
FQL: An Extensible Feature Query
Language and Toolkit on Searching
Software Characteristics for HPC

Applications

Weijian Zheng1 , Dali Wang2(B) , and Fengguang Song1

1 Indiana University-Purdue University, Indianapolis, IN 46202, USA
zheng273@purdue.edu, fgsong@iupui.edu

2 Oak Ridge National Laboratory, P.O. Box 2008, MS 6301,
Oak Ridge, TN 37831, USA

wangd@ornl.gov

Abstract. The amount of large-scale scientific computing software is
dramatically increasing. In this work, we designed a new query lan-
guage, named Feature Query Language (FQL), to collect and extract
HPC-related software features or metadata from a quick static code
analysis. We also designed and implemented an FQL-based toolkit to
automatically detect and present software features using an extensible
query repository. A number of large-scale, high performance comput-
ing (HPC) scientific applications have been studied in the paper with
the FQL toolkit to demonstrate the HPC-related feature extraction and
information/metadata collection. Different from the existing static soft-
ware analysis and refactoring tools which focus on software debug, devel-
opment and code transformation, the FQL toolkit is simpler, significantly
lightweight and strives to collect various and diverse software metadata
with ease and rapidly.

Keywords: Feature Query Language · Static code analysis ·
High-performance computing

1 Introduction

Open source scientific software projects are growing explosively in number and
size. Many companies, universities, and national laboratories build their soft-
ware ecosystems around the open-source software projects. There are also a lot of
ongoing efforts to combine different software modules to create a larger scale soft-
ware system (e.g., climate modeling and simulation [1], fluid/solid dynamics com-
putations [20], material science [17], etc.). The complexity of large-scale scientific

This research was funded by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research (Interoperable Design of Extreme-scale
Application Software).
c© This is a U.S. government work and not under copyright protection in the US.;

foreign copyright protection may apply 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 129–142, 2020.

https://doi.org/10.1007/978-3-030-44728-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_8&domain=pdf
http://orcid.org/0000-0003-2791-0031
http://orcid.org/0000-0001-6806-5108
http://orcid.org/0000-0001-7382-093X
https://doi.org/10.1007/978-3-030-44728-1_8


130 W. Zheng et al.

models developed for specific machine architectures and application requirements
has become a barrier that impedes continuous software development. Further-
more, more and more scientific codes have incorporated high-performance com-
puting (HPC) features that, in turn, create machine configuration, computer
architecture, user and system library dependency issues.

Hence, given a large number of open source software projects, it is critical
to provide an efficient way for decision makers (such as users, administrators,
customers, developers, investors, and software managers) to quickly evaluate
the software and understand its structure and characteristics [18,32]. Also, as
numerous codes have been released and published every day in the open reposi-
tories (such as GitHub and bitbucket) as well as institution-owned repositories
(such as DOECode at the Office of Scientific and Technical Information (www.
osti.gov/doecode)), we need to develop a portable tool that can automatically
extract and collect essential features from these scientific codes.

In this paper, we target at creating a software toolkit to discover open
source software projects’ features. Here, “features” refer to any characteristic and
metadata related to the software, including programming languages, third-party
library dependency, special hardware requirement, particular tools, adopted pro-
gramming models, and so on.

We use open source science and engineering application software on high
performance computing (HPC) systems as examples to drive the design and
development of our toolkit due to the science and engineering software’s large
scale, high complexity, and utilization of a wide variety of computer hardware.
For instance, we experiment with a number of science codes from several large-
scale DOE programs to harvest HPC features for code archive purpose and
beyond.

In order to handle nearly “arbitrary” queries of interest from users, we need
a flexible and extensible solution that can process any number/type of features
in any open source software and can also efficiently answer these feature-related
questions. Our proposed solution is based upon a new language called Feature
Query Language (FQL) that lets users describe their queries (or questions) in
the FQL language. Given an FQL query, we then design a new software toolkit,
which can parse the user input, execute the query, scan open source software,
and present the final results. Our design shares the same philosophy with the
popular Structured Query Language (SQL) to support users’ arbitrary queries
about databases [11]. The distinction between FQL and SQL is that FQL is
designed to query open source code repository, which is being viewed as another
type of database, meanwhile achieving SQL’s portable, regular, structured, and
simple characteristics. We expect that this new toolkit will significantly benefit
broader scientific computing communities who are facing similar challenges.

The rest of the paper is organized as follows. Next section presents the related
work. Section 3 describes our toolkit from three perspectives: (1) FQL language,
(2) overall software workflow, and (3) FQL toolkit implementation. Section 4
presents the results obtained by executing predefined queries. Section 5 concludes
the impact and the possible future directions for our work.

www.osti.gov/doecode
www.osti.gov/doecode


FQL: An Extensible Feature Query Language and Toolkit 131

2 Related Work

This paper introduces a SQL-like query language and supporting toolkit, called
Feature Query Language (FQL), to collect HPC-related software metadata from
a quick static code analysis. We present the related work in two categories: (1)
software analysis tools without using domain-specific languages; and (2) software
analysis tools using domain-specific languages.

2.1 Software Analysis Tools Without Using Domain-Specific
Languages

There is a lot of software engineering work on code analysis that does not use any
domain specific language. A few software analysis tools are designed to obtain
low level code information. For instance, security flaws may be detected effec-
tively [35]. In the work of Bush et al., an analyzer for program errors is created
[5]. Buffer overflow and function dependencies can be found in the work [14]
and [33] respectively. On the other hand, a number of tools focus on providing
a higher level overview of the code. For example, the open source toolkits Scan-
Code [26] and Fossology [16] are used to extract the license, copyright, package
dependency and other information. Oss-review-toolkit is designed to provide the
dependencies of different open source libraries for software [25].

Although these software tools can detect specific software information, they
are not generic enough to query any type of features that may be interesting to
different users. Our FQL is designed to provide an abstract query interface to
users so that one can define any new queries in FQL and get answers quickly.

2.2 Software Analysis Tools Using Domain-Specific Languages

On the other hand, many software engineering tools define new programming
languages that are of domain purpose only (i.e., DSL) [21]. As described by
Deursen et al. [29], DSL has the following advantages: (1) more expressiveness
in the specific domain, (2) more friendly to domain experts, and (3) more verifi-
cation and optimization can be performed at the domain level. Hence, DSL has
been widely used in various static code analysis and refactoring tools. In this
subsection, we present software tools that use DSL in two classes: (1) static code
analysis and (2) code transformation.

Static Code Analysis: Static analysis tools such as crocopat [3], JRelCal [23],
JTL [6], SOUL [13], .QL and SemmleCode [12,30] use their own languages and
patterns to represent the desired features in the target code. For instance, cro-
coPat uses patterns that are described by binary decision diagrams for detecting
inter-class structures, which consist of good object-oriented (OO) design pat-
terns, weak anti-patterns, etc. [3]. JRelCal is a library to obtain different kinds
of relations in the source code based on the binary relational calculus [23]. JTL
(Java Tools Language) is a Java programming language extension to represent



132 W. Zheng et al.

Java code patterns by providing native and predefined first-order logical pred-
icates [6]. By using the new JTL representation, a JTL processor can analyze
queries for object-oriented Java programs. SOUL is a Prolog-like language to
query a program’s structure and is mainly used for detecting source code struc-
tures of Java and Smalltalk programs [13]. .QL is an object-oriented query lan-
guage for measuring code quality, observing bugs and other analysis tasks [12],
meanwhile SemmleCode [30] is a free Eclipse plugin, which adopts the .QL lan-
guage.

However, the above programming languages or tools have different goals from
ours, and they are intended to query software development related questions
(e.g., design defect, implementation bug, suboptimal code structure, inter-class
relationship, design violation, etc.), while our work targets at collecting soft-
ware’s meta-data, parallel library requirements, architecture or device depen-
dency, and other HPC-related questions.

Code Transformation: Another influential line of work aims to support auto-
matic code transformation or refactoring instead of static code analysis only
[2,4,7,9,18,22,31]. SrcML is a platform for both code analysis and code manip-
ulation via representing the code in a language called XPath that is similar
to XML [7]. Rascal is a programming language designed to integrate program
analysis with code manipulation [18]. By defining new basic data types and stati-
cally checking the types, Rascal allows programmers to represent a program then
transform the program automatically under a number of constraints. DMS is a
commercial code transformation tool, which has different performance optimiza-
tions [2]. The TXL (Tree Transformation Language) and ELAN [4] languages
are used for rule-based code refactoring [9]. Unlike TXL/ELAN, Stratego is able
to describe both refactoring strategies and refactoring rules [31]. Moreover, Coc-
cinelle is a special tool to automatically transform Linux kernel drivers by using
a language based on the patch syntax [22].

Nevertheless, the above code transformation tools require users to write new
programs or representations by using the new languages provided by the tools.
While they are efficient in code refactoring, they are overly complicated and
time-consuming for one’s simple goal of software metadata collection.

3 The FQL Language and Toolkit

In this section, we introduce the Feature Query Language (FQL) definition in
Subsect. 3.1, then describe the overall workflow of using the FQL toolkit in
Subsect. 3.2 followed by the design and implementation of our software toolkit
in Subsect. 3.3.

3.1 Feature Query Language (FQL)

The Feature Query Language (FQL) is designed for users to ask any software
feature or metadata related questions such as “Does the software require MPI-
2?”, “Does the software need GPUs”, “Does the software depend on a special



FQL: An Extensible Feature Query Language and Toolkit 133

Fig. 1. FQL syntax diagram.

compiler or parallel system library?”, “Does the software take advantage parallel
I/O”, etc. Since a user’s questions could be greatly diverse, our FQL must have
an extensible architecture and can incorporate any questions of interest. As long
as the user knows the keywords of targeted software features, he or she can write
a corresponding query in FQL (i.e., an FQL sentence) quickly.

3.1.1 FQL Syntax
FQL is defined by the FQL syntax, which is comprised of one or more clauses
(defined in the next paragraph).

If there is one clause, we return the query result of the specific clause. If there
are multiple clauses, results from the various clauses will be summarized by an
FQL command. An FQL sentence with multiple clauses can be expressed in the
following form:

FQL command (Clause1, Clause2, ...) (1)

An FQL Clause is defined as a combination of phrases and FQL reserved
keywords. An example of clause is provided below:

CHECK (keyword phrase) WHERE (file extension phrase)

AS (feature name phrase)
(2)

In the above syntax, CHECK, WHERE and AS are reserved keywords in
FQL. They are not case sensitive. Here, a phrase is just a set of strings. The
current version of FQL has three types of phrases: (i) keyword phrase, (ii)
file extension phrase, and (iii) feature name phrase.

(i) keyword phrase: A keyword phrase has a few keywords that describe a
specific software feature. Each keyword is simply a string. Different keywords
are concatenated by “||” or “&&”. Symbol “||” means that if one of the
keywords is found, we claim that the feature is found. Symbol “&&” means
that only if all keywords are found, we then claim that the feature is found.

(ii) file extension phrase: This phrase is used to tell the FQL software toolkit
where to search for the keywords. It consists of a list of file extensions
connected by “,”. If it is specified as “*”, the FQL toolkit will check all
types of files.

(iii) feature name phrase: This feature name phrase is optional and used to
specify how to interpret (or name) the query result. For instance, if the
keyword phrase is found to exist in the target software, the toolkit will
return the specified meaningful feature name. Otherwise (i.e., if there is no



134 W. Zheng et al.

feature name phrase provided), the toolkit will only return True or False
based upon the query result.

3.1.2 FQL Command
It is common that users may need more than one phrase to define a query. When
there are several clauses in a query sentence, results from different clauses will
be summarized by executing an FQL command. Currently, FQL provides three
commands:

– LIST: The LIST command enumerates all the features whose query results
are true.

– MAX: The MAX command returns the largest query value found in the
available features. It can be used to check the software version required by a
project.

– AND: The AND command returns True only if all clauses’ features have
been found.

The provided FQL commands can answer many frequently asked questions.
In addition, both our FQL syntax and toolkit implementation are designed to
be flexible and extensible. Such an extensible design allows new FQL commands
to be added to the FQL language quickly whenever needed. We expect to add
more commands as the types of queries increase.

To summarize the FQL grammar, we use Fig. 1 to illustrate the syntax of a
valid FQL sentence containing more than one clause. FQL-provided commands
and FQL-reserved keywords are written in bold uppercase inside rectangles.
Phrases and FQL-provided commands are written in lowercase inside ovals. By
following the arrows from left to right in Fig. 1, we can construct a valid FQL
query.

3.1.3 FQL Query Examples
Here, we list five examples of HPC related questions that may be asked by users
and the corresponding FQL queries as well as our remarks. For more examples,
please refer to Table 1.

Question 1 : Whether OpenMP is used in the code?
FQL: CHECK (!$OMP || #pragma omp) WHERE (*)

AS (OpenMP)

Note: OpenMP is a widely used API for shared-memory programming [10] in
HPC.

Question 2 : Is one-sided MPI communication used?
FQL: CHECK (MPI Put || MPI RPut || MPI Get

|| MPI RGet) WHERE (*)
Note: This query is used to check the MPI one-side communication feature. Since
no feature name is provided, our FQL toolkit will return True if one of those
keywords is found.



FQL: An Extensible Feature Query Language and Toolkit 135

Table 1. Examples of HPC-related asked questions and corresponding queries

Number User’s Interesting Question Corresponding FQL Query

1 Is OpenACC used?
CHECK (!$acc || #pragma acc)

WHERE (*) AS (OpenACC)

2
Is OpenACC CHECK (acc atomic)

atomic operation used? WHERE (*) AS (atomicACC)

3
Is CUDA CHECK ( device || global || host

programming || noinline || forceinline )
used? WHERE (.cu,.cuh) AS (CUDA)

LIST (CHECK (schedule(static) WHERE(*)
AS (Static), CHECK (schedule(dynamic)

What OpenMP WHERE(*) AS (Dynamic),
4 scheduling CHECK (schedule(guided) WHERE(*)

method is used? AS (Guided), CHECK (schedule(auto)
WHERE(*) AS (Auto), CHECK

(schedule(runtime) WHERE(*) AS (Runtime))

5
Does it use OpenMP CHECK (omp task || end task ||
Task programming omp taskloop || omp taskloop simd

constructs? || omp taskyield) WHERE (*)

Question 3 : What is the minimum version requirement of MPI?
FQL: MAX (

CHECK (MPI AINT ADD || MPI AINT DIFF)
WHERE (*) AS (3.1),

CHECK (MPI COMM DUP WITH INFO ||
MPI COMM SET INFO) WHERE (*) AS (3.0),

CHECK (MPI DIST GRAPH CREATE ADJACENT
|| MPI DIST GRAPH CREATE) WHERE (*)
AS (2.2),

CHECK (mpi.h || use mpi || mpif.h) WHERE (*)
AS (2.0))

Note: This query is used to search for the minimum version requirement of the
MPI in the code. Please note that if our FQL toolkit finds that MPI is not used
by the project, it will return “Not found”.

Question 4 : What kind of MPI process topology (topologies) is (are) used?
FQL: LIST (

CHECK (MPI CART Create) WHERE(*)
AS (Cartesian),



136 W. Zheng et al.

CHECK (MPI GRAPH Create) WHERE(*)
AS (Graph),

CHECK (MPI DIST GRAPH CREATE Adjacent
|| MPI DIST GRAPH Create) WHERE(*)
AS (Distributed Graph))

Note: This query uses the command LIST, whose function is to list all the
features found in the code. For this query, all the MPI process topologies used
in the code will be listed by our toolkit.

Question 5 : Does the project use a hybrid MPI/OpenMP programming model?
FQL: AND (

CHECK (mpi.h || use mpi || mpif.h) WHERE (*)
AS (MPI),

CHECK (!$OMP || #pragma omp) WHERE (*)
AS (OpenMP))

Note: This query uses the command AND, which is used to summarize whether
all the features are found. As to this sentence, if both MPI and OpenMP are
found, our toolkit will return True.

3.1.4 Predefined FQL Queries and User-Defined FQL Queries
Our software toolkit can support two types of FQL queries: predefined queries
and user-defined queries. Predefined queries correspond to frequently asked ques-
tions, which are offered as a list of question choices by our software toolkit. User-
defined FQL queries are written by a user based on his or her special questions.
Both types of queries can be parsed and executed by our toolkit automatically.
In our implementation, all the predefined FQL queries and their corresponding
questions (in plain English) are stored in a text file. The user-defined queries
can also be added to the text file for future use.

3.2 Overall Workflow of the FQL Software Toolkit

Fig. 2. Overall workflow of the software

Figure 2 shows the workflow of using the FQL toolkit. There are three major
steps to use the software: (i) Users input the targeted software’s file path



FQL: An Extensible Feature Query Language and Toolkit 137

Fig. 3. Software components implemented for parsing and executing FQL queries in
the FQL toolkit.

(shown as the first rectangle from the left); (ii) Next, the toolkit pre-scans the
targeted software (shown as the second rectangle); and (iii) Based on the user’s
choice, the FQL toolkit executes particular operations till the user exits the
program.

More details of the three major steps are shown as follows:

(i) Input the software path by users: Our toolkit will firstly ask the user to input
a file path to search for. This path should be the top-level directory of the
targeted software. All files in the specific file path will be scanned by the
FQL toolkit recursively.

(ii) Select an operation: In the second step, our software will ask the user to
select an operation to operate. There are three available operations.

(iii) Execute a selected operation: Our software will execute an operation based
on the user’s selection in the previous step. Three operations are as follows:
– To list all the predefined questions. This operation is to remind a user of

all predefined FQL queries and corresponding questions (in plain English).
The user can then execute a specific query by entering the index number
of the question.

– To add a new user-defined query. The FQL toolkit will also make sure the
query entered by a user is valid. It will repeatedly ask the user to input
the query until a valid query is received.

– To execute a specific query. Section 3.3 provides details about how to
execute an FQL query by the FQL toolkit.

After executing one of the above three additional operations, the toolkit
will check whether the user wants to repeat Step iii or not.

3.3 Implementation of the FQL Toolkit

To support FQL, we develop a new software toolkit to parse and execute FQL
queries. An overview of the process that parses and executes FQL queries is
illustrated in Fig. 3.

As shown in Fig. 3, the two yellow round-corner boxes (above the dotted
line) represent a user’s input and output. The four green round-corner boxes
(at the bottom) represent the data exchanged between several major program
components.



138 W. Zheng et al.

T
a
b
le

2
.
H

P
C

fe
a
tu

re
s

o
f
th

e
d
iff

er
en

t
so

ft
w

a
re

Q
M
C
-
P
a
ck

P
a
rF

lo
w

E
3
S
M

S
IC

M
T
ru

ch
a
s

T
u
sa
s

E
x
a
M
P
M

M
E
U
M
-A

P
P
S

M
P
I

✓
✓

✓
✓

✓
✗

✗
✓

M
P
I
m
in
.
v
er
si
o
n
re
q
u
ir
ed

2
.0

2
.0

2
.0

2
.0

2
.0

–
–

2
.0

M
P
I
p
ro
ce
ss

to
p
o
lo
g
y

C
a
rt
e-

si
a
n
,
G
ra
p
h

N
o
n
e

C
a
rt
es
ia
n

C
a
rt
es
ia
n

N
o
n
e

–
–

N
o
n
e

M
P
I
o
n
e-
si
d
ed

co
m
m
u
n
ic
a
ti
o
n

✓
✓

✓
✗

✓
–

–
✗

M
P
I
I/
O

✗
✗

✓
✗

✗
–

–
✗

O
p
en

M
P

✓
✗

✓
✓

✗
✓

✗
✗

T
a
sk

p
ro
-
g
ra
m
m
in
g
co

n
st
ru

ct
s

✓
–

✓
✗

–
✗

–
–

H
y
b
ri
d
M
P
I/

O
p
en

M
P

✓
–

✓
✓

–
✗

–
–

S
ch

ed
u
li
n
g
m
et
h
o
d

S
ta
ti
c

–
S
ta
ti
c

S
ta
ti
c,

D
y
n
a
m
ic

–
S
ta
ti
c

–
–

C
U
D
A

✓
✗

✗
✗

✗
✗

✗
✗

S
in
g
le
/
d
o
u
b
le

p
re
ci
si
o
n

B
o
th

–
–

–
–

–
–

–

S
u
p
p
o
rt

m
u
lt
ip
le

G
P
U
s

✓
–

–
–

–
–

–
–

O
p
en

A
C
C

✗
✗

✓
✗

✗
✗

✗
✗

A
sy
n
ch

-r
o
n
o
u
s
o
p
er
a
ti
o
n

–
–

✗
–

–
–

–
–

A
to
m
ic

o
p
er
a
ti
o
n

–
–

✗
–

–
–

–
–

M
in

re
q
u
ir
ed

C
co

m
p
il
er

C
9
9

C
9
9

C
9
9

C
9
9

C
8
9

–
C
9
9

–

F
o
rt
ra
n
st
a
n
d
a
rd

F
o
rt
ra
n
7
7

F
o
rt
ra
n
7
7

F
o
rt
ra
n
2
0
0
3

F
o
rt
ra
n
2
0
0
3

F
o
rt
ra
n
9
0

–
F
o
rt
ra
n
9
0

F
o
rt
ra
n
7
7



FQL: An Extensible Feature Query Language and Toolkit 139

In total, there are four major program components in the toolkit, which are
displayed as four blue rectangles in Fig. 3. They are lexical analyzer, semantic
analyzer, keyword scanner, and result generator. We will introduce the four major
components in details as follows.

(i) Lexical Analyzer: The input of this component is an FQL query which is an
array of characters. The lexical analyzer will parse the query into a list of
tokens. Here, each token is a string with an assigned or predefined meaning.

(ii) Semantic Analyzer: The objective of the semantic analyzer component is
to find a feature’s corresponding keywords from a sequence of tokens. The
component translates a list of tokens into keywords. Keywords refer to a
set of significant strings that can be used as an indicator of the software
feature. For instance, if we find the string #pragma omp in the source code,
we can say OpenMP is used.

(iii) Keywords Scanner: The objective of the keywords scanner component is to
find whether the desired keywords exist in the source code or not. This
component searches for the keywords derived from the semantic analyzer,
then prints out a list of boolean variables (illustrated as the Intermediate
Search Result in Fig. 3) to indicate whether each keyword is found or not
in the source code.

(iv) Result Generator: The result generator component imports the intermediate
results from the keywords scanner, and presents the results in an easy-to-
understand way to users.

In summary, the lexical analyzer and semantic analyzer components generate
a list of keywords from an FQL query. Then, this list is passed to the keywords
scanner component, which searches the open source code of interest by using the
keywords. Finally, the result generator component presents the keywords scanner
results to users.

4 Exemplar Applications

For the demonstration purpose, we present the searching results of scien-
tific computing software packages supported by several large-scale DOE pro-
grams, such as the Innovative and Novel Computational Impact on Theory
and Experiment (INCITE) program (www.doeleadership-computing.org), Exas-
cale Computing Projects (www.exascaleproject.org), Earth System Modeling
(climatemodeling.science.energy.gov), and Subsurface Biogeochemical Research
(doesbr.org). For the demonstration purpose, we use five applications in this
paper:

1. QMCPACK: A quantum Monte Carlo package designed for the ab initio elec-
tronic structure calculations [17]. It includes the implementation of a number
of numerous Quantum Monte Carlo (QMC) algorithms.

2. ParFlow A parallel watershed flow model used to simulate different kinds of
hydrological processes [20].

http://www.doeleadership-computing.org
http://www.exascaleproject.org
http://climatemodeling.science.energy.gov
http://www.doesbr.org


140 W. Zheng et al.

3. E3SM: A model used to simulate the interaction between human and Earth
systems [1].

4. SICM: A tool provides a simple unified interface to simplify the process of
managing the complex memory hierarchies [24].

5. ExaAM (includes Truchas, Tusas, ExaMPM and MEUMAPPS) : ExaAM is a
software environment to simulate the complex additive manufacturing process
(AM) [19]. Since it is an integration of many software, we use the Truchas
[27], Tusas [28], ExaMPM [15] and MEUMAPPS [8] as our test cases. As
shown in Table 2, there are four columns for each of them.

Exemplar FQL results of these applications are listed in the Table 2. It is
obviously that MPI and OpenMP are two of the most widely used HPC features.

5 Conclusions

In this paper, we design and develop a software toolkit that automatically collects
the software features from scientific codes using a new language, called Feature
Query Language (FQL). For specific user-defined questions, we translate and for-
mulate them into FQL queries using the FQL syntax. Then, the toolkit parses
and executes the FQL queries over source code to collect information about the
software features, such as special hardware, software and architecture require-
ments. Although we emphasize collecting the HPC features in this study, the
capability of the toolkit can be easily extended to other software engineering
tasks, such as coding pattern, hardware dependency and portability, as long as
these questions can be formulated as valid FQL sentences following the defined
FQL syntax that combines command, keyword, and phrase. FQL can also be
integrated into other code analysis tools. For instance, FQL is included in an
integrated tool called XScan. As described in [34], XScan can be used to analyze
the Open Source Community-based Scientific Code.

References

1. Bader, D., et al.: Accelerated climate modeling for energy (ACME) project strategy
and initial implementation plan (2014)

2. Baxter, I.D., Pidgeon, C., Mehlich, M.: DMS R©: program transformations for prac-
tical scalable software evolution. In: Proceedings of the 26th International Confer-
ence on Software Engineering, pp. 625–634. IEEE Computer Society (2004)

3. Beyer, D., Lewerentz, C.: CrocoPat: efficient pattern analysis in object-oriented
programs. In: 2003 11th IEEE International Workshop on Program Comprehen-
sion, pp. 294–295. IEEE (2003)

4. Borovanskỳ, P., Kirchner, C., Kirchner, H., Moreau, P.E., Vittek, M.: ELAN: a log-
ical framework based on computational systems. Electron. Notes Theor. Comput.
Sci. 4, 35–50 (1996)

5. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic pro-
gramming errors. Softw. Pract. Exp. 30(7), 775–802 (2000)



FQL: An Extensible Feature Query Language and Toolkit 141

6. Cohen, T., Gil, J.Y., Maman, I.: JTL: the Java tools language. In: ACM SIGPLAN
Notices, vol. 41, pp. 89–108. ACM (2006)

7. Collard, M.L., Decker, M.J., Maletic, J.I.: srcML: an infrastructure for the explo-
ration, analysis, and manipulation of source code: a tool demonstration. In: 2013
IEEE International Conference on Software Maintenance, pp. 516–519. IEEE
(2013)

8. Cook, J., Finkel, H., Junghans, C., McCorquodale, P., Pavel, R., Richards, D.:
Proxy app prospectus for ECP application development projects. Technical report,
Lawrence Livermore National Lab (LLNL), Livermore, CA, United States (2017)

9. Cordy, J.R., Dean, T.R., Malton, A.J., Schneider, K.A.: Software engineering by
source transformation-experience with TXL. In: Proceedings First IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation, pp. 168–178. IEEE
(2001)

10. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

11. Date, C.J., Darwen, H.: A Guide to the SQL Standard: A User’s Guide to the
Standard Relational Language SQL. Addison-Wesley, Reading (1989)

12. de Moor, O., et al.: QL: object-oriented queries made easy. In: Lämmel, R., Visser,
J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 78–133. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-88643-3 3

13. De Roover, C., Noguera, C., Kellens, A., Jonckers, V.: The soul tool suite for query-
ing programs in symbiosis with eclipse. In: Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java, pp. 71–80. ACM
(2011)

14. Dor, N., Rodeh, M., Sagiv, M.: CSSV: towards a realistic tool for statically detect-
ing all buer overows in C. In: ACM Sigplan Notices, vol. 38, pp. 155–167. ACM
(2003)

15. ExaMPM (2017). https://github.com/ECP-copa/ExaMPM
16. Gobeille, R.: The FOSSology project. In: Proceedings of the 2008 International

Working Conference on Mining Software Repositories, pp. 47–50. ACM (2008)
17. Kim, J., et al.: QMCPACK simulation suite (2014)
18. Klint, P., Van Der Storm, T., Vinju, J.: RASCAL: a domain specific language for

source code analysis and manipulation. In: 2009 Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2009, pp. 168–177.
IEEE (2009)

19. Exascale Simulation for Additive Manufacturing (2017). https://github.com/
ExascaleAM

20. Maxwell, R.M., et al.: ParFlow user’s manual. International Ground Water Mod-
eling Center Report GWMI 1(2009), p. 129 (2009)

21. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)

22. Padioleau, Y., Lawall, J., Hansen, R.R., Muller, G.: Documenting and automating
collateral evolutions in Linux device drivers. In: ACM SIGOPS Operating Systems
Review, vol. 42, pp. 247–260. ACM (2008)

23. Rademaker, P.: Binary relational querying for structural source code analysis. Uni-
versity Utrecht, Netherlands (2008)

24. SICM (2018). https://github.com/lanl/SICM
25. oss-review-toolkit (2017). https://github.com/heremaps/oss-review-toolkit
26. scancode-toolkit (2016). https://github.com/nexB/scancode-toolkit
27. Truchas (2017). https://github.com/truchas/truchas-release

https://doi.org/10.1007/978-3-540-88643-3_3
https://github.com/ECP-copa/ExaMPM
https://github.com/ExascaleAM
https://github.com/ExascaleAM
https://github.com/lanl/SICM
https://github.com/heremaps/oss-review-toolkit
https://github.com/nexB/scancode-toolkit
https://github.com/truchas/truchas-release


142 W. Zheng et al.

28. Tusas (2018). https://github.com/chrisknewman/tusas
29. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated

bibliography. ACM SIGPLAN Not. 35(6), 26–36 (2000)
30. Verbaere, M., Hajiyev, E., De Moor, O.: Improve software quality with Semmle-

Code: an eclipse plugin for semantic code search. In: Companion to the 22nd ACM
SIGPLAN Conference on Object-Oriented Programming Systems and Applications
Companion, pp. 880–881. ACM (2007)

31. Visser, E.: Stratego: a language for program transformation based on rewriting
strategies system description of stratego 0.5. In: Middeldorp, A. (ed.) RTA 2001.
LNCS, vol. 2051, pp. 357–361. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45127-7 27

32. Wang, D., Zheng, W., Song, F.: Application software analytics toolkit for facili-
tating the understanding, componentization, and refactoring of large-scale scien-
tific models. Technical report, Oak Ridge National Lab (ORNL), Oak Ridge, TN,
United States (2018)

33. Wilde, N., Huitt, R., Huitt, S.: Dependency analysis tools: reusable components
for software maintenance. In: Proceedings. Conference on Software Maintenance,
pp. 126–131. IEEE (1989)

34. Zheng, W., Wang, D., Song, F.: XScan: an integrated tool for understanding open
source community-based scientific code. In: Rodrigues, J.M.F., et al. (eds.) ICCS
2019. LNCS, vol. 11536, pp. 226–237. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-22734-0 17

35. Zitser, M.: Securing software: an evaluation of static source code analyzers. Ph.D.
thesis, Massachusetts Institute of Technology (2003)

https://github.com/chrisknewman/tusas
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1007/978-3-030-22734-0_17
https://doi.org/10.1007/978-3-030-22734-0_17

	FQL: An Extensible Feature Query Language and Toolkit on Searching Software Characteristics for HPC Applications
	1 Introduction
	2 Related Work
	2.1 Software Analysis Tools Without Using Domain-Specific Languages
	2.2 Software Analysis Tools Using Domain-Specific Languages

	3 The FQL Language and Toolkit
	3.1 Feature Query Language (FQL)
	3.2 Overall Workflow of the FQL Software Toolkit
	3.3 Implementation of the FQL Toolkit

	4 Exemplar Applications
	5 Conclusions
	References




