
Guido Juckeland
Sunita Chandrasekaran (Eds.)

Selected Workshops, HUST, SE-HER and WIHPC
Held in Conjunction with SC 2019
Denver, CO, USA, November 17–18, 2019
Revised Selected Papers

Tools and Techniques
for High Performance
Computing

Communications in Computer and Information Science 1190

Communications
in Computer and Information Science 1190

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, Xiaokang Yang,
and Junsong Yuan

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-0044-503X
https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Guido Juckeland • Sunita Chandrasekaran (Eds.)

Tools and Techniques
for High Performance
Computing
Selected Workshops, HUST, SE-HER and WIHPC
Held in Conjunction with SC 2019
Denver, CO, USA, November 17–18, 2019
Revised Selected Papers

123

Editors
Guido Juckeland
Helmholtz-Zentrum Dresden-Rossendorf
Dresden, Germany

Sunita Chandrasekaran
University of Delaware
Newark, DE, USA

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-44727-4 ISBN 978-3-030-44728-1 (eBook)
https://doi.org/10.1007/978-3-030-44728-1

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9935-4428
https://orcid.org/0000-0002-3560-9428
https://doi.org/10.1007/978-3-030-44728-1

Preface

The current proceedings combine 12 papers from three workshops co-located with the
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC 2019). The workshops are HPC User Support Tools (HUST), Software
Engineering for HPC-Enabled Research (SE-HER), and the Workshop on Interactive
High Performance Computing (WIHPC). A description of each of the workshop is as
follows:

The HUST workshop, held by Chris Bording (IBM Research, Hartree Centre), Elsa
Gonsiorowski (Lawrence Livermore National Laboratory), and Karen Tomko (Ohio
Supercomputing Center), has been the ideal forum for new and innovative tools such as
XALT, SPACK, and Easybuild which have been widely announced to the broader
HPC community. This has created communities and special interest groups sur-
rounding these tools, many of which now hold their own BoFs, workshops, and
tutorials at SC, ISC, and other HPC conferences. HUST will continue to provide a
necessary forum for system administrators, user support team members, tool devel-
opers, policy makers, and end users. The workshop provided a forum to discuss support
issues and we will provide a publication venue for current support developments. Best
practices, user support tools, and any ideas to streamline user support at supercom-
puting centers are in the scope. HUST submitted four papers in total. For further
details, please refer to the workshop website: https://hust-workshop.github.io/.

Developers who build research software for HPC or High Performance Data
Analysis/Analytics (HPDA) face software engineering (SE) challenges at scales not
often addressed by traditional SE approaches. For example, HPC and HPDA software
developers must solve reliability, availability, and maintainability problems at extreme
scales, consider reproducibility, understand domain specific constraints, deal with
uncertainties inherent in scientific exploration, and efficiently use compute resources.
SE researchers have developed tools and practices to support development tasks,
including: requirements, design, validation and verification, testing, continuous inte-
gration, and maintenance. Because of the scale of HPC and HPDA, there is a need to
adapt these SE tools/methods that are standard elsewhere. SE-HER 2019, held by
Jeffrey C. Carver (University of Alabama), Anshu Dubey (Argonne National
Laboratory), Neil Chue Hong (Software Sustainability Institute and Edinburgh Parallel
Computing Center), and Daniel S. Katz (University of Illinois at Urbana-Champaign),
brought together members of the SE and HPC/HPDA communities to present findings
relative to these problems and to generate an agenda to advance software engineering
tools and practices for HPC/HPDA software. For further details, please refer to the
workshop website: http://SE4Science.org/workshops/seher19/.

Interactive exploration and analysis of large data sets, intelligent simulation
(“cog-sim”) workflows that combine interactive analysis and AI techniques with
modeling and simulation, interactive preparation and debugging of large-scale scien-
tific simulations, in-situ visualization, and application steering are all compelling

https://hust-workshop.github.io/
http://SE4Science.org/workshops/seher19/

scenarios for exploratory science, design optimizations, and signal processing. How-
ever, a range of technical, organizational, and sociological challenges must be over-
come to make these interactive workflows mainstream in HPC centers: What
simulation scenarios or problem domains can benefit most from interactivity? How can
we simplify the toolchain? What center policies are needed to support highly inter-
active workflows? WIHPC 2019, held by Michael Ringenburg (Cray Inc.), John Stone
(University of Illinois at Urbana-Champaign), and Albert Reuther (MIT-Massachusetts
Institute of Technology) on interactive high performance computing brought together
domain scientists, tool developers, and HPC center administrators to identify the sci-
entific impact and technical challenges of highly interactive access to HPC resources.
For further details, please refer to the workshop website: https://sites.google.com/view/
interactive-hpc/home.

Review Process

Papers from each workshop were peer reviewed with an average of three reviews per
paper.

These proceedings include 12 papers in total, 4 from each of the 3 workshops. Each
workshop put together a Steering and Program Committee of researchers and scientists
spanning academia, national labs, and industries to drive the workshop and help with
selecting high-quality papers.

February 2020 Guido Juckeland
Sunita Chandrasekaran

vi Preface

https://sites.google.com/view/interactive-hpc/home
https://sites.google.com/view/interactive-hpc/home

Organization

Annual Workshop on HPC User Support Tools (HUST)

Organizers

Chris Bording IBM Research, Hartree Centre, UK
Elsa Gonsiorowski Lawrence Livermore National Laboratory, USA
Karen Tomko Ohio Supercomputing Center, USA

General Chair

Chris Bording IBM Research, Hartree Centre, UK

Program Committee Chairs

Elsa Gonsiorowski Lawrence Livermore National Laboratory, USA
Karen Tomko Ohio Supercomputing Center, USA

Program Committee

Daniel Ahlin PDC Center for High Performance Computing, Sweden
David Bernholdt Oak Ridge National Laboratory, USA
Fabrice Cantos National Institute of Water and Atmospheric Research

(NIWA), New Zealand
Eric Engquist Rice University, USA
Christopher Harris Pawsey Supercomputing Center, Australia
Mozhgan Kabiri-Chimeh University of Sheffield, UK
Paul Kolano NASA, USA
Kevin Manalo PACE, Georgia Institute of Technology, USA
Robert McLay TACC, USA
Abhinav Thota Indiana University, USA

International Workshop on Software Engineering for HPC-Enabled
Research (SE-HER)

Organizers

Jeffrey C. Carver University of Alabama, USA
Anshu Dubey Argonne National Laboratory, USA
Neil Chue Hong Software Sustainability Institute and Edinburgh Parallel

Computing Center, UK
Daniel S. Katz University of Illinois at Urbana-Champaign, USA

Program Committee

Mark Abraham KTH Royal Institute of Technology, Sweden
Lorena Barba George Washington University, USA
Christian Feld Juelich Supercomputing Center, Germany
Carina Haupt German Aerospace Center (DLR), Germany
Kenneth Hoste University of Gent, Belgium
Valerie Maxville Curtin University, Australia
Damian Rouson Sourcery Institute, USA
Manodeep Sinha Swinburne University, Australia
Sophie Voisin Oak Ridge National Laboratory, USA
Alexander Wagner University of Tsukaba, Finland

Workshop on Interactive High-Performance Computing (WIHPC)

Organizers and Program Committee

Sadaf Alam CSCS, Switzerland
Nicola Ferrier Argonne National Laboratory, USA
Peter Messmer NVIDIA, USA
Albert Reuther MIT Lincoln Laboratory, USA
Michael Ringenburg Cray Inc., USA
John Stone University of Illinois at Urbana-Champaign, USA

Sponsor Logos

viii Organization

Contents

HUST - Annual Workshop on HPC User Support Tools

Buildtest: A Software Testing Framework with Module Operations
for HPC Systems . 3

Shahzeb Siddiqui

Using Malleable Task Scheduling to Accelerate Package
Manager Installations. 28

Samuel Knight, Jeremiah Wilke, and Todd Gamblin

Enabling Continuous Testing of HPC Systems Using ReFrame. 49
Vasileios Karakasis, Theofilos Manitaras, Victor Holanda Rusu,
Rafael Sarmiento-Pérez, Christopher Bignamini, Matthias Kraushaar,
Andreas Jocksch, Samuel Omlin, Guilherme Peretti-Pezzi,
João P. S. C. Augusto, Brian Friesen, Yun He, Lisa Gerhardt,
Brandon Cook, Zhi-Qiang You, Samuel Khuvis, and Karen Tomko

Tools for Monitoring CPU Usage and Affinity
in Multicore Supercomputers . 69

Lei Huang, Kent Milfeld, and Si Liu

SE-HER - International Workshop on Software Engineering
for HPC-Enabled Research

A Study of Hydrodynamics Based Community Codes in Astrophysics. 89
A. Dubey

Lightweight Software Process Improvement Using Productivity and
Sustainability Improvement Planning (PSIP) . 98

Michael A. Heroux, Elsa Gonsiorowski, Rinku Gupta, Reed Milewicz,
J. David Moulton, Gregory R. Watson, Jim Willenbring,
Richard J. Zamora, and Elaine M. Raybourn

Role-Oriented Code Generation in an Engine for Solving Hyperbolic
PDE Systems . 111

Jean-Matthieu Gallard, Lukas Krenz, Leonhard Rannabauer,
Anne Reinarz, and Michael Bader

FQL: An Extensible Feature Query Language and Toolkit on Searching
Software Characteristics for HPC Applications . 129

Weijian Zheng, Dali Wang, and Fengguang Song

WIHPC – Workshop on Interactive High-Performance Computing

Accelerating Experimental Science Using Jupyter and NERSC HPC 145
Matthew L. Henderson, William Krinsman, Shreyas Cholia,
Rollin Thomas, and Trevor Slaton

Interactive Supercomputing for Experimental Data-Driven Workflows 164
Mark Klein, Maxime Martinasso, Siew Hoon Leong, and Sadaf R. Alam

Portals for Interactive Steering of HPC Workflows 179
Robert Settlage, Srijith Rajamohan, Kevin Lahmers, Alan Chalker,
Eric Franz, Steve Gallo, and David Hudak

The Pangeo Ecosystem: Interactive Computing Tools for the Geosciences:
Benchmarking on HPC . 190

Tina Erica Odaka, Anderson Banihirwe, Guillaume Eynard-Bontemps,
Aurelien Ponte, Guillaume Maze, Kevin Paul, Jared Baker,
and Ryan Abernathey

Author Index . 205

x Contents

HUST - Annual Workshop on HPC User
Support Tools

Buildtest: A Software Testing Framework
with Module Operations for HPC Systems

Shahzeb Siddiqui(B)

Pfizer Inc. Groton & Labs, 445 Eastern Point Road, Groton, CT 06340-5146, USA
shahzebmsiddiqui@gmail.com

Abstract. HPC support teams are often tasked with installing scientific software
for their user community and the complexity of managing a large software stack
gets very challenging. Software installation brings forth many challenges that
requires a team of domain expertise and countless hours troubleshooting to build
an optimal software state that is tuned to the architecture. In the past decade, two
software build tools (Easybuild, Spack) have emerged that are widely accepted
in HPC community to accelerate building a complete software stack for HPC
systems. The support team are constantly involved in fulfilling software request
for end-users which leads to an ever-growing software ecosystem. Once a soft-
ware is installed, the support team hands it off to the user without any testing
because scientific software requires domain expertise in order to test software.
Some software packages are shipped with a test suite that can be run at post build
while many software have no mechanism for testing. This poses a knowledge gap
between HPC support team and end-users on the type of testing to do. Some HPC
centers may have developed in-house test scripts that are suitable for testing their
software, but these tests are not portable due to hardcoded paths and are often site
dependent. In addition, there is no collaboration between HPC sites in building
a test repository that will benefit the community. This paper presents buildtest, a
framework to automate software testing for a software stack along with several
module operations that would be of interest to the HPC support team.

1 Introduction

HPC computing environment is a tightly coupled system that includes a cluster of nodes
and accelerators interconnected with a high-speed interconnect, a parallel filesystem,
multiple storage tiers, a batch scheduler for users to submit jobs to the cluster and a
software stack for users to run their workflows. A software stack is a collection of
compilers, MPI, libraries, system utilities and scientific packages typically installed in
a parallel file-system. A module tool like environment-modules [1, 2] or Lmod [3] is
generally used for loading the software environment into the users’ shell environment.

Software are packaged in various forms that determine how they are installed. A few
package formats are: binary, Makefile, CMake, Autoconf, github, PyPi, Conda, RPM,
tarball, rubygem, MakeCp, jar, and many more. With many packaging formats, this
creates a burden for HPC support team to learn how to build software since each one has
a unique build process. Software build tools like Easybuild [3, 4] and Spack [5] can build

© Springer Nature Switzerland AG 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 3–27, 2020.

https://doi.org/10.1007/978-3-030-44728-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_1&domain=pdf
http://orcid.org/0000-0002-2342-6974
https://doi.org/10.1007/978-3-030-44728-1_1

4 S. Siddiqui

up to 1000+ software packages by supporting many packaging formats to address all
sorts of software builds. Easybuild and Spack provide end-end software build automation
that helpsHPC site to build a very large software stackwithmany combinatorial software
configurations. During the installation, some packages will provide a test harness that
can be executed via Easybuild or Spack which typically invokes a make test or ctest for
packages that follow ConfigureMake, Autoconf, or CMake install process.

Many HPC sites rely on their users for testing the software stack, and some sites may
develop in-house test scripts to run sanity check for popular scientific tools. Despite these
efforts, there is little or no collaboration between HPC sites on sharing tests because they
are site-specific and often provide no documentation. For many sites, the HPC support
team don’t have the time for conducting software stack testing because: (1) lack of
domain expertise and understaffed, (2) no standard test-suite and framework to automate
test build and execution. Frankly, HPC support teams are so busy with important day-
day operation and engineering projects that software testing is either neglected or left
to end-users. This demands for a concerted effort by HPC community to build a strong
open-source community around software stack testing.

There are two points that need to be addressed. First, we need a framework to do
automatic testing of installed software stack. Second, is to build a test repository for
scientific software that is community driven and reusable amongst the HPC community.
An automated test framework is a harness for automating the test creation process, but it
requires a community contribution to accumulate this repository on per-package basis.
Before we dive in, this paper will focus on conducting sanity check of the software stack
so tests will need to be generic with simple examples that can be compiled easily. In
future, buildtest will focus on domain-specific tests once there is a strong community
behind this project.

In this paper, wewill introduce the buildtest framework in Sect. 2 followed by several
module operations in Sect. 3. In Sect. 4 we will present future work and followed by
Sects. 5 and 6 with related work and conclusion.

2 Buildtest

2.1 Motivation

There are many build automations tools [6] for compiling source code into binary code,
the most used tool is themake [7] utility found in most Linux systems. Build scripts like
configure, cmake [8] and autoconf [9] can generate files used bymake for installing the
software.Makefile is a file used by make program that shows how to compile and link a
program which is the basis for building a software package. One can invoke make test
which will run the target named test in Makefile that dictates how tests are compiled and
run.Makefile is hard to interpret and requires in-depth experiencewith shell-scripting and
strong understanding of how package is built and tested. Note that package maintainers
must provide the source files, headers, and additional libraries to test the software and
make test simply automates the test compilation and execution. Tools like configure,
cmake and autoconf are insufficient for testing because HPC software stack consist of
applications packaged in many formats and some are make-incompatible.

Buildtest: A Software Testing Framework 5

We wanted a framework that hides the complexity for compiling source code and
provide an easy markup language to define test configuration to create the test. This
leads to buildtest, a framework that automates test creation by using test configuration
written in YAML syntax. YAMLwas picked given its simplicity and it lowers the barrier
for new contributors to start sharing test configuration in order to build a comprehensive
test suite that will work with buildtest.

2.2 Inception

Pfizer is multinational pharmaceutical corporation headquartered in NewYork City with
their research headquarter inGroton,CT. The company develops and producesmedicines
that help patients’ lives. Pfizer has two HPC clusters and a diverse user community com-
prised of chemists, computational scientists, statisticians, bioinformatics, data scientists,
AI engineers and many more. In 2017, one of the clusters was going to be physically
moved to another data center with growing capacity, this required a considerable effort
by many groups in testing the entire compute environment. Shahzeb Siddiqui was tasked
with testing the software ecosystem by focusing on themost important application due to
time constraints. During this period, several dozen test scripts were developed in shell-
script that targeted core HPC tools such as compilers, MPI, R, Python, etc. A single
master script was used to run all the tests which led to buildtest. Originally buildtest
was implemented in bash and due to several language limitations, it was ported to Python.
In September 2018, buildtest was ported from Python 2 to Python 3. The project was
started on Feb 24th, 2017 and source code and documentation can be found on GitHub
[10].

2.3 Framework

Buildtest [10, 11] is a python framework for automating software stack testing by uti-
lizing test configuration (YAML) to generate test script. The framework is tightly inte-
grated with Lmodmodule system to allow the framework to loadmodules properly when
building test. Buildtest can use a single test configuration and build a test with multiple
modules seamlessly. Some additional features of buildtest include listing software and
modules, module load testing, building test with user collections, building job scripts
for LSF & SLURM scheduler, sanity check on binary for system packages and modules,
and support for benchmark.

Buildtest was designed on the premise of reusable and easy to read test configura-
tion that can be shared by the HPC community. YAML was chosen as the configura-
tion markup language because it’s compatible with many programming languages [25]
including Python via pyyaml package. buildtest repository contains the source code
for buildtest, documentation in ReStructured Text (RST) using sphinx documentation
builder, and test configuration with source files to build the tests.

6 S. Siddiqui

2.4 Integration with Lmod Spider

In order to test the software stack, one must load the appropriate modules via module
command and run a series of commands such as compiling source files into object files to
build an executable and finally run the executable with a set of arguments. For instance,
a simple test script shown below will build a C program (hello.c) via gcc compiler and
run the executable (hello) with a set of arguments. Shown below is an example test script

#!/bin/bash
module load GCC/5.4.0
gcc -o hello hello.c
./hello hello world
rm ./hello

This example is only applicable for testingGCC/5.4.0modulewhich is not suitable in
a software stack that consists of multiple versions of each software. It will be a repetitive
process when one needs to write the same test for another version by simply changing
the module load command. Furthermore, module load needs to be done properly if
multiple modules need to be loaded, the order matters! Luckily, Lmod provides a tool
called spider [12] that provides details on all modules in your system with meta-data
on each module file.

Spider is used to help build spider cache that is used by HPC sites to keep their
modules up to date. The spider utility is different from module spider while both
achieve the purpose of finding all modules in the system, their use-case will differ.
Spider provides the complete metadata of all modules in json format which can be
retrieved by executing the following:

$ spider -o spider-json $MODULEPATH | python -m json.tool

The spider utility can be found in the directory defined by the environment variable
$LMOD_DIR that is typically defined when installing Lmod as a package (rpm, deb).
For Redhat/Centos distribution, if Lmod is installed as a package, then $LMOD_DIR
will be set to the following:

$ echo $LMOD_DIR
/usr/share/lmod/lmod/libexec

Figure 1 represents the spider output for a single record (gompi) in Lmod 7, with
the key fullName in yellow indicates the full canonical name of the module. The top-
level key in dictionary is a list of unique software name (i.e. gompi) followed by inner
dictionary with full path to module file andmetadata for modulefile inside the dictionary.

Buildtest: A Software Testing Framework 7

Fig. 1. Example json record for gompi in Lmod 7 (Color figure online)

Parent modules are modules that alter MODULEPATH to access modules from
another module tree, in Fig. 1 the module eb/2019 exposes a module tree where
gompi/2018b is found. Recall that order of module load is important, the parentAA key
provides this information that is used by buildtest to load parent modules before loading
the requested module. It’s worth mentioning parentAA is a nested list that contains a
list of parent combinations where each parent combination is a list of modules to load.
If your system has more than one route to reach a module-tree then you are likely to
have multiple parent combinations. Figure 2 shows the json record from Lmod 6 for
zlib/.1.2.8 with multiple parent combination.

Fig. 2. Multiple parent combination from Lmod 6

There is a slight difference in the data structure in Lmod 6 and 7, for instance key
full in Lmod 6 is replaced with fullName and key parent in Lmod 6 is replaced with
parentAA in Lmod 7. The parent key is a single list whereas parentAA is a nested list.
Each parent combination in parent key is a string separated by a colon that makes up a
list of parent modules to load.

In order to load module zlib/.1.2.8, any parent combination will work, for
demonstration purposes let’s try the first parent combination as shown below:

8 S. Siddiqui

$ module list
No modules loaded
$ module load eb/2017 GCC/5.4.0-2.27 OpenMPI/2.0.0
zlib/.1.2.8
$ module list
Currently Loaded Modules:
1) eb/2017 7) OpenMPI/2.0.0
2) GCCcore/.5.4.0 8) OpenBLAS/0.2.19-LAPACK-3.6.0
3) binutils/.2.27 9) FFTW/3.3.4
4) GCC/5.4.0-2.27 10) ScaLAPACK/2.0.2-OpenBLAS-0.2.19-

LAPACK-3.6.0
5) numactl/2.0.11 11) zlib/.1.2.8
6) hwloc/1.11.3

Buildtest will use spider to figure out how to load any module and inject them
into test scripts. In Sect. 2.7 we will present how buildtest creates the test scripts from
configuration file and how it deals with modules.

2.5 Setup

To get started with buildtest, simply clone the project from github by running:

$ git clone git@github.com:HPC-buildtest/buildtest-
framework.git

To use buildtest you will need Python 3.6 or higher and Lmod in your system. You
will need to install buildtest dependencies by running:

$ pip install docs/requirements.txt

Upon completion, you will need to initialize the environment and setup auto-
complete on buildtest argument by running:

$ source sourceme.sh
$ eval “$(register-python-argcomplete buildtest)”

sourceme.shwill initialize buildtest by adding buildtest program in your $PATH and
set $BUILDTEST_ROOT to root of buildtest repo which will be used for referencing
full path to test configuration. buildtest commands are organized into subcommands, so
in order to learn more about any command just run:

$ buildtest <subcommand> --help

Commands for building and running test is controlled by buildtest build and
buildtest run. The process of building and running test is separated so that the execution
of test can be run independently from the build process.

Buildtest: A Software Testing Framework 9

The root of buildtest repository contains a configuration file settings.yml that is
used to configure buildtest. This file is copied to $HOME/.buildtest/settings.yml by
buildtest if file is not present. The user can modify buildtest configuration through this
file, and some options can be overridden by environment variables. The configuration
file is shown in Fig. 3 and some of the options will be covered in the paper or refer to
the documentation on Configuring Buildtest [13].

Fig. 3. Buildtest configuration file

2.6 Architecture Overview

Figure 4 presents an architecture overview of how test scripts are created in buildtest.
The test configuration and source files are stored in github. The buildtest build must
specify a test configuration as input to the builder. Buildtest will parse the YAML keys,
detect the programming language by checking the source file extension to figure out the
compiler. Currently, buildtest supports GNU and Intel compiler and minimal support for
MPI limited to OpenMPI and MPICH.

10 S. Siddiqui

Fig. 4. Buildtest build architecture overview

Currently, buildtest can set module load inside test script by utilizing active mod-
ules, user collection, buildtest module collection, and module permutation. For active
modules, just load the modules in your user environment before building the test and
buildtest will insert the active modules in the test script. Buildtest can operate with user
collection and its ownmodule collection system for loading modules in test script. Mod-
ule Permutation is used when running a test against all versions of a software (e.g. single
test against all version of gcc). Section 3 will discuss in further detail on the different
module load integration. TheModule Load Selector will determine how to load modules
from one of the four module load types. By default, buildtest will write test script in one
of the shell extension (.bash, .csh, .sh) that can be configured in buildtest configuration
file. buildtest will detect if test is a job script which will have a different shell extension.
Currently, buildtest supports LSF and SLURM job script which will have the .lsf or
.slurm extension.

The test configuration and source files are located under toolkit directory found at
the root of buildtest repo. The actual location is in a sub-directory toolkit/buildtest/suite
and tests are categorized by their functionality that is called suite in buildtest. Figure 5
presents the structure of suite directory. In this case suite refers to compilers, cuda, mpi
and openmp. Each suite will be further sub-divided into sub-directory to categorize tests
by a name. For instance, mpi suite has two test names examples and matrixmux. This
was done for ease of management for project-maintainers and contributors. If anyone
wants to contribute, they need to create a sub-directory in one of the suites and add the
test configuration and source files.

Buildtest: A Software Testing Framework 11

Fig. 5. Suite directory structure

Figure 6 shows the location of test configuration and source files. Test configuration
must be named with .yml extension and all source code must be placed under src
directory.

Fig. 6. Test configuration and source files

12 S. Siddiqui

2.7 Building Test

When building a test, buildtest will detect system details, read the test configuration
(YAML), validate the keys, detect the compiler, and finally write a shell script in a
unique path. In buildtest this can be done as follows:

$ buildtest build -c <test configuration>

Let’s dive into a simple C++ compilation of hello world using gnu compiler. Shown
below is a test configuration in YAML syntax.

compiler: gnu
flags: -O3
maintainer:

- shahzeb siddiqui shahzebmsiddiqui@gmail.com
source: hello.cpp
testblock: singlesource

First line compiler:gnu is used to indicate buildtest we will use gnu compiler. Note
we don’t specify which compiler wrapper (gcc, gfortan, g++) since buildtest figures this
out based on file extension. Second line flags: -O3 is compiler flags used to build the
source file specified in line 5 source: hello.cpp. Each yaml file has a list ofmaintainers to
determine source of author which follows a git commit format (First, Last, email). Last
line, testblock: singlesource is used in buildtest to support single source compilation,
this directs buildtest to invoke the appropriate python class. Depending on the choice for
testblock, a set of keys will be available that can be used when writing test configuration.
For more details on list of YAML keys refer to the documentation [14].

To build the above test you can run the following command:

$ buildtest build -c
$BUILDTEST_ROOT/toolkit/buildtest/suite/compilers/hellowo
rld/hello_gnu.yml

During this build, buildtest will do the following:

1. Read the yaml file and check the YAML keys
2. Detect shell extension (sh, bash, csh) and test script will be named as the yml file

with the shell extension
3. Detect the compiler wrapper and file extension
4. Issue module purge and add any module command if provided
5. Build the source file and name executable based on source file with .exe extension
6. Lastly, buildtest will run the executable and remove it upon completion.

Buildtest: A Software Testing Framework 13

Shown below is the generated test script, in this example eb/2018module was loaded
in the current session before building test.

#!/bin/sh
module purge
module load eb/2018
cd /home/ec2-user/buildtest/suite/compilers/helloworld
g++ -O3 -o hello.cpp.exe /home/ec2-user/buildtest-
frame-
work/toolkit/buildtest/suite/compilers/helloworld/src/hel
lo.cpp
./hello.cpp.exe
rm ./hello.cpp.exe

2.8 Building Job Scripts

Buildtest supports a set of keys for LSF and SLURM scheduler. The keys are namedwith
the equivalent option provided by bsub and sbatch program. Figure 7 highlights how to
write an LSF job-script which starts at line 3 in yellow. This test will build using 4 tasks,
requesting 200 MB of memory using the sandybridge resource with a 1 h walltime.

Fig. 7. LSF test configuration example

Buildtest has verbose option (-v) to show extra output during the build with up to 2
levels of verbosity. Shown below is the complete build for LSF:

14 S. Siddiqui

n: '4'
maintainer:
- shahzeb siddiqui shahzebmsiddiqui@gmail.com
source: hello.c
testblock: singlesource

Key Check PASSED for file /home/ec2-user/buildtest-
frame-
work/toolkit/buildtest/suite/compilers/helloworld/hello_l
sf.yml
Source File /home/ec2-user/buildtest-
frame-
work/toolkit/buildtest/suite/compilers/helloworld/src/hel
lo.c exists!
Programming Language Detected: c
LSF Keys Passed
Compiler Check Passed
Writing Test: /tmp/ec2-
us-
er/buildtest/tests/suite/compilers/helloworld/hello_lsf.y
ml.lsf
Changing permission to 755 for test: /tmp/ec2-
us-
er/buildtest/tests/suite/compilers/helloworld/hello_lsf.y
ml.lsf

#!/bin/sh
#BSUB -M 200M
#BSUB -R sandybridge
#BSUB -W 01:00
#BSUB -n 4
module purge
cd /tmp/ec2-
user/buildtest/tests/suite/compilers/helloworld
gcc -O2 -o hello.c.exe /home/ec2-user/buildtest-
frame-
work/toolkit/buildtest/suite/compilers/helloworld/src/hel
lo.c
./hello.c.exe
rm ./hello.c.exe

$ buildtest build -c
$BUILDTEST_ROOT/toolkit/buildtest/suite/compilers/hellowo
rld/hello_lsf.yml -vv

compiler: gnu
flags: -O2
lsf:
M: 200M
R: sandybridge
W: 01:00

Buildtest: A Software Testing Framework 15

Notice the tag #BSUB is automatically set from appropriate LSF keys defined in test
configuration. The one-one relation between keys and equivalent #BSUB command is
easy to remember for those familiar with #BSUB directive. The test script is written with
.lsf extension to indicate that test should be submitted to batch scheduler. Upon creation,
one can use buildtest to send all job scripts to scheduler by utilizing the following:

$ buildtest run -j -S <test-suite>

For example, we have 3 tests in the mpi test suite, two of them are slurm jobs that
will be submitted to SLURM scheduler and one test will be run locally. As shown,
buildtest will dispatch the jobs (job id: 17, 18) via sbatch and let scheduler take care of
execution. Buildtest provides a run file (.run) extension that contains a summary of the
results including test output.

$ buildtest run -S mpi -j
Running All Tests from Test Directory: /tmp/ec2-
user/buildtest/tests/suite/mpi
==

Test summary
Package: mpi
Executed 3 tests
Passed Tests: 3 Percentage: 100.0%
Failed Tests: 0 Percentage: 0.0%
SUCCESS: Threshold of 100.0% was achieved
Writing results to /tmp/ec2-
user/buildtest/run/buildtest_15_29_19_08_2019.run
Submitted batch job 17
Submitting Job: /tmp/ec2-
us-
er/buildtest/tests/suite/mpi/examples/mpi_ping.c.slurm.ym
l.slurm to scheduler
Submitted batch job 18
Submitting Job: /tmp/ec2-
us-
er/buildtest/tests/suite/mpi/examples/mpi_ping.c_ex1.yml.
slurm to scheduler

3 Module Operations

Buildtest is tightly coupled with Lmod utility called spider that helps buildtest acquire
details on modules that will dictate how to load modules inside test scripts. With the help
of spider, buildtest can implement some interesting module operations that will benefit
HPC sites that manage large software stacks.

The following module operation are available in buildtest

16 S. Siddiqui

1. Module Load Testing
2. Module Difference between two module trees
3. Reporting Easybuild & Spack Modules
4. Building test with user and module collection
5. Building test with Module Permutation
6. Reporting Unique Software and Modules

3.1 Module Load Test

Any large HPC facility that supports 1000+ modules can affirm that it is extremely
difficult for the support team to keep track of all modules and whether they are working
properly. One way to test all modules is to runmodule load for every module. This can
be a very tedious operation if done manually, luckily buildtest has a feature to automate
module load testing for the entire stack. To execute module load test in buildtest just
run the following:

$ buildtest module loadtest

Buildtest will make use ofMODULEPATH to seek out all module trees when testing
modules. In buildtest, this is managed by variable BUILDTEST_MODULEPATHwhich
is a list of module trees separated by colon.

Shown below is a snapshot of module load test in buildtest:

$ buildtest module loadtest
module load RHEL6-apps
RUN: 1/3 STATUS: PASSED - Testing module: RHEL6-apps

module load deprecated
RUN: 2/3 STATUS: PASSED - Testing module: deprecated

module load eb/2018
RUN: 3/3 STATUS: PASSED - Testing module: eb/2018

Writing Results to /tmp/modules-load.out
Writing Results to /tmp/modules-load.err

Module Load Summary
Module Trees:
['/nfs/grid/software/moduledomains', '/etc/modulefiles',
'/usr/share/modulefiles',
'/usr/share/lmod/lmod/modulefiles/Core']
PASSED: 3
FAILED: 0

Buildtest: A Software Testing Framework 17

In the above test, a module load command is issued against each module file by
retrieving the full module name defined in json data structure discussed in Sect. 2.4.
Buildtest will check the exit status of each command, a non-zero will report as FAILED
test and zero indicates PASSED. Finally, buildtest will write the results in the filesystem
and summarize the total PASSED/FAILED results, including the list of module trees
that were tested.

The test above shows modules tested in module trees which is how this sys-
tem was configured at startup (i.e. /etc/profile.d/) however these modules are parent
modules which serve other software stacks. This system may have up to 1000 mod-
ules, in order to test all modules and all sub trees you can set the following variable
BUILDTEST_SPIDER_VIEW=all in configuration file or as an environment variable
and run the test as follows:

$ BUILDTEST_SPIDER_VIEW=all buildtest module loadtest

HPC Support Team will benefit from this feature which automates module load
testing for all modules in their cluster. The test can reveal any broken modules in their
system and take corrective action to fix the issue. This type of testing is best suited with
CI tools like Jenkins that can trigger notification to support team on faulty modules and
take proactive actions to fix issues before it reaches production.

3.2 Module Tree Difference for Parallel Software Stack in Heterogeneous Cluster

buildtest can report differences between module trees, this is particularly useful when
building architecture specific software stack in a heterogeneous cluster. In this scenario,
the support teammust check that the software stack is same for all module trees. To report
difference betweenmodule trees, use the option –diff-trees and specify twomodule trees
separated by commas as follows:

$ buildtest module --diff-trees <tree1>,<tree2>

If there is no difference between two trees, buildtest will not report any modules.
Shown below we compare Broadwell and IvyBridge stack installed in shared filesystem
in separate paths

$ buildtest module --diff-trees
/clust/app/easybuild/2018/Broadwell/redhat/7.3/modules/al
l,/clust/app/easybuild/2018/IvyBridge/redhat/7.3/modules/
all
No difference found between module tree:
/clust/app/easybuild/2018/Broadwell/redhat/7.3/modules/al
l and module tree:
/clust/app/easybuild/2018/IvyBridge/redhat/7.3/modules/al
l

In Fig. 8 we see difference between two module trees that illustrate modules
FOUND/NOT FOUND in the two module trees. The tabular output is very intuitive

18 S. Siddiqui

in spotting missing modules if you are supporting architecture tree for a heterogeneous
cluster. Asymmetries in module trees across multiple architecture will break user work-
flows that span across architectures. buildtest will report difference based on full module
name retrieved from json data structure via spider.

Fig. 8. Module difference between two module trees

3.3 Reporting Easybuild and Spack Modules

Easybuild and Spack will write module files as part of the software build. If your site
utilizes these tools, then buildtest can report easybuild and spack modules. This can be
useful to differentiate which modules are autogenerated as opposed to those that were
written manually or sites that support both Easybuild and Spack modules will want to
distinguish modules between the two build tools. Every easybuild module will contain
a text in module file as follows:

Built with Easybuild version 3.7.1

The version number may differ in your modulefile depending on the version of
easybuild-framework you are using at the time of building the software. To find easy-
build modules use the command buildtest module –easybuild. Buildtest will find the
substring in all module files in all module trees. Shown below is a snapshot of all
easybuild modules detected in the system.

Module:
/clust/app/easybuild/2018/Broadwell/redhat/7.3/modules/al
l/zlib/1.2.11-GCCcore-6.4.0.lua is built with Easybuild
Total Easybuild Modules: 404
Total Modules Searched: 824

Similarly, every spack module will have a string to denote the module via spack
along with a timestamp.

Buildtest: A Software Testing Framework 19

Module file created by spack
(https://github.com/spack/spack) on 2019-04-11
11:38:31.191604

buildtest module –spack can be used to retrieve spack modules and if one wants to
retrieve all records from spider you can set BUILDTEST_SPIDER_VIEW=all. The
default value of BUILDTEST_SPIDER_VIEW is current which means it will search
for modules found in sub-directories defined by BUILDTEST_MODULEPATH which
is a subset of records from the spider output. Shown below is a retrieval of all spack
modules in the system

$ BUILDTEST_SPIDER_VIEW=all buildtest module --spack
Module:
/nfs/grid/software/RHEL7/medsci/modules/all/ffmpeg/3.2.4-
n6ulc43.lua is built with Spack
Total Spack Modules: 1
Total Modules Searched: 824

3.4 User Collections and Buildtest Module Collections

User collections [15] is a Lmod feature to allow users to reference a set of modules by a
collection name. This feature is commonly used to load a set of modules with a single
collection name. Lmod provides a several commands for managing user collections
including module save, module restore, and module describe.

To save a user collection, just load the modules of interest and run module save
<collection name>. User collections are stored in $HOME/.lmod.d/<collection> and
they can be retrieved by running module -t savelist. Shown below is an example of 2
user collections.

$ module -t savelist
default
intelmpi

To restore a collection, runmodule restore<collection name>, in buildtest this can
be used in test script to build a test with any user collection. Thismethod is effectivewhen
dealing with lots of modules to run a workflow. In buildtest this can be done by using
buildtest build –collection<collection-name> or short option -co. To demonstrate we
will build a test with intelmpi collection by running:

$ buildtest build -c
$BUILDTEST_ROOT/toolkit/buildtest/suite/compilers/hellowo
rld/hello_intel_fortran.yml -co intelmpi

The generated test is as follows:

20 S. Siddiqui

#!/bin/sh
module restore intelmpi
cd /tmp/ec2-
user/buildtest/tests/suite/compilers/helloworld
ifort -O3 -o hello.f90.exe /home/ec2-user/buildtest-
frame-
work/toolkit/buildtest/suite/compilers/helloworld/src/hel
lo.f90
./hello.f90.exe
rm ./hello.f90.exe

If you take note, the second line module restore intelmpi is inserted in test script.
Buildtest will rely on Lmod to restore the module collection assuming the collection can
be restored properly.

User collections are commonly used in running complex workflow that require many
softwaremodules to be loaded in the user environment. Collection namesmust be unique
which can pose a challenge when managing dozens of user collections. Users must be
creative in naming their collections to avoid name conflict. Buildtest supports managing
user collections without relying on Lmod collection by tracking module collection in a
json file: $BUILDTEST_ROOT/vars/default.json

To utilize buildtest module collection, buildtest provides options to add, remove,
list, and update collection via buildtest module collection subcommand. First, we start
out by loading a set of modules via module load. For example, we have eb/2018 and
CUDA/9.1.85 modules actively loaded.

$ module list
Currently Loaded Modules:
1) eb/2018 2) CUDA/9.1.85

Next, we add the modules to buildtest collection via buildtest module collection
-a, this will add the modules into a collection stored in json file.

$ buildtest module collection -a
{

"collection": [
[

"eb/2018",
"CUDA/9.1.85"

]
]

}
Updating collection file: /home/ec2-user/buildtest-
framework/var/default.json

Instead of viewing the jsonfile, buildtest provides anoption to viewmodule collection
via buildtest module collection -l

Buildtest: A Software Testing Framework 21

$ buildtest module collection -l
0: ['eb/2018', 'CUDA/9.1.85']

Whenever amodule collection is added, the indexnumber is incrementedby1 starting
with index 0. Shown below, we have three module collections that are represented by an
index number followed by a list of modules.

1: ['eb/2018', 'GCCcore/6.4.0', 'binutils/2.28-GCCcore-
6.4.0', 'GCC/6.4.0-2.28']
2: ['eb/2017', 'icc/.2017.1.132-GCC-5.4.0-2.27',
'GCCcore/.5.4.0', 'binutils/.2.27', 'ifort/.2017.1.132-
GCC-5.4.0-2.27', 'impi/2017.1.132', 'imkl/2017.1.132',
'intel/2017.01']

$ buildtest module collection -l
0: ['eb/2018', 'CUDA/9.1.85']

Buildtest makes use of module collection index to load the appropriate collection
name which can be done by -mc <index> or long option –module-collection. Let’s
build a test using index 2 from module collection by running:

$ buildtest build -mc 2 -c
$BUILDTEST_ROOT/toolkit/buildtest/suite/compilers/hellowo
rld/hello_intel_fortran.yml

Shown below is the generated test script

#!/bin/sh
module load eb/2017 icc/.2017.1.132-GCC-5.4.0-2.27
GCCcore/.5.4.0 binutils/.2.27 ifort/.2017.1.132-GCC-
5.4.0-2.27 impi/2017.1.132 imkl/2017.1.132 intel/2017.01
cd /tmp/ec2-user/buildtest/suite/compilers/helloworld
ifort -O3 -o hello.f90.exe /home/ec2-user/buildtest-
frame-
work/toolkit/buildtest/suite/compilers/helloworld/src/hel
lo.f90
./hello.f90.exe
rm ./hello.f90.exe

In the above test, buildtest will read default.json and insert the modules from index 2
into the test script. Buildtest supports user collection from Lmod and buildtest mod-
ule collection to pick modules when building test. User collections are written in
$HOME/.lmod.d which means if data is accidently deleted, it will result in error when
running module restore, this is not the case when using buildtest module collection.

3.5 Module Permutation

So far, we have shown how buildtest can generate test with loading modules via user
collections, buildtest module collection, or active modules before building the test script.

22 S. Siddiqui

Once a test is working with a version, it makes sense to build test against all versions of
the same software to validate all versions.

Imagine, you have multiple versions of intel compiler and you want to test com-
pilation of a program against all intel versions. Buildtest keeps record of modules in
a modified json structure due to difference between Lmod 6 and 7 in a file named:
$BUILDTEST_ROOT/vars/modules.json

Currently, buildtest stores full name and parent modules for each module, which was
done since key names changed in Lmod version 6 and 7 and there is no guarantee these
keys will be retained for future release. To build a test with module permutation, use the
–modules option as shown below:

$ buildtest build -c <configuration> –-modules <software>

In module permutation, one test script is written per module version, so for instance
a system with 2 intel modules as shown below, will have 2 test scripts generated dur-
ing module permutation. In example below, we retrieve all intel modules and their
corresponding versions using the module spider command

$ module -t spider intel
intel/2018.3
intel/2018b

For purpose of demonstration we will show a snapshot of module permutation of
intel modules with a test configuration.

$ buildtest build --modules intel -c
$BUILDTEST_ROOT/toolkit/buildtest/suite/compilers/hellowo
rld/hello_intel_fortran.yml
Each test will be built with 2 module permutations
Module Permutation List
__
module load medsci/.2019.1 intel/2018.3
module load eb/2019 intel/2018b
Writing Test:
/tmp/siddis14/buildtest/tests/suite/compilers/helloworld/
hel-
lo_intel_fortran.yml_0xb689c79defc3132c21d272ef2f9081d.sh
Writing Test:
/tmp/siddis14/buildtest/tests/suite/compilers/helloworld/
hel-
lo_intel_fortran.yml_0xd908367ea8d8207d89949e7c504786c1.s
h
Writing 2 tests for /gpfs/home/siddis14/buildtest-
frame-
work/toolkit/buildtest/suite/compilers/helloworld/hello_i
ntel_fortran.yml

Buildtest: A Software Testing Framework 23

Buildtest will utilize a 128bit random number when generating test script to avoid
name conflict. Also note that a single test script is generated per intel module and the
parent modules are loaded first. By default, buildtest will use the first parent combination
when loading modules, however buildtest can permute with all parent modules if the
following is set:

BUILDTEST_PARENT_MODULE_SEARCH=all

This will create a permutation of a single module with all parent combinations.

3.6 Report Unique Software and Modules

An end-user or HPC support team would want to know details of all installed software
in the cluster and breakdown of software by versions and path to all module files. This
information can be useful for documentation purposes typically maintained by the HPC
support team that can assist users in knowing the complete software ecosystem. Recall,
the spider command from Lmod has access to all module information that was shown
in Fig. 1. The output of spider is very extensive that is not suited well when invoked in a
console. Buildtest will process the details from spider and present the output in a tabular
format that is human readable. To retrieve a unique list of software run the following:

$ buildtest list -–software

Buildtest will retrieve the top-level key from spider that is the software name whose
modulefile is found in module trees defined by BUILDTEST_MODULEPATH. Figure 9
shows a list of unique software modules alphabetically sorted with a total count of
software packages

Fig. 9. List unique software names

To get a complete list of all unique software, buildtest needs to retrieve all records
from spider which can be tweaked by setting BUILDTEST_SPIDER_VIEW=all. By

24 S. Siddiqui

default, it is set to current and retrievesmodules that are found in sub-directories defined
in BUILDTEST_MODULEPATH.

Buildtest can retrieve full module name and module file path which can be used to
see a snapshot of all module versions. This can be fetched by running:

$ buildtest list -–modules

Figure 10 reports a list of modules, versions and full path and it will color code Lua
modules and count all Lua and non-Lua modules. The output is alphabetically sorted
by full name of module that is convenient when spotting multiple versions and path to
module file.

Fig. 10. Listing full module name with path to modulefile

4 Future Work

In this paper, we only showcased single source compilation and scheduler examples,
however support for buildingMPI is in active development [23] and it currently supports
OpenMPI, and MPICH. Buildtest will need to detect MPI flavor through configuration
file and map it to the correct MPI launcher. In IntelMPI, mpiexec.hydra is the MPI
launcher but if you are using SLURM then it is recommended to use srun but you
may use mpirun or mpiexec.hydra though not recommended [16]. MVAPICH2 and
MPICH2 use mpiexec.hydra while OpenMPI uses mpirun, but if you have LSF then
blaunch is responsible for launching MPI tasks [17]. This can get complicated when
supporting multiple MPI implementation with different schedulers. Furthermore, each
mpi runtime launcher has slightly different options so test configuration will need to be
explicit in the runtime launcher (orterun, mpiexec.hydra, mpirun, srun, blaunch) when
launching MPI jobs.

Buildtest: A Software Testing Framework 25

Buildtest already retrieves scheduler information like queue names, node names,
and application profiles (LSF) for only reporting purposes. Buildtest can utilize the
scheduler information for tweaking job scripts on the fly with different run parameters.
Since scheduler configuration is site specific, buildtest will need to expose these options
on the command-line as part of the build phase to control how job scripts are built.

Currently, buildtest supports compilation of single source programswith a limited set
of YAML keys to compile serial code, multi-threaded, and MPI code. This method can
be extended to add additional testblock for other types of compilation such as CUDA,
Python, R, etc. Currently, buildtest supports OSU microbenchmark [24], in future we
can extend support for other benchmarks like STREAM, HPCG, and HPL.

Community feedback is important in best managing a test repository for buildtest,
several ideas are discussed in the wiki article [18] including categorizing test by appli-
cation, components, and archiving tests. Buildtest will need a better handle on what
types of test are accepted in main repository, because a huge influx of contributions can
dilute the purpose of tests and cause overhead for project maintainers. A few ideas are
discussed such as voting on test using Like/Dislike, test satisfaction score, and a test
limit count on the repository. Other topics are discussed in wiki including how to deal
with tests for unpopular or obscure software, whether to introduce vendor tests that may
conflict license agreement and adding a list of maintainers for every test.

5 Related Work

A few tools have emerged in the field of software testing for HPC software stack includ-
ing Automatic Testing of Installed Software (ATIS) [19], HPC SoftWare TESTing
Framework (hpcswtest) [20] and ReFrame [21, 22]. ATIS is focused on sanity test for
mpi wrappers where tests were executed using ctest and visualized in CDASH. There
has been no activity on this project since 2014 and the main author has deprecated the
project. hpcswtest was developed by Idaho National Lab (INL) Scientific Computing
Department to test sanity check of HPC software stack. The program is written in C++11
with some scripts in python2. A json configuration file hpcswtest.json is used for con-
figuring the project with system details including scheduler configuration and list of
modules that are site-specific. Due to limited documentation and no active contribution
since March 2018, this project has ceased development.

ReFrame is regression framework implemented in Python that focuses on sanity and
performance check of applications. ReFrame is developed by Swiss National Supercom-
puting Center (CSCS) and has been in production since 2016 to test Piz Daint system.
Unlike buildtest, ReFrame makes use of Python class when writing test, which adds
a learning curve for users to contribute to ReFrame. ReFrame has a considerable test
collection that test numerical libraries, GPUs, microbenchmarks (osu, stream, hpcg,
dgemm). In ReFrame, module names are specified in python test class, and tests are
subject to break due to module load error if module names are changed over time or
module configuration leads to a different module load order. Buildtest will face same
issue, however this problem can be fixed by rebuilding the test because buildtest relies on
spider and is the source of truth for module load. Reframe has a large collection (300+)
of tests for Piz-Daint system unlike buildtest that supports up to 30+ tests that is partly

26 S. Siddiqui

due to lack of community contribution. Reframe supports sanity checking for numer-
ical results against reference output which is not present in buildtest. Both, buildtest
and Reframe have support with workload manager, buildtest supports LSF and SLURM
while Reframe supports SLURM and PBS/Torque.

Buildtest has a robust module integration that allows for greater flexibility when
testing software. Furthermore, buildtest provides many software stack utilities and a few
module operations that are useful for HPC support team in managing their software
stacks. Currently, ReFrame does not support the software stack operations and module
integration with spider that buildtest provides.

6 Conclusion

Scientific software is evolving at a rapid pace with new tools being installed in HPC
systems. HPC Software Stack consist upwards of 1000+ software modules with new
versions requested by end users every day. The HPC sites must collaborate closely and
actively contribute to build a collection of tests that will benefit the HPC community
and software providers. Some tools have emerged in the open-source community in
HPC Software Testing that requires active contributors in the open-source community
to sustain these projects including buildtest.

In this paper, we present buildtest, a tool that automates test creation by utilizing
YAML style test configuration. Buildtest comes with a repository of tests (test configu-
ration, source files) that can be used as a basis for building a test suite for every software
that is installed in HPC cluster. Buildtest is tightly integrated with Lmod spider utility
which provides some interesting features like reporting unique software and modules,
module load testing, difference betweenmodule trees, building testswith users&module
collection and module permutation.

In order to sustain an open-source project like buildtest, we need an active community
that contributes to this project. This can be achieved by targeting the community that
support open-source tools like Lmod, Easybuild, and Spack.

References

1. Furlani, J.L.: Modules: providing a flexible user environment. In: Proceedings of the Fifth
Large Installation Systems Administration Conference (LISA V), pp. 141–152 (1991)

2. Furlani, J.L., Osel, P.W.: Abstract yourself with modules. In: Proceeding of the Tenth Large
Installation System Administration (LISA 1996), pp. 193–204 (1996)

3. Geimer, M., Hoste, K., McLay, R.: Modern scientific software management using EasyBuild
and Lmod. In: 2014 First International Workshop on HPC User Support Tools (2014). https://
doi.org/10.1109/hust.2014.8

4. Hoste, K., Timmerman, J., Georges, A.,Weirdt, S.D.: EasyBuild: building software with ease.
In: 2012 SC Companion: High Performance Computing, Networking Storage and Analysis
(2012). https://doi.org/10.1109/sc.companion.2012.81

5. Gamblin, T., et al.: The Spack package manager. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis - SC 2015 (2015).
https://doi.org/10.1145/2807591.2807623

https://doi.org/10.1109/hust.2014.8
https://doi.org/10.1109/sc.companion.2012.81
https://doi.org/10.1145/2807591.2807623

Buildtest: A Software Testing Framework 27

6. List of build automation software. https://en.wikipedia.org/wiki/List_of_build_automation_
software

7. GNU make. https://www.gnu.org/software/make/manual/make.html
8. CMake Documentation. https://cmake.org/documentation/
9. Autoconf. https://www.gnu.org/software/autoconf/
10. Buildtest. https://github.com/HPC-buildtest/buildtest-framework
11. Buildtest Documentation. https://buildtest.readthedocs.io/en/latest/
12. The spider tool. https://lmod.readthedocs.io/en/latest/136_spider.html
13. Configuring buildtest. https://buildtest.readthedocs.io/en/latest/configuring_buildtest.html
14. Show Keys. https://buildtest.readthedocs.io/en/latest/introspection.html#show-keys
15. User Collections. https://lmod.readthedocs.io/en/latest/010_user.html#user-collections
16. MPI and UPC User Guide. https://slurm.schedmd.com/mpi_guide.html#intel_mpi
17. Best Practices Using MPI under IBM Platform LSF. https://www.ibm.com/developerworks/

community/wikis/form/anonymous/api/wiki/99245193-fced-40e5-90df-a0e9f50a0fb0/
page/359ab0d9-7849-4c6a-8cb8-7a62050b5222/attachment/5c2eb892-b60e-4601-8548-
2e836818c0a5/media/Platform_BPG_LSF_MPI_v2.pdf

18. Buildtest, Managing a Test Repository. https://github.com/HPC-buildtest/buildtest-
framework/wiki/Managing-a-Test-Repository

19. Besseron, X.: Automatic Testing of Installed Software. FOSDEM 2014. https://archive.
fosdem.org/2014/schedule/event/hpc_devroom_automatic_testing/

20. Idaho National Laboratory: hpcswtest. https://github.com/idaholab/hpcswtest
21. Swiss National Supercomputing Center (CSCS): ReFrame. https://github.com/eth-cscs/

reframe
22. ReFrame Documentation. https://reframe-hpc.readthedocs.io/en/stable/
23. Build Examples. https://buildtest.readthedocs.io/en/devel/build_subcommand/build_

examples.html
24. OSU Microbenchmark. https://buildtest.readthedocs.io/en/devel/benchmark_subcommand/

osu.html
25. YAML. https://yaml.org/

https://en.wikipedia.org/wiki/List_of_build_automation_software
https://www.gnu.org/software/make/manual/make.html
https://cmake.org/documentation/
https://www.gnu.org/software/autoconf/
https://github.com/HPC-buildtest/buildtest-framework
https://buildtest.readthedocs.io/en/latest/
https://lmod.readthedocs.io/en/latest/136_spider.html
https://buildtest.readthedocs.io/en/latest/configuring_buildtest.html
https://buildtest.readthedocs.io/en/latest/introspection.html#show-keys
https://lmod.readthedocs.io/en/latest/010_user.html#user-collections
https://slurm.schedmd.com/mpi_guide.html#intel_mpi
https://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/99245193-fced-40e5-90df-a0e9f50a0fb0/page/359ab0d9-7849-4c6a-8cb8-7a62050b5222/attachment/5c2eb892-b60e-4601-8548-2e836818c0a5/media/Platform_BPG_LSF_MPI_v2.pdf
https://github.com/HPC-buildtest/buildtest-framework/wiki/Managing-a-Test-Repository
https://archive.fosdem.org/2014/schedule/event/hpc_devroom_automatic_testing/
https://github.com/idaholab/hpcswtest
https://github.com/eth-cscs/reframe
https://reframe-hpc.readthedocs.io/en/stable/
https://buildtest.readthedocs.io/en/devel/build_subcommand/build_examples.html
https://buildtest.readthedocs.io/en/devel/benchmark_subcommand/osu.html
https://yaml.org/

Using Malleable Task Scheduling to
Accelerate Package Manager Installations

Samuel Knight1(B), Jeremiah Wilke1, and Todd Gamblin2

1 Sandia National Laboratories, Livermore, CA 94550, USA
{sknight,jjwilke}@sandia.gov

2 Lawrence Livermore National Lab, Livermore, CA 94550, USA
gamblin2@llnl.gov

Abstract. Package managers, containers, automated testing, and Con-
tinuous Integration (CI), are becoming an essential part of HPC devel-
opment workflows. These automated tools often require software recom-
pilation. However, large stacks such as those deployed on HPC clusters
can have combinatorial dependencies, and may take a system several
days to compile. Despite the use of simple parallelization (such as ‘make
-j’), build execution time often do not scale with system resources. For
such cases, it is possible to improve overall installation time by compil-
ing parts of software stack independently, each scheduled on a subset of
available cores. We apply malleable-task scheduling algorithms to bet-
ter exploit available parallelism in build system workflows and improve
stack build time overall. Using a prototype implementation in the Spack
package manager, malleable-task scheduling can improve build times by
more than 2x.

1 Introduction

Scientific applications require unique software stacks that run in specialized hard-
ware environments. Historically, scientists installed this software manually: an
error-prone and difficult to reproduce process. Common issues including incom-
patible dependencies and source code regressions require the installer to become
familiar with each part of the software stack and complete the installation over
many iterations which can take days or even weeks.

Scientists have strict software requirements for deploying their codes on HPC
systems in order to support specialized hardware, and application needs. Com-
mon package managers, including pip, YUM, ZYpper, and APT distribute most
or all of their packages as pre-built binary files onto system paths. Distribut-
ing binaries is greatly advantageous in terms of installation speed but at the
cost of a configurable software stack, which often requires codes to be manu-
ally compiled in deployment. Using root paths is also not conducive to a shared

Under the terms of Contract DE-NA0003525, there is a non-exclusive license for use
of this work by or on behalf of the U.S. Government.

c© National Technology & Engineering Solutions of Sandia, LLC. 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 28–48, 2020.

https://doi.org/10.1007/978-3-030-44728-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-44728-1_2

Using Malleable Task Scheduling to Accelerate Package 29

multi-tenant system like an HPC because users do not usually have access to
elevated privileges and the use of root paths would not allow for multiple dif-
ferent software stacks. The Spack package manager [6] has recently become a
popular tool among HPC users for automating software installation. It supports
a rich specification syntax to define aspects of the software stack’s dependencies
features, then compiles and installs it from source in a local directory.

Spack generates a dependency graph from a specification provided from the
command line or in a YAML file, then iteratively builds each dependency. Thus,
installation times grow as software stacks increase in complexity. Stacks that
include multiple versions of a foundational dependency, such as compilers or
communication libraries, may see their build times multiply. On the scale of
hundreds of packages, stacks can take tens of hours to install. These build times
can cause severe bottlenecks for workflows, such as continuous integration or
building containers. Despite the installation time, Sect. 2.1 observes many indi-
vidual build systems poorly utilize the resources available on modern nodes.
This key insight suggests there are cases where the total installation time of a
software stack can be reduced.

Prior research into graph scheduling has produced algorithms for scheduling
malleable tasks, which are granular units of work whose execution times can be
reduced with the addition of processor cores. Malleable tasks are a good analog
for build systems, and this class of graph scheduling algorithm will serve as a
foundation for the scheduler improvements in the Spack package manager. This
paper will demonstrate through theory and application, how a package manager
can use build history to greatly improve software stack installation time.

2 Build Systems

Fig. 1. Maximum observed package build time speedup for xSDK dependencies on a
28-core node.

30 S. Knight et al.

2.1 Build Systems and Spack Package Manager

HPC codes commonly are written in compiled languages, primarily C/C++ and
Fortran. These languages use build systems which consist of several layers of
tools, the most foundational of which is the compiler toolchain. The majority of
projects use Autotools or CMake (Fig. 2) to automate sanity checking, depen-
dency discovery, and Makefile generation. This practice creates a pipelined build
system consisting of a configuration, build, then installation step. Thus build
systems are not monolithic executions, but several pipelined phases.

Fig. 2. Package types identified by base-class. A package is identified as Custom if it
uses the most generic base class.

Spack is a Python-based package manager, specifically designed for HPC
environments [8]. A Spack package consists of a directory with a Python script
named package.py. The Python script contains a derived class with information
about the package, such as known versions, build variants, patches, conflicts,
and dependencies defined in its scope. The class may inherit one of several base
classes that represent common build systems, which simplifies package writing
and maintenance by encouraging code reuse. The package class logically divides
separate parts of the installation into different functions called phases. For exam-
ple, a package derived from the CMakePackage class will include the phases
cmake (configure), build, and install.

A Spec is a representation of installation constraints. Specs fed to Spack
through the command line are abstract, meaning its dependency tree is only
partially resolved. At installation time, Spack will resolve an abstract spec’s
dependencies and variants in a process called concretization. The concretized
spec is represented as a Directed Acyclic Graph (DAG). Spack then installs each
package in a depth-first traversal of the DAG, which ensures each package is
installed after their respective dependencies. When possible, Spack will instruct
the build system to spread compilation across all of the available cores (i.e. ‘make
-j‘ within a package).

Using Malleable Task Scheduling to Accelerate Package 31

3 Parallel Builds and Task Scheduling

3.1 Theory

Each build system has a sequence of phases - usually configure, build, and install.
Some phases will be able to improve execution time by distributing work across
multiple cores. Even when Makefile build systems try to improve installation
time by executing independent steps on multiple cores, build systems often do
not tend to scale well across multicore nodes. Build systems include slow serial
configuration steps. Even when parallelism is available in the build phase, the
build system is not always able to efficiently spread tasks from the parallel
build tree across the available cores. Most package managers install dependencies
sequentially with each package receiving all of the available cores. However,
this does not efficiently utilize resources. Figure 1 shows the maximum observed
speedup of xSDK [3,5] dependencies. 55% of the packages are not able to exceed
even a 3x speedup with 28 cores while only a few are able to exceed a 10x
speedup.

While good speedups are often obtained on a few cores, the speedup quickly
levels off quickly and additional cores make little difference. For example, GNU
GMP (Fig. 3) initially scaled well, but could not exceed a speedup of 12x on a 32
core system. Thus build systems follow an Amdahl’s law of diminishing returns
as more cores are used to parallelize a workload. A potentially more efficient
strategy than assigning all cores to a single package would be to partition cores
between independent packages in the stack.

Fig. 3. Speedup curve for installation GMP demonstrates a plateau as more cores are
added.

Rather than using a basic sequential schedule, we therefore want to derive
a task parallel schedule based on the package dependency graph (DAG). For a
directed graph G = <V,E> where V is a set of weighted vertices (hereafter
called tasks) and E a set of connecting edges, there is some critical path from an

32 S. Knight et al.

Fig. 4. Package DAG representation of OpenMPI with simplified times. Includes key
metrics tt, tb, and an indicator of critical path. Arrows indicate direction of execution.

entry task to a leaf task where the combined weights of the vertices and edges
are maximized. Since the critical path is the longest chain of tasks by weight, it
defines a lower bound for the execution time of a given DAG. A critical path for
an example DAG is shown in Fig. 4.

A scheduling algorithm must minimize total graph execution time, or
makespan, by scheduling tasks along the critical path as soon as possible, and by
(depending on the model) increasing resources that can improve task execution
time, such as allocating more cores or faster processors. Many task scheduling
algorithms assume a single core per task or fixed compute time per task, mean-
ing the critical path length is fixed [12]. Alternatively, schedulers can execute
using a variable core allotment, reducing the critical path length by assigning
more cores. These tasks are denoted malleable, moldable, multitask, or M-task in
the literature (Table 1).

Using Malleable Task Scheduling to Accelerate Package 33

Table 1. List of symbols.

Symbol Definition

T Set of all tasks

ti ith task in set of all tasks

ti(pi) Execution time of ith task with p processors

pi No. processors allotted to ith task

wi ith Task work area (ti(p) × p)

ts Start time of ith task

tf Finish time of ith task

tser Serial proportion of task execution

tsc Whether a task is scalable

tt Task top-level

tb Task bottom-level

V Set of vertices

E Set of edges

P Set of processors

W Precedence levels

3.2 Prior Work

Creating an optimal schedule that minimizes execution time of an arbitrary
task graph has been demonstrated NP-hard in most cases [7], and much of the
research into the topic propose tractable algorithms or heuristics tailored to
constrained scenarios.

Optimal Task Schedulers. Early scheduling algorithms often define tasks as
fixed-time single process executions. Optimal polynomial time algorithms have
been demonstrated for three cases [12]: unit-weight tasks in free trees [10], an
arbitrary DAG on two processors [4,16], and interval ordered DAGs with unit-
weight tasks [9]. None of these algorithms account for weighted edges, which
would represent the communication cost between tasks.

Multicore Task and Data Aware Schedulers. As computing networks grew
larger and shared-memory regions began hosting multiple processor cores, pro-
posed algorithms began to include schedulers that account for communication
cost, locality, and spreading single tasks across multiple cores. Two Step Allo-
cation and Scheduling (TSAS) [15] and Two Level scheduling (TwoL) attempt
to schedule task graphs while taking into account task and data communication
cost. Critical Path Reduction (CPR) [14] prioritizes scheduling for tasks along
the critical path by greedily selecting improved schedules with single core allot-
ment changes. CPR was demonstrated to produce superior schedules, but has a

34 S. Knight et al.

higher time complexity than the other two-step allocation methods by O(V). The
same authors proposed Critical Path and Allocation (CPA), a two-step sched-
uler that iteratively allocates cores to tasks along the critical path in order of
greatest reduction of computational area until the critical path reaches average
global computational area, then creates a schedule once in the final step [13].
CPA has a significantly lower time complexity than the other two-step sched-
ulers, at the price of a larger makespan. Modified CPA (MCPA) was proposed
as an improvement to CPA that uses the same area reduction strategy, while
also reducing processor allotment to task-parallel regions of the DAG with a
precedence tracking step [2]. MCPA’s schedule creation time is similar to CPA,
but produces schedules that are often comparable to CPR when the graph is
balanced.

Several proposed algorithms tend to create better schedules than CPR, but
have a higher time complexity. IAES was a similar iterative allotment procedure
to CPR, but also tried to remove holes by shrinking tasks when a schedule
fails to improve [11]. Tests showed IAES tended to produce superior schedules
with unbalanced DAGs. LoC-MPS proposed by Vydyanathan et al. [17] deployed
several novel strategies, such as back filling to remove schedule holes, and testing
concurrency ratio to prevent processor allotment changes from being too greedy.

4 Scheduling Algorithm

4.1 Task Execution Time Heuristic

The scheduling algorithm must anticipate how a change in the number of cores
allotted to a task affects its execution time. The execution time will either scale
(usually with the assistance of a parallel Makefile), or run in fixed time despite
the addition of more cores. No matter how well a build system scales, there
will be a lower bound to the task’s execution time determined by the longest
segment of serial execution according to Amdahl’s law [1]. Build times should not
increase with additional cores, unlike some scheduling models that include intra-
task communication and could increase in execution time. To simplify the hard
problem of finding near-optimal schedules, we select approximations appropriate
for build systems and package managers. We assume individual build systems
do not cross memory boundaries onto multiple nodes.

Using Amdahl’s law, we can create a simple model of a scalable task’s exe-
cution time,

t(p) = ((1 − tser)/p + tser)t(1)

where tser is the serially executed proportion of the task. Since t(1) and tser
are task-intrinsic constants, t(p) can be condensed into a first degree asymptotic
polynomial function,

t(p) = kA/p + kB

Constants kA and kB are calibrated by timing task’s execution time with dif-
ferent core allotments and using linear least-squares to fit the function to the
samples.

Using Malleable Task Scheduling to Accelerate Package 35

While a polynomial approximation can be made fit to any set of measure-
ments with aggressive enough parameters, it can cause unexpected predictions
when extrapolating past the boundaries of the dataset. In this application, the
risk is diminished because the lower bound cannot decrease below 1 core, and
the upper bound converges asymptotically to kB . A fitted curve heuristic pro-
vides two benefits over using raw measurements. First, the fitted curve can be
accurately interpolated, which allows for sparse sampling. Second, a fitted curve
prevents measurement jitter from violating the assumption that build times can-
not increase as the number of cores increase. Violating this assumption can trap
schedulers in local minimums, degrading schedule quality (Table 2).

Table 2. Summary of algorithms described in Sect. 4.

Algorithm/Complexity Description

CPR (Critical Path Reduction)
O(EV 2P + V 3P (logV + PlogP))

Greedy scheduler that iterates many
possibly schedules

F-CPR (Filtered CPR)
O(EV 2P + V 3P (logV + PlogP))

CPR with minimum improvement threshold
(“filter”) for pruning search space

CPA (Critical Path and Allocation)
O(V (V + E)P)

Allots cores on critical path until it reaches
average processor area

MCPA (Modified CPA)
O(V (VW + E)P)

CPA with additional checks for task
parallelism amongst independent tasks

MLS (M-task List Scheduling)
O(E + Vlog(V) + VPlogP)

Basic scheduling algorithm for assigning
task start times

R-MLS (Reuse MLS)
O(E + V P logP)

MLS with memoization to reduce CPR’s
time complexity

4.2 CPR and MCPA Implementation

CPR and MCPA reduce the execution time of a schedule by prioritizing the
execution of tasks along the critical path. These schedulers measure tasks using
two functions: b-level (tb, bottom level) is the longest path by weight from a
given task to an exit task including that task’s execution time, and t-level (tt,
top level) is the longest path from the current task to an entrance task excluding
the task’s execution time (see Fig. 4). tb + tt is maximized for tasks along the
critical path. Figure 4 is a simple example that assumes fixed times for each task
(build). For the malleable task schedulers we consider here, the t- and b-levels
change as cores are assigned or removed.

CPR and MCPA follow a two step process. The first step iteratively increases
the core allotment to tasks along the critical path using their respective strate-
gies, and the second creates a schedule using a common M-task list scheduling
(MLS) procedure which determines the start times of each task based on core

36 S. Knight et al.

allotment determined in the first step. The remainder of this section includes
descriptions of these algorithms’ reference implementations, and proposed mod-
ifications to improve their application in this use case. For illustration, we apply
these algorithms to an example DAG, a subset of the DAG for Trilinos (Fig. 5).
Synthetic (rather than empirical) compute times are used to illustrate the exam-
ple. Scheduling strategies are compared to a baseline sequential scheduler (Fig. 6)
that builds a single package at a time across all cores using ‘make -j’.

GCC

OpenMPI

ParMETIS

BLAS

HDF5

Trilinos

Fig. 5. Task graphs for example installation of Trilinos showing direct software depen-
dencies.

CPR Implementation. CPR (see pseudocode) uses a greedy strategy to create
a schedule. The outer loop assembles a list of candidate tasks, and will continue
until the inner loop cannot improve the schedule. The inner loop selects the most
critical task from the list, adds a core, and checks if the schedule produced by
MLS has a smaller makespan. If the makespan does not decrease, the core is
removed from that task, and the task is removed from the list of candidates. If
the inner loop successfully reduces the makespan or there are no more tasks to
try, the inner loop escapes to the outer loop. CPR is a “thorough” algorithm,
yielding good results for many different DAGs by iteratively trying many pos-
sible schedules at the cost of extra computational complexity. Despite CPR’s
complexity, it is still a greedy approach which can get trapped in a suboptimal
schedule (local minimum).

Using Malleable Task Scheduling to Accelerate Package 37

The publication proposing CPR [14] does not specify how to select between
tasks with the same maximized tt + tb during the selection step (indicating
multiple candidate tasks are along a critical path). This distinction is important,
since the ordering affects decisions made by a greedy algorithm. Here we select
tasks based on best compute area improvement for tie breaking, selecting the
next task based on biggest improvement of execution time when one core is
added. CPR was applied to the DAG in Fig. 5 with synthetic timings to produce
the schedule in Fig. 6.

procedure CPR(Proc count P, set<Task> tasks)
for all ti ∈ tasks do

pi ← 1
end for
Schedule T ← MLS()
repeat

X ← set of tasks where pi < P
repeat

t ← t with max t.tlevel + t.blevel
t.nproc ← t.nproc + 1
Schedule T ′ ← MLS()
if Length(T ′) < Length(T) then

T ← T ′

else
t.nproc ← t.nproc − 1
Remove t from X

end if
until T is modified or X is empty

until T is unmodified
end procedure

MCPA Implementation. MCPA (see pseudocode) tries to allot more cores
to tasks along the critical path that maximize compute area reduction. Cores
are assigned iteratively until the global average compute area is greater than the
compute area of the critical path. Average compute area is defined as

Ap = 1
p

∑

ti∈T

w(i, ni) × ni

When the critical path length Lcp is less than Ap, the average processor is doing
more work than is on the critical path.

MCPA limits the total cores that can be allocated across each precedence
level, a cross-sectional slice of independent tasks assigned via a breadth-first
traversal. Tasks do not scale perfectly, which means compute area increases
with more cores as the number of “core-seconds” overall increases, despite a

38 S. Knight et al.

GCC
T(6) = 2

BLAS
T(1) = 6

OpenMPI
T(5) = 3.2

Parmetis
T(3) = 2.5

HDF5
T(2) = 3

Trilinos
T(6) = 3.4

GCC
T(3) = 3

BLAS
T(1) = 6

OpenMPI
T(3) = 4

Parmetis
T(2) = 3.2

HDF5
T(2) = 3.2

Trilinos
T(3) = 4.7

CPR Schedule

 MCPA Schedule

time

cores

time

GCC
T(6) = 2

BLAS
T(6) = 2.7

OpenMPI
T(6) = 3

HDF5
T(6) = 2.3

Trilinos
T(6) = 3.4

Sequential Schedule

Par-
metis

T(6)=1.7

Fig. 6. Comparison of sequential scheduler with malleable-task schedules using CPR
and MCPA. Box heights indicate the number of processors used. Box widths indicate
the time taken. MCPA fails to allocate cores to GCC and Trilinos, leading CPR to
have a shorter schedule makespan. Additional passes (with increased complexity) would
correct issues with MCPA. CPR performs much better than sequential schedule, while
MCPA has only a minor improvement.

reduction in task execution time. This illustrates a tradeoff between intra-task
versus inter-task parallelism. When available, inter-task parallelism generally
provides “ideal speedups” across independent tasks, while intra-task parallelism
has diminishing returns with additional cores. MLS is only invoked once as a final
step, ensuring a much lower time complexity than CPR. Limiting core allocations
to precedence levels and only running MLS once improve schedule creation time
complexity, but also result in poorer results than CPR Fig. 6. MCPA fails to
allocate all possible cores to the tasks, producing a longer makespan than CPR.
While in this simple example it is obvious how to improve the MCPA schedule,

Using Malleable Task Scheduling to Accelerate Package 39

procedure MCPA(In: Proc count P, In-Out: set<Task> tasks)
for all t ∈ tasks do

t.ncores = 1
end for
computeTandBLevels(tasks)
while Lcp > Ap do

CP ← set of tasks on current critical path
V alidT ← ∅

for all t ∈ CP do
if cores available at t’s precedence level then

V alidT ← t
end if

end for
topt ← bestWorkArea(V alidT)
topt.ncores ← topt.ncores + 1
computeTandBLevels(tasks)

end while
end procedure
procedure bestWorkArea(set<Task> tasks)

topt ← NULL
Gopt ← inf
for all ti ∈ tasks do find max work area gain G

Gi ← wi(ni)
ni

− wi(ni+1)
ni+1

if Gi > Gopt then
topt ← ti
Gopt ← Gi

end if
end for

end procedure

adding more available cores to tasks in the general case without introducing new
resource (scheduling) dependencies is nontrivial.

MLS Implementation. MLS (see pseudocode) takes a list of tasks with core
allotments and assigns start times such that they execute within a limited core
constraint and without violating dependency precedence. It iterates through each
task in order of highest priority according to a heuristic (this implementation, as
well as MCPA’s implementation uses maximum tb). MLS maintains a sorted list
of earliest idle times for each processor core and schedules the task to run on the
first idle cores. The start time (ts) and end time (tf) are determined either by
the latest idle time among the selected cores, or by the latest completion time
of the task’s dependencies,

ts = max(max
d∈tdep

(df),max(pidle))

tf = ts + t(p)

40 S. Knight et al.

This implementation of MLS also includes a step to avoid the creation of
idle holes in the schedule selecting cores with later idle times when it does not
increase the candidate task’s start time.

procedure MLS(Proc count P, set<Task> tasks, set<Core> cores)
tasks ← sort tasks by b-level
for all c ∈ cores do

c.idle time ← 0
end for
for all t ∈ tasks do

sortedCores ← sorted cores by idle time
selectedCores ← sortedCores[0 : p(t)]
offset ← 0
t.start time ← latest selectedCores or dependency end time
t.end time ← t.start time + t.exec time
while sortedCores[p(t)+ offset +1] ≤ t.start time do

offset ←offset+1
end while
for i ←offset, p(t)+offset do

sortedCores[i] ← t.end time
end for

end for
end procedure

Improving CPR Schedule Creation and Execution Time. CPR’s greedy
strategy can lead to suboptimal schedules. Tasks which scale poorly with addi-
tional cores may trap the assigned cores in a local minima. Evaluating tasks
with poor scaling is also costly with CPR’s high time complexity. Instead of
evaluating every task, the outer loop could filter tasks that don’t scale out of
the candidate task list with the following heuristic,

tsc =

{
Scalable if tc(n)/tc(1) < threshold,

Unscalable otherwise

This has the potential to both prune the search space and avoid sub-optimal
local minima. Benchmarks in Sect. 6 will use an n of 8 and a threshold of 0.8,
meaning a task is rejected for evaluation if execution time does not improve at
least 20% with 8 cores. As we will see later in results, though, more tuning of
this method is required.

Multi-node Schedules. The implemented two-step scheduling algorithms can-
not create schedules with tasks that use processors across memory boundaries.
However, a trivial change to MLS could allow for scheduling tasks across disjoint

Using Malleable Task Scheduling to Accelerate Package 41

sets of processors, which is feasible in this model provided the cluster is provi-
sioned with a network file system so build systems have access to dependencies
compiled on other nodes.

After selecting the next task, the MLS reference implementation will try to
find a set of processors that will allow for the earliest scheduling. Instead of
searching one list of processors, the list scheduler can select cores on each node,
and choose the node with the earliest start time. A tie breaker includes a test for
which node’s allotment creates the smallest idle processor time hole, measured
as the sum of the time difference between the selected cores’ idle time and the
task start time on each node.

5 Methodology

The workflow begins by collecting installation times from a fork of Spack contain-
ing the scheduler enhancements (Fig. 7). The fork builds a database that records
the spec, phase, number of cores used and execution time. The second step uses
the timings database to measure schedule creation times and makespans, and a
third step will create a package DAG schedule and install it in a timed live run.
The results from the steps 2 and 3 are the basis for the figures and conclusions.

Table 3. Benchmarked software stacks. Each stack consists of a single root package
and its dependencies.

Stack Packages Phases

Python 2.7.16 14 45

Tk 8.6.8 21 80

Rust 1.33.0 43 149

R 3.5.3 68 248

xSDK 0.4.0 72 222

Table 4. Benchmark node configurations, including processor, memory and hardware
used in crucial filesystem mount points.

Node A Node B

Hardware cores 32 28

Memory 512 GB 256 GB

Build mount SATA III SSD PCIe NVMe

Install mount SATA III SSD NFS

OS mount SATA III SSD NFS

42 S. Knight et al.

Scheduler performance was benchmarked on two node configurations
(Table 4). Node A resembles a large workstation with a local filesystem. Node
B has network filesystem mountpoints that are hosted by a storage appliance,
which more closely resembles a cluster node.

The stacks used for benchmarking (Table 3) consist of a single Spack package
with its full dependency tree. Using a single package is not a requirement for
any of these algorithms however, and a stack in production could consist of an
arbitrary number of top level packages. Times are normalized against a sequential
installation where each dependency is built one at a time across every available
core. Schedules produced by CPR, Filtered CPR (F-CPR), and MCPA were
benchmarked to compare their performance.

spack -k install -j $j --time-phases "$stack"

timings.sqlite3

spack install --use-timings timing.sqlite3
--compare-schedulers $dag_type $stack

spack -k install --use-timings

(1)

(2)

(3)

Fig. 7. Steps for timing installations. (1) Generate timings database by profiling instal-
lations with multiple core counts. (2) Print makespan and creation time comparisons.
(3) Run live installations with each scheduler.

6 Results and Discussion

Fig. 8. Schedule creation times for benchmarked package dependency graphs.

Using Malleable Task Scheduling to Accelerate Package 43

Table 5. Schedule creation times compared to execution times for the CPR method
on Node B.

Stack Execution time (s) CPR creation time (s)

Python 879.21 0.09

Tk 385.46 0.13

Rust 4563.35 0.65

R 1478.01 1.05

xSDK 4293.00 2.49

6.1 Schedule Creation Time

CPR and F-CPR create schedules more slowly than MCPA for every tested stack
(Fig. 8). Despite this, every schedule was created quickly enough to run faster
than sequential installation (Table 5). F-CPR’s schedule creation time improve-
ment was limited since most packages were reasonably scalable and little prun-
ing was done. Despite F-CPR’s reduction of inner loop iterations, it must still
run MLS many times on an overall larger DAG making it more expensive than
MCPA. These creation times come from a Python implementation, and could
be reduced by using an optimized Python extension or another language.

6.2 Schedule Execution Time

CPR consistently produces the fastest builds (Fig. 9). In most cases, F-CPR also
creates schedules with comparable build execution times. F-CPR generally pro-
duces a better schedule than MCPA with the exception of Tk. MCPA generally
produces slower builds than CPR; despite this, it consistently out-performs the
Simple Parallel execution time. Interestingly, the scaling behavior for Node A
and Node B are almost identical, despite installation times on Node B running
about 30% slower. This indicates the file system differences did not cause a
significant divergence in task execution behavior in this test. Ideally, the times
estimated by the heuristic should match the observed build times. For the Node
B configuration, the predicted schedule speedups are in excellent agreement with
the observed ties (Fig. 9). Rust diverged from the expected speedup by about
10% for CPR and F-CPR on Node A, however.

44 S. Knight et al.

Fig. 9. Estimated schedule execution time using makespan for package-task DAGs, and
tested with a live run. Values normalized to execution time of the package’s respective
sequential execution time.

6.3 Scheduler Choice and DAG Size

For all of the packages considered here, the quality of the CPR schedules pro-
duced outweighs the extra time complexity. For a very large graph, CPR’s super-
linear scaling will eventually make schedule creation time too costly to produce
execution time improvements over a sequential installation. However, this thresh-
old may not be possible to pass with the largest single-root-package dependency
trees currently available in Spack.

MCPA would become a more practical alternative at the scale of hundreds or
thousands of tasks. While F-CPR cannot improve time complexity, it does reduce
schedule creation overhead relative to CPR. For DAG sizes where scheduling
overhead is reaching the limits of CPR’s performance, MCPA and F-CPR can
be used together, and the faster of the two schedules is selected.

6.4 Improving Schedule Creation Times

CPR heavily iterates over MLS, changing one task’s core allotment each time a
schedule is created. This is not an efficient use of MLS, since each new schedule
will contain identical placements from the beginning of the task list to the first
task where reordering has occurred. An improved Reuse MLS (R-MLS) algo-
rithm tabulates its task placement decisions into a data structure. Subsequent
schedule creations replay the decisions until it reaches a task with a modified
allotment or a change in task ordering, then continues the scheduling procedure

Using Malleable Task Scheduling to Accelerate Package 45

Fig. 10. Schedule creation time of CPR implementations using R-MLS and normalized
against MLS execution time.

from that iteration. Reuse does not improve MLS’s worst case time complexity,
but constrains it to cases where the modified task is near the front of the list
due to a high tb. After its first invocation, R-MLS will have a time complexity
between O(E + V (logV + PlogP)) [14] when a high tb task changed from the
last schedule, and O(V P) when a low tb task changed.

The original paper includes a V (logV) step to sort the task list by priority.
The sort can actually be done in O(V) time by saving the previously sorted
list, since only single task changes need to be updated after the first iteration.
Thus R-MLS’s worst-case time complexity can be reduced to O(E + V P logP)
after the first iteration. It should be noted that these strategies cannot improve
MCPA’s time complexity because R-MLS relies on information reuse between
iterations, and MCPA only invokes the list scheduler once.

CPR and F-CPR create schedules much more quickly with R-MLS. Figure 10
records a 40% creation time improvement with R and xSDK stacks. Since
R-MLS produces identical schedules, there is no downside to its use over MLS
for CPR.

7 Future Work

7.1 Task Cost Heuristic

The task cost heuristic used here assumes ideal scaling with the addition of cores.
Makefile builds do not scale optimally due to the limited parallelism between
build targets, and traversal through the build tree is interspersed with serialized
linking steps. Fitting a curve that accounts for parallel speedup decay may result
in more optimal schedules.

Another open question is heuristic portability, which may be inconsistent
across different node configurations. If a build node is in every aspect half of the
speed the sampled node, the build node can be expected to make a schedule that is
just as optimal as it would be on the original node, but execute in twice the time.

46 S. Knight et al.

However, the heuristic breaks down when different components operate at differ-
ent speeds. In particular, the difference between CPU performance and filesystem
bandwidth/latency will affect each task differently. A build node with a filesystem
significantly slower than the sampled node (such as an NFS mount-point compared
to a local SSD), may disproportionately affect the execution time and scalability of
more I/O bound tasks. Thus an improved heuristic could find a way parameterize
a specific platform’s hardware configuration on execution time.

7.2 Package Fetching

Before installing a package, Spack executes a step to download an archive. This
paper did not explore ways of mitigating this delay for two reasons: environments
that build packages regularly are likely have a mirror or up-to-date cache that
will preempt the download step, making the time cost of a fetch negligible, and
execution time of fetches without a cache will go over the internet, which cannot
be reliably predicted. However, this is still a relevant use-case and it will have a
real affect in many one-off builds. Although adding a fetching step to the DAG
is trivial (attach a leaf dependency to each package task), fetching should use a
different schedule model that does not try to optimize on core allotment.

7.3 Hyperthreading

The possible benefits of hyper-threading was not explored in this paper. Most
architectures support 2–4 threads per hardware core. A relevant research ques-
tion could explore the affect of over-provisioning core allotments to build sys-
tems. This could benefit total execution times, by more consistently saturating
resources that bottleneck build times.

7.4 Phase Tasks and Build System Tasks

Tasks in the dependency graph can be defined at one of two levels of granular-
ity. In the first case, each task represents the installation of one package, with
connecting edges representing its dependents and dependencies. However, most
build systems in Spack consist of several pipelined steps, called phases in Spack.
Of these phases, the build phase (or install phase for Makefile projects that do
not define a build step) is often the only part that can be improved by the allot-
ment of multiple cores. Any core allotment greater than one that spends time
executing unscalable phases will be idle and are wasted.

In theory, more optimal schedules can be created which use tasks consisting of
individual phases of a build, instead of monolithic software packages that contain
both serial and parallel segments (see Fig. 11). Each package task decomposes
into 2.4 times as many phase tasks on average (Table 6). The structure of the
DAG, meaning the regions where dependencies fan out or form choke points will
not change, since a package consists of a serial chain of phases.

Using Malleable Task Scheduling to Accelerate Package 47

Table 6. Occurrence of packages by phase count.

Phase count Packages

1 1078

2 538

3 806

4 717

5 1

Mean 2.37

M4

autoreconf

build

install

autoreconf

build

install

Package Task Phase Tasks

M4 autoreconf

M4 build

M4 install

Fig. 11. Task representation of GNU M4. A package task includes all phases, and a
phase tasks consist of serially-connected phases.

An even finer level of granularity would be extending task-parallel schedul-
ing to reorder and reschedule within the CMake or Automake build systems.
This could involve, e.g. malleable tasks at the directory level or single tasks at
the object-file level. While CPR was the best choice for our Spack use case, a
lower complexity scheduler may prove more useful if task graphs are extended
to include individual build directories or object files.

8 Conclusion

This paper demonstrates that build systems can severely underutilize modern
multiprocessor nodes. Build systems also vary widely in terms of their multicore
speedup, with the majority never reaching a 3x speedup on a 32 core system. In
a package manager workflow that depends on the execution of tens or even hun-
dreds of build systems, the results shown in Sect. 6 demonstrate it is possible to
substantially improve execution time by selectively reducing the core allotment
to individual build systems and executing them in parallel. Two algorithms,
CPR and MCPA were used to build common software stacks. CPR produced

48 S. Knight et al.

high quality schedules, while MCPA can be used to produce schedules for very
large stacks at a lower time complexity.

References

1. Amdahl, G.M.: Validity of the single processor approach to achieving large
scale computing capabilities. In: Proceedings of the April 18–20, 1967, Spring
Joint Computer Conference, AFIPS 1967 (Spring), pp. 483–485. ACM, New
York (1967). https://doi.org/10.1145/1465482.1465560, http://doi.acm.org/10.
1145/1465482.1465560

2. Bansal, S., Kumar, P., Singh, K.: An improved two-step algorithm for task and
data parallel scheduling in distributed memory machines. Parallel Comput. 32(10),
759–774 (2006). https://doi.org/10.1016/j.parco.2006.08.004. http://www.science
direct.com/science/article/pii/S0167819106000524

3. Bartlett, R., et al.: xSDK foundations: toward an extreme-scale scientific soft-
ware development kit. Supercomput. Front. Innov. 4(1) (2017). http://superfri.
org/superfri/article/view/127

4. Coffman Jr., E.G., Graham, R.L.: Optimal scheduling for two-processor systems.
Acta Informatica 1(3), 200–213 (1972). https://doi.org/10.1007/BF00288685

5. xSDK contributors: xsdk home (2019). https://xsdk.info/
6. Spack Contributors: Spack (2019). https://spack.io/. Accessed 27 Feb 2019
7. Du, J., Leung, J.Y.T.: Complexity of scheduling parallel task systems. SIAM J.

Discrete Math. 2(4), 473–487 (1989). https://doi.org/10.1137/0402042
8. Gamblin, T., et al.: The Spack package manager: bringing order to HPC soft-

ware chaos. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2015, pp. 40:1–40:12. ACM,
New York (2015). https://doi.org/10.1145/2807591.2807623, http://doi.acm.org/
10.1145/2807591.2807623

9. Papadimitriou, C.H., Yannakakis, M.: Scheduling interval-ordered tasks. SIAM J.
Comput. 8, 405–409 (1979). https://doi.org/10.1137/0208031

10. Hu, T.C.: Parallel sequencing and assembly line problems. Oper. Res. 9(6), 841–848
(1961). http://www.jstor.org/stable/167050

11. Huang, K.C., Wu, W.Y., Wang, F.J., Liu, H.C., Hung, C.H.: An iterative expanding
and shrinking process for processor allocation in mixed-parallel workflow schedul-
ing. SpringerPlus 5(1), 1138 (2016). https://doi.org/10.1186/s40064-016-2808-y

12. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Comput. Surv. 31(4), 406–471 (1999). https://
doi.org/10.1145/344588.344618. http://doi.acm.org/10.1145/344588.344618

13. Radulescu, A., van Gemund, A.J.C.: A low-cost approach towards mixed task and
data parallel scheduling. In: International Conference on Parallel Processing 2001,
pp. 69–76 (2001). https://doi.org/10.1109/ICPP.2001.952048

14. Radulescu, A., Nicolescu, C., van Gemund, A.J.C., Jonker, P.P.: CPR: mixed task
and data parallel scheduling for distributed systems. In: IPDPS (2001)

15. Ramaswamy, S., Sapatnekar, S., Banerjee, P.: A framework for exploiting task
and data parallelism on distributed memory multicomputers. IEEE Trans. Parallel
Distrib. Syst. 8(11), 1098–1116 (1997). https://doi.org/10.1109/71.642945

16. Sethi, R.: Scheduling graphs on two processors. SIAM J. Comput. 5, 73–82 (1976).
https://doi.org/10.1137/0205005

17. Vydyanathan, N., et al.: Locality conscious processor allocation and scheduling
for mixed parallel applications. In: 2006 IEEE International Conference on Cluster
Computing, pp. 1–10 (2006). https://doi.org/10.1109/CLUSTR.2006.311861

https://doi.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
https://doi.org/10.1016/j.parco.2006.08.004
http://www.sciencedirect.com/science/article/pii/S0167819106000524
http://www.sciencedirect.com/science/article/pii/S0167819106000524
http://superfri.org/superfri/article/view/127
http://superfri.org/superfri/article/view/127
https://doi.org/10.1007/BF00288685
https://xsdk.info/
https://spack.io/
https://doi.org/10.1137/0402042
https://doi.org/10.1145/2807591.2807623
http://doi.acm.org/10.1145/2807591.2807623
http://doi.acm.org/10.1145/2807591.2807623
https://doi.org/10.1137/0208031
http://www.jstor.org/stable/167050
https://doi.org/10.1186/s40064-016-2808-y
https://doi.org/10.1145/344588.344618
https://doi.org/10.1145/344588.344618
http://doi.acm.org/10.1145/344588.344618
https://doi.org/10.1109/ICPP.2001.952048
https://doi.org/10.1109/71.642945
https://doi.org/10.1137/0205005
https://doi.org/10.1109/CLUSTR.2006.311861

Enabling Continuous Testing of HPC
Systems Using ReFrame

Vasileios Karakasis1(B), Theofilos Manitaras1, Victor Holanda Rusu1,
Rafael Sarmiento-Pérez1, Christopher Bignamini1, Matthias Kraushaar1,

Andreas Jocksch1, Samuel Omlin1, Guilherme Peretti-Pezzi1,
João P. S. C. Augusto2, Brian Friesen3, Yun He3, Lisa Gerhardt3,

Brandon Cook3, Zhi-Qiang You4, Samuel Khuvis4, and Karen Tomko4

1 Swiss National Supercomputing Centre, Via Trevano 131, 6900 Lugano, Switzerland
vasileios.karakasis@cscs.ch

2 Università della Svizzera Italiana, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
3 Lawrence Berkeley National Laboratory, 1 Cyclotron Road,

Berkeley, CA 94720, USA
4 Ohio Supercomputer Center, 1224 Kinnear Road, Columbus, OH 43212, USA

Abstract. Regression testing of HPC systems is of crucial importance
when it comes to ensure the quality of service offered to the end users. At
the same time, it poses a great challenge to the systems and application
engineers to continuously maintain regression tests that cover as many
aspects as possible of the user experience. In this paper, we briefly present
ReFrame, a framework for writing regression tests for HPC systems and
how this is used by CSCS, NERSC and OSC to continuously test their
systems. ReFrame is designed to abstract away the complexity of the
interactions with the system and to separate the logic of a regression test
from the low-level details, which pertain to the system configuration and
setup. Regression tests in ReFrame are simple Python classes that specify
the basic parameters of the test plus any additional logic. The framework
will load the test and send it down a well-defined pipeline which will take
care of its execution. ReFrame can be easily set up on any cluster and its
straightforward invocation allows it to be easily integrated with common
continuous integration/deployment (CI/CD) tools, in order to perform
continuous testing of an HPC system. Finally, its ability to feed the
collected performance data to well known log channels, such as Syslog,
Graylog or, simply, parsable log files, make it also a powerful tool for
continuously monitoring the health of the system from user’s perspective.

1 Introduction

HPC systems are highly complex systems in all levels of integration; from the
physical infrastructure up to the software stack provided to the end users. A
small change in any of these levels could have an impact on the stability or the
performance of the system. It is of crucial importance, therefore, not only to

c© Springer Nature Switzerland AG 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 49–68, 2020.

https://doi.org/10.1007/978-3-030-44728-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-44728-1_3

50 V. Karakasis et al.

make sure that the system is in a sane condition after every maintenance, but
also to monitor its performance during production, so that possible problems
are detected early enough and the quality of service is not compromised.

Regression testing can provide a reliable way to ensure the stability and
the performance requirements of the system, provided that sufficient tests exist
that cover a wide aspect of the system’s operations from both the operators’ and
users’ point of view. However, given the complexity of HPC systems, writing and
maintaining regression tests can be a very time consuming task. A small change
in the system configuration or the deployment may require adapting hundreds of
regression tests at the same time. Similarly, porting a test to a different system
may require significant effort if the new system’s configuration is substantially
different from that of the system that it was originally written for.

Most HPC sites use one or another type of regression testing to check some
aspects of their system behavior. These efforts are usually custom, in-house
solutions that tend to couple strongly the regression tests with the system con-
figuration, increasing the maintenance burden significantly.

In this paper, we present ReFrame, a regression testing framework that tries
to address these challenges. In fact, when designing ReFrame, we have set three
major goals:

1. Productivity. The writer of a regression test should focus only on the logical
requirements of the test and should not need to deal with any of the low level
system details, e.g., how the test environment is loaded, how jobs are created
and submitted, how output is parsed etc.

2. Portability. Configuring the framework to support new systems and system
configurations should be easy and should not affect the existing tests. Also,
adding support of a new system in a regression test should require minimal
adjustments.

3. Robustness and ease of use. The new framework must be stable enough and
easy to use by non-advanced users. When the system needs to be returned to
users outside normal working hours, the personnel in charge should be able
to run the regression suite and verify the sanity of the system with a minimal
involvement.

Since recently, there are ongoing discussions and several exploratory projects
in progress in the HPC community toward embracing well-established cloud tech-
nologies, such as containers, Continuous Integration and Continuous Deployment
(CI/CD) and DevOps. An essential ingredient of such a convergence between
classical HPC and the Cloud is robust testing. ReFrame can be easily integrated
with well known CI/CD frameworks, such as Jenkins or Gitlab, and can be there-
fore used for continuously testing a system and, even for continuously deploying
changes to the system. Also since ReFrame tests are written in a fully fledged
programming language, they can adjust their behavior for different systems in a
self-contained manner and with minimal changes, making it easy to create and
maintain a suite of tests.

The rest of the paper is organized as follows: Sect. 2 presents the key design
principles of the framework, Sect. 3 presents the syntax of a ReFrame test file

Enabling Continuous Testing of HPC Systems Using ReFrame 51

and discusses how common tasks can be achieved. Section 4 presents some basic
aspects of configuring and running ReFrame. Section 5 presents the use cases of
ReFrame at CSCS, NERSC and OSC. Section 6 discusses related work and how
ReFrame is positioned among other tools. Finally, Sect. 7 concludes the paper
and presents the future development directions.

2 Framework Design

ReFrame is written entirely in Python3 and follows a layered design that
abstracts away the system related details (Fig. 1). An API for writing regres-
sion tests is provided to the user at the highest level, allowing the description of
the requirements of the test. The framework defines and implements a concrete
pipeline that a regression test goes through during its lifetime and the user is
given the opportunity to intervene between the different stages and customize
their behavior if needed. All the system interaction mechanisms are implemented
as backends and are not exposed directly to the regression test developer. For
example, the exact same test could be run on a system using either native Slurm
or Slurm+ALPS or PBS+mpirun. Similarly, the same test can run “as-is” on
system partitions configured differently. The writer of a regression test need not
also care about generating a job script, querying the status of the associated job
or managing the files of the test. All of these are taken care of transparently
by the framework without affecting the regression test. This not only makes a
regression test easier to write, but it also increases its readability, since the intent
of the test is made clear right from its high-level description.

Fig. 1. ReFrame’s layered architecture abstracts away the system details and allows
to extend its functionality by implementing different backends.

ReFrame also defines several internal APIs that interface different framework
components, such as job schedulers, parallel job launchers, build systems etc.
This allows the easy extension of its functionality by implementing different,
independent, backends which do not affect the framework’s core infrastructure.

52 V. Karakasis et al.

2.1 The Regression Test Pipeline

At the heart of ReFrame is the regression test pipeline. This is a set of well
defined stages that each regression test goes through during its lifetime. Figure 2
depicts this pipeline in more detail. After initialization, each regression test will
be tried for all the current system’s partitions and all the programming envi-
ronments supported by each partition. A test may choose to skip some systems,
system partitions and/or programming environments. The tuple consisting of the
regression test, the current partition and the current programming environment
is called a test case. As soon as a test enters the pipeline, it will pass through
all the stages sequentially, although some of them may be implemented as a
“no-op” for certain types of tests. A detailed description of each of the pipeline
stages can be found at the online documentation.

Pick next test

Supports partition?
NO

Supports
environment?

YES

NO

Setup test Compile test Run test

Check sanity

Check performance

Cleanup test
resources

YES

Start

Fig. 2. The regression test pipeline. Every regression test run by ReFrame goes through
these stages.

2.2 The Frontend

The frontend of ReFrame is responsible for loading, filtering and running a set
of regression tests. It communicates with the different backends and drives the
regression testing pipeline. ReFrame can run a test suite in two ways: serially or
asynchronously.

The serial execution policy will run all the selected tests sequentially for all
their supported programming environments and system partitions, whereas the
asynchronous execution policy executes the run stage of the test asynchronously.

Enabling Continuous Testing of HPC Systems Using ReFrame 53

As soon as a test case is submitted for execution, ReFrame will not block and
will continue by picking up the next test case to run. It will keep submitting
new test cases until a user-defined concurrency limit is reached per partition.
Internally, ReFrame keeps track of the currently running and ready tasks per
partition and it regularly checks their status. As soon as a test case finishes, it
resumes its execution from the sanity checking stage and runs it to completion.
Meanwhile, it submits for execution to the corresponding partition any available
ready tasks, so that it keeps the concurrency high.

2.3 Pluggable Backends

ReFrame’s core does not assume anything about the underlying system setup.
Instead it communicates with the system utilities through well defined inter-
nal APIs, which are implemented by various backends. ReFrame works inter-
nally with abstract base classes, whose concrete implementations are provided
as backends. As a result, the functionality of the framework may be extended
easily without touching its internal structure. Currently, ReFrame defines low-
level abstractions for job schedulers, parallel job launchers, modules systems and
build systems. Going into details about the internal APIs is beyond the scope of
this paper, but we will briefly describe the different backends currently available
in ReFrame:

Job Scheduler Backends

– local: This pseudo-scheduler simply launches OS processes on the current
host asynchronously.

– slurm: A wrapper to the SLURM job scheduler [28].
– pbs: A wrapper to PBS scheduler. This backend should be suitable for any

PBS-derived job scheduler, e.g., Torque.

Parallel Job Launcher Backends

– local: An empty launcher; no command is emitted.
– srun: The native Slurm job launcher.
– srunalloc: The native Slurm job launcher but with job allocation options

emitted. This is useful in combination with the local job scheduler, since it
allows you to submit jobs directly without a job script.

– alps: The Cray ALPS job launcher
– mpirun, mpiexec

Environment Modules Backends

– nomod: This is a pseudo modules system that simply implements the corre-
sponding internal API as no-op. This is used for systems that do not normally
have any modules system installed.

– tmod: The TCL implementation of the environment modules [10].
– tmod4: The TCL implementation version 4 of the environment modules [23].
– lmod: The Lua implementation of the environment modules [21].

54 V. Karakasis et al.

Build Systems Backends. The build functionality inside ReFrame is
abstracted away as well, so as to support different build processes seamlessly
and expose an homogeneous and easy-to-use interface to the user. Build systems
in ReFrame is a lightweight component that focuses more on the continuous
integration aspect of compiling a code rather than the full installation process,
which is the target of other more suitable tools, e.g., EasyBuild [15], Spack [11]
etc. Currently, ReFrame supports the following build systems:

– SingleSource: This build system simply invokes the compiler on a single source
file.

– Make: This build system invokes make on a directory.
– Autotools: This build system invokes the Autotools toolchain, i.e., configure

and make.
– CMake: This build system invokes the CMake toolchain, i.e., cmake and make.

3 Writing a Regression Test in ReFrame

A regression test in ReFrame is simply a specially decorated Python class that
ultimately derives from the RegressionTest base class. This class has several
attributes that the user may set in order to control the behavior of his test. In this
section, we will only present some basic aspects of the user API, in order to give
the reader an idea of how a ReFrame test looks like. For a complete and detailed
description of the API, the reader is referred to ReFrame’s online documentation.

The following listing assumes a simple performance test that compiles and
runs a CUDA-based dense matrix-vector multiplication code and checks its out-
put and performance:

import reframe as rfm

import reframe.utility.sanity as sn

@rfm.simple_test

class Example7Test(rfm.RegressionTest):

def __init__(self):

self.descr = ’DMV�CUDA�performance�test’

self.valid_systems = [’daint:gpu’]

self.valid_prog_environs = [’PrgEnv -gnu’,

’PrgEnv -cray’]

self.sourcepath = ’example_dmv_cuda .cu’

self.build_system = ’SingleSource ’

self.build_system.cxxflags = [’-O3’]

self.executable_opts = [’4096’, ’1000’]

self.modules = [’cudatoolkit ’]

self.sanity_patterns = sn.assert_found(

r’time�for�single�dmv’, self.stdout)

self.perf_patterns = {

’perf’: sn.extractsingle(

r’Performance :\s+(?P<Gflops >\S+)�Gflop/s’,

self.stdout , ’Gflops ’, float)

Enabling Continuous Testing of HPC Systems Using ReFrame 55

}

self.reference = {

’daint:gpu’: {

’perf’: (50.0, -0.1, 0.1, ’Gflop/s’),

}

}

The base class of all regression tests in ReFrame is the RegressionTest class, so
every user-defined test must eventually derive from this class. Every regression
test class to be registered with ReFrame must be decorated with either the
@simple_test or the @parameterized_test decorator. We will not cover the latter
in this paper, but the reader is referred to the online documentation.

In a ReFrame test class, almost always, everything happens inside its con-
structor, which serves as the specification of the test. The important attributes
in this code snippet are the following:

– valid_systems: This is the list of systems that this test can run on. A system
is specified by its name and optionally a specific partition. In this example,
this test is valid only for the gpu partition of the system named daint. Systems
and their partitions are configured in ReFrame’s configuration file. The test
does not have to know about any irrelevant details. If the job scheduler in
this system changes, the test will be still valid. Similarly, enabling this test
for different systems should be as simple as extending this list and, perhaps,
adapting some test-specific options. But no low-level system-specific details
are exposed to the test.

– valid_prog_environs: This is a list of ReFrame programming environment
names, that this test can be run with. These are just symbolic names that
are resolved in ReFrame’s configuration. The definition of a programming
environment, e.g., modules that load it, can change without affecting the test.
The framework will also take automatically care of any conflicts between the
current environment and the requested ones and will make sure to resolve
them transparently.

– build_system: This is the build system that will be used for building the code
of this test. Each build system defines a set of attributes that can be set to
control its behavior. In this example, we simply set the compilation flags.

– sourcepath: This is the source file to be compiled. It can also refer to a direc-
tory, in which case make will be invoked automatically.

– executable_opts: This is a list of options to be passed to the generated exe-
cutable.

– modules: This is a list of additional environment modules to load before com-
piling and running this test. ReFrame will handle automatically any conflicts
and the test does not need to know the underlying modules system used.

– variables: This is a dictionary of environment variables to be set before
compiling and running this test.

– sanity_patterns: This a lazily evaluated expression that will validate the
output of the test. Its evaluation is lazy because it does not happen at the
time it is called inside the test’s constructor, but rather during the “sanity
checking” stage of the regression test pipeline. ReFrame provides a library of

56 V. Karakasis et al.

useful sanity functions that a test can use directly to perform several tasks,
e.g., extract and convert values from the output, calculate aggregate functions
on the collected values, perform assertions etc. Users may also write their own
sanity functions.

– perf_patterns: If this attribute is defined, then the test is considered as a per-
formance test. It is essentially a dictionary of pairs of performance variables
and lazily evaluated expressions, which will be used by ReFrame to extract
the values of these performance variables from the output of the test. In the
example shown, we extract the performance metric of Gflop/s that is printed
in the standard output of the test.

– reference: This attribute stores the reference values for each performance
variable/metric defined in perf_patterns for each of the supported systems
or partitions. The reference information is a four-tuple consisting of the actual
reference value and lower and upper thresholds expressed as fractional differ-
ences from the reference value and the measurement unit. In this example,
the acceptable performance value for the gpu partition of the system daint
for this test is 50 Gflop/s ± 10%. The reference dictionary is treated specially
by ReFrame. In fact, the keys describing systems and system partitions define
hierarchical scopes. When trying to resolve a performance variable, ReFrame
will try several scopes in the reference dictionary and pick the most specific
reference value. You may also define a global scope using the special ‘*’ key,
that would allow to run the test on unknown systems that you have not yet
a reference.

There is a lot more to writing tests in ReFrame than the simple functional
example that we have presented here, but it cannot be covered in this paper.
The reader is referred to the online documentation for all the details and the
reference guides. We will simply mention here that you can very easily differ-
entiate the behaviour of the test (e.g., to change the compilation flags) based
on the current system or the current programming environment. You may also
create much more advanced sanity checking than the one presented here, purely
in Python, without having to learn complex libraries or custom syntaxes. Using
the @parameterized_test decorator you may ask ReFrame to generate families of
tests by modifying individual parameters of your test. Finally, you need not take
care about error handling when writing your test, since all errors are handled
automatically by ReFrame’s runtime.

4 Configuring and Running ReFrame

Configuring ReFrame for a new site is easy and straightforward. The site con-
figuration comprises two basic sections: a section for configuring the systems
and their partitions and another one for configuring the different programming
environments. We will not cover in detail the configuration options of ReFrame;
we will only outline some key configuration parameters. For configuring a new
system in ReFrame, you just need to specify the modules system used (if any)
and a set of hostname patterns of its login nodes that would allow ReFrame to

Enabling Continuous Testing of HPC Systems Using ReFrame 57

recognize it automatically. Each system should have at least one system parti-
tion. The minimum information needed for a system partition to be configured is
the job scheduler, the parallel job launcher and the programming environments
to test. There are also additional options for (a) setting the required options
to be passed to the backend scheduler in order to gain access to this partition,
(b) specifying any necessary modules to be loaded every time ReFrame runs a
test on this partition, (c) adjusting the concurrency limit for the asynchronous
execution policy etc.

For programming environments, one can define the required modules that
load them, set any additional environment variables and/or set the values for
the basic compilers (C, C++ and Fortran) and corresponding default flags. Each
programming environment is given a symbolic name, with which it is referenced
also inside the tests. The same programming environment may also be redefined
specially for different systems or system partitions. This allows users to reuse the
same programming environment names for different systems and avoid changing
their regression tests. The following listing shows a minimal configuration of a
test system at CSCS.

site_configuration = {

’systems ’: {

’ault’: {

’descr ’: ’Ault�TDS’,

’hostnames ’: [’ault’],

’modules_system ’: ’lmod’,

’partitions ’: {

’login ’: {

’scheduler ’: ’local ’,

’environs ’: [’PrgEnv -gnu’],

’descr ’: ’Login�nodes ’,

},

’amdv100 ’: {

’scheduler ’: ’nativeslurm ’,

’access ’: [’-pamdv100 ’],

’environs ’: [’PrgEnv -gnu’],

}

}

}

}

’environments ’: {

’ault’: {

’PrgEnv -gnu’: {

’type’: ’ProgEnvironment ’,

’modules ’: [’gcc’, ’cuda’, ’openmpi ’],

’cc’: ’mpicc ’,

’cxx’: ’mpicxx ’,

’ftn’: ’mpif90 ’

}

}

}

}

58 V. Karakasis et al.

For all possible configuration options and the exact syntax of the configuration
file, the reader is referred to the online documentation.

4.1 Performance Logging

ReFrame takes particular care in logging the performance data of performance
tests. More specifically, for each performance test case and for each of the perfor-
mance variables defined in the perf_patterns attribute of a test, ReFrame logs
the achieved value and the reference. The log record format is fully customiz-
able and may contain lots of test-specific details (e.g., job id, test directories,
test tags etc.) The logging mechanism of ReFrame is built upon the Python
logging framework, so it inherits lots of its functionality. Apart from the log
record formatting, more important is that multiple handlers can be registered
at the same time to log the performance data differently. Currently, three types
of performance logging are supported:

– File: ReFrame, by default, will create a log file per test, system and system
partition and will start appending data to it. The default log record prints
a timestamp, the full test case description (test name, system partition and
environment), the job id, and all the related performance information.

– Syslog: ReFrame can send log records to as syslog interface via the Python
logging module.

– Graylog: ReFrame is capable of sending performance log data to a Gray-
log [13] server. These data can then be plotted with tools for analyzing Gray-
log records.

4.2 Running ReFrame

ReFrame is run from the command-line and offers several options that control
its behavior. The simplest way to invoke it is by running “reframe -r”. This
will load all tests found in a predefined location and run them. When invok-
ing ReFrame, after loading the configuration, the frontend goes through three
phases:

1. Discovery of regression tests.
2. Filtering of regression tests.
3. Action on regression tests.

There are options controlling each of these phases. During the first phase,
ReFrame searches for Python files in either a predefined location or a user-
specific one, parses them and, if they contain ReFrame tests, it loads them and
instantiates the tests. The following command will load and run all the tests
defined in mytest.py: reframe -c mytest.py -r. The -c option can also be
passed a directory and with the -R option, ReFrame will recursively search for
tests inside it.

The second phase is the filtering of the loaded tests. Currently, tests in
ReFrame can be filtered by name, by supported programming environments and

Enabling Continuous Testing of HPC Systems Using ReFrame 59

by tags. There are options controlling each of these possibilities, and they can also
be combined together to form more complex selection criteria. Each ReFrame
test may be associated with a set of tags by setting its tags attribute. Tags allow
the user to create arbitrary groups of tests, which can be invoked at any time.
The following command will execute all the tests found under mytests/ and are
tagged with production:

reframe -c mytests/ -R -t production -r

You may also use Python regular expressions as arguments to any of the test
selection options.

The final phase of the frontend is the actual action to be taken on the selected
tests. Two actions are supported: (a) list tests by passing the -l or -L options
and (b) run tests by passing the -r option. Listing of tests is quite useful for
preparing a ReFrame run, since you can check which tests were actually found
and selected before running them. Additional information per test is also printed,
such as the file that defines it, its supported programming environments, its
tags, its maintainers etc. The run action runs the tests. By default, all test cases
are executed sequentially, but the execution policy can be changed using the
--exec-policy option.

Apart from these basic options described briefly here, ReFrame offers several
more for controlling the execution of the tests, passing through options directly
to the backend scheduler, manipulating the environment modules etc. For more
information the reader is referred to ReFrame’s help and to the online documen-
tation.

4.3 Dealing with Test Failures

When a regression test or particularly a test case fails, ReFrame will print a
“FAIL” mark for it and continue to execute the rest of the test cases. It will
not print any specific failure information inline, since this would make tracking
this information difficult in large outputs. Instead, it will print a summary of
all the failures with all the required details at the end of its output. The infor-
mation printed includes the test name, the current system partition, the current
programming environment, the current pipeline stage, the stage directory of the
test case, the error message and, optionally, a stack trace depending on the type
of failure. ReFrame takes particular care in properly managing errors in the
context of a test execution, so as to never print error information inline. Even
programming errors in a test will not break the frontend.

5 Use Cases

ReFrame has been publicly released on May 2017 and is being actively developed.
Since then it has gained visibility across large computing centers, which are con-
sidering integrating it in their production testing workflows. To our knowledge,
private companies in the HPC sector are using it, too. In this section, we will

60 V. Karakasis et al.

briefly discuss the use cases of ReFrame at the Swiss National Supercomputing
Centre (CSCS) in Switzerland, at the National Energy Research Scientific Com-
puting Center (NERSC) and at the Ohio Supercomputer Center (OSC) in the
United States.

5.1 ReFrame at CSCS

CSCS uses ReFrame for both functionality and performance tests for all of its
production systems, namely Piz Daint (Cray XC40/XC50 hybrid system), Piz
Kesch (Cray CS-Storm used by MeteoSwiss for weather prediction) and Monte
Leone (HP DL 360 Gen 9). The same ReFrame tests are reused as much as pos-
sible across systems with minor adaptations. The test suite of CSCS (publicly
available at the ReFrame repository) comprises tests for full scientific applica-
tions, scientific libraries, programming environments, compilation and linking,
profiling and debugger tools, basic CUDA operations, performance microbench-
marks and I/O libraries. Using tags we have split the tests in three broad over-
lapping categories: production, maintenance and benchmarking tests. The first
category comprises a large variety of tests and is run daily overnight using Jenk-
ins. The maintenance suite is essentially a small subset of the production tests,
comprising mostly application sanity and performance tests, as well as sanity
tests for the programming environment and the scheduler. It is run before and
after maintenance of the systems. The benchmarking tests are used to measure
the performance of different computing and networking components and are run
manually before major upgrades or when a performance problem needs to be
investigated. We are currently working on a fourth category of tests that are
intended to run frequently (e.g., every 10 min). The purpose of these tests is to
measure the system behavior and performance as perceived by the users. Exam-
ple tests are the time it takes to run basic Slurm commands and/or performance
basic filesystem operations. Such glitches might affect the performance of run-
ning applications and cause users to open support tickets. Collecting periodically
such performance data will help us correlate system events with user applica-
tion performance. Finally, there is an ongoing effort to expand our ReFrame
test suite to virtual clusters based on OpenStack. The new tests will measure
the responsiveness of our OpenStack installation to deploy compute instances,
volumes, and perform snapshots. We plan to make them publicly available in
the near future.

Analyzing the Performance Data Produced by ReFrame. The perfor-
mance data produced by all performance tests that are run through our ReFrame
installation is logged directly to an internal Graylog server. We then either use
Grafana [12] queries for plotting the performance evolution over time or we use
custom scripts for extracting the data and performing more advanced analysis.
Our ultimate goal is to identify performance variations over time and try to
correlate this with other events on the system and/or reports from users. In
the following, we describe very briefly our ongoing effort on characterizing the

Enabling Continuous Testing of HPC Systems Using ReFrame 61

performance of the system based on the ReFrame logs using some data analysis
techniques.

Figure 3a shows the performance data of a single GROMACS (GPU) test
recorded over the past 12 months. This spiky performance “signal” is not some-
thing strange in a heavily shared HPC system. A first qualitative assessment
allows to identify two to three main performance regimes in the time series
based on the amplitude and frequency of the signal. However, due to the noise
in the data, identifying quantitatively when the real performance degradation
started is not as straightforward. We have been developing a set of tools recently
with the intention to create a more automated way to determine performance
changes in the system. We apply adaptive non-parametric clustering with regu-
larization [14] to each individual ReFrame performance test, in order to identify
performance regimes that are of particular interest.

A typical first step would be to reconstruct the signal of Fig. 3a using a rolling
mean. Figure 3b shows two reconstructed signals created using different time win-
dows. As the time window width increases, the noise will be smoothed out, but
so will the information content with respect to the performance. Furthermore,
the reconstructed signals still do not permit to clearly classify all performance
regimes for every point in the series.

Using the aforementioned clustering approach on the raw performance signal,
however, five clear performance clusters can be identified, which are shown in
Fig. 3c. The sharp boundaries separating the performance clusters are a prereq-
uisite for automation of the analysis process.

Adding variance to the analysis will give us three performance regimes, as
shown in Fig. 3d, which is aligned to the initial perception by looking into the
raw data. The important thing here is that clear regions where performance
varies (either by its mean or its variance) can be identified, which allows an
easier correlation with other tests or events. Another advantage of this method
is that it does not impose any a priori probabilistic assumptions on the data.
The performance and windowed variance signals were considered to be enough
for this analysis since the majority of the problems should be reflected on the
distribution’s mean and the variance. The type of the tests’ distributions are
also important for characterising the overall computing system performance but
it is not considered.

For future work, we plan to extend the analysis by adding outlier detection
along with information about concurrent applications running on the same cab-
inet as the ReFrame test and also include the cabinet physical location in the
analysis. The aim is to investigate the causality relation between performance
drops and resource sharing in the cluster. The daily monitoring of the per-
formance outliers, specially when multiple regression tests show unsatisfactory
performance, can help identify faulty components of the system.

62 V. Karakasis et al.

(a) ReFrame raw performance data. (b) Reconstructed signal based on rolling
mean for different window sizes.

(c) Clustering based on rolling mean (30
day window).

(d) Clustering based on rolling mean and
variance.

Fig. 3. Progression from raw performance data obtained with ReFrame over the past
12 months to performance cluster indices with highest membership for a Gromacs
GPU-only test.

5.2 ReFrame at NERSC

ReFrame at NERSC covers functionality and performance of its current HPC
system “Cori”, a Cray XC40 with Intel “Haswell” and “Knights Landing” com-
pute nodes; as well as its smaller Cray CS-Storm cluster featuring Intel “Sky-
lake” CPUs and NVIDIA “Volta” GPUs. The performance tests include several
general-purpose benchmarks designed to stress different components of the sys-
tem, including HPGMG [4,20,25] (both finite-element and finite-volume tests),
HPCG [8], Graph500 [5], IOR [19], and others. Additionally, the tests include
several benchmark codes used during NERSC system procurements, as well as
several extracted benchmarks from full applications which participate in the
NERSC Exascale Science Application Program (NESAP) [18]. Including NESAP
applications ensures that representative components of the NERSC workload are
included in the performance tests.

The functionality tests evaluate several different components of the system;
for example, there are several tests for the Cray “DataWarp” software which
enables users to interact with the Cori burst buffer. There are also several Slurm
tests which verify that partitions and QoSs are correctly configured for jobs of
varying sizes. The Cray programming environments, including compiler wrap-
pers, MPI and OpenMP capability, and Shifter, are also included in these tests,
and are especially impactful following changes in defaults to the programming
environments.

Enabling Continuous Testing of HPC Systems Using ReFrame 63

The test battery at NERSC can be invoked both manually and automatically,
depending on the need. Specifically, the full battery is typically executed manu-
ally following a significant change to the Cori system, e.g., after a major system
software change, or a Cray Linux OS upgrade, before the system is released back
to users. Under most other circumstances, however, only a subset of tests are
typically run, and in most causes they are executed automatically. NERSC uses
ReFrame’s tagging capabilities to categorize the various subsets of tests, such
that groups of tests which evaluate a particular component of the system can be
invoked easily. For example, some performance tests are tagged as daily, others
as weekly, reboot, slurm, aries, etc., such that it is clear from the test’s Python
code when and how frequently a particular test is run.

ReFrame has also been integrated into NERSC’s centralized data collection
service used for facility and system monitoring, called the “Data Collect” [27].
The Data Collect stores data in an Elasticsearch instance, uses Logstash to
ingest log information about the Cori system, and provides a web-based GUI
to display results via Kibana. Cray, in turn, provides the Cray Lightweight Log
Manager [3] on XC systems such as Cori, which provides a syslog interface.
ReFrame’s support for syslog, and the Python standard logging library, enabled
simple integration with NERSC’s Data Collect The result of this integration
with ReFrame to the Data Collect is that the results from each ReFrame test
executed on Cori are visible via a Kibana query within a few seconds of the test
completing. One can then configure Elasticsearch to alert a system administrator
if a particular system functionality stops working, or if the performance of certain
benchmarks suddenly declines.

Finally, ReFrame has been automated at NERSC via the continuous integra-
tion (CI) capabilities provided by an internal GitLab instance. More specifically,
GitLab was enhanced due to efforts from the US Department of Energy Exascale
Computing Project (ECP) [24] in order to allow CI “runners” to submit jobs to
queues on HPC systems such as Cori automatically via schedulable “pipelines.”
Automation via GitLab runners is a significant improvement over test executed
automated by cron, because the runners exist outside of the Cori system, and
therefore are unaffected by system shutdowns, reboots, and other disruptions.
The pipelines are configured to run tests with particular tags at particular times,
e.g., tests tagged with daily are invoked each day at the same time, tests tagged
weekly are invoked once per week, etc.

5.3 ReFrame at OSC

At OSC, we use ReFrame to build the testing system for the software environ-
ment [17]. As a change is made to an application, e.g. upgrade, module change or
new installation, ReFrame tests are performed by a user-privilege account and
the OSC staff members who receive the test summary can easily check the result
to decide if the change should be approved.

ReFrame is configured and installed on three production systems (Pitzer,
Owens and Ruby). For each application we prepare the following classes of
ReFrame tests:

64 V. Karakasis et al.

1. default version – checks if a new installation overwrites the default module
file,

2. broken executable or library – i.e. run a binary with the --version flag and
compare the result with the module version,

3. functionality – i.e. numerical tests,
4. performance – extensive functionality checking and benchmarking,

where we currently have functionality and performance tests for a limited subset
of our deployed software.

All checks are designed to be general and version independent. The correct
module file is loaded at runtime, reducing the number of Python classes to be
maintained. In addition, all application-based ReFrame tests are performed as
regression testing of software environment when the system has critical update
or rolling reboot.

ReFrame is also used for performance monitoring. We run weekly MPI tests
and monthly HPCG tests. The performance data is logged directly to internal
Splunk server via Syslog protocol. The job summary is sent to the responsible
OSC staff member who can watch the performance dashboards.

6 Related Work

Regression testing of HPC systems has long been an important matter among
user support and operations teams of HPC centers. Several tools have been
proposed in the past trying to accomplish this complex task. In this section,
we present the tools and frameworks targeting HPC system testing and discuss
briefly their advantages and shortcomings.

Another approach to system testing is BuildTest [26], also Python-based,
which follows a slightly different path to handle regression testing. Tests in
BuildTest are simple YAML files, but they are not completely self-contained
as in ReFrame. Job scheduler related information is kept in separate YAML files
and the tests do no specify environment modules. This can be viewed also as an
advantage, since it decouples completely the test from the system, but on the
other hand it makes harder to keep track of the requirements of a test. An inher-
ent disadvantage of the YAML syntax for tests is that it imposes restrictions on
the validation of the test results, since eventually you might have to move more
complex test logic to an external script. Finally, BuildTest seems not to target
explicitly performance tests, although it provides some basic microbenchmarks
in its test suite.

Another tool that uses regression tests in YAML is the freshly released Pavil-
ion2 from LANL [2]. One interesting feature is that you can extend the test syn-
tax by writing plugins in Python that implement the new syntax element. This
promises to make the framework easily extensible, but there is a possibility that
the logic of a test is scattered between plugins and the YAML file. Since rather
new, there is not yet a proof-of-concept on how this solution scales in terms of
maintainability and portability to hundreds of tests.

Enabling Continuous Testing of HPC Systems Using ReFrame 65

A Python-based tool, similar to ReFrame, for tackling HPC regression testing
is the Automated Testing System (ATS) [9] developed at LLNL. Tests in ATS
are written in Python2 and common functionality is provided by the framework.
It supports also homogeneous web reports, customizable tests with command
line options, test dependencies and performance testing. However, there is no
portable definition of programming environments and machine configurations
require coding to set up. This makes writing even a simple test a not so straight-
forward process. This tool is no more actively developed.

The recently proposed Testpilot [7] is a user-centric regression testing frame-
work which is used to verify the overall health of an HPC cluster. It is imple-
mented as a combination of shell and Perl scripts and it consists of three
“subtools” (Testpilotunit, Testpilotwing and Testpilotpatrol), which handle indi-
vidual application testing, cluster regression testing and continuous assessment
of a cluster health, respectively. Compared to ReFrame, it currently supports
only PBS job schedulers, while the job scheduler-specific details are defined in
each test and are not handled by the framework. Additionally, it does not fully
support parallel execution of tests.

Another interesting approach is the JUBE framework developed at Jülich
Supercomputing Centre [16]. This framework targets chiefly benchmarking
rather than sanity checking and uses XML files for configuring new regression
tests. Among others, it offers sandboxing of a regression test, statistical utilities
for reporting the performance of the benchmarks and a parameter “template”
mechanism that allows to run the same test multiple times with different param-
eters. However, since it does not target specifically sanity checking, it is not as
straightforward to run the exact same check with multiple programming envi-
ronments. The portability of a regression test across different systems is not very
easy either, since the only way to differentiate the behavior of a regression test
is by masking in or out parts of the checks using special XML tags.

Toward the standardization of the deployment and regression testing of HPC
systems, is also the OpenHPC initiative [1]. OpenHPC offers a regression suite,
written in M4 and shell scripting, for checking deployments according to its stan-
dards. Despite the clean structure of the regression suite, a concrete knowledge
of the actual deployment is still required in order to write a regression test.
Also, the way of checking and reporting the test result is left upon each test.
Maintaining therefore a common uniform structure across all regression tests
could incur further unnecessary maintenance overhead. Another shortcoming of
the OpenHPC regression suite is that it assumes a “standard” cluster setup and
deployment, which makes it difficult to adopt for different cluster solutions, such
as for Cray sites.

A couple of proprietary tools are also available. IBM India has developed
JACE [22], which couples with other IBM tools to handle regression testing. It
is menu-driven, supports parallel execution and is job-script agnostic. Addition-
ally, a centralized report database as well as Excel spreadsheet reports allow an
easy analysis of regression test outputs. Intel has also developed DART [6], a
framework for distributed automated regression testing of large-scale network

66 V. Karakasis et al.

applications. DART supports automated execution of a suite of distributed
tests, where each test consists of an XML script as well as the test code and
data. Regarding HPC application testing, though, it is not clear whether DART
is aware of job schedulers which are mainly used for job submission in HPC
systems.

7 Conclusions and Future Directions

In this paper, we presented ReFrame, a framework for writing regression tests for
HPC systems and scientific applications. It was designed from ground up to allow
users to easily write regression tests for their systems or software, focusing only
on the logic of their tests and not mixing up the low-level system-specific details.
At the same time, it does not restrict the tests’ capabilities, by allowing its users
to write their regression tests in a high-level modern programming language, such
as Python. ReFrame’s frontend allows the efficient management and execution
of tests on any system (from a local desktop to a supercomputer) and enables
its easy integration with well established continuous integration tools. We have
also presented the concrete use cases from three supercomputing centers, namely
CSCS, NERSC and OSC, that have deployed ReFrame for testing, benchmarking
and monitoring their systems. Due its clean and simple interfaces, ReFrame was
able to be integrated seamlessly with other tools for monitoring and continuous
integration forming robust system testing workflows.

ReFrame is actively developed and publicly available on Github (https://
github.com/eth-cscs/reframe). Some major features that we plan to implement
in the future are seamless support for containerized tests, test dependencies and
improvements to the high-level test API that would facilitate even more the
writing of a test.

Acknowledgements. CSCS would like to thank the members of the User Engage-
ment and Support and the HPC Operations units for their valuable feedback regarding
the framework and their contributions in writing regression tests for the system.

This research used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231.

References

1. OpenHPC: Community building blocks for HPC systems. https://github.com/
openhpc/ohpc

2. Pavilion2. https://github.com/lanl-preteam/pavilion2
3. Cray Lightweight Log Manager (LLM) (2019). https://pubs.cray.com/content/

S-2393/CLE%207.0.UP00/xctm-series-system-administration-guide/cray-
lightweight-log-manager-llm

4. Adams, M., Brown, J., Shalf, J., Straalen, B.V., Strohmaier, E., Williams, S.:
HPGMG 1.0: a benchmark for ranking high performance computing systems. Tech-
nical report, LBNL-6630E, Lawrence Berkeley National Laboratory, May 2014.
http://escholarship.org/uc/item/00r9w79m

https://github.com/eth-cscs/reframe
https://github.com/eth-cscs/reframe
https://github.com/openhpc/ohpc
https://github.com/openhpc/ohpc
https://github.com/lanl-preteam/pavilion2
https://pubs.cray.com/content/S-2393/CLE%207.0.UP00/xctm-series-system-administration-guide/cray-lightweight-log-manager-llm
https://pubs.cray.com/content/S-2393/CLE%207.0.UP00/xctm-series-system-administration-guide/cray-lightweight-log-manager-llm
https://pubs.cray.com/content/S-2393/CLE%207.0.UP00/xctm-series-system-administration-guide/cray-lightweight-log-manager-llm
http://escholarship.org/uc/item/00r9w79m

Enabling Continuous Testing of HPC Systems Using ReFrame 67

5. Checconi, F., Petrini, F., Willcock, J., Lumsdaine, A., Choudhury, A.R., Sabhar-
wal, Y.: Breaking the speed and scalability Barriers for Graph exploration on
distributed-memory machines. In: SC 2012: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, pp.
1–12, November 2012. https://doi.org/10.1109/SC.2012.25

6. Chun, B.N.: DART: distributed automated regression testing for large-scale net-
work applications. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp.
20–36. Springer, Heidelberg (2005). https://doi.org/10.1007/11516798 2

7. Colby, K., Maji, A.K., Rahman, J., Bottum, J.: Testpilot: A flexible frame-
work for user-centric testing of HPC clusters. In: Proceedings of the Fourth
International Workshop on HPC User Support Tools, HUST 2017, pp.
5:1–5:10. ACM, New York (2017). https://doi.org/10.1145/3152493.3152555.
http://doi.acm.org/10.1145/3152493.3152555

8. Dongarra, J., Heroux, M.A., Luszczek, P.: HPCG benchmark: a new metric
for ranking high performance computing systems. Technical report, UT-EECS-
15-736, Electrical Engineering and Compute Science Department, University
of Tennessee, Knoxville, November 2015. https://library.eecs.utk.edu/storage/
594phpwDhjVNut-eecs-15-736.pdf

9. Dubois, P.F.: Testing scientific programs. Comput. Sci. Eng. 14(4), 69–73 (2012).
https://doi.org/10.1109/MCSE.2012.84

10. Furlani, J.L., Osel, P.W.: Abstract yourself with modules. In: Proceedings
of the 10th USENIX Conference on System Administration, LISA 1996, pp.
193–204. USENIX Association, Berkeley (1996). http://dl.acm.org/citation.cfm?
id=1029824.1029858

11. Gamblin, T., et al.: The Spack package manager: bringing order to HPC
software chaos. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2015, pp.
40:1–40:12. ACM, New York (2015). https://doi.org/10.1145/2807591.2807623.
http://doi.acm.org/10.1145/2807591.2807623

12. GrafanaLabs: Grafana: The open platform for beautiful analytics and monitoring.
https://grafana.com/

13. Graylog Community: Enterprise Log Management for All. https://www.graylog.
org/

14. Horenko, I.: Finite element approach to clustering of multidimensional time series.
SIAM J. Sci. Comput. 32(1), 62–83 (2010). https://doi.org/10.1137/080715962

15. Hoste, K., Timmerman, J., Georges, A., Weirdt, S.D.: Easybuild: building soft-
ware with ease. In: 2012 IEEE International Conference on Services Comput-
ing (SCC), pp. 572–582, November 2013. https://doi.org/10.1109/SC.Companion.
2012.81. doi.ieeecomputersociety.org/10.1109/SC.Companion.2012.81

16. Jülich Supercomputing Centre: JUBE Benchmarking Environment. https://apps.
fz-juelich.de/jsc/jube/jube2/docu/index.html

17. Khuvis, S., et al.: A continuous integration-based framework for software
management. In: Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (Learning), PEARC 2019, pp.
28:1–28:7. ACM, New York (2019). https://doi.org/10.1145/3332186.3332219.
http://doi.acm.org/10.1145/3332186.3332219

18. Kurth, T., et al.: Analyzing performance of selected NESAP applications on the
Cori HPC system. In: Kunkel, J.M., Yokota, R., Taufer, M., Shalf, J. (eds.) ISC
High Performance 2017. LNCS, vol. 10524, pp. 334–347. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67630-2 25

https://doi.org/10.1109/SC.2012.25
https://doi.org/10.1007/11516798_2
https://doi.org/10.1145/3152493.3152555
http://doi.acm.org/10.1145/3152493.3152555
https://library.eecs.utk.edu/storage/594phpwDhjVNut-eecs-15-736.pdf
https://library.eecs.utk.edu/storage/594phpwDhjVNut-eecs-15-736.pdf
https://doi.org/10.1109/MCSE.2012.84
http://dl.acm.org/citation.cfm?id=1029824.1029858
http://dl.acm.org/citation.cfm?id=1029824.1029858
https://doi.org/10.1145/2807591.2807623
http://doi.acm.org/10.1145/2807591.2807623
https://grafana.com/
https://www.graylog.org/
https://www.graylog.org/
https://doi.org/10.1137/080715962
https://doi.org/10.1109/SC.Companion.2012.81
https://doi.org/10.1109/SC.Companion.2012.81
https://apps.fz-juelich.de/jsc/jube/jube2/docu/index.html
https://apps.fz-juelich.de/jsc/jube/jube2/docu/index.html
https://doi.org/10.1145/3332186.3332219
http://doi.acm.org/10.1145/3332186.3332219
https://doi.org/10.1007/978-3-319-67630-2_25

68 V. Karakasis et al.

19. Lockwood, G.: IOR and mdtest (2019). https://github.com/hpc/ior
20. Ma, Wenjing, Ao, Yulong, Yang, Chao, Williams, Samuel: Solving a trillion

unknowns per second with HPGMG on Sunway TaihuLight. Cluster Comput. 1–15
(2019). https://doi.org/10.1007/s10586-019-02938-w

21. McLay, R.: Lmod: A New Environment Module System. https://lmod.readthedocs.
io/

22. Merchant, S., Prabhakar, G.: Tool for performance tuning and regression analyses
of HPC systems and applications. In: 2012 19th International Conference on High
Performance Computing, pp. 1–6, December 2012. https://doi.org/10.1109/HiPC.
2012.6507528

23. Open Source: Environment Modules. http://modules.sourceforge.net/
24. Sauers, J.: Onyx Point works with Exascale Computing Project to bring CI

to supercomputing centers (2018). https://www.onyxpoint.com/onyxpoint-works-
with-ecp-to-bring-ci-to-supercomputers/

25. Shan, H., Williams, S., Zheng, Y., Kamil, A., Yelick, K.: Implementing high-
performance geometric multigrid solver with naturally grained messages. In: 2015
9th International Conference on Partitioned Global Address Space Programming
Models, pp. 38–46, September 2015. https://doi.org/10.1109/PGAS.2015.12

26. Siddiqui, S.: Buildtest: A HPC Application Testing Framework. https://github.
com/HPC-buildtest/buildtest

27. Whitney, C., Bautista, E., Davis, T.: The NERSC Data Collect Environment.
In: Cray User Group 2016. CUG16 (2016). https://cug.org/proceedings/cug2016
proceedings/includes/files/pap101s2-file1.pdf

28. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3. https://slurm.schedmd.com/

https://github.com/hpc/ior
https://doi.org/10.1007/s10586-019-02938-w
https://lmod.readthedocs.io/
https://lmod.readthedocs.io/
https://doi.org/10.1109/HiPC.2012.6507528
https://doi.org/10.1109/HiPC.2012.6507528
http://modules.sourceforge.net/
https://www.onyxpoint.com/onyxpoint-works-with-ecp-to-bring-ci-to-supercomputers/
https://www.onyxpoint.com/onyxpoint-works-with-ecp-to-bring-ci-to-supercomputers/
https://doi.org/10.1109/PGAS.2015.12
https://github.com/HPC-buildtest/buildtest
https://github.com/HPC-buildtest/buildtest
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap101s2-file1.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap101s2-file1.pdf
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
https://slurm.schedmd.com/

Tools for Monitoring CPU Usage and
Affinity in Multicore Supercomputers

Lei Huang, Kent Milfeld, and Si Liu(B)

Texas Advanced Computing Center, The University of Texas at Austin,
10100 Burnet Road, Austin, TX 78758, USA
{huang,milfeld,siliu}@tacc.utexas.edu

https://www.tacc.utexas.edu/

Abstract. Performance boosts in HPC nodes have come from making
SIMD units wider and aggressively packing more and more cores in each
processor. With multiple processors and so many cores it has become
necessary to understand and manage process and thread affinity and pin-
ning. However, affinity tools have not been designed specifically for HPC
users to quickly evaluate process affinity and execution location. To fill
in the gap, three HPC user-friendly tools, core usage, show affinity ,
and amask , have been designed to eliminate barriers that frustrate users
and impede users from evaluating and analyzing affinity for applications.
These tools focus on providing convenient methods, easy-to-understand
affinity representations for large process counts, process locality, and run-
time core load with socket aggregation. These tools will significantly help
HPC users, developers and site administrators easily monitor processor
utilization from an affinity perspective.

Keywords: Supercomputers · User support tool · Multicore system ·
Affinity · Resource utilization · Core binding · Real-time monitoring ·
Debugging

1 Introduction

Up to the millennium, the processor frequency of commodity CPUs increased
exponentially year after year. High CPU frequency had been one of the major
driving forces to boost CPU performance, other than the introduction of vector
processor units. However, it ceased to grow significantly in recent years due to
both technical reasons and market forces. To accommodate the high demand of
computing power in HPC, significantly more cores are being packed into a single
compute node [12].

The needs of HPC and the use of core-rich processors are exemplified in
the extraordinary large-scale supercomputers found throughout the world. The
Sierra supercomputer [16] at the Lawrence Livermore National Laboratory and
the Summit supercomputer [19] at the Oak Ridge National Lab have 44 pro-
cessing cores per compute node with two IBM Power9 CPUs [13]. The Sun-
way TaihuLight supercomputer [18] at the National Supercomputing Center in

c© Springer Nature Switzerland AG 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 69–86, 2020.

https://doi.org/10.1007/978-3-030-44728-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-44728-1_4

70 L. Huang et al.

Wuxi deploys Sunway SW26010 manycore processors, containing 256 processing
cores and additional 4 auxiliary cores for system management [32] per node.
The Stampede2 supercomputer [28] at the Texas Advanced Computing Cen-
ter (TACC) provides Intel Knights Landing (KNL) nodes with 68 cores per
node. The Stampede2 [28] and Frontera [27] supercomputers at TACC provide
48 and 56 processing cores per node with Intel’s Skylake (SKX) and Cascade
Lake (CLX) processors [31], respectively. These, and other HPC processors, also
support Simultaneous Multi-Threading (SMT) to a level of 2 to 4 per core.
Consequently, there could be 2x to 4x more logical processors than physical
processors on a node.

When working with nodes of such large core counts, the performance of HPC
applications is not only dependent upon the number and speed of the cores, but
also upon proper scheduling of processes and threads. HPC application runs with
proper affinity settings will take full advantage of resources like local memory,
reusable caches, etc., and will obtain a distinct benefit in performance.

2 Background

2.1 Process and Thread Affinity

A modern computer often has more than one socket per node and therefore
HPC applications may have non-uniform access to memory. Ideally, an applica-
tion process should be placed on a processor that is close to the data in memory it
accesses, to get the best performance. Process and thread affinity/pinning allows
a process or a thread to bind to a single processor or a set of (logical) proces-
sors. The processes or threads with specific affinity settings will then only run on
the designated processor(s). For Single-Program Multiple-Data (SPMD) appli-
cations, managing this affinity can be difficult. Moreover, the present-day work-
flows on modern supercomputers have moved beyond the SPMD approach and
now include hierarchical levels of Multiple-Program Multiple-Data (MPMD),
demanding even more attention to affinity.

MPI affinity for Intel MPI (IMPI), MVAPICH2 (MV2), Open MPI
(OMPI), and IBM Spectrum MPI (SMPI) have a variety of mechanisms
for setting affinity. IMPI relies solely on “I MPI x” environment variables;
MV2 relies on environment variables “MV2 CPU/HYBRID BINDING x”,
“MV2 CPU MAPPING x”, etc. SMPI uses both environment variables
(MP TASK/CPU x) and mpirun command-line options (-map-by, -bind-to, -aff
shortcuts, etc.). Similarly, OMPI uses mpirun options (-bind-to-core, –cpus-per-
proc, etc.) and also accepts a rankfile file with a map (slot-list) for each rank.

When no affinity is specified, these MPIs evaluate a node’s hardware con-
figuration (for example with hwloc for MV2 and OMPI) and make appropriate
default affinity settings. OpenMP affinity for hybrid runs can be specified by
various “vendor” methods. However, since all of these MPIs accept OpenMP’s
OMP PLACES/OMP PROC BIND specifications, it is best to use the stan-
dard’s mechanism. Hence, for portable hybrid computing a user must deal with
many ways of setting each rank’s affinity. (When a master thread encounters a

Tools for Monitoring CPU Usage and Affinity in Multicore Supercomputers 71

parallel region it inherits the MPI rank’s mask, and OpenMP Affinity specifica-
tions take over).

Figure 1 shows a schematic of the affinity process. A mask is maintained
for each process by the kernel that describes which processor(s) the process
can run on. The mask consists of a bit for each processor, and the process can
execute on any processor where a mask bit is set. There are a myriad of ways
to set and alter the affinity mask for processes of a parallel application. For
instance, vendors have their own way to set affinities for MPI and OpenMP,
usually through environment variables. Only recently has OpenMP 4.5 [20,21]
provided a standard way to set affinity for threads, and MPI has yet to do this
for MPI tasks. As shown in Fig. 1 the affinity can not only be affected before an
application is launched but also while it is running. There are utilities such as
numactl [2] and util-linux taskset [7] to do this. Furthermore, the affinity can
even be changed within a program with the sched setaffinity [6] function.

Fig. 1. The left box indicates mechanisms for setting the affinity mask. The right box
illustrates how a BIOS setting has designated the processor ids for the hardware (cores).
The center section shows a mask with bits set for execution on cores 1, 3, 5, and 7.

Understanding the “vernaculars” of all these methods can be challenging.
Even the default settings are sometimes unknown to users. In addition, users
are commonly uncertain of their attempts to set the affinity for processes of
their parallel applications. Other factors (see Fig. 1), such as user environment
variables, the MPI launcher, etc., also create a lack of confidence in a user’s
attempt to control affinity. Incorrect core binding for processes and/or threads
can have adverse effects on performance, even reducing the program performance
by single or multi-digit factors.

72 L. Huang et al.

2.2 Related Work

There are many ways to view CPU loads and the affinity mask of a process.
Moreover, some methods are not well-known or only available through unex-
pected means.

The Linux command-line tool top [8] and its more recent counterparts (htop
or atop) can be used to monitor CPU loads, and manage process and thread
affinity in real time. The Linux command ps [3] can report which core a pro-
cess is running on. However, it does not report the affinity mask explicitly.
It only reports the core the process is presently running on. The taskset [7]
command-line utility is normally more helpful since it can query and modify the
binding affinity of a given thread or process. Linux also provides API functions
sched getaffinity [5] and pthread setaffinity np [4] for a process or thread
to query and set the affinity (kernel mask) of itself.

While these tools are pervasive and do provide the information needed, they
are sometimes cumbersome to use, particularly for supercomputer users working
with large core counts.

For HPC users, these tools may provide too much administrative informa-
tion, and it may not be apparent how to get HPC-relevant information for their
applications. Users need to remember extra options or give extra instructions to
obtain relevant CPU information. For instance, top does not show the loads of
individual processors by default. For example, pressing “1” within a top session
is required to display the performance data of individual CPUs; and pressing
“z” is needed to display running process in color. The htop utility does show
usage information for all logical processors and the load on each individual core
is represented by a progress bar in text mode. It works up to about one hundred
sixty cores. However, the progress bar is distracting on a computer with many
cores.

Furthermore, such tools were originally designed for administrators to display
multi-user information, not for a single-user screen display of HPC information.
Therefore, there is a real need for convenient HPC tools to readily display each
CPU utilization and affinity information for multicore compute nodes.

The MPI libraries and OpenMP 5.0 [20] implementations themselves can
present affinity mask information on the processes or threads they instantiate.
For instance, by setting the I MPI DEBUG environment to 4 or above, the
Intel MPI runtime will print a list of processor ids (mask bits set) for each
process (rank) at launch time. Likewise for OpenMP 5.0 implementations, setting
OMP AFFINITY DISPLAY to TRUE will have the runtime print a line for each
thread (number) reporting the processor ids associated with its binding, at the
beginning of the first parallel region. However, it is difficult to make sense of
these lists for multicore or manycore compute nodes.

There are other comprehensive tools that can be used to collect the CPU
loads and the affinity information. TACC Stats [10] is a well-established one. It
monitors parallel jobs on supercomputers and collects a series of system statistics
and hardware performance count including the CPU usage of each core. But the
data processing and display is not real-time and this tools is mainly designed for

Tools for Monitoring CPU Usage and Affinity in Multicore Supercomputers 73

system administrators. Another practical tool suite is Likwid [23,30]. It consists
of many convenient command-line applications. Particularly, likwid-topology
is used to print thread, cache, and NUMA information. likwid-pin can be used
to pin threaded applications.

Based on years of experience administrating multiple supercomputer systems
and supporting thousands of HPC users, the following questions are always asked
by users and administrators when monitoring a program running on an HPC
system: Does my application use the maximum capacity of CPU? How many
physical or logical processors are practical for a running application? What is
the currently used process and thread affinity pattern based on my current set-
tings? To help HPC users and administrators answer these questions easily, three
innovative tools core usage, show affinity, and amask were designed and
developed. They are now serving the HPC communities by presenting real-time
CPU usage and affinity information on systems with large core counts.

3 Three Innovative Tools

3.1 core usage

Implementation. The first tool we designed and developed to quickly and effi-
ciently show processor loads is core usage [25]. It employs the logical processor
(core) usage information directly from /proc/stat on Linux systems. Specifically,
non-idle time (t NonIdle) has six components: user, nice, system, irq, softirq,
and steal columns. Idle time (t Idle) is calculated as the sum of idle and iowait
columns. core usage regularly reads kernel activity information of every logical
processor on a node, then calculates core utilization with the two most-recent
core status data points according to the following equation.

utilization =
tNonIdle new − tNonIdle old

(tNonIdle new + tIdle new) − (tNonIdle old + tIdle old)
(1)

core usage then displays CPU load for all logical processors. The data are
grouped by socket id and the first core of every socket is highlighted to make it
easy to determine if the processes/threads are evenly distributed across sockets.

Commands and Reports. The syntax to run core usage is:

core_usage [<int>] [txt]

where <int> is the update interval and must be an integer or float (unit is
second, default is 1). For example, “core usage 3” will provide an update every
three seconds. Users can also add “txt” as a parameter to force the text mode.

The core usage command can present a graphical-user-interface (GUI) or a
command-line-interface (CLI). When X Forwarding is supported in the current
environment, the GUI version is presented. In the GUI, the size of the plot area
is automatically set according to the number of cores on the running computer.

74 L. Huang et al.

The usage percentage of each individual logical processor is represented by the
height of a blue bar, as shown in Fig. 2, for a hybrid job run on the Stampede2
system. The GUI version is an ideal way to visualize core usage information and
can easily be extended to support thousands of cores per node in the future by
adding more rows in the bar chart.

Fig. 2. Snapshot of core usage (GUI) display for a hybrid application run with 4 MPI
and 8 threads per MPI task on a Stampede2 Intel Xeon Skylake compute node. Colors
and format are slightly modified for presentation.

If X Forwarding is not detected, the CLI version automatically launches the
reports in text mode as shown in Fig. 3. A floating point number between 0.0
and 1.0 is calculated and displayed for each logical processor to represent the
current core usage. The text is monochrome if the core is idle (usage less than
2%), otherwise it is green to highlight the cores in use.

From these figures, it can be seen that core usage presents in logical order
the current usage of each individual processor in real time. The results are col-
lected and displayed in a socket-aware manner so that users can easily track
processor status by socket. In the latest version, core usage explicitly displays
the name of the application that keeps the individual core busy as shown in
Fig. 3. To make the results clear and concise, core usage only shows the appli-
cation with the top usage for each individual logical processor in this version.

As mentioned above, it is also possible to run core usage manually in ter-
minal mode with an argument “txt”, even if X11 environment is available and
GUI is the default starting mode.

3.2 show affinity

Background and Implementation. Though core usage is valuable for mon-
itoring individual CPU core usage and detecting under utilization issues, it
doesn’t report the process and thread binding (affinity) that may be needed
to adjust the resource usage.

Normally, the Linux tool taskset [7] can be used to retrieve the CPU binding
affinity of individual threads or processes with commands like “taskset -p pid”.
However, users need to compile a full list of pid/tid’s for all processes/threads,
and this would require running taskset for each process. This would be tedious

Tools for Monitoring CPU Usage and Affinity in Multicore Supercomputers 75

Fig. 3. Snapshot of core usage CLI text report for a Weather Research and Fore-
casting (WRF) run with 16 MPI tasks and 4 OpenMP threads per MPI task on one
Stampede2 KNL compute node. Colors and format are slightly modified for presenta-
tion.

and error-prone, and “simple” command-line expressions or scripts may require
Unix skills unfamiliar to inexperienced HPC users.

To report this type of affinity information automatically and clearly, the
show affinity [26] tool was developed. This tool was also designed to be
intuitive and simple to use. When executing show affinity, all running pro-
cesses/threads on a computer node are enumerated by inspecting the directories
under /proc and their owners. To avoid unnecessary information, show affinity
only queries and reports binding affinity for the processes owned by the cur-
rent user (on a compute node). Application names are then extracted from
/proc/pid/exe. For each process the threads are enumerated and the core binding
affinity of each individual process/thread is queried and displayed.

Commands and Reports. There are two modes of operation for show
affinity. The syntax is:

show_affinity [all]

In the first and default mode, the tool shows the processes/threads launched
by the current user that keeps CPUs busy as demonstrated in Fig. 4. To make the
results more concise and clear, the outputs are organized in four columns: process
id (pid), executable name, thread id (tid), and binding affinity respectively. They
are grouped with pid. The second mode is invoked with the “all” argument,
and show affinity displays all running processes and threads on the current
compute node owned by the current user as demonstrated in Fig. 5.

76 L. Huang et al.

pid Exe_Name tid Affinity

91884 namd2_skx 91884 0

91910 2

91915 4

...

91942 20

91945 22

91885 namd2_skx 91885 24

91911 26

91914 28

...

91941 44

91944 46

91886 namd2_skx 91886 1

91909 3

91913 5

...

91943 21

91946 23

91887 namd2_skx 91887 25

91908 27

91912 29

...

91950 45

91951 47

Fig. 4. Snapshot of show affinity showing the running processes and threads that
keep CPU busy for a NAMD [22] run with 4 MPI tasks and 12 threads per MPI task
on one Stampede2 Skylake compute node. The output contains four columns: process
id (pid), executable name, thread id (tid), and core binding affinity. Format is slightly
modified for presentation.

3.3 amask

Background and Implementation. The initial amask utility [24] was
designed [1] as an analysis tool to confirm affinity settings for the OpenMP
4.0 Affinity implementation on the manycore Intel Xeon Phi system (68 cores,
272 processor ids). It consisted of a single, argumentless library function called
within an application. However, it was found that users were more interested
in executing a command immediately before their application (and after setting
the affinity environment) to report the affinity of a “generic” parallel region,
rather than instrumenting an application with a library call. Therefore, stand-
alone external commands were created. amask was soon adapted for MPI, and
the external commands (and library calls) became amask omp, amask mpi,
and amask hybrid for pure OpenMP, pure MPI, and hybrid OpenMP-MPI
applications, respectively.

The OpenMP component works for any version of OpenMP. The commands
with MPI components must be compiled/used with the same flavor (OpenMPI,

Tools for Monitoring CPU Usage and Affinity in Multicore Supercomputers 77

pid Exe_Name tid Affinity

91544 slurm_script 91544 0-95

91551 sleep 91551 0-95

91649 sshd 91649 0-95

91650 bash 91650 0-95

91829 ibrun 91829 0-95

91879 mpiexec.hydra 91879 0-95

91880 pmi_proxy 91880 0-95

91884 namd2_skx 91884 0

91905 0,2,4,...

91910 2

...

91942 20

91945 22

91885 namd2_skx 91885 24

91904 24,26,...

91911 26

...

91941 44

91944 46

91886 namd2_skx 91886 1

91906 1,3,5,...

91909 3

...

91943 21

91946 23

91887 namd2_skx 91887 25

91907 25,27,...

91908 27

...

91950 45

91951 47

91975 tee 91975 0-95

Fig. 5. Snapshot of show affinity with “all” argument showing all running processes
and threads for a NAMD run with 4 MPI tasks and 12 threads per MPI task on one
Stampede2 Skylake compute node. Format is slightly modified for presentation.

IMPI, MVAPICH2, etc.) used by the application, so that the same runtimes
are invoked. It is worth mentioning that the amask code does not rely on
any vendor-specific features or APIs. The library (and other utilities) remain
available for developers or power-users who want in-situ reporting.

Commands and API. All three amask commands accept the same options.
The syntax is:

amask_[omp|mpi|hybrid] -h -vk -w# -pf

78 L. Huang et al.

Commands amask omp or amask mpi are for reporting masks for a pure
OpenMP or pure-MPI run. The amask hybrid command is used for reporting
the (parent) MPI masks followed by the OpenMP thread masks for each MPI
task. The −h option provides help. The −vk option overrides the automatic core
view, forcing a kernel (k) view (mask of processor ids). amask will load each
process for # seconds when the −w (wait) option is invoked (default is 10). This
is helpful when used in combination with monitoring tools like core usage and
htop. A slight pause after printing each row (mask) was found to give the viewer
time to start comprehending the content of each mask, and then allow analysis
of the pattern as more rows are reported. This slow-mode can be turned off by
requesting the fast printing mode with −pf .

The library has function names corresponding to the commands:

C/C++ Fortran
amask_omp(); call amask_omp()
amask_mpi(); call amask_mpi()
amask_hybrid(); call amask_hybrid()

These can be inserted in a pure OpenMP parallel region, after an MPI Init
of a pure MPI code, or within an OpenMP parallel region of a hybrid code (calls
within a loop structure should be conditionally executed for only one iteration).

Reports. The important feature that makes amask more useful is that it
reports a mask for each process of a parallel execution in a matrix format (process
number vs. processor id), so that the user can quickly visualize relevant patterns
of the affinity (such as socket, NUMA nodes, tile, core, and single hardware-
thread assignments).

In the reports shown in Fig. 6, each row represents a “kernel” mask for the
process number labeled at the left. Each label (process) is followed by N char-
acters, one for each bit of the kernel’s affinity mask. A dash (-) represents an
unset bit, while a digit (0–9) represents a set bit. In order to easily evaluate the
process id of a set bit, the single digit (0–9) of the set bit is added to the header
group process id label at the top (labels represent groups of 10s).

For instance, the mask of process 1 in Fig. 6(a) has mask bit 12 (proc-id 12)
set (proc-id = “2” + “10” from group value). This single-character bit mask rep-
resentation is ideal for working with systems with hundreds of logical processors.

Figure 6(a) and (b) show processes bound to single cores and sockets, respec-
tively (where proc-ids sets 0–11 and 12–23 are on different sockets). In the latter
case each process can “float” on any core in the socket. Figure 6(c) illustrates a
socket affinity, just as in Fig. 6(b), but for a system with even and odd proc-id
sets for each socket. While the sequential or even-odd assignments could have
been determined from hwloc [9], or /proc/cpuinfo on certain Linux systems,
the amask report identifies the proc-id assignment pattern. The last report,
Fig. 6(d), shows a scenario where each process is allowed to execute on any core
of the system.

Tools for Monitoring CPU Usage and Affinity in Multicore Supercomputers 79

proc-id > | 0 | 10 | 20 | a)

process v | | | |

0000 0-----------------------

0001 ------------2----------

proc-id > | 0 | 10 | 20 | b)

process v | | | |

0000 012345678901------------

0001 ------------234567890123

proc-id > | 0 | 10 | 20 | c)

process v | | | |

0000 0-2-4-6-8-0-2-4-6-8-0-2-

0001 -1-3-5-7-9-1-3-5-7-9-1-3

proc-id > | 0 | 10 | 20 | d)

process v | | | |

0000 012345678901234567890123

0001 012345678901234567890123

Fig. 6. Masks for 2 processes on a 2-socket, 24 core platform. Dash (-) represents unset
bit, while a single digit represents a set bit. Add digit to column group value to obtain
processor id (core number) value. (a) Process 0 can only execute on core 0; process 1
can only execute on core 12. (b) Process 0 can execute on cores 0–11; process 1 can
execute on cores 12–23. (c) Process 0 can execute on even-numbered cores; process 1
can execute on odd-numbered cores. (d) Processes 0 and 1 can execute on any cores

With simultaneous multithreading (SMT), available on IBM, Intel, AMD,
and other processors, the OS assigns multiple (virtual) processors to a core.
Hence each core has multiple processor ids, also called hardware threads (HWT)
- the term used here.

When amask detects hardware threading, it reports a “core” view, showing
a column for each core id, and each process reporting a row (mask) for each
hardware thread. Hence, core group numbers appear in the header instead of
processor-id group numbers.

For a 2-socket system with sequential process id numbering Fig. 7(a) shows
the affinity mask for process 0 execution on either HWT of core 0, and process
1 execution on either HWT on core 12; while Fig. 7(b) shows executions are
available only on the 1st hardware thread of two adjacent cores. Figure 7(c) shows
68 threads executing with “cores” affinity (execution available on all hardware
threads of a core) for a 4-SMT, 68-core Intel Xeon Phi system. It is easy to see
that each process is assigned to all HWTs of a core. A process id list for core
number 67 is the set {67, 135, 203, 271}, and determining that these represent
a single core in the amask kernel (processor id) view would be difficult, and
checking the assignment with just a process id listing would be tedious.

For multi-node executions, amask reports the masks on each node, and
labels each process (row) with a node name and rank number as shown in

80 L. Huang et al.

Fig. 8(a). Masks for Hybrid (OpenMP/MPI) executions are reported by the
amask hybrid command. The report consists of two parts. The first part con-
tains the masks of the MPI task (just as the amask mpi would report). It is
important to show these masks, because the OpenMP runtime inherits the task’s
map for the parallel region, and can only assign thread masks as subsets (or the
full set) of the set bits in the MPI task mask. Figure 8(b) shows the MPI (par-
ent) masks and thread masks for a hybrid run of 4 MPI tasks with 6 OpenMP
threads per task. Each thread is bound to a single core, as would be desired for
a 4 × 6 (task× thread) run on a 24-core system.

4 Case Study

4.1 Unexpected Slow VASP Runs

In 2018, one of our experienced Vienna Ab Initio Simulation Package (VASP) [11]
users reported unexpected performance drop in his jobs and he needed help to
debug this issue on TACC’s Stampede2 system. The user had created a top-
level script in Python to manage the overall workflow, and invoked numpy [29]
in this script for scientific computing work. Numpy then invoked Intel Math
Kernel Library (MKL) [14] for threaded and vectorized function calls. Execu-
tions of VASP were employed later by the Python scripts for material modeling
simulations.

We could reproduce the user’s issue and we employed our new tools on the
user’s workflow. core usage demonstrated that all cores were allocated and
used at the beginning of the job. However, after a while only a single core was
busy when the VASP runs finally started. show affinity also showed that all
running threads on a compute node were bound to a single core (0) instead
of separate cores. A more in-depth investigation revealed that the Intel MKL
functions called Intel OpenMP function “omp get num procs” from the Intel
OpenMP library. This function was directly binding the parent process (where
the python script was calling numpy) to only core 0. This is an Intel default
setting when the environment variable “OMP PROC BIND” is not set. Conse-
quently, all child processes of the python script including the following VASP
runs inherited this binding affinity unexpectedly. Hence only a single core was
used by all new processes/threads for the VASP runs, though they were designed
to run in parallel on all the available cores.

Due to this incorrect binding, the job ran a hundred times slower. With the
core usage and show affinity tools, the source of the problem was quickly
and efficiently determined. The fix was easy: “OMP PROC BIND” was set to
TRUE in the user’s default environment, forcing each parallel region to obey
OpenMP’s affinity policy.

Tools for Monitoring CPU Usage and Affinity in Multicore Supercomputers 81

a) Core ids

proc-id > | 0 | 10 | 20 |

process v | | | |

0000 0======================= HWT0

0----------------------- HWT1

0001 ===========2============

-----------2------------

b) Core ids

proc-id > | 0 | 10 | 20 |

process v | | | |

0000 01======================

0001 ===========23===========

c) Core ids

proc-id > | 0 | ... | 60 |

process v | | | |

0000 0========== ======== HWT0

0---------- -------- HWT1

0---------- -------- HWT2

0---------- -------- HWT3

: :

0067 =========== =======7

----------- -------7

----------- -------7

----------- -------7

Fig. 7. Core view of masks for SMT systems: Equals (=) represent unset bits and
distinguishes the first HWT. Dashes (-) represent unset bits for the other HWTs. (a)
Process 0 can execute on either HWT of core 0. Process 1 can execute on either HWT
of core 12. (b) Process 0 can execute only on HWT 0 of cores 0 and 1. Process 1 can
execute only on HWT 0 of cores 12 and 13. (c) Process i can execute on any HWT of
core i. (for a 68-core 4-SMT system)

4.2 MPI Library Evaluation on a New System

When building and deploying the new Frontera system [27] at TACC in 2019,
several different MPI Stacks were tested and evaluated, including the Intel MPI
library [15], the MVAPICH2 library [17], etc. The objective was to determine
configurations and settings for optimal performance of the system. In the eval-
uation process, two significant issues related to process/thread affinity were dis-
covered for hybrid (MPI + OpenMP) application runs.

The first problem was an unbalanced work distribution when all cores on a com-
pute node were not fully used (due to memory or other limitations). On Frontera
CLX nodes there are 56 physical cores on two sockets (28 cores/socket). The initial
MVAPICH2 “MV2 HYBRID BINDING POLICY” was set to “linear” at TACC

82 L. Huang et al.

a)

proc-id > | 0 | 10 | 20 |

node rank | | | |

c123-509 0000 012345678901------------

c123-509 0001 ------------234567890123

c123-802 0002 012345678901------------

c123-802 0003 ------------234567890123

b) (parent) MPI mask

proc-id > | 0 | 10 | 20 |

rank v | | | |

0000 012345------------------

0001 ------678901------------

0002 ------------234567------

0003 ------------------890123

MPI-thread mask

proc-id > | 0 | 10 | 20 |

rank thrd | | | |

0000 0000 0-----------------------

0000 0001 -1----------------------

0000 0002 --2---------------------

0000 0003 ---3--------------------

...

0003 0003 ---------------------1--

0003 0004 ----------------------2-

0003 0005 -----------------------3

Fig. 8. (a) Affinity for a pure MPI multi-node execution, 4 MPI tasks on two separate
nodes. (b) Affinity for an OpenMP/MPI hybrid (amask hybrid) execution with parent
MPI and hybrid (rank/thread) reports.

as the default and recommended value. By evaluating application executions with
our tools, it was soon discovered that this was not an appropriate setting for hybrid
applications that did not use all the cores of a node. For instance for application
requiring 2n cores/node, an application execution with 2 tasks per node and 16
threads per task was assigning 28 cores on the first socket and 4 cores on the sec-
ond, while ideally one would want 16 cores assigned to each socket. The default
setting was changed to “spread”, which generally works well for all cases.

The second problem was with the different thread binding behavior of Intel
MPI and MVAPICH2. The default/recommended setting of Intel MPI binds
each process to a single core throughout a run. The bind-to-one-core affinity
assumes that cache/memory locality will normally provide optimal performance.
However, with MVAPICH2, every bit in a process mask is set to 1 by default,
and therefore each process can run on any core. Explicitly setting core binding
for certain hybrid applications compiled with MVAPICH2 has been found to
increase performance slightly.

Tools for Monitoring CPU Usage and Affinity in Multicore Supercomputers 83

4.3 Affinity Discovery

While amask has benefited many in discovering the affinity for their HPC appli-
cations, another potential feature is learning how to correctly interpret the com-
plicated syntax of certain MPI implementations. That is, a concise report of
affinity can help users when experimenting with unfamiliar options and syntax.
While the syntax for OpenMP Affinity is standard, the implementation of cer-
tain features is implementation defined – amask can quickly show the effects of
an implementation-defined affinity setting in its report.

Discovering the affinity for a pure MPI application can be complicated even
if the number of processes does evenly divide the number of processors. For
instance, on Intel KNL with 68 cores (4 SMT threads per core), users might
want to use 16 MPI tasks. The default setting will mask 17 sequential bits (in
proc-id space, from 0 to 271) for each task. However, this mask allows tasks
(processes) to overlap on a single core as shown in Fig. 9. Using 17 MPI tasks
produces 16 sequential bits (4 cores) for each mask and makes for a more bal-
anced distribution without core sharing.

core > | 0 | 10 | ... 60 |

process v

0000 01234================

0123-----------------

0123-----------------

0123-----------------

0001 =====5678============

----45678------------

----4567-------------

----4567-------------

0002 =========9012========

---------9012--------

--------89012--------

--------8901---------

...

Fig. 9. amask shows process 0 and 1 masks overlapping on core 4; likewise process 1
and 2 overlap on core 8.

4.4 General

These cases demonstrate that with our affinity tools, process/thread kernel
masks can be determined easily and process execution location can be easily
monitored in real time. This can be particularly important when one begins to
work on a new system and/or in an unfamiliar environment. These tools also
help users and site staff discover issues that can be immediately reported back
to developers and site administrators so that parallel applications can achieve
higher performance.

84 L. Huang et al.

5 Best Practice

The core usage and show affinity tools are simple and convenient. They are
recommended for daily use, especially when a workflow is changed or any envi-
ronment variables related to process/thread binding are introduced or modified.
Neither the source code nor the workflow needs to be changed. A user or a system
administrator can easily ssh to the compute node that is running an application
and then run core usage and show affinity at any time. core usage shows
how many cores are being used by an application so that a user can validate
that it is the expected number. If the core occupation count is smaller than the
number of tasks/threads set by the user, show affinity should be run to check
whether multiple processes/threads are bound to a core. Whenever users observe
a drastic drop in application performance, show affinity should be executed
with the job to make sure that the number of worker threads/processes is correct
and they have expected binding affinities.

It should be noted that it may take some time, e.g. up to several minutes,
for a large job to complete MPI initialization or read large input files before all
working threads execute. Complicated model design and workflow may also alter
the process/thread binding status through the job, and different process/thread
binding patterns are likely present during the run of these jobs. Users can try
Linux commands watch and show affinity to monitor thread affinity in real
time for very complicated workflows. If a test application finishes in less than
a few milliseconds, show affinity may not have enough time to determine the
binding affinity.

The amask tool allows users to quickly see the kernel mask of all pro-
cesses/threads in a “matrix” format that facilitates analysis of the interaction
between processes/threads. It can also be used to evaluate the effects of changing
affinity settings that may not be familiar to the user.

6 Conclusion

Working with modern supercomputers with large core counts is not trivial. To
help supercomputer users run parallel applications efficiently with the hardware,
three convenient tools core usage, show affinity, and amask were designed
and developed to monitor how computing resources are utilized in practice. These
tools have helped many HPC users and administrators detect, understand, and
resolve issues related to process and thread affinity. Consequently, they help user
jobs to run faster and supercomputers to be used more efficiently.

Acknowledgments. We would like to thank all our users who worked with these new
tools and provided us with constructive feedback and suggestions to make improve-
ments. We would also like to thank our colleagues in the High-Performance Comput-
ing group and Advanced Computing Systems group who provided expertise and insight
that significantly assisted this work. Particularly, we would like to show our gratitude
to Hang Liu, Albert Lu, John Cazes, Robert McLay, Victor Eijkhout, and Bill Barth

Tools for Monitoring CPU Usage and Affinity in Multicore Supercomputers 85

who helped us design, test, and debug the early versions of these products. We also
appreciate the technical writing assistance from Bob Garza.

All these tools are mainly developed and tested on TACC’s supercomputer systems,
including Stampede, Stampede2, Lonestar5, Wrangler, Maverick2, and Frontera. The
computation of all experiments was supported by the National Science Foundation,
through the Frontera (OAC-1818253), Stampede2 (OAC-1540931) and XSEDE (ACI-
1953575) awards.

References

1. 2017 IXPUG US Annual Meeting, Austin, TX, USA (2017). https://www.ixpug.
org/events/ixpug-2017-us. Accessed 27 Aug 2019

2. Linux Documentation: numactl(8): Linux man page (2019). https://linux.die.net/
man/8/numactl. Accessed 27 Aug 2019

3. Linux Documentation: ps(1): Linux man page (2019). https://linux.die.net/man/
1/ps. Accessed 27 Aug 2019

4. Linux Documentation: pthread setaffinity np(3) - Linux man page (2019). https://
man7.org/linux/man-pages/man3/pthread setaffinity np.3.html. Accessed 27 Aug
2019

5. Linux Documentation: sched getaffinity(2): Linux man page (2019). https://linux.
die.net/man/2/sched getaffinity. Accessed 27 Aug 2019

6. Linux Documentation: sched setaffinity(2): Linux man page (2019). https://linux.
die.net/man/2/sched setaffinity. Accessed 27 Aug 2019

7. Linux Documentation: taskset(1): Linux man page (2019). https://linux.die.net/
man/1/taskset. Accessed 27 Aug 2019

8. Linux Documentation: top(1) - Linux man page (2019). https://linux.die.net/man/
1/top. Accessed 27 Aug 2019

9. Broquedis, F., et al.: hwloc: A generic framework for managing hardware affinities
in HPC applications. In: PDP 2010 - The 18th Euromicro International Conference
on Parallel, Distributed and Network- Based Computing (2010)

10. Evans, T., et al.: Comprehensive resource use monitoring for HPC systems with
TACC stats. In: 2014 First International Workshop on HPC User Support Tools,
pp. 13–21, November 2014. https://doi.org/10.1109/HUST.2014.7

11. Hafner, J., Kresse, G.: The Vienna AB-initio simulation program VASP: an efficient
and versatile tool for studying the structural, dynamic, and electronic properties
of materials. In: Gonis, A., Meike, A., Turchi, P.E.A. (eds.) Properties of Complex
Inorganic Solids, pp. 69–82. Springer, Boston (1997). https://doi.org/10.1007/978-
1-4615-5943-6 10

12. Hennessy, J., Patterson, D.: Computer Architecture: A Quantitative Approach.
The Morgan Kaufmann Series in Computer Architecture and Design, 6th edn.
Elsevier, Amsterdam (2017)

13. IBM: POWER9 Servers Overview, Scalable servers to meet the business needs of
tomorrow (2019). https://www.ibm.com/downloads/cas/KDQRVQRR. Accessed
27 Aug 2019

14. Intel: Intel Math Kernel Library Developer Reference (2019). https://software.
intel.com/en-us/articles/mkl-reference-manual. Accessed 27 Aug 2019

15. Intel-developers (2019). https://software.intel.com/en-us/mpi-library. Accessed 27
Aug 2019

16. Lawrence Livermore National Laboratory: Sierra supercomputer (2019). https://
computation.llnl.gov/computers/sierra. Accessed 27 Aug 2019

https://www.ixpug.org/events/ixpug-2017-us
https://www.ixpug.org/events/ixpug-2017-us
https://linux.die.net/man/8/numactl
https://linux.die.net/man/8/numactl
https://linux.die.net/man/1/ps
https://linux.die.net/man/1/ps
https://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
https://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
https://linux.die.net/man/2/sched_getaffinity
https://linux.die.net/man/2/sched_getaffinity
https://linux.die.net/man/2/sched_setaffinity
https://linux.die.net/man/2/sched_setaffinity
https://linux.die.net/man/1/taskset
https://linux.die.net/man/1/taskset
https://linux.die.net/man/1/top
https://linux.die.net/man/1/top
https://doi.org/10.1109/HUST.2014.7
https://doi.org/10.1007/978-1-4615-5943-6_10
https://doi.org/10.1007/978-1-4615-5943-6_10
https://www.ibm.com/downloads/cas/KDQRVQRR
https://software.intel.com/en-us/articles/mkl-reference-manual
https://software.intel.com/en-us/articles/mkl-reference-manual
https://software.intel.com/en-us/mpi-library
https://computation.llnl.gov/computers/sierra
https://computation.llnl.gov/computers/sierra

86 L. Huang et al.

17. Mvapich-developers (2019). http://mvapich.cse.ohio-state.edu/. Accessed 27 Aug
2019

18. National Supercomputer Center in Wuxi: The Sunway TaihuLight system (2019).
http://www.nsccwx.cn/wxcyw/soft1.php?word=soft&i=46. Accessed 27 Aug 2019

19. Oak Ridge National Lab: Summit: Oak Ridge National Laboratory’s
200 petaflop supercomputer (2019). https://www.olcf.ornl.gov/olcf-resources/
compute-systems/summit/. Accessed 27 Aug 2019

20. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, Version 4.5, November 2015 (2015)

21. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, Version 5.0, November 2018 (2018)

22. Phillips, J.C., et al.: Scalable molecular dynamics with NAMD. J. Comput. Chem.
26, 1781–1802 (2005)

23. Roehl, T., Treibig, J., Hager, G., Wellein, G.: Overhead analysis of performance
counter measurements. In: 43rd International Conference on Parallel Process-
ing Workshops (ICCPW), pp. 176–185, September 2014. https://doi.org/10.1109/
ICPPW.2014.34

24. TACC Staff: TACC: amask project page (2019). https://github.com/TACC/
amask/. Accessed 27 Aug 2019

25. TACC Staff: TACC core usage project page (2019). https://github.com/TACC/
core usage/. Accessed 27 Aug 2019

26. TACC Staff: TACC show affinity project page (2019). https://github.com/TACC/
show affinity/. Accessed 27 Aug 2019

27. Texas Advanced Computing Center: Frontera User Guide (2019). https://portal.
tacc.utexas.edu/user-guides/frontera. Accessed 27 Aug 2019

28. Texas Advanced Computing Center: Stampede2 User Guide (2019). https://portal.
tacc.utexas.edu/user-guides/stampede2. Accessed 27 Aug 2019

29. Travis, O.: NumPy: A Guide to NumPy. Trelgol Publishing, USA (2006). http://
www.numpy.org/. Accessed 27 Aug 2019

30. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented
tool suite for x86 multicore environments. In: Proceedings of PSTI2010, the First
International Workshop on Parallel Software Tools and Tool Infrastructures, San
Diego, CA (2010)

31. Wikipedia contributors: List of Intel CPU microarchitectures (2019). https://en.
wikipedia.org/wiki/List of Intel CPU microarchitectures. Accessed 27 Aug 2019

32. Wikipedia contributors: The Sunway TaihuLight Supercomputer (2019). https://
en.wikipedia.org/wiki/Sunway TaihuLight. Accessed 27 Aug 2019

http://mvapich.cse.ohio-state.edu/
http://www.nsccwx.cn/wxcyw/soft1.php?word=soft&i=46
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://doi.org/10.1109/ICPPW.2014.34
https://doi.org/10.1109/ICPPW.2014.34
https://github.com/TACC/amask/
https://github.com/TACC/amask/
https://github.com/TACC/core_usage/
https://github.com/TACC/core_usage/
https://github.com/TACC/show_affinity/
https://github.com/TACC/show_affinity/
https://portal.tacc.utexas.edu/user-guides/frontera
https://portal.tacc.utexas.edu/user-guides/frontera
https://portal.tacc.utexas.edu/user-guides/stampede2
https://portal.tacc.utexas.edu/user-guides/stampede2
http://www.numpy.org/
http://www.numpy.org/
https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures
https://en.wikipedia.org/wiki/Sunway_TaihuLight
https://en.wikipedia.org/wiki/Sunway_TaihuLight

SE-HER - International Workshop
on Software Engineering

for HPC-Enabled Research

A Study of Hydrodynamics Based
Community Codes in Astrophysics

A. Dubey(B)

Argonne National Laboratory, Lemont, IL, USA
adubey@anl.gov

Abstract. Advances in mathematical models and numerical algorithms
for understanding multiphysics and multiscale phenomena have made
software development for simulations a large and complex task. Devel-
opment and adoption of community codes is one way to address this chal-
lenge. The astrophysics community has been ahead of many other science
communities in making research codes publicly available and therefore
has led the development and adoption of community codes. A study of
publicly available software and their penetration in the research con-
ducted by the community can provide important insight for other com-
munities that are facing similar issues. In this paper we analyze software
available in Astrophysics Source Code Library, focusing on simulations
that include hydrodynamics. We use the citation history of these codes
to gauge their impact on the community.

Keywords: Computational software · Community code · Software
engineering · Software productivity

1 Introduction

Advances in mathematical models and numerical algorithms, combined with
increasing reliance on simulations for understanding the world around us, have
made software development for simulations a large and complex task. The
model of small groups developing their own software still applies to specific
limited-phenomena research, but increasingly the research problems being pur-
sued through simulations are multiphysics and multiscale in nature. Such prob-
lems typically require several independent or interdependent solvers to properly
model all phenomena of interest, and they need high performance computing
(HPC) resources. The solvers often have divergent requirements of data manage-
ment and place different demands on the computing platforms. For integrated
simulations, however, several included solvers may need to interoperate with
one another. When we take into account the diversity of computing platforms
and their typical shelf life, and compare these with the number of person-years
needed to build a reliable and efficient multiphysics software for one platform,
we can clearly see that the task of building highly capable multiphysics scien-
tific research software has gone beyond the resources of individual, or even small
c© Springer Nature Switzerland AG 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 89–97, 2020.

https://doi.org/10.1007/978-3-030-44728-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_5&domain=pdf
http://orcid.org/0000-0003-3299-7426
https://doi.org/10.1007/978-3-030-44728-1_5

90 A. Dubey

groups of researchers. Development and adoption of community codes is one way
to address this challenge.

The astrophysics community has been among the leaders in science communi-
ties that have embraced the practice of making their software publicly available.
ZEUS-2D [27] was one of the earliest codes to become public; and it has been
followed by several others, many of which are considered in this paper. That this
domain takes community development seriously is also reflected by a comprehen-
sive list of freely available software compiled in The Astrophysics Source Code
Library (ASCL) [2]. A study of publicly available software and their penetra-
tion in the research conducted by the community can provide important insight
for other communities that are facing similar issues. Astrophysics is the ideal
community to begin such analysis because of the number of open source codes
and resources such as ASCL. In this paper we analyze a subset of astrophysics
software used for simulations involving hydrodynamics or magnetohydrodynam-
ics. We note that the presence of hydrodynamics does not preclude inclusion of
other physics models in the simulations, it implies only a necessary condition.

The objective of this paper is not to study the codes themselves or to discuss
processes and practices that might help individual code projects. Instead, the
objective is to understand whether any correlation exists between the capabili-
ties and features of the codes and their adoption by its target community. We
assume that the usage of the code is roughly captured by the citation history
of the paper describing the code. The paper is organized as follows. In Sect. 2
we summarize the growth of scientific simulations over the previous two decades
and the motivation for this study. In Sect. 3 we describe the methodology for our
selection of codes and their analysis. Section 4 provides a detailed analysis of col-
lected information and our inferences, and in Sect. 5 we present our conclusions
and discuss future directions.

2 Background

The most common mode of development in computational science has histori-
cally been “heroic,” where individual researchers and small teams were able to
make significant progress through highly simplified models. Such models were
often first glimpses into the phenomena of interest, and therefore approxima-
tions were necessary in order to avoid having too many degrees of freedom in
the models. Some projects can still successfully operate in that mode, especially
in new fields of scientific enquiry. As understanding grows and models become
more complex, however, the heroic programmer model becomes problematic.

As an example, consider the case of Type Ia supernova simulations in astro-
physics. As with most sciences the simulations started with 1D and 2D models
[10,18] which gave some insight into the workings of their causes. Early 3D sim-
ulations assumed symmetry and modeled only an octant of the star, because
of computational resource limitations. While all those simulations advanced the
state of scientific knowledge, the real scientific gains from those simulations were
the insights about where to use approximate models and where to do direct

A Study of Hydrodynamics Based Community Codes in Astrophysics 91

numerical simulations. Not until the symmetry imposed by the octant was elim-
inated did scientists obtain the first insight into the cause of the star going
supernova [17]. The software used for the full-star 3D simulation had enough
complexity that it could not have been done in the heroic programmer mode.
FLASH [12,13], the software used for the simulations, had been in development
by a team for nearly a decade by that time. It had undergone three revisions to
incorporate extensible and composable software design, and t had evolved a well-
defined software process, both of which were critical to the series of simulations
that led to the scientific insight.

Similar to FLASH’s experience, in the late 1990s - for various reasons includ-
ing greater understanding of the underlying phenomena - models began to
become more refined and started to acquire a multiphysics aspect [3,9]. Invest-
ment was made in developing software frameworks for such multiphysics simu-
lations, [4,8]. Not all frameworks survived; however, a sufficient fraction of the
frameworks developed during that time have evolved into ongoing community
codes.

In an earlier study we analyzed the community impact of three codes in
the astrophysics community. The authors of the study were also members of
one or more of corresponding software development teams [14]. The study was
therefore based on internal knowledge and direct experience with the user com-
munity. Community growth had been important to all three projects, where
an active user and developer community served to reduce the barrier to entry
for new researchers using HPC resources for scientific simulations. The impact
was found to have been most marked on the younger members of the commu-
nity - graduate students and postdoctoral researchers- who instead of expending
tremendous amount of effort in developing codes from scratch, were able to focus
on advancing their research. An added advantage was using tools that had been
vetted by multiple researchers and were therefore less error-prone than their own
necessarily less-tested code would have been.

Another in-depth study focused on a single code, FLASH, for which data
about user community was available through multiple surveys [15]. The code
team had adopted version control from the beginning, and therefore the history
of the team members participation could be derived. Additionally, the code team
had compiled a database of publications that used the code for obtaining their
results, which also became a rich source of data. The publications database could
be used to trace the timeline of capability additions and could be correlated with
the expansion of the code’s reach. This study was instrumental in highlighting
the synergies that exist among scientific communities. Capabilities added by one
science community often benefited several other science communities.

Here we study a broader collection of software. However, since we do not have
access to internal information about all the projects or direct user experience
about them, we rely on literature and resources available from the web for our
analysis. We primarily use ASCL to search for codes and the astrophysics data
system [1], to access the citation history, which is the basis of most of the analysis
in this paper. We assume that the citation history of the paper describing the
code also reflects its use by the community in conducting their own research.

92 A. Dubey

3 Methodology

For selecting the codes to study we started with ASCL, which catalogs 2030
codes. Because the library is too large for all codes to be analyzed, we narrowed
our focus to those codes that have some form of hydrodynamics solver. This step
reduced the number of codes to roughly 80. In the next iteration we eliminated
codes that appear to have not been updated for five years or more, since that
suggests that there may be no ongoing development. Several codes are present
in the library exclusively for reproducibility purposes; those also were eliminated
from the list. One code was removed because it was explicitly stated that it was
not meant to be used for production.

The next iteration eliminated codes that did not have a paper describing
them, because we use paper citation history for our analysis. Although one can
argue that doing so could skew the results, such codes turned out to be too
few to make much difference. We also removed codes whose papers had too few
citations, especially if they have been around for some time, because we took
that to indicate a lack of interest by the community. Because the citation counts
varied greatly, we further binned the codes based on their counts. To do the
binning, we computed the annual average citations for the paper describing the
corresponding code. Several codes have had upgrades over the years, and newer
papers describing the upgraded code have been published. In such instances,
where we found newer papers, we cumulated the counts for all papers. Nine of the
codes that have been around for more than seven years had an average citation
rate of around 10. Following our earlier logic, we assumed that these papers
also do not play an important role in the community research. We therefore
eliminated these codes, bringing the number down to 16 for our analysis.

Our parameters of analysis were the following:

1. Method used for hydrodynamics calculations.
2. Whether the code has multiphysics capabilities.
3. Citation history related to the code lifetime.

Of the codes analyzed in this study, ones that have been in existence for
longer than 5 years, are tabulated with their characteristics in Table 1, while
the newer codes that have been around for less than five years are listed in
Table 2. This distinction was made because it takes roughly 2–4 years for a code
to become known in the community. Therefore, inferences drawn from their
usage data have be treated differently from inferences drawn from usage data of
longer-lived codes. Additionally, binning the codes in these two groups can help
determine what, if any, new methods are gaining acceptance and prominence for
solving similar problems and whether any fundamental difference has emerged
in the computing paradigm.

In a second categorization, the codes that use smooth particle hydrodynamics
[21] (Lagrangian formulation) are listed as SPH, and those that use grids (Eule-
rian formulation) [11] are listed as Grid. Among the newer codes some do not
fit into either category, they are listed more explicitly. Many codes include grav-
ity solvers in addition to hydrodynamics, and a few have several other solvers.

A Study of Hydrodynamics Based Community Codes in Astrophysics 93

A “yes” in the column “Other physics” indicates that the code includes at least
one solver in addition to hydrodynamics that is not gravity.

Table 1. Features of astrophysics simulation codes that have been in existence for
more than five years.

Code Hydrodynamics Gravity Other physics Year

CoCoNut Grid Yes Yes 2012

Castro Grid Yes Yes 2010

Gr1D Grid Yes Yes 2010

Pluto Grid No No 2007

Athena Grid No No 2006

Enzo Grid Yes Yes 2004

WhiskyMHD Grid Yes Yes 2005

Gasoline SPH Yes No 2004

RAMSES SPH Yes Yes 2002

FLASH Grid Yes Yes 2000

Gadget-2 SPH Yes No 2000

Table 2. Features of newer astrophysics simulation codes that have been in existence
for less than five years.

Code Hydrodynamics Gravity Other physics Year

ChaNGa SPH Yes No 2015

SNEC Rad-Hydro No Yes 2015

Gizmo Lagrangian Godunov Yes No 2015

Fargo3d Grid No No 2016

Phantom SPH Yes Yes 2018

4 Analysis and Inferences

Our initial inspection of data quickly revealed a shift in the algorithmic prefer-
ence in the last five years. Therefore, the analysis was split into two sections.
We begin by discussing older codes and their history. Figures 1 and 2 plot cita-
tions per year for codes that have been in existence for more than five years. We
have split the figure into two for clarity; all plots in one figure would have been
difficult to read and discuss.

As expected, the majority of codes show an upward trend in citations in
their first few years, beyond which the trends vary. Note that the last data point
in all the figures is incomplete because the data was collected in the middle of

94 A. Dubey

Fig. 1. Citation history of older codes
that have been in existence for more than
fifteen years.

Fig. 2. Citation history of older codes
that have been in existence for five to
fifteen years.

2019. Some codes have a downward trend either because the codes are no longer
in use at the same level as before, or because the code may have undergone a
new incarnation. Wherever we were able to find a link between old and new
versions of the code, and accompanying papers describing the newer versions,
we cumulated citations of all papers. For example, Athena and Enzo have had
new versions, and papers exist about the upgraded versions. On the other side,
codes like FLASH have had version upgrades but not paper upgrade, so the
original paper still continues to be the one cited. However, we cannot claim to
have conducted a comprehensive search, and therefore some of the codes may
have more citations than we count. This may make some quantitative difference
in the plots, but we do nor believe that there is likely to be significant qualitative
difference in the inferences.

An observation that stands out is that the Gadget-2 [26] code has dominated
in the user community throughout its existence. Its citations stand far above all
the rest of the codes. Since having a plot for Gadget clusters all the remaining
codes too closely to follow their trend, we split the plots in a different way.
Figures 3 shows citation histories of codes that have grid-based hydrodynamics
methods while Fig. 4 plots them for codes with the SPH method. Among the grid-
based codes, FLASH and RAMSES [28] have dominated the user community, and
have been in existence for the longest time. The two codes have different flavors
of mesh adaptivity; although they are both multiphysics. Pluto [20], although
not multiphysics in the same way as FLASH and RAMSES are, also shows a
steep upward trend and has almost caught up with those two codes. Part of
the reason may have been that it was ready to use accelerators long before the
other larger codes were. A cluster of codes including Castro [5], Gasolinegasoline,
CoCoNut [23], Gr1D [24], and WhiskyMHD [6], have remained on the lower side
of citations throughout their history, indicating a relatively small user group.
They all came into existence after FLASH and RAMSES had been around for a
while and had become community codes. Newer codes appear not to have had
much success in matching the impact of these two codes, let alone replacing them
in the user community.

An interesting observation is that among the older codes only two codes use
SPH methods, and Gadget-2 clearly dominates that space. Historically the SPH

A Study of Hydrodynamics Based Community Codes in Astrophysics 95

methods were not able to capture all features of turbulent flows and were there-
fore not considered suitable for all astrophysical flows. However, they had the
advantage of being simpler than grid-based codes, and so were preferred where
the regime did not demand grid-based method. Gadget-2 specifically targeted
such applications, and that could be the strongest reason why it dominated
among users interested in that class of problems.

Fig. 3. Comparison of code citation his-
tory of older codes that have Grid based
hydrodynamics.

Fig. 4. Comparison of code citation his-
tory of older codes that have SPH based
hydrodynamics.

Fig. 5. Citation history of codes that
have been in existence for less than five
years.

In contrast, the hydrodynamics imple-
mentations in the newer codes are
quite diverse. Only one, FARGO3D [7],
has a grid-based implementation, while
ChaNGa [19] and PHANTOM [25] have
SPH methods. SNEC [22] implements a
radiation-hydrodynamics method, while
GIZMO [16] has a completely new method
that is Lagrangian but with a Godunov
type scheme. In recent years many of the
shortcomings of SPH methods have been
eliminated, and several scientists in the
community argue that these methods can provide the same fidelity in most
regimes that grid-based methods can. The trend toward newer codes preferring
SPH methods or other Lagrangian formulations certainly seems to substantiate
those claims. It is difficult to predict which, if any, of these codes will persist in
future, or come to replace any of the old codes. With the exception of Phantom,
being younger, they offer fewer capabilities to the users than the older codes.
However, this situation is likely to change with time. If a code gains acceptance
in the community, newer ways of using the code are likely to cause capability
addition, as has occurred in the older codes. Figure 5 plots the citation histories
of these five relatively young codes. The GIZMO and PHANTOM plots have a
similar slope, although PHANTOM is still too new to predict whether this trend
will persist. Because GIZMO has a new method, it is perhaps not surprising that
it is showing signs of strong adoption by the community.

96 A. Dubey

5 Conclusions

Ad the general analysis of the codes in existence and their citation histories indi-
cates, community codes continue to thrive in the astrophysics community. Several
of the old codes are holding steady, while newer codes are coming into being.
Additionally, several of the older codes have been regularly upgraded, either to
include newer solvers or to be able to compute on newer platforms. Further-
more, in any category of codes there appear to be good alternative to choose
from. Thus the astrophysics community continues to provide a good model for
growth of computational research through open and cooperative practices. It
would be interesting to do similar studies of other major communities where
open software is the norm, as also a more in-depth study of the code history
similar to [15]. Even more interesting would be to do a study comparing the
astrophysics community with those communities that do not have such norms
and do not share their software.

Acknowledgements. This material was based upon supported by the U.S. Depart-
ment of Energy Office of Science, Office of Advanced Scientific Computing Research
under Contract No. DE-AC02-06CH11357.

References

1. Astrophysics data system. https://ui.adsabs.harvard.edu/
2. Astrophysics source code library. https://ascl.net/
3. The GENE Code. http://genecode.org/
4. SAMRAI structured adaptive mesh refinement application infrastructure.

Lawrence Livermore National Laboratory, December 2007. https://computation.
llnl.gov/casc/SAMRAI/

5. Almgren, A.S., et al.: CASTRO: a new compressible astrophysical solver, I: hydro-
dynamics and self-gravity. Astrophys. J. 715, 1221–1238 (2010). https://doi.org/
10.1088/0004-637X/715/2/1221

6. Baiotti, L., et al.: Three-dimensional relativistic simulations of rotating neutron-
star collapse to a Kerr black hole. Phys. Rev. D 71(2), 024035 (2005). https://doi.
org/10.1103/PhysRevD.71.024035

7. Beńıtez-Llambay, P., Masset, F.S.: FARGO3D: a new GPU-oriented MHD code.
Astrophys. J. Suppl. Ser. 223, 11 (2016). https://doi.org/10.3847/0067-0049/223/
1/11

8. Blazewicz, M., et al.: From physics model to results: an optimizing framework for
cross-architecture code generation. Sci. Program. 21(1–2), 1–16 (2013)

9. Bryan, G.L., et al.: ENZO: an adaptive mesh refinement code for astrophysics.
Astrophys. J. Suppl. Ser. 211(2), 19 (2014). http://stacks.iop.org/0067-
0049/211/i=2/a=19

10. Burrows, A., Fryxell, B.A.: A convective trigger for supernova explosions. APJ
418, L33 (1993). https://doi.org/10.1086/187109

11. Colella, P., Woodward, P.R.: The Piecewise Parabolic Method (PPM) for
gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984).
https://doi.org/10.1016/0021-9991(84)90143-8. http://www.sciencedirect.com/
science/article/pii/0021999184901438

https://ui.adsabs.harvard.edu/
https://ascl.net/
http://genecode.org/
https://computation.llnl.gov/casc/SAMRAI/
https://computation.llnl.gov/casc/SAMRAI/
https://doi.org/10.1088/0004-637X/715/2/1221
https://doi.org/10.1088/0004-637X/715/2/1221
https://doi.org/10.1103/PhysRevD.71.024035
https://doi.org/10.1103/PhysRevD.71.024035
https://doi.org/10.3847/0067-0049/223/1/11
https://doi.org/10.3847/0067-0049/223/1/11
http://stacks.iop.org/0067-0049/211/i=2/a=19
http://stacks.iop.org/0067-0049/211/i=2/a=19
https://doi.org/10.1086/187109
https://doi.org/10.1016/0021-9991(84)90143-8
http://www.sciencedirect.com/science/article/pii/0021999184901438
http://www.sciencedirect.com/science/article/pii/0021999184901438

A Study of Hydrodynamics Based Community Codes in Astrophysics 97

12. Dubey, A., et al.: Evolution of FLASH, a multiphysics scientific simulation code for
high performance computing. Int. J. High Perform. Comput. Appl. 28(2), 225–237
(2013). https://doi.org/10.1177/1094342013505656

13. Dubey, A., et al.: Extensible component based architecture for FLASH, a massively
parallel, multiphysics simulation code. Parallel Comput. 35, 512–522 (2009).
https://doi.org/10.1016/j.parco.2009.08.001. http://www.sciencedirect.com/
science/article/B6V12-4X54JHJ-1/2/b261a63ad1957b89222e859101236ca7

14. Dubey, A., Turk, M., O’shea, B.: The impact of community software in astro-
physics. In: Onate, E., Olivier, J., Huerta, A. (eds.) Proceedings of WCCM-
XI;ECCM-V;ECFD-VI (2014)

15. Dubey, A., Tzeferacos, P., Lamb, D.: The dividends of investing in computational
software design: a case study. Int. J. High Perform. Comput. Appl. (2018). https://
doi.org/10.1177/1094342017747692

16. Hopkins, P.F.: A new class of accurate, mesh-free hydrodynamic simulation meth-
ods. MNRAS 450, 53–110 (2015). https://doi.org/10.1093/mnras/stv195

17. Jordan IV, G.C., et al.: Three-dimensional simulations of the deflagration phase of
the gravitationally confined detonation model of type la supernovae. Astrophys. J.
681(2), 1448 (2008). http://stacks.iop.org/0004-637X/681/i=2/a=1448

18. Janka, H.T., Müller, E.: The first second of a type II supernova: convection, accre-
tion, and shock propagation. Astrophys. J. 448(2) (1995). https://doi.org/10.1086/
309604

19. Menon, H., et al.: Adaptive techniques for clustered N-body cosmological simu-
lations. Comput. Astrophys. Cosmol. 2(1), 1–16 (2015). https://doi.org/10.1186/
s40668-015-0007-9

20. Mignone, A., et al.: PLUTO: a numerical code for computational astrophysics.
Astrophys. J. Suppl. Ser. 170, 228–242 (2007). https://doi.org/10.1086/513316

21. Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys.
30, 543–574 (1992). https://doi.org/10.1146/annurev.aa.30.090192.002551

22. Morozova, V., et al.: Light curves of core-collapse supernovae with substantial mass
loss using the new open-source SuperNova Explosion Code (SNEC). Astrophys. J.
814, 63 (2015). https://doi.org/10.1088/0004-637X/814/1/63

23. Müller, B., Janka, H.T., Marek, A.: A new multi-dimensional general relativistic
neutrino hydrodynamics code for core-collapse supernovae. II. Relativistic explo-
sion models of core-collapse supernovae. Astrophys. J. 756, 84 (2012). https://doi.
org/10.1088/0004-637X/756/1/84

24. O’Connor, E.: An open-source neutrino radiation hydrodynamics code for core-
collapse supernovae. Astrophys. J. Suppl. Ser. 219(2), 24 (2015). https://doi.org/
10.1088/0067-0049/219/2/24

25. Price, D.J., et al.: PHANTOM: a smoothed particle hydrodynamics and magne-
tohydrodynamics code for astrophysics. Publ. Astron. Soc. Aust. 35, e031 (2018).
https://doi.org/10.1017/pasa.2018.25

26. Springel, V.: The cosmological simulation code GADGET-2. MNRAS 364, 1105–
1134 (2005). https://doi.org/10.1111/j.1365-2966.2005.09655.x

27. Stone, J.M., Norman, M.L.: ZEUS-2D: a radiation magnetohydrodynamics code
for astrophysical flows in two space dimensions. I - the hydrodynamic algorithms
and tests. Astrophys. J. 80, 753–790 (1992). https://doi.org/10.1086/191680

28. Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement. A new
high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002).
https://doi.org/10.1051/0004-6361:20011817

https://doi.org/10.1177/1094342013505656
https://doi.org/10.1016/j.parco.2009.08.001
http://www.sciencedirect.com/science/article/B6V12-4X54JHJ-1/2/b261a63ad1957b89222e859101236ca7
http://www.sciencedirect.com/science/article/B6V12-4X54JHJ-1/2/b261a63ad1957b89222e859101236ca7
https://doi.org/10.1177/1094342017747692
https://doi.org/10.1177/1094342017747692
https://doi.org/10.1093/mnras/stv195
http://stacks.iop.org/0004-637X/681/i=2/a=1448
https://doi.org/10.1086/309604
https://doi.org/10.1086/309604
https://doi.org/10.1186/s40668-015-0007-9
https://doi.org/10.1186/s40668-015-0007-9
https://doi.org/10.1086/513316
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1088/0004-637X/814/1/63
https://doi.org/10.1088/0004-637X/756/1/84
https://doi.org/10.1088/0004-637X/756/1/84
https://doi.org/10.1088/0067-0049/219/2/24
https://doi.org/10.1088/0067-0049/219/2/24
https://doi.org/10.1017/pasa.2018.25
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1086/191680
https://doi.org/10.1051/0004-6361:20011817

Lightweight Software Process
Improvement Using Productivity
and Sustainability Improvement

Planning (PSIP)

Michael A. Heroux1, Elsa Gonsiorowski2, Rinku Gupta3, Reed Milewicz1,
J. David Moulton4, Gregory R. Watson5, Jim Willenbring1,

Richard J. Zamora6, and Elaine M. Raybourn1(B)

1 Sandia National Laboratories, Albuquerque, NM, USA
emraybo@sandia.gov

2 Lawrence Livermore National Laboratory, Livermore, CA, USA
3 Argonne National Laboratory, Lemont, IL, USA

4 Los Alamos National Laboratory, Los Alamos, NM, USA
5 Oak Ridge National Laboratory, Oak Ridge, TN, USA

6 NVIDIA, Santa Clara, CA, USA

Abstract. Productivity and Sustainability Improvement Planning
(PSIP) is a lightweight, iterative workflow that allows software devel-
opment teams to identify development bottlenecks and track progress to
overcome them. In this paper, we present an overview of PSIP and how
it compares to other software process improvement (SPI) methodologies,
and provide two case studies that describe how the use of PSIP led to
successful improvements in team effectiveness and efficiency.

Keywords: Software development · Software engineering · Software
process improvement

1 Introduction

The Department of Energy (DOE) Exascale Computing Project (ECP) pro-
vides an opportunity to advance computational science and engineering (CSE)
through high performance computing (HPC). Central to the project is the devel-
opment of next-generation applications that can fully exploit emerging architec-
tures for optimal performance and provide high-fidelity, multiphysics, and mul-
tiscale capabilities. At the heart of the effort is the need to improve developer
productivity, positively impacting product quality, development time, staffing

E. Gonsiorowski, R. Gupta, R. Milewicz, J. D. Moulton, G. R. Watson, J. Willenbring,
R. J. Zamora, E. M. Raybourn—contributed equally to this work.
R. J. Zamora—work was conducted while employed by Argonne National Laboratory.

Under the terms of Contract DE-NA0003525, there is a non-exclusive license for use
of this work by or on behalf of the U.S. Government.

c© National Technology & Engineering Solutions of Sandia, LLC. 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 98–110, 2020.

https://doi.org/10.1007/978-3-030-44728-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-44728-1_6

Lightweight Software Process Improvement Using PSIP 99

resources, and software sustainability, reducing the cost of maintaining, sustain-
ing, and evolving software capabilities in the future.

This paper presents the Productivity and Sustainability Improvement Plan-
ning (PSIP) process: a lightweight, iterative workflow where teams identify
their most urgent software development and sustainability bottlenecks and track
progress on work to overcome them. Through the PSIP process, teams are able
to realize process improvements, without a huge disruption to any current devel-
opment processes.

PSIP is best understood as an instantiation of the Plan-Do-Check-Act man-
agement cycle (PDCA, also known as Plan-Do-Study-Adjust), first described by
Deming in 1950 [5], which provides the intellectual foundation for much of the
modern process literature (including SPI methods and Agile as a philosophy)
and is itself a translation of the scientific method to the study of work process.
It is both a method to be used by an individual or with a team, and a method to
be taught to a team, with the team driving the improvement process. One PSIP
process output is the development of Progress Tracking Cards (PTC), brief,
shareable documents containing the target, or goal of the planning activity, title
of the topic of improvement, and a step-by-step list of activities or outcomes that
incrementally lead to improvements in team effectiveness and efficiency. Through
the PSIP process, teams are able to realize process improvements, without a huge
disruption to any current development processes.

The contributions of this paper are:

– We compare PSIP with other software process improvement (SPI) method-
ologies.

– We present the PSIP process, a lightweight software process improvement
framework.

– We discuss two case studies where a PSIP cycle was implemented by an
existing software development team with the help of a facilitator.

2 Background

Techniques for software process improvement (SPI) aim to assess, design, and
realize effective development processes. SPI has been the subject of an extensive
body of literature, with “classic” SPI frameworks such as CMM(I) or SPICE
dating back three decades [4,7,15]; this trend can be traced back even further
to the “software crisis” starting in the late 1960s [12] and the realization that an
intentional process of creating software was as important to software develop-
ment as software itself or, as Osterweil put it, “software processes are software
too” [14].

Within the context of scientific software research and development, SPI
is an undeveloped territory. The most recent notable mention came in 2015;
Mesh et al. reported plans to develop a Scientific SPI Framework (SciSPIF) by
cataloging common decision factors and project characteristics and their rela-
tionships to software engineering practices, ideally realized as an online self-
assessment tool [13]. Further work in this area is needed. In 2006, Baxter et al.
observed that a lack of basic knowledge about development processes was a
significant challenge for the scientific software community [2], but recent studies

100 M. A. Heroux et al.

suggest the situation is now more nuanced. A 2019 survey of scientific software
developers by Eisty et al. found that respondents not only saw value in software
process, but even “[preferred] using a defined software development process”
over ad hoc approaches [6]. This may be a reaction to the increasing impor-
tance of software in science: a 2018 survey by Pinto et al. found that 8 out of
10 researchers reported spending “more time” or “much more time” developing
software than they did 10 years ago [17]. We argue that the challenge moving
forward is to cultivate ways of doing software work that align with the needs of
the scientific software community.

Scientific software teams are typically focused on obtaining scientific results
from the software they write. Funding is for generating results, not software. This
is a competitive process and teams cannot usually expend much time or effort
outside of writing the software features that support generating new results.
Therefore, any productivity or sustainability improvements must be incremental
and integrated into the primary feature development process. Bug fix or refac-
toring releases are rare.

In our experience, scientific software teams typically have little or modest
formal software engineering training. They may be aware of formal terminology
such as software lifecycle, requirements elicitation and technical debt, but often
have incomplete or incorrect understanding. Furthermore, these teams have an
inherent skepticism about formal, heavyweight approaches that might signifi-
cantly delay their current scientific activities or require large investments before
seeing benefits.

In this context, a lightweight, adaptable, iterative and informal approach
to improving developer productivity and software sustainability is necessary.
A comprehensive review by Kuhrmann et al. found that from 1989 to 2016 an
average of 11 new or customized SPI methods were introduced per year [11]. One
hypothesis put forward by the authors is that process improvement is a context-
specific activity and that methods must be adapted to their context in order to
be successful. This trend towards adaptation echoes recent studies that suggest
most software companies today use individualized development processes that
are hybrids of different methodologies and philosophies [10,20]. Along these lines,
PSIP is neither wholly new nor unsupported but is instead a tailored approach
that builds upon previous SPI approaches; likewise, it is not all-encompassing
but is instead a lightweight toolkit that can be incorporated into existing CSE
software development workflows.

3 Methodology

The Interoperable Design of Extreme-scale Application Software (IDEAS-
ECP) [8] conducts research on topics of developer productivity and software sus-
tainability in CSE domain. Its PSIP efforts focus on methodologies for improving
productivity and sustainability by working with CSE software teams to identify
opportunities to iteratively and incrementally improve software team practices
and processes.

Lightweight Software Process Improvement Using PSIP 101

The objectives of the PSIP process are to capture and convey the practices,
processes, policies, and tools of a given software project. The PSIP workflow
is intended to be lightweight and fit within a project’s planning and develop-
ment process. It is not meant to be an assessment or evaluation tool. Instead
PSIP captures the tacit, more subjective aspects of team collaboration, workflow
planning, and progress tracking. Additionally, in the potential absence of plan-
ning and development processes, and as scientific software teams scale to larger,
more diverse, aggregate teams, unforeseen disruptions or inefficiencies can often
impede productivity and innovation [8]. PSIP is designed to bootstrap aggregate
team capabilities into best practices, introduce the application of appropriate
resources, and encourage teams to adopt a culture of process improvement.

Fig. 1. The Productivity and Sustainability Planning (PSIP) cycle.

At its core, the PSIP framework is an iterative, incremental, repeatable,
cyclic process for improvement planning. The cyclic nature of the PSIP pro-
cess enables software development teams to improve overall project quality and
achieve science goals by encouraging frequent iteration and reflection. The multi-
step, iterative PSIP Workflow is described below (see Fig. 1). Beginning at the
start located at the left of Fig. 1, software teams may work through these steps
on their own, or with the assistance of a PSIP facilitator:

1. Summarize Current Project Practices: The first phase involves briefly docu-
menting current project practices. It is important to record the original state
of the project to both provide a baseline for measuring progress and to help
identify areas that are ready for improvement. We find it important to use
plain language when defining current project practices to reduce misunder-
standing of software engineering terms that might be vaguely or incorrectly

102 M. A. Heroux et al.

understood by the software team, whose member may not be formally trained
in software engineering concepts.

2. Set Goals: Completing this step typically brings to light project practices
that can benefit from a focused improvement effort. Although any number
of goals may be identified in this step, a limited set is selected at any given
time to best impact the project and is achievable within a predictable span
of time (a few weeks to a few months). Goals not chosen at this time may be
tabled for future iterations.

3. Construct a Progress Tracking Card (PTC): Recall that a PTC is a brief
document containing the target, or goal of the planning activity, title of
the topic of improvement, and a step-by-step list of activities or outcomes
that incrementally lead to improvements in team effectiveness and efficiency.
Each practice will have its own PTC. Teams may select PTCs from the PTC
catalog1; or define their own PTC or modify PTCs found in the catalog. The
purpose of the PTC is to help teams set and achieve improvement goals. The
PTC is not a tool for external assessment or comparison with other projects.
In fact, since PTCs are custom designed for each project, comparisons are
typically not possible.

4. Record Current PTC Values: In order to establish baseline capabilities and
track progress, teams record the initial values (0–5 are suggested) for each
PTC.

5. Create a Practice Improvement Plan: In order to increase the values in a PTC
(corresponding to improvements in software productivity and sustainability),
teams develop a plan to reach a higher value for each PTC.

6. Execute the Plan: Team efforts are focused on improving the selected prac-
tices described in the PTC. At first, teams may see a slowdown, as they work
to start or improve a given practice. It is possible for teams to use comple-
mentary SPI methods in executing their plan. The slowdown in most cases
is proportional to the amount of change, but ideally teams should see steady
progress on a weekly basis after the initial phase and be able to complete
execution of a particular practice improvement within a few months.

7. Assess Progress: During execution, teams assess, and determine the rate
of progress each week. They adjust their strategy for success if needed. If
progress is delayed too long, teams usually start the next PSIP iteration.

8. Repeat: The PSIP process is iterative. Continual process improvement is a
valuable attribute for any software project. The PSIP process may be used
to guide improvement planning within software projects and across aggregate
projects.

During a PSIP process or at its conclusion, teams may elect to share their
PSIP PTCs, best practices, and/or lessons learned with other teams. Teams
may share their results with the community in a variety of ways including con-
tributing blog posts on PSIP progress to the Better Scientific Software (BSSw)
website2, presenting lessons learned in the HPC Best Practices for HPC Software
1 https://bssw.io/psip.
2 https://bssw.io.

https://bssw.io/psip
https://bssw.io

Lightweight Software Process Improvement Using PSIP 103

Developers webinar series3, and by modifying, curating, or creating tools such
as new PSIP templates, PTCs, or resources for inclusion in the PSIP catalog4.

4 Related Work

In this section, we situate PSIP in the context of SPI methods. PSIP breaks from
classic first wave SPI (such as CMM(I) or SPICE, or non-software methods trans-
lated to software like ISO 9000 or Six Sigma), in that it trades comprehensive
standards and certification-driven assessment for self-defined, internally-driven
goals. It does, however, carry forward first wave ideas such as having staged
models of improvement like CMM(I), in the form of progress tracking cards.
Additionally, PSIP is more aligned with numerous second wave SPI approaches
which incorporate lean and agile thinking into their methods; it adopts their
emphasis on iterative improvement and continuous learning.

Recall that PSIP is best understood as an instantiation of the Plan-Do-
Check-Act management cycle (PDCA, also known as Plan-Do-Study-Adjust),
first described by Deming in 1950 [5]. It is both a method to be used by an
individual or with a team, and a method to be taught to a team, with the team
driving the improvement process. This situates PSIP within a constellation of
bottom-up, inductive SPI methods as characterized by Stojanov 2016 [19]. These
include QIP [1], AINSI [3], LMPAF2 [18], and iFLAP [16]. Each of these meth-
ods emphasizes collaborative discovery of goals, tailored improvement solutions,
and is designed to be lightweight to support small, resource-constrained organi-
zations. However, they differ in their approaches.

QIP and AINSI (an implementation of QIP) differ from PSIP in that both
use a Goal-Questions-Metrics approach to create measures for goals whereas
PSIP utilizes progress tracking cards (PTC) that express either quantitatively-
or qualitatively-defined goal states. PSIP, like LMPAF2, may utilize a moderator
to conduct interviews in order to construct documentation that captures team’s
practices, and draw out targets for process improvement. However, LMPAF2

focuses specifically on maintenance activities and relies on frequent feedback ses-
sions with the moderator to track progress. Finally, iFLAP conducts interviews
with individuals drawn from across an organization and triangulates improve-
ment activities by comparing different interview results (as opposed to a group
interview), and the assessor(s) are responsible for creating a prioritization scheme
for improvement targets (PSIP has no analogous concept).

3 https://bssw.io/events/best-practices-for-hpc-software-developers-webinar-series.
4 See https://bssw.io/psip for further elaboration.

https://bssw.io/events/best-practices-for-hpc-software-developers-webinar-series
https://bssw.io/psip

104 M. A. Heroux et al.

5 Case Studies

In this section, we present two case studies where an existing software develop-
ment team collaborated with a facilitator to work through the PSIP process.

5.1 EXAALT

The Exascale Atomistics for Accuracy, Length and Time (EXAALT) project5

is a part of the Chemistry and Materials Applications area of the Exascale
Computing Project. It is a materials modeling framework designed to leverage
extreme-scale parallelism to produce accelerated molecular dynamics simulations
for fusion and fission energy materials challenges. The official team comprises
approximately 10 researchers at Los Alamos National Laboratory (LANL) and
Sandia National Laboratories (SNL) working on four sub-projects. While two
of these sub-projects are driven by a handful of people, the others are larger
open-source efforts with many external contributors.

The EXAALT team was keen to utilize PSIP to improve their software engi-
neering practices, particularly in the area of continuous integration (CI). Since
the project integrates four distinct software packages, each with its own list of
dependencies, the team frequently struggled with build regressions in the early
days of development. After a few informal discussions with the authors, the team
agreed that it would be necessary to (1) improve their end-to-end build system,
(2) implement a CI pipeline to automatically detect build regressions, and (3)
add unit/regression testing to the CI pipeline.

Although the team had not committed to an explicit project-management
process at the early stages of the collaboration, the steps taken during these
discussions correspond to the first two steps of the PSIP cycle shown in Fig. 1.
In order to prioritize their efforts, it was critical to clarify the current project
practices and specify both near and long-term goals.

For the initial stage of the implementation of an automated end-to-end build
system, the PSIP process was only used implicitly for project planning and
execution. For the two remaining goals, however, PSIP was followed explicitly
using the PTCs shown in Fig. 2 (in summarized form). During steps 3–4 of the
PSIP cycle, these PTCs were both fully annotated, but reflected a “score” of
zero. For step 5 of the PSIP cycle, each PTC step was resolved in both Jira and
GitLab as distinct stories and issues, respectively. The actual implementation
of these Jira/GitLab issues corresponded to step 6 of the PSIP cycle, and the
following assessment of the completed work was the final step.

The completion of these cards does not mean that the EXAALT team is
finished improving their CI and/or testing infrastructure. Like most aspects of
software engineering, PSIP is an iterative process, and the initial plan may need
to change if unexpected roadblocks emerge. Whether or not a progress tracking
card can be followed to completion, documenting, revising, and repeating the

5 https://www.exascaleproject.org/project/exaalt-molecular-dynamics-at-the-
exascale-materials-science.

https://www.exascaleproject.org/project/exaalt-molecular-dynamics-at-the-exascale-materials-science
https://www.exascaleproject.org/project/exaalt-molecular-dynamics-at-the-exascale-materials-science

Lightweight Software Process Improvement Using PSIP 105

Fig. 2. Summarized versions of PSIP PTCs used for the EXAALT-IDEAS collabora-
tion. The specific scores in the figure correspond to the state of the project. Note that
some details about dependencies and timeline are excluded from the PSIP cards for
clarity.

process makes sense when a natural finishing point is reached. The PTC used in
this effort (see Fig. 2) is available in the PSIP PTC catalog.

At this stage, the EXAALT team members have successfully adopted a min-
imal CI framework and are ready to apply the PSIP process to improve their
CI pipeline further. The current plan is to modify the existing infrastructure
to interface with ECP-supported facilities (e.g., Argonne Leadership Computing
Facility and Oak Ridge Leadership Computing Facility). In addition, they are
applying the PSIP process to further improve test coverage, specifically in the
area of statistical tests for non-deterministic components and task management.

106 M. A. Heroux et al.

5.2 Exascale MPI

The Exascale MPI (Message Passing Interface) project consists of team mem-
bers from Argonne National Laboratory. The project focuses on developing
a production-ready, high-performance MPI implementation that scales to the
largest supercomputers in the world. One particular challenge for the Exascale
MPI project is a continuous influx of new contributors within the project. These
new contributors are expected to already have technical expertise with MPI or
learn these skills on-the-fly as needed by the job. While the team does provide
some mentoring to new members, limited resources require that newcomers be
fairly independent and proactive when it comes to learning the basic technical
aspects of MPI.

The Exascale MPI team worked with a facilitator to implement the PSIP
process. Through the documentation of current practices, the need to improve
the project’s onboarding processes was identified. Both the Exascale MPI team
and the facilitator agreed to work on a PSIP cycle focused around improving the
training for team contributors. This would take the form of a single destination
resource containing all the required training material that could be provided to
new team members during the onboarding process.

Once the overall goal was identified, the Exascale MPI team, together with
the facilitator, identified key aspects of a satisfactory solution. These aspects
included the need for:

– A central “repository” for all training material, relevant to the Exascale MPI
team.

– Visually interesting, and easy navigation across all topics.
– Easy administration and ability to update the “repository” sustainably.
– Open collaboration to allow external contributors to contribute new technical

topics and resources.

With the overall goal and desired outcome defined, the Exascale MPI team
worked with the facilitator to create a timeline based on the resources available,
followed by the creation of a PTC. Figure 3 shows a snapshot of the PTC created
for this PSIP activity. Each step in the PTC, in this case, serves as an important
checklist step to move towards the desired goal. As mentioned, these PTC cards
are live entities and they may change depending on unexpected progress or
bottlenecks.

Once the PTC was created, the team focused on the execution aspect of the
PTC. The PSIP process aims to engage a full team through the execution of PTC
steps. Each step is approachable, yet builds towards a larger goal. Throughout
the PSIP process, the Exascale MPI team, with help from the facilitator, contin-
ually evaluated their progress on the path to building a resource for improving
onboarding and training.

For improving the training process, the teams identified what categories of
topics needed to be covered in the onboarding training. For each category, the
team worked and solicited resources (based on the potential expertise level of
new onboarding members), reviewed the material for accuracy and applicability,

Lightweight Software Process Improvement Using PSIP 107

Fig. 3. Progress Tracking Card snapshot for Exascale MPI team, including date of
completion. Row 0 indicates the team’s status at the beginning of implementing the
PSIP process.

and worked on the design to integrate them into the training website/portal6.
The Exascale MPI team, with help from the facilitator, explored the viability
of using existing cloud repository services (e.g., Google Drive). In the end, the
team decided to design a custom stand-alone website to serve as a training
portal, based on their needs and input from the team members. The training-
base portal is a continual work-in-progress by the Exascale MPI team and can
be a resource for the entire HPC community. At this stage, the Exascale MPI
team is testing the training portal with their new hires and soliciting feedback.
The next step for this PSIP is to create a plan to improve the training portal,
which will focus on adding new content categories and establishing processes to
sustain the content and its validity.

6 Discussion and Future Work

With the Exascale MPI PSIP process, we learned that PSIP topics developed
for a particular team may sometimes be generalizable enough to be relevant and
important to several teams in an organization or across multiple organizations.
The topic of technical onboarding training for new hires may sometimes be team-
specific, however most teams working in the HPC field need to train people in
the common practices of the community. Thus, a PTC created for one team (as
in the case of the Exascale MPI team) can be used by many other teams as a
starting point. We also realized that not only the PTC, but also the resulting
output (as in the case of the training portal) could end up being immensely

6 Exascale Onboarding training portal: https://sites.google.com/view/hpc-training-
base/home.

https://sites.google.com/view/hpc-training-base/home
https://sites.google.com/view/hpc-training-base/home

108 M. A. Heroux et al.

useful across many other teams as well. The PTC used in this effort (see Fig. 3)
is available in the PSIP PTC catalog.

For EXAALT, we learned that one significant advantage of the PSIP man-
agement approach is that it forces the team to specify the 4–6 steps needed to
reach a given goal. In this case, the process helped formulate the actionable items
needed to lay the foundation for CI within the existing EXAALT software repos-
itory. Although PSIP can be used to manage the goals of any software project,
the specific details of each step are highly dependent on the project. For example,
different projects will most likely need to work with slightly different technologies
to build a practical CI pipeline. Specific details will depend on where and how
the source code repository is organized, as well as the limitations/capabilities
of the existing library dependencies. For EXAALT, this process required careful
discussion between teams in order to determine the key technologies to use.

In summary, PSIP is a lightweight adaptable framework for iterative and
incremental improvement, applicable to any CSE software project, regardless
of how software is developed and used. PSIP is easy to learn, especially for
scientists who cannot dedicate time and resources to more formal or heavyweight
approaches.

PSIP is meant to provide a mechanism to set goals collaboratively, get team
buy-in, and enable periodic status checks to ensure the goals and execution are
aligned. In some cases, teams may want to utilize a facilitator. This person may
augment the PSIP by bringing process experience and objectivity to the effort,
coaching the team on improving effectiveness and efficiency.

PSIP does have limitations. It is not as quantitative as other tools (not
designed that way) and will possibly seem trivial to professional software engi-
neering teams. It is presently best applied in research software settings and
untested in large enterprises with product deliverables. Finally, no empirical
research on PSIP is available currently, only a few case studies.

Presently, PSIP improvements will likely come from further experience using
it. We already know that one of the challenges of PSIP is making sure that
progress on the topic of a PTC is not blocked by some prerequisite impediment
that must be addressed first. Other needs include more documentation to support
conducting PSIP without a facilitator to improve scalable application of PSIP.
We also need to grow our PTC catalog and conduct more research on the use of
PSIP with open source software teams, and large enterprises. Finally, PSIP does
not address the issue of teams not being rewarded for efforts to improve devel-
oper productivity and software sustainability. In order for PSIP to be broadly
effective, the CSE community must prioritize the value of these improvements,
something that we observe is happening slowly.

7 Conclusion

In this work we introduced PSIP, a lightweight, iterative SPI framework and
method best understood as a Plan-Do-Check-Act management cycle. Drawing
upon a well-supported foundation of software improvement theory and practice,

Lightweight Software Process Improvement Using PSIP 109

PSIP was developed to help CSE software teams, and specifically HPC teams
achieve software process maturity, an answer to the call by the National Strategic
Computing Initiative for “a portfolio of new approaches to dramatically increase
productivity in the development and use of parallel HPC applications” [9]. We
provided two case studies where the PSIP cycle was implemented by existing
scientific software development teams with the help of a facilitator. Beyond sci-
entific computing, we hope that our study of SPI methods and their use outside
of conventional software development environments will inform and drive further
innovation in the domain of software processes and methodologies.

Acknowledgements. Special thanks to Lois McInnes (ANL) and the members of
IDEAS-ECP. Thanks to PSIP partners Danny Perez (LANL), Art Voter (LANL),
Christoph Junhans (LANL), and Pavan Balaji (ANL). Images used by permission.

This work was supported by the U.S. Department of Energy Office of Science,
Office of Advanced Scientific Computing Research (ASCR), Office of Biological and
Environmental Research (BER), and by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525. SAND2019-9693 C.

References

1. Basili, V.R., Caldiera, G.: Improve soft-ware quality by reusing knowledge and
experience. Sloan Manag. Rev. 37, 55 (1995)

2. Baxter, S.M., Day, S.W., Fetrow, J.S., Reisinger, S.J.: Scientific software develop-
ment is not an oxymoron. PLoS Comput. Biol. 2(9), e87 (2006)

3. Briand, L., El Emam, K., Melo, W.L.: ANSI-an inductive method for software
process improvement: concrete steps and guidelines (1995)

4. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration
and Product Improvement. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

5. Deming, W.E.: Elementary Principles of the Statistical Control of Quality: A Series
of Lectures. Nippon Kegaku Gijutsu Remmei, Tokyo (1950)

6. Eisty, N.U., Thiruvathukal, G.K., Carver, J.C.: Use of software process in research
software development: a survey. In: Proceedings of the Evaluation and Assessment
on Software Engineering, pp. 276–282. ACM (2019)

7. Emam, K.E., Melo, W., Drouin, J.N.: SPICE: The Theory and Practice of Soft-
ware Process Improvement and Capability Determination. IEEE Computer Society
Press, Washington, D.C. (1997)

8. Heroux, M., et al.: Developer productivity and software sustainability report:
advancing scientific productivity through better scientific software, September 2018

9. Holdren, J.P., Donovan, S.: National strategic computing initiative strategic
plan. Technical report, National Strategic Computing Initiative Executive Council
(2016)

110 M. A. Heroux et al.

10. Klünder, J., et al.: Catching up with method and process practice: an industry-
informed baseline for researchers. In: Proceedings of the 41st International Con-
ference on Software Engineering: Software Engineering in Practice, pp. 255–264.
IEEE Press (2019)

11. Kuhrmann, M., Diebold, P., Münch, J.: Software process improvement: a system-
atic mapping study on the state of the art. PeerJ Comput. Sci. 2, e62 (2016)

12. McIlroy, M.: Software engineering: report on a conference sponsored by the NATO
science committee. In: NATO Software Engineering Conference, NATO Scientific
Affairs Division, pp. 138–155 (1968)

13. Mesh, E.S.: Supporting scientific SE process improvement. In: Proceedings of the
37th International Conference on Software Engineering-Volume 2, pp. 923–926.
IEEE Press (2015)

14. Osterweil, L.: Software processes are software too. In: ICSE 1987: Proceedings of
the 9th International Conference on Software Engineering, Monterey (1987)

15. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model,
version 1.1. IEEE Softw. 10(4), 18–27 (1993)

16. Pettersson, F., Ivarsson, M., Gorschek, T., Öhman, P.: A practitioner’s guide to
light weight software process assessment and improvement planning. J. Syst. Softw.
81(6), 972–995 (2008)

17. Pinto, G., Wiese, I., Dias, L.F.: How do scientists develop scientific software? An
external replication. In: 25th International Conference on Software Analysis, Evo-
lution and Reengineering, SANER 2018, Campobasso, Italy, 20–23 March 2018,
pp. 582–591 (2018)

18. Stojanov, Z., Dobrilovic, D.: Learning in software process assessment based on feed-
back sessions outputs. In: Information Technology and Development of Education
(ITRO) 2015, p. 259 (2015)

19. Stojanov, Z.: Inductive approaches in software process assessment. In: International
Conference on Applied Internet and Information Technologies (2016)

20. Tell, P., et al.: What are hybrid development methods made of?: an evidence-based
characterization. In: Proceedings of the International Conference on Software and
System Processes, pp. 105–114. IEEE Press (2019)

Role-Oriented Code Generation
in an Engine for Solving Hyperbolic

PDE Systems

Jean-Matthieu Gallard(B), Lukas Krenz, Leonhard Rannabauer,
Anne Reinarz, and Michael Bader

Department of Informatics, Technical University of Munich, Munich, Germany
{gallard,lukas.krenz,leonhard.rannabauer,reinarz,bader}@in.tum.de

Abstract. The development of a high performance PDE solver requires
the combined expertise of interdisciplinary teams with respect to applica-
tion domain, numerical scheme and low-level optimization. In this paper,
we present how the ExaHyPE engine facilitates the collaboration of such
teams by isolating three roles: application, algorithms, and optimization
expert. We thus support team members in letting them focus on their
own area of expertise while integrating their contributions into an HPC
production code.

Inspired by web application development practices, ExaHyPE relies
on two custom code generation modules, the Toolkit and the Kernel
Generator, which follow a Model-View-Controller architectural pattern
on top of the Jinja2 template engine library. Using Jinja2’s templates to
abstract the critical components of the engine and generated glue code,
we isolate the application development from the engine. The template
language also allows us to define and use custom template macros that
isolate low-level optimizations from the numerical scheme described in
the templates.

We present three use cases, each focusing on one of our user roles,
showcasing how the design of the code generation modules allows to
easily expand the solver schemes to support novel demands from appli-
cations, to add optimized algorithmic schemes (with reduced memory
footprint, e.g.), or provide improved low-level SIMD vectorization sup-
port.

Keywords: ExaHyPE · Code generation · High-order discontinuous
Galerkin · Hyperbolic PDE systems · Model-View-Controller · Jinja2

1 Introduction

ExaHyPE (“An Exascale Hyperbolic PDE Engine”, www.exahype.eu) is an EU
Horizon 2020 project to develop an exascale-ready general solver for hyper-
bolic systems of partial differential equations (PDEs). Intended as an engine

c© Springer Nature Switzerland AG 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 111–128, 2020.

https://doi.org/10.1007/978-3-030-44728-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_7&domain=pdf
www.exahype.eu
https://doi.org/10.1007/978-3-030-44728-1_7

112 J.-M. Gallard et al.

(as in “game engine”), it concentrates on a dedicated numerical scheme and on
a fixed mesh infrastructure, but provides flexibility in the PDE system to be
solved [14]. Its mission statement is “to enable medium-sized interdisciplinary
research teams to realize extreme-scale simulations of grand challenges mod-
elled by hyperbolic conservation laws”. We anticipate (and have observed in our
project) that such endeavours progress in phases: from first attempts to imple-
ment the desired PDE model in the engine (realizing simple analytic setups) via
application-oriented benchmark setups (to validate numerical schemes) towards
large-scale demonstrator scenarios that establish the viability of the engine to
tackle grand challenges. We also need to envisage that successful demonstrators
shall be further developed into production codes or even services.

Orthogonal to the requirements of designing more and more complex appli-
cations, we are facing the challenges of upcoming exascale architectures. The
engine needs to take into account architecture-specific optimizations, which,
however, again need to be tailored to the specific PDE system and variants
of the numerical schemes. A common approach is to rely on C++ templating,
in practice this approach is often limited and thus supplemented by the use of
a domain-specific language such as UFL [1] and code generation for hardware-
specific optimisations, see e.g. [10,16]. To solve the contradictory goals of being
both an optimized custom-made solver and a broad general-purpose framework,
ExaHyPE uses code generation and modularity. The ExaHyPE engine isolates
its most compute intensive routines into modular kernels. These kernels are cre-
ated using code generation to be able to choose the most appropriate numerical
schemes for a given application and further tailor them to a given set of require-
ments. Code generation also allows the engine to rely on tailored glue code to
bind user written functions that implement the desired PDE system, and the
suitable kernels to its engine.

The generation of the glue code and kernels is performed by two custom
Python 3 modules, the Toolkit and the Kernel Generator. They are designed to
be expandable and accommodate for new user requirements.

This interplay of user-provided PDE-specific code, generated glue code and
kernels, and hardware-aware optimization of both, typically requires the com-
bined expertise of interdisciplinary teams. We have observed that in such teams
the following roles exist and need to be addressed by the engine:

The application expert implements the PDE system for a given applica-
tion, as well as problem-specific initial and boundary conditions or criteria for
mesh refinement and admissibility of solutions. This role desires a straightfor-
ward user API that requires only knowledge about the application and hides
the complexity of the solver and its optimizations. It expects a general-purpose
framework with best-possible flexibility in terms of implementing various PDE
systems, respective application scenarios and postprocessing of results.

The algorithms expert tunes the numerical solvers, for performance or
numerical properties, breaking them down into sequences of kernel calls. New
algorithmic schemes need to be made available, to expand ExaHyPE’s capabili-
ties to tailor itself toward applications matching specific numerical requirements.

Role-Oriented Code Generation in an Engine 113

The algorithms expert needs to be able to design these parts in an architecture-
oblivious way, while still getting low-level optimizations automatically in the
generated code.

The optimization expert contributes architecture specific knowledge and
optimizes all performance-critical components of the solver. This role requires
tools to impact in the background the work done by the other two, while being
able to efficiently support multiple architectures.

The three roles might be taken by a single person, but will usually be dis-
tributed to teams, such that each role might even be adopted by several per-
sons. While a separation of concerns is used in other PDE frameworks, such
as Firedrake [11,13] (following a compiler-based approach), we put a special
emphasis on the ability of the three experts to extend the code generation itself.
ExaHyPE thus uses its code generation utilities to isolate the roles, allowing
users to focus on their area of expertise, while integrating their cumulative work.
To achieve this, we took inspiration from web application development prac-
tices and designed both code generation modules using a Model-View-Controller
(MVC) architectural pattern on top of a template engine library, Jinja2 (http://
jinja.pocoo.org/). Such template engines are not often used in HPC software
– an exception being the MESA-PD particle dynamics code developed within
the waLBerla framework [6]. There, template logic is used to decouple physical
interaction models from the remaining framework. For a general PDE frame-
work, such as ExaHyPE, a similar decoupling is not sufficient, however, due to
the large number of supported use cases, the use of external libraries and the
strong interdependence of the numerical methods. In this paper, we show how
ExaHyPE’s code generation utilities and their design choices support the sep-
aration of roles and foster optimization of ExaHyPE towards an exascale PDE
engine.

We start with a brief overview of the engine, its ADER-DG scheme, kernels
and pre-compile-time code generation utilities in the Toolkit and Kernel Gener-
ator. In Sect. 3 we discuss the architecture of our code generation utilities and
how the MVC pattern and Jinja2 are used to make code generation and opti-
mization more straightforward. We then discuss on three use cases how these
choices translate into a simplified workflow for each of the three identified roles.

2 The ExaHyPE Engine

In this section, we provide the numerics of the ADER-DG scheme used by
ExaHyPE and how it allows to design a framework for solving a wide range of
applications. We then motivate the use of code generation to provide a smooth
user experience for the application expert while providing opportunities for algo-
rithms and optimization experts.

http://jinja.pocoo.org/
http://jinja.pocoo.org/

114 J.-M. Gallard et al.

2.1 A High-Order ADER-DG Solver with A-Posteriori Limiting

The ExaHyPE engine [14] can solve a large class of systems of first-order hyper-
bolic PDEs, which are expressed in the following canonical form:

∂Q
∂t

(x, t) + ∇ · F(Q) + B(Q) · ∇Q(x, t) = S(Q). (1)

Q(x, t) ⊂ R
q is a space- and time-dependent state vector for any x ∈ Ω ⊂ R

d

(d = 2, 3) and t ∈ R
+
0 . F denotes the conserved flux vector, B the (system)

matrix composing the non-conservative fluxes and S(Q) the source terms.
To solve equations of this form, ExaHyPE uses the arbitrary high-order accu-

rate ADER Discontinuous Galerkin (DG) method in the formulation by Dumb-
ser et al. [18]. The computational domain Ω is discretized with a tree-structured
Cartesian grid using the Peano framework [17] as mesh infrastructure, allowing
for dynamic adaptive mesh refinement. As understanding the kernels described
in the following sections relies on an understanding of the numerical scheme we
will briefly sketch the ADER-DG method. More details on the implementation
in the engine are given in [2].

The ADER-DG method consists of two phases, a predictor step in which
the weak formulation of (1) is solved locally in each cell, and a corrector step in
which the contributions of neighboring cells are taken into account. To derive the
weak solution of the problem we insert the DG ansatz function from the space
of piecewise polynomials into Eq. (1) and multiply with a test function from the
same space of piecewise polynomials. We then integrate over a space-time control
volume. The solution of the resulting element-local problem makes up one of our
most compute-intensive kernels, the space-time predictor. In non-linear problems
the solution of this element-local weak form is calculated using Picard iterations,
in the linear setting it can be computed directly using the Cauchy-Kowalewski
procedure.

In the second phase the element-local predictor solution is corrected, using
contributions from neighboring cells. To solve the surface integrals we introduce
a classical Riemann solver as it is used in Godunov-type FV schemes. After this
correction the next time-step can be calculated. The next time step size depends
on the CFL number.

However, this high-order approach suffers from oscillations at shocks and
discontinuities. We therefore apply an a-posteriori Finite Volume limiter [4]. We
identify cells as troubled using the following detection criteria: a relaxed discrete
maximum principle in the sense of polynomials, absence of floating point errors
(NaN, e.g.) and positivity (or similar physical constraints) of the solution. If one
of these criteria is violated after a time step, the scheme recomputes the solution
in the troubled cells, using a more robust high resolution shock capturing FV
scheme on a subgrid composed of (2N + 1)d cells. This procedure is composed
of several kernels, the computation of the discrete maximum principle, and a
projection from DG to FV solution and vice versa.

ExaHyPE thus provides building blocks to solve specific PDE systems with
a tailored scheme: DG vs. FV-only, DG with or without limiting, Cauchy-
Kowalewski procedure or Picard loops for linear or non-linear schemes, various

Role-Oriented Code Generation in an Engine 115

choices of Riemann solvers, etc. – presenting this complexity to users (depend-
ing on their roles) and thus keeping the engine and derived simulation software
manageable are consequently intrinsic challenges for the engine development.

2.2 Application-Specific Programming Interface

The canonical PDE system (1) can model a wide array of applications, including
relativistic astrophysics [3,7], seismic wave propagation [5,15] or several variants
of fluid equations (see [14] for an overview). All these problems can be formulated
via Eq. (1) via specific F(Q), B(Q) ·∇Q and S(Q). However, not all these terms
occur in every PDE; the engine should therefore not force the user to provide a
useless zero function.

Hence, as the first step, the application expert is expected to provide a speci-
fication file to describe the application and its runtime parameters. This includes
but is not limited to:

– Application parameters such as the number of quantities in the vector Q or
the polynomial order for the ADER-DG scheme;

– Which terms of the canonical PDE (1) will be required;
– Whether the application will require an a-posteriori limiter (as described in

Sect. 2.1);
– Optimization specific options that can be enabled to further improve the

application performance.

The specification file relies on a Domain Specific Language (DSL) defined via
JSON Schema (https://json-schema.org/). Using JSON Schema and its open
source tools simplifies both the validation of a given specification file and the
modification the DSL (e.g., to introduce new options) as will be described in the
use cases.

The specification file is passed to the code generation utilities that set up the
engine, and generate glue code and kernels. This includes a class UserSolver
where the application expert shall implement the required user functions:

– PDE-related functions that provide an implementation of the required terms
in (1), such as a flux function to compute F(qh);

– Initial and boundaries conditions;
– Eigenvalues and physical admissibility;
– Mesh refinement criteria (if mesh refinement is enabled).

The application can then be compiled using a generated Makefile and executed
with the specification file as argument for its runtime parameters.

Thus, from an application expert’s perspective, ExaHyPE allows to solve
complicated PDE systems with minimal code writing and without considering
the complex issues of designing a performance-oriented high-order solver on a
parallel compute cluster. Hence, ExaHyPE is well suited to quickly build an
application for a given PDE system and obtain first insights whether the engine
will fit the problem to be tackled.

https://json-schema.org/

116 J.-M. Gallard et al.

2.3 Architecture-Aware Optimization of Kernels

Toolkit and Kernel Generator aim to tailor the engine toward its applications and
a target architecture, such that an HPC-worthy production code is produced.
To enable this tailoring, the ExaHyPE engine itself is modular.

This is motivated by the fact that the element-local computation of ADER-
DG updates (cf. Sect. 2.1) naturally breaks down into substeps (space-time pre-
dictor, Riemann solver, etc.), which can often again be formulated as smaller
substeps (such as tensor or matrix operations). In the engine, each of these
substeps is isolated into a specific kernel. These kernels are the critical parts
of ExaHyPE, both performance-wise and regarding the implementation of the
numerical scheme [2].

Having more knowledge about the target application allows more specific but
also more efficient numerical schemes, such as using a linear scheme instead of
a general nonlinear one. Likewise, a specific numerical scheme may be required
to satisfy certain stability constraints, such as using a special Riemann solver.
Finally, knowing the target architecture enables different low-level optimization
techniques, such as the supported SIMD features and the required array align-
ment and padding settings.

The Kernel Generator uses all information provided in the specification file
to choose the correct scheme for each kernel and uses code generation to add
application- and architecture-aware optimizations to them. Using code genera-
tion also facilitates the inclusion of external performance related libraries and
code generators. The generated kernels are bound to the engine core using the
Toolkit’s generated glue code.

We cannot expect that the set of alternative schemes and supported opti-
mizations provided by the Kernel Generator will ever be complete. New user
and hardware requirements will arise constantly. Therefore, to facilitate the work
of algorithm and optimization experts, the Kernel Generator is designed with
ease of modification in mind, so that they can enrich the available customization
options of the engine. As adding new options for the Kernel Generator trans-
lates into expanding the specification file DSL and adapting the glue code, the
Toolkit’s design follows the same philosophy.

3 Code Generation in ExaHyPE

3.1 Model-View-Controller Design

The Toolkit and the Kernel Generator are implemented as Python 3 modules.
Python was chosen for its ease of use and development, as well as for its mature
open source ecosystem. Both modules follow the Model-View-Controller (MVC)
architectural pattern, which is widely used, especially in web applications. Our
motivation toward using an MVC pattern is twofold. First, the goal of gen-
erating user-tailored HTML pages and building an application by combining
multiple separate developer roles is quite similar to our own situation. MVC
has managed to become an industry standard, being recognized for the ease of

Role-Oriented Code Generation in an Engine 117

development, code reusability and useful abstraction layers it provides. Second,
we can re-purpose mature open source tools, such as the Jinja2 template engine,
to generate C++ code instead of its intended HTML output. Using a template
engine allows us to streamline the development of new features and to separate
the implementation of a new numerical scheme to its low-level optimization.

Reformulated in the MVC paradigm, each of our desired C++ files to be
generated (kernel and glue code alike) is a View to be rendered by a Model
responsible for it and the specification file is the input of the Controller. The
Toolkit implements the MVC pattern in the following way:

Controller. The Toolkit’s Controller class validates the specification file, parses
it, and builds multiple contexts, implemented by Python dictionaries. Each con-
text contains only the relevant information for a given Model, thus providing an
abstraction layer between the specification file grammar and the internal Toolkit
API. The Controller calls the application relevant models only and passes them
their respective context. For example a Python dictionary containing the applica-
tion name, path and target architecture (if provided) is generated and passed as
context to the Model responsible for generating the Makefile, while the Model
responsible for building the UserSolver contains the solver relevant informa-
tion, such as the polynomial order of the ADER-DG scheme or the used terms
of the canonical PDE form (1).

Model. Each Model is responsible for generating a specific View, or group of
Views. After receiving its context from the Controller, a Model may expand it
using its own internal logic to add relevant internal parameters. In situations
where different versions of a View exist, it decides which one is required. For
example, it might choose a View to generate the glue code for either a finite
volume solver or an ADER-DG solver, which require different kernels. It selects
the appropriate template that represents the desired View version, or in a simpler
case uses the sole template for this View.

View. Views are implemented by templates which are a generalized representa-
tion of a given C++ code that may be tailored to a specific context. The Jinja2
template engine is invoked to render a template with a Model-provided context.
Jinja2 parses its input template and uses the context to interpret it. Its output is
then written as a valid C++ file that matches the context, and thus specification
file, requirements. For example, it may hard-code the selected polynomial order
and use the generated kernels.

The Kernel Generator follows the same MVC architecture and is called by a
special Model of the Toolkit. This Model translates its context into the required
format for the Kernel Generator API and passes it to its Controller. The same
MVC schema is then replicated. The separation of Toolkit and Kernel Generator
into two utilities is dictated by their different purpose: The Toolkit generates
glue code and code the application expert is expected to interact with, while the
Kernel Generator handles numerical schemes and low-level optimizations for the
other two roles.

118 J.-M. Gallard et al.

3.2 Templates

As mentioned in Sect. 3.1, a template is a generalized representation of a given
C++ file that we want the code generation utilities to generate – e.g., a kernel
or some glue code. By using templates, we are able to put some logic in the
code representation while keeping it close to the generated code and thus easily
readable and expendable.

To express this logic, we use the templating language implemented by Jinja2.
Its language syntax is designed to be both easy to learn and to work with, and
is therefore well suited to allow ExaHyPE’s users to modify the behavior of its
code generation utilities. It also provides some advanced functionalities that can
be used directly in the code abstraction.

// template
{% if initA %}

{{ allocateArray(’A’, nDof)}}

for(int i=0; i<{{ nDof }}; ++i) {

A[i] = B[i+{{ nDof*nVar }}] * {{C}}[i];

}

{% endif %}

// generated code
double A[5] __attribute__ ((aligned (32)));

for(int i=0; i<5; ++i) {

A[i] = B[i+20] * foo[i];

}

Fig. 1. Example of a template and the resulting generated code

The code fragment in Fig. 1 illustrates how we use templates to generate
C++ code: At its simplest any given string or number can be abstracted behind
a variable in a template’s context. This is used, for example, to abstract the appli-
cation’s namespace, which depends on the user specification, in the template.
Mathematical computations can also be done and the result directly written
in the generated code, In the code of Fig. 1 this is used to hard-code the loop
boundary nDof, the index shift of the array B and the name of the third array.

Furthermore, boolean operations and branchings are used to selectively
enable or disable certain parts of the generated code. For example in the glue
code responsible for binding the kernels to the engine, choosing linear or non-
linear kernels is done using Jinja2’s branching. This allows us to efficiently deal
with the multitude of options ExaHyPE offers its users, without having to dupli-
cate code or use slower runtime branching. In the code of Fig. 1, branching is
used to include the whole fragment only if the context’s boolean initA is true.

Jinja2’s logic also includes subtemplating, i.e. including and rendering a tem-
plate inside another one, and custom macros. With this we can factorize repeat-
ing portions of the templates, thus making them easier to maintain and expand.

Role-Oriented Code Generation in an Engine 119

We also use macros to provide architecture-aware optimizations. In Fig. 1, we
use the macro allocateArray to allocate a new array A. This macro abstracts
the optimized allocation of an array of a given size. In our example, it produces
the C++ code to allocate the array A on the stack and on a 32-bytes boundary
for more efficient AVX2 operations.

3.3 Architecture-Oblivious Templates and Architecture-Aware
Optimization Macros

{% macro allocateArray(name , size , setToZero=False) %}

{% if tempVarsOnStack %}

double {{name }}[{{ size }}] __attribute__ ((aligned(\

{{ alignment }}))) {{"={0.}" if setToZero }} ;

{% else %}

double* {{name}} = ((double *) _mm_malloc(sizeof(double) \

*{{ size}}, {{ alignment }}));

{% if setToZero %}

std:: memset ({{ name}}, 0, sizeof(double)*{{ size }});

{% endif %}

{% endif %}

{% endmacro %}

Fig. 2. Example of an optimization macro to allocate arrays

The Kernel Generator provides kernels that are optimized toward both given
application requirements and a target architecture. The former is done via algo-
rithmic adaptations: choosing the appropriate scheme, enabling or disabling fea-
tures, hard-coding specific values, etc. The latter requires low-level code opti-
mizations (e.g., array padding and alignment), compiler specific pragmas and
instructions, or external libraries. Performing both at the same time on a given
kernel template would make it hard to read, maintain and expand. Hence the
separation of the role of algorithms and optimization experts.

Using Jinja2’s macros and variables, we can design an architecture-oblivious
template that will be rendered with architecture-aware optimizations. Thus,
most templates in the Kernel Generator are algorithmic templates: templates
that focus on describing a given scheme with some algorithmic optimizations
but without any complex logic for architecture related ones. A second smaller
set of templates define optimization macros and the subtemplates used by these
macros to perform a specific task or output a specific architecture-aware opti-
mization. The macros defined this way can then be used by the algorithmic
templates.

The code excerpt in Fig. 2 shows a simplified version of the allocateArray
macro that was used in Fig. 1. It takes the array’s name and size as posi-
tional inputs and optionally a boolean setToZero to indicate if the array

120 J.-M. Gallard et al.

should be initialized to zero. Then, depending on a global optimization flag
tempVarsOnStack, it allocates the array either on the stack or on the heap.
Enabling this feature depends on the target hardware setting, as a limited stack
size could cause crashes. The allocateArray macro takes care of array align-
ment to optimize for SIMD using a global alignment context parameter that
is set by the Kernel Generator’s Controller depending on the specified target
architecture, and thus the target AVX settings. For heap allocation, a compiler-
specific instruction is used (e.g., _mm_malloc for the Intel compiler).

Thus every time a temporary array is needed, it can be allocated using this
macro, hiding the low-level optimization from the algorithms expert. If the opti-
mization expert needs to add support for a different compiler, e.g., expanding
this macro provides it to all kernels. A complementing freeArray macro exists
to free the memory correctly, as for example using _mm_malloc requires using
the Intel-specific _mm_free instruction, whereas the pointer should not be freed
at all, if a stack allocation was used.

Macros can also be used to include external libraries. For example ExaHyPE’s
kernels spend a lot of computational effort in performing small dense matrix
products that result from expanding respective element-local tensor operations.
For these we employ LIBXSMM [9], which generates architecture specific func-
tion kernels to perform small matrix products at best-possible performance on
a given Intel architecture. Using a custom matmul macro and with some modi-
fication to the controller and models to properly define the parameters of each
matrix products in the template, LIBXSMM can be selected and integrated into
the kernels. By expanding the matmul macro, an optimization expert can also
easily switch to another library to support another kind of architecture.

Thus the development of new numerical schemes and the low-level
architecture-aware optimization can be kept separated. This ensures that the
role of algorithm and optimization expert are independent from one another.

4 Expanding the PDE: Navier-Stokes Equations

In this section, we discuss the solution of the compressible Navier-Stokes equa-
tions using the ExaHyPE engine [14]. Following our PDE system (1), we can
write the compressible Navier-Stokes equations as

∂

∂t

⎛
⎝

ρ
ρv
ρE

⎞
⎠

︸ ︷︷ ︸
=Q

+∇ ·
⎛
⎝

ρv
v ⊗ ρv + Ip + σ(Q, ∇Q)

v · (IρE + Ip + σ(Q, ∇Q)) − κ∇(T)

⎞
⎠

︸ ︷︷ ︸
=F(Q,∇Q)

= S(Q). (2)

where ρ denotes the density, ρv the momentum, ρE the energy density, T the
temperature and p the pressure (including hydrostatic pressure, e.g., gravita-
tional effects). The temperature diffusion is given by κ∇T with constant κ. Note
that the stress tensor σ(Q,∇Q) involves a parabolic component, expressed via
the dependence on ∇Q. While we can largely stay with the existing numeri-
cal approach to solve the equations in ExaHyPE, we had to extend the API to

Role-Oriented Code Generation in an Engine 121

allow for flux terms F(Q,∇Q) that depend on ∇Q in the canonical PDE (1).
For example, the gradient of the state vector Q had to be added as argument
of the flux function, which was also renamed to viscousFlux. Further changes
are modifications to the space-time predictor, the boundary conditions and the
introduction of a new Riemann solver [8].

As only minor modifications to the existing numerical schemes and none to
the optimizations are required, we followed a straightforward linear workflow:

4.1 Expanding the DSL

We modified the DSL of our specification file to include a new optional flag
enabling the viscous flux terms in the PDE system as an opt-in feature. In the
JSON schema, this meant adding a viscous_flux option to the already existing
list of optional PDE components for an ADER-DG Solver:

"items":{

"type":"string",

"enum":["flux","source","ncp","viscous_flux"]

}

The Schema processing library only performs basic input validation. Here
flux and viscous_flux should not appear together, thus a new test was added
to the validation method of the Toolkit’s Controller class, such that an error
message is issued if a user selects both options simultaneously.

4.2 Processing the New Specification File Option

The new viscous_flux option is processed by the Controller and passed on as
a boolean flag useViscousFlux in the context of the Models needing to act on
it. In the MVC architecture, the addition of a few lines of code is sufficient to
provide the Views with such a boolean flag.

4.3 Expanding the Views

The code to be generated is abstracted in the Views of the Toolkit and Kernel
Generator by Jinja2’s templates. Using Jinja2’s template branching logic, the
application expert is asked to provide a viscousFlux user function in the gen-
erated UserSolver, if the useViscousFlux flag is set. Then in all kernels using
flux, the gradient ∇Q is computed using already existing macros, which deal
with the optimization of this computation, and the viscousFlux function is
called instead with it as additional argument.

The branching also ensured that the expanded Views generate the same
code as before if the flag is not set (opt-in option). Since every part of the code
generation is compartmentalized into separate Models, modifying a Model or
expanding the Controller has no side effects on the other generated code.

122 J.-M. Gallard et al.

4.4 Result Evaluation

An application using this new feature was written and tested. It is able to simu-
late cloud formation processes in scenarios incorporating a background atmo-
sphere that is in hydrostatic balance [12]. At the end of this use case, the
ExaHyPE engine’s canonical PDE system (1) is expanded and can now, as
an opt-in option, work with further applications requiring a viscous flux term
instead of a classical flux.

The modifications needed to implement the features required roughly 100
lines for the kernels and additionally less than 100 lines for the Toolkit. This
includes all code, comments and all needed API changes. We want to emphasize
that theses changes required only a basic algorithmic understanding and minimal
optimization knowledge, thanks to the reuse of existing optimization macros.

5 Improved Space-Time Predictor for Linear Applications

Benchmarks of the linear PDE solver at high polynomial orders revealed signif-
icant loss of performances due to cache misses inside the SpaceTimePredictor
kernel. This was caused by the temporary arrays required by the algorithm to
implement the Cauchy Kowalewski scheme inside this kernel. The size of these
arrays depends on the polynomial order used, and increased beyond the L2 cache
size of our test hardware during benchmarks. Thus, to reduce the memory foot-
print, we reformulated the algorithm toward cache efficiency.

Instead of storing all time derivatives for later integration, the time inte-
gration is performed on the fly. Thus the full time dimension is removed from
temporary arrays. As a result, the spatial directions of the PDE system are
processed one at a time. The algorithm therefore requires three directional flux
functions instead of one for all dimensions. Depending on the application specific
formulation this might lead to redundant computations. Therefore, despite being
more memory efficient, the new algorithm is offered as an optional kernel variant
(opt-in option). To introduce this new SpaceTimePredictor kernel variant, we
used an iterative and incremental approach:

5.1 Prototyping the New Algorithm

The new algorithm was first prototyped on a test application with fixed settings.
We generated the default SpaceTimePredictor kernel for the test case and edited
it locally to get to the new algorithm. This way we could test the new algorithm,
verify it against the default one and validate our assumption on improving the
memory footprint. We then iterated upon the prototype to incrementally add
new optimizations, as tests revealed bottlenecks and possible areas of improve-
ments.

Role-Oriented Code Generation in an Engine 123

5.2 Inclusion in the Kernel Generator

Once the prototype was finished and validated, it was incorporated directly
into the Kernel Generator. The prototype source code was directly used as the
first iteration of a new template, since a template can also exist of explicit code
without any template logic. Then using the existing MVC structure of the Kernel
Generator, its generation behavior was modified by introducing a new optional
input parameter to trigger the generation of this new template (as in the use
case of Sect. 4). At this stage the Kernel Generator was able to generate the
prototype kernel variant only for the application and setting it was designed for
during the prototyping step.

5.3 Template Generalization and Optimization

Finally the template was generalized, such that it can be used with other settings
or by other applications. The hard-coded settings from the prototyping steps
(e.g., the name of the solver, the polynomial order) were replaced by their respec-
tive abstractions, as defined in the provided template context, thus enabling the
new kernel variant to be properly generated for all settings. This transformed
the prototype template to an algorithmic template as described in Sect. 3.3.

To provide architecture-aware optimizations, we used the existing optimiza-
tion macros, for example to perform optimized matrix products. Thus, this new
kernel variant was immediately optimized toward all the supported architecture
without needing any optimization knowledge.

5.4 Performance Evaluation

Once the new kernel variant was fully supported by the code generation util-
ities, we used ExaHyPE’s internal benchmarking tools to compare it with the
default one on a set of test applications, settings and architectures. These tests
confirmed our early intuition that the new algorithm provides no runtime ben-
efits for applications with low memory footprint, but leads to speedups of >2
for bigger settings that are severely affected by cache misses with the default
algorithm. The threshold depends on the application, its settings (esp. the poly-
nomial order) and the hardware specification (esp. the L2 cache size).

Using the Kernel Generator MVC architecture and the optimization macro,
the development of this new kernel variant, from building a prototype to the
benchmarking of the feature, required almost exclusively the numeric and algo-
rithmic optimization expertise, expected from an algorithm expert role.

6 Vectorization of User Functions

The last use case addresses the exploitation of SIMD capabilities of modern
CPUs. Here, ExaHyPE faces a conflict of API and optimization requirements.
For the implementation of user functions, such as the flux function F(Q), the

124 J.-M. Gallard et al.

most intuitive API is like the function flux(Q,F) in Fig. 3: flux acts on a con-
tiguous vector of quantities. This Array of Structure (AoS) data layout also
supports the optimized execution of 4D tensor operations (3D space plus the
quantity dimension) via sequences of matrix operations – the matrices always
have the quantities as a dimension that is contiguous in memory. However, AoS
becomes inefficient, when calling the user functions for multiple spatial posi-
tions, such as evaluating the flux function at all integration points to evaluate
the Riemann problem on element faces. The kernels then loop over all spatial
coordinates, but call the user functions on the vector Q for each single spatial
point. These calls cannot be vectorized, as the accessed components Q[0], Q[1],
etc. (similar for F[0][0], . . .) are not stored in unit-stride.

To solve this data layout conflict, we introduced SIMD user functions as opt-
in features. Instead of processing a single quantity vector, they take as parameter
a vector of quantities in a Structure of Array (SoA) layout, so that the resulting
loop in the implementation can be vectorized. Figure 3 illustrates how to imple-
ment such a SIMD flux function (fluxVect): The input arrays of fluxVect now
have a new fastest-running dimension that matches the loop iteration, such that
compiler auto-vectorization may be enabled.

void Euler ::flux(double* Q, double ** F) {

//[...] constants
// x direction
F[0][0] = Q[1];

F[0][1] = irho*Q[1]*Q[1] + p;

F[0][2] = irho*Q[2]*Q[1];

F[0][3] = irho*(Q[3]+p)*Q[1];

//[...] y direction
}

void Euler :: fluxVect(double ** Q, double *** F){

#pragma vector aligned

#pragma ivdep

for(int i=0; i<VECTSIZE; i++){

//[...] constants
// x direction
F[0][0][i] = Q[1][i];

F[0][1][i] = irho*Q[1][i]*Q[1][i] + p;

F[0][2][i] = irho*Q[2][i]*Q[1][i];

F[0][3][i] = irho*(Q[3][i]+p)*Q[1][i];

//[...] y direction
}

}

Fig. 3. Example implementation (for the 2D Euler equations) of a flux function
F(Q) for a single flux vector Q (flux(...), top) or for an array of flux vectors
(fluxVect(...), bottom). Note that in F[0][0][i], etc., i is the fastest-running index.

Role-Oriented Code Generation in an Engine 125

In this use case, we describe the integration of these new user functions
to all existing kernels using new optimization macros. By using macros, only
optimization specific knowledge is required during development and they can be
reused by algorithms experts when implementing new schemes. We will describe
only the work for the flux user function, the same being done for the others.

6.1 Optimized Transpose – from AoS to SoA (and Back)

To be able to use a SIMD user function, the data layout has to be transformed
on the fly from AoS to SoA and back. This is achieved by transposing a slice of
the input array to a new temporary array. Processing with slices instead of the
whole array optimizes caching behaviors.

We therefore introduced a new optimization macro called transpose. By
default it falls back to a naive loop-based transpose. However, more optimized
transpose implementations are offered, such as ones using architecture-specific
intrinsic operations like _mm256_permute2f128_pd and _mm256_shuffle_pd for
AVX. At rendering, the best available implementation for the given context is
chosen. It can easily be expanded to better support other architectures and could
be expanded to use an external library like the matrix product matmul macro
with LIBXSMM.

6.2 Abstracting the Call to the User Function Behind a Macro

The choice between the flux and fluxVect user functions and the required
supporting logic is complex and repeated at each instance where the flux function
F(Q) is evaluated in the kernels. As described in Sect. 3.3, we can factorize
this template code and abstract it behind a new optimization macro named
callFlux. We started by abstracting the current behavior behind the callFlux
macro:

{% macro callFlux(Q, F, size) %}

{% set F_shift = nDof**nDim*size %}

double* F[{{ nDim }}];

for (int i = 0; i < {{nDof**nDim }}; i++) {

F[0] = {{F}}+i*{{ size }};

F[1] = {{F}}+i*{{ size }}+{{ F_shift }};

{% if nDim == 3 %}

F[2] = {{F}}+i*{{ size }}+2*{{ F_shift }};

{% endif %}

{{ solverName }}. flux ({{Q}}+i*{{ size}},F);

}

{% endmacro %}

At that point it performed only the existing default case to call the flux
function: loop over all spatial points of the cell, initialize the array F and call
the function with the correct shift in the data arrays as they use an AoS layout.
The evaluations of the flux function in all kernels are replaced by callFlux.

126 J.-M. Gallard et al.

6.3 Expanding the callFlux Macro

As in the two previous use cases, we introduced a new context boolean flag
useFluxVect. We then expanded the callFlux macro with a branch on this
flag. If the flag is set, the callFlux macro uses the transpose macro defined
earlier to switch on the fly between AoS and SoA data layout and call a new
fluxVect user function with its altered signature compared to flux as shown
in Fig. 3. As we modified a macro, this work is automatically propagated to all
existing templates using it.

6.4 Performance Evaluation

We evaluated the SIMD user functions on two example PDEs: the 3D Euler equa-
tions (EulerFlow), where the flux function is quite simple, and the Einstein equa-
tions from relativistic astrophysics (CCZ4), where the user functions are highly
complex and comprise most of the runtime. The benchmark was done on Super-
MUC phase 2 (Intel Haswell architecture, supporting AVX2). For EulerFlow we
compared the default version with the auto-vectorized one and with an intrinsics-
version for AVX2. The auto-vectorized and the intrinsics implementations both
achieved similar performances, illustrating that for simple user functions a quick
adaptation of the scalar implementation to enable auto-vectorization is enough.
Compared to the default version, both SIMD implementations provided an end-
to-end speedup by a factor 1.04. Here the low cost of the simple user function is
barely enough to compensate for the cost of the required transpositions.

With the help of an application expert, we implemented a partially auto-
vectorized version of the complex CCZ4 user functions. We measured a speedup
factor of 1.27. While the user functions were not fully vectorized due to their
complexity, their high computational cost is enough to offset the transpose one.
A better vectorized implementation of the user functions would provide even
more performance gain.

Here by working with macros, we not only provide these new features to
all existing schemes, but also ensure that future ones can easily use them. The
implementation of the macros required mostly low-level optimization knowledge.
All architecture-specific optimizations are fully handled by the macros, enabling
an optimization expert to easily improve them or expand them for other archi-
tectures.

7 Conclusions

This paper details how code generation is used in a PDE engine to offer a tai-
lored application-specific programming interface for users, while at the same
time selecting the most appropriate (regarding the target application) numeri-
cal scheme and implementation for each of its critical components, and tuning it
with low-level architecture-aware optimizations. The choice of a MVC architec-
ture for code generation facilitates the collaboration of three identified user roles

Role-Oriented Code Generation in an Engine 127

– application, algorithm and optimization experts – as they use and expand the
engine. In the Views, Jinja2’s template logic and macros support the implemen-
tation of new algorithms and low-level code optimization independently of each
other.

The three presented use cases show how a user assuming only one single
role can work with the engine and contribute to it by expanding the code gen-
eration utilities, cumulatively improving its capabilities. Thus, the presented
design solves a common issue encountered when building complex HPC simula-
tion software: to support users with different areas of expertise in their effective
collaboration.

Acknowledgements and Funding. This project has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 671698. We thank the Gauss Centre for Supercomputing e.V. (www.gauss-
centre.eu) for providing computing resources on the GCS Supercomputer SuperMUC
at Leibniz Supercomputing Centre (www.lrz.de).

References

1. Alnaes, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: Unified form
language: a domain-specific language for weak formulations of partial differential
equations. ACM Trans. Math. Softw. 40(2) (2014)

2. Charrier, D., Hazelwood, B., Weinzierl, T.: Enclave tasking for discontinuous
Galerkin methods on dynamically adaptive meshes. SIAM J. Scient. Comput. (in
press). arXiv:1806.07984

3. Dumbser, M., Fambri, F., Tavelli, M., Bader, M., Weinzierl, T.: Efficient imple-
mentation of ADER discontinuous Galerkin schemes for a scalable hyperbolic PDE
engine. Axioms 278 (2018).https://doi.org/10.3390/axioms7030063

4. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of
the discontinuous Galerkin finite element method for hyperbolic conservation laws.
J. Comput. Phys. 278(C), 47–75 (2013)

5. Duru, K., Rannabauer, L., Ling, O.K.A., Gabriel, A.A., Igel, H., Bader, M.: A
stable discontinuous Galerkin method for linear elastodynamics in geometrically
complex media using physics based numerical fluxes (2019). arXiv:1907.02658

6. Eibl, S., Rüde, U.: A modular and extensible software architecture for particle
dynamics. In: 8th International Conference on Discrete Element Methods (2019).
arXiv:1906.1096

7. Fambri, F., Dumbser, M., Köppel, S., Rezzolla, L., Zanotti, O.: ADER discontin-
uous Galerkin schemes for general-relativistic ideal magnetohydrodynamics. Mon.
Not. R. Astron. Soc. 477, 4543–4564 (2018)

8. Gassner, G., Lörcher, F., Munz, C.D.: A discontinuous Galerkin scheme based
on a space-time expansion II. Viscous flow equations in multi dimensions. J. Sci.
Comput. 34(3), 260–286 (2008)

9. Heinecke, A., Henry, G., Hutchinson, M., Pabst, H.: LIBXSMM: accelerating small
matrix multiplications by runtime code generation. In: SC 2016: International Con-
ference for HPC, Networking, Storage and Analysis, pp. 981–991 (2016)

10. Kempf, D., Heß, R., Müthing, S., Bastian, P.: Automatic Code Generation for High-
Performance Discontinuous Galerkin Methods on Modern Architectures. arXiv e-
prints (2018). arXiv:1812.08075

www.gauss-centre.eu
www.gauss-centre.eu
www.lrz.de
http://arxiv.org/abs/1806.07984
https://doi.org/10.3390/axioms7030063
http://arxiv.org/abs/1907.02658
http://arxiv.org/abs/1906.1096
http://arxiv.org/abs/1812.08075

128 J.-M. Gallard et al.

11. Kirby, R.C., Mitchell, L.: Code generation for generally mapped finite elements.
ACM Trans. Math. Softw. 45(4) (2019)

12. Krenz, L., Rannabauer, L., Bader, M.: A high-order discontinuous Galerkin solver
with dynamic adaptive mesh refinement to simulate cloud formation processes. In:
13th International Conference on Parallel Processing and Applied Mathematics
(PPAM 2019). LNCS, vol. 12043 (2020). arXiv:1905.05524

13. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T.,
Bercea, G.T., Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element
method by composing abstractions. ACM Trans. Math. Softw. 43(3), 24 (2017)

14. Reinarz, A., Charrier, D.E., Bader, M., Bovard, L., Dumbser, M., Duru, K., Fam-
bri, F., Gabriel, A.A., Gallard, J.M., Köppel, S., Krenz, L., Rannabauer, L., Rez-
zolla, L., Samfass, P., Tavelli, M., Weinzierl, T.: ExaHyPE: an engine for parallel
dynamically adaptive simulations of wave problems. Comp. Phys. Comm. 107251
(2020)

15. Tavelli, M., Dumbser, M., Charrier, D.E., Rannabauer, L., Weinzierl, T., Bader,
M.: A simple diffuse interface approach on adaptive Cartesian grids for the linear
elastic wave equations with complex topography. J. Comp. Phys. 386, 158–189
(2019)

16. Uphoff, C., Bader, M.: Yet another tensor toolbox for discontinuous Galerkin
methods and other applications. ACM Trans. Math. Softw. (under review).
arXiv:1903.11521

17. Weinzierl, T.: The Peano software-parallel, automaton-based, dynamically adap-
tive grid traversals. ACM Trans. Math. Softw. 45(2), 14:1–14:41 (2019)

18. Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space-time adaptive ADER dis-
continuous Galerkin finite element schemes with a posteriori sub-cell finite volume
limiting. Comput. Fluids 118, 204–224 (2015)

http://arxiv.org/abs/1905.05524
http://arxiv.org/abs/1903.11521

FQL: An Extensible Feature Query
Language and Toolkit on Searching
Software Characteristics for HPC

Applications

Weijian Zheng1 , Dali Wang2(B) , and Fengguang Song1

1 Indiana University-Purdue University, Indianapolis, IN 46202, USA
zheng273@purdue.edu, fgsong@iupui.edu

2 Oak Ridge National Laboratory, P.O. Box 2008, MS 6301,
Oak Ridge, TN 37831, USA

wangd@ornl.gov

Abstract. The amount of large-scale scientific computing software is
dramatically increasing. In this work, we designed a new query lan-
guage, named Feature Query Language (FQL), to collect and extract
HPC-related software features or metadata from a quick static code
analysis. We also designed and implemented an FQL-based toolkit to
automatically detect and present software features using an extensible
query repository. A number of large-scale, high performance comput-
ing (HPC) scientific applications have been studied in the paper with
the FQL toolkit to demonstrate the HPC-related feature extraction and
information/metadata collection. Different from the existing static soft-
ware analysis and refactoring tools which focus on software debug, devel-
opment and code transformation, the FQL toolkit is simpler, significantly
lightweight and strives to collect various and diverse software metadata
with ease and rapidly.

Keywords: Feature Query Language · Static code analysis ·
High-performance computing

1 Introduction

Open source scientific software projects are growing explosively in number and
size. Many companies, universities, and national laboratories build their soft-
ware ecosystems around the open-source software projects. There are also a lot of
ongoing efforts to combine different software modules to create a larger scale soft-
ware system (e.g., climate modeling and simulation [1], fluid/solid dynamics com-
putations [20], material science [17], etc.). The complexity of large-scale scientific

This research was funded by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research (Interoperable Design of Extreme-scale
Application Software).
c© This is a U.S. government work and not under copyright protection in the US.;

foreign copyright protection may apply 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 129–142, 2020.

https://doi.org/10.1007/978-3-030-44728-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_8&domain=pdf
http://orcid.org/0000-0003-2791-0031
http://orcid.org/0000-0001-6806-5108
http://orcid.org/0000-0001-7382-093X
https://doi.org/10.1007/978-3-030-44728-1_8

130 W. Zheng et al.

models developed for specific machine architectures and application requirements
has become a barrier that impedes continuous software development. Further-
more, more and more scientific codes have incorporated high-performance com-
puting (HPC) features that, in turn, create machine configuration, computer
architecture, user and system library dependency issues.

Hence, given a large number of open source software projects, it is critical
to provide an efficient way for decision makers (such as users, administrators,
customers, developers, investors, and software managers) to quickly evaluate
the software and understand its structure and characteristics [18,32]. Also, as
numerous codes have been released and published every day in the open reposi-
tories (such as GitHub and bitbucket) as well as institution-owned repositories
(such as DOECode at the Office of Scientific and Technical Information (www.
osti.gov/doecode)), we need to develop a portable tool that can automatically
extract and collect essential features from these scientific codes.

In this paper, we target at creating a software toolkit to discover open
source software projects’ features. Here, “features” refer to any characteristic and
metadata related to the software, including programming languages, third-party
library dependency, special hardware requirement, particular tools, adopted pro-
gramming models, and so on.

We use open source science and engineering application software on high
performance computing (HPC) systems as examples to drive the design and
development of our toolkit due to the science and engineering software’s large
scale, high complexity, and utilization of a wide variety of computer hardware.
For instance, we experiment with a number of science codes from several large-
scale DOE programs to harvest HPC features for code archive purpose and
beyond.

In order to handle nearly “arbitrary” queries of interest from users, we need
a flexible and extensible solution that can process any number/type of features
in any open source software and can also efficiently answer these feature-related
questions. Our proposed solution is based upon a new language called Feature
Query Language (FQL) that lets users describe their queries (or questions) in
the FQL language. Given an FQL query, we then design a new software toolkit,
which can parse the user input, execute the query, scan open source software,
and present the final results. Our design shares the same philosophy with the
popular Structured Query Language (SQL) to support users’ arbitrary queries
about databases [11]. The distinction between FQL and SQL is that FQL is
designed to query open source code repository, which is being viewed as another
type of database, meanwhile achieving SQL’s portable, regular, structured, and
simple characteristics. We expect that this new toolkit will significantly benefit
broader scientific computing communities who are facing similar challenges.

The rest of the paper is organized as follows. Next section presents the related
work. Section 3 describes our toolkit from three perspectives: (1) FQL language,
(2) overall software workflow, and (3) FQL toolkit implementation. Section 4
presents the results obtained by executing predefined queries. Section 5 concludes
the impact and the possible future directions for our work.

www.osti.gov/doecode
www.osti.gov/doecode

FQL: An Extensible Feature Query Language and Toolkit 131

2 Related Work

This paper introduces a SQL-like query language and supporting toolkit, called
Feature Query Language (FQL), to collect HPC-related software metadata from
a quick static code analysis. We present the related work in two categories: (1)
software analysis tools without using domain-specific languages; and (2) software
analysis tools using domain-specific languages.

2.1 Software Analysis Tools Without Using Domain-Specific
Languages

There is a lot of software engineering work on code analysis that does not use any
domain specific language. A few software analysis tools are designed to obtain
low level code information. For instance, security flaws may be detected effec-
tively [35]. In the work of Bush et al., an analyzer for program errors is created
[5]. Buffer overflow and function dependencies can be found in the work [14]
and [33] respectively. On the other hand, a number of tools focus on providing
a higher level overview of the code. For example, the open source toolkits Scan-
Code [26] and Fossology [16] are used to extract the license, copyright, package
dependency and other information. Oss-review-toolkit is designed to provide the
dependencies of different open source libraries for software [25].

Although these software tools can detect specific software information, they
are not generic enough to query any type of features that may be interesting to
different users. Our FQL is designed to provide an abstract query interface to
users so that one can define any new queries in FQL and get answers quickly.

2.2 Software Analysis Tools Using Domain-Specific Languages

On the other hand, many software engineering tools define new programming
languages that are of domain purpose only (i.e., DSL) [21]. As described by
Deursen et al. [29], DSL has the following advantages: (1) more expressiveness
in the specific domain, (2) more friendly to domain experts, and (3) more verifi-
cation and optimization can be performed at the domain level. Hence, DSL has
been widely used in various static code analysis and refactoring tools. In this
subsection, we present software tools that use DSL in two classes: (1) static code
analysis and (2) code transformation.

Static Code Analysis: Static analysis tools such as crocopat [3], JRelCal [23],
JTL [6], SOUL [13], .QL and SemmleCode [12,30] use their own languages and
patterns to represent the desired features in the target code. For instance, cro-
coPat uses patterns that are described by binary decision diagrams for detecting
inter-class structures, which consist of good object-oriented (OO) design pat-
terns, weak anti-patterns, etc. [3]. JRelCal is a library to obtain different kinds
of relations in the source code based on the binary relational calculus [23]. JTL
(Java Tools Language) is a Java programming language extension to represent

132 W. Zheng et al.

Java code patterns by providing native and predefined first-order logical pred-
icates [6]. By using the new JTL representation, a JTL processor can analyze
queries for object-oriented Java programs. SOUL is a Prolog-like language to
query a program’s structure and is mainly used for detecting source code struc-
tures of Java and Smalltalk programs [13]. .QL is an object-oriented query lan-
guage for measuring code quality, observing bugs and other analysis tasks [12],
meanwhile SemmleCode [30] is a free Eclipse plugin, which adopts the .QL lan-
guage.

However, the above programming languages or tools have different goals from
ours, and they are intended to query software development related questions
(e.g., design defect, implementation bug, suboptimal code structure, inter-class
relationship, design violation, etc.), while our work targets at collecting soft-
ware’s meta-data, parallel library requirements, architecture or device depen-
dency, and other HPC-related questions.

Code Transformation: Another influential line of work aims to support auto-
matic code transformation or refactoring instead of static code analysis only
[2,4,7,9,18,22,31]. SrcML is a platform for both code analysis and code manip-
ulation via representing the code in a language called XPath that is similar
to XML [7]. Rascal is a programming language designed to integrate program
analysis with code manipulation [18]. By defining new basic data types and stati-
cally checking the types, Rascal allows programmers to represent a program then
transform the program automatically under a number of constraints. DMS is a
commercial code transformation tool, which has different performance optimiza-
tions [2]. The TXL (Tree Transformation Language) and ELAN [4] languages
are used for rule-based code refactoring [9]. Unlike TXL/ELAN, Stratego is able
to describe both refactoring strategies and refactoring rules [31]. Moreover, Coc-
cinelle is a special tool to automatically transform Linux kernel drivers by using
a language based on the patch syntax [22].

Nevertheless, the above code transformation tools require users to write new
programs or representations by using the new languages provided by the tools.
While they are efficient in code refactoring, they are overly complicated and
time-consuming for one’s simple goal of software metadata collection.

3 The FQL Language and Toolkit

In this section, we introduce the Feature Query Language (FQL) definition in
Subsect. 3.1, then describe the overall workflow of using the FQL toolkit in
Subsect. 3.2 followed by the design and implementation of our software toolkit
in Subsect. 3.3.

3.1 Feature Query Language (FQL)

The Feature Query Language (FQL) is designed for users to ask any software
feature or metadata related questions such as “Does the software require MPI-
2?”, “Does the software need GPUs”, “Does the software depend on a special

FQL: An Extensible Feature Query Language and Toolkit 133

Fig. 1. FQL syntax diagram.

compiler or parallel system library?”, “Does the software take advantage parallel
I/O”, etc. Since a user’s questions could be greatly diverse, our FQL must have
an extensible architecture and can incorporate any questions of interest. As long
as the user knows the keywords of targeted software features, he or she can write
a corresponding query in FQL (i.e., an FQL sentence) quickly.

3.1.1 FQL Syntax
FQL is defined by the FQL syntax, which is comprised of one or more clauses
(defined in the next paragraph).

If there is one clause, we return the query result of the specific clause. If there
are multiple clauses, results from the various clauses will be summarized by an
FQL command. An FQL sentence with multiple clauses can be expressed in the
following form:

FQL command (Clause1, Clause2, ...) (1)

An FQL Clause is defined as a combination of phrases and FQL reserved
keywords. An example of clause is provided below:

CHECK (keyword phrase) WHERE (file extension phrase)

AS (feature name phrase)
(2)

In the above syntax, CHECK, WHERE and AS are reserved keywords in
FQL. They are not case sensitive. Here, a phrase is just a set of strings. The
current version of FQL has three types of phrases: (i) keyword phrase, (ii)
file extension phrase, and (iii) feature name phrase.

(i) keyword phrase: A keyword phrase has a few keywords that describe a
specific software feature. Each keyword is simply a string. Different keywords
are concatenated by “||” or “&&”. Symbol “||” means that if one of the
keywords is found, we claim that the feature is found. Symbol “&&” means
that only if all keywords are found, we then claim that the feature is found.

(ii) file extension phrase: This phrase is used to tell the FQL software toolkit
where to search for the keywords. It consists of a list of file extensions
connected by “,”. If it is specified as “*”, the FQL toolkit will check all
types of files.

(iii) feature name phrase: This feature name phrase is optional and used to
specify how to interpret (or name) the query result. For instance, if the
keyword phrase is found to exist in the target software, the toolkit will
return the specified meaningful feature name. Otherwise (i.e., if there is no

134 W. Zheng et al.

feature name phrase provided), the toolkit will only return True or False
based upon the query result.

3.1.2 FQL Command
It is common that users may need more than one phrase to define a query. When
there are several clauses in a query sentence, results from different clauses will
be summarized by executing an FQL command. Currently, FQL provides three
commands:

– LIST: The LIST command enumerates all the features whose query results
are true.

– MAX: The MAX command returns the largest query value found in the
available features. It can be used to check the software version required by a
project.

– AND: The AND command returns True only if all clauses’ features have
been found.

The provided FQL commands can answer many frequently asked questions.
In addition, both our FQL syntax and toolkit implementation are designed to
be flexible and extensible. Such an extensible design allows new FQL commands
to be added to the FQL language quickly whenever needed. We expect to add
more commands as the types of queries increase.

To summarize the FQL grammar, we use Fig. 1 to illustrate the syntax of a
valid FQL sentence containing more than one clause. FQL-provided commands
and FQL-reserved keywords are written in bold uppercase inside rectangles.
Phrases and FQL-provided commands are written in lowercase inside ovals. By
following the arrows from left to right in Fig. 1, we can construct a valid FQL
query.

3.1.3 FQL Query Examples
Here, we list five examples of HPC related questions that may be asked by users
and the corresponding FQL queries as well as our remarks. For more examples,
please refer to Table 1.

Question 1 : Whether OpenMP is used in the code?
FQL: CHECK (!$OMP || #pragma omp) WHERE (*)

AS (OpenMP)

Note: OpenMP is a widely used API for shared-memory programming [10] in
HPC.

Question 2 : Is one-sided MPI communication used?
FQL: CHECK (MPI Put || MPI RPut || MPI Get

|| MPI RGet) WHERE (*)
Note: This query is used to check the MPI one-side communication feature. Since
no feature name is provided, our FQL toolkit will return True if one of those
keywords is found.

FQL: An Extensible Feature Query Language and Toolkit 135

Table 1. Examples of HPC-related asked questions and corresponding queries

Number User’s Interesting Question Corresponding FQL Query

1 Is OpenACC used?
CHECK (!$acc || #pragma acc)

WHERE (*) AS (OpenACC)

2
Is OpenACC CHECK (acc atomic)

atomic operation used? WHERE (*) AS (atomicACC)

3
Is CUDA CHECK (device || global || host

programming || noinline || forceinline)
used? WHERE (.cu,.cuh) AS (CUDA)

LIST (CHECK (schedule(static) WHERE(*)
AS (Static), CHECK (schedule(dynamic)

What OpenMP WHERE(*) AS (Dynamic),
4 scheduling CHECK (schedule(guided) WHERE(*)

method is used? AS (Guided), CHECK (schedule(auto)
WHERE(*) AS (Auto), CHECK

(schedule(runtime) WHERE(*) AS (Runtime))

5
Does it use OpenMP CHECK (omp task || end task ||
Task programming omp taskloop || omp taskloop simd

constructs? || omp taskyield) WHERE (*)

Question 3 : What is the minimum version requirement of MPI?
FQL: MAX (

CHECK (MPI AINT ADD || MPI AINT DIFF)
WHERE (*) AS (3.1),

CHECK (MPI COMM DUP WITH INFO ||
MPI COMM SET INFO) WHERE (*) AS (3.0),

CHECK (MPI DIST GRAPH CREATE ADJACENT
|| MPI DIST GRAPH CREATE) WHERE (*)
AS (2.2),

CHECK (mpi.h || use mpi || mpif.h) WHERE (*)
AS (2.0))

Note: This query is used to search for the minimum version requirement of the
MPI in the code. Please note that if our FQL toolkit finds that MPI is not used
by the project, it will return “Not found”.

Question 4 : What kind of MPI process topology (topologies) is (are) used?
FQL: LIST (

CHECK (MPI CART Create) WHERE(*)
AS (Cartesian),

136 W. Zheng et al.

CHECK (MPI GRAPH Create) WHERE(*)
AS (Graph),

CHECK (MPI DIST GRAPH CREATE Adjacent
|| MPI DIST GRAPH Create) WHERE(*)
AS (Distributed Graph))

Note: This query uses the command LIST, whose function is to list all the
features found in the code. For this query, all the MPI process topologies used
in the code will be listed by our toolkit.

Question 5 : Does the project use a hybrid MPI/OpenMP programming model?
FQL: AND (

CHECK (mpi.h || use mpi || mpif.h) WHERE (*)
AS (MPI),

CHECK (!$OMP || #pragma omp) WHERE (*)
AS (OpenMP))

Note: This query uses the command AND, which is used to summarize whether
all the features are found. As to this sentence, if both MPI and OpenMP are
found, our toolkit will return True.

3.1.4 Predefined FQL Queries and User-Defined FQL Queries
Our software toolkit can support two types of FQL queries: predefined queries
and user-defined queries. Predefined queries correspond to frequently asked ques-
tions, which are offered as a list of question choices by our software toolkit. User-
defined FQL queries are written by a user based on his or her special questions.
Both types of queries can be parsed and executed by our toolkit automatically.
In our implementation, all the predefined FQL queries and their corresponding
questions (in plain English) are stored in a text file. The user-defined queries
can also be added to the text file for future use.

3.2 Overall Workflow of the FQL Software Toolkit

Fig. 2. Overall workflow of the software

Figure 2 shows the workflow of using the FQL toolkit. There are three major
steps to use the software: (i) Users input the targeted software’s file path

FQL: An Extensible Feature Query Language and Toolkit 137

Fig. 3. Software components implemented for parsing and executing FQL queries in
the FQL toolkit.

(shown as the first rectangle from the left); (ii) Next, the toolkit pre-scans the
targeted software (shown as the second rectangle); and (iii) Based on the user’s
choice, the FQL toolkit executes particular operations till the user exits the
program.

More details of the three major steps are shown as follows:

(i) Input the software path by users: Our toolkit will firstly ask the user to input
a file path to search for. This path should be the top-level directory of the
targeted software. All files in the specific file path will be scanned by the
FQL toolkit recursively.

(ii) Select an operation: In the second step, our software will ask the user to
select an operation to operate. There are three available operations.

(iii) Execute a selected operation: Our software will execute an operation based
on the user’s selection in the previous step. Three operations are as follows:
– To list all the predefined questions. This operation is to remind a user of

all predefined FQL queries and corresponding questions (in plain English).
The user can then execute a specific query by entering the index number
of the question.

– To add a new user-defined query. The FQL toolkit will also make sure the
query entered by a user is valid. It will repeatedly ask the user to input
the query until a valid query is received.

– To execute a specific query. Section 3.3 provides details about how to
execute an FQL query by the FQL toolkit.

After executing one of the above three additional operations, the toolkit
will check whether the user wants to repeat Step iii or not.

3.3 Implementation of the FQL Toolkit

To support FQL, we develop a new software toolkit to parse and execute FQL
queries. An overview of the process that parses and executes FQL queries is
illustrated in Fig. 3.

As shown in Fig. 3, the two yellow round-corner boxes (above the dotted
line) represent a user’s input and output. The four green round-corner boxes
(at the bottom) represent the data exchanged between several major program
components.

138 W. Zheng et al.

T
a
b
le

2
.
H

P
C

fe
a
tu

re
s

o
f
th

e
d
iff

er
en

t
so

ft
w

a
re

Q
M
C
-
P
a
ck

P
a
rF

lo
w

E
3
S
M

S
IC

M
T
ru

ch
a
s

T
u
sa
s

E
x
a
M
P
M

M
E
U
M
-A

P
P
S

M
P
I

✓
✓

✓
✓

✓
✗

✗
✓

M
P
I
m
in
.
v
er
si
o
n
re
q
u
ir
ed

2
.0

2
.0

2
.0

2
.0

2
.0

–
–

2
.0

M
P
I
p
ro
ce
ss

to
p
o
lo
g
y

C
a
rt
e-

si
a
n
,
G
ra
p
h

N
o
n
e

C
a
rt
es
ia
n

C
a
rt
es
ia
n

N
o
n
e

–
–

N
o
n
e

M
P
I
o
n
e-
si
d
ed

co
m
m
u
n
ic
a
ti
o
n

✓
✓

✓
✗

✓
–

–
✗

M
P
I
I/
O

✗
✗

✓
✗

✗
–

–
✗

O
p
en

M
P

✓
✗

✓
✓

✗
✓

✗
✗

T
a
sk

p
ro
-
g
ra
m
m
in
g
co

n
st
ru

ct
s

✓
–

✓
✗

–
✗

–
–

H
y
b
ri
d
M
P
I/

O
p
en

M
P

✓
–

✓
✓

–
✗

–
–

S
ch

ed
u
li
n
g
m
et
h
o
d

S
ta
ti
c

–
S
ta
ti
c

S
ta
ti
c,

D
y
n
a
m
ic

–
S
ta
ti
c

–
–

C
U
D
A

✓
✗

✗
✗

✗
✗

✗
✗

S
in
g
le
/
d
o
u
b
le

p
re
ci
si
o
n

B
o
th

–
–

–
–

–
–

–

S
u
p
p
o
rt

m
u
lt
ip
le

G
P
U
s

✓
–

–
–

–
–

–
–

O
p
en

A
C
C

✗
✗

✓
✗

✗
✗

✗
✗

A
sy
n
ch

-r
o
n
o
u
s
o
p
er
a
ti
o
n

–
–

✗
–

–
–

–
–

A
to
m
ic

o
p
er
a
ti
o
n

–
–

✗
–

–
–

–
–

M
in

re
q
u
ir
ed

C
co

m
p
il
er

C
9
9

C
9
9

C
9
9

C
9
9

C
8
9

–
C
9
9

–

F
o
rt
ra
n
st
a
n
d
a
rd

F
o
rt
ra
n
7
7

F
o
rt
ra
n
7
7

F
o
rt
ra
n
2
0
0
3

F
o
rt
ra
n
2
0
0
3

F
o
rt
ra
n
9
0

–
F
o
rt
ra
n
9
0

F
o
rt
ra
n
7
7

FQL: An Extensible Feature Query Language and Toolkit 139

In total, there are four major program components in the toolkit, which are
displayed as four blue rectangles in Fig. 3. They are lexical analyzer, semantic
analyzer, keyword scanner, and result generator. We will introduce the four major
components in details as follows.

(i) Lexical Analyzer: The input of this component is an FQL query which is an
array of characters. The lexical analyzer will parse the query into a list of
tokens. Here, each token is a string with an assigned or predefined meaning.

(ii) Semantic Analyzer: The objective of the semantic analyzer component is
to find a feature’s corresponding keywords from a sequence of tokens. The
component translates a list of tokens into keywords. Keywords refer to a
set of significant strings that can be used as an indicator of the software
feature. For instance, if we find the string #pragma omp in the source code,
we can say OpenMP is used.

(iii) Keywords Scanner: The objective of the keywords scanner component is to
find whether the desired keywords exist in the source code or not. This
component searches for the keywords derived from the semantic analyzer,
then prints out a list of boolean variables (illustrated as the Intermediate
Search Result in Fig. 3) to indicate whether each keyword is found or not
in the source code.

(iv) Result Generator: The result generator component imports the intermediate
results from the keywords scanner, and presents the results in an easy-to-
understand way to users.

In summary, the lexical analyzer and semantic analyzer components generate
a list of keywords from an FQL query. Then, this list is passed to the keywords
scanner component, which searches the open source code of interest by using the
keywords. Finally, the result generator component presents the keywords scanner
results to users.

4 Exemplar Applications

For the demonstration purpose, we present the searching results of scien-
tific computing software packages supported by several large-scale DOE pro-
grams, such as the Innovative and Novel Computational Impact on Theory
and Experiment (INCITE) program (www.doeleadership-computing.org), Exas-
cale Computing Projects (www.exascaleproject.org), Earth System Modeling
(climatemodeling.science.energy.gov), and Subsurface Biogeochemical Research
(doesbr.org). For the demonstration purpose, we use five applications in this
paper:

1. QMCPACK: A quantum Monte Carlo package designed for the ab initio elec-
tronic structure calculations [17]. It includes the implementation of a number
of numerous Quantum Monte Carlo (QMC) algorithms.

2. ParFlow A parallel watershed flow model used to simulate different kinds of
hydrological processes [20].

http://www.doeleadership-computing.org
http://www.exascaleproject.org
http://climatemodeling.science.energy.gov
http://www.doesbr.org

140 W. Zheng et al.

3. E3SM: A model used to simulate the interaction between human and Earth
systems [1].

4. SICM: A tool provides a simple unified interface to simplify the process of
managing the complex memory hierarchies [24].

5. ExaAM (includes Truchas, Tusas, ExaMPM and MEUMAPPS) : ExaAM is a
software environment to simulate the complex additive manufacturing process
(AM) [19]. Since it is an integration of many software, we use the Truchas
[27], Tusas [28], ExaMPM [15] and MEUMAPPS [8] as our test cases. As
shown in Table 2, there are four columns for each of them.

Exemplar FQL results of these applications are listed in the Table 2. It is
obviously that MPI and OpenMP are two of the most widely used HPC features.

5 Conclusions

In this paper, we design and develop a software toolkit that automatically collects
the software features from scientific codes using a new language, called Feature
Query Language (FQL). For specific user-defined questions, we translate and for-
mulate them into FQL queries using the FQL syntax. Then, the toolkit parses
and executes the FQL queries over source code to collect information about the
software features, such as special hardware, software and architecture require-
ments. Although we emphasize collecting the HPC features in this study, the
capability of the toolkit can be easily extended to other software engineering
tasks, such as coding pattern, hardware dependency and portability, as long as
these questions can be formulated as valid FQL sentences following the defined
FQL syntax that combines command, keyword, and phrase. FQL can also be
integrated into other code analysis tools. For instance, FQL is included in an
integrated tool called XScan. As described in [34], XScan can be used to analyze
the Open Source Community-based Scientific Code.

References

1. Bader, D., et al.: Accelerated climate modeling for energy (ACME) project strategy
and initial implementation plan (2014)

2. Baxter, I.D., Pidgeon, C., Mehlich, M.: DMS R©: program transformations for prac-
tical scalable software evolution. In: Proceedings of the 26th International Confer-
ence on Software Engineering, pp. 625–634. IEEE Computer Society (2004)

3. Beyer, D., Lewerentz, C.: CrocoPat: efficient pattern analysis in object-oriented
programs. In: 2003 11th IEEE International Workshop on Program Comprehen-
sion, pp. 294–295. IEEE (2003)

4. Borovanskỳ, P., Kirchner, C., Kirchner, H., Moreau, P.E., Vittek, M.: ELAN: a log-
ical framework based on computational systems. Electron. Notes Theor. Comput.
Sci. 4, 35–50 (1996)

5. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic pro-
gramming errors. Softw. Pract. Exp. 30(7), 775–802 (2000)

FQL: An Extensible Feature Query Language and Toolkit 141

6. Cohen, T., Gil, J.Y., Maman, I.: JTL: the Java tools language. In: ACM SIGPLAN
Notices, vol. 41, pp. 89–108. ACM (2006)

7. Collard, M.L., Decker, M.J., Maletic, J.I.: srcML: an infrastructure for the explo-
ration, analysis, and manipulation of source code: a tool demonstration. In: 2013
IEEE International Conference on Software Maintenance, pp. 516–519. IEEE
(2013)

8. Cook, J., Finkel, H., Junghans, C., McCorquodale, P., Pavel, R., Richards, D.:
Proxy app prospectus for ECP application development projects. Technical report,
Lawrence Livermore National Lab (LLNL), Livermore, CA, United States (2017)

9. Cordy, J.R., Dean, T.R., Malton, A.J., Schneider, K.A.: Software engineering by
source transformation-experience with TXL. In: Proceedings First IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation, pp. 168–178. IEEE
(2001)

10. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

11. Date, C.J., Darwen, H.: A Guide to the SQL Standard: A User’s Guide to the
Standard Relational Language SQL. Addison-Wesley, Reading (1989)

12. de Moor, O., et al.: QL: object-oriented queries made easy. In: Lämmel, R., Visser,
J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 78–133. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-88643-3 3

13. De Roover, C., Noguera, C., Kellens, A., Jonckers, V.: The soul tool suite for query-
ing programs in symbiosis with eclipse. In: Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java, pp. 71–80. ACM
(2011)

14. Dor, N., Rodeh, M., Sagiv, M.: CSSV: towards a realistic tool for statically detect-
ing all buer overows in C. In: ACM Sigplan Notices, vol. 38, pp. 155–167. ACM
(2003)

15. ExaMPM (2017). https://github.com/ECP-copa/ExaMPM
16. Gobeille, R.: The FOSSology project. In: Proceedings of the 2008 International

Working Conference on Mining Software Repositories, pp. 47–50. ACM (2008)
17. Kim, J., et al.: QMCPACK simulation suite (2014)
18. Klint, P., Van Der Storm, T., Vinju, J.: RASCAL: a domain specific language for

source code analysis and manipulation. In: 2009 Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2009, pp. 168–177.
IEEE (2009)

19. Exascale Simulation for Additive Manufacturing (2017). https://github.com/
ExascaleAM

20. Maxwell, R.M., et al.: ParFlow user’s manual. International Ground Water Mod-
eling Center Report GWMI 1(2009), p. 129 (2009)

21. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)

22. Padioleau, Y., Lawall, J., Hansen, R.R., Muller, G.: Documenting and automating
collateral evolutions in Linux device drivers. In: ACM SIGOPS Operating Systems
Review, vol. 42, pp. 247–260. ACM (2008)

23. Rademaker, P.: Binary relational querying for structural source code analysis. Uni-
versity Utrecht, Netherlands (2008)

24. SICM (2018). https://github.com/lanl/SICM
25. oss-review-toolkit (2017). https://github.com/heremaps/oss-review-toolkit
26. scancode-toolkit (2016). https://github.com/nexB/scancode-toolkit
27. Truchas (2017). https://github.com/truchas/truchas-release

https://doi.org/10.1007/978-3-540-88643-3_3
https://github.com/ECP-copa/ExaMPM
https://github.com/ExascaleAM
https://github.com/ExascaleAM
https://github.com/lanl/SICM
https://github.com/heremaps/oss-review-toolkit
https://github.com/nexB/scancode-toolkit
https://github.com/truchas/truchas-release

142 W. Zheng et al.

28. Tusas (2018). https://github.com/chrisknewman/tusas
29. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated

bibliography. ACM SIGPLAN Not. 35(6), 26–36 (2000)
30. Verbaere, M., Hajiyev, E., De Moor, O.: Improve software quality with Semmle-

Code: an eclipse plugin for semantic code search. In: Companion to the 22nd ACM
SIGPLAN Conference on Object-Oriented Programming Systems and Applications
Companion, pp. 880–881. ACM (2007)

31. Visser, E.: Stratego: a language for program transformation based on rewriting
strategies system description of stratego 0.5. In: Middeldorp, A. (ed.) RTA 2001.
LNCS, vol. 2051, pp. 357–361. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45127-7 27

32. Wang, D., Zheng, W., Song, F.: Application software analytics toolkit for facili-
tating the understanding, componentization, and refactoring of large-scale scien-
tific models. Technical report, Oak Ridge National Lab (ORNL), Oak Ridge, TN,
United States (2018)

33. Wilde, N., Huitt, R., Huitt, S.: Dependency analysis tools: reusable components
for software maintenance. In: Proceedings. Conference on Software Maintenance,
pp. 126–131. IEEE (1989)

34. Zheng, W., Wang, D., Song, F.: XScan: an integrated tool for understanding open
source community-based scientific code. In: Rodrigues, J.M.F., et al. (eds.) ICCS
2019. LNCS, vol. 11536, pp. 226–237. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-22734-0 17

35. Zitser, M.: Securing software: an evaluation of static source code analyzers. Ph.D.
thesis, Massachusetts Institute of Technology (2003)

https://github.com/chrisknewman/tusas
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1007/978-3-030-22734-0_17
https://doi.org/10.1007/978-3-030-22734-0_17

WIHPC – Workshop on Interactive
High-Performance Computing

Accelerating Experimental Science Using
Jupyter and NERSC HPC

Matthew L. Henderson1,3(B), William Krinsman1,3, Shreyas Cholia1,2,3,
Rollin Thomas2,3, and Trevor Slaton2,3

1 Computational Research Division, Berkeley, USA
{mhenderson,williamkrinsman,scholia}@lbl.gov

2 NERSC, Berkeley, USA
{rcthomas,tslaton}@lbl.gov

3 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract. Large scale experimental science workflows require support
for a unified, interactive, real-time platform that can manage a dis-
tributed set of resources connected to High Performance Computing
(HPC) systems. What is needed is a tool that provides the ease-of-use
and interactivity of a web science gateway, while providing the scientist
the ability to build custom, ad-hoc workflows in a composable way. The
Jupyter platform can play a key role here to enable the ingestion and
analysis of real-time streaming data, integrate with HPC resources in a
closed-loop, and enable interactive ad-hoc analyses with running work-
flows.

We want to enable high-quality reproducible human-in-the-loop sci-
ence using HPC and Jupyter at the National Energy Research Scientific
Computing Center (NERSC). Achieving that goal is challenging in the
general case because scientific workflows and data can vary significantly
in size and type between disciplines. There are many areas of work to
achieve highly reproducible science, let alone human-in-the-loop inter-
active scientific workflows, but we focus here on some basic elements
for enabling an improved interactive HPC experience including creat-
ing reusable recipes and workflows with Notebooks, sharing and cloning
Notebooks, and parallelization and scaling of scientific code requiring
HPC and using Jupyter.

Keywords: HPC · Interactive · Jupyter · Scientific workflows ·
Reuse · Parameters

1 Introduction

Experimental science typically involves designing an experiment to perform, set-
ting up the experiment, running the experiment, collecting resulting data, and
finally, analyzing the results. User facilities such as the Advanced Light Source
(ALS) and the National Center for Electron Microscopy (NCEM) are examples
c© This is a U.S. government work and not under copyright protection in the US.;

foreign copyright protection may apply 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 145–163, 2020.

https://doi.org/10.1007/978-3-030-44728-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-44728-1_9

146 M. L. Henderson et al.

at Lawrence Berkeley National Laboratory of high volume experimental science,
with many researchers collecting and storing data. Teams of researchers travel
to these centers, reserving time slots in advance to collect data, and then ana-
lyze the data afterward. The data analysis used to be achievable on a laptop
or workstation, but with larger data sizes and faster data collection, researchers
are turning to HPC for experimental data analysis. If we think of this as the
outer loop of the experimental workflow, there is a strong impetus to reduce the
end-to-end time required to iterate over an experimental run, through real-time
interactive analyses that allow scientists to quickly validate and analyze their
results. This, in turn, feeds back into subsequent data acquisition cycles and can
help create a more intelligent and efficient process at the instrument level, and
can greatly reduce costs associated with expensive instrument time.

The Jupyter [27] platform can play an important facilitating role in this type
of interactive human-in-the-loop analysis of experimental workflows. Jupyter
Notebooks combine live executable code cells, with inline documentation and
embedded interactive visualizations. This allows us to capture an experiment
in a fully contained runnable Notebook that is self-documenting and incorpo-
rates live rendering of outputs and results as they are generated. The Notebook
format lends itself to a highly modular and composable workflow, where indi-
vidual steps and parameters can be adjusted on the fly. Additionally, with the
advent of JupyterLab [9], the updated and plugin-based Notebook user interface,
the Jupyter platform can support custom applications and extensions that live
alongside the core Notebook interface.

The National Energy Research Scientific Computing Center (NERSC) con-
nects data from several experimental facilities, such as the ALS and NCEM
to HPC resources to enable these data analyses. The supercomputing resource
currently available at NERSC is Cori, a Cray XC40 supercomputer consist-
ing of 2,388 Intel Haswell nodes, 9,688 Intel Knights Landing nodes, 1.8 PB of
integrated flash storage for bursty I/O, and 30 PB of high-performance Lustre
“scratch” storage. The NERSC Global Filesystem provides longer-term medium-
performance storage.

Given that Jupyter is already well-established in the scientific toolbox for
small scale, single node exploratory analysis, it would be extremely useful to be
able to scale these analyses up on larger datasets and compute resources. There
is a growing ecosystem of tools that make Jupyter useful for larger collaborative
workflows on HPC platforms. By creating and integrating tools and extensions
that allow Jupyter to scale up workflows in a reproducible manner, we expect to
enhance overall productivity across large scientific projects. We are working to
provide interactive analysis of experimental data using Jupyter Notebooks and
the Jupyter ecosystem while taking advantage of NERSC’s HPC resources to
handle large computations on big datasets.

In this paper, we discuss the underlying Jupyter and JupyterHub infrastruc-
ture at NERSC that makes it possible to serve and deploy Jupyter Notebooks
for thousands of users and provides us the flexibility to set up these extensions
and customizations in the Jupyter environment. In our previous work, we began

Accelerating Experimental Science Using Jupyter and NERSC HPC 147

exploring Deep Learning on HPC using Jupyter [20]. We seek to build upon
this early work, particularly in the context of large scale experimental science,
while also considering the broader scope of collaboration and data exploration
using Jupyter in these domains. We focus on three key areas of modern scientific
workflows:

Scaling Up Analyses on HPC: In a scientific workflow utilizing Jupyter, the
Notebook serves as an executable data processing and analysis run, with the
potential for scaling up certain steps (or cells in the Notebook) by running these
steps in parallel across multiple HPC nodes. Specifically, we look at vectorizing
certain loops or running steps concurrently across multiple backend nodes. To
do this, we attach a parallel execution framework to our Notebook (e.g., Dask
[13] or IPyParallel [6]) and farm out specific code elements as function calls to
this backend execution engine to scale up. The NCEM py4DSTEM [16] analysis
fits this model. We expect this methodology to apply for other scientific domains
as well.

Streamlining Exploration of Parameter Spaces: While Jupyter Notebooks
are very useful at capturing a specific analysis, in certain cases we may want to
repeat this analysis across a broad parameter space and analyze the results. In
the case of 3D tomographic reconstruction from ALS beamlines [26], we would
like to adjust parameters and capture the resulting analyses as separate Note-
books so that we have a family of Notebooks representing the parameter space.
Tools like Papermill [28] allow us to run the same Notebook using different
parameters. This may be useful in other contexts such as simulations, where
parameter exploration is also important.

Reproducible and Replicable Workflows: Given the collaborative nature
of large experimental science projects, it becomes critical to be able to curate
and capture certain analysis workflows as Jupyter Notebooks, such that users of
the project can then launch these Notebooks in their environments, and re-run
the workflows on different datasets or with their mutations. We are extending
the nbviewer [24] Jupyter tool to allow projects to curate a set of Notebooks for
users to clone (along with the accompanying computing environment and related
dependencies), so that they may run their version of the workflow. Parameterized
Notebooks also play an important role here, allowing them to be incorporated
easily as immutable objects.

2 NERSC Jupyter Infrastructure

Cori has been in service at NERSC since late 2015. It is designed with the
goal of enabling both simulation and data processing workloads to run side-by-
side in the same system. Among a number of features that are deemed espe-
cially friendly to “data users”, Cori includes a larger number of front-end nodes

148 M. L. Henderson et al.

than previous NERSC systems. These nodes support long-running workflow and
service engines, data transfer, large-memory jobs, and interactive platforms—
specifically, Jupyter. Originally one node was set aside for running Jupyter Note-
books on Cori, but over the past four years, demand for Jupyter at NERSC has
surged to the point where two more of these nodes have been repurposed for
running Jupyter. On any given day approximately 200 Notebook servers are
running on Cori’s Jupyter nodes, and the number of users who have run a Note-
book server at NERSC exceeds 1,000. Since August of 2018, the JupyterLab
interface has been used as the default Jupyter client at NERSC.

NERSC runs a JupyterHub service to manage its multi-user Jupyter deploy-
ment. This web service runs in a Docker container outside Cori in NERSC’s
container-as-a-service platform, Spin [14]. Once a user has authenticated to
JupyterHub at NERSC using their NERSC credentials, they select a target sys-
tem setup (Cori or another Docker container in Spin) where they want a Jupyter
Notebook to launch. Round-robin DNS assigns the user to one of the Cori
Jupyter nodes where their Notebooks spawn. The authenticator and spawner
logic is custom-developed by NERSC and easily plugs into JupyterHub. This
allows for a tiered model, where the external-facing JupyterHub runs outside
Cori but can route web traffic to each user’s JupyterLab instance running inside
Cori. This provides access to file systems, batch queues, and Cori’s high-speed
network. The NERSC JupyterHub deployment model is captured in Fig. 1.

Fig. 1. Jupyter at NERSC. A user authenticates through a web browser connected to
the JupyterHub process running in Spin. The Hub uses the secure NERSC SSH Proxy
authentication API to enable the spawning of Notebooks on other systems at NERSC.
The user may spawn JupyterLab in another container in Spin or on dedicated Jupyter
nodes akin to login nodes. These nodes have an internal-facing interface that enables
connections between Jupyter processes running on the Jupyter nodes and compute
nodes. This enables interactive distributed IPyParallel or Dask computing through job
allocations.

Accelerating Experimental Science Using Jupyter and NERSC HPC 149

When deploying Jupyter on HPC systems, HPC center staff must make a
number of decisions within a set of constraints. For instance, inbound connections
to compute nodes may not be easy to orchestrate or even possible. In that case,
running Jupyter Notebooks on compute nodes may be “clunky” or impossible.
At NERSC we have been able to add interfaces to the Cori Jupyter nodes that
enable Notebooks to communicate with processes running in batch jobs on the
compute nodes. This relatively simple change to the networking rules on a few
nodes means that we can scale up deployment of scientific analyses by launching
jobs on Cori and interacting with them through JupyterLab via distributed
execution engines like IPyParallel and Dask. This may be the best fit for Jupyter
on Cori at this point. Users expect JupyterLab to behave like a long-lived secure
shell (SSH) or remote desktop connection and retain state almost indefinitely
(within appropriate use guidelines), something that is incompatible with time-
limited batch jobs. This means that part of our focus is on making JupyterLab
“HPC-aware” and exposing HPC resources and capabilities through Jupyter’s
user-friendly interface.

Traditional HPC supercomputers like Cori at NERSC are homogeneous bare
metal servers, providing a low latency interconnect, high network bandwidth,
a large number of CPU cores, shared parallel file systems and access to large
scientific data sets and software libraries that are optimized for HPC hardware.
Users submit job requests to a queue system, which allocates available time and
resources for the job, normally with those resources exclusive to the user. Many
HPC parallel codes use the message passing interface (MPI) to communicate
between units of code. Data storage volumes on HPC systems can be large but
do not increase in capacity rapidly.

This can be contrasted with typical cloud computing environments, such as
Amazon Web Services and Microsoft Azure. These are generally heterogeneous,
with different virtualized hardware environments to choose from. Resources can
be requested more dynamically in a cloud environment, but performance metrics
can vary more and applications need to be more resilient to failures on individual
nodes. In a virtualized hardware environment, the local node resources and net-
work are shared by other cloud tenants, which could mean drastically different
latencies and compute times per node. Software that runs well in a cloud envi-
ronment at scale tends to be more asynchronous by nature and may also exhibit
more data parallelism with individual units not needing to communicate with
each other. Data storage volumes can be large, and they can rapidly increase
in capacity, with multiple centers providing geographically distributed data and
compute resources.

Much of the prior Jupyter development for computing at scale has emerged
from cloud deployments and carries with it assumptions that don’t fit the HPC
model (e.g., isolated resources without a common user namespace, no large
shared parallel filesystems, high latency between nodes). HPC environments
present unique challenges when it comes to running Jupyter for interactive com-
puting. Our efforts at NERSC have been focused on tighter integration with
many of the HPC features described above.

150 M. L. Henderson et al.

3 Scaling up Analyses on HPC

3.1 NCEM Bragg Disk Detection with Py4DSTEM

Scanning transmission electron microscopy (STEM) is used for spectroscopy,
diffraction, and imaging of materials. The microscope scans an atomic scale
beam of electrons across a thin sample of material in a raster pattern, using
interactions between electrons from the beam and atoms from the sample to
investigate material structure. In a 4D-STEM experiment, a two-dimensional
diffraction pattern is recorded at every beam position, encoding which electrons
scattered into which directions for every raster position. For crystalline and
semicrystalline materials, it is possible to determine many structural properties
using 4D-STEM by identifying the directions of Bragg scattering, where the
periodicities of the crystal create reflections of the electron beam in different
locations in the diffraction patterns. To find these directions, a vacuum probe is
used as a template, a correlation is taken between each diffraction pattern and
the template, and the positions and intensities of all local correlation maxima
are used to identify the Bragg disks. Measurement of the positions of these
diffraction disks are commonly used for strain mapping, orientation mapping,
and phase mapping [30]. Currently, Bragg disk detection [18,31,32] is the most
computationally expensive step for py4DSTEM-based analyses.

The original version of the Bragg disk detection algorithm was in serial form,
run from inside of a Jupyter Notebook where images of the data were rendered
for inspection and analysis. The Bragg disk detection step took several minutes
to process a 2 GB dataset using either a workstation or a shared Cori login node.
A 65 GB dataset took 11 h to process on a workstation, and a 300 GB dataset
was expected to take days to complete on a workstation.

3.2 Transforming the Code for Parallel Execution

Because the function that performs disk detection could operate on an indi-
vidual diffraction pattern, a slice of the data, a data-parallel algorithm was
formed by simply running the same function simultaneously on multiple diffrac-
tion patterns. The original function was written in Python and makes heavy use
of NumPy [29,34] for array manipulation and calculations, so a natural fit to
parallelize this would be a tool like IPyParallel or Dask. Both IPyParallel and
Dask provide a mechanism for instantiating a cluster of workers and can provide
remote execution of Python functions from a Python interpreter or a Jupyter
Notebook running a Python Jupyter Kernel. We started with IPyParallel first to
see how well a parallel version would scale and how much code refactoring may
be needed. By keeping all of the new code in a Notebook initially, it was easy to
iteratively test what was working and check results. A basic initial version was
already promising, reducing runtimes but not scaling quite as well as expected.
Performance using Dask was slower than IPyParallel for this implementation,
and it became evident that there were bottlenecks in our initial implementa-
tion when attempting to scale beyond a few nodes. Even with a less than ideal

Accelerating Experimental Science Using Jupyter and NERSC HPC 151

improvement initially, it was relatively easy and fast to use IPyParallel to cre-
ate and test a parallel implementation, with minimal changes needed from the
original code.

One of the issues with the initial implementation was that there was an
assumption that there was a low overhead to calling the function an arbitrary
number of times using IPyParallel or Dask. Because each function call completed
quickly for processing a single slice, there was a high relative overhead for pushing
input data over the network, calling the function, and returning the results each
time. To address this, a wrapper function was created that calls the original
function in bulk based on the number of data slices provided. The full dataset
is split as evenly as possible based on the number of workers available, and then
each of these chunks is passed to the wrapper function on a worker. That change
made a noticeable improvement in throughput from the original implementation.

Additionally, moving input data to and from the workers was also a bottle-
neck. This had to be addressed in three parts, (i) the parameter inputs to the
function, (ii) the data slice to process, and (iii) the function output data. The
inputs were serialized to disk, and then the file path was passed to the wrapper
function for deserialization. The data slices could be read from the original data
file, so slice offsets were passed to the wrapper function with the path to the
input data to extract the relevant data slices for processing. Finally, the output
data from each function call was assembled into a data structure and serialized
to disk, with the wrapper function returning the path to that file for retrieving
the result data. By eliminating bottlenecks, overall throughput improved, but
there was also an improvement in scalability, expanding the size of the clus-
ter that could be effectively used to process the data, reducing processing time
substantially by increasing available compute resources.

3.3 Upgrading Disk Detection

While this parallel work was being performed, the py4DSTEM authors were busy
upgrading their software to improve their analyses. Some initial results of the
parallel work had already improved processing time for larger data, but it did not
improve yet beyond about 640 cores or 20 Haswell nodes. The py4DSTEM devel-
opers added a different computational method to Bragg disk detection (subpixel
method ‘multicorr’ instead of ‘poly’) for computing image subpixels during disk
detection to gain more accuracy, but this also changed the running time from
fixed to variable. The ‘poly’ version is simpler and fits a parabola to pixels around
each peak and finds the maximum without upsampling. The ‘multicorr’ ver-
sion upsamples the image selectively using Discrete Fourier Transforms (DFT)
instead of upsampling all pixels using Fast Fourier Transforms (FFT) [22,33].
FFTs have well-optimized libraries, but for this data, many of the upsampled pix-
els are not useful and end up being discarded, increasing memory consumption
and computation increasingly inefficiently as the upsampling factor is increased.

This algorithmic change altered how evenly the work gets distributed to
workers since some data slices require more work to upsample. The uneven dis-
tribution of work becomes more clear at larger cluster scales, as shown in Fig. 3.

152 M. L. Henderson et al.

0 200 400 600 800 1000 1200

40

60

80

100

120

140

160

180

200
IPyParallel multicorr
IPyParallel poly
Dask multicorr
Dask poly

300GB py4DSTEM Bragg Disk Detection on Cori Haswell using 40 nodes

Worker

T
o
t
a
l

S
e
c
o
n
d
s

t
o

p
r
o
c
e
s
s

a
l
l

s
l
i
c
e
s

Fig. 2. Total seconds to process Bragg disk detection per worker on Cori Haswell with
300 GB data using 40 nodes.

For a 40 node cluster, using 1,280 cores on a 300 GB dataset, a noticeable split
was present in the processing time for each slice, as shown in Fig. 2. About half
of the slices took longer to complete, meaning some of the workers would spend
more time idle if they received more slices requiring less work.

3.4 Integrating the Parallel Version Back into Py4DSTEM

The original py4DSTEM code was refactored to incorporate this work, includ-
ing adding a module with parallel implementations for IPyParallel and Dask
and wrapping the original serial code and parallel code in a common func-
tion interface, maintaining backward compatibility with existing software using
py4DSTEM but adding new parameters for specifying an IPyParallel or Dask
cluster to submit work to.

3.5 NCEM Impact

Building a parallel implementation for the Bragg disk detection code signifi-
cantly improved processing time for large data. Now a 300 GB dataset takes
only minutes to process instead of days, as captured in Fig. 4. Figure 5 shows
wall clock time to process a 65 GB dataset using up to 40 Cori Haswell nodes,
or 1,280 workers. This performance improvement directly impacts NCEM users

Accelerating Experimental Science Using Jupyter and NERSC HPC 153

0 200 400 600 800 1000 1200

0

5

10

15

20

25

30

35

IPyParallel multicorr
IPyParallel poly
Dask multicorr
Dask poly

300GB py4DSTEM Bragg Disk Detection on Cori Haswell using 40 nodes

Worker

>

2
.
0

S
e
c
o
n
d
s

p
e
r

s
l
i
c
e

Fig. 3. Number of slices taking longer than 2 s for Bragg disk detection per worker
on Cori Haswell with 300 GB data using 40 nodes. This figure shows the significant
difference in performance characteristics between the ‘poly’ and ‘multicorr’ algorithms.

that no longer need to take home hard drives packed with raw data to process
on their own later. Additionally, it is difficult to evaluate data utility during a
4D-STEM experiment without analyzing the data. Processing data much faster
allows time to evaluate collected data, update the experiment, and collect better
results with available instrument time. Data transfer to Cori from the micro-
scope is now more time consuming than the analysis. These improvements are
bringing real-time analyses during data collection closer to a reality for NCEM.

This speedup is also opening up computational analyses that were not pre-
viously practical. One of the main advantages of 4D-STEM is the ability to get
both atomic-scale structural information with fine spatial sampling and very
large fields of view. Without HPC and the parallel implementation, this multi-
scale advantage would not be possible. It would be necessary to sacrifice either
spatial sampling or field-of-view to achieve the analysis for current data.

Approximately 50% of 4D-STEM experiments at NCEM involve Bragg disk
detection, and this enhancement to py4DSTEM will be applied to that data
going forward. Currently, the data collection rate is about 2–4 TB per day, but
this will be increasing with the introduction of new high-speed cameras that have
a data rate of 50 GB per second. In 1–2 years it is realistic for data volumes to
increase when more microscopes contain high-speed cameras. Having this parallel
processing available from a Jupyter Notebook cell also means that NCEM users

154 M. L. Henderson et al.

Fig. 4. py4DSTEM Notebook with 300GB dataset using 320 engines IPyParallel
cluster

Accelerating Experimental Science Using Jupyter and NERSC HPC 155

0 200 400 600 800 1000 1200

100

200

300

400

500

600 IPyParallel multicorr
IPyParallel poly
Dask multicorr
Dask poly

65GB py4DSTEM Bragg Disk Detection on Cori Haswell

Workers

S
e
c
o
n
d
s

Fig. 5. Bragg disk detection on Cori Haswell with 65 GB data.

can utilize existing recipe Notebooks from NCEM to help them in processing
their data, while able to take advantage of HPC resources from NERSC in an
interactive session. Approximate peak data rates for the K2 microscope and
high-speed 4D microscope are shown in Table 1.

3.6 Insights for Parallel Performance of Scientific Software

Efficient data access is very important for parallel work in general and in this
case efficient use of memory was also important. Data readers need to be memory
efficient to support many instances running on a single node, which can occur in a
data-parallel implementation. In an earlier parallel implementation, memory was
not an issue because the data was read in once during submission and slices were
transferred over the network to workers. In a later implementation, to reduce
overhead we opened the file at each worker, but this resulted in running out of
memory with many workers per node when the data reader expected to load
everything into memory at once. Some of the data readers used by py4DSTEM
utilize memory-mapped files, which worked well for this paradigm.

Data movement can also be expensive, with costs increasing by data volume.
The scheduler does not understand the data or workflow as well as the end-user,
and will not be able to completely optimize processing or moving data - the user
can do this more effectively on their end in some cases.

156 M. L. Henderson et al.

Table 1. NCEM microscope approximate peak data rates

Microscope Peak rate

TitanX 50MB/s

Themis 300MB/s

TEAM 0.5/TEAM I (K2/K3) 16GB/s

TEAM 0.5/4D Camera 50GB/s

3.7 Future Work

As data collection at NCEM increases, scaling the Bragg disk detection further
will be important. One way to achieve greater performance with more CPU
cores would be to more evenly balance the load among workers. Performance
improvements to the underlying code for the multicorr algorithm would also
help, potentially using Numba or Cython to accelerate the existing Python code.
Adapting the code for GPU usage is another avenue to explore.

The NCEM Gatan K2 IS microscopes record data in a raw format that users
can convert at the microscope to the more commonly used Gatan Digital Micro-
graph [5] file format. For larger 300 GB files, this conversion takes about an hour.
The py4DSTEM developers are working on a data reader for the Gatan K2 raw
format partly based on prior open source work by the LiberTEM [17] develop-
ers that is also compatible with the py4DSTEM datacube interface, but read
performance is about five times slower for Bragg disk detection in py4DSTEM
compared to the Digital Micrographand HDF5 [21] readers in py4DSTEM. This
is an active work area to either be able to process the original format data
comparatively fast or be able to rapidly reformat the data without needing the
microscope.

IPyParallel and Dask clusters here were manually instantiated on Cori from
the shell outside of a Notebook, but Dask does have tools such as dask-jobqueue
[4] and a Dask JupyterLab extension [19] for controlling and monitoring Dask
clusters from the JupyterLab interface. There is ongoing work to better integrate
these tools into the NERSC Jupyter environment for users. IPyParallel does not
yet have a JupyterLab equivalent control center for cluster management as in the
classic Notebook interface, but that is another area we are working to enable.

4 Streamlining Exploration of Parameter Spaces

The ALS Beamline 8.3.2 is a Synchrotron-based Hard X-ray Micro-Tomography
instrument. Tomography analysis requires processing of datasets (many GBs)
that contain 32-bit image stacks. Standard raw datasets contain X-ray images
of a sample taken at many angles as the sample is rotated with respect to the
imaging system. These raw images are 2D horizontal slices of the sample which
are inspected by researchers and a process of filtering and adjustment takes place
to determine the best parameters to choose for proper tuning and alignment of all

Accelerating Experimental Science Using Jupyter and NERSC HPC 157

the slice images. Finally, a combined image is produced that merges the 2D slices
into a 3D view of the object. When analyzing the slices, it is incredibly useful
to explore the parameter space to help determine the best fit for each dataset
and capture the parameters and results. Applications already exist for Beamline
8.3.2 users that offer visualization of the image stack and some exploration of the
parameter space, however, these are meant to run on a laptop or workstation.
Researchers do not have a unified way to process these images and rely on scripts
and collections of code snippets to experiment with the image stacks during
alignment. Jupyter offers a broader feature set as discussed above, including the
ability to perform custom ad-hoc analyses as needed within the same Notebook
context.

A common use case we have encountered in talking to different groups of
scientific users of Jupyter, including at the ALS, is that there is a desire to use
Notebooks as reusable curated recipes or apps. This means having the ability
to run a Notebook on different data or with different inputs without having to
copy and edit the Notebook each time, to simply execute it like a packaged piece
of software. The ALS and NCEM analyses would both benefit from being able
to parameterize their Notebooks so that facility users can start with curated
reusable analyses and simply plug data in and adjust parameters. Consolidating
analyses into reusable forms using Notebooks also aids in the repeatability of
results, and makes it simpler to compare results.

Using Jupyter Notebooks as a means to explore parameter spaces is another
use case that frequently comes up in discussions with scientific users. It is possible
to explore parameter spaces by making many copies of Notebooks and editing
each for a different parameter set or data set, but this is a cumbersome process
and makes it more difficult to track and compare results, in addition to being
error-prone.

The Papermill tool, originating from Netflix, allows one to execute a Note-
book with input parameters, maintaining the original Notebook as an immutable
document. The underlying mechanism for parameterizing Notebooks with Paper-
mill relies on applying and parsing Notebook metadata, specifically “parameters”
tags that can be applied to cells in a Notebook document. Papermill then uses
the nbconvert [3] Jupyter tool to execute the modified Notebook, injecting inputs
based on tagged parameters while leaving the original Notebook untouched. This
mechanism allows us to build in automation around Notebook execution and
bridges the gap between the Notebook as an interactive document and as an
executable program.

For example, when doing 3D tomographic reconstruction from the ALS beam-
line, it is useful to look at a single slice of an image taken from the beamline
and optimize the parameters for generating the reconstruction interactively. In
other words, the user would attempt to run the Notebook across a different set
of parameters and pick the optimal set, by browsing through a series of gener-
ated Notebooks and images. These parameters would then be saved and applied
across subsequent datasets and experimental runs.

158 M. L. Henderson et al.

Parameterized Notebooks also play an important role in preserving prove-
nance in a workflow. Since any given run across a set of parameters can be
preserved as a complete Notebook, this serves as a self-documenting represen-
tation of that particular run. We can review the results from this parameter set
as a stand-alone Notebook, and even reproduce the results by re-running it.

4.1 Future Work

We are investigating comparing the use of Papermill with more inline single-
Notebook approaches for the exploration of parameter spaces with tomographic
data and workflows used at the ALS Beamline. We are looking at inline widgets
and interfaces within a single Notebook that can expose this type of parameter
exploration as an alternative to generating multiple Notebooks across the param-
eter space. In practice, we expect to see a combination of these approaches, since
the inline approach may be more suited for exploratory analysis, while a set of
Notebooks would be more useful for maintaining provenance and batch process-
ing. We are also working on making these tools and services broadly available
to NERSC Jupyter users so that they can be seamlessly incorporated into their
workflows.

5 Reproducible and Replicable Workflows

5.1 Sharing and Cloning Jupyter Notebooks

Jupyter Notebooks are becoming increasingly common in scientific communi-
ties as a mechanism for publishing analyses and sharing them with colleagues.
Because Notebooks are just files, it is not difficult to email or otherwise share
these files through the usual mechanisms, and there are publishing mechanisms
for viewing and running Notebooks in a cloud environment (e.g., Binder, Pan-
geo). However, currently, there is no built-in mechanism in the JupyterLab
or classic Jupyter interfaces, or in JupyterHub (the shared Jupyter gateway
deployed at NERSC and many other locations), to copy or share a Notebook.
Additionally, when copying a Notebook, it can also be important to replicate
the execution environment the Notebook expects, namely software dependen-
cies required by the contents of the Notebook (Fig. 6).

For the ALS and NCEM use cases, there is a need to provide curated recipe
Notebooks for users that do not have software development or coding experience
to expertly process and analyze their data. This also merges with the need for
parameterized Notebooks since it makes more sense in this context to treat the
Notebooks as “apps” that can be run on many different inputs without needing
to edit their contents. In the workflow context, each parameterized Notebook
can be assumed to be immutable, greatly enhancing the repeatability and repro-
ducibility of the results.

Specifically, we are developing modifications to our JupyterHub deployment
and the addition of a modified version of nbviewer to bring Notebook sharing

Accelerating Experimental Science Using Jupyter and NERSC HPC 159

Fig. 6. The nbviewer tool, running as a JupyterHub service, allows a project within an
HPC system to provide a set of curated Notebooks that users can browse and preview
a static rendering of. Users can then clone a Notebook and its associated Jupyter
kernelspec into their environment to modify and execute a live Notebook. This figure
shows an example geoscience Notebook [10,11,23].

functionality to NERSC users. The nbviewer tool acts as a web service for ren-
dering Jupyter Notebooks as static web pages using nbconvert. There is a public
instance of this service [12] that accepts a URL or GitHub identifier for a given
Notebook and then renders the Notebook as a static web page.

160 M. L. Henderson et al.

By creating an area for users to deposit Notebooks for sharing, we can expose
that to nbviewer, and add a hook to nbviewer that copies the Notebook into a
user’s home area. Our service clonenotebooks [1] consists of two parts: a ver-
sion of nbviewer modified to facilitate extensibility and custom configuration,
and an extension to the Jupyter Notebook server. It uses nbviewer to enable
browsing and viewing of Notebooks and enables a special “clone” button within
the nbviewer interface which makes an HTTP request to an endpoint served by
the extended Jupyter Notebook server. The extension to the Notebook server
invokes the JupyterLab Contents API [7] (an API for filesystem-level operations
in the Jupyter backend) to copy the Notebook file into the user’s workspace as
well as updating the Notebook’s format when necessary to be compatible with
the current version of Jupyter. Additionally, the Jupyter Notebook server exten-
sion uses the existing Jupyter client to install the Jupyter kernelspec file that
specifies which kernel goes along with the Notebook, to capture the underlying
software environment and library dependencies. This means that the user now
has a live working copy of the Notebook-based workflow in their workspace, and
they are free to modify and tweak this reference Notebook to suit their own
needs. At the same time, since nbviewer only allows users to view Notebooks,
not modify them, the original curated Notebook remains unaffected by the user’s
actions and therefore remains suitable to share with other users.

We note that this is different from direct sharing, as in Google Docs, where
users instantly receive access to a shared document, but it does provide a mecha-
nism for users to publish Notebooks locally and share them in the general sense
with others. A challenge here is making sure that the environment needed to
execute the Notebook is available to anyone running a copy of these Notebooks.
Since there is not currently a general solution to this problem, we have users that
want to share Notebooks also provide a Conda [2] environment that can be used
as the basis for a Jupyter Kernel that would run the Notebook. The kernelspec
file that the user shares with the Notebook, and which is installed automatically
by clonenotebooks, makes it simple for other users to run the Notebook using
the correct Kernel.

5.2 Future Work

There are existing efforts in the Jupyter ecosystem that enable reproducible
science in the cloud. The Binder [25] project enables a set of Notebooks along
with a specification for software dependencies in a GitHub repo to be cloned,
provisioned and run as Docker containers on cloud resources. While Binder is
focused on small ephemeral cloud resources, our goal is to create this kind of
reproducible Notebook in an HPC setting for large workflows, such that we can
run these workflows against large datasets that are being generated from exper-
imental workflows. We are looking at taking Binder’s container-based approach
and applying it to reproducible environments at NERSC.

We also note the Pangeo [15] effort in the geosciences space. Pangeo uses
public cloud infrastructure to pair Jupyter with a predefined stack that includes
relevant scientific Python libraries and enables a scalable backend through Dask

Accelerating Experimental Science Using Jupyter and NERSC HPC 161

to run large analyses. There are many high-level similarities to this work, but our
focus is on the interactive HPC component of the workflow. Our infrastructure is
geared towards shared HPC resources rather than containerized cloud resources
that Pangeo currently focuses on.

Moving forward we would like to explore the possibility of integrating our
work with projects like Binder and Pangeo. Since the persistence of resources
and data play a key role in most of our work, it would be useful to discuss
how this could apply to some of these other efforts that take a more ephemeral
cloud-based view of things.

The Jupyter developers are also working on a collaborative mechanism [8]
for multiple users to interact with a single Notebook, which will provide a more
built-in interface for sharing. As these features take shape, we hope to integrate
them with our Notebook sharing services to provide another dimension to real-
time, interactive collaboration.

6 Conclusions

By relying on specific use cases from NCEM and ALS to improve an interactive
HPC experience with Jupyter at NERSC, we are moving closer to human-in-the-
loop scientific workflows. We believe focusing on Notebooks as a reusable element
of workflows will improve reproducibility for scientists, as well as quality when
community effort is directed at curating high-quality Notebook recipes.

The Jupyter platform has been a remarkably robust and extensible solu-
tion for interactive computing, and we have been able to enhance collaborative,
experimental workflows by integrating and building a suite of tools and enhance-
ments into our setup at NERSC. Enabling parallel backend execution engines
such as IPyParallel and Dask has given us a powerful and simple mechanism
to scale up Python-based analyses in Jupyter. This is critical when it comes to
enabling interactive analyses on very large datasets. Tools to explore parameter
spaces like Papermill have added a level of provenance and automation to the
experimental workflow. Finally, Notebook sharing is a key element in enabling
flexible, reproducible, interactive computing across a large project, since this
allows for reference Notebooks to capture a common base workflow that can
then be modified and extended by individuals.

Taking a broader view, Jupyter can lower the barrier for entry to experi-
mental science. Jupyter Notebooks function as de facto canned “apps” that can
be re-run by users without a deep computational background - these users can
simply modify parameters, data inputs or specific cells without disturbing the
rest of the workflow logic. At the same time, the entire workflow process is trans-
parent and can be modified and re-composed as needed, so that more advanced
users can implement deeper changes to the code.

Our success in engaging with early users at NCEM and ALS have reinforced
our belief that interactive computing is a key element in large experimental work-
flows, and user-friendly Notebook interfaces like Jupyter, that can be accessed
from anywhere on the web, will be critical in driving the scientific discovery loop.

162 M. L. Henderson et al.

Acknowledgements. This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science
User Facility operated under Contract No. DE-AC02-05CH11231.

We wish to thank the Jupyter team; Colin Ophus, Benjamin Savitzky, and Steven
Zeltmann at NCEM; and Dilworth Parkinson at ALS Beamline 8.3.2. We would also
like to thank Lindsey Heagy for the geoscience Notebook example.

References

1. Clonenotebooks. https://github.com/krinsman/clonenotebooks/
2. Conda. https://docs.conda.io/projects/conda/en/latest/
3. Convert notebooks to other formats. https://nbconvert.readthedocs.io/en/latest/
4. dask-jobqueue. https://jobqueue.dask.org/en/latest/
5. Gif quantum k2 system. https://www.gatan.com/products/tem-imaging-

spectroscopy/gif-quantum-k2-system
6. Ipyparallel: Using ipython for parallel computing. https://ipyparallel.readthedocs.

io/en/latest/
7. Jupyter contents api. https://jupyter-notebook.readthedocs.io/en/stable/

extending/contents.html
8. Jupyterlab: Real time collaboration. https://github.com/jupyterlab/jupyterlab/

issues/5382
9. Jupyterlab: The next generation web-based user interface for project jupyter.

https://github.com/jupyterlab/jupyterlab
10. lbnl-2019-resistive-casing notebook. https://github.com/simpeg-research/lbnl-

2019-resistive-casing
11. mlhenderson fork of lbnl-2019-resistive-casing notebook. https://github.com/

mlhenderson/lbnl-2019-resistive-casing
12. nbviewer. https://nbviewer.jupyter.org/
13. Scalable analytics in python. https://dask.org/
14. Spin. https://www.nersc.gov/users/data-analytics/spin/
15. Pangeo (2018). https://pangeo.io/
16. Bsavitzky, et al.: py4dstem/py4dstem: Doi release, July 2019. https://doi.org/10.

5281/zenodo.3333960
17. Clausen, A., et al.: Libertem/libertem: 0.1.0, November 2018. https://doi.org/10.

5281/zenodo.1478763
18. Das, S., et al.: Observation of room-temperature polar skyrmions. Nature

568(7752), 368 (2019)
19. Dask: dask-labextension, September 2019. https://github.com/dask/dask-

labextension
20. Farrell, S., et al.: Interactive distributed deep learning with Jupyter notebooks. In:

Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds.) ISC High Performance 2018.
LNCS, vol. 11203, pp. 678–687. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02465-9 49

21. Folk, M., Cheng, A., Yates, K.: HDF5: a file format and I/O library for high
performance computing applications. In: Proceedings of Supercomputing, vol. 99,
pp. 5–33 (1999)

22. Guizar-Sicairos, M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image regis-
tration algorithms. Opt. Lett. 33(2), 156–158 (2008)

https://github.com/krinsman/clonenotebooks/
https://docs.conda.io/projects/conda/en/latest/
https://nbconvert.readthedocs.io/en/latest/
https://jobqueue.dask.org/en/latest/
https://www.gatan.com/products/tem-imaging-spectroscopy/gif-quantum-k2-system
https://www.gatan.com/products/tem-imaging-spectroscopy/gif-quantum-k2-system
https://ipyparallel.readthedocs.io/en/latest/
https://ipyparallel.readthedocs.io/en/latest/
https://jupyter-notebook.readthedocs.io/en/stable/extending/contents.html
https://jupyter-notebook.readthedocs.io/en/stable/extending/contents.html
https://github.com/jupyterlab/jupyterlab/issues/5382
https://github.com/jupyterlab/jupyterlab/issues/5382
https://github.com/jupyterlab/jupyterlab
https://github.com/simpeg-research/lbnl-2019-resistive-casing
https://github.com/simpeg-research/lbnl-2019-resistive-casing
https://github.com/mlhenderson/lbnl-2019-resistive-casing
https://github.com/mlhenderson/lbnl-2019-resistive-casing
https://nbviewer.jupyter.org/
https://dask.org/
https://www.nersc.gov/users/data-analytics/spin/
https://pangeo.io/
https://doi.org/10.5281/zenodo.3333960
https://doi.org/10.5281/zenodo.3333960
https://doi.org/10.5281/zenodo.1478763
https://doi.org/10.5281/zenodo.1478763
https://github.com/dask/dask-labextension
https://github.com/dask/dask-labextension
https://doi.org/10.1007/978-3-030-02465-9_49
https://doi.org/10.1007/978-3-030-02465-9_49

Accelerating Experimental Science Using Jupyter and NERSC HPC 163

23. Heagy, L.J., Oldenburg, D.W.: Modeling electromagnetics on cylindrical meshes
with applications to steel-cased wells. Comput. Geosci. 125, 115–130 (2019).
https://doi.org/10.1016/j.cageo.2018.11.010

24. Jupyter: jupyter/nbviewer, September 2019. https://github.com/jupyter/nbviewer
25. Project Jupyter, et al.: Binder 2.0 - reproducible, interactive, sharable environ-

ments for science at scale. In: Akici, F., Lippa, D., Niederhut, D., Pacer, M. (eds.)
Proceedings of the 17th Python in Science Conference, pp. 113–120 (2018). https://
doi.org/10.25080/Majora-4af1f417-011

26. Kanitpanyacharoen, W., et al.: A comparative study of x-ray tomographic
microscopy on shales at different synchrotron facilities: ALS, APS and SLS. J.
Synchrotron Radiat. 20(1), 172–180 (2013)

27. Kluyver, T., et al.: Jupyter notebooks-a publishing format for reproducible com-
putational workflows. In: ELPUB, pp. 87–90 (2016)

28. Nteract: nteract/papermill, September 2019. https://github.com/nteract/
papermill

29. Oliphant, T.E.: A Guide to NumPy, vol. 1. Trelgol Publishing USA (2006)
30. Ophus, C.: Four-dimensional scanning transmission electron microscopy (4D-

STEM): from scanning nanodiffraction to ptychography and beyond. Microsc.
Microanal. 25(3), 563–582 (2019)

31. Panova, O., et al.: Diffraction imaging of nanocrystalline structures in organic
semiconductor molecular thin films. Nat. Mater. 18, 860–865 (2019). https://doi.
org/10.1038/s41563-019-0387-3

32. Pekin, T.C., et al.: Direct measurement of nanostructural change during in situ
deformation of a bulk metallic glass. Nat. Commun. 10(1), 2445 (2019)

33. Soummer, R., Pueyo, L., Sivaramakrishnan, A., Vanderbei, R.J.: Fast computation
of Lyot-style coronagraph propagation. Opt. Express 15(24), 15935–15951 (2007)

34. Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure
for efficient numerical computation. Comput. Sci. Eng. 13(2), 22 (2011)

https://doi.org/10.1016/j.cageo.2018.11.010
https://github.com/jupyter/nbviewer
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.25080/Majora-4af1f417-011
https://github.com/nteract/papermill
https://github.com/nteract/papermill
https://doi.org/10.1038/s41563-019-0387-3
https://doi.org/10.1038/s41563-019-0387-3

Interactive Supercomputing
for Experimental Data-Driven Workflows

Mark Klein, Maxime Martinasso, Siew Hoon Leong(B), and Sadaf R. Alam

Swiss National Supercomputing Centre, ETH Zurich, Lugano, Switzerland
cerlane.leong@cscs.ch

Abstract. Large scale experimental facilities such as the Swiss Light
Source and the free-electron X-ray laser SwissFEL at the Paul Scher-
rer Institute, and the particle accelerators and detectors at CERN are
experiencing unprecedented data generation growth rates. Consequently,
management, processing and storage requirements of data are increas-
ing rapidly. Historically, online and on-demand processing of data gen-
erated by the instruments used to be tightly-coupled with a dedicated,
domains-specific, site-local IT infrastructure. Cost and performance scal-
ing of these facilities not only pose technical but also planning and
scheduling challenges. Supercomputing ecosystems optimize cost and
scaling for computing and storage resources but typically exploit a shared
batch access model, which is optimized for high utilization of compute
resources. In comparison, in public clouds, on-demand service delivery
models address the concept of elasticity while maintaining isolation with
performance trade-offs. Furthermore, these on-demand access models
allow for different degrees of privileges to users for managing IT infras-
tructure services, in contrast with shared, bare-metal supercomputing
ecosystems. This paper outlines an approach for enabling interactive, on-
demand supercomputing for experimental data-driven workflows, which
are characterised by a managed but bursty data and computing require-
ments. We present a delegated batch reservation model, controlled by
the customer and provisioned by the supercomputing site, that allows
scientists at the experimental facility to couple generation of data to the
allocation of compute, data and network resources at the supercomputing
centre. Scientists are then able to manage resources both at the exper-
imental and supercomputing facilities interactively for managing their
scientific workflows. Prototype implementation demonstrates that this
rather simple co-designed extension to a supercomputing classic batch
scheduling system with a controlled degree of privilege can be easily
incorporated to the experimental facilities existing IT resource manage-
ment and scheduling pipelines.

1 Introduction

The Swiss National Supercomputing Centre (CSCS) develops and operates
cutting-edge high-performance computing systems as an essential service facility
c© Springer Nature Switzerland AG 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 164–178, 2020.

https://doi.org/10.1007/978-3-030-44728-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-44728-1_10

Interactive Supercomputing for Experimental Data-Driven Workflows 165

for Swiss researchers. CSCS flagship supercomputing system is called Piz Daint,
which is a hybrid and heterogeneous Cray XC40/XC50 platform [AGMS19].
HPC and data services at CSCS are used by scientists for a diverse range of pur-
poses from high-resolution simulations to the analysis of complex data. Swiss
scientists, research institutions and projects with their own funding can access
the computational resources at CSCS as contractual partners. The environment
provided is either shared with the User Lab1, or a dedicated solution can be
deployed, depending on specific needs. Examples of services provided by CSCS
to contractual partners are the analysis of data from the Large Hadron Collider
(LHC) at CERN, the archiving of data from the Swiss Light Source (SLS) and
the Swiss Free Electron Laser (SwissFEL) for the Paul Scherrer Institute and
the provision of computational resources for the numerical weather forecasts of
MeteoSwiss.

Historically, CSCS had a dedicated system per customer i.e. one for
MeteoSwiss due to their unique operational needs, one for CHIPP for complex
WLCG grid middleware, etc. With the recent upgrade of Piz Daint that enabled
a few cloud technologies such as containers [BCMM17], availability of public IPs
to compute nodes and access to multiple storage targets, almost all customers
except MeteoSwiss have been moved to a shared supercomputing platform. How-
ever, these customers and their workflows largely abide by the rules and policies
of a shared supercomputing ecosystem i.e. batch processing constraints, length of
jobs, storage policies, etc. An exception is the Grid middleware, which CSCS is
responsible for the deployment, management and operation on behalf of the Swiss
high energy physics community [CKOS+08]. In general, workflows that require
dedicated access to resources with some levels of quality of service for avail-
ability and response times cannot be readily mapped onto Piz Daint and likely
other shared supercomputing ecosystems [AMS18]. In this paper, we consider a
data-driven workflow requirements for on-demand, interactive supercomputing,
within existing constraints of a shared, bare-metal, production HPC ecosystem.

The Paul Scherrer Institute (PSI) is the largest research institute for natural
and engineering sciences in Switzerland by conducting cutting-edge research. It
develops, builds and operates complex large research facilities [MSA+17]. PSI
data driven workflows can be largely classified in two categories: online analysis
and offline analysis. Online analysis refers to processing of data while the sci-
entist is using an instrument (and has a dedicated allocation to an instrument
and is typically onsite at PSI for a fixed period of time). Hence, scientists need
interactive and dedicated access to large-scale data and computing infrastruc-
ture while they have a limited time window. In other words, they need a tight
feedback loop to guide their experiments and cannot wait for the availability of
IT resources (waiting times in a batch queue). Offline data processing refers to
processing of archived data (mostly on tape at the data centre) once the scientist
is no longer at the experimental site. In this paper, we consider the online data
processing workflows.

1 https://www.cscs.ch/user-lab/overview/.

https://www.cscs.ch/user-lab/overview/

166 M. Klein et al.

Fig. 1. Overview of the reservation service concept from a facility and user point
of view. Traditionally, users and system administrators work on allocating resources
according to local compute capacities and policies. This is highlighted in the first two
workflows at PSI and CSCS. In this example, the third workflow, a PSI system admin-
istrator can create a reservation such that the workflow for interactive access from a
user point of view remain unchanged as a dedicated reservation for PSI will not be
governed by CSCS batch job queuing policies.

Our incremental, co-design approach for enabling a data-driven interactivity
within an existing supercomputing ecosystem takes into consideration existing
technical and policy constraints of the site as well existing workflows require-
ments of the experimental facility. The objective is to enable the service in
a transparent manner to the end users and to have a minimal impact to the
operators of the IT infrastructure, at both the experimental site and the super-
computing data centre. Slurm, the resource manager and scheduling system at
CSCS, is one of the common point of interaction for the middleware to spec-
ify resource needs. We do not modify the system configuration of slurm but
rather enable the execution of a privileged operation by an external customer
in a secured and controlled manner. The IT administrator at the experimen-
tal facility can integrate process of reserving predefined resources in an external
cluster (i.e. limited number of nodes on a supercomputing system plus other con-
straints) into their existing workflows (the experimental facility in this case uses
slurm for their internal IT resource management and scheduling system). Such
a concept is shown in Fig. 1. Both computing and data orchestration resources
at CSCS can be coupled in slurm jobs through data staging services. To an end
user, the supercomputing ecosystem resources can then be no different from the
facility’s on-site IT infrastructure resources for coupled, interactive access during
the experiment.

Interactive Supercomputing for Experimental Data-Driven Workflows 167

The outline of the paper is as follows: Sect. 2 presents the background of
other classic interactive usage in supercomputing environments in addition to
the experimental data-driven interactivity. In Sect. 3, we present the scope and
design of the reservation service in the context of interactive, data-driven work-
flows. Implementation details of the prototype tool is presented in Sect. 4 followed
by a summary and future work in Sect. 5.

2 Background and Motivation

It is important to compare and contrast data-driven, interactive workflows with
other use cases for interactivity in HPC. Classic use cases for interactive comput-
ing include visualization, workflow engines like Jupyter Notebooks and computa-
tional steering. For the data-driven workflows of PSI online analysis, there needs
to be a co-location of the data and compute services. Unlike other PSI workflows,
the source of data generation is typically under the control of users such as a sim-
ulation engine, data repositories, etc. while data collection at PSI [Pau] is tightly
coupled with a complex instrument and its operation, which, like a supercom-
puting system is reserved for weeks or months in advance. Another distinction
is the user expectation of request and response time. Typically, visualization
applications and Jupyter Notebooks, require a near realtime feedback loop for
resource request and availability of resources. Since an experimental equipment
is reserved ahead of time and the time during which the instrument is running
is rather limited, there could be a lag between the time a request for services is
made for experimental data-driven workflows. However, unlike classical batch,
the instrument time and supercomputing time must be tightly coupled as the
cost of idle or underutilized resources for both data generation instruments at
the experimental facility and the supercomputing ecosystem can be significantly
high. Furthermore, for a scientist, it is a lost opportunity cost because there
may not be an option to get back their allocation on the experimental facility
in a timely manner. Table 1 summarises the comparison of different interactive
workflows in supercomputing ecosystems.

2.1 Scientific IT Infrastructure Design Principles

Supercomputing ecosystems are designed, from ground up, for performance and
scale. As a result, the hardware, software and system management characteris-
tics as well as allocation and scheduling policies for using such resources reflect
these priorities to support execution of large-scale applications. Consequently,
dedicated IT services at a domain-specific experimental facility are typically
optimized (compute, storage, network and software stack) for the custom appli-
cations and workflows and cannot scale out, without a redesign, to a super-
computing ecosystem that serves multiple scientific domains. Development of
cloud technologies that introduced multiple levels of abstractions could, in the-
ory, enable a subset of Infrastructure-as-s-Service (IaaS), Platform-as-a-Service
(PaaS) and Software-as-a-Service (SaaS) features on a supercomputing ecosys-
tem. This, however, in practice, would require a different system design to enable

168 M. Klein et al.

Table 1. Comparison of different (canonical) use cases of interactivity in HPC in
terms of flexibility for expected behavior for service availability and access latency.
These parameters are considered in proposing the reservation service for the data-
driven reservation services for coupling experiments and interactive access to HPC
resources.

Use case Data
acquisition

Resource
acquisition

Response
latency

Service
availability

Visualisation Flexible Flexible Real time Flexible

Jupyter
Notebook

Flexible Flexible Real time Flexible

Experimental
facility

Static/coupled Static/coupled Deterministic Time-constrained

virtualization of hardware technologies like computing, storage and network as
well as automation for provisioning of resources. Virtualisation often comes at
an expense of performance and scaling, specifically for compute, storage and
network intensive MPI applications. Existing systems, like Piz Daint, employ
an incremental approach for introducing cloud technologies and service deliv-
ery models for workflows, which need design of a supercomputing system for
performance and scale while accessibility and control of a cloud infrastructure.
This does not imply that Piz Daint can be considered as an OpenStack, full
multi-tenant ecosystem for generic IaaS and PaaS service delivery models.

2.2 Dedicated vs. Shared Cluster Computing Resources

Dedicated IT resources, in the context of an experimental facility, are customized
for computing, data and network needs of an equipment as well as its usage. We
can consider WLCG Tiered environment as an example. The Worldwide LHC
Computing Grid (WLCG) is composed of four levels, or Tiers, called 0, 1, 2 and
3. Each Tier is made up of several computer centres and provides a specific set
of services. Between them the tiers process, store and analyse all the data from
LHC. Tier 0 is the CERN Data Centre. All of the data from the LHC passes
through this central hub, but it provides less than 20% of the Grid’s total com-
puting capacity. This infrastructure is therefore highly customized and optimized
for storage capacity and distribution, not for generic high-end simulation needs
of multiple scientific domains. CSCS operates Tier-2 services by incorporating a
middleware on a supercomputing platform [CKOS+08]. However, Tier-2 services
are by design not tightly coupled with a data generation instrument. The Tier
2s are defined by WLCG as universities and other scientific institutes, which can
store sufficient data and provide adequate computing power for specific analysis
tasks. They handle analysis requirements and proportional share of simulated
event production and reconstruction. There are currently around 160 Tier 2 sites
covering most of the globe.

Interactive Supercomputing for Experimental Data-Driven Workflows 169

In comparison, supercomputing systems are defined by their special high
bandwidth global network, lightweight operating system to avoid OS jitters, no
outward connectivity to internet from compute nodes, a high bandwidth files sys-
tem (typically POSIX) and a batch file system that prioritises scalable jobs and
high system utilization. Majority of system hardware and software characteris-
tics for performance and scaling make it rather challenging for workflows that
have external dependencies and coupling to map onto a scalable, shared, batch-
oriented supercomputing system. Access control and tenancy models are rather
weak on supercomputing systems that are primarily designed to execute multi-
Petascale level simulation workloads. In fact, introducing rather lightweight vir-
tualization technologies such as containers, pose several compatibility and secu-
rity challenges in an HPC ecosystem [BCMM17].

2.3 Slurm Queues, Partitions and Fairshare

Piz Daint is a hybrid and heterogeneous system with 5704 GPU nodes and 1813
multi-core only nodes. Overall, all resources are connected with a high bandwidth
Aries dragonfly interconnect. There is a shared Lustre parallel file system that
serve all users and customer workloads with an exception of WLCG, which has
a dedicated file system due to its unique high throughput storage needs.

While system utilization is a key criteria, there are service level agreements
(SLA) with customers that must be managed within a shared environment on
Piz Daint. Slurm controls and manages access to resources for jobs and it is
configured with partitions and queues to fulfill SLAs. Jobs submitted inside
a queue are scheduled following a fair-share principle among projects. Slurm
scheduling policy allows to back-fill small jobs on preempted nodes required to
schedule large jobs, which typically require draining of nodes. Table 2 lists the
current set of system queues with description. Majority of resources are shared
between logical queues and are differentiated by policies and priorities such as
minimum and maximum number of nodes, length of jobs, etc. Note that the
dedicated queues are relatively small to keep a higher system utilisation. WLCG
queue is dedicated and has additional policies such as node sharing between
jobs. This high throughput queue utilization is very high due to the nature of
the workflows.

As indicated earlier and evident by the configuration of the queues and parti-
tions of Piz Daint, it serves multiple classes of services already, albeit in a static,
predefined manner. Table 3 lists key distinctions and similarities. Note that, by
far, the majority of users and usage is managed through the scientific program
called the User Lab. Interactive computing for JupyterHub is served by dedi-
cated nodes but only for small scale jobs (small number of nodes are dedicated
for interactive access) For details see https://jupyter.cscs.ch/. Large scale jobs
wait in the batch queue. Policy exceptions are based on the default policy and
quality of service model for the User Lab.

Another important aspect of resource allocation, sharing and fair usage is
validity period of access to resources. A standard research project typically has
a yearly quota, which is divided into four equal chunks. For instance, a project

https://jupyter.cscs.ch/

170 M. Klein et al.

Table 2. System queues and partitions

Name Type Description

normal Shared Standard queue for production work

long Shared Maximum 5 long jobs in total (one per user)

large Shared Large scale work, by arrangement only

low Shared Back-fill only when quota is exhausted

2go Shared Different policy for quota expiration

debug Dedicated Quick turnaround for test jobs (one per user)

prepost Shared High priority pre/post processing

wlcg Dedicated WLCG nodes for LHC workload

cscsci Shared Restricted for continuous integration

xfer – Data transfer queue

Table 3. Existing service classes on Piz Daint

Shared
resource

Privileged
access

Scheduling
model

Policy exceptions

User Lab Yes No Batch By default none

Customers Yes No Batch Yes, with restrictions

Interactive
computing

No No (Interactive)
Batch

Yes, with restrictions

LHC Grid No No Batch Yes, with restrictions

cscs2go Yes No Batch Yes, with restrictions

with 10000 node hours per year means 2500 node hours per quarter for a use
or loose basis. This encourages a uniform usage of the system throughout the
period but is more aligned with a batch oriented system usage where jobs can
be queued based on the fairshare principles of usage, quota, wait times and size
of jobs among other parameters. This, in turn, does not suit interactive usage of
the resources without dedicating them for on-demand usage patterns.

3 Design and Scope of Data Driven Interactive
Supercomputing

The co-design approach proposed in this paper leverages operational metrics and
constraints for the facilities as well as productivity of the user though interactiv-
ity during the allocation of the equipment. One of the guiding principles for the
workflow is high and effective utilization of expensive tools for scientific discov-
eries. On one side, there is allocation of the beamline time at the experimental
facility that is generating scientific data, at a much faster rate than before after

Interactive Supercomputing for Experimental Data-Driven Workflows 171

the upgrade. On the other side, there is a general-purpose, shared supercom-
puting ecosystem, where there are typically long batch queues of running and
outstanding jobs to maximise system utilization.

3.1 Reservation Concepts and Use Cases

The concept of a reservation is not new to HPC resource management and
job scheduling systems like slurm. It is a privileged operation, which has been
routinely exercised but primarily used to override policies for user access and
control. Some examples and use cases include:

• Maintenance: this special partition is used for scheduled maintenance, with
system downtime. This is to avoid abrupt termination of jobs. System is
essentially drained so it can go into the maintenance mode. This is an internal
CSCS request, which is typically planned months in advance. The frequency
is 3–5 times a year.

• Large scale runs: Often after scheduled maintenance, the full-scale system
is reserved for debugging, troubleshooting as well as for large-scale runs for
scientific publications such as Gordon Bell prize runs. Reservation for the
Gordon Bell runs is a user driven activity but they are expected to contact
weeks ahead of time. Frequency is a few times a year.

• Courses: Dedicated resources are needed for CSCS user and non-users who
attend a course that is organized by CSCS or in collaboration with partners.
A reservation is required to ensure that the required resources are available for
hands-on exercises. These requests are of modest size i.e a couple of dozens
of nodes maximum. Courses are planned in advance and these reservation
requests can be made and approved in advance. Frequency is a couple of
times per quarter.

• Debug: Often, in case of an issue related to system and software debugging
and troubleshooting, certain nodes can be placed into a reservation to prevent
user jobs from accidental running on these nodes. This is typically infrequent
and incident driven to maintain overall health and service level of the system.

• JupyterHub: an elastic reservation system is used for maintaining availability
of a small number of single, interactive node for Jupyter Notebook access
where users ask for a single node interactive access. This is sort of a very
small, persistent reservation.

• Other: there are user driven requests that are based on a valid reason and
justification on why they need a specific set of resources for a given period of
time. Such requests are approved on a case-by-case basis. These are rare and
infrequent to maintain fairness among the users of a shared resource.

The common theme in the above use cases is that CSCS internal staff is
involved in both the approval and execution pipeline of these exceptions to
ensure the overall service commitments for users and high utilization of the IT
resource. Therefore, the challenge is to re-purpose this tool without compromis-
ing the service level metrics for different customers in a shared supercomputing
ecosystem.

172 M. Klein et al.

3.2 Analysis of a Data-Driven Workflow

We describe a PSI online analysis workflow to understand the requirement for
interactivity for a data-driven workload. For such online analysis, the following
steps are performed in a chronological order:

• Users of PSI facility apply for a time allocation of PSI beam time
• Application is evaluated and the request is granted of rejected
• If the request is granted, a fixed schedule is created to access beam time
• On the scheduled days, users come physically to PSI and operate the beamline

by following a precise workflow
• This workflow starts by a series of experiments to calibrate the beamline and

to find area of interest on the object to visualize
• Once the beamline is calibrated, the real experiment starts and the object is

exposed to the beam (the bean is always on). Depending on the experiment,
several overlapping images are captured at regular interval. This steps takes
several hours as the object is progressively rotated. For example and for one
specific experiment, a complete rotation of the object is achieved after 1000
small rotations.

• After each exposure the set of generated data obtained by sensors is processed
to reconstruct the internals of the object. In the general case, the object is
discretized into pixel and for each pixel light intensity and phase are recon-
structed.

• Data size generated for each exposure depends on the experiments but it
varies in the range of GB. A full experiment can have thousands of exposures
generating TB of data to process by the workflow.

• Once the users are satisfied about the obtained image or their allocation is
completed, the experiment ends and users retrieved (transfer, physical disks)
their data.

For PSI it is important to maximize the utilization of the beam time as it is
the most expensive resource, and, therefore, after each exposure the computation
time should be fast enough not to limit and reduce beam time usage.

With the new facility coming online, due to the sheer volume of data (exper-
iments will generate PB of data instead of TB), the local IT facility cannot cope
with storage and fast processing. While the calibration step can still be done on
PSI premises, the data of the experiment must be shipped while the experiment
is ongoing to a supercomputing facility for scalable computing. A tight feedback
loop is needed to guide experiment such as re-doing a set of exposure for more
accurate outputs.

3.3 Co-Designed Reservation Service for Data-Driven Workflow

In order to propose a reservation service design that fulfills potentially compet-
ing needs, we explain workflow of an existing, user-driven reservation service.
Figure 2 shows steps of communication process between CSCS and a customer

Interactive Supercomputing for Experimental Data-Driven Workflows 173

where manual intervention and approvals take place. This workflow however does
not show any details on access and accounting. For instance, in this workflow,
the resource consumption of jobs will be treated the same way as any other
job. Essentially, a reservation can be created without running any jobs hence
impacting utilization of the system.

Fig. 2. Steps defining workflow for the reservation service for a user without automation
and delegation. Once the reservation is in place, user can access it interactively. Often,
approved users submit batch jobs to the reservation.

As shown in Fig. 2, the process starts with a user or a customer contacting
CSCS through service desk or directly for a reservation, specifying and giving
a justification for size and timings of a resource access request. The request is
assessed and a decision is made in a couple of days to weeks. Once an approval is
granted, a CSCS system IT staff member creates a reservation and share its han-
dle with the requester. Approved users can then submit jobs to the reservation.
Once reservation time expires, it is automatically removed.

Figure 3 shows a modified version of the workflow which can be delegated to
selected representatives of a customer who are expected to setup an interactive
workflow to Piz Daint. CSCS provides an interface or API to a customer to sub-
mit a request for reservation. It is the responsibility of the customer to evaluate
technical and policy considerations before forwarding the request to CSCS. For
instance, a customer may only selected users or a limited number of resources to
be used in this manner. CSCS maintains its own access control lists and policies.
In the absence of an issue, the process works in a similar manner as before except
that a privileged operation is performed in an automated manner. Users can use

174 M. Klein et al.

Fig. 3. Steps defining workflow for the reservation service by a customer on behalf of
a user for coupling data and compute resources between an IT infrastructure and an
experimental data facility. Steps are automated and delegated for control and access.
Once the reservation is in place, user can access it interactively. This automated process
is expected to reduce the time to request and to get approval to minutes from days
to weeks. Note that the reservation may not be granted immediately because it may
depend on attributes such as size of resources. Typically, for data driven workflows,
reservation start times will be known weeks in advance so these reservations are in
place for interactive analysis for users.

this reservation both as interactive and batch manner. CSCS and customer are
expected to agree ahead of time access, usage and accounting guidelines for using
this service.

3.4 Controlled Privileges and Limitations

As mentioned earlier, using a reservation is nothing new to an HPC resource
management and scheduling system like slurm. In fact, any user is able to show
reservations on the system they belong to using the scontrol command:

scontrol show reservation

However, the ability to create or modify a reservation in Slurm requires at
least an operator level of privilege [Scha]. The restricted operations related to
reservations are:

scontrol create reservation
scontrol update reservation
scontrol delete reservation

Interactive Supercomputing for Experimental Data-Driven Workflows 175

Operator level access gives much more ability to the users than simply related
to reservations [Schb]. It is a good practice to avoid granting this level of con-
trol to normal users as they could then create reservations which bill to other
projects, remove active reservations belonging to other users, or modify/suspend
jobs not belonging to them. Ideally for this service, an unprivileged user is only
able to create and modify reservations for projects that they belong to.

3.5 Reservation Management Tool

A tool that was previously created for CSCS user support representatives to
assist in modifying partition permissions was adapted as a proof of concept
utility for this service. The tool sanitizes user input, checks group membership
to validate request, and elevates to an operator user to submit the underlying
scontrol command if everything is valid. While in early user testing, access to
the tool is further limited and controlled by a list of approved users (by CSCS).

The following functionality exists in the initial release of the tool:

list owned reservation
add reservation
delete owned reservations

4 Implementation and Analysis

Although the tools have been used for internal CSCS use cases in operation,
the redesigned version for the proof of concept is evaluated for the PSI online
workflow as an example. A subset of features are selected to evaluate whether the
design and implementation of the tool is feasible in operation. On the customer
side, features include the look and feel of slurm reservation commands, ability to
restrict and control a reservation per beamline, ability to define a start time and
ability to modify and cancel a reservation. The scientist or end user perspective of
this service is shown in Fig. 5. The interactive or on-demand access is guaranteed
provided the user is not competing with his/her own resource access within the
allocated reservation. For instance, is a reservation is made with 50 compute
nodes and a user submit 10 jobs with 5 nodes each, the 11th job will have to
wait until resources are released by one of the running jobs by the user.

For CSCS, key features are an ability to manage and control access to the
service, restrict attributes of a reservation and workflows for graceful failure of
service in case of an issue so customers do not loose key time allocation windows.
There are several technical and policy consideration that are omitted in the
proof of concept. Among these are design of the API, accounting workflows, and
understanding overall impact of using a reservation service on the utilization
and fairshare usage of Piz Daint.

The reservation service enables users to transparently manage their reser-
vations with only minor modifications to the underlying system. As a proof
of concept, only basic functionalities, create, delete and list reservation(s), are

176 M. Klein et al.

provided but they are sufficient to demonstrate the potential of offering such a
service to support interactive computing for the PSI use case. The example in
Fig. 4 shows some features of the tool and how it can be used in practice. For
instance, an approved user cannot create a reservation for a project that he/she
does not belong or submit a job to the reservation it does not own. A user can
specify size and length of a reservation. The prototype version has been eval-
uated and tested on a Cray XC system with 100+ Intel Xeon Phi processors.
Currently, a manually defined access control list manages access to the tool.

Fig. 4. Outputs from the prototype version of the reservation management tool showing
features and capabilities on a Cray XC system. The tool at the moment prevents
simplified access controls and monitoring capabilities.

Fig. 5. Interactive access to Supercomputing resources for an experimental facility
scientist. This assumes that the experimental facility admin workflows are in place to
setup the reservation.

Interactive Supercomputing for Experimental Data-Driven Workflows 177

As a next step, as the tool continues to be co-designed and co-developed for
the use cases, the PSI IT staff will integrate this tool to their existing slurm
workflows. The reservation service in turn can then enable the PSI scientists
to coordinate well in advance both the reservations of their instruments and
the required compute resources at CSCS. The service is expected to bypass the
traditional human-in-the-loop steps and facilitate improved time-to-solution by
allowing scientists to focus on their actual scientific activities as opposed to
administrative overheads for coordinating distributed IT resources.

The existing implementation serves as a good demonstrator but has a few
shortcomings, which will be addressed in future updates and improvements:

• Role based access control
• Usage and administration policies
• Business model for on-demand usage in a shared batch environment
• Technical functionalities

– Additional attributed to the reservation
– Modification of an existing reservation
– An API for development and integration into customer tools
– Reservation of dependent resources/services/tools
– Monitoring and logging

Furthermore, as a next step with continued improvements to the implemen-
tation and evaluation together with PSI, CSCS will use a tool called RM-replay
to study the impact of creating these reservations on overall utilization targets
of Piz Daint and job waiting times for users [MGB+18]. RM-replay is a fast
replay engine for production workloads where we can use actual Piz Daint work-
load traces and inject workload for the reservation service. These studies would
help us in tuning technical and policy constraints for the delegated reservation
management service.

5 Summary and Future Work

We have demonstrated a co-design approach to data-driven interactive super-
computing that allows scientists to couple their data generation experiments
at an experimental facility and IT resources at a shared, supercomputing data
centre. The interactive, high performance and scalable access to computing and
storage resources is key for the productivity of scientists to sustain exponential
growth in data from experimental instruments. The incremental approach is not
expected to disrupt key performance indicators of a supercomputing ecosystem
namely utilization of the computing resources. Nevertheless, additional analysis
is needed to understand necessary constraints for enabling such a service for
customers. The usage and administration policies need to the be updated as
the availability of such a service allows users to manage their own reservations,
which is traditionally under the jurisdiction of system administrators, to pre-
vent potential abuse. Additionally, monitoring and logging of operations will be
extended to assist with troubleshooting and diagnostics.

178 M. Klein et al.

Additional technical functionalities will be addressed as we continue co-
designing the tool with the experimental facilities IT staff. The service would
have to allow the scientists to specify a fixed start-time of the reservation, han-
dles contentions, provides reminders, etc. Naturally it is also crucial to allow for
minor modification of reservations without affecting their priorities. Typically,
the scientists will require more than just compute CPU cores/GPUs to per-
form their computations. Additional resources/tools/services, e.g. extra storage
in scratch folders, Kubernetes and on-demand storage, are also required. Ide-
ally the reservation service should also provide an integrated interface to reserve
diverse set of services.

Acknowledgements. We would like to thank our colleagues at PSI for their insight-
ful remarks and their input for co-designing the early prototype. The work presented
in this paper is partly funded by a swissuniversities P-5 grant called SELVEDAS (Ser-
vices for Large Volume Experiment-Data Analysis utilising Supercomputing and Cloud
technologies at CSCS).

References

[AGMS19] Alam, S.R., Gilly, L., McMurtrie, C., Schulthess, T.C.: CSCS and the Piz
Daint System, pp. 149–174, May 2019

[AMS18] Alam, S.R., Martinasso, M., Schulthess, T.C.: Hybrid cloud and HPC
services for extreme data workflows. In: Extreme Data: Demands, Tech-
nologies, and Services - A Community Workshop (2018)

[BCMM17] Benedicic, L., Cruz, F.A., Madonna, A., Mariotti, K.: Portable, high-
performance containers for HPC. CoRR, abs/1704.03383 (2017)

[CKOS+08] Cameron, D., et al.: The advanced resource connector for distributed LHC
computing. PoS (2008)

[MGB+18] Martinasso, M., Gila, M., Bianco, M., Alam, S.R., McMurtrie, C.,
Schulthess, T.C.: RM-replay: a high-fidelity tuning, optimization and
exploration tool for resource management. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage,
and Analysis, SC 2018 (2018)

[MSA+17] Milne, C., et al.: SwissFEL: the Swiss X-ray free electron laser. Appl. Sci.
7(7), 720 (2017)

[Pau] Paul Scherrer Institut: cSAXS X12SA: Coherent Small-Angle X-ray Scat-
tering. https://www.psi.ch/en/sls/csaxs. Accessed 20 Sept 2019

[Scha] SchedMD: Slurm workload manager - scontrol. https://slurm.schedmd.
com/scontrol.html. Accessed 20 Sept 2019

[Schb] SchedMD: Slurm workload manager - user permissions. https://slurm.
schedmd.com/user permissions.html. Accessed 20 Sept 2019

https://www.psi.ch/en/sls/csaxs
https://slurm.schedmd.com/scontrol.html
https://slurm.schedmd.com/scontrol.html
https://slurm.schedmd.com/user_permissions.html
https://slurm.schedmd.com/user_permissions.html

Portals for Interactive Steering
of HPC Workflows

Robert Settlage1(B) , Srijith Rajamohan1 , Kevin Lahmers2 ,
Alan Chalker3 , Eric Franz3 , Steve Gallo4 , and David Hudak3

1 Advanced Research Computing, Virginia Tech, Blacksburg, VA 24060, USA
rsettlag@vt.edu

2 Virginia Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA
3 Ohio Supercomputer Center, Columbus, OH, USA

4 University of Buffalo, Buffalo, NY, USA

Abstract. High performance computing workloads often benefit from
human in the loop interactions. Steps in complex pipelines ranging from
quality control to parameter adjustments are critical to the successful
and efficient completion of modern problems. We give several example
workflows in bioinformatics and deep learning where computing decisions
are made throughout the processing pipelines ultimately changing the
course of the compute. We also show how users can interact with the
pipeline using Open OnDemand plus XDMoD or Plot.ly.

Keywords: HPC · OnDemand · XDMoD · Steering · Workflow ·
Deep learning · Bioinformatics

1 Introduction

The need and scale of computing requirements continue to grow. Daily, we
are collecting zettabytes of data which requires computing to transform it into
knowledge [1] and actionable insights. As with the data, the associated data anal-
ysis pipelines and simulations have grown in size and computational complexity
often needing large cluster based computing approaches such as those enabled
by high performance computing (HPC) clusters. Traditionally, high performance
computing (HPC) workloads have consisted of a series of static shell scripts that
are run via the command line. Changes to the pipeline, i.e. scripts, are manual,
error prone, and not usually intuitive. For interactive workflows, command line
intervention is not desirable and has limited adoption within mainstream HPC
computing pipelines.

As an endpoint, we are looking to create user friendly, intuitive and resilient
tools for use of HPC resources to handle arbitrary and potentially complex com-
putational pipelines. As the pipelines grow in size and complexity, the com-
putational workflows may need branching or other decisions made mid-stream.

Supported by National Science Foundation grant 1835725.

c© Springer Nature Switzerland AG 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 179–189, 2020.

https://doi.org/10.1007/978-3-030-44728-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_11&domain=pdf
http://orcid.org/0000-0002-1354-7609
http://orcid.org/0000-0002-9826-2986
http://orcid.org/0000-0002-5290-3426
http://orcid.org/0000-0002-5475-8779
http://orcid.org/0000-0002-9662-412X
http://orcid.org/0000-0002-4854-9858
http://orcid.org/0000-0002-9043-0850
https://doi.org/10.1007/978-3-030-44728-1_11

180 R. Settlage et al.

These decisions could be as simple as determining where the next step should
run to get to result faster or as complex as clustering for data classification.
Bioinformatics and Deep Learning are two compute heavy domains where com-
puting pipelines with potentially complex workflows could benefit from some
human intervention at run time.

The Big Bang in analytical and discovery biology could be viewed as the rise
of -Omics data acquisition technologies. Today it is possible, in a single hour,
using modern DNA sequencing technology to sequence the genome of hundreds
of bacteria simultaneously, or using mass spectrometry, collect full metabolite
profiles from humans, or using protein array technology, collect the entire human
phospoproteome profile. Analyzing and making sense of all this data is a massive
computational challenge. By using a combination of web forms and GUI apps
in Open OnDemand complete with job and cluster status statistics provided by
XDMoD, we are endeavoring to make our clusters more accessible and efficiently
utilized. Here we highlight two workflows we are designing to chaperone the data
from raw to result with the aim of making the workflows computationally efficient
and easy to use.

Open OnDemand [2] and XDMoD [3] are open source projects with overarch-
ing goals of improving the accessibility and usage of HPC clusters. Historically,
HPC cluster access has been limited to command line access via ssh. Compute
jobs require creation of shell scripts and interaction with schedulers that are often
unfamiliar to most new users. Combined, these normal HPC modes of operation
have created barriers to use of the computational power contained in the clusters.
Open OnDemand provides a rich set of browser based tools and apps to facilitate
use of HPC clusters through more familiar interfaces. For instance, OnDemand
has a browser based files app that allows users to interact with the HPC file sys-
tem through a graphical interface. In addition to the native apps included in the
standard OnDemand installation, Open OnDemand allows creation of custom
user apps. XDMoD focuses more on the performance and utilization of HPC
resources. XDMoD gives administrators and users tools to gauge how well the
system and their jobs are running. Open OnDemand and XDMoD, combined,
give users a unique set of interfaces and tools to access and utilize HPC clusters.

In traditional supervised Deep Learning, subject matter experts are required
to provide accurately labeled data for training and evaluation of the model.
However, this is usually either intractable or extremely labor-intensive whereas
it is far easier to procure labelled data with labels that are only partially accu-
rate. This type of weak supervision is referred to as inaccurate supervision [4].
Airflow [5] was used to orchestrate this decision-making, i.e. learning and post-
processing, workflow. Airflow is built on the notion of tasks as Directed Acyclic
Graphs (DAGs) which can be scheduled. Tasks can have dependencies and be
restarted as needed thereby providing a repeatable pipeline for the interactive
Visual Analytic framework based on Deep Learning presented here.

Portals for Interactive Steering of HPC Workflows 181

2 HPC Workflows

2.1 DNA Monitoring

As we move to personalized medicine and genomics, we will see more edge devices
for data collection with data streams being sent to HPC clusters for efficient and
timely data analysis. As an example, minION sequencers are being used in field
monitoring of live stock health. In this scenario, the sequencer is brought to the
farm, sequencing is performed locally, data is streamed to an HPC cluster, a
perhaps complex and computationally intensive compute job is performed and
near real time updates are provided via web portals to the veterinarian on-site.

In a simplistic case, this is a monitoring problem. During an outbreak, there
could be additional data processing steps necessary. Here, we are only concerned
with monitoring where ease of use by lab personnel and time to results is the
primary interest. Using a combination of Open OnDemand and XDMoD, we are
creating an interactive portal for choosing where (cluster and queue) to submit
processing jobs based on cluster utilization and job performance statistics, see
Fig. 1. The workflow includes DNA basecalling through the minION sequencer
software (Guppy), bacterial DNA assignment and counting (Centrifuge [6]) and
results viewing through Pavian [7]. Currently the portal includes a job submis-
sion form, job progress app and link to Pavian results viewer. As the portal
matures, additional optional possibilities for data processing will be exposed
and enabled as options in data review. The optional possibilities could include
submitting additional processing jobs, pushing the data to archive, pushing the
results to a database, etc. (Fig. 2).

Fig. 1. DNAmonitor main page and job progress viewer with Pavian results link.

Open OnDemand and XDMoD App. Open OnDemand [2], through famil-
iar web-based access to HPC clusters, reduces barrier to use of HPC resources
and has also been shown to reduce the time to science. In fact, the median time
from initial login to first job submission for all new OSC clients in 2017 using
OnDemand was 10 times faster than those using traditional access methods.

182 R. Settlage et al.

Fig. 2. Basic minION Guppy-Centrifuge DNA monitoring workflow. User interaction
is indicated in orange. (Color figure online)

OnDemand greatly simplifies access to HPC resources, freeing disciplinary sci-
entists from having to worry about the operating environment and instead focus
on their research. Here, we will use OnDemand to assist users in pipeline setup
and GUI access for data viewing.

Extensibility is a key component of the Open OnDemand App architecture
by allowing for creation of custom applications. Apps can be developed to surface
common GUI programs such as R, Shiny, Jupyter Notebooks etc. Additionally,
apps could be developed as web forms as common job submission templates.
Here we are looking to use both modes. First, we have created an app for job
submission. The app takes in metadata related to the project (name, date, etc.),
approximate sequencing run time, flowcell type, and gives users informed choices
for where to run the analysis based on current HPC usage. Ideally, we will use
both user based job statistics for jobs of similar size for the various queues the
user has access to and system benchmarks for the codes used. This information
will come from XDMoD [3]. Second, we are using OnDemand to surface a GUI
(R Shiny) for viewing results as they are made available by the compute pipeline.
This app updates as new results are available and allows users to influence future
behavior of the full pipeline.

Portals for Interactive Steering of HPC Workflows 183

2.2 Basic NGS QC

We will start with a very basic workflow representing a common quality control
(QC) step performed on Next Generation Sequencing (NGS) data as a starting
point for more complete analysis including RNASeq discussed in the next section.
In this case, the workflow consists of steps for data input, splitting the data for
processing (more useful in later steps), raw data metric collection, and review
of the collected metrics. The user interacts with the HPC clusters to define the
inputs, desired cleaning steps and finally to look at the metrics related to the
QC as show in Fig. 3. The form used to start the workflow includes the ability
to specify which HPC queue will run the analysis as in the DNA monitoring
workflow.

Fig. 3. Basic NGS QC workflow. User interaction is indicated in orange. (Color figure
online)

2.3 RNASeq

Our RNASeq pipeline is really an extension of the NGS QC workflow. User inter-
vention is enabled between major steps and includes options for failing samples
and alternative RNASeq specific methods. Additional details and examples will
be given in the session.

2.4 Weakly Supervised Deep Neural Network

The goal of this work [8] is to assess the feasibility of a weakly supervised Deep
Neural Network (wsDNN) to produce projections for determining political affil-
iations. In a way, this can be seen as a type of target-based sentiment analysis

184 R. Settlage et al.

also known as Aspect-Based Sentiment Analysis (ABSA) [9]. This is a form of
‘inaccurate weak supervision’ due to the presence of errors in the labels of the
data used for training.

The data was downloaded periodically using the job scheduler RQ [10] for
three months. The downloader was written using the Python library Tweepy
[11] and around 2.6 million tweets were downloaded over this period. The tweet
information was stored in a MongoDB [12] database with a Metabase [13] inter-
face for database visualization and querying. This is the data acquisition stage.
Once this step has been completed, the data is preprocessed and cleaned using
a combination of PySpark and Spacy [14] to get a cleaner corpus for training
purposes.

Fig. 4. Weakly supervised DNN workflow. User interaction is in green where reclassi-
fication of data points is enabled. (Color figure online)

The data, obtained after preprocessing, goes through a training and feedback
loop as shown in the Fig. 4. A DNN based on static and contextual embeddings
coupled with Attention mechanisms is trained on the corpus and is evaluated to
produce metrics such as F1-Scores, Accuracy, ROC curves along with dimension-
reduced projections as outputs. Visualizations are produced for the model met-
rics using the Plot.ly [15] framework from the several model runs. All of this is
automated using the Airflow [5] tool.

The dimension-reduced projections are inspected by a human to assess model
performance as described in [8]. Also, hyperparameter optimization is performed
on the various configurations, as shown in Fig. 4, to identify the best-performing
model using the Comet.ml [16] tool. The combination of the Human-in-the-loop
process and the hyperparameter optimization process serves to iteratively refine
the model.

Portals for Interactive Steering of HPC Workflows 185

Fig. 5. Framework for stance detection

Interactive and Exploratory Web-Based Application. The interactive
web-based application (Fig. 5) that is created can be divided into two halves:
the left half presents the projections and the right half presents the information
associated with an entity selection. To interact with the visualization the user can
single click on an entity in the visualization to select it, or the user can use any
of the pan/zoom/select tools to explore the visualizations. The top projection is
the result of the application of t-SNE to the output of the penultimate layer and
the bottom projection is the MDS projection of the same output with euclidean
distance functions.

Model Interpretability. With the prevalence and success of the predictive
power of DNNs, it has also faced criticisms over how the results were gener-
ated. This has accelerated efforts to provide a solution to this concern, which is
informally referred to as Interpretable AI. While the application shown in Fig. 5
allows us to assess stance with a measure of uncertainty, how this determination
was made is not transparent to the user.

An attention layer takes as input a ‘context’ and ‘query’ and computes the
similarity of the query vector to each vector in the context matrix. In self-
attention, the context and query are the same and one computes the similarity
of each word in the sequence to every other word in this sequence to form an
attention weight matrix. The attention weights can be used to visualize the
relevance of each individual word in a sentence with respect to its classification.
An example of this is illustrated in Fig. 6. The emphasized words as indicated by
the darker boxes have a larger contribution to the classification outcome, thereby
informing the user what words are relevant from the network’s perspective.

186 R. Settlage et al.

Fig. 6. Illustration of Attention weights for model interpretability

Fig. 7. Structure of t-SNE projections from the penultimate layer

Evaluation of Visualization Methods. Projections from the penultimate
layer are dimension-reduced using PCA, MDS, Isomap and t-SNE to evaluate
the suitability of these methods for representing the results of the networks and
assessing political affiliation. MDS (Fig. 8), as a result of the nature of the projec-
tion allows quantification of stance as a function of ‘distance’ along the direction
of the projection. t-SNE (Fig. 7) tended to reduce crowding. However, Isomap
(Fig. 9) can be seen as a better technique for capturing non-linear relationships
in the high-dimensional data.

Hyperparameter Optimization. Hyperparameter optimization was per-
formed using the feature provided by the Comet.ml tool. This framework allows,
through the use of APIs, the logging of model metrics and the optimization of
the required hyperparameters over a desired metric such as accuracy or loss.
Figure 10 shows the web interface for Comet.ml where one can inspect each pass

Portals for Interactive Steering of HPC Workflows 187

Fig. 8. Structure of MDS projections
from the penultimate layer

Fig. 9. Structure of Isomap projections
from the penultimate layer

Fig. 10. Hyperparameter optimization with Comet.ml

of an optimization run. Figure 11 demonstrates visual filtering of the various
passes with an interactive parallelogram chart that can be built using the tool.
This allows the user to identify optimal hyperparameter configurations for the
corpus.

Workflow. The purpose of this work was to determine how well the Bidirec-
tional LSTM (BiLSTM) networks with various static embeddings perform com-
pared to the same networks with pretrained contextual embeddings. In this work
‘Elmo’ [17] was used for the contextual embedding. For static embeddings, the
100-dimensional Glove embeddings were chosen as a tradeoff between expressive-
ness and availability of compute and memory resources. Along with the Glove

188 R. Settlage et al.

Fig. 11. Parallelogram with filters to identify optimal hyperparameter configurations

embeddings, the ‘Glove.twitter.100d’ embeddings and ‘Charngram.100d’ embed-
dings were also evaluated.

In order to evaluate these models, Airflow was used to automate the workflow
associated with gathering metrics. Training and validation accuracy, precision,
recall and F1-scores on a larger set of weakly-supervised data is noted along with
the same metrics on the fully-supervised smaller test data. As a result of the class
imbalance in our training data, it is critical to evaluate performance using all
of the metrics above. ROC metrics are also recorded per configuration for each
run so that an ROC curve can be generated. The raw metric files are processed
by a script that generates the metric plots, i.e. box plots of accuracy, precision,
recall and F1-scores, to compare model performance. The data files required to
generate the visualizations are written out as pandas dataframes. These files
are then read by the framework shown in Fig. 5 for interactive exploration. The
users have the ability to interact with the documents in the corpus through the
application. This allows them to correct the labels through inspection if it is
deemed necessary, and export the corrected corpus back so that it can be fed
back into the DNN for iterative refinement.

3 Conclusion and Future Work

In summary, case studies were presented that illustrated the use of HPC in knowl-
edge mining. The availability of such resources expedited the iterative feedback
loop necessary for the use-cases presented above. The work on the portals pre-
sented here lowered the barrier for access to HPC resources as well as increasing
research productivity thereby effectively reducing the mean time to discovery
and opening up HPC resource availability and use to more fields of science.

References

1. Reinsel, D., Grantz, J., Rydning, J.: The Digitization of the World - From Edge
to Core. IDC White Paper - #US44413318 (2018)

Portals for Interactive Steering of HPC Workflows 189

2. Hudak, D., et al.: Open OnDemand: a web-based client portal for HPC centers. J.
Open Source Softw. 3(25), 622 (2018)

3. Palmer, J.T., et al.: Open XDMoD: a tool for the comprehensive management of
high-performance computing resources. Comput. Sci. Eng. 17(4), 52–62 (2015)

4. Zhou, Z.H.: A brief introduction to weakly supervised learning. Nat. Sci. Rev. 5(1),
44–53 (2017)

5. Apache Airflow Documentation: Apache Airflow Documentation - Airflow Docu-
mentation. https://airflow.apache.org/. Accessed 13 Sept 2019

6. Kim, D., Song, L., Breitwieser, F.P., Salzberg, S.L.: Centrifuge: rapid and sen-
sitive classification of metagenomic sequences. Genome Res. 26(12), 1721–1729
(2016). Epub 2016 Oct 17. PubMed PMID: 27852649; PubMed Central PMCID:
PMC5131823

7. Breitwieser, F.P., Salzberg, S.L.: Pavian: interactive analysis of metagenomics data
for microbiome studies and pathogen identification. Bioinformatics (2019). https://
doi.org/10.1093/bioinformatics/btz715. pii: btz715. [Epub ahead of print] PubMed
PMID: 31553437

8. Rajamohan, S., Romanella, A., Ramesh, A.: A weakly-supervised attention-based
visualization tool for assessing political affiliation. arXiv:1908.02282 [cs.CL] (2019)

9. Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In: Pro-
ceedings of the 10th International Workshop on Semantic Evaluation (SemEval
2016) (2016)

10. Python-rq.org: RQ: Simple job queues for Python (2019). http://python-rq.org/.
Accessed 13 Sept 2019

11. Tweepy: tweepy/tweepy, GitHub, 04 September 2019. https://github.com/tweepy/
tweepy. Accessed 13 Sept 2019

12. The most popular database for modern apps, MongoDB. https://www.mongodb.
com/. Accessed 13 Sept 2019

13. Metabase is the easy, open source way for everyone in your company to ask ques-
tions and learn from data. Metabase. https://metabase.com/. Accessed 13 Sept
2019

14. Explosion: explosion/spaCy, GitHub. https://github.com/explosion/spaCy.
Accessed 13 Sept 2019

15. Modern Analytic Apps for the Enterprise, Plotly. https://plot.ly/. Accessed 13
Sept 2019

16. Comet.ml: Comet.ml - Supercharging Machine Learning. https://www.comet.ml/.
Accessed 13 Sept 2019

17. Peters, M.E., et al.: Deep contextualized word representations. arXiv preprint
arXiv:1802.05365 (2018)

https://airflow.apache.org/
https://doi.org/10.1093/bioinformatics/btz715
https://doi.org/10.1093/bioinformatics/btz715
http://arxiv.org/abs/1908.02282
http://python-rq.org/
https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://www.mongodb.com/
https://www.mongodb.com/
https://metabase.com/
https://github.com/explosion/spaCy
https://plot.ly/
https://www.comet.ml/
http://arxiv.org/abs/1802.05365

The Pangeo Ecosystem: Interactive
Computing Tools for the Geosciences:

Benchmarking on HPC

Tina Erica Odaka1(B) , Anderson Banihirwe2, Guillaume Eynard-Bontemps3,
Aurelien Ponte1 , Guillaume Maze1 , Kevin Paul2 , Jared Baker2,

and Ryan Abernathey4

1 Laboratory for Ocean Physics and Satellite Remote Sensing UMR LOPS, Ifremer,
Univ. Brest, CNRS, IRD, IUEM, Brest, France

{tina.odaka,aurelien.ponte,guillaume.maze}@ifremer.fr
2 National Center for Atmospheric Research, Boulder, CO, USA

{abanihi,kpaul,jbaker}@ucar.edu
3 CNES Computing Center Team, Centre National d’Etudes Spatiales,

Toulouse, France
guillaume.eynard-bontemps@cnes.fr

4 Lamont Doherty Earth Observatory, Columbia University, New York, USA
rpa@ldeo.columbia.edu

Abstract. The Pangeo ecosystem is an interactive computing software
stack for HPC and public cloud infrastructures. In this paper, we show
benchmarking results of the Pangeo platform on two different HPC sys-
tems. Four different geoscience operations were considered in this bench-
marking study with varying chunk sizes and chunking schemes. Both
strong and weak scaling analyses were performed. Chunk sizes between
64MB to 512 MB were considered, with the best scalability obtained
for 512 MB. Compared to certain manual chunking schemes, the auto
chunking scheme scaled well.

Keywords: Pangeo · Interactive computing · HPC · Cloud ·
Benchmarking · Dask · Xarray

1 Introduction

In the geosciences, simulation of physical systems has long been the focus of
high-performance computing. Thanks to the excellent scaling properties of geo-
scientific simulations, scientists can now easily output petabytes of data, which
together with the massive increase in the volume of observational data, is lead-
ing to a crisis for traditional data analytics workflows. In this community, tra-
ditional methods of analysis depend upon serial, non-scalable tools, such as the
NetCDF Operators (NCO) [1], the NCAR Command Language (NCL) [2], or
serial MATLAB and Python scripts. Alternatively, each scientist had to develop
c© Springer Nature Switzerland AG 2020

G. Juckeland and S. Chandrasekaran (Eds.): HUST 2019/SE-HER 2019/WIHPC 2019,

CCIS 1190, pp. 190–204, 2020.

https://doi.org/10.1007/978-3-030-44728-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44728-1_12&domain=pdf
http://orcid.org/0000-0002-1500-0156
http://orcid.org/0000-0002-0252-6028
http://orcid.org/0000-0001-7231-2095
http://orcid.org/0000-0001-8155-8038
http://orcid.org/0000-0001-5999-4917
https://doi.org/10.1007/978-3-030-44728-1_12

The Pangeo Ecosystem 191

parallel (e.g., MPI) applications to perform specialized analysis on particular
datasets, a task that is time-consuming, error prone, and leads to duplication of
effort across the community. These methods of analysis are so time-consuming
that scientists have accepted, for many years now, a batch processing style for
conducting analysis, where the scientist spends considerable effort and time to
write a data analysis script that is then submitted to a traditional HPC batch
queuing system, such as PBS Pro [3] or SLURM [4]. These batch jobs can take
hours to days to complete. This kind of batch-style data analysis (with non-
scalable tools) interrupts the natural, iterative nature of the scientific process of
data exploration. The geoscience community needs scalable tools that can free
scientists to explore their data interactively, and it is to this end that the Pangeo
[5–7] community exists.

2 Pangeo and the Pangeo Platform

Pangeo is a community devoted to the development of an ecosystem of inter-
operable, scalable, open source tools for interactive data analysis [8]. The com-
munity is diverse, comprising of members from traditional HPC as well as cloud
computing backgrounds, scientists and technologists, and involving both indus-
try and academia.

The Pangeo framework has allowed several scientific results already. Yu
et al. [9], for example, processed global high resolution numerical simulation
outputs of the ocean circulation (a 30 TB dataset) in order to quantify its fre-
quency content and compare it with actual observations. The analysis required
non-trivial rechunking of a large dataset which was achieved on an HPC platform
with a remarkably light amount of code [10].

The Pangeo platform consists of five components: (a) a thin user interface,
such as JupyterLab or Jupyter Notebook [11], (b) a data model, such as Xarray
[12] or Iris [13], (c) a scalable computing system, such as Dask [14,15] or Spark
[16], (d) a scalable storage system, such as a parallel file system or object storage,
and (e) a resource management system, such as an HPC batch job scheduling
system or Kubernetes. Exactly which choice you make for each component of
the platform depends on how you can access the underlying computing system,
the data you wish to analyze, and whether you are running the platform on a
traditional HPC system or in the public cloud.

On HPC systems, Pangeo is used mainly with Dask. Dask’s computing system
is based on a central Dask scheduler and multiple Dask workers. The Dask
scheduler orchestrates parallelisation tasks performed by Dask workers. Each
parallel task assigned to the Dask workers is based on a ‘chunk’ of grided data
in Xarray datasets. Users specify the size and shape of the ‘chunk’ and how many
(and what kind of) Dask workers to provide to Dask. Then, Dask takes care of
the parallelisation automatically. Dask-Jobqueue [15,17] works with traditional
HPC job scheduling systems to launch Dask workers interactively, providing
both fixed and adaptive scaling capabilities.

For the purposes of this paper, we consider two specific deployments of
the Pangeo platform on HPC systems: (i) the HAL system at CNES [18], and

192 T. E. Odaka et al.

(ii) the Cheyenne system at NCAR’s Wyoming Supercomputing Center (NWSC)
[19]. The benchmarks performed for this paper consider only interactive com-
pute (i.e., no I/O), and so we only concern ourselves with the data model and
scalable compute components of the Pangeo platform.

3 HPC Deployments of the Pangeo Platform

As mentioned in the previous section, and for the purposes of this paper, an
HPC Pangeo deployment is distinguished from a cloud-based deployment by
the use of a Pangeo Python environment (containing Xarray, Dask, and Dask-
Jobqueue) and an HPC batch job scheduling system. Some HPC centers deploy
the JupyterHub [20] service, which provides a platform for authenticating users
and launching Pangeo Jupyter Notebooks on the remote HPC system.

3.1 Hal

CNES Cluster (Hal) Architecture. Hal is an intermediate size HPC cluster,
with about 460 nodes, 12,000 cores and a 8.5 PB Spectrum Scale Storage. Nodes
and storage are interconnected with Infiniband at 56 GB/s, and the storage sys-
tem provides a bandwidth up to 100 GB/s.

Benchmarks for this paper were run on Lenovo compute nodes installed in
Hal in 2017 with Intel Broadwell CPUs (2x E5-2650 per node, 24 cores per node)
and 128 GB of RAM. Hal has several powerful frontal nodes equipped with more
RAM and more powerful CPUs. Standard HPC users use the compute nodes by
logging on to the frontal nodes with ssh, develop their applications, then submit
their jobs on the command line through PBS Pro. Hal also provides Virtual
Machines (VMs) configured as cluster clients. These VMs are integrated into
the HPC’s network, enrolled in its LDAP directory, mounting the GPFS file
system through NFS, and have a PBS client installed and configured. Specific
projects or groups of users can ask for one of these VMs in order to have their
own environment upon cluster access.

Pangeo Deployment. On Hal, JupyterHub was deployed on a VM cluster
client within a Conda environment. In order to launch the JupyterHub service,
a systemctl service file was set up. ProfileSpawner [21] and BatchSpawner [22] are
used to provide a selection of resource profiles for users through a web interface
(e.g., number of CPUs, amount of memory), and to start the user’s Jupyter
Notebook server in a batch job on HPC nodes. The Conda environment providing
Pangeo’s Python ecosystem Conda was copied from Pangeo’s Docker images [5],
installed and configured as a Jupyter kernel.

Lessons Learned. On the admin side, JupyterHub is the most complex com-
ponent of the Pangeo deployment, but it was still relatively easy to set up. There
is a lack of complete integration, like a provided service file for main linux dis-
tributions. BatchSpawner was not compatible with the latest versions of PBS

The Pangeo Ecosystem 193

Pro, which resulted in some Pull Requests to the BatchSpawner codebase. The
job script used by BatchSpawner was modified so that users could easily add
custom shared kernel folders and configure the Python environment from which
the Jupyter Notebook server is launched. Since the installation of JupyterHub
in 2018 October, i.e. one year ago, more than 100 accounts out of 800 active
accounts on Hal have used the service at least once, and nearly 50 accounts
use on a weekly basis. About a quarter of JupyterHub users are using Dask for
workload distribution. The principal feedback we’ve obtained on Dask is that
it’s really easy to start using it, but that it can be challenging to debug or
optimize when problems scale up. Distributed computing may look simple, but
understanding it and doing it well will always need some expertise, hence this
benchmark to determine optimal parameters for common operations.

3.2 Cheyenne

NCAR Cluster (Cheyenne) Architecture. Cheyenne is a 5.34 petaflops
peak, high-performance computer. It features 145, 152 Intel Xeon “Broadwell”
processor cores in 4,032 dual-socket nodes (36 cores per node) and 313 TB total
system memory (64 GB/node on 3,168 nodes and 128 GB/node on 864 nodes).
Cheyenne uses Mellanox EDR InfiniBand in a partial 9D Enhanced Hypercube
single-plane interconnect topology with a 25 GB/s bidirectional per link band-
width. Standard users access the Cheyenne system via ssh with LDAP authen-
tication to 6 dual-socket “Broadwell” login nodes with 256 GB memory/node.
Resource management on Cheyenne is provided through PBS Pro.

A separate cluster, named Casper, exists for data analysis and visualiza-
tion. The Casper system, procured from PCPC Direct, Ltd., is comprised of 28
Supermicro nodes featuring Intel Skylake processors (36 cores per node). Twenty
(20) Casper nodes provide 384 GB of RAM for general purpose data analysis
and visualization. Six (6) Casper nodes are high-memory nodes with 768 GB of
RAM, and two (2) Casper nodes are login nodes. NCAR’s JupyterHub provides
access to both the Cheyenne and Casper systems, though the benchmarks for
this paper where run only on Cheyenne.

Pangeo Deployment. Users can access Cheyenne’s Pangeo deployment
through an experimental JupyterHub deployment running on one of the
Cheyenne login nodes, in a setup similar to CNES’s Hal JupyterHub. Users
are also allowed to launch their own personal installations of JupyterLab over
ssh tunnels. NCAR is using this experimental JupyterHub deployment to assess
how best to deploy an officially supported JupyterHub for the follow-on machine
to Cheyenne in 2021.

Lessons Learned. Over the last year, we have made several observations that
will help with agility, stability, and upgrades of the JupyterHub service in the
future. We have learned that it is extremely beneficial to provide a single access
point for the user community with a single web address. Leveraging a reverse

194 T. E. Odaka et al.

proxy has really helped with this but not without difficulties. One issue was
being too restrictive when proxying WebSocket connections as Jupyter applica-
tions can heavily rely on the protocol upgrade to function properly. Secondly,
as data grows, the size of the Jupyter Notebooks increases as well, necessitat-
ing special attention to configuration and sizing of buffering capabilities on the
reverse proxy. Additionally, Jupyter, and projects around Jupyter, move quite
quickly, and therefore upgrades are expected to be delivered at a more rapid pace
than other systems-based software. Currently all JupyterHub installations are
kept around to revive them if needed. Separation of services is also critical. The
reverse proxy, the different JupyterHub instances, and the site-provided kernels
all run in different environments to allow each component to be updated individ-
ually. The site-provided kernels remain in a fixed state after they are validated to
encourage as much repeatability as possible. Finally, the JupyterHub instances
all run within a containerization environment called Inception that allow us to
run with necessary changed system configuration files on already existing hard-
ware as part of the machines. The site service has been well adopted and provided
great value to workshops and hackathons that have taken place.

In the future, there are plans to increase database resilience by moving to
PostgreSQL, or another potentially compatible database, and implementing bet-
ter telemetry and utilization metric tracking. Finally, we are planning additional
investigations into adaptively balancing the use of traditional batch schedulers
(e.g., PBS Pro, SLURM) for both batch jobs and interactive computing (via the
JupyterHub and Dask-Jobqueue).

4 Benchmark of Pangeo on HPC

4.1 Benchmark Method

During this study, we varied our benchmarking computations in following ways:

– Dask chunk size, Schunk,
– cluster size (number of HPC nodes), Nnode, and
– the chunking scheme used for Dask arrays.

To be able to compare the performance between different architectures we
placed only one Dask worker with one thread on each HPC node. On Hal (Sect.
3.1), Dask-Jobqueue was used to submit jobs to PBS Pro job scheduler reserv-
ing 24 cores (the entire node) and 128 GB of memory for each Dask worker,
ensuring that no other jobs would run on the node for benchmark. On Cheyenne
(Sect. 3.2), Dask-Jobqueue was used to submit jobs to the regular queue, which
reserves entire nodes for each job.

Dataset. For each chunk size, we created a random float64 Xarray dataset
called ds with the following 3 coordinates: time, lon (longitude) and lat (lat-
itude). This synthetic dataset mirrors the structure of many real datasets in

The Pangeo Ecosystem 195

weather and climate research, such as satellite products or climate model out-
puts. The size of the total dataset Stotal is a function of chunk size Schunk, cluster
size Nnode and number of chunks per node F according to:

Stotal = Schunk ×Nnode × F . (1)

In this benchmark study, we used F = 10 chunks per node, fixing the number
of points in lon and lat dimensions to 384 and 320, respectively.

The size of the temporal dimension is varied in order to meet the desired total
dataset size as defined be (1). For example, a computation with a chunk size of
Schunk = 128 MB, Nnode = 16 HPC nodes, leads to a total dataset size of 20.48
GB, and the ds(time, lon, lat) shape corresponds to (20834, 384, 320).
For Hal, the time coordinate contained daily values ranging from 1 January 1980
to the year 2037. On Cheyenne, the time coordinate contained hourly data. The
longitude varies from −180 to +180◦, and latitude varies from −90 to 90◦.

Chunking Scheme. Three different chunking schemes were tested:

– The auto chunking scheme lets Dask automatically determine the shape of
each chunk, given a particular chunk size. The auto chunking scheme subdi-
vides every dimension in order to achieve the desired chink size.

– The spatial chunking scheme keeps the temporal dimension contiguous in one
chunk, dividing data along spatial dimensions.

– The temporal chunking scheme keeps all spatial dimensions contiguous in one
chunk, dividing data along temporal dimension.

With the above Dask dataset example, ds(20834, 384, 320), the auto, spatial
and temporal chunking schemes will lead respectively to the following chunk
sizes: (251, 192, 160), (20834, 28, 28), and (131, 384, 320).

Geoscience Operations. The following four geoscience operations were used
to measure performance:

– The temporal mean operation is a temporal average. It corresponds to the
following code in Xarray:
ds.mean(dim=’time’)

– The spatial mean operation is a spatial (i.e., along lon and lat) average.
On Hal, it corresponds to the following line of code in Xarray:
ds.mean(dim=[’lat’, ’lon’])
while on Cheyenne, the spatial mean includes weights.

– The climatology operation calculates a standard climatology analysis by
calculating the seasonal mean value of ds(time,lat,lon). This operation
runs along the time axis. It corresponds to the following lines of code in
Xarray:
ds g = ds.groupby(’time.season’)
climatology = ds g.mean(dim=’time’)

196 T. E. Odaka et al.

– The anomaly operation computes the anomaly of ds(time,lat,lon) with
respect to the seasons (i.e., the climatology result). It corresponds to the
following line of code in Xarray:
ds g - climatology

The run time for each operation was measured after the dataset was created
and loaded into memory. For each choice of chunk size, chunking scheme, the
geoscience operation was performed multiple times, and the median run time for
each operation in shown in this paper, reflect the real usage of an typical HPC
user.

Strong Scaling Analysis. A strong scaling analysis keeps the total size of a
problem constant (i.e., the dataset) and evaluates computation times with an
increasing number of processes. It allows the problem to possibly scale with the
increase of parallel processors and to highlight critical values. Without parallel
computing overhead, such as communication or synchronisation, the run time is
expected to decrease as 1/Nnode. In this study, we fixed the total dataset size to
20.48 GB. The number of nodes Nnode was varied over 1, 2, 4, 8 and 16, while
the chunk size Schunk was varied with the number of nodes from 2.048 GB to
128 MB, such that the total dataset size as defined in (1) stayed constant.

We produced and analyzed 60 sets of benchmark results (four geoscience
operations × three chunking schemes × five values for Nnode). We have per-
formed this benchmark both on the Hal and Cheyenne supercomputers. Using
Hal, a total of 1056 computations were performed, with each test set being per-
formed 10 to 28 times. The run times on Hal varied from 1.25 to 77.61 s. Using
Cheyenne, a total of 96 computations were performed, with each test set being
performed one to three times. The run times on Cheyenne varied from 1.10 to
57.39 s.

Weak Scaling Analysis. A weak scaling analysis aims to determine how the
time to solution varies with processor count for a fixed problem size per processor.
In an ideal case, we expect to observe a constant time to solution, independent
of the total number of processors in the system.

In this study, we fixed the chunk size Schunk and varied the total dataset
size Stotal with the number of nodes Nnode. We performed four different weak
scaling analyses using a chunk size Schunk of 64, 128, 256 and 512 MB. For each
analysis, the number of nodes Nnode varied over 1, 2, 4, 8, and 16. We produced
and analyzed 240 sets of benchmark results (four geoscience operations × three
chunking schemes × five values for Nnode × four variations of chunk size).

The Pangeo Ecosystem 197

At the time of this publication, the weak scaling study results for Cheyenne
are incomplete and are not shown. However, a thorough weak scaling study
was performed on Hal. In total, we performed 5268 computations using the Hal
supercomputer. Each test set was computed from 20 to 28 times on Hal and
from 1 to 2 times on Cheyenne. The run times on Hal varied from 0.49 to 125.22
s, and the run times on Cheyenne varied from 0.40 to 91.75 s. For each set of
tests, the run time was normalized by the median of non-parallel (Nnode = 1)
test.

Fig. 1. Strong scaling analysis results for a total dataset size of 20.48 GB using the
Hal supercomputer. The x axis shows number of nodes used for each test, shown on log
scale. The y axis shows the run time in seconds on a log scale. The blue, orange, green
and red lines correspond respectively to the run times for the anomaly, climatology,
spatial mean and temporal mean operations. Curves corresponds to the median run
time, and the shadowed area shows a single standard deviation from the mean run time.
The black line corresponds to the expected strong scaling curve, a−1. From the top,
figures (a), (b) and (c) show the run times with auto, spatial and temporal chunking
schemes, respectively. (Color figure online)

198 T. E. Odaka et al.

4.2 Results and Discussions

Strong Scaling Analysis. The benchmark results using Hal and Cheyenne
are shown in Figs. 1 and 2, respectively. For the auto (Figs. 1-a and 2-a) and
temporal (Figs. 1-c and 2-c) chunking schemes, the run time decreases for all
four geoscience operations with a a−1 power law. This is consistent with the
expectation.

Fig. 2. Strong scaling analysis results for a total dataset size of 20.48 GB using the
Cheyenne supercomputer. The x axis shows the number of nodes used for each test,
shown on a log scale. The y axis shows the run time in seconds on a log scale. The blue,
orange, green and red lines correspond respectively to the run times for the anomaly,
climatology, spatial mean and temporal mean operations. Curves correspond to the
median run time, and the shadowed area shows a single standard deviation from the
mean run time. When only one run was performed, the standard deviation is displayed
on plots as zero. The black line corresponds to the expected strong scaling curve, a−1.
From the top, figures (a), (b) and (c) show run times with auto, spatial and temporal
chunking schemes, respectively. (Color figure online)

The Pangeo Ecosystem 199

Dask’s automatic parallelism scales well for this cluster size for most chunking
schemes. With the spatial chunking scheme, each chunk holds all the data along
the time dimension. It is appropriate for operations that run along time (i.e., the
temporal mean and climate operations). The anomaly operation also runs along
the time coordinate, so we expect it to scale appropriately as well. Run time
decreases for the temporal and climatology operations as expected (Figs. 1-b
and 2-b, red and orange lines). However, the anomaly operation does not scale
after 8 nodes (Figs. 1-b and 2-b, blue lines.)

We do not fully know why the anomaly operation does not show scaling
beyond 8 nodes when using spatial chunking. We suspect that it is due to
extra overhead or unnecessary communication or both. Further investigation
is planned to understand this problem.

It is clear from the findings that the auto chunking scheme would be a suitable
choice for general use cases on HPC.

Weak Scaling Analysis. The benchmark results for spatial and auto chunking
scheme are shown in Figs. 3 and 4 respectively.

None of the operations studied, for either the spatial or auto chunking
schemes, show a constant normalized run time as the number of nodes increases.
Most operations show a deviation from ideal scaling over 1 to 16 nodes, rang-
ing from roughly 10% to 40% when the ideal chunk size is used. However, the
anomaly operation, when used with the spatial chunking scheme (Fig. 3-a), shows
extremely poor scaling. However, the anomaly operation, when used with the
auto chunking scheme (Fig. 4-a), shows better scaling, though not ideal. These
results are consistent with the results in the strong scaling analysis.

For the auto chunking scheme, Figs. 4-c and d show that the spatial mean
and temporal mean operations scale fairly well regardless of chunk size. However,
for the anomaly (Fig. 4-a) and climatology (Fig. 4-b) operations, a chunk size of
between 256 MB and 512 MB scales better compare to other smaller chunk sizes.
Larger chunk sizes places more data on each Dask worker, therefore reducing the
communication overhead. Dask’s default chunk size for the auto chunking scheme
is 128 MB. Note that a bigger chunk size requires more memory on the HPC
node.

200 T. E. Odaka et al.

Fig. 3. This figure shows the weak scaling analysis results for the spatial chunking
scheme. The x axis shows number of nodes used for each test. The y axis shows the
operation run time normalized by the 1-node runtime. The red, blue, orange and green
colors correspond to chunk sizes of 64, 128, 256 and 512 MB, respectively. The curves
correspond to the medians of run time, and the shadowed areas show a single standard
deviation from the mean run time. From the top, figures (a), (b), (c) and (d) show the
anomaly, climatology spatial mean and temporal mean operations, respectively. (Color
figure online)

The Pangeo Ecosystem 201

Fig. 4. This figure shows the weak scaling analysis results for the auto chunking scheme.
The x axis shows number of nodes used for each test. The y axis shows the run time
normalized by the 1-node run time. The red, blue, orange and green colors correspond to
chunk sizes of 64, 128, 256 and 512 MB, respectively. The curves correspond to median
run times, and the shadowed areas show a single standard deviation from the mean
runtime. From the top, figures (a), (b), (c) and (d) shows the anomaly, climatology
spatial mean and temporal mean operations, respectively. (Color figure online)

202 T. E. Odaka et al.

5 Conclusion and Further

The Pangeo community unites scientists and technologists together to make it
possible to explore geoscience data using HPC or cloud in an interactive manner.
Interactive usage gives a way for researchers to rapidly code and test their ideas
[9], but our experiences suggest that it may also introduce some ‘blind spots’
due to its ease of use. For example, such an easy-to-use parallel platform makes
it also easy for users to forget that they are dealing with Terabytes of data with
hundreds of workers (i.e., that their machine has real limits and that not all
data sizes can easily be analyzed).

This benchmark study of the Pangeo platform shows that the best scalability
was obtained with chunk sizes between 256 MB and 512 MB, and, compared to
certain manual chunking schemes, the auto chunking scheme scaled well.

Compared to legacy parallel programming models (e.g., MPI), users of Dask
do not have to deal with the difficulty of coding their own parallelism. However,
they still have to think about grid size and related issues, such as the chunk size
and the chunking scheme most appropriate to the computation and the machine
they are using. Fortunately, Dask’s auto chunking scheme seems to scale quite
well, and the knowledge of using a larger-than-default chunk size (i.e., larger
than 128 MB) is easy to communicate to users.

The benchmark code used for this paper is open source, and it is published on
GitHub [23]. The development of the benchmarking suite continues, with the goal
of this benchmarking suite being that user (or administrator of an HPC center)
can run these benchmarks and find out what is the best chunk size, chunking
scheme, workers per node, and threads per node for a given HPC cluster for
geoscience applications. This will help both optimising the usage of the cluster
for HPC administrators and optimise the time for HPC users.

Pangeo is still new to HPC platforms. HPC communities have a history of
optimisation and parallelism using HPC platforms. For example, there is a his-
tory of automatic parallelism methods (e.g., Fortran co-arrays) and the use of
RDMA for communication between nodes [24]. These knowledge and specializa-
tion from the HPC community may help the development and optimisation of
the Pangeo platform.

Acknowledgment. Dr. Abernathey was supported by NSF Earthcube award
1740648. Dr. Paul and Mr. Banihirwe were both supported by NSF Earthcube award
1740633.

References

1. Zender, C.S.: Analysis of self-describing gridded geoscience data with netCDF
Operators (NCO). Environ. Model. Softw. 23(10–11), 1338–1342 (2008). https://
doi.org/10.1016/j.envsoft.2008.03.004

2. The NCAR Command Language (Version 6.6.2) [Software]. Boulder, Colorado:
UCAR/NCAR/CISL/TDD (2019). https://doi.org/10.5065/d6wd3xh5

https://doi.org/10.1016/j.envsoft.2008.03.004
https://doi.org/10.1016/j.envsoft.2008.03.004
https://doi.org/10.5065/d6wd3xh5

The Pangeo Ecosystem 203

3. Nitzberg, B., Schopf, J.M., Jones, J.P.: PBS Pro: grid computing and schedul-
ing attributes. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource
Management. International Series in Operations Research & Management Science,
vol. 64, pp. 183–190. Springer, Boston (2004). https://doi.org/10.1007/978-1-4615-
0509-9 13

4. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

5. Pangeo: A community platform for Big Data geoscience. http://pangeo.io
6. Robinson, N.H., Hamman, J., Abernathey, R.: Science needs to rethink how it

interacts with big data: Five principles for effective scientific big data systems.
arXiv e-prints p. arXiv:1908.03356, August 2019

7. Eynard-Bontemps, G., Abernathey, R., Hamman, J., Ponte, A., Rath, W.: The
PANGEO big data ecosystem and its use at CNES. In: Proceedings of 2019 Big
Data from Space, . Munich, Germany, pp. 49–52 (2019). https://doi.org/10.2760/
848593

8. Abernathey, R., et al.: Pangeo NSF Earthcube Proposal (2017). https://doi.org/
10.6084/m9.figshare.5361094.v1

9. Yu, X., Ponte, A.L., Elipot, S., Menemenlis, D., Zaron, E.D., Abernathey, R.: Sur-
face kinetic energy distributions in the global oceans from a high-resolution numer-
ical model and surface drifter observations. Geophys. Res. Lett. 46(16), 9757–9766
(2019). https://doi.org/10.1029/2019GL083074

10. Rotary spectral analysis of surface currents and zonal average. https://github.com/
apatlpo/mit equinox/blob/master/hal/rechunk rotspectra.ipynb

11. Kluyver, T., et al.: Jupyter Notebooks – a publishing format for reproducible
computational workflows. In: Loizides, F., Scmidt, B. (eds.) Positioning and Power
in Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press (2016).
https://doi.org/10.3233/978-1-61499-649-1-87

12. Hoyer, S., Hamman, J.: Xarray: N-D labeled arrays and datasets in Python. J.
Open Res. Softw. 5(1), 10 (2017). https://doi.org/10.5334/jors.148

13. Met Office: Iris: A Python library for analysing and visualising meteorological and
oceanographic data sets. Exeter, Devon (2010–2013). http://scitools.org.uk/iris

14. Rocklin, M.: Dask: parallel computation with blocked algorithms and task schedul-
ing. In: Huff, K., Bergstra, J. (eds.) Proceedings of the 14th Python in Science
Conference, pp. 126–132 (2015). https://doi.org/10.25080/Majora-7b98e3ed-013

15. Dask Development Team: Dask: library for dynamic task scheduling (2016).
https://dask.org

16. Zaharia, M., et al.: Apache Spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016). https://doi.org/10.1145/2934664

17. Dask-jobqueue. https://github.com/dask/dask-jobqueue/
18. CNES: The Centre National d’Etudes Spatiales (CNES) is the government agency

responsible for shaping and implementing France’s space policy in Europe. https://
cnes.fr/

19. Computational and Information Systems Laboratory.: Cheyenne: SGI ICE XA
Cluster (2017). https://doi.org/10.5065/d6rx99hx

20. JupyterHub — JupyterHub 1.0.0 documentation. https://jupyterhub.readthedocs.
io/

21. Jupyterhub/wrapspawner. https://github.com/jupyterhub/wrapspawner

https://doi.org/10.1007/978-1-4615-0509-9_13
https://doi.org/10.1007/978-1-4615-0509-9_13
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3
http://pangeo.io
http://arxiv.org/abs/1908.03356
https://doi.org/10.2760/848593
https://doi.org/10.2760/848593
https://doi.org/10.6084/m9.figshare.5361094.v1
https://doi.org/10.6084/m9.figshare.5361094.v1
https://doi.org/10.1029/2019GL083074
https://github.com/apatlpo/mit_equinox/blob/master/hal/rechunk_rotspectra.ipynb
https://github.com/apatlpo/mit_equinox/blob/master/hal/rechunk_rotspectra.ipynb
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.5334/jors.148
http://scitools.org.uk/iris
https://doi.org/10.25080/Majora-7b98e3ed-013
https://dask.org
https://doi.org/10.1145/2934664
https://github.com/dask/dask-jobqueue/
https://cnes.fr/
https://cnes.fr/
https://doi.org/10.5065/d6rx99hx
https://jupyterhub.readthedocs.io/
https://jupyterhub.readthedocs.io/
https://github.com/jupyterhub/wrapspawner

204 T. E. Odaka et al.

22. Jupyterhub/batchspawner. https://github.com/jupyterhub/batchspawner
23. Benchmarking and scaling studies of the Pangeo platform. https://github.com/

pangeo-data/benchmarking
24. Liu, J., Wu, J., Panda, D.K.: High performance RDMA-based MPI implementation

over InfiniBand. Int. J. Parallel Prog. 32(3), 167–198 (2004). https://doi.org/10.
1023/B:IJPP.0000029272.69895.c1

https://github.com/jupyterhub/batchspawner
https://github.com/pangeo-data/benchmarking
https://github.com/pangeo-data/benchmarking
https://doi.org/10.1023/B:IJPP.0000029272.69895.c1
https://doi.org/10.1023/B:IJPP.0000029272.69895.c1

Author Index

Abernathey, Ryan 190
Alam, Sadaf R. 164
Augusto, João P. S. C. 49

Bader, Michael 111
Baker, Jared 190
Banihirwe, Anderson 190
Bignamini, Christopher 49

Chalker, Alan 179
Cholia, Shreyas 145
Cook, Brandon 49

Dubey, A. 89

Eynard-Bontemps, Guillaume 190

Franz, Eric 179
Friesen, Brian 49

Gallard, Jean-Matthieu 111
Gallo, Steve 179
Gamblin, Todd 28
Gerhardt, Lisa 49
Gonsiorowski, Elsa 98
Gupta, Rinku 98

He, Yun 49
Henderson, Matthew L. 145
Heroux, Michael A. 98
Huang, Lei 69
Hudak, David 179

Jocksch, Andreas 49

Karakasis, Vasileios 49
Khuvis, Samuel 49
Klein, Mark 164
Knight, Samuel 28
Kraushaar, Matthias 49
Krenz, Lukas 111
Krinsman, William 145

Lahmers, Kevin 179
Leong, Siew Hoon 164
Liu, Si 69

Manitaras, Theofilos 49
Martinasso, Maxime 164
Maze, Guillaume 190
Milewicz, Reed 98
Milfeld, Kent 69
Moulton, J. David 98

Odaka, Tina Erica 190
Omlin, Samuel 49

Paul, Kevin 190
Peretti-Pezzi, Guilherme 49
Ponte, Aurelien 190

Rajamohan, Srijith 179
Rannabauer, Leonhard 111
Raybourn, Elaine M. 98
Reinarz, Anne 111
Rusu, Victor Holanda 49

Sarmiento-Pérez, Rafael 49
Settlage, Robert 179
Siddiqui, Shahzeb 3
Slaton, Trevor 145
Song, Fengguang 129

Thomas, Rollin 145
Tomko, Karen 49

Wang, Dali 129
Watson, Gregory R. 98
Wilke, Jeremiah 28
Willenbring, Jim 98

You, Zhi-Qiang 49

Zamora, Richard J. 98
Zheng, Weijian 129

	Preface
	Review Process

	Organization
	Contents
	HUST - Annual Workshop on HPC User Support Tools
	Buildtest: A Software Testing Framework with Module Operations for HPC Systems
	1 Introduction
	2 Buildtest
	2.1 Motivation
	2.2 Inception
	2.3 Framework
	2.4 Integration with Lmod Spider
	2.5 Setup
	2.6 Architecture Overview
	2.7 Building Test
	2.8 Building Job Scripts

	3 Module Operations
	3.1 Module Load Test
	3.2 Module Tree Difference for Parallel Software Stack in Heterogeneous Cluster
	3.3 Reporting Easybuild and Spack Modules
	3.4 User Collections and Buildtest Module Collections
	3.5 Module Permutation
	3.6 Report Unique Software and Modules

	4 Future Work
	5 Related Work
	6 Conclusion
	References

	Using Malleable Task Scheduling to Accelerate Package Manager Installations
	1 Introduction
	2 Build Systems
	2.1 Build Systems and Spack Package Manager

	3 Parallel Builds and Task Scheduling
	3.1 Theory
	3.2 Prior Work

	4 Scheduling Algorithm
	4.1 Task Execution Time Heuristic
	4.2 CPR and MCPA Implementation

	5 Methodology
	6 Results and Discussion
	6.1 Schedule Creation Time
	6.2 Schedule Execution Time
	6.3 Scheduler Choice and DAG Size
	6.4 Improving Schedule Creation Times

	7 Future Work
	7.1 Task Cost Heuristic
	7.2 Package Fetching
	7.3 Hyperthreading
	7.4 Phase Tasks and Build System Tasks

	8 Conclusion
	References

	Enabling Continuous Testing of HPC Systems Using ReFrame
	1 Introduction
	2 Framework Design
	2.1 The Regression Test Pipeline
	2.2 The Frontend
	2.3 Pluggable Backends

	3 Writing a Regression Test in ReFrame
	4 Configuring and Running ReFrame
	4.1 Performance Logging
	4.2 Running ReFrame
	4.3 Dealing with Test Failures

	5 Use Cases
	5.1 ReFrame at CSCS
	5.2 ReFrame at NERSC
	5.3 ReFrame at OSC

	6 Related Work
	7 Conclusions and Future Directions
	References

	Tools for Monitoring CPU Usage and Affinity in Multicore Supercomputers
	1 Introduction
	2 Background
	2.1 Process and Thread Affinity
	2.2 Related Work

	3 Three Innovative Tools
	3.1 core_usage
	3.2 show_affinity
	3.3 amask

	4 Case Study
	4.1 Unexpected Slow VASP Runs
	4.2 MPI Library Evaluation on a New System
	4.3 Affinity Discovery
	4.4 General

	5 Best Practice
	6 Conclusion
	References

	SE-HER - International Workshop on Software Engineering for HPC-Enabled Research
	A Study of Hydrodynamics Based Community Codes in Astrophysics
	1 Introduction
	2 Background
	3 Methodology
	4 Analysis and Inferences
	5 Conclusions
	References

	Lightweight Software Process Improvement Using Productivity and Sustainability Improvement Planning (PSIP)
	1 Introduction
	2 Background
	3 Methodology
	4 Related Work
	5 Case Studies
	5.1 EXAALT
	5.2 Exascale MPI

	6 Discussion and Future Work
	7 Conclusion
	References

	Role-Oriented Code Generation in an Engine for Solving Hyperbolic PDE Systems
	1 Introduction
	2 The ExaHyPE Engine
	2.1 A High-Order ADER-DG Solver with A-Posteriori Limiting
	2.2 Application-Specific Programming Interface
	2.3 Architecture-Aware Optimization of Kernels

	3 Code Generation in ExaHyPE
	3.1 Model-View-Controller Design
	3.2 Templates
	3.3 Architecture-Oblivious Templates and Architecture-Aware Optimization Macros

	4 Expanding the PDE: Navier-Stokes Equations
	4.1 Expanding the DSL
	4.2 Processing the New Specification File Option
	4.3 Expanding the Views
	4.4 Result Evaluation

	5 Improved Space-Time Predictor for Linear Applications
	5.1 Prototyping the New Algorithm
	5.2 Inclusion in the Kernel Generator
	5.3 Template Generalization and Optimization
	5.4 Performance Evaluation

	6 Vectorization of User Functions
	6.1 Optimized Transpose – from AoS to SoA (and Back)
	6.2 Abstracting the Call to the User Function Behind a Macro
	6.3 Expanding the callFlux Macro
	6.4 Performance Evaluation

	7 Conclusions
	References

	FQL: An Extensible Feature Query Language and Toolkit on Searching Software Characteristics for HPC Applications
	1 Introduction
	2 Related Work
	2.1 Software Analysis Tools Without Using Domain-Specific Languages
	2.2 Software Analysis Tools Using Domain-Specific Languages

	3 The FQL Language and Toolkit
	3.1 Feature Query Language (FQL)
	3.2 Overall Workflow of the FQL Software Toolkit
	3.3 Implementation of the FQL Toolkit

	4 Exemplar Applications
	5 Conclusions
	References

	WIHPC – Workshop on Interactive High-Performance Computing
	Accelerating Experimental Science Using Jupyter and NERSC HPC
	1 Introduction
	2 NERSC Jupyter Infrastructure
	3 Scaling up Analyses on HPC
	3.1 NCEM Bragg Disk Detection with Py4DSTEM
	3.2 Transforming the Code for Parallel Execution
	3.3 Upgrading Disk Detection
	3.4 Integrating the Parallel Version Back into Py4DSTEM
	3.5 NCEM Impact
	3.6 Insights for Parallel Performance of Scientific Software
	3.7 Future Work

	4 Streamlining Exploration of Parameter Spaces
	4.1 Future Work

	5 Reproducible and Replicable Workflows
	5.1 Sharing and Cloning Jupyter Notebooks
	5.2 Future Work

	6 Conclusions
	References

	Interactive Supercomputing for Experimental Data-Driven Workflows
	1 Introduction
	2 Background and Motivation
	2.1 Scientific IT Infrastructure Design Principles
	2.2 Dedicated vs. Shared Cluster Computing Resources
	2.3 Slurm Queues, Partitions and Fairshare

	3 Design and Scope of Data Driven Interactive Supercomputing
	3.1 Reservation Concepts and Use Cases
	3.2 Analysis of a Data-Driven Workflow
	3.3 Co-Designed Reservation Service for Data-Driven Workflow
	3.4 Controlled Privileges and Limitations
	3.5 Reservation Management Tool

	4 Implementation and Analysis
	5 Summary and Future Work
	References

	Portals for Interactive Steering of HPC Workflows
	1 Introduction
	2 HPC Workflows
	2.1 DNA Monitoring
	2.2 Basic NGS QC
	2.3 RNASeq
	2.4 Weakly Supervised Deep Neural Network

	3 Conclusion and Future Work
	References

	The Pangeo Ecosystem: Interactive Computing Tools for the Geosciences: Benchmarking on HPC
	1 Introduction
	2 Pangeo and the Pangeo Platform
	3 HPC Deployments of the Pangeo Platform
	3.1 Hal
	3.2 Cheyenne

	4 Benchmark of Pangeo on HPC
	4.1 Benchmark Method
	4.2 Results and Discussions

	5 Conclusion and Further
	References

	Author Index

