®

Check for
updates

A Meta-level Annotation Language
for Legal Texts

Tomer Libal(®)

University of Luxembourg, Luxembourg City, Luxembourg
shaolintl@gmail.com

Abstract. There are many legal texts which can greatly benefit from
the support of automated reasoning. Such support depends on the exis-
tence of a logical formalization of the legal text. Among the methods
used for the creation of these knowledge bases, annotation tools attempt
to abstract over the logical language and support non-logicians in their
efforts to formalize documents. Nevertheless, legal documents use a rich
language which is not easy to annotate. In this paper, an existing anno-
tation tool is being extended in order to support the formalization of a
complex example - the GDPR’s article 13. The complexity of the article
prevents a direct annotation using logical and deontical operators. This is
overcome by the implementation of several macros. We demonstrate the
automated reasoning over the formalized article and argue that macros
can be used to formalize complex legal texts.

Keywords: Automated reasoning - Knowledge bases - Annotation
tools

1 Introduction

Computer systems are playing a substantial role in assisting people in a wide
range of tasks, including searching in large data and decision-making; and their
employment is progressively becoming vital in an increasing number of fields.
One of these fields is legal reasoning: New court cases and legislations are accu-
mulated every day and navigating through the vast amount of complex informa-
tion is far from trivial. In addition, the understanding of those texts is reserved
only for experts in the legal domain despite the fact that they are usually of
interest to the general public.

A key component of legal reasoning is the transformation of legal texts into
a machine readable format. This transformation must capture the legal under-
standing of the text in order to allow computers to reason over it.

Supporting automated reasoning over legislation is an old idea, dating back
to LEGOL [23] and made popular by the formalisation of the British Nationality
Act [21]. These approaches and others (see for example [4,22]) were based on
the use of the Prolog programming language for the formalization of the leg-
islation. Since then, many other systems have followed the same path and the
formalization of legal texts in Prolog is also done today [13].

© Springer Nature Switzerland AG 2020
M. Dastani et al. (Eds.): CLAR 2020, LNAT 12061, pp. 131-150, 2020.
https://doi.org/10.1007/978-3-030-44638-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44638-3_9&domain=pdf
http://orcid.org/0000-0003-3261-0180
https://doi.org/10.1007/978-3-030-44638-3_9

132 T. Libal

Prolog is very suitable for such formalizations but still depends on the works
of programmers and logicians. In order to verify that the formalization is correct,
methodologies were created which allow legal experts to be able to give back
feedback to the programmers and logicians [1]. In addition to Prolog-based, legal
knowledge bases were created which are based on other logical formalizations,
such as IO logics [19] and modal logics [11].

In order to allow legal experts to create knowledge bases directly, user friendly
interfaces can be created which aim at hiding the logical complexity. Annotation
editors for legal texts [12,16] allow users to add a legal interpretation to texts by
the use of annotations. The editor then produces a logical formalization which
can be used for automated reasoning.

Despite the advances described above, “good” logical formalizations are hard
to achieve [3]. Among the most important properties of such formalizations, one
can list faithfulness to the original text, efficient support for the required rea-
soning operations and being well engineered [20]. In order to be faithful to the
original text, one must not only describe the legal terms and their logical relations
in a faithful way but also meta-level concepts such exceptions, counterfactuals
and deeming provisions. This normally increases the complexity of the formal-
ization. Being well engineered, on the other hand, normally means being simple
and easy to verify, validate, update and maintain.

The tension between the two can be demonstrated by looking at the third
paragraph of article 13 of the GDPR!:

“Where the controller intends to further process the personal data for a
purpose other than that for which the personal data were collected, the controller
shall provide the data subject prior to that further processing with information
on that other purpose and with any relevant further information as referred to
in paragraph 2.”.

This paragraph discusses cases not handled by previous paragraphs and ask
to apply certain points in a new context. Attempting to faithfully represent this
paragraph while keeping to the best engineering principals is not easy.

One approach for tackling such problems is to manually simplify the structure
of the sentence such that logical annotations then become easier. In the example
above, one can copy the relevant parts of the previous paragraphs and replace
parts of their context with the one of paragraph 3.

From the engineering point of view, there are several problems with this
approach. First, manual processing and copying is error-prone. By delegating
work to the computer, we decrease the chance of error as long as the algorithm
is correct. Second, it might be a tedious and time-consuming work which can be
automated by a computer. Lastly, the manual work needs to be repeated when
a change to the understanding or context of the legislation occurs.

In this paper, an extension to the NAI Suite’s annotation editor [12] is dis-
cussed. The NAT Suite follows a certain methodology which aims at being faithful
and well engineered at the same time. This methodology, closely related to the
Isomorphism approach [2], uses two levels of annotations in order to create an

! https://eur-lex.europa.eu/eli/reg/2016,/679/0j.

https://eur-lex.europa.eu/eli/reg/2016/679/oj

A Meta-level Annotation Language for Legal Texts 133

intermediary representation of the legal text which is faithful and well engi-
neered, in the sense defined above. This intermediary representation is then
translated automatically into logical representations which can then be used for
efficient automated reasoning.

This methodology is still insufficient when facing the GDPR/’s paragraph from
above. The two levels of annotations which are supported cover vocabulary and
logical relations, but the paragraph requires complex modifications of a cross
referenced paragraph as well.

The extension to the NAI Suite discussed in this paper supports an addi-
tional level of annotations. These meta-level annotations can handle complex
legal structures, such as the one in the above example. In addition to this exten-
sion, a domain specific language (DSL) for describing meta-level annotations is
presented and applied to these annotations. It is then being shown that with
hardly any change to the original text, a formalization is created which can be
used for automated reasoning. Some examples of automated query answering are
demonstrated.

In the next section, an introduction to the NAI Suite, its theoretical foun-
dations and its graphical user interface is given. The following section describes
the extension of the tool, while Sect.4 demonstrates how the new features can
be applied to easily formalize and reason over article 13. A conclusion and future
work discussion are given last.

2 The NAI Suite

The NAT suite integrates novel theorem proving technology into a usable graph-
ical user interface (GUI) for the computer-assisted formalization of legal texts
and applying automated normative reasoning procedures on these artifacts. In
particular, NAI includes

1. alegislation editor that graphically supports the formalization of legal texts,
2. means of assessing the quality of entered formalizations, e.g., by automati-
cally conducting consistency checks and assessing logical independence,

3. ready-to-use theorem prover technology for evaluating user-specified queries

wrt. a given formalization, and
4. the possibility to share and collaborate, and to experiment with different
formalizations and underlying logics.

NALI is realized using a web-based Software-as-a-service architecture, cf. Fig. 1.
It comprises a GUI that is implemented as a Javascript browser application, and
a NodeJS application on the back-end side which connects to theorem provers,
data storage services and relevant middleware. Using this architectural layout,
no further software is required from the user perspective for using NAI and its
reasoning procedures, as all necessary software is made available on the back
end and the computationally heavy tasks are executed on the remote servers
only. The results of the different reasoning procedures are sent back to the GUI
and displayed to the user. The major components of NAI are described in more
detail in the following.

134 T. Libal

~

Client side (front end)*

' v |
: Browser = v O :
| Web App |~ = — &b 5
! User Input ;

___ N
\

Server side (back end)

‘ ‘ . Database

1
1
1
1
1
1
1
1
|
1
1
1
1
1
1

Fig. 1. Software-as-a-service architecture of the NAI reasoning framework. The front
end software runs in the user’s browser and connects to the remote site, and its different
services, via a well-defined API through the network. Data flow is indicated by arrows.

2.1 The Underlining Logic

The logical formalism underlying the NAI framework is based on a universal
fragment first-order variant of the deontic logic DL* [11], denoted DL*;. Its
syntax is given by

Definition 1 (Syntax of DL*,). Let V, P and F be disjoint sets of symbols
for variables, predicate symbols (of some arity) and function symbols (of some
arity), respectively. DL*, formulas ¢,v are given by:

G i=p(te, o tn) | ¢ | OAY [V Y| =1
[1d¢ | Ob¢ | Pm¢ | Fbo

| ¢ =ob | @ =pPm | P =Fb

where p € P is a predicate symbol of arity n > 0 and the t;, 1 < i < n, are
terms. Terms are freely generated by the function symbols from F and variables
from V. a

DL*; extends Standard Deontic Logic (SDL) with the normative concepts of
ideal and contrary-to-duty obligations, and contains predicate symbols, the stan-
dard logical connectives, and the normative operators of obligation (Ob), per-
mission (Pm), prohibition (Fb), their conditional counter-parts, and ideality (Id).
Free variables are implicitly universally quantified at top-level.

A Meta-level Annotation Language for Legal Texts 135

This logic is expressive enough to capture many interesting normative struc-
tures. For details on its expressivity and its semantics, we refer to previous
work [11].

2.2 The Reasoning Module

The NAI suite supports formalizing legal texts and applying various logical oper-
ations on them. These operations include consistency checks (non-derivability of
falsum), logical independence analysis as well as the creation of user queries that
can automatically be assessed for (non-)validity. After formalization, the formal
representation of the legal text is stored in a general and expressive machine-
readable format in NAIL. This format aims at generalizing from concrete logical
formalisms that are used for evaluating the logical properties of the legal docu-
ment’s formal representation.

There exist many different logical formalisms that have been discussed for
capturing normative reasoning and extensions of it. Since the discussion of such
formalisms is still ongoing, and the choice of the concrete logic underlying the
reasoning process strongly influences the results of all procedures, NAI uses
a two-step procedure to employ automated reasoning tools. NAI stores only
the general format, as mentioned above, as result of the formalization process.
Once a user then chooses a certain logic for conducting the logical analysis, NAI
will automatically translate the general format into the specific logic resp. the
concrete input format of the employed automated reasoning system. Currently,
NAT supports only the DL*; logic from Sect.2.1; however, the architecture of
NAT is designed in such a way that further formalisms can easily be supported.

The choice in favor of DL*; is primarily motivated by the fact that it can
be effectively automated using a shallow semantical embedding into normal
(bi-)modal logic [11]. This enables the use of readily available reasoning sys-
tems for such logics; in contrast, there are few to none automated reasoning
systems available for normative logics (with the exception of [9]). In NAI, we
use the MleanCoP prover [15] for first-order multi-modal logics as it is currently
one of the most effective systems and it returns proof certificates which can be
independently assessed for correctness [14]. It is also possible to use various dif-
ferent tools for automated reasoning in parallel (where applicable). This is of
increasing importance once multiple different logical formalisms are supported.

2.3 The Annotation Editor

The annotation editor of NAI is one of its central components. Using the editor,
users can create formalizations of legal documents that can subsequently used
for formal legal reasoning. The general functionality of the editor is described in
the following.

One of the main ideas of the NAI editor is to hide the underlying logical
details and technical reasoning input and outputs from the user. We consider
this essential, as the primary target audience of the NAI suite are not necessarily
logicians and it could greatly decrease the usability of the tool if a solid knowledge

136 T. Libal

about formal logic was required. This is realized by letting the user annotate legal
texts and queries graphically and by allowing the user to access the different
reasoning functionalities by simply clicking buttons that are integrated into the
GUI. Note that the user can still inspect the logical formulae that result from the
annotation process and also input these formulae directly. However, this feature
is considered advanced and not the primary approach put forward by NAI.

The formalization proceeds as follows: The user selects some text from the
legal document and annotates it, either as a term or as a composite (complex)
statement. In the first case, a name for that term is computed automatically, but
it can also be chosen freely. Different terms are displayed as different colors in the
text. In the latter case, the user needs to choose among the different possibilities
(which roughly correspond to logical connectives) and the containing text can
be annotated recursively. Composite statements are displayed as a box around
the text. An example of an annotation result is displayed in Fig. 2.

nd with any relevant further mformatldn as referred to in

Fig. 2. GDPR article 13, paragprah 3: annotation

The editor also features direct access to the consistency check and logical
independence check procedures (as buttons). When such a button is clicked, the
current state of the formalization will be translated and sent to the back-end
provers, which determine whether it is consistent resp. logically independent.

User queries are also created using such an editor. In addition to the steps
sketched above, users may declare a text passage as goal using a dedicated
annotation button, whose contents are again annotated as usual. If the query is
executed, the back-end provers will try to prove (or refute) that the goal logically
follows from the remaining annotations and the underlying legislation.

A Meta-level Annotation Language for Legal Texts 137

2.4 The Abstract Programming Interface (API)

All the reasoning features of NAI can also be accessed by third-party applica-
tions. The NAT suite exposes a RESTful (Representational state transfer) API
which allows (external) applications to run consistency checks, checks for inde-
pendence as well as queries and use the result for further processing. The expo-
sure of NAT's REST API is particularly interesting for external legal applica-
tions that want to make use of the already formalized legal documents hosted by
NAI. A simple example of such an application is a tax counseling web site which
advises its visitors using legal reasoning over a formalization of the relevant tax
law done in the NAI suite.

3 A Meta-level Annotation Language

An essential element in the compliance checking of privacy policies and data col-
lection procedures, the GDPR'’s article 132 is concerned with their transparency.
This article contains 4 paragraphs, where the first two contain each 6 subsec-
tions. The third paragraph extends and modify the second one while the last
states a situation in which the three previous paragraphs do not hold.

Let us consider the first paragraph.

Paragraph 1 of GDPR’s Article 13: Where personal data relating to a data
subject are collected from the data subject, the controller shall, at the time when
personal data are obtained, provide the data subject with all of the following
information:

(a) the identity and the contact details of the controller and, where applicable,
of the controller’s representative;

(b) the contact details of the data protection officer, where applicable;

(c) the purposes of the processing for which the personal data are intended as
well as the legal basis for the processing;

(d) where the processing is based on point (f) of Article 6(1), the legitimate
interests pursued by the controller or by a third party;

(e) the recipients or categories of recipients of the personal data, if any;

(f) where applicable, the fact that the controller intends to transfer personal
data to a third country or international organisation and the existence or
absence of an adequacy decision by the Commission, or in the case of trans-
fers referred to in Article 46 or 47, or the second subparagraph of Article
49(1), reference to the appropriate or suitable safeguards and the means by
which to obtain a copy of them or where they have been made available.

The above paragraph is not easy to read but is even harder to annotate.
There are several reasons.

2 https:/ /eur-lex.europa.eu/eli/reg/2016 /679 /0j.

https://eur-lex.europa.eu/eli/reg/2016/679/oj

138 T. Libal

— The structure of the paragraph is not trivial. It starts by declaring some
conditions, then it states the obligation to communicate information. The
exact information to communicate and other possible conditions are then
specified in each item.

— Most conditions and the obligation are specified once only but the content of
the obligation, i.e. the precise information which should be communicated to
the data subject, is changing for each point.

In order to understand the paragraph, the reader is expected to reconstruct
each of the 6 items with the relevant further conditions and the precise content
of the obligation.

Clearly, new types of annotations must be added. For example, one can con-
sider changing the precise information to communicate in each item as a replace-
ment operation. Such operations are normally not a part of any logical language
but of their meta-language. We need therefore a new kind of annotations for
annotating meta-level concepts.

An even more complex structure appears in the third paragraph.

Paragraph 3 of GDPR’s Article 13: Where the controller intends to further
process the personal data for a purpose other than that for which the personal
data were collected, the controller shall provide the data subject prior to that
further processing with information on that other purpose and with any relevant
further information as referred to in paragraph 2.

Here, in addition to all the issues which were just discussed, the annotation
should also apply it to another, already existing, paragraph. The annotation
should not only add further conditions to the referenced paragraph but modify
it as well. For example, The sentence “the controller shall provide the data
subject prior to that further processing with information on that other purpose
and with any relevant further information as referred to in paragraph 2.” requires
the reader to adapt the obligations of paragraph 2 to the new processing.

Two possible solutions for annotating such complex legal structure come to
mind. First, one can ask the user to simplify the structure manually. In the
above case, the user will transform the complex sentence into many simple ones
and will take care of replacing different values in the right places. This is the
approach taken by current formalizations of the GDPR [19].

The solution suggested in this paper is to automatize this process by pro-
viding an additional layer of annotations for describing the complex structures
of legal texts. These annotations will be called macros. Macros are tailored to
specific situations and are capable of arbitrary modifications of the result. For
example, in the case of paragraph 1, a macro could take the original sentence
and break it down automatically into the several required sentences.

From the engineering point of view, the second approach is better. First,
it saves the user from the need to copy and duplicate parts of the sentence.
In addition, it generates automatically the relevant conditions of each item and
thus is more rigorous. Lastly, by automatizing parts of the formalization process,
future editions of this paragraph become easier - one just needs to change the
relevant parts of the paper and the macro can be called again.

A Meta-level Annotation Language for Legal Texts 139

Clearly, a disadvantage of such an approach is the possible high number of
required macros. For the purpose of having a precise and simple annotation of
article 13, there is a need of 4 such macros. Nevertheless, as we will see next,
these macros are general in nature and will possibly fit a wide range of legal
sentences, which are usually of a restricted form. As a possible extension of the
work discussed in this paper, there is also a plan to add to the NAI suite the
ability to design new macros using a Domain Specific Language (DSL).

A possible such DSL is defined next. This DSL will be used in this paper to
describe the macros which are required for the formalization of article 13.

Definition 2 (Annotation’s syntax). Annotations will be denoted using
English capital letters A, B, ... with possibly subscripts and superscripts. There
are two types of annotations. Simple annotations, denoted by A® are term anno-
tations (also called vocabulary annotations), i.e. annotations applied to term and
therefore do not contain any nested annotation. Complex annotations are of the
form ANNOT(args) where ANNOT is the name of the logical connective which is
used for the annotation and args is an ordered list of the top level annotations
which are included in it. The connectives were described in Sect. 2.1.

For example, a conjunction annotation over the term annotations ¢(a,b) and
s(X,b) is denoted as AND(t(a,b), s(X,D)).

Definition 3 (Parsing state). Labels are defined as simple annotations which
denote a name and are normally purely propositional. The parsing state is a pair
(annots, map) where annots is an array of annotations which were extracted
from the annotated texts and map is a mapping between labels and annotations.
We denote the map which is obtained by setting the value y for the label x in
map by map(zx,y). We denote the value which is associated with the label x in
map by map|z].

Definition 4 (Macros). A macro is a transformation from one parsing state
into another and is denoted by (annotsy,map;) = (annotss, maps). Macros
normally apply to only one annotation Jy in the annots array. In these cases,
we will simplify the notation and write (J1, map1) = (J2, maps). In addition,
when the map does not change, we will sometimes further simplify the notation
and write J; = Jo.

Lastly, we need to define occurrences of subterm annotations within annota-
tions in order to be able to formally desscribe replacements.

Definition 5 (Subterm occurrences). Given an arbitrary annotation A, we
denote by Alx] all occurrences of a subterm annotation x appearing in it. In the
definition of a macro (Alz], map1) = (Aly], map2), Aly] on the right hand side
is obtained from Alz] by replacing all occurrences of x in A with y.

For example, assuming that the conjunction in the previous example is
denoted by A, the occurrences of the subterm b in it are denoted by A[b].

140 T. Libal

We can denote the macro which replaces those occurrences of b with ¢ using
Al = Alc].
We can now give a formal definition of the specific macros.

The Multi-obligation Macro. This macro takes two annotations, where the
second annotation has the following restrictions. First, it must be a conjunction.
Second, each conjunct except the first must be either a term, an “If/Then”
or an “Always/If” annotation. Third, its first conjunct must be a term which
contains the placeholder VAR. This placeholder can also appear anywhere in the
first annotation.

Definition 6 (The multi-obligation macro). The multi-obligation macro is
defined by (M-0BS(C|VAR], AND(A[VAR], By, .., By)), map)

=

(AND(IF-THEN-0B(AND(C|B{], BY), A|B)), ..
IF-THEN-0B(AND(C[B}], BY), A[B}])), map).
Where

9

-n>1

— For each 0 < i <n, B; is one of the following
o IF-THEN(BY, B})
o ALWAYS-IF(B}, BY)
o A simple annotation B}. In this case BY is empty.

Informally, when applied to two annotations, the macro does the following.
For each conjunct beyond the first in the second annotation, the macro creates
a new conditional obligation. The type of obligation and the form of conditions
is defined according to the type of annotation:

— In case the annotation is simple, the set of conditions is the one defined in
the first annotation and the obligation is the first conjunct, where the VAR
placeholder is replaced by the simple annotation.

— In case the annotation is an “If/Then” or an “Always/If”, we define the condi-
tion part of the annotation to be the first formula of the “If/Then” annotation
and the second in “Always/If”, while the conclusion part is defined to be the
second formula and first, respectively. The set of conditions is a conjunc-
tion of the one defined in the first annotation and conditions of the complex
annotation. The obligation is the first conjunct, where the VAR placeholder is
replaced by the conclusion of the complex annotation.

Similarly to the above, any occurrence of the placeholder VAR in the condi-
tions is replaced with the same term as in the obligation.

Paragraph 3 is relatively short syntactically but complex semantically. It
expands on paragraph 2 and places further conditions and obligations. While
paragraph 2 describes the obligations in case of the first data processing, para-
graph 3 describes those in all subsequent ones. Clearly, additional macros are
required. The first macro is used for cross-reference and allows the users of the

A Meta-level Annotation Language for Legal Texts 141

editor to label annotated sentences with a certain name. Using this name, a sec-
ond macro then takes the referenced annotated sentence, copies it and replaces
relevant parts.

The Labeling Macro. This macro, which helps other macros to function by
changing the state, expects two annotations. The first is a simple annotation
denoting the label while the second can be any possible annotation. It enables the
use of labels in other macros which are defined later. In our example, the simple
annotation is just the term a13_p2 which is used to name the second paragraph,
while the second annotation is the whole content of the second paragraph.

Definition 7 (The labeling macro). The labeling macro is defined as follows
(LABEL(A®, B), map) => (B, map(A*, B))

The Copying Macro. This macro takes three arguments. An optional anno-
tation containing further conditions, a conjunction of further obligations of the
form stated in the Multi-obligation Macro and a label which is used in order to
copy an annotated sentence. It uses the first conjunct of the second annotation
to replace the obligation of the copied annotation and adds further obligations
according to the other conjuncts. In our example, this macro copies the second
paragraph, while adding further conditions referring to subsequent processing
and the order between them. It then replaces the obligation to refer to the sub-
sequent processing and adds a further obligation to communicate information
about the purpose of the processing. It also states that the information should
be communicated to the data subject before the processing takes place and not
at the time of the collection, as is the case in paragraph 2.

Definition 8 (The copying macro). The copying macro is defined as follows
(COPY(D-|VAR), AND(E[VAR), Fy, ..F,,), G*), map)

—

(M-0BS(AND(D-[VAR)], C|VAR]), AND(E[VAR,

Bi,...,Bn, Fi,...,Fy)), map) Where

-m>0
map|G*] =
M-0BS(C[VAR|, AND(A[VAR], By, .., By,)) with all the conditions as in Defini-
tion 6.
— For each 0 < j < m, F; is one of the following
o IF-THEN(F?, F})
o ALWAYS-IF(F} F?)
e A simple annotation F}. In this case F? is empty.
— D9 refers to an optional arbitrary annotation.

The last macro is based on the forth paragraph.

Paragraph 4 of GDPR’s Article 13: Paragraphs 1, 2 and 3 shall not apply
where and insofar as the data subject already has the information.

142 T. Libal

The last paragraph in the article has a standard legal form. Its purpose is
to set exceptional circumstances in which other paragraphs do not hold. In our
example, none of the obligations in the previous paragraphs should hold in case
the data subject already has the required information.

In the previous subsection, we have seen a utility macro for labeling anno-
tations. This macro is handy here as well as we will need to be able to refer to
other annotations, in order to apply a macro for exceptional circumstances.

The Exception Macro. This macro gets a list of simple annotations, which
denote labels of other annotations. It additionally gets an annotation which
serves as the exceptional circumstances. When applied, this macro will add the
negation of the exceptional circumstances to the conditions of all referred obli-
gations in the state. In our example, it will make sure that all the obligations
described in this article hold only in case the relevant information in the spe-
cific obligation is not already known to the data subject. Since many of these
obligations are generated by one of the other macros, the exceptional circum-
stances can contain the VAR placeholder, similarly to the Multi-obligation and
Copy macros. In our example, this placeholder is indeed used and is replaced,
for every obligation, with the exact information which should be communicated
and should not be already known.

Definition 9 (The exception macro). The exception macro is defined as
follows
(EXCEP(AS,. .., A B),map) = (0, map(A3,C1)(...)(AS,Cy)) where

-n>1

— For each 0 <i<n
o mapl4f) = C!
e In case C! = M-0BS(A, D), C; = M-0BS(AND(NOT(B), A), D)
o Otherwise C; = IF-THEN(NOT(B), C})

A note about the above interpretation of legal exceptions. The macro defined
in Definition9 applies further conditions to previously defined sentences. The
purpose of these further conditions is to specify situations in which these sen-
tences are defeated. Most approaches to defeasible reasoning are based on non-
monotonic logics [18]. Nevertheless, monotonic logics have been proposed as well
[6]. Clearly, more discussion is required in order to justify the choice in Defini-
tion 9. While this discussion is beyond the scope of this paper, I would like to
point out the main difference between the two approaches and suggest, in a very
informal and imprecise way, a remedy, which is made possible by using the NAT
Suite. Improving and implementing this remedy is planned as a future work.

In contrary to classical logics, non-monotonic logics allow a decrease in the
amount of possible deductions given an increase in factual information. This
advantage is no longer relevant if all possible knowledge is known in advance
(please refer to Section 6 in [20] for more information). While knowing everything
in advance is not feasible, knowing what is known in advance is. After all, the
known information must be input into the NAI Suite and the total amount of

A Meta-level Annotation Language for Legal Texts 143

relevant information is finite, since it must appear in the legislation, which is
finite (or more precisely, can be finitely denoted). The NAI Suite can decide for
each piece of information if it is known or not and adapt the reasoning process
in order to take it into account.

It should be further noted that the macros abstract over the exact inter-
pretation of exceptions. The precise treatment is handled by the underlining
logic and theorem prover. It is true that in Definition 9 an explicit negation was
used. The reason for that is that right now there is no other underlining logic. A
better definition would use a new operator for denoting evidence which defeats
obligations. The current underlining logic will interpret this operator as classi-
cal negation while a Prolog based solution would interpret it as a “negation as
failure”, etc.

4 Example: Automated Reasoning over GDPR Article 13

This section describes the formalization of article 13 of the GDPR using the NAT
Suite and the extensions to the suite which were implemented in the previous
section. The macros currently appear in the suite in the same drop list as the
logical and normative connectives, just below a separator. In later versions of
the tool, they will probably be allocated their own drop list.

The reader is invited to follow this section while simultaneously looking at
the formalization in the tool itself. The formalization and queries which resulted
from this work are integral artefacts of this paper and can be accessed via the
NAI Suite web application®. This section will constantly make references to the
tool.

4.1 Annotating Paragraph 1

The NAI Suite, as described in Sect. 2.3, requires us first to create a new legis-
lation and then copy the original text into the editor pane. The first paragraph
describes a situation in which a controller is obliged to communicate different
information to the data subject, according to different conditions. Although not
explicitly written, this paragraph also talks about processors and the processing
of the data itself, as well as of its collection. In order to formalize the article,
we must make these elements explicit in the text. We therefore add this infor-
mation in brackets (‘[’,]’) as can be seen in the already annotated text in the
editor pane.

Given the explicit text of the paragraph, we are ready to annotate it. The first
step of every formalization using the NAI Suite is to annotate all terms which
are part of the vocabulary of the text. These terms correspond to the colorful
annotations in the editor. There are many relations between the different legal
terms. For example, the personal data of the data subject is being collected and

3 Please login to https://nai.uni.lu using the email address: gdpr@nai.lu and password:
nai. Please note that this account is write protected and cannot be changed. Note
also that no registration is required in order to use the above account!.

https://nai.uni.lu

144 T. Libal

processed and is subject to the supervision of a Data Privacy Officer (DPO).
Such complex relations require an expressive language such as fist-order logic,
which is used in the annotations of the article.

As an example of term annotations, one can consider the phrases “data sub-
ject” and “personal data”, for which the following first-order terms were assigned
(respectively): data_subject(Subject) andpersonal_data(Data, Subject).
When annotating terms, words starting with a lower-case letter are considered
as constants while those starting with a capital letter are considered as variables
which are quantified over the whole logical expression. The full list of the anno-
tated legal terms can be found on the “Vocabulary” tab in the legislation editor.

Once all legal terms are annotated, we can proceed with annotating the rela-
tionsips between them. The structure of the paragraph is the following. A set of
conditions for the whole paragraph is followed by an obligation to communicate
information. The precise information to communicate then follows in each of the
items, possibly with some further conditions.

The NAI suite supports such a sentence structure via the “Multi-obligation
Macro”. This macro accepts an annotation denoting the general conditions and
a second annotation denoting the additional obligations and their specific con-
ditions. When applied, the macro generates a conjunction of obligations, one for
each of the annotated obligations and with the general conditions as well as the
specific ones. We therefore annotate the whole paragraph 1 with this annotation.

We now proceed with annotating the conditions and obligations. First, we
use the “And” connective to annotate all the general conditions, such as the
existence of a processor and a controller, etc. We then proceed by using the
“And” connective to annotate all the obligations. Each obligation can have one
of three forms. A simple obligation contains just a term. The macro will convert
this obligation into a conditional obligation where the conditions are all the
general ones from the first conjunction. The more complex obligations are either
“If/Then” and “Always/If”.

The difference between these two connectives is syntactical only. While in
“If/Then”, the conditions are specified by the first annotation and the conclusion
with the second, the order is reversed in “Always/If”. By using one of these
two annotations for the different obligations, the macro will know to add the
additional, specific conditions to the conditions of each resulted obligation.

The application of the macro to the annotation of paragraph 1 generates
multiple annotations. The DSL denotation of the generated annotation of the
first item of paragraph 1 can be seen in Fig. 3

IF-THEN-OB(AND(processor(Processor), nominate(Controller,
Processor), personal_data_processed(Processor,Data, Time,
Justification, Purpose), personal_data(Data,Subject)
collected_at(Data, Time0),data_subject(Subject),
controller(Controller, Data)),communicate_at_time(Controller

Subject, Time0, contact_details(Controller)))

Fig. 3. Generated annotation of item 1 in paragraph 1

A Meta-level Annotation Language for Legal Texts 145

The specific annotations can be seen by hovering with the mouse over the
relevant parts of the text. The full formalization of this article can be seen on
the “Formalization” tab. This formalization is a conjunction of the obligations
specified in the article. Note that since some items contain more than just one
obligation, the conjunction contains more than 6 conjuncts.

The annotation of paragraph 2 is similar.

4.2 Annotating Paragraph 3

Using the “Copy” macro, annotating this paragraph becomes relatively simple.
The annotation takes 3 elements. The first contains optional additional condi-
tions. Indeed, since we consider now further processing of the data, there are
additional conditions such as the processor of the new processing, its purpose,
etc. We also need, in the conditions, to stress that the new processing is different
from the previous one. Finally, we group these further conditions in an “And”
annotation.

The second element contains the further obligations. The first of which is
the obligation template which contains the VAR placeholder. This element will
replace the obligation template in the copied annotation which is referenced by
the third element. The remaining items in this element are additional values
which should be substituted for VAR in each of the generated obligations. These
items add to those from the referenced annotation.

The annotated text can be seen in Fig. 2.

The resulting formalization, which can be seen at the bottom (the third
element) of the “Formalization” tab, contains therefore more obligations that
the referenced paragraph 2. In addition, all the obligations refer to the new
purpose and state a new communication time, as stated in the new conditions.

Facilitating Correct Formalization. There is a further interesting issue
which relates to this paragraph. Clearly, its annotation is far from trivial and is
error prone. Still, by using macros and annotations, the chance of error occur-
ring is reduced since there is a clear connection between the text itself and its
annotation, as demanded by the Isomorphism approach to legal formalization
[2]. This is not the case when the paragraph is translated into a logical formula
manually. As an example, consider the DAPRECO formalization of the GDPR
[19]. As mentioned in the introduction to this paper, this ambitious knowledge
base contains a manual translation of almost all articles of the GDPR.
Nevertheless, if we focus on the translation of this paragraph*, we can see
several errors. First, the translation does not mention at all the fact that all of
the required information mentioned in paragraph 2 is required here as well. Even
more important though, there is no distinction between the two processing events
of the data, except in the name of the variable used to denote them. There is a

* Please search for the text “statements51Formula” in https://raw.githubusercontent.
com/dapreco/daprecokb/master/gdpr/rioKB_GDPR.xml, of a version no later than
11/2019.

https://raw.githubusercontent.com/dapreco/daprecokb/master/gdpr/rioKB_GDPR.xml
https://raw.githubusercontent.com/dapreco/daprecokb/master/gdpr/rioKB_GDPR.xml

146 T. Libal

relation between the times of the two occurrences but it is defined as “greater or
equal”. Clearly, this formalization will always apply to any processing, whether
first or not, since one can substitute for the universally quantified variables the
same processing and the same time.

Such an error is not easy to spot, when one translates regulations manually.
On the other hand, when using annotations and macros, we could more easily
spot this and use a correct annotation.

4.3 Annotating Paragraph 4

Annotating exceptions is now also relatively straightforward. We use the “Excep-
tion” macro to state all the annotations which should take an additional condi-
tion and the condition itself. The result can be seen in Fig. 4.

Fig. 4. Annotating the exception in paragraph 4

While in the intermediary annotations-based level we add a new annotation
to faithfully capture the exception, in the underlining logical representation no
new formula is added but existing formulae are modified to accommodate the
exception. This is an example of an hierarchical formalization [20] which aims
at being both faithful, well engineered and efficient.

4.4 Automated Reasoning over the GDPR

Section 2 has described several automated deduction based tools, such as consis-
tency or independence checking. These tools can be used for checking the correct-
ness of the formalization. Nevertheless, the main usage of automated deduction
within the NAT Suite is for allowing the computer to answer questions and make
legal deductions. Given a correctly formalized legislation, NAI can currently
answer Yes/No questions. This is done by employing the state-of-the-art theo-
rem prover MleanCoP [15], which in turn tries to build a formal proof that the
question logically follows from the formalization and assumptions. Since first-
order modal resolution is only semi-decidable [8], some negative answers cannot
be given. The NAI Suite displays a warning in this case.

The main expected usage of this feature is by third-party tools, which will
use the deduction engine of the NAI Suite over an already formalized legislation
in order to answer arbitrary questions. For example, privacy policies can be
checked automatically for compliance by constructing the relevant queries [17]
and executing them in the NAI Suite.

Nevertheless, the NAI Suite also supports the possibility of writing queries
directly in the tool. This feature is mainly used for testing and as a support tool

A Meta-level Annotation Language for Legal Texts 147

for lawyers and jurists. Similarly, this feature can be used in order to demonstrate
automatic reasoning over the article. The example consists of five questions
relating to the precise time the controller is obliged to communicate different
information to the data subject. These questions can be found and executed
on the “Queries” menu of the tool. In the remaining of this section, they are
described in detail.

Precise Time of Communicating Information in Case There is at Most
One Processing of the Data. In order to be able to answer this question,
three different scenarios are given. In each, we check if the controller is obliged
to communicate specific information.

In all the example questions, the variable denoting the required information
is instantiated with a specific one. In general, queries can also be executed over
free variables and can represent a more general question.

The basic scenario which is described in all queries is the following. The birth
date of the data subject Albert was collected on the 1/8/2017. The Controller
Brian has nominated the Processor John to process the data for the purpose of
improving the business. The processing took place on the 1/9/2017.

In the first question we assume that Albert does not yet know the Contact
Details of the Data Protection Officer, who is named Charles. We ask if, in this
case, Brian is obliged to communicate this information to Albert at the time of
processing. When we execute the query, NAI tells us that this is not the case.

The way a theorem prover answers Yes/No questions is by trying to prove
them. In case a proof is found, we have a mathematical argument that the answer
is Yes. When a proof cannot be found, the theorem prover might answer that
either the query is counter-satisfiable, or that the search for proof has timed out.

In the case the query is counter-satisfiable, we know that based on the infor-
mation we have given, the prover has found cases where the opposite of what
we have asked is true and that therefore, proving the validity of the argument is
impossible. If we have given all relevant information, then this answer is effec-
tively a No. On the other hand, if we have forgotten some important information,
such as the fact that Brian is the Controller, then being counter-satisfiable means
that in some cases, the answer is No, but in others, it might be Yes. For exam-
ple, when we omit the information about the controller, it might be that it is
not Brian who is obliged to communicate the data and therefore, we have found
a counter example. This means that the quality of the answer is based on the
quality of the question.

In the case the prover times out, we can only know that we have terminated
its execution before an answer was found. Usually, the theorem prover answers
in less than a second. While we can normally assume that a futile search for a
proof usually means that there is none, we cannot count on this result.

For the first question, we have obtained the answer that a counter-example
exists. By considering the “Vocabulary” tab, we can confirm that we have con-
sidered all relevant information and that therefore, this answer means no - Brian
has no such obligation.

148 T. Libal

For the second question, the obligation was changed from communicating
the information at the time of processing to communicating it at the time of the
collection of data. The prover answers in this case Yes - Indeed, Brian is under
such a legal obligation.

The last question checks if this obligation also holds when the information
is not Charles contact details, but the purpose of processing. The prover still
answers Yes.

Precise Time of Communicating Information in Case of a Second Pro-
cessing of the Data. In the following two questions, we expand the case as
follows. Besides nominating John to process the data, Brian has also nominated
Chris to process it for the purpose of a collaboration with Facebook. Chris has
processed the data on the 1/10/2017.

The first question in this group tries to determine, again in case Albert is
not aware of this second purpose of processing his Data, if Brian is obliged to
communicate this information at the time of the second processing. The prover
answers No.

The last query states the same question, but places the time of communi-
cating the information to before the time of the second processing. The prover
affirms that this is indeed an obligation of Brian.

The examples above have shown how arbitrary Yes/No questions can be
answered by the tool. In a similar fashion, questions can be asked by third-party
tools via the exposed APT (see Sect. 2.4), such as whether a certain privacy policy
complies with the GDPR.

5 Conclusion and Future Work

The formalization of legal texts is a non-trivial and error-prone task. Annotations
can help generating correct formalizations. Nevertheless, legal texts contain sen-
tence structures which go beyond logical and deontic connectives. The solution
which was described and demonstrated in this paper uses macros to describe
meta-level properties and to annotate such structures.

The four macros which were introduced are relatively general and appear
in other legal texts, as well as in other articles of the GDPR. The immediate
followup of the current work is the formalization of articles 5 and 6, which have
a similar structure. Other macros will be added when needed.

In addition, the macro DSL which was introduced in Sect. 3 can be extended
into a macro editing functionality within the NAT Suite. Such a feature will allow
users to create arbitrary macros and handle any kind of legal text efficiently.

Currently, the NAI suite supports an expressive deontic first-order language.
This language is rich enough to describe many scenarios which appear in legal
texts. Nevertheless, more work is required in order to capture all such scenar-
ios. Among those features with the highest priority, we list support for excep-
tions, temporal sentences and arithmetic. In Sect. 4.3, one possible direction for
addressing exceptions was given. Other possible solutions for these issues already

A Meta-level Annotation Language for Legal Texts 149

exist in the form of tools such as non-monotonic reasoners [10], temporal provers

[24] and SMT solvers [7].

On the level of usability, the tool currently does not give any information as

to why a query is counter-satisfiable. The user needs to look on the vocabulary in
order to determine possible reasons. Integrating a model finder, such as Nitpick

[5],

will help “debugging” formalizations and enriching the query language.

NAT’s graphical user interface (GUI) aims at being intuitive and easy to use

and tries to hide the underline complexities of the logics involved. A continuously
updated list of new features can be found on the GUI’s development website®.

References

1.

10.

11.

12.

13.

Bartolini, C., Lenzini, G., Santos, C.: An agile approach to validate a formal rep-
resentation of the GDPR. In: Kojima, K., Sakamoto, M., Mineshima, K., Satoh,
K. (eds.) JSAI-isAI 2018. LNCS (LNAI), vol. 11717, pp. 160-176. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31605-1_13

Bench-Capon, T.J., Coenen, F.P.: Isomorphism and legal knowledge based systems.
Artif. Intell. Law 1(1), 65-86 (1992)

Bench-Capon, T.J., Robinson, G.O., Routen, T.W., Sergot, M.J.: Logic program-
ming for large scale applications in law: a formalisation of supplementary benefit
legislation. In: Proceedings of ICAIL, pp. 190-198 (1987)

Biagioli, C., Mariani, P., Tiscornia, D.: Esplex: a rule and conceptual model for
representing statutes. In: Proceedings of ICAIL, pp. 240-251. ACM (1987)
Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131-146. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14052-5_11

Boutilier, C.: Conditional logics of normality as modal systems. Proc. AAAI. 90,
594-599 (1990)

Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS
(LNAI), vol. 5663, pp. 151-156. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02959-2_12

Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic, vol. 277. Springer, Dor-
drecht (2012). https://doi.org/10.1007/978-94-011-5292-1

Governatori, G., Shek, S.: Regorous: a business process compliance checker. In:
Proceedings of ICAIL, pp. 245-246. ACM (2013)

Kifer, M.: Nonmonotonic reasoning in FLORA-2. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 1-12. Springer,
Heidelberg (2005). https://doi.org/10.1007/11546207_1

Libal, T., Pascucci, M.: Automated reasoning in normative detachment structures
with ideal conditions. In: Proceedings of ICAIL, pp. 63-72. ACM (2019)

Libal, T., Steen, A.: NAI: the normative reasoner. In: Proceedings of ICAIL, pp.
262-263. ACM (2019)

de Montety, C., Antignac, T., Slim, C.: GDPR modelling for log-based compliance
checking. In: Meng, W., Cofta, P., Jensen, C.D., Grandison, T. (eds.) IFIPTM
2019. TAICT, vol. 563, pp. 1-18. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-33716-2_1

5 https://github.com/normativeai/frontend /issues.

https://doi.org/10.1007/978-3-030-31605-1_13
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-94-011-5292-1
https://doi.org/10.1007/11546207_1
https://doi.org/10.1007/978-3-030-33716-2_1
https://doi.org/10.1007/978-3-030-33716-2_1
https://github.com/normativeai/frontend/issues

150

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

T. Libal

Otten, J.: Implementing connection calculi for first-order modal logics. In: Pro-
ceedings of IWIL, pp. 18-32 (2012)

Otten, J.: MleanCoP: a connection prover for first-order modal logic. In: Demri,
S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp.
269-276. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_20
Palmirani, M., Cervone, L., Bujor, O., Chiappetta, M.: RAWE: an editor for rule
markup of legal texts. In: Proceedings of RuleML (2013)

Palmirani, M., Governatori, G.: Modelling legal knowledge for GDPR compliance
checking. In: Proceedings of JURIX, pp. 101-110 (2018)

Prakken, H., Sartor, G.: The three faces of defeasibility in the law. Ratio Juris
17(1), 118-139 (2004)

Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., Lenzini, G.:
Formalizing gdpr provisions in reified 1/0 logic: the DAPRECO knowledge base.
J. Logic Lang. Inf. 1-49 (2019). https://doi.org/10.1007/s10849-019-09309-z
Routen, T., Bench-Capon, T.: Hierarchical formalizations. Man-Mach. Stud. 35(1),
69-93 (1991)

Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.:
The British Nationality Act as a logic program. Commun. ACM 29(5), 370-386
(1986)

Sherman, D.M.: Expert systems and ICAI in tax law: killing two birds with one
AT stone. In: Proceedings of ICAIL, pp. 74-80. ACM (1989)

Stamper, R.: LEGOL: modelling legal rules by computer. In: Computer Science
and Law, pp. 45-71 (1980)

Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with
partial model guidance. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 537-543. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31365-3_42

https://doi.org/10.1007/978-3-319-08587-6_20
https://doi.org/10.1007/s10849-019-09309-z
https://doi.org/10.1007/978-3-642-31365-3_42
https://doi.org/10.1007/978-3-642-31365-3_42

	A Meta-level Annotation Language for Legal Texts
	1 Introduction
	2 The NAI Suite
	2.1 The Underlining Logic
	2.2 The Reasoning Module
	2.3 The Annotation Editor
	2.4 The Abstract Programming Interface (API)

	3 A Meta-level Annotation Language
	4 Example: Automated Reasoning over GDPR Article 13
	4.1 Annotating Paragraph 1
	4.2 Annotating Paragraph 3
	4.3 Annotating Paragraph 4
	4.4 Automated Reasoning over the GDPR

	5 Conclusion and Future Work
	References

