
Deep Learning for Hindi Text
Classification: A Comparison

Ramchandra Joshi1, Purvi Goel2, and Raviraj Joshi2(B)

1 Department of Computer Engineering,
Pune Institute of Computer Technology, Pune, India

rbjoshi1309@gmail.com
2 Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India
goyalpoorvi@gmail.com, ravirajoshi@gmail.com

Abstract. Natural Language Processing (NLP) and especially natural
language text analysis have seen great advances in recent times. Usage
of deep learning in text processing has revolutionized the techniques for
text processing and achieved remarkable results. Different deep learning
architectures like CNN, LSTM, and very recent Transformer have been
used to achieve state of the art results variety on NLP tasks. In this
work, we survey a host of deep learning architectures for text classifi-
cation tasks. The work is specifically concerned with the classification
of Hindi text. The research in the classification of morphologically rich
and low resource Hindi language written in Devanagari script has been
limited due to the absence of large labeled corpus. In this work, we
used translated versions of English data-sets to evaluate models based
on CNN, LSTM and Attention. Multilingual pre-trained sentence embed-
dings based on BERT and LASER are also compared to evaluate their
effectiveness for the Hindi language. The paper also serves as a tutorial
for popular text classification techniques.

Keywords: Natural language processing · Convolutional neural
networks · Recurrent neural networks · Sentence embedding · Hindi
text classification

1 Introduction

Natural language processing represents computational techniques used for pro-
cessing human language. The language can either be represented in terms of
text or speech. NLP in the context of deep learning has become very popular
because of its ability to handle text which is far from being grammatically cor-
rect. Ability to learn from the data have made the machine learning system
powerful enough to process any type of unstructured text. Machine learning
approaches have been used to achieve state of the art results on NLP tasks like
text classification, machine translation, question answering, text summarization,
text ranking, relation classification, and others.
c© Springer Nature Switzerland AG 2020
U. S. Tiwary and S. Chaudhury (Eds.): IHCI 2019, LNCS 11886, pp. 94–101, 2020.
https://doi.org/10.1007/978-3-030-44689-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44689-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-44689-5_9


Deep Learning for Hindi Text Classification: A Comparison 95

The focus of our work is text classification of Hindi language. Text classifi-
cation is the most widely used NLP task. It finds application in sentiment anal-
ysis, spam detection, email classification, and document classification to name a
few. It is an integral component of conversational systems for intent detection.
There have been very few text classification works in literature focusing on the
resource-constrained Hindi language. While the most important reason for this
is unavailability of large training data; another reason is generalizability of deep
learning architectures to different languages. However, Hindi is morphologically
rich and relatively free word order language so we investigate the performance of
different models on Hindi text classification task. Moreover, there has been a sub-
stantial rise in Hindi language digital content in recent years. Service providers,
e-commerce industries are now targeting local languages to improve their visi-
bility. Increase in the robustness of translation and transliteration systems have
also contributed to the rise of NLP systems for Hindi text. This work will help
in the selection of right models and provide a suitable benchmark for further
research in Hindi text classification tasks.

In order to create Hindi dataset in Devanagari script, standard datasets
like TREC, SST were translated using Google translate. This is indeed great
times for translation systems. Self attention-based models like transformer have
resulted in best in class results for translation tasks. We believe this is the right
time to evaluate the translated data sets. Even the multi-lingual datasets like
XNLI [3] used for evaluation of natural language inference tasks is based on the
translation.

Current text classification algorithms are mainly based on CNNs and RNNs.
They work at the sentence level, paragraph level or document level. In this work,
we consider sentence-level classification tasks. Each sentence split into a sequence
of word tokens and passed to classification algorithms. Instead of passing the raw
character tokens, each word is mapped to a numerical vector. The sequence of
vectors is processed by classification algorithms. A very common approach is
to learn these distributed vectorial representations using unsupervised learning
techniques like word2vec [8]. The similarity of the word vectors are correlated to
the semantic similarity between actual words. This gives some useful semantic
properties to low dimensional word vectors. Usage of pre-trained vectors have
shown to give superior results and are thus the de-facto method to represent
word tokens in all NLP models. In this work, we use FastText word vectors,
pre-trained on Hindi corpus. The embedding matrix is used as an input to deep
learning models. Naive bag of words approach is to average the word embed-
dings and then use a linear classifier or feed-forward neural network to classify
the resulting sentence embedding. A more sophisticated approach is to pass the
sequence of word vectors through LSTM and use final hidden state representa-
tion for classification. CNNs are also pretty popular for sentence classification
tasks where a fixed length padded word vector sequence is passed through the
CNNs. We explore different variations of LSTM, CNN, and Attention-based
neural networks for comparison.



96 R. Joshi et al.

Learning universal sentence representations is another area of active research.
These sentence representations are used for classification tasks. General idea is
to use a large amount of labeled or unlabelled corpus to learn sentence repre-
sentations in a supervised or unsupervised setting. This is similar to learning
word vectors externally and using them in the target task. These approaches
represent transfer learning in the context of NLP. Models like Skip-Thought
Vectors, Universal Sentence Encoder by Google, InferSent, and BERT have to
be used to learn sentence embeddings. Using pre-trained sentence embeddings
lowers the training time and is more robust on small target data sets. In this
work, we also evaluate pre-trained multi-lingual sentence embedding obtained
using BERT and LASER to draw a better comparison.

Main contributions of this paper are:

– Compare variations of CNN and LSTM models for Hindi text classification.
– Effectiveness of Hindi Fast-Text word embedding is evaluated.
– Effectiveness of multi-lingual pre-trained sentence embedding based on BERT

and LASER is evaluated on Hindi corpus.

2 Related Work

There has been limited literature on Hindi text classification. Arora Piyush in
his early work [1] used traditional n-gram and weighted n-grams method for
sentiment analysis of Hindi text. Tummalapalli et al. [9] used deep learning
techniques- basic CNN, LSTM and multi-Input CNN for evaluating the clas-
sification accuracy of Hindi and Telugu texts. Their main focus was capturing
morphological variations in Hindi language using word-level and character-level
features. CNN based models performed better as compared to LSTM and SVM
using n-gram features. The datasets used were created using translation. In this
work, we are concerned with the performance of different model architectures
and word vectors so we do not consider character level or subword level features.

In general, there has been a lot of research on text classification and sentiment
analysis employing supervised and sem-supervised techniques. Kim et al. [6]
proposed CNN based architecture for classification of English sentences. A simple
bag of words model based on averaging of fast text word vectors was proposed
in [5]. They proposed a simple fast baseline for sentence classification tasks.
Usage of RNNs for text classification was introduced in [7] and Bi-LSTM was
augmented with simple attention in [10]. Classification results of these models
on Hindi text are reported in this work.

Sentence embeddings evaluated in this work include multi-lingual LASER
embeddings [2] and multi-lingual BERT based embeddings [4]. LASER uses Bi-
LSTM encoder to generate embeddings whereas BERT is based on Transformer
architecture. LASER takes a neural machine translation approach for learning
sentence representations. It builds a sequence to sequence model using Bi-LSTM
encoder-decoder architecture. The encoder Bi-LSTM is used to generate sen-
tence representations. BERT, on the other hand, uses bi-directional transformer
encoder for learning word and sentence representations. It uses masked language



Deep Learning for Hindi Text Classification: A Comparison 97

model as the pre-training objective to mitigate the problem of unidirectional
training in simple language model next word prediction task.

3 Datasets

– TREC question dataset which involves classifying a question sentence into six
types. The dataset has predefined train-test split. It has 5452 training samples
and 500 testing samples. 10% of the training data was randomly held out for
validation.

– Stanford Sentiment Treebank datasets SST-1 and SST-2. SST-1 contains one
sentence movie reviews which are rated in the scale of 1–5 going from posi-
tive to negative. The dataset has predefined train-test-dev split. It has 8544
training samples, 2210 testing samples, and 1101 validation samples. SST-2
is a binary version of SST-1 where there are only two labels positive and neg-
ative. It has 6920 training samples, 1821 testing samples, and 872 validation
samples.

Original English versions of this dataset are translated to Hindi using Google
Translate. A language model was trained using Hindi wiki corpus and used to fil-
ter out noisy sentences. We assume no out of vocabulary words as fast text model
generates word embeddings for unknown words as well. A common vocabulary
of 31k words is created and fast-text vectors are used to initialize the embedding
matrix.

4 Model Architectures

The data samples comprise of a sequence of words so different sequence process-
ing models are explored in this work. While the most natural sequence processing
model is LSTM, other models are equally applicable as the sequence length is
short.

– BOW: The bag of words model does not consider the sequence of words.
The word vectors of input sentence are averaged to get a sentence embedding
of size 300. This is followed by a dense layer of size equal to the number of
output classes. Softmax output is given to cross-entropy loss function and
Adam is used as an optimizer.

– BOW + Attention: In this model, instead of simply averaging, a weighted
average of word vectors is taken to generate sentence embedding. The size of
sentence embedding is 300 and is followed by a dense layer similar to BOW
model. The weights for the individual time step is learned by passing the
corresponding word vector through a linear layer of size 300 × 1. Softmax
over these computed weights gives the probabilistic attention scores. This
attention approach is described in [10].



98 R. Joshi et al.

– CNN: The sequence of word embeddings are passed through three 1D con-
volutions of kernel sizes 2, 3, and 4. Each convolution uses a filter size of
128. The output of each of the 1-D convolution is max pooled over time and
concatenated to get the sentence representation. The size of this sentence
representation is 384 dimensions. There is a final dense layer of size equal to
the number of output classes.

– LSTM: The word vectors are passed as input to two-layer stacked LSTM.
The output of the final time step is given as an input to a dense layer for
classification. LSTM cell size is 128 and the size of final time step output
which is treated as sentence representation is 128.

– Bi-LSTM: The sequence of word embedding is passed through two stacked
bi-directional LSTM. The output is max pooled over time and followed by a
dense layer of size equal to the number of output classes. LSTM cell size is 128
and the size of max-pooled output which is treated as sentence representation
is 256.

– CNN + Bi-LSTM: The sequence of word embeddings are passed through
a 1D convolution of kernel size 3 and filter size 256. The output is passed
through a bi-directional LSTM. The output of Bi-LSTM is max pooled over
time and followed by a final dense layer.

– Bi-LSTM + Attention: This is similar to Bi-LSTM model. The difference
is that instead of max-pooling over the output of Bi-LSTM an attention
mechanism is employed as described above.

– LASER and BERT: Single pre-trained model for learning multilingual sen-
tence representations in the form of BERT and LASER was released by
Google and Facebook respectively. BERT is a 12 layer transformer based
model trained on multilingual data of 104 languages. LASER a 5 layer Bi-
LSTM model pre-trained on multilingual data of 93 languages. Both of these
models have Hindi as one of the training languages. The sentence embeddings
extracted from these models are used without any fine-tuning or modifica-
tions. The pre-trained sentence embeddings are extracted from the corre-
sponding models and subjected to a dense layer of 512 units. It is further
connected to a dense layer of size equal to the number of output classes over
which softmax is computed. BERT generated 768-dimensional embedding
whereas the dimension of LASER embeddings were 1024.

5 Results and Discussion

Performance of different models based on CNN and LSTM were evaluated on
translated versions of TREC, SST-1, and SST-2 datasets. Different versions of
input word vectors were given to the models for comparison. Pre-trained fast text
embeddings trained on Hindi corpus were compared against random initialization
of word vectors. The random values were sampled from a continuous uniform
distribution in a half-open interval [0.0, 1.0). Moreover, in one setting pre-trained
fast-text embeddings were fine-tuned whereas in other settings they remained
static. Keeping the word vector layer un-trainable allows better handling of



Deep Learning for Hindi Text Classification: A Comparison 99

words that were not seen during training as all the word vectors follow the
same distribution. However, the domain of the corpus on which the word vectors
were pre-trained may be different from the target domain. In such cases, fine-
tuning the trained word vectors helps model adapt to the domain of the target
corpus. So re-training the fast text vectors and keeping them static has its pros
and cons. Table 1 shows the results of the comparison. The three versions of
word vectors are indicated as random for random initialization, fast text for
trainable fast-text initialization, and fast text-static for un-trainable fast text
initialization. Out of all the models vanilla CNN performs the best for all the
datasets. CNNs have known to perform best for short texts and same is visible
here as the datasets under consideration do not have long sentences. There is a
small difference in the performance of different LSTM model. However, Bi-LSTM
with max-pooling performed better than its attention version and unidirectional
LSTM. Bag of words based on attention fared better than the simple bag of

Table 1. Classification accuracies of different models

Model/Dataset TREC SST-1 SST-2

BOW Fast text-static 62.4 32.2 63.1

Fast text 87.2 40.4 77.3

Random 84.4 39.3 76.9

BOW-Attn Fast text-static 76.2 37.4 72.8

Fast text 88.2 39.3 78.0

Random 86.0 36.9 75.4

LSTM Fast text-static 86.6 40.2 75.5

Fast text 87.8 40.8 78.1

Random 86.8 40.7 76.8

Bi-LSTM Fast text-static 87.0 40.8 76.4

Fast text 89.8 41.9 78.0

Random 87.6 40.2 72.9

Bi-LSTM-Attn Fast text-static 85.0 39.0 76.4

Fast text 88.6 40.1 78.6

Random 86.0 39.5 76.0

CNN Fast text-static 91.2 41.2 78.2

Fast text 92.8 42.9 79.4

Random 87.8 40.2 77.1

CNN+Bi-LSTM Fast text-static 89.6 40.4 78.3

Fast text 90.5 41.0 77.4

Random 87.6 38.2 72.3

LASER 89.0 41.4 75.9

BERT 77.6 35.6 68.5



100 R. Joshi et al.

words model. Attention was particularly helpful with the usage of static fast text
word vectors. Stacked CNN-LSTM models were somewhere between LSTM and
CNN based models. We did not see a huge drop in performance due to random
initialization of word vectors. But the performance across different epochs was
very stable with fast text initialization. Finally, as compared to generic sentence
embeddings obtained from BERT and LASER, specific embeddings obtained
from custom models performed better. LASER was able to reach close to the
best performing model. This shows that LASER was able to capture important
discriminative features of a sentence required for the task at hand whereas BERT
failed to capture the same.

6 Conclusion

In this work, we compared different deep learning approaches for Hindi sentence
classification. The word vectors were initialized using fast text word vectors
trained on Hindi corpus and random word vectors. This work also serves the
evaluation of fast text word embeddings for Hindi sentence classification task.
CNN models perform better than LSTM based models on the datasets con-
sidered in this paper. Although we would expect BOW to perform the worst
it has numbers comparable to LSTM and CNN. Therefore if we can trade off
accuracy for speed BOW is useful. LSTMs do not do better than CNNs may be
because the word order is relaxed in Hindi. Sentence representations captured by
LASER multilingual model were rich as compared to BERT. However, overall
custom trained models on specific datasets performed better than lightweight
models directly utilizing sentence encodings. Although the real advantage of
multi-lingual embeddings can be better evaluated on tasks involving text from
multiple languages.

References

1. Arora, P.: Sentiment analysis for hindi language (2013)
2. Artetxe, M., Schwenk, H.: Massively multilingual sentence embeddings for zero-

shot cross-lingual transfer and beyond. arXiv preprint arXiv:1812.10464 (2018)
3. Conneau, A., Lample, G., Rinott, R., Williams, A., Bowman, S.R., Schwenk,

H., Stoyanov, V.: Xnli: evaluating cross-lingual sentence representations. arXiv
preprint arXiv:1809.05053 (2018)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

5. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016)

6. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

7. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text
classification. In: Twenty-ninth AAAI Conference on Artificial Intelligence (2015)

http://arxiv.org/abs/1812.10464
http://arxiv.org/abs/1809.05053
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1408.5882


Deep Learning for Hindi Text Classification: A Comparison 101

8. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

9. Tummalapalli, M., Chinnakotla, M., Mamidi, R.: Towards better sentence classifi-
cation for morphologically rich languages (2018)

10. Zhou, P., et al.: Attention-based bidirectional long short-term memory networks for
relation classification. In: Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short Papers), pp. 207–212 (2016)


	Deep Learning for Hindi Text Classification: A Comparison
	1 Introduction
	2 Related Work
	3 Datasets
	4 Model Architectures
	5 Results and Discussion
	6 Conclusion
	References




