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Abstract. Since there has been an important increase in unmanned
vehicles systems research such as quadrotors, a mathematical model and
PID control laws are studied. Based on some dynamic variables, PID
control is applied to compute a controller to be then use in autopilot
simulations. As this kind of VTOL vehicle seems to be unstable, the aim
of this work is to change even other flight mechanics parameters and
control gains to study attitude and altitude variations. A well-known
computational tool is used for simulation purposes, performance analysis
and validation.
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1 Introduction

Unmanned aerial devices have been developing significant capacities to fly.
Therefore, many researchers from multidisciplinaty areas have shown interest
in aerial vehicles in which the human influence can be greatly reduced. Dif-
ferent engineering areas such as aerodynamics, control, path planning and for
instance autonomous platforms play an important role in this research area.
These type of flying vehicles can be designed nowadays to carry or hold different
payloads. Likewise, path planning and path following control are being utilized
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to achieve autonomous tasks. A multirotor type that has vertical takeoff and
landing (VTOL) capabilities is the quadrotor. Currently, these kind of vehicles
have a large use in aerospace businesses. They can fly autonomously to perform
several missions such as environmental research, rescue, traffic or infrastructure
inspections, agricultural monitoring, image and video, scientific research, inspec-
tions of places with very difficult access and even products delivery. Hence, their
uses are not just restricted to dangerous works. [9,10].

2 Reference Frames

For a math description model and control issues, at least one reference frame is
required. If other reference frames are employed, it will be easier to get the deriva-
tion of the motion equations. Once multiple reference frames are used, important
matters are related to vector transformations from one frame to another. The
rotation matrices are based on Euler angles. A reference fixed frame is taken to
obtain distance and direction. A coordinate system is considered for measure-
ments. There are two reference frames clearly defined, the Earth Fixed Frame
and Body Fixed Frame. [3,6,7,10] The E-frame is selected as the inertial frame.
(0E XE YE ZE). Its origin is at OE . In this reference frame, both the linear
position (ξE) and angular position (ΘE) are defined. There is another reference
frame required as the body frame (0B XB YB ZB) and is attached to the body
of the quadrotor. The origin is at the reference point OB . In this B-frame some
dynamic variables such as the linear velocity, the angular velocity and the forces
and torques are determined. (Fig. 1).

Fig. 1. Reference systems
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3 Quadrotor System Variables

A quadrotor commonly has six degrees of freedom (6DOF) and are defined as:
ξ = (x, y, z) represents the linear position and Θ = (θ, φ, ψ) is the attitude or
also known as Euler angles pitch, roll and yaw. Thus, if Θ = (θ, φ, ψ) and ξ =
(x, y, z), we obtain the general position vector Φ as:

Φ =
[

ξ
Θ

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

x
y
z
θ
φ
ψ

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

The following are the linear and angular velocities v = (u, v, w) ω = (p, q, r)
are:

υ =
[
v
ω

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

u
v
w
p
q
r

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

3.1 Mathematical Model

For vector transformations from the E-frame to the B-frame, there is a matrix
which is known as the direction cosine matrix. If the rotations are first around
x axis next about y and the final one around z axis, the rotation matrix got is:
RΥ = R(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ). [7,8,10,11]

Rx(φ) =

⎡
⎣1 0 0

0 cosφ −sinφ
0 sinφ cosφ

⎤
⎦ (3)

Ry(θ) =

⎡
⎣ cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

⎤
⎦ (4)

Rz(ψ) =

⎡
⎣cosψ −sinψ 0

sinψ cosψ 0
0 0 1

⎤
⎦ (5)

Hence, the rotation matrix product is as follows:
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RΥE
B

=

⎡
⎣cosθcosψ cosψsinθsinφ − sinψcosφ sinφsinψ + cosφcosψsinθ

sinψcosθ cosψcosφ + sinψsinθsinφ sinψsinθcosφ − cosψsinφ
−sinθ cosθsinφ cosφcosθ

⎤
⎦ (6)

If smalls angles of motion are taken [φ̇ θ̇ ψ̇]T = [p q r]T , therefore, the dynamic
model is: [7,8]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ = Ftotal

m [sin(φ)sin(ψ) + cos(φ)cos(ψ)sin(θ)]
ÿ = Ftotal

m [cos(φ)sin(ψ)sin(θ) − cos(ψ)sin(φ)]
z̈ = −g Ftotal

m [cos(φ)cos(θ)]
φ̈ = Iyy−Izz

Ixx
θ̇ψ̇ + τx

Ixx

θ̈ = Izz−Ixx

Iyy
φ̇ψ̇ + τx

Iyy

ψ̈ = Ixx−Iyy

Izz
φ̇θ̇ + τx

Izz

(7)

4 Control Model of a Quadrotor

Four torques are needed to control a quadrotor (τ1 τ2 τ3 τ4), which are given
to the motors to generate the thrust forces (F1 F2 F3 F4) in z. The net torques
acting on the body can be calculated by using the inputs U = (U1 U2 U3 U4) that
can be applied to control the quadrotor. As an aerodynamic consideration forces
and torques are proportional to the squared propeller’s speed. [1]. Therefore the
relationship between motions and propellers’ squared speed is as follows:

FT = b(Ω2
1 + Ω2

2 + Ω2
3 − Ω2

4)

τx(θ) = bl(Ω2
2 − Ω2

4)

τy(φ) = bl(Ω2
1 − Ω2

3 )

τz(ψ) = Kdrag(Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

(8)

The motor Ω [rad s−1] and vector speeds Ω are the following: [1].

Ω =

⎡
⎢⎢⎣

Ω1

Ω2

Ω3

Ω4

⎤
⎥⎥⎦ (9)

Ω1 [rad s−1] and Ω3 [rad s−1] are the motor speeds (front and rear), also Ω2

[rad s−1] and Ω4 [rad s−1] are the right and left motor speeds. The relationship
between the control inputs and the speeds of the motor is:

⎡
⎢⎢⎣

U1

U2

U3

U4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)
bl(Ω2

4 − Ω2
2)

bl(Ω2
3 − Ω2

1)
d(Ω2

2 + Ω2
4 − Ω2

1 − Ω2
3)

⎤
⎥⎥⎦ (10)



Quadrotor Modeling and a PID Control Approach 285

l [m] is the quadrotor center distance and [U1 U2 U3 U4] are the control inputs. U1

is the thrust force responsible for altitude z. U2 is the thrust difference between
propellers 2 and 4 that originates the roll moment. U3 represents the thrust
variation between motors 1 and 3 that generate the pitch moment. Finally, U4

is the mixing of the single torques between the clockwise and counterclockwise
rotors that are responsible for yaw rotation. Similarly, U1 creates the desired
altitude. U2 and U3 generate the respective roll and pitch angles and U4 originates
the yaw angle. [1,4,5]. In addition, the linearization about a point of equilibrium
is: ẋ = f(x, u). Hence, as a linear model we obtain: [1,5,11].

f(x,u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̇ = p

θ̇ = q

ψ̇ = r

ṗ = τx+τax

Ix

q̇ = τy+τay

Iy

ṙ = τz+τaz

Iz

u̇ = −gθ + Fax

m

v̇ = gφ + Fay

m

ẇ = Faz−Ftotal

m

ẋ = u

ẏ = v

ż = w

(11)

5 Simplified Control Model

A quadrotor is certainly an underactuated system. It is a 6DOF machine with
just four control inputs. So, it may be really difficult to control 6 degrees of
freedom having only four control inputs. Mainly, the control work is carried out
on attitude and the yaw angle. Hence, the reduced dynamics model considered
for control is: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z̈ = g − (cosφcosθ)
1
m

U1

φ̈ =
U2

Ix

θ̈ =
U3

Iy

ψ̈ =
U4

Iz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

5.1 Control Laws for Attitude and Altitude

The following PID control law is the taken for altitude:

U1 = Kz
pez + Kz

d ėz + Kz
i

∫
(ez), ez = z − zd (13)
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Kp, Kd, Ki are the gains (proportional, derivative and integral), ėz represents
the desired altitude change and zd is defined as the desired altitude. If matrix
10 is inverted, we get the relationship between U and Ω2 as follows:

⎡
⎢⎢⎢⎢⎣

Ω2
1

Ω2
2

Ω2
3

Ω2
4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
4b 0 1

2bl − 1
4d

1
4b − 1

2bl 0 1
4d

1
4b 0 1

2bl − 1
4d

1
4b

1
2bl 0 1

4d

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

U1

U2

U3

U4

⎤
⎥⎥⎥⎥⎦ (14)

Also, the control laws for attitude or orientation angles (roll, pitch and yaw)
are taken as:

U2 = Kφ
p eφ + Kφ

d ėφ + Kφ
i

∫
(eφ), eφ = φ − φd (15)

U3 = Kθ
peθ + Kθ

d ėθ + Kθ
i

∫
(eθ), eθ = θ − θd (16)

U4 = Kψ
p eψ + Kψ

d ėψ + Kψ
i

∫
(eψ), eψ = ψ − ψd (17)

Similarly, Kp, Kd, Ki are the proportional, derivative and integral gains,
ėφ, ėθ, ėψ are the adjustments for the desired angles and φd, θd, ψd are the desired
angles.

5.2 Transfer Functions

The following are the attitude transfer functions:

GΦ/U2(s) =
1

s2Ix

GΘ/U3(s) =
1

s2Iy

GΨ/U4(s) =
1

s2Iz

(18)

And for altitude we have,

Gz/U1(s) =
1

s2 m
(19)

6 PID Controller Computation

The transfer function considered for a PID controller is (Table 1):

G(s) = P +
I

s
+

Ds

s + 1
(20)
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Some autopilot devices just implement PD control. Thus, the transfer func-
tion is as follows:

G(s) = P +
Ds

s + 1
(21)

Table 1. Controller design parameters

PD-PID parameters

ζ = 0.6 ts = 5s β = 10ζωn

The PD controller values are:

P = ω2
nIxyz

D = 2ζωnIxyz

For the PID controllers are given as:

P = 2ζωnβ + ω2
nIxyz

I = ω2
nβIxyz

D = 2ζωnβIxyz

Thus, the controller variables are:

P = mω2
n

D = 2ζωnm

Finally, the parameters for the PID controller are given by (Table 2):

P = 2ζωnβ + ω2
nm

I = ω2
nβm

D = 2ζωn + βm

Other variables are also taken for control simulation (Table 3) and (Figs. 2,
3, 4, 5, 6 and 7).

Table 2. Dynamics values for simulation

Dynamic variables Model 1 Model 2 Model 3

m 0.1 kg 0.09 kg 0.14 kg

Ix 0.45 kg · m2 0.45 kg · m2 0.45 kg · m2

Iy 0.51 kg · m2 0.51 kg · m2 0.51 kg · m2

Iz 0.95 kg · m2 0.95 kg · m2 0.95 kg · m2

l 0.5 m 0.95 kg · m2 0.35 m
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Table 3. Dynamic parameters

Simulation control variables

Jm = 4e−7 kg m2

b = 3.13e−5 − 1.33e−5 N s2

d = 3.13e−5 − d = 1.3e−5 N m s2

Fig. 2. Altitude PID control

Fig. 3. Roll PID control
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Fig. 4. Pitch PID control

Fig. 5. Control PID yaw

Fig. 6. Altitude/attitude PD controller response for models 1, 2, 3



290 C. A. Cárdenas R. et al.

Fig. 7. Altitude/attitude PID controller response for models 1, 2, 3

7 Results

The dynamics values are separately taken for all models. It can be noticed that in
the PD control simulations for models 1, 2 and 3, there is initially some overshoot.
However, after some adjustments a proper attitude stabilization is achieved.
Regarding to altitude performance, an important overshoot is also evident and
the control signal obtained tends to deviate from the desired. This issue may
appear due to some kind of altitude increase or some PID gains tuning variation
still needed. For models 4, 5 and 6, a superior PD and PID control capability is
noted. Some very small peaks are originated for attitude. Although, these signals
are very similar or not so far from to the desired ones. A slow reaction can be
noticed for the yaw angle. In spite of this fact, finally the vehicle could stabilize.
The mean of the dynamics values taken is acceptable. Despite this, it is definitely
necessary to make some additional changes. Some simulations show that there
are some kind of changes or oscillations especially for position. It seems that
there are some small oscillations when the inertia moments values are increased.
Moreover, oscillations rise as the moments of inertia are small. Therefore, this the
fact could be created because of some abrupt changes in attitude. These changes
are perceived in simulation. It is possible to be associated to the increase or
reduction of the thrust force and configuration type (X, +).
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8 Conclusions

A mathematical model of a quadrotor is provided based on the Newton-Euler
method. Another mathematical and linearization approach for further studies
may be considered with Taylor series as presented in [2,10]. Besides the analytical
computation of the PID gains, it is required to use a computational tool such
as MATLAB (PID option) to adjust or get more precise gains values for better
controller performance. It seems that it is feasible to accomplish appropriate
results with just a PD controller. It might be suitable for a stable flight (attitude).
Although some very small peaks are observed in attitude control signals, they are
not far from the desired settings. It is also seen a slow response of the yaw angle.
However, after a while the platform can be stabilized. The altitude behaviour
is not so right and the state error increases. On the other hand, a much better
altitude and attitude performance is got for models 4, 5, and 6. Some negative
estimations are acquired for orientation angles. This may be possible due to
motors configuration (X, +). These values just give an inclination and don’t
affect the angle magnitude. It is inferred that the dynamic parameters certainly
can have an significant effect on the PID controller efficiency.
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ses, Université Paris-Saclay, Université d’Evry-Val-d’Essonne, September 2015.
https://tel.archives-ouvertes.fr/tel-01206423

10. Poyi, G.T.: A novel approach to the control of quad-rotor helicopters using fuzzy-
neural networks (2014)

11. Sabatino, F.: Quadrotor control: modeling, nonlinearcontrol design, and simulation
(2015)

https://doi.org/10.1007/978-3-030-00350-0_6
https://doi.org/10.1007/978-3-030-00350-0_6
https://tel.archives-ouvertes.fr/tel-01206423

	Quadrotor Modeling and a PID Control Approach
	1 Introduction
	2 Reference Frames
	3 Quadrotor System Variables
	3.1 Mathematical Model

	4 Control Model of a Quadrotor
	5 Simplified Control Model
	5.1 Control Laws for Attitude and Altitude
	5.2 Transfer Functions

	6 PID Controller Computation
	7 Results
	8 Conclusions
	References




