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Nikolai Vasilevski. Credit: Photo taken from the archive of Larisa Vasilevskaya



Preface

The aim of this volume is to present new results in the theory of Toeplitz operators,
algebras of Toeplitz operators, and its applications. In particular, the book is devoted
to the topic of boundedness and compactness of Toeplitz operators in p-Fock spaces
and to the study of commutative C∗-algebras of Toeplitz operators in various spaces
and over various multidimensional domains. Moreover, new results in the theory of
Dirac operators, in the theory of algebras of singular integral operators on general
Lebesgue spaces, and in the field of pseudodifferential arithmetic are presented. A
number of related topics are discussed too. In total, 20 research papers are included.

The volume is dedicated to professor Nikolai Vasilevski on the occasion of
his 70th birthday, and it begins with personal notes written by Wolfram Bauer,
Raul Quiroga-Barranco, and Grigori Rozenblum covering the activities of Nikolai
Vasilevski over the past 10–15 years. This introductory part ends with an article
by Sergei Grudsky, Yuri Latushkin, and Michael Shapiro, which appeared earlier
on the occasion of the 60th birthday of professor Vasilevski and is devoted to the
mathematical achievements and the path of the life of our hero.

Hannover, Germany W. Bauer
Tbilisi, Georgia R. Duduchava
Mexico, Mexico S. Grudsky
Amsterdam, The Netherlands M. A. Kaashoek
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Part I
Biographical Material



The Life and Work of Nikolai Vasilevski

Sergei Grudsky, Yuri Latushkin, and Michael Shapiro

Nikolai Leonidovich Vasilevski was born on January 21, 1948 in Odessa, Ukraine.
His father, Leonid Semenovich Vasilevski, was a lecturer at Odessa Institute of
Civil Engineering, his mother, Maria Nikolaevna Krivtsova, was a docent at the
Department of Mathematics and Mechanics of Odessa State University.

In 1966 Nikolai graduated from Odessa High School Number 116, a school
with special emphasis in mathematics and physics, that made a big impact at his
creative and active attitude not only to mathematics, but to life in general. It was a
very selective high school accepting talented children from all over the city, and
famous for a high quality selection of teachers. A creative, nonstandard, and at
the same time highly personal approach to teaching was combined at the school
with a demanding attitude towards students. His mathematics instructor at the high
school was Tatjana Aleksandrovna Shevchenko, a talented and dedicated teacher.
The school was also famous because of its quite unusual by Soviet standards system
of self-government by the students. Quite a few graduates of the school later became
well-known scientists, and really creative researchers.

The article consists of the main text of the paper Sergei Grudsky, Yuri Latushkin, Michael Shapiro.
The life and work of Nikolai Vasilevski. Operator Theory: Advances and Applications, 210 (2010).

S. Grudsky (�)
Departamento de Matematicas, CINVESTAV del I.P.N., Mexico, Mexico
e-mail: grudsky@math.cinvestav.mx

Y. Latushkin
University of Missouri, Columbia, MO, USA

M. Shapiro
HIT - Holon Institute of Technology, Holon, Israel
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In 1966 Nikolai became a student at the Department of Mathematics and
Mechanics of Odessa State University. Already at the third year of studies, he began
his serious mathematical work under the supervision of the well known Soviet
mathematician Georgiy Semenovich Litvinchuk. Litvinchuk was a gifted teacher
and scientific adviser. He, as anyone else, was capable of fascinating his students
by new problems which have been always interesting and up-to-date. The weekly
Odessa seminar on boundary value problems, chaired by Prof. Litvinchuk for more
than 25 years, very much influenced Nikolai Vasilevski as well as others students of
G. S. Litvinchuk.

N. Vasilevski started to work on the problem of developing the Fredholm theory
for a class of integral operators with nonintegrable integral kernels. In essence,
the integral kernel was the Cauchy kernel multiplied by a logarithmic factor. The
integral operators of this type lie between the singular integral operators and the
integral operators whose kernels have weak (integrable) singularities. A famous
Soviet mathematician F. D. Gakhov posted this problem in early 1950-th, and it
remained open for more than 20 years. Nikolai managed to provide a complete
solution in the setting which was much more general than the original. Working on
this problem, Nikolai has demonstrated one of the main traits of his mathematical
talent: his ability to achieve a deep penetration in the core of the problem, and to see
rather unexpected connections between different theories. For instance, in order to
solve Gakhov’s Problem, Nikolai utilized the theory of singular integral operators
with coefficients having discontinuities of first kind, and the theory of operators
whose integral kernels have fixed singularities—both theories just appeared at that
time. The success of the young mathematician was well recognized by a broad circle
of experts working in the area of boundary value problems and operator theory. In
1971 Nikolai was awarded the prestigious M. Ostrovskii Prize, given to the young
Ukrainian scientists for the best research work. Due to his solution of the famous
problem, Nikolai quickly entered the mathematical community, and became known
to many prominent mathematicians of that time. In particular, he was very much
influenced by the his regular interactions with such outstanding mathematicians as
M. G. Krein and S. G. Mikhlin.

In 1973 N. Vasilevski defended his PhD thesis entitled “To the Noether theory
of a class of integral operators with polar-logarithmic kernels”. In the same year he
became an Assistant Professor at the Department of Mathematica and Mechanics
of Odessa State University, where he was later promoted to the rank of Associate
Professor, and, in 1989, to the rank of Full Professor.

Having received the degree, Nikolai continued his active mathematical work.
Soon, he displayed yet another side of his talent in approaching mathematical
problems: his vision and ability to use general algebraic structures in operator
theory, which, on one side, simplify the problem, and, on another, can be used in
many other problems. We will briefly describe two examples of this.

The first example is the method of orthogonal projections. In 1979, studying the
algebra of operators generated by the Bergman projection, and by the operators of
multiplication by piece-wise continuous functions, N. Vasilevski gave a description
of the C∗-algebra generated by two selfadjoint elements s and n satisfying the
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properties s2 + n2 = e and sn+ ns = 0. A simple substitution p = (e+ s − n)/2
and q = (e− s − n)/2 shows that this algebra is also generated by two selfadjoint
idempotents (orthogonal projections) p and q (and the identity element e). During
the last quarter of the past century, the latter algebra has been rediscovered by many
authors all over the world. Among all algebras generated by orthogonal projections,
the algebra generated by two projections is the only tame algebra (excluding the
trivial case of the algebra with identity generated by one orthogonal projection).
All algebras generated by three or more orthogonal projections are known to be
wild, even when the projections satisfy some additional constrains. Many model
algebras arising in operator theory are generated by orthogonal projections, and
thus any information of their structure essentially broadens the set of operator
algebras admitting a reasonable description. In particular, two and more orthogonal
projections naturally appear in the study of various algebras generated by the
Bergman projection and by piece-wise continuous functions having two or more
different limiting values at a point. Although these projections, say, P , Q1, . . . , Qn,
satisfy an extra condition Q1 + . . . + Qn = I , they still generate, in general, a
wild C∗-algebra. At the same time, it was shown that the structure of the algebra
just mentioned is determined by the joint properties of certain positive injective
contractions Ck , k = 1, . . . , n, satisfying the identity

∑n
k=1 Ck = I , and, therefore,

the structure is determined by the structure of the C∗-algebra generated by the
contractions. The principal difference between the case of two projections and the
general case of a finite set of projections is now completely clear: for n = 2 (and
the projections P and Q + (I − Q) = I ) we have only one contraction, and the
spectral theorem directly leads to the desired description of the algebra. For n ≥ 2
we have to deal with the C∗-algebra generated by a finite set of noncommuting
positive injective contractions, which is a wild problem. Fortunately, for many
important cases related to concrete operator algebras, these projections have yet
another special property: the operatorsPQ1P, . . . , PQnP mutually commute. This
property makes the respective algebra tame, and thus it has a nice and simple
description as the algebra of all n × n matrix valued functions that are continuous
on the joint spectrum � of the operators PQ1P, . . . , PQnP , and have certain
degeneration on the boundary of �.

Another notable example of the algebraic structures used and developed by N.
Vasilevski is his version of the Local Principle. The notion of locally equivalent
operators, and localization theory were introduced and developed by I. Simonenko
in mid-sixtieth. According to the tradition of that time, the theory was focused on
the study of individual operators, and on the reduction of the Fredholm properties
of an operator to local invertibility. Later, different versions of the local principle
have been elaborated by many authors, including, among others, G. R. Allan, R.
Douglas, I. Ts. Gohberg and N. Ia. Krupnik, A. Kozak, B. Silbermann. In spite
of the fact that many of these versions are formulated in terms of Banach- or C∗-
algebras, the main result, as before, reduces invertibility (or the Fredholm property)
to local invertibility. On the other hand, at about the same time, several papers on
the description of algebras and rings in terms of continuous sections were published
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by J. Dauns and K. H. Hofmann, M. J. Dupré, J. M. G. Fell, M. Takesaki and
J. Tomiyama. These two directions have been developed independently, with no
known links between the two series of papers. N. Vasilevski was the one who
proposed a local principle which gives the global description of the algebra under
study in terms of continuous sections of a certain canonically defined C∗-bundle.
This approach is based on general constructions of J. Dauns and K. H. Hofmann, and
results of J. Varela. The main contribution consists of a deep re-comprehension of
the traditional approach to the local principles unifying the ideas coming from both
directions mentioned above, which results in a canonical procedure that provides the
global description of the algebra under consideration in terms of continuous sections
of a C∗-bundle constructed by means of local algebras.

In the eighties and even later, the main direction of the work of Nikolai
Vasilevski has been the study of multidimensional singular integral operators with
discontinuous coefficients. The main philosophy here was to study first algebras
containing these operators, thus providing a solid foundation for the study of
various properties (in particular, the Fredholm property) of concrete operators.
The main tool has been the described above version of the local principle.
This principle was not merely used to reduce the Fredholm property to local
invertibility but also for a global description of the algebra as a whole based on
the description of the local algebras. Using this methodology, Nikolai Vasilevski
obtained deep results in the theory of operators with Bergman’s kernel and piece-
wise continuous coefficients, in the theory of multidimensional Toeplitz operators
with pseudodifferential presymbols, in the theory of multidimensional Bitsadze
operators, in the theory of multidimensional operators with shift, etc. In 1988 N.
Vasilevski defended the Doctor of Sciences dissertation, based on these results, and
entitled “Multidimensional singular integral operators with discontinuous classical
symbols”.

Besides being a very active mathematician, N. Vasilevski has been an excellent
lecturer. His lectures are always clear, and sparkling, and full of humor, which so
natural for someone who grew up in Odessa, a city with a longstanding tradition
of humor and fun. He was the first at Odessa State University who designed and
started to teach a class in general topology. Students happily attended his lectures in
Calculus, Real Analysis, Complex Analysis, Functional Analysis. He has been one
of the most popular professor at the Department of Mathematics and Mechanics
of Odessa State University. Nikolai is a master of presentations, and his colleagues
always enjoy his talks at conferences and seminars.

In 1992 Nikolai Vasilevski moved to Mexico. He started his career there as
an Investigator (Full Professor) at the Mathematics Department of CINVESTAV
(Centro de Investagacion y de Estudios Avansados). His appointment significantly
strengthen the department which is one of the leading mathematical centers in
Mexico. His relocation also visibly revitalized mathematical activity in the country
in the field of operator theory. Actively pursuing his own research agenda, Nikolai
also served as the organizer of several important conferences. For instance, let us
mention the (regular since 1998) annual workshop “Análisis Norte-Sur”, and the
well-known international conference IWOTA-2009. He initiated the relocation to
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Mexico a number of active experts in operator theory such as Yu. Karlovich and S.
Grudsky, among others.

During his tenure in Mexico, Nikolai Vasilevski produced a sizable group of
students and younger colleagues; five of young mathematicians received PhD under
his supervision.

The contribution of N. Vasilevski in the theory of multidimensional singular inte-
gral operators found its rather unexpected development in his work on quaternionic
and Clifford analysis, published mainly with M. Shapiro in 1985–1995, starting still
in the Soviet Union, with the subsequent continuation during the Mexican period
of his life. Among others, the following topics have been considered: The settings
for the Riemann boundary value problem for quaternionic functions that are taking
into account both the noncommutative nature of quaternionic multiplication and the
presence of a family of classes of hyperholomorphic functions, which adequately
generalize the notion of holomorphic functions of one complex variable; algebras,
generated by the singular integral operators with quaternionic Cauchy kernel and
piece-wise continuous coefficients; operators with quaternion and Clifford Bergman
kernels. The Toeplitz operators in quaternion and Clifford setting have been
introduced and studied in the first time. This work found the most favorable response
and initiated dozens of citations.

During his life in Mexico, the scientific interests of Nikolai Vasilevski mainly
concentrated around the theory of Toeplitz operators on Bergman and Fock spaces.
In the end of 1990-th, N. Vasilevski discovered a quite surprising phenomenon
in the theory of Toeplitz operators on the Bergman space. Unexpectedly, there
exists a rich family of commutative C∗-algebras generated by Toeplitz operators
with non-trivial defining symbols. In 1995 B. Korenblum and K. Zhu proved that
the Toeplitz operators with radial defining symbols acting on the Bergman space
over the unit disk can be diagonalized with respect to the standard monomial basis
in the Bergman space. The C∗-algebra generated by such Toeplitz operators is
therefore obviously commutative. Four years later N. Vasilevski also showed the
commutativity of the C∗-algebra generated by the Toeplitz operators acting on the
Bergman space over the upper half-plane and with defining symbols depending only
on Im z. Furthermore, he discovered the existence of a rich family of commutative
C∗-algebras of Toeplitz operators. Moreover, it turned out that the smoothness
properties of the symbols do not play any role in commutativity: the symbols can
be merely measurable. Surprisingly, everything is governed by the geometry of the
underlying manifold, the unit disk equipped with the hyperbolic metric. The precise
description of this phenomenon is as follows. Each pencil of hyperbolic geodesics
determines the set of symbols which are constant on the corresponding cycles, the
orthogonal trajectories to geodesics forming the pencil. The C∗-algebra generated
by the Toeplitz operators with such defining symbols is commutative. An important
feature of such algebras is that they remain commutative for the Toeplitz operators
acting on each of the commonly considered weighted Bergman spaces. Moreover,
assuming some natural conditions on “richness” of the classes of symbols, the
following complete characterization has been obtained: A C∗-algebra generated
by the Toeplitz operators is commutative on each weighted Bergman space if and
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only if the corresponding defining symbols are constant on cycles of some pencil of
hyperbolic geodesics. Apart from its own beauty, this result reveals an extremely
deep influence of the geometry of the underlying manifold on the properties of
the Toeplitz operators over the manifold. In each of the mentioned above cases,
when the algebra is commutative, a certain unitary operator has been constructed.
It reduces the corresponding Toeplitz operators to certain multiplication operators,
which also allows one to describe their representations of spectral type. This gives
a powerful research tool for the subject, in particular, yielding direct access to the
majority of the important properties such as boundedness, compactness, spectral
properties, invariant subspaces, of the Toeplitz operators under study.

The results of the research in this directions became a part of the monograph
“Commutative Algebras of Toeplitz Operators on the Bergman Space” published by
N. Vasilevski in Birkhauser in 2008.

Nikolai Leonidovich Vasilevski passed his sixties birthday on full speed, and
being in excellent shape. We, his friends, students, and colleagues, wish him further
success and, above all, many new interesting and successfully solved problems.
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The Mathematician Nikolai Vasilevski

Wolfram Bauer

Nikolai Vasilevski’s scientific productivity and his influential ideas are reflected by
his many fundamental contributions to mathematics. In particular, this concerns the
field of Toeplitz and integral operators or operator algebras. Taking a look at his
achievements in different aspects of a “mathematical life” is rather impressive. Let
me just name a few: Nikolai has published more than 130 scientific papers with
more than 25 coauthors. He is a member of the Editorial Board of 5 journals and
has supervised over 20 Master and 10 Ph.D. students. He has been organizer of
more than 15 workshops and conferences. During his time at CINVESTAV, Mexico,
he has been—and still is—very influential on his students and the mathematical
community. Many researches in the field have studied Nikolai’s papers and his
results had an impact on their works and approaches to mathematics. Due to the
expertise and guidance of Nikolai and his colleagues a “Mexican school on Toeplitz
operators” has emerged during the last years and is rather visible.

I met Nikolai for the first time in 2005 at a special session on Toeplitz and Toeplitz
like structures at the Fifth ISAAC Congress in Catania, Italy. It was the beginning of
a close collaboration which lasts until today. Since our first projects, I acknowledged
and admired Nikolais deep insight into mathematics and his rigorous way of
thinking. To my impression all his approaches are based on a clear mathematical
philosophy. Even in case of a concrete and specific problem his way of thinking
is lead by more general principles, which allow him to keep track of the relevant
questions. In combination with his wide mathematical knowledge this makes it a
joy and a challenge to work with Nikolai. Another aspect which I would like to
mention is his ability to hold the mathematical community together and pass his
enthusiasm for mathematics to the next generation. Typically, he has been organizer
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of a special session on Toeplitz operators or related topics at IWOTA. These events
support the interaction between different worldwide groups working in the field
of operator theory. In particular, they provide a valuable platform for the young
researchers to share their ideas and to connect to the established experts.

I value Nikolai not only as a mathematician but also as a person. He has an open
and friendly personality and a great sense of humor, which one can also sense during
his well structured talks.

Dear Nikolai, congratulations to your 70th birthday. I wish you and your family
all the best. Surely, the mathematical journey will go on. I am convinced that your
endless curiosity combined with your intellectual capacity will lead to many new
and fundamental discoveries.



The Mathematics of Nikolai Vasilevski

Raúl Quiroga-Barranco

Nikolai Vasilevski has been an inspiring source for many of us. I will try to resume
the influence Nikolai has had on my own work.

I first met Nikolai Vasilevski as a fellow researcher in Cinvestav, Mexico City.
Nikolai was already a well known and established mathematician. I had just arrived
at Cinvestav to start my own career. I consider myself a Lie group theorist focusing
on smooth actions on geometric manifolds. In particular, this involves everything
related to the geometry of Riemannian symmetric spaces.

It was probably around 2004 that Nikolai approached me looking for a solution
to a geometric problem that caught his attention. This problem can be formulated as
follows. Suppose there is a pencil of hyperbolic geodesics on the unit disk D, can
you describe the structure of the pencil? A pencil is simply a family of curves that
partitions (in this case) the unit disk D so that it is locally equivalent to the partition
of R2 by horizontal lines. One allows to have finitely many singular points where
the local description just described fails. There are three very well known examples
of such pencils corresponding to the three types of Möbius transformations on the
unit disk: elliptic, parabolic and hyperbolic. For a Möbius transformation of each
one of these types one can consider a corresponding 1-parameter group (gt )t of
biholomorphisms. The orbits of one such (gt )t is a pencil of curves, and by taking
the orthogonal curves to these orbits we obtain a new pencil whose curves are
hyperbolic geodesics in D.

At that time, Nikolai and his collaborators Sergei Grudsky and Alexey Kara-
petyants had already discovered that the 1-parameter groups described above
gave rise to commutative C∗-algebras generated by Toeplitz operators. More
precisely, the family of symbols invariant by one of such subgroups provided
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Toeplitz operators generating a commutative C∗-algebra. After that, Nikolai and
Sergei had conjectured that these ought to be the only possible commutative C∗-
algebras generated by Toeplitz operators, under the additional assumption that the
commutativity held for every weighted Bergman space on the unit disk D. One also
has to assume some condition ensuring that theC∗-algebras are large. Using Berezin
quantization they had proved that, under such conditions, the symbols had to have
the same level lines as well as the same gradient lines, and that the latter had to
be hyperbolic geodesics. Hence, the classification of (non-trivial) commutative C∗-
algebras generated by Toeplitz operators on the unit disk was reduced to the above
mentioned problem on pencils of geodesics.

It turns out that one has to apply with further detail Berezin quantization
to have more information and solve these problems. Once this was done, the
three of us discovered that the common level sets of the symbols had constant
curvature. Then, using differential geometry we proved that a geodesic pencil in
D, whose normal curves have constant curvature, is always given (as described
above) by a 1-parameter subgroup of biholomorphisms. And this solved the original
conjecture: a (non-trivial) family of symbols gives Toeplitz operators generating
a commutative C∗-algebra if and only if the symbols are invariant under some 1-
parameter subgroup of biholomorphisms.

The solution of this problem was a real breakthrough in the way Toeplitz
operators are now studied. It pointed out the fact that the geometry of the domain
and its biholomorphisms are the basis to understand Toeplitz operators on bounded
symmetric domains.

Nikolai and I got down to work on similar results for higher dimensional
irreducible bounded symmetric domains. More precisely, the problem was to
construct commutative C∗-algebras generated by Toeplitz operators from symbols
that have some invariance with respect to biholomorphisms for some domain other
than the unit disk D. Our first attempt was to consider the n-dimensional unit ball
Bn. The first problem we encountered was how to move from one-dimensional
geometry to the n-dimensional case. At the moment, our best guess was to consider
n-dimensional subgroups of biholomorphisms of Bn, and we thought it was natural
to ask them to be Abelian. Notice that this condition is trivial in the case n = 1 of
the unit disk D.

The group of biholomorphism of the unit ball Bn is realized by the special
pseudo-unitary group SU(n, 1). Lie theorists had already classified all maximal
Abelian subalgebras of the Lie algebra su(n, 1), and this provides the classification
of all connected maximal Abelian subgroups (MASG’s) of SU(n, 1). There are
exactly n + 2 conjugacy classes of MASG’s in SU(n, 1). Nikolai and I proved that
any subgroup H in one of such conjugacy classes gives rise to commutative C∗-
algebras: the Toeplitz operators with H -invariant symbols commute with each other
on every weighted Bergman space over Bn.

In these results, we were able to provide very important and deep information,
both geometric and analytic. On one hand, it turns out that the orbits of MASG’s
have constant curvature in the intrinsic (sectional) and extrinsic (second funda-
mental form) sense. The normal bundle to the orbits is integrable thus defining



The Mathematics of Nikolai Vasilevski 23

a foliation. This and the orbit foliation are both Lagrangian. On the other hand,
the proof that the Toeplitz operators with H -invariant symbols commute with each
other is obtained by simultaneously diagonalizing the operators. This was done
through a Bargmann type transform, where some Fourier transforms (both discrete
and continuous) are applied while restricting the values of the functions involved to
the subgroup orbits.

The latter idea turns out be the key to understand the higher rank cases of
bounded symmetric domains. It was this sort of computation that paved the way
to the introduction of representation theory and its very powerful tools to find a
plethora of commutative C∗-algebras generated by Toeplitz operators. We know
now that multiplicity-free restrictions of the holomorphic discrete series yield,
and in some cases characterize, commutative C∗-algebras generated by Toeplitz
operators. Also, representation theory and the general Segal-Bargmann transform
developed by Gestur Ólafsson and Bent Ørsted allow to describe the spectra of
invariant Toeplitz operators.

This development, this surprising turn of events, has been possible thanks to
Nikolai’s mathematical curiosity, enthusiasm, and hard work. To my good friend
Nikolai goes my appreciation and admiration.



Nikolai’s Spaces

Grigori Rozenblum

Oh, it is a hard job to write an article for a jubilee of such a great person. Surely, it is
not his first jubilee, and all the nice words have been already said, and all the proper
jokes are already laughed at. Thus, about Nikolai, there are two excellent detailed
reports [1, 2].

So, nothing can be added about early and earlier life and mathematics of Nikolai.
And this means that almost nothing can be added at all—because his early life
continues. Everyone knows him and he knows everyone. At least everyone of
importance in Analysis. His mathematical creativity has developed even more since,
with further expansions of the research field, deepening of understanding, and
improvement of technical abilities. His students and descendants strive to be worthy
of such a leader.

I will not write about mathematical details, since it is not interesting to write
about the things I participated in, while I understand nothing of the numerous
Nikolai’s works I did not participate in.

So, just a few personal remarks. We could not decide when we met first. It
might have happened in the Voronezh Winter School, when we were very young
(WRONG! I was very young—Nikolai is still and forever young!), there was such a
highly informal meeting of well advanced mathematicians with the youngest ones,
with some dissident flavor, headed by the most brilliant Selim Krein. Probably, on
the other hand, we met at a seminar in Lenigrad, in the same 70s, at an operator
theory seminar headed by Birman and Solomyak. Hard to say now. But it happened
somehow long-long ago. Having moved to the West, we continued meeting each
other at some conferences, but, unexpectedly, it turned out that there exist some
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topics of common interest too. And thus we started working together. As usual, it
all started with some great ideas that, surely, turned out to be wrong. I remember that
on some of my visits to CINVESTAV we spent 2 or 3 weeks discussing hopelessly
some netlenka (a non-translatable Russian expression meaning something like
‘imperishable’ or ‘unforgettable’ result) for Bergman-Toeplitz operators in the disk,
and on the last day, during some of the final minutes of my visit, we found out
that for the Fock space all obstacles disappear, and an important paper had arisen.
(One must note that later the corresponding theory for the Bergman space has been
established as well.) And so it went. I think that we published 7 or 8 joint papers, and
our co-operation was almost conflict-free. Just two points where we keep quarreling.
First: Does an operator act IN the space—or ON the space? Second. To denote the
scalar product in a Hilbert space as (., .) or 〈., .〉? A task for readers. Browse our
joint papers and decide who of us had upper hand in these quarrels.

Among friends it is a bad idea to develop some feeling of envy. I, personally,
do not envy Nikolai’s mathematical achievements—you cannot envy the Sun that it
shines that bright. But there is one thing that I envy him in so much. You cannot see
it in his papers or books. But you can see it any time he talks to you, directly, or via
Skype.

Guess!
What is it?
Well!
Yes!
His great moustache!
No one has anything comparable!!.
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Non-geodesic Spherical Funk Transforms
with One and Two Centers

M. Agranovsky and B. Rubin

Dedicated to Professor Nikolai Vasilevski on the occasion of his
70th anniversary

Abstract We study non-geodesic Funk-type transforms on the unit sphere Sn in
Rn+1 associated with cross-sections of Sn by k-dimensional planes passing through
an arbitrary fixed point inside the sphere. The main results include injectivity
conditions for these transforms, inversion formulas, and connection with geodesic
Funk transforms. We also show that, unlike the case of planes through a single
common center, the integrals over spherical sections by planes through two distinct
centers provide the corresponding reconstruction problem a unique solution.

2010 Mathematics Subject Classification Primary 44A12; Secondary 37E30

1 Introduction

Let Sn be the unit sphere in Rn+1. Given a point a inside Sn, we denote by Gra(n+
1, k), 1 ≤ k ≤ n, the Grassmann manifold of k-dimensional affine planes in Rn+1

passing through a. The aim of the paper is to study injectivity of the generalized
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Funk transform

(Faf )(τ ) =
∫

Sn∩τ
f (x) dσ(x), τ ∈ Gra(n+ 1, k), (1.1)

and obtain inversion formulas for Fa in suitable classes of functions.
The classical case Fa = Fo, when a = o is the origin, goes back to the

pioneering works by Funk [2, 3] (n = 2), which were inspired by Minkowski
[10]. A generalization of the Funk transform Fo to arbitrary 1 ≤ k ≤ n is due to
Helgason [8]; see also [9, 18, 20] and references therein. Operators of this kind play
an important role in convex geometry, spherical tomography, and various branches
of Analysis [4, 6, 7, 13, 14, 20].

The case when a differs from the origin is relatively new in modern literature,
though Funk-type transforms on S2 for noncentral plane sections were considered
by Gindikin et al. [7] in the framework of the kappa-operator theory. One should
also mention non-geodesic Funk-type transforms studied by Palamodov [14, Section
5.2]. Inversion formulas for these transforms were obtained in terms of delta
functions and differential forms. Operators (1.1) with a 	= o are non-geodesic too,
however, they differ from those in [14]. In particular, they are non-injective. Non-
geodesic Funk-type transforms over subspheres of fixed radius were studied by the
second co-author in [17], where the results fall into the scope of number theory.

The case a 	= o in (1.1) with k = n was considered by Salman; see [23] for
n = 2 and [24] for any n ≥ 2. To avoid non-uniqueness, he imposed restriction
on the support of the functions that makes his operator different from ours. The
stereographic projection method of [23, 24] makes it possible to reduce inversion
of Salman’s operator to the similar problem for a certain Radon-like transform over
spheres in Rn.

The next step was due to Quellmalz [15] for n = 2, who expressed Fa through
the totally geodesic Funk transform Fo and thus explicitly inverted this operator on
a certain subclass of continuous functions. If a = o this subclass consists of even
functions on Sn. The results from [15] were generalized by Quellmalz [16] and
Rubin [21] to any n ≥ 2 with k = n. The paper [21] also contains an alternative
inversion method for Salman’s operators.

Our aim in the present article is twofold. First, we characterize the kernel (the
null subspace) of Fa and the subclass of all continuous functions on which Fa is
injective. We also obtain inversion formulas for Fa on that subclass for any 1 ≤ k ≤
n and thus generalize the corresponding results from [21].

Second, to achieve uniqueness in the reconstruction problem, we consider
sections by planes through two distinct centers. To the best of our knowledge,
this approach is new. We shall prove that for any pair of distinct points a and
b inside the sphere, the kernels of the corresponding transforms Fa and Fb have
trivial intersection. The latter means that, unlike the case of a single center, the
collection of data from two distinct centers provides the reconstruction problem a
unique solution. We also develop an analytic procedure of the reconstruction, that
reduces to a certain dynamical system on Sn.
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The results of this paper extend to the case when the point a lies outside Sn, and
to arbitrary pairs of distinct centers a, b in Rn+1. We plan to address these cases
elsewhere.

Plan of the Paper Section 2 contains notation and necessary preliminaries related
to Möbius-type automorphisms of the sphere. In Sect. 3 we describe the kernel of
the operator Fa on continuous functions and characterize the subclass of functions
on which Fa is injective. We also obtain an explicit inversion formula for Fa on that
subclass. Section 4 deals with the system of two equations, Faf = g, Fbf = h,
corresponding to distinct centers a and b inside the sphere. Unlike the case of a
single common center, such a system determines f uniquely and the function f can
be reconstructed by a certain pointwise convergent series. Norm convergence of this
series is studied in Sect. 5. It turns out that the series does not converge uniformly
on the entire sphere Sn (only on some compact subsets of Sn), however, it converges
in the Lp(Sn)-norm for all 1 ≤ p ≤ p0, p0 = n/(k − 1), and this bound is sharp.
In Sect. 6 we prove Theorem 3.1, which was formulated without proof in Sect. 3.
This theorem plays a key role in the paper. It states that the shifted transform Fa is
represented as Fa = NaFoMa , where Na and Ma are the suitable bijections and Fo

is the classical Funk transform corresponding to a = o.

The main results are contained in Theorems 3.4, 4.2, 5.2, and 5.4.

2 Preliminaries

2.1 Notation

In the following, Bn+1 = {x ∈ Rn+1 : |x| < 1} is the open unit ball in Rn+1, Sn is
its boundary, x · y is the usual dot product. The notation C(Sn) and Lp(Sn) for the
corresponding spaces of continuous and Lp functions on Sn is standard. If x is the
variable of integration over Sn, then dx stands for the O(n + 1)-invariant surface
area measure on Sn, so that

∫
Sn

dx = 2π(n+1)/2/
((n + 1)/2). We write dσ(x)

for the induced surface area measure on lower dimensional spherical sections. The
letter x can be replaced by another one, depending on the context.

We denote by Mn,m the space of real matrices having n rows and m columns;
M′ is the transpose of the matrix M, Im is the identity m × m matrix. For n ≥ m,
St(n,m) = {M ∈ Mn,m : M′M = Im} denotes the Stiefel manifold of orthonormal
m-frames in Rn; Gra(n,m) is the Grassmann manifold of m-dimensional affine
planes in Rn passing through a fixed point a. We will be mainly dealing with the
manifolds St(n+1, n+1−k), Gra(n+1, k), and Gro(n+1, k) (i.e. a = o), 1 ≤ k ≤ n.
Given a frame ξ ∈ St(n+1, n+1−k), the notation ξ⊥ stands for the k-dimensional
linear subspace orthogonal to ξ ; {ξ} denotes an (n + 1 − k)-dimensional linear
subspace spanned by ξ . All points in Rn+1 are identified with the corresponding
column vectors.
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2.2 Spherical Automorphisms

We recall some basic facts; see, e.g., Rudin [22, Section 2.2.1)], Stoll [25, Section
2.1]. Given a point a ∈ Bn+1 \ {o}, we denote by Pa and Qa = In+1 − Pa

the orthogonal projections of Rn+1 onto the direction of a and the subspace a⊥,
respectively. If x ∈ Rn+1, then

Pax = a · x
|a|2 a.

Let

ϕax = a − Pax − saQax

1− x · a , sa =
√

1− |a|2, (2.1)

which is a one-to-one Möbius transformation satisfying

ϕa(o) = a, ϕa(a) = o, ϕa(ϕax) = x, (2.2)

1− |ϕax|2 = (1− |a|2)(1− |x|2)
(1− x · a)2 , x · a 	= 1. (2.3)

If x ∈ S
n, then

1− a · ϕax
1+ a · ϕax =

1− |a|2
|a − x|2 . (2.4)

Properties (2.2)–(2.3) can be checked by straightforward computation. By (2.3), ϕa
maps the ball Bn+1 onto itself and preserves Sn.

Remark 2.1 It is known that the ball Bn+1 with the relevant metric can be
considered as the Poincaré model of the real (n+ 1)-dimensional hyperbolic space
Hn+1. There is an intimate connection between the Möbius transformations of Bn+1

and the group O(1, n+ 1) in the hyperboloid model of Hn+1. In the present article
we do not exploit this connection. An interested reader may be referred, e.g., to
Beardon [1, Section 3.7], Gehring et al. [5, Section 3.7], Mostow [12, Theorem
1.1].

Lemma 2.2 For any f ∈ L1(Sn),

∫

Sn

f (x) dx = sna

∫

Sn

(f ◦ ϕa)(y)
(1− a · y)n dy, sa =

√

1− |a|2. (2.5)
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Proof We write x in spherical coordinates

x =
√

1− u2 θ + uã, ã = a

|a| , |u| ≤ 1, θ ∈ S
n ∩ a⊥,

to obtain

∫

Sn

f (x) dx=
1∫

−1

(1−u2)(n−2)/2 du

∫

Sn∩ a⊥

f
(√

1−u2 θ+u ã
)
dθ. (2.6)

By (2.1),

ϕax = −
√

1− v2 θ + vã, v = |a| − u

1− |a|u. (2.7)

Note that the map u→ v is an involution. Changing variable

u = |a| − v

1− |a|v
and taking into account that

du

dv
= |a|2 − 1

(1− |a|v)2 , 1− u2 = (1− |a|2)(1− v2)

(1− |a|v)2 ,

we have

∫

Sn

f (x) dx = (1− |a|2)n/2

1∫

−1

(1−v2)(n−2)/2

(1− |a|v)n dv

×
∫

Sn∩ a⊥

f

(√
1− |a|2√1− v2

1− |a|v θ + |a| − v

1− |a|v ã

)

dθ

= sna

∫

Sn

(f ◦ ϕa)(y)
(1− a · y)n dy, as desired.

��
We also define the reflection τa : Sn → S

n about the point a ∈ B
n+1:

τax = (|a|2 − 1) x + 2(1− x · a) a
|x − a|2 . (2.8)
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It assigns to x ∈ Sn the antipodal point τax ∈ Sn that lies on the line passing
through x and a. A similar reflection map about the origin o is denoted by τo, so
that τox = −x.

The map ϕa intertwines reflections τa and τo, that is,

ϕaτa = τoϕa. (2.9)

Indeed, ϕa maps chords of the ball onto chords. Hence, for any x ∈ Sn, the segment
[x, τax] is mapped onto the segment [ϕax, ϕaτax]. Since the first segment contains
a, the second one contains ϕa(a) = o. The latter means that the points ϕax and
ϕaτax are symmetric with respect to the origin, that is, ϕaτax = τoϕax.

Lemma 2.3 If f ∈ L1(Sn) and a ∈ B
n+1, then

∫

Sn

f (τax) dx =
∫

Sn

f (x)

(
1− |a|2
|a − x|2

)n

dx, (2.10)

∫

Sn

f (x) dx =
∫

Sn

f (τax)

(
1− |a|2
|a − x|2

)n

dx. (2.11)

Proof By (2.9) and (2.5),
∫

Sn

f (τax) dx =
∫

Sn

f (ϕaτoϕax) dx (set x = ϕaτoy)

= (1− |a|2)n/2
∫

Sn

(f ◦ ϕa)(y)
(1− a · y)n

(
1− a · y
1+ a · y

)n

dy

=
∫

Sn

f (x)

(
1− a · ϕax
1+ a · ϕax

)n

dx.

It remains to apply (2.4). The second equality follows from the first one: just replace
f (x) by f (τax) and use τaτax = x. ��

3 The Shifted Funk Transform

3.1 Inversion Procedure

The following theorem establishes connection between the shifted Funk transform

(Faf )(τ ) =
∫

Sn∩ τ

f (x) dσ(x), τ ∈ Gra(n+ 1, k), (3.1)
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and the classical Funk transform Fo = Fa |a=o that takes functions on Sn to
functions on Gro(n + 1, k). Given a function f on Sn and a function � on
Gro(n+ 1, k), we denote

(Maf )(y)=
(

sa

1−a · y
)k−1

(f ◦ ϕa)(y), (Na�)(τ) = �(ϕaτ), (3.2)

where sa =
√

1− |a|2 and ϕa is an automorphism (2.1).

Theorem 3.1 Let 1 ≤ k ≤ n, a ∈ Bn+1. If f ∈ C(Sn), then

Faf = NaFoMaf. (3.3)

The proof of this theorem is given in Sect. 6.
The Funk transform Fo is injective on the subspace C+(Sn) of even functions,

whilst the subspace C−(Sn) of odd functions is the kernel of Fo in C(Sn); see, e.g.,
[9, 18–20]. We denote by F̃o the restriction of Fo onto C+(Sn).

There exist several different approaches to inversion of F̃o. We recall one of them.
Given ϕ = F̃of , f ∈ C+(Sn), consider the mean value operator

(F ∗x ϕ)(r) =
∫

{ζ∈Gro(n+1,k): d(x,ζ )=r}
ϕ(ζ ) dm(ζ ), 0 < r < 1, (3.4)

where integration is performed with respect to the relevant probability measure over
the set of all planes ζ ∈ Gro(n+ 1, k) at geodesic distance d(x, ζ ) = cos−1 r from
x.

Theorem 3.2 (cf. [19, Theorem 5.3]) A function f ∈ C+(Sn) can be recon-
structed from ϕ = F̃of by

f (x) ≡ (F̃−1
o ϕ)(x) (3.5)

= lim
s→1

(
1

2s

∂

∂s

)k
[
π−k/2


(k/2)

s∫

0

(s2−r2)k/2−1 (F ∗x ϕ)(r) rk dr
]

.

In particular, for k even,

(F̃−1
o ϕ)(x)= lim

s→1

1

2πk/2

(
1

2s

∂

∂s

)k/2

[sk−1(F ∗x ϕ)(s)]. (3.6)

The limit in these formulas is understood in the sup-norm.
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Now we proceed to inversion of Fa , which, by Theorem 3.1, is factorized as
Fa = NaFoMa . Here the operators Ma and Na are injective, so that

(M−1
a f )(x) = (1− a · ϕax)k−1 (f ◦ ϕa)(x), N−1

a � = � ◦ ϕa. (3.7)

The following definition is motivated by the factorization Fa = NaFoMa and nicely
agrees with the case a = o.

Definition 3.3 A function f ∈ C(Sn) is called a-even (or a-odd) if Maf is even
(or odd, resp.) in the usual sense. The subspaces of all a-even and a-odd continuous
functions on Sn will be denoted by C+a (Sn) andC−a (Sn), respectively. The restriction
of Fa onto C+a (Sn) will be denoted by F̃a .

Theorem 3.4 Let 1 < k ≤ n. Then ker (Fa) = C−a (Sn) and the restricted operator
F̃a is injective. A function f ∈ C+a (Sn) can be uniquely reconstructed from g = F̃af

by

f ≡ F̃−1
a g = M−1

a F̃−1
o N−1

a g, (3.8)

where M−1
a , F̃−1

o , and N−1
a are defined by (3.7) and Theorem 3.2.

This statement is an immediate consequence of (3.3) and the corresponding
results for Fo.

Remark 3.5 In the case k = 1, which is not included in Theorem 3.4, the plane τ is
a line and the integral (1.1) is a sum of the values of f at the points where this line
intersects the sphere. If x is one of such points and La,x is the line through a and x,
then

(Faf )(La,x) = f (x)+ f (τax). (3.9)

The a-odd functions, for which f (x) = −f (τax), form the kernel of the operator
(3.9). An a-even function f , satisfying f (x) = f (τax), can be reconstructed from
(Faf )(La,x) by the formula

f (x) = 1

2
(Faf )(La,x). (3.10)

3.2 Alternative Description of the Subspaces C±
a (Sn)

We set

ρa(x) =
(

1− |a|2
|a − x|2

)k−1

, (Waf )(x) = ρa(x)f (τax), (3.11)

where τa is the reflection (2.8).
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Lemma 3.6 The operator Wa is an involution, i.e., WaWaf = f .

Proof The statement is obvious for a = o, when (W0f )(x) = f (−x). It is also
obvious for any a ∈ Bn if k = 1. In the general case, taking into account that
τaτax = x, we have

(WaWaf )(x) =
[

1− |a|2
|a − x|2

1− |a|2
|a − τax|2

]k−1

f (x).

By (2.4) and (2.9), the expression in square brackets can be written as

(1− a · ϕax) (1− a · ϕaτax)
(1+ a · ϕax) (1+ a · ϕaτax) =

(1− a · ϕax) (1+ a · ϕax)
(1+ a · ϕax) (1− a · ϕax) = 1.

This gives the result. ��
Theorem 3.7 A function f ∈ C(Sn) is a-even (or a-odd) if and only if f = Waf

(or f = −Waf , respectively).

Proof By Definition 3.3, f ∈ C(Sn) is a-even if and only if (Maf )(y) =
(Maf )(−y) for all y ∈ Sn. The latter is equivalent to

(f ◦ ϕa)(y) =
(

1− a · y
1+ a · y

)k−1

(f ◦ ϕa)(−y),

or (set y = ϕax and use (2.4) and (2.9))

f (x) =
(

1− a · ϕax
1+ a · ϕax

)k−1

f (τax) = ρa(x)f (τax) = (Waf )(x).

The proof for the a-odd functions is similar. ��
Corollary 3.8 Every function f ∈ C(Sn) can be represented as a sum of its a-even
and a-odd parts. Specifically,

f = f+a + f−a , f±a = f ±Waf

2
. (3.12)

Proof The first equality follows from the second one. Further, by Lemma 3.6,

Waf
±
a = Waf ±WaWaf

2
= Waf ± f

2
= ±f±a .

Hence, by Theorem 3.7, f+a is a-even and f−a is a-odd. ��
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4 Reconstruction from Two Centers

As we have seen in Sect. 3, a generic function f ∈ C(Sn) cannot be reconstructed
from Faf . Because Faf = F̃af

+
a , one can reconstruct only the a-even part f+a of

f , whilst the a-odd part is lost. Our aim is to show that complete reconstruction
becomes possible if we consider two distinct centers instead of one. Specifically, let
a, b ∈ B

n+1, a 	= b. Consider the system of two equations

Faf = g, Fbf = h, (4.1)

and suppose that a function f ∈ C(Sn) satisfies this system. Then F̃af
+
a = g,

F̃bf
+
b = h, and therefore, by (3.12),

f+a ≡ f +Waf

2
= F̃−1

a g, f+b ≡ f +Wbf

2
= F̃−1

b h,

where

(Waf )(x) = ρa(x)f (τax), (Wbf )(x) = ρb(x)f (τbx). (4.2)

Setting

g1 = 2F̃−1
a g, h1 = 2F̃−1

b h,

we obtain a pair of functional equations

f = g1 −Waf, f = h1 −Wbf. (4.3)

Then we substitute f from the second equation into the right-hand side of the first
one to get

f = Wf + q, W = WaWb, q = g1 −Wah1. (4.4)

Iterating (4.4), we obtain

f = Wmf +
m−1∑

j=0

Wjq; m = 1, 2, . . . . (4.5)

This equation generates a dynamical system on Sn.

Lemma 4.1 Let a∗ and b∗ be the points on S
n that lie on the straight line through a

and b. Suppose that a is closer to a∗ than b. If W = WaWb , then lim
m→∞(Wmf )(x) =

0 for all x ∈ Sn \ {a∗} and 1 < k ≤ n. If k = 1 and x ∈ Sn \ {a∗}, then
lim

m→∞(Wmf )(x) = f (b∗).
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Proof We observe that

(Wf )(x) = (WaWbf )(x) = ρa(x)ρb(τax)f (τbτax). (4.6)

Denote

ρ(x)=ρa(x)ρb(τax)=
[
(1− |a|2) (1− |b|2)
|a − x|2 |b − τax|2

]k−1

, T = τbτa. (4.7)

Then (Wf )(x) = ρ(x)f (Tx) and, by iteration,

(Wmf )(x) = ωm(x) f (Tm+1x), ωm(x) =
m∏

j=0

ρ(Tj x). (4.8)

For any x 	= a∗, the mapping T preserves the circle Cx,a,b in the 2-plane spanned by
x, a and b, and leaves the points a∗ and b∗ fixed. A simple geometric consideration
in the 2-plane shows that the distance from the points Tj x ∈ Cx,a,b to b∗
monotonically decreases, and therefore, the sequence Tj x has a limit. This limit
must be a fixed point of the mapping T, and hence Tj x → b∗ as j →∞. Because
ρ is continuous, it follows that

lim
j→∞ ρ(Tj x) = ρ(b∗). (4.9)

Using this fact, let us show that if k > 1, then

lim
m→∞ωm(x) = 0. (4.10)

Once (4.10) has been proved, the statement of the lemma for k > 1 will follow
because the factor f (Tm+1x) has finite limit f (b∗).

To prove (4.10), it suffices to show that

ρ(b∗) < 1, (4.11)

where, by (4.7),

ρ(b∗) =
[
(1− |a|2) (1− |b|2)
|a − b∗|2 |a∗ − b|2

]k−1

. (4.12)

Let

a = a∗+ t (b∗−a∗), b = a∗+ s(b∗−a∗), 0 < t < s < 1. (4.13)
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Taking into account that |a∗| = |b∗| = 1 and using (4.13), we obtain

1−|a|2 = 2t (1−t)(1−a∗· b∗), 1−|b|2 = 2s(1−s)(1−a∗· b∗), (4.14)

|a−b∗|2 = 2(1−t)2(1−a∗· b∗), |a∗−b|2 = 2s2(1−a∗· b∗).

Hence

ρ(b∗) =
[
t (1− s)

s(1− t)

]k−1

< 1. (4.15)

The last inequality is an immediate consequence of the assumption 0 < t < s < 1.
The case k = 1 is simpler. In this case ρ(x) = 1, and therefore, (Wmf )(x) =

f (Tm+1x)→ f (b∗) as m→∞, x ∈ S
n \ {a∗}. ��

The above reasoning yields the following preliminary conclusion. If a 	= b, then,
by Theorem 3.4, the kernel of the map f → (Faf, Fbf ), f ∈ C(Sn), is C−a (Sn) ∩
C−b (Sn). But if f is odd with respect to both a and b, then, by Theorem 3.7, Wf =
f . By Lemma 4.1 it follows that f (x) = 0 for all x ∈ Sn \ {a∗}. However, since f

is continuous, we must have f = 0 everywhere on Sn. In particular, it follows that
f can be reconstructed from the knowledge of Faf and Fbf , or, what is the same,
from f+a and f+b .

More precisely, we have the following result.

Theorem 4.2 Let Wa and Wb be involutions (4.2), 1 < k ≤ n. If the system of
equations Faf = g and Fbf = h has a solution f ∈ C(Sn), then this solution is
unique and can defined by the pointwise convergent series

f (x) =
∞∑

j=0

Wjq(x), x 	= a∗, (4.16)

where W = WaWb, q = 2 [F̃−1
a g −WaF̃

−1
b h], F̃−1

a and F̃−1
b being defined as in

(3.8). Alternatively,

f (x) =
∞∑

j=0

W̃ j r(x), x 	= b∗, (4.17)

where W̃ = WbWa and r = 2 [F̃−1
b h−WbF̃

−1
a g].

Proof To prove (4.16), it suffices to pass to the limit in (4.5), taking into account
that, by Lemma 4.1, the remainder (Wmf )(x) of the series (4.16) converges to zero
for every x 	= a∗. An alternative formula (4.17) then follows if we interchange a

and b, g and h. ��
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Remark 4.3 In the case k = 1, a function f ∈ C(Sn) can be reconstructed from
the system Faf = g, Fbf = h as follows. By Lemma 4.1, (Wmf )(x)→ f (b∗) as
m→∞. Hence

f (x) =
∞∑

j=0

q(Tj+1x)+ f (b∗), x 	= a∗, T = τbτa, (4.18)

where q(x) = 2 [(F̃−1
a g)(x)− (F̃−1

b h)(τax)]. By (3.10),

(F̃−1
a g)(x) = 1

2
g(La,x), (F̃−1

b h)(τax) = 1

2
h(Lb,τax),

where the line La,x passes through a and x and Lb,τax passes through b and τax. It
follows that

q(x) = g(La,x)− h(Lb,τax). (4.19)

Similarly, (W̃mf )(x)→ f (a∗), and we have

f (x) =
∞∑

j=0

r(T̃j+1x)+ f (a∗), x 	= b∗, T̃ = τaτb, (4.20)

r(x) = h(Lb,x)− g(La,τbx). (4.21)

The series (4.18) and (4.20) reconstruct f up to unknown additive constants
f (a∗) or f (b∗), where a∗ and b∗ are the endpoints of the chord through a and
b. However, complete reconstruction is still possible, if we apply symmetrization,
by summing (4.18) and (4.20). This gives the following result.

Theorem 4.4 Let k = 1. Then

2f (x) =
∞∑

j=0

q(Tj+1x)+
∞∑

j=0

r(T̃j+1x)+ Fa(La,b), x 	= a∗, b∗, (4.22)

where q and r are defined by (4.19) and (4.21), respectively, La,b is the line through
a and b, and Fa(La,b) = f (a∗)+ f (b∗) (= Fb(La,b)) is known. The values of f at
the points a∗ and b∗ can be reconstructed by continuity.

5 Norm Convergence of the Reconstructing Series

Reconstruction of f by the pointwise convergent series (4.16) and (4.17) gives a
little possibility to control the accuracy of the result because the rate of the pointwise
convergence depends on the point. Therefore, it is natural to look at the convergence
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in certain normed spaces. Below we explore such convergence in the spaces C(Sn)

and Lp(Sn). As above, we keep the notation a∗ and b∗ for the endpoints of the chord
through a and b.

Consider the most interesting case k > 1. By (4.5), the convergence of the series
(4.16) to f is equivalent to convergence of its remainder Wmf to 0 as m → ∞.
Thus, it suffices to confine to Wmf .

We first note that the series (4.16) may diverge at the point a∗. Indeed, because

(Wmf )(a∗) = f (Tm+1a∗)
m∏

j=0
ρ(Tj a∗) and a∗ is a fixed point of the mapping T,

we have

(Wmf )(a∗) = ρ(a∗)m+1f (a∗), ρ(a∗) =
[
(1− |a|2)(1− |b|2)
|a − a∗|2|b − b∗|2

]k−1

.

Suppose that a and b are symmetric with respect to the origin and |a| = |b| = 1/2.
Then

ρ(a∗)=
[
(1+ |a|)(1+ |b|)
(1− |a|)(1− |b|)

]k−1

= 9k−1,

and therefore (Wmf )(a∗) = 9(k−1)(m+1)f (a∗) → ∞ as m → ∞ whenever
f (a∗) 	= 0. The latter means that if f (a∗) 	= 0, then the series (4.16) diverges
at a∗ and its uniform convergence on the entire sphere fails. Below it will be shown
that the uniform convergence of this series fails for any a, b ∈ Bn+1.

To understand the type of convergence, we need a deeper insight in the dynamics
of involved reflections.

5.1 Dynamics of the Double Reflection Mapping T = τbτa

We know that the trajectory {Tmx : m = 0, 1, 2, . . .} of any point x ∈ Sn \ {a∗}
converges to the point b∗, which is the endpoint of the chord containing a and b.
Let us specify the character of this convergence.

Lemma 5.1 The mapping T = τbτa maps the punctured sphere Sna = Sn\{a∗} onto
itself. The point b∗ is the attracting point of the dynamical system T m : Sna → Sna

uniformly on compact subsets, that is, for any open neighborhoodU ⊂ Sna of b∗ and
any compact set K ⊂ Sna there exists m such that T mK ⊂ U for all m ≥ m.

Proof The first statement is obvious, because Ta∗ = a∗ and T−1a∗ = τaτba
∗ =

a∗. The second statement follows by a standard argument for monotone pointwise
convergence on compacts. In fact, it suffices to prove this statement for the sets U
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and K having the form

U = Uε = B(b∗, ε), K = Kδ = S
n \ B(a∗, δ),

where B(a∗, ε) and B(b∗, δ) are geodesic balls in Sn of sufficiently small radii.
The pointwise convergence yields that for any fixed x0 ∈ Kδ there exists a

number m0 such that Tm0x0 ∈ Uε. By continuity, the same is true for every x in
some neighborhood Vx0 of x0. Thus, the compact Kδ is covered by open sets Vx ,
x ∈ Kδ , and therefore we can cover Kδ by a finite family {Vx1, . . . VxM }. For each
xi , there is a number mi such that Tmi xi ∈ Uε. Setting m = max{m1, . . . ,mM }, we
have

TmKδ ⊂ Uε.

A simple geometric consideration shows that the sequence Tm+1Kδ monotonically
decreases, i.e., Tm+1Kδ ⊂ TmKδ . Hence TmKδ ⊂ Uε for all m ≥ m. ��

5.2 Uniform Convergence on Compact Subsets
of the Punctured Sphere

Theorem 5.2 If f ∈ C(Sn), then the series (4.16) converges to f uniformly on
compact subsets of the punctured sphere Sn \ {a∗}.
Proof Consider the remainder (Wmf )(x) of the series (4.16). By (4.8),

(Wmf )(x) = ωm(x) f (Tm+1x), ωm(x) =
m∏

j=0

ρ(Tj x).

Because ρ(b∗) < 1 (see (4.15)), for a fixed γ satisfying ρ(b∗) < γ < 1, there is an
open neighborhood U ⊂ S

n \ {a∗} of the point b∗ such that 0 < ρ(y) < γ for all
y ∈ U . On the other hand, Lemma 5.1 says that there exists m such that TmKδ ⊂ U

for m ≥ m and hence 0 < ρ(Tmx) < γ for all x ∈ Kδ and m ≥ m. Thus

ωm(x) ≤ γm−m max
x∈Kδ

m∏

j=0

ρ(Tj x)

for all m ≥ m and all x ∈ Kδ . It follows that ωm(x)→ 0 as m→∞ uniformly on
Kδ . Since |f (T mx)| ≤ ‖f ‖C(Sn), we conclude that Wmf → 0 uniformly on Kδ .
This gives the result. ��
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5.3 Lp-Convergence

Lemma 5.3 The operators Wa , Wb , W = WaWb, and W̃ = WbWa are isometries
of the space Lp0(Sn) with p0 = n/(k − 1).

Proof The statement about Wa follows from (2.11), which reads

∫

Sn

(
ρa(x)

)p0f (τax)dx =
∫

Sn

f (x) dx.

The equality holds for any f ∈ L1(Sn) and therefore, if f ∈ Lp0(Sn), then, using
|f (x)|p0 instead of f , we obtain ‖Waf ‖p0 = ‖f ‖p0 . The statement for Wb follows
analogously. The operators W and W̃ are also isometries, as the products of two
isometries. ��
Theorem 5.4 Let f ∈ C(Sn), p0 = n/(k − 1). The series (4.16) and (4.17)
converge to f in the norm of Lp(Sn) for any 1 ≤ p < p0. The convergence to
f fails in any space Lp(Sn) with p0 ≤ p ≤ ∞.

Proof It is clear that f belongs to Lp(Sn) for any 1 ≤ p ≤ ∞. Fix δ > 0 and
consider the function Wmf = (WaWb)

mf . Suppose that p < p0 and set r =
p0/p > 1. We write

‖Wmf ‖pp =
∫

B(a∗,δ)

|(Wmf )(x)|p dx +
∫

Kδ

|(Wmf )(x)|pdx

= I1(m, δ)+ I2(m, δ), (5.1)

where, as above, Kδ = Sn \ B(a∗, δ). By Hölder’s inequality,

I1(m, δ) ≤
( ∫

B(a∗,δ)

(
|(Wmf )(x)|p

)r
dx

)1/r( ∫

B(a∗,δ)

dx

)r/(r−1)

.

Owing to Lemma 5.3, the operator Wm preserves the Lp0 -norm, and therefore

( ∫

B(a∗,δ)

(
|(Wmf )(x)|p

)r
dx

)1/r

=
( ∫

B(a∗,δ)

|(Wmf )(x)|p0dx

)1/r

≤ ‖Wmf ‖p0/r
p0 = ‖f ‖pp0 .

Hence

I1(m, δ) ≤ A(δ)r/(r−1)‖f ‖pp0 , (5.2)
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where A(δ) is the n-dimensional surface area of the geodesic ball B(a∗, δ). For the
second integral in (5.1) we have

I2(m, δ) < σn sup
x∈Kδ

|(Wmf )(x)|p, (5.3)

where σn is the area of the unit sphere Sn.
Now we fix sufficiently small ε > 0. Using (5.2), let us choose δ > 0 so that

I1(m, δ) < ε/2 for all m ≥ 0. By Theorem 5.2, the inequality (5.3) implies that
there exists m̃ = m̃(δ) such that I2(m, δ) < ε/2 for all m ≥ m̃. Hence, by (5.1),
‖Wmf ‖pp < ε for m ≥ m̃, and therefore Wmf tends to 0 as m → ∞ in the Lp-
norm. The latter gives the desired convergence of the series (4.16).

On the other hand, if p > p0, then, by Hölder’s inequality, ‖f ‖p0 =
‖Wmf ‖p0 ≤ c ‖Wmf ‖p, c = const > 0. It follows that the Lp-norm of the
remainder Wmf of the series does not tend to 0 as m→∞, unless f = 0.

The proof for W̃f is similar. ��
Remark 5.5 As we can see, the iterative method in terms of the series (4.16)
and (4.17) does not provide uniformly convergent reconstruction of continuous
functions. The reconstruction is guaranteed only in the Lp-norm with 1 ≤ p <

p0 = n/(k − 1). For instance, in the case of the hyperplane sections, when k = n

and p0 = 1 + 1/(n − 1), the L2-convergence fails because p0 does not exceed 2.
The less the dimension k is, the greater exponent p can be chosen. The case p = 1
works for all 1 < k ≤ n.

6 Proof of Theorem 3.1

We recall that a ∈ Bn+1, sa =
√

1− |a|2, and ϕa is an automorphism (2.1). The
following lemma allows us to exploit the language of Stiefel manifolds when dealing
with affine planes.

Lemma 6.1 Let 1 ≤ k ≤ n. The map ϕa extends as a bijection from Gra(n+ 1, k)
onto Gro(n+ 1, k). Specifically, if τ ∈ Gra(n+ 1, k) is defined by

τ = {x ∈ R
n+1 : ξ ′x = ξ ′a}, ξ ∈ St(n+1, n+1−k), (6.1)

then ζ ≡ ϕaτ ∈ Gro(n+ 1, k) has the form

ζ = {y ∈ R
n+1 : η′y = 0}, η ∈ St(n+1, n+1−k), (6.2)

where

η = −(Aξ) α−1/2, A = saPa + Qa, α = (Aξ)′(Aξ). (6.3)



46 M. Agranovsky and B. Rubin

Conversely, if ζ ∈ Gro(n + 1, k) is defined by (6.2), then τ ≡ ϕaζ has the form
(6.1) with

ξ = (A1η) β
−1/2, A1 = Pa + saQa, β = (A1η)

′(A1η). (6.4)

Proof Let τ ∈ Gra(n+ 1, k) be defined by (6.1). Then

ζ ≡ ϕaτ = {y ∈ R
n+1 : ξ ′(ϕay − a) = 0}.

By (2.1),

ϕay − a = saAy

1− y · a . (6.5)

Hence ζ = {y ∈ Rn+1 : (Aξ)′y = 0}. Now (6.2) follows if we represent the
(n+ 1)× (n+ 1− k) matrix Aξ in the polar form

Aξ = η α1/2, α = (Aξ)′(Aξ), η = (Aξ) α−1/2; (6.6)

see, e.g., [11, pp. 66, 591].
Conversely, let ζ ∈ Gro(n+ 1, k) be defined by (6.2). Then

τ ≡ ϕaζ = {x ∈ R
n+1 : η′ϕax = 0}.

By (2.1), the equality η′ϕax = 0 is equivalent to

(Paη + saQaη)
′x = η′a or (A1η)

′x = η′a. (6.7)

We write A1η in the form A1η = ξ β1/2 with β = (A1η)
′(A1η) and ξ =

(A1η) β
−1/2 ∈ St(n+1, n+1−k). Then (6.7) yields ξ ′x = β−1/2η′a. To complete

the proof, it remains to note that β−1/2η′a = ξ ′a. Indeed,

ξ ′a = β−1/2(A1η)
′a = β−1/2(Paη + saQaη)

′a

= β−1/2(η′(Paa + saη
′Qaa) = β−1/2η′a.

��
Proof of the Theorem The case k = 1 is almost obvious; cf. Remark 3.5.
Assuming 1 < k ≤ n, let τ ∈ Gra(n+ 1, k) have the form (6.1) and write

(Faf )(τ ) ≡ (Faf )(ξ)=
∫

{x∈Sn:ξ ′(x−a)=0}
f (x) dσ(x), ξ ∈ St(n+1, n+1−k).

��
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We make use of the standard approximation machinery. Given a sufficiently small
ε > 0, let

(Fa,εf )(ξ) =
∫

Sn

f (x) ωε(ξ
′(x − a)) dx, (6.8)

where ωε is a smooth bump function supported on the ball in R
n+1−k of radius ε

with center at the origin, so that lim
ε→0

∫
|t |<ε ωε(t) g(t) dx = g(o) for any function g

which is continuous in a neighborhood of the origin.

Step I Let us show that

lim
ε→0

(Fa,εf )(ξ) = (1− |ξ ′a|2)−1/2(Faf )(ξ). (6.9)

We pass to bispherical coordinates (see, e.g., [20, p. 31])

x =
[

ϕ sin θ
ψ cos θ

]

, ϕ ∈ S
n ∩ ξ⊥, ψ ∈ S

n ∩ {ξ}, 0≤θ≤π/2, (6.10)

dx = sink−1 θ cosn−k θ dθdϕdψ,

and set s = cos θ . This gives

(Fa,εf )(ξ) =
1∫

0

sn−k(1− s2)(k−2)/2ds

∫

Sn∩ξ⊥
dϕ

×
∫

Sn∩{ξ }
f

⎛

⎝

[
ϕ
√

1− s2

sψ

]⎞

⎠ ωε(sψ − ξ ′a) dψ

=
∫

Rn−k+1

H(y) ωε(y − ξ ′a) dy, (6.11)

where

H(y) = (1−|y|2)(k−2)/2
∫

Sn∩ξ⊥
f

⎛

⎝

[
ϕ

√
1−|y|2
y

]⎞

⎠ dϕ

if |y| ≤ 1 and H(y) = 0, otherwise. Passing to the limit, we obtain

lim
ε→0

(Fa,εf )(ξ) = H(ξ ′a),
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where

H(ξ ′a) = (1−|ξ ′a|2)(k−2)/2
∫

Sn∩ξ⊥
f

⎛

⎝

[
ϕ

√
1−|ξ ′a|2
ξ ′a

]⎞

⎠ dϕ. (6.12)

If the argument of f is denoted by x, then x − a lies in the subspace perpendicular
to ξ . Further, the integration in (6.12) is performed over the (k − 1)-dimensional
sphere of radius

√
1−|ξ ′a|2. Switching to the surface area measure, we can write

(6.12) as

H(ξ ′a) = (1−|ξ ′a|2)−1/2
∫

{x∈Sn: ξ ′(x−a)=0}
f (x) dσ(x),

as desired.

Step II Let us obtain an alternative expression for the limit (6.9), now in terms of
the automorphism ϕa . By Lemma 2.2,

(Fa,εf )(ξ) = sna

∫

Sn

(f ◦ ϕa)(y)
(1− a · y)n ωε(ξ

′[ϕay − a]) dy,

where

ξ ′[ϕay − a] = − saξ
′Ay

1− a · y = −
sa(Aξ)′y
1− a · y , A = saPa + Qa;

see (6.5). Denote

f̃ (y) = sna
(f ◦ ϕa)(y)
(1− a · y)n .

Then

(Fa,εf )(ξ) =
∫

Sn

f̃ (y) ωε

(
sa(Aξ)′y
1− a · y

)

dy.

As in (6.6), the polar decomposition yields

Aξ = η α1/2, α = (Aξ)′(Aξ), η = (Aξ) α−1/2. (6.13)
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Then we pass to bispherical coordinates (cf. (6.10))

y =
[

ϕ sin θ
ψ cos θ

]

, ϕ ∈ S
n ∩ η⊥, ψ ∈ S

n ∩ {η}, 0≤θ≤π/2,

dy = sink−1 θ cosn−k θ dθdϕdψ,

and set s = cos θ . This gives

(Fa,εf )(ξ) =
1∫

0

sn−k(1− s2)(k−2)/2ds

∫

Sn∩η⊥
dϕ

×
∫

Sn∩{η}
f̃

⎛

⎝

[√
1− s2ϕ

sψ

]⎞

⎠ ωε

(
sa α

1/2sψ

1− a · (√1− s2 ϕ + sψ)

)

dψ,

or (set z = sψ ∈ {η} ∼ Rn+1−k , |z| < 1)

(Fa,εf )(ξ) =
∫

|z|<1

(1− |z|2)(k−2)/2dz

×
∫

Sn∩η⊥
f̃

⎛

⎝

[√
1− |z|2ϕ

z

]⎞

⎠ ωε

(
sa α

1/2z

1− a · (√1− |z|2 ϕ + z)

)

dϕ,

We set

t ≡ t (z) = sa α
1/2z

1− a · (√1− |z|2 ϕ + z)
= �z

1− h(z)
, (6.14)

� = sa α
1/2, h(z) = a · (

√

1− |z|2 ϕ + z),

so that t = o if and only if z = o, where o is the origin in the corresponding space.
Further, we write (6.14) as

�(t, z) ≡ �z − t + th(z) = 0

and denote m = n + 1 − k. Because the m × m matrix (∂�i/∂zj )(o, o) = �

is invertible, there exists an inverse function z = z(t), which is well-defined and
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differentiable in a small neighborhood of t = 0. Hence, for sufficiently small ε > 0,

(Fa,εf )(ξ) =
∫

|t |<ε

(1− |z(t)|2)(k−2)/2ωε(t) |det(z′(t))| dt

×
∫

Sn∩η⊥
f̃

⎛

⎝

[√
1− |z(t)|2ϕ

z(t)

]⎞

⎠ dϕ,

where

z′(t) = −
[
∂�(t, z)

∂z

]−1
∂�(t, z)

∂t
, z = z(t).

Passing to the limit, we obtain

lim
ε→0

(Fa,εf )(ξ)=|det(z′(o))|
∫

Sn∩η⊥
f̃ (ϕ) dϕ,

where

z′(o) = (1− a · ϕ)�−1 = s−1
a (1− a · ϕ) α−1/2, α = (Aξ)′(Aξ).

This gives

lim
ε→0

(Fa,εf )(ξ)= sk−1
a

det(α)1/2

∫

Sn∩η⊥

(f ◦ ϕa)(ϕ)
(1− a · ϕ)k−1

dϕ.

Note that

α = (Aξ)′(Aξ) = (saPaξ + Qaξ)
′(saPaξ + Qaξ)

= In+1−k − ξ ′aa′ξ,

and therefore det(α) = det(In+1−k − ξ ′aa′ξ). The last expression can be trans-
formed by making use of the known fact from Algebra (see, e.g., [11, Theorem
A3.5]). Specifically, if U and V are m× n and n×m matrices, respectively, then

det(Im + UV) = det(In + VU). (6.15)
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By this formula, det(α) = 1− (a′ξ)(ξ ′a) = 1− |ξ ′a|2. Thus, changing notation,
as in (3.2), we have

lim
ε→0

(Fa,εf )(ξ) = (1− |ξ ′a|2)−1/2
∫

Sn∩η⊥
(Maf )(y) dσ(y), (6.16)

where η = (Aξ) α−1/2; cf. (6.13).

Step III Comparing (6.9) with (6.16) and switching backward to the Grassmannian
language (use Lemma 6.1), we obtain the statement of the theorem.

Acknowledgments The authors are thankful to the referee for his valuable remarks and sugges-
tions.
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Abstract We give a simplified proof of the Berger-Coburn theorem on the bound-
edness of Toeplitz operators and extend one part of this theorem to the setting of
p-Fock spaces (1 ≤ p ≤ ∞). We present an overview of recent results by various
authors on the compactness characterization via the Berezin transform for certain
operators acting on the Fock space. Based on these results we present three new
characterizations of the Toeplitz C∗ algebra generated by Toeplitz operators with
bounded symbols.
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1 Introduction

The present paper combines a survey part with some new results in the area
of Toeplitz operators on Fock and Bergman spaces. They are among the most
intensively studied concrete operators on function Banach or Hilbert spaces. Basic
questions concern boundedness and compactness criteria, membership in operator
ideals or their index and spectral theory. For a list of classical and more recent
results we refer to [1, 7, 8, 14, 15, 27, 28] and the literature cited therein. Instead
of considering single operators, the study of C∗ or Banach algebras generated
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by Toeplitz operators with specific types of symbols has attracted attention and
essential progress has been made during the last years [6, 21, 23–25].

On the one hand the purpose of this paper is to present an outline of some
known classical and recent results on boundedness and compactness of Toeplitz
operators on p-Fock spaces. Moreover, we highlight some relations between them
that became apparent by applying more recent observations. On the other hand we
add some new aspects to the theory. We present a simplified proof of one part of
the Berger-Coburn theorem from [8]. Our proof uses little “machinery” and even
extends the boundedness criterion of the theorem to the setting of p-Fock spaces or
weighted Lp-spaces for any 1 ≤ p ≤ ∞. In the second part we discuss compactness
characterizations of bounded operators on Bergman and Fock spaces via the Berezin
transform starting from the classical result by S. Axler and D. Zheng [1] in the case
of the Bergman space over the unit disc and its Fock space version in [11].

Theorem 1.1 (S. Axler, D. Zheng [1]) Let A be an element of the non-closed
algebra generated by Toeplitz operators with bounded symbols acting on the
Bergman space over the unit disc. Then A is compact if and only if its Berezin
symbol Ã vanishes at the boundary.

Subsequently Theorem 1.1 has been extended to larger operator algebras, such
as operators acting on a scale of Banach spaces in the Fock space when p = 2
[4], C∗ algebras generated by sufficiently localized operators [26], or the full
Toeplitz algebra. The latter is the C∗ algebra generated by all Toeplitz operators
with essentially bounded symbols [5, 20, 23]. Surprising identities between these
algebras or their completions in [25] show that these generalizations in fact are
manifestations of the same result. More precisely, they just provide different
characterizations of the Toeplitz algebra.

In the Fock space setting and p = 2 we prove three new characterizations of
the Toeplitz algebra. One of the results (Corollary 4.13) involves bounded Toeplitz
operators with (in general unbounded) symbols in the space BMO of functions
having bounded mean oscillation. This observation links the discussion to the first
part of the paper. In particular, Corollary 4.13 gives an extension of a compactness
characterization in [10] from single Toeplitz operators to elements in the generated
algebra.

Recently there have been great advances by combining ideas from operator
theory on function spaces with techniques that originally have been developed for
the spectral theory of band and band-dominated operators (see [5, 13–15, 17, 23]).
This has provided efficient tools in the analysis. We will discuss how the space
of band-dominated operators gives rise to a new characterization of the Toeplitz
algebra. Throughout the text we have collected various open questions which we
believe are interesting and may be subject of a future work.

The paper is organized as follows. In Sect. 2 we introduce definitions and
notation. As for a comprehensive source on the analysis of Fock spaces we refer
to the textbook [28].
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A simple proof of an upper bound for the norm ‖T t
f ‖ of a Toeplitz operator T t

f

with (possibly unbounded) symbol f acting on p-Fock space or weighted Lp-space
is given in Sect. 3. This result generalizes a theorem in [8]. We recall examples
of Toeplitz operators with highly oscillating unbounded symbols which are well-
known in the literature (e.g. [8]) and illuminate the result. Finally, we comment on
some progress in [3] on a conjecture by C. Berger and L. Coburn in [8] concerning
a boundedness characterization of Toeplitz operators.

Section 4 starts with a (certainly non-complete) survey of the literature on
compactness characterizations via the Berezin transform. In particular, we relate
the results by applying surprising characterizations of the Toeplitz algebra T in
[25]. By combining some of these results and using an inequality of Sect. 2 we can
provide three new characterizations of T . In particular, our observation generalizes a
theorem in [10] on a compactness characterization of Toeplitz operators with BMO-
symbols.

2 Preliminaries

On Cn consider the one-parameter family of probability measures

dμt(z) = 1

(πt)n
e−

1
t |z|2dV (z), t > 0

where V denotes the usual Lebesgue measure on Cn ∼= R2n. Here we write |z| =
(|z1|2 + . . .+ |zn|2) 1

2 for the Euclidean norm of z ∈ C
n. Throughout the paper we

write N0 = {0, 1, 2, . . .} for the non-negative integers. Let 1 ≤ p < ∞ and t > 0
and define

L
p
t := Lp(Cn, μ2t/p) and F

p
t := L

p
t ∩ Hol(Cn).

Here Hol(Cn) denotes the space of holomorphic functions on Cn. Further, for
measurable g : Cn → C we use the notation

‖g‖L∞t = ess sup
z∈Cn

|g(z)e− 1
2t |z|2 |

and set

L∞t := {
g : Cn → C : g measurable, ‖g‖L∞t <∞}

,

F∞t := L∞t ∩ Hol(Cn).

Recall that F 2
t is a reproducing kernel Hilbert space equipped with the standard L2

t -
inner product 〈f, g〉t :=

∫
Cn f (z)g(z)dμt(z) for f, g ∈ F 2

t , the derived L2
t -norm
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‖f ‖t = (〈f, f 〉t )1/2 and reproducing kernel

Kt
z(w) = Kt(w, z) = e

w·z
t ∈ F 2

t .

In particular, the orthogonal projection P t : L2
t → F 2

t is given by

P tf (z) = 〈
f,Kt

z

〉
t
=

∫

Cn

f (w)e
z·w
t dμt (w).

For p 	= 2, the integral operator

P tf (z) =
∫

Cn

f (w)e
z·w
t dμt (w)

=
(p

2

)n
∫

Cn

f (w)e
z·w
t e

1
t (

p
2−1)|w|2dμ2t/p(w)

still defines a bounded projection P t : L
p
t → F

p
t [19, Theorem 7.1]. Given a

suitable measurable function f : Cn → C and any t > 0 we define the Toeplitz
operator T t

f : Fp
t → F

p
t by

T t
f = P tMf .

If not further specified we will consider T t
f on the domain

D(T t
f ) =

{
h ∈ F

p
t : fh ∈ L

p
t

}
.

In the case t = 1 we shortly write P = P 1 and Tf = T 1
f . Especially for p = 2

Toeplitz operators on the Fock space are well-studied under different aspects (see
[18, 28] and the literature therein). However, due to a number of open problems, in
particular concerning their algebraic and analytic properties, they remain interesting
objects of current research.

Denote by

ktz(w) = Kt(w, z)√
Kt(z, z)

, where z,w ∈ C
n (2.1)

the normalized reproducing kernel. Again, for t = 1 we write kz = k1
z and Kz =

K1
z . We define the Berezin transform of an operator A ∈ L(F 2

t ) by

Ã(t)(z) := 〈
Aktz, k

t
z

〉
t

(2.2)
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and we use the short notation Ã = Ã(1). Note that (2.2) defines a complex valued
function on Cn which is bounded whenever A is a bounded operator. The Berezin
transform of a measurable function f with the property that fKt

z ∈ L2
t for all

z ∈ Cn is denoted by

f̃ (t)(z) := 〈
f ktz, k

t
z

〉
t
.

f̃ (4t ) coincides with the heat transform of f on Cn at time t . Observe that T̃ t
f

(t) =
f̃ (t).

3 On the Berger-Coburn Theorem

One of the simple properties of Toeplitz operators is the fact that boundedness of
the symbol implies boundedness of the operator. The converse in general is false.
Indeed, one of the important questions in the theory of Toeplitz operators is a
characterization of the boundedness of the operator in terms of its (unbounded)
symbol. In the case p = 2 we recall the classical Berger-Coburn theorem on the
boundedness of Toeplitz operators on the Fock space:

Theorem 3.1 (Berger-Coburn [8]) Assume that f ∈ L2
t . Then the following norm

estimates hold true for T t
f : F 2

t → F 2
t :

C(s)‖T t
f ‖ ≥ ‖f̃ (s)‖∞, 2t > s > t/2

c(s)‖f̃ (s)‖∞ ≥ ‖T t
f ‖, t/2 > s > 0.

Here, C(s), c(s) > 0 are universal constants depending only on s, t and n.

Berger and Coburn proved this result for t = 2. However, the proof directly
generalizes to the case t > 0. We start by a short outline of the original proof of
Theorem 3.1 in [8]:

The first estimate is obtained by a trace-estimate of an operator product. More
precisely, in [8] a trace-class operator S(s)a is constructed depending on a ∈ C

n and
s in the above range such that

trace
(
T t
f S

(s)
a

) = f̃ (s)(a).

Then the standard trace estimate

| trace(AB)| ≤ ‖A‖‖B‖tr
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can be applied, where A is a bounded operator, B a trace class operator and ‖ · ‖tr
denotes the trace norm. The second inequality provides a boundedness criterion for
Toeplitz operators and its proof consists of the following steps:

1. Transform T t
f into a Weyl-pseudodifferential operator on L2(Rn) via the

Bargmann transform Bt : F 2
t → L2(Rn), which defines a bijective Hilbert

space isometry.
2. Estimate the symbol of the pseudodifferential operator Wσ(f ) = BtT

t
fB

−1
t .

3. Apply the Calderón-Vaillancourt Theorem.

Here we will present a proof of the second inequality based on simple estimates
for integral operators. In particular, we avoid the theory of pseudodifferential
operators and the application of the Calderón-Vaillancourt Theorem. Instead of
working on L2(Rn) all calculations will be done in the Fock space setting. Our
proof has also the advantage that it generalized to the case of the p-Fock space F

p
t

for 1 ≤ p ≤ ∞. Moreover, it applies to Toeplitz operators interpreted as integral
operators on the enveloping space L

p
t .

In the following we assume that f : Cn → C is a measurable function such
that fKt

z ∈ L2(Cn, μt ) for all z ∈ Cn. In particular, the Berezin transform and its
off-diagonal extension

f̃ (t)(z,w) := 〈
f ktz, k

t
w

〉
t

exist for all z,w ∈ Cn.
Without any further assumptions T t

f is an unbounded operator in general. Let
p = 2 and note that T t

f is densely defined since {Kt(·, z) : z ∈ Cn} is a total set in

F 2
t . Hence we can consider its adjoint (T t

f )
∗. Recall that

h ∈ D
(
(T t

f )
∗) ⇔ ∃C > 0 : |〈T t

f g, h〉t | ≤ C‖g‖t ∀g ∈ D(T t
f ).

For z ∈ Cn and g ∈ D(T t
f ) it holds

|〈T t
f g,K

t
z〉t | = |〈g, fKt

z〉t | ≤ ‖g‖t‖fKt
z‖t ,

and therefore span{Kt
z : z ∈ C

n} ⊆ D((T t
f )
∗). In particular, the adjoint operator

(T t
f )
∗ is densely defined as well.

We compute a useful representation for the integral kernel of T t
f on F 2

t :

T t
f g(z) = 〈T t

f g,K
t
z〉t

= 〈g, (T t
f )
∗Kt

z〉t =
∫

Cn

(
(T t

f )
∗Kt

z

)
(w)g(w)dμt (w). (3.1)



Berger-Coburn Theorem, Localized Operators, and the Toeplitz Algebra 59

This integral kernel can further be computed as

(
(T t

f )
∗Kt

z

)
(w) = 〈(T t

f )
∗Kt

z,K
t
w〉t = 〈Kt

w, (T
t
f )
∗Kt

z〉t
= 〈T t

f K
t
w,K

t
z〉t = 〈fKt

w,K
t
z〉t

=
√
Kt(w,w)Kt (z, z)〈f ktw, ktz〉t

= e
1
2t (|w|2+|z|2)f̃ (t)(w, z)

= e
1
2t |z−w|2+ 1

t Re(z·w)f̃ (t)(w, z).

Inserting this expression above gives:

T t
f g(z) =

∫

Cn

e
1
2t |z−w|2+ 1

t
Re(z·w)f̃ (t)(w, z)g(w)dμt (w), (3.2)

which can be considered as an integral operator either on F 2
t or L2

t .
Recall that P t is defined on L

p
t for each 1 ≤ p ≤ ∞ by the same integral

expression, hence T t
f : Fp

t → F
p
t and T t

f : F 2
t → F 2

t act in the same way on the
space span{Kt

z : z ∈ Cn}. Therefore, the integral kernel gives the same operator for
the F

p
t -version of the Toeplitz operator on F

p
t ∩ F 2

t , which is a dense subset of Fp
t

(for p <∞).
We are now going to derive estimates for f̃ (t)(w, z). Easy computations show

that fKs
z ∈ L2(Cn, μs) for 0 < s < t . Hence f̃ (s)(w, z) exists for all s in the range

(0, t]. Moreover, from the semigroup property of the heat transform it follows that:

〈
f ktz, k

t
z

〉
t
= f̃ (t)(z) =

(
f̃ (s)

)∼(t−s)
(z) = 〈

f̃ (s)kt−sz , kt−sz

〉
t−s

for all 0 ≤ s < t . In particular,

〈
fKt

z,K
t
z

〉
t
= e

− s
t (t−s) |z|2 〈f̃ (s)Kt−s

z ,Kt−s
z

〉
t−s . (3.3)

We can extend this relation to off-diagonal values:

Lemma 3.2 For z,w ∈ Cn and 0 ≤ s < t it holds:

f̃ (t)(w, z) = e
s

2t (t−s) |w−z|2− is
t (t−s) Im(z·w)〈

f̃ (s)kt−sw , kt−sz

〉
t−s . (3.4)

Proof Recall that 〈fKt
w,K

t
z〉t is anti-holomorphic in w and holomorphic in z. The

same holds for

e
− s

t (t−s) z·w〈
f̃ (s)Kt−s

w ,Kt−s
z

〉
t−s .
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Since both functions agree on the diagonal w = z by Eq. (3.3), they agree for all
choices of w, z ∈ Cn by a well-known identity theorem [12, Proposition 1.69].
Hence,

〈
fKt

w,K
t
z

〉
t
= e

− s
t (t−s) z·w〈

f̃ (s)Kt−s
w ,Kt−s

z

〉
t−s .

Division by the normalizing factors implies (3.4). ��
Lemma 3.3 Let g ∈ L∞(Cn) and t > 0. Then, it holds

∣
∣
〈
gktw, k

t
z

〉
t

∣
∣ ≤ ‖g‖∞e−

1
4t |w−z|2 .

Proof Let z,w ∈ Cn, then:

∣
∣
〈
gktw, k

t
z

〉
t

∣
∣ = 1√

Kt(w,w)Kt (z, z)

∣
∣
∣

∫

Cn

g(u)e
1
t (u·w+z·u)dμt (u)

∣
∣
∣

≤ e−
1
2t (|z|2+|w|2)‖g‖∞

∫

Cn

e
1
t Re(u·w+z·u)dμt (u)

= e−
1
2t (|z|2+|w|2)‖g‖∞

∫

Cn

e
1
2t u·(w+z)+ 1

2t u·(w+z)dμt (u)

= e−
1
2t (|z|2+|w|2)‖g‖∞

〈
Kt

(w+z)/2,K
t
(w+z)/2

〉
t

= e−
1
2t (|z|2+|w|2)‖g‖∞Kt((w + z)/2, (w + z)/2)

= e−
1
2t (|z|2+|w|2)+ 1

4t |w+z|2‖g‖∞
= ‖g‖∞e−

1
4t |w−z|2 .

��

Theorem 3.4 Assume that f is such that f̃ (s) is bounded for some s ∈ (0, t/2).

(i) For 1 ≤ p ≤ ∞, the integral operator

I tf : Lp
t → F

p
t

defined by

I tf g(z) :=
∫

Cn

e
1
2t |z−w|2+ 1

t
Re(z·w)f̃ (t)(w, z)g(w)dμt (w)

is bounded. Moreover,

‖I tf ‖Lp
t →F

p
t
≤ C‖f̃ (s)‖∞

for some constant C which only depends on t, s and n.
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(ii) In particular, for 1 ≤ p ≤ ∞ the Toeplitz operator T t
f : Fp

t → F
p
t is bounded

with the same norm bound

‖T t
f ‖Fp

t →F
p
t
≤ C‖f̃ (s)‖∞.

Proof We prove (i) first. By Lemmas 3.2 and 3.3 we obtain

|f̃ (t)(w, z)| ≤ ‖f̃ (s)‖∞e

(
s

2t (t−s)− 1
4(t−s)

)
|w−z|2

.

Set s
2t (t−s) − 1

4(t−s) = −γs,t and observe that

γs,t > 0 ⇔ s <
t

2
.

For p = ∞, it holds

‖I tf g‖F∞t ≤
( 1

πt

)n‖f̃ (s)‖∞×

×
∫

Cn

e

(
1
2t −γs,t

)
|z−w|2+ 1

t Re(z·w)− 1
2t |z|2− 1

t |w|2 |g(w)|dV (w)

=
( 1

πt

)n‖f̃ (s)‖∞
∫

Cn

|g(w)|e− 1
2t |w|2e−γs,t |w−z|2dV (w)

≤
( 1

πt

)n‖f̃ (s)‖∞‖g‖L∞t
∫

Cn

e−γs,t |w−z|2dV (w)

= ‖f̃ (s)‖∞‖g‖L∞t
( 1

γs,t t

)n
.

This proves

‖I tf ‖L∞t →F∞t ≤ ‖f̃ (s)‖∞
( 1

γs,t t

)n
.

For p = 1, we obtain the following:

‖I tf g‖F 1
t
=

∫

Cn

|I tf g(z)|dμ2t (z)

=
( 1

2t2π2

)n×

×
∫

Cn

∣
∣
∣

∫

Cn

e
1
2t |z−w|2+ 1

t
Re(z·w)− 1

t
|w|2− 1

2t |z|2 f̃ (t)(w, z)g(w)dV (w)

∣
∣
∣dV (z)
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≤
( 1

2t2π2

)n
∫

Cn

∫

Cn

|g(w)||f̃ (t)(w, z)|e− 1
2t |w|2dV (w)dV (z)

≤
( 1

2t2π2

)n‖f̃ (s)‖∞
∫

Cn

∫

Cn

|g(w)|e− 1
2t |w|2e−γs,t |w−z|2dV (w)dV (z)

=
( 1

2t2π2

)n‖f̃ (s)‖∞
∫

Cn

∫

Cn

e−γs,t |w−z|2dV (z)|g(w)|e− 1
2t |w|2dV (w)

=
( 1

γs,t t

)n‖f̃ (s)‖∞‖g‖L1
t
.

Therefore,

‖I tf ‖L1
t→F 1

t
≤ ‖f̃ (s)‖∞

( 1

γs,t t

)n
.

Using complex interpolation (i.e. the fact that [L1
t , L

∞
t ]θ = L

pθ
t and [F 1

t , F
∞
t ]θ =

F
pθ
t , where pθ = 1/(1− θ), c.f. [19, 28]), one obtains

‖I tf ‖Lp
t →F

p
t
≤ ‖f̃ (s)‖∞

( 1

γs,t t

)n
.

For (ii) observe that for 1 ≤ p ≤ ∞, T t
f acts by the same integral expression as

I tf , hence it holds T t
f = I tf |Fp

t
. Therefore, the Toeplitz operator inherits the norm

estimate from I tf . ��
Remark 3.5

1. From the proof we see that the constant in the estimate essentially behaves as(
t

t/2−s
)n

when s → t/2.

2. For p = 2 one can obtain a direct proof of the statement without interpolation,
using Lemmas 3.2 and 3.3 and Schur’s test (cf. the proof of Lemma 4.9 below,
which uses a similar argument).

There are various problems left open concerning the characterization of bounded
operators. Here, we mention some of them:

Question 1 Does an L
p
t -version of the first estimate in Theorem 3.1 hold?

Question 2 Can one give a reasonable characterization of boundedness for products
of Toeplitz operators with unbounded symbols.

Recall that for p = 2 and under certain growth conditions of the symbols at infinity
finite products of unbounded Toeplitz operators have been well-defined in [2]. They
can be interpreted as elements in an algebra of operators acting on a scale of Banach
spaces in the Fock space. We mention that boundedness of products Tf Tḡ on the
2-Fock space with holomorphic symbols f, g has recently been characterized in [9].
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The following conjecture in the case t = 1
2 was made by C. Berger and L. Coburn

in [8].

Conjecture 1 T t
f is bounded if and only if f̃ ( t2 ) is bounded.

There are indications that this conjecture may actually hold true. The authors of [8]
accompanied their conjecture with the following example:

Example 1 ([8]) Let λ ∈ C be a parameter. Consider the functions

gλ(z) := eλ|z|2, z ∈ C
n

for Re λ < 1
2t . The latter condition guarantees that the heat transforms g̃λ(s) exist

for all 0 < s < 2t . Moreover, since gλ is radial, a simple calculation shows that the
Toeplitz operator T t

gλ
acts diagonally on the standard orthonormal basis {etm : m ∈

N
n
0} of F 2

t , where

etm(z) :=
zm√
t |m|m! . (3.5)

Here, we used standard multiindex notation. One has

T t
gλ
etm = (1− tλ)−(|m|+n) etm.

This implies that T t
gλ

is bounded on F 2
t if and only if |1− tλ| ≥ 1.

Using the well-known formula

∫

R

ebx−
a
2 x

2
dx =

√
2π

a
e
b2
2a , a, b ∈ C, Re(a) > 0,

one can show that

g̃λ
(s)(w) = 1

(1− sλ)n
e

λ
1−sλ |w|2 , 0 < s < 2t .

This function is obviously bounded if and only if

Re

(
λ

1− sλ

)

≤ 0 ⇐⇒ |1− 2sλ| ≥ 1.

In particular, T t
gλ

is bounded if and only if g̃λ(
t
2 ) is a bounded function.

There are two other known cases for which the conjecture has been verified. The
first concerns operators with non-negative symbols.
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Proposition 3.6 (Berger-Coburn [7]) Let f ≥ 0 be such that f ∈ L2
t . Then, T t

f :
F 2
t → F 2

t is bounded if and only if f̃ ( t2 ) is bounded.

Since this result is not directly stated in [7] (even though [8] refers this fact to that
article), we give a short proof based on a lemma from that paper:

Proof In the case of t = 2, [7, Lemma 14] states and proves the following estimate,
which holds with the same proof for general t > 0:

∥
∥|̃g|2(t)∥∥∞ ≤

∥
∥T t
|g|2

∥
∥ ≤ 4n

∥
∥|̃g|2(t)∥∥∞.

If f ≥ 0, letting g = √f and applying this inequality proves that T t
f is bounded if

and only if f̃ (t) is bounded. A simple estimate yields f̃ (t)(z) ≥ 1
2n f̃

( t2 )(z). Further,

f̃ (t)(z) ≤ ‖f̃ ( t2 )‖∞ can be seen to hold by the semigroup property of the heat
transform. Therefore, f̃ (t) is bounded if and only if f̃ ( t2 ) is bounded. ��

The second result is about symbols with certain oscillatory behaviour at infinity.
For z ∈ Cn let τz(w) = z − w, w ∈ Cn. For f ∈ L1

loc(C
n), we say that f is of

bounded mean oscillation and write f ∈ BMO if

sup
z∈Cn

∫

Cn

|f ◦ τz − f̃ (t)(z)|dμt <∞.

This notion can be seen to be independent of t > 0, cf. [3] for details. As is known
BMO contains unbounded function. One has:

Theorem 3.7 (Bauer-Coburn-Isralowitz [3, Theorem 6]) Let f ∈ BMO. Then,
f̃ (t) is bounded for one t > 0 if and only if it is bounded for all t > 0. In particular,
T t
f : F 2

t → F 2
t is bounded if and only if f̃ ( t2 ) is bounded.

We will come back to the last result when discussing different characterizations of
the Toeplitz algebra.

4 Characterizations of the Toeplitz Algebra

From now on we only consider the case p = 2 and t = 1. It is tautological to say that
operator-theoretic properties of Toeplitz operators are tightly related to properties
of their symbols. One of the most basic results of this kind is the following: Let
f ∈ C(Cn) be such that

f (z)→ 0 as |z| → ∞.



Berger-Coburn Theorem, Localized Operators, and the Toeplitz Algebra 65

Then, Tf is compact. As is well-known the Berezin transform is one-to-one on
the algebra L(F 2

1 ) of all bounded operators. This indicates that operator theoretic
properties are also tightly connected to properties of the Berezin transform, e.g. if
Tf is compact, then it holds

T̃f (z) = f̃ (z)→ 0 as |z| → ∞.

Conversely, it is an obvious question how compactness of an operator can be
characterized in terms of the symbol (in case of a Toeplitz operator) or its Berezin
transform. The first significant progress in this context was made for certain
operators acting on the Bergman space over the unit disc A2(D). We will not
introduce all objects involved and refer to [27] for an introduction to Toeplitz
operators on A2(D).

Theorem 4.1 (Axler-Zheng [1, Theorem 2.2]) Let A ∈ L(A2(D)) be a finite sum
of finite products of Toeplitz operators with essentially bounded symbols. Then

A is compact ⇐⇒ B(A)(z)→ 0 as z→ ∂D.

Here, B(A) denotes the Berezin transform of A.

The corresponding statement for the weighted Bergman spaces over the unit ball
in Cn or even general bounded symmetric domains (with some extra conditions on
the weights) was derived shortly afterwards [11, 22]. In [11] also the Fock space is
treated:

Theorem 4.2 (Engliš [11, Theorem B]) Let A ∈ L(F 2
1 ) be a finite sum of finite

products of Toeplitz operators with essentially bounded symbols. Then, the following
are equivalent:

A is compact ⇐⇒ Ã(z)→ 0 as |z| → ∞.

The next progress made towards a characterization of compactness for an even
larger set of operators acting on F 2

1 followed several years later. Although we put
t = 1 in our discussion most of the remaining statements hold true in the more
general case t > 0 with almost identical proofs.

Set

c0 := 0, cj+1 := 1

4(1− cj )
where j ∈ N0

and note that the sequence (cj )j is monotonely increasing with cj < 1
2 . Let f :

Cn → C be measurable and define:

‖f ‖Dcj
:= ess sup

z∈Cn

|f (z)e−cj |z|2 |.
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Then, letting

Dcj =
{
f : Cn → Cmeasurable : ‖f ‖Dcj

<∞}
,

the norm ‖·‖Dcj
induces the structure of a Banach space on Dcj . By varying j ∈ N0

we obtain an increasing scale of Banach spaces:

L∞(Cn) = Dc0 ⊂ Dc1 · · · ⊂ Dcj ⊂ · · · ⊂ D :=
⋃

j∈N0

Dcj ⊂ L2
1.

Setting now

Hcj = Dcj ∩ Hol(Cn),

equipped with the norm of Dcj we obtain a second scale of Banach spaces in the
Fock space F 2

1 :

C ∼= H0 ⊂ Hc1 ⊂ · · · ⊂ Hcj ⊂ · · · ⊂ H :=
⋃

j∈N0

Hcj ⊂ F 2
1 . (4.1)

For z ∈ C
n we define the Weyl operators Wz : F 2

1 → F 2
1 through

Wz(f )(w) = kz(w)f (w − z).

The operators Wz are well known to be unitary. Further, it holds for all z,w ∈ Cn:

1. W∗
z = W−1

z = W−z
2. WzWw = e−i Im(z·w)Wz+w .

For a linear operator A on F 2
1 and z ∈ C we set

Az := W∗
z AWz.

Definition 4.3 A bounded R-linear operator A : F 2
1 → F 2

1 with A(H) ⊂ H is
said to act uniformly continuously on the scale (4.1) if for each j1 ∈ N0 there exists
j2 ≥ j1 and d > 0 independent of z ∈ Cn such that for all f ∈ Hj1 :

‖Azf ‖Dcj2
≤ d‖f ‖Dcj1

.

We denote the spaces of C-linear operators and the C-antilinear operators acting
uniformly continuously on the scale (4.1) by F l and Fal , respectively.
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Several properties of F l and Fal are known:

Proposition 4.4 (Bauer-Furutani [4])

1. F l is a ∗-algebra,
2. F l contains all Toeplitz operators with essentially bounded symbol,
3. Fal contains the operators wf .

Here, for f ∈ L∞(Cn), we define the antilinear operator wf on F 2
1 by

wf (g) := P(fCg),

where Cg(z) = g(z) denotes complex conjugation. Those operators are closely
related to the little Hankel operators. In [4] they played a role in compactness
characterizations of Toeplitz operators on the pluriharmonic Fock space. Since wf

is not a finite sum of finite products of Toeplitz operators, the following result was
an improvement (in the case t = 1) of Theorem 4.2:

Theorem 4.5 (Bauer-Furutani [4, Theorem 3.11]) Let A ∈ F l ∪Fal . Then, A is
compact if and only if Ã(z)→ 0 as |z| → ∞.

Recall that the (full) Toeplitz algebra is the C∗ algebra generated by Toeplitz
operators with bounded symbols, i.e.

T = C∗
({Tf : f ∈ L∞(Cn)}),

where C∗(M) denotes the C∗ algebra generated by a given set M ⊂ L(F 2
1 ).

The next step forward was a complete characterization of compact operators
in terms of the Toeplitz algebra and the Berezin transform. This result was
first obtained in [23, Theorem 9.5] and [20, Theorem 1.1] in the setting of the
Bergman space and standard weighted Bergman space over the unit ball Bn in Cn,
respectively. There also is a version for the p-Fock space which we state next in the
special case p = 2.

Theorem 4.6 (Bauer-Isralowitz [5, Theorem 1.1]) Let A ∈ L(F 2
1 ). Then, it holds

A is compact ⇐⇒ A ∈ T and Ã(z)→ 0 as |z| → ∞.

Remark 4.7 Theorem 4.6 and its versions on Bergman spaces over Bn have been
proven in the general setting of standard weighted p-Bergman spaces Ap

α(Bn) over
the unit ball Bn ⊂ Cn (here the parameter α refers to the weight) and p-Fock spaces
F

p
t for 1 < p < ∞ in the original papers. For simplicity, we have only quoted the

Hilbert space result. Moreover, a version of this theorem on p-Bergman spaces over
bounded symmetric domains has recently been studied in [15].

One could think that this is the end of the story for characterizing compact operators
on F 2

1 . However, there is a link between Theorems 4.5 and 4.6 which we will discuss
next. If a priori an operatorA is not given as a finite sum of finite products of Toeplitz
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operators it may be difficult to either check whether A ∈ F l ∪ Fal or A ∈ T as is
assumed in the above theorems. On the other hand, there are well-known examples
in the literature of operators A ∈ L(F 2

1 ) which are not compact but with Ã(z)→ 0
as |z| → ∞. For completeness we will present such an example which even is a
bounded Toeplitz operator (with unbounded symbol) below. Hence some additional
assumptions are required to ensure that vanishing of the Berezin transform at infinity
implies compactness of the operator. It is therefore desirable to extend Theorem 4.6
to a class A ⊂ L(F 2

1 ) containing the Toeplitz algebra and for which membership
A ∈ A is easier to check. On the Fock space a new approach appeared in [17, 26]:

Definition 4.8 An operator A ∈ L(F 2
1 ) is said to be sufficiently localized if there

exist constants β,C with 2n < β <∞ and 0 < C such that

∣
∣
〈
Akz, kw

〉
1

∣
∣ ≤ C

(1+ |z−w|)β . (4.2)

We denote the set of all sufficiently localized operators by Asl .

We note at this point that boundedness of an operator A with kz ∈ D(A) for all
z ∈ C

n and with (4.2) already follows under certain natural assumptions on the
domain of A∗:

Lemma 4.9 Let A be a densely defined operator on F 2
1 such that

span{Kz : z ∈ C
n} ⊂ D(A) ∩D(A∗).

If there is a positive function H ∈ L1(Cn, V ) with

|〈Akz, kw〉1| ≤ H(z−w)

for all z,w ∈ Cn, then A is bounded. In particular, (4.2) implies boundedness of A
since

1

(1+ |z|)β ∈ L1(Cn, V ) if β > 2n.

Proof Similarly to the computation in (3.1) one obtains:

(Af )(w) =
∫

Cn

f (z)(A∗Kw)(z)dμ1(z)

=
∫

Cn

‖Kz‖1‖Kw‖1
〈
Akz, kw

〉
1f (z)dμ1(z).

Letting

Ã(z,w) := 〈
Akz, kw

〉
1,
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this implies

(Af )(w) =
∫

Cn

e
|z|2+|w|2

2 Ã(z,w)f (z)dμ1(z).

Observe that it suffices to prove boundedness of the integral operator with kernel

|Ã(z,w)|e |z|
2+|w|2

2 . It holds

1

πn

∫

Cn

|Ã(z,w)|e |z|
2+|w|2

2 e
|w|2

2 e−|w|2dV (w) =

= e
|z|2

2
1

πn

∫

Cn

|Ã(z,w)|dV (w)

≤ e
|z|2

2
1

πn

∫

Cn

H(z−w)dV (w)

= 1

πn
‖H‖L1(Cn,V )e

|z|2
2 .

Analogously:

1

πn

∫

Cn

|Ã(z,w)|e |z|
2+|w|2

2 e
|z|2

2 e−|z|2dV (z) ≤ 1

πn
‖H‖L1(Cn,V )e

|w|2
2 .

Using Schur’s test [16, Theorem 5.2] with the function h(w) = e
|w|2

2 , one therefore
obtains

‖A‖ ≤ 1

πn
‖H‖L1(Cn,V ).

For the particular case

H(w) := 1

(1+ |w|)β

with β > 2n, one easily sees that H ∈ L1(Cn, V ) using polar coordinates. ��
Checking localizedness of an operator in the above sense is indeed simpler than

checking membership in the Toeplitz algebra. In fact, (4.2) reduces (in principle)
to some integral estimate. Further, any Toeplitz operator with bounded symbol is
indeed sufficiently localized according to the simple estimate in Lemma 3.3. Hence
we obtain:

T ⊆ C∗(Asl).

We now relate the notion of localized operators to the result in Theorem 4.5.
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Lemma 4.10 Let A ∈ F l . Then, A is sufficiently localized.

Proof With z,w ∈ Cn we obtain:

〈Akz, kw〉1 = 〈AWz1,WzW
∗
z Ww1〉1

= 〈Az1,W−zWw1〉1
= 〈Az1,Ww−z1〉1e−i Im(z·w)

= 〈Az1, kw−z〉1e−i Im(z·w).

Using this, we obtain for a suitable index k ∈ N0 and from ‖1‖Dck
= 1:

|〈Akz, kw〉1| ≤ 1

πn

∫

Cn

∣
∣[Az1](u)kw−z(u)

∣
∣e−|u|2dV (u)

≤ 1

πn

∫

Cn

‖Az1‖Dck
eRe((w−z)·u)− |w−z|22 −(1−ck)|u|2dV (u)

≤ d

πn

∫

Cn

eRe((w−z)·u)−(1−ck)|u|2dV (u) e−
|w−z|2

2 ,

where d > 0 is the constant from the uniformly continuous action of A on the
scale (4.1). Recall that for a ∈ Cn, γ > 0 and by applying the properties of the
reproducing kernel:

eγ |a|2 =
∫

Cn

|eγ a·u|2dμ1/γ (u)

=
∫

Cn

e2γ Re(a·u)dμ1/γ (u).

Letting γ = 1− ck and a = w−z
2γ gives

∫

Cn

eRe((w−z)·u)−(1−ck)|u|2dV (u) = πn

(1− ck)n
e
|z−w|2
4(1−ck) .

We hence obtain

∣
∣
〈
Akz, kw

〉
1

∣
∣ ≤ d

(1− ck)n
e
|z−w|2
4(1−ck)−

|z−w|2
2

= d

(1− ck)n
e
−( 1

2− 1
4(1−ck) )|z−w|

2

= d

(1− ck)n
e−(

1
2−ck+1)|z−w|2 .

Since ck+1 < 1
2 the statement follows. ��
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We can slightly relax the boundedness assumption of the operator symbol and
still obtain sufficiently localized Toeplitz operators. More precisely:

Lemma 4.11 Let f ∈ BMO be such that the Toeplitz operator Tf is bounded.
Then, Tf is sufficiently localized.

Proof According to Lemma 3.2 and for 0 < s < 1 we have the identity

〈
f kz, kw

〉
1 = e

s
2(1−s) |z−w|2− is

(1−s) Im(w·z)〈
f̃ (s)k1−s

z , k1−s
w

〉
1−s .

Applying Lemma 3.3 with g ∈ L∞(Cn) shows

∣
∣
〈
gk1−s

z , k1−s
w

〉
1−s

∣
∣ ≤ ‖g‖∞e

− 1
4(1−s) |z−w|2 .

By Theorem 3.7 the heat transform f̃ (s) is bounded for each 0 < s < 1. Choosing
now s < 1/2, we obtain from the above estimates

∣
∣
〈
f kz, kw

〉
1

∣
∣ ≤ ‖f̃ (s)‖∞e

2s−1
4(1−s) |z−w|2 ,

where 2s−1
4(1−s) < 0. ��

It was proven by J. Xia and D. Zheng that C∗(Asl) is not too large in the sense
that it still allows the desired compactness characterization:

Theorem 4.12 (Xia-Zheng [26, Theorem 1.2]) Let A ∈ C∗(Asl). Then, A is
compact if and only if Ã(z)→ 0 as z→∞.

At this point we want to mention that the compactness characterization was
already known to hold for bounded single Toeplitz operators with (possibly
unbounded) symbol in BMO. This has been achieved by N. Zorboska in [29] for
the Bergman space A2(D) and later by L. Coburn, J. Isralowitz and B. Li in the
setting of the Fock space [10]. By combining Lemma 4.11 and Theorem 4.12, we
obtain a generalization of the latter result:

Corollary 4.13 Let A ∈ L(F 2
1 ) be a finite sum of finite products of bounded

Toeplitz operators with (possibly unbounded) symbols in BMO. Then, A is compact
if and only if Ã(z)→ 0 as |z| → ∞.

A next step was taken in [17]:

Definition 4.14 An operator A ∈ L(F 2
1 ) is called weakly localized if:

sup
z∈Cn

∫

Cn

|〈Akz, kw〉1|dV (w) <∞,

sup
z∈Cn

∫

Cn

|〈A∗kz, kw〉1|dV (w) <∞,
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lim
r→∞ sup

z∈Cn

∫

|z−w|≥r
|〈Akz, kw〉1|dV (w) = 0,

lim
r→∞ sup

z∈Cn

∫

|z−w|≥r
|〈A∗kz, kw〉1|dV (w) = 0.

The set of all weakly localized operators is denoted by Awl .

It is easy to see that Asl ⊆ Awl . The analogue of Theorem 4.6 for the setting
C∗(Awl) was proven in [17] in case of the Fock space as well as for the Bergman
space over the unit ball.

Finally, the following surprising result was obtained by J. Xia [25] in the setting
of the Bergman space A2(Bn) as well as for the Fock space F 2

1 :

Theorem 4.15 (Xia [25, Section 4]) It holds

T (1) = T = C∗(Asl) = C∗(Awl).

Here, T (1) denotes the norm closure of {Tf : f ∈ L∞}. Theorem 4.15 indicates
that indeed all the generalizations of Theorem 4.6 were just new characterizations
of the Toeplitz algebra. Based on the observations in Lemmas 4.10 and 4.11 we can
add two other characterizations:

Theorem 4.16 Denote by F l the operator norm closure of F l , which is a C∗
algebra. It then holds:

T = F l = C∗
({Tf ; f ∈ BMO and Tf bounded}).

Proof Obviously, F l defines a C∗ algebra in L(F 2
1 ) and since all Toeplitz operators

with essentially bounded symbols are uniformly continuously acting on the scale
(4.1) (cf. [4] for a calculation) it follows that T ⊂ F l . Since elements in F l are
sufficiently localized according to Lemma 4.10 we have:

F l ⊂ C∗(Asl) = T .

The last identity follows from J. Xia’s result in Theorem 4.15. The assertion T = F l

is obtained by combining both inclusions.
As for the second characterization of the Toeplitz algebra recall that L∞ ⊂

BMO. It follows, using Lemma 4.11

T ⊂ C∗
({Tf ; f ∈ BMO and Tf bounded}) ⊂ C∗(Asl).

Equality again follows from Theorem 4.15. ��
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It is worth mentioning, that there are bounded Toeplitz operators (necessarily
with symbols not in BMO) which do not satisfy the desired compactness character-
ization. In particular, they cannot define elements in the Toeplitz algebra. We give
one such example (which has been previously known in the literature):

Example 2 Consider again the function gλ(z) = eλ|z|2 from Example 1. Let λ ∈ C

be such that

Re(λ) <
1

2
(4.3)

|1− λ| = 1 (4.4)

|1− 2λ| > 1. (4.5)

It is easy to see that such λ exist. Assumption (4.3) guarantees that T̃gλ is well-
defined. Recall that it is given by

T̃gλ(z) =
1

(1− λ)n
e

λ
1−λ |z|2 .

Assumption (4.5) is equivalent to Re(λ/(1− λ)) < 0. Hence, it implies that

T̃gλ(z)→ 0 as |z| → ∞.

Further, recall that Tgλ acts on the standard orthonormal basis in (3.5) as:

Tgλe
1
m =

1

(1− λ)|m|+n
e1
m, m ∈ N

n
0 .

Put ν = 1
1−λ . Since e1

m is a homogeneous polynomial of degree |m| we have:

Tgλe
1
m(z) = νn · e1

m(νz).

As assumption (4.4) implies that Tgλ is bounded, this equation extends to all of F 2
1 :

Tgλf (z) = νn · f (νz), f ∈ F 2
1 .

Because of |ν| = 1 the Toeplitz operator Tgλ is unitary, hence cannot be compact.

Let us return to the initial proof of Theorem 4.6 in [5] (which is similar to the
proof in the case of the Bergman space A2(Bn) [20, 23]). Among other ideas the
arguments used results on limit operators. Based on such limit operator techniques,
a characterization of the Fredholm property of operators in T has been proven in
[13] (subsequently to [14] which contains the analysis in the case of the standard
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weighted Bergman spaces Ap
α(Bn)). There, the so-called band-dominated operators

were introduced:

Definition 4.17

1. An operator A ∈ L(L2
1) is called a band operator if there is a number ω > 0

such that MfAMg = 0 for all f, g ∈ L∞(Cn) with

d
(

supp f, supp g
)
> ω.

Here d denotes the Euclidean distance and we write Mf for the multiplication
operator by f . The infimum of all such ω will be called the band-width of A.

2. The set BDO of band-dominated operators is defined as the norm-closure of all
band operators in L(L2

1).

The following properties of BDO have been derived, which relate compressions
to F 2

1 of band-dominated operators to the Toeplitz algebra.

Proposition 4.18 (Fulsche-Hagger [13])

1. BDO is a C∗ algebra of operators on L2
1 containing P and multiplication

operators Mf for f ∈ L∞.
2. P BDOP ⊂ L(F 2

1 ) contains T .

In principle, a similar limit operator approach as in [5] can be used to derive
a compactness characterization for operators from P BDOP . This has not been
worked out for the Fock space, but was done for the Bergman space over bounded
symmetric domains in [15, Theorem A]. After the preceding discussions, this
naturally leads to the question whether P BDOP = T . That this is indeed true
will be the content of the last part of this work. Lemma 4.19 and the main result in
Theorem 4.20 were communicated to us by Raffael Hagger.

Lemma 4.19 For all z ∈ Cn and r > 0 it holds

‖M1−χB(z,r) kz‖1 ≤ Cne
− r2

2n ,

where Cn > 0 is some constant depending only on the dimension n. Here, B(z, r) ⊂
C
n is the Euclidean ball of radius r around z and χB(z,r) is the indicator function of

that ball.

Proof For z ∈ Cn and r > 0 denote by Q(z, r) the set

Q(z, r) : = {w ∈ C
n : |wj − zj | < r for all j = 1, . . . , n}

=
n∏

j=1

D(zj , r),
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where D(zj , r) ⊂ C is the disc around zj ∈ C of radius r . It is immediate that
Q(0, r√

n
) ⊂ B(0, r).

We estimate the norm for z = 0 first:

‖M1−χB(0,r) k0‖2
1 = 1− 1

πn

∫

B(0,r)
e−|z|2dV (z)

≤ 1− 1

πn

∫

Q(0, r√
n
)

e−|z|2dV (z)

= 1−
⎛

⎝ 1

π

∫

D(0, r√
n
)

e−|z1|2dV1(z1)

⎞

⎠

n

,

where in the last integral V1 denotes the Lebesgue measure on C. Using polar
coordinates, one easily sees that

1

π

∫

D(0, r√
n
)

e−|z1|2dV1(z1) = 1− e−
r2
n .

This gives

‖M1−χB(0,r)k0‖1 ≤ 1−
(

1− e−
r2
n

)n

= 1−
n∑

k=0

(
n

k

)

(−1)ke−
kr2
n

=
n∑

k=1

(
n

k

)

(−1)k+1e−
kr2
n ≤

n∑

k=1

(
n

k

)

e−
r2
n .

For general z ∈ Cn, we obtain

‖M1−χB(z,r) kz‖1 = ‖W−zM1−χB(z,r)Wzk0‖1

= ‖M1−χB(0,r) k0‖1 ≤ Cne
− r2

2n ,

where we used the facts that W−z is an isometry and kz = Wzk0 in the first equality
and W−zMfWz = Mf ◦τ−z for arbitrary functions f ∈ L∞(Cn) in the second
equality. ��
Theorem 4.20 It holds T = P BDOP .

Proof It suffices to prove that P BDOP ⊂ T . We will do this by proving that
P BOP ⊂ Asl , the result then follows from Xia’s Theorem 4.15.

Let A ∈ BO have band-width ω. Let z,w ∈ C
n be such that |z−w| ≤ 3ω. Then,

|〈PAPkz, kw〉1| ≤ ‖A‖ = ‖A‖e ω2
2n e−

ω2
2n ≤ ‖A‖e ω2

2n e−
|z−w|2

18n .



76 W. Bauer and R. Fulsche

For |z−w| > 3ω we put r = |z−w|
3 . Observe that this implies

d(B(z, r), B(w, r)) > ω. (4.6)

We obtain

|〈PAPkz, kw〉1| = |〈Akz, kw〉1|
= ∣

∣〈AMχB(z,r) kz,MχB(w,r)
kw〉1

+ 〈AM1−χB(z,r) kz,MχB(w,r)
kw〉1 + 〈Akz,M1−χB(w,r)

kw〉1
∣
∣.

The first term vanishes by Eq. (4.6). For the other two terms, we apply Lemma 4.19
and obtain the estimate

|〈PAPkz, kw〉1| ≤ 2Cn‖A‖e− |z−w|
2

18n .

Adjusting the constants, we obtain a uniform estimate for |〈PAPkz, kw〉1| for all
z,w ∈ Cn which proves that A is sufficiently localized. ��

Since many of the introduced objects also exist in the setting of p-Fock spaces
and several of the mentioned results carry over to this setting one may also ask:

Question 3 Is there an F
p
t -analogue of Theorem 4.15?

Acknowledgement We wish to thank Raffael Hagger who has communicated to us Lemma 4.19
and Theorem 4.20.
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Toeplitz Operators on the Domain
{Z ∈ M2×2(C) | ZZ∗ < I } with
U(2) × T2-Invariant Symbols
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Dedicated to Nikolai Vasilevski on the occasion of his 70th
birthday

Abstract Let D be the irreducible bounded symmetric domain of 2 × 2 complex
matrices that satisfy ZZ∗ < I2. The biholomorphism group of D is realized by
U(2, 2) with isotropy at the origin given by U(2)×U(2). Denote by T2 the subgroup
of diagonal matrices in U(2). We prove that the set of U(2)×T2-invariant essentially
bounded symbols yield Toeplitz operators that generate commutative C∗-algebras
on all weighted Bergman spaces over D. Using tools from representation theory, we
also provide an integral formula for the spectra of these Toeplitz operators.

1 Introduction

In this work we consider the problem of the existence of commutative C∗-algebras
that are generated by families of Toeplitz operators on weighted Bergman spaces
over irreducible bounded symmetric domains. More precisely, we are interested in
the case where the Toeplitz operators are those given by symbols invariant by some
closed subgroup of the group of biholomorphisms. See [1, 6, 11–13] for related

M. Dawson (�)
CONACYT–CIMAT Unidad Mérida, Mérida, Yucatán, Mexico
e-mail: matthew.dawson@cimat.mx

G. Ólafsson
Department of Mathematics, Louisiana State University, Baton Rouge, LA, USA
e-mail: olafsson@math.lsu.edu

R. Quiroga-Barranco
Centro de Investigación en Matemáticas, Guanajuato, Mexico
e-mail: quiroga@cimat.mx

© Springer Nature Switzerland AG 2020
W. Bauer et al. (eds.), Operator Algebras, Toeplitz Operators and Related Topics,
Operator Theory: Advances and Applications 279,
https://doi.org/10.1007/978-3-030-44651-2_9

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44651-2_9&domain=pdf
mailto:matthew.dawson@cimat.mx
mailto:olafsson@math.lsu.edu
mailto:quiroga@cimat.mx
https://doi.org/10.1007/978-3-030-44651-2_9


80 M. Dawson et al.

previous works. This problem has turned out to be a quite interesting one thanks in
part to the application of representation theory.

An important particular case is given when one considers the subgroup fixing
some point in the domain, in other words, a maximal compact subgroup of the
group of biholomorphisms. In [1], we proved that for such maximal compact
subgroups, the corresponding C∗-algebra is commutative. On the other hand, there
is another interesting family of subgroups to consider: the maximal tori in the group
of biholomorphisms. By the results from [1] (see also [2]) it is straightforward to
check that the C∗-algebra generated by the Toeplitz operators whose symbols are
invariant under a fixed maximal torus is commutative if and only if the irreducible
bounded symmetric domain is biholomorphically equivalent to some unit ball.

These results have inspired Nikolai Vasilevski to pose the following question.
Let D be an irreducible bounded symmetric domain that is not biholomorphically
equivalent to a unit ball (that is, it is not of rank one), K a maximal compact
subgroup and T a maximal torus in the group of biholomorphisms of D. Does there
exist a closed subgroup H such that T � H � K for which the C∗-algebras
(for all weights) generated by Toeplitz operators with H -invariant symbols are
commutative? The goal of this work is to give a positive answer to this question
for the classical Cartan domain of type I of 2× 2 matrices. In the rest of this work
we will denote simply by D this domain.

The group of biholomorphisms of D is realized by the Lie group U(2, 2) acting
by fractional linear transformations. A maximal compact subgroup is given by
U(2) × U(2), which contains the maximal torus T2 × T2, where T2 denotes the
group of 2× 2 diagonal matrices with diagonal entries in T. We prove that there are
exactly two subgroups properly between U(2) × U(2) and T2 × T2, and these are
U(2)× T2 and T2 × U(2) (see Proposition 3.3), for which it is also proved that the
corresponding C∗-algebras generated by Toeplitz operators are unitarily equivalent
(see Proposition 3.4). In Sect. 4 we study the properties of U(2) × T2-invariant
symbols. The main result here is Theorem 5.3, where we prove the commutativity
of the C∗-algebras generated by Toeplitz operators whose symbols are U(2)× T2-
invariant. As a first step to understand the structure of these C∗-algebras we provide
in Sect. 6 a computation of the spectra of the Toeplitz operators. The main result
here is Theorem 6.4.

We would like to use this opportunity to thank Nikolai Vasilevski, to whom this
work is dedicated. Nikolai has been a very good friend and an excellent collaborator.
He has provided us all with many ideas to work with.

2 Preliminaries

Let us consider the classical Cartan domain given by

D = {Z ∈ M2×2(C) : ZZ∗ < I2},
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where A < B means that B − A is positive definite. This domain is sometimes
denoted by either DI

2,2 or D2,2.
We consider the Lie group

U(2, 2) = {M ∈ GL(4,C) :M∗I2,2M = I2,2},

where

I2,2 =
(
I2 0
0 −I2

)

and the Lie group

SU(2, 2) = {M ∈ U(2, 2) : detM = 1}.

Then SU(2, 2), and hence also U(2, 2), act transitively on D by

(
A B

C D

)

· Z = (AZ + B)(CZ +D)−1,

where we have a block decomposition by matrices with size 2 × 2. And SU(2, 2)
is, up to covering, the group of biholomorphic isometries of D and the action of
SU(2, 2) is locally faithful. We observe that the action of U(2, 2) on D is not faithful.
More precisely, the kernel of its action is the subgroup of matrices of the form tI4,
where t ∈ T.

The maximal compact subgroup of U(2, 2) that fixes the origin 0 in D is given
by

U(2)×U(2) =
⎧
⎨

⎩

(
A 0
0 B

)

: A ∈ U(2), B ∈ U(2)

⎫
⎬

⎭
.

For simplicity, we write the elements of U(2)×U(2) as (A,B) instead of using their
block diagonal representation. A maximal torus of U(2)× U(2) is given by

T
4 = {(D1,D2) ∈ U(2)× U(2) : D1,D2 diagonal}.

The corresponding maximal compact subgroup and maximal torus in SU(2, 2) are
given by

S(U(2)× U(2)) = {(A,B) ∈ U(2)× U(2) : det(A) det(B) = 1},
T

3 = {(D1,D2) ∈ T
4 : det(D1) det(D2) = 1}.
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For every λ > 3 we will consider the weighted measure vλ on D given by

dvλ(Z) = cλ det(I2 − ZZ∗)λ−4 dZ

where the constant cλ is chosen so that vλ is a probability measure. In particular, we
have, see [4, Thm. 2.2.1]:

cλ = (λ− 3)(λ− 2)2(λ− 1)

π4
, λ > 3.

The Hilbert space inner product defined by vλ will be denoted by 〈·, ·〉λ. We
will from now on always assume that λ > 3. The weighted Bergman space H2

λ(D)

is the Hilbert space of holomorphic functions that belong to L2(D, vλ). This is a
reproducing kernel Hilbert space with Bergman kernel given by

kλ(Z,W) = det(I2 − ZW∗)−λ,

which yields the Bergman projection Bλ : L2(D, vλ)→ H2
λ(D) given by

Bλf (Z) =
∫

D

f (W)kλ(Z,W)dvλ(W).

We recall that the space of holomorphic polynomials P(M2×2(C)) is dense on
every weighted Bergman space. Furthermore, it is well known that one has, for every
λ > 3, the decomposition

H2
λ(D) =

∞⊕

d=0

Pd(M2×2(C))

into a direct sum of Hilbert spaces, where Pd(M2×2(C)) denotes the subspace of
homogeneous holomorphic polynomials of degree d .

For every essentially bounded symbol ϕ ∈ L∞(D) and for every λ > 3 we define
the corresponding Toeplitz operator by

T (λ)
ϕ (f ) = Bλ(ϕf ), f ∈ H2

λ(D).

In particular, these Toeplitz operators are given by the following expression

T (λ)
ϕ (f )(Z) = cλ

∫

D

ϕ(W)f (W) det(I2 −WW∗)λ−4

det(I2 − ZW∗)λ
dW.
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On the other hand, for every λ > 3 there is an irreducible unitary representation
of U(2, 2) acting on H2

λ(D) given by

πλ : Ũ(2, 2)×H2
λ(D)→ H2

λ(D)

(πλ(g)f )(Z) = j (g−1, Z)
λ
4 f (g−1Z),

where j (g,Z) denotes the complex Jacobian of the transformation g at the point Z.
We note that every g ∈ U(2)×U(2) defines a linear unitary transformation of D

that preserves all the measures dvλ.
If λ/4 is not an integer, then j (g,Z)λ/4 is not always well defined which makes

it necessary to consider a covering of U(2, 2). We therefore consider the universal
covering group Ũ(2, 2) of U(2, 2) and its subgroup R × SU(2) × R × SU(2), the
universal covering group of U(2)×U(2). Here the covering map is given by

(x,A, y, B) �→ (eixA, eiyB).

Hence, the action of R× SU(2)× R× SU(2) on D is given by the expression

(x,A, y, B)Z = ei(x−y)AZB−1.

It follows that the restriction of πλ to the subgroup R×SU(2)×R×SU(2) is given
by the expression

(πλ(x,A, y, B)f )(Z) = eiλ(y−x)f (ei(y−x)A−1ZB).

It is well known that this restriction is multiplicity-free for every λ > 3 (see [1, 8–
10]).

It is useful to consider as well the representation

π ′λ : (U(2)× U(2))×H2
λ(D)→ H2

λ(D)

(π ′λ(g)f )(Z) = f (g−1Z),

which is well-defined and unitary as a consequence of the previous remarks. Note
that the representations πλ and π ′λ are defined on groups that differ by a covering,
but they also differ by the factor eiλ(y−x). It follows that π ′λ is multiplicity-free with
the same isotypic decomposition as that of πλ.
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3 Toeplitz Operators Invariant Under Subgroups of
U(2) × U(2)

For a closed subgroup H ⊂ U(2)×U(2) we will denote by AH the complex vector
space of essentially bounded symbols ϕ on D that are H -invariant, i.e. such that for
every h ∈ H we have

ϕ(hZ) = ϕ(Z)

for almost every Z ∈ D. Denote by T (λ)(AH) the C∗-algebra generated by Toeplitz
operators with symbols in AH acting on the weighted Bergman space H2

λ(D). We
have U(2)×U(2) = T(S(U(2)×U(2))) and the center acts trivially on D. We also
point to the special case that will be the main topic of this article.

Let us denote

U(2)× T =

⎧
⎪⎨

⎪⎩
(A, t) =

⎛

⎝A,

(
t 0
0 t

)⎞

⎠ : A ∈ U(2), t ∈ T

⎫
⎪⎬

⎪⎭
.

We now prove that U(2)× T-invariance is equivalent to U(2)× T2-invariance.

Lemma 3.1 The groups U(2) × T2 and U(2) × T have the same orbits. In other
words, for every Z ∈ D, we have

(U(2)× T)Z = (U(2)× T
2)Z.

In particular, an essentially bounded symbol ϕ is U(2)× T2-invariant if and only if
it is U(2)× T-invariant.

Proof We observe that U(2) × T
2 is generated as a group by U(2) × T and the

subgroup

{I2} × TI2.

But for every t ∈ T and Z ∈ D we have

(I2, tI2)Z = tZ = (tI2, I2)Z

which is a biholomorphism of D already realized by elements of U(2)× T. Hence,
U(2)× T2 and U(2)× T yield the same transformations on their actions on D, and
so the result follows. ��

The following is now a particular case of [1, Thm. 6.4] and can be proved directly
in exactly the same way.
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Theorem 3.2 For a closed subgroup H of U(2) × U(2) the following conditions
are equivalent for every λ > 3:

(1) The C∗-algebra T (λ)(AH) is commutative.
(2) The restriction πλ|H is multiplicity-free.

As noted in Sect. 2, the unitary representation πλ is multiplicity-free on S(U(2)×
U(2)) and thus the C∗-algebra generated by Toeplitz operators by S(U(2)× U(2))-
invariant symbols is commutative for every weight λ > 3. Such operators are also
known as radial Toeplitz operators.

On the other hand, it follows from Example 6.5 of [1] that the restriction πλ|T3

is not multiplicity-free, where T3 is the maximal torus of S(U(2)×U(2)) described
in Sect. 2. Hence, we conclude that T (λ)(AT3

) is not commutative for any λ > 3.
We now consider subgroups H such that T

3 ⊂ H ⊂ S(U(2) × U(2)) or,
equivalently, subgroups H such that T4 ⊂ H ⊂ U(2) × U(2). For simplicity, we
will assume that H is connected.

Proposition 3.3 Let T4 denote the subgroup of diagonal matrices in U(2)×U(2).
Then the only connected subgroups strictly between U(2)×U(2) and T4 are U(2)×
T2 and T2 × U(2). In particular, the only connected subgroups strictly between
S(U(2)×U(2)) and T3 are S(U(2)× T2) and S(T2 × U(2)).

Proof It is enough to prove the first claim for the corresponding Lie algebras.
First note that (x1, x2 ∈ R, z ∈ C)

⎡

⎣

(
ix1 0
0 ix2

)

,

(
0 z

−z 0

)⎤

⎦ =
(

0 i(x1 − x2)z

−i(x1 − x2)z 0

)

,

which proves that the space

V =
⎧
⎨

⎩

(
0 z

−z 0

)

: z ∈ C

⎫
⎬

⎭

is an irreducible iR2-submodule of u(2). Hence, the decomposition of u(2)× u(2)
into irreducible iR4-submodules is given by

u(2)× u(2) = iR4 ⊕ (V × {0})⊕ ({0} × V ).

We conclude that u(2)×iR2 and iR2×u(2) are the only iR4-submodules strictly
between u(2)× u(2) and iR4, and both are Lie algebras. ��

There is natural biholomorphism

F : D→ D

Z �→ Z 
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that clearly preserves all the weighted measures dvλ. Hence, F induces a unitary
map

F ∗ : L2(D, vλ)→ L2(D, vλ)

F ∗(f ) = f ◦ F−1

that preserves H2
λ(D). And the same expression

ϕ �→ F ∗(ϕ) = ϕ ◦ F−1

defines an isometric isomorphism on the space L∞(D) of essentially bounded
symbols.

Furthermore, we consider the automorphism ρ ∈ Aut(U(2) × U(2)) given by
ρ(A,B) = (B,A). Thus, we clearly have

F((A,B)Z) = F(AZB−1) = BZ A−1 = ρ(A,B)F (Z),

for all (A,B) ∈ U(2)×U(2) and Z ∈ D. In other words, the map F intertwines the
U(2)×U(2)-action with that of the image of ρ.

We observe that ρ(U(2)× T2) = T2 × U(2). Hence, the previous constructions
can be used to prove that both groups define equivalent C∗-algebras from invariant
Toeplitz operators.

Proposition 3.4 The isomorphism of L∞(D) given by F ∗ maps AU(2)×T2
onto

AT
2×U(2). Furthermore, for every weight λ > 3 and for every ϕ ∈ AU(2)×T2

we
have

T
(λ)
F ∗(ϕ) = F ∗ ◦ T (λ)

ϕ ◦ (F ∗)−1.

In particular, the C∗-algebras T (λ)(AU(2)×T2
) and T (λ)(AT

2×U(2)) are unitarily
equivalent for every λ > 3.

Proof From the above computations, for a given ϕ ∈ L∞(D) we have

ϕ ◦ (A,B) ◦ F−1 = ϕ ◦ F−1 ◦ ρ(A,B)

for every (A,B) ∈ U(2) × U(2). Hence, ϕ is U(2) × T2-invariant if and only if
F ∗(ϕ) is T2 × U(2)-invariant. This proves the first part.



Toeplitz Operators on the Domain {Z ∈ M2×2(C) | ZZ∗ < I} with U(2)×T
2-. . . 87

On the other hand, we use that the map F ∗ is unitary on L2(D, vλ) to conclude
that for every f, g ∈ H2

λ(D) we have

〈
T
(λ)
F ∗(ϕ)(f ), g

〉

λ
= 〈

F ∗(ϕ)f, g
〉
λ

=
〈
(ϕ ◦ F−1)f, g

〉

λ

= 〈
ϕ(f ◦ F), g ◦ F 〉

λ

=
〈
T (λ)
ϕ ◦ (F ∗)−1(f ), (F ∗)−1g

〉

λ

=
〈
F ∗ ◦ T (λ)

ϕ ◦ (F ∗)−1(f ), g
〉

λ
,

and this completes the proof. ��

4 U(2) × T2-Invariant Symbols

As noted in Sect. 2, the subgroup U(2) × U(2) does not act faithfully. Hence,
it is convenient to consider suitable subgroups for which the action is at least
locally faithful. This is particularly important when describing the orbits of the
subgroups considered. We also noted before that the most natural choice is to
consider subgroups of S(U(2) × U(2)), however for our setup it will be useful to
consider other subgroups.

For the case of the subgroup U(2) × T2 it turns out that U(2) × T2-invariance
is equivalent to S(U(2) × T2)-invariance. This holds for the action through
biholomorphisms on D and so for every induced action on function spaces over
D.

To understand the structure of the U(2) × T-orbits the next result provides a
choice of a canonical element on each orbit.

Proposition 4.1 For every Z ∈ M2×2(C) there exists r ∈ [0,∞)3 and (A, t) ∈
U(2)× T such that

(A, t)Z =
(
r1 r2

0 r3

)

.

Furthermore, if Z = (Z1, Z2) satisfies det(Z), 〈Z1, Z2〉 	= 0, then r is unique and
(A, t) is unique up to a sign.

Proof First assume that det(Z) = 0, so that we can write Z = (au, bu) for some
unitary vector u ∈ C2 and for a, b ∈ C. For Z = 0 the claim is trivial. If either a
or b is zero, but not both, then we can choose A ∈ U(2) that maps the only nonzero
column into a positive multiple of e1 and the result follows. Finally, we assume that
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a and b are both non-zero. In this case, choose A ∈ U(2) such that A(au) = |a|e1
and t ∈ T such that

t2 = a|b|
b|a| .

Then, one can easily check that

(tA, t)Z =
(
|a| |b|
0 0

)

.

Let us now assume that det(Z) 	= 0. From the unit vector
(
a

b

)

= Z1

|Z1| ,

we define

A =
(

a b

−b a

)

∈ SU(2).

Then, it follows easily that we have

AZ =
(
|Z1| 1

|Z1| 〈Z2, Z1〉
0 1

|Z1| det(Z)

)

.

If s, t ∈ T are given, then we have

⎛

⎝

(
t 0
0 s

)

A, t

⎞

⎠Z =
⎛

⎝|Z1| t2

|Z1| 〈Z2, Z1〉
0 st

|Z1| det(Z)

⎞

⎠ .

Hence, it is enough to choose s, t ∈ T so that r2 = t2 〈Z2, Z1〉 and r3 = st det(Z)
are both non-negative to complete the existence part with r1 = |Z1|.

For the uniqueness, let us assume that det(Z), 〈Z1, Z2〉 	= 0 and besides the
identity in the statement assume that we also have

(A′, t ′)Z =
(
r ′1 r ′2
0 r ′3

)

,

with the same restrictions. Then, we obtain the identity

(A′A−1, t ′t)
(
r1 r2

0 r3

)

=
(
r ′1 r ′2
0 r ′3

)

. (4.1)



Toeplitz Operators on the Domain {Z ∈ M2×2(C) | ZZ∗ < I} with U(2)×T
2-. . . 89

This implies that A′A−1 is a diagonal matrix of the form

(
a 0
0 b

)

with a, b ∈ T. Then, taking the determinant of (4.1) we obtain abr1r3 = r ′1r ′3, which
implies that ab = 1. If we now use the identities from the entries in (4.1), then one
can easily conclude that r = r ′ and (A′, t ′) = ±(A, t). ��

The following result is an immediate consequence.

Corollary 4.2 Let ϕ ∈ L∞(D) be given. Then, ϕ is U(2)×T2-invariant if and only
if for a.e. Z ∈ D we have

ϕ(Z) = ϕ

(
r1 r2

0 r3

)

where r = (r1, r2, r3) are the (essentially) unique values obtained from Z in
Proposition 4.1.

5 Toeplitz Operators with U(2) × T2-Invariant Symbols

As noted in Sect. 2, for every λ > 3 the restriction of πλ to R×SU(2)×R×SU(2)
is multiplicity-free. We start this section by providing an explicit description of the
corresponding isotypic decomposition.

Let us consider the following set of indices

−→
N

2 = {ν = (ν1, ν2) ∈ Z
2 : ν1 ≥ ν2 ≥ 0}.

Then, for every ν ∈ −→N 2, we let Fν denote the complex irreducible SU(2)-module
with dimension ν1 − ν2 + 1. For example, Fν can be realized as the SU(2)-
module given by Symν1−ν2(C2) or by the space of homogeneous polynomials in
two complex variables and degree ν1 − ν2. Next, we let the center TI2 of U(2) act
on the space Fν by the character t �→ tν1+ν2 . It is easy to check that the actions
on Fν of SU(2) and TI2 are the same on their intersection {±I2}. This turns Fν

into a complex irreducible U(2)-module. We note (and will use without further
remarks) that the U(2)-module structure of Fν can be canonically extended to a
module structure over GL(2,C).

We observe that the dual F ∗ν as U(2)-module is realized by the same space with
the same SU(2)-action but with the action of the center TI2 now given by the
character t �→ t−ν1−ν2 .
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If V is any R× SU(2)×R× SU(2)-module, then for every λ we consider a new
R× SU(2)×R× SU(2)-module given by the action

(x,A, y, B) · v = eiλ(y−x)(x,A, y, B)v (5.1)

where (x,A, y, B) ∈ R×SU(2)×R×SU(2), v ∈ V and the action of (x,A, y, B)

on v on the left-hand side is given by the original structure of V . We will denote by
Vλ this new R× SU(2)×R× SU(2)-module structure.

In particular, for every ν ∈ −→N 2 the space F ∗ν ⊗ Fν is an irreducible module over
U(2) × U(2) and, for every λ > 3, the space (F ∗ν ⊗ Fν)λ is an irreducible module

over R× SU(2)× R× SU(2). Note that two such modules defined for ν, ν′ ∈ −→N 2

are isomorphic (over the corresponding group) if and only if ν = ν′.

Proposition 5.1 For every λ > 3, the isotypic decomposition of the restriction of
πλ to R× SU(2)× R× SU(2) is given by

H2
λ(D) ∼=

⊕

ν∈−→N 2

(F ∗ν ⊗ Fν)λ,

and this decomposition is multiplicity-free. With respect to this isomorphism and for
every d ∈ N, the subspace Pd(M2×2(C)) corresponds to the sum of the terms for
ν such that |ν| = d . Furthermore, for the Cartan subalgebra given by the diagonal
matrices of u(2)× u(2) and a suitable choice of positive roots, the irreducible R×
SU(2)×R×SU(2)-submodule of H2

λ(D) corresponding to (F ∗ν ⊗Fν)λ has a highest
weight vector given by

pν(Z) = z
ν1−ν2
11 det(Z)ν2,

for every ν ∈ −→N 2.

Proof By the remarks in Sect. 2 we can consider the representation π ′λ. Fur-
thermore, it was already mentioned in that section that Pd(M2×2(C)) is R ×
SU(2)×R×SU(2)-invariant and so we compute its decomposition into irreducible
submodules. In what follows we consider both πλ and π ′λ always restricted to
R × SU(2) × R × SU(2). We also recall that for π ′λ we already have an action
for U(2)× U(2) without the need of passing to the universal covering group.

Note that the representation π ′λ on each Pd(M2×2(C)) naturally extends with the
same expression from U(2)× U(2) to GL(2,C)× GL(2,C). This action is regular
in the sense of representations of algebraic groups. By the Zariski density of U(2)
in GL(2,C) it follows that invariance and irreducibility of subspaces as well as
isotypic decompositions with respect to either U(2) or GL(2,C) are the same for
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π ′λ in Pd(M2×2(C)). Hence, we can apply Theorem 5.6.7 from [3] (see also [5]) to
conclude that

Pd(M2×2(C)) ∼=
⊕

ν∈−→N 2

|ν|=d

F ∗ν ⊗ Fν

as U(2)×U(2)-modules for the representation π ′λ. Since the representations πλ and
π ′λ differ by the factor eiλ(y−x) for elements of the form (x,A, y, B), taking the
sum over d ∈ N we obtain the isotypic decomposition of H2

λ(D) as stated. This is
multiplicity-free as a consequence of the remarks in this section.

Finally, the claim on highest weight vectors is contained in the proof of
Theorem 5.6.7 from [3], and it can also be found in [5]. ��

We now consider the subgroup U(2)×T
2. Note that the subgroup of R×SU(2)×

R × SU(2) corresponding to U(2) × T
2 is realized by R × SU(2) × R × T with

covering map given by the expression

(x,A, y, t) �→
⎛

⎝eixA, eiy

(
t 0
0 t

)⎞

⎠ .

In particular, the action of R× SU(2)×R× T on D is given by

(x,A, y, t)Z = ei(x−y)AZ
(
t 0
0 t

)

,

and the representation πλ restricted to R× SU(2)×R× T is given by

(πλ(x,A, y, t)f )(Z) = eiλ(y−x)f

⎛

⎝ei(y−x)A−1Z

(
t 0
0 t

)⎞

⎠ .

We recall that for any Cartan subgroup of U(2) we have a weight space
decomposition

Fν =
ν1−ν2⊕

j=0

Fν(ν1 − ν2 − 2j),

where Fν(k) denotes the one-dimensional weight space corresponding to the weight
k = −ν1 + ν2,−ν1 + ν2 + 2, . . . , ν1 − ν2 − 2, ν1 − ν2. For simplicity, we will
always consider the Cartan subgroup T2 of U(2) given by its subset of diagonal
matrices. We conclude that Fν(k) is isomorphic, as a T2-module, to the one-
dimensional representation corresponding to the character (t1, t2) �→ t

ν2
1 tk2 . We
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will denote by C(m1,m2) the one-dimensional T2-module defined by the character
(t1, t2) �→ t

m1
1 t

m2
2 , where (m1,m2) ∈ Z

2. In particular, we have Fν(k) ∼= C(ν2,k) for
every k = −ν1 + ν2,−ν1 + ν2 + 2, . . . , ν1 − ν2 − 2, ν1 − ν2.

Using the previous notations and remarks we can now describe the isotypic
decomposition for the restriction of πλ to R × SU(2) × R × T. As before, for a
module V over the group R×SU(2)×R×T we will denote by Vλ the module over
the same group obtained by the expression (5.1).

Proposition 5.2 For every λ > 3, the isotypic decomposition of the restriction of
πλ to R× SU(2)× R× T is given by

H2
λ(D) ∼=

⊕

ν∈−→N 2

ν1−ν2⊕

j=0

(F ∗ν ⊗C(ν2,ν1−ν2−2j))λ,

and this decomposition is multiplicity-free. Furthermore, for the Cartan subalgebra
given by the diagonal matrices of u(2) × iR2 and a suitable choice of positive
roots, the irreducible R × SU(2) × R × T-submodule of H2

λ(D) corresponding
to (F ∗ν ⊗ C(ν2,ν1−ν2−2j))λ has a highest weight vector given by

pν,j (Z) = z
ν1−ν2−j
11 z

j

12 det(Z)ν2,

for every ν ∈ −→N 2 and j = 0, . . . , ν1 − ν2.

Proof We build from Proposition 5.1 and its proof so we follow its notation.
As noted above in this section we have a weight space decomposition

Fν =
ν1−ν2⊕

j=0

Fν(ν1 − ν2 − 2j) ∼=
ν1−ν2⊕

j=0

C(ν2,ν1−ν2−2j),

where the isomorphism holds term by term as modules over the Cartan subgroup T2

of diagonal matrices of U(2). It follows from this and Proposition 5.1 that we have
an isomorphism

H2
λ(D) ∼=

⊕

ν∈−→N 2

ν1−ν2⊕

j=0

F ∗ν ⊗ C(ν2,ν1−ν2−2j),

of modules over U(2)×T2 for the restriction of π ′λ to this subgroup. Hence, with the
introduction of the factor eiλ(y−x) from (5.1) we obtain the isomorphism of modules
over R× SU(2)× R× T for the restriction of πλ to this subgroup. This proves the
first part of the statement.



Toeplitz Operators on the Domain {Z ∈ M2×2(C) | ZZ∗ < I} with U(2)×T
2-. . . 93

We also note that the modules (F ∗ν ⊗C(ν2,ν1−ν2−2j))λ are clearly irreducible over
R× SU(2)×R×T and non-isomorphic for different values of ν and j . Hence, the
restriction of πλ to R× SU(2)×R× T is multiplicity-free.

On the other hand, the proof of Theorem 5.6.7 from [3], on which that of
Proposition 5.1 is based, considers the Cartan subalgebra defined by diagonal
matrices in u(2)×u(2) and the order on roots for which the positive roots correspond
to matrices of the form (X, Y ) with X lower triangular and Y upper triangular.

With these choices, for every ν ∈ −→
N 2, the highest weight vector pν(Z) from

Proposition 5.1 lies in the subspace corresponding to the tensor product of two
highest weight spaces. Hence, pν(Z) lies in the subspace corresponding to (F ∗ν ⊗
C(ν2,ν1−ν2))λ. In particular,pν(Z) is a highest weight vector for (F ∗ν ⊗C(ν2,ν1−ν2))λ.

It is well known from the description of the representations of sl(2,C) that the
element

Y =
(

0 0
1 0

)

∈ sl(2,C)

acts on Fν so that it maps

Fν(ν1 − ν2 − 2j)→ Fν(ν1 − ν2 − 2j − 2)

isomorphically for every j = 0, . . . , ν1 − ν2 − 1. This holds for the order where
the upper triangular matrices in sl(2,C) define positive roots. Since the action of
U(2)×{I2} commutes with that of Y it follows that the element (0, Y ) ∈ sl(2,C)×
sl(2,C) maps a highest weight vector of F ∗ν ⊗C(ν2,ν1−ν2−2j) onto a highest weight
vector of F ∗ν ⊗C(ν2,ν1−ν2−2j−2). Hence, a straightforward computation that applies
j -times the element (0, Y ) starting from pν(Z) shows that the vector

pν,j (Z) = z
ν1−ν2−j
11 z

j
12 det(Z)ν2

defines a highest weight vector for the submodule corresponding to space F ∗ν ⊗
C(ν2,ν1−ν2−2j) for the representation π ′λ restricted to R × SU(2) × R × T. Again,
it is enough to consider the factor from (5.1) to conclude the claim on the highest
weight vectors for πλ restricted to R× SU(2)×R× T. ��

As a consequence we obtain the following result.

Theorem 5.3 For every λ > 3, the C∗-algebra T (λ)(AU(2)×T2
) generated by

Toeplitz operators with essentially bounded U(2) × T2-invariant symbols is com-
mutative. Furthermore, if H is a connected subgroup between T4 and U(2)× U(2)
such that T (λ)(AH ) is commutative, then H is either of U(2) × U(2), U(2) × T2

or T2 × U(2). Also, for the last two choices of H , the corresponding C∗-algebras
T (λ)(AH ) are unitarily equivalent.
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Proof The commutativity of T (λ)(AU(2)×T2
) follows from Proposition 5.2 and

Theorem 3.2. The possibilities on the choices of H follows from Proposition 3.3
and the remarks from Sect. 2. The last claim is the content of Proposition 3.4. ��

We also obtain the following orthogonality relations for the polynomials pν,j .

Proposition 5.4 Let ν ∈ −→N 2 be fixed. Then, we have

∫

U(2)
pν,j (A)pν,k(A) dA = δjk

ν1 − ν2 + 1

(
ν1 − ν2

j

)

for every j, k = 0, . . . , ν1 − ν2.

Proof We remember that the irreducible U(2)-module Fν can be realized as the
space of homogeneous polynomials of degree ν1−ν2 in two complex variables. For
this realization, the U(2)-action is given by

(πν(A)p)(z) = det(A)ν1p(A−1z)

for A ∈ U(2) and z ∈ C2.
Also, the computation of orthonormal bases on Bergman spaces on the unit ball

(see for example [14]) implies that there is a U(2)-invariant inner product 〈·, ·〉 on
Fν for which the basis

⎧
⎨

⎩
vj (z1, z2) =

(
ν1 − ν2

j

) 1
2

z
ν1−ν2−j
1 z

j

2 : j = 0, 1, . . . , ν1 − ν2

⎫
⎬

⎭
,

is orthonormal. We fix the inner product and this orthonormal basis for the rest of
the proof.

With these choices it is easy to see that the map given by

Z �→ 〈
πν(Z)vj , v0

〉
,

for Z ∈ GL(2,C), is polynomial and is a highest weight vector for the U(2) ×
T2-module corresponding to F ∗ν ⊗ C(ν2,ν1−ν2−2j) in the isomorphism given by
Proposition 5.2. Hence there is a complex number αν,j such that

pν,j (Z) = αν,j
〈
πν(Z)vj , vν

〉

for all Z ∈ GL(2,C) and j = 0, . . . , ν1 − ν2.
By Schur’s orthogonality relations we conclude that

∫

U(2)
pν,j (Z)pν,k(Z) dZ = δjk|αν,j |2

ν1 − ν2 + 1
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for every j, k = 0, . . . , ν1 − ν2.
Next we choose

A0 =
⎛

⎝
1√
2
− 1√

2
1√
2

1√
2

⎞

⎠ ∈ SU(2).

and evaluate at this matrix to compute the constant αν,j .
First, we compute

(πν(A
−1
0 )v0)(z1, z2) = v0

⎛

⎜
⎝

⎛

⎝
1√
2
− 1√

2
1√
2

1√
2

⎞

⎠

(
z1

z2

)
⎞

⎟
⎠

= v0

(
1√
2
(z1 − z2),

1√
2
(z1 + z2)

)

= 1√
2ν1−ν2

(z1 − z2)
ν1−ν2

= 1√
2ν1−ν2

ν1−ν2∑

j=0

(−1)j
(
ν1 − ν2

j

)

z
ν1−ν2−j
1 z

j

2,

which implies that

〈
πν(A0)vj , v0

〉 =
〈
vj , πν(A

−1
0 )v0

〉
= (−1)j√

2ν1−ν2

(
ν1 − ν2

j

) 1
2

.

Meanwhile,

pν,j (A0) =
(

1√
2

)ν1−ν2−j (

− 1√
2

)j

det(A0)
ν2 = (−1)j√

2ν1−ν2
,

thus implying that

αν,j =
(
ν1 − ν2

j

) 1
2

.

This completes our proof. ��
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6 The Spectra of Toeplitz Operators with
U(2) × T2-Invariant Symbols

We recall that the Haar measure μ on GL(2,C) is given by

dμ(Z) = | det(Z)|−4 dZ = det(ZZ∗)−2 dZ.

where dZ denotes the Lebesgue measure on the Euclidean space M2×2(C).
Furthermore, we have the following expression for the integration with respect to
the Haar measure:

Lemma 6.1 For every function f ∈ Cc(GL(2,C)) we have

∫

GL(2,C)
f (Z) dμ(Z) =

∫

C

∫

(0,∞)2

∫

U(2)
f

⎛

⎝A

(
a1 z

0 a2

)⎞

⎠ a−2
2 dA da dz.

Proof For the moment let

nz =
(

1 z

0 1

)

.

We start with the Iwasawa decomposition of GL(2,C) that allows us to decompose
any Z ∈ GL(2,C) as

Z = A diag(a1, b1)nz

where A ∈ U(2), a1, a2 > 0 and z ∈ C. Then, by [7, Prop. 8.43] and some changes
of coordinates we obtain the result as follows.

∫

GL(2,C)
f (Z) dμ(Z)

=
∫

C

∫ ∞

0

∫ ∞

0

∫

U(2)
f

⎛

⎝A

(
a1 0
0 a2

)

nz

⎞

⎠ a2
1a
−2
2 dA da1 da2 dz

=
∫

C

∫ ∞

0

∫ ∞

0

∫

U(2)
f

⎛

⎝A

(
a1 a1z

0 a2

)⎞

⎠ a2
1a
−2
2 dA da1 da2 dz

=
∫

C

∫ ∞

0

∫ ∞

0

∫

U(2)
f

⎛

⎝A

(
a1 z

0 a2

)⎞

⎠ a−2
2 dA da1 da2 dz. ��
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By the remarks above, the weighted measure vλ on D can be written in terms of
the Haar measure on GL(2,C) as follows

dvλ(Z) = cλ| det(Z)|4 det(I2 − ZZ∗)λ−4 dμ(Z) (6.1)

= cλ det(ZZ∗)2 det(I2 − ZZ∗)λ−4 dμ(Z).

We use this and Lemma 6.1 to write down the measure vλ in terms of measures
associated to the foliation on M2×2(C) given by the action of U(2) × T2 (see
Proposition 4.1). The next result applies only to suitably invariant functions, but
this is enough for our purposes.

Proposition 6.2 Let λ > 3 be fixed. If f ∈ Cc(M2×2(C)) is a function that satisfies
f (tθZt

−1
θ ) = f (Z) for every Z ∈ M2×2(C) where

tθ =
(
e2πiθ 0

0 e−2πiθ

)

, θ ∈ R,

then we have

∫

M2×2(C)

f (Z) dvλ(Z) = 2πcλ

∫

R
3+

∫

U(2)
f

⎛

⎝A

(
r1 r2

0 r3

)⎞

⎠ r4
1 r2r

2
3b(r)

λ−4 dA dr,

where b(r) = 1− r2
1 − r2

2 − r2
3 + r2

1 r
2
3 for r ∈ (0,∞)3.

Proof First we observe that for every A ∈ U(n), a1, a2 > 0 and z ∈ C we have

det

⎛

⎝I2 − A

(
a1 z

0 a2

) (
a1 0
z a2

)

A∗
⎞

⎠ = det

⎛

⎝I2 −
(
a2

1 + |z|2 a2z

a2z a2
2

)⎞

⎠

= det

⎛

⎝

(
1− a2

1 − |z|2 −a2z

−a2z 1− a2
2

)⎞

⎠

= 1− a2
1 − a2

2 − |z|2 + a2
1a

2
2

= b(a1, |z|, a2),
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where b is defined as in the statement. Using this last identity, (6.1) and Lemma 6.1
we compute the following for f as in the statement. We apply some coordinates
changes and use the bi-invariance of the Haar measure of U(n).

∫

M2×2(C)

f (Z) dvλ(Z)

= cλ

∫

C

∫

(0,∞)2

∫

U(2)
f

⎛

⎝A

(
a1 z

0 a2

)⎞

⎠

× a4
1a

2
2b(a1, |z|, a2)

λ−4 dA da dz

= 2πcλ

∫ 1

0

∫

(0,∞)3

∫

U(2)
f

⎛

⎝A

(
a1 re2πiθ

0 a2

)⎞

⎠

× a4
1a

2
2rb(a1, r, a2)

λ−4 dA da dr dθ

= 2πcλ

∫ 1

0

∫

(0,∞)3

∫

U(2)
f

⎛

⎝Atθ/2

(
a1 r

0 a2

)

t−1
θ/2

⎞

⎠

× a4
1a

2
2rb(a1, r, a2)

λ−4 dA da dr dθ

= 2πcλ

∫ 1

0

∫

(0,∞)3

∫

U(2)
f

⎛

⎝t−1
θ/2Atθ/2

(
a1 r

0 a2

)⎞

⎠

× a4
1a

2
2rb(a1, r, a2)

λ−4 dA da dr dθ

= 2πcλ

∫ 1

0

∫

(0,∞)3

∫

U(2)
f

⎛

⎝A

(
a1 r

0 a2

)⎞

⎠

× a4
1a

2
2rb(a1, r, a2)

λ−4 dA da dr dθ.

��
In view of Proposition 6.2 the following formula will be useful.

Lemma 6.3 For every ν ∈ −→N 2 and j = 0, . . . , ν1 − ν2 we have

pν,j

⎛

⎝A

(
r1 r2

0 r3

)⎞

⎠ =
j∑

k=0

(
j

k

)

pν,k(A)r
ν1−j
1 r

j−k
2 r

ν2+k
3

for every A ∈ U(2) and r ∈ (0,∞)3.
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Proof Let A ∈ U(2) be given and write

A =
(

α β

−γ β γα

)

,

where α, β, γ ∈ C with |α|2 + |β|2 = 1 and |γ | = 1. Hence, we have

A

(
r1 r2

0 r3

)

=
(
αr1 αr2 + βr3

∗ ∗

)

,

and so we conclude that

pν,j

⎛

⎝A

(
r1 r2

0 r3

)⎞

⎠

= (αr1)
ν1−ν2−j (αr2 + βr3)

j det

⎛

⎝A

(
r1 r2

0 r3

)⎞

⎠

ν2

= (αr1)
ν1−ν2−j

j∑

k=0

(
j

k

)

(αr2)
j−k(βr3)

k det

⎛

⎝A

(
r1 r2

0 r3

)⎞

⎠

ν2

=
j∑

k=0

(
j

k

)

αν1−ν2−kβk det(A)ν2r
ν1−j
1 r

j−k
2 r

ν2+k
3

=
j∑

k=0

(
j

k

)

pν,k(A)r
ν1−j
1 r

j−k
2 r

ν2+k
3 .

Note that in the last line we have used the expression obtained in the first line. ��
We now apply the previous results to compute the spectra of the Toeplitz

operators with U(2)× T2-invariant symbols.

Theorem 6.4 Let λ > 3 and ϕ ∈ AU(2)×T2
be given. With the notation of Proposi-

tion 5.2, the Toeplitz operator Tϕ acts on the subspace of H2
λ(D) corresponding to

(F ∗ν ⊗ C(ν2,ν1−ν2−2j))λ as a multiple of the identity by the constant

γ (ϕ, ν, j) =
〈
ϕpν,j , pν,j

〉
λ〈

pν,j , pν,j

〉
λ

=

j∑

k=0

(
j

k

)2(
ν1 − ν2

k

) ∫

�

ϕ

(
r1 r2

0 r3

)

a(r, ν, j, k)b(r)λ−4 dr

j∑

k=0

(
j

k

)2(
ν1 − ν2

k

) ∫

�

a(r, ν, j, k)b(r)λ−4 dr
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for every ν ∈ −→N 2 and j = 0, . . . , ν1 − ν2, where

� =
⎧
⎨

⎩
r ∈ (0,∞)3 :

(
r1 r2

0 r3

)

∈ D

⎫
⎬

⎭
.

with the functions a(r, ν, j, k) = r
2(ν1−j)+4
1 r

2(j−k)+1
2 r

2(ν2+k)+2
3 , for 0 ≤ k ≤ j , and

b(r) = 1− r2
1 − r2

2 − r2
3 + r2

1 r
2
3 for r ∈ (0,∞)3.

Proof Let ϕ ∈ AU(2)×T2
be given and fix ν ∈ −→N 2 and j = 0, . . . , ν1 − ν2. First,

we observe that we have

|pν,j (tZt
−1)|2 = |pν,j (Z)|2

for all Z ∈ M2×2(C) and t ∈ T2. The symbol ϕ is bi-T2-invariant as well. Hence,
we can apply Proposition 6.2 to ϕ|pν,j |2 to compute as follows

〈
ϕpν,j , pν,j

〉
λ
=

∫

D

ϕ(Z)|pν,j (Z)|2 dvλ(Z)

= 2πcλ

∫

�

∫

U(2)
ϕ

⎛

⎝A

(
r1 r2

0 r3

)⎞

⎠

∣
∣
∣
∣
∣
∣
pν,j

⎛

⎝A

(
r1 r2

0 r3

)⎞

⎠

∣
∣
∣
∣
∣
∣

2

× r4
1 r2r

2
3b(r)

λ−4 dA dr

= 2πcλ

j∑

k=0

(
j

k

)2 ∫

�

ϕ

(
r1 r2

0 r3

)∫

U(2)
|pν,k(A)|2 dA

× a(r, ν, j, k)b(r)λ−4 dr

= 2πcλ
ν1 − ν2 + 1

j∑

k=0

(
j

k

)2(
ν1 − ν2

k

) ∫

�

ϕ

(
r1 r2

0 r3

)

× a(r, ν, j, k)b(r)λ−4 dr.

The second identity applies Proposition 6.2. For the third identity we apply
Proposition 5.4 and the invariance of ϕ. In the last identity we apply again the
orthogonality relations from Proposition 5.4.

The proof is completed by taking ϕ ≡ 1 in the above computation. ��
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where an ∈ C, n ∈ Z. In 1911 Otto Toeplitz proved that the matrix T defines a
bounded operator on �2(Z+), where Z+ = N ∪ {0}, if and only if the numbers an
are the Fourier coefficients of a function a ∈ L∞(S1), where S1 is the unit circle.

The classical Hardy space H2 can be viewed as the closed linear span in L2(S
1)

of {zn : n ≥ 0}. For g ∈ L∞(S1), the Toeplitz operator Tg defined by Tgh = P(gh),
where P denotes the orthogonal projection from L2(S

1) onto H2, is bounded and
satisfies ‖Tg‖ ≤ ‖g‖∞. The matrix of Tg with respect to the orthonormal basis
{zn : n ≥ 0} is the Toeplitz matrix T with an being the Fourier coefficients of g.
Thus, the Toeplitz operators are a generalization of the Toeplitz matrices T .

Let X be a function space and let P be a projection of X onto some closed
subspace Y of X. Then the Toeplitz operator Tg : Y −→ Y with defining symbol g
is given by Tgf = P(gf ). The most studied cases are when Y is either the Bergman
space, the Hardy space, or the Fock space. More recently Toeplitz operators have
been also studied on many other spaces, for example on the harmonic Bergman
space [29].

The Toeplitz operators have been extensively studied in several branches of
mathematics: complex analysis, theory of normed algebras, operator theory [4,
23, 27, 36], harmonic analysis [1, 11], and mathematical physics, particularly in
connection with quantum mechanics [7, 10], etc. Recently, G. Rozenblum and N. L.
Vasilevski considered a new approach of Toeplitz operators that permits to enrich the
class of Toeplitz operators and turn into Toeplitz operators that failed to be Toeplitz
in the classical sense [30, 31].

For a Hilbert space (H, 〈·, ·〉) and a reproducing kernel Hilbert subspace A
of H with reproducing kernel Kz at the point z, Rozenblum and Vasilevski [30]
introduced Toeplitz operators TF acting on A defined by bounded sesquilinear
forms F on A. Here, the Riesz theorem for bounded sesquilinear form is used to
justify the existence of an operator A ∈ B(F2(Cn)) with F(·, ·) = 〈

A·, ·〉, and thus
to consider a wider class of Toeplitz operators given by

(TFf )(z) = F(f,Kz) =
〈
Af,Kz

〉
. (1.1)

Unlike, classical Toeplitz operators which multiply and project back into the
subspace, the set of all Toeplitz operators generated by sesquilinear forms is a *-
algebra, noncommutative in general, but it is a very important property that in the
classical sense we could not have, see [30, Theorem 4.1].

In the classical sense, one of the common strategies in the study of commutative
C*-algebras generated by Toeplitz operators is to select a specific class of defining
symbols: radial [3, 5, 13, 20, 22, 23, 25, 35], vertical, angular [12, 14, 21, 24, 26, 34]
and horizontal [15, 16], depending if they are acting on Bergman spaces or Fock
spaces.

Many mathematicians work in search for new families of symbols to get wider
the class of Toeplitz operators, see [30] and the references given there. We mention
one case among others in Fock spaces, Isralowitz and Zhu [27] introduced Toeplitz
operators Tμ with Borel regular measures μ as symbols. The Rozenblum and
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Vasilevski’s approach extend this point of view and even permit to take coderivatives
of order k of Fock-Carleson measures, see for example [30].

In the study of new commutative C*-algebras generated by Toeplitz operators,
Esmeral et al. [15] extended to the n-dimensional case the definition of the
coderivative of a measure μ, denoted by ∂α∂βμ. In particular, they characterized
the C*-algebra generated by all horizontal Toeplitz operators TFμ,α,β where

Fμ,α,β(f, g) = π−n
∫

Cn

∂αf (z)∂βg(z)e−|z|2dμ(z), (1.2)

and k, β, α are multi-index such that 2k = α + β.
In present paper, we introduce the separately radial Fock-Carleson type measures

μ for derivatives of order k and we characterize the C*-algebra generated by all
Toeplitz operators TFμ,α,β , where the sesquilinear forms Fμ,α,β are given by these
measures.

The paper is organized as follows. Sections 2 and 3 present some preliminaries:
here we fix notation and establish some basic properties of separately radial
operators, Fock-Carleson measures, such type measures for derivatives of order k
and Toeplitz operators generated by sesquilinear forms. In Sect. 4 we introduce
separately radial Fock-Carleson type measures μ for derivatives of order k and
we show that the Toeplitz operators T∂α∂βμ generated by such Fock-Carleson
type measures μ are “almost diagonal”. Then we give an explicit formula for the
sequences of the eigenvalues (Proposition 4.3). As a by-product of such proposition,
we show that T∂α∂βμ is separately radial if and only α = β = k ∈ Z

n+. Finally, in
Sect. 5 we proceed with the study of separately radial Toeplitz operators T∂α∂αμ

generated by separately radial k-FC measures μ for F2(Cn) and we establish a
criterion for such Toeplitz operators to be separately radial (Theorem 5.2). We prove
further that the C*-algebra generated by Toeplitz operators given by coderivatives
of separately radial k-FC type measures is commutative an isometrically isomorphic
to a C*-subalgebra of �∞(Zn+) (Theorem 5.3).

2 Separately Radial Operators

In this section we fix notation and we compile some basic facts on separately
radial operators on the Fock space F2(Cn). The results presented here are a natural
extension to higher dimensions of the radial case, see for example [13, 22, 36],
and their proofs can be found in [28]. We use the following standard notation:
z = x + iy ∈ Cn, where x = (Re z1, . . . ,Re zn) and y = (Im z1, . . . , Im zn).
For z,w ∈ Cn we write

z · w =
n∑

k=1

zkwk, z
2 = z · z =

n∑

k=1

z2
k, |z|2 = z · z =

n∑

k=1

|zk |2, 1 = (1, 1, . . . , 1) ∈ Z
n+.
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α! = α1!α2! · · ·αn!, |α| =
∑

k=1

αk, α ≤ β ⇔ αj ≤ βj , for j = 1, 2, . . . , n, α, β ∈ Z
n+.

zα = z
α1
1 · · · zαnn , zα = z1

α1 · · · znαn, ∂αf = ∂α1

z
α1
1
· · · ∂

α1

z
αn
n

f, ∂α = ∂α1

z1
α1
· · · ∂α1

zn
αn

f.

The Fock space [17], denoted by F2(Cn) (also known as the Segal–Bargmann space,
see [2, 33]), of all entire functions that are square integrable on C

n with respect to
the Gaussian measure dgn(z) = (π)−n e−|z|2dνn(z), where νn is the usual Lebesgue
measure on C

n. It is well-known that F2(Cn) is a closed subspace of L2(C
n, dgn),

thus there exists a unique orthogonal projection P from L2(C, dgn) onto F2(Cn).
This projection has the integral form

(Pf )(z) =
∫

Cn

f (w)Kz(w)dgn(w), (2.1)

where the function Kz : Cn → C is the reproducing kernel at a point z, and it is
given by the formula

Kz(w) = ez·w w ∈ C
n. (2.2)

As it was mentioned in Introduction, given ϕ ∈ L∞(Cn), the Toeplitz operator Tϕ

with defining symbol ϕ acts on the Fock space F2(Cn) by the rule Tϕf = P(f ϕ),
where P is (2.1), for details see for example [8, 36].

Let HU be the Haar measure of the compact group U(n,C). Denote by Ud(n,C)

the compact subgroup of U(n,C) consisting of all unitary matrices that are diagonal.
For X ∈ U(n,C), we denote by VX the linear operator VX : L2(C

n, dgn) →
L2(C

n, dgn) given by

(VXf )(z) = f (X∗z), z ∈ C
n. (2.3)

Since X∗ = X−1 ∈ U(n,C), VX is a unitary operator, with V ∗X = VX−1 .

Definition 2.1 (Separately Radial Operator) Let S ∈ B(F2(Cn)). The operator
S is said to be separately radial if it commutes with VX for all X ∈ Ud(n,C). i.e.,

SVX = VXS. (2.4)

The separately radialization of a bounded operator S is defined by

SRad(S) =
∫

Ud(n,C)

V ∗XSVX d HU(X), (2.5)

where the integral is taken in the weak sense. Note that S is separately radial if and
only if SRad(S) = S.
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Next, we consider separately radial functions and some of its properties, see
details in [28].

Definition 2.2 (Separately Radial Function) A function ϕ ∈ L∞(Cn) is called
separately radial if there exists a ∈ L∞(Rn+) such that ϕ(z1, z2, . . . , zn) =
a(|z1|, |z2|, . . . , |zn|) a.e. z ∈ Cn.

Definition 2.3 (The Radialization of a Function) Let ϕ ∈ L∞(C). The function
srad(ϕ) given by

srad(ϕ)(z) = 1

(2π)n

∫

Ud(n,C)

ϕ(Xz) d HU(X) (2.6)

is called the separately radialization of ϕ.

By the periodicity of the mapping t �→ eit , the formula (2.6) can rewritten as

srad(ϕ)(z) = 1

(2π)n

∫

Ud(n,C)

ϕ

⎛

⎜
⎜
⎜
⎜
⎜
⎝

X

⎡

⎢
⎢
⎢
⎢
⎣

|z1|
|z2|
...

|zn|

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

d HU(X). (2.7)

Lemma 2.4 (Criterion for a Function to be Radial) A function ϕ ∈ L∞(Cn) is
radial if and only if ϕ(z) = srad(ϕ)(z) a.e. z ∈ Cn.

It is well known [36] that the set consisting of all normalized monomials eα(z) =
zα/
√
α!, α ∈ Z

n+, form an orthonormal basis of F2(Cn). The following result states
a criterion for a bounded operator on F2(Cn) be separately radial.

Proposition 2.5 (Criterion of Separately Radial Operators) Let T ∈
B(F2(Cn)). The following conditions are equivalent.

1. T is separately radial.
2. T is a diagonal operator with respect to the monomial basis.
3. The Berezin transform [6]

T̃ (z) =
〈
TKz,Kz

〉

〈
Kz,Kz

〉 , z ∈ C
n.

is a separately radial function.

An easy computation shows that srad( ϕ̃ ) = ˜srad(ϕ) = T̃srad(ϕ), for each
ϕ ∈ L∞(Cn). Thus, by Proposition 2.5 and by injectivity of Berezin transform
the following criterion holds.

Proposition 2.6 Let ϕ ∈ L∞(Cn). The Toeplitz operator Tϕ is separately radial if
and only if ϕ is a separately radial function.
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3 k-FC Type Measures and Toeplitz Operators

In this section we summarize some results on Fock-Carleson type measures, such
measures for derivatives of order k and Toeplitz operators defined by sesquilinear
forms, for details see [15, 30, 36]. From now on, we denote by Borel(Cn) the Borel
σ -algebra of Cn and by Breg(C

n) the set of all complex regular Borel measures
μ : Borel(Cn)→ C with total variation

|μ|(B) = sup
∑

n∈N
|μ(Bn)|,

where the supremum is taken over all partitions Bn of B, that satisfy the condi-
tions:

• |μ| is locally finite: |μ|(K) <∞ for each compact K ⊂ �;
• μ is regular, i.e.,

|μ(A)| = sup
{|μ(K)| :K is compact X ⊂ A

} = inf
{|μ(U)| : A ⊂ U and U is open

}
.

3.1 Fock-Carleson Type Measures

As it was mentioned in Introduction, Isralowitz and Zhu introduced Toeplitz
operators Tμ acting on the Fock space F2(Cn) with μ ∈ Breg(C

n) as symbols
[27]:

Tμf (z) = π−n
∫

Cn

ez·wf (w)e−|w|2dμ(w), z ∈ C
n, (3.1)

thus, for any f, g ∈ F2(Cn),

〈
Tμf, g

〉 = π−n
∫

Cn

〈
Kw, g

〉
f (w)e−|w|2dμ(w) = π−n

∫

Cn

f (w)g(w)e−|w|2dμ(w).

If μ is a complex Borel regular measure satisfying the Condition (M), namely

M = sup
z∈Cn

∫

Cn

|Kz(w)|2e−|w|2d|μ|(w) <∞, (3.2)

then the operator Tμ given in (3.1) is well-defined on the dense subset of all
finite linear combinations of kernel function. It is important to mention that if μ

is absolutely continuous with respect to the usual Lebesgue measure, all the results
can be reformulated in terms of the density function and Tμ is a Toeplitz operator
in the classic sense. From now on we will assume that μ satisfies (3.2).
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It is well-known that the Berezin transform of a function ϕ ∈ L∞(Cn) coincides
with the Berezin transform of the Toeplitz operator Tϕ , and we will denote it by ϕ̃.
By the integral representation of the classical Toeplitz operator Tϕ , Isralowitz and
Zhu in [27] extended to positive Borel measures the classical Berezin transformation
as follows:

μ̃(z) = π−n
∫

Cn

|kz(w)|2e−|w|2dμ(w) = π−n
∫

Cn

e−|z−w|2dμ(w), z ∈ C
n,

(3.3)

where

kz(w) = Kz(w)(Kz(z))
−1/2 = ew·z−

|z|2
2 (3.4)

is the normalized reproducing kernel of F2(Cn). In particular, if Tμ is bounded on
F2(Cn), then μ̃ is the Berezin transform of Tμ.

Definition 3.1 (Fock-Carleson Type Measures) A positive measure μ is said to
be a Fock-Carleson type measure for F2(Cn) (FC measure, in short), if there exists
a constant ω(μ) > 0 such that for every f ∈ F2(Cn)

∫

Cn

|f (w)|2e−|w|2dμ(w) ≤ ω(μ) ‖f ‖2
F2

(Cn)

The next result provides a criterion for a Toeplitz operator Tμ with a positive
measure μ as defining symbol to be bounded. For more details we refer the reader
to [27, Theorems 2.3 and 3.1].

Proposition 3.2 Let μ be a positive Borel regular measure on Cn. Then the
following conditions are equivalent:

1. The Toeplitz operator Tμ is bounded on F2(Cn).
2. The sesquilinear form

F(f, g) = π−n
∫

Cn

f (z)g(z)e−|z|2dμ(z)

is bounded in F2(Cn).
3. μ̃ is bounded on Cn.
4. For any fixed r = (rj )

n
j=1 with rj > 0,

μ(Br(z)) < C, for all z ∈ C,

for some constant C > 0, where Br(z) denotes the polydisk centered at z with
radius r.

5. μ is a Fock-Carleson type measure.
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A natural generalization is to admit a complex valued Borel measure μ such that
its variation |μ| is a FC measure. In such a case, as a by-product of Proposition 3.2,
the results of [27] imply that the following norms for μ are equivalent:

1. ‖μ‖1 = ‖Tμ‖.
2. ‖μ‖2 = sup

z∈Cn

|̃μ|(z).
3. ‖μ‖3 = sup

z∈Cn

|μ|(Br(z)), where r is any fixed positive number.

4. ‖μ‖4 = sup
f∈F2

(Cn)

‖f ‖=1

{∫

Cn

|f (w)|2e−|w|2d|μ|(w)

}

.

3.2 Fock-Carleson Type Measures for Derivatives of Order k

Next, we make a slight change to the approach of Esmeral, Rozenblum and
Vasilevski [15] to define the measures μp and thus studying the separately radial
Fock-Carleson type measures for derivatives of order k.

Proposition 3.3 Let f ∈ F2(Cn) and k ∈ Z
n+. Then for every z ∈ C

n

|∂kf (z)| ≤ C k!‖f ‖F2
(Cn)

n∏

j=1

(1+ |zj |2)kj /2e
|zj |2

2

with the constant C > 0 not depending on k ∈ Z
n+.

Proof The proof is almost literal as that of Proposition 3.2 in [15]. We only take
rj = (1+ |zj |2)−1/2 instead of rj = (1+ x2

j )
−1/2(1+ y2

j )
−1/2. ��

Definition 3.4 (k-FC Measures) Let k ∈ Z
n+. A positive Borel regular measure μ

is called a Fock-Carleson type measure for derivatives of order k (k-FC, in short)
for F2(Cn) if there exists ωk(μ) > 0 such that for every f ∈ F2(Cn)

∫

Cn

∣
∣
∣∂kf (w)

∣
∣
∣
2
e−|w|2dμ(w) ≤ ωk(μ)

∫

Cn

|f (w)|2e−|w|2dν2n(w). (3.5)

If |k| = 0, then any 0-FC type measure is just a FC-measure for F2(Cn). A complex
regular Borel measure is called k-FC if (3.5) is satisfied for μ replaced by |μ|.

Denote by μp the Borel measure on Cn given by

μp(B) =
∫

B

n∏

j=1

(1+ |z2
j |)pj dμ(z), B ⊂ C

n. (3.6)
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The following results relate the k-FC and Fock-Carleson type measures for F2(Cn).
The proofs are almost literally the same as [30, Theorem 5.4 and Corollary 5.5]. It
is enough to replace Proposition 5.1 of [30] by the above Proposition 3.3 and take
the product of the lattices used in the proof of [30, Theorem 5.4].

Proposition 3.5 Let k ∈ Z
n+. A positive measure μ is a k-FC type measure if and

only if, for some (and, therefore for any) r > 0, the following quantity is finite:

Ck(μ, r) = (k!)2 sup
z∈Cn

μk(Br(z)).

For a fixed r , the constant ωk(μ) in (3.5) can be taken as ωk(μ) = C(r)Ck(μ, r)

where C(r) depends only on r . For a complex measure μ, the ‘if ’ part holds true.

Proposition 3.6 For any p, k ∈ Z
n+, a positive Borel measure μ is a k-FC type

measure if and only if the measure μk−p is a p-FC type measure. Furthermore,
Ck−p(μp, r) = Ck(μ, r).

Following [15], by means of (3.6) and Proposition 3.6 we consider k-FC type
measure for half positive integer multi-indices k.

Definition 3.7 (k-FC Measures: Extended Version) If k ∈ (Z+/2)n, then we say
that μ is a k-FC type measure if the quantity

Ck(μ) = (k!)2 sup
z∈Cn

|μk|(B√n(z))

is finite. Here B√n(z) denotes the polydisk in Cn centered at z = (z1, . . . , zn) and
radius |1| = √n (the value of 1 = (1, 1, . . . , 1) is taken here just for convenience.)

Remark 1 Note that any measure with compact support is a k-FC type measure for
each k. On the other hand, given k ∈ (Z+/2)n, the Borel measure

dμ(z) =
n∏

j=1

drjdθj

(1+ r2
j )

kj
, z = (z1, z2, . . . , zn), and zj = rj e

iθj ,

is, by Proposition 3.6, a k-FC type measure for F2(Cn). In fact,

μk(B) =
∫

B

n∏

j=1

(1+ |zj |2)kj dμ(z) = νn(B).

for every Borel set B ⊂ Cn. Here μk = νn is the usual Lebesgue measure of Cn.
Therefore μk is a FC for F2(Cn).
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3.3 Toeplitz Operators Generated by k-FC Type Measures

Next, Subsection 3.3 of [15] is summarized in order to have the necessary tools to
study the separately radial Toeplitz operators generated by k-FC types measures.

Let μ ∈ Breg,M(Cn) be a k-FC type measure for F2(Cn), where k ∈ (Z+/2)n.
For α, β ∈ Z

n+, with 2k = α + β, the coderivative ∂α∂βμ is given by Esmeral et

al. [15] and Rozenblum et al. [30]: for a function h = f g ∈ L1(C
n, e−|w|2dνn(w))

with f, g ∈ F2(Cn)

(∂α∂βμ, h) = (−1)α+β(μG, ∂α∂βh) = (−1)α+β(μG, ∂αf ∂βg), G(z) = e−|z|2 ,

(where (·, ·) is the intrinsic pairing between measures and functions and (−1)α+β =∏n
j=1(−1)αj+βj ), provided that the right-hand side makes sense. The sesquilinear

form Fμ,α,β on F2(Cn) associated with the coderivative ∂α∂βμ is given by

Fμ,α,β(f, g) = (∂α∂βμ, f g) = (−1)α+βπ−n
∫

Cn

∂αf (z)∂βg(z)e−|z|2dμ(z).

For α, β ∈ Z
n+, k ∈ (Z+/2)n, 2k = α + β, and the coderivative ∂α∂βμ of a

k-FC type measure μ, the Toeplitz operator T∂α∂βμ generated by the sesquilinear

form (1.2) and the Berezin transform of the coderivatives ∂α∂βμ of a k-FC type
measure have the following integral representation

(T∂α∂βμf )(z) = Fμ,α,β(f,Kz) = π−nzβ
∫

Cn

∂αf (w)ez·we−|w|2dμ(w), f ∈ F2(Cn).

(3.7)

˜∂α∂βμ(z) = zβzα
∫

Cn

e−|z−w|2dμ(w), z ∈ C
n. (3.8)

In particular, if the Toeplitz operator T∂α∂βμ is bounded, then ˜
∂α∂βμ = T̃∂α∂βμ,

i.e.,

˜∂α∂βμ(z) =
〈
T∂α∂βμKz,Kz

〉

〈
Kz,Kz

〉 = e−|z|2 Fμ,α,β(Kz,Kz), z ∈ C
n. (3.9)

Lemma 3.8 Let μ be a positive regular measure on Cn and k ∈ (
Z+/2

)n
. Then for

any r = (rj )
n
j=1 with rj > 0, there exists a positive constant C = C(r, k) > 0 such

that

μk

(
Br(z)

) ≤ C

∣
∣
∣
∣
˜
∂α∂βμ(z)

∣
∣
∣
∣ , (3.10)

for each z ∈ C
n with |zj | ≥ 1, j = 1, 2, . . . , n.
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Proof Let rj > 0 and zj ∈ C with |zj | ≥ 1. Then (1+|wj |2)kj ≤ (1+rj +|zj |)2kj

for each |wj − zj | < rj and hence

μk(Br(z)) =
∫

Br(z)

n∏

j=1

(1+ |wj |2)kj dμ(w)

≤ e|r |2
∫

Br(z)

n∏

j=1

e−|zj−wj |2(1+ |wj |2)kj dμ(w)

≤ e|r |2
n∏

j=1

(1+ rj + |zj |)2kj

∫

Br(z)

n∏

j=1

e−|zj−wj |2dμ(w)

= e|r |2
n∏

j=1

⎛

⎝
2kj∑

l=0

(
2kj
l

)

(1+ rj )
l|zj |2kj−l

⎞

⎠
∫

Br(z)

n∏

j=1

e−|zj−wj |2dμ(w)

≤ e|r |2
n∏

j=1

⎛

⎝
2kj∑

l=0

(
2kj
l

)

(1+ rj )
l

⎞

⎠
∫

Br(z)

n∏

j=1

|zj |2kj e−|zj−wj |2dμ(w)

≤
∣
∣
∣
∣
˜∂α∂βμ(z)

∣
∣
∣
∣

⎛

⎝
n∏

j=1

πe
r2
j (2+ rj )

2kj

⎞

⎠ . ��
The next result provides a criterion for a Toeplitz operator T∂α∂βμ defined by

the derivatives of the k-FC type measure μ ∈ Breg(C
n) to be bounded and it is

analogous to Proposition 3.2.

Theorem 3.9 Let μ be a positive regular measure on Cn and k ∈ (Z+/2)n. Then
for every α, β ∈ Z+ with α + β = 2k the following conditions are equivalent:

1. The sesquilinear form

Fμ,α,β(f, g) = π−n
∫

Cn

∂αf (z)∂βg(z)e−|z|2dμ(z),

is bounded in F2(Cn).
2. The Toeplitz operator T∂α∂βμ is bounded on F2(Cn).

3. ˜
∂α∂βμ is bounded on Cn.

4. For every r = (rj )
n
j=1with rj > 0, there exists C = C(r, k) > 0 such that

μk(Br(z)) < C, for all z ∈ C
n. (3.11)

5. μ is a k-FC type measure.
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Proof The proof of (1)⇒ (2), (2)⇒ (3), (4)⇒ (5) and (5)⇒ (1) follow easily
by (3.7), (3.9), [30, Theorem 5.4] and [30, Proposition 6.1] respectively. It remains
to prove that (3) implies (4).

If |zj | ≥ 1 for every j = 1, 2, . . . , n then the boundedness holds by Lemma 3.8.
Now, if there exists j0 ∈ {1, 2, . . . , n} such that |zj0 | < 1. Then |wj0 | < rj0+|zj0 | <
rj0 + 1 for every w ∈ Br(z) and hence

μk(Br(z)) ≤
∫

Br(z)

⎛

⎜
⎜
⎜
⎝

n∏

j=1
j 	=j0

(1+ |wj |2)kj

⎞

⎟
⎟
⎟
⎠

(
1+ |wj0 |2

)kj0
e
−

∣
∣
∣
∣

(√
2+ir1/2

j0

)
−wj0

∣
∣
∣
∣

2

e

∣
∣
∣
∣

(√
2+ir1/2

j0

)
−wj0

∣
∣
∣
∣

2

dμ(w)

≤ πne
|r|2−r2

j0
+4(rj0+2)2

n∏

j=1

(2+ rj )
2kj

∫

Br(z)

⎛

⎜
⎜
⎜
⎝

n∏

j=1
j 	=j0

|zj |2kj e−|zj−wj |2

⎞

⎟
⎟
⎟
⎠

e
−

∣
∣
∣
∣

(√
2+ir1/2

)
−wj0

∣
∣
∣
∣

2

dμ(w)

≤ C(r, k)
∫

Cn

⎛

⎜
⎜
⎜
⎝

n∏

j=1
j 	=j0

|zj |2kj e−|zj−wj |2

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎝

∣
∣
∣
√

2+ ir
1/2
j0

∣
∣
∣
2kj0

e
−

∣
∣
∣
∣

(√
2+ir1/2

j0

)
−wj0

∣
∣
∣
∣

2
⎞

⎟
⎠ dμ(w)

= C(r, k)

∣
∣
∣
∣
˜∂α∂βμ

(
z1, z2, . . . , zj0−1,

√
2+ ir

1/2
j0

, zj0+1, . . . , zn

)∣
∣
∣
∣ ≤ C(r, k) ‖˜∂α∂βμ‖∞. ��

As in FC type measure, we may to admit complex valued Borel measures μ

such that their variation |μ| are k-FC measures. In such a case, as a by-product of
Proposition 3.9, the results imply that the following norms for μ are equivalent:

1. ‖μ‖1 = ‖T∂α∂βμ‖.
2. ‖μ‖2 = ‖ ˜

∂α∂β |μ| ‖∞.
3. ‖μ‖3 = sup

z∈Cn

|μk|(Br(z)), where r = (rj )
n
j=1 is any fixed positive radius.

4. ‖μ‖4 = sup
f∈F2

(Cn)

‖f ‖=1

{∫

Cn

|∂kf (w)|2e−|w|2d|μ|(w)

}

.
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4 Separately Radial k-FC Type Measures

Let Tn be the n-dimensional torus. Given complex Borel regular measures � ∈
Breg(R

n+) and η ∈ Breg(T
n) we denote by μ = � ⊗ η the tensor product of the

measures � and η. i.e., for any A ∈ Borel(Rn+) and any B ∈ Borel(Tn), μ(A×B) =
�(A)η(B), with the usual extension to all Borel sets in C

n.

Definition 4.1 (Separately Radial Measures) We say that μ ∈ Breg(C
n) is

separately radial if there exists � ∈ Breg(R
n+) such that μ = � ⊗ m where m

is the Haar measure of Tn. Furthermore, if μ = � ⊗ m is a k-FC type measure for
F2(Cn) we say that μ is k-srFC, in particular, for 0-srFC we say srFC for short.

Proposition 4.2 Let k ∈ (Z+/2)n. A complex Borel measure μ is k-srFC type
measure for F2(Cn) if and only if μk−α is α-srFC for any α ∈ Z

n+
Proof Suppose that μ is k-srFC. i.e., μ = � ⊗ m for some � ∈ Breg(R

n+) and |μ|
is k-srFC. Then, |μ|k−α = |μk−α| is α-FC for any α ∈ Z

n+ by Proposition 3.6. For
every A ∈ Borel(Cn),

μk−α(A) =
∫

A

n∏

j=1

(1+ |wj |2)kj−αj dμ(w)

=
∫

{

(r1,r2,...,rn,e
iθ1 ,...,eiθn ) :

(
rj e

iθj
)n

j=1
∈A

}

⎛

⎝
n∏

j=1

(1+ r2
j )

kj−αj
⎞

⎠

d�(r)dm((eiθj )nj=1)

= (�k−α ⊗m)(A).

Here d�k−α(r) =
⎛

⎝
n∏

j=1

(1+ r2
j )

kj−αj
⎞

⎠ d�(r). Conversely, for any α ∈ Z
n+ suppose

that μk−α is separately radial. i.e., μk−α = λ ⊗ m for some λ ∈ Breg(R
n+). Then

for every A ∈ Borel(Cn)

μ(A) =
∫

A

n∏

j=1

(1+ |wj |2)αj−kj dμk−α(w)

=
∫

{

(r1,r2,...,rn,e
iθ1 ,eiθ2 ,...,eiθn ) :

(
rj e

iθj
)n

j=1
∈A

}

⎛

⎝
n∏

j=1

(1+ r2
j )

αj−kj
⎞

⎠

dλ(r)dm((eiθj )nj=1)

= (λα−k ⊗m)(A).
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Here dλα−k(r) =
⎛

⎝
n∏

j=1

(1+ r2
j )

αj−kj
⎞

⎠ d�(r). ��

Next, we show that every Toeplitz operator with coderivatives of a separately
radial measure as symbol is unitarily equivalent to the composition of the multipli-
cation operator by some �∞-sequence and the shift operator acting on �2(Z

n+).

Proposition 4.3 Let α, β ∈ Z
n+ and k ∈ (Z+/2)n be such that 2k = α + β. If μ =

� ⊗ m is a k-srFC type measure on F2(Cn), then T∂α∂βμem = γ�,α,β(m)em+β−α
for any m ∈ Z

n+, where

γ�,α,β(m) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2n
√
m!(m− α + β)!
[(m− α)!]2

∫

R
n+

⎛

⎝
n∏

j=1

r
2(mj−αj )
j e

−r2
j

⎞

⎠ d�(r), if m ≥ α,

0 otherwise.

(4.1)

Proof Let α, β ∈ Z
n+, k ∈ (Z+/2)n be such that 2k = α+ β and μ = �⊗m. Then

by (3.7) for any m, v ∈ Z
n+,

〈
T

∂α∂βμ
em, ev

〉
=

⎧
⎪⎪⎨

⎪⎪⎩

0, if α > m or β > v√
v!m!

πn (m− α)!(v − β)!
∫

Cn
zm−αzv−βe−|z|2dμ(z), otherwise.

Now, since
∫

Tn
f (w)dm(w) =

∫ 2π

0
· · ·

∫ 2π

0
f (eiθ1 , . . . , eiθn )

n∏

j=1

dθj

2π
, we have that

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if α > m or β > v

γ�,α,β(m)

n∏

j=1

δmj−αj ,vj−βj , otherwise.

Therefore, since span
{
em : m ∈ Z

n+
} = F2(Cn) we have for every m ∈ Z

n+ that

T∂α∂βμem =
∑

v∈Zn+

〈
T∂α∂βμem, ev

〉
ev = γ�,α,β(m)em+β−α. ��

Corollary 4.4 Let α, β ∈ Z
n+, k ∈ (Z+/2)n be such that 2k = α+β and μ = �⊗m

be a k-srFC type measure for F2(Cn). Then the operator T∂α∂βμ is separately radial
if and only if α = β = k ∈ Z

n+.
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Corollary 4.5 Let α, β ∈ Z
n+, k ∈ (Z+/2)n be such that 2k = α + β and � ∈

Breg(R
n+). Then μ = � ⊗ m is a k-FC type measure for F2(Cn) if and only if

γ�,α,β ∈ �∞(Zn+) where γ�,α,β = (γ�,α,β(n))n∈Zn+ is given in (4.1).

Corollary 4.6 Let k ∈ (Z+/2)n and � ∈ Breg(R
n+). Then γ�,k,k = γ�,k ∈

�∞(Zn+) if and only if γ�k−α,α ∈ �∞(Zn+) for every α ∈ Z
n+. Here d�k−α(r) =⎛

⎝
n∏

j=1

(1+ r2
j )

kj−αj
⎞

⎠ d�(r).

Proof Let � ∈ Breg(R
n+). If γ�,k ∈ �∞(Zn+) then μ = � ⊗ m is a k-FC

type measure for F2(Cn) by Corollary 4.5 and hence μk−α = �k−α ⊗ m, where

d�k−α(r) =
⎛

⎝
n∏

j=1

(1+ r2
j )

kj−αj
⎞

⎠ d�(r), is a α-srFC type measure for F2(Cn) by

Proposition 4.2. Therefore, γ�k−α,α ∈ �∞(Zn+) by Corollary 4.5. The rest of the
proof runs as before. ��
Example 2 (Unidimensional Case[30]) Given k, α, β ∈ Z+, consider the k-FC
type measure

dμ(z) = dν(z)

(1+ |z|2)k , (4.2)

and the corresponding sesquilinear form Fμ,α,β :

Fμ,α,β(f, g) = (−1)α+β
∫

C

∂αf (z)∂βg(z)
e−|z|2

π(1+ |z|2)k dν(z).

The exact formula for γ�,α,β is rather complicated, but its asymptotic behaviour for
large values of n is quite simple. For n ≥ α + k,

Fμ,α,β(en, en+β−α) = (−1)α+β (n− α)
α+β

2

(n− α − k)k

(

1+O

(
1

n

))

.

Thus, γ�,α,β = (γ�,α,β(n))n∈Z+ is bounded if and only if α + β ≤ 2k, and if
α = β = k then T∂k∂kμ is a compact perturbation of the identity, for details see [30,
Example 6.7].
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Remark 1 Let α, β ∈ Z
n+, k ∈ (Z+/2)n be such that 2k = α+β and μ = �⊗m be

a k-srFC type measure for F2(Cn). By Proposition 4.3, for any m ∈ Z
n+ with α ≤ m

and any v ∈ Z
n+

〈
T∂α∂βμem, ev

〉
= γ�,α,β(m)

〈
em+β−α, ev

〉 = γ�,α,β(v + α − β)δm,v+α−β

= γ�,α,β(v + α − β)δm,v+α−β =
〈
em, γ̃�,α,β(v)ev+α−β

〉
,

where

γ̃�,α,β(m) = γ�,α,β(m+ α − β). (4.3)

Therefore,

T∗
∂α∂βμ

em =
⎧
⎨

⎩

γ̃�,α,β(m)em+α−β, if m ≥ β,

0, otherwise.
(4.4)

Let S : F2(Cn)→ F2(Cn) be the shift operator given by

Seα =
⎧
⎨

⎩

eα−1, if α ≥ 1

0, otherwise
, (4.5)

where eα(z) = zα√
α! . This operator is bounded with ‖S‖ = 1, its adjoint operator

S∗ is given by

S∗eα = eα+1, α ∈ Z
n+ (4.6)

and it is a partial isometry with SS∗ = Id. Furthermore, for any β ∈ Z
n+

Sβeα =
⎧
⎨

⎩

eα−β, if α ≥ β,

0, otherwise.
(S∗)βeα = eα+β, α ∈ Z

n+. (4.7)

Corollary 4.7 Let α, β ∈ Z
n+, k ∈ (Z+/2)n be such that 2k = α + β and μ =

� ⊗m be a k-srFC type measure for F2(Cn). Then the operator SβT∂α∂βμ(S
∗)α is

separately radial.

Proof Let {ev : v ∈ Z
n+} be the monomial basis of F2(Cn). Then by Proposition 4.3

and (4.7) we have that T∂α∂βμ(S
∗)αev = γ�,α,β(v + α)ev+β = γ�,α,β(v +

α)(S∗)βev and hence SβT∂α∂βμ(S
∗)αev = γ�,α,β(v + α)ev for each v ∈ Z

n+. i.e.,

SβT∂α∂βμ(S
∗)α is separately radial by Proposition 2.5. ��
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Proposition 4.8 Let α, β ∈ Z
n+, k ∈ (Z+/2)n be such that 2k = α + β and μ =

� ⊗ m be a k-srFC type measure for F2(Cn). If the Toeplitz operator T∂β∂βμ is
bounded then T∂α∂βμ is bounded for α ≤ β. Analogously, If the Toeplitz operator
T∂α∂αμ is bounded then T∂α∂βμ is bounded for β ≤ α.

Proof By (4.1) and Proposition 4.3 it follows that for any α, β ∈ Z
n+, k ∈ (Z+/2)n

with 2k = α + β and any v ∈ Z
n+ with v ≥ α,

T∂α∂βμev =
√
(v + β − α)!

v! (S∗)βSαT∂α∂αμev.

T∗
∂α∂βμ

ev =
√
(v + α − β)!

v! (S∗)αSβT∂β∂βμev.

Suppose that α ≤ β and T∂β∂βμ is bounded on F2(Cn). Then for every f ∈ F2(Cn),

∥
∥
∥T∂α∂βμf

∥
∥
∥

2 =
∑

v∈Zn+

∣
∣
∣
∣

〈
T∂α∂βμf, ev

〉∣∣
∣
∣

2

=
∑

v∈Zn+

∣
∣
∣
∣

〈
f,T∗

∂α∂βμ
ev

〉∣∣
∣
∣

2

=
∑

v≥β

(v + α − β)!
v!

∣
∣
∣
∣

〈
f, (S∗)αSβT∂β∂βμev

〉∣∣
∣
∣

2

≤
⎛

⎝
n∏

j=1

sup
vj≥βj

(vj + αj − βj )!
vj !

⎞

⎠
∑

v∈Zn+

∣
∣
∣
∣

〈
T∗

∂β∂βμ
(S∗)βSαf, ev

〉∣∣
∣
∣

2

=
⎛

⎝
n∏

j=1

sup
vj≥βj

(vj + αj − βj )!
vj !

⎞

⎠
∥
∥
∥T∗

∂β∂βμ
(S∗)βSαf

∥
∥
∥

2
.

Now, by Stirling approximation, for any j = 1, 2, . . . , n

√
(vj + αj − βj )!

vj ! ∼ (vj + 1)
αj−βj

2

and hence

n∏

j=1

sup
vj≥βj

(vj + αj − βj )!
vj ! < +∞
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for α ≤ β. Thus, the statement holds since any linear operator T is bounded if and
only if T∗ is bounded. The rest of the proof runs as before since for α ≥ β and
T∂α∂αμ bounded on F2(Cn) we have

∥
∥
∥T∗

∂α∂βμ
f

∥
∥
∥

2 ≤
⎛

⎝
n∏

j=1

sup
vj≥βj

(vj + βj − αj )!
vj !

⎞

⎠
∥
∥
∥T∗

∂α∂αμ
(S∗)αSβf

∥
∥
∥

2
. ��

The following result follows from Corollary 4.5 and Proposition 4.8.

Corollary 4.9 Let α ∈ Z
n+, k ∈ (Z+/2)n be such that 2k − α ∈ Z

n+ and � be a
Borel measure on R

n+ such that μ = � ⊗m is a complex regular Borel measure on
Cn, where m is the Haar measure on Tn. If the sequence �̂α =

(
�̂α(v)

)
v∈Zn+

belongs

to �∞(Zn+), where

�̂α(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2nv!
[(v − α)!]2

∫

R
n+
r2(v−α)e−r2

d�(r), if v ≥ α,

0 otherwise.

(4.8)

then μ = � ⊗m, is a k-srFC radial type measure on F2(Cn).

5 Separately Radial Toeplitz Operators

Let α, β ∈ Z
n+, k ∈ (Z+/2)n be such that 2k = α + β. If μ is a k-srFC then

by Corollary 4.4 the Toeplitz operator T∂α∂βμ is separately radial if and only if
α = β = k ∈ Z

n+. In this section we explore this situation and give a criterion for a
Toeplitz operator T∂α∂αμ to be separately radial.

The following lemma is analogous to the injectivity property of the Berezin
transform for measures satisfying the (M)-condition.

Lemma 5.1 Let k ∈ (Z+/2)n and μ ∈ Breg(C
n) be a complex measure satisfying

the (M)-condition (3.2). If

⎛

⎝
n∏

j=1

|zj |2kj
⎞

⎠
∫

Cn

e−|z−w|2dμ(w) = 0

for any z in Cn then μ is the zero measure.
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Proof If

⎛

⎝
n∏

j=1

|zj |2kj
⎞

⎠
∫

Cn

e−|z−w|2dμ(w) = 0 for any z ∈ Cn then

∫

Cn

e−|z−w|2dμ(w) = 0 for any z with
∏n

j=1 zj 	= 0. Let � : Cn × Cn → C

be the mapping given by

�(z,w) =
∫

Cn

ez·ζ ew·ζ e−|ζ |2dμ(ζ ).

If μ satisfies the (M)-condition (3.2) for any z ∈ Cn by Cauchy–Schwarz inequality
we have,

∣
∣
∣
∣

∫

Cn

ez·ζ ew·ζ e−|ζ |2dμ(ζ )
∣
∣
∣
∣ ≤

(∫

Cn

|Kz(ζ )|2e−|ζ |2d|μ|(ζ )
)1/2

(∫

Cn

|Kw(ζ )|2e−|ζ |2d|μ|(ζ )
)1/2

≤M.

Therefore, the Toeplitz operator Tμ given in (3.1) is well-defined and bounded on
the dense subset of all finite linear combinations of kernel function and hence � is
well-defined and continuous on Cn × Cn since �(z,w) = TμKw(z). On the other
hand, note that for any triangle �j in C by the Fubini’s Theorem one gets that

∫

∂�j

�(z,w)dz =
∫

Cn

ew·ζ

⎛

⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

n∏

l=1
l 	=j

ezl ·ζl

⎞

⎟
⎟
⎟
⎠

∫

∂�j

ezj ·ζj dzj

⎞

⎟
⎟
⎟
⎟
⎠
dμ(ζ ) = 0

∫

∂�j

�(z,w)dw =
∫

Cn

ez·ζ

⎛

⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

n∏

l=1
l 	=j

ewl ·ζl

⎞

⎟
⎟
⎟
⎠

∫

∂�j

ewj ·ζj dwj

⎞

⎟
⎟
⎟
⎟
⎠
dμ(ζ ) = 0

Thus, by Morera’s Theorem � is a separately analytic on Cn × Cn and hence by
the Hartogs’s Theorem � is analytic on Cn × Cn. Now, observe that the mapping
� : Cn × Cn → C given by �(z,w) = zkwk�(z,w) is analytic on Cn ×Cn and

�(z, z) = e|z|2
⎛

⎝
n∏

j=1

|zj |2kj
⎞

⎠
∫

Cn

e−|ζ−z|2dμ(ζ ) = 0.
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Then � ≡ 0 by [19, Proposition 1.69] and hence �(z,w) = 0 for all (z,w)

belonging to any ball Br((0, 0)) centered at (0, 0) and radius r > 0. Therefore,
by identity Theorem for several complex variables, � ≡ 0 in Cn×Cn. Now, letting
dς(u, v) = e−|u+iv|2dμ(u+ iv) we have for any x, y ∈ Rn,

∫

Rn×Rn

e−i(x,y)·(u,v)dς(u, v) =
∫

Rn×Rn

e(−y+ix)·(u+iv)+(y+ix)·(u−iv)dς(u, v)

=
∫

Cn

e(−y+ix)·ζ+(y+ix)·ζe−|ζ |2dμ(ζ )

= �(y + ix,−y + ix) = 0.

i.e., the Fourier-Stieltjes transformation of the bounded complex measure ς in
Rn × Rn is 0. Thus by the injectivity of Fourier-Stieltjes transform, ς ≡ 0, see
[9, Proposition 3.8.6], and hence μ ≡ 0. ��
Theorem 5.2 Let k ∈ Z

n+ and μ be a positive k-FC type measure for F2(Cn). then
the following conditions are equivalent:

1. T∂k∂kμ is separately radial.

2. The Berezin transform ˜∂k∂kμ of ∂k∂kμ is a separately radial function.
3. μ is invariant under the action of Ud (n,C), i.e., for every A ∈ Borel(Cn) and

every X ∈ Ud(n,C),

μ
(
XA

) = μ(A).

4. For any Borel sets Y ∈ Borel(Rn+) and Z ∈ Borel(Tn), and every X ∈ Ud(n,C),

μ
(
X[Y × Z]) = μ(Y × Z)

5. μ is separately radial. i.e., there exists a positive regular Borel measure � on R
n+

such that μ = � ⊗m.

Proof (1)⇒ (2) Let X ∈ Ud(n,C). Then for every z ∈ Cn that

˜V ∗XT
∂k∂kμ

VX(z) = e−|Xz|2 〈
T∂k∂kμKXz,KXz

〉
= T̃∂k∂kμ

(
Xz

)
. (5.1)

Thus, if T∂k∂kμ is a separately radial operator, then, by (3.9), ˜
∂k∂kμ(Xz) =

˜∂k∂kμ(z) for every z ∈ Cn. Now, since X ∈ Ud (n,C) is arbitrary, we have

that the function ˜
∂k∂kμ is separately radial by Lemma 2.4, i.e., it depends only

on (|z1|, |z2|, . . . , |zn|). (2) ⇒ (3) Let X ∈ Ud(n,C), A ∈ Borel(Cn) and
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μX(A) = μ
(
XA

)
. By the chain rule for every f ∈ F2(Cn) and every X ∈ Ud(n,C),

〈
V ∗XT∂k∂kμVXf, g

〉
=

〈
T∂k∂kμVXf,VXg

〉
=

∫

Cn

∂k(VXf )(z)∂k(VXg)(z)dμ(z)

=
∫

Cn

(∂kf )
(
X∗w

)
(∂kg)

(
X∗w

)
dμ(w) =

∫

Cn

∂kf (w) ∂kg (w)dμX(w)

=
〈
T∂k∂kμX

f, g
〉
, for all g ∈ F2(Cn).

Therefore ˜∂k∂kμX(z) = ˜∂k∂kμ
(
Xz

)
. However, since ˜∂k∂kμ depends only on

(|z1|, |z2|, . . . , |zn|) ∈ R
n+, we have for almost all z ∈ Cn,

0 = ˜
∂k∂kλX(z) =

⎛

⎝
n∏

j=1

|zj |2kj
π

⎞

⎠
∫

Cn

e−|z−w|2dλX(w), where λX = μX − μ.

Since |λX|(E) ≤ |μX|(E)+ |μ|(E) for any E ∈ Borel(Cn) by (3.5) it is easy to see
that for each f ∈ F2(Cn)

∫

Cn

|∂kf (w)|2e−|w|2d|λX|(w) ≤
∫

Cn

|∂kf (w)|2e−|w|2d|μX|(w)

+
∫

Cn

|∂kf (w)|2e−|w|2d|μ|(w)

=
∫

Cn

|∂k(VXf )(w)|2e−|w|2d|μ|(ζ )

+
∫

Cn

|∂kf (w)|2e−|w|2d|μ|(w)

≤ ωk(μ)
(
‖VXf ‖2 + ‖f ‖2

)
= 2ωk(μ)‖f ‖2.

Now, it follows that λX ≡ 0 by Lemma 5.1. i.e., μ(XA) = μ(A) for every Borel set
A ⊂ C

n and every X ∈ Ud (n,C).
(3)⇒ (4) It is immediately.
(4) ⇒ (5) For every Borel set Y ∈ Borel(Rn+) define the mapping

�Y : Borel(Tn) → [0,+∞] by �Y (Z) = μ(Y × Z). Then �Y is a locally
finite regular Borel measure on T

n by Rudin [32, Theorem 2.18]. By hypothesis we
have that for every Z ∈ Borel(Tn) and X ∈ Ud (n,C)

�Y (XZ) = μ
(
X(Y × Z)

) = μ(Y × Z) = �Y (Z).

Thus �Y is invariant under the matrix product and hence by uniqueness of the Haar
measure, [18, Theorem 2.20], there exists a number �(Y ) such that μ(Y × Z) =
�(Y )m(Z) for every Z ∈ Borel(Tn). Now, since Tn is a compact group we have
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that m(Tn) = 1 and hence μ(Y × Tn) = �(Y ) for each Y ∈ Borel(Rn+). Thus by
Rudin [32, Theorem 2.18], � is a positive regular Borel measure on R

n+ and hence
μ is separately radial.

(5)⇒ (1) If μ = � ⊗m then by Proposition 4.4 the Toeplitz operator T∂k∂kμ is
separately radial. ��

Since a complex regular Borel measure μ is a k-FC type measure if and only if
its variation |μ| is a k-FC measure, it follows that Theorem 5.2 remains valid for
such type of measures.

Let k ∈ (Z+/2)n. If k ∈ Z
n+ then we denote by TZ+(ksrFC) and by Gk,Z+ the

C*-algebra generated by the set
{

T∂k∂kμ : μ is k-srFC
}

and {γ�,k : � ⊗ m is k-FC}
respectively, we write T(srFC) for |k| = 0. In addition, if k ∈

((
Z+/2

) \ Z+
)n

we denote by TZ+/2(ksrFC) and by Gk,Z+/2 the C*-algebra generated by the set{
Tμk : μ is k-srFC

}
and {γ�k : �k⊗m is FC} respectively. Observe that γ�,0 = γ� =

γ�0 .

Theorem 5.3 For any k ∈ (Z+/2)n the C*-algebras TksrFC and TZ+/2(ksrFC)

are commutative. In particular, if k ∈ Z
n+ then TksrFC is isometrically isomorphic

to Gk,Z+ and if k ∈ (
(Z+/2) \ Z+

)n
then TksrFC is isometrically isomorphic to

Gk,Z+/2.

For any k ∈ (Z+/2)n, by Proposition 4.2 a Borel regular measure μ is k-srFC
if and only if μk is a FC type measure for F2(Cn), where μk is given in (3.6).
Therefore, it follows that the C*-subalgebras Gk,Z+/2 and Gk,Z+ are isomorphic.

Corollary 5.4 For any k ∈ (Z+/2)n the C*-algebras Gk,Z+/2 and Gk,Z+ are
isomorphic to the C*-algebra G generated by the set

{
γ� : � ⊗m is FC

}
.

Acknowledgments The author wishes to thank the Universidad de Caldas for financial support
and hospitality. I also wish to express my gratitude to the referee for some helpful comments and
suggestions.

References

1. Abreu, L.D., Faustino, N.: On Toeplitz operators and localization operators. Proc. Amer. Math.
Soc. 143, 4317–4323 (2015) http://dx.doi.org/10.1090/proc/12211

2. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform.
Comm. Pure Appl. Math. 3, 187–214 (1961) http://dx.doi.org/10.1002/cpa.3160140303

3. Bauer, W., Herrera Yañez, C., Vasilevski, N.: Eigenvalue characterization of radial operators
on weighted Bergman spaces over the unit ball. Integr. Equ. Oper. Theory 78, no. 2, 271–300
(2014) http://dx.doi.org/10.1007/s00020-013-2101-1

4. Bauer, W., Issa, H.: Commuting Toeplitz operators with quasi-homogeneous symbols on the
Segal–Bargmann space. J. Math. Anal. Appl. 386, 213–235 (2012) http://dx.doi.org/10.1016/j.
jmaa.2011.07.058

http://dx.doi.org/10.1090/proc/12211
http://dx.doi.org/10.1002/cpa.3160140303
http://dx.doi.org/10.1007/s00020-013-2101-1
http://dx.doi.org/10.1016/j.jmaa.2011.07.058
http://dx.doi.org/10.1016/j.jmaa.2011.07.058


Separately Radial Fock-Carleson Type Measures for Derivatives of Order k 125

5. Bauer, W., Le, T.: Algebraic properties and the finite rank problem for Toeplitz operators on
the Segal–Bargmann space. J. Funct. Anal. 261, 2617–2640 (2011) http://dx.doi.org/10.1016/
j.jfa.2011.07.006

6. Berezin, F.A.: General concept of quantization. Comm. Math. Phys. 40, 153–174 (1975) http://
dx.doi.org/10.1007/BF01609397

7. Berger, C.A., Coburn, L.A.: Toeplitz operators and quantum mechanics. J. Funct. Anal. 68,
273–299 (1986) http://dx.doi.org/10.1016/0022-1236(86)90099-6

8. Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal-Bargmann space. Trans. Amer.
Math. Soc. 2, 813–829 (1987) http://dx.doi.org/10.2307/2000671

9. Bogachev, V. I. : Measure Theory, Springer-Verlag, Berlin (2007)
10. Coburn, L.A.: Deformation estimates for the Berezin-Toeplitz quantization. Commun. Math.

Phys. 149, 415–424 (1992) http://projecteuclid.org/euclid.cmp/1104251229
11. Engliš, M.: Toeplitz operators and group representations. J. Fourier Anal. Appl. 13, 243–265

(2007) http://dx.doi.org/10.1007/s00041-006-6009-x
12. Esmeral, K., Maximenko, E.A.: C∗-algebra of angular Toeplitz operators on Bergman

spaces over the upper half-plane. Commun. Math. Anal. 17, no. 2, 151–162 (2014) http://
projecteuclid.org/euclid.cma/1418919761

13. Esmeral, K., Maximenko, E.A.: Radial Toeplitz Operators on the Fock Space and Square-Root-
Slowly Oscillating Sequences. Complex Anal. Oper. Theory 10, 1655–1677 (2016) http://dx.
doi.org/10.1007/s11785-016-0557-0

14. Esmeral, K., Maximenko, E. A., Vasilevski, N.: C∗-algebra generated by angular Toeplitz
operators on the weighted Bergman spaces over the upper half-plane. Integr. Equ. Oper. Theory
83, 413–428 (2015) https://doi.org/10.1007/s00020-015-2243-4

15. Esmeral, K., Rozenblum, G., Vasilevski, N.: L-invariant Fock-Carleson type measures for
derivatives of order k and the corresponding Toeplitz operators. To appear in Journal of
Mathematics, 2019.

16. Esmeral, K., Vasilevski, N.: C*-algebra generated by horizontal Toeplitz operators on the Fock
space. Bol. Soc. Mat. Mex. 22, 567–582 (2016) http://dx.doi.org/10.1007/s40590-016-0110-1

17. Fock, V.A.: Konfigurationsraum und zweite Quantelung. Z. Phys. 75, 622–647 (1932) http://
dx.doi.org/10.1007/BF01344458

18. Folland, G.B.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics,
Boca raton (1995)

19. Folland, G.B.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, Princeton
University Press (1989)

20. Grudsky, S., Karapetyants, A., Vasilevski, N.: Dynamics of properties of Toeplitz operators
with radial symbols. Integr. Equ. Oper. Theory 20, 217–253 (2004) http://dx.doi.org/10.1007/
s00020-003-1295-z

21. S. Grudsky, S., Karapetyants, A., Vasilevski, N.: Dynamics of properties of Toeplitz operators
on the upper half-plane: Hyperbolic case. Bol. Soc. Mat. Mexicana 10, no. 3, 119–138 (2004)
https://doi.org/10.1007/978-3-7643-8726-6_14

22. Grudsky, S.M., Maximenko, E.A., Vasilevski, N.L.: Radial Toeplitz operators on the unit
ball and slowly oscillating sequences. Commun. Math. Anal. 14, no. 2, 77–94 (2013) http://
projecteuclid.org/euclid.cma/1356039033

23. Grudsky, S., Vasilevski, N.: Toeplitz operators on the Fock space: Radial component effects.
Integr. Equ. Oper. Theory 44, 10–37 (2002) http://dx.doi.org/10.1007/BF01197858

24. Herrera Yañez, C., Hutník, O., Maximenko, E.A.: Vertical symbols, Toeplitz operators on
weighted Bergman spaces over the upper half-plane and very slowly oscillating functions. C.
R. Acad. Sci. Paris, Ser. I 352, 129–132 (2014) http://dx.doi.org/10.1016/j.crma.2013.12.004

25. Herrera Yañez, C., Maximenko, E.A., Vasilevski, N.L.: Radial Toeplitz operators revisited:
Discretization of the vertical case. Integr. Equ. Oper. Theory 81, 49–60 (2015) http://dx.doi.
org/10.1007/s00020-014-2213-2

26. Herrera Yañez, C., Maximenko, E.A., Vasilevski, N.L.: Vertical Toeplitz operators on the upper
half-plane and very slowly oscillating functions. Integr. Equ. Oper. Theory 77, 149–166 (2013)
http://dx.doi.org/10.1007/s00020-013-2081-1

http://dx.doi.org/10.1016/j.jfa.2011.07.006
http://dx.doi.org/10.1016/j.jfa.2011.07.006
http://dx.doi.org/10.1007/BF01609397
http://dx.doi.org/10.1007/BF01609397
http://dx.doi.org/10.1016/0022-1236(86)90099-6
http://dx.doi.org/10.2307/2000671
http://projecteuclid.org/euclid.cmp/1104251229
http://dx.doi.org/10.1007/s00041-006-6009-x
http://projecteuclid.org/euclid.cma/1418919761
http://projecteuclid.org/euclid.cma/1418919761
http://dx.doi.org/10.1007/s11785-016-0557-0
http://dx.doi.org/10.1007/s11785-016-0557-0
https://doi.org/10.1007/s00020-015-2243-4
http://dx.doi.org/10.1007/s40590-016-0110-1
http://dx.doi.org/10.1007/BF01344458
http://dx.doi.org/10.1007/BF01344458
http://dx.doi.org/10.1007/s00020-003-1295-z
http://dx.doi.org/10.1007/s00020-003-1295-z
https://doi.org/10.1007/978-3-7643-8726-6_14
http://projecteuclid.org/euclid.cma/1356039033
http://projecteuclid.org/euclid.cma/1356039033
http://dx.doi.org/10.1007/BF01197858
http://dx.doi.org/10.1016/j.crma.2013.12.004
http://dx.doi.org/10.1007/s00020-014-2213-2
http://dx.doi.org/10.1007/s00020-014-2213-2
http://dx.doi.org/10.1007/s00020-013-2081-1


126 K. Esmeral

27. Isralowitz, J., Zhu, K.: Toeplitz operators on Fock spaces. Integr. Equ. Oper. Theory 66, 593–
611 (2010) http://dx.doi.org/10.1007/s00020-010-1768-9

28. Appuhamy, A., Le, T.: Commutants of Toeplitz Operators with Separately Radial Polynomial
Symbols. Complex Anal. Oper. Theory 10, 1–12 (2016) http://dx.doi.org/10.1007/s11785-014-
0439-2

29. Loaiza, M., Lozano, C.: On C∗-Algebras of Toeplitz Operators on the Harmonic Bergman
Space. Integr. Equ. and Oper. Theory 76, 105–130 (2013) http://dx.doi.org/10.1007/s00020-
013-2046-4

30. Rozenblum, G., Vasilevski, N.: Toeplitz operators defined by sesquilinear forms: Fock space
case. J. Funct. Anal. 267, 4399–4430 (2014) https://doi.org/10.1016/j.jfa.2014.10.001

31. Rozenblum, G., Vasilevski, N.: Toeplitz operators defined by sesquilinear forms: Bergman
space case. J. Math. Sci. 213, no. 2, 582–609 (2016) https://doi.org/10.1007/s10958-016-2726-
0

32. Rudin, W.: Real and Complex Analysis. 2nd Edition, McGraw-Hill, New York (1974)
33. Segal, I.E.: Lectures at the summer seminar on Applied Math. Boulder, Colorado (1960)
34. Vasilevski, N.L.: Commutative Algebras of Toeplitz Operators on the Bergman Space.

Operator Theory: Advances and Applications, vol. 185, Birkhäuser, Boston (2008)
35. Zorboska, N.: The Berezin transform and radial operators. Proc. Amer. Math. Soc. 131, 793–

800 (2003) http://www.jstor.org/stable/1194482
36. Zhu, K.: Analysis on Fock Spaces. In series: Graduate Texts in Mathematics, vol. 263, Springer,

New York (2012)

http://dx.doi.org/10.1007/s00020-010-1768-9
http://dx.doi.org/10.1007/s11785-014-0439-2
http://dx.doi.org/10.1007/s11785-014-0439-2
http://dx.doi.org/10.1007/s00020-013-2046-4
http://dx.doi.org/10.1007/s00020-013-2046-4
https://doi.org/10.1016/j.jfa.2014.10.001
https://doi.org/10.1007/s10958-016-2726-0
https://doi.org/10.1007/s10958-016-2726-0
http://www.jstor.org/stable/1194482


Toeplitz Operators with Tm
q -Invariant

Symbols on Some Weakly Pseudoconvex
Domains

Hernández-Marroquín Mauricio, Dupont-García Luis Alfredo,
and Sánchez-Nungaray Armando

Dedicated to Nikolai Vasilevski on the occasion of his 70
birthday.

Abstract In this paper, we study the Banach algebra T (T
q
m) which is generated by

Toeplitz operators whose symbols are invariant under the action of the Tq
m subgroup

of the maximal torus Tn, which are acting on the Bergman space on weakly
pseudo-convex domains �n

p. Moreover, we proved that the commutator of the C∗-
algebra T (Rk(�

n
p)) is equal to the Toeplitz algebra T (T

q
m), where T (Rk(�

n
p))

is the C∗-algebra generated by Toeplitz operators where the symbols are k-quasi-
radial. Finally, using this relationship we found some commutative Banach algebras
generated by Toeplitz operators which generalize the Banach algebra generated by
Toeplitz operators with quasi-homogeneous quasi-radial symbols.

1 Introduction

In recent years, a subject of study has been the connection between commutative
C∗-algebras generated by Toeplitz operators and the action of subgroups of
biholomorphisms on the underlying manifold. In particular, there is a classification
of commutative C∗-algebras generated by Toeplitz operators acting on the weighted
Bergman space which were described for the case of the unit ball in C

n and the
complex projective space. The important point to note here is following statement:
Given a maximal Abelian group G of biholomorphisms of the unit ball or the
complex projective space, the C∗-algebra generated by Toeplitz operators whose
symbols are invariant under the action of G is commutative on each weighted
Bergman space. There are five different models of maximal Abelian subgroups of
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biholomorphisms of the unit ball: quasi-elliptic, quasi-parabolic, quasi-hyperbolic,
nilpotent, and quasi-nilpotent, giving in total n + 2 subgroups, see [9, 12–14] for
further results and details.

On the other hand, several authors showed that there exist many Banach (not C∗)
algebras generated by Toeplitz operators which are commutative on each weighted
Bergman space for all balls or Siegel Domains of dimension n ≥ 2. The main
idea is to provide a family of functions, which, in a sense, were subordinated to
one of the previously mentioned models associated to maximal Abelian groups
G of biholomorphisms and we obtain commutative Banach algebras generated by
Toeplitz operators with symbols in this family of functions. In all of so far described
commutative cases the symbols were invariant under a certain action of a subgroup
of the corresponding group G, see [3–7, 15–18], for details.

Another step to finding Banach (not C∗) algebras generated by Toeplitz operators
was given in [19], here N. Vasileski introduced Tm-invariant symbols that are
invariant under the action of the group Tm, with m ≤ n, being a subgroup of the
quasi-elliptic group Tn of biholomorphisms of the unit ball Bn or complex space
Cn. Note that this set of all Tm-invariant symbols produces a non-commutative C∗-
algebra. Moreover, they characterized the action of the Toeplitz operators with Tm-
invariant symbols, which leave invariant the space of homogeneous polynomials.
Using this result the author obtained a new class of commutative Banach algebras
generated by Toeplitz operators with Tm-invariant symbols.

In [11], they introduced quasi-homogeneous quasi-radial symbols on a family of
weakly pseudoconvex domains �n

p. Such family of domains contains the unit ball
Bn as a particular case. This was a generalization of the symbols considered in [16]
for the unit ball Bn as well as those considered in [10] for the complex projective
space.

In [1, 8], T. Le considered ϕ a bounded separately radial polynomial on the unit
ball or the complex space and he characterized bounded functions φ such that the
Toeplitz operator Tφ commutes with Tϕ on the Bergman or Fock space respectively.
In particular, the functions φ are invariant under the action of a subgroup of the
maximal torus. However, this result is valid only for polynomials, in this work we
extend the latter results to some quasi radial functions.

In this paper, we study the Banach algebras T (T
q
m) which are generated by

Toeplitz operators whose symbols are invariant under the action of the Tq
m subgroup

of the maximal torus Tn, which are acting on the Bergman space over weakly
pseudoconvex domains �n

p. We consider the C∗-algebra T (Rk(�
n
p)), which is

generated by Toeplitz operators with quasi-radial symbols and we prove that the
commutator restricted to Toeplitz operators of this C∗-algebra is equal to the Banach
algebra T (T

q
m). Finally, using this relationship we found some commutative Banach

algebras generated by Toeplitz operators which generalize the Banach algebra
generated by Toeplitz operators with quasi-homogeneous quasi-radial symbols.

The paper is organized as follows. Section 2 contains preliminary material. In
Sect. 3 we studied Toeplitz operators with T

q
m-invariant symbols and showed that

this kind of operators leave invariant each subspace of the weighted homogeneous
polynomials. Moreover, we studied the C∗-algebra Tk , which is generated by
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Toeplitz operators with quasi-radial symbols and showed that every of these
operators are multiple of identity on each subspace of weighted homogeneous
polynomials. Finally, in Sect. 4 we found some new Banach algebras generated by
Toeplitz operators.

2 Preliminaries

Given a multi-index α = (α1, α2, . . . , αn) ∈ N
n we will use the standard notation

|α| = α1 + α2 + · · · + αn,

α! = α1!α2! · · ·αn!,
zα = z

α1
1 z

α2
2 · · · zαnn .

For p ∈ Z
n+ a fixed multi-index, we define the following sets

�n
p(r) =

{
(z1, . . . , zn) ∈ C

n |
n∑

j=1

|zj |2pj < r2
}
, (2.1)

S
n
p(r) =

{
(z1, . . . , zn) ∈ C

n |
n∑

j=1

|zj |2pj = r2
}
. (2.2)

For the case r = 1, we simply write �n
p and Snp, respectively. Note that for p =

(1, . . . , 1), we have that �n
p = Bn is the unit ball and Snp = Sn is the unit sphere in

Cn, both centered at the origin.
For every z ∈ Cn, we also denote

r = ‖z‖p =
√

|z1|2p1 + · · · + |zn|2pn,

ξj = zj

‖z‖
1
pj
p

= zj

r
1
pj

,

for all j = 1, . . . , n. In particular we have

n∑

j=1

|ξj |2pj = 1,

which implies that ξ = (ξ1, . . . , ξn) ∈ Snp. Note that these expressions define a set of
coordinates (r, ξ) for every z ∈ Cn, this coordinates are called p-polar coordinates.



130 H.-M. Mauricio et al.

We let dv denote the Lebesgue measure on �n
p normalized so that v(�n

p) =
1. Also we let σ denote the hypersurface measure on Snp, also normalized so that
σ(Snp) = 1.

The next lemma relates the measures v and σ , for the proof we refer to [19].

Lemma 2.1 The measures on v and σ satisfy

∫

�n
p

f (z)dv(z) =
⎛

⎝2
n∑

j=1

1

pj

⎞

⎠
∫ 1

0
r

2(
∑n

j=1
1
pj

)−1
∫

Snp

f (r, ξ)dσ(ξ)dr,

for every non-negative measurable function f on �n
p.

Remark 2.2 For the case p = (1, . . . , 1) we have the well known result

∫

Bn

f (z)dv(z) = 2n
∫ 1

0
r2n−1

∫

Sn
f (r, ξ)dσ(ξ)dr,

for every non-negative measurable function f on Bn.

The Hilbert spaces L2(�n
p) and L2(Snp) are those associated to the usual

Lebesgue measure dV on �n
p and the hypersurface measure dS on Snp. We denote

by A2(�n
p) the closed subspace of L2(�n

p) consisting of those functions which

are holomorphic in �n
p, and we let Pp : L2(�n

p) → A2(�n
p) be the orthogonal

projection. If a ∈ L∞(�n
p) then the Toeplitz operator Ta with symbol a is the

bounded operator on A2(�n
p) defined by Ta(f ) = Pp(af ).

The following identity is proved in [2],

〈zα, zβ〉 = δα,β

πn

n∏

j=1




(
αj + 1

pj

)

⎡

⎣
n∏

j=1

pj

⎤

⎦


⎛

⎝
n∑

j=1

αj + 1

pj

+ 1

⎞

⎠

. (2.3)

As a consequence of 2.3 a monomial orthonormal basis in A2(�n
p) is given by

eα =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎣
n∏

j=1

pj

⎤

⎦


⎛

⎝
n∑

j=1

αj + 1

pj

+ 1

⎞

⎠

πn

n∏

j=1




(
αj + 1

pj

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
2

zα, α ∈ Z
n+. (2.4)
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If α, β ∈ Nn for Snp we have the formula

∫

Snp

ξαξβdσ(ξ) = δα,β




⎛

⎝
n∑

j=1

1

pj

⎞

⎠
n∏

j=1




(
αj + 1

pj

)

⎡

⎣
n∏

j=1




(
1

pj

)⎤

⎦


⎛

⎝
n∑

j=1

αj + 1

pj

⎞

⎠

, (2.5)

or equivalently

∫

Snp

ξαξβdS(ξ) = δα,β

2πn
n∏

j=1




(
αj + 1

pj

)

⎡

⎣
n∏

j=1

pj

⎤

⎦


⎛

⎝
n∑

j=1

αj + 1

pj

⎞

⎠

. (2.6)

For a proof of formulas 2.5 and 2.6 we refer the reader to [19]. Note that when
p = (1, . . . , 1) we have

∫

Sn
ξαξβdS(ξ) = δα,β

2πnα!
(n− 1+ |α|)! .

3 Tm
q −Invariant Symbols

Let k = (k1, . . . , km) ∈ Z
m+ such that |k| = n. Rearrange the n coordinates of

z ∈ Bn in m groups z(j) of lenght kj , j = 1, . . . ,m. We use the notation z(j) =
(zj,1, . . . , zj,kj ), j = 1, . . . ,m, with

z1,1 = z1, z1,2 = z2, . . . , z1,k1 = zk1;
z2,1 = zk1+1, . . . , z2,k2 = zk1+k2 ; . . . ;

zm,1 = zn−km+1, . . . , zm,km = zn.

In general for any n−tuple u we will use alternative representations

u = (u1, . . . , un) = (u(1), . . . , u(m)).
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We denote

rj = ‖z(j)‖p =

√
√
√
√
√

kj∑

s=1

|zj,s |2pj,s , (3.1)

for every j = 1, . . . ,m. Further more for every z ∈ Cn we denote

ξ(j) =

⎛

⎜
⎜
⎜
⎝

zj,1

r

1
pj,1
j

, . . . ,
zj,kj

r

1
pj,kj

j

⎞

⎟
⎟
⎟
⎠
, (3.2)

for every j = 1, . . . ,m. Note that ξ(j) ∈ S
kj
p(j)

for every j = 1, . . . ,m.
For a fixed q = (q1, . . . , qn) ∈ Z

n+ and each κ = (κ1, . . . , κm) ∈ Z
m+ let Hq

κ be
the finite dimensional subspace of the Bergman space A2(�n

p) defined by

Hq
κ := span{eα : 〈α(j), q(j)〉 = κj , j = 1, · · · ,m};

where 〈α(j), q(j)〉 = ∑kj
s=1 qj,sαj,s , j = 1, . . . ,m. Then we have

A2(�n
p) =

∞⊕

|κ|=0

Hq
κ .

We consider the subgroup Tm
q of Tn which consist of elements of the form

η = (η
q1,1
1 , . . . , η

q1,k1
1 , . . . , η

qm,1
m , . . . , η

qm,km
m ), η1, . . . ηm ∈ T.

The action of Tm
q on A2(�n

p) is given by

z = (z1, . . . , zn) �−→ (3.3)

ηz = (η
q1,1
1 z1,1, . . . , η

q1,k1
1 z1,k1, . . . , η

qm,1
m zm,1, . . . , η

qm,km
m zm,km)

where η ∈ Tm
q .

Definition 3.1 Let k = (k1, . . . , km) ∈ Z
m+ be a partition of n. A Tm

q -invariant
symbol is a function b : �n

p �→ C such that b(ηz) = b(z) for every η ∈ Tm
q and

every z ∈ �n
p, where the action ηz is given by 3.3.
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Lemma 3.2 Let b ∈ L∞(�n
p) be invariant under the action of the group Tm

q on

A2(�n
p). Then the Toeplitz operator Tb leaves invariant all spaces Hq

κ .

Proof Making the change of variable w = ηz, we calculate

〈Tbeα, eβ〉 = 〈beα, eβ〉 =
∫

�n
p

b(z)eα(z)eβ(z)dv(z)

=
∫

�n
p

b(ηz)eα(z)eβ(z)dv(z)

=
m∏

j=1

η
〈p(j),β(j)−α(j)〉
j

∫

�n
p

b(w)eα(w)eβ(w)dv(w)

=
m∏

j=1

η
〈p(j),β(j)−α(j)〉
j 〈Tbeα, eβ〉

It is clear that 〈Tbeα, eβ〉 = 0 if 〈p(j), α(j)〉 	= 〈p(j), β(j)〉 for some j = 1, . . . ,m,
which proves the lemma. ��

When p = q = (1, . . . , 1), this lemma is the same result for the unit ball
Bn that we can find in [11]. A direct implication of Lemma 3.2 is the following
corollary which describes the action of the Toeplitz operator as a direct sum of
Toeplitz operator restricted to each finite dimensional subspace H

q
κ .

Corollary 3.3 Let b a Tm
q -invariant function, then the Toeplitz operator Tb acts in

the Bergman space A2(�n
p) as follows

Tb =
∞⊕

|κ|=0

Tb|Hq
κ
.

Definition 3.4 Let k = (k1, . . . , km) ∈ Z
m+ be a partition of n. A k-quasi-radial

symbol is a function a : �n
p → C that can be written as a(z) = ã(r1, . . . , rm)

where rj , j = 1, . . . ,m, is given by 3.1. We will denote by Rk(�
n
p) (or simply Rk)

the set of k-quasi-radial symbols on �n
p.

The C∗-algebra generated by Toeplitz operators with symbols in Rk will be
denoted by τ (Rk).

From now on, we consider q = (q1, . . . , qn) = (q(1), . . . , q(m)) ∈ Z
n+ as follows

qj,s =
kj∏

t=1
t 	=s

pj,t , (3.4)
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for every s = 1, . . . , kj and j = 1, . . . ,m, where p ∈ Z
n+ is the multi-index which

defines the pseudo convex domain �n
p.

The following lemma is a result from [19], it shows that the Toeplitz operators
with k-quasi-radial symbols are diagonal operators.

Lemma 3.5 Let k ∈ Z
m+ be a partition of n. Then, for any k-quasi-radial bounded

measurable symbol a ∈ Rk(�
n
p), we have

Taz
α = γa,k(α)z

α,

for every α ∈ Nn, where

γa,k(α) =
4m


⎛

⎝
n∑

j=1

αj + 1

pj

+ 1

⎞

⎠
m∏

j=1

⎛

⎝
kj∑

s=1

1

pj,s

⎞

⎠

m∏

j=1




⎛

⎝
kj∑

s=1

αj,s + 1

pj,s

⎞

⎠

×
∫

�n
m

a(r1, . . . , rm)

m∏

j=1

r

(

2
∑kj

s=1

(
αj,s+1
pj,s

)

−1

)

j drj , (3.5)

and �n
m = {(r1, . . . , rm) ∈ R+ : r2

1 + · · · + r2
m < 1}.

Example 3.6 Consider the symbol of the form aj (r1, . . . , rm) = r2
j for j =

1, . . . ,m, then we have that the spectral function of the Toeplitz operator Taj has
the following form

γaj ,k(α) =
2m

⎛

⎝
kj∑

s=1

αj,s + 1

pj,s

⎞

⎠
m∏

l=1

⎛

⎝
kl∑

s=1

1

pj,s

⎞

⎠

n∑

l=1

αl + 1

pl

+ 1

. (3.6)

Remark 3.7 We observe that the function γa,k(α) only depends in the values

kj∑

s=1

αj,s + 1

pj,s
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for every j = 1, . . . ,m. Then

γa,k(α) = γa,k(

k1∑

s=1

α1,s + 1

p1,s
, . . . ,

km∑

s=1

αm,s + 1

pm,s

)

= γa,k(

k1∑

s=1

β1,s + 1

p1,s
, . . . ,

km∑

s=1

βm,s + 1

pm,s

)

= γa,k(β)

if

kj∑

s=1

αj,s + 1

pj,s

=
kj∑

s=1

βj,s + 1

pj,s

for every j = 1, . . . ,m.

Remark 3.8 Let q ∈ Z
n+ defined by 3.7, if eα and eβ belongs to the subspace H

q
κ

then

〈α(j), q(j)〉 = 〈β(j), q(j)〉, j = 1, . . . ,m,

it follows that

kj∑

s=1

αj,s + 1

pj,s

=
kj∑

s=1

βj,s + 1

pj,s

, j = 1, . . . ,m,

finally, by the preceding remark γa,k(α) = γa,k(β).

In view of the previous remarks, we have that the Toeplitz operator with k-quasi-
radial symbol acts as a constant operator in each subespace H

q
κ where q is given

by 3.7, thus we have the following corollary.

Corollary 3.9 Let a ∈ Rk(�
n
p), then the Toeplitz operator acts in the Bergman

space A2(�n
p) as follows

Ta =
∞⊕

|κ|=0

Ta |Hq
κ
=

∞⊕

|κ|=0

γa,k(κ)Iκ
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where Iκ = I |Hq
κ

is the identity operator restricted to the subspace H
q
κ and

γa,k(κ) = γa,k(α) for some α which satisfies 〈α(j), q(j)〉 = κj for every j =
1, . . . ,m. Here q is defined by

qj,s =
kj∏

t=1
t 	=s

pj,t , (3.7)

for every s = 1, . . . , kj and j = 1, . . . ,m. The function γa,k(α) is given by

γa,k(α) =
4m


⎛

⎝
n∑

j=1

αj + 1

pj

+ 1

⎞

⎠
m∏

j=1

⎛

⎝
kj∑

s=1

1

pj,s

⎞

⎠

m∏

j=1




⎛

⎝
kj∑

s=1

αj,s + 1

pj,s

⎞

⎠

×
∫

�n
m

a(r1, . . . , rm)

m∏

j=1

r

(

2
∑kj

s=1

(
αj,s+1
pj,s

)

−1

)

j drj ,

with �n
m = {(r1, . . . , rm) ∈ R+ : r2

1 + · · · + r2
m < 1}.

Now we present the following theorem which is a direct consequence of
Corollaries 3.3 and 3.9.

Theorem 3.10 Let q ∈ Zn defined by 3.7. If a ∈ Rk(�
n
p) is a k-quasi-radial

symbol and b is a symbol invariant under the action of Tm
q . Then the Toeplitz

operators Ta and Tb commute in the Bergman space A2(�n
p).

Proof Let a ∈ Rk(�
n
p) and b a k-quasi-homogeneous symbol. Then we have

TaTb =
⎛

⎝
∞⊕

|κ|=0

γ (a, k)(κ)Iκ

⎞

⎠

⎛

⎝
∞⊕

|κ|=0

Tb|Hq
κ

⎞

⎠

=
∞⊕

|κ|=0

γ (a, k)(κ)Tb|Hq
κ

=
⎛

⎝
∞⊕

|κ|=0

Tb|Hq
κ

⎞

⎠

⎛

⎝
∞⊕

|κ|=0

γ (a, k)(κ)Iκ

⎞

⎠

= TbTa.

��
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We denote by T (Rk(�
n
p)) the commutator of the set of k-quasi-radial symbols,

that is

T (Rk(�
n
p)) = {Tb : [Ta, Tb] = TaTb − TbTa = 0, ∀a ∈ Rk(�

n
p)}.

It follows by the previous theorem that Tb ∈ T (Rk(�
n
p)) if b is a Tm

q -invariant
symbol.

Lemma 3.11 Let b : �n
p → C be a symbol. Then the Topelitz operator Tb belongs

to the commutator T (Rk(�
n
p)) if and only if Tb leaves invariant each subspace Hκ .

Proof Let a : �n
p → C be a symbol such that a = a. Then we have

〈[Tb, Ta]eα, eβ〉 = 〈(TbTa − TaTb)eα, eβ 〉
= 〈TbTaeα, eβ〉 − 〈TaTbzα, eβ 〉
= 〈Tbγa,k(α)eα, eβ〉 − 〈Tbeα, γa,k(β)eβ〉
= (γa,k(α)− γa,k(β))〈Tbeα, eβ〉. (3.8)

Note that, from the above equation we have that [Tb, Ta] = 0 is equivalent to the
following statement

(γa,k(α)− γa,k(β))〈Tbzα, zβ〉 = 0, (3.9)

In particular, if we considered the symbols of the Example 3.6 and eα and eβ do
not belong to the same subspace H

q
κ , then there exists a symbol aj0 such that

(γaj0 ,k(α)− γaj0 ,k(β)) 	= 0.

Therefore, from the above equation and Remark (3.12) we can conclude that
〈Tbeα, eβ〉 = 0 if eα and eβ do not belong to the same subspace H

q
κ , which is

equivalent to Tb leaves invariant each subspace Hκ .
Conversely, suppose that Tb leaves invariant each subspace H

q
κ . Consider eα, eβ

in Bergman space thus we have two cases: First case, we have that eα, eβ ∈ H
q
κ for

some κ , which implies that γa,k(α) − γa,k(β) = 0. Second case, we have that eα
and eβ do not belong to the same subspace H

q
κ , which implies that 〈Tbeα, eβ 〉 = 0.

Therefore, from Remark (3.12) and above mentioned we obtain that [Tb, Ta] = 0.
��
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Remark 3.12 For η ∈ Tn
q we define bη(z) = b(ηz). Making the change of variable

w = ηz we have

〈Tbηeα, eβ〉 = 〈bηeα, eβ〉 =
∫

�n
p

b(ηz)eα(z)eβ(z)dv(z)

=
m∏

j=1

η
〈p(j),β(j)−α(j)〉
j

∫

�n
p

b(w)eα(w)eβ(w)dv(w)

=
m∏

j=1

η
〈p(j),β(j)−α(j)〉
j 〈Tbeα, eβ 〉,

Lemma 3.13 Let b : �n
p → C a symbol. Then the Toplitz operator Tb leaves

invariant each subspace Hq
κ if and only if b is a Tm

q -invariant symbol.

Proof Suppose that Tb leaves invariant each subspace Hq
κ . Consider multi-indices α

and β such that eα and eβ do not belong to the same subspace H
q
κ , by Remark 3.12

we have

〈Tbηeα, eβ〉 = 0,

then Tbη leaves invariant each subspace Hq
κ , and we can write

Tbη =
∞⊕

|κ|=0

Tbη |Hq
κ
.

Let eα and eβ be elements of H
q
κ , by Remark 3.12 we have 〈Tbηeα, eβ 〉 =

〈Tbeα, eβ〉. Then

Tbη |Hq
κ
= Tb|Hq

κ

for all κ ∈ Z
m+. It follows that Tbη = Tb which implies bη = b i.e. b is a Tm

q -invariant
symbol.

Conversely, suppose that b is a Tm
q -invariant symbol, by Theorem 3.10 the

Toeplitz operator Tb is in the commutator C(Rk(�
n
p)) and by Lemma 3.11 the

Toeplitz operator Tb leaves invariant each subspace H
q
κ . ��

As a direct consequence of Lemmas 3.11 and 3.13, we have the following
theorem which is the fundamental result of this text.

Theorem 3.14 Let b : �n
p → C a symbol. Then the Toplitz operator Tb belongs to

the commutator T (Rk(�
n
p)) if and only if b is a Tm

q -invarian symbol.
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4 Commutative Results for Quasi-Homogeneous Symbols

We fix a multi-index κ ∈ Z
m+. Since a Toeplitz operator with a T

m
q -invariant symbol

g leaves invariant each subspace Hq
κ as Lemma 3.2 asserts, the action of Tg on basis

elements eα in H
q
κ is as follows

Tgeα =
∑

eβ∈Hq
κ

〈Tgeα, eβ〉eβ

We give an alternative representation for points z in the pseudoconvex domain
�n

p. First, for each coordinate of z, we denote

zj = |zj |tj or zj,l = |zj,l |tj,l ,

where ti and tj,l belong to T. As before we introduce the radius

rj = ‖z(j)‖p =

√
√
√
√
√

kj∑

s=1

|zj,s |2pj,s (4.1)

for every j = 1, . . . ,m. Now we represent the coordinates of z(j) in the form

zj,l = r
1/pj,l

j ξj,l = r
1/pj,l

j sj,l tj,l ,

where

sj,l = |zj,l |
r

1/pj,l

j

,

for l = 1, . . . , kj , so that s(j) ∈ S
kj
p(j),+ := S

kj
p(j)

∩ R
kj
+ . Note that ξ(j) ∈ S

kj
p ,

j = 1, . . . ,m.
For a fixed j , we consider symbols of the form g(z) = dj (ξ(j)), where dj =

dj (ξ(j)) ∈ L∞(S
kj
p ) and dj (ηξ(j)) = dj (ξ(j)) for all η ∈ Tm

q . In this case 〈Tgeα, eβ〉
does not equal to 0 if and only if eα and eβ are from the same Hκ and have the form

α = (α(1), . . . , α(j−1), α(j), α(j+1), . . . , α(m)),

β = (α(1), . . . , α(j−1), β(j), α(j+1), . . . , α(m)).
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We describe the action of the Toeplitz operator Tg in H
q
κ . First we compute

〈Tdj zα, zβ〉 = 〈dj zα, zβ〉

=
∫

�n
p

dj (ξ(j))z
αzβdv(z).

Consider the change of variables zt,l = r

1
pt,l

t ξt,l for l = 1, . . . , kt and t = 1, . . . ,m.
Then we obtain

〈Tdj zα, zβ〉 =
∫

�n
m

m∏

t=1

2

⎛

⎝
kt∑

l=1

1

pt,l

⎞

⎠ r

(
∑kt

l=1
αt,l+βt,l+2

pt,l
−1

)

t drt

×

⎛

⎜
⎜
⎝

m∏

t=1
t 	=j

∫

S
kt
p(t)

ξα(t) ξ
β(t)

dSt

⎞

⎟
⎟
⎠

∫

S
kj
p(j)

dj (ξ(j))ξ
α(j) ξ

β(j)
dSj

=
∫

�n
m

m∏

t=1

2

⎛

⎝
kt∑

l=1

1

pt,l

⎞

⎠ r

(
∑kt

l=1
αt,l+βt,l+2

pt,l
−1

)

t drt

×

⎛

⎜
⎜
⎝

m∏

t=1
t 	=j

2πkt
∏kt

l=1 

(
αt,l+1
pt,l

)

[∏kt
l=1 pt,l

]



(∑kt
l=1

αt,l+1
pt,l

)

⎞

⎟
⎟
⎠

∫

S
kj
p(j)

dj (ξ(j))ξ
α(j)ξ

β(j)
dSj

=
∫

�n
m

m∏

t=1

r

(
∑kt

l=1
αt,l+βt,l+2

pt,l
−1

)

t drt

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

22m−kj πm−kj
n∏

l=1




(
αl + 1

pl

)
⎡

⎣
kj∏

l=1

pj,l

⎤

⎦
m∏

t=1

⎛

⎝
kt∑

l=1

1

pt,l

⎞

⎠

⎡

⎣
n∏

l=1

pl

⎤

⎦
m∏

t=1
t 	=j




⎛

⎝
kt∑

l=1

αt,l + 1

pt,l

⎞

⎠
kj∏

l=1




(
αj,l + 1

pj,l

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×
∫

S
kj
p(j)

dj (ξ(j))ξ
α(j) ξ

β(j)
dSj ,
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where �n
m = {(r1, . . . , rm) ∈ R

m+ : r2
1 +· · ·+ r2

m < 1}. Recall that the Beta function
of m+ 1 variables is defined by

B(x1, . . . , xm+1) =
∫

�m

⎛

⎝
m∏

j=1

y
xj−1
j

⎞

⎠

⎛

⎝1−
m∑

j=1

yj

⎞

⎠

xm+1−1

dy1 · · · dym,

where �m = {(y1, . . . , ym) ∈ R
m+ : y1 + · · · + ym < 1} is the standard m-

dimensional simplex; recall as well that

B(x1, . . . , xm+1) = 
(x1) · · ·
(xm+1)


(x1 + · · · + xm+1)
.

Since zα and zβ are in H
q
κ by Remark 3.8 and changing the variables r2

t by rt we
have

∫

�n
m

m∏

t=1

r

(
∑kt

l=1
αt,l+βt,l+2

pt,l
−1

)

t drt = 2−m
∫

�m

m∏

t=1

r

∑kt
l=1

αt,l+1
pt,l

−1

t drt

= 2−mB

⎛

⎝
t1∑

l=1

α1,l + 1

p1,l
, . . . ,

tm∑

l=1

αm,l + 1

pm,l

, 1

⎞

⎠

=
2−m

m∏

t=1




⎛

⎝
kt∑

l=1

αt,l + 1

pt,l

⎞

⎠



(∑n

l=1
αl+1
pl
+ 1

) .

Finally

〈Tdj zα, zβ〉

=
(2π)m−kj 


⎛

⎝
kj∑

l=1

αj,l + 1

pj,l

⎞

⎠
n∏

l=1




(
αl + 1

pl

)
⎡

⎣
kj∏

l=1

pj,l

⎤

⎦
m∏

t=1

⎛

⎝
kt∑

l=1

1

pt,l

⎞

⎠



(∑n

l=1
αl+1
pl
+ 1

)
⎡

⎣
n∏

l=1

pl

⎤

⎦
kj∏

l=1




(
αj,l + 1

pj,l

)

×
∫

S
kj
p(j)

dj (ξ(j))ξ
α(j) ξ

β(j)
dSj . (4.2)
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In order to describe the action of Toeplitz operator Tdj on the space H
q
κ we use

the same notation introduced in [11]:

α(̂j) := (α1, . . . , α(j−1), α(j+1), . . . , α(m)),

being the tuple α with the part α(j) omitted, and α(̂j) �� α(j) := α, being the tuple
α restored by it parts α(̂j) and α(j).

Given α such that eα ∈ H
q
κ , let

Hq
κ (α(̂j)) := {eβ = α(̂j) �� β(j) : 〈β(j), q(j)〉 = κj }

be the α(̂j)-level of Hq
κ . The equality 4.2 implies that

Tdj eα =
∑

eβ∈Hq
κ (α(̂j))

〈Tdj eα, eβ〉eβ,

i.e. the Toeplitz operator Tdj leaves invariant each α(̂j)-level Hq
κ (α(̂j)) ⊂ H

q
κ .

Note that symbols of the form bj (s(j))cj (t(j)) with s(j) ∈ S
kj
p(j),+ and t(j) ∈ Tkj

are a special case of symbols dj (ξ(j)), ξ(j) ∈ S
kj
p(j)

that we have consider in the
latter calculations. Then the preceding discussion and Theorem 3.14 leads to the
following result which coincides with Theorem 4.3 of [11] when p = (1, . . . , 1).

Theorem 4.1 Let

g(z) = a(r1, . . . , rm)

m∏

j=1

bj (s(j))cj (t(j)),

where a ∈ Rk(�
n
p) is a k-quasi-radial symbol, bj = bj (s(j)) ∈ L∞(S

kj
p(j),+), cj =

cj (t(j)) ∈ L∞(Tkj ), and cj (ηt(j)) = cj (t(j)) for all η ∈ Tm
q , j = 1, . . . ,m.

The operators Ta and Tbjcj , for j = 1, . . . ,m, mutually commute and

Tg = TaTb1c1 · · · Tbjcj .

The restriction of Ta on H
q
κ is a multiplication operator γa,k(κ)Iκ which is described

in Corollary 3.9, while the action of Tbjcj on basis elements of Hq
κ is given by 4.2.
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1 Introduction

From the mid-1980s R.L. Ellis, I. Gohberg and D.C. Lay wrote several papers on
systems of orthogonal matrix polynomials and matrix functions, culminating in the
monograph [3] by Ellis and Gohberg, where additional background and further
references can be found. Inverse problems related to these orthogonal systems were
first considered in [2] for scalar-valued Wiener functions on the circle, both for
unilateral systems (onefold problem) and bilateral systems (twofold problem). In
later work extensions of the onefold inverse problem on the circle were considered
for square matrix-valued polynomials in [5] and for square matrix-valued Wiener
functions in [4]. Nonsquare versions were only recently dealt with in [12] and [13]
for the onefold problems on the circle and real line, respectively, while nonsquare
twofold problems on the circle and real line were solved in [9] and [10], respectively.
In this paper we further develop the solution to the twofold inverse problem on
the real line from [10] to the case of rational matrix functions. In particular, we
present necessary and sufficient conditions for the existence and uniqueness of a
solution, which are computationally more attractive then the results for Wiener class
matrix functions in [10]. For this purpose, we represent the rational data functions
in realized form, which allows us to reduce the inverse problem to a linear algebra
problem and to give the solutions in state space form.

In order to introduce the inverse problem some notation and terminology has
to be introduced. This is done in the next section where also the main result
(Theorem 2.1) is presented.

The paper consists of five sections (the present introduction included) and an
appendix. The second section presents the main theorem and a simple scalar
example illustrating the main theorem. Section 3 consists of three subsections which
together yield the proof of the main theorem. In Sect. 4 alternative formulas for the
unique solution to the twofold rational Ellis-Gohberg inverse problem are derived
in two special cases. In Sect. 5 an example is presented showing that the conditions
in the main theorem cannot be weakened. In the Appendix we review Theorem 1.2
in [10]. The latter theorem plays an important role in the proofs given in Sect. 3.

2 Main Theorem

The data of the inverse problem we are dealing with are proper rational matrix
functions α, β, γ, δ with

α(λ) ∈ C
p×p, β(λ) ∈ C

p×q , γ (λ) ∈ C
q×p, δ(λ) ∈ C

q×q , (2.1)



The Twofold Ellis-Gohberg Inverse Problem for Rational Matrix Functions 147

α and β having only poles in the open lower half plane C−, γ and δ having poles
only in the open upper half plane C+, and with values at∞ given by

α(∞) = Ip, β(∞) = 0, γ (∞) = 0, δ(∞) = Iq .

The word “proper” refers to the fact that the four functions are analytic at infinity
(see, e.g., [1, page 9] or [6, page 377]). Moreover, the functions β and γ are strictly
proper, which means that these two functions are proper and the value at infinity
is zero (see, e.g., [1, page 26]). When the above properties are fulfilled we call
{α, β, γ, δ} an admissible rational data set.

Given an admissible rational data set {α, β, γ, δ} the rational version of the
twofold Ellis-Gohberg inverse problem is to find a strictly proper p × q rational
matrix function g which has all its poles in C− such that

α(λ) + g(λ)γ (λ)− Ip has poles only in C+;
g(λ̄)∗α(λ)+ γ (λ) has poles only in C−;
δ(λ)+ g(λ̄)∗β(λ)− Iq has poles only in C−;
g(λ)δ(λ) + β(λ) has poles only in C+.

(2.2)

We shall refer to the above problem as the twofold Rat-EG inverse problem.
In what follows we will write g∗(λ) instead of g(λ̄)∗. More generally, for any

rational matrix function ϕ(λ) the function ϕ(λ̄)∗ will be denoted by ϕ∗(λ) and will
be called the adjoint of the function ϕ(λ).

In this paper, using Theorem A.1, we exploit the fact that our data functions are
rational matrix (Wiener class) functions to derive computationally effective solution
criteria and a more explicit description of the solution. To achieve this, we assume
our data functions are given in the form of finite dimensional state space realizations:

α(λ) = Ip + iC1(λIn1 − iA1)
−1B1, β(λ) = iC2(λIn2 − iA2)

−1B2,

γ (λ) = −iC3(λIn3 + iA3)
−1B3, δ(λ) = Iq − iC4(λIn4 + iA4)

−1B4.

(2.3)

Here Aj , 1 ≤ j ≤ 4, is a square matrix which is assumed to be stable, e.g., all
eigenvalues of Aj are in the open left half plane Cleft. These stability conditions are
automatically fulfilled if the realizations are minimal. In the latter case the McMillan
degrees of α, β, γ, δ are equal to n1, n2, n3, n4, respectively. Although the functions
α, β, γ, δ in an admissible rational data set can always be represented in this way,
we shall not require the realizations in (2.3) to be minimal.
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To state our solution to the twofold Rat-EG inverse problem we shall use the
solution Pij , for i, j ∈ {1, 2} or i, j ∈ {3, 4}, to the following Lyapunov equation
associated with the pairs (Ai, Ci) and (Aj , Cj ):

A∗i Pij + PijAj + C∗i Cj = 0, i, j ∈ {1, 2} or i, j ∈ {3, 4}. (2.4)

For i = j we abbreviate Pjj to Pj . We also need the solution Qj , for 1 ≤ j ≤ 4, to
the Lyapunov equation

AjQj +QjA
∗
j + BjB

∗
j = 0, 1 ≤ j ≤ 4. (2.5)

Since the matrices Aj , 1 ≤ j ≤ 4, are all stable, the solutions Pij and Qj to the
Lyapunov equations (2.4) and (2.5) are unique, and given explicitly by

Pij =
∫ ∞

0
esA

∗
i C∗i Cj e

sAj ds and Qj =
∫ ∞

0
esAjBjB

∗
j e

sA∗j ds.

From the latter identities it follows that the matrices Pj = Pjj and Qj , 1 ≤ j ≤ 4,
are nonnegative. Furthermore, we have P ∗12 = P21 and P ∗34 = P43. See Section 3.8
in [15] for the basic theory of Lyapunov equations; see also Theorem I.5.5 in [7].

Since P2 and Q2 are nonnegative, the matrix In2 + Q2P2 is invertible. Indeed,

In2 + P
1/2
2 Q2P

1/2
2 ≥ In2 , and therefore is invertible. But then

In2 +Q2P2 = In2 + (Q2P
1/2
2 )P

1/2
2 is also invertible.

Similarly, we see that In3 +Q3P3 is invertible because P3 and Q3 are nonnegative.
Using the matrices defined above, we set

N1 : = P1 − P12(In2 +Q2P2)
−1Q2P21,

N4 : = P4 − P43(In3 +Q3P3)
−1Q3P34.

(2.6)

Now we are ready to formulate our main result.

Theorem 2.1 The twofold Rat-EG inverse problem associated with the rational
data set {α, β, γ, δ} given by state space realizations (2.3) has a solution if and
only if the following conditions are satisfied:

(R1)
(
C1 + B∗1P1

)
(λIn1 − iA1)

−1B1 = B∗3 (λIn3 − iA∗3)−1P3B3;
(R2) (C4 + B∗4P4)(λIn4 + iA4)

−1B4 = B∗2 (λIn2 + iA∗2)−1P2B2;
(R3) the following two identities hold:

(a) B∗1 (λIn1 + iA∗1)−1P12B2 = B∗3P34(λIn4 + iA4)
−1B4,

(b) (C2 + B∗1P12)(λIn2 − iA2)
−1B2 =

= B∗3 (λIn3 − iA∗3)−1(C∗3 + P34B4);

(R4) the matrices In1 −Q1N1 and In4 −Q4N4 are invertible.
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Moreover, in that case the solution is unique, and the unique solution g is given by

g(λ) = −iC1(λIn1 − iA1)
−1Y1 − iC2(λIn2 − iA2)

−1
(
Y2 − Ỹ2

)
. (2.7)

Here Y2 and Ỹ2 are matrices of size n2 × q , and Y1 is a matrix of size n1 × q , and
these three matrices are defined by

Y1 = (In1 −Q1N1)
−1Q1P12(In2 +Q2P2)

−1B2, (2.8)

Y2 = (In2 +Q2P2)
−1B2, (2.9)

Ỹ2 = (In2 +Q2P2)
−1Q2P21Y1. (2.10)

This unique solution g is also given by

g(λ) = −iX1(λIn4 − iA∗4)−1C∗4 − i
(
X2 − X̃2

)
(λIn3 − iA∗3)−1C∗3 . (2.11)

In this case X2 and X̃2 are matrices of size p×n3, and X1 is a matrix of size p×n4,
and these three matrices are defined by

X1 = B∗3 (In3 + P3Q3)
−1P34Q4(In4 −N4Q4)

−1, (2.12)

X2 = B∗3 (In3 + P3Q3)
−1, (2.13)

X̃2 = X1P43Q3(In3 + P3Q3)
−1. (2.14)

We conclude this section with a simple scalar example to illustrate the above
theorem. Let the data α, β, γ, δ be the scalar rational functions given by

α(λ) = λ− 5i

λ+ 3i
, β(λ) = 4

λ+ 3i
, γ (λ) = 4

λ− 3i
, δ(λ) = λ+ 5i

λ− 3i
. (2.15)

Note that α∗ = δ and β∗ = γ . Therefore, and since the functions are also scalar, the
first two conditions in (2.2) are equivalent to the last two. Hence, for (2.2) to hold,
it suffices to verify the first two, or last two, of the conditions in (2.2). That α∗ = δ

and β∗ = γ is not by accident, in the scalar case it is necessary for a solution to
exist, as explained at the end of this example. In the matrix case this need not occur,
which makes the scalar problem relatively simple compared to the matrix problem.
We shall now use Theorem 2.1 to show that the twofold Rat-EG problem is solvable
and to obtain the solution g.
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The realizations of the functions α, β, γ, δ in (2.15) are obtained by taking

A1 = A2 = A3 = A4 = −3, B1 = B2 = B3 = B4 = 1,

C1 = C4 = −8, C2 = −4i, C3 = 4i.

Obviously, A1, A2, A3, A4 are stable 1 × 1 matrices. With this choice of the
realizations the solutions to the Lyapunov equations (2.4) and (2.5) are given by

P1 = P4 = 32
3 , P2 = P3 = 8

3 , P12 = P ∗21 = P34 = P ∗43 = 16
3 i,

Q1 = Q2 = Q3 = Q4 = 1
6 .

Moreover the conditions (R1)–(R3) reduce to:

(R1)
(− 8+ 32

3

)
(λ+ 3i)−1 = (λ+ 3i)−1 8

3 ;
(R2)

(− 8+ 32
3

)
(λ− 3i)−1 = (λ− 3i)−1 8

3 ;
(R3)(a) (λ− 3i)−1

( 16
3 i

) = ( 16
3 i

)
(λ− 3i)−1;

(R3)(b)
(− 4i + 16

3 i
)
(λ+ 3i)−1 = (λ+ 3i)−1

(− 4i + 16
3 i

)
.

Clearly (R1)–(R3) are satisfied. Next we determine N1 and N4 in order to check
(R4). A straightforward calculation yields

N1 = 32
3 − ( 16

3 i)(1+ 1
6

8
3 )
−1 1

6 (− 16
3 i) = 96

13 and N4 = N1.

Then

1−Q1N1 = 1−Q4N4 = 1− 1
6

96
13 = − 3

13 .

The latter shows that condition (R4) is satisfied too. The next step is to determine
the function g by using (2.7). In this case we have

Y2 = (1+ 8
3

1
6 )
−1 = 9

13 , Y1 = −( 3
13 )

−1 1
6 (

16
3 i) 9

13 = − 8
3 i,

Ỹ2 = 9
13

1
6 (− 16

3 i)(− 8
3 i) = − 64

39 .

and hence

g(λ) = −i(−8)(λ+ 3i)−1(− 8
3 i)+ i(−4i)(λ+ 3i)−1(− 64

39 − 9
13 ) =

= 12(λ+ 3i)−1.

Thus, by Theorem 2.1, the rational function g is a solution of the twofold Rat-EG
inverse problem corresponding to the data {α, β, γ, δ} given by (2.15).
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An Additional Remark As we remarked above, the data set {α, β, γ, δ} in this
example is such that α∗ = δ and γ ∗ = β. These identities are in fact necessary for
a solution of the scalar twofold EG inverse problem to exist. Indeed, if a solution
to the twofold EG inverse problem associated with the data set {α, β, γ, δ} of scalar
functions exists then, according to [14, Theorem 2.1], the functions α and δ∗ have
the same zeros in C+. Lemma 2.2 in [14] implies that in that case α and δ∗ have
the same zeros in C+ if and only if α∗ = δ and hence also β = γ ∗. Here we
use that the existence of a solution to the twofold EG inverse problem implies that
α∗α − γ ∗γ = 1, δ∗δ − β∗β = 1 and α∗β = γ ∗δ. (See also Theorem A.1 below.)

3 Proof of the Main Theorem

We split the section into three subsections. Throughout {α, β, γ, δ} is an admissible
rational data set. We assume that α, β, γ, δ are given by the finite dimensional state
space realizations (2.3) with A1, A2, A3, A4 being stable matrices.

3.1 The Conditions (R1), (R2), (R3)

This first subsection concerns the conditions (R1), (R2), and (R3) appearing in
Theorem 2.1. We shall prove the following propositions.

Proposition 3.1 Condition (R1) holds if and only if

α∗(λ)α(λ) − γ ∗(λ)γ (λ) = Ip. (3.1)

Proposition 3.2 Condition (R2) holds if and only if

δ∗(λ)δ(λ)− β∗(λ)β(λ) = Iq . (3.2)

Proposition 3.3 Condition (R3) holds if and only if

α∗(λ)β(λ) = γ ∗(λ)δ(λ). (3.3)

The following two elementary lemmas will be used to prove the above propositions.

Lemma 3.4 Let F,G,H,K be matrices, F ∈ C
n×n, G ∈ C

n×p, H ∈ C
p×m, and

K ∈ C
m×m, and assume that there exists a matrix X ∈ C

n×m such that FX−XK =
GH . Then

(λIn − F)−1GH(λIm −K)−1 = (λIn − F)−1X −X(λIm −K)−1. (3.4)



152 S. ter Horst et al.

Proof The fact that FX −XK = GH implies that

GH = (F − λIn)X −X(K − λIm) = X(λIm −K)− (λIn − F)X.

Multiplying the latter identity from the left by (λIn − F)−1 and from the right by
(λIm −K)−1 yields the identity (3.4). ��
Lemma 3.5 Let ϕ1, ϕ2, η1 and η2 be strictly proper rational n×m matrix functions.
Assume that ϕ1 and η1 have all poles in C−, and ϕ2 and η2 have all poles in C+.
Then ϕ1 = η1 and ϕ2 = η2 if and only if ϕ1 + ϕ2 = η1 + η2.

Proof If ϕ1 = η1 and ϕ2 = η2, then clearly ϕ1 + ϕ2 = η1 + η2. Conversely, if
ϕ1+ ϕ2 = η1 + η2, then ϕ1− η1 = ψ = −ϕ2+ η2. Since all poles of ϕ1 and η1 are
in C−, the same is true for ψ . Similarly, using that all poles of ϕ2 and η2 are in C+,
all poles of ψ are in C+. Hence the rational function ψ has no poles in C. But ψ is
also strictly proper. Thus ψ = 0, and therefore ϕ1 = η1 and ϕ2 = η2. ��
Proof of Proposition 3.1 We split the proof into three parts. First we compute the
product α∗(λ)α(λ) and next the product γ ∗(λ)γ (λ), using Lemma 3.4 in both cases.

Part 1 Since α is given by (2.3), we have

α∗(λ) = Ip − iB∗1 (λIn1 + iA∗1)−1C∗1 . (3.5)

It follows that

α∗(λ)α(λ)− Ip = −iB∗1 (λIn1 + iA∗1)−1C∗1 + iC1(λIn1 − iA1)
−1B1+

+ B∗1 (λIn1 + iA∗1)−1C∗1C1(λIn1 − iA1)
−1B1. (3.6)

To compute the product (λIn1 + iA∗1)−1C∗1C1(λIn1 − iA1)
−1 appearing in (3.6) we

apply Lemma 3.4 with

F = −iA∗1, G = −C∗1 , H = C1, K = iA1, X = iP1.

In this case, using (2.4) with j = 1 and P11 = P1, we see that FX − XK = GH ,
and hence Lemma 3.4 shows that

(λIn1 + iA∗1)−1(C∗1C1)(λIn1 − iA1)
−1 =

= (λIn1 + iA∗1)−1(−iP1)+ (iP1)(λIn1 − iA1)
−1.

Using the later identity in (3.6) we obtain

α∗(λ)α(λ) − I = ϕ1(λ)+ ϕ2(λ)
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with

ϕ1(λ) = i
(
C1 + B∗1P1

)
(λIn1 − iA1)

−1B1 and ϕ2 = ϕ∗1 .

Note that ϕ1 is a rational p × p matrix function that has all its poles in C−.

Part 2 In this part we compute the product γ ∗(λ)γ (λ) in the same way as a∗(λ)α(λ)
has been computed. Note that

γ ∗(λ) = iB∗3 (λIn3 − iA∗3)−1C∗3 ,

and thus γ ∗(λ)γ (λ) = B∗3 (λIn3 − iA∗3)−1C∗3C3(λIn3 + iA3)
−1B3. To compute this

product we apply Lemma 3.4 with

F = iA∗3, G = C∗3 , H = C3, K = −iA3, X = iP3.

One checks that FX −XK = GH , and thus we can apply Lemma 3.4 to obtain

(λIn3 − iA∗3)−1C∗3C3(λIn3 + iA3)
−1 =

= (λIn3 − iA∗3)−1(iP3)− (iP3)(λIn3 + iA3)
−1.

Hence

γ ∗(λ)γ (λ) = η1(λ)+ η2(λ)

with

η1(λ) = iB∗3 (λIn3 − iA∗3)−1P3B3 and η2 = η∗1 .

Part 3 Note that ϕ1, ϕ2, η1 and η2 as defined in the Parts 1 and 2 of this proof satisfy
the conditions in Lemma 3.5. Hence we see that α∗(λ)α(λ) − I = γ ∗(λ)γ (λ) if
and only if ϕ1 = η1 and ϕ2 = η2. Since η2 = η∗1 and ϕ2 = ϕ∗1 we have that
α∗(λ)α(λ)− I = γ ∗(λ)γ (λ) if and only if ϕ1 = η1, i.e., condition (R1) is satisfied.

��
Proof of Proposition 3.2 This proposition can be proved using arguments similar
to those used to prove Proposition 3.1. Actually, one can obtain Proposition 3.2 as
a corollary of Proposition 3.1 by applying the latter proposition using the data set
{̃α, β̃, γ̃ , δ̃} given by

α̃(λ) = δ(−λ), β̃(λ) = γ (−λ), γ̃ (λ) = β(−λ), δ̃(λ) = α(−λ).

That this is an admissible rational data set and how its solution relates to the
original data set {α, β, γ, δ} is explained in detail in Lemma 3.9 below. Given these
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additional facts, the proof proceeds analogously to the Proof of Proposition 3.1. We
omit further details. ��
Proof of Proposition 3.3 As for Proposition 3.1 we split the proof into three parts.
But now we first compute the product α∗(λ)β(λ) and then continue with γ ∗(λ)δ(λ).
Part 1. Recall that α∗(λ) is given by (3.5) and β(λ) by (2.3). It follows that

α∗(λ)β(λ) =iC2(λIn2 − iA2)
−1B2+

+ B∗1 (λIn1 + iA∗1)−1C∗1C2(λIn2 − iA2)
−1B2.

To compute the product (λIn1 + iA∗1)−1C∗1C2(λIn2 − iA2)
−1 we will apply

Lemma 3.4 with

F = −iA∗1, G = −C∗1 , H = C2, K = iA2, X = iP12.

In this case, using (2.4), we see that FX − XK = GH , and hence we can apply
Lemma 3.4 to show that

(λIn1 + iA∗1)−1C∗1C2(λIn2 − iA2)
−1 =

= iP12(λIn2 − iA2)
−1 − i(λIn1 + iA∗1)−1P12.

Hence

α∗(λ)β(λ) = iC2(λIn2 − iA2)
−1B2+

+ iB∗1P12(λIn2 − iA2)
−1B2 − iB∗1 (λIn1 + iA∗1)−1P12B2

= ϕ1(λ)+ ϕ2(λ),

where

ϕ1(λ) = i(C2 + B∗1P12)(λIn2 − iA2)
−1B2,

ϕ2(λ) = −iB∗1 (λIn1 + iA∗1)−1P12B2.
(3.7)

Part 2. Since γ and δ are given by (2.3), we have

γ ∗(λ) = iB∗3 (λIn3 − iA∗3)−1C∗3 ,

and

γ ∗(λ)δ(λ)− γ ∗(λ) = −iγ ∗(λ)C4(λIn4 + iA4)
−1B4

= B∗3 (λIn3 − iA∗3)−1C∗3C4(λIn4 + iA4)
−1B4.
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To compute the product (λIn3 − iA∗3)−1C∗3C4(λIn4 + iA4)
−1 we will apply

Lemma 3.4 with

F = iA∗3, G = C∗3 , H = C4, K = −iA4, X = iP34.

In this case, using (2.4), we see that FX − XK = GH , and hence we can apply
Lemma 3.4 to show that

(λIn3 − iA∗3)−1C∗3C4(λIn4 + iA4)
−1 =

= i(λIn3 − iA∗3)−1P34 − iP34(λIn4 + iA4)
−1.

We conclude that

γ ∗(λ)δ(λ) = iB∗3 (λIn3 − iA∗3)−1C∗3+
+ B∗3

(
i(λIn3 − iA∗3)−1P34 − iP34(λIn4 + iA4)

−1
)
B4

= η1(λ)+ η2(λ)

with

η1(λ) = iB∗3 (λIn4 − iA∗3)−1(C∗3 + P34B4)

η2(λ) = −iB∗3P34(λIn4 + iA4)
−1B4.

(3.8)

Part 3. Note that ϕ1, ϕ2, η1 and η2 as defined in (3.7) and (3.8) satisfy the conditions
in Lemma 3.5. Therefore α∗β = γ ∗δ if and only if ϕ1 = η1 and ϕ2 = η2, i.e.,
α∗β = γ ∗δ if and only if the conditions (b) and (a) in (R3) are satisfied. ��

The three identities (3.1), (3.2), (3.3) play an important role in solving Ellis-
Gohberg inverse problems. In fact (see, e.g., Proposition 2.1 in [11]) these identities
are necessary conditions for the twofold inverse problems to be solvable. Thus the
three propositions proved above tell us that conditions (R1), (R2), (R3) are necessary
for the twofold Rat-EG problem to be solvable. Moreover, these three conditions
are equivalent with condition (W1) appearing in Theorem A.1 provided the data set
{α, β, γ, δ} is an admissible rational data set, i.e., the matrix functions α, β, γ, δ are
of the type described in the first paragraph of Sect. 2.

3.2 The Condition (R4)

In this subsection we shall show that for our given data set the condition (R4)
is equivalent to condition (W2) appearing in Theorem A.1. This requires some
preliminaries.
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First we introduce some additional notation and auxiliary results. We define
operators


1 : Cn1 → L2(R+)p, �1 : L2(R−)p → C
n1 ,


2 : Cn2 → L2(R+)p, �2 : L2(R−)q → C
n2 ,


3 : Cn3 → L2(R−)q, �3 : L2(R+)p → C
n3 ,


4 : Cn4 → L2(R−)q, �4 : L2(R+)q → C
n4 ,

by setting

(
jx)(t) = Cje
tAj x (t ≥ 0), �jf =

∫ 0

−∞
e−sAjBjf (s) ds (j = 1, 2);

(
jx)(t) = Cje
−tAj x (t ≤ 0), �jf =

∫ ∞

0
esAjBjf (s) ds (j = 3, 4).

The adjoints of these operators are given by


∗j f =
∫ ∞

0
e
sA∗j C∗j f (s) ds, (�∗j x)(t) = B∗j e

−tA∗j x (t ≤ 0) (j = 1, 2);


∗j f =
∫ 0

−∞
e
−sA∗j C∗j f (s) ds, (�∗j x)(t) = B∗j e

tA∗j x (t ≥ 0) (j = 3, 4).

Note that the operators Pj , j = 1, 2, 3, 4, P12, P21, P34, P43 and the operators Qj ,
j = 1, . . . , 4, which have been defined by (2.4) and (2.5) as solutions of Lyapunov
equations, are also defined by the identities:

Pj = 
∗j 
j and Qj = �j�
∗
j for j = 1, 2, 3, 4,

Pij = 
∗i 
j for (ij) = (12), (21), (34), (43).

Next we consider the operators !11 and !22 given by

!11 = I + 
2�2�
∗
2

∗
2 − 
1�1�

∗
1

∗
1 = I + 
2Q2


∗
2 − 
1Q1


∗
1 , (3.9)

!22 = I + 
3�3�
∗
3

∗
3 − 
4�4�

∗
4

∗
4 = I + 
3Q3


∗
3 − 
4Q4


∗
4 . (3.10)

These operators !11 and !22 act on L2(R+)p and L2(R−)q , respectively. For
reasons that will become clear further on, we are interested in invertibility of these
operators. For that purpose we need the operators:

Rb = I + 
2Q2

∗
2 and Rc = I + 
3Q3


∗
3 .
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Note that Rb acts on L2(R+)p and Rc acts on L2(R−)q , and both operators are
positive definite and thus invertible.

Lemma 3.6 The inverses of the operators Rb and Rc are given by

R−1
b = I − 
2(In2 +Q2P2)

−1Q2

∗
2 ,

R−1
c = I − 
3(In3 +Q3P3)

−1Q3

∗
3 .

(3.11)

Furthermore,


∗1R
−1
b 
1 = N1 and 
∗4R−1

c 
4 = N4, (3.12)

where N1 and N4 are the operators on Cp and Cq , respectively, defined by (2.6).

Proof To prove the first identity in (3.11) we use (see, e.g., Section 2.2 in [1]) the
classical identity

(D + CB)−1 = D−1 −D−1C(I + BD−1C)−1BD−1, (3.13)

where D is assumed to be invertible. We apply the above identity with D = I ,
C = 
2Q2, and B = 
∗2 . This yields

R−1
b = (I + 
2Q2


∗
2 )
−1 = I − 
2Q2(I + 
∗2
2Q2)

−1
∗2
= I − 
2(In2 +Q2P2)

−1Q2

∗
2 . (3.14)

The second identity in (3.11) is proved in a similar way.
To prove the first identity in (3.12), note that


∗1R
−1
b 
1 = 
∗1
1 − 
∗1
2

(
In2 +Q2P2)

−1
)
Q2


∗
2
1

= P1 − P12

(
In2 +Q2P2)

−1
)
Q2P21 = N1.

In a similar way one proves the second identity in (3.12). ��
The next two lemma’s relate the invertibility of !11 and !22 to the invertibility

of I −Q1N1 and I −Q4N4, respectively.

Lemma 3.7 Let N1 be the operator on the finite dimensional space Cn1 given by
(2.6). Then !11 given by (3.9) is invertible if and only if the finite dimensional
operator In1 −Q1N1 is invertible, and in that case

!−1
11 = R−1

b + R−1
b 
1(In1 −Q1N1)

−1Q1

∗
1R

−1
b . (3.15)
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Proof According to (3.9) the operator !11 = D+CB, where D = Rb is invertible,
C = −
1Q1, and B = 
∗1 . Again using (3.13) we see that !11 is invertible if and
only if I + BD−1C is invertible. Note that

I + BD−1C = I − 
∗1 R−1
b 
1Q1 = I −N1Q1.

Thus I + BD−1C is invertible if and only if I − N1Q1 is invertible. Moreover, in
that case

!−1
11 = D−1 −D−1C(I + BD−1C)−1BD−1

= R−1
b + R−1

b 
1Q1(In1 −N1Q1)
−1
∗1R

−1
b

= R−1
b + R−1

b 
1(In1 −Q1N1)
−1Q1


∗
1R

−1
b .

Hence (3.15) is proved too. ��
The following lemma is proved in a similar way.

Lemma 3.8 Let N4 be the operator on the finite dimensional space Cn4 given by
(2.6). Then !22 given by (3.10) is invertible if and only if the finite dimensional
operator I −Q4N4 is invertible, and in that case

!−1
22 = R−1

c + R−1
c 
4(In4 −Q4N4)

−1Q4

∗
4R

−1
c . (3.16)

The inversion results presented by Lemmas 3.7 and 3.8 can be viewed as
generalizations of the inversion result presented in Section 2 of [8].

Related Hankel Operators The operators 
j�j , j = 1, 2, 3, 4, are the finite rank
Hankel integral operators associated with the rational matrix functions α, β, γ, δ.
More precisely, using the notation introduced in the second paragraph of the
Appendix (see formulas (A.2)) we have


1�1 = H+,α, 
2�2 = H+,β , �3
3 = H−.γ , 
4�4 = H−,δ,

Furthermore, taking adjoints, we have

�∗1
∗1 = H−,α∗, H−,β∗ = �∗2
∗2 , H+,γ ∗ = �∗3
∗3 , H+,δ∗ = �∗4
∗4 .

Since the defining functions are rational matrix functions, the associate Hankel
operators can be considered as operators on L1-spaces as well as operators on L2-
spaces.

Using the above notation we see that

!11 = I +H+,βH−,β∗ −H+,αH−,a∗,

!22 = I +H−,γH+,γ ∗ −H−,δH+δ∗ .
(3.17)



The Twofold Ellis-Gohberg Inverse Problem for Rational Matrix Functions 159

It follows that in the present context, where α, β, γ, δ are rational matrix functions,
the operator !11 defined by (3.9) is equal to the operator M11 defined by (A.4), and
the operator!22 defined by (3.10) is equal to the operatorM22 defined by (A.4). But
then Lemmas 3.7 and 3.8 show that for our data set the condition (R4) is equivalent
to the condition (W2) in Theorem A.1 appearing in the Appendix. We proved the
first part of Theorem 2.1.

To finish the proof of Theorem 2.1 it remains to prove formulas (2.7) and (2.11)
for the solution of the twofold rational EG inverse problem. This will be done in the
next subsection.

3.3 The Formulas for the Solution g

In this section we assume that the conditions (R1)–(R4) are satisfied. The aim is
to prove formulas (2.7) and (2.11) for the solution g. This will be done by applying
Theorem A.1. Recall (see the text after (3.17)) that in the present setting !11 = M11
and !22 = M22.

First we derive (2.7). From the identities (A.5) and (3.15) we know that the
solution g is given by

g(λ) =
∫ ∞

0
eiλth(t) dt, with h being given by h := −M−1

11 b = −!−1
11 b.

Here b and β are related through (A.7). Since β is given by (2.3), we have

b(t) = C2e
tA2B2, t ≥ 0, and hence b = 
2B2.

Using (3.11) we obtain

R−1
b b = R−1

b 
2B2 = 
2
(
In2 − (In2 +Q2P2)

−1Q2P2
)
B2

= 
2(In2 +Q2P2)
−1B2 = 
2Y2,

with Y2 given by (2.9). Employing this formula together with (3.15) gives

−h =M−1
11 
2B2 = !−1

11 
2B2

= (
R−1
b + R−1

b 
1(In1 −Q1N1)
−1Q1


∗
1R

−1
b

)
b

= R−1
b b + R−1

b 
1(In1 −Q1N1)
−1Q1


∗
1R

−1
b b

= 
2Y2 + R−1
b 
1(In1 −Q1N1)

−1Q1P12Y2

= 
2Y2 + R−1
b 
1Y1,
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with Y1 as in (2.8). Again using the formula for R−1
b in (3.14) we obtain

R−1
b 
1 =

(
I − 
2(In2 +Q2P2)

−1Q2

∗
2

)

1

= 
1 − 
2(In2 +Q2P2)
−1Q2


∗
2
1

= 
1 − 
2(In2 +Q2P2)
−1Q2P21.

Hence R−1
b 
1Y1 = 
1Y1 − 
2Ỹ2, where Ỹ2 is given by (2.10). Note that Ỹ2 is a

matrix of size n2 × q . We find that

h = −
2Y2 − (
1Y1 − 
2Ỹ2) = −
2(Y2 − Ỹ2)− 
1Y1.

Thus h = h1 + h2 with h1 and h2 being given by

h1(t) = −C1e
tA1Y1 and h2(t) = −C2e

tA2(Y2 − Ỹ2) (t ≥ 0).

It follows that the functions

g1(λ) =
∫ ∞

0
eiλth1(t) dt = −iC1(λIn1 − iA1)

−1Y1,

g2(λ) =
∫ ∞

0
eiλth2(t) dt = −iC2(λIn2 − iA2)

−1(Y2 − Ỹ2).

are rational matrix functions, and g = g1 + g2 is the unique solution. Hence we
obtain (2.7).

Next we will derive formula (2.11) from (A.6) and (3.16). The computations are
close to those in the previous paragraph, and therefore we leave out some details.
The function c in (A.6) is determined by γ via (A.8). Since γ is as in (2.3), we have
c(t) = C3e

tA3B3 = 
3B3. From the identity (3.16), the identity !22 = M22, and
c(t) = C3e

tA3B3 = 
3B3 it follows that

M−1
22 c = R−1

c 
3B3 + R−1
c 
4X

∗
1 with X1 as in (2.12).

Furthermore, using R−1
c 
3B3 = 
3(In3+Q3P3)

−1B3 = 
3X
∗
2 with X2 as in (2.13)

one obtains that

M−1
22 c = 
4X

∗
1 + 
3X

∗
2 − 
3(X̃2)

∗ with X̃2 as in (2.14).

Then the identity (A.6) yields

g∗(λ) = iC4(λIn4 + iA4)
−1X∗1 + iC3(λIn3 + iA3)

−1(X∗2 − (X̃2)
∗).

By taking adjoints we obtain (2.11).
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All together this completes the Proof of Theorem 2.1. �
We conclude this subsection with a remark about formulas (2.7) and (2.11) for

the solution g. In fact, we shall show that formula (2.11) can be derived from
formula (2.7) by a direct computation not using Theorem A.1. To do this we need
the following lemma.

Lemma 3.9 Let {α, β, γ, δ} be an admissible rational data set, and put

α̃(λ) = δ(−λ), β̃(λ) = γ (−λ), γ̃ (λ) = β(−λ), δ̃(λ) = α(−λ). (3.18)

Then the quadruple {̃α, β̃, γ̃ , δ̃} is also an admissible rational data set. Moreover,
if the twofold Rat-EG inverse problem for the data set {α, β, γ, δ} is solvable, then
the twofold Rat-EG inverse problem for the data set {̃α, β̃, γ̃ , δ̃} is also solvable.
Furthermore, if g is the (unique) solution of the twofold Rat-EG inverse problem for
the data set {α, β, γ, δ}, then the solution h of the twofold Rat-EG inverse problem
for the data set {̃α, β̃, γ̃ , δ̃} is given by

h(λ) = g∗(−λ) and h∗(λ) = g(−λ). (3.19)

Applying the construction of the above lemma to the admissible rational data set
{̃α, β̃, γ̃ , δ̃} we recover the original data set {α, β, γ, δ}. Hence the statements of the
above lemma are in fact “if and only if” statements between these data sets.

Proof Since {α, β, γ, δ} is an admissible rational data set, (2.1) tells us that

α̃(λ) ∈ C
q×q, β̃(λ) ∈ C

q×p, γ̃ (λ) ∈ C
p×q, δ̃(λ) ∈ C

p×p.

Moreover, the fact that γ and δ have poles only in the open upper half plane C+
implies that the functions α̃ and β̃ have poles only in the open lower half plane
C−. Similarly, one shows that γ̃ and δ̃ have poles only in the upper half plane C+.
Finally

α̃(∞) = Iq, β̃(∞) = 0, γ̃ (∞) = 0, δ̃(∞) = Ip.

Thus {̃α, β̃, γ̃ , δ̃} is an admissible rational data set.
Next assume that the twofold Rat-EG inverse problem for the data set {α, β, γ, δ}

is solvable, and let g be the (unique) solution. Let h(λ) be the rational function
defined by the first identity in (3.19). Then the second identity also holds true,
because

h∗(λ) = h(λ̄)∗ = [g∗(−λ̄)]∗ = [g(−λ)]∗∗ = g(−λ).
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We will show that with appropriate modifications the four statements in (2.2) hold
true. More precisely, we shall prove that

α̃(λ)+ h(λ)γ̃ (λ)− Iq has poles only in C+; (3.20)

h(λ̄)∗α̃(λ)+ γ̃ (λ) has poles only in C−; (3.21)

δ̃(λ)+ h(λ̄)∗β̃(λ)− Ip has poles only in C−; (3.22)

h(λ)̃δ(λ)+ β̃(λ) has poles only in C+. (3.23)

Let us prove statement (3.22). From the first line in (2.2) we know that

α(λ)+ g(λ)γ (λ) − Ip is analytic on C−. (3.24)

Using the identities in (3.18) we see that δ̃(−λ) + g(λ)β̃(−λ) − Ip is analytic on
C−. Hence

(3.24) $⇒ δ̃(λ)+ g(−λ)β̃(λ)− Ip is analytic on C+

$⇒ δ̃(λ)+ h∗(λ)β̃(λ)− Ip is analytic on C+

$⇒ δ̃(λ)+ h(λ̄)∗β̃(λ)− Ip is analytic on C+ $⇒ (3.22).

Next let us show that the second line in (2.2) implies (3.23). From the second
line in (2.2) we know that

g(λ̄)∗α(λ)+ γ (λ) is analytic on C+. (3.25)

Using the identities in (3.18) we see that g(λ̄)∗δ̃(−λ) + β̃(−λ) is analytic on C+.
Hence

(3.25) $⇒ g(−λ̄)∗δ̃(λ)+ β̃(λ) is analytic on C−

$⇒ h(λ)̃δ(λ)+ β̃(λ) is analytic on C− $⇒ (3.23).

In a similar way one shows that the third line in (2.2) implies (3.20), and that the
fourth line in (2.2) implies (3.21), as desired. ��
The Identity (2.11) as a Corollary of the Identity (2.7) In what follows we
assume that the functions α, β, γ, d are given by the finite dimensional state space
realizations (2.3). Then the functions {̃α, β̃, γ̃ , δ̃} are given by

α̃(λ) = Iq + iC4(λIn4 − iA4)
−1B4, β̃(λ) = iC3(λIn3 − iA3)

−1B3,

γ̃ (λ) = −iC2(λIn2 − iA2)
−1B2, δ̃(λ) = Ip − iC1(λIn1 + iA1)

−1B1.
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Now assume that the twofold Rat-EG inverse problem for the data set {α, β, γ, δ}
is solvable, and let g be the (unique) solution. Then we know from Lemma 3.9 that
the twofold Rat-EG inverse problem for the data set {̃α, β̃, γ̃ , δ̃} is also solvable,
and that the (unique) solution h is given by the first identity in (3.19). Applying
Theorem 2.1 with {̃α, β̃, γ̃ , δ̃} in place of the data set {α, β, γ, d}, we can use
formula (2.7) to obtain a formula for the function h. In fact

h(λ) = −iC4(λIn4 − iA4)
−1U1 − iC3(λIn3 − iA3)

−1 (U1 − U2) , (3.26)

where

U1 = (In4 −Q4N4)
−1Q4P43(In3 +Q3P3)

−1B3,

U2 = (In3 +Q3P3)
−1B3, and U2 = (In3 +Q3P3)

−1B3P34U1.

According to the second identity in (3.19), we have g(λ) = h(−λ̄)∗. From (3.26)
we know that

h(−λ̄) = iC4(λ̄In4 + iA4)
−1U1 + iC3(λ̄In2 + iA3)

−1
(
U1 − Ũ2

)
.

Taking adjoints and using g(λ) = h(−λ̄)∗ we see that

g(λ) = −iU∗1 (λIn4 − iA∗4)−1C∗4 − i
(
U∗1 − U2

∗) (λIn2 − iA∗3)−1C∗3

= −iX1(λIn4 − iA∗4)−1C∗4 − i (X1 −X2) (λIn2 − iA∗3)−1C∗3 ,

where

X1 = U∗1 = B∗3 (In3 + P3Q3)
−1P34Q4(In4 −N4Q4)

−1,

X2 = U∗2 = B∗3 (In3 + P3Q3)
−1,

X̃2 = U2
∗ = X1P43Q3(In3 + P3Q3)

−1.

Thus g is given by (2.11) as desired. �

4 Two Special Classes of Admissible Rational Data Sets

In this section we present alternative formulas for the unique solution to the
twofold Rat-EG inverse problem in two special cases. Throughout {α, β, γ, δ} is
an admissible rational data set. In the first subsection we assume that 1 is not a
singular value of the Hankel operators H+,α and H−,δ. In other words, the operators
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I − H ∗+,αH+,α and I − H ∗−,δH−,δ are assumed to be invertible. In the second

subsection we assume that the rational functions α(λ)−1 and δ(λ)−1 have poles
only in C− and C+, respectively. These additional properties of α and δ allow us to
simplify considerably the formulas for the solution g given by (2.7) and (2.11).

4.1 The Case When 1 is Not a Singular Value of H+,α and
H−,δ

We first show that 1 is not a singular value of H+,α (resp. of H−,δ) is equivalent to
the matrix In1 −Q1P1 (resp. the matrix In4 −Q4P4) being invertible. Let us prove
this for α. Recall that In1 −Q1P1 = I −�1�

∗
1

∗
1
1. Thus In1 −Q1P1 is invertible

if and only if

I −�∗1
∗1
1�1 = I −H ∗+,αH+,α is invertible.

Hence, invertibility of In1 − Q1P1 is equivalent to 1 not being a singular value of
H+,α.

Proposition 4.1 Let {α, β, γ, δ} be an admissible rational data set for the twofold
Rat-EG inverse problem given by state space realizations (2.3). Assume In1 −Q1P1
and In4 −Q4P4 are invertible. Define N1 and N4 as in (2.6), and set

N2 = P2 + P21(In1 −Q1P1)
−1Q1P12 and N3 = P3 + P34(In4 −Q4P4)

−1Q4P43.

Then In1−Q1N1 is invertible if and only if In2+Q2N2 is invertible, and In4−Q4N4
is invertible if and only if In3 +Q3N3 is invertible. In particular, condition (R4) of
Theorem 2.1 is equivalent to:

(R4)′ the matrices In2 +Q2N2 and In3 +Q2N3 are invertible.

Furthermore, if conditions (R1)–(R4) of Theorem 2.1 are satisfied, then the unique
solution g to the twofold Rat-EG inverse problem is given by

g(λ) = −iC1(λIn1 − iA1)
−1Y1 − iC2(λIn2 − iA2)

−1(In2 +Q2N2)
−1B2

= −iX1(λIn4 − iA∗4)−1C∗4 − iB∗3 (In3 +N3Q3)
−1(λIn3 − A∗3)−1C∗3 .

Here Y1 and X1 are given by (2.8) and (2.12), respectively.

Proof We start with the claim related to the invertibility of In2 +Q2N2. Define

M1 = P12(In2 +Q2P2)
−1 and M2 = P21(In1 −Q1P1)

−1,
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so that

N1 = P1 −M1Q2P21 and N2 = P1 −M2Q1P12.

Note that for matrices T1 ∈ Cm×m, T2 ∈ Cm×n and T3 ∈ Cn×m with T1 invertible
we have that T1 + T2T3 is invertible if and only if In + T3T

−1
1 T2 is invertible, and

in this case

T3(T1 + T2T3)
−1T2 = In − (In + T3T

−1
1 T2)

−1. (4.1)

Apply this identity with

T1 = In1 −Q1P1, T2 = Q1M1, T3 = Q2P21.

By assumption T1 is invertible. Note that

T1 + T2T3 = In1 −Q1P1 +Q1M1Q2P21 = In1 −Q1N1.

On the other hand

In2 + T3T
−1

1 T2 = In2 +Q2P21(In1 −Q1P1)
−1Q1M1

= In2 +Q2P21(In1 −Q1P1)
−1Q1P12(In2 +Q2P2)

−1

= (In2 +Q2(P2 + P21(In1 −Q1P1)
−1Q1P12))(In2 +Q2P2)

−1

= (In2 +Q2N2)(In2 +Q2P2)
−1.

Hence we obtain that In1−Q1N1 is invertible if and only if In2+Q2N2 is invertible.
Similarly it follows that In4 − Q4N4 is invertible if and only if In3 + Q3N3 is
invertible.

Now assume (R1)–(R4) are satisfied, and hence (R4)′ is satisfied. By Theo-
rem 2.1 a unique solution g for the twofold Rat-EG inverse problem exists and
is given by (2.7) as well as by (2.11). It remains to show that

Ỹ2 − Y2 = −(In2 +Q2N2)
−1B2, X̃2 −X2 = −B∗3 (In3 + N3Q3)

−1, (4.2)

where Ỹ2, Y2, X̃2 and X2 are given by (2.10), (2.9), (2.14) and (2.13), respectively.
The above computations along with (4.1) yield

Q2P21(In1 −Q1N1)
−1Q1M1 = In2 − ((In2 +Q2N2)(In2 +Q2P2)

−1)−1

= In2 − (In2 +Q2P2)(In2 +Q2N2)
−1.
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Using this identity we obtain

Ỹ2 = (In2 +Q2P2)
−1Q2P21(In1 −Q1N1)

−1Q1P12(In2 +Q2P2)
−1B2

= (In2 +Q2P2)
−1Q2P21(In1 −Q1N1)

−1Q1M1B2

= (In2 +Q2P2)
−1B2 − (In2 +Q2N2)

−1B2 = Y2 − (In2 +Q2N2)
−1B2.

This proves the first identity in (4.2). The second identity follows by similar
computations. ��

4.2 The Special Case When α(λ)−1 has Poles Only in C− and
δ(λ)−1 has Poles Only in C+

Let {α, β, γ, δ} be an admissible rational data set given by the state space realiza-
tions (2.3). As before, we assume that Aj , 1 ≤ j ≤ 4, is a stable matrix. It is well
known that in that case

α(λ)−1 = Ip − iC1
(
λIn1 − i(A1 − B1C1)

)−1
B1,

δ(λ)−1 = Iq + iC4
(
λIn4 + i(A4 − B4C4)

)−1
B4.

In this subsection we consider the case when α(λ)−1 has poles only in C− and
δ(λ)−1 has poles only in C+. In other words α(λ)−1 and δ(λ)−1 are analytic on C+
and C−, respectively. This implies that A1 − B1C1 and A4 − B4C4 are also stable.
Let us prove the latter statement for A1−B1C1; the proof for A4−B4C4 is similar.
Note (cf., the third formula in [7, Lemma XIII.5.3]) that

(
λIn1 − i(A1 − B1C1)

)−1 =
= (λIn1 − iA1)

−1 − i(λIn1 − iA1)
−1B1α(λ)

−1C1(λIn1 − iA1)
−1. (4.3)

Since A1 is stable, (λIn1−iA1)
−1 is analytic on C+. By assumption the same is true

for α(λ)−1. Then (4.3) tells us that
(
λIn1 − i(A1−B1C1)

)−1 is analytic on C+ too,
which implies that all eigenvalues of A1 − B1C1 are in Cleft, and hence A1 −B1C1
is stable.

Under the above assumptions, Theorem 9.1 of [14] presents alternative formulas
for the solution to the twofold EG inverse problem. In the following theorem we
derive the state space realizations analogues of these formulas for the case when the
data functions are rational.

Theorem 4.2 Let {α, β, γ, δ} be an admissible rational data set, and let α, β, γ
and δ be given by the state space realizations (2.3). Furthermore, assume that
α(λ)−1 has poles only in C− and δ(λ)−1 has poles only in C+. Then the twofold
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Rat-EG inverse problem has a solution if and only if the conditions (R1), (R2),
(R3) appearing in Theorem 2.1 are satisfied, and the solution, if it exists, is unique.
Moreover, the unique solution g, if it exists, is given by the formulas:

g(λ) = −i(B∗3 − B∗1P
×
13)(λIn3 − iA∗3)−1C∗3 , (4.4)

= −iC2(λIn2 − iA2)
−1(B2 − P×24B4). (4.5)

Here P×13 and P×24 are the unique solutions of the Lyapunov equations

(A1 − B1C1)
∗P×13 + P×13A

∗
3 = −C∗1B∗3 , (4.6)

P×24(A4 − B4C4)+ A2P
×
24 = −B2C4, (4.7)

which are well-defined because A1 − B1C1 and A4 − B4C4 are stable.

Proof Note that the rational function −(
α∗(λ)

)−1
γ ∗(λ) has no poles on the real

line and is zero at infinity. This allows us to decompose this function as follows:

− (
α∗(λ)

)−1
γ ∗(λ) = g(λ)+ h(λ) (4.8)

where g has all its poles in C−, the function h has all its poles in C+, and both are
zero at infinity. According to the Propositions 3.1–3.3 the conditions (C1)–(C3) in
[10, Theorem 9.1] are satisfied. Thus we conclude from [10, Theorem 9.1] that the
rational function g appearing in the right hand side of (4.8) is the unique solution of
the twofold EG inverse problem associated with the data set {α, β, γ, δ}.

Next we will show that g given by (4.8) is also given by (4.4). Note that

(
α∗(λ)

)−1 = Ip + iB∗1
(
λIn1 + i(A1 − B1C1)

∗)−1
C∗1 ,

γ ∗(λ) = iB∗3
(
λIn3 − iA∗3

)−1
C∗3 .

This yields

− (
α∗(λ)

)−1
γ ∗(λ) = −iB∗3

(
λIn3 − iA∗3

)−1
C∗3+

− iB∗1
(
λIn1 + i(A1 − B1C1)

∗)−1
C∗1 iB∗3

(
λIn3 − iA∗3

)−1
C∗3 . (4.9)

It follows from (4.6) that

P×13(λIn3 − iA×3 )− (λIn1 + i
(
A1 − B1C1)

∗)P×13 = iC∗1B∗3 .

Using this in the second term in the right hand side of Eq. (4.9) we get

−(
α∗(λ)

)−1
γ ∗(λ) =− (iB∗3 − iB∗1P

×
13)(λIn3 − iA∗3)−1C∗3+

− iB∗1
(
λIn1 + i(A1 − B1C1)

∗)−1
P×13C

∗
3 (4.10)
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The first term in the right hand side of (4.10) has all poles in the open lower half
plane and the second term has all poles in the open upper half plane. Therefore we
see from (4.8) that g(λ) is given by (4.4).

From Theorem 9.1 in [10] it also follows that g is given by

−β(λ)δ(λ)−1 = g(λ)+ k(λ),

where g is the solution of the Rat-EG inverse problem and k has all its poles in the
open lower half plane. Similar computations as above show that this formula for g
yields (4.5). ��
Remark 4.3 Note that explicit formulas for the unique solution g of the Rat-EG
inverse problem are given in (2.7) and (2.11), and under additional conditions also
in the present Sects. 4.1 and 4.2; see Proposition 4.1 and Theorem 4.2. Given these
explicit formulas, it is natural to try to prove the main parts of the theorems by direct
computation, not using the roundabout by the way of Theorem A.1. So far this has
not been done. We leave it as an open problem.

5 An Example

Assuming conditions (R1), (R2), (R3) in Theorem 2.1 are satisfied, we show in this
section that it can happen that the matrix In1 −Q1N1 appearing in (R4) is invertible
while the matrix In4 − Q4N4 is not invertible. In other words, Theorem 2.1 is not
true if in (R4) the word “and” is replaced by“or”, i.e., the two invertibility conditions
in (R4) are independent. The example we present to prove the above statement is
closely related to [14, Example 3].

The rational data functions we shall use are the scalar functions

α(λ) = λ− 5i

λ+ 3i
, β(λ) = 4

λ+ 3i
,

γ (λ) = 4(λ+ i)

(λ− 3i)(λ− i)
, δ(λ) = (λ+ 5i)(λ+ i)

(λ− 3i)(λ− i)
.

One easily verifies that these functions satisfy the conditions (3.1)–(3.3) and
therefore, according to Propositions 3.1–3.3, the conditions (R1)–(R3) in Theo-
rem 2.1 are satisfied for any choice of the state space realizations of α, β, γ, δ in
(2.3). In this example we use the realizations (2.3) with

A1 = A2 = −3, B1 = B2 = 1, C1 = −8, C2 = −4i,

A3 = A4 =
[
−3 0
0 −1

]

, B3 = B4 =
[

1
1

]

, C3 =
[
8i −4i

]
, C4 =

[
−16 6

]
.
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The solutions of the Lyapunov equations (2.4) and (2.5) are then given by

P1 = 32
3 , Q1 = 1

6 , P2 = 8
3 , Q2 = 1

6 , P12 = P ∗21 = 16
3 i,

P3 =
[

32
3 −8
−8 8

]

, Q3 =
[

1
6

1
4

1
4

1
2

]

, P4 =
[

128
3 −24
−24 18

]

, Q4 =
[

1
6

1
4

1
4

1
2

]

,

P ∗34 = P43 = 4i

[
− 16

3 4
3 −3

]

Recall that the operators N1 and N4 appearing in condition (R4) in Theorem 2.1 are
given by (2.6). Thus, in the present setting we have

N1 = P1 − P12(1+Q2P2)
−1Q2P21

= 32

3
− 16

3

(

1+ 4

9

)−1 1

6

16

3
= 96

13
and

N4 = P4 − P43(I2 +Q3P3)
−1Q3P34

=
[

128
3 −24
−24 18

]

− 16

[
− 16

3 4
3 −3

][
7
9

2
3

− 4
3 3

]−1 [
1
6

1
4

1
4

1
2

] [
− 16

3 3
4 −3

]

= 4
29

[
576

3 −90
−90 117

2

]

.

It follows that

1−Q1N1 = − 3

13
and I2 −Q4N4 =

[
− 9

29
3
58

− 12
29

2
29

]

.

Hence 1−Q1N1 is invertible while I2 −Q4N4 is not invertible.
Although the twofold Rat-EG inverse problem associated with the above data is

not solvable (because I2 − Q4N4 is not invertible), formula (2.7) can be used to
define a candidate function g, namely,

g(λ) = 12

λ+ 3i
. (5.1)

However, for formula (2.11) this is not the case because I2−Q4N4 is not invertible
and hence formula (2.11) does not make sense. Note that in the formula (2.7) only
the realizations of the functions α and β appear. Since these two functions in this
example are identically equal to their namesakes in the example in Sect. 2, it is
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clear that the function g determined here should be identical to the function g in the
example in Sect. 2.

We conclude with another remark. In the present setting the functions α and γ ∗
have no common zero in C+. Therefore, we know from [13, Theorem 4.1] that there
exits a unique function k with poles only in C− such that α+ kγ − 1 has poles only
in C+ and k∗α+γ has poles in C− only. Similarly, since β and δ∗ have no common
zero in C+, Theorem 4.1 in [13] shows that there exits a unique function h with
poles only in C+ such that δ + hβ − 1 has poles only in C− and h∗δ + β has poles
in C+ only. Since condition (R4) is not satisfied it follows that h 	= k∗. Actually, we
have

k(λ) = 24

λ+ 3i
− 4

λ+ i
, h(λ) = 24

λ− 3i
− 6

λ− i
.

From this it follows that the function g in (5.1) determined by Eq. (2.7) cannot
satisfy both of the first two equations in (2.2) nor both of the last two equations
in (2.2). In terms of the terminology used in [13], the function k is a left onefold
solution and h a right onefold solution but neither k nor h∗ is a twofold solution.

Appendix A Wiener Space Twofold EG Inverse Theorem
on R

In this appendix we recall Theorem 1.2 in [10] (see also the first paragraph of the
introduction), which is one of our main sources. We shall present the theorem in the
language of Wiener class functions rather than in terms of L1 functions as is done in
[10]. The transition from L1 functions to Wiener functions fits better with the fact
that our rational matrix functions are also Wiener class functions.

We first introduce the required notations and terminology. Let s, r be positive
integers and write L1(R)s×r for the space of s×r matrix functions with entries from
L1(R). We define the subspaces L1(R+)s×r and L1(R−)s×r consisting of functions
in L1(R)s×r with support on R+ = [0,∞) or R− = (−∞, 0], respectively.

The Wiener class W(R)s×r is defined as the space of functions ϕ of the form

ϕ(λ) = f0 +
∫ ∞

−∞
eiλtf (t) dt , λ ∈ R, (A.1)

with f0 ∈ C
s×r and f ∈ L1(R)s×r . The subspaces W(R)s×r±,0 consist of the

functions ϕ in W(R)s×r for which in the representation (A.1) the constant f0 = 0
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and f ∈ L1(R±)s×r . With ϕ given by (A.1) we associate the Hankel operators
H−,ϕ : L1(R+)r → L1(R−)s and H+,ϕ : L1(R−)r → L1(R+)s given by

(
H−,ϕh

)
(t) =

∫ ∞

0
f (t − τ )h(τ ) dτ, t ≤ 0, h ∈ L1(R+)r ,

(
H+,ϕh

)
(t) =

∫ 0

−∞
f (t − τ )h(τ ) dτ, t ≥ 0, h ∈ L1(R−)r .

(A.2)

For the twofold EG inverse problem for Wiener functions on the real line, as
defined in Subsection 3.3.1 of [10], our data functions α, β, γ, δ are

α ∈ ep +W(R)
p×p
+,0 , γ ∈W(R)

q×p
−,0 ,

β ∈W(R)
p×q
+,0 , δ ∈ eq +W(R)

q×q
−,0 .

(A.3)

Here ep and eq denote the functions identically equal to the unit matrix Ip and Iq ,
respectively. The twofold EG inverse problem is to find g ∈W(R)

p×q
+,0 such that the

following four inclusions are satisfied:

α + gγ − ep ∈W(R)
p×p
−,0 and g∗α + γ ∈W(R)

q×p
+,0 ;

δ + g∗β − eq ∈W(R)
q×q
+,0 and gδ + β ∈W(R)

p×q
−,0 .

If g has these properties, we refer to g as a solution to the twofold EG inverse
problem associated with the data set {α, β, γ, δ}.

With the given data set {α, β, γ, δ} we associate the following operators:

M11 = I +H+,βH−,β∗ −H+,αH−,α∗,

M22 = I +H−,γH+,γ ∗ −H−,δH+,δ∗ .
(A.4)

Notice that these operators are uniquely determined by the data. We are now ready
to state Theorem 1.2 in [10] in terms of Wiener class functions.

Theorem A.1 Let {α, β, γ, δ} be the Wiener matrix functions given by (A.3). Then
the twofold EG inverse problem associated with the data set {α, β, γ, δ} has a
solution if and only the following two conditions are satisfied:

(W1) α∗α − γ ∗γ = ep, δ∗δ − β∗β = eq , α∗β = γ ∗δ;
(W2) the operators M11 and M22 defined by (A.4) are one-to-one.

Furthermore, in that case M11 and M22 are invertible, the solution is unique, and
the unique solution g and its adjoint g∗ are given by

g(λ) = −
∫ ∞

0
eiλt

(
M−1

11 b
)
(t) dt, Imλ ≥ 0; (A.5)
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g∗(λ) = −
∫ 0

−∞
eiλt

(
M−1

22 c
)
(t) dt, Im λ ≤ 0. (A.6)

Here b and c are the matrix functions determined by

β(λ) =
∫ ∞

0
eiλtb(t) dt, where b ∈ L1(R+)p×q; (A.7)

γ (λ) =
∫ 0

−∞
eiλt c(t) dt, where c ∈ L1(R−)q×p. (A.8)

The above theorem is used in Sect. 3 where we prove our main result.

Erratum Regarding Formula (10.5) in [10] We take the opportunity to correct
the three identities in formula (10.5) in [10]. The correct identities are as follows:

αa−1
0 α∗ − βd−1

0 β∗ = ep, δd−1
0 δ∗ − γ a−1

0 γ ∗ = eq, αa−1
0 γ ∗ = βd−1

0 δ∗,

as can be seen from Remark 2.3 in [10].
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1 Introduction

Let " = {z = x + iy : x ∈ R, y > 0} be the upper half plane in the complex
plane C, dA(z) = dxdy is the Lebesgue area measure, and dAλ(z) = (λ +
1) (2%z)λ dA(z), λ > −1. We denote by L2

λ(") = L2("; dAλ) the space of square
integrable functions on " with respect to the measure dAλ. Then the Bergman
space A2

λ("), known also as Bergman-Jerbashian space, (see [6, 7, 20, 21]), is the
subspace of holomorphic functions in L2

λ(") . Note that λ = 0 corresponds to the
unweighted case. The corresponding orthogonal projection Bλ

", from L
p
λ(") onto

Ap
λ ("), is given by the formula

Bλ
"f (z) =

∫

"

Kλ(z,w)f (w) dAλ(w) = − 1

π

∫

"

f (w)

(z−w)2+λ dAλ(w), z ∈ ",

and is bounded for 1 < p <∞.

In this study, we consider Toeplitz operators with symbols g = g(2y), where
y = %z, acting on A2

λ("). These operators may be unbounded, but anyway, at least
for g ∈ L1

λ(") they are densely defined by the rule

T λ
g f = Bλ

"gf. (1)

We refer to the books [10, 15, 24–26] for a general modern theory of Bergman
type spaces and operators on Bergman type spaces. More specifically, a very
comprehensive study of special classes of Toeplitz operators, including the class
in which we are interested in this paper, is presented in N.Vasilevski’s monograph
[24].

Using the well-known structural properties of A2
λ(") in [11] (see also [12] and

[24]), the Toeplitz operator T λ
g with vertical symbol g is reduced to the operator of

multiplication Mλ
g = γ λ

g (x)I which acts on the space L2(R+). More details will be
given by Theorem 2 below.

We shall exploit this idea to study the product (in a sense of composition) of
two Toeplitz operators with vertical symbols. We recall our main problem which is:
given two Toeplitz operators T λ

a and T λ
b is there a symbol h such that T λ

a T
λ
b = T λ

h ?
It appears that the solution to this problem is closely related to Laplace transform
techniques and the theory of fractional integrodifferentiation in the general weighted
cases.

It is worth mentioning here that products of Toeplitz operators in different
holomorphic spaces have been studied extensively since the last two decades.
Nevertheless and despite all the partial results obtained by different authors, we are
still far from a complete answer to the question when the product of two Toeplitz
operators is another Toeplitz operators. For more thorough treatments of this subject,
the reader might refer to the following references [1–5, 8, 9, 14, 16–18].
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Recently, a particular attention was paid to the so-called quasihomogeneous
Toeplitz operators. A Toeplitz operator Tg is said to be quasihomogeneous if its
symbol g can be written under the form g(reiθ ) = eipθφ(r), where p is an integer
and φ is a radial function. Quasihomogeneous symbols are considered to be a
generalization of the class of radial symbols (i.e. when p = 0). Such operators
act on the orthogonal basis of the Bergman space of the unit disk as a shift operator
with holomorphic weight. Various promising results were obtained for this class
of operators. We refer the reader to [4, 14, 16–19]. Furthermore, in [13] a partial
answer to whether there exists or not a symbol h such that T λ

a T
λ
b = T λ

h was given
in the case of the unit ball of C, was obtained by Fourier analysis and the Wiener
ring theory. Vertical Toeplitz operators certainly admit realization in the framework
of the unit disk (see Sect. 2), but the corresponding symbols will not be radial (or
quasihomogeneous) functions. At our best knowledge, we are not aware of any
manuscript in the current literature dealing with the product of two vertical Toeplitz
operators in the specific context of the mentioned above main problem.

The paper is organized as follows. In Sect. 2 we collect auxiliary facts. Section 3
is devoted to the specified above main problem. For the sake of clarity, we consider
the unweighted and weighted cases separately, the former being a simplification of
the latter. Finally, we state some open questions.

2 Auxiliary Statements and Definitions

2.1 The Class ACk(α, β)

By AC1(α, β) ≡ AC(α, β) we denote the class of absolutely continuous functions
on the interval (α, β). It is known that f ∈ AC1(α, β) if and only if it is a primitive
of a Lebesgues integrable function on (α, β). By ACk(α, β), k = 2, 3, . . . , we
denote the class of continuously differentiable up to the order k − 1 functions f

on (α, β) with f (k−1) ∈ AC1(α, β). The following known fact sheds a light on the
functions from ACk(α, β).

Lemma 1 ([23], Lemma 2.4) The class ACk(α, β) consists only of functions f for
which the following representation holds

f (t) = 1

(k − 1)!
∫ t

0
(t − τ )k−1ϕ(τ)dτ +

k−1∑

j=0

Cj (t − α)j ,

for some ϕ ∈ L1(α, β), and some constants Cj .
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2.2 On Spectral Representation of Toeplitz Operators
with Vertical Symbols

In order to simplify formulas here and in what follows, we take g = g(2y) for the
(so-called vertical) symbol of Toeplitz operator T λ

g acting on A2
λ("). In [11] (see

also [12] and [24]), it was shown that any such Toeplitz operator T λ
g with vertical

symbol g can be reduced to the operator of multiplication by the function

γ λ
g (x) =

x1+λ


(1+ λ)

∫ ∞

0
g(t) tλ e−xtdt, x ∈ R+, (2)

which acts on the space L2(R+). The closure of the range of this function provides
the spectrum for the corresponding Toeplitz operator. Precisely, the following
theorem holds.

Theorem 2 ([11]) Toeplitz operator T λ
g with the symbol g = g(2y) acting on

A2
λ("), is unitary equivalent to the operator of multiplication Mλ

g = γ λ
g I, acting

on L2(R+). Moreover, spT λ
g = {γ ∈ C : γ = γ λ

g (x), all x ∈ R
1+}.

Using Theorem 2, we can understand the action of the Toeplitz operator (1) on
L2
λ(") considering it as being unitary equivalent to the operator of multiplication by

γ λ
g I, acting on L2(R+). Thus we may consider bounded and unbounded Toeplitz

operators. However, we prefer to deal with operators which are initially bounded on
L2
λ("). We shall specify the corresponding assumptions in the beginning of Sect. 3.

Recall that vertical Toeplitz operators have the following realization in the
framework of the unit disk (see [24]). Let D = {z = x + iy : |z| < 1} stand
for the unit disk, and ∂D stand for its boundary (unit circle). Consider the space

L2
λ(D) = L2(D, (λ+ 1)(1− |z|2)λ 1

π
dxdy), where z = x + iy,

and let A2
λ(D) be the corresponding Bergman space. For a given point z0 ∈ ∂D,

consider all Euclidean circles tangent to ∂D at z0. Consider the class of all Toeplitz
operators T λ

ĝ acting on L2
λ(D) with the symbols ĝ which are constant on the above

mentioned circles. All such classes are reduced (up to a rotation) to the class of
operators corresponding to z0 = i. The conformal map z = �(w) = w−i

1−iw , from "

onto D, maps the lines {z ∈ " : z = x + iy0, x ∈ R, y0 > 0 is fixed} into the
circles tangent to ∂D at the point z0 = i . The unitary operatorU : L2

λ(D)→ L2
λ(")

Uf (z) =
( √

2

1− iw

)2+λ
f ◦�(w), (3)
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provides the following relation

T λ
g◦� = U−1T λ

g U (4)

between the Toeplitz operator T λ
g with vertical symbol acting on L2

λ(") and the

Toeplitz operators T λ
ĝ acting on L2

λ(D) with the symbol ĝ = g ◦� which is constant
on the mentioned above circles. We note that the inverse map is given by the relation:

U−1ϕ(w) =
( √

2

1+ iw

)2+λ
ϕ ◦�(w), �(w) = w + 1

1+ iw
.

2.3 On Fractional Integrodifferentiation and Laplace
Transform

For fractional integrodifferentiation we refer to the books [22, 23]. We will use
fractional integrals on the whole real axis which are defined by

Iα+ϕ(x) =
1


(α)

∫ x

−∞
ϕ(t)

(x − t)1−α dt, x ∈ R, (5)

Iα−ϕ(x) =
1


(α)

∫ ∞

x

ϕ(t)

(t − x)1−α dt, x ∈ R, (6)

or as for the convolution

Iα±ϕ(x) =
1


(α)

∫ ∞

0
tα−1ϕ(x ∓ t)dt, x ∈ R. (7)

Fractional integrals Iα± are defined for functions ϕ ∈ Lp(R) if 0 < 'α < 1 and
1 < p < 1

'α . It is known that

Iα±e±θx = θ−αe±θx, for 'θ > 0 and 'α > 0. (8)

We will also need the following fractional integration on the half-axis

Iα0+ϕ(x) =
1


(α)

∫ x

0

ϕ(t)

(x − t)1−α dt, x ∈ R+. (9)

The Laplace transform of a function ϕ, defined for all real numbers t � 0, is the
function Lϕ, given by:

Lϕ(z) =
∫ ∞

0
ϕ(t) e−zt dt, z = x + iy. (10)
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The meaning of Lϕ depends on the class of functions of interest. A necessary
condition for existence of the integral is that ϕ must be locally integrable on R1+.
For locally integrable ϕ that is of exponential type, the integral can be understood
as a (proper) Lebesgue integral. For instance, if |ϕ(t)| � αeβt for some nonnegative
constants α, β and all t > s0, then the Laplace transform Lϕ is correctly defined as
a function in {z = x + iy ∈ C : x > β}. The Laplace convolution product of two
functions ϕ and ψ is defined by the integral

ϕ ◦ ψ(x) =
∫ x

0
ϕ(t)ψ(x − t)dt, x ∈ R+,

so that the Laplace transform of the convolution is given by

L
(
ϕ ◦ ψ)

(z) = (
Lϕ

)
(z)

(
Lψ

)
(z),

as long as the objects in the above formula exist.

3 Product of Vertical Toeplitz Operators

3.1 Statement of the Main Problem

We formulate the main problem as follows. Given two vertical Toeplitz operators
T λ
a and T λ

b bounded on A2
λ(") with the symbols a and b, find a function (symbol)

h such that

T λ
a T

λ
b = T λ

h . (11)

Here and everywhere below we consider operator relations on a dense set of
polynomials in A2

λ("). In view of the Theorem 2, the above problem is equivalent
to the problem of finding a function h such that

γ λ
a (x)γ

λ
b (x) = γ λ

h (x), x ∈ R
1+. (12)

Here and in what follows, we impose the following admissibility conditions on a
symbol g of vertical Toeplitz operator T λ

g :
(i) g(t)tλ ∈ L1(0, B), for all positive constants B;

(ii) for any ε > 0 there exist Aε � 0, tε > 0, such that |g(t)| � Aεe
εt , all t � tε.

(iii) Toeplitz operator T λ
g is bounded on A2

λ(").

We say that a symbol g of a Toeplitz operator T λ
g is admissible provided g

satisfies the above stated conditions (i)–(iii).
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3.2 Unweighted Case (λ = 0)

We start with the unweighted case λ = 0. For the unweighted case we will avoid
using the index "0" in the notation and simply write Tg, γg, A2("), instead of T 0

g ,

γ 0
g , A2

0(").

Theorem 3 Let Ta and Tb be vertical Toeplitz operators on A2(") with admissible
symbols a and b. If there exists a function h on R1+ satisfying (i)–(ii) and such that

∫ t

0

[
h(τ)− a(τ)b(t − τ )

]
dτ = 0, all t ∈ R

1+, (13)

then

TaTb = Th. (14)

Proof In view of Theorem 2, for a Toeplitz operator Tg, we consider the corre-
sponding function γg given by

γg(x) = x

∫ ∞

0
g (t) e−xtdt = x2

∫ ∞

0
g(t)

∫ ∞

t

e−xτ dτ

= x2
∫ ∞

0
e−xτ dτ

∫ τ

0
g(t)dt = x2

∫ ∞

0
g̃(τ ) e−xτ dτ,

where we denoted

g̃(t) =
∫ t

0
g(τ)dτ.

Hence, the relation

γa(x)γb(x) = γh(x), x ∈ R
1+,

becomes
(∫ ∞

0
a(t)e−xtdt

) (∫ ∞

0
b(t)e−xtdt

)

=
∫ ∞

0
h̃(t)e−xtdt, x ∈ R

1+,

which, in terms of Laplace transform, reads as

(
La

)
(x)

(
Lb

)
(x) =

(
Lh̃

)
(x), x ∈ R

1+.
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It suffices to check the above equality for h̃(t) = ∫ t

0 h(τ)dτ . In virtue of (13) we
have for such h̃ and for x ∈ R1+,

(
Lh̃

)
(x) =

∫ ∞

0
h̃(t)e−xtdt =

∫ ∞

0
e−xtdt

∫ t

0
h(τ)dτ

=
∫ ∞

0
e−xtdt

∫ t

0
a(τ)b(t − τ )dτ =

∫ ∞

0
a(τ)dτ

∫ ∞

τ

b(t − τ )e−xtdt

=
∫ ∞

0
a(τ)e−xτ dτ

∫ ∞

0
b(t)e−xtdt = (

La
)
(x)

(
Lb

)
(x), x ∈ R

1+,

where the change of order of integration is justified by Fubini’s theorem. This
formula, in view of Theorem 2, proves the statement of the theorem. ��
Theorem 4 Let Ta and Tb be vertical Toeplitz operators on A2(") with admissible
symbols a and b. Assume either a or b is differentiable and has finite limit value at
the origin (for instance, let it be the function b). Then the function h defined by

h(t) = a(t)b(0)+
∫ t

0
a(τ) b′(t − τ ) dτ

is such that

TaTb = Th.

Proof By differentiating equation (13) we obtain

h(t) = h̃′(t) = a(t)b(0)+
∫ t

0
a(τ) b′(t − τ ) dτ.

This formula, in view of Theorem 2, proves the statement of the theorem. ��

3.3 Weighted Case λ > −1

Lemma 5 If a function g satisfies (i)–(ii), then the following relation holds

γ λ
g (x) =

(
x1+λ


(1+ λ)

)2 ∫ ∞

0
g̃λ(ξ)e

−xξ dξ, x ∈ R
1+,

where

g̃λ(t) ≡
∫ t

0

g(ξ)ξλ

(t − ξ)−λ
dξ = 
(1+ λ)

(
I 1+λ

0+ g(ξ)ξλ
)
(t). (15)
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Proof We start with the integral on the right side of (2). Taking into account
equation (8), we have

∫ ∞

0
g(t)tλe−xtdt = x1+λ

∫ ∞

0
g(t)tλ

1

x1+λ e
−xtdt

= x1+λ
∫ ∞

0
g(t)tλ

(
I 1+λ− e−xξ

)
(t)dt

= x1+λ
∫ ∞

0
g(t)tλ

(
1


(1+ λ)

∫ ∞

t

e−xξ

(ξ − t)−λ
dξ

)

dt

= x1+λ


(1 + λ)

∫ ∞

0
e−xξdξ

∫ ξ

0

g(t)tλ

(ξ − t)−λ
dt

= x1+λ


(1 + λ)

∫ ∞

0
g̃λ(ξ)e

−xξ dξ.

The change of order of integration is justified by Fubini’s theorem. Comparing the
obtained formula with (2) completes the proof.

��
Theorem 6 Let λ > −1 and let T λ

a and T λ
b be vertical Toeplitz operators on A2

λ(")

with admissible symbols a and b. If there exists a function h on R1+ satisfying (i)–
(ii) and such that

∫ t

0

[
h(τ)− a(τ)b(t − τ )

]
τλ(t − τ )λdτ = 0, t ∈ R

1+, (16)

then

T λ
a T

λ
b = T λ

h . (17)

Proof In view of Lemma 5, (12), i.e.,

γ λ
a (x)γ

λ
b (x) = γ λ

h (x), x ∈ R
1+,

becomes

(
La(t)tλ

)
(x)

(
Lb(t)tλ

)
(x) = 
(1 + λ)

(

L
(
I 1+λ

0+ h(ξ)ξλ
)
(t)

)

(x).
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It suffices to check the above equality for h satisfying (16). We have for x ∈ R
1+,


(1+ λ)

(

L
(
I 1+λ

0+ h(ξ)ξλ
)
(t)

)

(x) =
∫ ∞

0

(
I 1+λ

0+ h(ξ)ξλ
)
(t)e−xt dt

=
∫ ∞

0

(
I 1+λ

0+ a(ξ)b(t − ξ)ξλ
)
(t)e−xt dt

=
∫ ∞

0
e−xt dt

∫ t

0
a(τ)τλ b(t − τ)(t − τ)λ dτ

= (
La

)
(x)

(
Lb

)
(x), x ∈ R

1+,

where the change of order of integration is justified by Fubini’s theorem.This
formula, in view of Theorem 2, proves the statement of the theorem. ��

In what follows, we shall give necessary and sufficient conditions for the product
of two vertical Toeplitz operators to be again a vertical Toeplitz operator using
Riemann–Liouville operators. For simplicity, we introduce the following notations:

ϕλ(t) = h(t)tλ,

fλ(t) = 1


(1 + λ)

∫ t

0
a(τ)τλ b(t − τ )(t − τ )λ dτ.

First, we consider the case −1 < λ < 0.

Theorem 7 Let −1 < λ < 0 and let T λ
a and T λ

b be vertical Toeplitz operators on
A2

λ(") with admissible symbols a and b. There exists admissible symbol h such that

T λ
a T

λ
b = T λ

h

if and only if

I−λ0+ fλ(t) = 1


(−λ)
∫ t

0

fλ(τ )

(t − τ )1+λ dτ ∈ AC(0, B), for any B > 0, and (18)

I−λ0+ fλ(0) = 1


(−λ)
∫ t

0

fλ(τ )

(t − τ )1+λ dτ
∣
∣
∣
∣
t=0

= 0. (19)

Proof As in Theorem 6, we see that our problem reduces to the well-known Abel
equation

I 1+λ
0+ ϕ(t) = f (t),
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considered on an arbitrary interval (0, B), B > 0, and where we should replace ϕ

with ϕλ and f with fλ :

I 1+λ
0+ ϕλ(t) = fλ(t), t ∈ (0, B).

Certainly, if we solve the Abel equation with ϕ = ϕλ and f = fλ for an arbitrary
B > 0, then we recover the function h. It is known that if the solution ϕ of the Abel
equation exists, then it must be of the form

ϕ(t) = 1


(−λ)
d

dt

∫ t

0

f (τ)

(t − τ )1+λ dτ.

Thus the solution ϕ is unique for any arbitraryB, and hence it is uniquely defined on
R1+. Moreover, it is well-known that the Abel equation has a solution ϕ ∈ L1(0, B)

(for any arbitrary B > 0) if and only if the conditions (18) and (19) are satisfied.
Therefore, ϕλ(t) = h(t)tλ ∈ L1(0, B) for arbitrary B > 0, and also satisfies (ii),
and the operator identity T λ

a T
λ
b = T λ

h , considered on a dense set of polynomials in
A2

λ("), is valid by construction. Hence, h generates bounded operator which means
that the symbol h is admissible. This finishes the proof. ��
Remark 1 If f ∈ AC(α, β), then I θ0+f ∈ AC(α, β), for any θ ∈ (0, 1). Therefore,
the condition fλ ∈ AC(0, B) is sufficient for the validity of the condition (18) (i.e.
for I−λ0+ fλ ∈ AC(0, B)).

Since the unweighted case λ = 0 was considered separately at the beginning of
this section, we therefore turn our attention to the case λ > 0. We shall denote by
[λ] the entire part of λ.

Theorem 8 Let λ > 0 and let T λ
a and T λ

b be vertical Toeplitz operators on A2
λ(")

with admissible symbols a and b. Then there exists an admissible symbol h such that

T λ
a T

λ
b = T λ

h

if and only if

I
1+[λ]−λ
0+ fλ(t) = 1


(1+ [λ] − λ)

∫ t

0

fλ(τ)

(t − τ)−[λ]+λ
dτ ∈ AC1+[λ](0, B), (20)

for any B > 0, and
(
d

dt

)k

I
1+[λ]−λ
0+ fλ(0) = 1


(1+ [λ] − λ)

((
d

dt

)k ∫ t

0

fλ(τ)

(t − τ)−[λ]+λ
dτ

) ∣
∣
∣
∣
t=0

= 0,

for k = 0, 1, . . . , [λ].

Proof The proof follows the lines of the proof of Theorem 7 with the use of
Theorem 2.3 from [23]. We leave it to the reader. ��
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Remark 2 The condition fλ ∈ AC1+[λ](0, B) is sufficient for the validity of the
condition (20) (i.e. for I 1+[λ]−λ

0+ fλ ∈ AC1+[λ](0, B)).

4 Conclusion

We strongly believe that the technique developed here will help in studying particu-
lar problems and questions related to the product of vertical Toeplitz operators, such
as the existence of Brown-Halmos type theorem i.e., a description of symbols a and
b such that T λ

a T
λ
b = T λ

ab or the nonzero zero divisor i.e., are there nonzero symbols
a and b such that T λ

a T
λ
b = 0? Partial results to these two problems were obtained

for some specific classes of Toeplitz operators (e.g. quasihomogeneous Toeplitz
operators) in the unit disk, the ball of Cn and other domains (see the references
provided below). However, we believe that for the case of vertical Toeplitz operators
more challenging computations may occur.
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Toeplitz Operators with Radial Symbols
on Weighted Holomorphic Orlicz Space

Alexey Karapetyants and Jari Taskinen

Dedicated to the occasion of 70th birthday of Professor
N.Vasilevski.

Abstract We consider a class of Toeplitz operators with special radial symbols
on weighted holomorphic Orlicz space. For an operator from such class we prove
necessary and sufficient conditions of boundedness on holomorphic Orlicz space in
terms of behaviour of averages of the radial symbol of the operator. In the case when
either symbol or its certain average is nonnegative, we obtain characterization for
boundedness of the corresponding Toeplitz operator.

1 Introduction

The weighted holomorphic Orlicz space A�
λ (D) on the unit disc D in the complex

plane C is defined to consists of the functions from the weighted Orlicz space
L�
λ (D) which are also holomorphics in D (for details see Sect. 2). This is a direct

generalization of the weighted classical Bergman space, sometimes called Bergman-
Jerbashian space. We refer to the books [4, 8, 24, 27, 28] for a general modern theory
of Bergman type spaces and operators on Bergman type spaces. For the definition of
Orlicz space and some properties we refer to the corresponding section in this paper
and also to the books [9, 13, 14, 18, 19].

Recently, the study of classical operators of complex analysis, such as Toeplitz,
Hankel and composition operators, has attracted considerable attention in the
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framework of the holomorphic Orlicz spaces and their modification, see e.g.
[1, 2, 10–12, 23].

Toeplitz operators form an important and much studied subclass of the classical
operators. Given a symbol a ∈ L1

λ(D) on the unit disc and λ > −1, the Toeplitz
operator T λ

a is defined by the formula

T (λ)
a f = Pλ(af ), (1.1)

where

Pλf (z) =
∫

D

f (w)

(1− zw)2+λ dAλ(w) , z ∈ D, (1.2)

is the classical Bergman projection; here, dAλ = (1− |z|2)λdA and dA is the area
measure on the complex plane normalized so that the measure of the disc equals 1.
For an arbitrary a ∈ L1

λ(D) the operator T (λ)
a may fail to map the standard weighted

Bergman space A
p
λ (D) into itself but anyway it is densely defined, namely on the

subspace H∞(D) of bounded analytic functions.
The question of characterizing symbols a ∈ L1

λ(D) such that the corresponding
Toeplitz operator is bounded in A

p
λ(D) is still open even in the simplest case p =

2, λ = 0. There are however special cases, when a satisfactory or even complete
answer is known. Bounded Toeplitz operators with positive symbols on A2(D) and
more general spaces were characterized in [17] and [26]. An extensive study of
Toelpitz operators with (unbounded) radial symbols can be found in the [5–7], see
also the monograph by Vasilevski, [24]. Zorboska [29] considered L1(D)-symbols
that satisfy the condition of bounded mean oscillation and determined the bounded
Toeplitz operators in terms of the boundary behavior of the Berezin transform of
their symbols.

The purpose of this work is to extend to weighted Orlicz space A�
λ (D) setting

certain results concerning the boundedness of T
(λ)
a for radial symbols. It is well

known (see Theorem 7.5 in [28]), that the boundedness can be characterized in
the case of standard weighted Bergman spaces and positive symbols. In [15],
generalizing the results in [5, 24], the positivity requirement was considerably
relaxed by a much weaker assumption on the positivity of certain repeated integrals
of the (radial) symbol. The proof used certain estimates of the kernel of the Berezin
transform. Here, we will give a further generalization of this argument to the case
of Orlicz spaces, see Theorems 3.3, 3.4 and 3.5, where the result is formulated
as a characterization of the boundedness of the Toeplitz operator and its Berezin
transform.

The paper is organized as follows. In Sect. 2 we give some necessary definitions
and collect auxiliary results. Section 3 is devoted to our main results. In Theorem 3.3
we give sufficient conditions for boundedness of Toeplitz operator with radial
symbol in holomorphic Orlicz space in terms of behaviour of averages of the symbol
under some additional conditions on Young function, which, roughly speaking,
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allow power-like Young functions. We also notice that in that case the Berezin
transform of the Toeplitz operator is a bounded function. Without these power-like
additional conditions for Young function, but under condition of positivity either of a
symbol or a certain average of the symbol we prove the necessity: i.e., boundedness
of Toeplitz operator and finiteness of Berezin transform imply certain behavior of
average, see Theorem 3.4. In Theorem 3.5 we collect the above information in one
statement, so presenting a characterization for boundedness of Toeplitz operators
with radial symbols and with a condition that either symbol or certain average of this
operator is a nonnegative function. We also present a reformulation for the weighted
Lebesgue case, i.e. when the Young function is given by �(t) = tp.

2 Preliminaries

2.1 Notations

Given 1 ≤ p ≤ ∞ and −1 < λ < ∞ we denote by L
p
λ(D) the standard Lebesgue

space of complex valued functions on the disc D that are p—integrable with respect
to the measure dAλ. By A

p
λ (D) we denote the standard weighted Bergman space,

which is the closed subspace of Lp
λ(D) consisting of analytic functions in D. The

index λ is suppressed from the notation, if it equals 0. By C∞0 (D) we denote the
space of compactly supported C∞-functions on the disc. Given an analytic function
f and m ∈ N = {1, 2, 3, . . .} we write f (m) for the m-th complex derivative of
f . By C,C1 etc. we denote generic positive constant(s), the value of which may
change from place to place but not in the same group of inequalities. We use the
Landau notation so that for example “f (r) = O(g(r)), r → 1” means that the
quantity f (r)/g(r) remains bounded in the limit r → 1.

2.2 Orlicz Spaces

Let us recall the definition of the weighted Orlicz space L�
λ (D) and some properties

of Young functions �. For more details we refer the reader to the books [9, 13, 14,
18, 19]. Let � : [0,∞] → [0,∞] be a Young function, i.e., a convex function such
that �(0) = 0, limx→∞�(x) = �(∞) = ∞. From the convexity and �(0) = 0
it follows that any Young function is increasing. To each Young function � one
identifies the complementary function �, which possesses the same properties, by
the rule �(y) = supx�0{xy −�(x)}. Note that

t � �−1(t)�−1(t) � 2t for all t � 0. (2.1)
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Let L�
λ (D) be the weighted Orlicz space consisting of all measurable functions f

on D such that
∫

D

�(k|f (z)|)dAλ(z) <∞, for some k > 0.

The functional

N�(f ) = ‖f ‖L�
λ (D)

= inf

{

λ > 0 :
∫

D

�

( |f (z)|
λ

)

dAλ(z) � 1

}

defines a norm in L�
λ (D). By definition, L�

λ (D) is a lattice, i.e.

f ∈ L�
λ (D) and |g(z)| ≤ |f (z)| for a.e. z ∈ D ⇒

g ∈ L�
λ (D) and ‖g‖L�

λ (D)
≤ ‖f ‖L�

λ (D)
. (2.2)

We will need the following indices

p� = sup{s > 0 : t−s�(t) is non− decreasing for t > 0};
q� = inf{s > 0 : t−s�(t) is non− increasing for t > 0}.

These indices were used first by Yamamuro [25] (see also [16]).
The following density result is a reformulation of Theorem 3.7.15 of [9], where

the unweighted version is presented, and it can be proved by the same arguments as
in the reference.

Lemma 2.1 Let � be a Young function and there exists q < ∞ such that �(t)
tq

is
almost decreasing. Then the space C∞0 (D) is a dense subspace of L�

λ (D).

Proof Our space L�
λ (D) equals the space Lϕ(A, dμ) in Proposition 3.5.1 of [9],

when D, � and dAλ are taken as A, ϕ and dμ, respectively. Thus, according to
the citation, simple functions (see e.g. Section 3.5. of [9]) on the unit disc form a
dense subspace L�

λ (D). Furthermore, by classical, elementary arguments, simple
functions can be approximated by functions of C∞0 (D) simultaneously with respect
to the norms of Lp

λ(D) and L
q
λ(D). Now, according to Lemma 3.7.7 of [9], the space

L
p
λ(D) ∩ L

q
λ(D) embeds continuously into L�

λ (D). This yields the result. ��
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2.3 Classical Operators

Along with the weighted Bergman projection Pλ, we will use the following
operators, which are modifications of the classical Bergman projections:

P+λ f (z) =
∫

D

f (w)

|1− zw|2+λ dAλ(w), (2.3)

Ta,bf (z) = (1− |z|2)a
∫

D

f (w)

(1− zw)2+a+b dAb(w), (2.4)

Sa,bf (z) = (1− |z|2)a
∫

D

f (w)

|1− zw|2+a+b dAb(w). (2.5)

Theorem 2.2 ([3, 20]) Let λ, β > −1. Let � be a Young function and assume that
1 < p� � q� <∞ and λ+ 1 < p�(β + 1). Then

1. Pβ is bounded in L�
λ (D);

2. P+β is bounded in L�
λ (D).

The Theorem 2.2 was proved in [3] (and generalized to the weighted setting
in [20]) for the case of the Bergman projection and under some slightly different
assumption for Young function. In the citations the authors use the so-called lower
and upper indices, introduced and used first by Simonenko [21] in the context of
interpolation and extrapolation of Orlicz spaces. Here we use different Yamamuro
type indices p�, q�, and we do not assume continuity of Young function. But, the
proof of this modified version is the same as the proof in [20], moreover it clearly
holds for the maximal Bergman operator.

We also need some slight generalization of the above result.

Theorem 2.3 Let � be a Young function and assume that 1 < p� � q� <∞. Let
a � 0, λ > −1, b > −1, and λ+ 1 < p�(β + 1). Then

1. Ta,b is bounded in L�
λ (D);

2. Sa,b is bounded in L�
λ (D).

Proof There exists p0, 1 < p0 < p�, such that −p0a < λ + 1 < p0(b + 1).
Certainly, there exists p1 > q� such that−p1a < λ+ 1 < p1(b+ 1). Therefore by
Theorem 2.10 from [27] the operators Ta,b and Sa,b are bounded on L

p0
λ (D) and on

L
p1
λ (D). The rest of the proof follows by interpolation using Theorem 6.5, part (c)

from [16]. ��
Theorem 2.4 Let � be a Young function and assume that 1 < p� � q� <∞. Let
λ > −1, m ∈ N and let f be an analytic function on D and denote

gm(z) =
m∑

k=0

(1− |z|2)kf (k)(z).
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If f ∈ A�
λ (D), then gm belongs to A�

λ (D) and there holds the norm bound

‖gm‖L�
λ (D)

� C�,λ,m‖f ‖L�
λ (D)

, (2.6)

for some positive constant C�,λ,m depending on �,λ, and m.

Proof Assume first f ∈ A�
λ (D). We choose b > 0 so large that λ+ 1 < p�(b+ 1)

and differentiate the reproducing formula

f (z) = Cb

∫

D

(1− |w|2)b
(1− zw)2+b f (w) dA(w)

with respect to z under the integral sign several times to write for all k = 1, . . . ,m

(1− |z|2)kf (k)(z) = Ck,b(1− |z|2)k
∫

D

(1− |w|2)b
(1− zw)2+k+b wkf (w) dA(w),

Here, the function zkf belongs L�
λ (D), by (2.2), hence the right hand side also does

by Theorem 2.3, since it is equal to Tk,b(z
kf ). The norm bound (2.6) is clear due to

(2.2). ��

2.4 Berezin Transform

Recall that, on the unit disc, the weighted Berezin transform of a function f is
defined by

Bλf (z) ≡ f̃λ(z) =
∫

D

f (ϕz(w)) dAλ(w) =
∫

D

f (w)|kλz (w)|2 dAλ(w). (2.7)

Here

kλz (w) = (1− |z|2)1+λ/2

(1− zw)2+λ (2.8)

are the normalized weighted reproducing kernels of the classical weighted Bergman
space A2

λ(D) and ϕz(w) = (z − w)/(1 − zw) is the Moebius transform of the unit
disc. The (weighted) Berezin transform of a bounded operator T : A2

λ(D)→ A2
λ(D)

is defined as

T̃ (z) = 〈T kλz , kλz 〉λ =
∫

D

T kλz (w)kλz (w)dAλ(w). (2.9)
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The Berezin transform T̃
(λ)
a of the bounded Toeplitz operator T (λ)

a in A2
λ(D) with

symbol a coincides with the Berezin transform of the symbol ãλ. See [8, 27, 28] for
details.

If −1 < λ < ∞ and X is any Banach space of analytic functions on the disc
such that all bounded analytic functions are contained both to X and its dual X∗
(determined by the integral duality with respect to the measure dAλ), and T : X→
X is a bounded operator, we define the Berezin transform T̃ of T by the same
formula (2.9).

Remark 2.5 It is known in the case of standard Bergman spaces that if the Toeplitz
operator T

(λ)
a maps A

p
λ (D) boundedly into itself, then its Berezin transform is a

bounded function on the disc D. In fact, this follows directly from the boundedness
of T (λ)

a and the definition of T̃ (λ)
a , since the norm of kλz in A

p
λ (D), respectively in

A
q
λ(D) with 1/p + 1/q = 1, is proportional to (1 − |z|2)−1− λ

2+ λ+2
p , respectively

(1−|z|2)−1− λ
2+ λ+2

q ; see also Theorem 7.5 of [28] and paper [22]. We do not known
in what generality this result extends to Orlicz spaces.

3 Toeplitz Operators with Radial Symbols on A�
λ
(D)

We start by an elementary technical statement, but we prefer to prove it explicitly in
order to show the dependence of the estimates on the constants.

Lemma 3.1 For w ∈ D, denote w = ρσ, where ρ = |w| and σ = w
|w| . There exist

a constant C such that

1

C(γ − 1)

1

(1− ρ|z|)γ−1
�

∫

T

|dσ |
|1− zw|γ � C

γ − 1

1

(1− ρ|z|)γ−1
(3.1)

Proof If r = |z| � 1
2 the two sided estimate (3.1) is obvious even with only

constants in the left and right side.
Let r � 1

2 . We have with the notation δ = 1− ρ|z| :

Iγ (z, ρ) =
∫

T

|dσ |
|1− zw|γ =

∫

T

|dσ |
|σ − zρ|γ = 4

∫ π
2

0

dα

(δ2 + 4r sin2 α)
γ
2
.

For the estimate from below we note that sinα � α on [0, π
2 ], hence

δ2 + 4r sin2 α � δ2 + 4rα2 � (δ + 2
√
rα)2,
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and

Iγ (z, ρ) � 4
∫ π

2

0

dα

(δ + 2
√
rα)γ

= 1

δγ−1

2√
r(γ − 1)

⎛

⎝1−
(

δ

δ + π
√
r

)γ−1
⎞

⎠

� 1

δγ−1

2

(γ − 1)

⎛

⎜
⎝1−

⎛

⎝ δ

δ + π√
2

⎞

⎠

γ−1
⎞

⎟
⎠ � C1

γ − 1

1

(1− ρ|z|)γ−1 .

For the estimate from above we note that since sinα
α

is decreasing on [0, π
2 ] one

has sin α � 2
π
α on [0, π

2 ], and then we obtain

δ2 + 4r sin2 α � δ2 + 16

π2 rα
2 �

(δ + 4
π

√
rα)2

2
.

Hence,

Iγ (z, ρ) � 22+ γ
2

∫ π
2

0

dα

(δ + 4
π

√
rα)

γ
2
� 2

γ+1
2 π

(γ − 1)

1

δγ−1

(

1−
(

δ

δ + 2

)γ−1
)

� C2

γ − 1

1

(1− ρ|z|)γ−1 . ��
Remark 3.2 It is a matter of calculus to show that

C1

(γ − 1)

1

(1− ρ|z|)γ+m−1 � ∂m

∂ρm

∫

T

1

|1− zρσ |γ |dσ | �
C2

(γ − 1)

1

(1− ρ|z|)γ+m−1 ,

for m = 0, 1, 2, . . . .

We also make a remark that will be needed later: for all n ∈ N, and λ > −1 there
exists a constant C�,n,λ > 0 such that

|f (n)(0)| ≤ C�,n,λ‖f ‖L�
λ (D)

, (3.2)

for all f ∈ A�
λ (D). Indeed, for every 0 < r < 1 one has by the Cauchy integral

formula

f (n)(0) = n!
2πi

∫ 2π

0

f (reit )

rn+1eint
reit i dt
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which yields for example for all 1/4 < r < 3/4

|f (n)(0)| � n!
2π

∫ 2π

0

|f (reit )|
rn

dt � C

∫ 2π

0
|f (reit )|(1− r2)λr dt

for some constant C > 0 depending on n and λ. Integrating both sides over ( 1
4 ,

3
4 )

with respect to r , we obtain

|f (n)(0)| � 2C
∫ 3

4

1
4

dr

∫ 2π

0
|f (reit )|(1− r2)λr dt

� C1

∫

D

|f (z)| dAλ(z) � C1‖f ‖L�
λ (D)

.

Here we used the Hölder inequality and the fact that the weight (1−r2)λ is bounded
from below and above by positive constants for the given r-interval.

Now we are in position to formulate and prove our main results. Let us introduce
the averages:

B
(0)
a,λ(r) = a(r),

B
(1)
a,λ(r) =

∫ 1

r

a(t)(1− t2)λtdt,

B
(j)
a,λ(r) =

∫ 1

r

B
(j−1)
a,λ (t)dt, j = 2, 3, . . . .

Theorem 3.3 Let � be a Young function with 1 < p� � q� < ∞. If there exists
m ∈ N ∪ {0} such that

(i) B
(m)
a,λ (r) = O

(
(1− r)m+λ

)
, r → 1,

then
(ii) the Toeplitz operator T

(λ)
a : A�

λ (D) → A�
λ (D) is well-defined and bounded,

and its Berezin transform T̃λ is a bounded function.

Proof We first prove the boundedness of the Toeplitz operator. By Lemma 2.1 we
know that polynomials form a dense set in A�

λ (D), hence at least for f being a
polynomial we have:

T (λ)
a f (z) =

∫

D

a(w)f (w)

(1− zw)2+λ dAλ(w)

= λ+ 1

π

∫

T

|dσ |
∫ 1

0

a(ρ)f (ρσ)

(1− zρσ)2+λ (1− ρ2)λρdρ
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= λ+ 1

π

∫

T

[ m∑

j=1

B
(j)
a,λ(0)

(
∂j−1

∂ρj−1

f (ρσ)

(1− zρσ)2+λ

) ∣
∣
∣
∣
ρ=0

+
∫ 1

0
B
(m)
a,λ (ρ)

(
∂m

∂ρm

f (ρσ)

(1− zρσ)2+λ

)

dρ

]

|dσ |. (3.3)

We note that

∂j

∂ρj

f (ρσ)

(1− zρσ )2+λ =
j∑

k=0

C
j
k

(
∂k

∂ρk
f (ρσ)

) (
∂j−k

∂ρj−k
1

(1− zρσ)2+λ

)

=
j∑

k=0

Ak,j,λ(z, σ )f
(k)(ρσ)

1

(1− zρσ)2+λ+j−k ,

where Ak,j,λ(z, σ ) = Ck,j,λz
j−kσ 2k−j with some constants Ck,j,λ. Therefore,

T (λ)
a f (z) = λ+ 1

π

m∑

j=1

B
(j)
a,λ(0)

j−1∑

k=0

f (k)(0)
∫

T

Ak,j−1,λ(z, σ )|dσ |

+ λ+ 1

π

∫

T

|dσ |
∫ 1

0
B
(m)
a,λ (ρ)

(
∂m

∂ρm

f (ρσ)

(1− zρσ )2+λ

)

dρ

and the first double sum is nonzero only if j is even and k = j
2 .

Regarding the second term, taking into account that

(1− ρ2)m−k

|1− zρσ |2+λ+m−k � C
1

|1− zρσ |2+λ

uniformly in z ∈ D, σ ∈ T, we calculate

∣
∣Im,a,λf (z)

∣
∣ ≡

∣
∣
∣
∣

∫

T

|dσ |
∫ 1

0
B
(m)
a,λ (ρ)

(
∂m

∂ρm

f (ρσ)

(1− zρσ)2+λ

)

dρ

∣
∣
∣
∣

� C

∫

T

|dσ |
∫ 1

0

⎛

⎝
m∑

k=0

(1− ρ2)k|f (k)(ρσ)|
⎞

⎠ (1− ρ2)λ

|1− zρσ |2+λ dρ

= C1

∫

D

∑m
k=0(1− |w|2)k|f (k)(w)|

|1− zw|2+λ dAλ(w)

= C1P
+
λ gm(z), (3.4)



Toeplitz Operators with Radial Symbols on Weighted Holomorphic Orlicz Space 199

where P+λ is as in (2.3) and we denoted

gm(z) =
m∑

k=0

(1− |z|2)kf (k)(z).

The function gm belongs to L�
λ (D) due to f ∈ A�

λ (D) and Theorem 2.4, and we
have the bound

‖gm‖A�

λ (D)
� C‖f ‖

A
�

λ (D)
, 1 < p <∞, λ > −1.

This, together with Theorem 2.2 imply P+λ gm ∈ A�
λ (D) and

‖P+λ gm‖A�

λ (D)
� C‖gm‖A�

λ (D)
, 1 < p <∞, λ > −1. (3.5)

Gathering all estimates (3.3)–(3.5), we arrive at the conclusion that the Toeplitz
operator T (λ)

a is bounded,

‖T (λ)
a f ‖

A
�

λ (D)
� C‖f ‖

A
�

λ (D)

since the constant C > 0 can be chosen independently of f ∈ A�
λ (D).

As for the boundedness of the Berezin transform, we have for all z ∈ D, by the
Fubini theorem and the reproducing kernel property,

T̃ (λ)
a (z)

=
∫

D

∫

D

a(w)(1− |w|2)λ
(1− ζ w̄)2+λ

(1− |z|2)1+λ/2

(1− z̄w)2+λ
(1− |z|2)1+λ/2

(1− zζ̄ )2+λ (1− |ζ |2)λdA(w)dA(ζ )

=
∫

D

a(w)(1− |w|2)λ
(1− zw̄)2+λ

(1− |z|2)2+λ

(1− z̄w)2+λ dA(w) = (1− |z|2)1+λ/2T (λ)
a kλz (z) (3.6)

The estimate

∣
∣
∣
∂k

∂wk
kλz (w)

∣
∣
∣ ≤ Ck

(1− |z|2)1+λ/2

|1− zw̄|2+λ+k (3.7)

follows just by differentiating the formula (2.8). For a fixed z ∈ D, we take f = kλz
in (3.3)–(3.4) and apply this to (3.6) so that together with (3.7) we obtain the bound

|T̃ (λ)
a (z)| = (1− |z|2)1+λ/2

∣
∣T (λ)

a kλz (ζ )
∣
∣

≤ (1− |z|2)1+λ/2
∫

D

m∑

k=0

(1− |w|2)k
|1− zw|2+λ

∣
∣
∣
∂k

∂wk
kλz (w)

∣
∣
∣dAλ(w)
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≤ (1− |z|2)1+λ/2
∫

D

m∑

k=0

(1− |w|2)k
|1− zw|2+λ

(1− |z|2)1+λ/2

|1− zw̄|2+λ+k dAλ(w)

= (1− |z|2)2+λ
∫

D

m∑

k=0

(1− |w|2)k+λ
|1− zw̄|4+2λ+k dA(w). (3.8)

By the Forelli-Rudin-estimates

∫

D

m∑

k=0

(1− |w|2)λ+k
|1− zw|4+2λ+k dA(w) ≤ Cm(1− |z|2)−2−λ, z ∈ D,

so that |T̃ (λ)
a (z)| has an upper bound independent of z, as claimed. ��

Theorem 3.4 Let � be a Young function, and assume that there exists m ∈ N∪ {0}
such that the average B(m)

a,λ is nonnegative a.e. in (0, 1).
If

(ii) the Toeplitz operator T
(λ)
a : A�

λ (D) → A�
λ (D) is well-defined and bounded,

and its Berezin transform T̃a is a bounded function,
then we have

(i) B
(m+1)
a,λ (r) = O

(
(1− r)m+1+λ

)
, r → 1.

Proof We assume that T (λ)
a maps A�

λ (D) boundedly into itself and the Berezin

transform T̃
(λ)
a is a bounded function of z ∈ D. We have by the definition of Berezin

transform

T̃ (λ)
a (z) = ãλ(z) =

∫

D

a(w)|kλz (w)|2dAλ(w)

= λ+ 1

π

∫

T

|dσ |
∫ 1

0
a(ρ)|kλz (ρσ)|2(1− ρ2)λρdρ

= λ+ 1

π
(1− |z|2)2+λ

∫

T

|dσ |
∫ 1

0
a(ρ)

(1− ρ2)λ

|1− zρσ |4+2λ ρdρ.

Here we denoted w = ρσ, where ρ = |w| and σ = w
|w| . If m = 0, then using

Lemma 3.1 we estimate

∣
∣
∣T̃ (λ)

a (z)

∣
∣
∣ = λ+ 1

π
(1− |z|2)2+λ

∫

T

|dσ |
∫ 1

0
a(ρ)

(1− ρ2)λ

|1− zρσ |4+2λ ρdρ

= λ+ 1

π
(1− |z|2)2+λ

∫ 1

0
a(ρ)(1− ρ2)λρdρ

∫

T

|dσ |
|1− zρσ |4+2λ

� C(1− |z|2)−1−λ
∫ 1

0
a(ρ)(1− ρ2)λρdρ
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� C(1− |z|2)−1−λ
∫ 1

|z|
a(ρ)(1− ρ2)λρdρ

= C(1− |z|2)−1−λB(1)
a,λ(|z|).

This along with the boundedness of the function T̃
(λ)
a on D implies the validity of

(i) for m = 0.
Let now m ∈ N. Integrating by parts and neglecting the outer terms when ρ = 1,

we have

Ja,λ(z, σ ) ≡
∫ 1

0
a(ρ)|kλz (ρσ )|2(1− ρ2)λρdρ

= (1− |z|2)2+λB(1)
a,λ(0)+

∫ 1

0
B
(1)
a,λ(ρ)

∂

∂ρ
|kλz (ρσ )|2dρ

=
m∑

j=1

B
(j)
a,λ(0)

(
∂j−1

∂ρj−1

∣
∣
∣kλz (ρσ )

∣
∣
∣
2
) ∣

∣
∣
∣
ρ=0

+
∫ 1

0
B
(m)
a,λ (ρ)

∂m

∂ρm

∣
∣
∣kλz (ρσ )

∣
∣
∣
2
dρ

≡ J
(1)
a,λ(z)+ J

(2)
a,λ(z, σ )

The term

J
(1)
a,λ(z) = (1− |z|2)2+λ

m∑

j=1

B
(j)
a,λ(0)

(
∂j−1

∂ρj−1

1

|1− zρσ |4+2λ

) ∣
∣
∣
∣
ρ=0

is bounded for each z ∈ D, and when |z| → 1 it behaves as

J
(1)
a,λ(z) = O

(
(1− |z|2)2+λ) , |z| → 1.

Further,

∫

T

J
(2)
a,λ(z, σ )|dσ | =

∫

T

|dσ |
∫ 1

0
B
(m)
a,λ (ρ)

∂m

∂ρm

∣
∣
∣kλz (ρσ)

∣
∣
∣
2
dρ

=
∫ 1

0
B
(m)
a,λ (ρ)dρ

∂m

∂ρm

∫

T

∣
∣
∣kλz (ρσ)

∣
∣
∣
2 |dσ |

= (1− |z|2)2+λ
∫ 1

0
B
(m)
a,λ (ρ)dρ

∂m

∂ρm

∫

T

1

|1− zρσ |4+2λ |dσ |.
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Hence,

∣
∣
∣
∣

∫

T

J
(2)
a,λ(z, σ )|dσ |

∣
∣
∣
∣ � C(1− |z|2)2+λ

∫ 1

0
B
(m)
a,λ (ρ)

1

(1− ρ|z|)3+2λ+mdρ

� C(1− |z|2)2+λ
∫ 1

|z|
B
(m)
a,λ (ρ)

1

(1− ρ|z|)3+2λ+mdρ

� C(1− |z|2)−m−1−λ
∫ 1

|z|
B
(m)
a,λ (ρ)dρ

= C(1− |z|2)−m−1−λB(m+1)
a,λ (|z|).

Therefore, as above, we see that the condition (i) must be satisfied. This concludes
the proof of the necessity of the condition (i). ��

We reformulate the previous results as the following necessary and sufficient
condition concerning the boundedness of the Toeplitz operator. Of course, condition
(ii) can be simplified in the (many) cases, where one can deduce the boundedness
of the Berezin transform from the boundedness of the Toeplitz operator; see also
Remark 2.5.

Theorem 3.5 Let � be a Young function with 1 < p� � q� <∞ and assume that
there exists m ∈ N ∪ {0} such that the average B

(m)
a,λ is nonnegative a.e. in (0, 1).

Then, the following are equivalent:

(i) B
(m+1)
a,λ (r) = O

(
(1− r)m+1+λ

)
, r → 1,

(ii) the Toeplitz operator T
(λ)
a : A�

λ (D) → A�
λ (D) is well-defined and bounded,

and its Berezin transform T̃
(λ)
a is a bounded function.

As a corollary we reformulate the Theorem 3.5 for the case of the weighted
Lebesgue space (i.e., �(t) = tp).

Theorem 3.6 Let 1 < p <∞, and there exists m ∈ N ∪ {0} such that the average
B
(m)
a,λ is nonnegative a.e. in (0, 1). Then, the following are equivalent:

(i) B
(m+1)
a,λ (r) = O

(
(1− r)m+1+λ

)
, r → 1,

(ii) the Toeplitz operator T (λ)
a : Ap

λ (D)→ A
p
λ (D) is well-defined and bounded.

The reader will have no difficulty to reformulate Theorems 3.3 and 3.4 for the
case of the weighted Lebesgue space with �(t) = tp.
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Algebras of Singular Integral Operators
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Abstract Let Bp,w be the Banach algebra of all bounded linear operators on the
weighted Lebesgue space Lp(T, w) with p ∈ (1,∞) and a Muckenhoupt weight
w ∈ Ap(T) which is locally equivalent at open neighborhoods ut of points t ∈ T to
weights Wt for which the functions τ �→ (τ − t)(lnWt)

′(τ ) are quasicontinuous on
ut , and let PQC be the C∗-algebra of all piecewise quasicontinuous functions on
T. The Banach algebra

Ap,w = alg{aI, ST : a ∈ PQC} ⊂ Bp,w

generated by all multiplication operators aI by functions a ∈ PQC and by
the Cauchy singular integral operator ST is studied. A Fredholm symbol calculus
for the algebra Ap,w is constructed and a Fredholm criterion for the operators
A ∈ Ap,w in terms of their Fredholm symbols is established by applying the
Allan-Douglas local principle, the two idempotents theorem and a localization of
Muckenhoupt weights Wt to power weights by using quasicontinuous functions and
Mellin pseudodifferential operators with non-regular symbols.
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1 Introduction

Let B(X) denote the Banach algebra of all bounded linear operators acting on a
Banach space X, let K(X) be the closed two-sided ideal of all compact operators
in B(X), and let Bπ(X) = B(X)/K(X) be the Calkin algebra of the cosets Aπ :=
A + K(X), where A ∈ B(X). An operator A ∈ B(X) is said to be Fredholm, if
its image is closed and the spaces kerA and kerA∗ are finite-dimensional (see, e.g.,
[6] and [12]). Equivalently, A ∈ B(X) is Fredholm if and only if the coset Aπ is
invertible in the algebra Bπ(X).

A measurable function w : T → [0,∞] defined on the unit circle T := {z ∈
C : |z| = 1} is called a weight if the preimage w−1({0,∞}) of the set {0,∞} has
measure zero. For p ∈ (1,∞), a weight w belongs to the Muckenhoupt class Ap(T)

if

cp,w := sup
I

(
1

|I |
∫

I

wp(τ )|dτ |
)1/p(

1

|I |
∫

I

w−q(τ )|dτ |
)1/q

<∞,

where 1/p + 1/q = 1, and supremum is taken over all intervals I ⊂ T of finite
length |I |. In what follows we assume that p ∈ (1,∞), w ∈ Ap(T), and consider
the weighted Lebesgue space Lp(T, w) equipped with the norm

‖f ‖Lp(T,w) :=
( ∫

T

|f (τ)|pwp(τ)|dτ |
)1/p

.

As is known (see, e.g., [3, 11]), the Cauchy singular integral operator ST given by

(STf )(t) = lim
ε→0

1

πi

∫

T\(te−iε,teiε)
f (τ )

τ − t
dτ, t ∈ T,

is bounded on every space Lp(T, w) if and only if p ∈ (1,∞) and w ∈ Ap(T).
Let F : L2(R)→ L2(R) denote the Fourier transform,

(Ff )(x) :=
∫

R

f (t)e−itxdt, x ∈ R.
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A function a ∈ L∞(R) is called a Fourier multiplier on Lp(R, w) if the convolution
operator W 0(a) := F−1aF maps the dense subset L2(R)∩Lp(R, w) of Lp(R, w)

into itself and extends to a bounded linear operator on Lp(R, w). For a weight
w ∈ Ap(R), let Mp,w stand for the unital Banach algebra of all Fourier multipliers
on Lp(R, w) equipped with pointwise operations and the norm ‖a‖Mp,w :=
‖W 0(a)‖B(Lp(R,w)) (see [2, Corollary 2.9]).

Letting Bp,w := B(Lp(T, w)) and Kp,w := K(Lp(T, w)) for p ∈ (1,∞) and
w ∈ Ap(T), we consider the Banach algebra

Ap,w := alg
{
aI, ST : a ∈ PQC

} ⊂ Bp,w (1.1)

generated by all multiplication operators aI (a ∈ PQC) and by the Cauchy
singular integral operator ST, where the C∗-algebra PQC ⊂ L∞(T) of piecewise
quasicontinuous functions is defined in Sect. 2. As is well known (see, e.g., the proof
of [21, Theorem 4.1.5]), the ideal Kp,w is contained in the Banach algebra Ap,w for
all p ∈ (1,∞) and all w ∈ Ap(T).

A Fredholm criterion and an index formula for Toeplitz operators with piecewise
quasicontinuous symbols on the Hardy space H 2 on the unit circle T were
established by D. Sarason in [26]. A Fredholm criterion for Toeplitz operators
with piecewise quasicontinuous symbols on weighted Hardy spaces Hp(�) with
p ∈ (1,∞) and weights of the form �(t) = ∏n

j=1 |t − tj |μj , where t ∈ T,
t1, . . . , tn are pairwise distinct point on T and μ1, . . . , μn are real numbers subject
to the condition μj ∈ (−1/p, 1 − 1/p) for all j , which means that � ∈ Ap(T),
was obtained by A. Böttcher and I.M. Spitkovsky in [7]. Banach algebras of
singular integral operators with piecewise quasicontinuous coefficients on weighted
Lebesgue spaces Lp(T, �) were studied in [5].

Fredholm criteria and index formulas are also established for singular integral
operators with coefficients having semi-almost periodic discontinuities [23, 24] and
for Wiener-Hopf operators with semi-almost periodic presymbols [9] (see also [4]
and the references therein). Note that Fredholm results for semi-almost periodic data
and piecewise quasicontinuous data essentially differ.

The present paper deals with studying the Fredholmness of singular integral
operators with piecewise quasicontinuous coefficients on weighted Lebesgue spaces
Lp(T, w) for a much larger class of Muckenhoupt weights w that are locally
equivalent at open neighborhoods ut of points t ∈ T to weights Wt for which the
functions τ �→ (τ− t)(lnWt)

′(τ ) are in QC|ut . A Fredholm symbol calculus for the
Banach algebra Ap,w given by (1.1) is constructed and a Fredholm criterion of the
operators A ∈ Ap,w in terms of their Fredholm symbols is established by applying
the Allan-Douglas local principle, the two idempotents theorem and a localization
of Muckenhoupt weights Wt to power weights by using quasicontinuous functions
and Mellin pseudodifferential operators with non-regular symbols.

The paper is organized as follows. In Sect. 2 theC∗-algebras SO(, QC and PQC

of slowly oscillating, quasicontinuous and piecewise quasicontinuous functions are
considered and their maximal ideal spaces are described. In Sect. 3, modifying
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[18, Section 6.2], we introduce a slightly different class of Muckenhoupt weights
locally equivalent to slowly oscillating weights that are obtained by a procedure
of smoothness improvement. In Sect. 4 we recall results on the boundedness and
compactness of Mellin pseudodifferential operators with non-regular symbols and
give an application of such operators to weighted Cauchy singular integral operators.
Section 5 deals with an application of the Allan-Douglas local principle (see, e.g.,
[8, Theorem 7.47] and [6, Theorem 1.35]) to local studying the quotient Banach
algebra Aπ

p,w := Ap,w/Kp,w. By [26], the maximal ideal space M(QC) of QC is

the union of three pairwise disjoint sets M̃−(QC), M0(QC) and M̃+(QC) given
by (2.3). In particular, in Sect. 5.3 we describe the structure of the local algebras
for all ξ ∈ M(QC) and present the invertibility criteria in local algebras for all
ξ ∈ M̃±(QC).

In Sect. 6, applying quasicontinuous functions and Mellin pseudodifferential
operators with non-regular symbols and modifying [17, Section 6], we localize
Muckenhoupt weights satisfying assumption (A) (see Sect. 3) and describe the
spectra in local algebras of elements related to the operator wSTw

−1I ∈ B(Lp(T)).
As a result, the localization reduces considered weights w ∈ Ap(T) to power
weights wξ ∈ Ap(T) parameterized by points ξ ∈ M0(QC). Section 7 deals
with the two idempotents theorem (see, e.g., [10, 13] and [3, Theorem 8.7]) and
its application to studying the invertibility in local algebras for ξ ∈ M0(QC). In
particular, we identify here the spectra of cosets [Xt ]πp,w,ξ being crucial in the two
idempotents theorem. Section 8 contains the main results of the paper: a Fredholm
symbol calculus for the Banach algebra Ap,w with p ∈ (1,∞) and Muckenhoupt
weights w satisfying condition (A), the inverse closedness of the quotient algebra
Aπ
p,w in the Calkin algebra Bπ

p,w, which means that for every coset Aπ ∈ Aπ
p,w its

spectra in the algebras Aπ
p,w and Bπ

p,w coincide (see, e.g., [4, p. 3]), and a Fredholm
criterion for the operators A ∈ Ap,w in terms of their Fredholm symbols.

2 The C∗-Algebras SO�, QC and PQC

2.1 The C∗-Algebra SO� of Slowly Oscillating Functions

Let L∞(T) be the C∗-algebra of all bounded measurable functions on the unit
circle T. Let C := C(T) and PC := PC(T) denote the C∗-subalgebras of
L∞(T) consisting, respectively, of all continuous functions on T and all piecewise
continuous functions on T, that is, the functions having finite one-sided limits at
each point t ∈ T.

Following [1, Section 4], we say that a function f ∈ L∞(T) is slowly oscillating
at a point t ∈ T if

lim
ε→0

ess sup
{|f (τ)− f (s)| : τ, s ∈ Trε, ε(t)

} = 0
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for every r ∈ (0, 1) (equivalently, for some r ∈ (0, 1)), where

Trε, ε(t) :=
{
z ∈ T : rε ≤ |z− t| ≤ ε

}
for t ∈ T.

For each t ∈ T, let SOt (T) denote the C∗-subalgebra of L∞(T) given by

SOt (T) :=
{
f ∈ Cb(T \ {t}) : f slowly oscillates at t

}
,

where Cb(T \ {t}) := C(T \ {t})∩L∞(T). Let SO( be the minimal C∗-subalgebra
of L∞(T) that contains all C∗-algebras SOt (T) for t ∈ T. In particular, C ⊂ SO(.

Given a commutative unital C∗-algebra A, we denote by M(A) the maximal
ideal space of A. Since M(C) can be identified with T, we conclude that

M(SO() =
⋃

t∈T
Mt(SO

(), Mt(SO
() := {

ξ ∈ M(SO() : ξ |C = t
}
, (2.1)

where Mt(SO
() are called the fibers of M(SO() over points t ∈ T.

2.2 The C∗-Algebra QC of Quasicontinuous Functions

For each arc I ⊂ T and each f ∈ L1(T), the average of f over I is given by
I (f ) := |I |−1

∫
I f (τ )|dτ |, where |I | := ∫

I |dτ | is the Lebesgue measure of I . A
function f ∈ L1(T) is said to have vanishing mean oscillation on T if

lim
δ→0

(

sup
I⊂T, |I |≤δ

1

|I |
∫

I

|f (τ)− I (f )| |dτ |
)

= 0.

The set of functions of vanishing mean oscillation on T is denoted by VMO .
Let H∞ be the closed subalgebra of L∞(T) that consists of all functions being

non-tangential limits on T of bounded analytic functions on the open unit disc
D := {z ∈ C : |z| < 1}. According to [25] and [26], the C∗-algebra QC of
quasicontinuous functions on T is defined by

QC := (H∞ + C) ∩ (H∞ + C) = VMO ∩ L∞(T).

By the proof of [19, Theorem 4.2], we immediately obtain the following.

Theorem 2.1 The C∗-algebra SO( is contained in the C∗-algebra QC.

Since C ⊂ QC, it follows similarly to (2.1) that

M(QC) =
⋃

t∈T
Mt(QC), Mt(QC) := {

ξ ∈ M(QC) : ξ |C = t
}
,
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whereMt(QC) are fibers ofM(QC) over points t ∈ T. For each (λ, t) ∈ (1,∞)×T
with t = eiθ , the map

δλ,t : QC → C, f �→ δλ,t (f ) := λ

2π

∫ θ+ π
λ

θ− π
λ

f (eix)dx,

defines a linear functional in QC∗, which is identified with the point (λ, t).
Let M0

t (QC) denote the set of functionals in Mt(QC) that lie in the weak-star
closure in QC∗ of the set (1,∞)× {t}. For t ∈ T, we also consider the sets

M+
t (QC) :={

ξ ∈ Mt(QC) : ξ(f ) = 0 if f ∈ QC and lim sup
z→t+

|f (z)| = 0
}
,

M−
t (QC) :={

ξ ∈ Mt(QC) : ξ(f ) = 0 if f ∈ QC and lim sup
z→t−

|f (z)| = 0
}
.

For each t ∈ T, it follows from [26, Lemma 8] that

M+
t (QC)∩M−

t (QC) =M0
t (QC), M+

t (QC)∪M−
t (QC) = Mt(QC). (2.2)

Hence, the fiber Mt(QC) splits into the three disjoint sets: M0
t (QC) and

M̃+
t (QC) := M+

t (QC) \M0
t (QC), M̃−

t (QC) := M−
t (QC) \M0

t (QC).

We also define the sets

M±(QC) =
⋃

t∈T
M±

t (QC), M0(QC) =
⋃

t∈T
M0

t (QC), M̃±(QC) =
⋃

t∈T
M̃±

t (QC).

(2.3)

Regarding functions in L∞(T) as extended harmonically into the open unit disc
D, we deduce from [26, p. 821] that the restriction gt of a function f ∈ QC to
the radius γt = [0, t), where t ∈ T, is a bounded continuous function on γt that
slowly oscillates at the point t . Then the function f defined on T by f (teix) =
gt [t (1−|x|/π)] (0 < |x| ≤ π) belongs to SOt ⊂ SO( ⊂ QC, and limx→1[gt (tx)−
f (tx)] = 0 in view of [26, Lemma 5]. By [26, p. 823], this allows one for every
a ∈ SO( and every t ∈ T to relate the values a(ζ ) for ζ ∈ Mt(SO

() with values
a(ξ) for ξ ∈ M0

t (QC) by setting a(ξ) = a(ζ ) whenever ξ |SO( = ζ .

2.3 The C∗-Algebra PQC of Piecewise Quasicontinuous
Functions

Let PQC := alg(QC,PC) be the C∗-subalgebra of L∞(T) generated by the
C∗-algebras QC and PC. The functions in PQC are referred to as the piecewise
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quasicontinuous functions. Since QC ⊂ PQC, we have

M(PQC) =
⋃

ξ∈M(QC)

Mξ (PQC), Mξ (PQC) := {
y ∈ M(PQC) : y|QC = ξ

}
.

As is known, M(PC) = T × {0, 1}. There is a natural map w of M(PQC)

into M(QC) × {0, 1}, which is given as follows: defining ξ = y|QC , t = y|C and
v = y|PC for every y ∈ M(PQC), we conclude that w(y) = (ξ, 0) if v = (t, 0)
and w(y) = (ξ, 1) if v = (t, 1). We have the following characterization of fibers
Mξ(PQC) for ξ ∈ M(QC) (see [26] and also [6, Theorem 3.36]).

Lemma 2.2 Let t ∈ T and ξ ∈ Mt(QC). Then

(i) Mξ(PQC) = {(ξ, 1)} whenever ξ ∈ M̃+
t (QC);

(ii) Mξ(PQC) = {(ξ, 0)} whenever ξ ∈ M̃−
t (QC);

(iii) Mξ(PQC) = {(ξ, 0), (ξ, 1)} whenever ξ ∈ M0
t (QC). In this case, if t = eiθ

and {λn} ⊂ (1,∞) is such that (λn, t)→ ξ in the weak-star topology on QC∗,
then for every f ∈ PQC,

(ξ, 1)f = lim
n→∞

λn

π

∫ θ+ π
λn

θ

f (eix)dx, (ξ, 0)f = lim
n→∞

λn

π

∫ θ

θ− π
λn

f (eix)dx.

For a ∈ PQC and ξ ∈ M(QC), we put

a(ξ−) := a(ξ, 0) if ξ ∈ M−(QC), a(ξ+) := a(ξ, 1) if ξ ∈ M+(QC).

3 Muckenhoupt Weights Equivalent to Slowly Oscillating
Weights

Let 1 < p < ∞ and w = ev ∈ Ap(T). Then v = lnw ∈ BMO(T) (see, e.g., [11,
p. 258] or [3, Theorem 2.5]). For every t ∈ T, we define the real-valued functions
vt and Vt on the interval U := (−π/2, π/2) by

vt (x) := v(teix) for almost all x ∈ (−π/2, π/2), (3.1)

Vt(x) := 1

x

∫ x

0
vt (s)ds for all |x| ∈ (0, π/2). (3.2)

Then vt ∈ BMO(U) and Vt ∈ C(U \ {0}), where U denotes the closure of U in T.
In what follows we assume that
(A) for every t ∈ T there is a symmetric neighborhood Ut ⊂ U of zero such that

the function #t : x �→ xV ′t (x) belongs to the C∗-algebra QC(Ut ) := VMO(Ut) ∩
L∞(Ut ).
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Since QC(Ut ) ⊂ BMO(Ut) and since

xV ′t (x) = vt (x)− Vt(x) for almost all x ∈ U, (3.3)

we infer from (A) that Vt ∈ BMO(Ut) along with vt ∈ BMO(Ut) for every t ∈ T.
By (A) and the definition of VMO(Ut) in [11, Chapter VI], the functions #t :

x �→ xV ′t (x) belong to VMO0(Ut ) ∩ L∞(Ut ) for all t ∈ T, where VMO0(Ut )

consists of all functions v ∈ L1(Ut ) such that

lim
x→0

1

x

∫ x

0
|v(s)− Ix(v)|ds = 0, Ix(v) := 1

x

∫ x

0
v(s)ds (x ∈ Ut \ {0})

and limx→0
(
Ix(v)− I−x(v)

) = 0.
Consequently, by [18, Lemma 6.1], for every t ∈ T the function

x �→ 1

x

∫ x

0
τV ′t (τ )dτ (x ∈ Ut \ {0})

belongs to the set SO0(Ut ) = S̃O0(Ut ) ∩ L∞(Ut ), where S̃O0(Ut ) consists of all
functions f ∈ C(Ut \ {0}) such that

lim
x→+0

max
{|f (y)− f (z)| : y, z ∈ [−2x, x] ∪ [x, 2x]} = 0. (3.4)

Following [18], we say that a weight w is locally equivalent to a weight W at
a neighborhood ut ⊂ T of a point t ∈ T if w/W, W/w ∈ L∞(ut ). Setting
Wt(te

ix) = eVt (x) for x ∈ Ut and t ∈ T, we deduce from (A) and (3.3) that
the weight w = ev is locally equivalent to the weights Wt at the neighborhoods
ut = {teix : x ∈ Ut } of points t ∈ T, and the functions τ �→ (τ − t)(lnWt)

′(τ ) are
in QC(ut ).

For every t ∈ T, we also define the function

Ṽt (x) := 1

x

∫ x

0
Vt(τ )dτ (x ∈ Ut \ {0}). (3.5)

In view of (3.2), (3.3) and (3.5), we infer that for each t ∈ T and all x ∈ Ut \ {0},

xṼ ′t (x) = Vt(x)− Ṽt (x) = 1

x

∫ x

0
τV ′t (τ )dτ. (3.6)

Hence the function #̃t : x �→ xṼ ′t (x) belongs to SO0(Ut ) along with the function
x �→ 1

x

∫ x

0 #t(τ )dτ by [17, Lemma 4] and [18, Lemma 6.1]. Then the weights w

and Wt are locally equivalent on ut to the weight W̃t given by W̃t (te
ix) = eṼt (x)

for x ∈ Ut . The weights W̃t defined for each t ∈ T are called slowly oscillating
weights. Since w ∈ Ap(T), it follows that Wt, W̃t ∈ Ap(ut ) and eṼt ∈ Ap(Ut ).
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Since the function Ṽt is continuously differentiable on Ut \ {0} and since the
function #̃t : x → xṼ ′t (x) is in SO0(Ut ), we deduce from [17, Theorem 4] (cf. [3,

Theorem 2.36]) that the weight eṼt belongs to Ap(Ut ) if and only if

− 1/p < lim inf
x→0

(
xṼ ′t (x)

) ≤ lim sup
x→0

(
xṼ ′t (x)

)
< 1/q. (3.7)

Given p ∈ (1,∞) and a weight w ∈ Ap(T) satisfying condition (A), we
associate with w and every point t ∈ T the locally equivalent weight W̃t = eVt ∈
Ap(ut ), where Vt (τ ) = Ṽt (−i ln(τ/t)) for all τ ∈ ut . Then the function σt given by

σt (τ ) = (τ − t)V ′t (τ ) for all τ ∈ ut \ {t}, (3.8)

belongs to SOt (ut ) = SOt (T)|ut . Since xṼ ′t (x) = xV ′t (teix)tieix for x ∈ Ut and

lim
x→0

[(teix − t)/(xtieix)] = 1,

we conclude that the function #̃t : x �→ xṼ ′t (x) is equivalent at the point 0 to the
function σt (te

ix) = (teix − t)V ′t (teix) for every t ∈ T. Hence σt ∈ SOt (ut ) if
and only if #̃t ∈ SO0(Ut ). This allows us to identify the points ζ ∈ Mt(SO

() and
η ∈ M0(SO0(Ut )) by the rule ζ(a) = η(a ◦ tei(·)) for all a ∈ SO(. Identifying the
points ζ ∈ Mt(SO

() and ξ ∈ M0
t (QC) as in Sect. 2.2, and the points ξ ∈ M0

t (QC)

and ξ̃ ∈ M0
0 (QC(Ut )) by the rule ξ(a) = ξ̃ (a ◦ tei(·)) for all a ∈ QC, we can define

the numbers

δξ := ξ(σt ) = ζ(σt ) = η(#̃t ) = ξ̃ (#̃t ) = ξ̃ Ṽ ′t (̃ξ ) for every ξ ∈ M0
t (QC).

(3.9)

4 Mellin Pseudodifferential Operators

If a is an absolutely continuous function of finite total variation on R, then a′ ∈
L1(R) and V (a) = ∫

R
|a′(x)|dx (see, e.g., [20, Chapter VIII, § 3; Chapter IX, § 4]).

The set V (R) of all absolutely continuous functions a of finite total variation on R

forms a Banach algebra when equipped with the norm ‖a‖V := ‖a‖L∞(R) + V (a).
Following [14, 15], let Cb(R+, V (R)) denote the Banach algebra of all bounded
continuous V (R)-valued functions b on R+ = (0,∞) with the norm

‖b(·, ·)‖Cb(R+,V (R)) = sup
r∈R+

‖b(r, ·)‖V .

As usual, let C∞0 (R+) be the set of all infinitely differentiable functions of compact
support on R+. Let dμ(t) = dt/t for t ∈ R+.
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Mellin pseudodifferential operators are generalizations of Mellin convolution
operators. The following boundedness result for Mellin pseudodifferential operators
was obtained in [15, Theorem 6.1] (see also [14, Theorem 3.1]).

Theorem 4.1 If b ∈ Cb(R+, V (R)), then the Mellin pseudodifferential operator
Op(b), defined for functions f ∈ C∞0 (R+) by the iterated integral

[
Op(b)f

]
(r) = 1

2π

∫

R

dλ

∫

R+
b(r, λ)

(
r

�

)iλ

f (�)
d�

�
for r ∈ R+,

extends to a bounded linear operator on every space Lp(R+, dμ) with p ∈ (1,∞),
and there is a number Cp ∈ (0,∞) depending only on p such that

‖Op(b)‖B(Lp(R+,dμ)) ≤ Cp‖b‖Cb(R+,V (R)).

Following [26], a function f ∈ Cb(R+) is called slowly oscillating (at 0 and∞)
if for each (equivalently, for some) λ ∈ (0, 1),

lim
x→s

max
{|f (r)− f (�)| : r, � ∈ [λx, x]} = 0 (s ∈ {0,∞}).

Obviously, the set SO(R+) of all slowly oscillating (at 0 and ∞) functions in
Cb(R+) is a unital commutativeC∗-algebra. This algebra properly contains C(R+),
the C∗-algebra of all continuous functions on R+ := [0,+∞].

Let SO(R+, V (R)) denote the Banach subalgebra of Cb(R+, V (R)) consisting
of all V (R)-valued functions b on R+ that slowly oscillate at 0 and∞, that is,

lim
x→0

cmC
x (b) = lim

x→∞ cmC
x (b) = 0,

where

cmC
x (b) = max

{∥
∥b(r, ·)− b(�, ·)∥∥

L∞(R)
: r, � ∈ [x, 2x]}.

Let E(R+, V (R)) be the Banach algebra of all V (R)-valued functions b belonging
to SO(R+, V (R)) and such that

lim|h|→0
sup
r∈R+

∥
∥b(r, ·)− bh(r, ·)∥∥

V
= 0

where bh(r, λ) := b(r, λ+ h) for all (r, λ) ∈ R+ × R.
The following result on compactness of commutators of Mellin pseudodifferen-

tial operators was obtained in [16, Theorem 3.5] (see also [14, Corollary 8.4]).

Theorem 4.2 If a, b ∈ E(R+, V (R)), then the commutator [Op(a),Op(b)] is a
compact operator on every space Lp(R+, dμ) with p ∈ (1,∞).
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Consider the isometric isomorphism

T : B(Lp(R+))→ B(Lp(R+, dμ)), A �→ GAG−1, (4.1)

where G is the isometric isomorphism of Lp(R+) onto Lp(R+, dμ) given by

(Gf )(r) = r1/pf (r) for r ∈ R+. (4.2)

Theorem 4.3 ([17, Theorem 7]) Let p ∈ (1,∞) and let w = eV ∈ Ap(R+),
where the function x �→ xV ′(x) belongs to SO(R+) and

−1/p < inf
x∈R+

(xV ′(x)) ≤ sup
x∈R+

(xV ′(x)) < 1− 1/p.

Then T
(
wSR+w

−1I
) = Op(b)+K , where K ∈ K(Lp(R+, dμ)) and the function

b ∈ E(R+, V (R)) is given by

b(r, λ) := coth
(
πλ+ πi(1/p + rV ′(r))

)
for all (r, λ) ∈ R+ ×R.

5 Local Study of the Banach Algebra Aπ
p,w

5.1 An Application of the Allan-Douglas Local Principle

Given p ∈ (1,∞) and w ∈ Ap(T), we consider the unital Banach algebra

Zp,w :=
{
aI : a ∈ QC

} ⊂ Bp,w (5.1)

and its quotient Banach algebra Zπ
p,w := (Zp,w + Kp,w)/Kp,w consisting of the

cosets [aI ]π := aI + Kp,w for all a ∈ QC. By [17, Theorem 2], Zπ
p,w is a central

subalgebra of the quotient Banach algebra Aπ
p,w = Ap,w/Kp,w, where Ap,w is

defined by (1.1) (recall that Kp,w ⊂ Ap,w).
Let �p,w denote the Banach subalgebra of Bp,w consisting of all operators in

Bp,w that commute modulo compact operators with every operator A ∈ Zp,w.
Clearly, �p,w contains the Banach algebra Ap,w and Zπ

p,w is a central subalgebra
of the quotient Banach algebra �π

p,w := �p,w/Kp,w.
By [17, Lemma 1], M(Zπ

p,w) = M(QC). For every ξ ∈ M(QC), let J π
p,w,ξ be

the smallest closed two-sided ideal of the Banach algebra �π
p,w that contains the

maximal ideal

Iπ
p,w,ξ := {[aI ]π : a ∈ QC, a(ξ) = 0}
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of the central algebra Zπ
p,w of �π

p,w. Consider the quotient Banach algebra
�π

p,w,ξ := �π
p,w/J π

p,w,ξ . Let Aπ
p,w,ξ be the smallest closed subalgebra of �π

p,w,ξ

that contains the cosets Aπ
p,w,ξ := Aπ + J π

p,w,ξ for all A ∈ Ap,w.
By the Allan-Douglas local principle (see, e.g., [6, Theorem 1.35]), we immedi-

ately obtain the following result.

Lemma 5.1 Given p ∈ (1,∞) andw ∈ Ap(T), an operatorA ∈ Ap,w is Fredholm
on the weighted Lebesgue space Lp(T, w) (equivalently, the coset Aπ ∈ Aπ

p,w is
invertible in the Banach algebra Aπ

p,w) if and only if for every ξ ∈ M(QC) the
coset Aπ

p,w,ξ ∈ Aπ
p,w,ξ is invertible in the Banach algebra �π

p,w,ξ .

5.2 Local Representatives

Let us identify the cosets Aπ
p,w,ξ for all A ∈ Ap,w and all ξ ∈ M(QC), where

p ∈ (1,∞) and w ∈ Ap(T). For t ∈ T, let χ−t and χ+t denote the characteristic
functions of the intervals (−t, t) and (t,−t), respectively.

Lemma 5.2 If a ∈ PQC, t ∈ T and one of the following conditions holds:

a(ξ−) = 0 if ξ ∈ M̃−
t (QC), a(ξ+) = 0 if ξ ∈ M̃+

t (QC),

a(ξ±) = 0 if ξ ∈ M0
t (QC),

(5.2)

then [aI ]πp,w,ξ = [0]πp,w,ξ = J π
p,w,ξ for given ξ ∈ Mt(QC).

Proof Obviously, it suffices to prove the lemma only for functions a ∈ PQC that
have finite sets of piecewise quasicontinuous discontinuities on T. If t ∈ T is a point
of such discontinuity for a function a ∈ PQC of that class, then there exist unique
functions a±t ∈ QC such that the function

ã := a − a−t χ−t − a+t χ+t ∈ PQC (5.3)

vanishes at an open neighborhood ut ⊂ T of t . Consider a smaller open
neighborhood ũt of t such that the closure of ũt is contained in ut . For every
ξ ∈ Mt(QC), we now take a function cξ ∈ QC such that cξ (ξ) = 0 and cξ (η) = 1
for all η ∈ ⋃

τ∈T\ũt Mτ (QC). Then ã = ãcξ , which implies that [̃aI ]π ∈ J π
p,w,ξ ,

and hence, by (5.3),

[aI ]πp,w,ξ = [(a−t χ−t + a+t χ+t )I ]πp,w,ξ for every ξ ∈ Mt(QC). (5.4)

If ξ ∈ M0
t (QC), then we infer from (5.4) and (5.2) that

a+t (ξ) = a(ξ+) = 0 and a−t (ξ) = a(ξ−) = 0, (5.5)
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since χ+t (ξ+) = χ−t (ξ−) = 1 and χ+t (ξ−) = χ−t (ξ+) = 0 by [26, Lemma 13].
Hence, by (5.4) and (5.5), [(a−t χ−t + a+t χ+t )I ]π ∈ J π

p,w,ξ , and then [aI ]πp,w,ξ =
J π
p,w,ξ .

Further, if ξ ∈ M̃+
t (QC), then the coset [χ−t I ]π ∈ J π

p,w,ξ . Indeed, take a

function g ∈ QC such that g(ξ) = 1 and g = 0 on M0
t (QC). Then, by the proof of

[26, Lemma 13], χ−t g ∈ QC and (χ−t g)(ξ) = χ−t (t+)g(ξ) = 0. Hence,

[χ−t I ]π = [χ−t gI ]π − [χ−t (g − g(ξ))I ]π ,
where [χ−t gI ]π ∈ Iπ

p,w,ξ and [χ−t (g − g(ξ))I ]π ∈ J π
p,w,ξ , which means that

[χ−t I ]π ∈ J π
p,w,ξ . Similarly, [χ+t I ]π ∈ J π

p,w,ξ if ξ ∈ M̃−
t (QC). Thus, by (5.4),

[(a − a−t )I ]π = [(a+t − a−t )χ+t I ]π ∈ J π
p,w,ξ if ξ ∈ M̃−

t (QC),

[(a − a+t )I ]π = [(a−t − a+t )χ−t I ]π ∈ J π
p,w,ξ if ξ ∈ M̃+

t (QC),
(5.6)

which implies in view of (5.2) that

a−t (ξ) = a(ξ−) = 0 if ξ ∈ M̃−
t (QC), a+t (ξ) = a(ξ+) = 0 if ξ ∈ M̃+

t (QC).

Hence, [a±t I ]π ∈ Iπ
p,w,ξ if ξ ∈ M̃±

t (QC), respectively, and therefore, by (5.6),

[aI ]πp,w,ξ = J π
p,w,ξ for all ξ ∈ M̃±

t (QC) as well. ��
Theorem 5.3 For every t ∈ T and every ξ ∈ Mt(QC), the mapping βξ : A �→
Aπ
p,w,ξ given on the generators aI (a ∈ PQC) and ST of the algebra Ap,w by

βξ (aI) :=
⎧
⎨

⎩

[
a(ξ±)I

]π
p,w,ξ

if ξ ∈ M̃±
t (QC),

[
(a(ξ+)χ+t + a(ξ−)χ−t )I

]π
p,w,ξ

if ξ ∈ M0
t (QC),

(5.7)

βξ (ST) :=
[
ST

]π
p,w,ξ

if ξ ∈ Mt(QC), (5.8)

extends to a Banach algebra homomorphism βξ : Ap,w → Aπ
p,w,ξ . Moreover,

sup
ξ∈M(QC)

‖βξ (A)‖Aπ
p,w,ξ

≤ ‖Aπ‖ := inf
K∈Kp,w

‖A+K‖ for all A ∈ Ap,w.

Proof Let ξ ∈ M(QC). Consider the Banach algebra homomorphisms

βξ : Ap,w → Aπ
p,w → Aπ

p,w,ξ , A �→ Aπ �→ Aπ
p,w,ξ .

Obviously, for every A ∈ Ap,w,

sup
{‖βξ (A)‖Aπ

p,w,ξ
: ξ ∈ M(QC)

} ≤ ‖Aπ‖.

It remains to prove (5.7) for a ∈ PQC because (5.8) for ST ∈ Ap,w is evident.
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Fix t ∈ T and ξ ∈ Mt(QC). For every a ∈ PQC, the function

âξ :=
⎧
⎨

⎩

a − a(ξ±) if ξ ∈ M̃±
t (QC),

a − a(ξ−)χ−t − a(ξ+)χ+t if ξ ∈ M0
t (QC),

belongs to PQC. Moreover, by Lemma 5.2, [̂aξI ]π ∈ J π
p,w,ξ . This gives (5.7). ��

5.3 Structure of the Local Algebras Aπ
p,w,ξ

Clearly, P± := (I ± ST)/2 are projections on the space Lp(T, w). Theorem 5.3
directly implies the following result on the structure of the local algebras Aπ

p,w,ξ .

Lemma 5.4 Given p ∈ (1,∞), w ∈ Ap(T) and ξ ∈ M(QC), the local algebras
Aπ

p,w,ξ generated by the cosets
[
ST]πp,w,ξ and

[
aI

]π
p,w,ξ

for all a ∈ PQC have the
following structure:

(i) if t ∈ T and ξ ∈ M0
t (QC), then Aπ

p,w,ξ is generated by the unit Iπp,w,ξ and two
idempotents

Pπ
p,w,ξ :=

[
P+

]π
p,w,ξ

, Qπ
p,w,ξ :=

[
χ+t I

]π
p,w,ξ

; (5.9)

(ii) if t ∈ T and ξ ∈ M̃±
t (QC), then Aπ

p,w,ξ is generated by the unit Iπp,w,ξ and one

idempotent Pπ
p,w,ξ :=

[
P+

]π
p,w,ξ

.

If ξ ∈ M̃±(QC), then the Banach algebra Aπ
p,w,ξ according to Lemma 5.4(ii) is

commutative, any coset in this algebra has the form
[
c+P++c−P−

]π
p,w,ξ

(c± ∈ C),

where
[
P+

]π
p,w,ξ

= Pπ
p,w,ξ ,

[
P−

]π
p,w,ξ

= Iπp,w,ξ − Pπ
p,w,ξ , and the map $ξ defined

by

$ξ(I
π
p,w,ξ ) = diag{1, 1}, $ξ (P

π
p,w,ξ ) = diag{1, 0}, (5.10)

extends to a Banach algebra isomorphism $ξ : Aπ
p,w,ξ → diag{C,C} of the Banach

algebra Aπ
p,w,ξ onto the C∗-algebra of diagonal 2 × 2 complex-valued matrices.

Since, for arbitrary functions a± ∈ PQC,

[
a+P+ + a−P−

]π
p,w,ξ

= [
a+(ξ±)P+ + a−(ξ±)P−

]π
p,w,ξ

if ξ ∈ M̃±(QC),

respectively, and therefore, by (5.10),

$ξ

([
a+P+ + a−P−

]π
p,w,ξ

) = diag
{
a+(ξ±), a−(ξ±)

}
, (5.11)

we immediately obtain the following.
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Theorem 5.5 Given p ∈ (1,∞), w ∈ Ap(T) and ξ ∈ M̃±(QC), the Banach
algebra Aπ

p,w,ξ is inverse closed in the Banach algebra �π
p,w,ξ , and a coset Aπ

p,w,ξ

is invertible in the Banach algebra Aπ
p,w,ξ if and only if det$ξ

(
Aπ
p,w,ξ

) 	= 0.

It remains to study the invertibility of the cosets Aπ
p,w,ξ in the Banach algebra

Aπ
p,w,ξ for every ξ ∈ M0(QC).

6 The Local Study of the Banach Algebra Ap,w

for ξ ∈ M0(QC)

6.1 Required Quotient Banach Algebras and Their Ideals

Let p ∈ (1,∞) and let w ∈ Ap(T) satisfy condition (A). Taking w ≡ 1 in Bp,w and
Kp,w, we abbreviate Bp := Bp,1 and Kp := Kp,1. Let �π

p := �π
p,1 be the Banach

algebra of all cosets in the quotient Banach algebra Bπ
p := Bp/Kp that commute

with each coset in the Banach algebra Zπ
p := {aI + Kp : a ∈ QC} ⊂ Bπ

p . Hence,
Zπ
p is a central subalgebra of �π

p .

For every ξ ∈ M0(QC), let J π
p,ξ be the smallest closed two-sided ideal of the

Banach algebra �π
p that contains the maximal ideal

Iπ
p,ξ := {[aI ]π : a ∈ QC, a(ξ) = 0}

of Zπ
p , and let �π

p,ξ := �π
p/J π

p,ξ .
Let E be one of the sets Ut = [−δ, δ] ⊂ R, γ = [0, δ] ⊂ R+ or R+, and let

QC(E) := VMO(E) ∩ L∞(E). Given p ∈ (1,∞) and a set E, let �p(E) be
the Banach algebra of all operators A ∈ B(Lp(E)) for which [aI,A] ∈ Kp(E)

for all a ∈ QC(E), where Kp(E) is the ideal of compact operators on the space
Lp(E), and let �π

p(E) := �p(E)/Kp(E). Relating characters ξ ∈ M0
t (QC) and

ξ̃ ∈ M0
0 (QC(Ut )) by ξ̃ (at ) = ξ(a), where at (x) = a(teix) for a ∈ QC and x ∈ Ut ,

and identifying characters ξ̃ ∈ M0
0 (QC(E)) for all E, we consider the closed two-

sided ideal J π

p,̃ξ ,E
of the Banach algebra �π

p(E), which is generated by the maximal

ideal Iπ

p,̃ξ ,E
:= {aI + Kp(E) : a ∈ QC(E), a(̃ξ) = 0} of the central subalgebra

Zπ
p (E) = {aI +Kp(E) : a ∈ QC(E)} of �π

p(E). Let Aπ
p,̃ξ,E

:= Aπ +J π
p,̃ξ ,E

and

let �π
p,̃ξ

(E) := �π
p(E)/J π

p,̃ξ ,E
.
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6.2 Localization of Muckenhoupt Weights Satisfying
Condition (A)

Let us simplify the cosets [wSTw
−1I ]πp,ξ := [wSTw

−1I ]π+J π
p,ξ for ξ ∈ M0(QC).

Modifying [17, Theorem 8], we establish the following.

Theorem 6.1 Let p ∈ (1,∞) and let w = ev ∈ Ap(T) be a weight satisfying
condition (A). If t ∈ T and ξ ∈ M0

t (QC), then

[wSTw
−1I ]πp,ξ = [wξSTw

−1
ξ I ]πp,ξ , (6.1)

where wξ(τ) = |τ − t|δξ for all τ ∈ T, and the number δξ ∈ (−1/p, 1 − 1/p) is
given by (3.8) and (3.9).

Proof Fix t ∈ T, and define the real-valued functions vt , Vt and Ṽt on the interval
U := (−π/2, π/2) by formulas (3.1), (3.2), and (3.5), respectively. Then it follows
that vt ∈ BMO(U), Vt ∈ BMO(Ut), the function #t : x �→ xV ′t (x) is in QC(Ut )

by condition (A), and the function #̃t : x �→ xṼ ′t (x) belongs to SO0(Ut ), where
Ut ⊂ U is a symmetric closed neighborhood of zero. Let Vt (τ ) = Ṽt (−i log(τ/t))
for all τ ∈ ut , where ut = {teix : x ∈ Ut }. Then we infer from (3.3) and (3.6) that
v − Vt ∈ QC(ut ) because the function x �→ vt (x) − Ṽt (x) = xV ′t (x) + xṼ ′(x)
belongs to QC(Ut ). Hence, for w = ev and W̃t = eVt , it follows that

[χutwSTw
−1χut I ]π = [χut W̃t STW̃

−1
t χut I ]π (6.2)

because ev−Vt ∈ QC(ut ) and therefore ev−Vt STe
Vt−vI − ST ∈ Kp.

Let γ = [0, δ], where Ut = [−δ, δ] and 0 < δ < π/2. Consider the isometric
isomorphism

ϒt : Lp(ut )→ L
p

2 (γ ), (ϒtf )(x) =
{
f (teix)

f (te−ix)

}

, x ∈ γ, (6.3)

where the norm of vector-functions ϕ = {ϕk}2k=1 ∈ L
p

2 (γ ) with entries in Lp(γ ) is

given by ‖ϕ‖ = (‖ϕ1‖pLp(γ ) + ‖ϕ2‖pLp(γ )

)1/p. It is easily seen that

[
ϒt(χut W̃t STW̃

−1
t χut )ϒ

−1
t

]π =
[ [

eṼt Sγ e
−Ṽt I

]π −[
eṼtRγ e

−Ṽ ◦t I
]π

[
eṼ

◦
t Rγ e

−Ṽt I
]π −[

eṼ
◦
t Sγ e

−Ṽ ◦t I
]π

]

, (6.4)

where Ṽ ◦t (x) = Ṽt (−x) for x ∈ γ , the operators Sγ and Rγ are given by

(Sγ ψ)(x) = 1

πi

∫

γ

ψ(y)dy

y − x
, (Rγψ)(x) = 1

πi

∫

γ

ψ(y)dy

y + x
(x ∈ γ ).
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Since limx→0
(
Ṽt (−x)− Ṽt (x)

) = 0 in view of (3.4) and therefore eṼ
◦
t −Ṽt ∈ C(γ )

with value 1 at zero, we infer from (6.4) that

[
ϒt(χut W̃t STW̃

−1
t χut )ϒ

−1
t

]π =
[[

eṼt Sγ e
−Ṽt I

]π −[
eṼt Rγ e

−Ṽt I
]π

[
eṼt Rγ e

−Ṽt I
]π −[

eṼt Sγ e
−Ṽt I

]π

]

. (6.5)

Similarly, defining w̃ξ (x) = xδξ for all x ∈ γ , we obtain

[
ϒt(χutwξSTw

−1
ξ χut )ϒ

−1
t

]π =
[[

w̃ξ Sγ w̃
−1
ξ I

]π −[
w̃ξRγ w̃

−1
ξ I

]π
[
w̃ξRγ w̃

−1
ξ I

]π −[
w̃ξ Sγ w̃

−1
ξ I

]π

]

. (6.6)

Take the function σt ∈ SOt (ut ) defined by (3.8) with Vt (τ ) = Ṽt (−i log(τ/t))
for τ ∈ ut . Identifying the points ξ ∈ M0

t (QC) and ξ̃ ∈ M0
0 (QC(γ )) by the rule

ξ̃
(
a ◦ tei(·)) = ξ(a) for all a ∈ QC, we conclude from (3.9) that the values σt (ξ)

are given by δξ = ξ(σt ) = ξ̃ Ṽ ′t (̃ξ ) for all ξ ∈ M0
t (QC). Thus, to prove (6.1), it

remains to show in view of (6.2), (6.5) and (6.6) that

[
eṼt Sγ e

−Ṽt I
]π
p,̃ξ,γ

= [
w̃ξ Sγ w̃

−1
ξ I

]π
p,̃ξ,γ

, (6.7)

[
eṼt Rγ e

−Ṽt I
]π
p,̃ξ,γ

= [
w̃ξRγ w̃

−1
ξ I

]π
p,̃ξ ,γ

(6.8)

for every t ∈ T and every ξ ∈ M0
t (QC), where Aπ

p,̃ξ,γ
= Aπ + J π

p,̃ξ ,γ
.

Extending the function Ṽt from γ \ {0} to a continuous function on R+ that
vanishes at a neighborhood of +∞ and denoting this extension by Ṽt again, we
conclude that eṼt ∈ Ap(R+). Hence, by [17, Theorem 4],

0 < 1/p + lim inf
x→0

(
xṼ ′t (x)

) ≤ 1/p + lim sup
x→0

(
xṼ ′t (x)

)
< 1. (6.9)

Moreover, setting R+ = [0,+∞] and replacing eṼt by an equivalent weight eV̂t

such that eṼt−V̂t ∈ C(R+), limx→s(Ṽt (x) − V̂t (x)) = 0 for all s ∈ {0,∞}, and
therefore [eṼ−V̂ I, SR+] ∈ Kp(R+), we may assume without loss of generality that

0 < 1/p + inf
x∈R+

(
xṼ ′t (x)

) ≤ 1/p + sup
x∈R+

(
xṼ ′t (x)

)
< 1

instead of (6.9). Then it follows from Theorem 4.3 that

T (eṼt SR+e
−Ṽt I ) = Op(̃b)+K, (6.10)

where T is given by (4.1)–(4.2), the function b̃ ∈ E(R+, V (R)) is given by

b̃(r, λ) := coth
(
πλ+ πi(1/p + rṼ ′t (r))

)
,
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and K ∈ K(Lp(R+, dμ)). Let Tγ : Lp(γ )→ χγL
p(R+, dμ) be the restriction of

T to γ . By (6.10), we obtain

[
Tγ

(
eṼt Sγ e

−Ṽt I
)]π = [

χγ T
(
eṼt SR+e

−Ṽt I
)
χγ I

]π = [
χγ Op(̃b)χγ I

]π
. (6.11)

Since [aI, eṼt Sγ e
−Ṽt I ] ∈ K(Lp(γ )) for all a ∈ QC(γ ), we infer that the

commutators
[
aI, χγ Op(̃b)χγ I

]
belong to K(Lp(γ, dμ)) for all a ∈ QC(γ ). By

[17, Lemma 4] and the proof of [17, Theorem 8], for any function θ ∈ SO(R+)
being a sufficiently small perturbation in SO(R+) of the function #̃t : x �→ xṼ ′t (x),
the function b given by b(r, λ) := coth

(
πλ + πi(1/p + θ(r))

)
belongs to

E(R+, V (R)), and the commutators [aI, χγ Op(b)χγ I ] belong to K(Lp(γ, dμ))

for all a ∈ QC(γ ).
Given ξ̃ ∈ M0

0 (QC(γ )) and taking ξ̂ = ξ̃ |SO(R+) ∈ M0(SO(R+)), we choose
a function θ ∈ SO(R+) such that θ(η) = #̃t (η) = ηṼ ′t (η) = ξ̃ Ṽ ′t (̃ξ ) for all η in
an open neighborhood Uξ̂ ⊂ M(SO(R+)) of a point ξ̂ ∈ M0(SO(R+)), and the

norm ‖σ − θ‖L∞(R+) is sufficiently small. Then b(η, λ) = b̃(η, λ) = b̃(̃ξ , λ) for all
η ∈ Uξ̂ and all λ ∈ R. Hence there exists a function d ∈ SO(R+) such that

d(̃ξ) = 0 and d(̃b − b) = b̃ − b. (6.12)

Since [aI, χγ Op(̃b − b)χγ I ] ∈ K(Lp(γ, dμ)) for all a ∈ QC(γ ), it follows that
χγ T −1(Op(̃b − b))χγ I ∈ �p(γ ). On the other hand, by (6.12) and Theorem 4.2,

χγ Op(̃b−b)χγ I = χγ Op(d(̃b−b))χγ I = dχγ Op(̃b−b)χγ I ) χγ Op(̃b−b)χγ dI,

where d(̃ξ ) = 0 and A ) B means that A − B ∈ K(Lp(γ, dμ)). Hence the coset
[χγT −1(Op(̃b − b))χγ I ]π belongs to the ideal J π

p,̃ξ ,γ
for given ξ̃ ∈ M0

0 (QC(γ )).

Finally, since the function b̃ − b̃(̃ξ , ·) can be approximated in the norm of
Cb(R+, V (R)) by functions of the form b̃ − b in view of the estimate

‖b̃ − b‖Cb(R+,V (R)) ≤ C‖#̃t − θ‖L∞(R+)

(see [17, Lemma 5]), we conclude that

[χγT −1( Op(̃b − b̃(̃ξ , ·)))χγ I ]π ∈ J π
p,̃ξ ,γ

for all ξ̃ ∈ M0
0 (QC(γ )), (6.13)

where the function b̃(̃ξ , ·) ∈ E(R+, V (R)) is given by

b̃(̃ξ , λ) := coth
(
πλ+ πi(1/p + ξ̃ Ṽ ′t (̃ξ ))

)
.

Hence, we infer from (6.11) and (6.13) that

[
eṼt Sγ e

−Ṽt I
]π
p,̃ξ ,γ

= [
χγ T −1(Op(̃b(̃ξ , ·)))χγ I

]π
p,̃ξ ,γ

. (6.14)
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Similarly to (6.11), we obtain

[
Tγ

(
w̃ξ Sγ w̃

−1
ξ I )

]π = [
χγ T

(
w̃ξ SR+w̃

−1
ξ I

)
χγ I

]π = [
χγ Op(̃b(̃ξ , ·))χγ I

]π
,

which implies that

[
w̃ξ Sγ w̃

−1
ξ I

]π
p,̃ξ,γ

= [
χγT −1(Op(̃b(̃ξ , ·)))χγ I

]π
p,̃ξ,γ

. (6.15)

Applying (6.14) and (6.15), we obtain (6.7). Equality (6.8) is proved analogously,
which completes the proof of (6.1). ��

6.3 Spectra of Necessary Cosets

Consider the C∗-algebra of quasicontinuous on Ṙ := R ∪ {∞} functions given by

QC(Ṙ) := (H∞ + C(Ṙ)) ∩ (H∞ + C(Ṙ)),

where H∞ is the closed subalgebra of L∞(R) that consists of all functions being
non-tangential limits on R of bounded analytic functions defined on the upper half-
plane.

Given p ∈ (1,∞), ξ ∈ M0
t (QC), δξ ∈ (−1/p, 1/q) and w̃ξ (x) = xδξ for

x ∈ R+, we consider the Banach subalgebra of B(Lp(R+)) of the form

Ãp,w̃ξ (R+) := alg{aI, w̃ξSR+w̃
−1
ξ I : a ∈ QC(R+)}, (6.16)

which is generated by the multiplication operators aI for all a ∈ QC(R+) and by
the operator w̃ξ SR+w̃

−1
ξ I , where QC(R+) = QC(Ṙ)|R+ . The ideal K(Lp(R+))

of all compact operators in B(Lp(R+)) is contained in Ãp,w̃ξ (R+) (see, e.g., [21,

Theorem 4.1.5]). Since the commutator [aI, w̃ξSR+w̃
−1
ξ I ] is a compact operator

on the space Lp(R+) for every a ∈ QC(R+), it follows that the quotient Banach
algebra Ãπ

p,w̃ξ
(R+) := Ãp,w̃ξ (R+)/K(Lp(R+)) is commutative.

For p ∈ (1,∞), let Mp be the Banach algebra of all Fourier multipliers b on the
space Lp(R) with the norm ‖b‖Mp = ‖W 0(b)‖B(Lp(R)), where W 0(b) = F−1bF
is the convolution operator with symbol b ∈ Mp , and let Cp(R) be the closure in
Mp of the set of all continuous functions on R := [−∞,+∞] of bounded total
variation. By [27, Lemma 1.2] (also see [21, Proposition 4.2.10]), for every ν ∈
(0, 1), the Banach algebra Cp(R) is generated by the functions 1 and bν ∈ V (R),
where

bν(λ) := coth(πλ+ πiν) for λ ∈ R.
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For every p ∈ (1,∞), we introduce the isometric isomorphism

Ep : Lp(R+)→ Lp(R), (Epf )(x) = ex/pf (ex) (x ∈ R). (6.17)

A straightforward calculation shows that

Ep(w̃ξSR+w̃
−1
ξ I )E−1

p = W 0(bνξ ), (6.18)

where bνξ (λ) := coth(πλ+ πiνξ ) and νξ := 1/p + δξ ∈ (0, 1). Hence, by (6.18),

spBπ (Lp(R+))[w̃ξ SR+w̃
−1
ξ I ]π = spB(Lp(R+))(w̃ξ SR+w̃

−1
ξ I ) = Lνξ , (6.19)

where spAA means the spectrum of an element A ∈ A in a unital Banach algebra
A, and

Lνξ := bνξ (R) =
{

coth(πλ+ πiνξ ) : λ ∈ R
}
. (6.20)

Consider the commutative Banach subalgebra

Wπ
p :=

{[E−1
p W 0(b)Ep]π : b ∈ Cp(R)

}
(6.21)

of Ãπ
p,w̃ξ

(R+), where Aπ := A+K(Lp(R+)), Ep is given by (6.17) and Ãp,w̃ξ (R+)
is defined by (6.16). As Cp(R) is generated by the functions 1 and bνξ ∈ V (R), we

conclude that the algebra Wπ
p is generated by the cosets [w̃ξ SR+w̃

−1
ξ I ]π and Iπ .

Hence the maximal ideal space M(Wπ
p ) of the algebra Wπ

p is homeomorphic to the

spectrum spBπ (Lp(R+))[w̃ξ SR+w̃
−1
ξ I ]π (see, e.g., [6, Section 1.19]):

M(Wπ
p ) = spBπ (Lp(R+))[w̃ξ SR+w̃

−1
ξ I ]π = Lνξ . (6.22)

Let η ∈ M0
0 (QC(R+)) and let Aπ

p,η(R+) be the smallest closed subalgebra
of �π

p,η(R+) that contains the cosets Aπ
p,η,R+ = Aπ + J π

p,η,R+ for all A ∈
Ãp,w̃ξ (R+), where J π

p,η,R+ is the closed two-sided ideal of the Banach algebra
�π

p(R+) generated by the maximal ideal

Iπ
p,η,R+ :=

{[aI ]π : a ∈ QC(R+), a(η) = 0
}

of the central algebra Zπ
p (R+) := {[aI ]π : a ∈ QC(R+)} of �π

p(R+). Consider

the Banach algebra Ãπ
p,w̃ξ ,η

:= Ãπ
p,w̃ξ

(R+)/J π
p,η,R+ , where Jπ

p,η,R+ is the closed

two-sided ideal of the Banach algebra Ãπ
p,w̃ξ

(R+) generated by the ideal Iπ
p,η,R+ .

We save the notation Aπ
p,η,R+ for the cosets Aπ + Jπ

p,η,R+ in the algebra Ãπ
p,w̃ξ ,η

.
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Theorem 6.2 If p ∈ (1,∞), δξ ∈ (−1/p, 1/q) and w̃ξ (x) = xδξ ∈ Ap(R+), then
for every η ∈ M0

0 (QC(R+)),

sp�π
p,η(R+)

[
w̃ξ SR+w̃

−1
ξ I

]π
p,η,R+ = spAπ

p,η(R+)
[
w̃ξ SR+w̃

−1
ξ I

]π
p,η,R+

= spÃπ
p,w̃ξ ,η

[
w̃ξ SR+w̃

−1
ξ I

]π
p,η,R+ = Lνξ ,

(6.23)

where Lνξ is defined in (6.20) and νξ = 1/p + δξ .

Proof Obviously, the invertibility of the coset Aπ + Jπ
p,η,R+ in the Banach algebra

Ãπ
p,w̃ξ ,η

implies the invertibility of the coset Aπ + J π
p,η,R+ in the Banach algebras

Aπ
p,η(R+) and �π

p,η(R+). Consequently,

sp�π
p,η(R+)

[
w̃ξ SR+w̃

−1
ξ I

]π
p,η,R+ ⊂ spAπ

p,η(R+)
[
w̃ξ SR+w̃

−1
ξ I

]π
p,η,R+

⊂ spÃπ
p,w̃ξ ,η

[
w̃ξ SR+w̃

−1
ξ I

]π
p,η,R+ . (6.24)

It follows from [5, Theorems 5.2, 5.3] that

spÃπ
p,w̃ξ ,η

[
w̃ξ SR+w̃

−1
ξ I

]π
p,η,R+ = Lνξ for all η ∈ M0

0 (QC(R+)). (6.25)

Hence, by (6.24),

spAπ
p,η(R+)

[
w̃ξSR+w̃

−1
ξ I

]π
p,η,R+ ⊂ Lνξ .

Put A := w̃ξ SR+w̃
−1
ξ I and suppose that there is a point μ ∈ Lνξ \

spAπ
p,η(R+)A

π
p,η,R+. Then the coset [μI − A]πp,η,R+ is invertible in the Banach

algebra Aπ
p,η(R+).

By (6.19), Lνξ is the spectrum of the coset Aπ := [w̃ξ SR+w̃
−1
ξ I ]π in the

Banach algebra Bπ(Lp(R+)). Consider the Banach algebra Wπ
p given by (6.21)

and consider the Gelfand transforms of the cosets in Wπ
p , which are continuous

functions defined on Lνξ . Then there exists a coset Bπ ∈ Wπ
p being a small

perturbation of the coset [μI − A]π and such that its Gelfand transform vanishes
at a neighborhood uμ of the point μ on Lνξ (this follows from [27, Lemmas 1.1,
1.2] and [21, Proposition 4.2.10], since the function λ �→ coth(πλ+πiνξ ) in (6.20)
belongs to Mp), while the coset Bπ

p,η,R+ remains invertible in the quotient algebra
Aπ

p,η(R+).
Take a coset Dπ ∈ Wπ

p such that its Gelfand transform has support in uμ
and equals 1 at the point μ ∈ Lνξ . Then BπDπ = 0π , which implies that
Bπ
p,η,R+D

π
p,η,R+ = 0πp,η,R+ in Aπ

p,η(R+). Since the coset Bπ
p,η,R+ is invertible in the

Banach algebra Aπ
p,η(R+), the coset Dπ

p,η,R+ should be the zero coset in Aπ
p,η(R+),
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which means that Dπ ∈ J π
p,η,R+ . As Dπ ∈ Ãπ

p,w̃ξ
(R+) and J π

p,η,R+∩Ãπ
p,w̃ξ

(R+) =
Jπ
p,η,R+ , it follows that Dπ should belong to the ideal Jπ

p,η,R+ , which is impossible
because the Gelfand transform of the coset Dπ+Jπ

p,η,R+ in the commutative Banach

algebra Ãπ
p,w̃ξ ,η

coincides in view of [5] with the Gelfand transform of the coset Dπ

in the commutative Banach subalgebra Wπ
p of Ãπ

p,w̃ξ
(R+), and therefore does not

vanish identically on Lνξ . This can be shown by applying the Fredholm symbol
calculus for the Banach algebra alg{aI, SR : a ∈ PQC(R)} ⊂ B(Lp(R, w̃ξ ))

generated by multiplications by all functions in PQC(R) and the Cauchy singular
integral operator SR, which can be constructed by analogy with [5, Theorems 5.6,
7.1 and Subsection 7.4]. Consequently,

spAπ
p,η(R+)

[
w̃ξ SR+w̃

−1
ξ I

]π
p,η,R+ = Lνξ for all η ∈ M0

0 (QC(R+)). (6.26)

Finally, since the spectrum Lνξ of the coset
[
w̃ξ SR+w̃

−1
ξ I

]π
p,η,R+ in the subalge-

bra Aπ
p,η(R+) of �π

p,η(R+) has empty interior in the complex plane C by (6.26), it
follows from [22, Corollaries of Theorem 10.18] that

sp�π
p,η(R+)

[
w̃ξ SR+w̃

−1
ξ I

]π
p,η,R+ = spAπ

p,η(R+)
[
w̃ξ SR+w̃

−1
ξ I

]π
p,η,R+,

which completes the proof of (6.23). ��

7 Application of the Two Idempotents Theorem

7.1 Spectra of Cosets [Xt ]πp,w,ξ
Related to the Two Idempotents

Theorem

If ξ ∈ M0(QC), where M0(QC) is given by (2.3), then it follows from
Lemma 5.4(i) that the symbol calculus for the Banach algebra Aπ

p,w,ξ can be
obtained by applying the two idempotents theorem (see, e.g., [3, 21] and the
references therein).

For every t ∈ T and every ξ ∈ M0
t (QC), we consider the operator

Xt := I − (χ+t I − P+)2 ∈ Ap,w ⊂ �p,w (7.1)

and the related to the two idempotents theorem coset

[Xt ]πp,w,ξ :=
[
I − (χ+t I − P+)2]π + J π

p,w,ξ ∈ �π
p,w,ξ . (7.2)
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Theorem 7.1 Let p ∈ (1,∞) and let w = ev ∈ Ap(T) be a weight satisfying
condition (A). If t ∈ T and ξ ∈ M0

t (QC), then

sp�π
p,w,ξ

[Xt ]πp,w,ξ = spAπ
p,w,ξ

[Xt ]πp,w,ξ = L̃p,w,νξ , (7.3)

L̃p,w,νξ :=
{(

1+ coth[πx + πiνξ ]
)
/2 : x ∈ R

}
, νξ = 1/p + δξ . (7.4)

Proof Fix t ∈ T and ξ ∈ M0
t (QC), where M0

t (QC) is given by (2.2). Obviously,

sp�π
p,w,ξ

[Xt ]πp,w,ξ = sp�π
p,ξ
[wXtw

−1I ]πp,ξ = sp�π
p,ξ
[χutwXtw

−1χut I ]πp,ξ ,
(7.5)

where J π
p,ξ = {[wAw−1I ]π : Aπ ∈ J π

p,w,ξ

}
and [(χut − 1)I ]π ∈ J π

p,ξ .
Applying (7.1), we infer from Theorem 6.1 that

[χutwXtw
−1χut I ]πp,ξ = [χutwξXtw

−1
ξ χut I ]πp,ξ . (7.6)

Let γ = [0, δ], where Ut = [−δ, δ] and 0 < δ < π/2. Consider the isometric
isomorphism ϒt : Lp(ut )→ L

p

2 (γ ) given by (6.3). It follows from (6.6) that

[
ϒt

[
χutwξ

(
I − (χ+t I − P+)2)w−1

ξ χut I
]
ϒ−1
t

]π

= diag
{[
χγ 2−1(I + w̃ξ SR+w̃

−1
ξ I

)
χγ I

]π
,
[
χγ 2−1(I + w̃ξ SR+w̃

−1
ξ I

)
χγ I

]π}
.

(7.7)

Identifying the points ξ ∈ M0
t (QC) and points ξ̃ in M0

0 (QC(γ )) and
M0

0 (QC(R+)), we conclude that if Aπ ∈ J π
p,ξ , then

ϒt(χutA
πχut I )ϒ

−1
t = [χγ I ]π

[
Aπ
i,j

]2
i,j=1[χγ I ]π ,

where Aπ
i,j ∈ J π

p,̃ξ ,γ
for all i, j = 1, 2. Hence, by (7.5)–(7.7) and the property

[(χγ − 1)I ]π ∈ J π
p,̃ξ ,R+

, the coset [Xt ]πp,w,ξ is invertible in the Banach algebra

�π
p,w,ξ if and only if the diagonal matrix

diag
{[

2−1(I + w̃ξ SR+w̃
−1
ξ I )

]π
p,̃ξ,R+,

[
2−1(I + w̃ξ SR+w̃

−1
ξ I )

]π
p,̃ξ ,R+

}

with entries in �π
p,̃ξ

(R+) is invertible in the Banach algebra �π
p,̃ξ

(R+). Conse-

quently, making use of the spectral mapping theorem, we obtain

sp�π
p,w,ξ

[Xt ]πp,w,ξ = sp�π
p,̃ξ

(R+)
[
2−1(I + w̃ξ SR+w̃

−1
ξ I )

]π
p,̃ξ ,R+

= 2−1(1+ sp�π

p,̃ξ
(R+)

[
w̃ξ SR+w̃

−1
ξ I

]π
p,̃ξ,R+

)
,
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which implies in view of Theorem 6.2 that

sp�π
p,w,ξ

[Xt ]πp,w,ξ = 2−1(1+ Lνξ ) = L̃p,w,νξ ,

where L̃p,w,νξ and νξ are given by (7.4).
Finally, since the set L̃p,w,νξ does not separate the complex plane C, the first

equality in (7.3) follows from [22, Corollaries of Theorem 10.18]. ��

7.2 Corollary of the Two Idempotents Theorem

Since the spectra of the cosets [Xt ]πp,w,ξ = Iπp,w,ξ −
(
Pπ
p,w,ξ − Qπ

p,w,ξ

)2 given

by (5.9) and (7.2) for all ξ ∈ M0(QC) are described in the Banach algebras
�π

p,w,ξ and Aπ
p,w,ξ by Theorem 7.1, and since the points 0 and 1 are not isolated

in sp�π
p,w,ξ

[Xt ]πp,w,ξ , we can apply to mentioned algebras the version of the two

idempotents theorem given in [3, Theorem 8.7] and followed from [10] and [13].
We immediately obtain from Theorem 7.1 and [3, Theorem 8.7] the following.

Theorem 7.2 Let p ∈ (1,∞), let w = ev ∈ Ap(T) be a weight satisfying condition
(A), and let ξ ∈ M0

t (QC) for t ∈ T. Then the Banach algebra Aπ
p,w,ξ is inverse

closed in the Banach algebra �π
p,w,ξ , and

(i) for every μ ∈ L̃p,w,νξ , the map πμ : {Iπp,w,ξ , P
π
p,w,ξ ,Q

π
p,w,ξ } → C2×2 given

by

πμ(I
π
p,w,ξ ) =

[
1 0

0 1

]

, πμ(P
π
p,w,ξ ) =

[
1 0

0 0

]

, πμ(Q
π
p,w,ξ ) =

[
μ �(μ)

�(μ) 1− μ

]

,

where �(μ) := √μ(1− μ) is an arbitrary value of the square root, extends to
a Banach algebra homomorphism πμ : Aπ

p,w,ξ → C2×2;
(ii) a coset Aπ

p,w,ξ ∈ Aπ
p,w,ξ is invertible in the Banach algebra �π

p,w,ξ (equiva-

lently, in the Banach algebra Aπ
p,w,ξ ) if and only if det

[
πμ

(
Aπ
p,w,ξ

)] 	= 0 for

all μ ∈ L̃p,w,νξ .

8 The Fredholm Study of the Banach Algebra Ap,w

With the Banach algebra Ap,w, we associate the sets

M :=
⋃

t∈T
Mt , Mt := M̃−

t (QC) ∪
( ⋃

ξ∈M0
t (QC)

{ξ} × L̃p,w,νξ

)
∪ M̃+

t (QC),
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where L̃p,w,νξ and νξ are given by (7.4). Consider the sets M̃±(QC) and M0(QC)

defined by (2.3). Let B(M,C2×2) stand for the C∗-algebra of all bounded matrix
functions G :M→ C

2×2.
Applying results of Sects. 4 and 7, we establish the main result of the paper

containing a symbol calculus for the Banach algebra Ap,w and a Fredholm criterion
for the operators A ∈ Ap,w.

Theorem 8.1 Let p ∈ (1,∞) and let a weight w ∈ Ap(T) satisfy assumption (A).
Then the map Sym : {aI : a ∈ PQC} ∪ {ST} → B(M,C2×2) given by the matrix
functions

(Sym aI)(m) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag{a(ξ, 0), a(ξ, 0)} for all m = ξ ∈ M̃−(QC),
⎡

⎣a(ξ, 1)μ+ a(ξ, 0)(1− μ) [a(ξ, 1)− a(ξ, 0)]�(μ)
[a(ξ, 1)− a(ξ, 0)]�(μ) a(ξ, 1)(1− μ)+ a(ξ, 0)μ

⎤

⎦

for all m =(ξ, μ) with ξ ∈M0(QC) and μ ∈ L̃p,w,νξ ,

diag{a(ξ, 1), a(ξ, 1)} for all m = ξ ∈ M̃+(QC),

(8.1)

(Sym ST)(ζ ) := diag{1,−1} for all m ∈M, (8.2)

where a(ξ, μ) is the Gelfand transform of a function a ∈ PQC for (ξ, μ) ∈
M(PQC) and �(μ) = √

μ(1− μ) for all μ ∈ ⋃
ξ∈M0(QC) L̃p,w,νξ , extends to

a Banach algebra homomorphism

Sym : Ap,w → B(M,C2×2)

whose kernel contains all compact operators on Lp(T, w). The Banach algebra
Aπ
p,w is inverse closed in the Calkin algebra Bπ

p,w, and an operator A ∈ Ap,w is
Fredholm on the space Lp(T, w) if and only if

det[(SymA)(m)] 	= 0 for all m ∈M. (8.3)

Proof Fix t ∈ T. For ξ ∈ M̃±
t (QC), Theorem 5.3 and Lemma 5.4(ii) imply that

βξ(aI) = a(ξ±)Iπp,w,ξ , βξ (ST) =
[
ST

]π
p,w,ξ

= 2Pπ
p,w,ξ − Iπp,w,ξ .

Taking the map $ξ : Ap,w,ξ → diag{C,C} defined by (5.10)–(5.11), we conclude
that for each ξ ∈ M̃±

t (QC) the map $ξ ◦ βξ : Ap,w → diag{C,C} is a Banach
algebra homomorphism whose kernel contains the ideal Kp,w. One can easily see
from (8.1)–(8.2) for the generators A of the Banach algebra Ap,w that

($ξ ◦ βξ)(A) = (SymA)(m) for all m = ξ ∈ M̃±(QC). (8.4)
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If ξ ∈ M0
t (QC) and μ ∈ L̃p,w,νξ , then we infer by Theorem 5.3, Lemma 5.4(i)

and Theorem 7.2 that the map πμ ◦ βξ : Ap,w → C
2×2 also is a Banach

algebra homomorphism whose kernel contains the ideal Kp,w. Applying (5.7), (5.8),
Theorem 7.2(i) and (8.1)–(8.2), we again see that for every generator A of the
Banach algebra Ap,w,

(πμ ◦ βξ )(A) = (SymA)(ξ, μ) for all ξ ∈ M0
t (QC) and all μ ∈ L̃p,w,νξ .

(8.5)

Thus, by (8.4) and (8.5), the map

Sym :=
⎧
⎨

⎩

$ξ ◦ βξ if ξ ∈ M̃−(QC) ∪ M̃+(QC),

πμ ◦ βξ if ξ ∈ M0(QC) and μ ∈ L̃p,w,νξ ,

is a Banach algebra homomorphism of Ap,w into B(M,C2×2).
Moreover, Lemma 5.1 and Theorems 5.5 and 7.2 imply that the Banach algebra

Aπ
p,w is inverse closed in the Calkin algebra Bπ

p,w, and that an operator A ∈ Ap,w is
Fredholm on the space Lp(T, w) if and only if (8.3) holds. ��
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1 Introduction

Connes’ noncommutative differential geometry [2, 3] provides in particular a
geometric approach to the construction of K-homology classes of a C∗-algebra
A: for the commutative C∗-algebra of continuous functions on a compact smooth
manifold, the phase F := D

|D| of an elliptic first order differential operator D

on a vector bundle defines such a class, and for a noncommutative algebra, the
fundamental task is to represent A on a Hilbert space H and to find a self-adjoint
operator D that has compact resolvent (so it is “very” unbounded) but at the same
time has bounded commutators with the elements of A.

In classical geometry, equivariant differential operators on Lie groups provide
examples that can be described purely in terms of representation theory, so since
the discovery of quantum groups, many attempts were made to apply Connes’
programme to these C∗-algebras. The fact that their representation theory resembles
that of their classical counterparts so closely allows one indeed to define straightfor-
wardly an analogue say of the Dirac operator on a compact simple Lie group, but it
turns out to have unbounded commutators with the elements of A.

Many solutions to this conundrum were found and studied, focusing on various
approaches and motivations ranging from index theory [1, 4–7, 13, 15, 16] over the
theory of covariant differential calculi [10, 17] to the Baum-Connes conjecture [19].
However, it seems fair to say that there is still no sufficient general understanding of
how Connes’ machinery applies to algebras obtained by deformation quantisation
in general and quantum groups in particular.

The aim of the present note is to use the fundamental example of SU(2)
for discussing yet another mechanism for obtaining bounded commutators. In a
nutshell, the idea is to have a representation of A⊗Aop on H and to use differential
operators D with “coefficients” in Aop to achieve bounded commutators with A.
Our starting point is a noncommutative analogue of a dense coordinate chart on
SU(2) that is compatible with the symplectic foliation of the quantised Poisson
manifold SU(2). The noncommutative analogue is obtained by replacing a complex
unit disc by the quantum disc. We use a quantised differential calculus on this chart
to define quantisations of left invariant vector fields that act on the function algebra
by twisted derivations. This is where it becomes necessary to consider coefficients
from Aop.

We then build two twisted Dirac operators using these twisted derivations and
show that they are related by a gauge transformation that arises from a rescaling of
the volume form. A fruitful direction of further research might be to investigate the
spectral and homological properties of these and similar operators.
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2 The Dirac Operator on SU(2)

The C∗-algebra A we are going to consider is a strict deformation quantisation of
the algebra of continuous complex-valued functions on the Lie group

SU(2) =
⎧
⎨

⎩

(
α β

−β̄ ᾱ

)

| α, β ∈ C, αᾱ + ββ̄ = 1

⎫
⎬

⎭

that we identify as usual with S3 ⊂ C2, identifying the above matrix with (α, β).
We denote by

X0 :=
(

i 0
0 −i

)

, X1 :=
(

0 1
−1 0

)

, X2 :=
(

0 i
i 0

)

the standard generators of the Lie algebra su(2) of SU(2), and, by a slight abuse of
notation, also the corresponding left invariant vector fields on SU(2).

In this section, we describe the Dirac operator D of SU(2) in local coordinates
that are adapted to the quantisation process. To define the local coordinates, consider
the map

D̄× S
1 → S

3, (z, v) �→ (z,
√

1− zz̄v), (2.1)

where D := {z ∈ C : |z| < 1} is the open unit disc, D̄ is its closure, and S1 = ∂D is
its boundary. Restricting the map to (D× S1) \ (D× {−1}) ∼= D× (−π, π) defines
a dense coordinate chart

x : D× (−π, π) −→ S
3, x(z, t) := (z,

√
1− zz̄ eit ) (2.2)

that is compatible with the standard differential structure on SU(2) ∼= S3. The pull-
back of the bi-invariant volume form on S3 assigns a measure to D × (−π, π) and
the resulting Hilbert space of L2-functions will be denoted by H.

We write f (z, t) := f ◦x(z, t) for functions f on S3 and thus identify these with
continuous functions on D̄× [−π, π] satisfying the boundary conditions

f (u, t) = f (u, 0), f (z,−π) = f (z, π) ∀ u ∈ S
1, z ∈ D, t ∈ [−π, π].

(2.3)

Let 
(1)(SU(2)) denote the set of C(1)-functions (continuously differentiable ones)
on D̄ × [−π, π] satisfying (2.3). The corresponding functions on S3 are not
necessarily C(1), but absolutely continuous, and can therefore be considered as
belonging to the domain of the first order differential operators X0, X1 and X2.
Here, derivations are understood to be taken in the weak sense. Therefore we may



236 U. Krähmer and E. Wagner

consider

H := −iX0, E := 1
2 (X1 − iX2), F := − 1

2 (X1 + iX2)

as first order differential operators on H with domain 
(1)(SU(2)). A direct
calculation shows that these operators take in the parametrisation (2.2) the following
form:

H = z ∂
∂z
− z̄ ∂

∂z̄
+ i ∂

∂t
, (2.4)

E = −√1− z̄z e−it ∂
∂z̄
− i

2

z√
1− z̄z

e−it ∂
∂t
, (2.5)

F = √1− z̄z eit ∂
∂z
− i

2

z̄√
1− z̄z

eit ∂
∂t
. (2.6)

Since SU(2) is a Lie group, its tangent bundle is trivial and hence admits a trivial
spin structure. We consider 
(1)(S) := 
(1)(SU(2))⊕
(1)(SU(2)) as a vector space
of differentiable sections (in the weak sense) of the associated spinor bundle. The
Dirac operator with respect to the bi-invariant metric on SU(2) is then given by the
closure of

D :=
(
H − 2 E

F −H − 2

)

: 
(1)(S) ⊂ H⊕H −→ H⊕H,

see e.g. [8].

3 A Representation of Quantum SU(2) by Multiplication
Operators

The quantised coordinate ring of SU(2) at q ∈ (0, 1) is the universal unital *-algebra
O(SUq(2)) containing elements a, c such that

ac = qca, ac∗ = qc∗a, cc∗ = c∗c,

aa∗ + q2cc∗ = 1, a∗a + cc∗ = 1.

It admits a faithful Hilbert space representation ρ on �2(N) ⊗ �2(Z) given on
orthonormal bases {en}n∈N ⊂ �2(N) and {bk}k∈Z ⊂ �2(Z) by

ρ(a)(en ⊗ bk) =
√

1− q2nen−1 ⊗ bk, (3.1)

ρ(c)(en ⊗ bk) = qn en ⊗ bk−1. (3.2)
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The norm closure of the *-algebra generated by ρ(a), ρ(c) ∈ B(�2(N) ⊗ �2(Z)) is
isomorphic to C(SUq(2)), the universal C*-algebra of O(SUq(2)), see e.g. [14].

The starting point of this paper is a quantum counterpart to the chart (2.1). To
define it, let z ∈ B(�2(N)) and u ∈ B(�2(Z)) be given by

zen :=
√

1− q2nen−1, n ∈ N, ubk := bk−1, k ∈ Z, (3.3)

and set

y := √1− z∗z ∈ B(�2(N)). (3.4)

Then y is a positive self-adjoint trace class operator on �2(N) acting by

y en = qn en

and satisfying the relations

zy = qyz, yz∗ = qz∗y. (3.5)

Note that one can now rewrite Eqs. (3.1) and (3.2) as

ρ(a) = (z⊗ 1)(en ⊗ bn), ρ(c) = (y ⊗ u)(en ⊗ bn). (3.6)

The bilateral shift u generates a commutative C*-subalgebra of B(�2(Z)) which
is isomorphic to C(S1). The operator z ∈ B(�2(N)) satisfies the defining relation of
the quantum disc algebra O(Dq),

zz∗ − q2z∗z = 1− q2. (3.7)

It is known [11] that the universal C*-algebra of the quantum disc O(Dq), generated
by a single generator and its adjoint satisfying (3.7), is isomorphic to the Toeplitz
algebra T which can also be viewed as the C*-subalgebra of B(�2(N)) generated
by the unilateral shift

s en = en+1, n ∈ N. (3.8)

Moreover, the bounded operator z defined in (3.3) also generates the Toeplitz
algebra T ⊂ B(�2(N)), and the so-called symbol map of the Toeplitz extension
[18]

0 K 2(N))
τ

C(S1) 0 (3.9)

can be given by τ (z) = τ (s) = u, where u denotes the unitary generator of C(S1)

and K(�2(N)) stands for the C*-algebra of compact operators on �2(N).
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Returning to the map (2.1), observe that SU(2) ∼= S
3 is homeomorphic to the

topological quotient of D̄ × S
1 given by shrinking the circle S

1 to a point on the
boundary of D̄. This can be visualised by the following push-out diagram:

S3

χ1(z, v) := (z,
√√
1 − z¯ χ)vz 2(u) := (u, 0)

D̄ S1

χ1

S1

χ2

(ι, id)(u, v) := (u, v) pr1(u, v) := u.

S1 × S1

pr1(ι,id)

×

Applying the functor that assigns to a topological space the algebra of continuous
functions, we obtain a pull-back diagram of C*-algebras. Quantum SU(2) is now
obtained by replacing in this pull-back diagram the C*-algebraC(D̄) by the Toeplitz
algebra C(D̄q) := T , regarded as the algebra of continuous functions on the
quantum disc. The restriction map ι∗ : C(D̄) −→ C(S1), ι∗(f ) = f�S1 , is replaced
by the symbol map τ : T −→ C(S1) from (3.9). The resulting pull-back diagram
has the following structure:

P := C(D̄q) ⊗ C(S1) ×
(π1,π2)

C(S1)

pr1 pr2

C(D̄q ) ⊗ C(S1)

π1:=τ ⊗ id

C(S1)

π2:=id⊗1

C(S1) ⊗ C(S1)

Note that (t ⊗ f, g) ∈ P if and only if τ (t) ⊗ f = g ⊗ 1 ∈ C(S1) ⊗ C1 ⊂
C(S1) ⊗ C(S1). Since C1 ∼= C({pt}), the interpretation of τ (t) ⊗ f = g ⊗ 1 is
that, whenever we evaluate t ∈ C(D̄q) on the boundary, the circle S1 in D̄q × S1

collapses to a point.
Moreover, it can be shown [9, Section 3.2] that pr1 yields an isomorphism of

C*-algebras P ∼= pr1(P ) ∼= C(SUq(2)) ⊂ B(�2(N) ⊗ �2(Z)) such that ρ(a) =
pr1((z⊗ 1, u)) and ρ(c) = pr1((y ⊗ u, 0)), see (3.6).

Viewing C(SUq(2)) as a subalgebra of C(D̄q ) ⊗ C(S1) allows us to construct
the following faithful Hilbert space representation of the C*-algebra C(SUq (2)) in
which it acts by multiplication operators on a noncommutative function algebra.
This leads to an interpretation as an algebra of integrable functions on the quantum
space Dq ×S1. First note that, since z∗z = 1− y2 and zz∗ = 1− q2y2, any element
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p ∈ O(Dq) can be written as

p =
N∑

n=0

z∗npn(y)+
M∑

n=1

p−n(y)zn, N,M ∈ N,

with polynomials pn and p−n. Using the functional calculus of the self-adjoint
operator y with spectrum spec(y) = {qn : n ∈ N} ∪ {0}, we define

F(Dq) :=
⎧
⎨

⎩

N∑

n=0

z∗nfn(y)+
M∑

n=1

f−n(y)zn : N,M ∈ N, fk ∈ L∞(spec(y))

⎫
⎬

⎭
.

Using the commutation relations

zf (y) = f (qy)z, f (y)z∗ = z∗f (qy), f ∈ L∞(spec(y)),

one easily verifies that F(Dq) is a *-algebra. Let s denote the unilateral shift
operator on �2(N) from Eq. (3.8). For all functions f ∈ L∞(spec(y)), it satisfies
the commutation relations

s∗f (y) = f (qy)s∗, f (y)s = sf (qy).

Writing z in its polar decomposition z = s∗ |z| = s∗
√

1− y2, one sees that

F(Dq) =
⎧
⎨

⎩

N∑

n=0

snfn(y)+
M∑

n=1

f−n(y)s∗n : N,M ∈ N, fk ∈ L∞(spec(y))

⎫
⎬

⎭
.

Since yαen = qαnen, the operator yα is trace class for all α > 0. Therefore the
positive functional

∫

Dq

( · ) dμα : F(Dq) −→ C,

∫

Dq

f dμα := (1−q)Tr�2(N)(fy
α). (3.10)

is well defined. Explicitly, it is given by

∫

Dq

⎛

⎝
N∑

n=0

snfn(y)+
M∑

n=1

f−n(y)s∗n
⎞

⎠dμα = (1− q)
∑

n∈N
f0(q)q

αn.
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Using Tr�2(N)(s
ns∗kf (y)y) = 0 if k 	= n, one easily verifies that it is faithful. In

terms of the Jackson integral
∫ 1

0 f (y)dqy = (1− q)
∑

n∈N f (qn)qn, we can write

∫

Dq

⎛

⎝
N∑

n=0

snfn(y)+
M∑

n=1

f−n(y)s∗n
⎞

⎠dμα

=
∫ 1

0

∫ π

−π

N∑

n=0

einφfn(y)+
M∑

n=1

f−n(y)e−inφ dφ yα−1dqy. (3.11)

Note that the commutation relation between yα and functions from F(Dq) can
be expressed by the automorphism σα : F(Dq) −→ F(Dq) given by

σα(s) = q−α s, σα(s∗) = qα s∗, σα(f (y)) = f (y), f ∈ L∞(spec(y)),
(3.12)

where α ∈ R. Then, for all h, g ∈ F(Dq),

gyα = yα σα(g),

and therefore
∫

Dq

gh dμα = (1−q)Tr�2(N)(ghy
α) = (1−q)Tr�2(N)(σ

α(h)gyα)

=
∫

Dq

σ α(h)g dμα. (3.13)

Note that we also have

(σα(f ))∗ = σ−α(f ∗), f ∈ F(Dq). (3.14)

We use the faithful positive functional
∫
Dq

( · ) dμα to define an inner product on
F(Dq) by

〈f, g〉 :=
∫

Dq

f ∗g dμα.

The Hilbert space closure of F(Dq) will be denoted by L2(Dq, μα). Left multipli-
cation with functions x ∈ F(Dq) defines a faithful *-representation of F(Dq) on
L2(Dq, μα) since

〈xf , g〉 =
∫

Dq

f ∗x∗g dμα = 〈f, x∗g〉.



Twisted Dirac Operator on Quantum SU(2) 241

Observe that F(Dq) leaves the subspace

F0(Dq) :=
⎧
⎨

⎩

N∑

n=0

snfn(y)+
M∑

n=1

f−n(y)s∗n ∈ F(Dq) : supp(fk) is finite

⎫
⎬

⎭

(3.15)

of L2(Dq, μα) invariant. Since F0(Dq) contains an orthonormal basis (see [20,
Proposition 1]), it is dense in L2(Dq, μα). We extend F(Dq) by the unbounded
element y−1 and define O+(Dq) as the *-algebra generated by the operators y−1

and all f ∈ F(Dq), considered as operators on F0(Dq). Furthermore, let O+(Dq)
op

denote the *-algebra obtained from O+(Dq) by replacing the multiplication with
the opposite one, i.e. a · b := ba. Then we obtain a representation of O+(Dq)

op on
F0(Dq) ⊂ L2(Dq, μα) by right multiplication,

aopf := f a, a ∈ O+(Dq)
op, f ∈ F0(Dq).

Clearly, this representation commutes with the operators of O+(Dq), as these act
by left multiplication. However, it is not a *-representation. More precisely, (3.13)
and (3.14) give

〈xopf , g〉 = 〈f x, g〉 =
∫

Dq

x∗f ∗g dμα =
∫

Dq

f ∗gσ−α(x∗) dμα = 〈f, (σα(x)∗)opg〉,

therefore

(xop)∗ = (σα(x)∗)op. (3.16)

Note that y > 0 and σ(y) = y imply that the multiplication operators yβ and
(yβ)op = (yop)β , β ∈ R, determine well defined (unbounded) self-adjoint operators
on L2(Dq, μα).

Next we use the isomorphism �2(Z) ∼= L2(S
1) given by bn := 1√

2π
eint and

identify u from (3.3) with the multiplication operator uf (t) := eitf (t). In this way
we obtain a faithful *-representation ρ̃ : O(SUq(2)) −→ B(L2(Dq, μα)⊗L2(S

1))

by multiplication operators. On generators, it is given by

ρ̃(a)(f ⊗ g) := zf ⊗ g, ρ̃(c) := yf ⊗ ug.

The closure of the image of ρ̃ is again isomorphic to C(SUq(2)).
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4 Quantised Differential Calculi

Taking as its domain the absolutely continuous functions AC(S1) with the weak
derivative in L2(S

1), the partial derivative i ∂
∂t

becomes a self-adjoint operator on
L2(S

1) satisfying the Leibniz rule

i ∂
∂t
(ϕ g) = (i

∂ϕ

∂t
)g + ϕ(i ∂

∂t
g), ϕ ∈ C(1)(S1), g ∈ dom(i ∂

∂t
).

We consider a first order differential *-calculus d : O(Dq) −→ �(Dq), where
�(Dq) = dzO(Dq)+ dz∗O(Dq ) with O(Dq)-bimodule structure given by

dzz∗ = q2z∗dz, dz∗ z = q−2zdz∗, dzz = q−2zdz, dz∗ z∗ = q2z∗dz∗,

see [12] for definitions and background on differential calculi. With σα from (3.12),
it follows that

dzf = σ−2(f )dz, dz∗f = σ−2(f )dz∗, f ∈ O(Dq ).

We define partial derivatives ∂
∂z

and ∂
∂z̄

by

d(f ) = dz ∂
∂z
(f )+ dz∗ ∂

∂z̄
(f ), f ∈ O(Dq ).

Recall that y2 = 1− z∗z and zz∗ − z∗z = (1− q2)y2 by (3.7) and (3.4). Using

1 = ∂
∂z
(z) = −1

1− q2 y
−2[z∗, z], 1 = ∂

∂z̄
(z∗) = 1

1− q2 y
−2[z, z∗],

the Leibniz rule for the commutator and y−2p = σ 2(p)y−2 for all p ∈ O(Dq ), one
verifies by direct calculations on monomials znz∗m that

∂
∂z
(p) = −1

1− q2 y
−2[z∗, p], ∂

∂z̄
(p) = 1

1− q2 y
−2[z, p], p ∈ O(Dq).

We extend the partial derivatives ∂
∂z

and ∂
∂z̄

to

F (1)(Dq) := {f ∈ F(Dq) : y−2[z∗, f ] ∈ F(Dq), y−2[z, f ] ∈ F(Dq)}

by setting

∂
∂z
(f ) := −1

1− q2
y−2[z∗, f ], ∂

∂z̄
(f ) := 1

1− q2
y−2 [z, f ], f ∈ F (1)(Dq).
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Note that O(Dq) ⊂ F (1)(Dq). By the spectral theorem for functions in y = y∗,
one readily proves that O(Dq) is dense in L2(Dq, μα). Thus ∂

∂z
and ∂

∂z̄
are densely

defined linear operators on L2(Dq, μα).
Moreover, it is easily seen that the automorphism σα from (3.12) preserves

F (1)(Dq). For instance, y−2[z∗, σα(snf (y))] = q−αny−2[z∗, snf (y)] ∈ F(Dq)

for all snf (y) ∈ F (1)(Dq). Similarly one shows that F (1)(Dq) is a *-algebra. For
example,

y−2[z∗, fg] = y−2[z∗, f ]g + y−2fy−2y−2[z∗, g]
= y−2[z∗, f ]g + σ 2(f )y−2[z∗, g] ∈ F(Dq)

and

y−2[z∗, f ∗] = −(y−2y2[z, f ]y−2)∗ = −q2(y−2[z, σ 2(f )])∗ ∈ F(Dq)

for f, g ∈ F (1)(Dq).

5 Twisted Derivations

5.1 Twist: σ 1

Our aim is to replace the first order differential operators H , E and F from (2.4)–
(2.6) by appropriate noncommutative versions. First we consider q-analogues of
the operators

√
1− z̄z ∂

∂z
and

√
1− z̄z ∂

∂z̄
and define Ti : F (1)(Dq) −→ F(Dq),

i = 1, 2, by

T1f := y ∂
∂z
f = −1

1− q2 y
−1[z∗, f ], T2f := y ∂

∂z̄
f = 1

1− q2 y
−1[z, f ].

(5.1)

Observe that T1 and T2 satisfy a twisted Leibniz rule: for all f, g ∈ F (1)(Dq),

T1(fg) = −1

1− q2 y
−1[z∗, fg] = −1

1− q2 y
−1([z∗, f ]g + fyy−1[z∗, g])

= (T1f )g + σ 1(f )T1g (5.2)

and similarly

T2(fg) = (T2f )g + σ 1(f )T2g. (5.3)
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Setting T̂1 := T1 ⊗ 1, T̂2 := T2 ⊗ 1 and σ̂ 1 := σ 1 ⊗ 1, we get

T̂1(φψ) = (T̂1φ)ψ + σ̂ 1(φ)T̂1ψ, T̂2(φψ) = (T̂2φ)ψ + σ̂ 1(φ)T̂2ψ (5.4)

for all φ,ψ ∈ F (1)(Dq)⊗ C(1)(S1) by (5.2) and (5.3).
Next consider the operator T̂0 := y−1 ∂

∂t
on the domain dom(y−1) ⊗ C(1)(S1)

in L2(Dq, μα) ⊗ L2(S
1). Note that, for all f, g ∈ F(Dq) with g ∈ dom(y−1),

one has y−1fg = σ 1(f )y−1g ∈ L2(Dq, μα), hence fg ∈ dom(y−1). Now, for all
ϕ, ξ ∈ C(1)(S1),

T̂0(fg ⊗ ϕξ) = y−1fg ⊗ ∂
∂t
(ϕξ)

= y−1fg ⊗ ( ∂
∂t
ϕ)ξ + y−1fy y−1g ⊗ ϕ ( ∂

∂t
ξ)

= (
T̂0(f ⊗ ϕ)

)
(g ⊗ ξ)+ (σ 1(f )⊗ ϕ)

(
T̂0(g ⊗ ξ)

)
.

Therefore, for all φ,ψ ∈ F(Dq)⊗ C(1)(S1) with ψ ∈ dom(y−1 ⊗ 1), we have

T̂0(φψ) = (T̂0φ)ψ + σ̂ 1(φ)(T̂0ψ). (5.5)

As a consequence, T̂0, T̂1 and T̂2 satisfy the same twisted Leibniz rule.
In the definition of the Dirac operator, we will multiply T̂0, T̂1 and T̂2 with

multiplication operators from the opposite algebra. The following lemma shows that
these multiplication operators do not change the twisted Leibniz rule. Our aim is to
prove that the Dirac operator has bounded twisted commutators with functions of an
appropriate *-algebra, where the twisted commutator of densely defined operators
T on L2(Dq, μα)⊗̄L2(S

1) with φ ∈ F(Dq)⊗ C(S1) is defined by

[T , φ]σ 1 := T φ − σ 1(φ)T .

The purpose of the following lemma is to clarify the setup for the algebraic
manipulations to be carried out, and to ensure that these make sense in their Hilbert
space realisation.

Lemma 5.1 Let A be a unital *-algebra,
∫ : A→ C a faithful positive functional,

H the Hilbert space closure of A with respect to the inner product 〈a, b〉 := ∫
a∗b,

and assume that left multiplication by an element in A defines a bounded operator
on H. Let T be a densely defined linear operator on H, A1 ⊂ A a *-subalgebra
and D ⊂ H a dense subspace such that D + A1 ⊂ dom(T ), T (A1) ⊂ A, and T

satisfies the twisted Leibniz rule

T (fψ) = (Tf )ψ + σ(f )T ψ, f ∈ A1, ψ ∈ D +A1

for an automorphism σ : A→ A. Assume finally that x̂ is a densely defined linear
operator on H with D ⊂ dom(x̂), and that fψ ∈ D and x̂f ψ = f x̂ψ hold for all
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f ∈ A and ψ ∈ D. Then

x̂T (fg) = x̂(Tf )g + σ(f )x̂T (g), f, g ∈ A1 (5.6)

as operators on D and

[x̂T , f ]σψ = x̂(Tf )ψ, f ∈ A1, ψ ∈ D.

Proof The only slightly nontrivial statement is that each term in the following
algebraic computations is well-defined as an operator on the domain D: Let ψ ∈ D
and f, g ∈ A1. From the twisted Leibniz rule, we get

(T (fg))ψ = T (fgψ) − σ(fg)T ψ = (Tf )(gψ) + σ(f )T (gψ) − σ(f )σ(g)T ψ

= (Tf )(gψ) + σ(f )(T g)ψ.

Since σ(f ) ∈ A for all f ∈ A, it follows that

x̂(T (fg))ψ = (
x̂(Tf )g + σ(f )x̂(T g)

)
ψ,

which proves (5.6). As x̂ T (f ψ) = x̂ (Tf )ψ+x̂ σ (f )T ψ = x̂ (Tf )ψ+σ(f )x̂ T ψ,

we also have [x̂ T , f ]σψ = x̂ (Tf )ψ + σ(f )x̂ T ψ − σ(f )x̂ T ψ = x̂ (Tf )ψ . ��
By (5.4) and (5.5), the lemma applies in particular to the operators T̂0, T̂1 and T̂2

with A := F(Dq)⊗C(S1), A1 := F (1)(Dq)⊗C(1)(S1), H := L2(Dq, μα)⊗̄L2(S
1)

(where integration on S1 is taken with respect to the Lebesgue measure), the
automorphism σ̂ 1 and the operators x̂ coming from O+(Dq)

op. As the dense
domain, we may take

D := F0(Dq)⊗ C(1)(S1). (5.7)

5.2 Twist: σ 2

First we show that ∂
∂z

and ∂
∂z̄

satisfy a twisted Leibniz rule for the automorphism

σ 2. Let f, g ∈ F (1)(Dq). Then

∂
∂z
(fg) = −1

1− q2 y
−2[z∗, fg] = −1

1− q2 y
−2([z∗, f ]g + fy2y−2[z∗, g])

= ( ∂
∂z
f )g + σ 2(f ) ∂

∂z
g (5.8)

and similarly

∂
∂z̄
(fg) = ( ∂

∂z̄
f )g + σ 2(f ) ∂

∂z̄
g. (5.9)
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Setting Ŝ1 := ∂
∂z
⊗ 1, Ŝ2 := ∂

∂z̄
⊗ 1 and σ̂ 2 := σ 2 ⊗ 1, we get for all φ,ψ ∈

F (1)(Dq)⊗ C(1)(S1)

Ŝ1(φψ) = (Ŝ1φ)ψ + σ̂ 2(φ)Ŝ1ψ, Ŝ2(φψ) = (Ŝ2φ)ψ + σ̂ 2(φ)Ŝ2ψ

by (5.8) and (5.9).
Next consider the operator Ŝ0 := y−2 ∂

∂t
on the domain dom(y−2)⊗ C(1)(S1) in

L2(Dq, μα)⊗L2(S
1). Again fg ∈ dom(y−2) for all f ∈ F(Dq) and g ∈ dom(y−2)

since y−2fg = σ 2(f )y−2g ∈ L2(Dq, μα). Now, for all ϕ, ξ ∈ C(1)(S1),

Ŝ0(fg ⊗ ϕξ) = y−2fg ⊗ ∂
∂t
(ϕξ)

= y−2fg ⊗ ( ∂
∂t
ϕ)ξ + y−2fy2y−2g ⊗ ϕ ( ∂

∂t
ξ)

= (
Ŝ0(f ⊗ ϕ)

)
(g ⊗ ξ)+ (σ 2(f )⊗ ϕ)

(
Ŝ0(g ⊗ ξ)

)
.

Therefore, for all φ,ψ ∈ F(Dq)⊗ C(1)(S1) with ψ ∈ dom(y−1 ⊗ 1), we have

Ŝ0(φψ) = (Ŝ0φ)ψ + σ̂ 2(φ)(Ŝ0ψ).

As a consequence, Ŝ0, Ŝ1 and Ŝ2 satisfy the same twisted Leibniz rule for the twist
σ̂ 2, and so do x

op
i Si for xop

i ∈ {yop, (yop)2, zop, z∗op} by Lemma 5.1.

6 Adjoints

6.1 α = 2

Set α = 2 in (3.10),

D0 := {f ∈ F (1)(Dq)∩dom(y−1)∩dom((y−1)op) : T1(f ), T2(f ) ∈ dom((y−1)op)}

and

D := D0 ⊗ C(1)(S1) ⊂ L2(Dq, μα) ⊗̄ L2(S
1). (6.1)

It follows from F0(Dq) ⊂ D0 that D is dense in L2(Dq, μα) ⊗̄ L2(S
1). Let T1 and

T2 be the operators from (5.1) with domain D0. Using (3.5) and the trace property,
we compute for all f, g ∈ D0,

〈T1f , g〉 = − 1− q

1− q2 Tr�2(N)(f
∗zy−1gy2 − zf ∗y−1gy2)
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= − 1− q

1− q2 Tr�2(N)(q
−1f ∗y−1zgy2 − q−2f ∗y−1gzy2)

= (1− q)(q−2 − q−1)

1− q2 Tr�2(N)(f
∗y−1gzy2)

− (1− q)q−1

1− q2 Tr�2(N)(f
∗y−1zgy2 − f ∗y−1gzy2)

= 〈f, ( q−2

1 + q
zopy−1 − q−1T2)g〉,

therefore

q−2

1+ q
zopy−1 − q−1T2 ⊂ T ∗1 . (6.2)

From (3.16), it also follows that

q

1+ q
z∗opy−1 − qT1 ⊂ T ∗2 .

Similarly, using zz∗ − z∗z = (1− q2)y2,

〈(zy−1)opT1f , g〉 = − 1− q

1− q2
Tr�2(N)(y

−1z∗f ∗zy−1gy2 − y−1z∗zf ∗y−1gy2)

= − 1− q

1− q2
Tr�2(N)(y

−1(zz∗ − z∗z)f ∗y−1gy2 + y−1z∗f ∗zy−1gy2 − y−1zz∗f ∗y−1gy2)

= −(1− q)Tr�2(N)

(
f ∗y−1gyy2)− 1− q

1− q2 Tr�2(N)

(
f ∗y−1(zg − gz)z∗y−1y2)

= 〈f, (− σ 1 − (z∗y−1)opT2
)
g〉,

where σ 1(g) = y−1gy = y−1yopg for all g ∈ F(Dq) ∩ dom(y−1). Hence

− σ 1 − (z∗y−1)opT2 ⊂
(
(zy−1)opT1

)∗
. (6.3)

Since y−1 and yop are self-adjoint and thus σ 1 is symmetric, we also get from the
above calculations

− σ 1 − (zy−1)opT1 ⊂
(
(z∗y−1)opT2

)∗
. (6.4)

Recall that i ∂
∂t

is a symmetric operator on C(1)(S1) ⊂ L2(S
1). Also, for all

ϕ ∈ C(1)(S1), we have

(eit i ∂
∂t
)∗ϕ = i ∂

∂t
(e−it ϕ) = e−it ϕ + e−it i ∂

∂t
ϕ. (6.5)
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From this, (3.16) and the self-adjointness of y−1, it follows that

q−2zopy−1e−it + q−2zopy−1e−it i ∂
∂t
⊂ (z∗opy−1eit i ∂

∂t
)∗,

where the left-hand side and z∗opy−1eit i ∂
∂t

are operators on D. Analogously,

−q2z∗opy−1eit + q2z∗opy−1eit i ∂
∂t
⊂ (zopy−1e−it i ∂

∂t
)∗. (6.6)

Now we are in a position to state the main result of this section.

Proposition 6.1 Consider the following operators on L2(Dq, μα) ⊗̄ L2(S
1) with

domain D defined in (6.1) above:

Ĥ := (zy−1)op y ∂
∂z
− (zy−1)∗opy ∂

∂z̄
+ yop y−1 i ∂

∂t
,

Ê := −e−it y ∂
∂z̄
− q−1

1+ q
zopy−1 e−it i ∂

∂t
,

F̂ := q eit y ∂
∂z
− q

1+ q
z∗opy−1 eit i ∂

∂t
.

Then Ĥ ⊂ Ĥ ∗, F̂ ⊂ Ê∗ and Ê ⊂ F̂ ∗.

Proof Since yop, y−1 and i ∂
∂t

are commuting symmetric operators on D, we have
yopy−1 i ∂

∂t
⊂ (yopy−1 i ∂

∂t
)∗. Now it follows from (6.3) and (6.4) that

Ĥ ∗ ⊃ −σ 1 − (z∗y−1)opy ∂
∂z̄
+ σ 1 + (zy−1)opy ∂

∂z
+ yopy−1 i ∂

∂t
= Ĥ .

Furthermore, from (6.2) and (6.6), we obtain

F̂ ∗ ⊃ e−it q−1

1+ q
zopy−1− e−it y ∂

∂z̄
− e−it q−1

1+ q
zopy−1− q−1

1+ q
zopy−1e−it i ∂

∂t
= Ê.

The last relation also shows that F̂ ∗ is densely defined, thus F̂ ⊂ F̂ ∗∗ ⊂ Ê∗. ��

6.2 α = 1

Consider now

D := D0 ⊗ C(1)(S1) ⊂ L2(Dq, μα) ⊗̄ L2(S
1) (6.7)
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with D0 := F (1)(Dq) ∩ dom(y−2). For all f, g ∈ F (1)(Dq),

〈yop ∂
∂z
f , g〉 = − 1− q

1− q2 Tr�2(N)(yf
∗zy−2gy − yzf ∗y−2gy)

= −q−2 1− q

1− q2 Tr�2(N)(f
∗y−2zgy2 − f ∗y−2gzy2)

= −q−2 1− q

1− q2
Tr�2(N)(f

∗y−2[z, g]y2)

= 〈f,−q−2yop ∂
∂z̄
g〉,

thus

−q−1yop ∂
∂z̄
⊂ (qyop ∂

∂z
)∗ and qyop ∂

∂z
⊂ (qyop ∂

∂z
)∗∗ ⊂ (−q−1yop ∂

∂z̄
)∗.

(6.8)

Next,

〈zop ∂
∂z
f , g〉 = − 1− q

1− q2 Tr�2(N)(z
∗f ∗zy−2gy − z∗zf ∗y−2gy)

= − 1− q

1− q2 Tr�2(N)(q
−1f ∗y−2zgz∗y − f ∗y−2gz∗zy)

= − 1− q

1− q2 Tr�2(N)

(
q−1(f ∗y−2zgz∗y − f ∗y−2gzz∗y)

+ q−1f ∗y−2gzz∗y − f ∗y−2gz∗zy
)

= −〈f, (q−1z∗op ∂
∂z̄
)g〉 − q−1 (1− q)2

1− q2 Tr�2(N)

(
f ∗y−2gy + qf ∗y−2gy2y

)

(6.9)

and

〈(z∗op ∂
∂z̄
)f , g〉 = 1− q

1− q2 Tr�2(N)(zf
∗z∗y−2gy − zz∗f ∗y−2gy)

= 1− q

1− q2 Tr�2(N)(qf
∗y−2z∗gzy − f ∗y−2gzz∗y)

= 1− q

1− q2
Tr�2(N)

(
q(f ∗y−2z∗gzy − f ∗y−2gz∗zy)+ qf ∗y−2gz∗zy − f ∗y−2gzz∗y

)

= −〈f, (qzop ∂
∂z
)g〉 − (1− q)2

1− q2 Tr�2(N)

(
f ∗y−2gy + qf ∗y−2gy2y

)
. (6.10)
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From (6.9) and (6.10),

〈(qzop ∂
∂z
− z∗op ∂

∂z̄
)f , g〉 = 〈f, (qzop ∂

∂z
− z∗op ∂

∂z̄
)g〉 (6.11)

i.e., the operator qzop ∂
∂z
− z∗op ∂

∂z̄
is symmetric. As (y2)opy−2i ∂

∂t
is the product of

commuting symmetric operators,

(y2)op y−2i ∂
∂t
⊂ (

(y2)opy−2i ∂
∂t

)∗
(6.12)

is also symmetric.
By (3.16) and (6.5),

zopyopy−2e−it + zopyopy−2e−it i ∂
∂t
⊂ (z∗opyopy−2eit i ∂

∂t
)∗.

Similarly,

−z∗opyopy−2eit + z∗opyopy−2eit i ∂
∂t
⊂ (zopyopy−2e−it i ∂

∂t
)∗.

Since zopyop ⊂ (z∗opyop)∗ by (3.16),

1
2z

opyopy−2e−it + zopyopy−2e−it i ∂
∂t
⊂ (− 1

2z
∗opyopy−2eit + z∗opyopy−2eit i ∂

∂t
)∗.

(6.13)

Analogously, using z∗opyop ⊂ (zopyop)∗,

− 1
2z
∗opyopy−2eit + z∗opyopy−2eit i ∂

∂t
⊂ ( 1

2z
opyopy−2e−it + zopyopy−2e−it i ∂

∂t
)∗.

(6.14)

As in the previous section, we summarise our results in a proposition.

Proposition 6.2 Let γq be a non-zero real number. Consider the following
operators on L2(Dq) ⊗̄ L2(S

1) with domain D defined in (6.7) above:

Ĥ1 := qzop ∂
∂z
− z∗op ∂

∂z̄
+ (y2)opy−2i ∂

∂t
,

Ê1 := −q−1e−it yop ∂
∂z̄
− γqz

opyopy−2e−it i ∂
∂t
− γq

2
zopyopy−2e−it ,

F̂1 := q eit yop ∂
∂z
− γqz

∗opyopy−2eit i ∂
∂t
+ γq

2
z∗opyopy−2eit .

Then Ĥ1 ⊂ Ĥ ∗
1 , F̂1 ⊂ Ê∗1 and Ê1 ⊂ F̂ ∗1 .

Proof Ĥ1 ⊂ Ĥ ∗
1 follows from (6.11) and (6.12), Ê1 ⊂ F̂ ∗1 follows from (6.8)

and (6.13), and F̂1 ⊂ Ê∗1 follows from (6.8) and (6.14). ��



Twisted Dirac Operator on Quantum SU(2) 251

7 The Dirac Operator

Classically, the left invariant vector fields H , E and F act as first order differential
operators on differentiable functions on SU(2). In the noncommutative case, we will
use the actions of Ĥ , Ê and F̂ to define an algebra of differentiable functions.

For x̂i = x
op
i ⊗ ηi ∈ O+(Dq)

op ⊗ C∞(S1), i = 0, 1, 2, consider the action on
f ⊗ ϕ ∈ F (1)(Dq)⊗ C(1)(S1) given by

(x̂0T̂0 + x̂1T̂1 + x̂2T̂2)(f ⊗ ϕ)

:= y−1f x0 ⊗ η0
∂
∂t
(ϕ)+ T1(f )x1 ⊗ η1ϕ + T2(f )x2 ⊗ η2ϕ,

(7.1)

where the right-hand side of (7.1) is understood as an unbounded operator on
L2(Dq, μα) ⊗̄L2(S

1) with domain of definition containing the subspace D intro-
duced in (5.7). Note that the operators Ĥ , Ê and F̂ are of the form described in (7.1),
and that the operators x̂i and T̂i satisfy the assumptions of Lemma 5.1. We define


(1)(SUq (2)) := {φ ∈ F (1)(Dq)⊗ C(1)(S1) :
Ĥ (φ), Ê(φ), F̂ (φ), Ĥ (φ∗), Ê(φ∗), F̂ (φ∗) are bounded}.

(7.2)

From (5.2), (5.3), (5.5) and Lemma 5.1, it follows that

T̂ (ϕψ) = (T̂ ϕ)ψ + σ̂ 1(ϕ)(T̂ ψ), (7.3)

for all ϕ,ψ ∈ 
(1)(SUq(2)) and T̂ ∈ {Ĥ , Ê, F̂ }. In particular, T̂ (ϕψ) is again
bounded so that 
(1)(SUq(2)) is a *-algebra.

Finally note that the classical limit of Ĥ , Ê and F̂ for q → 1 is formally H ,
E and F , respectively. This will also be the case if we rescale Ê and F̂ by a real
number c = c(q) such that limq→1 c(q) = 1. Such a rescaling might be useful in
later computations of the spectrum of the Dirac operator.

Theorem 7.1 Let α = 2. SetH := (L2(Dq, μα)⊗̄L2(S
1))⊕(L2(Dq, μα)⊗̄L2(S

1))

and define

π : 
(1)(SUq(2)) −→ B(H), π(φ) := φ ⊕ φ

as left multiplication operators. Then, for any c ∈ R, the operator

D :=
(
Ĥ − 2 cÊ

cF̂ −Ĥ − 2

)
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is symmetric on D ⊕D with D from (6.1). Furthermore,

[D,π(φ)]σ̂ 1 := Dπ(φ)− π(σ̂ 1(φ))D

is bounded for all φ ∈ 
(1)(SUq(2)).

Proof D ⊂ D∗ follows from Proposition 6.1. For all φ ∈ 
(1)(SUq(2)) and ψ1⊕ψ2
in the domain of D,

[D,π(φ)]σ̂ 1(ψ1 ⊕ ψ2) = Ĥ (φψ1)− σ̂ 1(φ)Ĥ (ψ1)+ c(Ê(φψ2)− σ̂ 1(φ)Ê(ψ2))

⊕ c(F̂ (φψ1)− σ̂ 1(φ)F̂ (ψ1))− (Ĥ (φψ2)− σ̂ 1(φ)Ĥ (ψ2))

= (Ĥφ)ψ1 + c(Êφ)ψ2 ⊕ c(F̂φ)ψ1 − (Ĥφ)ψ2

by (7.3), so [D,π(φ)]σ 1 is bounded by the definition of 
(1)(SUq(2)). ��
Theorem 7.2 Let H and π be defined as in Theorem 7.1 but with the measure
on Dq given by setting α = 1 in (3.10). Let Ĥ1, F̂1 and Ê1 be defined as in
Proposition 6.2 and 
(1)(SUq(2)) as in (7.2) with Ĥ , F̂ and Ê replaced by Ĥ1,
F̂1 and Ê1, respectively. Then, for any c ∈ R, the operator

D1 :=
(
Ĥ1 − 2 cÊ1

cF̂1 −Ĥ1 − 2

)

is symmetric on D ⊕D with D from (6.7). Furthermore,

[D1, π(φ)]σ̂ 2 := D1π(φ)− π(σ̂ 2(φ))D1

is bounded for all φ ∈ 
(1)(SUq(2)).

Proof Using the results for Ŝ0, Ŝ1 and Ŝ2 from Sect. 5.2 and Proposition 6.2, the
proof is essentially the same as the proof of the previous theorem. ��

To view the Dirac operator of Theorem 7.2 as a deformation of the classical
Dirac operator, one may choose a continuously varying positive real number γq

such that limq→1 γq = 1
2 . For instance, if γq := q

1+q , then the Dirac operator
of Theorem 7.2 resembles the one of Theorem 7.1, the main difference being the
additional functions (0-order differential operators) in the definitions of Ê1 and F̂1.
In the classical case q = 1, the operator D1 can be obtained from the Dirac operator
D in Theorem 7.1 by the “gauge transformation” D1 = √yD

√
y−1.

On the other hand, if one rescales the volume form to vol1 := 1
y

vol with a
non-constant function y without changing the Riemannian metric, then the Dirac
operator ceases to be self-adjoint but the above gauge transformed Dirac operator
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will remedy the problem. To see this, let f, g,
√
y−1f,

√
y−1g ∈ dom(D). Then

〈√yD
√
y
−1

f , g〉
L2(S,

1
y

vol) =
∫

〈√yD
√
y
−1

f , g〉 1

y
dvol =

∫

〈D√y
−1

f ,
√
y
−1

g〉dvol

=
∫

〈f,√yD
√
y
−1

g〉 1

y
dvol = 〈f,√yD

√
y
−1

g〉
L2(S,

1
y

vol).

For this reason and in view of (3.11), we may regard D1 as the Dirac operator
obtained from D by rescaling the volume form y dqy dφ �→ dqy dφ.
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1 Introduction

The Fock (Bargmann-Segal) space was introduced independently by Bargmann
and Segal in [2] and [21], respectively. Berger and Coburn in [5] developed the
basic theory of Toeplitz operators and applied them to Quantum Mechanics. In [6],
the authors described the biggest ∗-subalgebra of L∞(C) that generates Toeplitz
operators with compact semicommutators.

Concerning the study of C∗-algebras generated by Toeplitz operators acting on
the Fock space, in [11] and [12], Esmeral, Maximenko and Vasilevski, described
the only two commutative C∗-algebras generated by Toeplitz operators. One of
these algebras is generated by Toeplitz operators with radial symbols. These
operators turned out to be radial (invariant under rotation operators). The other
one is generated by Toeplitz operators with horizontal symbols. These operators
are invariant under Weyl operators.

Toeplitz operators with radial symbols behave quite well. In fact, they are diag-
onal operators with respect to the corresponding monomial basis of the Bergman,
the harmonic Bergman, the pluriharmonic Bergman, the Fock and the pluriharmonic
Fock spaces (see [1, 13, 15, 18, 19], for example).

Very interesting results related to Toeplitz operators acting on the Fock space
are found in the following works [2–6, 8, 10, 22]. As far as we know, the study of
Toeplitz operators acting on harmonic Fock spaces began with the work [1], where
the author studied algebraic properties of Toeplitz operators with radial and quasi
homogeneous symbols on the pluriharmonic Fock space of C

n. If n = 1 quasi
homogeneous symbols are radial functions.

Inspired by the results obtained for Toeplitz operators acting on the Fock space
and considering the differences between Toeplitz operators acting on the Bergman
space and Toeplitz operators acting on the harmonic Bergman space [18, 19], in
this work we consider Toeplitz operators with radial symbols and Toeplitz operators
with horizontal symbols acting on the harmonic Fock space.

The harmonic Fock space is invariant under rotation operators, and we can follow
the proofs given in [11] to describe the behavior of Toeplitz operators with radial
symbols acting on this space, just with slightly modifications. In both cases, Fock
and harmonic Fock settings, the C∗-algebra generated by Toeplitz operators with
radial symbols is commutative. Even more, both algebras are isomorphic to the
algebra RO(Z+) consisting of all uniformly continuous sequences with respect to
the square root metric. Nevertheless, the corresponding Toeplitz operators are not
unitarily equivalent. One important result for Toeplitz operators with radial symbols
acting on the Fock space is that a Toeplitz operator is radial if and only if its symbol
is radial [11]. This result also holds for Toeplitz operators with radial symbols acting
on the harmonic Fock space.

On the other hand, a Toeplitz operators acting on the Fock is horizontal if
and only if its definig symbol is horizontal. Since the harmonic Fock space is
not invariant under Weyl operators, horizontal operators cannot be defined here.
However, up to compact perturbation, Toeplitz operators with horizontal symbols
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have a similar behavior to the corresponding Toeplitz operators acting on the Fock
space. In fact, we prove that the Calkin algebra of the C∗-algebra generated by
Toeplitz operators with horizontal symbols is isomorphic to the algebra consisting
of all bounded uniformly continuous functions with respect to the standard metric
on R, which, at the same time, is isomorphic to the C∗-algebra generated by Toeplitz
operators with horizontal symbols acting on the Fock space.

In summary the main results of this work are the following:

1. A Toeplitz operator acting on the harmonic Fock space is radial if and only if
its symbol is radial. The C∗-algebra generated by Toeplitz operators with radial
symbols is isomorphic to the algebra consisting of all uniformly continuous
sequences with respect to the square root metric.

2. In general, two Toeplitz operators with horizontal symbols do not commute.
3. The commutator of two Toeplitz operators with horizontal symbols is compact.

However, its semicommutator is not compact in general.
4. The Calkin algebra of the C∗-algebra generated by Toeplitz operators with

horizontal symbols is isomorphic to the algebra consisting of all bounded
uniformly continuous functions with respect to the standard metric on R.

2 The Harmonic Fock Space

Let L2(C, dλ) be the Hilbert space of all the square integrable functions with respect
to the Gaussian measure

dλ(z) = 1

π
e−|z|2dA(z), z ∈ C,

where dA denotes the usual Lebesgue measure in the complex plane C. The Fock
space F2 is the closed subspace of L2(C, dλ) consisting of all analytic functions,
that is, f : C→ C is in the Fock space F2 if f ∈ L2(C, dλ) and ∂f

∂z
= ∂f

∂x
+ i

∂f
∂y
=

0.
A very important result related to the Fock space is its relation with the space

L2(R) = L2(R, dx), where dx is the usual Lebesgue measure. This relation is given
through the Bargmann transform B : L2(C, dλ)→ L2(R) which was introduced in
[2]. The formula for this transform is the following

(Bf )(x) = π−1/4
∫

C

f (z)e
√

2xz− x2
2 − z2

2 dλ(z). (2.1)

The Bargmann transform, restricted to the Fock space, is a unitary operator from F2

onto L2(R).
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It is well known (see for example [5]) that the Fock space F2 is a Hilbert space.
The set consisting of all the functions

en(z) =
√

1

n!z
n, n ∈ Z+, (2.2)

where Z+ = N∪{0}, forms an orthonormal basis for F2. The orthogonal projection
P : L2(C, dλ)→ F2 is given by the integral operator

Pf (z) =
∫

C

ezwf (w)dλ(w), f ∈ L2(C, dλ). (2.3)

It is also true that

B∗B = P : L2(C, dλ)→ F2, and that BB∗ = I : L2(R)→ L2(R). (2.4)

On the other hand, a complex-valued function f is called anti-analytic if ∂f
∂z
=

∂f
∂x
− i

∂f
∂y
= 0. Notice that f (z) is anti-analytic if and only if f (z) is an analytic

function. Thus, the unitary operator J : L2(C, dλ)→ L2(C, dλ) given by

Jf (z) = f (z), (2.5)

maps an analytic function into an anti-analytic function and vice versa. So, the image
J (F2) = F2 is a closed subspace of L2(C, dλ) called the anti-Fock space. The
orthogonal projection P : L2(C, dλ)→ F2 is given by the integral operator

Pf (z) =
∫

C

ezwf (w)dλ(w), f ∈ L2(C, dλ). (2.6)

A twice continuously differentiable function f : C→ C is harmonic if

�f (z) = ∂2f (z)

∂x2 + ∂2f (z)

∂y2 = 0, z = x + iy ∈ C.

The harmonic Fock space H2 is the subspace of L2(C, dλ) consisting of all

complex-valued harmonic functions. Since � = 1
4

∂2

∂z∂z
= 1

4
∂2

∂z∂z
, the Fock space

F2 and the anti-Fock space F2 are subspaces of H2. Then

F2 + F2 ⊂ H2. (2.7)

In fact, the converse inclusion holds (see for example [1]), such as in the case of
harmonic spaces in different domains (for example [18, 19]). For completeness, we
include the proof of this fact in what follows.
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For a function f = u1 + iu2 ∈ H2, both u1 and u2 are real-valued harmonic
functions. Define v1 and v2 as one of the harmonic conjugate functions of u1 and
u2, respectively. Then,

f = g1 + g2,

where g1, g2 are the analytic functions defined by

g1 = u1 − v2 + i(v1 + u2)

2
and g2 = u1 + v2 − i(v1 − u2)

2
.

Besides, it is clear that since f ∈ H2 then both u1, u2 are in L2(C, dλ). The
upcoming lemma shows that if u1, u2 belong to L2(C, dλ) then their harmonic
conjugates v1, v2 also belong to L2(C, dλ). This fact implies that g1, g2 are in the
Fock space. Thus, using (2.7) we have that

H2 = F2 + F2. (2.8)

In order to prove Lemma 2.1, we adapt the proof of the result given in ([7], p. 53)
for bounded disks.

Lemma 2.1 Let u be a harmonic real-valued function. If u ∈ L2(C, dλ) then every
conjugate harmonic function v of u is also in L2(C, dλ).

Proof Suppose, without loss of generality, that v(0) = 0. The function f = u+ iv

is entire, and therefore, it can be expanded in its power series

f (z) =
∞∑

n=0

cnz
n.

For each n ∈ Z+, let an and−bn be the real and imaginary parts of cn, respectively.
Notice that the condition v(0) = 0 implies that b0 = 0. In polar coordinates we
have

f (reiθ ) = a0 +
∞∑

n=1

rn(an cosnθ + bn sinnθ)+ i

∞∑

n=1

rn(−bn cosnθ + an sin nθ).

That is, u(reiθ ) = a0 + ∑∞
n=1 r

n(an cosnθ + bn sin nθ) and

v(reiθ ) =
∞∑
n=1

rn(−bn cosnθ + an sin nθ). Fixing r > 0 and using Parseval’s
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Theorem we have that for the functions u, v

1

2π

∫ 2π

0
|u(reiθ )|2dθ = a2

0 +
1

2

∞∑

n=1

r2n(a2
n + b2

n),

1

2π

∫ 2π

0
|v(reiθ )|2dθ = 1

2

∞∑

n=1

r2n(a2
n + b2

n),

respectively. Thus, for all r > 0

∫ 2π

0
|v(reiθ )|2dθ ≤

∫ 2π

0
|u(reiθ )|2dθ.

Now, since u ∈ L2(C, dλ), we have that

1

π

∫ ρ

0

∫ 2π

0
r|v(reiθ )|2e−r2

dθdr ≤ 1

π

∫ ρ

0

∫ 2π

0
r|u(reiθ )|2e−r2

dθdr ≤ ‖u‖2,

for all ρ > 0. Using Tonelli’s Theorem and Monotone Convergence Theorem we
conclude that

∫

C

|v(z)|2dλ(z) = lim
ρ→∞

1

π

∫ ρ

0

∫ 2π

0
r|v(reiθ )|2e−r2

dθdr ≤ ‖u‖2.

That is, v ∈ L2(C, dλ). ��
In order to get an orthogonal decomposition of the harmonic Fock space,

denote by zF2 the closed subspace of F2 consisting of all functions that vanish
at the origin. If f is entire and f (z)e−|z|2 integrable, then from straightforward
calculations we conclude that

∫

C

f (z)dλ(z) = f (0).

Therefore, the space zF2 is orthogonal to the Fock space F2. Using (2.8) we lead
to the following theorem.

Theorem 2.2 The harmonic Fock space admits the orthogonal decomposition

H2 = F2 ⊕ zF2. (2.9)
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The following results are direct consequences of the last theorem and Eqs. (2.3)
and (2.6):

1. The harmonic Fock space H2 is a closed subspace of L2(C, dλ).
2. The orthogonal projection P̃ from L2(C, dλ) onto H2 is the integral operator

P̃ f (z) =
∫

C

(
ezw + ezw − 1

)
f (w)dλ(w), f ∈ L2(C, dλ).

3. The set {ηn}n∈Z, with

ηn =
⎧
⎨

⎩

en, n ∈ Z+,
e|n|, n ∈ Z \ Z+,

(2.10)

where en is given in (2.2), is an orthonormal basis for the harmonic Fock space
H2.

3 Toeplitz Operators on the Harmonic Fock Space

Denote by L∞(C) the algebra of essentially bounded functions on C with respect
to the usual Lebesgue measure. For a function a ∈ L∞(C) define the Toeplitz
operators with symbol a, Ta : F2 → F2 and T̃a : H2 → H2, as

Taf (z) = P(af )(z) =
∫

C

ezwa(w)f (w)dλ(w), f ∈ F2,

T̃ah(z) = P̃ (ah)(z) =
∫

C

(ezw + ewz − 1)a(w)h(w)dλ(w), h ∈ H2.

It is well known that Ta = 0 if and only if a = 0 and that every compact
supported function generates a compact Toeplitz operator on the Fock space [5,
theorems 4 and 5]. The following proposition, which proof is essentially the same
of [5, theorems 4 and 5], shows that these facts hold for Toeplitz operators acting on
H2.

Proposition 3.1 Let a ∈ L∞(C). The following statements hold.

1 The Toeplitz operator T̃a is zero if and only if a(z) = 0, a.e.
2 If a has compact support then the Toeplitz operator T̃a is a compact operator.

From the decomposition (2.9), a Toeplitz operator acting on the harmonic Fock
space H2 can be represented as a 2 × 2 matrix-valued operator. Indeed, given a
symbol a ∈ L∞(C), the Toeplitz operator T̃a acting on F2 ⊕ zF2 is the matrix-
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valued operator

T̃a =
(

Pa|F2 Pa|
zF2

(P − 1⊗ 1)a|F2 (P − 1⊗ 1)a|
zF2

)

,

where (1 ⊗ 1)f = 〈f, 1〉1. Define J̃ : L2(C, dλ) ⊕ L2(C, dλ) → L2(C, dλ) ⊕
L2(C, dλ) by

J̃ =
(
I 0
0 J

)

,

where J is given in Eq. (2.5). Notice that J̃ is a unitary operator satisfying J̃ ∗ = J̃ .
Even more, J̃ |F2⊕zF2 : F2 ⊕ zF2 → F2 ⊕ zF2 is a unitary operator with inverse

J̃ |F2⊕zF2 . We use J̃ to denote the operator and its restrictions indistinctly. Using

J̃ , the Toeplitz operator T̃a acting on F2⊕ zF2 can be unitarily transformed into an
operator acting on F2 ⊕ zF2.

Theorem 3.2 Let a ∈ L∞(C). The Toeplitz operator T̃a is unitarily equivalent to

J̃ T̃aJ̃ =
(

Ta PJ â|zF2

(PJ − 1⊗ 1)a|F2 (Tâ − (1⊗ 1)̂a)|zF2

)

acting on F2 ⊕ zF2, where â(z) = a(z) and (1⊗ 1)f = 〈f, 1〉1.

Proof Since P = JPJ and J 2 = I , we have

J̃ T̃aJ̃ =
(

Pa|F2 PaJ |zF2

J (P − 1⊗ 1)a|F2 J (P − 1⊗ 1)aJ |zF2

)

=
(

Pa|F2 PaJ |zF2

(PJ − J (1⊗ 1))a|F2 (P − J (1⊗ 1))aJ |zF2

)

. (3.1)

Now, J (1⊗ 1) = (1⊗ 1)J = (1⊗ 1) and aJ = J â, then Eq. (3.1) becomes

J̃ T̃a J̃ =
(

Pa|F2 PJ â|zF2

(PJ − (1⊗ 1))a|F2 (P − (1⊗ 1))̂a|zF2

)

,

which is what we wanted to prove. ��
Similar results for the harmonic Bergman spaces are found in [17, Theorem 2.1]

and [19, Theorem 3.1].
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4 Toeplitz Operators with Radial Symbols and Radial
Toeplitz Operators on the Harmonic Fock Space

A function a ∈ L∞(C) is called radial if a(z) = a(|z|). Denote by L∞(R+)
the algebra of bounded radial functions defined on the complex plane. Toeplitz
operators with radial symbols acting on the Fock space are diagonal with respect
to the monomial basis (2.2). Indeed, by direct calculations it can be proved that if
a ∈ L∞(R+) is a radial function, then Ta(en) = γa(n)en where

γa(m) = 1

m!
∫

R+
a(
√
r)e−rrmdr, m ∈ Z+. (4.1)

(see for example [16]). As a consequence, the C∗-algebra generated by these
operators is commutative and isomorphic to a C∗-subalgebra of the algebra of
bounded sequences �∞+ = �∞(Z+).

Theorem 4.1 ([11]) The C∗-algebra T (L∞(R+)), generated by Toeplitz operators
with bounded radial symbols acting on the Fock space, is C∗-isomorphic to
RO(Z+), where RO(Z+) ⊂ �∞+ consists of all the sequences γ = {γ (k)}k∈Z+ ∈ �∞+
such that γ is uniformly continuous with respect to the square root metric ρ(m, n) =
|√m−√n|.

The following lemma follows by straightforward calculations. This result can be
generalized to higher dimensions, for example, the pluriharmonic Fock space (see
[1]).

Lemma 4.2 Let a ∈ L∞(R+). The Toeplitz operator T̃a acting on the harmonic
Fock space, is diagonal with respect to the monomial basis (2.10) and

T̃aηn = γ̃a(n)ηn, n ∈ Z,

where γ̃a(n) = γa(|n|), and γa is given by (4.1).

Last lemma implies that the set of eigenvalues of the operator T̃a is

{γa(m) : m ∈ Z+},

and its spectrum is given by

sp
(
T̃a

)
= {γa(m) : m ∈ Z+}.

Carrying out a proof that follows the reasoning that concludes in Theorem 3.1 of
[16], Lemma 4.2 can be extended to Toeplitz operators acting on the harmonic Fock
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space with a wider class of symbols. Such class of symbols, L∞1 (R+, e−r
2
), consists

of all the measurable functions (not necessarily bounded) a : R+ → C that satisfy

∫

R+
|a(r)|rme−rdr <∞,

for every m ∈ R+. A detailed treatment of this is in [20]. The next theorem
summarizes these results.

Theorem 4.3 Given a symbol a ∈ L∞1 (R+, e−r
2
), the Toeplitz operator T̃a is

unitarily equivalent to the multiplication operator γ̃aI : �2(Z)→ �2(Z), where

γ̃a(|n|) = 1

|n|!
∫

R+
a(
√
r)e−rr |n|dr, n ∈ Z

Returning to Toeplitz operators with bounded radial symbols, from Lemma 4.2,
the C∗-algebra T̃ (L∞(R+)) is C∗-isomorphic to the C∗-algebra generated by
all sequences {γa|a ∈ L∞(R+)}. Thus, the following result is an immediate
consequence of Theorem 4.1.

Theorem 4.4 The C∗-algebra T̃ (L∞(R+)) is C∗-isomorphic to RO(Z+).

Even when the associated sequence γa in RO(Z+) is the same for both
operators Ta and T̃a , these operators are not unitarily equivalent. Indeed, denote
by Eigen(A, λ) the eigenspace of the operator A associated to the eigenvalue λ, and
by dim Eigen(A, λ) its dimension. Thus, it is clear that, if m 	= 0,

dim Eigen(T̃a, γa(m)) = 2 dim Eigen(Ta, γa(m)).

As an example, consider the characteristic function of the interval [0,1], denoted
by χ[0,1]. The m-th eigenvalue of the operators Tχ[0,1] and T̃χ [0, 1] is given by

γχ[0,1](m) = 1

m!
∫ 1

0
rme−rdr

= 1

m!

⎛

⎝m! − 1

e

m∑

j=0

m!
(m− j)!

⎞

⎠ .

Since γχ[0,1](m) 	= γχ[0,1](n) for n 	= m, when m 	= 0, the eigenspace

Eigen(T̃χ[0,1], γχ[0,1](m))

associated to γχ[0,1](m) is generated by the vectors ηm, η−m. On the other hand,
the corresponding eigenspace Eigen(Tχ[0,1], γχ[0,1](m)) for the operator Tχ[0,1], is
generated by the single element em given in Eq. (2.2). This implies that the operators
Tχ[0,1] and T̃χ[0,1] are not unitarily equivalent.
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4.1 Radial Toeplitz Operators

A bounded linear operator is called radial if it commutes with rotation operators.
Using the techniques developed by Zorboska in [23] for Bergman spaces, Esmeral
and Maximenko in [11] proved that a bounded operator acting on F2 is radial if and
only if it is diagonal with respect to the monomial basis given in Eq. (2.2). Even
more, they proved that a bounded Toeplitz operator acting on F2 is radial if and
only if its generating symbol is a radial function. In this section, we prove that this
result is also valid for radial Toeplitz operators on H2.

Recall that for θ ∈ R, the rotation operator Uθ : L2(C, dλ) → L2(C, dλ) is
defined by

(Uθf )(z) = f (ze−iθ ), z ∈ C.

Rotation operatorsUθ , θ ∈ R, are unitary and satisfy Uθ = Uθ+2πn, n ∈ Z. Besides,
for every element on the monomial basis of H2

Uθηn(z) = ηn(ze
−iθ ) = e−inθ ηn(z), ∀n ∈ Z.

Therefore, H2 is invariant under rotation operators and Uθ |H2 is unitary. From now
on, we write Uθ instead of Uθ |H2 . A bounded operator S : H2 → H2 is called
radial if

SUθ = UθS, for all θ ∈ [0, 2π).

It is easy to see that the set of all radial operators acting on H2 is a C∗-algebra.
Given a bounded operator S : H2 → H2, define its radialization by

Rad(S) = 1

2π

∫ 2π

0
U−θ SUθdθ,

where the integral is understood in the weak sense, that is, Rad(S)f = g, f, g ∈ H2,
if

〈g, h〉 =
∫ 2π

0
〈U−θ SUθf, h〉dθ, for all h ∈ H2.

Then a bounded operator S : H2 → H2 is radial if and only if Rad(S) = S.
Furthermore, the operator Rad(S) acts on the monomial basis (2.10) for H2 in the
following way

〈Rad(S)ηn, ηm〉 =
{

0, n 	= m,

〈Sηn, ηm〉, n = m,
∀n,m ∈ Z.
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As a consequence, the next lemma follows.

Lemma 4.5 A bounded operator S : H2 → H2 is radial if and only if it
is diagonal with respect to the monomial basis {ηn}n∈Z. Thus, the C∗-algebra
generated by radial operators is isomorphic to the algebra of bilateral bounded
sequences �∞(Z).

Radial functions can be characterized similarly. Let a be a bounded function. The
radialization of a is given by

rad(a)(z) = 1

2π

∫ 2π

0
a(eiθ z)dθ.

A function a ∈ L∞(C) is radial if and only if a = rad(a) almost everywhere. The
following theorem allows us to use radial Toeplitz operators and Toeplitz operators
with radial symbols indistinctly.

Theorem 4.5 Let a ∈ L∞(C). The Toeplitz operator T̃a is radial if and only if a is
a radial function.

Detailed proofs of Lemma 4.5 and Theorem 4.5 follow from the proofs of [11,
theorems 2.4, 2.5 and 2.6] with slightly modifications.

5 Toeplitz Operators with Horizontal Symbols
and Horizontal Operators

This section is devoted to study Toeplitz operators on the harmonic Fock space
H2 with horizontal symbols. A function a ∈ L∞(C) is said to be horizontal if
a(z) = a(Rez). We denote the algebra of horizontal functions by L∞(R). In [12],
Esmeral and Vasilevsli proved that the Toeplitz operator Ta with horizontal symbol
a ∈ L∞(R) is unitarily equivalent to the multiplication operator BTaB

∗ = γaI

acting on L2(R), where

γa(x) = π−1/2
∫

R

a

(
y√
2

)

e−(x−y)2
dy, (5.1)

and B is the Bargmann transform defined in Eq. (2.1).
Besides, after identifying BTaB

∗ = γaI with the function γa ∈ L∞(R),
they obtained the description of the C∗-algebra T (L∞(R)) generated by Toeplitz
operators with horizontal symbols acting on the Fock space.

Theorem 5.1 ([12, Corollary 5.6]) The C∗-algebra T (L∞(R)) is C∗-isomorphic
to the C∗-algebra Cb,u(R) of bounded uniformly continuous functions with respect
to the standard metric on R.
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Similar to the radial case, Toeplitz operators with horizontal symbols acting on
the Fock space are intimately related to horizontal operators (see [12]). We recall
that for η ∈ C, the Weyl operator Wη : L2(C, dλ)→ L2(C, dλ) is defined as

Wηf (z) = ezη−
|η|2

2 f (z− η), f ∈ L2(C, dλ).

The Weyl operator Wη is a unitary weighted translation operator on L2(C, dλ).
The Fock space F2 is an invariant subspace of each Weyl operator and, even

more, the restriction Wη|F2 : F2 → F2 is unitary. A bounded operator S : F2 →
F2 is said to be horizontal if it commutes with Weyl operators Wit , for all t ∈ R. It
turns out that a Toeplitz operator is horizontal if and only if its generating symbol is
horizontal [12, Proposition 3.10].

Contrary to the radial case, the study of Toeplitz operators with horizontal
symbols on H2 differs a lot from the analytic case. To begin with, Toeplitz operators
with horizontal symbols on the harmonic Fock space do not commute in general. For
example, consider the following two symbols a(z) = eiRez, b(z) = e−iRez and the
constant function f (z) ≡ 1. Straightforward calculations, using the formula

∫

R

e−x2+bxdx = √πe
b2

4
.

imply that

1

π

∫

R

∫

R

eicx+dy
(
ez(x−iy) + ez(x+iy) − 1

)
e−(x2+y2)dxdy

= e
−c2+d2

4

(

e
i(c−d)z

2 + e
i(c−d)z

2 − 1

)

.

Then,

T̃af z = 1

π

∫

R

∫

R

eix
(
ez(x−iy) + ez(x−iy) − 1

)
e−(x2+y2)dxdy

= e−f rac14
(
e
iz
2 + e

iz
2 − 1

)

T̃bf z = 1

π

∫

R

∫

R

e−ix
(
ez(x−iy) + ez(x−iy) − 1

)
e−(x2+y2)dxdy

= e−f rac14
(
e
iz
2 + e

iz
2 − 1

)

T̃bT̃af (z) = e− 1
4

π

∫

R

∫

R

e−
i
2 x− 1

2 y
(
ez(x−iy) + ez(x−iy) − 1

)
e−(x2+y2)dxdy

+e− 1
4

π

∫

R

∫

R

e−
i
2 x+ 1

2 y
(
ez(x−iy) + ez(x−iy) − 1

)
e−(x2+y2)dxdy
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−e− 1
4

π

∫

R

∫

R

e−ix
(
ez(x−iy) + ez(x−iy) − 1

)
e−(x2+y2)dxdy

= e−
1
2

((
e

1
4 − 1

)(
e
iz
2 + e

iz
2

)
+ 1

)

. (5.2)

T̃a T̃bf (z) = e− 1
4

π

∫

R

∫

R

e
ix
2 + y

2

(
ez(x−iy) + ez(x−iy) − 1

)
e−(x2+y2)dxdy

+e− 1
4

π

∫

R

∫

R

e
ix
2 − y

2

(
ez(x−iy) + ez(x−iy) − 1

)
e−(x2+y2)dxdy

−e− 1
4

π

∫

R

∫

R

eix
(
ez(x−iy) + ez(x−iy) − 1

)
e−(x2+y2)dxdy

= e−
1
2

((
e−

1
4 − 1

)(
e−

iz
2 + e

iz
2

)
+ 1

)

. (5.3)

Evaluating 5.2 and 5.3 at the point z = π we obtain,

ImT̃bT̃af (π) = 2e−
1
2

(
e

1
4 − 1

)
= −ImT̃aT̃bf (π)

Notice that the Weyl operator Wη does not preserve the harmonic Fock space.
Indeed, for f ∈ H2

�Wηf (z) = 4
∂2

∂z∂z
ezη−

|η|2
2 f (z− η) = 4ηezη−

|η|2
2
∂f (z− η)

∂z
,

which is not always equal to zero. For example, consider the function in H2, f (z) =
z, then

�Wηf (z) = 4ηezη−
|η|2

2 ,

and �Wηf (z) is not harmonic. In conclusion, horizontal operators are not well
defined on the harmonic Fock space H2 (see also the point 5.6 of the concluding
remarks in [9]).

We might try to use the unitary representation of the harmonic Fock space
J̃ (H2) = F2 ⊕ zF2 to define a Weyl type operator . This suggests the next matrix-
valued operator

(
Wη 0
0 Wη

)

: F2 ⊕ zF2 → F2 ⊕ zF2.
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However, it is not well defined since Wη does not preserve zF2. In order to have a
well defined operator, this operator must have the following form

(
Wη (1⊗ 1)Wη

0 (I − (1⊗ 1))Wη

)

.

But this operator is not unitary.
Leaving the horizontal operators aside, we focus on the study of Toeplitz

operators with horizontal symbols acting on the harmonic Fock space. To do this,
we use the decomposition of the Bargmann transform B given in [12, Theorem 2.1].
Let U1 be the unitary transformation from L2(C, dλ) to L2(R2) given by

U1ϕ(z) = π−1/2e−
x2+y2

2 ϕ(x, y), z = x + iy,

and U2 = I ⊗ F : L2(R2) = L2(R) ⊗ L2(R) → L2(R) ⊗ L2(R), where F :
L2(R)→ L2(R) is the Fourier transform

Fϕ(y) = (2π)−1/2
∫

R

ϕ(η)e−ηydη.

Consider the operator U3 : L2(R2)→ L2(R2) given by the formula

U3ϕ(x, y) = ϕ

(
x + y√

2
,
x − y√

2

)

.

At last, define the function

�0(y) = e−
y2

2 ,

Denote by B0 : L2(R)→ L2(R2) the embedding

B0ϕ(x, y) = ϕ(x)�0(y),

with adjoint B∗0 : L2(R2)→ L2(R) given by

B∗0ϕ(x) = π−1/4
∫

R

ϕ(x, y)�0(y)dy.

The Bargmann transform is written as

B = B∗0U3U2U1.

The next diagram summarizes this process.
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L2(C, dλ) L2(R2)

F2 L2(R)

U3U2U1

P B B∗
0

B|F2

B∗

Following [12], consider the operator B̃ : L2(C, dλ) ⊕ L2(C, dλ) → L2(R) ⊕
L2(R) defined by

B̃ =
(
B 0
0 B

)

.

Let L0 ⊂ L2(R) be the vector space spanned by �0. Direct calculations show that
�0 is the image of the constant function η0(z) = 1 under the Bargmann transform,
that is, Bη0 = �0. Therefore, the Bargmann transform restricted to zF2 is a unitary
operator from zF2 onto L⊥0 . In conclusion, the restriction

B̃J̃ : F2 ⊕ zF2 → L2(R)⊕ L⊥0 (5.4)

is a unitary operator from the harmonic Fock space F2 ⊕ zF2 onto L2(R) ⊕ L⊥0 .
Using the operator B̃J̃ defined in Eq. (5.4) and Theorem 3.2, the next result is
obtained.

Theorem 5.2 Let a ∈ L∞(R) be a horizontal symbol. The Toeplitz operator T̃a

acting on the harmonic Fock space F2⊕ zF2 is unitarily equivalent to the operator
B̃J̃ T̃aJ̃ B̃

∗ : L2(R)⊗ L⊥0 → L2(R)⊕ L⊥0 given by the matrix-valued operator

(
γaI Aa

Aa − (�0 ⊗ �0)γa (I − �0 ⊗ �0)γaI

)

,

where

Aaϕ(x) = π−1/2
∫

R

a

(
x + y√

2

)

e−
x2+y2

2 ϕ(y)dy,

and γa is given in Eq. (5.1).

Proof Since a is horizontal then â = a, BTaB
∗ = γaI and BTâB

∗ = γaI , from
Theorem 3.2 and Eq. (5.1). Therefore, it suffices to prove that BPJaB∗ = Aa and
B(1⊗ 1)aB∗ = (�0 ⊗ �0)γaI .

First, by direct calculations using Eq. (2.4) we have

BPJaB∗ = B(B∗B)JaB∗ = B∗0U3JaU
∗
3B0.
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Since

U3JaU
∗
3ϕ(x, y) = a

(
x + y√

2

)

ϕ(y, x),

then

B∗0U3JaU
∗
3B0ϕ(x) = π−1/2

∫

R

a

(
x + y√

2

)

ϕ(y)e−
x2+y2

2 dy.

In conclusion

BPJaB∗ = π−1/2
∫

R

a

(
x + y√

2

)

ϕ(y)e−
x2+y2

2 dy.

On the other hand, we notice that 1⊗ 1 = PP = PP . Thus

1⊗ 1 = PJPJ = JPJP.

Therefore,

B(1⊗ 1)aJB∗ = BPJPJaB∗ = BJPJB∗BPaB∗ = BJPJB∗γaI.

Since B∗ϕ ∈ F2 for every ϕ ∈ L2(R), it follows that BJPJB∗ = BJPJPB∗ =
B(1⊗ 1)B∗ = �0 ⊗ �0, and then

B(1⊗ 1)aB∗ = (�0 ⊗ �0)γaI.

Which is what we wanted to prove. ��
Theorem 5.1 obviously implies that the commutator of two Toeplitz operators

with horizontal symbols acting on the Fock space is compact. The same result holds
for Toeplitz operators with this kind of symbols acting on the harmonic Fock space.
Indeed, �0 ⊗ �0 is clearly compact. In addition, the operator Aa is compact since it
is an integral operator which kernel is a square integrable function. Therefore, every
Toeplitz operator T̃a with horizontal symbol is unitary equivalent to

B̃J̃ T̃aJ̃ B̃
∗ =

(
γaI 0
0 (I − �0 ⊗ �0)γa

)

+K,

where K is a compact operator. Observe that (I − �0 ⊗ �0) is the orthogonal
projection from L2(R) onto L⊥0 . Thus, up to compact perturbation, the last formula
cannot be reduced. Using that the restriction of a compact operator is also a compact
operator, it is easy to conclude that the commutator is compact.
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Proposition 5.3 Given two horizontal symbols a, b ∈ L∞(R), the commutator
[T̃a, T̃b] = T̃aT̃b − T̃bT̃a is compact. However, the semicommutator [T̃a, T̃b) =
TaTb − Tab is not compact in general.

Proof It suffices to give an example of two Toeplitz operators with no compact
semicommutator. Let a and b be the characteristic functions of the intervals [0,∞)

and (−∞, 0], respectively. Since ab = 0, then γab = 0, and T̃ab = 0. By direct
calculations we have that γa(x) = 1

2 (1+ erf(x)) and γb(x) = 1
2 (1− erf(x)), where

erf(x) is the error function

erf(x) = 2√
π

∫ x

0
e−t2

dt.

Thus γaγb(x) = 1
4 (1− erf2(x)). From Theorem 5.2 and the discussion above

B̃J̃ T̃aT̃bJ̃ B̃
∗ = B̃J̃ T̃aJ̃ B̃

∗B̃J̃ T̃bJ̃ B̃
∗

=
(

1
4 (1− erf2(x))I +K1,1 K1,2

K2,1 R +K2,2

)

, (5.5)

where

R = (I − �0 ⊗ �0)
1

2
(1+ erf(x))I (I − �0 ⊗ �0)

1

2
(1− erf(x))I,

and

K1,1 = Aa(Ab − (�0 ⊗ �0)γbI),

K1,2 = γaIAb + Aa(I − �0 ⊗ �0)γbI,

K2,1 = (Aa − (�0 ⊗ �0)γaI)γbI + (I − �0 ⊗ �0)γaI (Ab − (�0 ⊗ �0)γbI),

K2,2 = (Aa − (�0 ⊗ �0)γaI)Ab,

are compact operators.
The operator given in Eq. (5.5) cannot be compact since this would imply that

the multiplication operator 1
4 (1− erf2(x))I is compact. ��

Throughout this work, we will denote as K the ideal of compact operators on
the Hilbert space under study. To analyze the C∗-algebra T̃ (L∞(R)) generated
by Toeplitz operators with horizontal symbols acting on H2, we identify it with
B̃J̃ T̃ (L∞(R))J̃ B̃∗. Recall that Cb,u(R) is the C∗-algebra of bounded and uni-
formly continuous functions with respect to the standard metric on R.

Theorem 5.4 The sequence

0 → K→ B̃J̃ T̃ (L2(R))J̃ B̃∗ +K �−→ Cb,u(R)→ 0,
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is a short exact sequence. Then, the quotient algebra (B̃J̃ T̃ (L2(R))J̃ B̃∗ + K)/K
is C∗-isomorphic to Cb,u(R), where � is the Fredholm symbol acting on the
generators in the following form

(
γaI Aa

Aa − (�0 ⊗ �0)γa (I − �0 ⊗ �0)γa

)

�→ γa

Proof Denote by R0 the ∗-algebra generated by the set B̃J̃ T̃ (L2(R))J̃ B̃∗ + K :
a ∈ L∞(R),K ∈ K}. Every element 
 ∈ R0 has the form


 =
(
γ I 0
0 (I − �0 ⊗ �0)γ I

)

+
(
K1 K2

K3 K4

)

,

where γ ∈ Cb,u(R) and Kj , j = 1, 2, 3, 4, are compact operators.
We define � on R0 as follows

�(
) = γ.

Note that � is a ∗-homomorphism from R0 to Cb,u(R).
To prove that � is bounded, we notice that for every 
 ∈ R0,

‖
‖2 =
∥
∥
∥
∥
∥
∥

(
γ I +K1 K2

K3 (I − �0 ⊗ �0)γ I +K4

)∥
∥
∥
∥
∥
∥

2

≥
∥
∥
∥
∥
∥
∥

(
γ I +K1 K2

K3 γ I +K4

)(
f

0

)∥
∥
∥
∥
∥
∥

2

= ‖(γ I +K1)f ‖2 + ‖K3f ‖2

≥ ‖(γ I +K1)f ‖2,

for every f ∈ L2(R) with ‖f ‖= 1. Therefore,

‖
‖≥ sup
‖f ‖=1

‖(γ I +K1)f ‖= ‖γ I +K1‖ ≥ inf
K∈K

‖γ I +K‖ = ‖γ ‖∞.

The last equality is true since the quotient (Cb,u(R) + K))/K is C∗-isomorphic to
Cb,u(R). Thus, ‖γ ‖∞= inf

K∈K
‖γ I +K‖.

In conclusion, ‖�(
)‖ = ‖γ ‖∞ ≤ ‖
‖, and we can extend � to a bounded
∗-homomorphism from B̃J̃ T̃ (L2(R))J̃ B̃∗ +K to Cb,u(R), also denoted by �.
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Let A0 be the ∗-algebra generated by {γa : a ∈ L∞(R)}. Thus, for every γ0 ∈
Cb,u(R) there is a sequence {γn}n∈N ⊂ A0 such that ‖γ0 − γn‖∞→ 0, when n →
∞. Note that for every γ ∈ Cb,u(R) we have that

∥
∥
∥
∥
∥
∥

(
γ I 0
0 (I − �0 ⊗ �0)γ I

)(
f

g

)∥
∥
∥
∥
∥
∥

2

≤ ‖γf ‖2+(‖γg‖ + ‖(�0 ⊗ �0)γg‖)2

≤ 4‖γ ‖2∞(‖f ‖2+‖g‖2),

which implies that

∥
∥
∥
∥
∥
∥

(
γ I 0
0 (I − �0 ⊗ �0)γ I

)∥
∥
∥
∥
∥
∥
≤ 2‖γ ‖∞.

Therefore
∥
∥
∥
∥
∥
∥

(
(γ0 − γn)I 0

0 (I − �0 ⊗ �0)(γ0 − γn)I

)∥
∥
∥
∥
∥
∥
≤ 2‖γ0 − γn‖∞ → 0,

when n→∞. Since for every n ∈ N

(
γnI 0

0 (I − �0 ⊗ �0)γnI

)

belongs to R0 then

(
γ0I 0
0 (I − �0 ⊗ �0)γ0I

)

is in BT̃ (L2(R))B∗ + K. In conclusion, γ ∈ �(B̃J̃ T̃ (L2(R))J̃ B̃∗ + K) and � is
surjective.

Obviously K ⊆ ker(�), then it is enough to prove that ker(�) ⊆ K. Let 
0 ∈
ker(�). Then there is a sequence


n =
(
γnI 0

0 (I − �0 ⊗ �0)γnI

)

+Kn ∈ R0,

where Kn are compact operators, such that 
n → 
0 when n → ∞. Then, to see
that 
0 ∈ K it is sufficient to prove that γn → 0 when n → ∞. But this is clear
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since by definition,

lim
n→∞ γn = lim

n→∞�(
n)

= �(
0)

= 0.

This completes the proof. ��
Corollary 5.5 The Fredholm symbol algebra of T̃ (L∞(R)), i.e., the image of
T̃ (L∞(R)) in the Calkin algebra

SymT̃ (L∞(R)) = (T̃ (L∞(R))+K)/K = T̃ (L∞(R))/(T̃ (L∞(R)) ∩K),

where K is the ideal of compact operators, is C∗-isomorphic to Cb,u(R). Under this
identification the Fredholm symbol map

sym : T̃ (L∞(R))→ C(b,u)(R)

is generated by the following map

sym(T̃a) = γa.

As an immediate consequence, we have that the essential spectrum ess− sp(T̃a)
of a Toeplitz operator T̃a with horizontal symbol a acting on the harmonic Fock
space H2 is given by the next formula

ess− sp(T̃a) = γa(R).

where γa is given in Eq. (5.1).
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1 Introduction and Main Results

The theory of bounded linear operators in spaces of analytic functions has been
intensively developed since the 1980s. In particular, the general theory of operators
on the Bargmann-Segal-Fock space (for the sake of brevity, we will say just
“Fock space”) is explained in the book of Zhu [36]. Nevertheless, the complete
understanding of the spectral properties is achieved only for some special classes
of operators, in particular, for Toeplitz operators with generating symbols invariant
under some group actions, see Vasilevski [34], Grudsky et al. [11], Dawson et al. [8].
The simplest class of this type consists of Toeplitz operators with bounded radial
generating symbols. Various properties of these operators (boundedness, compact-
ness, and eigenvalues) have been studied by many authors, see [13, 20, 24, 37]. The
C*-algebra generated by such operators was explicitly described in [12, 32] for the
nonweighted Bergman space, in [6, 15] for the weighted Bergman space, and in [10]
for the Fock space. Loaiza and Lozano [21, 22] studied radial Toeplitz operators in
harmonic Bergman spaces.

The spaces of polyanalytic functions, related with Landau levels, have been used
in mathematical physics since 1950s; let us just mention a couple of recent papers:
[3, 14]. A connection of these spaces with wavelet spaces and signal processing is
shown by Abreu [1] and Hutník [16, 17]. Various mathematicians contributed to
the rigorous mathematical theory of square-integrable polyanalytic functions. Our
research is based on results and ideas from [2, 4, 5, 30, 33].

Hutník, Hutníková, Ramírez-Ortega, Sánchez-Nungaray, Loaiza, and other
authors [18, 19, 23, 26, 29] studied vertical and angular Toeplitz operators in
polyanalytic and true-polyanalytic spaces, Bergman and Fock. In particular, vertical
Toeplitz operators in the n-analytic Bergman space over the upper half-plane are
represented in [26] as n × n matrices whose entries are continuous functions on
(0,+∞), with some additional properties at 0 and +∞.

Recently, Rozenblum and Vasilevski [27] investigated Toeplitz operators with
distributional symbols and showed that Toeplitz operators in true-polyanalytic Fock
spaces are equivalent to some Toeplitz operators with distributional symbols in the
analytic Fock space.

In this paper, we analyze radial operators in Fock spaces of polyanalytic or true-
polyanalytic functions. We denote by μ the Lebesque measure on the complex plane
and by γ the Gaussian measure on the complex plane:

dγ (z) = 1

π
e−|z|2 dμ(z).

In what follows, we principally work with the space L2(C, γ ) and its subspaces,
and denote its norm by ‖ · ‖. A very useful orthonormal basis in L2(C, γ ) is formed
by complex Hermite polynomials bj,k , j, k ∈ N0 := {0, 1, 2, . . .}; see Sect. 2.

Given n in N := {1, 2, . . .}, let Fn be the subspace of L2(C, γ ) consisting of all
n-analytic functions belonging to L2(C, γ ). It is known that Fn is a closed subspace
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of L2(C, γ ); moreover, it is a RKHS (reproducing kernel Hilbert space). We denote
by F(n) the orthogonal complement of Fn−1 in Fn.

For every τ in T := {z ∈ C : |z| = 1}, let Rn,τ be the rotation operator acting in
Fn by the rule

(Rn,τ f )(z) := f (τ−1z).

The family (Rn,τ )τ∈T is a unitary representation of the group T in the space Fn. We
denote by Rn the commutant of {Rn,τ : τ ∈ T} in B(Fn), i.e. the von Neumann
algebra that consists of all bounded linear operators acting in Fn that commute
with Rn,τ for every τ in T. In other words, the elements of Rn are the operators
intertwining the representation (Rn,τ )τ∈T of the group T. The elements of Rn are
called radial operators in Fn.

In a similar manner, we denote by R(n),τ the rotation operators acting in F(n) and
by R(n) the von Neumann algebra of radial operators in F(n).

The principal tool in the study of Rn is the following orthogonal decomposition
of Fn:

Fn =
⊕

d=−n+1

Dd,min{n,n+d}. (1)

Here the “truncated diagonal subspaces” Dd,m are defined as the linear spans of
bj,k with j − k = d and 0 ≤ j, k < m. Another description of Dd,m is given in
Proposition 3.7.

The main results of this paper are explicit decompositions of the von Neumann
algebras Rn and R(n) into direct sums of factors. The symbol ∼= means that the
algebras are isometrically isomorphic.

Theorem 1.1 Let n ∈ N. Then Rn consists of all operators belonging to B(Fn)

that act invariantly on the subspaces Dd,min{n,n+d}, for d ≥ −n+ 1. Furthermore,

Rn
∼=

∞⊕

d=−n+1

B(Dd,min{n,n+d}) ∼=
∞⊕

d=−n+1

Mmin{n,n+d}.

Theorem 1.2 Let n ∈ N. Then R(n) consists of all operators belonging to B(F(n))

that are diagonal with respect to the orthonormal basis (bp,n−1)
∞
p=0. Furthermore,

R(n)
∼= �∞(N0).

In particular, Theorems 1.1 and 1.2 imply that the algebra Rn is noncommutative
for n ≥ 2, whereas R(n) is commutative for every n in N.

In Sect. 2 we recall the main properties of the complex Hermite polynomials
bp,q . In Sect. 3 we give direct proofs of the principal properties of the spaces Fn

and F(n). Section 4 contains some general remarks about unitary representations



280 E. A. Maximenko and A. M. Tellería-Romero

in RKHS, given by changes of variables. Section 5 deals with radial operators,
describes the von Neumann algebra of radial operators in L2(C, γ ), and proves
Theorems 1.1 and 1.2. Finally, in Sect. 6 we make some simple observations about
Toeplitz operators generated by bounded radial functions and acting in the spaces
Fn and F(n).

Another natural method to prove (1) and Theorems 1.1, 1.2 is to represent
L2(C, γ ) as the tensor productL2(T, dμT )⊗L2([0,+∞), e−r2

2r dr) and to apply
the Fourier transform of the group T. We prefer to work with the canonical basis
because this method seems more elementary.

Comparing our Theorem 1.1 with the main results of [23, 26, 29], we would like
to point out three differences.

1. We study the von Neumann algebra Rn of all radial operators, instead of C*-
algebras generated by Toeplitz operators with radial symbols (such C*-algebras
can be objects of study in a future).

2. The dual group of T is the discrete group Z, therefore matrix sequences appear
instead of matrix functions.

3. In [23, 26, 29], all matrices have the same order n, whereas in our Theorem 1.1
the matrices have orders 1, 2, . . . , n− 1, n, n, . . ..

2 Complex Hermite Polynomials

Most results of Sects. 2 and 3 are well known to experts [2, 5, 33]. Nevertheless, our
proofs are more direct than the ideas found in the bibliography.

Given a function f : C → C, continuously differentiable in the R2-sense, we

define A†f and A
†
f by

A†f =
(

z− ∂

∂z

)

f = − ez z
∂

∂z

(
e−z z f

)
,

A
†
f =

(

z− ∂

∂z

)

f = − ez z
∂

∂z

(
e−z z f

)
.

The operators A† and A
†

are known as the (nonnormalized) creation operators with
respect to z and z, respectively. For every p, q in N0, denote by mp,q the monomial
function mp,q(z) := zp zq . Following Shigekawa [30, Section 7] we define the
normalized complex Hermite polynomials as

bp,q := 1√
p! q! (A

†)q(A
†
)pm0,0 (p, q ∈ N0). (2)

Notice that [30] defines complex Hermite polynomials without the factor 1√
p! q! .

These polynomials appear also in Balk [5, Section 6.3]. Let us show explicitly some
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of them:

b0,0(z) = 1, b0,1(z) = z, b0,2(z) = 1√
2
z2,

b1,0(z) = z, b1,1(z) = |z|2 − 1, b1,2(z) = 1√
2
z(|z|2 − 2),

b2,0(z) = 1√
2
z2, b2,1(z) = 1√

2
z(|z|2 − 2), b2,2(z) = 1

2 (|z|4 − 4|z|2 + 2).

For every p, α in N0, we denote by L
(α)
p the associated Laguerre polynomial. Recall

the Rodrigues formula, the explicit expression, and the orthogonality relation for
these polynomials:

L(α)
n (x) = x−α ex

n!
dn

dxn
(
e−x xn+α

)
, (3)

L(α)
n (x) =

n∑

k=0

(−1)k
(
n+ α

n− k

)
xk

k! , (4)

∫ +∞

0
L(α)
n (x)L(α)

m (x) xα e−x dx = (n+ α)!
n! δm,n. (5)

Lemma 2.1 Let n, α ∈ N. Then

exy
∂n

∂xn

(
e−xy xn+α

) = n! xαL(α)
n (xy). (6)

Proof Apply Rodrigues formula (3) and the chain rule:

∂n

∂xn

(
e−xy(xy)n+α

) = n! e−xy(xy)αL(α)
n (xy) yn.

Canceling the factor yn+α in both sides yields (6). ��
Proposition 2.2 For every p, q in N0,

bp,q(z) =

⎧
⎪⎨

⎪⎩

√
q!
p! (−1)q zp−qL(p−q)

q (|z|2), if p ≥ q;
√

p!
q! (−1)p zq−pL(q−p)

p (|z|2), if p ≤ q.

(7)

In other words,

bp,q =
√

min{p, q}!
max{p, q}!

min{p,q}∑

s=0

(
max{p, q}

s

)
(−1)s

(min{p, q} − s)!mp−s,q−s . (8)
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Proof Let p, q ∈ N0, p ≥ q . Notice that ∂
∂z
|z|2 = ∂

∂z
(z z) = z. By (2) and (6),

bp,q(z) = (−1)p+q√
p! q! ezz

∂q

∂zq

∂p

∂zp
e−zz

= (−1)q√
p! q! ezz

∂q

∂zq

(
e−zz zp

) =
√

q!
p! (−1)qzp−qL(p−q)

q (z z).

In the case when p ≤ q , we first notice that the operatorsA† and A
†

commute on the
space of polynomial functions. Reasoning as above, but swapping the roles of z and
z, we arrive at the second case of (7). Finally, with the help of (4), we pass from (7)
to (8). Formula (8) can also be derived directly from (2), by applying mathematical
induction and working with binomial coefficients. ��

Denote by �
(α)
m the normalized Laguerre function:

�(α)m (t) :=
√

m!
(m+ α)! t

α/2 e−t/2 L(α)
m (t) (m, α ∈ N0). (9)

Corollary 2.3 For every p, q in N0,

bp,q(rτ ) = (−1)min{p,q}τp−q er
2/2 �

(|p−q|)
min{p,q}(r

2) (r ≥ 0, τ ∈ T). (10)

It is convenient to treat the family (mp,q)p,q∈N0 as an infinite table, and to think
in terms of its columns or diagonals (parallel to the main diagonal). Given d in Z and
n in N0, let Dd,n be the subspace of L2(C, γ ) generated by the first n monomials in
the diagonal with index d:

Dd,n := span{mp,q : p, q ∈ N0, min{p, q} < n, p − q = d}.

Proposition 2.4 The family (bp,q)p,q∈N0 is an orthonormal basis of L2(C, γ ).
This family can be obtained from (mp,q)

∞
p,q=0 by applying the Gram–Schmidt

orthogonalization.

Proof

1. The orthonormality is easy to verify by passing to polar coordinates and using (7)
with the orthogonality relation (5).

2. Formula (8) tells us that the functions bp,q are linear combinations of mp−s,q−s
with 0 ≤ s ≤ min{p, q}. Inverting these formulas, mp,q results a linear
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combination of bp−s,q−s with 0 ≤ s ≤ min{p, q}. So, for every d in Z and
every n in N0,

Dd,n = span{bp,q : p, q ∈ N0, min{p, q} < n, p − q = d}. (11)

Jointly with the orthonormality of (bp,q)
∞
p,q=0, this means that the family

(bp,q)
∞
p,q=0 is obtained from (mp,q)

∞
p,q=0 by applying the orthogonalization in

each diagonal.
3. Due to 2, it is sufficient to prove that the polynomials in z and z form a dense

subset of L2(C, γ ). Notice that the set of polynomial functions in z and z

coincides with the set of polynomial functions in Re(z) and Im(z). Suppose that
f ∈ L2(C, γ ) and f is orthogonal to the polynomials Re(z)j Im(z)k for all j, k
in N0. Denote by g the function g(x, y) = f (x + i y) e−x2−y2

and consider its
Fourier transform:

ĝ(u, v) =
∫

R2
e−2π i(xu+yv) f (x + i y) e−x2−y2

dx dy

=
∞∑

j=0

∞∑

k=0

(−2π iu)j (−2π i v)k

j ! k!
∫

R2
xj ykf (x + i y) e−x2−y2

dx dy = 0.

By the injective property of the Fourier transform, we conclude that g vanishes
a.e. As a consequence, f also vanishes a.e. ��

Remark 2.5 The second part of the proof of Proposition 2.4 implies that for every
d in Z, every q ≥ max{0,−d} every k in Z with max{0,−d} ≤ k ≤ q ,

〈md+k,k, bd+q,q〉 =
⎧
⎨

⎩

√
q! (d + q)!, k = q;

0, k < q.
(12)

Formula (11) means that the first n elements in the diagonal d of the table
(bp,q)p,q∈N0 generate the same subspace as the first n elements in the diagonal d of
the table (mp,q)p,q∈N0 . For example,

D−1,3 = span{m0,1,m1,2,m2,3} = span{b0,1, b1,2, b2,3},
D2,2 = span{m2,0,m3,1} = span{b2,0, b3,1}.

In the following tables we show generators of D2,2 (green) and D−1,3 (blue).
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m0,0 m0,1 m0,2 m0,3 m0,4
. . .

m1,0 m1,1 m1,2 m1,3 m1,4
. . .

m2,0 m2,1 m2,2 m2,3 m2,4
. . .

m3,0 m3,1 m3,2 m3,3 m3,4
. . .

m4,0 m4,1 m4,2 m4,3 m4,4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

b0,0 b0,1 b0,2 b0,3 b0,4
. . .

b1,0 b1,1 b1,2 b1,3 b1,4
. . .

b2,0 b2,1 b2,2 b2,3 b2,4
. . .

b3,0 b3,1 b3,2 b3,3 b3,4
. . .

b4,0 b4,1 b4,2 b4,3 b4,4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

Given d in Z, we denote by Dd the closure of the subspace of L2(C, γ ) generated
by the monomials mp,q , where p − q = d:

Dd := clos
(
span{mp,q : p, q ∈ N0, p − q = d}).

Proposition 2.4 implies the following properties of the “diagonal subspaces” Dd ,
d ∈ Z.

Corollary 2.6 The sequence (bq+d,q)∞q=max{0,−d} is an orthonormal basis of Dd .

Corollary 2.7 The space Dd consists of all functions of the form

f (rτ ) = τdh(r2) (r ≥ 0, τ ∈ T), where h ∈ L2([0,+∞), e−x dx).
(13)

Moreover, ‖f ‖ = ‖h‖L2([0,+∞),e−x dx).

Corollary 2.8 The space L2(C, γ ) is the orthogonal sum of the subspaces Dd :

L2(C, γ ) =
⊕

d∈Z
Dd . (14)

Here we show the generators of D1 (green) and D−2 (blue):

m0,0 m0,1 m0,2 m0,3
. . .

m1,0 m1,1 m1,2 m1,3
. . .

m2,0 m2,1 m2,2 m2,3
. . .

m3,0 m3,1 m3,2 m3,3
. . .

. . .
. . .

. . .
. . .

. . .

b0,0 b0,1 b0,2 b0,3
. . .

b1,0 b1,1 b1,2 b1,3
. . .

b2,0 b2,1 b2,2 b2,3
. . .

b3,0 b3,1 b3,2 b3,3
. . .

. . .
. . .

. . .
. . .

. . .
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3 Bargmann–Segal–Fock Spaces of Polyanalytic Functions

Fix n in N. Let Fn be the space of n-polyanalytic functions belonging to L2(C, γ ),
and F(n) be the true-n-polyanalytic Fock space defined in [33] by

F(n) := {f ∈ Fn : f ⊥ Fn−1}.

Proposition 3.1 Let R > 0. Then there exists a number Cn,R > 0 such that for
every f in Fn and every z in C with |z| ≤ R,

|f (z)| ≤ Cn,R‖f ‖. (15)

Proof Let Pn be the polynomial in one variable of degree ≤ n− 1 such that

∫ 1

0
Pn(x)x

j dx = δj,0 (j ∈ {0, . . . , n− 1}). (16)

The existence and uniqueness of such a polynomial follows from the invertibility of

the Hilbert matrix
[
1/(j + k + 1)

]n−1
j,k=0. Put

Cn,R :=
(

max
x∈[0,1] |Pn(x)|

) (
1

π

∫

(R+1)D
e|w|2 dμ(w)

)1/2

.

Let f ∈ Fn and z ∈ C, with |z| ≤ R. It is known [5, Section 1.1] that f can be
expanded into a uniformly convergent series of the form

f (w) =
∞∑

j=0

n−1∑

k=0

αj,k(w − z)j (w − z)k,

where αj,k are some complex numbers. Using the change of variables w = z+r ei ϑ

and the property (16), we obtain the following version of the mean value property
of polyanalytic functions:

f (z) = 1

π

∫

z+D
f (w)Pn(|w − z|2) dμ(w). (17)

After that, estimating |Pn| by its maximum value, multiplying and dividing by
e|w|2/2, and applying the Schwarz inequality, we arrive at (15). ��
Remark 3.2 The constant Cn,R , found in the proof of Proposition 3.1, is not
optimal. The exact upper bound for the evaluation functionals in Fn is given in
Corollary 3.16.
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Proposition 3.3 Fn is a RKHS.

Proof Let (gn)n∈N be a Cauchy sequence in Fn. By Proposition 3.1, this sequence
converges pointwise on C and uniformly on compacts to a function f . By [5,
Corollary 1.8], the function f is n-analytic. On the other hand, let h be the limit
of the sequence (gn)n∈N in L2(C, γ ). Then for every compact K in C, the sequence
of the restrictions gn|K converges in the L2(K, γ )-norm simultaneously to f |K and
to h|K . Therefore h coincides with f a.e. and f ∈ L2(C, γ ), i.e. f ∈ Fn. So, Fn

is a Hilbert space. The boundedness of the evaluation functionals is established in
Proposition 3.1. ��
Proposition 3.4 The family (bp,q)p∈N0,q<n is an orthonormal basis of Fn.

Proof We already know that this family is contained in Fn and is orthonormal. Let
us verify the total property. Our reasoning uses ideas of Ramazanov [25, proof of
Theorem 2].

Suppose that f ∈ Fn and 〈f, bp,q〉 = 0 for every p ∈ N0, q < n. We have to
show that f = 0. By the decomposition of polyanalytic functions [5, Section 1.1],
there exists a family of numbers (αj,k)j∈N0,k<n such that

f (z) =
n−1∑

k=0

∞∑

j=0

αj,kmj,k(z),

where each of the inner series converges pointwise on C and uniformly on compacts.
For every ν in N0, we denote by Sν the partial sum Sν := ∑n−1

k=0
∑ν

j=0 αj,kmj,k .
Given r > 0, the sequence (Sν)ν∈N0 converges to f uniformly on rD. For every
p, q in N0 with q < n, using the orthogonality on rD between bp,q and mj,k with
j − k 	= p − q , we obtain

∫

rD

f bp,q dγ = lim
ν→∞

∫

rD

Sν bp,q dγ =
n−1∑

k=0

αk+p−q,k
∫

rD

mk+p−q,kbp,q dγ.

The functions f bp,q and mk+p−q,k bp,q are integrable on C with respect to the
measure γ . Therefore their integrals over C are the limits of the corresponding
integrals over rD, as r tends to infinity. Since 〈f, bp,q〉 = 0, the coefficients αj,k
must satisfy the following infinite system of homogeneous linear equations:

n−1∑

k=0

〈mk+p−q,k, bp,q〉αk+p−q,k = 0 (p ∈ N0, 0 ≤ q < n). (18)
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Now we fix d > −n and restrict ourselves to the equations (18) with p − q = d ,
which yields an s×s system represented by the matrix Md , where s = min{n, n+d},
and

Md :=
[〈md+k,k, bd+q,q〉

]n−1
q,k=max{0,−d} .

By (12), Md is an upper triangular matrix with nonzero diagonal entries, hence Md

is invertible. So, all coefficients αj,k are zero. ��
Corollary 3.5 F(n) is a RKHS, and the sequence (bp,n−1)p∈N0 is an orthonormal
basis of F(n).

We denote by Pn and P(n) the orthogonal projections acting in L2(C, γ ), whose
images are Fn and F(n), respectively. They can be explicitly defined in terms of the
corresponding reproducing kernels:

(Pnf )(z) = 〈f,Kn,z〉, (P(n)f )(z) = 〈f,K(n),z〉.

Corollary 3.6 If f ∈ Fn, then

f =
∞∑

j=0

n−1∑

k=0

〈f, bj,k〉bj,k,

where the series converges in the L2(C, γ )-norm and uniformly on compact sets. In
particular, if f ∈ F(n), then

f =
∞∑

j=0

〈f, bj,n−1〉bj,n−1. (19)

For example, (bp,2)p∈N0 is an orthonormal basis of F(3), and (bp,q)p∈N0,q<3 is
an orthonormal basis of F3:

b0,0 b0,1 b0,2 b0,3 . . .

b1,0 b1,1 b1,2 b1,3 . . .

b2,0 b2,1 b2,2 b2,3 . . .

b3,0 b3,1 b3,2 b3,3 . . .
...

...
...

...
. . .

b0,0 b0,1 b0,2 b0,3 . . .

b1,0 b1,1 b1,2 b1,3 . . .

b2,0 b2,1 b2,2 b2,3 . . .

b3,0 b3,1 b3,2 b3,3 . . .
...

...
...

...
. . .

Using Proposition 3.4, Corollary 2.6, and formula (11) gives

Dd ∩ Fn =
⎧
⎨

⎩

Dd,min{n,n+d}, d ≥ −n+ 1;
{0}, d < −n+ 1.

(20)

Here is a description of the subspaces Dd,m in terms of the polar coordinates.
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Proposition 3.7 For every m in N0 and every d in Z with d ≥ −m + 1, the space
Dd,m consists of all functions of the form

f (rτ ) = τdr |d |Q(r2) (r ≥ 0, τ ∈ T),

where Q is a polynomial of degree ≤ m− 1. Moreover,

‖f ‖ = ‖Q‖L2([0,+∞),x |d| e−x dx).

Proof Apply formula (11) and the orthonormality of the polynomials L(|d |)
k in the

space L2([0,+∞), x |d | e−x dx). ��
The decomposition of Fn into a direct sum of “truncated diagonals” shown below

follows from Proposition 3.4 and plays a crucial role in the study of radial operators.

Proposition 3.8

Fn =
∞⊕

d=−n+1

Dd,min{n,n+d}. (21)

Let us illustrate Proposition 3.8 for n = 3 with a table (we have marked in
different shades of blue the basic functions that generate each truncated diagonal):

b0,0 b0,1 b0,2 b0,3 . . .

b1,0 b1,1 b1,2 b1,3 . . .

b2,0 b2,1 b2,2 b2,3 . . .

b3,0 b3,1 b3,2 b3,3 . . .
...

...
...

...
. . .

The upcoming fact was proved by Vasilevski [33]. We obtain it as a corollary from
Proposition 2.4 and Corollary 3.5.

Corollary 3.9 The space L2(C, γ ) is the orthogonal sum of the subspaces F(m),
m ∈ N:

L2(C, γ ) =
⊕

m∈N
F(m).

For every f in F(n), define A†
nf by

(A†
nf )(z) =

1√
n
(A†f )(z) = 1√

n

(

z− ∂

∂z

)

f (z).
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Definition (2) of the family (bp,q)p,q∈N0 implies that

A†
nbp,n−1 = bp,n. (22)

The next picture shows the action of A†
2 on basic elements:

b0,0 b0,1 �→ b0,2 b0,3 . . .

b1,0 b1,1 �→ b1,2 b1,3 . . .

b2,0 b2,1 �→ b2,2 b2,3 . . .

b3,0 b3,1 �→ b3,2 b3,3 . . .
...

...
...

...
. . .

Proposition 3.10 A
†
n is an isometric isomorphism from F(n) onto F(n+1).

Proof Vasilevski [33] proved this fact by using the Fourier transform. Here we give
another proof. Write f as in (19). It is known [5, Corollary 1.9] that the derivative
∂
∂z

can be applied to the each term of the series. Therefore

A†
nf =

∞∑

j=0

〈f, bj,n−1〉A†
nbj,n−1 =

∞∑

j=0

〈f, bj,n−1〉 bj,n,

and ‖A†
nf ‖ = ‖f ‖. Also, using the decomposition into series, we see that A†

n is
surjective. ��

Now we are going to prove explicit formulas (26) and (27) for the reproducing
kernels of F(n) and Fn, respectively. These formulas were published by Balk [5,
Section 6.3], without using the terminology of Laguerre polynomials, and by Askour
et al. [4], though they defined the space F(n) in a different (but equivalent) way. Our
proof uses the operators A†

n and thereby continues the work of Vasilevski [33].

Lemma 3.11 Let H be a RKHS and (ej )
∞
j=0 be an orthonormal sequence in H .

Then the series
∑∞

j=0 |ej (z)|2 converges.

Proof Denote by KH,z the reproducing kernel of H . From the reproducing property
and Bessel’s inequality,

∞∑

j=0

|ej (z)|2 =
∞∑

j=0

|〈KH,z, ej 〉|2 ≤ ‖KH,z‖2 = KH,z(z) <∞. ��
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Lemma 3.12 For every n in N0 and every z,w in C,

K(n+1),z(w) = 1

n

(

z− ∂

∂z

) (

w − ∂

∂w

)

K(n),z(w). (23)

Proof It is well known that the reproducing kernel of a RKHS H with an
orthonormal basis (ej )j∈N0 can be derived from the series

KH,z(w) =
∞∑

j=0

ej (z)ej (w). (24)

In our case, we use the orthonormal basis (bp,n)p∈N0 of the space F(n+1). For a
fixed z in C, put αp = bp,n(z). So,

K(n+1),z =
∞∑

p=0

bp,n(z)bp,n =
∞∑

p=0

αpbp,n =
∞∑

p=0

αpA
†
n−1bp,n−1.

From Lemma 3.11 we know that (αp)∞p=0 ∈ �2, thus the series
∑∞

p=0 αpbp,n−1

converges in F(n). Since A
†
n−1 is a bounded operator in F(n), we can interchange it

with the sum operator. Therefore

K(n+1),z(z) = 1√
n

(

w − ∂

∂w

) ∞∑

p=0

bp,n(z)bp,n−1(w).

Now we fix w in C, write bp,n as A
†
n−1bp,n−1, and use the fact that the series

∑∞
p=0 |bp,n−1(w)|2 converges. Following the same ideas as above, but swapping

the roles of z and w, we factorize
(
z − ∂

∂z

)
from the series:

K(n+1),z(w) = 1

n

(

z − ∂

∂z

) (

w − ∂

∂w

) ∞∑

p=0

bp,n−1(z)bp,n−1(w).

The last sum equals K(n),z(w), which yields (23). ��
Corollary 3.13 For every n in N0 and every z,w in C,

K(n),z(w) = 1

(n− 1)!
(

z− ∂

∂z

)n−1 (

w − ∂

∂w

)n−1

ezw. (25)
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Proposition 3.14 The reproducing kernel of F(n) is given by

K(n),z(w) = ezwLn−1(|w − z|2). (26)

Proof Using the definition of creation operators, formula (25) and identity (6) for
Laguerre polynomials we have

K(n),z(w) = ezz

(n− 1)!
∂n−1

∂ zn−1

(

e−zzeww ∂n−1

∂wn−1 (e
−wwewz)

)

= ezz

(n− 1)!
∂n−1

∂ zn−1

(
e−z(z−w)(z−w)n−1

)

= ezw
e(z−w)(z−w)

(n− 1)!
∂n−1

∂(z− w)n−1

(
e−(z−w)(z−w)(z−w)n−1

)

= ezwLn−1(|z−w|2). ��

Corollary 3.15 The reproducing kernel of Fn is

Kn,z(w) = ezwL
(1)
n−1(|w − z|2). (27)

Proof Use (26) and the formula L(1)
m (x) = ∑m−1

k=0 Lk(x). ��
Corollary 3.16 For every f in Fn and every z in C,

|f (z)| ≤ √n e
|z|2

2 ‖f ‖. (28)

The equality is achieved when f = Kn,z.

Proof Indeed, ‖Kn,z‖2 = Kn,z(z) = e|z|2 L(1)
n−1(0) = n e|z|2 . ��

We finish this section with a couple of simple results about the Berezin transform
and Toeplitz operators in Fn. Given a RKHS H over a domain � with a reproducing
kernel (Kz)z∈�, the corresponding Berezin transform BerH acts from B(H) to the
space B(�) of bounded functions by the rule

BerH(S)(z) = 〈SKz,Kz〉H
〈Kz,Kz〉H = (SKz)(z)

Kz(z)
.

Stroethoff proved [31] that BerH is injective for various RKHS of analytic functions,
in particular, for H = F1. Engliš noticed [9, Section 2] that BerH is not injective
for various RKHS of harmonic functions. The reasoning of Engliš can be applied
without any changes to n-analytic functions with n ≥ 2.

Proposition 3.17 Let n ≥ 2. Then BerFn
is not injective.
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Proof Let u and v be some linearly independent elements of Fn such that f , g ∈
Fn. For example, u(z) = b0,0(z) = 1 and v(z) = b1,0(z) = z. Following [9,
Section 2], consider S ∈ B(Fn) given by

Sf := 〈f, u〉v − 〈f, v〉u. (29)

With the help of the reproducing property we easily see that the function BerFn
(S)

is the zero constant, although the operator S is not zero. ��
Given a measure space � and a function g in L∞(�), we denote by Mg the

multiplication operator defined on L2(�) by Mgf := gf . If H is a closed subspace
of L2(�), then the Toeplitz operator TH,g is defined on H by

TH,g(f ) := PH (gf ) = PHMgf.

For H = Fn and H = F(n), we write just Tn,g and T(n),g, respectively.

Proposition 3.18 Let g ∈ L∞(C) and Tn,g = 0. Then g = 0 a.e.

Proof For n = 1, this result was proven in [7, Theorem 4]. Let us recall that proof
which also works for n ≥ 2. The condition Tn,g = 0 implies that for all j, k in N0

〈g,mj,k〉 =
∫

C

g(z) zj zk dγ (z) = 〈gmk,0,mj,0〉 = 〈Tn,gmk,0,mj,0〉 = 0.

Since {mj,k : j, k ∈ N0} is a dense subset of L2(C, γ ), g = 0 a.e. ��

4 Unitary Representations Defined by Changes of Variables

This section states some simple general facts about unitary group representations
in RKHS, defined by changes of variables. Suppose that (�, ν) is a measure space,
H is a RKHS over �, with the inner product inherited from L2(�), (Kz)z∈� is the
reproducing kernel of H , and PH ∈ B(L2(�)) is the orthogonal projection whose
image is H :

(PHf )(z) = 〈f,Kz〉L2(�).

Furthermore, let G be a locally compact group, and α be a group action in �. So,
for every τ in G we have a “change of variables” α(τ) : � → �, which satisfies
α(τ1τ2) = α(τ1)◦α(τ2). Suppose that the function ρ, defined by the following rule,
is a strongly continuous unitary representation of the group G in the space L2(�):

ρ(τ)f := f ◦ α(τ−1) (f ∈ L2(�), τ ∈ G).
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In other words, we suppose that ρ(τ)f ∈ L2(�), ‖ρ(τ)f ‖L2(�) = ‖f ‖L2(�), and
ρ(τ)f depends continuously on τ .

Proposition 4.1 The following conditions are equivalent.

(a) ρ(τ)(H) ⊆ H for every τ in G.
(b) ρ(τ)PH = PHρ(τ) for every τ in G.
(c) The reproducing kernel is invariant under simultaneous changes of variables in

both arguments:

Kα(τ)(z)(α(τ )(w)) = Kz(w) (τ ∈ G, z,w ∈ �).

(d) ρ(τ)Kz = Kα(τ)(z) for every z in � and every τ in G.

Proof Obviously, (a) is equivalent to (b). Suppose (a) and prove (c):

Kα(τ)(z)(α(τ )(w)) = 〈ρ(τ−1)Kα(τ)(z),Kw〉L2(�) = 〈Kα(τ)(z), ρ(τ )Kw〉L2(�)

= (ρ(τ )Kw)(α(τ )(z)) = Kw(z) = Kz(w).

Suppose (c) and prove (d):

(ρ(τ )Kz)(w) = Kz(α(τ
−1)(w)) = Kα(τ)(z)(α(τ )(α(τ

−1)(w))) = Kα(τ)(z)(w).

Suppose (d) and prove (a). Let f ∈ H . Then

(ρ(τ )f )(z) = f (α(τ−1)(z)) = 〈f,Kα(τ−1)(z)〉L2(�)

= 〈ρ(τ)f, ρ(τ )Kα(τ−1)(z)〉L2(�) = 〈ρ(τ)f,Kz〉L2(�). ��
Suppose that conditions (a)–(d) of Proposition 4.1 are fulfilled. For every τ in G

we denote by ρH (τ) the compression of ρ(τ) to the invariant subspace H . Then ρH
is a unitary representation of G in H . Let us relate this unitary representation with
the Berezin transform of operators.

Proposition 4.2 Let S ∈ B(H) and τ ∈ G. Then

BerH (ρH (τ−1)SρH (τ))(z) = BerH(S)(α(τ )(z)) (z ∈ �). (30)

Proof

BerH(ρH (τ−1)SρH (τ))(z) = (ρH (τ−1)SρH (τ)Kz)(z)

Kz(z)

= (SKα(τ)(z)(α(τ )(z))

Kα(τ)(z)(α(τ )(z))
= BerH(S)(α(τ )(z)). ��
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Corollary 4.3 Let S ∈ B(H) such that Sρ(τ) = ρ(τ)S for every τ in G. Then the
function BerH(S) is invariant under α, i.e. BerH(S) ◦ α(τ) = BerH (S) for every τ

in G.

If BerH is injective, then the inverse of the Corollary 4.3 is also true.
The rest of this section does not assume that H has a reproducing kernel; it can

be just a closed subspace of L2(�).
We are going to state some elementary results about the interaction of ρH with

Toeplitz operators. These results are well known for many particular cases; see [8,
Lemma 3.2 and Corollary 3.3] for the case when H is a Bergman space of analytic
functions. Recall that Tg is defined on H by Tgf = PH (gf ).

Lemma 4.4 Let g ∈ L∞(�) and τ ∈ G. Then

Mgρ(τ) = ρ(τ)Mg◦α(τ).

Proof Put u := g ◦ α(τ). Given f in L2(�),

Mgρ(τ)f = (u ◦ α(τ−1)) (f ◦ α(τ−1)) = (uf ) ◦ α(τ−1) = ρ(τ)Muf. ��
Proposition 4.5 Let g ∈ L∞(�) and τ ∈ G. Then

TgρH (τ) = ρH (τ)Tg◦α(τ). (31)

Proof Use Lemma 4.4 and the assumption PHρ(τ) = ρ(τ)PH :

TgρH (τ)f = PHMgρ(τ)f = PHρ(τ)Mg◦α(τ)f

= ρ(τ)PHMg◦α(τ)f = ρH (τ)Tg◦α(τ)f. ��
Corollary 4.6 Let g ∈ L∞(�) such that g ◦ α(τ) = g for every τ in G. Then Tg
commutes with ρH (τ) for every τ in G.

Corollary 4.7 Suppose that the mapping L∞(�) → B(H) defined by a �→ Ta is
injective. Let g ∈ L∞(X) such that Tg commutes with ρH (τ) for every τ in G. Then
g ◦ α(τ) and g coincide a.e. for every τ in G.

5 Von Neumann Algebras of Radial Operators

The methods of this section are similar to ideas from [12, 24, 37]. We start with two
simple general schemes, stated in the context of von Neumann algebras, and then
apply them to radial operators in L2(�, γ ), in Fn, and in F(n). Proposition 5.2
uses the concept of the (bounded) direct sum of von Neumann algebras [28,
Definition 1.1.5].
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Definition 5.1 Let H be a Hilbert space, U be a self-adjoint subset of B(H), and
(Wj )j∈J be a finite or countable family of nonzero closed subspaces of H such
that H = ⊕

j∈J Wj . We say that this family diagonalizes U if the following two
conditions are satisfied.

1. For each j in J and each U in U , there exists λU,j in C such that Wj ⊆
ker(λU,j I − U), i.e. U(v) = λU,j v for every v in Wj .

2. For every j , k in J with j 	= k, there exists U in U such that λU,j 	= λU,k .

Proposition 5.2 Let H , U , and (Wj )j∈J be like in Definition 5.1. Denote by A the
commutant of U . Then

A = {S ∈ B(H) : ∀j ∈ J S(Wj ) ⊆ Wj }, (32)

and A is isometrically isomorphic to
⊕

j∈J B(Wj).

Proof

1. Since U is a self-adjoint subset of B(H), its commutant A is a von Neumann
algebra [35, Proposition 18.1].

2. Notice that if U ∈ U and j ∈ J , then λU∗,j = λU,j . Indeed, for every v in
Wj \ {0}

λU,j‖v‖2
H = 〈λU,j v, v〉H = 〈Uv, v〉H = 〈v, U∗v〉H = 〈v, λU∗,j v〉H = λU∗,j ‖v‖2

H .

3. Let S ∈ A, j ∈ J , f ∈ Wj . We are going to prove that Sf ∈ Wj . If k ∈ J \ {j }
and g ∈ Wk , then there exists U in U such that λU,j 	= λU,k , and

λU,j 〈Sf, g〉H = 〈SUf, g〉H = 〈USf, g〉H = 〈Sf,U∗g〉H = λU,k〈Sf, g〉H .

which implies that 〈Sf, g〉H = 0. Since H = ⊕
k∈H Wj , the vector Sf expands

into the series of the form Sf = ∑
q∈J hq with hk ∈ Wk . For every k in J \ {j },

0 = 〈Sf, hk〉H = 〈hk, hk〉H +
∑

q∈J \{k}
〈hq, hk〉H = ‖hk‖2

H .

Thus, Sf = hj ∈ Wj .
4. Now suppose that S ∈ B(H) and S(Wj ) ⊆ Wj for every j ∈ J . Then for every

U in U , j in J , and g in Wj ,

USg = U(Sg) = λU,j Sg = S(λU,j g) = SUg.

In general, if f in H , then f =∑
j∈J gj with some gj in Wj , and

USf =
∑

j∈J
USgj =

∑

j∈J
SUgj = SUf.
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5. Using (32) we are going to prove that A is isometrically isomorphic to the
direct sum

⊕
j∈J B(Wj). Given S in A, for every j in J we denote by Aj

the compression of S onto the invariant subspace Wj . Then the family (Aj )j∈J
belongs to

⊕
d∈J B(Wd), and ‖S‖ = supj∈J ‖Aj‖.

Conversely, given a bounded sequence (Aj )j∈J with Aj in B(Wj ), we put

S

⎛

⎝
∑

j∈J
gj

⎞

⎠ =
∑

j∈J
Ajgj (gj ∈ Wj).

Then S(Wj ) ⊆ Wj for every j in J , thus S ∈ A. Thereby we have constructed
isometrical isomorphisms between A and

⊕
j∈J B(Wj ). ��

Proposition 5.2 implies that the von Neumann algebra generated by U consists of
all operators that act as scalar operators on each Wj , and can be naturally identified
with

⊕
j∈J CIWj .

Proposition 5.3 Let H , U , and (Wj )j∈J be like in Definition 5.1, and H1 be a
closed subspace of H invariant under U . For every U in U , denote by U1 the
compression of U onto the invariant subspace H1, and put

U1 := {U1 : U ∈ U}, J1 := {j ∈ J : Wj ∩H1 	= {0}}.

Then

H1 =
⊕

j∈J1

(Wj ∩H1), (33)

and the family (Wj ∩H1)j∈J diagonalizes U1.

Proof Denote by P1 the orthogonal projection that acts in H and has image H1.
The condition that H1 is invariant under U means that P1 ∈ A. By (32), for every j

in J the subspace P1(Wj ) is contained in Wj and therefore coincides with Wj ∩H1.
This easily implies (33).

If U ∈ U and j ∈ J , then Wj ∩ H1 ⊆ ker(λU,j IH1 − U1). So, the eigenvalues
λU1,j coincide with λU,j for every j in J1.

If j, k ∈ J1 and j 	= k, then there exists U in U such that λU,j 	= λU,k , which
means that λU1,j 	= λU1,k. ��

5.1 Radial Operators in L2(C, γ )

For each τ in T, denote by Rτ the rotation operator acting in L2(C, γ ):

(Rτf )(z) = f (τ−1z). (34)
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The family (Rτ )τ∈T is a unitary representation of the group T in L2(C, γ ). Notice
that we are in the situation of Sect. 4, with � = C, ν = γ , G = T, α(τ)(z) = τz,
ρ(τ) = Rτ .

Denote by R the set of all radial operators acting in L2(C, γ ):

R = {S ∈ B(L2(C, γ )) : ∀τ ∈ T RτS = SRτ }.

Since the set {Rτ : τ ∈ T} is an autoadjoint subset of B(L2(C, γ )), its commutant
R is a von Neumann algebra.

Lemma 5.4 The family (Dd)d∈Z diagonalizes the collection {Rτ : τ ∈ T} in the
sense of Definition 5.1.

Proof If τ ∈ T and d ∈ Z, then

Dd ⊆ ker(τ−dI − Rτ ). (35)

Indeed, for every p, q ∈ Z with p − q = d the basic function bp,q is an
eigenfunction of Rτ associated to the eigenvalue τ−d :

Rτbp,q = τq−pbp,q = τ−dbp,q, (36)

and by Corollary 2.6 the functions bp,q with p − q = d form an orthonormal basis
of Dd . Another way to prove (35) is to use Corollary 2.7.

If d1, d2 ∈ Z and d1 	= d2, then τ−d1 	= τ−d2 for many values of τ , for example,

for τ = e
iπ

d1−d2 or for τ = e2π iϑ with any irrational ϑ . ��
Proposition 5.5 The von Neumann algebra R consists of all operators that act
invariantly on Dd for every d in Z, and is isometrically isomorphic to

⊕
d∈Z B(Dd).

Proof This is a consequence of Proposition 5.2 and Lemma 5.4. ��
Now we will describe all radial operators of finite rank.

Remark 5.6 It is well known that every linear operator of finite rank m, acting in a
Hilbert space H , can be written in the form

Sf =
m∑

k=1

ξk〈f, uk〉Hvk, (37)

where ξ1, . . . , ξm ∈ C \ {0}, u1, . . . , um and v1, . . . , vm are some orthonormal lists
of vectors in H .

Corollary 5.7 Let m ∈ N and S ∈ B(L2(C, γ )) such that the rank of S is m. Then
S is radial if and only if there exist d1, . . . , dm in Z such that S has the form (37),
where uj , vj , ξj are like in Remark 5.6, and additionally uj , vj ∈ Ddj for every j

in {1, . . . ,m}.
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Proof This is a simple consequence of Proposition 5.5. Suppose that S is radial. For
every d in Z let Ad be the compression of S to Dd . There is only a finite set of d
such that Ad 	= 0. Apply Remark 5.6 to each of the nonzero operators Ad and join
the obtained decompositions. ��

Following Zorboska [37], we will describe radial operators in term of the
“radialization” Rad : B(L2(C, γ ))→ B(L2(C, γ )) defined by

Rad(S) :=
∫

T

RτSRτ−1 dμT(τ ),

where μT is the normalized Haar measure on T. The integral is understood in
the weak sense, i.e. the operator Rad(S) is actually defined by the equality of the
corresponding sesquilinear forms:

〈Rad(S)f, g〉 =
∫

T

〈RτSRτ−1f, g〉 dμT(τ ).

Making an appropriate change of variables in the integral and using the invariance of
the measure μT, we see that Rad(S) ∈ R. This immediately implies the following
criterion of radial operators in terms of the radialization.

Proposition 5.8 Let S ∈ B(L2(C, γ )). Then S ∈ R if and only if Rad(S) = S.

5.2 Radial Operators in Fn

Let n ∈ N. Obviously, the reproducing kernel of Fn, given by (27), is invariant
under simultaneous rotations in both arguments:

Kn,τz(τw) = Kn,z(w) (z,w ∈ C, τ ∈ T). (38)

Therefore, by Proposition 4.1, Fn is invariant under rotations, and Pn ∈ R. For
every τ in T, we denote by Rn,τ the compression of Rτ onto the space Fn. In other
words, the operator Rn,τ acts in Fn and is defined by (34). The family (Rn,τ )τ∈T
is a unitary representation of T in Fn. Let Rn be the von Neumann algebra of all
bounded linear radial operators acting in Fn.

Denote by Mn the following direct sum of matrix algebras:

Mn :=
∞⊕

d=−n+1

Mmin{n,n+d} =
⎛

⎝
−1⊕

d=−n+1

Mn+d

⎞

⎠⊕
⎛

⎝
∞⊕

d=0

Mn

⎞

⎠ .
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The elements of Mn are matrix sequences of the form A = (Ad)
∞
d=−n+1, where

Ad ∈Mn+d if d < 0, Ad ∈Mn if d ≥ 0, and

sup
d≥−n+1

‖Ad‖ < +∞.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 By Propositions 5.2, 5.3 and formula (20), Rn is isometri-
cally isomorphic to the direct sum of B(Dd,min{n,n+d}), with d ≥ −n + 1. Using
the orthonormal basis (bd+k,k)n−1

k=max{0,−d} of the space Dd,min{n,n+d}, we represent
linear operators on this space as matrices. Define �n : Rn →Mn by

�n(S) =
([〈

Sbd+k,k, bd+j,j
〉]n−1

j,k=max{0,−d}

)∞

d=−n+1
. (39)

Then �n is an isometrical isomorphism. ��
Similarly to Corollary 5.7, there is a simple description of radial operators of

finite rank acting in Fn. Of course, now d1, . . . , dm ≥ −n+ 1.
By Corollary 4.3, if S ∈ Rn, then BerFn

(S) is a radial function. For n = 1, the
Berezin transform BerF1 is injective. So, if S ∈ B(F1) and the function BerF1(S) is
radial, then S ∈ R1. For n ≥ 2, there are nonradial operators S with radial Berezin
transforms.

Example 5.9 Let n ≥ 2. Define u, v, and S like in the proof of Proposition 3.17.
Then Ber(S) is the zero constant. In particular, Ber(S) is a radial function. On the
other hand, Sb0,0 = b1,0, the subspace D0 is not invariant under S, and thus S is not
radial.

5.3 Radial Operators in F(n)

Let n ∈ N. By Proposition 4.1 and formula (26), the subspace F(n) is invariant
under the rotations Rτ for all τ in T. Denote the corresponding compression of Rτ

by R(n),τ . Let R(n) be the von Neumann algebra of all radial operators in F(n).

Proof of Theorem 1.2 Corollaries 2.6 and 3.5 give

Dd ∩ F(n) =
⎧
⎨

⎩

Cbd+n−1,n−1, d ≥ −n+ 1,

{0}, d < −n+ 1.
(40)
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By Propositions 5.2, 5.3 and formula (40), R(n) consists of the operators that act
invariantly on Cbd+n−1,n−1, d ≥ −n+ 1, i.e. are diagonal with respect to the basis
(bp,n−1)

∞
p=0. Therefore the function �(n) : R(n) → �∞(N0), defined by

�(n)(S) =
(〈Sbp,n−1, bp,n−1〉

)∞
p=0, (41)

is an isometric isomorphism. ��
Similarly to Corollary 5.7, there is a simple description of radial operators of

finite rank acting in F(n).

6 Radial Toeplitz Operators in Polyanalytic Spaces

A measurable function g : C → C is called radial if for every τ in T the equality
g(τz) = g(z) is true for a.e. z in C. If g ∈ L2(C, γ ), then this condition means that
Rτg = g for every τ in T.

Given a function a in L∞([0,+∞)), let ã be its extension defined on C as

ã(z) := a(|z|) (z ∈ C).

It is easy to see that a function g in L∞(C) is radial if and only if there exists a in
L∞([0,+∞)) such that g = ã.

By Lemma 4.4, the multiplication operator Mã , acting in L2(C, γ ), is radial. Let
us compute the matrix of this operator with respect to the basis (bp,q)p,q∈N0 . Put

βa,d,j,k := 〈̃abj+d,j , bk+d,k〉 (d ∈ Z, j, k, j + d, k + d ∈ N0).

Passing to the polar coordinates and using (10) we get

βa,d,j,k =
∫ +∞

0
a(
√
t) �

(|d |)
min{j,j+d}(t)�

(|d |)
min{k,k+d}(t) dt . (42)

Proposition 6.1 Let a ∈ L∞([0,+∞)). Then Mã ∈ R, and

〈Mãbp,q, bj,k〉 = 〈̃abp,q, bj,k〉 = δp−q,j−kβa,p−q,q,k.

Proof Use the fact that Mã is radial and the orthogonality of the “diagonal
subspaces”. Then apply the definition of βa,d,j,k. ��

Denote Tn,g the Toeplitz operator acting in Fn with generating symbol g and
T(n),g the Toeplitz operator acting on F(n) with generating symbol g.

Proposition 6.2 Let g ∈ L∞(C). Then the opeator Tn,g is radial if and only if the
function g is radial.
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Proof Apply Proposition 3.18 and Corollaries 4.6, 4.7. ��
Proposition 6.3 Let a ∈ L∞([0,+∞)). Then T(n),̃a ∈ R(n), the operator T(n),̃a is
diagonal with respect to the orthonormal basis (bp,n−1)

∞
p=0, and the sequence λa,n

of the corresponding eigenvalues can be computed by

λa,n(p) = βa,p−n+1,n−1,n−1 =
∫ +∞

0
a(
√
t)

(
�
(|p−n+1|)
min{p,n−1}(t)

)2 dt (p ∈ N0).

(43)

Proof From Corollary 4.6 we get T(n),̃a ∈ R(n). Due to Proposition 6.1 and
Theorem 1.2,

λa,n(p) = (�(n)(T(n),̃a))p = 〈T(n),̃abp,n−1, bp,n−1〉 = βa,p−n+1,n−1,n−1. ��
Given a class G ⊆ L∞(C) of generating symbols, we denote by T(n)(G) the C*-

subalgebra of B(F(n)) generated by the set {T(n),g : g ∈ G}. Let RB be the space
of all radial bounded functions on C, and RBC be the space of all radial bounded
functions on C having a finite limit at infinity.

We are going to describe the algebra T(n)(RBC).

Lemma 6.4 Let m ∈ N0 and x > 0. Then

lim
d→∞ sup

0≤t≤x
|�(d)m (t)| = 0.

Proof For each t < x, we write �
(d)
m (t) explicitly by (9) and (4), then apply simple

upper bounds:

|�(d)m (t)| =
√

m!
(m+ d)! |t

d
2 e−

t
2 L(d)

m (t)| ≤
√

m!
(m+ d)! e−t/2

m∑

j=0

(
m+ d

m− j

)
tj+ d

2

j !

≤
√

m!
(m+ d)!

m∑

j=0

(m+ d)!
(d + j)! t

j+ d
2 ≤ (m+ 1)

√
m! (m+ d)m (1+ t)m+ d

2√
(m+ d)! .

Then,

sup
0≤t≤x

|�(d)m (t)| ≤
√
m! (m+ 1) (m+ d)m (1+ x)m+ d

2√
(m+ d)! ,

and the last expression tends to 0 as d tends to ∞. ��
The following lemma and proposition are similar to [34, Lemma 7.2.3 and

Theorem 7.2.4].
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Lemma 6.5 Let a ∈ L∞([0,+∞)), v ∈ C, and lim
r→+∞ a(r) = v. Then

lim
d→+∞βa,d,j,k = δj,kv (j, k ∈ N0). (44)

In particular,

lim
p→∞λa,n(p) = v (n ∈ N). (45)

Proof

1. First, suppose that v = 0 and j = k. For every x > 0 and d ≥ 0,

|βa,d,j,j | ≤
∫ x

0
|a(√t)| (�(d)j (t)

)2 dt +
∫ +∞

x

|a(√t)| (�(d)j (t)
)2 dt

≤ x‖a‖∞
(

sup
0≤t≤x

|�(d)j (t)|
)2

+ sup
t>x
|a(√t)|.

Let ε > 0. Using the assumption that a(r)→ 0 as r → +∞, we choose x such
that the second summand is less than ε/2. After that, applying Lemma 6.4 with
this fixed x, we make the first summand less than ε/2.

2. If v = 0, j, k ∈ N0, then we obtain limd→+∞ βa,d,j,k = 0 by applying the
Schwarz inequality and the first part of this proof.

3. For a general v in C, we rewrite a in the form (a − v1(0,+∞))+ v1(0,+∞). Since

β1(0,+∞),d,j,k =
∫ +∞

0
�
(d)
j (t)�

(d)
k (t) dt = δj,k,

the limit relation (44) follows from the second part of this proof. ��
Proposition 6.6 The C*-algebra T(n)(RBC) is isometrically isomorphic to c(N0).

Proof Recall that �(n) is an isometrical isomorphism R(n) → �∞(N0) defined
by (41). By Proposition 6.3, �(n)({Tb : b ∈ RBC}) = L, where

L := {λa,n : a ∈ L∞([0,+∞)), ∃v ∈ C lim
r→+∞ a(r) = v}.

So, T(n)(RBC) is isometrically isomorphic to the C*-subalgebra of �∞(N0) gene-
rated by the set L. By Lemma 6.5, L ⊆ c(N0). Our objective is to show that the
C*-subalgebra of c(N0) generated by L coincides with c(N0). The space c(N0) may
be viewed as the C*-algebra of the continuous functions on the compact N0∪{+∞}.
The set L is a vector subspace of c(N0) which contains the constants and is closed
under the pointwise conjugation. In order to apply the Stone–Weierstrass theorem,
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we have to prove that the set L separates the points of N0 ∪ {+∞}. For every u in
(0,+∞], define au to be the characteristic function 1(0,u). Then

λau,n(p) =
∫ u2

0

(
�
(|p−n+1|)
min{p,n−1}(t)

)2 dt .

Let p, q ∈ N0, p 	= q . If λau,n(p) = λau,n(q) for all u > 0, then for all t > 0

(
�
(|p−n+1|)
min{p,n−1}(t)

)2 = (
�
(|q−n+1|)
min{q,n−1}(t)

)2
,

which is not true. So, the set L separates p and q .
Now let p ∈ N0 and q = +∞. Put u = 1. Then λa1,n(p) > 0, but λa1,n(+∞) =

limr→+∞ a1(r) = 0. So, the set L separates p and +∞. ��
Recall that �n : Rn →Mn is defined by (39).

Proposition 6.7 Let a ∈ L∞([0,+∞)). Then Tn,̃a ∈ Rn, and the d-th component
of the sequence �n(Tn,̃a) is the matrix

�n(Tn,̃a)d =
[
βa,d,j,k

]n−1
j,k=max{0,−d}.

Proof Apply Corollary 4.6 and Proposition 6.1. ��
Let Cn be the C*-subalgebra of Mn that consists of all matrix sequences that

have scalar limits:

Cn := {A ∈Mn : ∃v ∈ C lim
d→+∞Ad = v In}.

Proposition 6.8 �n(Tn(RBC)) ⊆ Cn.

Proof Follows from Lemma 6.5. ��
We finish this section with a couple of conjectures.

Conjecture 6.9 The C*-algebra T(n)(RB) is isometrically isomorphic to the C*-
algebra of bounded square-root-oscillating sequences.

The concept of square-root-oscillating sequences and a proof of Conjecture 6.9
for n = 1 can be found in [10].

Conjecture 6.10 �n(Tn(RBC)) = Cn.

Various results, similar to Conjecture 6.10, but for Toeplitz operators in other
spaces of functions or with generating symbols invariant under other group actions,
were proved by Loaiza, Lozano, Ramírez-Ortega, Sánchez-Nungaray, González-
Flores, López-Martínez, and Arroyo-Neri [22, 23, 26, 29].
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Abstract We study Toeplitz operators on Hilbert spaces of holomorphic functions
on symmetric domains, and more generally on certain algebraic subvarieties,
determined by integration over boundary orbits of the underlying domain. The main
result classifies the irreducible representations of the Toeplitz C∗-algebra generated
by Toeplitz operators with continuous symbol. This relies on the limit behavior of
“hypergeometric” measures under certain peaking functions.
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theory [22–24], closely related to harmonic analysis (holomorphic discrete series of
representations of G) and index theory. In this paper we study Hilbert spaces over
non-symmetric G-orbits contained in the boundary of �. These Hilbert spaces do
not belong to the holomorphic discrete series, but the associated Toeplitz operators
are still G-homogeneous in the sense of [17]. We study the C∗-algebra generated by
these Toeplitz operators on boundary orbits and construct its irreducible representa-
tions, similar as in the symmetric case, via a refined analysis of the boundary faces
of these orbits. The most interesting discovery is that for the boundary Toeplitz C∗-
algebra, the irreducible representations do not always belong to boundary orbits, but
comprise also some distinguished parameters in the discrete series (relative to the
face).

Recently, certain algebraic varieties in symmetric domains, called Jordan-
Kepler varieties, have been studied from various points of view [7, 24]. Although
these varieties are not homogeneous, there exist naturalK-invariant measures giving
rise to Hilbert spaces of holomorphic functions and associated Toeplitz operators.
In [25] the corresponding Toeplitz C∗-algebra and its representations have been
investigated using asymptotic properties of hypergeometric functions. As a second
main result of this paper, we combine both settings and treat Kepler-type varieties
related to boundary orbits. The associated Toeplitz operators are subnormal, but
the explicit description of the underlying boundary measure requires some effort. It
seems that our setting is the natural level of generality, where methods of harmonic
analysis based on Jordan algebraic concepts still yield a complete structure theory
of Toeplitz C∗-algebras.

Compared to the paper [25], to which we frequently refer, the main new result
concerns the description of the measures and inner product for the underlying
Hilbert space, and the expression of the reproducing kernel in terms of generalized
hypergeometric series. For boundary orbits this is not straightforward. Also, the
concept of “hypergeometric measure” introduced in Sect. 4 serves to clarify and
streamline the exposition, especially in the proof of Theorem 6.2.

2 Subnormal and Homogeneous Operator Tuples

To put the results of this paper in perspective, recall that a commuting n-tuple
of operators S = (S1, . . . , Sn) is said to be subnormal if it is the restriction
of a commuting tuple of normal operators N, acting on a Hilbert space H, to
an invariant subspace H0 ⊂ H. There are several intrinsic characterizations of
subnormality; the one closest to the spirit of this paper is the followingC∗-algebraic
characterization. Let C∗[S] be the C∗-algebra generated by {Id, S1, . . . , Sn}
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Theorem 2.1 ([16, Theorem 2]) A commuting n-tuple of operators S is subnormal
if and only if for every subset {TI : I ∈ F} of C∗[S], F finite, it follows that

∑

I,J∈F
T ∗I SJ ∗SI TJ ≥ 0,

where TI = Ti1 · · · Tin and SI = S
i1
1 · · · Sinn .

An immediate corollary is that if S is a subnormal commuting n-tuple and π

is a ∗-representation of the C∗-algebra C∗[S], then π(S) is also subnormal. For
n = 1, these results were obtained by Bunce and Deddens [5]. Natural examples of
subnormal operators are obtained by restricting the multiplication by the coordinate
functions on the Hilbert space L2(�,m) to the subspace of holomorphic functions
H 2(�,m), where � ⊂ Cd is a bounded domain and m is a finite measure supported
in the closure � of �. Determining when a commuting tuple of operators is
subnormal, in general, is not easy. For instance, let � be a bounded symmetric
domain of genus p, and let B be the Bergman kernel of �. Then the set of positive
real ν for which Bν/p remains a positive definite kernel is known (cf. [8]) and is
designated the Wallach set of �. For a fixed but arbitrary ν in the Wallach set, let
H(ν) denote the Hilbert space determined by Bν/p. The biholomorphic functions
of the domain � form a group, say G. Thus g ∈ G acts on � via the map
(g, z) �→ g(z). This action lifts (g �→ Ug, g ∈ G) to the Hilbert space Hν :

(
U

(ν)

g−1f
)
(z) = Jg(z)ν/p

(
f (g(z)

)
, g ∈ G, z ∈ �, f ∈ H(ν),

where Jg(z) := det(Dg(z)). It is easy to verify, using the transformation rule for
the Bergman kernel, that Ug is unitary. The map g → U

(ν)
g is not a homomorphism,

in general, however U(ν)
gh = c(g, h)U

(ν)
g U

(ν)
h , where c : G × G → T is a Borel

multiplier. Thus U defines a projective unitary representation of the group on H(ν).
The automorphism group G admits the structure of a Lie group. Consider the

bounded symmetric domain � in its Harish-Chandra realization (cf. [11, Section
2.1]). The construction of the discrete series representations due to Harish-
Chandra is well known, see [12, Theorem 6.6]. The (scalar holomorphic) discrete
series representations (when realized as sections of homogeneous holomorphic line
bundles) occur among the projective unitary representations U(ν). Harish-Chandra
had determined a cut-off ν1 such that for all ν > ν1, the representation U(ν) is in
the discrete series and the Hilbert space H(ν) is realized as the space H 2(�, dmν),
where dmν(z) = B(z, z)1−ν/p dv(z), clearly, supp(m) = �. However, we also have
the so-called limit discrete series representations and their analytic continuation. It
is therefore natural to ask if there are other values of ν for which the inner product
in the Hilbert space H(ν) is given by an integral with respect to a measure supported
on possibly some other G-invariant closed subset of �. The answer to this question
involves the G-invariant boundary strata of � introduced below, namely, �k,r ,
1 ≤ k ≤ r , where r is the rank of the bounded symmetric domain �. In this notation,
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�r,r is the Shilov boundary and �0,r = �. For ν in {ν1, . . . , νr }, where

νi = d
r
+ a

2 (r − i),

there exists a quasi-invariant measure

dmi(gz) = |Jg(z)|
2νi
p dmi(z), z ∈ �, supp(mi) = �i,r , 1 ≤ i ≤ r,

such that L2(�i,r , dmi) contains the representation space H(ν) as a closed subspace.
(Here, with a slight abuse of notation, we let �0,r = �.) The representation U(ν)

lifts to Û (ν) on L2(�i,r , dmi), again, as a multiplier representation, see [2, theorem
6.1]. The existence of the quasi-invariant measure (in the unbounded realization of
G/K) is in [13, 20], see also [3, Lemma 5.1]. (The generalization to the case of
vector valued holomorphic functions appears in [11, Theorem 4.49].) However, the
fact that these are the only quasi-invariant measures with support in � was proved
for the domains � of type In,m, m ≥ n ≥ 1, in [3] and was extended to all bounded
symmetric domains in [2]. Furthermore, it can be shown that these are the only
commuting tuples of “homogeneous” subnormal operators in the Cowen-Douglas
class of rank 1 on �.

Thus the commuting tuple M(ν) := (M
(ν)
1 , . . . ,M

(ν)
d ) of multiplication by the

coordinate functions on the Hilbert space H(ν) is subnormal if and only if ν is in the
set

Wsub := {ν : ν = d
r
+ a

2 (r − j), 1 ≤ j ≤ r} ∪ {ν : ν > p − 1}.

For ν as above, this is evident since the Hilbert space H(ν) is a closed subspace of
the Hilbert space L2(dmν) for some quasi-invariant measure mν . The converse is
Theorem 3.1 of [3] for tube type domains and Theorem 5.1 of [2] in general.

The commuting tuple M̂ of multiplication by the coordinate functions on the
Hilbert space L2(dmν) induces a ∗-homomorphism �̂ν : C(�i,r )→ L(L2(dmν)),
namely, �̂ν(f ) = f (M̂), f ∈ C(�i,r ), the space of continuous functions on �i,r

and ν ∈ Wsub. The quasi-invariance of the measure mν ensures that Û (ν) is unitary
and therefore the triple (L2(dmν), Û

(ν), �̂ν) is a system of imprimitivity in the
sense of Mackey [26, chapter 6]:

(Û (ν)
g )∗�̂ν Û

(ν) = g · �̂ν, g ∈ G, (2.1)

where ((g · �̂ν)f )(z) = f (g · z). Since the representation Û (ν) leaves the subspace
H(ν) invariant as well, we see that

(H(ν), U(ν),�ν) = (L2(dmν), Û
(ν)
g , �̂ν)|H(ν) , ν ∈ Wsub,

is the restriction of an imprimitivity.
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Recall that the ∗-homomorphism �̂ must be given by the formula �̂(f ) = M̂f =
f (M̂), f ∈ C(�i,r), 0 ≤ i ≤ r , via the usual functional calculus. The group G acts
on the space of continuous functions via (g−1 · f )(z) = f (g · z) = (f ◦ g)(z).
Therefore,

�̂(g · f ) = M̂f ◦g = (f ◦ g)(M̂).

Choosing f to be the coordinate functions, we see that the imprimitivity condi-
tion (2.1) of Mackey is equivalent to the homogeneity of the commuting tuple M,
relative to the group G, of the commuting tuple M̂, namely,

UgMU∗g := (UgM1U
∗
g , . . . , U

∗
gMdUg) = g ·M, g ∈ G, (2.2)

where g · M = (g1(M), . . . , gd(M)). Here gi , 1 ≤ i ≤ d , are the components
of g in G, when it is thought of as an injective biholomorphic map on �. This
notion for a single operator is from [17] and for a commuting tuple is from [18], see
also [3, 4]. For ν in the Wallach set, the multiplication by the coordinate functions
acting on the Hilbert space of holomorphic functions H(ν) are bounded if and only
if ν ∈ ( a2 (r − 1),∞), the continuous part of the Wallach set, see [2, Theorem 4.1]
and [3, Theorem 1.1]. Since the kernel function of the Hilbert space H(ν) is a power
of the Bergman kernel, it also transforms like the Bergman kernel ensuring that the
operator M on this Hilbert space is G-homogeneous for all ν in the continuous part
of the Wallach set. A simple computation involving the curvature shows that these
are the only G-homogeneous operators in the Cowen-Douglas class B1(�). The
details are in [18] for the case of rank r = 1. The proofs in the general case can
be obtained using [2, Proposition 4.4] and spectral mapping properties of the Taylor
spectrum of the commuting tuple M.

It is clearly of interest to study homogeneity, or equivalently, imprimitivity
relative to subgroups of the group G. This already occurs in the study of spherically
balanced tuples of operators [6, Definition 1.1]. In this case, the domain is the
Euclidean unit ball Bd and the group is the maximal compact subgroup K of the
automorphism group G of Bd . The group K can be identified with the unitary group
U(d), it acts on Bd by the rule: (U, z) �→ U(z), z ∈ Bd , U ∈ U(d). Let T be
a commuting d-tuple of operators acting on a complex separable Hilbert space H.
The usual functional calculus gives

U · T =
( d∑

j=1

U1j Tj , . . . ,

d∑

j=1

Ud,jTj

)
, U ∈ K.

The commuting d-tuple of operators T is said to be “spherically symmetric”, or
equivalently, K-homogeneous if 
∗UT
U = U · T for each U in K and some
unitary 
U on H. In general, 
 need not be a unitary representation. However, we
will assume that a choice of 
U exists such that the map U → 
U is a unitary
homomorphism. What we have said about the Euclidean ball applies equally well to
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the case of a bounded symmetric domain. So, we speak freely of K-homogeneous
operators, where � = G/K . To describe this more general situation, we recall some
basic notions from the representation theory of the group K .

Let m ∈ Nr+ be a partition of length r . Let Pm denote the space of irreducible
K-invariant homogeneous polynomials of isotypic type m, having total degree |m|.
These are mutually inequivalent as K-modules and P = ∑

m∈Nr+
Pm is the Peter-Weyl

decomposition of the polynomials P under the action of the group K . Now, equip
the submodules Pm with the Fischer-Fock inner product (p|q)m = (q∗(∂)(p))(0),
where q∗(z) = q(z). Let Em be the reproducing kernel of the finite dimensional
space Pm. Then the Faraut-Korányi formula for the reproducing kernel K(ν) of the
Hilbert space H(ν) is

K(ν) =
∑

m∈Nr+

(ν)mE
m, (2.3)

where (ν)m :=
r∏

j=1
(ν − a

2 (j − 1))mj are the generalized Pochhammer symbols.

We have pointed out that the commuting tuple of multiplication operators M on
the Hilbert space H(ν) is G-homogeneous, therefore, it is also K-homogeneous.
What are the other K-homogeneous operators? Since Pm is a K irreducible module,
it follows that the Hilbert space H(a), obtained by setting K(a) = ∑

m∈Nr+
amE

m

for an arbitrary choice of positive numbers am is a weighted direct sum of the K

modules Pm. Hence the commuting tuple of multiplication operators M on H(a) is
K-homogeneous. It is shown in [10], under some additional hypothesis, that these
are the only K-homogeneous operators.

If the rank r = 1, then a full description of all multi-shifts within the class of
spherically symmetric operators is given in [6, Theorem 2.5]. In the present set-up,
this characterization amounts to saying that a multi-shift on a Hilbert space H with
reproducing kernel K : Bd × Bd → C is spherically symmetric if and only if the
kernel is of the form

∑

n

an〈z,w〉n

for z,w ∈ Bd . It then follows that several properties of the commuting tuple of
multiplication operators M on the Hilbert space are determined by the ordinary shift

with weight sequence
{(

an
an+1

)1/2}
, n ≥ 0, see [6, Theorem 5.1].
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3 Spectral Varieties and Boundary Orbits

In this section we describe the Jordan theoretic background needed for the rest of
the paper. For details, cf. [9, 15]. Let V be an irreducible hermitian Jordan triple of
rank r. Every element z ∈ V has a spectral decomposition

z =
r∑

i=1

λici

where the singular values λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0 are uniquely determined by
z, and c1, . . . , cr is a frame of minimal orthogonal tripotents. The largest singular
value ‖z‖ := λ1 defines a (spectral) norm on V and the (open) unit ball

� = {z ∈ V : ‖z‖ < 1}

is a bounded symmetric domain. It is a fundamental fact [15] that, conversely, every
hermitian bounded symmetric domain can be realized, in an essentially unique way,
as the spectral unit ball of a hermitian Jordan triple. In this paper we use the Jordan
algebraic approach to study analysis on symmetric domains and related geometric
structures.

The compact group K acts transitively on the set of frames. Hence, for fixed
λ = (λ1, λ2, . . . , λr ), the level set

V (λ) := {z =
r∑

i=1

λici : (ci) frame} (3.1)

is a compact K-orbit. As a special case we obtain the compact manifold

Sk := V (1k, 0r−k)

of all tripotents of rank k, where 0 ≤ k ≤ r. Every union of such level sets (3.1) is
K-invariant but may be an orbit of a larger group. As an example, for 0 ≤ � ≤ r,

the Jordan-Kepler manifold

V̊� =
⋃

λ1≥...≥λ�>0

V (λ1, . . . , λ�, 0r−�),

consisting of all elements of rank �, is a complex manifold which is an orbit under
the complexified group KC. Its closure

V� =
⋃

λ1≥···≥λ�≥0

V (λ1, . . . , λ�, 0r−�) =
⋃

0≤j≤�
V̊j
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consists of all elements of rank ≤ � and is called the Jordan-Kepler variety. Its
regular (smooth) part coincides with V̊�. For � = r we have Vr = V and V̊r = V̊

is an open dense subset, consisting of all elements of maximal rank. As another
example the set

�k,r =
⋃

1>λk+1≥...≥λr≥0

V (1k, λk+1, . . . , λr )

is an orbit under the identity component G of the biholomorphic automorphism
group of �. For k = 0, we have �0,r = �. For k > 0 we obtain a boundary orbit
which is not a complex submanifold. It has the closure

�k,r =
⋃

1≥λk+1≥...≥λr≥0

V (1k, λk+1, . . . , λr ) =
r⋃

i=k
�i,r .

The intersection

Sk = V̊k ∩�k,r

is the common center of V̊k and �k,r . In particular, S0 = {0} is the center of �. The
triple

V̊k ⊃ Sk ⊂ �k,r

is a special case of Matsuki duality, which gives a 1–1 correspondence between G-
orbits and KC-orbits in a flag manifold (which in our case is the so-called conformal
hull of V ), determined by the condition that the intersection is a K-orbit. For k = r

we obtain the Shilov boundary

�r,r = Sr =: S

which is the only closed stratum of ∂� and is its own center. Generalizing both the
Jordan-Kepler varieties and the boundary orbits, we define for 0 ≤ k ≤ � ≤ r the
K-invariant set

�̊k,� := V̊� ∩�k,r =
⋃

1>λk+1≥...≥λ�>0

V (1k, λk+1, . . . , λ�, 0r−�).

It has the closure

�k,� = V� ∩�k,r =
⋃

1≥λk+1≥...≥λ�≥0

V (1k, λk+1, . . . , λ�, 0r−�) =
⋃

k≤i≤j≤�
�̊i,j .
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We also use the ‘partial closure’

�k,� := V� ∩�k =
⋃

1>λk+1≥...≥λ�≥0

V (1k, λk+1, . . . , λ�, 0r−�) =
�⋃

j=k
�̊k,j .

Then

�� := �0,� = V� ∩�

is the so-called Kepler ball.
Our first goal is to describe a facial decomposition of the K-invariant sets �k,�.

For a tripotent c we consider the Peirce decomposition [14, 15]

V = V c
2 ⊕ V c

1 ⊕ V c
0 .

Define V c := V c
0 and �c := �∩ V c. This is itself a bounded symmetric domain of

rank r − k, when c ∈ Sk.

Proposition 3.1 There exist fibrations (disjoint union)

�̊k,� =
⋃

c∈Sk
c + �̊c

�−k ⊂ �k,� =
⋃

c∈Sk
c +�c

�−k =
�⋃

i=k
�̊k,i (3.2)

Proof If z ∈ �̊k,� then

z = c1 + . . .+ ck +
∑

k<i≤�
λici

for some frame (ci) and 1 > λk+1 ≥ . . . ≥ λ� > 0. It follows that c := c1 + . . .+
ck ∈ Sk and

w :=
∑

k<i≤�
λici ∈ �c ∩ V̊�−k = �̊c

�−k.

For different tripotents c, c′ ∈ Sk the boundary components c+�c and c′ +�c′ are
disjoint [15, Section 6]. This proves the first assertion. If z ∈ �k,� then we require
only λ� ≥ 0. Therefore

w ∈ �c ∩ V�−k = �c
�−k =

�⋃

i=k
�̊c

i−k.
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It follows that

�k,� =
⋃

c∈Sk
c +�c

�−k =
⋃

c∈Sk

�⋃

i=k
c + �̊c

i−k =
�⋃

i=k

⋃

c∈Sk
c + �̊c

i−k =
�⋃

i=k
�̊k,i .

��
For k ≤ i ≤ � the set �̊k,i is called the i-th stratum of �k,�. In the special case

� = r we obtain a stratification

�k,r =
⋃

c∈Sk
c +�c

r−k =
r⋃

i=k
�̊k,i

of the boundary G-orbit.

4 Hypergeometric Measures

If V is an irreducible hermitian Jordan triple of rank r , with automorphism group
K, define the K-average

f *(t) :=
∫

K

dk f (kt)

for t ∈ Rr++ := {t ∈ Rr : t1 ≥ . . . ≥ tr ≥ 0}. Any K-invariant measure μ on V (or
a K-invariant subset) has a polar decomposition

∫

μ(dz) f (z) =
∫

μ̃(dt1, . . . , dtr ) f
*(
√
t1, . . . ,

√
t r )

for a uniquely defined measure μ̃ on Rr++ (or a suitable subset), called the radial
part of μ. In the following we use various unspecified constants, all of which are
explicitly known.

Proposition 4.1 The Lebesgue measure dz =: λr(dz), for the normalized K-
invariant inner product on V, has the radial part

λ̃r (dt1, . . . , dtr ) = const.
r∏

i=1

dti t
b
i

∏

1≤i<j≤r
(ti − tj )

a (4.1)

on Rr++. Here a, b denote the so-called characteristic multiplicities of V [14,
Section 17].
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Proof We start with the well known formula

∫

X

dx f (x) = const.
∫

Rr+

dt1 · · · dtr
∏

1≤i<j≤r
(ti − tj )

a

∫

L

dh f (ht) (4.2)

for a Euclidean Jordan algebra X with automorphism group L [9, Theorem VI.2.3].
Let �e be the symmetric cone of the Peirce 2-space V e

2 for some maximal tripotent
e ∈ Sr [9]. Then

∫

V

dz f (z) = const.
∫

�e

dx Ne(x)
b

∫

K

dk f (k
√
x) (4.3)

by [9, Proposition X.3.4] (for the tube domain case b = 0) and [1, (2.1.1)] (for the
general case). Applying (4.2) to the right hand side of (4.3) we obtain

∫

V

dz f (z) = const.
∫

Rr++

r∏

i=1

dti t
b
i

∏

1≤i<j≤r
(ti − tj )

a f *(
√
t).

��
Proposition 4.2 For � ≤ r, consider the map

α : R�++ → Rr++, α(t1, . . . , t�) := (t1, . . . , t�, 0r−�).

Then the Riemann measure λ� on the Kepler variety V̊�, induced by the inner
product (z|w), has the radial part λ̃� = α∗M̂�, where

M̂�(dt1, . . . , dt�) := const.
�∏

i=1

dti t
dc1/�

i

∏

1≤i<j≤�
(ti − tj )

a (4.4)

and dc1/� = b + a(r − �). If � = r, then de1 = rb and (4.4) reduces to (4.1).

Proof By [7, Theorem 3.4] we have

∫

V̊�

λ�(dz) f (z) = const.
∫

�2
c

dx Nc(x)
dc1/� f *(

√
x)

= const.
∫

R�++

�∏

i=1

dti t
dc1/�

i

∏

1≤i<j≤�
(ti − tj )

a f *(
√
t)

by applying (4.2) to the Peirce 2-space V c
2 and its positive cone �c. ��
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Let P(V ) denote the polynomial algebra of a hermitian Jordan triple V, endowed
with the Fischer-Fock inner product (p|q)V for the normalized K-invariant inner
product (z|w) on V. Let

P(V ) =
∑

m

Pm(V )

be the Peter-Weyl decomposition of P(V ) under the group K [8, Theorem 2.1].
Here m runs over the set Nr+ of all integer partitions

m = (m1 ≥ . . . ≥ mr)

of length ≤ r. For a complex parameter ν let

(ν)m =
r∏

j=1

(ν − a

2
(j − 1))mj

denote the multivariate Pochhammer symbol. Then the identity

(ν)m+n = (ν + n)m (ν)n (4.5)

holds for any integer n ≥ 0.
Let x1, . . . xh, y0, . . . yh be positive parameters. We say that a K-invariant

measure μ supported on � (or a K-invariant subset) is hypergeometric of type(
y0,..., yh
x1,..., xh

)
if

(p|q)μ :=
∫

μ(dz) p(z) q(z) =

h∏

i=1
(xi)m

h∏

i=0
(yi)m

(p|q)V (4.6)

for all m ∈ Nr+ and p, q ∈ Pm(V ). More generally, for � ≤ r, a K-invariant mea-
sure μ supported on �� (or a K-invariant subset) is �-hypergeometric if (4.6) holds
for all partitions m ∈ N�+ of length ≤ �. By the Stone-Weierstrass approximation
theorem and K-invariance, the condition (4.6) determines the measure μ uniquely,
but not every choice of parameters defines such a measure (a kind of multi-variate
moment problem).

Let �(z,w) be the Jordan triple determinant [8].
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Proposition 4.3 Let p := 2+ a(r − 1)+ b be the genus of �, and let ν > p − 1.
Then the probability measure Mν on �, defined by

∫

�

Mν(dz) f (z) = const.
∫

�

dζ �(ζ, ζ )ν−p f (ζ ) (4.7)

is hypergeometric of type
(
ν
)
.

Proof This follows from the Faraut-Korányi binomial formula (2.3) proved in [8].
��

Proposition 4.4 For 1 ≤ k ≤ r let pk := 2 + a(r − k − 1) + b be the genus for
rank r − k, and put

νk := d

r
+ a

2
(r − k) = p − 1− a

2
(k − 1) = 1+ b + a

2
(2r − k − 1)

= pk + a

2
(k + 1)− 1. (4.8)

Then the probability measure Mk,r on the k-th boundary orbit �k,r, defined in terms
of the fibration (3.2) by

∫

�k,r

Mk,r (dz) f (z) = const.
∫

Sk

dc

∫

�c

dζ �(ζ, ζ )νk−pk f (c + ζ ) (4.9)

is hypergeometric of type
(
νk

)
.

Proof For the special case a = 2, corresponding to the matrix Jordan triple V =
Cr×s, this is proved in [3] using combinatorial properties of Schur polynomials. The
general case [1, Theorems 6.7 and 6.8] uses transformation properties under certain
non-unimodular groups acting on the boundary. ��

For the Shilov boundary k = r Mr,r(dz) is the unique K-invariant probability
measure on �r,r = S, since c + �c = {c} is a singleton for each c ∈ S = Sr .

For k = 0 we have �0,r = � and p0 = p. In this case (4.9) reduces to (4.7) for
ν0 = p−1+ a

2 . However, in this case we may take any parameter ν > p−1. Given
a frame of minimal orthogonal tripotents e1, . . . , er of V put

ck := e1 + . . .+ ek.

Define

Ir+ := {s ∈ Rr : 1 ≥ s1 ≥ . . . ≥ sr ≥ 0}.

The explicit realization (4.9) of Mk,r implies the following proposition:
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Proposition 4.5 For 1 ≤ k ≤ r consider the map

β : Ir−k+ → Ir+, β(tk+1, . . . , tr ) := (1k, tk+1, . . . , tr ).

Then the K-invariant measure Mk,r on �k has the radial part M̃k,r = β∗M̃ck
νk ,

where

M̃ck
νk
(dtk+1, . . . , dtr ) = const.

r∏

i=k+1

tbi (1−ti)
νk−pk dti

∏

k<i<j≤r
(ti−tj )

a (4.10)

is the radial part, relative to the Peirce 0-space V ck of rank r − k, of the weighted
Bergman measure M

ck
νk for parameter νk. Thus

∫

�k,r

Mk,r (dz) f (z) =
∫

Ir+

M̃k,r (dt1, . . . , dtr ) f
*(
√
t1, . . . ,

√
tr )

=
∫

Ir+

(β∗M̃ck
νk
)(dt1, . . . , dtr ) f

*(
√
t1, . . . ,

√
tr )

=
∫

Ir−k+

M̃ck
νk
(dtk+1, . . . , dtr ) f

*(1k,
√
tk+1, . . . ,

√
tr )

= const.
∫

Ir−k+

r∏

i=k+1

tbi (1− ti )
νk−pk dti

∏

k<i<j≤r
(ti − tj )

a f *(1k,
√
tk+1, . . . ,

√
tr ).

Now let � ≤ r. For ν > p − 1 define the probability measure

Mν,�(dz) := const. �(z, z)ν−p λ�(dz) (4.11)

on the Kepler ball ��. For � = r we have �r = � and recover the “full” measure
Mν,r =Mν. Finally, combining boundary orbits and Kepler varieties, we define the
probability measure

∫

�k,�

Mk,�(dz) f (z) =
∫

Sk

dc

∫

�c
�−k

Mc
νk,�−k(dζ ) f (c + ζ )

= const.
∫

Sk

dc

∫

�c
�−k

λc�−k(dζ ) �(ζ, ζ )νk−pk f (c + ζ ) (4.12)



Boundary Orbits 321

on �k,�, written in terms of the fibration (3.2). Here λc�−k is the Riemann measure
on the ‘little’ Kepler ball �c

�−k = �c ∩ V�−k induced by the hermitian metric (z|w)

restricted to V c.

Consider the commuting diagram

I −k+
β

α
γ

I+

α

Ir−k+
β

Ir+

where

α′(tk+1, . . . , t�) := (1k, tk+1, . . . , t�)

β ′(tk+1, . . . , t�) := (tk+1, . . . , t�, 0r−�)

γ (tk+1, . . . , t�) = (1k, tk+1, . . . , t�, 0r−�).

Proposition 4.6 The K-invariant measure Mk,� on �k,� has the radial part M̃k,� =
γ∗M̂k,�, for the measure

M̂k,�(dtk+1, . . . , dt�) := const.
�∏

i=k+1

dti (1− ti )
νk−pk t

dc1/�

i

∏

k<i<j≤�
(ti − tj )

a

(4.13)

on I�−k+ . Thus

∫

�k,�

Mk,�(dz) f (z) =
∫

Ir+

M̃k,�(dt) f
*(
√
t) =

∫

Ir+

(γ∗M̂k,�)(dt) f
*(
√
t)

=
∫

I�−k+

M̂k,�(dtk+1, . . . , dt�) f
*(1k,

√
tk+1, . . . ,

√
t�, 0r−�)

= const.
∫

I�−k+

�∏

i=k+1

dti (1−ti )νk−pk t
dc1/�

i

∏

k<i<j≤�
(ti−tj )a f *(1k,

√
tk+1, . . . ,

√
t�, 0r−�)

Consider the Fischer-Fock kernel Em(z,w) = Em
w (z) of Pm(V ). Then

(Em
z |Em

w )V = Em(z,w).

Define dm = dimPm(V ).
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Lemma 4.7 For all t ∈ Ir+ and w ∈ V we have

(|Em
w |2)*(

√
t) = Em(w,w)

dm
Em
e (t).

Proof Schur orthogonality implies

(|Em
w |2)*(

√
t) =

∫

K

dk |Em(k
√
t, w)|2 =

∫

K

dk |(Em
k
√
t
|Em

w )V |2

=
∫

K

dk |(k ·Em√
t
|Em

w )V |2 =
‖Em

w ‖2
V ‖Em√

t
‖2
V

dm

Since ‖Em
w ‖2

V = Em(w,w) and ‖Em√
t
‖2
V = Em(

√
t,
√
t) = Em(t, e), the assertion

follows. ��
Proposition 4.8

∫

Ir−k+

r∏

i=k+1

tbi (1− ti)
νk−pk dti

∏

k<i<j≤r
(ti − tj )

a Em
e (1k, tk+1, . . . , tr ) = dm

(νk)m
.

(4.14)

Proof From (4.10) it follows that

∫

Ir−k+

r∏

i=k+1

tbi (1− ti )
νk−pk dti

∏

k<i<j≤r
(ti − tj )

a Em
e (1k, tk+1, . . . , tr )

=
∫

Ir+

M̃k,r(dt) E
m(t, e)

= dm

Em(e, e)

∫

Ir+

M̃k,r (dt) (|Em
e |2)*(

√
t) = dm

Em(e, e)

∫

�k

Mk,r (dz) |Em
e (z)|2

= dm

‖Em
e ‖2

V

‖Em
e ‖2

νk
= dm

(νk)m
.

��
Remark 4.9 In the special case V = Cr×s the polynomials Em

e are proportional to
the Schur polynomials, and the identity (4.14) was shown directly in [3]. A direct
proof of (4.14) in the general case would be of interest.

The following theorem is our first main result.
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Theorem 4.10 For 1 ≤ k ≤ � ≤ r the probability measure Mk,� on �k,� is �-

hypergeometric of type
( d
r , r

a
2 , νk

� a
2 , ν�

)
.

Proof Let c = c�. Put h := dc1/� = b + a(r − �). Applying (4.14) to the Jordan
triple V c

2 (of tube type) we obtain for m ∈ N�+, putting dcm = dimPm(V
c
2 ),

const.
∫

I�−k+

�∏

i=k+1

(1− ti)
νk−pk dti

∏

k<i<j≤�
(ti − tj )

a Em
c�
(1k, tk+1, . . . , t�)

= dcm

(1+ a
2 (2�− k − 1))m

= dcm

(νk − h)m

since

1+ a

2
(2�−k−1)+h= 1+ a

2
(2�−k−1)+b+a(r−�)= 1+b+ a

2
(2−̊k−1) = νk

For z ∈ V c
2 we have Em

c (z) = Em(c, c) �c
m(z), where �c

m ∈ Pm(V
c
2 ) is the

spherical polynomial normalized by �c
m(c) = 1. Therefore

Nc(z)
h Em

c (z) = Em(c, c) Nc(z)
h �c

m(z) = Em(c, c) �c
m+h(z) =

Em(c, c)

Em+h(c, c) Em+h
c (z).

We have

Em(c, c) = dcm

(1+ a
2 (�− 1))m

and, similarly,

Em+h(c, c) = dcm+h
(1+ a

2 (�− 1))m+h
= dcm

(ν� − h)m+h
,

since

1+ a

2
(�− 1)+ h = 1+ a

2
(�− 1)+ b + a(r − �) = 1+ b + a

2
(2−̊l − 1) = ν�.

It follows that

�∏

i=k+1

thi (|Em
c |2)*(1k,

√
tk+1, . . . ,

√
t�, 0r−�)

= Em(c, c)

dm
Nc(1

k, tk+1, . . . , t�)
h Em

c (1k, tk+1, . . . , t�)
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= Em(c, c)

dm

Em(c, c)

Em+h(c, c)
Em+h
c (1k, tk+1, . . . , t�)

= Em(c, c)

dm

(ν� − h)m+h
(ν� − h)m

Em+h
c (1k, tk+1, . . . , t�).

Applying (4.14) to m+ h ∈ N�+ we obtain

1

const.
‖Em

c ‖2
νk,�

= 1

const.

∫

�k,�

Mk,�(dz) |Em
c (z)|2

=
∫

I�−k+

�∏

i=k+1

thi (1− ti )
νk−pk dti

∏

k<i<j≤�
(ti − tj )

a (|Em
c |2)*(1k,

√
tk+1, . . . ,

√
t�, 0r−�)

= Em(c, c)

dm

(ν� − h)m+h
(ν� − h)m

∫

I�−k+

�∏

i=k+1

(1− ti)
νk−pk dti

∏

k<i<j≤�
(ti − tj )

a Em+h
c (1k, tk+1, . . . , t�)

= Em(c, c)

dm

(ν� − h)m+h
(ν� − h)m

dcm+h
(νk − h)m+h

= Em(c, c)

(νk − h)m+h
(ν� − h)m+h
(ν� − h)m

(a�/2)m
(ar/2)m

(ν� − h)m

(d/r)m

using the identity

dcm+h
dm

= dcm

dm
= (a�/2)m

(ar/2)m

(1+ a
2 (�− 1))m
(d/r)m

= (a�/2)m
(ar/2)m

(ν� − h)m

(d/r)m

as computed in the proof of [7, Theorem 5.1]. Simplifying and using (4.5) we finally
obtain

‖Em
c ‖2

k,� = Em(c, c)
(ν�)m

(νk)m (d/r)m

(a�/2)m
(ar/2)m

since Mk,� is a probability measure. It follows that for m ∈ N�+ and p, q ∈ Pm(V )

we have

(p|q)k,� :=
∫

�k,�

Mk,�(dz) p(z) q(z) = (p|q)V (ν�)m

(νk)m (d/r)m

(a�/2)m
(ar/2)m

.

��
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5 Holomorphic Function Spaces and Toeplitz Operators

We now define Hilbert spaces of holomorphic functions and Toeplitz type operators
associated with hypergeometric measures of rank � ≤ r, keeping in mind the
examples Mk,� on �k,� constructed above. For � ≤ r define

P�(V ) =
∑

m∈N�+

Pm(V ),

involving only partitions of length ≤ �. Then the restriction map p �→ p|V� is
injective and yields a linear isomorphism between P�(V ) and the regular functions
on the Kepler variety V�. For a K-invariant �-hypergeometric measure μ on �k,� let
Hμ,� denote the Hilbert space of all holomorphic functions on the Kepler ball ��

which are square-integrable under the measure μ. This is the completion of P�(V ),

restricted to ��, for the measure μ.

This general definition covers all classical examples. Consider first the “full” case
� = r. For a discrete series Wallach parameter ν > p − 1, the weighted Bergman
space Hν consists of all holomorphic functions on � which are square-integrable
under the measure Mν. For 1 ≤ k ≤ r the embedded Wallach parameters νk
defined in (4.8) belong to the continuous Wallach set

ν >
a

2
(r − 1) (5.1)

but not to the discrete series since k ≥ 1 implies νk ≤ 1+b+ a
2 (2r−2) = p−1. The

associated Hardy type spaces Hk,r consist of all holomorphic functions on� which
are square-integrable under the measure Mk,r . Then νr = d

r
is the “true” Hardy

space parameter, corresponding to the Shilov boundary S = �r,r . The left endpoint
ν1 = p−1 of the holomorphic discrete series corresponds to the probability measure
M1,r on the dense open boundary orbit �1,r . As explained in Sect. 3, the parameters
νk are of special importance for subnormal G-homogeneous Toeplitz operators. By
Propositions 4.3 and 4.4, these measures are of hypergeometric type.

Now consider the “partial” case � ≤ r. If ν > p − 1, the partial weighted
Bergman space Hν,� consists of all holomorphic functions on the Kepler ball ��

which are square-integrable for the probability measure Mν,�. The inner product is

(φ|ψ)ν,� :=
∫

��

Mν,�(dz) φ(z) ψ(z) = const.
∫

��

λ�(dz) �(z, z)ν−p φ(z) ψ(z).

For � = r we have �r = � and Mν,r = Mν. Thus we recover the ‘full’ weighted
Bergman space Hν,r = Hν . For 1 ≤ k ≤ � ≤ r, the partial Hardy type space
Hk,� consists of all holomorphic functions on the Kepler ball �� which are square-
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integrable for the probability measure Mk,�. The inner product is

(φ|ψ)k,� :=
∫

�k,�

Mk,�(dz) φ(z) ψ(z) =
∫

Sk

dc

∫

�c
�−k

λc�−k(dζ ) �(ζ, ζ )νk−pk (φψ)(c+ ζ ).

Putting � = r we recover the inner product (4.14) since �c
r−k = �c and

Mc
r−k(dζ ) = dζ is the Lebesgue measure on V c. For k = 0 we have c = 0, V 0 =

V, �0
� = �� = � ∩ V�, M0

� = M� and p0 = p. Thus we recover the M�-inner
product.

In summary, we obtain examples of type
( d
r
, r a

2 , νk

� a
2 , ν�

)
for 0 ≤ k ≤ � ≤ r. For fixed

� we have as special cases the partial weighted Bergman spaces of type
( d
r , r

a
2 , ν

� a
2 , ν�

)
,

corresponding to k = 0, and the partial Hardy space of type
( d
r , r

a
2

ν�

)
corresponding

to maximal k = �. For � = r we obtain the full type
(
νk

)
, since νr = d

r
, specializing

to the full weighted Bergman spaces of type
(
ν
)

if k = 0 and the full Hardy space

of type
( d
r
)

if k = r. It would be interesting to construct natural examples of more
complicated hypergeometric type.

We now introduce Toeplitz operators in our setting. For the ‘full’ Hilbert space
Hμ over � we denote by Pμ : L2(�,μ) → Hμ the orthogonal projection and
define the “full” Toeplitz operator Tμ(f ), with symbol function f ∈ L∞(�), by

Tμ(f ) = Pμ f Pμ.

Restricting to continuous symbols we obtain the “full” Toeplitz C∗-algebra

Tμ = C∗(Tμ(f ) : f ∈ C(�)).

As special cases, we obtain the “full” Bergman-Toeplitz operators Tν,r(f ) (ν >

p − 1) and the “full” Hardy type Toeplitz operators Tk,r(f ) (1 ≤ k ≤ r) associated
with the hypergeometric measures Mν,r on � and Mk,r on �k,r, respectively. The
corresponding Toeplitz C∗-algebras are denoted by Tν,r and Tk,r , respectively.

In the more general setting of the “partial” Hilbert space Hμ,� over ��,

associated with a K-invariant �-hypergeometric measure μ (� ≤ r), denote by
Pμ,� : L2(��, μ) → Hμ,� the orthogonal projection and define the “partial”
Toeplitz operator Tμ,�(f ), with symbol function f ∈ L∞(��), by

Tμ,�(f ) = Pμ,� f Pμ,�.

Restricting to continuous symbols we obtain the “partial” Toeplitz C∗-algebra

Tμ,� = C∗(Tμ,�(f ) : f ∈ C(��)).
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As special cases, we obtain the “partial” Bergman-Toeplitz operators Tν,�(f ) (ν >

p − 1) and the “partial” Hardy type Toeplitz operators Tk,�(f ) (1 ≤ k ≤ �)
associated with the �-hypergeometric measures Mν,� on �� and Mk,� on �k,�,

respectively. The corresponding Toeplitz C∗-algebras are denoted by Tν,� and Tk,�,
respectively.

Lemma 5.1 Let p, q ∈ P(V ). Then the Toeplitz type operators satisfy

Tμ,�(p) Tμ,�(q) = Tμ,�(pq).

Proof Since P�(V )⊥ is an ideal in P(V ) it follows that

Tμ,�(pq)φ = Pμ,�(pqφ) = Pμ,�(p(Pμ,� + P⊥μ,�)(qφ))

= Pμ,�(p Pμ,�(qφ))+ Pμ,�(p P⊥μ,�(qφ)) = Pμ,�(p Tμ,�(q)φ) = Tμ,�(p)(Tμ,�(q)φ).

��
It follows that Tμ,� is generated by Toeplitz type operators with linear symbols

and their adjoints.

Remark 5.2 A standard reproducing kernel argument (carried out in [25, Propo-
sition 4.2]) shows, at least for the ‘concrete’ hypergeometric measures described
above (where the support is connected), that the C∗-algebra Tμ,� acts irreducibly
on Hμ,�.

For any v ∈ V let

v∗(z) := (z|v)

denote the associated linear form. Its conjugate is v∗(z) = (z|v) = (v|z). Let
∂vp(z) := p′(z)v denote the directional derivative. Put

εj := (0, . . . , 0, 1, 0, . . . , 0)

with 1 at the j -th place. It is shown in [22, Corollary 2.10] that

v∗p ∈
r∑

j=1

Pm+εj (V ), ∂vp ∈
r∑

j=1

Pm−εj (V ) (5.2)

for all p ∈ Pm(V ), with zero-component if m±εj is not a partition. Let q �→ qm ∈
Pm(V ) denote the m-th isotypic projection.

The next result determines the fine structure of the adjoint Toeplitz type operator
Tμ,�(v

∗)∗ = Tμ,�(v
∗).
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Proposition 5.3 Let μ be a �-hypergeometric measure on ��. Let v ∈ V. Then

Tμ,�(v
∗)p =

�∑

j=1

h∏

i=1
(xi − a

2 (j − 1)+mj − 1)

h∏

i=0
(yi − a

2 (j − 1)+mj − 1)

(∂vp)m−εj

for all m ∈ N�+ and p ∈ Pm(V ).

Proof Let q ∈ Pn(V ), n ∈ N�+, satisfy (Tμ,�(v
∗)p|q)μ,� 	= 0. Then

(p|v∗q)μ,� = (Tμ,�(v
∗)p|q)μ,� 	= 0.

With (5.2) it follows that m = n+ εj for some j ≤ � and hence n = m− εj . Since
μ is �-hypergeometric, it follows that

(Tμ,�(v
∗)p|q)μ = (p|v∗q)μ =

h∏

i=1
(xi)m

h∏

i=0
(yi)m

(p|v∗q)V =

h∏

i=1
(xi)m

h∏

i=0
(yi)m

(∂vp|q)V

=

h∏

i=1
(xi)m/(xi)m−εj

h∏

i=0
(yi)m/(yi)m−εj

(∂vp|q)μ.

Since q is arbitrary, it follows that

T �
μ(v

∗)p =
�∑

j=1

h∏

i=1
(xi)m/(xi)m−εj

h∏

i=0
(yi)m/(yi)m−εj

(∂vp)m−εj .

Now the assertion follows from

(λ)m

(λ)m−εj
= (λ− a

2 (j − 1))mj

(λ− a
2 (j − 1))mj−1

= λ− a

2
(j − 1)+mj − 1.

��
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6 Limit Measures

The basic result concerning Toeplitz C∗-algebras on bounded symmetric domains
states that every irreducible representation is realized on a unique boundary
component �c, for any tripotent c. This was carried out in full detail for the Hardy
space in [22, 23] and its generalization to weighted Bergman spaces was described
in [24]. Here a crucial step, which was indicated in [24] and proved in detail in the
recent paper [25], is the limit behavior of the underlying measures under certain
peaking functions. In the present paper, this crucial result will be generalized
to the boundary orbits �k,�, and their intersection with Kepler varieties. This is
not completely straightforward, since the assignment f (c)(ζ ) := f (c + ζ ) is not
compatible with the Peter-Weyl decomposition of P(V ).

Let c ∈ Si with i ≤ �. Since V c
2 = Pc

2 V has rank i ≤ � and (z|c)n = (P c
2 z|c)n,

where Pc
2 denotes the Peirce 2-projection, it follows that

(z|c)n ∈ P(V c
2 ) ⊂ P i (V ) ⊂ P�(V ).

Restricting (injectively) to ��, the holomorphic function

Hc(z) := exp(z|c) =
∞∑

n=0

(z|c)n
n! (6.1)

on �� can be regarded as an element of the Hilbert completionHμ,� of P�(V ) under
μ. This applies in particular to i = 1.

Let 0 ≤ i ≤ � ≤ r and c ∈ Si . Then c +�
c ⊂ �. For functions f ∈ C(��) we

define f (c) ∈ C(�c

�−i ) by

f (c)(ζ ) := f (c + ζ ) (ζ ∈ �
c

�−i ). (6.2)

Lemma 6.1 Let μ be an �-hypergeometric measure on ��. Let 0 ≤ i ≤ � and
c ∈ Si . Then

lim
n→∞

∫

��

μ(dz)
|Hn

c (z)|2
‖Hn

c ‖2
μ

f (z) = 0

for all f ∈ C(��) satisfying f (c) = 0.

Proof By assumption, for every ε > 0 there is an open neighborhood U ⊂ �� of
c + �c

�−i satisfying sup |f (U)| ≤ ε. By [15, Lemma 6.2] we have |(z|c)| < (c|c)
for all z ∈ � \ �c

. Peirce orthogonality implies (z|c) = (c|c) for all z ∈ c + �
c
.

Therefore |Hc| < Hc(c) on �� \ U, and a compactness argument shows that there
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exists an open neighborhood V ⊂ U ⊂ �� of c +�
c

�−i such that

q := sup��\U |Hc|
infV |Hc| < 1.

Therefore

∫

��

μ(dz)
|Hn

c (z)|2
‖Hn

c ‖2
μ

f (z) =
∫

U

μ(dz)
|Hn

c (z)|2
‖Hn

c ‖2
μ

f (z)+
∫

��\U
μ(dz)

|Hn
c (z)|2
‖Hn

c ‖2
μ

f (z)

≤ sup
U

|f | + sup
��

|f | ·

∫

��\U
μ(dz) |Hn

c (z)|2
∫

V

μ(dz) |Hn
c (z)|2

≤ ε + sup
��

|f | · q2n Volμ(�� \ U)

Volμ(V )
.

Since q2n → 0 it follows that

lim sup
n→∞

∫

��

μ(dz)
|Hn

c (z)|2
‖Hn

c ‖2
μ

f (z) ≤ ε.

��
Now consider the special case i = 1. For c = e1 ∈ S1, let α := (α1, . . . , α�−1) ∈

N�−1+ be a partition of length �− 1. Define

α+ := (α1, α) ∈ N�+ (6.3)

and consider the conical function

Nα+ = N
α1−α2
2 N

α2−α3
3 · · ·Nα�−1

� ,

where N1, . . . , Nr are the Jordan theoretic minors [21]. Then the conical function
Nc
α relative to V c for the partition α satisfies

N
(c)

α+ = Nc
α.

The asymptotic expansion of generalized hypergeometric series

Fp q (z) =
∞∑

n=0

p∏

r=1

(n+ βr)

q∏

r=1

(n+ μr)

zn

n! (6.4)
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in one variable z has been determined in [27]. Put κ := 1+ q − p and

ϑ := q − p

2
+ β1 + . . .+ βp − μ1 − . . .− μq.

As a special case M = 1 of [27, Theorem 1], using [27, Lemma 1], one obtains

lim
x→+∞X−ϑ e−X Fp q (x) = A0 = (2π)(p−q)/2 κ

1
2−ϑ ,

where X := κ x1/κ. If q = p + 1, this simplifies to κ = 2, X = 2
√
x and

A0 = (2π)−1/2 2
1
2−ϑ = π−1/2 2−ϑ . Therefore

lim
x→∞ x−ϑ/2 e−2

√
x Fp q (x) =

1√
π
. (6.5)

Theorem 6.2 Let μ be a K-invariant �-hypergeometric probability measure of type(
y0,...,yh
x1;...,xh

)
on ��. Then for each c ∈ S1 there exists a unique Kc-invariant (� − 1)-

hypergeometric probability measure μ(c) of type
(y0− a

2 ,...,yh− a
2

x1− a
2 ,...,xh− a

2

)
on �

c

�−1 such that

for all continuous functions f we have

lim
n→∞

∫

��

μ(dz)
|Hn

c (z)|2
‖Hn

c ‖2
μ

f (z) =
∫

�
c
�−1

μ(c)(dζ ) f (c)(ζ ). (6.6)

Proof By K-invariance, we may assume that c = e1. By Lemma 6.1 each weak
cluster point μ′ of the sequence of probability measures on the left of (6.6) is
supported on the closure �

c

�−1 and is invariant underKc. Thus it suffices to compute
the μ′-inner product for α-homogeneous polynomials on V c, where α ∈ N�−1+ is
arbitrary. By irreducibility, it is enough to consider the conical functions Nc

α relative
to V c. Defining α+ ∈ N�+ as in (6.3), we consider for any s ∈ N the conical function

(z|e1)
s Nα+ = Ns

1 Nα+ = Nm,

where m = (m1, α1, . . . , α�−1, 0r−�) and m1 = s+α1. In the proof of [25, Theorem
5.5] it was shown that the respective Fock inner products are related by

‖Nm‖2
V

‖Nc
α‖2

V c

= (1+ a
2 (�− 1))m

(1+ a
2 (�− 2))α

∏

1≤j<�

(1+ a
2 (j − 1))m1−αj

(1+ a
2 j)m1−αj

= (1+ a

2
(�− 1))m1

∏

1≤j<�

(1+ a
2 (j − 1))m1−αj

(1+ a
2 j)m1−αj

.
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For any λ ∈ C we have

(λ)m

(λ− a
2 )α

= (λ)m1

∏

1<j≤�

(λ− a
2 (j − 1))mj

(λ− a
2 − a

2 (j − 2))αj−1

= (λ)m1 .

It follows that

‖Nm‖2
μ

‖Nc
α‖2

V c

= ‖Nm‖2
V

‖Nc
α‖2

V c

h∏

i=1
(xi )m

h∏

i=0
(yi )m

=

h∏

i=1
(xi)m

h∏

i=0
(yi)m

(1+ a

2
(�− 1))m1

∏

1≤j<�

(1+ a
2 (j − 1))m1−αj

(1+ a
2 j)m1−αj

=

h∏

i=1
(xi − a

2 )α

h∏

i=0
(yi − a

2 )α

(1+ a
2 (�− 1))m1

h∏

i=1
(xi)m1

h∏

i=0
(yi)m1

∏

1≤j<�

(1+ a
2 (j − 1))m1−αj

(1+ a
2 j)m1−αj

= A

h∏

i=1
(xi − a

2 )α

h∏

i=0
(yi − a

2 )α

B(m1),

where A is independent of α and s, and

B(t) :=

(t + 1+ a

2 (�− 1))
h∏

i=1

(t + xi)

h∏

i=0

(t + yi)

∏

1≤j<�


(t + 1+ a
2 (j − 1)− αj )


(t + 1+ a
2 j − αj )

.

For (e(z|e1))n = en(z|e1) we obtain by orthogonality

1

‖Nc
α‖2

V c

∫

�
�

μ(dz) |e(z|e1)|2n |Nα+(z)|2

=
∑

s≥0

n2s

(s!)2

1

‖Nc
α‖2

V c

∫

�
�

μ(dz) |(z|e1)|2s |Nα+(z)|2
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=
∑

s≥0

n2s

(s!)2
‖Nm‖2

μ

‖Nc
α‖2

V c

= A

h∏

i=1
(xi − a

2 )α

h∏

i=0
(yi − a

2 )α

∑

s≥0

n2s

(s!)2 B(α1 + s) = A

h∏

i=1
(xi − a

2 )α

h∏

i=0
(yi − a

2 )α

Fα(n
2),

where Fα(X) is a hypergeometric series in the sense of (6.4), with parameters

α1+x1, . . . , α1+xh, α1+1+a

2
(�−1), α1−α2+1+a

2
, . . . , α1−α�−1+1+a

2
(�−2)

in the numerator and

α1 + y0, . . . α1 + yh, 1+ a

2
, α1 − α2 + 1+ a

2
2, . . . , α1 − α�−1 + 1+ a

2
(�− 1)

in the denominator. One power of s! cancels against the numerator term 
(1+ a
2 (j−

2)+ α1 − αj−1 + s) for j = 2. The crucial parameter ϑ in (6.5) is computed as

ϑ =1

2
+

h∑

i=1

(α1+xi )+
(
α1+1+a

2
(�−1)

)
+

(
α1−α2+1+a

2

)
+. . .+

(
α1−α�−1+1+a

2
(�−2)

)

−
h∑

i=0

(α1+yi)−
(

1+ a

2

)
−

(
α1−α2+1+ a

2
2
)
− . . .−

(
α1−α�−1+1+ a

2
(�−1)

)

= 1

2
+

h∑

i=1

xi−
h∑

i=0

yi+
(

1+ a

2
(�−1)

)
−

(
1+ a

2

)
− a

2
(�−2) = 1

2
+

h∑

i=1

xi−
h∑

i=0

yi.

Putting x = n2, (6.5) implies

lim
n→∞ n−ϑ e−2n Fα(n

2) = 1√
π
.

Since ϑ is independent of α, the same limit holds for α = 0. Thus we obtain

lim
n→∞

Fα(n
2)

F0(n2)
= 1.

Passing to the probability measure cancels the constant A and we obtain

1

‖Nc
α‖2

V c

∫

��

μ(dz)
|e(z|e1)|2n
‖(e(z|e1))n‖2

μ

|Nα+(z)|2 →

h∏

i=1
(xi − a

2 )α

h∏

i=0
(yi − a

2 )α

.
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Hence any cluster point μ′ is an (� − 1)-hypergeometric probability measure of

the same type
(y0− a

2 ,...,yh− a
2

x1− a
2 ,...,xh− a

2

)
on �

c

�−1. In view of Lemma 6.1 this determines the

limit measure on each irreducible Kc-type, which, as explained above, implies the
assertion. ��
Remark 6.3 For the “concrete” �-hypergeometric measures Mν,� (k = 0) and Mk,�

(k > 0) constructed in Sect. 4 we obtain as limit measures

M
(c)
ν,� = Mc

ν− a
2 ,�−1

M
(c)
k,� = Mc

k−1,�−1,

where the superscript c refers to the Peirce 0-space V c. In the second case this
follows from

νk − a

2
= νck−1.

If k = 0 then ν > p − 1 is any parameter in the discrete series, in which case
ν − a

2 > pc − 1 belongs to the discrete series of �c. As special cases (� = r) we
have

M(c)
ν = Mc

ν− a
2

M
(c)
k,r = Mc

k−1,r−1

for the “full” measures. Here for k ≥ 2 and rank �c = r − 1 the value

νck−1 = 1+ b+ a

2
(2(r − 1)− (k− 1)− 1) = 1+ b+ a

2
(2r − k− 1)− a

2
= νrk −

a

2

is again a boundary parameter for �c, whereas for k = 1 the parameter

ν0 = ν1− a

2
= p− 1− a

2
= 1+ b+ a(r − 1)− a

2
> 1+ b+ a(r − 2) = pr−1− 1

belongs to the discrete series of �c. Understanding this “disappearing boundary
orbit” in the limit was one of the original motivations for the current paper.

7 Boundary Representations

The (unital) Toeplitz C∗-algebra T associated with a bounded domain � ⊂ Cd can
be regarded as a deformation of C(�) in the sense of “non-commutative geometry”.
Thus the spectrum of T , consisting of all irreducible ∗-representations, is a
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‘non-commutative’ (non-Hausdorff) compactification of �, involving the geometry
of the boundary. In this section we carry out this program for Toeplitz operators over
boundary orbits and algebraic varieties, using the boundary stratification described
in Proposition 3.1. For each 0 ≤ j < k the partial closures satisfy

�k,r =
⋃

c∈Sj
c +�c

k−j,r−j .

as a non-disjoint union.
For two sequences (fn), (gn) in Hμ,� we put

fn ∼ gn

if limn→∞ ‖fn − gn‖μ,� = 0. For any c ∈ Si put

hnc (z) := Hn
c (z)/‖Hn

c ‖μ,�.

In the following we embed P(V c) ⊂ P(V ) via the Peirce projection V → V c.

Lemma 7.1 Let p ∈ P�(V ) and q ∈ P�−1(V c) ⊂ P�(V ). Then

Tμ,�(p)(h
n
c q) ∼ hnc Tμc,�−1(p

(c))q

for all c ∈ S1

Proof Since p − p(c) vanishes on c +�c
�−1, Lemma 6.1 implies

‖ Hn
c

‖Hn
c ‖μ,�

p − Hn
c

‖Hn
c ‖μ,�

p(c)‖2
μ,� =

∫

��

μ(dz)
|Hn

c (z)|2
‖Hn

c ‖2
μ,�

|p(z)− p(c)(z)|2 → 0.

It follows that

Tμ,�(p)(h
n
c q) = p(hnc q) ∼ hns (p

(c) q) ∼ hnc T c
μc,�−1(p

(c))q.

��
The adjoint operators Tμ,�(p) are more difficult to handle. For a partition α =

(α1, . . . , α�−1) ∈ N�−1+ consider the orthogonal projection

π�
α : P�(V )→

∑

m1≥α1

Pm1,α(V ) ⊂ P�(V ),

with (m1, α) ∈ N�+ ⊂ Nr+. Then
∑

α∈N�−1+
π�
α = Id on P�(V ).
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Lemma 7.2 Let p ∈ P(V c
2 ) ⊂ P�(V ) and v ∈ V c, where c = e1. Then we have

for every α ∈ N�−1+

p Nα+ ∈ Ran(π�
α) (7.1)

Tμ,�(v
∗)(p Nα+) =

�−1∑

j=1

h∏

i=1
(xi − a

2 − a
2 (j − 1)+ αj − 1)

h∏

i=0
(yi − a

2 − a
2 (j − 1)+ αj − 1)

π�
α−εj (p · ∂vNα+).

(7.2)

Proof The first assertion is proved in [22, Lemma 3.5]. By [22, Lemma 2.9] we
have

∂vNm ∈
�∑

j=2

Pm−εj (V ).

Since v ∈ V c implies ∂vp = 0, we have ∂vNm = p · ∂vNα+, and Proposition 5.3
yields

Tμ,�(v
∗)(p Nα+) = Tμ,�(v

∗) Nm =
�∑

j=2

h∏

i=1
(xi − a

2 (j − 1)+mj − 1)

h∏

i=0
(yi − a

2 (j − 1)+mj − 1)

(∂vNm)m−εj

=
�∑

j=2

h∏

i=1
(xi − a

2 (j − 1)+ α+j − 1)

h∏

i=0
(yi − a

2 (j − 1)+ α+j − 1)

(p · ∂vNα+)m−εj .

Shifting j �→ j − 1 and using Pm−εj (V ) ⊂ Ran(π�
α−εj−1

) for all 1 < j ≤ �, the
assertion follows. ��
Lemma 7.3 Let q ∈ P�−1(V c) and α ∈ N�−1+ . Then

π�
α(h

n
c q) ∼ hnc qα.

Proof We may assume that q ∈ Pβ(V
c) for some partition β ∈ N�−1+ . Every

γ ∈ Kc has an extension g ∈ K satisfying gc = c (see the proof of [25, Lemma
6.2]). Since hnc is fixed under the action of g, we may assume that q = N ′β is the
conical polynomial in V c of type β. Then Nβ+ − q vanishes on c + �c

�−1, and
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Lemma 6.1 implies

hnc q ∼ hnc Nβ+ . (7.3)

Since the projection π�
α has a continuous extension to Hμ,� it follows that

π�
α(h

n
c q) ∼ π�

α(h
n
c Nβ+).

Since hnc belongs to the closure of P(V c
2 ) in Hμ,�, (7.1) implies hnc Nβ+ ∈ Ran(π�

β).

Therefore orthogonality implies

π�
α(h

n
c Nβ+) = δα,β hnc Nβ+ ∼ δα,β hnc q = hnc qα.

��
Proposition 7.4 Let p ∈ P�(V ) and q ∈ P�−1(V c) ⊂ P�(V ). Then the adjoint
Toeplitz operators satisfy

Tμ,�(p)(h
n
c q) ∼ hnc T c

μ(c),�−1(p
(c))q

for all c ∈ S1.

Proof Assume first that p(z) = (z|v) is linear. If v ∈ V c
2 ⊕V c

1 , then p(c) is constant
and Lemma 7.1 implies

Tμ,�(p)(h
n
c q) = Pμ,�(p hnc q) ∼ Pμ,�(p

(c) hnc q)

= p(c) hnc q = hnc T c
μ(c),�−1(p

(c))q

since the orthogonal projection Pμ,� is continuous. If v ∈ V c, we may assume as in
the proof of Lemma 7.3 that q = N ′α is the conical polynomial in Pα(V

c) for some
partition α ∈ N�−1+ . Then Nα+ −q vanishes on c+�c

�−1. Since v is tangent to V c it
follows that (∂vNα+)c = ∂vN

c
α. Hence ∂v(Nα+ − q) vanishes on c +�c

�−1 as well.
Applying (7.3), Lemmas 7.2 and 7.3, we obtain

Tμ,�(v
∗)(hnc q) ∼ Tμ,�(v

∗)(hnc Nα+)

=
�∑

j=2

h∏

i=1
(xi − a

2 − a
2 (j − 1)+ αj − 1)

h∏

i=0
(yi − a

2 − a
2 (j − 1)+ αj − 1)

π�
α−εj−1

(hnc · ∂vNα+)

∼
�∑

j=2

h∏

i=1
(xi − a

2 − a
2 (j − 1)+ αj − 1)

h∏

i=0
(yi − a

2 − a
2 (j − 1)+ αj − 1)

π�
α−εj−1

(hnc · ∂vq)
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∼ hnc

�∑

j=2

h∏

i=1
(xi − a

2 − a
2 (j − 1)+ αj − 1)

h∏

i=0
(yi − a

2 − a
2 (j − 1)+ αj − 1)

(∂vq)α−εj−1 = hnc T c
μ(c),�−1(p

(c))(q),

since r − j = (r − 1) − (j − 1) and �− j = (�− 1)− (j − 1). The last identity
follows from Proposition 5.3 and the fact that p(c) = p if v ∈ V c. This proves the
assertion for linear symbol functions.

Now suppose that the assertion holds for polynomialsφ,ψ up to a certain degree.
Since μc is again a (� − 1)-hypergeometric measure for V c and φ(c) has degree

≤ degφ, we may apply this assumption to q and T c
μc,�−1(φ

(c)
)q ∈ P�−1(V c) to

obtain

Tμ,�(φψ)(hnc q) = Tμ,�(ψ) Tμ,�(φ)(h
n
c q) ∼ Tμ,�(ψ)(hnc T c

μ(c),�−1(φ
(c)
)q)

∼ hnc T c
μc,�−1(ψ

s
) T c

μ(c),�−1(φ
(c)
)q = hnc T c

μ(c),�−1(φψ
c
)q.

Thus the assertion holds for φψ. Since the assertion holds for linear forms, the proof
is complete. ��

The following is our main result.

Theorem 7.5 Let 0 ≤ i ≤ � and let c ∈ Si be arbitrary. Then the Toeplitz C∗-
algebra Tk,� has an irreducible ∗-representation

σ
(c)
k,� : Tk,� → T c

k\i,�−i

which is uniquely determined by the property

σ
(c)
k,�Tk,�(f ) = T c

k\i,�−i (f
(c)) (7.4)

for all f ∈ C(�k,�), with f (c) ∈ C(�c
k\i,�−i) defined by (6.2). Here we define

k \ i :=
⎧
⎨

⎩

k − i i < k

0 k ≤ i ≤ �
.

In the first case the Toeplitz operator T c
k−i,�−i acts on a boundary orbit of the “little”

Kepler ball �c
�−i . In the second case the Toeplitz operator T c

0,�−i = T c
�−i acts on

�c
�−i = �c

0,�−i with discrete series parameter νk − i a2 .
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Proof For orthogonal tripotents c ∈ Si, d ∈ Scj , the defining property (7.4) yields a
commuting diagram

c
k\ −i

(σ c)
(d)
k\ −i

σ
(c)

σ
(c+d)

c+d
k\(i+ −(i+j)

.

Since every tripotent is the orthogonal sum of minimal tripotents, it therefore
suffices to consider minimal tripotents c ∈ S1. We may also assume k ≥ 1, since
the Kepler ball case k = 0 has been proven in [25].

Let A denote the set of all operators A in the ∗-subalgebra T0 ⊂ Tk,� generated
by polynomial symbols, such that there exists an operatorAc acting on P(V c) which
satisfies

lim
n→∞‖A(h

n
c q)− hnc (Acq)‖k,� = 0 (7.5)

for all q ∈ P(V c) ⊂ P�(V ). Theorem 6.2 implies that Ac is uniquely determined
by A and

‖Ac‖ ≤ ‖A‖ (7.6)

for the respective operator norms. By definition, A is an algebra and (7.6) implies
that A �→ Ac has an extension A → B(Hc

k−1,�−1) (bounded operators) which is
an algebra homomorphism. For every p ∈ P(V ), it follows from Lemma 7.1 that
Tk,�(p) ∈ A and (Tk,�p)c = T c

k−1,�−1p
(c). The corresponding statement Tk,�(p) ∈

A and Tk,�(p)c = T c
k−1,�−1p

(c) for the adjoint operator follows from the deeper
Proposition 7.4. Thus we have A = T0 and, by (7.6), A �→ Ac has a unique C∗-
extension, denoted by σ

(c)
k,� to the closure Tk,� of T0. This extension satisfies (7.5)

for all continuous symbols f, since this property holds for polynomials and their
conjugates. Thus we obtain a C∗-homomorphism

σ
(c)
k,� : Tk,� → T c

k−1,�−1.

As mentioned above, the case for arbitrary tripotents follows by iteration. The
irreducibility of these representations follows from Remark 6.1 applied to Mc

k\i,�−i .��
Remark 7.6 For different tripotents c ∈ Si and d ∈ Sj the representations σ (c)

and σ (d) are inequivalent. This follows from Urysohn’s Lemma since there exists
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f ∈ C(�k,�) which vanishes on c+�c
k\i,�−i but not on d+�d

k\j,�−j . Hence Tk,�(f )

belongs to Ker(σ (c)) but not to Ker(σ (d)). With more effort one can show that the
full spectrum of Tk,� is given by the representations constructed above.
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Abstract We give a closed expression of a random analytic power series as the
stochastic integral of a Möbius transformation. The coefficients of the random series
are Gaussian random variables, and the closed expression is a stochastic integral
with respect to Brownian motion. As a corollary, the set of zeros of the stochastic
integral turns out to be what is known as a determinantal point process with the
Bergman kernel.

Keywords Random series · Stochastic integral · Determinantal point process ·
Bergman kernel
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1 Introduction

Random polynomials and random power series have been studied for a long time in
the mathematics and physics communities; as an introduction the reader might find
the book by Jean-Pierre Kahane [2] useful.
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The random power series

f (z) =
∞∑

n=0

anz
n, z ∈ C, (1.1)

show particularly interesting properties when a0, a1, . . . are independent identically
distributed complex valued random variables. As mentioned in [2, Chapter 4], the
idea of considering such a series goes back to Emile Borel in 1896; it was Hugo
Steinhaus who gave rigorous arguments regarding the radius of convergence in
1929. An interesting question that has brought attention is to analyze the level sets,
that is {z : f (z) = c} for a fixed constant c. In particular when c = 0, one studies
the behaviour of the zeros. The first studies about this set are the works of J.E.
Littlewood and A.C. Offord in 1948, see e.g. [3]; before that, in 1929, Geoge Pólya
already addressed this kind of question, see [6]. Consult also [4] for more historical
information.

In this article we consider the case where an is complex Gaussian. The very first
thing that one knows about f is that its radius of convergence is 1 almost surely,
with no analytic extension outside the unit disk {|z| ≤ 1}. Thus, its zero set f−1(0)
lies inside the open unit disk. Among the interesting properties of the zero set of f ,
one knows that almost surely it is a countable set of points, all of them isolated, and
they form a specific structure called a determinantal point process, which is in this
case characterized by the so-called Bergman kernel. This and more information is
excitingly developed in Peres and Virág [5]; the book [1] also presents the results.

Another intriguing conexion is with the Poisson kernel. It is known, see [5] as
well, that the real part real(f ) of f can be expressed as a linear transformation of
the stochastic integral

u(z) =
∫ 2π

0
P(z, eit )dBt , (1.2)

where P(z, eit ) is the Poisson kernel and Bt is one-dimensional real-valued
Brownian motion. Briefly speaking, the equality

real(f )(z)
d= cu(z)+ ξ; (1.3)

holds, where c is a constant and ξ is a normal random variable.
Since the Poisson kernel is the real part of the Möbius transformation eit+z

eit−z , one
can ask whether f can be expressed as an stochastic integral of it. The answer is
affirmative and is Theorem 3.1, together with some consequences in Sect. 4.
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2 Preliminaries

Let us give a more specific description of the model and some notation we are using.
Let a0, a1, . . . be a sequence of independent identically distributed (i.i.d.) random

variables (r.v.s) which are Gaussian complex-valued. This means that the probability
density is given by

1

π
e−|z|2, z ∈ C. (2.1)

This is equivalent to saying that the variables an have the same distribution as X +
iY , where X and Y are two independent real-valued normally distributed with mean

zero and variance 1/2. The above is written in symbols as: an
d= X+iY with X ⊥ Y

and X,Y ∼ N(0, 1/2).
With the described sequence one can form the following random power series,

which is known to have radius of convergence 1, see e.g. [1],

f (z) =
∞∑

n=0

anz
n, z ∈ D, (2.2)

where D = {z : |z| < 1} is the open unit disk.
In [5] it is proved that the real part of f coincides in distribution with a

linear transformation of a stochastic integral of the Poisson kernel. Let us explain.
Consider the Poisson kernel P(z,w) as the real part of 1

2π
1+zw
1−zw , and recall the

function u(z) in (1.2) Then, the real part of f is the same, in distribution, as the

function z �→
√

π
2 u(z)+ ξ/2, where ξ ∼ N(0, 1) is independent of B.

3 Main Result

As mentioned in the introduction, after seeing (1.2) one can suspect that the whole
random series (2.2) can be expressed as an stochastic integral as well. This is indeed
the case.

Define

H(z) =
∫ 2π

0

eit + z

eit − z
dBt . (3.1)

Then we have that
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Theorem 3.1 The random power series f in (2.2) is the same in distribution as the
random function

z �→ H(z)

2
√

2π
+ ξ√

2
+ iη, (3.2)

where ξ ∼ N(0, 1/2) and η ∼ N(0, 1/2) are two independent r.v.s, independent
also from B.

The idea of the proof is the following. After splitting into the real and imaginary
parts, we expand (2.2) and (3.2) into trigonometric series to check that term by term
they are the same.

Proof Here {Xn, Yn, n = 0, 1, . . .} are i.i.d. N(0, 1/2) r.v.s.
Let us first expand f by using an = Xn + iYn and z = reiθ ;

f (z) =
∞∑

n=0

(Xn + iYn)r
neinθ

=
∞∑

n=0

(Xn + iYn)r
n(cos(nθ)+ i sin(nθ))

=
∞∑

n=0

rn[Xn cos(nθ)− Yn sin(nθ)]

+ i

∞∑

n=0

rn[Xn sin(nθ)+ Yn cos(nθ)].

On the other hand, to analyze H(z) we have that

eit + z

eit − z
= 1+ ze−it

1− ze−it
= 1

1− ze−it
+ ze−it

1− ze−it

=
∞∑

n=0

e−int zn + e−it z
∞∑

n=0

e−int zn = 1+ 2
∞∑

n=1

e−int zn

= 1+ 2
∞∑

n=1

rn[cos(nt) cos(nθ)+ sin(nt) sin(nθ)]

+2i
∞∑

n=1

rn[cos(nt) sin(nθ)− sin(nt) cos(nθ)].
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The linearity and the continuity of the stochastic integral yield

H(z) =
∫ 2π

0

eit + z

eit − z
dBt =

∫ 2π

0

⎡

⎣1+ 2
∞∑

n=1

e−int zn
⎤

⎦ dBt

= B2π + 2
√

2π
∞∑

n=1

rn[X̃n cos(nθ)− Ỹn sin(nθ)]

+2i
√

2π
∞∑

n=1

rn[X̃n sin(nθ)+ Ỹn cos(nθ)],

where

X̃n = 1√
2π

∫ 2π

0
cos(nt)dBt and Ỹn = − 1√

2π

∫ 2π

0
sin(nt)dBt .

Now, to reproduce the structure of f , let us see how {X̃n, Ỹn, n = 0, 1, . . .} form
a sequence of i.i.d. N(0, 1/2) r.v.s. By properties of the stochastic integral, each X̃n,
and also each Ỹn, is normally distributed with mean and variance given respectively
by

E[X̃n] = 0 and E[X̃2
n] = E

[
1

2π

∫ 2π

0
cos2(nt)dt

]

= 1

2
.

Let us see the independence. Notice first that (X̃n, Ỹm) is a Gaussian vector for
each pair (n,m). Then, to know that X̃n ⊥ Ỹm, it is enough to see that the covariance
is naught. Indeed, this can be seen by using the isometry property of the stochastic
integral:

E[X̃nỸm] = 1

2π

∫ 2π

0
cos(nt) sin(mt)dt = 0.

And the same is true for the vectors (X̃n, X̃m) and (Ỹn, Ỹm) with n 	= m. For n ≥ 1,
notice that X̃n and Ỹn are also independent of B2π because B2π =

∫ 2π
0 cos(0 ×

t)dBt .
Therefore, since the coefficients are the same in distribution, we can see that f

and H share almost the same trigonometric expansion. However, to be exactly the
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same, one needs some small amendments. Take independent r.v.s ξ ∼ N(0, 1/2)
and η ∼ N(0, 1/2), and form

H̃ (z) = 1

2
√

2π
H(z)+ ξ√

2
+ iη (3.3)

which reproduces f (z). The proof is finished. ��

4 The Zero Set

It turns out, see [5], that the set of zeros Z = f−1(0) is almost surely a countable
set of isolated points in D. Moreover, they form an object called a determinantal
point process with Bergman kernel. This means that the statistical distribution of
the points in Z obey a specific structure. Let us elaborate. The following is the key
description of such an structure.

Take k different points z1, . . . , zk in D, and define pε(z1, . . . , zk) as the
probability that there is one zero in each ball Bε(zi) = {z : |z − zi | < ε}. For
the balls Bε(zi) to have a single zero, ε needs to be sufficiently small.

Then, asymptotically when ε → 0, the probability of finding zeros inside the
balls Bε(zi) is described by a determinant of a matrix formed with the Bergman
kernel. More precisely,

lim
ε→0

pε(z1, . . . , zk)

πkε2k
= lim

ε→0

P(Bε(zi)
⋂

Z = 1, i = 1, . . . , k)

πkε2k

= det[K(zi, zj )]ki,j=1,

where K(z,w) = π−1(1− zw)−2. Notice that this limit is in a sense a density, that
is why people call it the joint intensity, but it is also called the k-point correlation
function.

By Theorem 3.1 the first thing we know is that H̃ behaves as f . Thus

Corollary 4.1

(i) The function H̃ in (3.3) is analytic in D.
(ii) The zeros of H̃ form a determinantal point process in D with the Bergman

kernel.
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Abstract We consider the Dirac operator on R of the form

Du(x)=
(

J
d

dx
+Q+Qs

)

u(x), x ∈ R

where J =
(

0 −1
1 0

)

,

Q(x) =
(
p(x)+ r(x) q(x)

q(x) −p(x)+ r(x)

)

, p, q, r ∈ L∞(R)

is the regular potential, and

Qs(x) =
∑

y∈Y



(
y
)
δ(x − y) (1)

is the singular potential, δ is the Dirac delta-function, 

(
y
) = (γij (y))i,j=1,2 is a

2 × 2-matrix with elements γij (y) ∈ l∞(Y), i, j = 1, 2, Y ⊂ R is an infinite or
finite discrete set.

We associate with the formal Dirac operator D the unbounded operator DQ,A,B

in L2(R,C2) defined by the operator J d
dx
+ Q with regular potential Q and the

point interaction conditions: A(y)u(y + 0) = B(y)u(y − 0), y ∈ Y where A(y) =
1
2
(y)− J,B(y) = −( 1

2
(y)+ J ).

V. Rabinovich (�)
Instituto Politecnico Nacional, ESIME Zacatenco, Mexico, DF, Mexico

© Springer Nature Switzerland AG 2020
W. Bauer et al. (eds.), Operator Algebras, Toeplitz Operators and Related Topics,
Operator Theory: Advances and Applications 279,
https://doi.org/10.1007/978-3-030-44651-2_21

351

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44651-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-44651-2_21


352 V. Rabinovich

We study the self-adjointness of DQ,A,B in L2(R,C2), its Fredholm properties,
and the essential spectrum. We consider also the influence of slowly oscillating
perturbations of regular potentials of periodic Dirac operators to his essential
spectrum.

Keywords Dirac operators · Point interactions · Self-adjointness ·
Fredholmness · Essential spectrum

Mathematics Subject Classification 34L40, 47E05, 47B25, 81Q10

1 Introduction

There is an extensive literature devoted to physical and mathematical aspects related
to Schrödinger operators with singular potentials (see [3–15] and extensive list of
references therein). In the 1−D case the most known and interesting are the formal
Schrödinger operators

L =− d2

dx2 +
∞∑

j=1

αj δ(x − yj ),L′ = − d2

dx2 +
∞∑

j=1

αj δ
′(x − yj ), (2)

where δ is the Dirac delta-function, and δ′ is the derivative of δ,
Y = {

y1, y2, . . . , yj , . . .
}

is a discrete set in R, αj are real-valued coefficients
called the strength of interactions. If αj = α and the sequence Y is periodic the
physical model described by Eqs. (2) is called the “Kronig–Penney Hamiltonian”
[20]. This is a simplest model of electron moving in a 1 −D crystal. The rigorous
consideration of operators L,L′ leads to the study of unbounded operators in L2(R)

generated by − d2

dx2 and so-called interaction conditions at the points of sequence Y
(see for instance [3, 4, 14, 15, 19, 22], and reference cited there). Some numerical
aspects of calculation of discrete and essential spectra of operators L,L′ and more
general given in paper [35]. Relativistic operators with δ−interactions have received
a lot of attention recently (see for instance [3, 5, 12, 17, 18, 24], and references cited
there).

We consider here the 1−D Dirac operator

DQ,Qsu(x) = J
du(x)

dx
+Q(x)u(x)+Qs(x)u(x), x ∈ R (3)

acting in the space two-dimensional vector valued distributions u(x) =
(
u1(x)

u2(x)

)

where Q is a regular potential and Qs is a singular potential. We assume that

Q(x) = qam(x)σ1 + (m+ qsc(x))σ3 + qel(x)I
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where

I=
(

1 0
0 1

)

, σ1 =
(

0 1
1 0

)

, J = iσ2 =
(

0 −1
1 0

)

, σ3 =
(

1 0
0 −1

)

,

qel is an electrostatic potential, qam is an anomalous magnetic moment, qsc is a
scalar potential, and m ≥ 0 is a mass of particle. The regular potential Q can be
written in the matrix form

Q(x) =
(
p(x)+ r(x) q(x)

q(x) −p(x)+ r(x)

)

where p = m + qsc, q = qam, r = qsc ∈ L∞(R3). We consider the singular
potential Qs of the form

Qs(x) =
∑

y∈Y



(
y
)
δ(x − y) (4)

where



(
y
) = (

γij (y)
)2
ij=1 , y ∈ Y

is a 2× 2 matrix with elements γij (y) ∈ l∞(Y), i, j = 1, 2, Y ⊂ R is an infinite or
finite discrete set. If Y = {

yj
}
j∈Z is the infinite set we assume that

0 < inf
j∈Z(yj+1 − yj ) ≤ sup

j∈Z
(yj+1 − yj ) <∞. (5)

We associate with formal Dirac operator (3) the unbounded operator DQ,A,B in
the Hilbert space L2(R,C2) defined by the Dirac operator DQ = J d

dx
+ Q with

interaction conditions

A(y)u(y + 0) = B(y)u(y − 0), y ∈ Y. (6)

The matrices A(y), B(y) are defined by the formulas

A(y) = 1

2

(y)− J,B(y) = −

(
1

2

(y)+ J

)

. (7)

It is convenient to change sometime interaction conditions (6) as follows

u(y + 0) = C(y)u(y − 0), y ∈ Y (8)

with C(y) = A−1(y)B(Y ) if the matrices A(y) are invertible.
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The main results of the paper are following.

10. We obtained the sufficient conditions for the operator DQ,I,C to be self-adjoint.
It should be noted that self-adjointness of operators DQ,I,C associated with
some interaction conditions have been studied in [16]. The authors of this paper
used the boundary triplets technique and the corresponding Weyl functions.
Our approach to the self-adjointness is different and closed to the study of self-
adjointness of realizations of elliptic formally self-adjoint differential operators
(see for instance [2, Chap. 4]).

20. We study the essential spectra of operators DQ,A,B for finite set Y of inter-
actions applying the limit operators method. This method and its applications
to the operator theory are presented in the book [26]. It was applied for the
study of Fredholm properties and essential spectra of different operators of
Mathematical Physics, in particular, electromagnetic Schrödinger and Dirac
operators on Rn for wide classes of potentials [27], discrete Schrödinger and
Dirac operators on Zn, and on periodic combinatorial graphs (see [28, 29]),
and on quantum waveguides (see [30]), and Schrödinger operators on Rn with
singular potentials supported on unbounded hypersurfaces in Rn (see [33, 34]).
Note that the method of limit operators has been applied to the investigation
of the essential spectrum of the Schrödinger operators on periodic graphs (see
[31, 32].)

Under assumption that the function p, q, r are uniformly continuous at
infinity we introduce limit operators Dh

Q,A,B for the operators DQ,A,B defined
by the sequences h = (hm), hm ∈ Z tending to infinity, and we prove that the
essential spectrum spessDQ,A,B of DQ,A,B is defined as

spessDQ,A,B =
⋃

Dh
Q,A,C∈LimDQ,A,C

spDh
Q,A,B (9)

where LimDQ,A,B is the set of all limit operators of DQ,A,B.

Moreover the essential spectra of operators DQ,A,B are independent of
singular potentials with finite supports.

Further we show that if the functions p, q, r are slowly oscillating at infinity
(see [26], page 88) the spectra of limit operators are defined in explicit forms
and formula (9) gives an effective description of spessDQ,A,B.

30. We consider also the essential spectrum of DQ,I,C for infinite periodic set
Y = Y0 + lZ, l ∈ R+ where Y0 ⊂ R is a finite set. We assume that the
coefficient C in interaction conditions (8) is l-periodic 2 × 2−matrix-valued
function, the functions p, q, r ∈ L∞(R) and are uniformly continuous at
infinity. The limit operators DQh,I,C for DQ,I,C are defined by sequences
h = (hm), hm ∈ lZ, hm → ∞, and we obtain a formula for the essential
spectrum DQ,I,C similar to formula (9).

40. As an application we study also the slowly oscillating perturbations of periodic
potentials. Let p, q, r be continuous real-valued periodic functions with respect
to the group lZ, and the coefficient C in interaction conditions (8) is a real-
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valued periodic matrix-function with respect to lZ, such that detC(y) = 1 for
every y ∈ Y0. Then the operator DQ,I,C is self-adjoint and periodic, that is

V−gDQ,I,CVg = DQ,I,C for every g ∈ lZ,

where Vg is the shift operator, that is Vgu(x) = u(x − g), x ∈ R, g ∈ lZ. Then
all limit operators DQh,I,C coincide with DQ,I,C , and spessDQ,I,C = spDQ,I,C .

Moreover, the spectrum of periodic operator DQ,I,C has a band-gap structure (see
for instance, [21, 38])

spDQ,I,C =
∞⋃

j=1

[
aj , bj

]
.

We consider the perturbation DQ̃,A,C
of operator DQ,A,C by addition a term r1I to

the periodic electrostatic potential rI where r1 is a slowly oscillating at infinity
function. Applying formula (9) we obtain the description of essential spectrum of
operator DQ̃,I,C

spessDQ̃,I,C =
∞⋃

j=1

[
aj +m(r1), bj +M(r1)

]
(10)

where m(r1) = lim infx→∞ r1(x),M(r1) = lim supx→∞ r1(x). Formula (10) yields
that some spectral bands of spessDQ̃,I,C may overlap depending on the intensity of
the perturbation r1. This can lead to the closure of some and possibly all gaps in the
spectrum of unperturbed periodic operator.

1.1 Notations

• If X,Y are Banach spaces then we denote by B(X, Y ) the space of bounded
linear operators acting from X into Y with the uniform operator topology, and by
K(X, Y ) the subspace of B(X, Y ) of all compact operators. In the case X = Y

we write shortly B(X) and K(X).

• An operator A ∈ B(X, Y ) is called a Fredholm operator if

kerA = {x ∈ X : Ax = 0} , cokerA=Y/%(A)

are finite dimensional spaces. Let A be a closed unbounded operator in a Hilbert
space H with a dense in H domain domA. Then A is called a Fredholm operator
if ker A = {

x ∈ domA : Ax = 0
}

and cokerA = H/%(A) where %(A) ={
y ∈ H : y = Ax, x ∈ domA

}
are finite-dimensional spaces. Note that A is a

Fredholm operator as unbounded operator in H if and only if A : domA → H



356 V. Rabinovich

is a Fredholm operator as a bounded operator where domA is equipped by the
graph norm

‖u‖domA =
(
‖u‖2

H +
∥
∥Au

∥
∥2
H

)1/2
, u ∈ domA

(see for instance [1, Chap. 2]).
• The essential spectrum spessA of an unbounded operatorA is a set of λ ∈ C such

that A − λI is not Fredholm operator as unbounded operator, and the discrete
spectrum spdisA of A is a set of isolated eigenvalues of finite multiplicity. It is
well known that if A is a self-adjoint operator then spdisA=spA�spessA. (see
for instance [1, Chap. 2]).

• We denote by L2(R,C2) the Hilbert space of 2-dimensional vector-functions
u(x) = (u1(x), u2(x)), x ∈ R with the scalar product

〈u, v〉 =
∫

R

(
u(x), v(x)

)
C2 dx.

• We denote by Hs(R,C2) the Sobolev space on R of two-dimensional vector-
valued functions, that is the space of distributions u ∈ D′(R,C2) such that

‖u‖Hs(R,C2) =
(∫

R

(1+ ∣
∣ξ

∣
∣2
)s

∥
∥û(ξ)

∥
∥2
C2 dξ

)1/2

<∞, s ∈ R

where û is the Fourier transform of u. If (a, b) is an interval in R then
Hs((a, b),C2) is the space of restrictions of u ∈ Hs(R,C2) on (a, b) with the
standard norm.

• We denote by Cm
b (R) the class of functions on R with m bounded continuous

derivatives, Cb(R) = C
0
b(R) is the class of bounded continuous functions on R,

and C∞b (R) = ∩m≥0C
m
b (R).

1.2 Dirac Operators on R

The Dirac operator DQ on R with regular potential Q can be written as

DQ = J
d

dx
+QI, (11)

where

J =
(

0 −1
1 0

)

,
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and the potential Q has the matrix form

Q =
(
p + r q

q −p + r

)

with p, q, r ∈ L∞(R).

Note that DQ is a bounded operator fromH 1
(
R,C2

)
into L2(R,C2). Moreover,

it is well-known that in the case of constant p, q, r ∈ R the operator DQ with
domain H 1(R,C2) is self-adjoint in L2(R,C2) .

Let p, q ∈ R, r = 0. Then

D2
Q =

(

− d2

dx2 + p2 + q2

)

I, (12)

and for every λ ∈ C

(
DQ − λI

) (
DQ + λI

) = (
DQ + λI

) (
DQ − λI

) =
(

− d2

dx2 +
(
p2 + q2 − λ2

)
)

I.

(13)

Formula (13) yields that

spDQ =
(

−∞,−
√

p2 + q2

] ⋃ [√

p2 + q2,+∞
)

. (14)

Let λ /∈ spDQ. Then the operators DQ − λI,DQ + λI are invertible from
H 1(R,C2) into L2(R,C2), and

(
DQ ± λI

)−1
u(x) = (

DQ ∓ λI
)
(

− d2

dx2 + p2 + q2 − λ2

)−1

u(x)

= (
DQ ∓ λI

)
∫

R

ie−k(λ)|x−y|u(y)dy
2k(λ)

, u ∈ L2(R,C2),

where k(λ) = √
p2 + q2 − λ2 and the branch of root is chosen such that

√
p2 + q2 − λ2 > 0 for λ ∈ R : |λ| <

√
p2

0 + q2
0 .
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2 Dirac Operator on R with Singular Potentials

2.1 Realization of Formal Dirac Operator with Singular
Potential

We denote by H 1(R\Y,C2) = ⊕+∞j=−∞H 1
(
(yj , yj+1),C

2
)

where

H 1
(
(yj , yj+1),C

2
)

is the Sobolev space on the interval (yj , yj+1). The norm

in H 1(R\Y,C2) is introduced as

‖u‖H 1(R\Y) =
⎛

⎝
∞∑

j=1

∥
∥uj

∥
∥2
H 1

(
(yj ,yj+1),C2

)

⎞

⎠

1
2

, uj = u |(yj ,yj+1) .

The functions u ∈ H 1(R�Y,C2) have the one-side limits at the points y ∈ Y

u±(y) = u(y ± 0) = lim
x→y±0

u(x).

The action of singular potential 
(y)δ(x − y) on functions u ∈ H 1(R�Y,C2)

is defined as


(y)δ(x − y)u(x) = 1

2

(y)(u+(y)+ u−(y))δ(x − y)

(see for instance [22].)
Applying the operator DQ,Qs to a function u ∈ H 1(R�Y,C2) as a distribution

in D′(R,C2) we obtain that

DQ,Qsu = DQu+
∑

y∈Y

(

−J (u+(y) − u−(y)) + 1

2

(y)(u+(y) + u−(y))

)

δ(x − y)

(15)

where DQu is a regular distribution defined as

DQu(x) = J
du(x)

dx
+Q(x)u(x), x ∈ R�Y. (16)

Since we are going to consider DQ,Qs as unbounded operator in L2(R,C2) the
singular terms have to disappear in the right hand side in (15). Hence the following
conditions should be satisfied at every point y ∈ Y

1

2

(y)(u+(y)+ u−(y)) = J (u+(y)− u−(y)). (17)
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Conditions (17) can be written as

A(y)u+(y) = B(y)u−(y), y ∈ Y (18)

with

A(y) = 1

2

(y)− J,B(y) = −

(
1

2

(y)+ J

)

. (19)

We set

H 1
A,B(R�Y,C2) =

{
u ∈ H 1(R�Y,C2) : A(y)u+(y) = B(y)u−(y), y ∈ Y

}
.

(20)

Assume that there exist inverse matrices A−1(y) for every y ∈ Y. Then the
interaction condition (18) can be written as

u+(y) = C(y)u−(y), C(y) = A−1(y)B(y), y ∈ Y, (21)

and we use the notation

H 1
I,C(R�Y,C2) =

{
u ∈ H 1(R�Y,C2) : u+(y) = C(y)u−(y), y ∈ Y

}
.

Let u, v ∈ H 1
I,C(R�Y,C2). Then integrating by parts we obtain

((

J
d

dx
+Q

)

u, v

)

=
(

u,

(

J
d

dx
+ Q̄

)

v

)

−
∞∑

j=1

(
Ju+(yj ) · v+(yj )− Ju−(yj ) · v−(yj )

)
(22)

where

x · y=x1ȳ1 + x2ȳ2.

Note that

Ju+(y) · v+(y)− Ju−(y) · v−(y) (23)

=
(
−u2+(y)v̄1+(y)+ u1+(y)v̄2+(y)

)
−

(
−u2−(y)v̄1−(y)+ u1−(y)v̄2−(y)

)
=

det

(
u1+(y) v̄1+(y)
u2+(y) v̄2+(y)

)

− det

(
u1−(y) v̄1−(y)
u2−(y) v̄2−(y)

)
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= det

⎛

⎝C(y)

(
u1−(y)
u2−(y)

)

, C(y)

(
v̄1−(y)
v̄2−(y)

)⎞

⎠− det

(
u1−(y) v̄1−(y)
u2−(y) v̄2−(y)

)

= (
detC(y)− 1

)
det

(
u1−(y) v̄1−(y)
u2−(y) v̄2−(y)

)

.

Hence
((

J
d

dx
+Q

)

u, v

)

=
(

u,

(

J
d

dx
+ Q̄

)

v

)

(24)

if and only if the matrix C(y) is real-valued and

detC(y) = 1 for every y ∈ Y. (25)

Hence DQ,I,C is symmetric (formally self-adjoint) operator if the potential Q,
and the matrix C are real-valued, and condition (25) holds.

Example 1 Let


(y) =
(

2α(y) 0
0 0

)

, α(y) ∈ R, y ∈ Y.

Then

A(y) = 1

2

(y)− J =

(
α(y) 1
−1 0

)

, B(y) = −
(

1

2

 + J

)

=
(
−α(y) 1
−1 0

)

,

and

C(y) =
(

1 0
−2α(y) 1

)

. (26)

Example 2 Let


(y) =
(

0 0
0 2β(y)

)

, β(y) ∈ R, y ∈ Y.

Then as above we obtain that

C(y) =
(

1 −2β(y)
0 1

)

, y ∈ Y. (27)
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2.2 A Priori Estimate for Dirac Operators

Proposition 3 Let p, q, r ∈ L∞(R). Then there exists a constant C > 0 such that
for every u ∈ H 1

A,B(R�Y,C2)

‖u‖H 1
(
R,C2

) ≤ C
(∥
∥DQu

∥
∥
L2(R,C2)

+ ‖u‖L2(R,C2)

)
. (28)

Proof The proof is similar to the proof of a priori estimates for solutions of
boundary value problems for elliptic partial differential equations (see for instance
[2, Chap. 2]). Let Iε(x0) =

{
x ∈ R : |x − x0| < ε

}
and xj ∈ R�Y. It follows from

the ellipticity of DQ that there exists ε > 0 such that Iε(xj )∩Y= ∅ and an operator
Lε
xj
∈ B(L2(R,C2),H 1(R,C2)) such that

LxjDQχxj I = χxj I + Txj χxj I (29)

for every χxj ∈ C∞0 (Iε(xj )), ε > 0 where Txj ∈ B(L2(R,C2),H 1(R,C2)). Let

xj ∈ Y, and D0 = J d
dx

on Iε(xj ). Then the operator D0
xj
: H 1

A(xj ),B(xj )
(Iε(xj ))→

L2(R,C2) is surjective and it has a kernel of the dimension less or equal 2. It implies
that there exists a right locally inverse operator R0

xj
for the operator D0

xj
. That is

R0
xj
D0

xj
χxj I = χxj I + Pjχxj I

where Pj is the projector on the kernel of operator D0
xj

with interaction conditions

u+(y) = C(y)u−(y).

Note that the projector Pj is the integral operator

Pju(x) =
∫

Iε(xj )

kPj (x, y)u(y)dy, x ∈ Iε(xj )

where kPj (x, y) ∈ C∞(Iε(xj )× Iε(xj )). It implies that for an enough small ε > 0
there exits a left local regularizator Lε

xj
such that

Lε
xj
DQχxj I = χxj I + Txj χxj I (30)

for every χxj ∈ C∞0 (Iε(xj )). Thus there exists a countable covering
{
Iε(xj )

}∞
j=1 of

R by the intervals Iε(xj ) of a finite multiplicity N, and operators Lε
j such that

Lε
jDQχxj I = χxj I + T ε

j χxj I
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where χxj ∈ C∞0 (Iε(xj )), and

sup
j

∥
∥
∥Lε

j

∥
∥
∥BL2(R,C2),H 1(R,C2))

<∞, (31)

and

sup
j

∥
∥
∥T ε

j

∥
∥
∥BL2(R,C2),H 1(R,C2))

<∞. (32)

Let
{
ϕj

}∞
j=1 , ϕj ∈ C∞0 (Iε(xj )) be a partition of unity

∞∑

j=1

ϕj (x) = 1, x ∈ R

subordinate to the covering
{
Iε(xj )

}∞
j=1. Let ψj , φj ∈ C∞0 (I εxj ) and ϕjψj =

ϕj ,ψjφj = ψj , j ∈ N. We set

Lw =
∞∑

j=1

ϕjL
ε
jψjw (33)

where w ∈ C∞0 (R). Then the right part side in (33) is a finite sum, hence Lw ∈
H 1(R,C2). Applying the finite multiplicity of the covering

{
Iε(xj )

}∞
j=1 we obtain

(see for instance [26], Proposition 2.2.2) the inequality

‖Lw‖BL2(R,C2),H 1(R,C2)) ≤ C sup
j∈N

∥
∥
∥Lε

j

∥
∥
∥B(L2(R,C2),H 1(R,C2))

‖w‖L2(R,C2) , w ∈ C∞0 (R).

Hence the operator L can be continued to a bounded operator from L2(R,C2) into
H 1(R,C2). Then

LDQ =
∞∑

j=1

ϕjL
ε
jψjDQ =

∞∑

j=1

ϕjL
ε
jψjDQφjI

=
∞∑

j=1

ϕjL
ε
jDQψj I +

∞∑

j=1

ϕjL
ε
j

[
ψj I,DQ

]
φj I

= I +
∞∑

j=1

ϕjT
ε
j ψj I +

∞∑

j=1

ϕjL
ε
j

[
ψj I,DQ

]
φj I.
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By estimates (31) and (32) and the finite multiplicity N of the covering
{
Iε(xj )

}∞
j=1

we obtain that
∥
∥
∥
∥
∥
∥

∞∑

j=1

ϕjT
ε
j ψj I

∥
∥
∥
∥
∥
∥BL2(R,C2) ,H 1(R,C2))

≤ C sup
j

∥
∥Tj

∥
∥BL2(R,C2) ,H 1(R,C2))

≤ C1

and
∥
∥
∥
∥
∥
∥

∞∑

j=1

ϕjL
ε
j

[
ψj I,DQ

]
φj

∥
∥
∥
∥
∥
∥BL2(R,C2) ,H 1(R,C2))

≤ C sup
j

∥
∥
∥Lε

j

∥
∥
∥ sup

j

∥
∥
∥
[
ψjI,DQ

]∥∥
∥BL2(R,C2) ,H 1(R,C2))

≤ C2.

Hence

LDQ = I + T (34)

where T ∈ BL2(R,C2) ,H 1(R,C2)). Equality (34) implies a priori estimate (28).
��

2.3 Parameter Dependent Dirac Operators

Let y ∈ Y, R±y =
{
x ∈ R : x ≶ y

}
, and

H 1
I,C(y)

(
R,C2

)

=
{

u ∈ H 1
(
R�

{
y
}
,C2

)
= H 1

(
R
+
y ,C2

)
⊕H 1

(
R
−
y ,C

2
)
: u+(y) = C(y)u−(y)

}

.

We denote by

ϕ±(x) =
(

1
±i

)

e±|μ|(x−y), x ∈ R

two linearly independent solutions of equation

D0(iμ)ϕ(x) = 0, x ∈ R, μ ∈ R� {0} . (35)
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in the space H 1(R,C2). Then the subspace of solutions of Eq. (35) in

H 1
I,C(y)

(
R,C2

)
is one-dimensional, and generated by the function

ϕ(x, η) =
{
ηϕ−(x), x > y

ϕ+(x), x < y
,

where η ∈ C is such that the interaction condition ϕ+(x, η) = C(y)ϕ+(x, η) holds.
Then we obtain that η ∈ C have to satisfy the equality

C(y)

(
1
−i

)

= η

(
1
i

)

.

Proposition 4 Let the matrix C(y) in the interaction conditions be such that the

vectors

(
1
i

)

and C(y)

(
1
−i

)

are linearly independent. Then the operator

D0(iμ) : H 1
I,C(y)(R�

{
y
}
,C2)→ L2(R,C2)

is invertible for every μ ∈ R� {0} and

∥
∥
∥D−1

0 (iμ)

∥
∥
∥BL2(R,C2),H 1

I,C(Y )
(R�{y},C2))

≤ C
(

1+ ∣
∣μ

∣
∣
)−1

, C > 0. (36)

Proof We consider the equation

D0(iμ)u(x) = f (x), x ∈ R�
{
y
}
, f ∈ L2(R,C2), μ ∈ R� {0} (37)

where u ∈ H 1(R�
{
y
}
,C2) and u satisfies the interaction conditions

u+(y) = C(y)u−(y). (38)

The general solution of Eq. (72) in the space H 1(R�
{
y
}
,C2) is

u(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u+(x) = D−1
0 (iμ)f+(x)+ γ+

(
1
i

)

e|μ|x, x > 0

u−(x) = D−1
0 (iμ)f−(x)+ γ−

(
1
−i

)

e|μ|x, x < 0

(39)

where f+ = θ+f, f− = θ−f , θ± are characteristic functions of R±,and γ± ∈ C.



Dirac Operators on R with General Point Interactions 365

Condition (38) implies that

(
D−1

0 (iμ)f+
)

+ (y)+ γ+

(
1
i

)

= C(y)
(
D−1

0 (iμ)f−
)

− (y)+ γ−C(y)

(
1
−i

)

.

(40)

We set

ψ(μ, y) = C(y)(D−1
0 (iμ)f−)−(y)− (D−1

0 (iμ)f+)+(y).

Then we obtain the system of linear equations for the definition of γ±

γ+

(
1
i

)

− γ−C(y)

(
1
−i

)

= ψ(μ, y). (41)

It follows from the condition of Proposition 4 that the vectors

(
1
i

)

and

C(y)

(
1
−i

)

are linear independent. Hence the system (41) has the unique solution

γ± = γ±(f ) and the operator D0(iμ) : H 1
I,C(y)

(
R,C2

)
→ L2

(
R,C2

)
is

invertible, and

D−1
0,C(y)(iμ)f (x) (42)

= P+D−1
0 (iμ)f+(x)+ P−D−1

0 (iμ)f−(x)

+ γ+(f )θ+(x)e−|μ|x + γ−(f )θ−(x)e−|μ|x, x ∈ R

where P± : H 1(R,C2)→ H 1(R±,C2) are the restriction operators. Estimate (36)
follows from formula (42). ��

Proposition 5 Let the vectors

(
1
i

)

and C(y)

(
1
−i

)

be linearly independent

for every y ∈ Y. Then there exists ρ > 0 such that the operator D0(iμ) :
H 1

I,C(R\Y,C2)→ L2(R,C2) is invertible for all μ ∈ R : ∣∣μ∣
∣ > ρ.

Proof The proof is similar to the proof of invertibility of operators of elliptic
boundary value problems with parameter (see for instance [2, Chap. 3]). We

introduce the Sobolev space H 1
(
R,C2, μ

)
with norm depending on the parameter

μ ∈ R

‖u‖H 1(R,C2 =
∫

R

(1+ μ2 + ξ2)‖û(ξ)‖2
C2dξ)

1/2

. (43)
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Note that the norm ‖u‖H 1
(
R,C2,μ

) is equivalent to the norm ‖u‖H 1
(
R,C2

) for every

μ ∈ R. The similar way we define the space H 1
I,C(y)

(
R�

{
y
}
,C2, μ

)
depending

on the parameter μ ∈ R. Conditions of Proposition 5 yield that the operators

D0(iμ) : H 1
I,C(y)

(
R�

{
y
}
,C2, μ

)
→ L2(R,C2)

are invertible, and there exists C > 0 such that

∥
∥
∥D0(iμ)

−1
∥
∥
∥B

(
L2(R,C2),H 1

(
R,C2,μ

)) ≤ C, (44)

and
∥
∥
∥D0(iμ)

−1
∥
∥
∥B

(
L2(R,C2),H 1

I,C(y)

(
R�{y},C2,μ

)) ≤ C (45)

for every y ∈ Y. The standard arguments of perturbation theory imply that there
exists ε > 0, ρ0 > 0 and a countable covering ∪∞j=1Iε(xj ) of R by open intervals

Iε(xj ) =
{
x ∈ R : ∣∣x − xj

∣
∣ < ε

}
and a system of uniformly bounded with respect

to j and μ : |μ| > ρ0 operators Rxj (μ), Lxj (μ) ∈ B(L2(R),H 1
xj

(
R,C2, μ

)
)

where

H 1
xj

(
R,C2, μ

)
) =

⎧
⎪⎨

⎪⎩

H 1
(
R,C2, μ

)
), xj /∈ Y

H 1
(
R�

{
xj

}
,C2, μ

)
), xj ∈ Y.

such that

Lxj (μ)D0(iμ)ηjI = ηj I

ηjD0(iμ)Rxj (μ) = ηj I

for every function ηj ∈ C∞0 (Iε(xj )). Let

∑

j∈Z
ϕj,ε(x) = 1, x ∈ R (46)

be the partition of unity subordinated to the covering ∪∞j=1Iε(xj ) where ϕj,ε ∈
C∞0 (Iε(xj )). Let ψj,ε ∈ C∞0 (Iε(xj )) be such that ϕj,εψj,ε = ϕj,ε.
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Then we set

Lε(μ)f =
∑

j∈N
ϕj,εLxj (μ)ψj,εf , f ∈ C∞0 (R,C2). (47)

As in the proof of Proposition 3 we obtain that

∥
∥Lε(μ)f

∥
∥
H 1(R,C2,μ)

≤ C
∥
∥f

∥
∥
L2(R,C2)

, f ∈ C∞0 (R,C2). (48)

Estimate (48) yields that the operator Lε(μ) is continued to a bounded operator

from L2(R,C2) into H 1
(
R,C2, μ

)
. Let φj,ε ∈ C∞0 (Iε(xj )) and ψj,εφj,ε = ψj,ε.

Hence suppψj,ε∩ supp(1 − φj,ε) = ∅. The definition of D0(iμ) yields that
ψj,εD0(iμ)(1− φj,ε) = 0. Hence ψj,εD0(iμ) = ψj,εD0(iμ)φj,εI. Then

Lε(μ)D0(iμ) =
∞∑

j=−∞
ϕj,εLxj (μ)ψj,εD0(iμ) =

∞∑

j=−∞
ϕj,εLxj (μ)ψj,εD0(iμ)φj,εI

(49)

=
∞∑

j=1

ϕj,εLxj (μ)ψj,εD0(iμ)ψj,εI +
∞∑

j=1

ϕj,εLxj (μ)
[
ψj,ε,D0(iμ)

]
φj,εI

= I + T ε(μ),

where

T ε(μ) =
∞∑

j=1

ϕj,εLxj (μ)
[
ψj,ε,D(iμ)

]
φj,εI.

Applying the finite multiplicity of covering
{
Iε(xj )

}∞
j=−N we obtain that

∥
∥T ε(μ)

∥
∥BH 1(R\Y,C2,μ))

≤ C

∥
∥
∥
[
ψj,ε,D0(iμ)

]∥∥
∥BH 1(R\Y,C2,μ),L2(R,C2))

≤ C1

(
1+ ∣

∣μ
∣
∣
)−1

. (50)

The estimate (50) implies that there exists ρ > ρ0 such that

∥
∥T ε(μ)

∥
∥BH 1

I,C
(R\Y,C2,μ))

< 1/2

for all μ ∈ R : |μ| > ρ. Hence there exist a left inverse operator Lε(μ) =(
I + T ε(μ

)
)−1Lε(μ) of D0(iμ) : H 1

I,C(R\Y,C2, μ) → L2(R,C2) for
∣
∣μ

∣
∣ > ρ

where ρ > 0 is large enough. Since the norm in H 1(R\Y,C2, μ) is equivalent to
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the norm in H 1(R\Y,C2) we obtain that the operator D0(iμ) : H 1
I,C(R\Y,C2)→

L2(R,C2) is invertible for all μ ∈ R : ∣∣μ∣
∣ > ρ. ��

Corollary 6 Let p, q, r ∈ L∞(R) and conditions of Proposition 5 hold. Then there

exists ρ > 0 such that the operator DQ(iμ) = D0(iμ)+QI : H 1
I,C

(
R\Y,C2

)
→

L2(R,C2) is invertible for all μ ∈ R : ∣∣μ∣
∣ > ρ.

Proof Note that

‖QI‖BH 1
(
R\Y,C2,μ

)
,L2(R,C2)) ≤ C(1+ ∣

∣μ
∣
∣)−1. (51)

Hence Proposition 5 and estimate (51) yield the invertibility of DQ(iμ) for all μ ∈
R, with

∣
∣μ

∣
∣ is large enough. ��

2.4 Self-adjointness of Dirac Operators with Interactions

We denote by DQ,I,C the unbounded operator in L2(R) defined by the Dirac
operator DQ with dense in L2(R,C2) domain domDQ,I,C = H 1

I,C(R�Y,C2).

Theorem 7 Let p, q, r ∈ L∞(R) be real-valued functions and the matrix C(y)

in the interaction conditions u+(y) = C(y)u−(y), y ∈ Y satisfies conditions of
Proposition 5. Moreover we assume that C(y) is a real matrix , and detC(y) = 1 for

every y ∈ Y. Then the unbounded operator DQ,I,C with domain H 1
I,C

(
R\Y,C2

)

is self-adjoint in L2(R,C2).

Proof It follows from a priori estimate (26) that the operator DQ,I,C with domain

H 1
I,C

(
R\Y,C2

)
is closed in L2(R,C2). Since p, q, r and the entries of the matrix

C are real-valued functions, and detC(y) = 1, for every y ∈ Y the equality

((

J
d

dx
+Q

)

u, v

)

L2(R,C2)

=
(

u,

(

J
d

dx
+Q

)

v

)

L2(R,C2)

;u, v ∈ H 1
I,C(R\Y,C2)

holds. Hence the operator DQ,I,C is symmetric. Moreover, Corollary 6 yields that
the deficiency indices N±(DQ,I,C ) of operator DQ,I,C equal zero. Hence (see for
instance [6], page 100) the operator DQ,I,C is self-adjoint. ��
Example 8 Let the interaction conditions be the form

u+(y) = C(y)u−(y)
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where C(y) =
(

1 2α(y)
0 1

)

, α(y) is real-valued function. It is easy to check the

vectors

(
1
i

)

and C(y)

(
1
−i

)

are linearly independent.Hence for the real-valued

potential Q the operator DQ,I,C is self-adjoint. In the same way one can prove if

C(y) =
(

1 0
2β(y) 1

)

, β(y) ∈ R the operator DQ,I,C is self-adjoint.

3 Fredholm Theory and Essential Spectrum of Dirac
Operators with Delta-Interactions

3.1 Local Principle in the Fredholm Theory of Dirac Operators

We consider the Fredholm property of Dirac operator DQ as a bounded operator
acting from H 1

A,B(R�Y,C2) into L2(R,C2). For the investigation of the Fredholm
property of DQ we will use the Simonenko local principle [37] modified for the
differential and pseudodifferential operators in [36].

We denote by Ṙ the compactification of R obtained by joining to R the infinitely
distant point∞.

Definition 9 We say that the operator DQ : H 1
A,B(R�Y,C2) → L2(R,C2) is

locally Fredholm at the point x ∈ R if there exists a neighborhood Iε(x) and an
operators Lε

x,R
ε
x ∈ B(L2(R,C2),H 1

A,B(R,C
2)) such that

Lε
xDQχxI = χxI + T ′xχxI, χxDQR

ε
x = χxI + T ′′x χxI, (52)

for every χx ∈ C∞0 (Iε(x)), ε > 0 where T ′x0
∈ K(H 1(R,C2)), T ′′x ∈

K(L2(R,C2)).

Definition 10 Let ϕ ∈ C∞(R) and ϕ(x) = 1 for |x| ≥ 1 and ϕ(x) = 0 for |x| ≤
1/2, ϕR(x) = ϕ( x

R
), R > 0. We say that the operator DQ : H 1

A,B(R�Y,C2) →
L2(R,C2) is locally invertible at the point ∞ if there exists R > 0 and operators
LR,RR ∈ BL2(R,C2),H 1

A,B(R,C
2)) such that

LRDQϕRI = ϕRI, ϕRDQRR = ϕRI.

Proposition 11 The operator DQ,A,B : H 1
A,B(R�Y,C2) → L2(R,C2) is

Fredholm if and only if DQ,A,B is locally Fredholm at every point x ∈ R and locally
invertible at infinitely distant point∞.

The proof of Proposition 11 follows from the local principle [36, 37].
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3.2 Finite Set Y of Interactions

3.2.1 Fredholm Theory

Let Y = {
y1, y2, . . . , yn

}
where y1 < y2 < . . . . < yn.

We say that a function a ∈ L∞(R) is uniformly continuous at infinity if there
exists R > 0 such that a is a uniformly continuous function on R� (−R,R) .

Let p, q, r ∈ L∞(R) and be uniformly continuous functions at infinity. Then the
Arcela-Ascoli Theorem implies that for every sequence Z -gm →∞ there exists a
subsequence hm →∞ and limit functions ph, qh, rh ∈ Cb(R) such that

lim
m→∞ sup

x∈K
∣
∣p(x + hm)− ph(x)

∣
∣ = 0, (53)

lim
m→∞ sup

x∈K
∣
∣q(x + hm)− qh(x)

∣
∣ = 0,

lim
m→∞ sup

x∈K
∣
∣r(x + hm)− rh(x)

∣
∣ = 0

for every compact set K ⊂ R� (−R,R). The Dirac operator

DQh = J
d

dx
+Qh(x) (54)

with

Qh(x) =
(
ph(x)+ rh(x) qh(x)

qh(x) −ph(x)+ rh(x)

)

(55)

is called the limit operator of DQ generated by the sequence Z - hm → ∞. We
denote by LimDQ the set of all limit operators of DQ generated by the sequence
Z - hm →∞.

Theorem 12 Let p, q, r ∈ L∞(R) be uniformly continuous functions at∞. Then

DQ : H 1
A,B

(
R,C2

)
→ L2(R,C2)

is a Fredholm operator if and only if all limit operators DQh ∈ LimDQ are
invertible from H 1(R,C2) into L2(R,C2).

Proof The operator DQ is locally Fredholm at every point x ∈ R since DQ is the
elliptic operator on R (see the proof of Proposition 3). Hence by Proposition 11
the operator DQ is a Fredholm operator if and only if DQ is locally invertible at the
infinitely distant points. It follows from [23, 27] the operatorDQ is locally invertible
at the infinitely distant point if and only if all limit operators DQh ∈ LimDQ are

invertible from H 1
(
R,C2

)
in L2(R,C2). ��
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Theorem 13 Let p, q, r ∈ L∞(R) and uniformly continuous at infinity. Then the
essential spectrum of unbounded operator DQ,A,B is given by the formula

spessDQ,A,B =
⋃

DQh∈LimDQ

spDQh (56)

where DQh are unbounded operators generated by

DQh = J
d

dx
+Qh

with domain H 1
(
R,C2

)
, and LimDQ is the set of all such operators.

This theorem is immediate corollary of Theorem 12.

Remark 14 Formula (56) yields that the addition of singular potential with support
on a finite set of points does not change the essential spectrum of Dirac operator
with regular potential.

3.3 Slowly Oscillating at Infinity Potentials

Definition 15 We say that a function a ∈ L∞(R) is slowly oscillating at infinity
and belongs to the class SO∞(R) if there exists R > 0 such that

lim
x→∞ sup

y∈K
∣
∣a(x + y)− a(x)

∣
∣ = 0 (57)

for every compact set K ⊂ {
x ∈ R : |x| > R

}
.

Note that if a ∈ SO∞(R) then all limit functions defined by the sequences Z -
hm →∞ are constant (see [26], page 88.)

Theorem 16 Let p, q, r ∈ SO∞(R) be real-valued functions. Then

DQ,A,B : H 1
A,B

(
R,C2

)
→ L2(R,C2)

is a Fredholm operator if and only if

0 ∈ (
M−(Q),M+(Q)

)
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where

M−(Q)= lim sup
x→∞

(

r(x)−
√

p2(x)+ q2(x)

)

, (58)

M+(Q)= lim inf
x→∞

(

r(x)+
√

p2(x)+ q2(x)

)

.

Proof Let p, q, r ∈ SO∞(R) be real-valued functions, Z - hm → ∞, and there
exist limits ph, qh, rh ∈ R in the sense of formula (53). Then the limit operator Dh

Q

is of the form

Dh
Q = J

d

dx
+

(
ph + rh qh

qh −ph + rh

)

. (59)

It follows from formula (14) that the operator Dh
Q : H 1(R,C2) → L2(R,C2) is

invertible if and only if

0 ∈
(

rh −
√
p2
h + q2

h, rh +
√
p2
h + q2

h

)

. (60)

Then Theorem 12 yields the statement of Theorem 16. ��
Corollary 17 Let p, q, r ∈ SO∞(R) be real-valued functions. Then

spessDQ,A,B = (−∞,M−(Q)]
⋃
[M+(Q),+∞) (61)

Note that spessDQ,A,B = R if M−(DQ) ≥M+(DQ).

3.4 Infinite Set of Interactions

3.4.1 Periodic Dirac Operators

We assume that the set Y is l-periodic that is Y = Y0 + lZ, Y0 ={
0 < y1 < y2 < . . . < yn < l

}
, DQ is the Dirac operator with potential

Q(x) =
(
p(x)+ r(x) q(x)

q(x) −p(x)+ r(x)

)

where p, q, r ∈ C(R) are l−periodic functions, the matrix C(y) in the interaction
condition is also l− periodic. Let DQ,I,C be unbounded operator associated with
DQ and the interaction conditions u+(y) = C(y)u−(y).
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The Floquet transform is defined for vector-functions f ∈ C∞0 (R,C2) (see for
instance [21]) as

(
Ff

)
(x, θ) = f̃ (x, θ) := 1√

2π

∑

α∈lZ
f (x − α) eiαθ , x ∈ R, θ ∈

[

−π

l
,
π

l

]

The operator F is continued to a unitary operator from L2
(
R,C2

)
into H =

L2
(

(0, l) , L2(
[
−π

l
, π

l

]
,C2

)

) of vector-valued functions on the interval (0, l)

with values in L2
([
−π

l
, π

l

])

,C2) with the norm

‖u‖H =
⎛

⎝
∫ l

0

∥
∥u (x, · )∥∥2

L2

([
− π

l ,
π
l

]
,C2

) dx

⎞

⎠

1/2

.

The inverse operator F−1 to the Floquet transform is

(
F−1f̃

)
(x) = 1√

2π

∫ π
l

− π
l

f̃ (x, θ) dθ.

Applying the Floquet transform to the Dirac operator DQ,I,C we obtain (see for
instance [21]) that

F−1DQ,I,CF =
⊕

θ∈
[
− π

l ,
π
l

]Dθ
DQ,I,C

(62)

where Dθ
DQ,I,C

are unbounded operators in L2((0, l),C2) generated by the Dirac
operator DQ on the interval (0, l) with the domain

domDθ
DQ,I,C

=
{
u ∈ H 1(0, l)�Y0

}
: u+(y, θ) = C(y)u−(y, θ), y ∈ Y0

u(l, θ) = eilθu(0, θ).

Note that the operator Dθ
DQ,I,C

is self-adjoint in L2((0, l),C2) and it has a discrete
spectrum

λ1(θ) < λ2(θ) < . . . < λj (θ) < . . . ; θ ∈
[

−π

l
,
π

l

]
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where λj (θ), j = 1, 2, . . . , . . . are continuous functions on
[
−π

l
, π

l

]
. Formula (62)

yields that

spDQ,I,C =
∞⋃

j=1

[
aj , bj

]
(63)

where
[
aj , bj

] = {λ ∈ R : λ = λj (θ), θ ∈ [−π
l
, π

l
]} (see for instance [38]).

For each θ ∈
[
−π

l
, π

l

]
we consider the spectral problem

DQu (x, θ, λ) = λu (x, θ) , x ∈ (0, l)�Y0,

u+
(
y, θ, λ

) = C(y)u−
(
y, θ, λ

)
, y ∈ Y0

u(0, θ, λ) = eilθu(l, θ, λ), θ ∈
[

−π

l
,
π

l

]

Solutions of this problem are sought of the form

u (x, θ, λ) = a1 (θ, λ) ϕ1 (x, λ)+ a2 (θ, λ) ϕ2 (x, λ) ,

where a1, a2 are arbitrary coefficients, and ϕ1, ϕ2 are linearly independent solutions
of the Dirac equation

DQϕ(x, λ) = λϕ(x, λ), x ∈ (0, l)�Y0

satisfying the interaction condition

ϕ+
(
y, λ

) = C(y)ϕ−
(
y, λ

)
, y ∈ Y0

as well as the initial conditions

ϕ1
1 (0, λ) = 1, ϕ2

1 (0, λ) = 0,

ϕ1
2 (0, λ) = 0, ϕ2

2 (0, λ) = 1.

From the quasi-periodic conditions

u (l, θ, λ) = eilθu (0, θ, λ) , θ ∈
[

−π

l
,
π

l

]

we obtain the system of equations

a1 (θ, λ) ϕ
1
1 (l, λ)+ a2 (θ, λ) ϕ

1
2 (l, λ) = eilθa1 (θ, λ)

a1 (θ, λ) ϕ
2
1 (l, λ)+ a2 (θ, λ) ϕ

2
2 (l, λ) = eilθa2 (θ, λ) , (64)
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with respect to a1 (θ, λ) , a2 (θ, λ) . System (64) implies that

(
a1 (θ, λ)

a2 (θ, λ)

)

is an

eigenvector of the monodromy matrix

M (λ) =
(
ϕ1

1 (l, λ) ϕ
1
2 (l, λ)

ϕ2
1 (l, λ) ϕ

2
2 (l, λ)

)

associated to the eigenvalue μ := eilθ . System (64) possesses non-trivial solutions
if and only if

det

(
ϕ1

1 (l, λ)− μ ϕ1
2 (l, λ)

ϕ2
1 (l, λ) ϕ2

2 (l, λ)− μ

)

= 0.

Taking into account that

det

(
ϕ1

1

(
l, μ

)
ϕ1

2

(
l, μ

)

ϕ2
1

(
l, μ

)
ϕ2

2

(
l, μ

)

)

= det

(
ϕ1

1

(
0, μ

)
ϕ1

2

(
0, μ

)

ϕ2
1

(
0, μ

)
ϕ2

2

(
0, μ

)

)

= 1

we obtain the dispersion equation

μ2 − 2μD (λ)+ 1 = 0, (65)

where

D (λ) := 1

2

(
ϕ1

1 (l, λ)+ ϕ2
2 (l, λ)

)
.

Equation (65) has solutions of the form μ := eiθ , θ ∈ [
0, 2π

]
if and only if∣

∣D (λ)
∣
∣ ≤ 1. Hence

spDQ,I,C =
{
λ ∈ R : ∣

∣D (λ)
∣
∣ ≤ 1

}

and the edges of the spectral bands of spDQ,I,C are solutions of the equation

∣
∣D (λ)

∣
∣ = 1.
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3.5 Fredholm Theory of Dirac Operators with Periodic Set of
Interactions

We assume that:

(a) As above Y = Y0 + lZ is the periodic set.
(b) The interaction matrix C : Y→B(R2) is a real-valued l-periodic matrix-

function;

(c) detC(y) = 1 for every y ∈ Y0, and the vectors

(
1
i

)

and C(y)

(
1
−i

)

are

linearly independent for any y ∈ Y0.
(d) p, q, r ∈ L∞(R) and are uniformly continuous functions at infinity.

Let the sequence lZ -gm →∞. Then there exists a subsequence hm of gm such
that there exist limit functions ph, qh, rh in the sense of formulas (53). Then the
Dirac operator

DQh = J
d

dx
+Qh(x), (66)

with

Qh(x) =
(
ph(x) qh(x)

qh(x) −ph(x)

)

+ rh(x)I (67)

is called the limit operator ofDQ defined by the sequence lZ -hm →∞. We denote
by LimDQ the set of all limit operators of DQ.

Theorem 18 Let conditions (a), (b), (c), (d) be satisfied. Then the operator

DQ : H 1
I,C(R�Y,C2)→ L2(R,C2)

is Fredholm if and only if all limit operators DQh ∈ Lim(DQ) acting from
H 1

I,C(R�Y,C2) into L2(R,C2) are invertible.

Proof Since the operator DQ is elliptic the operator DQ is locally Fredholm at
every point x ∈ R. Then Proposition 11 yields that DQ : H 1

I,C(R�Y) →
L2(R,C2) is a Fredholm operator if and only if DQ is locally invertible at infinity.
It follows from Proposition 5 that there exist μ > 0 such that the operator

D0(μ) = J
d

dx
− iμI : H 1

I,C(R�Y,C2)→ L2(R.C2)

is an isomorphism. We set

A = DQD
−1
0 (μ) : L2(R,C2)→ L2(R,C2). (68)
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It is easy to prove that DQ : H 1
I,C(R�Y,C2)→ L2(R,C2) is locally invertible at

infinity if and only if A : L2(R,C2) → L2(R,C2) is locally invertible at infinity.
For the study of local invertibility at infinity we use the results of the book [26] and
papers [23, 25].

Let φ ∈ C∞b (R) be an ˇarbitrary function, φt(x) = φ(tx), t ∈ R. Then it is easy
to prove that

∥
∥
∥
[
φt ,A

]∥∥
∥ = lim

t→0

∥
∥φtA−Aφt I

∥
∥ = 0, (69)

That is A belongs to the C∗−algebra of so-called band-dominated operators in
L2(R,C2) (See for instance [25]).

We introduce the limit operators of A as follows. Let lZ -hm → ∞, and
Vhmu(x) = u(x − hm) be the sequence of shift operators in L2(R,C2). We say
that Ah be a limit operator defined by the sequence (hm) if

lim
m→∞

∥
∥
∥
∥

(
V−hmAVhm −Ah

)
ϕI

∥
∥
∥
∥B(L2(R),C2)

= 0

lim
m→∞

∥
∥
∥
∥ϕ

(
V−hmAVhm −Ah

)∥
∥
∥
∥B(L2(R),C2)

= 0

for every ϕ ∈ C∞0 (R). One can see that

V−hmAVhm = V−hmDQVhmV−hmD−1
0 (μ)Vhm = V−hmDQVhmD

−1
0 (μ) (70)

Condition (d) for functions p, q, r implies that for every lZ -gm →∞ there exists
a subsequence (hm) of

(
gm

)
defining the limit operator DQh. Hence the sequence

(hm) defines the limit operator Ah of A by formula

Ah = DQhD−1
0 (μ). (71)

It follows from results [23, 25] the operator A is locally invertible at infinity if and
only if all limit operators Ah are invertible. Formula (71) yields that the invertibility
of all limit operators Ah : L2(R,C2)→ L2(R,C2) is equivalent to invertibility of
all limit operators DQh : H 1

I,B(R�Y,C2)→ L2(R,C2) of DQ ��
• Let conditions (a), (b), (c), (d) be satisfied. We denote by DQ,I,C,DQh,I,C the

unbounded closed operators in L2(R,C2) with domain H 1
I,C

(R�Y,C2) associ-
ated with the operators DQ,DQh , respectively. and we denote by LimDQ,I,C the
set of all limit operators of DQ,I,C.

As a corollary of Theorem 18 we obtain the following results.
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Theorem 19 Let conditions (a), (b), (c), (d) hold. Then

spessDQ,I,C =
⋃

D
Qh,I,C

∈LimDQ,I,C

spDQh,I,C. (72)

Hence if conditions (a), (b), (c) hold, p, q, r are l−periodic continuous functions
on R. Then

spessDQ,I,C = spDQ,I,C.

3.6 Slowly Oscillating at Infinity Perturbations of Electrostatic
Potentials

Let DQ,I,C be the above introduced periodic self-adjoint Dirac operator. We consider
the essential spectrum of the operator DQ̃,I,C with perturbed electrostatic potential
r̃I = (r + r1) I where r1 is a real-valued function belongs to the class SO∞(R).

The unperturbed periodic Dirac operator DQ,I,C has a band-gap spectrum (see
formula (63))

spessDQ,I,C = spDQ,I,C =
∞⋃

j=1

[
aj , bj

]
.

Applying Theorem 19 we investigate the essential spectrum of perturbed operator
DQ̃,I,C. Note that the limit operators of DQ̃,I,C defined by the sequences lZ -hm →
∞ are

DQ̃h,I,C = DQ,I,C + rh1 I

where

rh1 = lim
m→∞ r1(hm) ∈ R. (73)

Formula (72) yields that

spessDQ̃h,I,C
=

∞⋃

j=1

⋃

h

[aj + rh1 , b(j)+ rh1 ]
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where the union
⋃

h

is taken with respect to all sequences (hn) for which there exist

limits (73). Hence

spessDQ̃,I,C =
∞⋃

j=1

[aj +m(r1), bj +M(r1)] (74)

where m(r1) = lim infx→∞ r1(x),M(r1) = lim supx→∞ r1(x).

Formula (74) implies that some spectral bands of spessDQ̃,I,C may overlap
depending on the intensity of the perturbation r1. Let (bj ,aj+1), j ∈ N, be a gap of
spDQ,I,C , hence if the relation

M(r1)−m(r1) > aj+1 − bj

holds this gap will disappear due to the merging of the adjacent bands.
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1 Introduction

Recall that the poly-Bergman space A2
n(D) ⊂ L2(D, dxdy) consists of all n-

analytic functions ϕ = ϕ(x, y) on D ⊂ C, that is, those square-integrable functions

on D satisfying the equation
(

∂
∂z

)n = 0, where dxdy is the usual Lebesgue

measure. The orthogonal complement A2
(n)(D) := A2

n(D) . A2
n−1(D) is called

the true-poly-Bergman space, and it consists of all true-n-analytic functions. For
convenience, we define A2

(0)(D) = 0. Of course, A2
1(D) is the usual Bergman space

on D, which is simply denoted by A2(D). Analogously, introduce the spaces Ã2
n(D)

and Ã2
(n)(D) of all n-anti-analytic and true-n-anti-analytic functions, respectively.

In fact, each n-anti-analytic function is just the complex conjugation of an n-analytic
function. For the upper half-plane " = {z : Im z > 0}, N. L. Vasilevski [20, 21]
proved that L2(") has a decomposition as a direct sum of the true-n-analytic and
true-n-anti-analytic function spaces:

L2(") =
∞⊕

k=1

A2
(n)(")⊕

∞⊕

k=1

Ã2
(n)(").

Moreover, the author gave explicit expressions for the reproducing kernels of all
these function spaces, and he found an isometric isomorphism from L2(R+) onto
the true-poly-Bergman space A2

(n)(").
In [6] the authors characterized all the commutative C∗-algebras of Toeplitz

operators acting on the Bergman space of the unit disk D (or equivalently, in ").
Actually, there exist three types of maximal abelian groups of Möbius transforma-
tions on ", and their corresponding classes of symbols invariant under the action of
such groups. For every class of these symbols we have a commutative C∗-algebra
of Toeplitz operators acting on A2("). The first class of symbols consists of all
vertical functions, which depend only on y = Im z. The second class is the set
of homogeneous symbols, which are functions depending only on θ = arg z. The
third class of symbols can be easily described in the unit disk as the family of all
functions depending only on r = |z|.

With every class of symbols just mentioned above, the Toeplitz operators acting
on the true-poly-Bergman space A2

(n)(") generate a commutative C∗-algebra, this
fact can be proved using the techniques due to N. L. Vasilevski [21]. The C∗-algebra
generated by Toeplitz operators acting on A2

n(") is noncommutative, nevertheless,
it is isomorphic to a C∗-algebra of continuous matrix-valued functions in the cases
of vertical and homogeneous symbols [17, 19]. Recently, it was proved in [18]
that the C∗-algebra generated by all the Toeplitz operators on A2

n(") with vertical
symbols can be generated by a finite number of Toeplitz operators. In such work,
the representation of the affine group on L2(R) was an important tool, where poly-
Bergman spaces are identified with wavelet spaces. Certainly, the wavelet transform
has multiple applications, say, in signal processing and quantum mechanics, cf.
[1, 4]. Of course, a pioneering contribution on the one-dimensional wavelet analysis
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was made by A. Grossmann and J. Morlet [5]. See also [10] for this matter, and see
[7–9] for the study of Toeplitz operators on the true-poly-Bergman spaces and their
analogous wavelet spaces.

In a similar way, the study of Toeplitz operators can be carried out on the poly-
harmonic spaces of ". For example, in [14, 15] the authors used the three classes of
symbols and studied the corresponding Toeplitz operator algebra for the harmonic
Bergman space H2

1(") := A2
1(")⊕ Ã2

1("). In [16] the authors used homogeneous
symbols of the form a(θ) = χ[0,α](θ), and they described the C∗-algebra generated
by all the Toeplitz operators acting on H2

n(") := A2
n(")⊕ Ã2

n(").
Using polar coordinates in " and the Mellin transform, each true-poly-Bergman

space A2
(k)(") can be identified with L2(R) through a Bargmann type transform

[17]. This point of view fits to the study of Toeplitz operators with homogeneous
symbols. Since A2

n(") = ⊕n
k=1A2

(k)("), the poly-Bergman space A2
n(") is

isomorphic to (L2(R))
n. Thus, for each homogeneous symbol a, the Toeplitz

operator Tn,a acting on A2
n(") is unitary equivalent to a multiplication operator

γ n,a(x)I acting on (L2(R))
n, where γ n,a is a matrix-valued function continuous on

(−∞,+∞), cf. [17]. Consequently, the C∗-algebra generated by all the Toeplitz
operators Tn,a is isomorphic to the C∗-algebra generated by all the functions
γ n,a . We confine ourselves to homogeneous symbols a(θ) having limits values at
θ = 0, π . The main result in this work says that the C∗-algebra generated by all
the Toeplitz operators with bounded homogeneous symbols and acting on A2

n(")

can also be generated by a finite number of Toeplitz operators with symbols of
exponential type.

This paper is organized as follows. In Sect. 2 we introduce preliminary results
about the poly-analytic function spaces A2

n(") and their relationship with certain
class of orthogonal functions. In Sect. 3 we recall how a Toeplitz operator Tn,a
on A2

n("), with homogeneous symbol a, is unitary equivalent to a multiplication
operator γ n,aI . We establish a convenient factorization of γ n,a in order to carry
out the separation of the pure states of the corresponding C∗-algebra generated by
these functions. In Sect. 4 we describe the C∗-algebra generated by the Toeplitz
operators Tn,a , and we prove that such C∗-algebra can be generated by a finite
number of Toeplitz operators with symbols of exponential type. Finally, in Sect. 5,
we describe the C∗-algebra generated by all the Toeplitz operators acting on H2

n(")

with homogeneous symbols, and we prove that such algebra can also be generated
by a finite number of Toeplitz operators with symbols of exponential type.

2 Bergman and Poly-Bergman Spaces

The results that will appear in this section can be found in [17]. Let " be the upper
half-plane in C, and consider the space L2(") = L2(", dxdy), where dxdy is the
usual Lebesgue measure. Let A2

n(") be the poly-Bergman space that consists of all
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functions in L2(") satisfying the equation (∂/∂z)nϕ = 0. Introduce the true-poly-
Bergman spaces as follows:

A2
(n)(") = A2

n(").A2
n−1("), n = 1, 2, . . .

where A2
0(") = {0}. Of course A2

1(") = A2
(1)(") is the usual Bergman space.

By representing scalars in " with respect to polar coordinates we get the tensor
decomposition

L2(") = L2(R+, rdr)⊗ L2([0, π], dθ).

Let M : L2(R+, rdr) −→ L2(R, dx) be the Mellin type transform given by the
rule

(Mg)(x) = 1√
2π

∫

R+
r−ixg(r)dr.

It is well known that M is an isometric isomorphism. Then,

U =M ⊗ I

is a unitary operator from L2(") onto L2(R, dx) ⊗ L2([0, π], dθ). Let us see
how the poly-Bergman space A2

n(") can be identified with (L2(R, dx))
n. We have

2 ∂
∂z
= ED, where

E = eiθ

r
I, D = r

∂

∂r
+ i

∂

∂θ
.

Since DE = E(D−2) and M(r d
dr
)M∗ = (ix−1)I , the space A2

n := U(A2
n(")) ⊂

L2(R, dx)⊗L2([0, π], dθ) consists of all functions f (x, θ) satisfying the equation

(

ix − 1− 2[n− 1] + i
∂

∂θ

)

· · ·
(

ix − 1+ i
∂

∂θ

)

f = 0.

Thus,

A2
(n) = A2

n . A2
n−1

= {f (x)pn−1(x, θ)ψ(x)e−xθ−θi | f (x) ∈ L2(R, dx)}, n = 1, 2, . . .

where pn(x, θ) is a polynomial with respect to z = e−2θi given by

pn(x, θ) =
n∑

k=0

(−1)kbnk(x)e−2kθi, n = 0, 1, 2, . . . (2.1)



Toeplitz Operators with Homogeneous Symbols 387

with b00(x) = 1, bnn(x) = (n!)−1
√
(x2 + 12)(x2 + 22) · · · (x2 + n2),

bnk(x) =
(
n

k

)

bnn(x)

n−1∏

j=0

x − j i + ki

x − j i + ni
,

and

ψ(x) =
√

2x

1− e−2πx , ψ(0) = 1√
π
.

Actually, {pn(x, θ) | n = 0, 1, 2, . . .} is an orthonormal set in the Hilbert space
L2([0, π], (ψ(x))2e−2xθdθ) for each x ∈ R. On the other hand, A2

(n) is the image

of the true-poly-Bergman space A2
(n)(") under the operator U . Let P(n) be the

orthogonal projection from L2(R, dx) ⊗ L2([0, π], dθ) onto the space A2
(n). This

projection is given by

(P(n)f )(x, θ) = (ψ(x))2pn−1(x, θ)e
−xθ−θi

∫ π

0
f (x, ϕ)pn−1(x, ϕ)e

−xϕ+ϕidϕ.

Of course, Pn := ∑n
k=1 P(k) is the orthogonal projection from the space

L2(R, dx)⊗ L2([0, π], dθ) onto A2
n.

Let B",(n) and B",n denote the orthogonal projections fromL2(") ontoA2
(n)(")

and A2
n("), respectively.

Theorem 2.1 The unitary operator U gives an isometric isomorphism from the
space L2(") onto L2(R, dx)⊗ L2([0, π], dθ), under which

1. the poly-Bergman spaces A2
(n)(") and A2

n(") are mapped onto A2
(n) and A2

n,
respectively,

2. the poly-Bergman projectionsB",(n) and B",n are unitary equivalent to P(n) and
Pn, respectively. That is,

UB",(n)U
∗ = P(n), UB",nU

∗ = Pn.

Introduce the isometric embedding

R0,(n) : L2(R, dx) −→ L2(R, dx)⊗ L2([0, π], dθ)

by the rule

(R0,(n)f )(x, θ) = f (x) pn−1(x, θ)ψ(x)e−xθ−θi.
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Then, the operator

R(n) = R∗0,(n)U

maps L2(") onto L2(R, dx), and its restriction to A2
(n)(") is an isometric

isomorphism onto L2(R, dx). Thus, R∗(n)R(n) = B",(n) and R(n)R
∗
(n) = I . Let

us consider the isometric embedding

R0,n : (L2(R, dx))
n −→ L2(R, dx)⊗ L2([0, π], dθ)

given by the rule (R0,nf )(x, θ) = Hn(x, θ)
tf (t), where f = (f1, . . . , fn)

t , and

Hn(x, θ) = ψ(x)e−xθ−iθ (p0(x, θ), . . . , pn−1(x, θ))
t . (2.2)

Finally, we define the operator Rn : L2(") −→ (L2(R, dx))
n by the formula

Rn := R∗0,nU.

The operator Rn maps L2(") onto (L2(R, dx))
n, and its restriction to A2

n(") is an
isometric isomorphism. Moreover,

R∗nRn = B",n : L2(") −→ A2
n("),

RnR
∗
n = I : (L2(R, dx))

n −→ (L2(R, dx))
n.

3 Toeplitz Operators with Homogeneous Symbols

In this section we study Toeplitz operators acting on the poly-Bergman spaces on ",
and with homogeneous symbols. Let L{0,π}∞ stand for the subalgebra of L∞[0, π]
consisting of all functions having limit values at 0 and π . We shall say that a ∈
L
{0,π}∞ is a homogeneous symbol, and we write

a(0) := lim
θ−→0+

a(θ) and a(π) := lim
θ−→π−

a(θ).

We will identify a ∈ L
{0,π}∞ with the function a(z) = a(θ) defined on the upper

half-plane ", where θ = arg z. For a ∈ L
{0,π}∞ , the Toeplitz operator Tn,a , acting on

A2
n("), is the operator defined by

Tn,a : A2
n(") - ϕ �−→ B",n(aϕ) ∈ A2

n(").

In [17], the authors proved that Tn,a is unitary equivalent to the multiplication
operator γ n,a(x)I = RnTn,aR

∗
n acting on (L2(R, dx))

n, where γ n,a(x) is the
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continuous matrix-valued function

γ n,a(x) =
∫ π

0
a(θ)Hn(x, θ)[Hn(x, θ)]tdθ, (3.1)

which satisfies

a(π)I = lim
x−→−∞ γ n,a(x), a(0)I = lim

x−→+∞ γ n,a(x). (3.2)

Let T n−∞∞ be the C∗-algebra generated by all the Toeplitz operators Tn,a acting

on the poly-Bergman space A2
n("), with a ∈ L

{0,π}∞ . It was proved in [17] that
T n−∞∞ is isomorphic and isometric to the C∗-algebra

Cn = {M ∈ Mn(C)⊗ C[−∞,∞] : M(−∞),M(∞) ∈ CI }, (3.3)

where Mn(C) denotes the algebra of all n × n matrices with complex entries. Of
course, Cn is a C∗-bundle, where each fiber Cn(x) = {M(x) : M ∈ Cn} is a
C∗-subalgebra of Mn(C). Our main result in this section asserts that T n−∞∞ can be
generated using only 4n− 1 Toeplitz operators Tn,a , with homogeneous symbols of
exponential type a(θ) = eNθi , where N is integer. Actually, we will prove that the
C∗-algebraB generated by certain matrix-valued functions γ n,a1(x),. . . ,γ n,a4n−1(x)

separates all the pure states of Cn, each of which has the form

fx0,v(M) = 〈M(x0)v, v〉, M ∈ Cn, (3.4)

where x0 ∈ [−∞,∞], and v ∈ Cn is a unit vector [3, 12, 13]. In particular, there
exists only one pure state corresponding to each point x = ∞ and x = −∞. In fact,
we can take v = (1, 0, . . . , 0)t in these two cases, and

f±∞,v(M) = c±∞, M ∈ Cn,

where M(±∞) = c±∞I .
Let us start with a convenient factorization of the function γ n,a(x) given in (3.1).

Let

Ln(e
−2iθ ) = (1, e−2iθ , . . . , (e−2iθ )n−1)t

and

�n(x) :=
(
(−1)k−1b(j−1)(k−1)(x)

)n

j,k=1
,
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where bjk(x) = 0 if j < k. Then �n(x)Ln(e
−2θi) = (p0(x, θ), . . . , pn−1(x, θ))

t ,
and the Eq. (2.2) can be written as

Hn(x, θ) = ψ(x)e−xθ−iθ�n(x)Ln(e
−2θi). (3.5)

Lemma 3.1 The function γ n,a(x) can be written as

γ n,a(x) = �n(x)M
n,a(x)[�n(x)]t , (3.6)

where

Mn,a(x) = (ψ(x))2
∫ π

0
a(θ)e−2xθLn(e−2θi)[Ln(e

−2θi)]t dθ.

The matrix-valued function �n(x) satisfies the equation

�n(x)T (x)[�n(x)]t = I,

where �n(0) = I , T (0) = I and

T (x) = (Tjk(x))j,k=1,...,n =
(

x

x − (j − k)i

)

j,k=1,...,n
, x 	= 0. (3.7)

Proof According to formulas (3.1) and (3.5),

γ n,a(x) =
∫ π

0
a(θ)ψ(x)e−xθ−iθ�n(x)Ln(e−2θi )[ψ(x)e−xθ−iθ�n(x)Ln(e

−2θi )]t dθ

= �n(x)

(

(ψ(x))2
∫ π

0
a(θ)e−2xθLn(e−2θi)[Ln(e

−2θi)]t dθ
)

(�n(x))
t

= �n(x)M
n,a(x)[�n(x)]t .

Now, if a(z) = 1, then γ n,1(x) = I . Thus I = �n(x)T (x)[�n(x)]t , where
T (x) = Mn,1(x) and

Mn,1(x) = (ψ(x))2
∫ π

0
e−2xθLn(e−2θi)[Ln(e

−2θi)]t dθ.

A direct computation of this integral leads to (3.7). ��
Let us see how Mn,a is related to a Toeplitz matrix. Consider the measurable

function πa(θ/2)(ψ(x))2e−xθ ∈ L∞([0, 2π]), and its Fourier coefficients

Aa
m(x) := π(ψ(x))2

∫ 2π

0
a(θ/2)e−xθe−mθi dθ

2π
. (3.8)
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Then Mn,a(x) is the transpose truncated matrix of the infinite Toeplitz matrix
(Aj−k(x))j,k, that is, Mn,a(x) = (Aa

k−j (x))
n
j,k=1. Let J = (Jjk) ∈ Mn(C) be

the Jordan matrix of order n, that is, Jk,k+1 = 1, and Jjk = 0 elsewhere. Then

Mn,a(x) =
n−1∑

m=−n+1

Aa
m(x)Jm, (3.9)

where Jm = Jm and J−m = (J t )m for m = 0, . . . , n− 1.

4 C∗-Algebra Generated by Toeplitz Operators

Recall that T n−∞∞ denotes the C∗-algebra generated by all the Toeplitz operators
Tn,a acting on A2

n("), with homogeneous symbols. We have the unitary equivalence
RnTn,aR

∗
n = γ n,a(x)I , where γ n,a is given in Eq. (3.1). In this section we prove that

T n−∞∞ can be generated by a finite number of Toeplitz operators.
Let N be an odd integer, and take distinct integers N−n+1, . . . , N3n−2 such that

Nk = k, ∀k = −n+ 1, . . . , n− 1.

Theorem 4.1 The C∗-algebra T n−∞∞ is generated by the Toeplitz operators
Tn,aN/2 , Tn,a−n+1 ,. . . ,Tn,a3n−2 , where aN/2(θ) = eNθi and ak(θ) = e2Nkθi for
every k = −n+ 1, . . . , 3n− 2. Equivalently, the C∗-algebra Cn is generated by the
matrix-valued functions

γ n,aN/2(x), γ n,a−n+1(x), . . . , γ n,a3n−2(x). (4.1)

Moreover, the map T n−∞∞ - T �→ RnTR
∗
n ∈ Cn is an isometric isomorphism of

C∗-algebras, where

Tn,a �−→ γ n,a(x).

Proof It is known that T �→ RnT R
∗
n is an isometric isomorphism [17]. Note that Cn

is a type I C∗-algebra. Let B be the C∗-subalgebra of Cn generated by the matrix-
valued functions given in (4.1). Then, B separates all the pure states of Cn as shown
in Lemmas 4.2 and 4.4 below. By the noncommutative Stone-Weierstrass conjecture
proved by I. Kaplansky [12] for type I or GCR C∗-algebras, we have that Cn = B.

��
Take a symbol aN = e2Nθi , with N an integer. For the matrix-valued function

γ n,aN (x) given by formulas (3.6), (3.8) and (3.9), we have

A
aN
j (x) = xi

N − j + xi
, j = −n+ 1, . . . , n− 1 (4.2)
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where AaN
j (0) = δjN , and δjk is the Kronecker delta function. On the other hand, if

aN
2
(θ) = eNθi , with N an odd integer, then

A
aN/2
j (x) = i(ψ(x))2(1+ e−2πx)

1

N − (2j − 2xi)
. (4.3)

The valueA
aN/2
j (−x) will be needed in Sect. 5. From ψ(−x) = e−πxψ(x) it follows

that

A
aN/2
j (−x) = i(ψ(x))2(1+ e−2πx)

1

N − (−2j + 2xi)
. (4.4)

Let Ejk denote the n× n matrix with 1 in the (j, k)-entry, and 0 elsewhere. The
next lemma asserts that two pure states of Cn supported at the same fiber can be
separated.

Lemma 4.2 Take ak(z) = e2Nkθi for k = −n + 1, . . . , n − 1, where the integers
Nk’s are distinct from each other. For x0 ∈ (−∞,∞) \ {0} fixed, the C∗-algebra
generated by the matrices γ n,a−n+1(x0), . . . , γ

n,an−1(x0) is equal to Mn(C). In the
case x0 = 0, the matrices γ n,a−n+1(x0), . . . , γ

n,an−1(x0) generate Mn(C) if Nk = k

for k = −n+ 1, . . . , n− 1.

Proof Take x0 ∈ (−∞,∞). We have γ n,a(x0) = �n(x0)M
n,a(x0)[�n(x0)]t for

any homogeneous symbol a(θ). Suppose that

0 =
n−1∑

k=−n+1

ckγ
n,ak (x0) = �n(x0)

⎛

⎝
n−1∑

k=−n+1

ckM
n,ak (x0)

⎞

⎠ [�n(x0)]t .

By (3.9),

0 =
n−1∑

k=−n+1

ckM
n,ak (x0)

=
n−1∑

k=−n+1

ck

⎡

⎣
n−1∑

j=−n+1

A
ak
j (x0)Jj

⎤

⎦

=
n−1∑

j=−n+1

⎡

⎣
n−1∑

k=−n+1

ckA
ak
j (x0)

⎤

⎦ Jj .
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Since J = {Jj }n−1
j=−n+1 is linearly independent, we have

n−1∑

k=−n+1

ckA
ak
j (x0) = 0, j = −n+ 1, . . . , n− 1. (4.5)

We will show that S := {γ n,a−n+1(x0), . . . , γ
n,an−1(x0)} is linearly independent. For

the time being suppose that x0 	= 0. Thus, S is linearly independent if only if the
determinant of (Aak

j (x0))
n−1
j,k=−n+1 is nonzero. By formula (4.2),

det(Aak
j (x0))

n−1
j,k=−n+1 = det

(
x0i

−j + x0i + Nk

)n−1

j,k=−n+1
.

Define αj = −j+x0i and βk = Nk . Note that αk 	= αl and βk 	= βl for k 	= l. Then,
the determinant of (Aak

j (x0))
n−1
j,k=−n+1 is computed by the Cauchy double alternant,

cf. [2, 11]. That is,

det(Aak
j (x0))

n−1
j,k=−n+1 = (x0i)

2n−1 det

(
1

αj + βk

)n−1

j,k=−n+1

= (x0i)
2n−1

∏
−n+1≤j<k≤n−1(αk − αj )(βk − βj )

∏n−1
j,k=−n+1(αj + βk)

.

This proves that S is linearly independent in the case x0 	= 0. Then, we have
span S = �n(x0)(span J )�n(x0)

t . Let B be the C∗-algebra generated by S. Of
course, �n(x0)J

0�n(x0)
t belongs to B. Therefore (�n(x0)

t )−1(�n(x0))
−1 ∈

B. Consequently, �n(x0)(span J )(�n(x0))
−1 ⊂ B. On the other hand,

(J t )j−1J n−1 = Ejn and (J t )n−1J j−1 = Enj for j = 1, . . . , n. Further
Ejk = EjnEnk . Thus, B = Mn(C).

Now suppose that x0 = 0, and Nk = k for k = −n + 1, . . . , n − 1. Thus
A
ak
j (0) = δjk for j, k = −n+1, . . . , n−1. Actually,�n(0) = I and Mn,ak (0) = Jk .

Hence, γ n,ak (0) = Jk for k = −n+1, . . . , n−1. We know that J generatesMn(C).
��

We proceed to separate two pure states of Cn supported at different fibers.

Lemma 4.3 Let R(z) be a rational function of the form

R(z) =
m∑

k=1

ck

z− bk
, (4.6)

where ck and bk are complex numbers. Suppose that bk 	= bj for all k 	= j , and that
there exists k0 ∈ {1, . . . ,m} such that ck0 	= 0. Then, the number of zeros of R(z)
cannot exceed m− 1. For c ∈ C, the number of zeros of R(z)− c cannot exceed m.
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Proof Note that
∑m

k=1
ck

z−bk =
r(z)∏m

k=1(z−bk) , where

r(z) =
m∑

k=1

ck

m∏

j=1
j 	=k

(z− bj ).

Obviously, R(z) = 0 implies that r(z) = 0. Since ck0 	= 0, we have

r(bk0) = ck0

m∏

j=1
j 	=k0

(bk0 − bj ) 	= 0.

This proves that r(z) is a nonzero polynomial of degree at most m− 1. Since every
root of R(z) is a root of r(z), the number of zeros of R(z) cannot exceed m− 1. ��

Recall the C∗-algebra Cn and its pure states given in (3.4).

Lemma 4.4 Let v,w ∈ Cn be unit vectors, and x0, x1 ∈ [−∞,∞]. Take aN/2(z) =
eNθi with N an odd integer, and ak(z) = e2Nkθi with integers N−n+1 < · · · <
N3n−2. Then x0 = x1 provided that

fx0,v(γ
n,aN/2) = fx1,w(γ

n,aN/2)

and

fx0,v(γ
n,ak ) = fx1,w(γ

n,ak ), ∀ k = −n+ 1, . . . , 3n− 2.

Proof Let v,w ∈ C
n be unit vectors, and x0, x1 ∈ (−∞,∞). Introduce the vectors

ṽ = [�n(x0)]t v and w̃ = [�n(x1)]tw in C
n. We have

fx0,v(γ
n,ak ) = 〈γ n,ak (x0)v, v〉

= 〈�n(x0)M
n,ak (x0)[�n(x0)]t v, v〉

= 〈Mn,ak (x0)ṽ, ṽ〉.

Analogously, fx1,w(γ
n,ak ) = 〈Mn,ak (x1)w̃, w̃〉. Suppose that fx0,v(γ

n,ak (x)) =
fx1,w(γ

n,ak (x)) for all k = −n+ 1, . . . , 3n− 2. By formula (3.9),

n−1∑

j=−n+1

A
ak
j (x0)〈Jj ṽ, ṽ〉 =

n−1∑

j=−n+1

A
ak
j (x1)〈Jj w̃, w̃〉 (4.7)
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for all k = −n+ 1, . . . , 3n − 2. Suppose that x0 	= x1 and x0, x1 	= 0. By formula
(4.2) we have

A
ak
j (xl) = xli

Nk − (j − xli)
, l = 0, 1 and j = −n+ 1, . . . , n− 1.

Define bj (x) = j−xi for j = −n+1, . . . , n−1. Then, there exist scalars cj (x0, ṽ)

and cj (x1, w̃) such that (4.7) can be written as

R0(Nk)− R1(Nk) = 0, ∀ k = −n+ 1, . . . , 3n− 2,

where

R0(z) =
n−1∑

j=−n+1

cj (x0, ṽ)

z− bj (x0)
and R1(z) =

n−1∑

j=−n+1

cj (x1, w̃)

z− bj (x1)
.

It is easy to see that c0(x0, ṽ) = ix0‖ṽ‖2. But c0(x0, ṽ) 	= 0 since [�n(x0)]t
is invertible. Furthermore, x0 	= x1 implies bj (x0) 	= bk(x1) for all j, k. By
Lemma 4.3, the function R(z) := R0(z) − R1(z) cannot have more than 4n − 3
roots, contradicting that R(z) has 4n− 2 roots. Therefore x0 = x1.

Suppose now that x0 	= 0 and x1 = 0. Then A
ak
j (0) = δj,Nk , and R1(z) is a

constant function. Thus, R(z) has at most 2n − 1 roots. Therefore, the pure states
fx0,v and f0,w can be separated using 2n− 2 symbols.

According to (3.2), we have γ n,aN/2(−∞) = −I and γ n,aN/2(∞) = I . Hence

f−∞,v(γ
n,aN/2) 	= f+∞,w(γ

n,aN/2).

Now take x0 	= 0, and suppose that fx0,v(γ
n,ak ) = f±∞,w(γ

n,ak ) for all k =
−n + 1, . . . , 3n − 2. Since γ n,ak (±∞) = I , we have f±∞,w(γ

n,ak ) = 1. But the
rational function R̃(z) = R0(z) − 1 has at most 2n − 1 roots, thus, the pure states
fx0,v and f±∞,w can be separated using 2n− 2 symbols.

Finally, take x0 = 0, and choose Nk /∈ {−n+1, . . . , n−1}. Since Aak
j (0) = δjNk ,

we have γ n,ak (x0) = 0. Therefore fx0,v(γ
n,ak ) 	= f±∞,w(γ

n,ak ). ��

5 Toeplitz Operators Acting on the Polyharmonic Space

The C∗-algebra generated by all the Toeplitz operators (with homogeneous sym-
bols) acting on the polyharmonic space H2

n(") = A2
n(") ⊕ Ã2

n(") was described
in [16]; fortunately, this algebra can be generated by a finite number of Toeplitz
operators as shown in this section. The reflection map of " with respect to the y-
axis establishes a relationship between A2

n(") and Ã2
n("), and the corresponding

Toeplitz operators acting on these spaces. Indeed, define the self-adjoint unitary
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operator J : L2(") −→ L2(") by (Jf )(z) = f (−z). In polar coordinates we have
(Jf )(r, θ) = f (r, π − θ), where f ∈ L2(") = L2(R+, rdr) ⊗ L2([0, π], dθ).
It is easy to see that

(
∂
∂z

)n

J = (−1)nJ
(

∂
∂z

)n
. Thus Ã2

n(") = J(A2
n(")) and

B̃",n = JB",nJ, where B̃",n is the orthogonal projection from L2(") onto Ã2
n(").

For a ∈ L
{0,π}∞ , let T̃n,a be the Toeplitz operator defined by

T̃n,a : ϕ ∈ Ã2
n(") �−→ B̃",n(aϕ) ∈ Ã2

n(").

We have that JT̃n,aJ = Tn,̃a , where ã(θ) = a(θ − π). Introduce the operator
R̃n = RnJ : L2(") → (L2(R))

n, which is an isometric isomorphism from
Ã2

n(") onto (L2(R))
n. Then, the Toeplitz operator T̃n,a is unitarily equivalent to the

multiplication operator γ n,̃a(x)I = R̃nT̃n,aR̃
∗
n acting on (L2(R))

n. Since bnk(x) =
bnk(−x), we have pn(x, π − θ) = pn(−x, θ). In addition, e−πxψ(x) = ψ(−x).
Hence Hn(x, π − θ) = −Hn(−x, θ). Thus

γ n,̃a(x) = γ n,a(−x) =
∫ π

0
a(θ)Hn(−x, θ)[Hn(−x, θ)]t dθ. (5.1)

On the other hand, �n(−x) = �n(x). Therefore, (3.6) and (5.1) imply that

γ n,̃a(x) = �n(x) Mn,a(−x)[�n(x)]t .

Certainly, Q",n = B",n ⊕ B̃",n is the orthogonal projection onto H2
n(").

Introduce the Toeplitz operator

T̂n,a : H2
n(") −→ H2

n(")

by the rule T̂n,a(f ) = Q",n(af ). Define Wn = Rn ⊕ R̃n, which is an isometric
isomorphism from H2

n(") onto (L2(R))
n × (L2(R))

n. Thus, WnW
∗
n = I and

W∗
nWn = B",n ⊕ B̃",n.

Let a(θ) ∈ L
{0,π}∞ . A straightforward computation shows that the Toeplitz

operator T̂n,a is unitary equivalent to the multiplication operator γ̂ n,a(x)I =
WnT̂n,aW

∗
n acting on (L2(R))

n × (L2(R))
n, where

γ̂ n,a(x) =
∫ π

0
a(θ)

(
Hn(x, θ)[Hn(x, θ)]t −Hn(x, θ) Hn(−x, θ)t
−Hn(−x, θ)Hn(x, θ)

t Hn(−x, θ)[Hn(−x, θ)]t
)

dθ.

(5.2)

Actually, γ̂ n,a(x) belongs to the C∗-algebra Ĉn consisting of all matrix-valued
functions f = (fij ) ∈ M2n(C)⊗ C(R) such that

f (−∞) =
(
λ1I 0I
0I λ2I

)

, and f (+∞) =
(
λ2I 0I
0I λ1I

)

λ1, λ2 ∈ C,
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where I denotes the n × n identity matrix. For γ̂ n,a(x) we have γ̂ n,a(−∞) =
diag {a(π)I, a(0)I } [16].

Let T̂ n−∞∞ be the C∗-algebra generated by all the Toeplitz operators T̂n,a acting

on H2
n("), with a(θ) ∈ L

{0,π}∞ .

Theorem 5.1 Consider aN(z) = e2Nθi and ak(θ) = eNkθi , where N−2n+1,. . . ,
N10n−6 are distinct odd integers and N is an integer not in {−2n+ 1, . . . , 2n− 1}.
Then T̂ n−∞∞ is generated by the Toeplitz operators T̂n,aN and T̂n,ak for k = −2n+
1, . . . , 10n − 6. Equivalently, the C∗-algebra Ĉn is generated by all the matrix-
valued functions

γ̂ n,aN (x), γ̂ n,a−2n+1(x), . . . , γ̂ n,a10n−6(x). (5.3)

Moreover, the map T̂ n−∞∞ - T �→ WnTW
∗
n ∈ Ĉn is an isometric isomorphism,

where

T̂n,a �−→ γ̂ n,a(x).

Proof Note that Ĉn is a type I C∗-algebra. Let B̂ be the C∗-subalgebra of Ĉn

generated by all the matrix-valued functions (5.3). Then B̂ separates all the pure
states of Ĉn as shown in Lemmas 5.3, 5.4 and 5.5 below. By the noncommutative
Stone-Weierstrass conjecture proved by I. Kaplansky [12] for type I or GCR C∗-
algebras, we have that Ĉn = B̂. ��

As for γ n,a(x), we need a convenient factorization of γ̂ n,a(x).

Lemma 5.2 For a ∈ L
{0,π}∞ , the function γ̂ n,a(x) can be written as

γ̂ n,a(x) = �̂(x)Mn,a(x)[�̂(x)]∗,

where �̂(x) =
(
�n(x) 0

0 �n(x)

)

, Mn,a(x) =
(
Mn,a(x) Nn,a(−x)
Nn,a(x) Mn,a(−x)

)

, and

Nn,a(x) = −(ψ(x))2e−πx
∫ π

0
a(θ)e−2θiLn(e

−2θi)[Ln(e
−2θi)]t dθ.

Proof It follows from (3.5), (5.2), and the equality �n(−x) = �n(x). ��
Note that Nn,a(x) is a Hankel matrix and it can be written as

Nn,a(x) =
n−1∑

j=−n+1

ηan+j (x)Mn+j , (5.4)
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where

ηam(x) = −π(ψ(x))2e−πx
∫ 2π

0
a(θ/2)e−θmi dθ

2π
, m = 1, . . . , 2n− 1, (5.5)

and Mm is the Hankel matrix whose (j, k)-entry is equal to 1 for j + k = m + 1,
and 0 elsewhere. For ak(θ) = eNkθi with Nk an odd integer, we have

η
ak
j (x) = −2i(ψ(x))2e−πx 1

Nk − 2j
, j = 1, . . . , 2n− 1, (5.6)

η
ak
j (−x) = −2i(ψ(x))2e−πx 1

Nk + 2j
, j = 1, . . . , 2n− 1. (5.7)

We proceed now to separate all the pure states of the C∗-algebra Ĉn using the
elements of the C∗-algebra B̂ generated by all the matrix-valued functions given in
(5.3). Each pure state [3, 12, 13] of Ĉn has the form

fx,u(M) = 〈M(x)u, u〉, M ∈ Ĉn,

where u ∈ Cn ×Cn is unimodular, and x ∈ R.

Lemma 5.3 There are only two pure states of Ĉn corresponding to x0 = −∞:
fx0,v1 and fx0,v2 , where v1 = (et1, 0t ), v2 = (0t , et1), e1 = (1, 0, . . . , 0)t , and
0 = (0, . . . , 0)t ∈ Cn. These pure states can be separated by any γ̂ n,ak .

Proof Since γ̂ n,ak (−∞) = diag{−I, I }, we have that fx0,v1(γ̂
n,ak ) = −1 and

fx0,v2(γ̂
n,ak ) = 1. ��

Note that the pure states of Ĉn corresponding to x = ∞ depend on the pure states
of Ĉn at −∞.

For k = −n+ 1, . . . , n− 1, introduce

Jk =
(
Jk 0I
0I 0I

)

, J̃k =
(

0I 0I
0I Jk

)

,

Mk =
(

0I 0I
Mn+kI 0I

)

, M̃k =
(

0I Mn+kI
0I 0I

)

.

Lemma 5.4 Take ak(z) = eNkθi , where N−2n+1, . . . , N6n−4 are distinct odd
integers. For x0 ∈ (−∞,∞) fixed, the C∗-algebra generated by the matrices
γ̂ n,a−2n+1(x0),. . . , γ̂ n,a6n−4(x0) is equal to M2n(C).
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Proof Take x0 ∈ (−∞,∞). We will show that Ŝ := {γ̂ n,ak (x0)}6n−4
k=−2n−1 is linearly

independent for x0 	= 0. Suppose that

0 =
6n−4∑

k=−2n+1

ckγ̂
n,ak (x0) = �̂(x0)

⎛

⎝
6n−4∑

k=−2n+1

Mn,ak (x0)

⎞

⎠ [�̂(x0)]∗.

According to formulas (3.9) and (5.4),

0 =
6n−4∑

k=−2n+1

ckMn,ak (x0)

=
n−1∑

j=−n+1

6n−4∑

k=−2n+1

[

ckA
ak
j (x0)Jj + ckA

ak
j (−x0)̃Jj

]

+
n−1∑

j=−n+1

6n−4∑

k=−2n+1

[

ckη
ak
n+j (x0)Mj + ckη

ak
n+j (−x0)M̃j

]

.

Since Ĵ = {Jj , J̃j , Mj , M̃j }n−1
j=−n+1 is linearly independent, we have

6n−4∑

k=−2n+1

ckq
ak
j (x0) = 0, j = −2n+ 1, . . . , 6n− 4,

where

q
ak
j (x0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A
ak
j+n(x0) if j = −2n+ 1, . . . ,−1,

A
ak
j−n+1(−x0) if j = 0, . . . , 2n− 2,

η
ak
j−2n+2(x0) if j = 2n− 1, . . . , 4n− 3,

η
ak
j−4n+3(−x0) if j = 4n− 2, .., 6n− 4.

Now Ŝ is linearly independent if and only if the determinant of (q
ak
j (x0)) is

nonzero. By formulas (4.3), (4.4), (5.6) and (5.7),

det(qakj (x0))
6n−4
j,k=−2n+1 = ν(x0) det

(
1

αj + βk

)6n−4

j,k=−2n+1

,
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where ν(x) = (iψ(x)2)8n−4(2e−πx(1+ e−2πx))4n−2, βk = Nk , and

αj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−2(j + n)+ 2x0i if j = −2n+ 1, . . . ,−1,

2(j − n+ 1)− 2x0i if j = 0, . . . , 2n− 2,

−2(j − 2n+ 2) if j = 2n− 1, . . . , 4n− 3,

2(j − 4n+ 3) if j = 4n− 2, . . . , 6n− 4.

The complex numbers αj ’s are distinct for x0 	= 0, thus

det(qakj (x0))
6n−4
j,k=−2n+1 = ν(x0)

∏
−2n+1≤j<k≤6n−4(αk − αj )(βk − βj )

∏6n−4
j,k=−2n+1(αj + βk)

	= 0.

This proves that Ŝ is linearly independent in the case x0 	= 0. Therefore, span Ŝ =
�̂(x0)(span Ĵ )�̂(x0)

∗. Let B̂ be the C∗-algebra generated by Ŝ. As in the proof
of Lemma 4.2, �̂(x0)(span Ĵ )�̂(x0)

−1 ⊂ B̂. It easy to see that Fn+j+1 :=
MjM̃n−1 = diag {0I,Ej+1,n} for j = 0, . . . , n− 1. Besides

Fj+1 := M̃j (Mn−1M̃n−1) =
(

0I Ej+1,n

0I 0I

)

, j = 0, . . . , n− 1.

Note that {Fj , F
t
j }2nj=1 generates M2n(C). That is, {Mj , M̃j }n−1

j=0 generates M2n(C).

Consequently, Ŝ generates M2n(C).
Take now x0 = 0. Then �̂(0) = diag {I, I }, and

A
ak
j (0) = 2i

π

1

Nk − 2j
, A

ak
j (0) = 2i

π

1

Nk + 2j
, j = −n+ 1, . . . , n− 1,

η
ak
j (0) = −2i

π

1

Nk − 2j
, η

ak
j (0) = −2i

π

1

Nk + 2j
, j = 1, . . . , 2n− 1.

Thus

γ̂ n,ak (0) = A
ak
0 (0)(J0 + J̃0)+

n−1∑

j=1

A
ak−j (0)(J−j + J̃j − M̃−n+j )

+
n−1∑

j=1

A
ak
j (0)(Jj + J̃−j −M−n+j )

+
n−1∑

j=0

[

η
ak
n+j (0)Mj + η

ak
n+j (0)M̃j

]

.
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It can be proved that S = {γ̂ n,a−2n+1(0), . . . , γ̂ n,a2n−1(0)} is linearly independent
by using the Cauchy double alternant. Thus, the set of matrices {Mj , M̃j }n−1

j=0 is

contained in span S. We know that {Mj , M̃j }n−1
j=0 generates M2n(C). ��

Lemma 5.5 Let v,w ∈ C2n be unit vectors, and x0, x1 ∈ [−∞,∞]. Take N an
integer not in {−2n+1, . . . , 2n−1}, and N−2n+1, . . . , N10n−6 distinct odd integers.
Define aN(z) = e2Nθi , and ak(z) = eNkθi for k = −2n + 1, . . . , 10n − 6. Then
x0 = x1 whenever

fx0,v(γ̂
n,aN ) = fx1,w(γ̂

n,aN )

and

fx0,v(γ̂
n,ak ) = fx1,w(γ̂

n,ak ), k = −2n+ 1, . . . , 10n− 6. (5.8)

Proof Let v,w ∈ C2n be unit vectors, and x0, x1 ∈ (−∞,∞). Define ṽ =
[�̂(x0)]∗v and w̃ = [�̂(x1)]∗w. Then fx0,v(γ̂

n,ak ) = 〈
Mn,ak (x0)ṽ, ṽ

〉
and

fx1,w(γ̂
n,ak ) = 〈Mn,ak (x1)w̃, w̃〉. Write ṽ = (vt1, v

t
2)

t and w̃ = (wt
1, w

t
2)

t , where
v1, v2, w1, w2 ∈ Cn. Then

fx0,v(γ̂
n,ak ) = vt1M

n,ak (x0)v1 + vt1N
n,ak (−x0)v2

+vt2Nn,ak (x0)v1 + vt2M
n,ak (−x0)v2. (5.9)

We have a similar representation for fx1,w(γ̂
n,ak ). Introduce the complex numbers

b±1j (x) = ±(2j − 2xi) for j = −n + 1, . . . , n − 1, and b±2j = ±2j for j =
1, . . . , 2n−1. Equations (5.8) can be written as R0(Nk)−R1(Nk) = 0, where R0(z)

and R1(z) are rational functions of the form (4.6). In fact, R0(z) can be obtained
using formulas (3.9), (4.3), (4.4), (5.4), (5.6) and (5.7) in the right-hand side of (5.9).
Thus, the singularities of R0(z) are the complex numbers b±1j (x0) and b±2j = ±2j .

Note that R0(z) and R1(z) share the singularities b±2j . If x0, x1 	= 0 and x0 	= x1,
the rational function R(z) := R0(z) − R1(z) has at most 12n − 5 roots. If x0 = 0
and x1 	= 0, then R(z) has 8n− 4 singularities, and thus it has at most 8n− 3 roots.
Thus, Eqs. (5.8) imply that x0 = x1.

Take x0 	= 0, and suppose that fx0,v(γ̂
n,ak ) = f−∞,vm(γ̂

n,ak ) for all k =
−2n + 1, . . . , 10n − 6, where v1 and v2 are given in Lemma 5.3. We have that
f−∞,v1(γ̂

n,ak ) = −1 and f−∞,v2(γ̂
n,ak ) = 1 for any k. Since R̃(z) := R0(z) ± 1

have at most 8n− 4 roots, the pure states fx0,v and f−∞,vm can be separated.
Finally, take x0 = 0. Since N /∈ {−2n + 1, . . . , 2n − 1} we have A

aN
j (0) =

A
aN
j (0) = 0 for j = −n + 1, . . . , n − 1, and η

aN
j (0) = η

aN
j (0) = 0 for j =

1, . . . , 2n− 1. That is, γ̂ n,aN (0) = 0. Thus fx0,v(γ̂
n,aN ) 	= f−∞,vm(γ̂

n,aN ). ��
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on the Half-Plane
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Abstract Using the approach based on sesquilinear forms, we introduce Toeplitz
operators in the analytic Bergman space on the upper half-plane with strongly
singular symbols, derivatives of measures. Conditions for boundedness and com-
pactness of such operators are found. A procedure of reduction of Toeplitz operators
in Bergman spaces of polyanalytic functions to operators with singular symbols
in the analytic Bergman space by means of the creation-annihilation structure is
elaborated, which leads to the description of the properties of the former operators.
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D and the Fock space on the whole complex plane were considered. For further
characterizations and sufficient conditions for boundedness (and compactness) of
Toeplitz operators on Bergman spaces of the unit disk, see [9, 10, 13], and references
therein.

The present paper is devoted to the study of such Toeplitz operators in one more
classical Bergman space, the one of analytic functions on the upper half-plane ",
square integrable with respect to the Lebesgue measure. It is well known that for
sufficiently regular, say, bounded symbols, the theories of Toeplitz operators in the
Bergman spaces on the disk and on the upper half-plane are equivalent, in the sense
that the Möbius transform

z �→ ζ = M(z) := z− i

1− iz
: "→ D, (1.1)

generates the mapping

U : f �→ g = Uf, (Uf )(z) = f (M(z))
1

(1− iz)2 , z ∈ ", (1.2)

which is an isometry of the Bergman spaces A2(D) and A1 := A2("). However,
when passing to more singular symbols that generate Toeplitz operators via
sesquilinear forms, the boundedness conditions no longer carry over in such a simple
way.

In the present paper, we introduce Carleson measures for derivatives of order k
(k-C measures) for the Bergman space on the half-plane and find conditions for a
given measure to be a k-C measure. As usual, these conditions are sufficient for
complex measures but are also necessary for positive ones. An estimate for the
properly defined norm of k-C measures, with explicit dependence on the derivative
order k, is obtained. This makes it possible to consider strongly singular symbols,
containing derivatives of unbounded order.

The above results are applied to the study of Toeplitz operators in polyanalytic
Bergman spaces on the upper half-plane, using the creation-annihilation structure
discovered in [2, 12].

2 The Bergman Space on the Half-Plane and Related
Structures: Singular Symbols

Similar to the hyperbolic metric on the disk, the pseudo-hyperbolic metric on the
half-plane is useful. As known, for z,w ∈ ", the pseudo-hyperbolic distance
between z,w is defined by

d(z,w) =
∣
∣
∣
∣
z −w

z −w

∣
∣
∣
∣ .
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We will denote by D(z,R), z = x + iy, R < 1, the pseudo-hyperbolic disk in ",
centered at z with ’radius’ R. It is easy to check that the disk D(z,R) coincides with
the Euclidean disk B(w, r),

D(x + iy, R) = B(w, r), where w = x + i
1+ R2

1− R2
y, r = 2Ry

1− R2
. (2.1)

Thus, the area of the disk D(z,R) equals 4πR2y2

(1−R2)2 .
Conversely, the Euclidean disk B(x + iη, r) ∈ " is the pseudo-hyperbolic disk

D(x + iy, R) with

R = η

r
−

√
η2

r2 − 1 and y = 1− R2

1+ R2 η.

Note that, while the pseudo-hyperbolic radius is fixed, the y-coordinate of the center
of the pseudo-hyperbolic disk is proportional to the corresponding coordinate of the
Euclidean disk.

Recall that the Bergman space A1 = A2(") is a subspace in L2(") which
consists of functions analytic in ". It is a reproducing kernel space, with the
reproducing kernel κ(z,w) = −(π(z−w)2)−1. Thus, the integral operator P = P"

with kernel κ(z,w) is the orthogonal (Bergman) projection of L2(") onto A2(").
This projection is connected with the Bergman projection PD for the Bergman space
A2(D) by means of the operator U in (1.2):

P" = U∗PDU. (2.2)

Given a bounded function a(z), z ∈ ", the Toeplitz operator in A1 is defined in
the usual way as

(Taf )(z) = (Paf )(z) =
∫

"

κ(z,w)a(w)f (w)dA(w), (2.3)

dA being the Lebesgue measure. This operator is bounded in A1, as a composition
of two bounded operators. The function a(z) is called the symbol of the Toeplitz
operator. It was the object of many studies to extend this definition to symbols being
objects, more singular than bounded functions, still producing bounded operators.
This program was implemented, in particular, in [5, 6] for the Bergman space on the
disk and for the Fock space. Now we follow the pattern of these papers for the upper
half-plane case.

The first stage here is considering (complex) measures as symbols. Let μ be an
absolutely continuous measure on ", with a bounded density a(z) with respect to



406 G. Rozenblum and N. Vasilevski

the Lebesgue measure dA. Then the action of operator (2.3) can be written as

(Taf )(z) = (Paf )(z) =
∫

"

κ(z,w)a(w)f (w)dA(w) =
∫

"

κ(z,w)f (w)dμ(w).

(2.4)

Such a definition of the Toeplitz operator by means of the expression on the right-
hand side of (2.4) can be, at least formally, extended to measures μ which are not
necessarily absolutely continuous with respect to A with bounded density, and even
to those that are not absolutely continuous with respect to A at all; what is, actually,
needed is just the boundedness of the operator defined by the right-hand side in
(2.4). To find some effective analytical conditions for this boundedness is rather a
quite hard task. At the same time the approach based upon sesquilinear forms turns
out to be very efficient here. In fact, in case of dμ = a(z)dA(z), we consider the
sesquilinear form Fμ[f, g] = 〈Taf, g〉, where f, g ∈ A1. By the above definition
of the operator Ta ,

Fμ[f, g] = 〈Paf, g〉 = 〈af,Pg〉 = 〈af, g〉 = (2.5)
∫

"

a(z)f (z)g(z)dA(z) =
∫

"

f (z)g(z)dμ(z), f, g ∈ A1.

The left-hand side in (2.5) is defined for a being a (sufficiently nice) function,
however, the right-hand side makes sense for a measure μ and can be thus used
for a definition of a Toeplitz operator. The sesquilinear form (2.5) defines a bounded
operator in A1 in case it is bounded, i.e., |Fμ[f, g]| ≤ C‖f ‖‖g‖. This boundedness
follows, as soon as the inequality

∣
∣
∣
∣

∫

"

|f (z)|2dμ(z)
∣
∣
∣
∣ ≤ C‖f ‖2 (2.6)

is satisfied for all f ∈ B. This estimate is, surely, satisfied provided

∫

"

|f (z)|2d|μ(z)| ≤ C‖f ‖2,

where |μ| denotes the variation of the measure μ. Note that the considerations
involving sesquilinear forms are essentially more convenient in analysis since they
evade using reproducing kernels and deal with inequalities containing only the
functions f, g and the measure μ.

Measures μ subject to the estimate (2.6) are called Carleson measures for the
space A1. A description for such Carleson measures was given for the case of the
Bergman space on the disk, for the Fock space and some other Bergman and Hardy
type spaces, see, e.g., [14–16]. The criterion for a measure to be a Carleson measure
for A1 follows from the known one for the space A(D).
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Proposition 2.1 Let μ be a complex Borel measure on ". For a fixed R ∈ (0, 1), if

|μ|(D(z,R)) ≤ CμA(D(z,R)), z ∈ ", R < 1, (2.7)

with constant Cμ not depending on z, then the sesquilinear form (2.5) is bounded
in A1. That is, the inequality (2.6) is satisfied for all f ∈ A1, with constant C =
C(R)Cμ, where C(R) depends only on R. If the measure μ is positive, the condition
(2.7) is also necessary for the sesquilinear form (2.5) to be bounded.

Proof The result follows from a similar statement concerning Carleson measures
for the Bergman space on the disk, see, e.g., [14], by means of the unitary
equivalence (2.2). A reasoning establishing directly this property can be found, for
example, in [1, Proposition 2.6]. ��

We note here that the condition (2.7) can be (although just formally !) relaxed,
when replaced by

|μ|(D(z,R)) ≤ CμA(D(z,R1)), z ∈ ", R < 1, (2.8)

with any fixed R1 > R. This remark will be used when considering Carleson
measures for derivatives later on. A measure μ on ", having compact support, can
be considered as a distribution in E ′("). At the same time, the function f (z)g(z) is
infinitely differentiable in ", f (z)g(z) ∈ E("), moreover, it is real-analytic in ".
Thus, this function can be represented as

f (z)g(z) = Diag ∗(f ⊗ ḡ) = Diag ∗((f ⊗ 1)(1⊗ ḡ)),

where Diag is the diagonal embedding of " into " × ", Diag (z) = (z, z),
and Diag ∗ is the induced mapping A1 ⊗ A1 to A(") (the space of real-analytic
functions), Diag ∗(f ⊗ g) = f (z)g(z). We denote by M the image of A1 ⊗A1 in
A(") under the mapping Diag ∗. Therefore the expression (2.5) can be understood
as

Fμ[f, g] = (μ, f (z)g(z)) = (μ, h), with h = Diag ∗(f ⊗ ḡ) ∈ A("), (2.9)

where parentheses denote the intrinsic paring of E ′(") and E("). Proposition 2.1
can be now understood in the sense that as soon as the condition (2.7) is satisfied,
the sesquilinear form (2.9) can be extended to M for the measure μ not necessarily
having compact support. Moreover, the estimate |(μ, h)| ≤ Cμ‖f ‖‖g‖, h ∈ M,
holds. We recall here how such extension of the distribution is standardly performed;
this will make our further considerations for distributions of more general nature
more clear.

Let μj be a sequence of measures with compact support, each one in a (closed)
quasi-hyperbolic disk Dj � " of radius r , and let these disks form a covering of "
with finite multiplicity m: each point of " is covered by not more than m disks Dj .
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Suppose that for each measure μj , the estimate |Fμj [f, g]| ≤ C‖f ‖‖g‖ is satisfied,
with the same constant C. Then, we can sum up such estimates over j and, using
the finite multiplicity property, arrive at the same estimate for the measure μ =∑

μj , automatically locally finite in " (just with a controllably larger constant.)
This line of reasoning, considering first the distributions in E ′("), with compact
support, obtaining proper estimates, and extending then these estimates to certain
distributions without compact support condition, so that the estimates hold on A1,
will be further implemented for more general distributions.

A few words to explain our philosophy. Let � be an open subset in C (� = " in
our case). If F is a distribution in E ′(�) i.e., a distribution with compact support
in �, its derivative, say, ∂F is standardly defined as the distribution ∂F acting
on functions φ ∈ E(�) by the rule (∂F, φ) = −(F, ∂φ). If, however, F is a
distribution in a wider space, F ∈ D′(�), the action (∂F, φ) is not necessarily
defined for all φ ∈ E(�). In particular, if φ is a nontrivial function in the Bergman
space or a function in M, it can never belong to D(�), so the action of F on such
functions and, further on, the definition of derivatives of F needs to be specified
anew, however being consistent with the usual definition. In what follows, we
consider a class of distributions for which such construction works, preserving the
usual properties of distributions. The natural compensation for this frivolity is the
narrowing of the set of functions on which such ‘distributions’ act.

3 Carleson Measures for Derivatives

Following the pattern in [5, 6], we introduce now a class of sesquilinear forms
involving derivatives of functions f, g, corresponding thus to (formal) distributional
derivatives of Carleson measures.

Definition 3.1 Let μ be a regular complex measure on " and α, β be two
nonnegative integers. We denote by Fα,β,μ the sesquilinear form

Fα,β,μ[f, g] = (−1)α+β
∫

"

∂αf (z)∂βg(z)dμ(z), f, g ∈ A1, (3.1)

which we denote as well by

Fα,β,μ[f, g] = (∂α∂̄βμ, f ḡ). (3.2)

This definition is consistent with our approach as explained above. In fact (3.1),
(3.2) act as the definition of the action of the ‘distribution’ ∂α∂̄βμ on elements in
A1. Note that this is consistent with the standard distributional definition of the
derivative of a measure in the case when μ is a compactly supported measure in ".

The first set of properties of such forms and corresponding operators, similar to
the ones for other Bergman spaces, is the following.
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Theorem 3.2 Let μ be a measure with compact support in " and let α, β be
nonnegative integers. Then

1. For any f, g ∈ A1, the integral in (3.1) converges, moreover,

F[f, g] = Fα,β,μ[f, g] = (∂α∂̄βμ, f ḡ),

where the derivatives are understood in the sense of distributions in E ′(") and
the parentheses mean the intrinsic paring in (E ′("), E(")).

2. The sesquilinear form (3.1) is bounded, considered on A1 × A1 and therefore
defines a bounded Toeplitz operator by 〈TFf, g〉 = F[f, g], or
(TFf )(z) = F[f, κz(·)], where, as usual, κz(w) = k(z,w) = k(w, z).

3. The sesquilinear form (3.1) determines a compact Toeplitz operator TF in A1.
4. If sn(TF) denote the singular numbers of the operator TF, then the following

estimate holds

sn(T) ≤ C exp(−nσ), n ∈ N, (3.3)

where σ > 0 is a constant determined by the measure μ and integers α, β.

Proof The property (4) absorbs the other ones, so we will prove only it. Due to
Ky Fan’s inequalities for singular numbers of compact operators, it is sufficient to
establish (3.3) for a positive measure μ. Consider a closed Euclidean disk B ⊂ "

with radius R such that for some r > 0, the support of μ lies strictly inside B, thus
dist (z, ∂B) > r > 0 for all z ∈ suppμ. The Cauchy integral formula implies that
for any z ∈ suppμ and any α ∈ Z+,

|∂αf (z)|2 ≤ Cα

∫

∂B

|f (ζ )|2dl(ζ )

for each function f ∈ A1, with constant Cα depending only on α, but not depending
on f and z. By the same reason, for any z ∈ suppμ, the estimate

|∂αf (z)|2 ≤ Cα

∫

|ζ−z|∈(R,R+r/2)
|f (ζ )|2dA(ζ ) (3.4)

holds. By the Cauchy-Schwartz inequality,

|Fα,β,μ[f, g]| ≤
(∫

suppμ
|∂αf (z)|2d|μ|(z)

) 1
2
(∫

suppμ
|∂βg(z)|2d|μ|(z)

) 1
2

,

for all f, g ∈ A1("), and then, due to (3.4),

|Fα,β,μ[f, g]| ≤ C′αC′β |μ|(B)‖f ‖L2(B ′)‖g‖L2(B ′).
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The last relation means that the sesquilinear form Fα,β,μ is bounded not only in
A1("), but in A1(B

′) as well, where B ′ is the Euclidean disk B ′ = B(z,R + r/2).
Now we represent the Toeplitz operator TF as the composition

TF = TFA1(B
′)IB�B ′IB ′�", (3.5)

where IB�B ′ : A1(B
′) → A1(B), IB ′�" : A1(") → A1(B

′) are operators
generated by restrictions of functions defined on a larger set to the corresponding
smaller set. The equality (3.5) can be easily checked by writing the sesquilinear
forms of operators on the left-hand and on the right-hand side. Finally, the first and
the third operators on the right-hand side are bounded, while the middle one, the
operator generated by the embedding of the disk B to B ′, is known to have the
exponentially fast decaying sequence of singular numbers see, e.g., [3]. ��
Remark 3.3 Using the results in [3], one can give an upper estimate for the constant
σ in (3.3). In fact, let Q ⊂ D be the image of suppμ in the unit disk, under
the mapping (1.1). We denote by C(Q) the set of connected closed sets V ⊂ D

containing Q. For each V ∈ C(Q), let cap(V ) denote the logarithmic capacity of V
(see the definition, e.g., in [3]) and we set c(μ) as

c(μ) = inf
V∈C(Q)

cap(V ).

Then estimate (3.3) holds for any σ < c(μ). In fact, for a positive measure μ,
α, β = 0, and for a connected set Q, the asymptotics of the singular numbers of
the Toeplitz operator was found in [3], and our estimate for the exponent in (3.3)
follows from this result and the natural monotonicity of singular numbers under
the extension of the set where the measure is supported. Our considerations give
only the upper estimate for these singular numbers. It is remarkable that for a non-
connected support of the measure, even in the setting of [3], the terms in which the
singular numbers asymptotics or even sharp order estimates can be expressed are so
far unknown.

Next, we present our main definition.

Definition 3.4 A measure on " is called a Carleson measure for derivatives of order
k (k-C measure) if for some constant Ck(μ) > 0,

|Fk,μ[f, f ]| ≡
∣
∣
∣
∣

∫

"

|∂kf (z)|2dμ(z)
∣
∣
∣
∣ ≤ Ck(μ)‖f ‖2 (3.6)

for all f ∈ A1.

Now, we find a sufficient condition for a measure to be a k-C measure. Here it is
important to control the dependence of the constant Ck(μ) in (3.6) on the number k.
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Theorem 3.5 Let γ ∈ (0, 1) be fixed, and let the measure μ on " satisfy the
condition

|μ|(D(z0, γ )) ≤ -κ(μ)| Im z0|2kA(D(z0, γ )) (3.7)

with some -κ(μ) for all z0 ∈ ". Then inequality (3.6) is satisfied, with Ck(μ) =
(k!)2-κ(μ)γ

−2k, that is, μ is a k-C measure.

Proof Given a point z0 ∈ ", the pseudo-hyperbolic disk D(z0, γ ) coincides with
the Euclidean disk B(w0, s), where their centra and radii are connected by (2.1).
We write then the standard representation of the derivative at a point w, |w0−w| <
s1 < s of an analytic function f (w):

f (k)(w) = k!(2πı)−1
∫

|w0−ζ |=σ
(ζ −w)−k−1f (ζ )dζ, s1 < σ < s. (3.8)

Now we fix s2 ∈ (s1, s) and integrate (3.8) in σ variable from s2 to s, which gives
us the estimate

|f (k)(w)| ≤ (s − s2)
−1k!(2π)−1

∫

s2≤|w0−ζ |≤s
|ζ − w|−k−1|f (ζ )|dA(ζ ).

We choose then s1 = 1
4 s, s2 = 3

4 s. The inequality |ζ − w| ≥ 1
2s, together with the

Cauchy-Schwartz, yield

|f (k)(w)| ≤ (s/2)−k−2k!π−1
∫

|w0−ζ |≤s
|f (ζ )|dA(ζ )

≤ 2√
π
(s/2)−(k+1)k!

(∫

|w0−ζ |≤s
|f (ζ )|2dA(ζ )

) 1
2

,

or

|f (k)(w)|2 ≤ (4/π)(s/2)−2(k+1)(k!)2
∫

|w0−ζ |≤s
|f (ζ )|2dA(ζ ). (3.9)

The estimate (3.9) holds for all w, |w − w0| < s1 = s/4. Therefore we can
integrate it over the Euclidean disk B(w0, s1) with respect to the measure μ, which
gives

∣
∣
∣
∣
∣

∫

B(w0,s1)

|f (k)(w)|2dμ(w)

∣
∣
∣
∣
∣

≤ |μ|(B(w0, s1))(4/π)(s/2)−2(k+1)(k!)2
∫

|w0−ζ |≤s
|f (ζ )|2dA(ζ ). (3.10)
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We substitute now the estimate (3.7) into (3.10) and use (2.1) to arrive at

∣
∣
∣
∣
∣

∫

B(w0,s1)

|f (k)(w)|2dμ(w)

∣
∣
∣
∣
∣

≤ -k(μ) y
2k
0 π(s/2)2(4/π)(s/2)−2(k+1)(k!)2

∫

|w0−ζ |≤s
|f (ζ )|2dA(ζ )

≤ -k(μ) γ
−2k(k!)2

∫

|w0−ζ |≤s
|f (ζ )|2dA(ζ ),

or, returning to the pseudo-hyperbolic disks,

∣
∣
∣
∣
∣

∫

D(z1,γ1)

|f (k)(w)|2dμ(w)

∣
∣
∣
∣
∣
≤ -k(μ) γ

−2k(k!)2
∫

D(z0,γ )

|f (ζ )|2dA(ζ ),
(3.11)

where D(z1, γ1) = B(w0, s1) ⊂ B(w0, s) = D(z0, γ ).
Now we follow the reasoning in [14, Theorem 7.4], where estimates of the

type (3.11) were summed to obtain the required k-Carleson property. One just
should replace the hyperbolic disks with pseudo-hyperbolic ones. Like in [14], it
is possible to find a locally finite covering ! of the half-plane " by disks of the
type D(z1, γ1), with z1 ∈ ", so that the larger disks D(z0, γ ) form a covering !̃

of " of finite, moreover, controlled multiplicity. The latter means that the number
m(!̃) = maxz∈" #{D ∈ !̃ : z ∈ D} is finite. After adding up all inequalities of the
form (3.11) over all disks D = D(z1, γ1) ∈ !, we obtain the required estimate for∫
" |f (k)|2dμ. ��

Having Theorem 3.5 at our disposal, we introduce the classes of k-C measures.

Definition 3.6 Fix a number γ ∈ (0, 1). The class Mk,γ consists of measures μ on
" such that

-k,γ (μ) := sup
z∈"
{|μ|(D(z, γ ))(Im z)−2(k+1)(k!)2γ−2k} <∞.

Theorem 3.5 implies that the class Mk,γ consists of k-C measures. This class, in
fact, does not depend on the value of γ chosen, however the value -k,γ (μ) does.

It is convenient to extend the definition of Mk,γ to half-integer values of k:

Definition 3.7 Let k ∈ Z++ 1
2 be a half-integer. The class Mk,γ , γ ∈ (0, 1) consists

of measures satisfying

-k,γ (μ) := sup
z∈"

{
|μ| (D(z, γ )

)
(Im z)−2(k+1)
(k + 1)2γ−2k

}
<∞. (3.12)

Further on, the parameter γ will be fixed and will be often omitted in our notations.
The quantity -k(μ) will be called the k-norm of the measure μ. According to
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Definition 3.7, the spaces Mk,γ for different k ∈ Z+/2 are related by

Mk = (Im z)2(l−k)Ml ,

with

-k(μ) = γ 2(l−k)(
(k + 1)/
(l + 1))2-l(μ).

Theorem 3.5 enables us to find conditions for boundedness of the operators
defined by differential sesquilinear forms Fα,β,μ in (3.1). They look similar to the
corresponding conditions for sesquilinear forms in the Bergman space on the unit
disk and are derived from Theorem 3.5 in the same way as Proposition 6.8 is derived
from Theorem 6.3 in [6], so we restrict ourselves to formulations only.

Theorem 3.8 Let the measure μ satisfy (3.12) with some k ∈ Z+/2. Then for
α, β ∈ Z+, α + β = 2k, the sesquilinear form

Fα,β,μ[f, g] = (−1)α+β
∫

"

∂αf ∂βgdμ

is bounded in A1 and defines a bounded Toeplitz operator Tα,β,μ in the Bergman
space A1, moreover its norm is majorated by -k(μ).

Taking into account our above agreement concerning distributional derivatives of
measures without compact support condition, Theorem 3.8 can be reformulated as

Theorem 3.9 Under the conditions of Theorem 3.8, the sesquilinear form

F
∂α∂βμ

[f, g] = (∂α∂βμ, f ḡ)

is bounded in A1 and defines a bounded Toeplitz operator T
∂α∂βμ

in A1.

As usual for Toeplitz type operators, boundedness conditions lead to compact-
ness conditions, formulated in similar terms.

Theorem 3.10 For R > 0, denote by QR the rectangle in ":

QR = {z = x + y ∈ " : x ∈ (−R,R), y ∈ (R−1, R)}.

Suppose that α + β = 2k and

lim
R→∞ sup

z∈"\QR

{
|μ| (D(z, γ )

)
(Im z)−2(k+1)
(k + 1)2γ−2k

}
= 0. (3.13)

Then the operator T
∂α∂βμ

is compact in A1.
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Proof It goes in a standard way. Split the measure μ into two parts, μ = μR +μ′R ,
where μR has support outside QR and μ′R has compact support. Correspondingly,
the operator T

∂α∂βμ
splits into two terms, TR + T′R . The first operator, by

Theorem 3.9, has small norm, as soon as R is chosen sufficiently large. The operator
T′R is compact by Theorem 3.2. Therefore, T

∂α∂βμ
is compact. ��

4 Examples

We give some examples of symbols-distributions and -hyperfunctions. More exam-
ples can be constructed, following the pattern seen in [5, 6].

Example 4.1 Let the measure μ be supported on the lattice L = Z + iN. With an
integer point n = (n1+ in2) we assign the weight mn > 0. Suppose that supn mn <

∞. Then the Toeplitz operator, with the measure μ = ∑
n mnδ(z−n) as symbol, is

bounded.

Example 4.2 In the setting of Example 4.1, consider the Toeplitz operator with
distributional symbol μα,β,W = W(n)∂α∂βμ, where W(n) is a weight function,
W(n1 + in2) = |n2|−α−β . Then the conditions of Theorem 3.9 are satisfied for
the measure W(n)μ and, therefore, the Toeplitz operator with symbol μα,β,W is
bounded. If W(n) is a function on the lattice satisfying W(n) → 0 as |n| → ∞
then, by Theorem 3.10, this Toeplitz operator is compact.

Example 4.3 In the setting of Example 4.1, consider the, initially formal, sum

a =
∑

n∈L
W(n)∂αn∂βnμ({n}),

where (αn, βn) is a collection of orders of differentiation and W(n) is a weight
sequence. This is a sum of distributions supported at single points of the lattice L.
To each of them, we can apply Theorem 3.9 and obtain an estimate of the norm of
the corresponding sesquilinear form Fn, where the order kn = αn + βn is involved:

|Fn[f, g]| ≤ C|W(n)|((αn!βn!)(γ /2)−(αn+βn)n
−αn+βn
2 ‖f ‖‖g‖

= C|W(n)|τ (n)‖f ‖‖g‖. (4.1)

A rough way to estimate the sesquilinear form Fa would be to consider the sum of
the terms in (4.1),

|Fa[f, g]| ≤
∑

(|W(n)|τ (n))‖f ‖‖g‖, (4.2)

so the sesquilinear form is bounded as soon as the series in (4.2) converges. A more
exact treatment uses the finite multiplicity covering by disks containing no more
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than, say, 10 points of the lattice L similarly to how this was done in Sect. 2. In this
way, the sesquilinear form is majorated by a smaller quantity,

|Fa[f, g]| ≤ sup{(|W(n)|τ (n))‖f ‖‖g‖},

for which the finiteness condition requires a considerably milder decay requirement
for W(n) than the finiteness of the coefficient in (4.2).

Now we consider some symbols with support touching the boundary of the upper
half-plane ".

Example 4.4 Let Lj ⊂ " be the straight line {z = x + iy : x ∈ R, y = 2−j }, and
μj be the measure W(j)δ(Lj ) with some weight sequence W(j). In other words,
it is the Lebesgue measure on the line Lj with the weight factor W(j). The sum
μ = ∑

j μj is a measure on ", which, however, does not have compact support in

". By Definition 3.6, the measure μ belongs to the class M0,γ (say, for γ = 1
2 ), as

soon as W(j) = O(2−2j ).

Example 4.5 For the same system of straight lines Lj we consider

ς =
∑

j

W(j)ςj ≡
∑

j

W(j)∂j δ(Lj ) =
∑

j

(i/2)jW(j)(1⊗ ∂
j
y δ(y − 2−j )).

(4.3)

In (4.3), ς is a formal sum of distributions W(j)ςj , each being a derivative of a
measure, of unbounded orders, and this formal sum corresponds to the sesquilinear
form

Fς [f, g] =
∑

j

Fςj [f, g] =
∑

j

(−1)jW(j)

∫

Lj

∂jf · ḡdx. (4.4)

The sequence of weights W(j) should be chosen in such a way that the sum (4.4)
converges for f, g ∈ A1 and, moreover, is a bounded sesquilinear form on A1. By
Theorem 3.8, the measure μj = 1 ⊗ δ(y − 2−j ) belongs to the class Mj,γ with
estimate

-j,γ (μj ) ≤ C(2/γ )2j (j !)2.

Thus, if the sum
∑

j W(j)(2/γ )2j (j !)2 is finite, the sesquilinear form (4.4) is
bounded on A1.

5 The Structure of the Bergman Spaces

Along with the Bergman space A1 of analytic functions on ", we consider spaces
of polyanalytic functions. We denote by Aj , j = 1, 2, . . . the space of square
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integrable functions on " satisfying the iterated Cauchy-Riemann equation ∂
j
f =

0 (the reader was, probably, intrigued by the subscript in the notation A1—now
its use is justified). Of course, Aj ⊂ Aj ′ for j < j ′, so, to get rid of these ‘less
polyanalytic’ functions, the true polyanalytic Bergman spaces have been introduced
(see [11]), by

A(j) = Aj .Aj−1 = Aj ∩A⊥j−1, j = 2, . . . ; A(1) = A1.

Worth mentioning is the following direct sum decomposition of L2("):

L2(") =
⊕

n∈N
A(j) ⊕

⊕

n∈N
Ã(j),

where Ã(j) are true poly-antianalytic Bergman spaces (see, for details, [11]).
For these poly-Bergman spaces on the upper half-plane, there exists a system of

creation and annihilation operators, described in [2, 12]. These operators are two-
dimensional singular integral operators,

(S"u)(w) = − 1

π

∫

"

u(z)dA(z)

(z− w)2 and (S∗"u)(w) = − 1

π

∫

"

u(z)dA(z)

(z̄− w̄)2 .

Being understood in the principal value sense, they are bounded in L2(") and
adjoint to each other. They are, in fact, the Beurling–Ahlfors operators compressed
to the half-plane, and are surjective isometries,

S" : A(j) → A(j+1), S∗" : A(j) → A(j−1), j > 1, (5.1)

S∗" : Ã(j) → Ã(j+1), S" : Ã(j) → Ã(j−1), j > 1,

while

S∗" : A1 → {0}, S" : Ã1 → {0}.

Thus, in particular, we have surjective isometries

(S")
jA(1) = A(j+1)(").

Formulas (5.1), possessing the structure similar to the ones of the Landau
subspaces for the Schrödinger equation with uniform magnetic field, justify calling
S", S∗" creation and annihilation operators.

Remark 5.1 Here one can notice a certain discrepancy in notations: S denotes
usually the annihilation operator in the poly-Fock spaces while S" denotes here
the creation operator in the poly-Bergman spaces—however, this is the tradition
and we do not want to break it.
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The operators Sj
", restricted to A1, admit a representation, found in [4], which is

much more convenient for using in further reductions.

Theorem 5.2 ([4, Theorem 3.3]) For u ∈ A1,

(Sj
"u)(z) =

∂j [(z− z̄)j u(z)]
j ! , j ≥ 0. (5.2)

Note that the isometry U of the Bergman spaces on the upper half-plane " and
on the disk D is not carried over to the poly-analytic Bergman spaces.

6 Relations Among the Toeplitz Operators in the True
Poly-Bergman Spaces

Let a be a distribution on ", defined at least on C∞("̄) ∩ L1("). We consider the
sesquilinear form

Fa[u, v] = (au, v̄) = (a, uv̄), u = Sj
"f ∈ A(j+1), v = Sj

"g ∈ A(j+1),

(6.1)

with f, g being elements of the standard orthonormal basis in A(1). The sesquilinear
form (6.1) is defined for f, g in the basis in A(1) and can be extended by
sesquilinearity to the linear span of the basis. If it turns out that (6.1) is bounded
on this span, it can be extended by continuity to the whole A(1) and thus it would

define a bounded operator in A(1). On the other hand, since Sj
" is a unitary operator,

Fa[u, v] can be therefore extended to a bounded sesquilinear form defined for u, v
being arbitrary elements in A(j+1), thus defining a bounded operator in A(j+1).
The present section is devoted to finding an explicit relation between these two
operators. Further on, in this section we will only use the Hilbert space L2(", dA)

and therefore we will suppress the notation of the space in the scalar product 〈., .〉;
the parentheses (., .) still denote the action of a distribution on a smooth function,
without the complex conjugation. Since u, v are elements in the poly-Bergman
space, the product uv̄ is a smooth function in L1(").

The following result leads to establishing a relation between Toeplitz operators
in the true poly-Bergman space A(j) and the Bergman space A1.

Proposition 6.1 Let a be a distribution in the half-plane ". Then

Fa[u, v] = Fa[Sj
"f,Sj

"g] = (a,Sj
"f Sj

"g) = 〈(K(j)a)f, g〉, (6.2)
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with Sj
" defined in (5.2), where K(j) is a differential operator of order 2j having

the form

K(j) = K(j)(�(y2·), ∂̄(y·), ∂(y·)), (6.3)

and K(j) being a polynomial of degree j. Moreover, if we assign the weight −1 to
the differentiation and the weight 1 to the multiplication by y, with weights adding
under the multiplication, then all monomials in K(j) have weight 0.

Proof We demonstrate the reasoning for the case j = 1. The general case uses
the same machinery with some tedious bookkeeping. We set u = S"f , v = S"g

and consider the sesquilinear form Fa[f, g] = 〈a∂(yf ), ∂(yg)〉 ≡ (a, ∂(yf )∂(yg))

for f, g being some elements in the standard orthonormal basis in A("). Due to
∂∗ = −∂̄ :

(a, ∂(yf )∂(yg)) = (a, (−if + y∂f )(−ig + y∂g)) (6.4)

= (a, f ḡ)+ (a,−ify∂̄g)+ (a, iḡy∂f )+ (a, y2(∂f )∂̄ḡ)

(the last transformation uses ∂̄g = 0). For the second term on the right-hand side in
(6.4), by the general rules of manipulation with distributions, we have

(a,−ify∂̄g) = (−iya, f ∂g) = (−iya, ∂(f̄ g))− (−iyF, (∂̄f )g) = (∂̄(iya), f ḡ),

because ∂̄f = 0. The third term on the right in (6.4) is transformed in a similar way,
and for the last one,

(a, y2∂f ∂̄ḡ) = (y2a, ∂̄(∂f ḡ)− ∂̄(∂f )ḡ) = −(∂̄(y2a), (∂f )ḡ)

= −(∂̄(y2a), ∂(f ḡ)− {f ∂ḡ}) = (∂∂̄(y2a), f ḡ),

again, the terms in curly bracket vanishing due to ∂̄g = 0. Collecting the terms in
(6.4), after simple transformations, we obtain the required relation.

For higher order, the procedure of transformation is similar, by means of
formally commuting a and factors in the creation operators Sj

" in the expression

〈aSj
"f,Sj

"g〉 ≡ (a,Sj
"f Sj

"g), so that the Cauchy-Riemann operator falls on the
functions f, g, while any commutation with a produces a derivative of a. It remains
to notice that when commuting the terms in the expression on the left-hand side
in (6.2), the weight of the terms does not change. Alternatively, one can make the
calculations similar to the ones shown above, again by moving the Cauchy-Riemann
operator to the functions f, g and on F .
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To make the general reasoning more transparent, we present here our transfor-
mations for the case j = 2. So, we set u = S2

"f, v = S2
"g. We start with

Fa[u, v] = Fa[S2
"f,S2

"g] = ((S2
"f )a,S2

"g) = −2((∂2(y2f )× a), ∂̄2(y2ḡ)).

(6.5)

We expand in (6.5) the derivatives of the product by the Leibnitz formula, to obtain

Fa[u, v] = (∂2((y2f )a)− 2∂((y2f )∂a)+ y2f ∂2a, ∂̄2(y2ḡ). (6.6)

Now we carry over the derivatives ∂, ∂2 to the second factor in (6.6) (this is legal
due to the definition of the derivatives of distributions):

Fa[u, v] = ((y2f )a, ∂2(∂̄2(y2ḡ))) (6.7)

+2((y2f )∂a, ∂(∂̄2(y2ḡ)))+ (y2f ∂2a, ∂̄2(y2ḡ).

We consider then the terms in (6.7) separately. In the first term, we commute ∂2

and ∂̄2 in the second factor:

∂2(∂̄2(y2ḡ)) = ∂̄2(∂2(y2ḡ)) = 1
2 ∂̄

2(ḡ),

since ∂ḡ = 0. Therefore, the first term in (6.7) transforms to

1
2 ((y

2f )a, ∂̄2ḡ) = 1
2 (∂̄

2(y2f a), ḡ) = 1
2 (f ∂̄

2(y2F), ḡ)

= (fK1a, ḡ) = (K1a, f ḡ),

with K1a being the distribution

K1a = 1
2 ∂̄

2(y2a).

Next, for the second term in (6.7), we have

2((y2f )∂a, ∂(∂̄2(y2ḡ))) = −2((y2f )∂a, ∂̄2∂(y2ḡ))) =
2((y2f )∂a, ∂̄2(yḡ)) = 2(∂̄2(y2f ∂a), yḡ).

Now,

∂̄2(y2f ∂a) = f ∂̄2(y2∂a) = f (2∂a + 2y∂̄∂a + y2∂̄2∂a).

Thus, the second term in (6.7) equals to

2((y2f )∂a, ∂(∂̄2(y2ḡ))) = (fK2a, ḡ) = (K2a, f ḡ),
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where

K2a = y(2∂a + 2y∂̄∂a + y2∂̄2∂a).

Finally, the third term in (6.7) is transformed as

(y2f ∂2a, ∂̄2(y2ḡ) = (∂̄2fy2∂2a, y2ḡ) =
(f ∂̄2(y2a), y2ḡ) = (fy2∂̄2(y2a), ḡ) = (fK3a, ḡ) = (K3a, f ḡ),

where K3a = y2∂̄2(y2a). A simple bookkeeping shows that the operators
K1,K2,K3 have the structure claimed by the theorem, K(2) = K1 + K2 + K3.
Note again that although the distribution a does not necessarily have compact
support in ", our definition of derivatives of such distributions conserves the formal
differentiation rules we used in these calculations. ��

As explained above, the equality (6.2) extends to the whole of A1, as soon as we
know that the right-hand side or on the left-hand side is a bounded sesquilinear form
in A1. Thus, the statement of Proposition 6.1 can be formulated as the following
theorem.

Theorem 6.2 The operators Ta(A(j+1)) and TKa(A1) are unitarily equivalent (up
to a numerical factor) as soon as one of them is bounded. In this case, if one of
these operators is compact, or belongs to a Schatten class, or is of finite rank, or
zero, then the same holds for the other one.

The terms in the differential operator K(j) can be regrouped so that it takes the
form

K(j) =
∑

p+p̄+2q≤2j

bp,p̄,q(∂)
p(∂̄)p̄�qyp+p̄+2q.

Now we can apply the boundedness conditions obtained earlier, in Sect. 3,
for differential sesquilinear forms to obtain boundedness conditions for Toeplitz
operators in true poly-Bergman spaces.

Theorem 6.3 Let μ be a measure on " such that ykμ are k-C measures for A1
for k = 0, 1, . . . , 2j . Then the sesquilinear form

∫
f ḡdμ is bounded in A(j+1) and

defines a bounded Toeplitz operator in A(j+1). If, moreover, ykμ are vanishing k-C
measures for A1, then the corresponding operator in A(j+1) is compact.

Acknowledgments The first-named author is grateful to the Mittag-Leffler institute for hospitality
and support while a considerable part of the paper was written.
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Abstract Following the general scheme of Connes quantization we obtain interpre-
tation of Schatten and interpolation ideals of compact operators in a Hilbert space in
terms of function spaces. The main attention is paid to the case of Hilbert–Schmidt
operators. In one-dimensional case the symmetry operator is given by the Hilbert
transform. In the case of several variables the symmetry operator can be defined in
terms of Riesz operators and Dirac matrices.
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One of the goals of noncommutative geometry is the translation of basic notions
of analysis into the language of Banach algebras. This translation is done using the
quantization procedure which establishes a correspondence between function spaces
and operator algebras in a Hilbert space H . The differential df of a function f

(when it is correctly defined) corresponds under this procedure to the commutator of
its operator image with some symmetry operator S which is a self-adjoint operator
in H with square S2 = I . The image of df under quantization is the quantum
differential of f which is correctly defined even for non-smooth functions f . The
arising operator calculus is called the quantum calculus.

In this paper we will give several assertions from this calculus concerning the
interpretation of Schatten and interpolation ideals of compact operators in a Hilbert
space in terms of function spaces on the circle. The main attention is paid to the case
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of Hilbert–Schmidt operators. The role of the symmetry operator S is played in this
case by the Hilbert transform. In the case of function spaces of several variables the
symmetry operator can be defined in terms of Riesz operators and Dirac matrices.

Briefly on the content of the paper. In the first Section basic definitions related
to the ideals in the algebra of compact operators in a Hilbert space are recalled. In
the second Section we introduce the quantum correspondence and formulate several
assertions giving an interpretation of some operator algebras in terms of function
theory. In the third Section we consider the ideal of Hilbert–Schmidt operators and
present its interpretation in terms of function spaces. The fourth Section is devoted
to the interpretation of Schatten and interpolation ideals. In the last fifth Section we
consider the quantum differentials in spaces of functions of several variables.

During the preparation of this paper the author was partially supported by the
RFBR grant 18-51-05009, 19-01-00474 and Presidium of RAS program “Nonlinear
dynamics”.

The author is grateful to the referee for careful reading of the paper and valuable
remarks.

1 Ideals in the Algebra of Compact Operators

Let T be a compact operator in a Hilbert space H and |T | = √
T ∗T is the non-

negative square root of T ∗T . Denote by {sn(T )} the sequence of singular numbers
(s-numbers) of operator T given by the eigenvalues of the operator |T | numerated
in the decreasing order:

s0(T ) ≥ s1(T ) ≥ . . .

so that sn(T )→ 0 for n→∞.
The singular numbers of T may be computed from the minimax principle,

namely:

sn(T ) = inf
E
{‖T |E⊥‖ : dimE = n}

so that sn(T ) coincides with the infimum of the norms of restrictions of T to the
orthogonal complements E⊥ of different n-dimensional subspaces E ⊂ H . In fact,
this infimum is attained at the subspace En generated by the first n eigenvectors of
|T | corresponding to the eigenvalues s0, . . . , sn−1.

In another way, we can define sn(T ) as the distance from T to the subspace Finn
of operators of rank≤ n. Namely,

sn(T ) = inf
R
{‖T − R‖ : R ∈ Finn}.
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Definition 1.1 Let T be a compact operator in the Hilbert space H . We will say
that T belongs to the space Sp = Sp(H), 1 ≤ p <∞, if

∞∑

n=0

sn(T )
p <∞.

The space Sp is an ideal in the algebra K = K(H) of compact operators and in
the algebra L = L(H) of bounded linear operators, acting in the Hilbert space H ,
and is called the Schatten ideal.

An important particular case is the class of Hilbert–Schmidt operators.

Definition 1.2 A compact operator T in the Hilbert space H is called the Hilbert–
Schmidt operator if

∞∑

n=0

sn(T )
2 <∞.

The quantity

‖T ‖2 :=
⎛

⎝
∞∑

n=0

sn(T )
2

⎞

⎠

1/2

is called the Hilbert–Schmidt norm of T .

If T is a Hilbert–Schmidt operator then for any orthonormal basis {ek}∞k=1 in H

the series

∞∑

k=1

‖T ek‖2

converges. Its sum does not depend on the choice of the orthonormal basis {ek} and
coincides with ‖T ‖2

2.
The space S2(H) of Hilbert–Schmidt operators, acting in the Hilbert space H ,

is a Hilbert space with the norm ‖ · ‖2 and an ideal in the algebra K(H) of compact
operators closed with respect to the Hilbert–Schmidt norm.

We introduce now the function

σN(T ) :=
N−1∑

n=0

sn(T ).

In a different way it can be defined as

σN(T ) = sup
E

{‖T PE‖1 : dimE = N},
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where PE is the orthogonal projector to the subspace E and ‖T PE‖1 is the nuclear
norm of the operator T PE :

‖T PE‖1 :=
∞∑

n=0

sn(T PE).

The supremum in the above formula is again attained on the subspace EN generated
by the first N eigenvectors of operator T .

Apart from ideals Sp we introduce also the interpolation ideals Sp,q .

Definition 1.3 An operator T ∈ Sp,q = Sp,q(H) if

∞∑

N=1

N(α−1)q−1σN(T )
q <∞

where α = 1/p. Extend this definition to q = ∞ by stating that T ∈ Sp,∞ if the
sequence of numbers {Nα−1σN(T )}∞N=1 is bounded.

Each of the introduced spaces Sp,q is a two-sided ideal in the algebra K of
compact operators. For p1 < p2 and for p1 = p2, q1 < q2 there are inclusions

Sp1,q1 ⊂ Sp2,q2 .

Here are some particular examples of the spaces Sp,q .
The space Sp,p, 1 ≤ p < ∞, coincides with the space Sp, introduced above,

with the norm given by the formula

‖T ‖p =
(
Tr|T |p)1/p =

⎡

⎣
∞∑

n=0

sn(T )
p

⎤

⎦

1/p

.

The space Sp,∞, 1 < p < ∞, consists of compact operators T for which
σN(T ) = O(N1−α), i.e. sn(T ) = O(n−α). There is a natural norm on this space
given by

‖T ‖p,∞ = sup
N

1

N1−α σN(T ).

The space Sp,1 consists of compact operators T for which the series

∞∑

N=1

Nα−2σN(T )

converges which is equivalent to the convergence of the series
∑∞

n=1 n
α−1sn−1(T ).
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2 Quantum Correspondence

Using the quantization procedure, we will associate with function spaces the ideals
in the algebra of bounded linear operators in a Hilbert space.

Let A be an algebra of observables, i.e. an associative algebra provided with
involution. We suppose also that A has the exterior differential d : A → �1(A),
i.e. a linear map from A to the space �1(A) of 1-forms on this algebra satisfying
Leibniz rule (cf. [2]).

The quantization of A is a linear representation π of observables from A by
the densely defined closed linear operators, acting in a complex Hilbert space H

called the quantization space. It is required that the involution in A transforms to
Hermitian conjugation, and the action of the exterior derivative operator d : A →
�1(A) corresponds to the commutator with some symmetry operator S, which is a
selfadjoint operator on H with square S2 = I . In other words,

π : df �−→ dqf := [S, π(f )], f ∈ A,

where dqf := [S, π(f )] is the quantum differential of f . We call the Lie algebra
Aq , generated by quantum differentials dqf , the quantum algebra of observables
and the differential dqf the quantum observable associated with observable f .

Recall that the differentiation of the algebra A is a linear map D : A → A

satisfying the Leibniz rule D(ab) = (Da)b + a(Db). Denote by Der(A) the Lie
algebra of all differentiations of the algebra A. In terms of Der(A) the quantization
is an irreducible representation of the Lie algebra Der(A) in the Lie algebra of linear
operators on H provided with commutator as the Lie bracket.

Consider a particular case of the above quantization problem in which the algebra
of observables coincides with the algebra A = L∞(R,C) of bounded functions on
the real line R provided with the natural involution given by complex conjugation.

A function f ∈ A determines the bounded multiplication operator Mf in the
Hilbert space H = L2(R) acting by the formula:

Mf : h ∈ H �−→ fh ∈ H.

The assignment f �→ Mf defines a linear representation of the algebra A in the
space H .

The differential of a general observable f ∈ A is not defined in the classical sense
so we cannot provideA with classical differential d . However, its quantum analogue
dq can be correctly defined as we will see below. We use the corresponding quantum
algebra of observables Aq as a replacement of the (non-defined) classical algebra of
observables A.

The symmetry operator S on H is given by the Hilbert transform

(Sf )(x) = i

π
P.V.

∫

R

K(x, t)f (t)dt, f ∈ H, (2.1)
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where

K(x, t) = 1

t − x

and the integral is taken in the principal value sense, i.e.

P.V.
∫

R

K(x, t)f (t)dt := lim
ε→0

∫

|t |≥ε
K(x, t)f (t)dt.

It is well known (cf. [6, 7]) that S is a symmetry operator in H and has the following
properties:

1. S commutes with translations;
2. S commutes with positive dilations and anti-commutes with reflections.

It turns out that the only bounded operator in H with such properties is a multiple
of the Hilbert operator.

The quantum differential

dqf := [S,Mf ] = SMf −Mf S

is equal to

(dqf )(h) = i

π

∫

R

K(x, t)f (t)h(t)dt − i

π

∫

R

K(x, t)f (x)h(t)dt =

= i

π

∫

R

K(x, t)
[
f (t)− f (x)

]
h(t)dt.

It is correctly defined as an operator in H for functions f ∈ A (and even for
functions from the space BMO(R)).

It is an integral operator given by the formula

(dqf )(h)(x) = i

π

∫

R

kf (x, t)h(t)dt, h ∈ H, (2.2)

where

kf (x, t) = f (t)− f (x)

t − x
.

So in the considered example the quantization is essentially reduced to the replace-
ment of the derivative by its finite-difference analogue. Such quantization, given by
the correspondence A - f �→ dqf : H → H , Connes [2] calls the ”quantum
calculus” by analogy with the finite-difference calculus.

Here are several examples from the quantum calculus.
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1. Quantum differential dqf is a finite rank operator if and only if the function f is
rational (Kronecker theorem).

2. Quantum differential dqf is a compact operator if and only if the function f

belongs to the class VMO(R);
3. Quantum differential dqf is a bounded operator if and only if the function f

belongs to the class BMO(R).

These results are easily deduced from the corresponding assertions for Hankel
operators (cf. [4, 5]) using the relation between such operators and quantum
differentials pointed out in Sec. 4.

Recall for completeness the definitions of the space BMO(R) of functions with
bounded mean oscillation and the space VMO(R) of functions with vanishing mean
oscillation.

Denote by

fI := 1

|I |
∫

I

f (x)dx

the average of such function over the interval I of the real line of length |I |. If

M(f ) := sup
I

1

|I |
∫

I

|f (x)− fI |dx <∞

then we will say that the function f ∈ L1
loc(R) belongs to the space BMO(R).

Introduce one more notation

Mδ(f ) := sup
|I |<δ

1

|I |
∫

I

|f (x)− fI |dx

where δ > 0. In terms of this function f ∈ BMO(R) if and only if the supremum
supδ>0 Mδ(f ) is finite. We say that a function f ∈ BMO(R) belongs to the space
VMO(R) if Mδ(f )→ 0 δ→ 0.

3 Hilbert–Schmidt Operators

In this case the role of quantization space is played by the Sobolev space of half-
differentiable functions on the circle.

Definition 3.1 The Sobolev space of half-differentiable functions is the Hilbert
space

V = H
1/2
0 (S1,R)
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consisting of functions f ∈ L2
0(S

1,R) with zero average along the circle having
the generalized derivative of order 1/2 in L2(S1,R). In other words, it consists of
functions f ∈ L2(S1,R) having Fourier series of the form

f (z) =
∑

n	=0

fnz
n, f̄n = f−n, z = eiθ ,

with finite Sobolev norm of order 1/2:

‖f ‖2
1/2 =

∑

n	=0

|n||fn|2 = 2
∞∑

n=1

n|fn|2 <∞.

The inner product on V in terms of Fourier coefficients is given by the formula

(ξ, η) =
∑

n	=0

|n|ξnη̄n = 2 Re
∞∑

n=1

nξnη̄n,

for vectors ξ, η ∈ V .
The complexification V C = H

1/2
0 (S1,C) of the space V is a complex Hilbert

space consisting of functions f ∈ L2(S1,C) with Fourier decompositions of the
form

f (z) =
∑

n	=0

fnz
n, z = eiθ ,

and finite Sobolev norm ‖f ‖2
1/2 =

∑
n	=0 |n||fn|2 < ∞. Complexified Sobolev

space V C decomposes into the direct sum

V C = W+ ⊕W−

of subspaces W± consisting of functions

f (z) =
∑

n	=0

fnz
n, z = eiθ ,

with Fourier coefficients fn vanishing for∓n > 0.
The space V admits a realization as the Dirichlet space D of functions in the unit

disk D consisting of harmonic functions h : D → R normalized by the condition
h(0) = 0 and having finite energy

E(h) = 1

2π

∫

D

|gradh(z)|2dxdy = 1

2π

∫

D

(∣
∣
∣
∣
∂h

∂x

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂h

∂y

∣
∣
∣
∣

2
)

dxdy <∞.
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It is well known that the Poisson transform

Pf (z) = 1

2π

∫ 2π

0
P(ζ, z)f (ζ )dθ, ζ = eiθ ,

where P(ζ, z) is the Poisson kernel in the disk D:

P(ζ, z) = |ζ |2 − |z|2
|ζ − z|2 ,

establishes an isometric isomorphism

P : V −→ D

between the Sobolev space V and the Dirichlet space D provided with the norm

‖h‖2
D := E(h).

In the case of upper halfplane H the above definition admits another useful
interpretation. In this case the Sobolev space V coincides with the space H 1/2(R)

of half-differentiable functions on R.
There is a Douglas formula expressing the energy of a map f ∈ H 1/2(R) in

terms of the finite-difference derivative of f :

E(Pf ) = ‖f ‖2
1/2 =

1

4π2

∫

R

∫

R

[
f (x)− f (y)

x − y

]2

dxdy. (3.1)

It implies, in particular, that functions f ∈ H 1/2(R) have L2-bounded finite-
difference derivatives.

We return now to the quantization problem formulated above and take for the
algebra of observables the algebra A = L∞(S1,C) of bounded functions on the
circle S1 provided with the natural involution given by complex conjugation.

For a function f ∈ A we denote again by Mf the bounded multiplication
operator in the Hilbert space V C acting by the formula Mf : h �→ f h. The
symmetry operator S on V C coincides again with the Hilbert transform given in
this case by the formula

(Sh)(φ) = 1

2π
P.V.

∫ 2π

0
K(φ,ψ)h(ψ)dψ, h ∈ H, (3.2)

(Here and in the sequel we identify functions h(z) on the circle S1 with functions
h(φ) := h(eiφ) on the interval [0, 2π].) The Hilbert kernel in the formula (3.2) is



432 A. Sergeev

given by the expression

K(φ,ψ) = 1+ i cot
φ − ψ

2
.

Note that for φ → ψ it behaves like 1+ 2i
φ−ψ .

The quantum differential

dqf := [S,Mf ]

is correctly defined as an operator on V C for functions f ∈ A. It is an integral
operator given by the formula

(dqf )(h)(φ) = 1

2π

∫ 2π

0
kf (φ,ψ)h(ψ)dψ, h ∈ H, (3.3)

where

kf (φ,ψ) = K(φ,ψ)(f (φ)− f (ψ)),

and K(φ,ψ) is the Hilbert kernel. For φ → ψ the kernel kf (φ,ψ) behaves (up to
a constant) like

f (φ)− f (ψ)

φ − ψ
.

We supplement the above list of correspondences between the algebras of
quantum differentials and function spaces by the following interpretation of Sobolev
space of half-differentiable functions in terms of quantum correspondence.

Theorem 3.2 A function f belongs to the Sobolev space V C if and only if its
quantum differential dqf is a Hilbert–Schmidt operator on V C. Moreover, the
Hilbert–Schmidt norm of the operator dqf coincides with the Sobolev norm of the
function f .

To prove this Theorem recall that the commutator dqf := [S,Mf ] is an integral
operator on V C with the kernel equal to

kf (φ,ψ) = K(φ,ψ)(f (φ)− f (ψ)).

This operator is Hilbert–Schmidt if and only if its kernel kf (φ,ψ) is square
integrable on S1 × S1 which is equivalent to the condition

∫ 2π

0

∫ 2π

0

|f (φ)− f (ψ)|2
sin2

(
φ−ψ

2

) dφ dψ <∞. (3.4)
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Now the assertion of the Theorem follows from the Douglas formula (3.1) given
above. In order to see that it is sufficient to switch in the formula (3.4) from the
circle S1 to the real line R. Then the left hand side of the inequality (3.4) will be
replaced by the expression

1

4π2

∫

R

∫

R

[
f (x)− f (y)

x − y

]2

dxdy = ‖f ‖2
1/2

which implies the assertion of the Theorem.

4 Interpretation of Schatten Classes and Interpolation Ideals

The introduced quantum differentials are closely related to Hankel operators which
are defined in the following way.

Suppose that a function ϕ belongs to the space V C. Denote by P± the orthogonal
projectors P± : V C → W±.

The Hankel operator Hϕ : W+ → W− is given by the formula

Hϕh := P−(ϕh).

It is well known (cf. [4]) that it is bounded in W+ if P−ϕ ∈ BMO(S1). In analogous
way we can introduce the Hankel operators H̃ϕ : W− → W+ given by the formula
H̃ϕh := P+(ϕh).

The quantum differential (dqf )h = [S,Mf ]h, where f ∈ A = L∞(S1,C), h ∈
V C, may be rewritten, using the well-known relations: S = P+−P−, P++P− = I

and P+P− = P−P+ = 0, as follows

[S,Mf ] = SMf −MfS = (P+−P−)f (P+ +P−)−f (P+−P−)(P++P−) =
= P+fP+ + P+fP− − P−P−fP+ − P−fP− − fP+ + fP− =

= −P−(fP+)+ P+(f P−)+ P+fP− − P−fP+ = −2P−fP+ + 2P+fP−.

This chain of equalities implies that

[S,Mf ]h = −2P−fP+h+ 2P+fP−h.

The last expression coincides with −2P−f h for h ∈ W+ and with 2P+f h for
h ∈ W−. In other words, the operator dqf with f ∈ A is the direct orthogonal
sum of two Hankel operators. So the description of various algebras of quantum
differentials dqf is reduced to the description of the corresponding classes of
Hankel operators. The latter was obtained by Peller in [4]. In order to formulate
his result recall the definition of Besov classes Bs

p . Denote by �ζ the difference
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operator

(�ζf )(z) := f (ζ z)− f (z), ζ, z ∈ S1,

and define the nth difference �n
ζ as the nth power of operator �ζ . Then the Besov

space Bs
p, s > 0, 1 < p <∞, is defined as

Bs
p =

{

f ∈ Lp :
∫

S1

‖�n
ζf ‖pp

|1− ζ |1+sp dϑ <∞
}

, ζ = eiϑ ,

where n is an arbitrary integer greater than s. In particular, for s = 1/p we get

B
1/p
p =

{

f ∈ Lp :
∫

S1

‖f (ζ z)− f (z)‖pp
|1− ζ |2 dϑ <∞

}

.

Theorem 4.1 (Peller) Let f ∈ A. Then the Hankel operator Hf belongs to the

Schatten class Sp with 1 < p <∞ if and only if P−f ∈ B
1/p
p .

Note that the analogous result holds for Hankel operators from the classes Sp

with 0 < p <∞ (cf. [4]).
The above theorem implies that the quantum differential dqf belongs to the

Schatten class Sp with 1 < p < ∞ if and only if P±f ∈ B
1/p
p , i.e. we have

the following

Theorem 4.2 The quantum differential dqf belongs to the Schatten class Sp with
1 < p <∞ if and only if f ∈ B

1/p
p .

Interpolation ideals Sp,q , as it is clear from their name, may be obtained from
Schatten ideals Sp by interpolation. Recall the general definition of interpolation
spaces which may be found in [1]. Suppose that we have a pair (X0,X1) of
subspaces of a Banach space X. Introduce a K-functional on the space

X0 +X1 = {x0 + x1 : x0 ∈ X0, x1 ∈ X1}

given by the formula

K(t, x,X0,X1) = inf{‖x0‖X0 + t‖x1‖X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1}

for t > 0.
For given 0 < θ < 1, 0 < q < ∞ the interpolation space (X0,X1)θ,q consists

of elements x ∈ X0 +X1 having the finite norm

‖x‖θ,q =
(∫ ∞

0

(
K(t, x,X0,X1)

tθ

)q
dt

t

)1/q
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with evident modification for q = ∞. Then the interpolation ideal Sp,q coincides
with interpolation space

Sp,q = (Sp,S∞)θ,q

where 0 < θ < 1, 0 < q ≤ ∞, p = p0
1−θ with 0 < p0 <∞.

It implies that the set of quantum differentials, belonging to the ideal Sp,q ,
coincides with the interpolation space

(
B

1/p0
p0 , B

1/p1
p1

)

θ,q

where p0 < p < p1, 1/p = (1 − θ)/p0 + θ/p1. An explicit description of this
space may be found in [4].

5 Quantum Differentials in Spaces of Several Variables

The role of Hilbert transform in the case of function spaces of several real variables
is played by the Riesz operatorsRj , 1 ≤ j ≤ n, which act on L2(Rn) by the formula

Rjh(x) := cnP.V .

∫

Rn

(tj − xj )h(t)

|t − x|n+1 dnt =: cnP.V .

∫

Rn

Kj (x, t)h(t)dnt

where cn is a coefficient (depending only on n) equal to

cn = 2i

�n+1

and �n+1 is the volume of the unit sphere Sn equal to

�n+1 = 2π(n+1)/2


(n+1
2 )

.

The Riesz operators (cf. [6, 7]) also commute with translations and dilatations,
moreover

n∑

j=1

R2
j = 1.

Introduce the space of vector-functions

H =
(
L2(Rn)

)N
.
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The Riesz operators act on the vector-functions h(x) = (h1(x), . . . , hN (x)) ∈ H

componentwise.
To define the symmetry operator, associated with Riesz operators, consider a

collection of (N × N)-matrices γ1, . . . , γn such that

γiγj + γjγi = 2δij .

These matrices γj coincide with the Dirac matrices generating the spin representa-
tion of the Clifford algebra ClC(Rn) in the space CN where N = 2[n/2] (cf. [3]).
Having such collection of matrices γj , we can define the symmetry operator S acting

on the space H =
(
L2(Rn)

)N
by the formula

Sh :=
n∑

j=1

γjRjh.

The associated quantum differential dqf = [S,Mf ] is equal to

(dqf )(h) = SMf (h)−MfS(h) =
n∑

j=1

γjRj (f h)−
n∑

j=1

f γj (Rjh) (5.1)

where

γjRj (fh) = cnγj

∫

Rn

Kj (x, t)f (t)h(t)dnt,

f γjRj (h) = cnγj

∫

Rn

Kj (x, t)f (x)h(t)dnt.

So

(dqf )(h) =

=
n∑

j=1

cnγj

∫

Rn

[
f (t)− f (x)

]
Kj(x, t)h(t)dnt =

n∑

j=1

cnγj

∫

Rn

k
j
f (x, t)h(t)d

nt

where

k
j

f (x, t) =
[
f (t)− f (x)

]
(tj − xj )

|t − x|n+1 .

The introduced quantum differential can be considered as a quantum version of
the Dirac operator D = ∑n

j=1 γj ∂tj associated with the spin representation of the

Clifford algebra ClC(Rn) determined by the γ -matrices γ1, . . . , γn (cf. [3]).
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It would be interesting to study the properties of the quantum correspondence
f �→ dqf , defined by the formula (5.1), as in the case of one real variable.
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Toeplitz Quantization of a Free ∗-Algebra

Stephen Bruce Sontz

To Nikolai Vasilevski in celebration of his 70th birthday

Abstract In this note we quantize the free ∗-algebra generated by finitely many
variables, which is a new example of the theory of Toeplitz quantization of
∗-algebras as developed previously by the author. This is achieved by defining
Toeplitz operators with symbols in that non-commutative free ∗-algebra. These are
densely defined operators acting in a Hilbert space. Then creation and annihilation
operators are introduced as special cases of Toeplitz operators, and their properties
are studied.

Keywords Toeplitz operators · Creation and annihilation operators

1 Introduction

The basic reference for this paper is [3] where a general theory of Toeplitz
quantization of ∗-algebras is defined and studied. More details including motivation
and references can be found in [3].

2 The Free ∗-Algebra

The example in this paper is the free algebra on 2n non-commuting variables A =
C{θ1, θ1, . . . , θn, θn}. In particular, the variables θj , θj do not commute for 1 ≤
j ≤ n. The holomorphic sub-algebra is defined by P := C{θ1, . . . , θn}, the free
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algebra on n variables. The ∗-operation (or conjugation) on A is defined on the
generators by

θ∗j := θj and θj
∗ := θj ,

where j = 1, . . . , n. This is then extended to finite products of these 2n elements in
the unique way that will make A into a ∗-algebra with 1∗ = 1. As explained in more
detail in a moment these products form a vector space basis of A, and so we extend
the ∗-operation to finite linear combinations of them to make it an anti-linear map
over the field C of complex numbers. Therefore, P is not a sub-∗-algebra. Rather,
we have P ∩ P∗ = C1. Moreover, P is a non-commutative sub-algebra of A if
n ≥ 2. This set-up easily generalizes to infinitely many pairs of non-commuting
variables θj , θj .

The definition of P is motivated as a non-commutative analogy to the
commutative algebra of holomorphic polynomials in the Segal-Bargmann space
L2(Cn, e−|z|2μLeb), where μLeb is Lebesgue measure on the Euclidean space Cn.
(See [1] and [2].) This is one motivation behind using the notation P for this
sub-algebra.

We will later introduce a projection operator P : A → P using a sesqui-linear
form defined on A. This is an essential ingredient in the following definition.

Definition 2.1 Let g ∈ A be given. Then we define the Toeplitz operator Tg with
symbol g as Tg φ := P(φg) for all φ ∈ P . It follows that Tg : P → P is linear. We
let L(P) := {T : P → P | T is linear}. Then the linear map A - g �→ Tg ∈ L(P)

is called the Toeplitz quantization.

Multiplying the symbol g on the left of φ gives a similar theory, which we will
not expound on in further detail.

The sesqui-linear form on A when restricted to P will turn out to be an inner
product. So P will be a pre-Hilbert space that is dense in its completion, denoted as
H. This is another motivation for using the notation P for this sub-algebra. So every
Toeplitz operator Tg will be a densely defined linear operator acting in the Hilbert
space H.

The definition of the sesqui-linear form on A is a more involved story. To start it
we let B be the standard basis of A consisting of all finite words (or monomials) in
the finite alphabet {θ1, θ1, . . . , θn, θn}, which has 2n letters. The empty word (with
zero letters) is the identity element 1 ∈ A. Let f ∈ B be a word in our alphabet.
We let l(f ) denote the length of f , that is, the number of letters in f . Therefore
l(f ) = 0 if and only if f = 1.

Definition 2.2 Let f ∈ B with l(f ) > 0. Then we say that f begins with a θ if the
first letter of f (as read from the left) is an element of {θ1, . . . , θn}; otherwise, we
say that f begins with a θ .

If f = 1, then we say that f begins with a θ and f begins with a θ .
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Remark Suppose l(f ) > 0 and that f begins with a θ . Then f has a unique
representation as

f = θi1 · · · θir θj1 · · · θjs f ′, (2.1)

where r ≥ 1, s ≥ 0 and f ′ begins with a θ . That is to say, the word f begins
with r ≥ 1 occurrences of θ ’s followed by s ≥ 0 occurrences of θ ’s and finally
another word f ′ that begins with a θ . Note that if s = 0, then f ′ = 1. We also
have that l(f ′) < l(f ). As a simple example of this representation, note that each
basis element f = θi1 · · · θir in P with r ≥ 1 has this representation with s = 0 and
f ′ = 1.

Dually, suppose that l(f ) > 0 and that f begins with a θ . Then f has the obvious
dual representation.

Now we are going to define a sesqui-linear form 〈f, g〉 for f, g ∈ A by first
defining it on pairs of elements of the basis B and extending sesqui-linearly, which
for us means anti-linear in the first entry and linear in the second. The definition on
pairs will be by recursion on the length of the words. To start off the recursion for
l(f ) = l(g) = 0 (that is, f = g = 1) we define

〈f, g〉 = 〈1, 1〉 := 1.

This choice is a convenient normalization convention.
The next case we consider is l(f ) > 0, f begins with a θ and g = 1. In that case

using (2.1) we define recursively

〈f, 1〉 = 〈θi1 · · · θir θj1 · · · θjs f ′, 1〉
:= w(i1, . . . , ir )δr,sδi1,jr · · · δir ,j1〈f ′, 1〉
= w(i)δr,sδi,jT 〈f ′, 1〉

where r ≥ 1 and w(i) ≡ w(i1, . . . , ir ) > 0 is a positive weight. Here we also define
the (variable length) multi-index i = (i1, . . . , ir ) and jT := (js, . . . , j1) to be the
reversed multi-index of the multi-index j = (j1, . . . , js). It follows that 〈f, 1〉 	= 0
in this case implies that we necessarily have 〈f ′, 1〉 	= 0 and

f = θi1 · · · θir θ ir · · · θ i1f ′.

Moreover, by recursion f ′ must also has this same form as f . Since the lengths
are strictly decreasing (l(f ) > l(f ′) > · · · ), this recursion terminates in a finite
number of steps. Thus the previous equation can then be written using the obvious
notations θi := θi1 · · · θir and θ iT := θ ir · · · θ i1 as

f = θiθ iT f
′.
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Symmetrically, for f = 1, l(g) > 0 and g begins with a θ we write g =
θk1 · · · θkt θ l1 · · · θ lug′ uniquely so that t ≥ 1 and g′ begins with a θ and define
recursively

〈1, g〉 = 〈1, θk1 · · · θkt θ l1 · · · θlug′〉
:= w(k1, . . . , kt )δt,uδk1,lu · · · δkt ,l1 〈1, g′〉
= w(k)δt,uδk,lT 〈1, g′〉.

Next suppose that l(f ) > 0 and l(g) > 0 and that both f and g begin with a θ

and are written as above. In that case, we define

〈f, g〉 = 〈θi1 · · · θir θj1 · · · θjs f ′, θk1 · · · θkt θ l1 · · · θ lug′〉 (2.2)

:= w(i, lT )δr+u,s+t δ(i,lT ),(k,jT ) 〈f ′, g′〉,

where (i, lT ) := (i1, . . . , ir , lu, . . . , l1) is the concatenation of the two multi-indices
i and lT = (lu, . . . , l1). (Similarly for the notation (k, jT ).)

The definitions for two words that begin with a θ are dual to these definitions.
We use the same weight factors for this dual part, though new real weight factors
could have been used.

There is still one remaining case for which we have yet to define the sesqui-
linear form. That case is when f begins with a θ , g begins with a θ , (or vice versa),
l(f ) > 0 and l(g) > 0. In that case we define 〈f, g〉 := 0.

Theorem 2.1 The sesqui-linear form on A is complex symmetric, that is,

〈f, g〉∗ = 〈g, f 〉 for all f, g ∈ A.

Proof The proof is by induction following the various cases of the recursive
definition of the sesqui-linear form. First, for l(f ) = l(g) = 0 we have f = g = 1
in which case

〈1, 1〉∗ = 1∗ = 1 = 〈1, 1〉.

Next we take the case l(f ) > 0, f begins with a θ and l(g) = 0. Then we write
f = θiθj f

′ for multi-indices i, j of lengths r, s respectively and f ′ begins with a
θ . So we calculate

〈f, 1〉∗ = (
w(i)δr,sδi,jT 〈f ′, 1〉)∗ = w(i)δr,sδi,jT 〈1, f ′〉,

where we used the induction hypothesis and the reality of the weight w(i) for the
last step. On the other hand, we have by definition that

〈1, f 〉 = 〈1, θiθjf ′〉 = w(i)δr,sδi,jT 〈1, f ′〉.
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This proves that 〈f, 1〉∗ = 〈1, f 〉. Similarly, one shows 〈1, g〉∗ = 〈g, 1〉, where
l(g) > 0 and g begins with a θ .

For the case where l(f ) > 0 and l(g) > 0 and both f and g begin with a θ ,
we write f = θiθjf

′ and g = θkθ lg
′, where i, j, k, l are multi-indices of lengths

r, s, t, u respectively and f ′, g′ begin with a θ . Then we see by induction that

〈g, f 〉∗ = 〈θkθlg′, θiθjf ′〉∗ =
(
w(k, jT ) δt+s,u+r δ(k,jT ),(i,lT ) 〈g′, f ′〉

)∗

= w(i, lT ) δr+u,s+t δ(i,lT ),(k,jT ) 〈f ′, g′〉 = 〈f, g〉.

The proofs for words that begin with θ are similar. The final case is if one of the pair
f, g begins with a θ and the other begins with a θ . But then 〈f, g〉 = 0 as well as
〈g, f 〉 = 0. So in this final case the identity is trivially true. �
While the sesqui-linear form is complex symmetric according to this proposition,
when n ≥ 2 it does not satisfy the nice properties with respect to the ∗-operation as
were given in [3]. We recall that those properties are

〈f1, f2g〉 = 〈f1g
∗, f2〉, (2.3)

〈f1, f2g〉 = 〈f1f
∗
2 , g〉, (2.4)

where f1, f2 ∈ P and g ∈ A. It seems reasonable to conjecture that these identities
do hold for n = 1. This detail is left to the reader’s further consideration.

For the first property (2.3) the counterexample is provided by taking f1 = θ1,
f2 = θ1θ2 and g = θ2θ1θ1. Then we have on the one hand that

〈f1, f2g〉=〈θ1, θ1θ2θ2θ1θ1〉=w(1, 2)δ(1,2)(1,2)〈1, θ1θ1〉=w(1, 2)w(1) 	= 0.

On the other hand

〈f1g
∗, f2〉 = 〈θ1θ1θ1θ2, θ1θ2〉 = 0.

For the second property (2.4), we take f1 = f2 = θ1 and g = θ2θ2. Then we have
for the left side that

〈f1, f2g〉 = 〈θ1, θ1θ2θ2〉 = w(1, 2)δ(1,2),(1,2)〈1, 1〉 = w(1, 2) 	= 0.

But for the right side we get

〈f1f
∗
2 , g〉 = 〈θ1θ1, θ2θ2〉 = w(1, 2)δ(1,2),(2,1)〈1, 1〉 = 0.

Thus this example is not compatible with all of the general theory presented in
[3] when n ≥ 2. But it still is an illuminating example as we shall discuss in more
detail a bit later on. However, we do have a particular case of (2.3) in this example.



444 S. B. Sontz

The only change from (2.3) in the following is that now g ∈ P ∪ P∗ is required
instead of g ∈ A.

Theorem 2.2 Suppose that f1, f2,∈ P and g ∈ P ∪ P∗. Then

〈f1, f2g〉 = 〈f1g
∗, f2〉

Proof We first prove the result for g ∈ P . It suffices to consider f1 = θi , f2 = θj
and g = θk for multi-indices i, j, k. Then we get

〈f1, f2g〉 = 〈θi, θj θk〉 = 〈θi, θ(j,k)〉 = w(i)δi,(j,k).

Next the other side evaluates to

〈f1g
∗, f2〉 = 〈θi(θk)∗, θj 〉 = 〈θiθkT , θj 〉 = w(i)δi,(j,k),

using (kT )T = k. And so the identity holds in this case.
Next suppose that g ∈ P∗. Then we apply the result of the first case to the

element g∗ ∈ P . And that will prove this second case as the reader can check by
using Theorem 2.1. �

Continuing our comments about why this is an illuminating example, let us note
that it satisfies the first seven of the eight properties used for the more general theory
presented in [3]. While it does not satisfy in general the eighth property (that Tg and
Tg∗ are adjoints on the domain P for all g ∈ A), it satisfies the weaker version of
this property given in Theorem 2.5 below.

According to the general theory we have to find a set � which must be a Hamel
basis of P as well as being an orthonormal set. Clearly, the candidate is

{θi1 · · · θir | 1 ≤ ii ≤ n, . . . , 1 ≤ ir ≤ n},

the words in the sub-alphabet {θ1, . . . , θn}. And this almost works. We need only
to normalize these words. Taking f = θi1 · · · θir and g = θk1 · · · θkt in (2.2) (so we
have s = u = 0, f ′ = 1 and g′ = 1) we get

〈f, g〉 = w(i)δr,t δi,k,

where i = (i1, . . . , ir ) and k = (k1, . . . , kt ) are multi-indices of lengths r, t

respectively. In particular, 〈f, g〉 = 0 if f 	= g. On the other hand, 〈f, f 〉 = w(i) >

0. So we define ϕi := w(i)−1/2 θi1 · · · θir = w(i)−1/2 θi , and the orthonormal
Hamel basis is defined by

� := {ϕi | i = (i1, . . . , ir ) with r ≥ 0, 1 ≤ ii ≤ n, . . . , 1 ≤ ir ≤ n}.

This argument shows that the complex symmetric sesqui-linear form restricted to
P is positive definite, that is, it is an inner product. We let H denote the completion
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of P with respect to this inner product. Then � is an orthonormal basis of H.
However, it is sometimes more convenient to work with the orthogonal (but perhaps
not orthonormal) set {θi = θi1 · · · θir } of H.

We now have enough information about the sesqui-linear form in order to define
the projection P : A→ P .

Definition 2.3 Let g ∈ A be given. Then define

Pg :=
∑

ϕi∈�
〈ϕi, g〉ϕi . (2.5)

This will be well defined when we show in a moment that the sum on the right side of
(2.5) is finite. If this were a Hilbert space setting, we could write P = ∑

i |ϕi〉〈ϕi | in
Dirac notation, and P would be the orthogonal projection onto the closed subspace
P . Anyway, this abuse of notation motivates the definition of P . Given that P is
well-defined, it is clear that P is linear, that it acts as the identity on P (since � is
an orthonormal basis of P) and that its range is P .

Theorem 2.3 The sum on the right side of (2.5) has only finitely many non-zero
terms. Consequently, P is well-defined.

Proof Take g ∈ A. It suffices to show that 〈θi , g〉 = 0 except for finitely many
multi-indices i, since ϕi is proportional to θi . So it suffices to calculate 〈θi , g〉 for
all possible multi-indices i. We do this by cases.

If g begins with a θ , then 〈θi, g〉 = 0 for all multi-indices i 	= ∅, the empty
multi-index. (Note that θ∅ = 1.) It follows that all of the terms, except possibly one
term, on the right side of (2.5) are 0 and so P(g) = 〈1, g〉 1 in this case. For the
particular case g = 1 (i.e., l(g) = 0) we have that P(1) = 1, using 〈1, 1〉 = 1.

So the only remaining the case is when g begins with a θ and l(g) > 0. Then,
using g = θkθ lg

′ for multi-indices k, l of lengths t ≥ 1 and u ≥ 0 respectively and
g′ begins with a θ , we have

〈θi, g〉 = 〈θi1 · · · θir , θk1 · · · θkt θ l1 · · · θ lug′〉 (2.6)

= w(i, lT ) δr+u,t δ((i, lT ), k) 〈1, g′〉
= w(k) δr+u,t δ((i, lT ), k) 〈1, g′〉.

Whether this is non-zero now is the question. More explicitly, for a given g of this
form how many θi’s are there such that this expression could be non-zero? However,
if the factor δ((i, lT ), k) is non-zero, then we have necessarily that the multi-index
i = (i1, . . . , ir ) of variable length r ≥ 0 forms the initial r entries in the given
multi-index k of length t ≥ 1. Thus for a given g there are at most finitely many
θi for which (2.6) could be non-zero. So the sum on the right side of (2.5) has only
finitely many non-zero terms, and P is well-defined. �
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Theorem 2.4 P is symmetric with respect to the sesqui-linear form, that is,
〈Pf, g〉 = 〈f, Pg〉 for all f, g ∈ A.

Proof Using Theorem 2.1 to justify the third equality, we calculate

〈Pf, g〉 = 〈 ∑

i

〈ϕi, f 〉ϕi, g
〉 =

∑

i

〈〈ϕi, f 〉ϕi, g
〉 =

∑

i

〈f, ϕi〉〈ϕi, g〉

=
∑

i

〈
f, 〈ϕi, g〉ϕi

〉 = 〈
f,

∑

i

〈ϕi, g〉ϕi
〉 = 〈f, Pg〉.

We also used the finite additivity of the sesqui-linear form in each entry, since the
sums have only finitely many non-zero terms. �

This result says that P has an adjoint on A, namely P itself. Since the sesqui-
linear form may be degenerate, adjoints need not be unique.

Theorem 2.5 Suppose that g ∈ P ∪ P∗. Then for all f1, f2 ∈ P we have
〈f1, Tgf2〉 = 〈Tg∗f1, f2〉.
Proof Using the previous result and Theorem 2.2 we calculate

〈f1, Tgf2〉 = 〈f1, P (f2g)〉 = 〈Pf1, f2g〉 = 〈f1, f2g〉 = 〈f1g
∗, f2〉

= 〈f1g
∗, Pf2〉 = 〈P(f1g

∗), f2〉 = 〈Tg∗f1, f2〉. �

Since the sesqui-linear form is an inner product when restricted to P , Tg∗ is the
unique adjoint of Tg on P . Symmetrically, Tg is the unique adjoint of Tg∗ on P .

Next, for all φ ∈ P we define the creation and annihilation operators associated
to the variables θj , θj for 1 ≤ j ≤ n by

A
†
j (φ) := Tθj (φ) = P(φθj ) = φθj and Aj(φ) := Tθj (φ) = P(φθj ),

respectively. These are operators densely defined in H sending P to itself. By
Theorem 2.5 the operators A

†
j and Aj are adjoints of each other on the domain

P .
We now evaluate these operators on the basis elements ϕi of P , where i is a

multi-index. First, for the creation operator we have

A
†
j (ϕi) = P(ϕiθj ) = ϕiθj = w(i)−1/2 θi θj = w(i)−1/2 θ(i,j)

=
(
w(i, j)

w(i)

)1/2

ϕ(i,j).

Here j = 1, . . . , n and also j denotes the multi-index with exactly one entry,
namely the integer j . Also we are using the notation (i, j) for the multi-index
with the integer j concatenated to the right of the multi-index i. It follows that
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the kernel of A†
j is zero as the reader can check. Also, the weight of the ‘higher’

state ϕ(i,j) appears in the numerator while the weight of the ‘lower’ state ϕi is in the
denominator. This turns out to be consistent with the way the weights (which are
products of factorials) work in the case of standard quantum mechanics.

Next, for the annihilation operator Aj for 1 ≤ j ≤ n we have to evaluate
Aj(ϕk) = P(ϕkθj ) =∑

i〈ϕi, ϕkθj 〉ϕi for every multi-index k. To do this, consider

〈ϕi, ϕkθj 〉 = (w(i)w(k))−1/2〈θi, θkθj 〉
= (w(i)w(k))−1/2 w(k) δr+1,t δ((i, j

T ), k) 〈1, 1〉

=
(
w(k)

w(i)

)1/2

δr+1,t δ((i, j), k),

where the multi-indices i = (i1, . . . , ir ) and k = (k1, . . . , kt ) have lengths r and t

respectively. We also used jT = j , since j is a multi-index with exactly one entry
in it. The only possible non-zero value occurs when the concatenated multi-index
(i, j) is equal to the multi-index k. So for k 	= (i, j) we have that 〈ϕi, ϕkθj 〉 = 0.
If the last entry in the multi-index k is not j (i.e., kt 	= j ), then k 	= (i, j) for all
multi-indices i. Consequently, in this case we calculate

Aj(ϕk) = P(ϕkθj ) =
∑

i

〈ϕi, ϕkθj 〉ϕi = 0.

Therefore, in this example the annihilation operator Aj has infinite dimensional
kernel. As a very particular case, we take k = ∅, the empty multi-index, and get
that Aj(ϕ∅) = Aj(1) = 0 for all 1 ≤ j ≤ n, that is, 1 ∈ ∩nj=1 ker Aj . So 1 is a
normalized vacuum state in H.

On the other hand if k = (i, j) for some clearly unique multi-index i (and in
particular r + 1 = t), then we find that

〈ϕi, ϕ(i,j)θj 〉 =
(
w(i, j)

w(i)

)1/2

> 0,

and consequently in this case

Aj(ϕ(i,j)) = P(ϕ(i,j)θj ) =
(
w(i, j)

w(i)

)1/2

ϕi.

Again, the weight of the ‘higher’ state ϕ(i,j) appears in the numerator while the
weight of the ‘lower’ state ϕi is in the denominator. And again this is consistent
with standard quantum mechanics.

It is now an extended exercise to compute the commutation relations of these
operators. For example, [A†

j , A
†
k] 	= 0 if j 	= k, since θj θk 	= θkθj . The formulas for
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these relations are simpler if we take the weights to be wi = wi1,...,ir := μi1 · · ·μir

for positive real numbers μ1, . . . , μn.

3 Concluding Remarks

I conclude with possibilities for future related research concerning algorithms that
manipulate the words in the basis of the algebra A.

The sesqui-linear form on A serves mainly to define the projection operator
P , which is crucial in this quantization theory. Using this, creation operators tack
on a holomorphic variable on the right (up to a weight factor), while annihilation
operator chop off the appropriate holomorphic variable on the right, if present
(again up to a weight), and otherwise map the word to zero. One can define other
projection operators that see more deeply into the word, rather than looking at only
the rightmost part of the word. In general each occurrence of θj is erased while at
the same time some corresponding occurrence of θj is also erased. The end result is
a word with no θ ’s at all. Moreover, if the original word had no θ ’s to begin with,
then it will remain unchanged. Basically, the projection map is an algorithm that
scans a word from one end to the other, eliminating all θ ’s and some θ ’s.

There are many such algorithms. To give the reader an idea of this, let us consider
scanning a word from left to right until we hit the first occurrence of θj for some
j . We change the word by eliminating this θj and the rightmost occurrence of θj to
the left of this θj , if there is such an occurrence. If there is no occurrence of θj to
the left, we define P on this word to be zero. Otherwise, we continue scanning from
our current position in the word looking for the next θk for some k. We repeat the
same procedure. Since the word is finite in length, this algorithm will terminate. At
such time there will be no occurrences of θ ’s left. The resulting word (or zero) will
be P evaluated on the original word.

The reader is invited to produce other algorithms for finding one (or various)
occurrences of θj to pair with an identified occurrence of θj . There are other
deterministic algorithms for sure, but there are even stochastic algorithms as well.
These stochastic algorithms could pair a random number of occurrences of θj ,
including zero occurrences with non-zero probability, with a given occurrence of
θj . Also, the locations of these occurrences could be random. Then all Toeplitz
operators, including those of creation and annihilation, would become random
operators.
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Making the Case for Pseudodifferential
Arithmetic

André Unterberger

To our longtime friend Nikolai Vasilevski

Abstract Let 
 = SL(2,Z) act in the plane by linear changes of coordinates.
The resulting spectral theory of the automorphic Euler operator, which refines the
theory of modular forms of non-holomorphic type, has definite advantages. One
of these lies in the enrichment gained by interpreting automorphic distributions
as symbols in the Weyl pseudodifferential calculus: the formula making the sharp
composition of modular distributions explicit is given in terms of L-function theory.
On the other hand, starting from distributions of arithmetic interest for symbols, we
obtain operators the structure of which expresses itself nicely in terms of congruence
arithmetic, providing a possible new approach to the Riemann hypothesis.

1 Introduction

This paper is based on the following ideas. First, that pseudodifferential analysis
and arithmetic can cooperate in an interesting way. Next, that in order to make such
an association possible, one should start with refurbishing classical modular form
theory, here relative to the full modular group for simplicity, by letting the plane
R2 take the place usually ascribed to the hyperbolic half-plane: we believe that
other advantages originate also from this substitution. The developments towards
this program have been obtained in a series of books going back a number of years:
they will get a better focus from the concentrated exposition that follows, leaving
aside most (usually lengthy) proofs.
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The first section deals with a new way to realize pseudodifferential analysis,
which in an unexpected way lets the main objects of modular form theory appear
in a fully natural way: we consider this approach to modular form theory as being
especially suitable for analysts. Recall that pseudodifferential analysis starts with a
defining rule Op associating linear operators from S(R) to S ′(R) to distributions
in S ′(R2): the (unique) distribution a given operator originates from is called the
symbol of this operator. The point of view developed in Sect. 2 consists in letting
symbols appear as (continuous and discrete) superpositions of elements of the kind
sab , with sab(x, ξ) = e2iπaxδ(ξ − b).

There are definite advantages originating from this choice in pseudodifferential
analysis. Indeed, denoting as # the (far from everywhere defined) bilinear operation
on symbols that corresponds to the composition of the associated operators, one has
the equation, not to be understood in a pointwise sense,

sa1
b1

# sa2
b2
= δ(a1 + a2 − b1 + b2) s

a1+a2
a1+b2

, (1.1)

which has interesting features. First, the presence of delta factors implies that a
general #-product formula will necessitate a 1-dimensional integral only, while a
4-dimensional one is necessary in the traditional approach.

The main application of this formula is obtained when coupling it with the
process of decomposing all symbols (the two ones one starts with as well as their
#-product) into their homogeneous components. One is left with the problem of

analyzing the sharp product of two factors of the kind |ξ |−1−ν exp
(

2iπ kx
ξ

)
. In the

case when either k1 + k2 	= 0 or k1 > 0, and assuming that |Re (ν1 ± ν2)| < 1,
the composition of the two associated operators acts from S(R) to S ′(R), thus has
a symbol in the usual sense, the homogeneous parts of which were computed in [5,
Section 4.5]. The situation can be saved in the remaining case by applying the Euler
operator 2iπE = 1 + x ∂

∂x
+ ξ ∂

∂ξ
to the result. Applying the differential operator

E to a symbol amounts to replacing the associated operator A by PAQ − QAP ,
where Q = x and P = 1

2iπ
d
dx

are the infinitesimal operators of Heisenberg’s
representation: this gives an operator-theoretic meaning to the trick above, which
originated from geometrical considerations.

Let us introduce now (Sect. 3) automorphic distributions, by definition tempered
distributions invariant under the action, by linear changes of coordinates, of the
arithmetic group 
 = SL(2,Z), and modular distributions, to wit automorphic
distributions homogeneous of some degree−1−ν. A linear operator$0, with a nice
pseudodifferential interpretation—remindful of the link between pseudodifferential
analysis and Toeplitz operator theory—sends automorphic and modular distribu-
tions in R2 to automorphic functions and modular forms of the non-holomorphic
type, in the hyperbolic half-plane ". But, in order to characterize an automorphic
distribution S, we need to know, besides $0S, the image under $0 of the transform
of S under the symplectic Fourier transformation. Automorphic distributions (in
R2) carry slightly more information than automorphic functions (in ").
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In Sect. 4, we shall show that the measures sab used (for pseudodifferential
purposes) in Sect. 2 lead immediately to the construction of a full set of modular
distributions. It suffices, introducing a character χ of Q×, to consider the series

Tχ = π
∑

m,n∈Z×
χ

(
m

n

)

smn , (1.2)

replacing when χ is the trivial character the subscript mn 	= 0 by |m| + |n| 	= 0. In
this case, decomposing Tχ into homogeneous components defines the Eisenstein
distributions Eiλ, where Eν makes sense for ν ∈ C, ν 	= ±1: it is a modular
distribution homogeneous of degree −1 − ν. For a special, discrete set of real
numbers λ, the component of degree −1 − iλ of Tχ will also be automorphic for
some choices of a non-trivial character χ , and we shall call it a Hecke distribution.

Needless to say, the terminology has been chosen to correspond, under the
two-to-one map $0, to the one used in non-holomorphic modular form theory.
Eisenstein distributions are transformed to Eisenstein series and Hecke distributions
are transformed to Hecke eigenforms. A more difficult question, treated in Sect. 6,
consists in defining a Hilbert space L2(
\R2), to substitute for the classical
space L2(
\"). There is indeed an independent construction, a rather hard one
because there is no fundamental domain for the action of 
 in R2 (by linear
changes of coordinates). The Euler operator has a natural self-adjoint realization in
L2(
\R2), and general elements in this space decompose as integrals of Eisenstein
distributions, on the spectral line Re ν = 0, and series of Hecke distributions: this is
an analogue of the Roelcke-Selberg expansion theorem from automorphic function
theory.

Given two modular distributions N1 and N2 (either can be an Eisenstein
or a Hecke distribution), one can by the methods indicated in Sect. 2 give a
meaning (Sect. 5) to the classically undefined sharp composition N1 #N2. A full
decomposition of the result, as an integral and series of Eisenstein and Hecke
distributions, can be obtained. The coefficients of the decomposition are quite
interesting: they involve the L-functions of the modular distributions concerned by
each term of the expansion under consideration (two in input, one in output), as well
as the results of bi- or trilinear operations on such L-functions. However, the results
will be very briefly hinted at, and fully referenced, since the whole book [5] was
needed to answer this question.

In the spectral theory of the automorphic Euler operator, the non-trivial zeros
of the Riemann zeta function show up not as eigenvalues, but as resonances. The
consideration of special automorphic symbols, integrals of Eisenstein distributions
(no Hecke distributions appear in this context) lead to equivalent formulations of the
Riemann hypothesis (Sect. 8). The symbol

T1∞(x, ξ) =
∑

|j |+|k|	=0

a1((j, k)) δ(x − j) δ(ξ − k), (1.3)
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with a1(r) = ∏
p|r (1−p), decomposes exactly (this is not a spectral decomposition)

as a series of Eisenstein distributions E−ν , where ν runs through the set of zeros,
both trivial and non-trivial, of zeta: in the usual way, (j, k) denotes the g.c.d. of
the integers j and k, when not both zero. It is therefore not surprising that one
should be able to express the Riemann hypothesis in terms involving the operator
with symbol T1∞ or, which is just as well when tested on pairs of functions
compactly supported in [0,∞[, T1

M , where M is a squarefree integer and one
replaces a1((j, k)) by a1((j, k,M)). Now, the structure of this operator expresses
itself nicely in terms of congruence arithmetic, and it transfers under an appropriate
map to a linear endomorphism of the space C4M2

with a Eulerian structure. Whether,
in possession of rather sharp methods of pseudodifferential analysis, one could use
this information towards a better understanding of the zeros of zeta, is far from sure.
At least, it takes one to the question of up to which point congruence arithmetic
and real analysis can be made to work together, which may well be the heart of the
Riemann hypothesis.

In a very short last section, we show on an example of historical importance (that
of the Ramanujan Delta function) that modular forms of the holomorphic type, just
as those of non-holomorphic type (as introduced in Sects. 3 and 4) are in a very
natural way associated to pseudodifferential analysis.

2 A Composition Formula

Given a tempered distribution S = S(x, ξ) in Rd × Rd , one considers the
“pseudodifferential” operator with symbol S, to wit the linear operator from S(Rd )

to S ′(Rd) weakly defined by the equation

(
Op[2](S) u

)
(x) = 2−d

∫

Rd×Rd

S

(
x + y

2
, ξ

)

eiπ〈x−y,ξ 〉 u(y) dy dξ. (2.1)

The superscript [2] expresses the fact that this is really the definition corresponding
to having chosen 2 for Planck’s constant. There is no doubt that this is the best
normalization in “pseudodifferential arithmetic”, by which we shall essentially
mean pseudodifferential analysis with symbols of arithmetic interest. But choosing
1 instead (to wit, replacing 2−deiπ〈x−y,ξ 〉 by e2iπ〈x−y,ξ 〉) yields the benefit that
the trace and Hilbert-Schmidt norms of an operator, when defined—which is never
the case in pseudodifferential arithmetic—correspond to the integral and L2-norm
of its symbol. We shall only use the version (2.1), but we cannot yet dispense
with the superscript [2] because quotations from previous work will sometimes be
needed. One has Op[1]

(
RescS

) = U [2]Op[2](S) U [2]−1 with (RescS)(x, ξ) =
S(x

√
2, ξ
√

2) and (U [2] u)(x) = 2
1
4 u(x

√
2), which makes translations easy.

There is a well-known “composition formula”, which expresses the symbol

S1
[2]
# S2 of the composition of two operators with symbols S1 and S2, assuming
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of course that this composition makes sense, which is the case if the image of
Op[2](S2) is contained in a domain of sorts of Op[2](S1). The formula (there is
nothing in it but Weyl’s exponential version of Heisenberg’s commutation relation,
after one has written S(x, ξ), in both cases, as a superposition of exponentials
eiπ(〈a,x〉+〈b,ξ 〉)), is expressed by means of a (4d)-dimensional integral. We wish,
in this section, to put into evidence the benefits obtained in some cases of replacing
the realization of symbols as superpositions of exponentials by the formula

Sf =
∫

Rd×Rd

f (a, b) sab da db with sab(x, ξ) = e2iπ〈a,x〉δ(ξ − b).

(2.2)

A first one is that the above-mentioned (4d)-dimensional integral will become a
d-dimensional one; at the same time, one can give at one stroke the formula for
the composition of an arbitrary number of operators. Indeed [6, p. 107], one has the
equation

s
a1
b1

[2]
# . . .

[2]
# s

ak
bk
=

k−1∏

j=1

δ(aj + aj+1 − bj + bj+1) s
[
a1 + · · · + ak, a1 + · · · + ak−1 + bk

]

(2.3)

or, in the case when d = 1, assuming that a1 + · · · + ak 	= 0,

s
a1
b1

[2]
# . . .

[2]
# s

ak
bk
=

k−1∏

j=1

δ(aj + aj+1 − bj + bj+1) s

[

a1 + · · · + ak,
a1b1 + · · · + akbk

a1 + · · · + ak

]

.

(2.4)

Taking two factors, one obtains from (2.2) and (2.3) the formula Sf1

[2]
# Sf2 = Sf ,

with

f (a, b) =
∫

Rd

f1(x, a + b − x) f2(a − x, b − x) dx. (2.5)

Specializing from now on in the case when d = 1, we systematically decompose
symbols into homogeneous components, extending to appropriate distributions the
rule, valid if h ∈ Seven(R

2) (one may, at the price of introducing an extra parameter
±1, dispense with the parity condition, but this is not necessary for our present
purpose),

h(x, ξ) = 1

i

∫

Re ν=−a
hν(x, ξ) dν, a < 1, |x| + |ξ | 	= 0, (2.6)
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with

hν(x, ξ) = 1

4π

∫ ∞

−∞
|t|νh(tx, tξ) dt, Re ν > −1, (2.7)

a consequence of the Mellin (or Fourier) inversion formula. The function hν ,
undefined at the origin, is homogeneous of degree −1 − ν. For instance, with

(sab)even = 1
2

(
sab + s−a−b

)
, one has [6, p. 116]

[(
sab

)
even

]

iλ
(x, ξ) = 1

4π
|b|iλ|ξ |−1−iλ exp

(

2iπ
abx

ξ

)

, λ ∈ R
×, b 	= 0.

(2.8)

A pointwise application of (2.4) (in the case of two factors) is not possible:
the result would be meaningless when a1 + a2 − b1 + b2 	= 0, and would be
zero in the remaining case. However, decomposing the right-hand side of (2.4)

into homogeneous components will involve a factor of the kind
∣
∣
∣ a1b1+a2b2

a1+a2

∣
∣
∣
−1−iλ

against which, in general, the troublesome delta factor can be tested (one delta
factor will remain in the result). This will not be the case if a1b1 + a2b2 = 0 or
a1+a2 = 0: under these conditions, an examination of whether the arguments of two
delta factors present are transversal or not leaves only the case when a1b1+a2b2 = 0
and a1b1 < 0 to worry about. Even so [6, section 6.2], one recovers a meaningful
result if one first replaces the right-hand side of (2.4) by its image under the Euler
operator

2iπE = 1+ x
∂

∂x
+ ξ

∂

∂ξ
. (2.9)

This repair will be fully operational after we have made it explicit, in (5.6) below,
which operation on an operator corresponds to applying its symbol the differential
operator E . To sum up the (quite lengthy) developments in [5, Chapter 4]: one can
in interesting cases, especially in pseudodifferential arithmetic, give a meaning to
all homogeneous components of the #-composition of two symbols, except the one
homogeneous of degree −1. This does not require that the composition of the two
associated operators be fully meaningful in any classical sense.

3 Automorphic Distributions and Modular Distributions

An automorphic distribution is a tempered distribution S in the plane, invariant
under the action by linear changes of coordinates of the group 
 = SL(2,Z).
One can characterize S by a pair of (dependent) functions $

[2]
0 S and $

[2]
1 S in
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the hyperbolic half-plane {z ∈ C : Im z > 0}, setting

(
$
[2]
0 S

)
(z) = 〈S, (x, ξ) �→ exp

(

− π

Im z
|x − zξ |2

)

〉 (3.1)

and $
[2]
1 S = $

[2]
0

(
(2iπE)S

)
: the superscript [2] makes this definition coherent

with the choice of 2 for Planck’s constant. The two functions so obtained are
automorphic in the hyperbolic half-plane ", with a reference to the action of 


there by fractional-linear transformations of the complex variable z. Besides, under
$
[2]
0 or $[2]1 , the operator π2E2, where 2iπE is the Euler operator (2.9), transfers to

the operator �− 1
4 , where � = (z− z)2 ∂2

∂z∂z
is the hyperbolic Laplacian. It follows

that if an automorphic distribution S is homogeneous of some degree −1 − ν, in
which case we shall call it a modular distribution, its image under $[2]0 or $[2]1 is

a generalized eigenfunction of � for the (generalized) eigenvalue 1−ν2

4 , in other
words a modular form of the non-holomorphic type. But the notion of automorphic
or modular distribution (in R2) is more precise than that of automorphic function
or modular form (in "): if two automorphic distributions are related under the
symplectic Fourier transformation F symp in R2 (the one with the combination
xη − yξ in the exponent, which commutes with the action of SL(2,R) by linear
changes of coordinates with determinant 1), they have the same image under $[2]0 ,

and images the negative of each other under $
[2]
1 , so that a pair of automorphic

functions is needed to characterize just one automorphic distribution.
The connection between the two environments expresses itself nicely with the

help of the symbolic calculus (2.1). Let us introduce the (even and odd) functions
φ

0,[2]
z and φ

1,[2]
z in S(R), depending on a point z of the hyperbolic half-plane, such

that

φ0,[2]
z (x) =

(
Im (−z−1)

) 1
4

exp
iπx2

2z̄
,

φ1,[2]
z (x) = 2π

1
2

(
Im (−z−1)

) 3
4
x exp

iπx2

2z̄
. (3.2)

They make up [5, p. 56] total sets in the even and odd parts of L2(R); they are
linked to the metaplectic representation (here, a version Met[2]) since, under any
element of the metaplectic group (a twofold cover of SL(2,R)) lying above a matrix
(
a b
c d

)
, the way φ

0,[2]
z and φ

1,[2]
z transform can be caught, up to a scalar factor, by the

transformation z �→ az+b
cz+d . For our present purpose, we note that, with κ = 0 or 1,

one has the identity

(
$[2]κ S

)
(z) =

(
φκ,[2]
z

∣
∣ Op[2](S) φκ,[2]

z

)
(3.3)

(we use in L2(R) the notation (u | v) = ∫∞
−∞ u(x) v(x) dx).
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4 Eisenstein Distributions and Hecke Distributions

Considering a non-constant character χ on Q
×, tempered in the sense that, for some

C > 0, one has |χ
(
m
n

)
| ≤ |mn|C for every pair m,n of non-zero integers, one

introduces the even distribution

Tχ = π
∑

m,n	=0

χ

(
m

n

)

smn . (4.1)

When χ coincides with the trivial character χ0 = 1, we extend the definition, with
the difference that the domain of summation will then be {m,n : |m| + |n| 	= 0}
in place of {(m, n) ∈ Z2 : mn 	= 0}. The distribution Tχ0 is invariant under the
action by linear transformations in the full group SL(2,Z), i.e., is an automorphic
distribution: this is not the case for Tχ in general.

With the help of (2.8), one obtains if χ is distinct from the trivial charac-
ter the decomposition into homogeneous components of Tχ : it is the integral∫∞
−∞N[χ, iλ] dλ, with

〈N[χ, iλ], h〉 = 1

4

∑

m,n	=0

χ

(
m

n

) ∫ ∞

−∞
|t|−1−iλ (

F−1
1 h

) (
m

t
, nt

)

dt, (4.2)

where F−1
1 denotes the inverse Fourier transformation with respect to the first

variable of a pair.
When χ is the constant character χ0, one obtains a decomposition of Tχ0 , the

terms of which on the line Re ν = 0 are denoted as Eiλ, where the distribution Eν

so defined when ν ∈ iR, as well as its analytic continuation with respect to ν, will
be called an Eisenstein distribution: there are two extra terms, to the left and right of
the above line. The distribution Eν can be continued to the plane, with the exception
of two simple poles at ν = ±1. When |Re ν| > 1, it is given by the equations

〈Eν, h〉 = 1

2

∑

|m|+|n|	=0

∫ ∞

−∞
|t|−νh(mt, nt) dt, Re ν < −1,

Eν(x, ξ) = 1

2
ζ(−ν)

∑

(j,k)=1

| − kx + jξ |−ν−1, Re ν > 1. (4.3)

One has [5, p. 13]

Resν=−1 Eν = −1 and Resν=1 Eν = δ0, (4.4)

where δ0 is the unit mass at the origin of R2. Also, one has F sympEν = E−ν and
F sympN[χ, iλ] = N[χ−1,−iλ] if χ is a non-trivial character.
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The Eisenstein distribution Eν , automorphic and homogeneous of degree−1−ν,
is a modular distribution. The distribution N[χ, iλ] is not automorphic in general,
but it satisfies the invariance property 〈N[χ, iλ] , h ◦ (

1 1
0 1

)〉 = 〈N[χ, iλ] , h〉 for
every function h ∈ S(R2). For a special, discrete set of real numbers λ, it will also
be invariant for some choices of χ under the transformation associated to the matrix(

0 1−1 0

)
: in this case, it will be a modular form of degree −1 − iλ, to be called a

Hecke distribution. Note that, given λ, a character χ making it possible to write a
given modular distribution as N[χ, iλ] is far from unique. Indeed, a character of
Q× is determined by the values it takes on primes, and it is always possible, for any
finite set of primes, to change χ(p) to (χ(p))−1piλ without changing N[χ, iλ]: it

is only the square of the character χ̃ such that χ̃(p) = χ(p) p− iλ
2 that is determined

by N[χ, iλ].
The terminology regarding modular distributions has been chosen to fit the one

used in modular form theory of the non-holomorphic type as closely as possible.
If Re ν < −1, the non-holomorphic Eisenstein series E 1−ν

2
is the function in the

hyperbolic half-plane defined as the series

E 1−ν
2
(z) = 1

2

∑

m,n ∈ Z

(m, n) = 1

(
|mz− n|2

Im z

) ν−1
2

, (4.5)

where (m, n) denotes the g.c.d. of the pair m,n. If one sets ζ ∗(s) = π− s
2 
( s2 ) ζ(s)

(so as to obtain a function invariant under the symmetry s �→ 1− s), and E∗1−ν
2
(z) =

ζ ∗(ν) E 1−ν
2
(z), one has the transferring identity $

[2]
0 Eν = E∗1−ν

2
= E∗1+ν

2
: the

Eisenstein distributions Eν and E−ν , while distinct (they are related under F symp),
have the same image under $[2]0 [6, p. 119].

All these matters are discussed in detail in [5, Chapter 1]. For people with some
experience in modular form theory, let us indicate also the following three facts.
First, the images under $[2]0 or $[2]1 of Hecke distributions are automatically Hecke
eigenforms: note that Hecke operators did not enter the definition of N[χ, iλ]. Next,
the L-function associated to a Hecke eigenform (or the one, with a more precise
coefficient, associated to a Hecke distribution), has a natural spectral interpretation,
as the coefficient of the decomposition of the Hecke distribution into generalized
eigenfunctions of the operator 2iπ E* = x ∂

∂x
− ξ ∂

∂ξ
(observe the sign change).

Finally, there is a “converse theorem” identifying the fact that N[χ, iλ] is a modular
distribution with a functional equation satisfied by its L-function.

To make our list of modular distributions complete, we must not forget the
constant 1 and the unit mass δ0 at the origin of R2, which are modular distributions
of degrees of homogeneity 0 and −2, albeit uninteresting ones. The set of all real
numbers λ > 0 such that N[χ, iλ] is a Hecke distribution for some choice of χ can
be written as a sequence (λr )r≥1 going to infinity: for each r , there is a finite set
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(possibly always reduced to one element, but whether this is the case is not known)
of possible choices of classes of characters, two characters being in the same class
for a given λr if they lead to the same Hecke distribution (cf. harmless changes
of χ(p) as indicated above). We thus label the Hecke distributions N[χ, iλr ] with
r ≥ 1 as Nr,�, the index � (the finite domain of which may depend on r) standing
for the set of classes of characters just defined. The degree of homogeneity of Nr,�

is−1−iλr . We also set, for r = −1,−2, . . . , λr = −λ−r and Nr,� = F sympN−r,m,
where m is the class of χ−1 if � is the class of χ , obtaining in this way a complete set
of Hecke distributions: note that the degree of homogeneity of Nr,� is still −1− iλr

whatever the sign of r . It is convenient to set $[2]0 Nr,� = N|r |,� , observing that r
has been changed to |r| in the process.

5 The #-Product of Modular Distributions

The whole book [5] was devoted to this question, and some progress, which led to
the point of view developed in Sect. 2, was made in [6, Chapter 6].

In the hyperbolic half-plane ", the action of 
 has a fundamental domain D,
which makes it possible to define a Hilbert space L2(
\") = L2(D) and a self-
adjoint realization there of the Laplacian �. But the modular form N|r |,�, while
normalized in the so-called Hecke sense (this observation for people familiar with
modular form theory of the non-holomorphic type), is not normalized in the L2(D)-
sense, and we denote as ‖N|r |,� ‖ its norm there. The Roelcke-Selberg expansion
theorem is the fact that any element of L2(
\") can be written as the sum of an
integral over the line Re ν = 0, with suitable coefficients, of the Eisenstein series
E 1−ν

2
, and of a series of Hecke eigenforms Nr,� with r ≥ 1. The set of Hecke

eigenforms ‖Nr,� ‖−1Nr,� with r ≥ 1, together with the constant ( 3
π
)

1
2 , constitutes

a complete orthonormal basis of the part of L2(
\") corresponding to the discrete
part of the spectrum of �.

It is often helpful to make use of an automorphic distribution the decomposition
of which involves all Eisenstein distributions homogeneous of degrees−1− iλ with
λ ∈ R, as well as all Hecke distributions: one such object is constructed as follows.
Starting from the distribution s1

1(x, ξ) = e2iπxδ(ξ −1), which is invariant under the
linear transformation with matrix

(
1 1
0 1

)
, and taking m = 1, 2, . . . , define ([3, p. 23]

or [6, p. 120]) the distribution

bm = π2E2
(
π2E2 + 1

)
. . .

(
π2E2 + (m− 1)2

)
s1

1. (5.1)

and, with 
o∞ = {
(

1 b
0 1

) : b ∈ Z}, consider the series, convergent in S ′(R2),

Bm = 1

2

∑

g∈
/
o∞

bm ◦ g−1, (5.2)
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The image under $
[2]
0 of this automorphic distribution is a special case of a

collection of automorphic functions introduced by Selberg [2]. It decomposes into
homogeneous components as

Bm = 1

4π

∫ ∞

−∞

(m− iλ

2 ) 
(m+ iλ
2 )

ζ ∗(iλ) ζ ∗(−iλ) Eiλ dλ

+ 1

2

∑

r, �

r ∈ Z×


(m− iλr
2 ) 
(m+ iλr

2 )

‖N|r |,� ‖2 Nr,�. (5.3)

When m = 0, the right-hand side is still meaningful, the coefficient of Eiλ in the
integral reducing then to

(
ζ(iλ)ζ(−iλ))−1

: but B0, so defined, could not be defined
by the then divergent series (5.2).

We come to the question of defining properly and computing the sharp product of
any two modular distributions N1 and N2 (either can be an Eisenstein distribution
or a Hecke distribution). Splitting the rule of composition into its commutative and
anti-commutative part, i.e., writing for j = 0 or 1

[
N1

[2]
# N2

](j) = 1

2

[

N1
[2]
# N2 + (−1)j N2

[2]
# N1

]

, (5.4)

the aim is to find (in imitation of the expansion (5.3) of B0) coefficients making the
identity

[
N1

[2]
# N2

](j) = 1

4π

∫ ∞

−∞
Cjiλ(N1, N2)

Eiλ

ζ(iλ)ζ(−iλ) dλ

+ 1

2

∑

r∈Z×

∑

�

Cjr,�(N1, N2)

( iλr2 )
(− iλr

2 )

‖N|r |,� ‖2 Nr,� (5.5)

valid. An almost complete answer is to be found in [6, section 6.4]. The coefficients
obtained are quite interesting: besides products of zeta factors, they involve L-
functions of modular forms (of the non-holomorphic type), product L-functions and
even triple products of L-functions. We thus consider pseudodifferential analysis, in
this arithmetic environment, as being a good approach to the theory of bi- or trilinear
operations on L-functions.

We shall not reproduce the formulas here. One point needs be stressed, however.
The composition of two operators A1 and A2 the symbols of which are modular
distributions is meaningless in the usual sense, because the image of A2 is not a
subset of the domain of A1. However, denoting as P = 1

2iπ
∂
∂x

and Q = (x) the
infinitesimal operators of the Heisenberg representation, one has for any symbol
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S ∈ S ′(R2) the identity

P Op[2](S)Q−QOp[2](S) P = Op[2](E S). (5.6)

Extending this identity makes it sometimes possible to define the image under E of
the symbol of an operator without it being possible to give this symbol any meaning
! This is precisely what occurs in the situation under discussion, since each of the
two terms of the differenceP (A1A2)Q−Q(A1A2) P , redefined as (PA1)(A2Q)−
(QA1)(A2P), makes sense. Note that the knowledge of ES, if S is automorphic, is
equivalent to that of S up to the addition of a multiple of E0.

At the end of Sect. 2, we explained in which way applying a meaningless sharp
product the operator 2iπE , and coupling this with decompositions of symbols (the
input as well as the output ones) into homogeneous components, did in some cases
save the situation. The formula (5.6) completes the trick, giving it significance on
the operator-theoretic level. One should however be careful with the notation # in
this setting: in particular, it denotes an operation no longer quite associative.

6 The Hilbert Space L2(\R2) and the Automorphic Euler
Operator

Defining in an independent way a Hilbert space L2(
\R2) is more difficult than
defining the space L2(
\"), since there is no fundamental domain for the action
of 
 = SL(2,Z) in R2 (by linear changes of coordinates): how to do this will
be recalled here. Despite the fact that the pair of operators $

[2]
0 ,$

[2]
1 transfers in

a one-to-one way automorphic distribution theory to a theory of pairs of (related)
automorphic functions, the two are not equivalent in a topological sense, as indicated
by (6.4) below. Indeed, as the Gamma function is rapidly decreasing on vertical
lines, the transferring operator is far from having a continuous inverse: this, again,
indicates that automorphic distribution theory carries more information.

Given f ∈ S(R2), we wish to define as a distribution the sum of the series∑
g∈
 f ◦ g−1: note that f cannot be invariant under any infinite subgroup of 
 so

that, unlike the situation that occurred in (5.2), the summation over
 needs not (and,
generally, cannot) be replaced by the summation over a quotient of 
. Consider the
series, depending on a pair h, f of functions in S(R2),

〈P, h ⊗ f 〉 =
∑

g∈


∫

R2
(h ◦ g)(x, ξ) f (x, ξ) dx dξ. (6.1)

This series is not convergent in general, but it is (an already delicate question) if
one assumes that f and h both lie in the image of Seven(R

2) under the operator
2iπE(2iπE + 1) [4, p. 191]. The object P, undistinguishable from the Poincaré
summation process, is doubly automorphic in the sense that the right-hand side
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of (6.1) remains invariant if h and f undergo transformations by two independent
elements of 
. One may thus ask for a full decomposition of P as an integral and
series of tensor products of modular distributions: this is a quite lengthy, and rather
difficult task, developed in [4, Chapter 5]. Introducing the Hecke distributions Nr,�

and their images N|r |,� under $[2]0 , and defining ε|r |,� = ±1 as the parity of the
Hecke eigenform N|r |,� under the symmetry z �→ −z̄, one obtains the formula

〈P, h ⊗ f 〉 = 1

2π

∫ ∞

−∞
〈Eiλ, h〉 〈E−iλ, f 〉 dλ

ζ(iλ) ζ(−iλ)

+ 2
∑

r∈Z×,�



(
iλr

2

)




(

− iλr

2

)

ε|r |,�
〈Nr,� , h〉 〈N−r,� , f 〉

‖N|r |,� ‖2
. (6.2)

Then, one shows the identity 〈Nr,�, h〉 = ε|r |,� 〈N−r,�, h〉, from which it
follows that if h ∈ (2iπE)(1 + 2iπE)Seven(R

2), one has 〈P, h ⊗ h〉 ≥ 0. If
h ∈ (2iπE)2(1+ 2iπE)(1− 2iπE)Seven(R

2), the series S = ∑
g∈
 h ◦ g defines

a tempered distribution and the number 〈P, h ⊗ h〉 depends only on S: observe,
however, that distinct functions h can lead to the same distribution S, since the
latter depends only, as can be seen, on the restriction of (F−1

1 h)(η, ξ) to the set
where ηξ ∈ Z. One may thus set

‖S ‖2
L2(
\R2)

: = 〈P, h̄ ⊗ h〉. (6.3)

One shows that this defines a Hilbert norm on the (incomplete) space of distributions
S.

Finally, one cannot fail to ask how the Hilbert space L2(
\R2) relates to the
space L2(
\"). The answer is given by the equations

‖$[2]0 S ‖L2(
\") = ‖
(iπE)S ‖L2(
\R2) if F sympS = S,

‖$[2]0 S ‖L2(
\") = 2 ‖
(1+ iπE)S ‖L2(
\R2) if F sympS = −S. (6.4)

The same pair of identities also holds in a non-automorphic environment [4, p. 24],
in which its proof is considerably easier.

In the Hilbert space L2(
\R2), the operator E is self-adjoint and the Hecke
distributions make up a complete set of orthogonal eigenvectors of E (for their
normalization, use (6.4) and the equation $

[2]
0 Nr,� = N|r |,�); the Eisenstein

distributions Eiλ contribute the continuous part of the spectrum of E . Equation (6.2)
yields a “resolution of the identity”, to wit a decomposition of h, or f , as an integral
and series of modular distributions: simply drop the other element of the pair h, f .
It is thus immediate to obtain a formula for the resolvent (2iπE −μ)−1 (μ /∈ iR) of
the automorphic Euler operator. Zeros of the Riemann zeta function then show up
as poles of the resolvent, i.e., as resonances.
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7 An Automorphic Distribution Decomposing over the Zeros
of Zeta

Define the function a1(r) = ∏
p|r (1 − r) (as an index in a product, p is always

assumed to run through primes only). Consider the pair of tempered distributions

T1∞(x, ξ) =
∑

|j |+|k|	=0

a1((j, k)) δ(x − j) δ(ξ − k),

R∞(x, ξ) =
∑

(j,k)=1

[δ(−kx + jξ + 1)− δ(−kx + jξ)]. (7.1)

In the second sum (a series of line measures), pairs j, k and −j,−k are grouped,
for convergence, before summation. Both distributions are automorphic, and they
decompose into Eisenstein distributions (no Hecke distributions are needed here),
as given by the equations [6, section 3.2]

〈R∞, h〉 = 2
∑

n≥0

(−1)n+1

(n+ 1) !
π

5
2+2n


( 3
2 + n)ζ(3+ 2n)

E2n+2,

T1∞ = 12 δ0 +R∞ +
reg∑

ζ ∗(ρ)=0

Resν=ρ
(
E−ν
ζ(ν)

)

: (7.2)

with ζ ∗(s) : = π− s
2 
( s2 ) ζ(s), the equation ζ ∗(ρ) = 0 singles out the non-trivial

zeros of zeta.
The distribution R∞ decomposes over the set of trivial zeros of zeta only. This

pair of equations makes it tempting to believe that either distribution could be of
some use in a possible approach to the zeros of zeta. This is indeed the case, but
pseudodifferential analysis is required to make the most of this idea.

8 A Possible Approach to the Zeros of Zeta

A popular way [1] of approaching the Riemann hypothesis was suggested by Hilbert
and Polya, independently: search for an interpretation of the numbers i(ρ− 1

2 ), with
ρ in the set of non-trivial zeros of zeta, as the eigenvalues of a self-adjoint operator
A in some Hilbert space. The self-adjointness of A implies that all operators qiA,
where q runs through the set of prime numbers, are unitary. We start here with the
construction of an operator A in some space of tempered distributions in the plane,
with the property that the Riemann hypothesis is equivalent to the fact that, for every
ε > 0, the operator qiA is in a very weak sense a O(qε). There is no Hilbert space
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here and, while the operator A decomposes over the set of zeros, trivial or not, of
zeta, there is no need for separating the two sets of zeros.

The operatorA is just the operator 2πE+ i
2 , acting on automorphic distributions,

but it will suffice in view of obtaining a criterion for the validity of R.H. to test it
on the distribution T1∞ only, asking for a very weak estimate at that. Combining the
decomposition (7.2) with the definition of the Weyl calculus Op = Op(1) (choosing
2 for Planck’s constant would do with insignificant changes) and with the Fourier
series decomposition which is the analogue of (4.2) for Eisenstein distributions, one
obtains the following necessary and sufficient condition for the Riemann hypothesis
to hold: that, given ε > 0 and any pair c, d with 0 ≤ c < d and d2 − c2 > 2, one
should have for every function w ∈ C∞(R) supported in [c, d] the estimate

(

w
∣
∣ Op

(
Q2iπET1∞

)
w

)

= O
(
Q

1
2+ε

)
, Q squarefree →∞. (8.1)

The criterion remains valid if one subjects Q to the constraint of being prime. Using
the definition (7.1) of T1∞, it is immediate that, if M is a squarefree integer divisible
by Q and by all primes < dQ, one can in (8.1) replace T1∞ by the symbol

T1
M(x, ξ) =

∑

|j |+|k|	=0

a1((j, k,M)) δ(x − j) δ(ξ − k). (8.2)

Now, set N = 2M = QR, and associate to any function w ∈ C∞(R) the
function θNw on Z, periodic of period S2, defined as

(θNw)(n) =
∑

n1 ∈ Z

n1 ≡ nmodN2

w

(
n1

N

)

. (8.3)

In [6, Chapter 4], it has been shown that there is an explicit set hR,Q(m, n) of
coefficients (m,n ∈ Z/N2Z) making the identity

(

w
∣
∣ Op

(
Q2iπET1

M

)
w

)

=
∑

m,nmodN2

hR,Q(m, n) (θNw)(m) (θNw)(n) (8.4)

valid. The matrix
(
hR,Q(m, n)

)
has a Eulerian structure with rather simple individ-

ual factors [6, Prop.4.3.5]. To understand what (8.1) really means, we must make
the role of Q in this Hermitian form totally explicit.

Denote as n �→ ∨
n the automorphism of Z/N2 = Z/R2Q2 defined by the pair of

equations

∨
n ≡ nmodR2,

∨
n ≡ −nmodQ2, (8.5)
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and define the reflection �R,Q of the linear space of complex-valued functions on

Z/N2Z such that
(
�R,Qψ

)
(n) = ψ(

∨
n). Assuming that Q is odd, one has for every

function w ∈ C∞(R) the identity

(

w
∣
∣ Op

(
Q2iπET1

M

)
w

)

= μ(M)
∑

m,nmodN2

hN,1(m, n) (θNw)(m) (�R,QθNw)(n)

(8.6)

(the Möbius factor μ(M) = ±1 indicates the parity of the number of primes
dividing M). Now, while it is possible, using the Heisenberg representation, to
define a linear automorphism �

0
R,Q of S(R) such that �R,QθNw = θN�

0
R,Qw

for every w, it is only the “arithmetic side” �R,Q that is truly simple.
The difficulty of the present approach lies in the necessity to combine information

from both sides (an arithmetic and an analytic one) of the same operator to analyze
(8.1). There is work in progress on this question.

9 Pseudodifferential Analysis and Modular Form Theory

In Sect. 4, we have built all modular distributions relative to the group SL(2,Z),
and we have shown in Sect. 3 how this leads to a construction of modular forms
(in the hyperbolic half-plane) of the non-holomorphic type. Making an example
of a pseudodifferential operator, of the kind considered in the last section, totally
explicit, leads to an approach to modular form theory of the holomorphic type.

Consider the measure d12 on the line defined as

d12(x) =
∑

m∈Z
χ(12)(m) δ

(

x − m√
12

)

, (9.1)

where χ(12) is the (Dirichlet) character mod 12 such that d12(m) = 0 if (m, 12) > 1,
while d12(±5) = −1 and d12(±1) = 1. One has then if w ∈ S(R) the identity

(

w
∣
∣ Op

(
12iπET1

12

)
w

)

= 1

4

∣
∣〈d12, w〉

∣
∣2
. (9.2)

Consider now the Gaussian transform of d12, to wit the function η, holomorphic in
the upper half-plane, defined by the equation

η(z) = 〈d12, x �→ eiπzx
2〉. (9.3)

This is the so-called Dedekind eta function, of historical importance, the 24th power
of which is the celebrated Ramanujan Delta function �, from which modular form



Making the Case for Pseudodifferential Arithmetic 467

theory originated. It is a modular form (of holomorphic type) of weight 12, which
means that one has the identity

�

(
az+ b

cz+ d

)

= (cz+ d)12�(z),
(
a b
c d

) ∈ SL(2,Z). (9.4)

This is a special case of [6, theorem 4.3.4], in which a similar analysis is
performed for the operator with symbol QiπET1

Q, where Q
2 is assumed to be an

even squarefree integer: a more detailed analysis is performed in [6, Chapter 5].
Most readers of the present volume are experts in Toeplitz operator theory: note the
analogy (and the essential difference) between the Gaussian transform which occurs
in (9.3) and the one, so basic in the Toeplitz theory, which connects the real-type and
holomorphic-type realizations of the same function.
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