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Abstract In this note we quantize the free ∗-algebra generated by finitely many
variables, which is a new example of the theory of Toeplitz quantization of
∗-algebras as developed previously by the author. This is achieved by defining
Toeplitz operators with symbols in that non-commutative free ∗-algebra. These are
densely defined operators acting in a Hilbert space. Then creation and annihilation
operators are introduced as special cases of Toeplitz operators, and their properties
are studied.
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1 Introduction

The basic reference for this paper is [3] where a general theory of Toeplitz
quantization of ∗-algebras is defined and studied. More details including motivation
and references can be found in [3].

2 The Free ∗-Algebra

The example in this paper is the free algebra on 2n non-commuting variables A =
C{θ1, θ1, . . . , θn, θn}. In particular, the variables θj , θj do not commute for 1 ≤
j ≤ n. The holomorphic sub-algebra is defined by P := C{θ1, . . . , θn}, the free
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algebra on n variables. The ∗-operation (or conjugation) on A is defined on the
generators by

θ∗
j := θj and θj

∗ := θj ,

where j = 1, . . . , n. This is then extended to finite products of these 2n elements in
the unique way that will make A into a ∗-algebra with 1∗ = 1. As explained in more
detail in a moment these products form a vector space basis of A, and so we extend
the ∗-operation to finite linear combinations of them to make it an anti-linear map
over the field C of complex numbers. Therefore, P is not a sub-∗-algebra. Rather,
we have P ∩ P∗ = C1. Moreover, P is a non-commutative sub-algebra of A if
n ≥ 2. This set-up easily generalizes to infinitely many pairs of non-commuting
variables θj , θj .

The definition of P is motivated as a non-commutative analogy to the
commutative algebra of holomorphic polynomials in the Segal-Bargmann space
L2(Cn, e−|z|2μLeb), where μLeb is Lebesgue measure on the Euclidean space Cn.
(See [1] and [2].) This is one motivation behind using the notation P for this
sub-algebra.

We will later introduce a projection operator P : A → P using a sesqui-linear
form defined on A. This is an essential ingredient in the following definition.

Definition 2.1 Let g ∈ A be given. Then we define the Toeplitz operator Tg with
symbol g as Tg φ := P(φg) for all φ ∈ P . It follows that Tg : P → P is linear. We
let L(P) := {T : P → P | T is linear}. Then the linear map A � g 	→ Tg ∈ L(P)

is called the Toeplitz quantization.

Multiplying the symbol g on the left of φ gives a similar theory, which we will
not expound on in further detail.

The sesqui-linear form on A when restricted to P will turn out to be an inner
product. So P will be a pre-Hilbert space that is dense in its completion, denoted as
H. This is another motivation for using the notation P for this sub-algebra. So every
Toeplitz operator Tg will be a densely defined linear operator acting in the Hilbert
space H.

The definition of the sesqui-linear form on A is a more involved story. To start it
we let B be the standard basis of A consisting of all finite words (or monomials) in
the finite alphabet {θ1, θ1, . . . , θn, θn}, which has 2n letters. The empty word (with
zero letters) is the identity element 1 ∈ A. Let f ∈ B be a word in our alphabet.
We let l(f ) denote the length of f , that is, the number of letters in f . Therefore
l(f ) = 0 if and only if f = 1.

Definition 2.2 Let f ∈ B with l(f ) > 0. Then we say that f begins with a θ if the
first letter of f (as read from the left) is an element of {θ1, . . . , θn}; otherwise, we
say that f begins with a θ .

If f = 1, then we say that f begins with a θ and f begins with a θ .
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Remark Suppose l(f ) > 0 and that f begins with a θ . Then f has a unique
representation as

f = θi1 · · · θir θj1 · · · θjs f
′, (2.1)

where r ≥ 1, s ≥ 0 and f ′ begins with a θ . That is to say, the word f begins
with r ≥ 1 occurrences of θ ’s followed by s ≥ 0 occurrences of θ ’s and finally
another word f ′ that begins with a θ . Note that if s = 0, then f ′ = 1. We also
have that l(f ′) < l(f ). As a simple example of this representation, note that each
basis element f = θi1 · · · θir in P with r ≥ 1 has this representation with s = 0 and
f ′ = 1.

Dually, suppose that l(f ) > 0 and that f begins with a θ . Then f has the obvious
dual representation.

Now we are going to define a sesqui-linear form 〈f, g〉 for f, g ∈ A by first
defining it on pairs of elements of the basis B and extending sesqui-linearly, which
for us means anti-linear in the first entry and linear in the second. The definition on
pairs will be by recursion on the length of the words. To start off the recursion for
l(f ) = l(g) = 0 (that is, f = g = 1) we define

〈f, g〉 = 〈1, 1〉 := 1.

This choice is a convenient normalization convention.
The next case we consider is l(f ) > 0, f begins with a θ and g = 1. In that case

using (2.1) we define recursively

〈f, 1〉 = 〈θi1 · · · θir θj1 · · · θjs f
′, 1〉

:= w(i1, . . . , ir )δr,sδi1,jr · · · δir ,j1〈f ′, 1〉
= w(i)δr,sδi,jT 〈f ′, 1〉

where r ≥ 1 and w(i) ≡ w(i1, . . . , ir ) > 0 is a positive weight. Here we also define
the (variable length) multi-index i = (i1, . . . , ir ) and jT := (js, . . . , j1) to be the
reversed multi-index of the multi-index j = (j1, . . . , js). It follows that 〈f, 1〉 �= 0
in this case implies that we necessarily have 〈f ′, 1〉 �= 0 and

f = θi1 · · · θir θ ir · · · θ i1f
′.

Moreover, by recursion f ′ must also has this same form as f . Since the lengths
are strictly decreasing (l(f ) > l(f ′) > · · · ), this recursion terminates in a finite
number of steps. Thus the previous equation can then be written using the obvious
notations θi := θi1 · · · θir and θ iT := θ ir · · · θ i1 as

f = θiθ iT f ′.
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Symmetrically, for f = 1, l(g) > 0 and g begins with a θ we write g =
θk1 · · · θkt θ l1 · · · θ lug

′ uniquely so that t ≥ 1 and g′ begins with a θ and define
recursively

〈1, g〉 = 〈1, θk1 · · · θkt θ l1 · · · θlug
′〉

:= w(k1, . . . , kt )δt,uδk1,lu · · · δkt ,l1 〈1, g′〉
= w(k)δt,uδk,lT 〈1, g′〉.

Next suppose that l(f ) > 0 and l(g) > 0 and that both f and g begin with a θ

and are written as above. In that case, we define

〈f, g〉 = 〈θi1 · · · θir θj1 · · · θjs f
′, θk1 · · · θkt θ l1 · · · θ lug

′〉 (2.2)

:= w(i, lT )δr+u,s+t δ(i,lT ),(k,jT ) 〈f ′, g′〉,

where (i, lT ) := (i1, . . . , ir , lu, . . . , l1) is the concatenation of the two multi-indices
i and lT = (lu, . . . , l1). (Similarly for the notation (k, jT ).)

The definitions for two words that begin with a θ are dual to these definitions.
We use the same weight factors for this dual part, though new real weight factors
could have been used.

There is still one remaining case for which we have yet to define the sesqui-
linear form. That case is when f begins with a θ , g begins with a θ , (or vice versa),
l(f ) > 0 and l(g) > 0. In that case we define 〈f, g〉 := 0.

Theorem 2.1 The sesqui-linear form on A is complex symmetric, that is,

〈f, g〉∗ = 〈g, f 〉 for all f, g ∈ A.

Proof The proof is by induction following the various cases of the recursive
definition of the sesqui-linear form. First, for l(f ) = l(g) = 0 we have f = g = 1
in which case

〈1, 1〉∗ = 1∗ = 1 = 〈1, 1〉.

Next we take the case l(f ) > 0, f begins with a θ and l(g) = 0. Then we write
f = θiθj f

′ for multi-indices i, j of lengths r, s respectively and f ′ begins with a
θ . So we calculate

〈f, 1〉∗ = (
w(i)δr,sδi,jT 〈f ′, 1〉)∗ = w(i)δr,sδi,jT 〈1, f ′〉,

where we used the induction hypothesis and the reality of the weight w(i) for the
last step. On the other hand, we have by definition that

〈1, f 〉 = 〈1, θiθjf
′〉 = w(i)δr,sδi,jT 〈1, f ′〉.
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This proves that 〈f, 1〉∗ = 〈1, f 〉. Similarly, one shows 〈1, g〉∗ = 〈g, 1〉, where
l(g) > 0 and g begins with a θ .

For the case where l(f ) > 0 and l(g) > 0 and both f and g begin with a θ ,
we write f = θiθjf

′ and g = θkθ lg
′, where i, j, k, l are multi-indices of lengths

r, s, t, u respectively and f ′, g′ begin with a θ . Then we see by induction that

〈g, f 〉∗ = 〈θkθlg
′, θiθjf

′〉∗ = (
w(k, jT ) δt+s,u+r δ(k,jT ),(i,lT ) 〈g′, f ′〉)∗

= w(i, lT ) δr+u,s+t δ(i,lT ),(k,jT ) 〈f ′, g′〉 = 〈f, g〉.

The proofs for words that begin with θ are similar. The final case is if one of the pair
f, g begins with a θ and the other begins with a θ . But then 〈f, g〉 = 0 as well as
〈g, f 〉 = 0. So in this final case the identity is trivially true. �
While the sesqui-linear form is complex symmetric according to this proposition,
when n ≥ 2 it does not satisfy the nice properties with respect to the ∗-operation as
were given in [3]. We recall that those properties are

〈f1, f2g〉 = 〈f1g
∗, f2〉, (2.3)

〈f1, f2g〉 = 〈f1f
∗
2 , g〉, (2.4)

where f1, f2 ∈ P and g ∈ A. It seems reasonable to conjecture that these identities
do hold for n = 1. This detail is left to the reader’s further consideration.

For the first property (2.3) the counterexample is provided by taking f1 = θ1,
f2 = θ1θ2 and g = θ2θ1θ1. Then we have on the one hand that

〈f1, f2g〉=〈θ1, θ1θ2θ2θ1θ1〉=w(1, 2)δ(1,2)(1,2)〈1, θ1θ1〉=w(1, 2)w(1) �= 0.

On the other hand

〈f1g
∗, f2〉 = 〈θ1θ1θ1θ2, θ1θ2〉 = 0.

For the second property (2.4), we take f1 = f2 = θ1 and g = θ2θ2. Then we have
for the left side that

〈f1, f2g〉 = 〈θ1, θ1θ2θ2〉 = w(1, 2)δ(1,2),(1,2)〈1, 1〉 = w(1, 2) �= 0.

But for the right side we get

〈f1f
∗
2 , g〉 = 〈θ1θ1, θ2θ2〉 = w(1, 2)δ(1,2),(2,1)〈1, 1〉 = 0.

Thus this example is not compatible with all of the general theory presented in
[3] when n ≥ 2. But it still is an illuminating example as we shall discuss in more
detail a bit later on. However, we do have a particular case of (2.3) in this example.
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The only change from (2.3) in the following is that now g ∈ P ∪ P∗ is required
instead of g ∈ A.

Theorem 2.2 Suppose that f1, f2,∈ P and g ∈ P ∪ P∗. Then

〈f1, f2g〉 = 〈f1g
∗, f2〉

Proof We first prove the result for g ∈ P . It suffices to consider f1 = θi , f2 = θj

and g = θk for multi-indices i, j, k. Then we get

〈f1, f2g〉 = 〈θi, θj θk〉 = 〈θi, θ(j,k)〉 = w(i)δi,(j,k).

Next the other side evaluates to

〈f1g
∗, f2〉 = 〈θi(θk)

∗, θj 〉 = 〈θiθkT , θj 〉 = w(i)δi,(j,k),

using (kT )T = k. And so the identity holds in this case.
Next suppose that g ∈ P∗. Then we apply the result of the first case to the

element g∗ ∈ P . And that will prove this second case as the reader can check by
using Theorem 2.1. �

Continuing our comments about why this is an illuminating example, let us note
that it satisfies the first seven of the eight properties used for the more general theory
presented in [3]. While it does not satisfy in general the eighth property (that Tg and
Tg∗ are adjoints on the domain P for all g ∈ A), it satisfies the weaker version of
this property given in Theorem 2.5 below.

According to the general theory we have to find a set � which must be a Hamel
basis of P as well as being an orthonormal set. Clearly, the candidate is

{θi1 · · · θir | 1 ≤ ii ≤ n, . . . , 1 ≤ ir ≤ n},

the words in the sub-alphabet {θ1, . . . , θn}. And this almost works. We need only
to normalize these words. Taking f = θi1 · · · θir and g = θk1 · · · θkt in (2.2) (so we
have s = u = 0, f ′ = 1 and g′ = 1) we get

〈f, g〉 = w(i)δr,t δi,k,

where i = (i1, . . . , ir ) and k = (k1, . . . , kt ) are multi-indices of lengths r, t

respectively. In particular, 〈f, g〉 = 0 if f �= g. On the other hand, 〈f, f 〉 = w(i) >

0. So we define ϕi := w(i)−1/2 θi1 · · · θir = w(i)−1/2 θi , and the orthonormal
Hamel basis is defined by

� := {ϕi | i = (i1, . . . , ir ) with r ≥ 0, 1 ≤ ii ≤ n, . . . , 1 ≤ ir ≤ n}.

This argument shows that the complex symmetric sesqui-linear form restricted to
P is positive definite, that is, it is an inner product. We let H denote the completion
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of P with respect to this inner product. Then � is an orthonormal basis of H.
However, it is sometimes more convenient to work with the orthogonal (but perhaps
not orthonormal) set {θi = θi1 · · · θir } of H.

We now have enough information about the sesqui-linear form in order to define
the projection P : A → P .

Definition 2.3 Let g ∈ A be given. Then define

Pg :=
∑

ϕi∈�

〈ϕi, g〉ϕi . (2.5)

This will be well defined when we show in a moment that the sum on the right side of
(2.5) is finite. If this were a Hilbert space setting, we could write P = ∑

i |ϕi〉〈ϕi | in
Dirac notation, and P would be the orthogonal projection onto the closed subspace
P . Anyway, this abuse of notation motivates the definition of P . Given that P is
well-defined, it is clear that P is linear, that it acts as the identity on P (since � is
an orthonormal basis of P) and that its range is P .

Theorem 2.3 The sum on the right side of (2.5) has only finitely many non-zero
terms. Consequently, P is well-defined.

Proof Take g ∈ A. It suffices to show that 〈θi , g〉 = 0 except for finitely many
multi-indices i, since ϕi is proportional to θi . So it suffices to calculate 〈θi , g〉 for
all possible multi-indices i. We do this by cases.

If g begins with a θ , then 〈θi, g〉 = 0 for all multi-indices i �= ∅, the empty
multi-index. (Note that θ∅ = 1.) It follows that all of the terms, except possibly one
term, on the right side of (2.5) are 0 and so P(g) = 〈1, g〉 1 in this case. For the
particular case g = 1 (i.e., l(g) = 0) we have that P(1) = 1, using 〈1, 1〉 = 1.

So the only remaining the case is when g begins with a θ and l(g) > 0. Then,
using g = θkθ lg

′ for multi-indices k, l of lengths t ≥ 1 and u ≥ 0 respectively and
g′ begins with a θ , we have

〈θi, g〉 = 〈θi1 · · · θir , θk1 · · · θkt θ l1 · · · θ lug
′〉 (2.6)

= w(i, lT ) δr+u,t δ((i, lT ), k) 〈1, g′〉
= w(k) δr+u,t δ((i, lT ), k) 〈1, g′〉.

Whether this is non-zero now is the question. More explicitly, for a given g of this
form how many θi’s are there such that this expression could be non-zero? However,
if the factor δ((i, lT ), k) is non-zero, then we have necessarily that the multi-index
i = (i1, . . . , ir ) of variable length r ≥ 0 forms the initial r entries in the given
multi-index k of length t ≥ 1. Thus for a given g there are at most finitely many
θi for which (2.6) could be non-zero. So the sum on the right side of (2.5) has only
finitely many non-zero terms, and P is well-defined. �
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Theorem 2.4 P is symmetric with respect to the sesqui-linear form, that is,
〈Pf, g〉 = 〈f, Pg〉 for all f, g ∈ A.

Proof Using Theorem 2.1 to justify the third equality, we calculate

〈Pf, g〉 = 〈 ∑

i

〈ϕi, f 〉ϕi, g
〉 =

∑

i

〈〈ϕi, f 〉ϕi, g
〉 =

∑

i

〈f, ϕi〉〈ϕi, g〉

=
∑

i

〈
f, 〈ϕi, g〉ϕi

〉 = 〈
f,

∑

i

〈ϕi, g〉ϕi

〉 = 〈f, Pg〉.

We also used the finite additivity of the sesqui-linear form in each entry, since the
sums have only finitely many non-zero terms. �

This result says that P has an adjoint on A, namely P itself. Since the sesqui-
linear form may be degenerate, adjoints need not be unique.

Theorem 2.5 Suppose that g ∈ P ∪ P∗. Then for all f1, f2 ∈ P we have
〈f1, Tgf2〉 = 〈Tg∗f1, f2〉.
Proof Using the previous result and Theorem 2.2 we calculate

〈f1, Tgf2〉 = 〈f1, P (f2g)〉 = 〈Pf1, f2g〉 = 〈f1, f2g〉 = 〈f1g
∗, f2〉

= 〈f1g
∗, Pf2〉 = 〈P(f1g

∗), f2〉 = 〈Tg∗f1, f2〉. �

Since the sesqui-linear form is an inner product when restricted to P , Tg∗ is the
unique adjoint of Tg on P . Symmetrically, Tg is the unique adjoint of Tg∗ on P .

Next, for all φ ∈ P we define the creation and annihilation operators associated
to the variables θj , θj for 1 ≤ j ≤ n by

A
†
j (φ) := Tθj (φ) = P(φθj ) = φθj and Aj(φ) := Tθj

(φ) = P(φθj ),

respectively. These are operators densely defined in H sending P to itself. By
Theorem 2.5 the operators A

†
j and Aj are adjoints of each other on the domain

P .
We now evaluate these operators on the basis elements ϕi of P , where i is a

multi-index. First, for the creation operator we have

A
†
j (ϕi) = P(ϕiθj ) = ϕiθj = w(i)−1/2 θi θj = w(i)−1/2 θ(i,j)

=
(

w(i, j)

w(i)

)1/2

ϕ(i,j).

Here j = 1, . . . , n and also j denotes the multi-index with exactly one entry,
namely the integer j . Also we are using the notation (i, j) for the multi-index
with the integer j concatenated to the right of the multi-index i. It follows that
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the kernel of A
†
j is zero as the reader can check. Also, the weight of the ‘higher’

state ϕ(i,j) appears in the numerator while the weight of the ‘lower’ state ϕi is in the
denominator. This turns out to be consistent with the way the weights (which are
products of factorials) work in the case of standard quantum mechanics.

Next, for the annihilation operator Aj for 1 ≤ j ≤ n we have to evaluate
Aj(ϕk) = P(ϕkθj ) = ∑

i〈ϕi, ϕkθj 〉ϕi for every multi-index k. To do this, consider

〈ϕi, ϕkθj 〉 = (w(i)w(k))−1/2〈θi, θkθj 〉
= (w(i)w(k))−1/2 w(k) δr+1,t δ((i, jT ), k) 〈1, 1〉

=
(

w(k)

w(i)

)1/2

δr+1,t δ((i, j), k),

where the multi-indices i = (i1, . . . , ir ) and k = (k1, . . . , kt ) have lengths r and t

respectively. We also used jT = j , since j is a multi-index with exactly one entry
in it. The only possible non-zero value occurs when the concatenated multi-index
(i, j) is equal to the multi-index k. So for k �= (i, j) we have that 〈ϕi, ϕkθj 〉 = 0.

If the last entry in the multi-index k is not j (i.e., kt �= j ), then k �= (i, j) for all
multi-indices i. Consequently, in this case we calculate

Aj(ϕk) = P(ϕkθj ) =
∑

i

〈ϕi, ϕkθj 〉ϕi = 0.

Therefore, in this example the annihilation operator Aj has infinite dimensional
kernel. As a very particular case, we take k = ∅, the empty multi-index, and get
that Aj(ϕ∅) = Aj(1) = 0 for all 1 ≤ j ≤ n, that is, 1 ∈ ∩n

j=1 ker Aj . So 1 is a
normalized vacuum state in H.

On the other hand if k = (i, j) for some clearly unique multi-index i (and in
particular r + 1 = t), then we find that

〈ϕi, ϕ(i,j)θj 〉 =
(

w(i, j)

w(i)

)1/2

> 0,

and consequently in this case

Aj(ϕ(i,j)) = P(ϕ(i,j)θj ) =
(

w(i, j)

w(i)

)1/2

ϕi.

Again, the weight of the ‘higher’ state ϕ(i,j) appears in the numerator while the
weight of the ‘lower’ state ϕi is in the denominator. And again this is consistent
with standard quantum mechanics.

It is now an extended exercise to compute the commutation relations of these
operators. For example, [A†

j , A
†
k] �= 0 if j �= k, since θj θk �= θkθj . The formulas for
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these relations are simpler if we take the weights to be wi = wi1,...,ir := μi1 · · · μir

for positive real numbers μ1, . . . , μn.

3 Concluding Remarks

I conclude with possibilities for future related research concerning algorithms that
manipulate the words in the basis of the algebra A.

The sesqui-linear form on A serves mainly to define the projection operator
P , which is crucial in this quantization theory. Using this, creation operators tack
on a holomorphic variable on the right (up to a weight factor), while annihilation
operator chop off the appropriate holomorphic variable on the right, if present
(again up to a weight), and otherwise map the word to zero. One can define other
projection operators that see more deeply into the word, rather than looking at only
the rightmost part of the word. In general each occurrence of θj is erased while at
the same time some corresponding occurrence of θj is also erased. The end result is
a word with no θ ’s at all. Moreover, if the original word had no θ ’s to begin with,
then it will remain unchanged. Basically, the projection map is an algorithm that
scans a word from one end to the other, eliminating all θ ’s and some θ ’s.

There are many such algorithms. To give the reader an idea of this, let us consider
scanning a word from left to right until we hit the first occurrence of θj for some
j . We change the word by eliminating this θj and the rightmost occurrence of θj to
the left of this θj , if there is such an occurrence. If there is no occurrence of θj to
the left, we define P on this word to be zero. Otherwise, we continue scanning from
our current position in the word looking for the next θk for some k. We repeat the
same procedure. Since the word is finite in length, this algorithm will terminate. At
such time there will be no occurrences of θ ’s left. The resulting word (or zero) will
be P evaluated on the original word.

The reader is invited to produce other algorithms for finding one (or various)
occurrences of θj to pair with an identified occurrence of θj . There are other
deterministic algorithms for sure, but there are even stochastic algorithms as well.
These stochastic algorithms could pair a random number of occurrences of θj ,
including zero occurrences with non-zero probability, with a given occurrence of
θj . Also, the locations of these occurrences could be random. Then all Toeplitz
operators, including those of creation and annihilation, would become random
operators.
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