed to addictive phenotypes (Graham et al. 2007). Moreover, chronic
cocaine use also induces upregulation of NAc TrkB, a high-affinity receptor of
BDNF, which in turn leads to the transition to more addicted biological states
(Graham et al. 2007, 2009). Both in vitro and in vivo studies have demonstrated
that lncRNA BDNF-AS controls the expression of BDNF at both transcriptional and
posttranscriptional levels (Modarresi et al. 2012), suggesting that lncRNA BDNF-
AS could be a master regulator and controls drug-seeking behaviors in cocaine
abusers.
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3.4 LncRNAs in Other Drug Use Disorders

Repeated exposure to addictive drugs, including methamphetamine (METH), mar-
ijuana, or tobacco/nicotine, elicits long-lasting cellular and molecular changes.
METH is a highly addictive psychostimulant (Sim et al. 2017). Zhu et al. have
examined the lncRNA expression profile in the NAc of METH-sensitized mice using
high-throughput strand-specific complementary RNA sequencing technology
(ssRNA-seq) (Zhu et al. 2015), and demonstrated that the expression levels of
14,623 lncRNAs and 65 lncRNAs were significantly decreased and increased,
respectively, in the NAc of METH-sensitized mice compared with saline controls.
To further evaluate the potential functionality of these lncRNAs, the authors iden-
tified the cis- and trans-regulatory target genes of the lncRNAs followed by Gene
Ontology (GO) and KEGG pathway enrichment analyses. The findings suggest that
METH elicits global changes in lncRNA expression in the NAc of sensitized mice
and the METH-induced alteration of the lncRNAs could play important roles in
neuronal development, neuronal plasticity, learning and memory, and reward as well
as addiction (Zhu et al. 2015). Indeed, five of METH-regulated lncRNAs, includ-
ing Kcnq1ot1, Zfhx2as, Neat1, Neat2, and Miat, have been reported to interact with
targeted loci in either cis or trans manner (Komine et al. 2006; Lewis et al. 2006;
Hutchinson et al. 2007; Bernard et al. 2010) (Table 4). In addition, studies have also
demonstrated that these lncRNAs modulate the LTP of hippocampus and behavioral
abnormalities through various mechanisms, such as regulating the expressions of
their sense partners (Komine et al. 2006; Lewis et al. 2006), function as cofactors for
pre-mRNA splicing by interacting with the splicing factors (Hutchinson et al. 2007;
Tollervey et al. 2011; Tsuiji et al. 2011), or regulate neuronal plasticity by modu-
lating the expressions of multiple synaptic genes (Bernard et al. 2010). Although the
precise regulatory mechanism remains largely unknown, these studies suggest that
lncRNA-related nuclear modifications could play a role in METH addiction through
rapid posttranscriptional changes of gene expression.

METH can also damage neurons in the brain. To understand the role of METH
in the expression of lncRNAs in neurons, Xiong et al. performed microarray analysis
in METH-exposed primary rat prefrontal cortical neurons (Xiong et al. 2017). This
study revealed that 280 lncRNAs were upregulated, and 393 lncRNAs were
downregulated in the METH-exposed neurons compared with control neurons.
Results from the gene ontology (GO) and pathway analysis suggested that METH-
mediated lncRNA alteration could play a role in ER stress and p53-mediated
apoptosis in neurons. Furthermore, the upregulation of three lncRNAs,
NR_110713, NR_027943, and growth arrest-specific transcript 5 (GAS5) in
METH-stimulated neurons, was validated using qPCR analysis (Xiong et al.
2017). Moreover, GSA5 has been reported to regulate cell apoptosis through p53
signaling pathway by posttranscriptional regulation (Shi et al. 2015), which thus
suggests a regulatory role of GAS5 on the p53 signaling pathway in METH-induced
neurotoxicity.
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Nicotine dependence (ND) is a type of psychiatric disorder. In 2010, Silva et al.
analyzed the transcription across the entire genome in normal human bronchial
epithelial cells (NHBE) with exposure to the tobacco carcinogen NNK (nicotine-
derived nitrosamine ketone), utilizing whole-genome tiling arrays (Silva et al. 2010).
This study identified 12 lncRNAs that were upregulated in NNK-stimulated NHBE
cells (Silva et al. 2010). Northern blot and qPCR analyses further demonstrated that
these lncRNAs are upregulated in NNK-exposed NHBE as well as in a number of
lung cancer cell lines and breast cancer cell lines (Silva et al. 2010). The roles of
these lncRNAs in cellular stress and in cancer development, however, are still under
investigation.

Kaplan et al. investigated the expression of the paternally imprinted gene,
lncRNA H19, in the airway epithelium of individuals with a history of mild to
moderate cigarette smokers, and demonstrated that lncRNA H19 was significantly
upregulated in the airway epithelium compared with that of nonsmokers (Kaplan
et al. 2003). The authors further demonstrated that the smoking-induced
upregulation of H19 does not result from an alteration of the normal imprinting
pattern (Kaplan et al. 2003). Previous studies have demonstrated that frequent loss of
imprinting of H19 is associated with lung cancer (Kondo et al. 1995), indicating an
important role of H19, and the assessment of its expression, and/or loss of imprinting
could serve as early a biomarker in the progression of airway epithelium toward lung
cancer (Kaplan et al. 2003).

Recently, Parker et al. performed whole-blood RNA sequencing in 229 current
and 286 former smokers, and identified seven smoking-associated lncRNAs,
LINC00599, LINC01362, LINC00824, LINC01624, RP11-563D10.1, RP11-
98G13.1, AC004791.2, which were significantly altered (Parker et al. 2017).
Among them, LINC01624 was downregulated, and the left lncRNAs were signifi-
cantly upregulated in current smokers compared with former smokers (Table 4).
Although the mechanism of action and targets of these lncRNAs remain to be further
investigated, these findings imply a role for smoking-associated lncRNAs in
nicotine-mediated pathological effects.

4 The Action Mechanisms of LncRNAs in Various SUDs

Despite noncoding molecules, lncRNAs are multifunctional. Increasing evidence
has demonstrated numerous functions for lncRNAs in many cellular processes,
including gene imprinting (Kanduri 2016), stress response (Valadkhan and
Valencia-Hipolito 2016), differentiation and development (Fatica and Bozzoni
2014), speciation and species-specific development, and vernalization in plants
(Heo and Sung 2011). The addictive phenotype involving in brain structure and
function was attributed to the alterations of gene regulation caused by chronic
exposure to drugs of abuse. lncRNAs may function by regulating gene expression
through multidimensional mechanisms, including transcriptional and epigenetic
mechanisms (Kanduri 2016; Cao et al. 2019b). Recently, lncRNAs have been
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shown to play a crucial role in the regulation of alternative splicing in response to
several stimuli or during disease (summarized in Romero-Barrios et al. 2018).
Moreover, increasing evidence now indicates that chromatin-modifying complexes
are directed to their sites of action by lncRNAs. Therefore, it is possible that
lncRNAs play an important role in SUDs by regulating epigenetic processes. The
epigenome consists of DNA methylation and histone modifications including acet-
ylation, methylation, and phosphorylation. It has been reported that specific enzymes
responsible for histone acetylation, methylation, and DNA methylation in reward-
related brain areas are critically involved in cocaine addiction (LaPlant et al. 2010;
Maze et al. 2010). For example, two lncRNAs – Air and Kcnq1ot1 antisense – have
been found to play a role in histone methylation by interacting with histone
methyltransferase G9a which is downregulated in the NAc following cocaine expo-
sure and is important in cocaine-related behaviors (Nagano et al. 2008; Pandey et al.
2008; Maze et al. 2010). In addition, lncRNA-mediated regulation of histone
acetylation, methylation, and DNA methylation, as well as other important
cocaine-mediated modifications, has been reviewed (Maze and Nestler 2011). Col-
lectively, lncRNAs exert their function at multidimensional levels in various SUDs.

5 The Potential Applications of LncRNAs in SUDs

Currently, lncRNAs have garnered attention as another species of regulatory RNA
with key roles in development, epigenetics, regulation of transcription, and other
essential biological processes. Aberrant expressions of lncRNAs play critical roles in
the progression and development of various SUDs, some of which may be further
evaluated as highly sensitive biomarkers as well as potential therapeutic targets. It
has been reported that BDNF-AS lncRNA is associated with malignant status and
shows the potential as a prognostic biomarker and therapeutic target for some
cancers (Huang et al. 2018; Shang et al. 2018). Interestingly, BDNF-AS has also
been found to be dysregulated in response to chronic cocaine, alcohol, and opiate
addiction (Modarresi et al. 2012; Palma-Alvarez et al. 2017; Bohnsack et al. 2019).
Moreover, BDNF-AS as a conserved noncoding antisense RNA transcript regulates
the expression of BDNF at both transcriptional and posttranscriptional levels, which
in turn is involved in many neuronal processes including the synaptic plasticity in the
amygdala of AUD (Bohnsack et al. 2019), drug-seeking behaviors in chronic
cocaine use (Graham et al. 2007), and neurotoxicity in the CNS during opiate
abuse (Angelucci et al. 2007), suggesting BDNF-AS has the potential as a thera-
peutic target of these SUDs.

Chronic exposure to drugs of abuse in vulnerable populations causes long-term
behavioral abnormalities, which involve a complex interplay between gene expres-
sion and environmental factors (Walker and Nestler 2018). Increasing evidence
suggests that the alterations of gene expression in the reward circuitry of the brain,
particularly in the mesolimbic dopaminergic systems, contribute to the persistent
behavioral abnormalities (Alcaro et al. 2007; Walker and Nestler 2018). It has been
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reported that TRAF3IP2-AS1 lncRNA was upregulated, whereas PRKCQ-AS1 was
downregulated in the midbrain of cocaine abusers (Table 3), which were involved in
broader downstream gene alterations in dopamine neurons through epigenetic alter-
ations of chromatin state at gene loci (Bannon et al. 2015). These studies suggest that
lncRNAs are master regulators in SUDs and thus could be potential targets for
therapy. Intriguingly, recent study has demonstrated that lincRNA-Cox2 contributes
to morphine-mediated neurodegeneration through impairing microglial phagocyto-
sis, and intranasal delivery of lincRNA-Cox2 small interfering RNA (siRNA) can
restore microglial phagocytic activity in morphine-administered mice (Hu et al.
2018), suggesting that EV-loaded lincRNA-Cox2 siRNA can be used as therapeutic
strategy for a multitude of neurodegenerative disorders associated with opiate abuse.
Recently, the following study has been carried out to investigate the effects of
EV-loaded lincRNA-Cox2 siRNA on the LPS-induced microglial proliferation
which has been implicated in the pathogenesis of various neurodegenerative disor-
ders, such as Alzheimer’s disease (AD) (Spangenberg et al. 2016; Liao et al. 2019).
The results demonstrated that intranasal delivery of EV-loaded lincRNA-Cox2
siRNA can efficiently pass through the blood-brain barrier (BBB) to target activated
microglia in the brain where lincRNA-Cox2 siRNA significantly decreases the
expression of lincRNA-Cox2 in the microglia contributing to the inhibition of
LPS-induced microglial proliferation by controlling the expression of a set of cell
cycle genes (Liao et al. 2019). These findings indicate that the EV-based delivery
strategy targeting specific lncRNAs could be used to develop the therapeutics for the
treatment of CNS disorders, such as SUDs.

Moreover, lncRNAs (or lncRNA fragments) can also be packaged into EVs and
released into body fluids such as blood (Wang et al. 2018a; Kitagawa et al. 2019).
These findings thus raise the possibility that abnormal levels of lncRNAs in EVs
could serve as biomarkers for the prognosis of human diseases (Vausort et al. 2014;
Zhang et al. 2016a, 2019; Dai et al. 2017; Yuan et al. 2017; Jiang et al. 2018).
Recently, lncRNAs have also been found to be dysregulated and incorporated into
EVs in the context of drug abuse, for example, alcohol-induced upregulation of
lncRNAs HOTAIR and MALAT1 in endothelial EVs (Lamichhane et al. 2017),
which may contribute to the transfer of pathophysiological phenotypes in the remote
organs through the lncRNA-enriched circulating EVs. While more reliable EV
lncRNAs for SUD biomarkers are to be determined, efforts aimed at deciphering
the correlation between the expression levels of the EV lncRNAs and disease
severity warrant investigation.

6 Conclusions and Perspectives

Although a growing number of lncRNAs have been identified in addiction-related
neuroadaptations, their function and the underlying mechanism(s) in SUDs, how-
ever, remain to be investigated. Recently, many new methodologies and technolo-
gies have been proposed for the discovery and functional analysis of lncRNAs
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(reviewed in Kashi et al. 2016). The development and application of new tools will
enhance our understanding of the roles of lncRNAs in SUDs. Additionally, a novel
method has recently been developed to identify potential lncRNA-disease associa-
tions by Integrating Diverse Heterogeneous Information sources with positive
pointwise Mutual Information and Random Walk with restart algorithm (named
IDHI-MIRW) (Fan et al. 2019), which will be very useful for studying the relation-
ship between lncRNAs and drug addiction. Thus, the identification of lncRNA-SUD
associations will also gain insights into SUD-related lncRNAs and benefit SUD
diagnoses and treatment. Furthermore, given the fact that lncRNAs often serve as
master regulators in various biological processes, they could be ideal therapeutic
targets for preventing and treating SUDs. Moreover, many gender-associated
lncRNAs have also been identified and could contribute to the gender differences
in SUDs, which indicates that it could be crucial to develop lncRNA-based gender-
specific therapeutic strategies.
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