
Role-Oriented Code Generation
in an Engine for Solving Hyperbolic

PDE Systems

Jean-Matthieu Gallard(B), Lukas Krenz, Leonhard Rannabauer,
Anne Reinarz, and Michael Bader

Department of Informatics, Technical University of Munich, Munich, Germany
{gallard,lukas.krenz,leonhard.rannabauer,reinarz,bader}@in.tum.de

Abstract. The development of a high performance PDE solver requires
the combined expertise of interdisciplinary teams with respect to applica-
tion domain, numerical scheme and low-level optimization. In this paper,
we present how the ExaHyPE engine facilitates the collaboration of such
teams by isolating three roles: application, algorithms, and optimization
expert. We thus support team members in letting them focus on their
own area of expertise while integrating their contributions into an HPC
production code.

Inspired by web application development practices, ExaHyPE relies
on two custom code generation modules, the Toolkit and the Kernel
Generator, which follow a Model-View-Controller architectural pattern
on top of the Jinja2 template engine library. Using Jinja2’s templates to
abstract the critical components of the engine and generated glue code,
we isolate the application development from the engine. The template
language also allows us to define and use custom template macros that
isolate low-level optimizations from the numerical scheme described in
the templates.

We present three use cases, each focusing on one of our user roles,
showcasing how the design of the code generation modules allows to
easily expand the solver schemes to support novel demands from appli-
cations, to add optimized algorithmic schemes (with reduced memory
footprint, e.g.), or provide improved low-level SIMD vectorization sup-
port.

Keywords: ExaHyPE · Code generation · High-order discontinuous
Galerkin · Hyperbolic PDE systems · Model-View-Controller · Jinja2

1 Introduction

ExaHyPE (“An Exascale Hyperbolic PDE Engine”, www.exahype.eu) is an EU
Horizon 2020 project to develop an exascale-ready general solver for hyper-
bolic systems of partial differential equations (PDEs). Intended as an engine

c© Springer Nature Switzerland AG 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 111–128, 2020.

https://doi.org/10.1007/978-3-030-44728-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_7&domain=pdf
www.exahype.eu
https://doi.org/10.1007/978-3-030-44728-1_7

112 J.-M. Gallard et al.

(as in “game engine”), it concentrates on a dedicated numerical scheme and on
a fixed mesh infrastructure, but provides flexibility in the PDE system to be
solved [14]. Its mission statement is “to enable medium-sized interdisciplinary
research teams to realize extreme-scale simulations of grand challenges mod-
elled by hyperbolic conservation laws”. We anticipate (and have observed in our
project) that such endeavours progress in phases: from first attempts to imple-
ment the desired PDE model in the engine (realizing simple analytic setups) via
application-oriented benchmark setups (to validate numerical schemes) towards
large-scale demonstrator scenarios that establish the viability of the engine to
tackle grand challenges. We also need to envisage that successful demonstrators
shall be further developed into production codes or even services.

Orthogonal to the requirements of designing more and more complex appli-
cations, we are facing the challenges of upcoming exascale architectures. The
engine needs to take into account architecture-specific optimizations, which,
however, again need to be tailored to the specific PDE system and variants
of the numerical schemes. A common approach is to rely on C++ templating,
in practice this approach is often limited and thus supplemented by the use of
a domain-specific language such as UFL [1] and code generation for hardware-
specific optimisations, see e.g. [10,16]. To solve the contradictory goals of being
both an optimized custom-made solver and a broad general-purpose framework,
ExaHyPE uses code generation and modularity. The ExaHyPE engine isolates
its most compute intensive routines into modular kernels. These kernels are cre-
ated using code generation to be able to choose the most appropriate numerical
schemes for a given application and further tailor them to a given set of require-
ments. Code generation also allows the engine to rely on tailored glue code to
bind user written functions that implement the desired PDE system, and the
suitable kernels to its engine.

The generation of the glue code and kernels is performed by two custom
Python 3 modules, the Toolkit and the Kernel Generator. They are designed to
be expandable and accommodate for new user requirements.

This interplay of user-provided PDE-specific code, generated glue code and
kernels, and hardware-aware optimization of both, typically requires the com-
bined expertise of interdisciplinary teams. We have observed that in such teams
the following roles exist and need to be addressed by the engine:

The application expert implements the PDE system for a given applica-
tion, as well as problem-specific initial and boundary conditions or criteria for
mesh refinement and admissibility of solutions. This role desires a straightfor-
ward user API that requires only knowledge about the application and hides
the complexity of the solver and its optimizations. It expects a general-purpose
framework with best-possible flexibility in terms of implementing various PDE
systems, respective application scenarios and postprocessing of results.

The algorithms expert tunes the numerical solvers, for performance or
numerical properties, breaking them down into sequences of kernel calls. New
algorithmic schemes need to be made available, to expand ExaHyPE’s capabili-
ties to tailor itself toward applications matching specific numerical requirements.

Role-Oriented Code Generation in an Engine 113

The algorithms expert needs to be able to design these parts in an architecture-
oblivious way, while still getting low-level optimizations automatically in the
generated code.

The optimization expert contributes architecture specific knowledge and
optimizes all performance-critical components of the solver. This role requires
tools to impact in the background the work done by the other two, while being
able to efficiently support multiple architectures.

The three roles might be taken by a single person, but will usually be dis-
tributed to teams, such that each role might even be adopted by several per-
sons. While a separation of concerns is used in other PDE frameworks, such
as Firedrake [11,13] (following a compiler-based approach), we put a special
emphasis on the ability of the three experts to extend the code generation itself.
ExaHyPE thus uses its code generation utilities to isolate the roles, allowing
users to focus on their area of expertise, while integrating their cumulative work.
To achieve this, we took inspiration from web application development prac-
tices and designed both code generation modules using a Model-View-Controller
(MVC) architectural pattern on top of a template engine library, Jinja2 (http://
jinja.pocoo.org/). Such template engines are not often used in HPC software
– an exception being the MESA-PD particle dynamics code developed within
the waLBerla framework [6]. There, template logic is used to decouple physical
interaction models from the remaining framework. For a general PDE frame-
work, such as ExaHyPE, a similar decoupling is not sufficient, however, due to
the large number of supported use cases, the use of external libraries and the
strong interdependence of the numerical methods. In this paper, we show how
ExaHyPE’s code generation utilities and their design choices support the sep-
aration of roles and foster optimization of ExaHyPE towards an exascale PDE
engine.

We start with a brief overview of the engine, its ADER-DG scheme, kernels
and pre-compile-time code generation utilities in the Toolkit and Kernel Gener-
ator. In Sect. 3 we discuss the architecture of our code generation utilities and
how the MVC pattern and Jinja2 are used to make code generation and opti-
mization more straightforward. We then discuss on three use cases how these
choices translate into a simplified workflow for each of the three identified roles.

2 The ExaHyPE Engine

In this section, we provide the numerics of the ADER-DG scheme used by
ExaHyPE and how it allows to design a framework for solving a wide range of
applications. We then motivate the use of code generation to provide a smooth
user experience for the application expert while providing opportunities for algo-
rithms and optimization experts.

http://jinja.pocoo.org/
http://jinja.pocoo.org/

114 J.-M. Gallard et al.

2.1 A High-Order ADER-DG Solver with A-Posteriori Limiting

The ExaHyPE engine [14] can solve a large class of systems of first-order hyper-
bolic PDEs, which are expressed in the following canonical form:

∂Q
∂t

(x, t) + ∇ · F(Q) + B(Q) · ∇Q(x, t) = S(Q). (1)

Q(x, t) ⊂ R
q is a space- and time-dependent state vector for any x ∈ Ω ⊂ R

d

(d = 2, 3) and t ∈ R
+
0 . F denotes the conserved flux vector, B the (system)

matrix composing the non-conservative fluxes and S(Q) the source terms.
To solve equations of this form, ExaHyPE uses the arbitrary high-order accu-

rate ADER Discontinuous Galerkin (DG) method in the formulation by Dumb-
ser et al. [18]. The computational domain Ω is discretized with a tree-structured
Cartesian grid using the Peano framework [17] as mesh infrastructure, allowing
for dynamic adaptive mesh refinement. As understanding the kernels described
in the following sections relies on an understanding of the numerical scheme we
will briefly sketch the ADER-DG method. More details on the implementation
in the engine are given in [2].

The ADER-DG method consists of two phases, a predictor step in which
the weak formulation of (1) is solved locally in each cell, and a corrector step in
which the contributions of neighboring cells are taken into account. To derive the
weak solution of the problem we insert the DG ansatz function from the space
of piecewise polynomials into Eq. (1) and multiply with a test function from the
same space of piecewise polynomials. We then integrate over a space-time control
volume. The solution of the resulting element-local problem makes up one of our
most compute-intensive kernels, the space-time predictor. In non-linear problems
the solution of this element-local weak form is calculated using Picard iterations,
in the linear setting it can be computed directly using the Cauchy-Kowalewski
procedure.

In the second phase the element-local predictor solution is corrected, using
contributions from neighboring cells. To solve the surface integrals we introduce
a classical Riemann solver as it is used in Godunov-type FV schemes. After this
correction the next time-step can be calculated. The next time step size depends
on the CFL number.

However, this high-order approach suffers from oscillations at shocks and
discontinuities. We therefore apply an a-posteriori Finite Volume limiter [4]. We
identify cells as troubled using the following detection criteria: a relaxed discrete
maximum principle in the sense of polynomials, absence of floating point errors
(NaN, e.g.) and positivity (or similar physical constraints) of the solution. If one
of these criteria is violated after a time step, the scheme recomputes the solution
in the troubled cells, using a more robust high resolution shock capturing FV
scheme on a subgrid composed of (2N + 1)d cells. This procedure is composed
of several kernels, the computation of the discrete maximum principle, and a
projection from DG to FV solution and vice versa.

ExaHyPE thus provides building blocks to solve specific PDE systems with
a tailored scheme: DG vs. FV-only, DG with or without limiting, Cauchy-
Kowalewski procedure or Picard loops for linear or non-linear schemes, various

Role-Oriented Code Generation in an Engine 115

choices of Riemann solvers, etc. – presenting this complexity to users (depend-
ing on their roles) and thus keeping the engine and derived simulation software
manageable are consequently intrinsic challenges for the engine development.

2.2 Application-Specific Programming Interface

The canonical PDE system (1) can model a wide array of applications, including
relativistic astrophysics [3,7], seismic wave propagation [5,15] or several variants
of fluid equations (see [14] for an overview). All these problems can be formulated
via Eq. (1) via specific F(Q), B(Q) ·∇Q and S(Q). However, not all these terms
occur in every PDE; the engine should therefore not force the user to provide a
useless zero function.

Hence, as the first step, the application expert is expected to provide a speci-
fication file to describe the application and its runtime parameters. This includes
but is not limited to:

– Application parameters such as the number of quantities in the vector Q or
the polynomial order for the ADER-DG scheme;

– Which terms of the canonical PDE (1) will be required;
– Whether the application will require an a-posteriori limiter (as described in

Sect. 2.1);
– Optimization specific options that can be enabled to further improve the

application performance.

The specification file relies on a Domain Specific Language (DSL) defined via
JSON Schema (https://json-schema.org/). Using JSON Schema and its open
source tools simplifies both the validation of a given specification file and the
modification the DSL (e.g., to introduce new options) as will be described in the
use cases.

The specification file is passed to the code generation utilities that set up the
engine, and generate glue code and kernels. This includes a class UserSolver
where the application expert shall implement the required user functions:

– PDE-related functions that provide an implementation of the required terms
in (1), such as a flux function to compute F(qh);

– Initial and boundaries conditions;
– Eigenvalues and physical admissibility;
– Mesh refinement criteria (if mesh refinement is enabled).

The application can then be compiled using a generated Makefile and executed
with the specification file as argument for its runtime parameters.

Thus, from an application expert’s perspective, ExaHyPE allows to solve
complicated PDE systems with minimal code writing and without considering
the complex issues of designing a performance-oriented high-order solver on a
parallel compute cluster. Hence, ExaHyPE is well suited to quickly build an
application for a given PDE system and obtain first insights whether the engine
will fit the problem to be tackled.

https://json-schema.org/

116 J.-M. Gallard et al.

2.3 Architecture-Aware Optimization of Kernels

Toolkit and Kernel Generator aim to tailor the engine toward its applications and
a target architecture, such that an HPC-worthy production code is produced.
To enable this tailoring, the ExaHyPE engine itself is modular.

This is motivated by the fact that the element-local computation of ADER-
DG updates (cf. Sect. 2.1) naturally breaks down into substeps (space-time pre-
dictor, Riemann solver, etc.), which can often again be formulated as smaller
substeps (such as tensor or matrix operations). In the engine, each of these
substeps is isolated into a specific kernel. These kernels are the critical parts
of ExaHyPE, both performance-wise and regarding the implementation of the
numerical scheme [2].

Having more knowledge about the target application allows more specific but
also more efficient numerical schemes, such as using a linear scheme instead of
a general nonlinear one. Likewise, a specific numerical scheme may be required
to satisfy certain stability constraints, such as using a special Riemann solver.
Finally, knowing the target architecture enables different low-level optimization
techniques, such as the supported SIMD features and the required array align-
ment and padding settings.

The Kernel Generator uses all information provided in the specification file
to choose the correct scheme for each kernel and uses code generation to add
application- and architecture-aware optimizations to them. Using code genera-
tion also facilitates the inclusion of external performance related libraries and
code generators. The generated kernels are bound to the engine core using the
Toolkit’s generated glue code.

We cannot expect that the set of alternative schemes and supported opti-
mizations provided by the Kernel Generator will ever be complete. New user
and hardware requirements will arise constantly. Therefore, to facilitate the work
of algorithm and optimization experts, the Kernel Generator is designed with
ease of modification in mind, so that they can enrich the available customization
options of the engine. As adding new options for the Kernel Generator trans-
lates into expanding the specification file DSL and adapting the glue code, the
Toolkit’s design follows the same philosophy.

3 Code Generation in ExaHyPE

3.1 Model-View-Controller Design

The Toolkit and the Kernel Generator are implemented as Python 3 modules.
Python was chosen for its ease of use and development, as well as for its mature
open source ecosystem. Both modules follow the Model-View-Controller (MVC)
architectural pattern, which is widely used, especially in web applications. Our
motivation toward using an MVC pattern is twofold. First, the goal of gen-
erating user-tailored HTML pages and building an application by combining
multiple separate developer roles is quite similar to our own situation. MVC
has managed to become an industry standard, being recognized for the ease of

Role-Oriented Code Generation in an Engine 117

development, code reusability and useful abstraction layers it provides. Second,
we can re-purpose mature open source tools, such as the Jinja2 template engine,
to generate C++ code instead of its intended HTML output. Using a template
engine allows us to streamline the development of new features and to separate
the implementation of a new numerical scheme to its low-level optimization.

Reformulated in the MVC paradigm, each of our desired C++ files to be
generated (kernel and glue code alike) is a View to be rendered by a Model
responsible for it and the specification file is the input of the Controller. The
Toolkit implements the MVC pattern in the following way:

Controller. The Toolkit’s Controller class validates the specification file, parses
it, and builds multiple contexts, implemented by Python dictionaries. Each con-
text contains only the relevant information for a given Model, thus providing an
abstraction layer between the specification file grammar and the internal Toolkit
API. The Controller calls the application relevant models only and passes them
their respective context. For example a Python dictionary containing the applica-
tion name, path and target architecture (if provided) is generated and passed as
context to the Model responsible for generating the Makefile, while the Model
responsible for building the UserSolver contains the solver relevant informa-
tion, such as the polynomial order of the ADER-DG scheme or the used terms
of the canonical PDE form (1).

Model. Each Model is responsible for generating a specific View, or group of
Views. After receiving its context from the Controller, a Model may expand it
using its own internal logic to add relevant internal parameters. In situations
where different versions of a View exist, it decides which one is required. For
example, it might choose a View to generate the glue code for either a finite
volume solver or an ADER-DG solver, which require different kernels. It selects
the appropriate template that represents the desired View version, or in a simpler
case uses the sole template for this View.

View. Views are implemented by templates which are a generalized representa-
tion of a given C++ code that may be tailored to a specific context. The Jinja2
template engine is invoked to render a template with a Model-provided context.
Jinja2 parses its input template and uses the context to interpret it. Its output is
then written as a valid C++ file that matches the context, and thus specification
file, requirements. For example, it may hard-code the selected polynomial order
and use the generated kernels.

The Kernel Generator follows the same MVC architecture and is called by a
special Model of the Toolkit. This Model translates its context into the required
format for the Kernel Generator API and passes it to its Controller. The same
MVC schema is then replicated. The separation of Toolkit and Kernel Generator
into two utilities is dictated by their different purpose: The Toolkit generates
glue code and code the application expert is expected to interact with, while the
Kernel Generator handles numerical schemes and low-level optimizations for the
other two roles.

118 J.-M. Gallard et al.

3.2 Templates

As mentioned in Sect. 3.1, a template is a generalized representation of a given
C++ file that we want the code generation utilities to generate – e.g., a kernel
or some glue code. By using templates, we are able to put some logic in the
code representation while keeping it close to the generated code and thus easily
readable and expendable.

To express this logic, we use the templating language implemented by Jinja2.
Its language syntax is designed to be both easy to learn and to work with, and
is therefore well suited to allow ExaHyPE’s users to modify the behavior of its
code generation utilities. It also provides some advanced functionalities that can
be used directly in the code abstraction.

// template
{% if initA %}

{{ allocateArray(’A’, nDof)}}

for(int i=0; i<{{ nDof }}; ++i) {

A[i] = B[i+{{ nDof*nVar }}] * {{C}}[i];

}

{% endif %}

// generated code
double A[5] __attribute__ ((aligned (32)));

for(int i=0; i<5; ++i) {

A[i] = B[i+20] * foo[i];

}

Fig. 1. Example of a template and the resulting generated code

The code fragment in Fig. 1 illustrates how we use templates to generate
C++ code: At its simplest any given string or number can be abstracted behind
a variable in a template’s context. This is used, for example, to abstract the appli-
cation’s namespace, which depends on the user specification, in the template.
Mathematical computations can also be done and the result directly written
in the generated code, In the code of Fig. 1 this is used to hard-code the loop
boundary nDof, the index shift of the array B and the name of the third array.

Furthermore, boolean operations and branchings are used to selectively
enable or disable certain parts of the generated code. For example in the glue
code responsible for binding the kernels to the engine, choosing linear or non-
linear kernels is done using Jinja2’s branching. This allows us to efficiently deal
with the multitude of options ExaHyPE offers its users, without having to dupli-
cate code or use slower runtime branching. In the code of Fig. 1, branching is
used to include the whole fragment only if the context’s boolean initA is true.

Jinja2’s logic also includes subtemplating, i.e. including and rendering a tem-
plate inside another one, and custom macros. With this we can factorize repeat-
ing portions of the templates, thus making them easier to maintain and expand.

Role-Oriented Code Generation in an Engine 119

We also use macros to provide architecture-aware optimizations. In Fig. 1, we
use the macro allocateArray to allocate a new array A. This macro abstracts
the optimized allocation of an array of a given size. In our example, it produces
the C++ code to allocate the array A on the stack and on a 32-bytes boundary
for more efficient AVX2 operations.

3.3 Architecture-Oblivious Templates and Architecture-Aware
Optimization Macros

{% macro allocateArray(name , size , setToZero=False) %}

{% if tempVarsOnStack %}

double {{name }}[{{ size }}] __attribute__ ((aligned(\

{{ alignment }}))) {{"={0.}" if setToZero }} ;

{% else %}

double* {{name}} = ((double *) _mm_malloc(sizeof(double) \

*{{ size}}, {{ alignment }}));

{% if setToZero %}

std:: memset ({{ name}}, 0, sizeof(double)*{{ size }});

{% endif %}

{% endif %}

{% endmacro %}

Fig. 2. Example of an optimization macro to allocate arrays

The Kernel Generator provides kernels that are optimized toward both given
application requirements and a target architecture. The former is done via algo-
rithmic adaptations: choosing the appropriate scheme, enabling or disabling fea-
tures, hard-coding specific values, etc. The latter requires low-level code opti-
mizations (e.g., array padding and alignment), compiler specific pragmas and
instructions, or external libraries. Performing both at the same time on a given
kernel template would make it hard to read, maintain and expand. Hence the
separation of the role of algorithms and optimization experts.

Using Jinja2’s macros and variables, we can design an architecture-oblivious
template that will be rendered with architecture-aware optimizations. Thus,
most templates in the Kernel Generator are algorithmic templates: templates
that focus on describing a given scheme with some algorithmic optimizations
but without any complex logic for architecture related ones. A second smaller
set of templates define optimization macros and the subtemplates used by these
macros to perform a specific task or output a specific architecture-aware opti-
mization. The macros defined this way can then be used by the algorithmic
templates.

The code excerpt in Fig. 2 shows a simplified version of the allocateArray
macro that was used in Fig. 1. It takes the array’s name and size as posi-
tional inputs and optionally a boolean setToZero to indicate if the array

120 J.-M. Gallard et al.

should be initialized to zero. Then, depending on a global optimization flag
tempVarsOnStack, it allocates the array either on the stack or on the heap.
Enabling this feature depends on the target hardware setting, as a limited stack
size could cause crashes. The allocateArray macro takes care of array align-
ment to optimize for SIMD using a global alignment context parameter that
is set by the Kernel Generator’s Controller depending on the specified target
architecture, and thus the target AVX settings. For heap allocation, a compiler-
specific instruction is used (e.g., _mm_malloc for the Intel compiler).

Thus every time a temporary array is needed, it can be allocated using this
macro, hiding the low-level optimization from the algorithms expert. If the opti-
mization expert needs to add support for a different compiler, e.g., expanding
this macro provides it to all kernels. A complementing freeArray macro exists
to free the memory correctly, as for example using _mm_malloc requires using
the Intel-specific _mm_free instruction, whereas the pointer should not be freed
at all, if a stack allocation was used.

Macros can also be used to include external libraries. For example ExaHyPE’s
kernels spend a lot of computational effort in performing small dense matrix
products that result from expanding respective element-local tensor operations.
For these we employ LIBXSMM [9], which generates architecture specific func-
tion kernels to perform small matrix products at best-possible performance on
a given Intel architecture. Using a custom matmul macro and with some modi-
fication to the controller and models to properly define the parameters of each
matrix products in the template, LIBXSMM can be selected and integrated into
the kernels. By expanding the matmul macro, an optimization expert can also
easily switch to another library to support another kind of architecture.

Thus the development of new numerical schemes and the low-level
architecture-aware optimization can be kept separated. This ensures that the
role of algorithm and optimization expert are independent from one another.

4 Expanding the PDE: Navier-Stokes Equations

In this section, we discuss the solution of the compressible Navier-Stokes equa-
tions using the ExaHyPE engine [14]. Following our PDE system (1), we can
write the compressible Navier-Stokes equations as

∂

∂t

⎛
⎝

ρ
ρv
ρE

⎞
⎠

︸ ︷︷ ︸
=Q

+∇ ·
⎛
⎝

ρv
v ⊗ ρv + Ip + σ(Q, ∇Q)

v · (IρE + Ip + σ(Q, ∇Q)) − κ∇(T)

⎞
⎠

︸ ︷︷ ︸
=F(Q,∇Q)

= S(Q). (2)

where ρ denotes the density, ρv the momentum, ρE the energy density, T the
temperature and p the pressure (including hydrostatic pressure, e.g., gravita-
tional effects). The temperature diffusion is given by κ∇T with constant κ. Note
that the stress tensor σ(Q,∇Q) involves a parabolic component, expressed via
the dependence on ∇Q. While we can largely stay with the existing numeri-
cal approach to solve the equations in ExaHyPE, we had to extend the API to

Role-Oriented Code Generation in an Engine 121

allow for flux terms F(Q,∇Q) that depend on ∇Q in the canonical PDE (1).
For example, the gradient of the state vector Q had to be added as argument
of the flux function, which was also renamed to viscousFlux. Further changes
are modifications to the space-time predictor, the boundary conditions and the
introduction of a new Riemann solver [8].

As only minor modifications to the existing numerical schemes and none to
the optimizations are required, we followed a straightforward linear workflow:

4.1 Expanding the DSL

We modified the DSL of our specification file to include a new optional flag
enabling the viscous flux terms in the PDE system as an opt-in feature. In the
JSON schema, this meant adding a viscous_flux option to the already existing
list of optional PDE components for an ADER-DG Solver:

"items":{

"type":"string",

"enum":["flux","source","ncp","viscous_flux"]

}

The Schema processing library only performs basic input validation. Here
flux and viscous_flux should not appear together, thus a new test was added
to the validation method of the Toolkit’s Controller class, such that an error
message is issued if a user selects both options simultaneously.

4.2 Processing the New Specification File Option

The new viscous_flux option is processed by the Controller and passed on as
a boolean flag useViscousFlux in the context of the Models needing to act on
it. In the MVC architecture, the addition of a few lines of code is sufficient to
provide the Views with such a boolean flag.

4.3 Expanding the Views

The code to be generated is abstracted in the Views of the Toolkit and Kernel
Generator by Jinja2’s templates. Using Jinja2’s template branching logic, the
application expert is asked to provide a viscousFlux user function in the gen-
erated UserSolver, if the useViscousFlux flag is set. Then in all kernels using
flux, the gradient ∇Q is computed using already existing macros, which deal
with the optimization of this computation, and the viscousFlux function is
called instead with it as additional argument.

The branching also ensured that the expanded Views generate the same
code as before if the flag is not set (opt-in option). Since every part of the code
generation is compartmentalized into separate Models, modifying a Model or
expanding the Controller has no side effects on the other generated code.

122 J.-M. Gallard et al.

4.4 Result Evaluation

An application using this new feature was written and tested. It is able to simu-
late cloud formation processes in scenarios incorporating a background atmo-
sphere that is in hydrostatic balance [12]. At the end of this use case, the
ExaHyPE engine’s canonical PDE system (1) is expanded and can now, as
an opt-in option, work with further applications requiring a viscous flux term
instead of a classical flux.

The modifications needed to implement the features required roughly 100
lines for the kernels and additionally less than 100 lines for the Toolkit. This
includes all code, comments and all needed API changes. We want to emphasize
that theses changes required only a basic algorithmic understanding and minimal
optimization knowledge, thanks to the reuse of existing optimization macros.

5 Improved Space-Time Predictor for Linear Applications

Benchmarks of the linear PDE solver at high polynomial orders revealed signif-
icant loss of performances due to cache misses inside the SpaceTimePredictor
kernel. This was caused by the temporary arrays required by the algorithm to
implement the Cauchy Kowalewski scheme inside this kernel. The size of these
arrays depends on the polynomial order used, and increased beyond the L2 cache
size of our test hardware during benchmarks. Thus, to reduce the memory foot-
print, we reformulated the algorithm toward cache efficiency.

Instead of storing all time derivatives for later integration, the time inte-
gration is performed on the fly. Thus the full time dimension is removed from
temporary arrays. As a result, the spatial directions of the PDE system are
processed one at a time. The algorithm therefore requires three directional flux
functions instead of one for all dimensions. Depending on the application specific
formulation this might lead to redundant computations. Therefore, despite being
more memory efficient, the new algorithm is offered as an optional kernel variant
(opt-in option). To introduce this new SpaceTimePredictor kernel variant, we
used an iterative and incremental approach:

5.1 Prototyping the New Algorithm

The new algorithm was first prototyped on a test application with fixed settings.
We generated the default SpaceTimePredictor kernel for the test case and edited
it locally to get to the new algorithm. This way we could test the new algorithm,
verify it against the default one and validate our assumption on improving the
memory footprint. We then iterated upon the prototype to incrementally add
new optimizations, as tests revealed bottlenecks and possible areas of improve-
ments.

Role-Oriented Code Generation in an Engine 123

5.2 Inclusion in the Kernel Generator

Once the prototype was finished and validated, it was incorporated directly
into the Kernel Generator. The prototype source code was directly used as the
first iteration of a new template, since a template can also exist of explicit code
without any template logic. Then using the existing MVC structure of the Kernel
Generator, its generation behavior was modified by introducing a new optional
input parameter to trigger the generation of this new template (as in the use
case of Sect. 4). At this stage the Kernel Generator was able to generate the
prototype kernel variant only for the application and setting it was designed for
during the prototyping step.

5.3 Template Generalization and Optimization

Finally the template was generalized, such that it can be used with other settings
or by other applications. The hard-coded settings from the prototyping steps
(e.g., the name of the solver, the polynomial order) were replaced by their respec-
tive abstractions, as defined in the provided template context, thus enabling the
new kernel variant to be properly generated for all settings. This transformed
the prototype template to an algorithmic template as described in Sect. 3.3.

To provide architecture-aware optimizations, we used the existing optimiza-
tion macros, for example to perform optimized matrix products. Thus, this new
kernel variant was immediately optimized toward all the supported architecture
without needing any optimization knowledge.

5.4 Performance Evaluation

Once the new kernel variant was fully supported by the code generation util-
ities, we used ExaHyPE’s internal benchmarking tools to compare it with the
default one on a set of test applications, settings and architectures. These tests
confirmed our early intuition that the new algorithm provides no runtime ben-
efits for applications with low memory footprint, but leads to speedups of >2
for bigger settings that are severely affected by cache misses with the default
algorithm. The threshold depends on the application, its settings (esp. the poly-
nomial order) and the hardware specification (esp. the L2 cache size).

Using the Kernel Generator MVC architecture and the optimization macro,
the development of this new kernel variant, from building a prototype to the
benchmarking of the feature, required almost exclusively the numeric and algo-
rithmic optimization expertise, expected from an algorithm expert role.

6 Vectorization of User Functions

The last use case addresses the exploitation of SIMD capabilities of modern
CPUs. Here, ExaHyPE faces a conflict of API and optimization requirements.
For the implementation of user functions, such as the flux function F(Q), the

124 J.-M. Gallard et al.

most intuitive API is like the function flux(Q,F) in Fig. 3: flux acts on a con-
tiguous vector of quantities. This Array of Structure (AoS) data layout also
supports the optimized execution of 4D tensor operations (3D space plus the
quantity dimension) via sequences of matrix operations – the matrices always
have the quantities as a dimension that is contiguous in memory. However, AoS
becomes inefficient, when calling the user functions for multiple spatial posi-
tions, such as evaluating the flux function at all integration points to evaluate
the Riemann problem on element faces. The kernels then loop over all spatial
coordinates, but call the user functions on the vector Q for each single spatial
point. These calls cannot be vectorized, as the accessed components Q[0], Q[1],
etc. (similar for F[0][0], . . .) are not stored in unit-stride.

To solve this data layout conflict, we introduced SIMD user functions as opt-
in features. Instead of processing a single quantity vector, they take as parameter
a vector of quantities in a Structure of Array (SoA) layout, so that the resulting
loop in the implementation can be vectorized. Figure 3 illustrates how to imple-
ment such a SIMD flux function (fluxVect): The input arrays of fluxVect now
have a new fastest-running dimension that matches the loop iteration, such that
compiler auto-vectorization may be enabled.

void Euler ::flux(double* Q, double ** F) {

//[...] constants
// x direction
F[0][0] = Q[1];

F[0][1] = irho*Q[1]*Q[1] + p;

F[0][2] = irho*Q[2]*Q[1];

F[0][3] = irho*(Q[3]+p)*Q[1];

//[...] y direction
}

void Euler :: fluxVect(double ** Q, double *** F){

#pragma vector aligned

#pragma ivdep

for(int i=0; i<VECTSIZE; i++){

//[...] constants
// x direction
F[0][0][i] = Q[1][i];

F[0][1][i] = irho*Q[1][i]*Q[1][i] + p;

F[0][2][i] = irho*Q[2][i]*Q[1][i];

F[0][3][i] = irho*(Q[3][i]+p)*Q[1][i];

//[...] y direction
}

}

Fig. 3. Example implementation (for the 2D Euler equations) of a flux function
F(Q) for a single flux vector Q (flux(...), top) or for an array of flux vectors
(fluxVect(...), bottom). Note that in F[0][0][i], etc., i is the fastest-running index.

Role-Oriented Code Generation in an Engine 125

In this use case, we describe the integration of these new user functions
to all existing kernels using new optimization macros. By using macros, only
optimization specific knowledge is required during development and they can be
reused by algorithms experts when implementing new schemes. We will describe
only the work for the flux user function, the same being done for the others.

6.1 Optimized Transpose – from AoS to SoA (and Back)

To be able to use a SIMD user function, the data layout has to be transformed
on the fly from AoS to SoA and back. This is achieved by transposing a slice of
the input array to a new temporary array. Processing with slices instead of the
whole array optimizes caching behaviors.

We therefore introduced a new optimization macro called transpose. By
default it falls back to a naive loop-based transpose. However, more optimized
transpose implementations are offered, such as ones using architecture-specific
intrinsic operations like _mm256_permute2f128_pd and _mm256_shuffle_pd for
AVX. At rendering, the best available implementation for the given context is
chosen. It can easily be expanded to better support other architectures and could
be expanded to use an external library like the matrix product matmul macro
with LIBXSMM.

6.2 Abstracting the Call to the User Function Behind a Macro

The choice between the flux and fluxVect user functions and the required
supporting logic is complex and repeated at each instance where the flux function
F(Q) is evaluated in the kernels. As described in Sect. 3.3, we can factorize
this template code and abstract it behind a new optimization macro named
callFlux. We started by abstracting the current behavior behind the callFlux
macro:

{% macro callFlux(Q, F, size) %}

{% set F_shift = nDof**nDim*size %}

double* F[{{ nDim }}];

for (int i = 0; i < {{nDof**nDim }}; i++) {

F[0] = {{F}}+i*{{ size }};

F[1] = {{F}}+i*{{ size }}+{{ F_shift }};

{% if nDim == 3 %}

F[2] = {{F}}+i*{{ size }}+2*{{ F_shift }};

{% endif %}

{{ solverName }}. flux ({{Q}}+i*{{ size}},F);

}

{% endmacro %}

At that point it performed only the existing default case to call the flux
function: loop over all spatial points of the cell, initialize the array F and call
the function with the correct shift in the data arrays as they use an AoS layout.
The evaluations of the flux function in all kernels are replaced by callFlux.

126 J.-M. Gallard et al.

6.3 Expanding the callFlux Macro

As in the two previous use cases, we introduced a new context boolean flag
useFluxVect. We then expanded the callFlux macro with a branch on this
flag. If the flag is set, the callFlux macro uses the transpose macro defined
earlier to switch on the fly between AoS and SoA data layout and call a new
fluxVect user function with its altered signature compared to flux as shown
in Fig. 3. As we modified a macro, this work is automatically propagated to all
existing templates using it.

6.4 Performance Evaluation

We evaluated the SIMD user functions on two example PDEs: the 3D Euler equa-
tions (EulerFlow), where the flux function is quite simple, and the Einstein equa-
tions from relativistic astrophysics (CCZ4), where the user functions are highly
complex and comprise most of the runtime. The benchmark was done on Super-
MUC phase 2 (Intel Haswell architecture, supporting AVX2). For EulerFlow we
compared the default version with the auto-vectorized one and with an intrinsics-
version for AVX2. The auto-vectorized and the intrinsics implementations both
achieved similar performances, illustrating that for simple user functions a quick
adaptation of the scalar implementation to enable auto-vectorization is enough.
Compared to the default version, both SIMD implementations provided an end-
to-end speedup by a factor 1.04. Here the low cost of the simple user function is
barely enough to compensate for the cost of the required transpositions.

With the help of an application expert, we implemented a partially auto-
vectorized version of the complex CCZ4 user functions. We measured a speedup
factor of 1.27. While the user functions were not fully vectorized due to their
complexity, their high computational cost is enough to offset the transpose one.
A better vectorized implementation of the user functions would provide even
more performance gain.

Here by working with macros, we not only provide these new features to
all existing schemes, but also ensure that future ones can easily use them. The
implementation of the macros required mostly low-level optimization knowledge.
All architecture-specific optimizations are fully handled by the macros, enabling
an optimization expert to easily improve them or expand them for other archi-
tectures.

7 Conclusions

This paper details how code generation is used in a PDE engine to offer a tai-
lored application-specific programming interface for users, while at the same
time selecting the most appropriate (regarding the target application) numeri-
cal scheme and implementation for each of its critical components, and tuning it
with low-level architecture-aware optimizations. The choice of a MVC architec-
ture for code generation facilitates the collaboration of three identified user roles

Role-Oriented Code Generation in an Engine 127

– application, algorithm and optimization experts – as they use and expand the
engine. In the Views, Jinja2’s template logic and macros support the implemen-
tation of new algorithms and low-level code optimization independently of each
other.

The three presented use cases show how a user assuming only one single
role can work with the engine and contribute to it by expanding the code gen-
eration utilities, cumulatively improving its capabilities. Thus, the presented
design solves a common issue encountered when building complex HPC simula-
tion software: to support users with different areas of expertise in their effective
collaboration.

Acknowledgements and Funding. This project has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 671698. We thank the Gauss Centre for Supercomputing e.V. (www.gauss-
centre.eu) for providing computing resources on the GCS Supercomputer SuperMUC
at Leibniz Supercomputing Centre (www.lrz.de).

References

1. Alnaes, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: Unified form
language: a domain-specific language for weak formulations of partial differential
equations. ACM Trans. Math. Softw. 40(2) (2014)

2. Charrier, D., Hazelwood, B., Weinzierl, T.: Enclave tasking for discontinuous
Galerkin methods on dynamically adaptive meshes. SIAM J. Scient. Comput. (in
press). arXiv:1806.07984

3. Dumbser, M., Fambri, F., Tavelli, M., Bader, M., Weinzierl, T.: Efficient imple-
mentation of ADER discontinuous Galerkin schemes for a scalable hyperbolic PDE
engine. Axioms 278 (2018).https://doi.org/10.3390/axioms7030063

4. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of
the discontinuous Galerkin finite element method for hyperbolic conservation laws.
J. Comput. Phys. 278(C), 47–75 (2013)

5. Duru, K., Rannabauer, L., Ling, O.K.A., Gabriel, A.A., Igel, H., Bader, M.: A
stable discontinuous Galerkin method for linear elastodynamics in geometrically
complex media using physics based numerical fluxes (2019). arXiv:1907.02658

6. Eibl, S., Rüde, U.: A modular and extensible software architecture for particle
dynamics. In: 8th International Conference on Discrete Element Methods (2019).
arXiv:1906.1096

7. Fambri, F., Dumbser, M., Köppel, S., Rezzolla, L., Zanotti, O.: ADER discontin-
uous Galerkin schemes for general-relativistic ideal magnetohydrodynamics. Mon.
Not. R. Astron. Soc. 477, 4543–4564 (2018)

8. Gassner, G., Lörcher, F., Munz, C.D.: A discontinuous Galerkin scheme based
on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci.
Comput. 34(3), 260–286 (2008)

9. Heinecke, A., Henry, G., Hutchinson, M., Pabst, H.: LIBXSMM: accelerating small
matrix multiplications by runtime code generation. In: SC 2016: International Con-
ference for HPC, Networking, Storage and Analysis, pp. 981–991 (2016)

10. Kempf, D., Heß, R., Müthing, S., Bastian, P.: Automatic Code Generation for High-
Performance Discontinuous Galerkin Methods on Modern Architectures. arXiv e-
prints (2018). arXiv:1812.08075

www.gauss-centre.eu
www.gauss-centre.eu
www.lrz.de
http://arxiv.org/abs/1806.07984
https://doi.org/10.3390/axioms7030063
http://arxiv.org/abs/1907.02658
http://arxiv.org/abs/1906.1096
http://arxiv.org/abs/1812.08075

128 J.-M. Gallard et al.

11. Kirby, R.C., Mitchell, L.: Code generation for generally mapped finite elements.
ACM Trans. Math. Softw. 45(4) (2019)

12. Krenz, L., Rannabauer, L., Bader, M.: A high-order discontinuous Galerkin solver
with dynamic adaptive mesh refinement to simulate cloud formation processes. In:
13th International Conference on Parallel Processing and Applied Mathematics
(PPAM 2019). LNCS, vol. 12043 (2020). arXiv:1905.05524

13. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T.,
Bercea, G.T., Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element
method by composing abstractions. ACM Trans. Math. Softw. 43(3), 24 (2017)

14. Reinarz, A., Charrier, D.E., Bader, M., Bovard, L., Dumbser, M., Duru, K., Fam-
bri, F., Gabriel, A.A., Gallard, J.M., Köppel, S., Krenz, L., Rannabauer, L., Rez-
zolla, L., Samfass, P., Tavelli, M., Weinzierl, T.: ExaHyPE: an engine for parallel
dynamically adaptive simulations of wave problems. Comp. Phys. Comm. 107251
(2020)

15. Tavelli, M., Dumbser, M., Charrier, D.E., Rannabauer, L., Weinzierl, T., Bader,
M.: A simple diffuse interface approach on adaptive Cartesian grids for the linear
elastic wave equations with complex topography. J. Comp. Phys. 386, 158–189
(2019)

16. Uphoff, C., Bader, M.: Yet another tensor toolbox for discontinuous Galerkin
methods and other applications. ACM Trans. Math. Softw. (under review).
arXiv:1903.11521

17. Weinzierl, T.: The Peano software-parallel, automaton-based, dynamically adap-
tive grid traversals. ACM Trans. Math. Softw. 45(2), 14:1–14:41 (2019)

18. Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space-time adaptive ADER dis-
continuous Galerkin finite element schemes with a posteriori sub-cell finite volume
limiting. Comput. Fluids 118, 204–224 (2015)

http://arxiv.org/abs/1905.05524
http://arxiv.org/abs/1903.11521

	Role-Oriented Code Generation in an Engine for Solving Hyperbolic PDE Systems
	1 Introduction
	2 The ExaHyPE Engine
	2.1 A High-Order ADER-DG Solver with A-Posteriori Limiting
	2.2 Application-Specific Programming Interface
	2.3 Architecture-Aware Optimization of Kernels

	3 Code Generation in ExaHyPE
	3.1 Model-View-Controller Design
	3.2 Templates
	3.3 Architecture-Oblivious Templates and Architecture-Aware Optimization Macros

	4 Expanding the PDE: Navier-Stokes Equations
	4.1 Expanding the DSL
	4.2 Processing the New Specification File Option
	4.3 Expanding the Views
	4.4 Result Evaluation

	5 Improved Space-Time Predictor for Linear Applications
	5.1 Prototyping the New Algorithm
	5.2 Inclusion in the Kernel Generator
	5.3 Template Generalization and Optimization
	5.4 Performance Evaluation

	6 Vectorization of User Functions
	6.1 Optimized Transpose – from AoS to SoA (and Back)
	6.2 Abstracting the Call to the User Function Behind a Macro
	6.3 Expanding the callFlux Macro
	6.4 Performance Evaluation

	7 Conclusions
	References

