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1 Introduction

In the last several decades, different tools are developed for representing and
reasoning with uncertain knowledge, including probability as a dominant rep-
resentation of uncertainty. One particular line of research concerns the formal-
ization in terms of probabilistic logic. The modern development in this field
started with Keisler’s seminal work on probabilistic quantifiers [21]. After Nils-
son [23] gave a procedure for probabilistic entailment which, given probabilities
of premises, calculates bounds on the probabilities of the conclusion, researchers
from the areas of logic, computer science and artificial intelligence started inves-
tigations about formal systems for probabilistic reasoning and provided several
languages, axiomatizations and decision procedures for various probabilistic log-
ics [3,10,12,13,15–19,24,25]. Those logics extend the classical (propositional or
first order) calculus with expressions that speak about probability, while for-
mulas remain true or false. They allow one to formalize statements of the form
“the probability of α is at least a half.” The corresponding probability opera-
tors behave like modal operators and the corresponding semantics consists of
special types of Kripke models, with indistinguishability relations replaced with
probability measures defined over the worlds.

This paper contributes to the field by proposing a logical formalization of
the Bayesian measure of confirmation (or evidential support). Although con-
temporary Bayesian confirmation theorists investigated degrees of confirmation
developing a variety of different probability-based measures, that field attracted
little attention from the logical side, probably because of complexity of a poten-
tial formal language that would be adequate to capture those measures. In Car-
nap’s book [2], one of the main tasks is “the explication of certain concepts
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which are connected with the scientific procedure of confirming or disconfirming
hypotheses with the help of observations and which we therefore will briefly call
concepts of confirmation”. Carnap distinguished three different semantical con-
cepts of confirmation: the classificatory concept (“a hypothesis A is confirmed
by an evidence B”), the comparative concept (“A is confirmed by B at least as
strongly as C is confirmed by D”) and the quantitative concept of confirmation.
The third one, one of the basic concept of inductive logic, is formalized by a
numerical function c which maps pairs of sentences to the reals, where c(A,B)
is the degree of confirmation of the hypothesis A on the basis of the evidence B.

Bayesian epistemology proposes various candidate functions for measuring
the degree of confirmation c(A,B), defined in terms of subjective probability.
They all agree in the following qualitative way: c(A,B) > 0 iff the posterior
probability of A on the evidence B is greater than the prior probability of A
(i.e., μ(A|B) > μ(A)), which correspond to the classificatory concept (“A is
confirmed byB”) [14]. Up to now, only the classificatory concept of confirmation
is logically formalized, in our previous work [6].

In this paper, we formalize the quantitative concept of confirmation. We
focus on the most standard1 measure of degree of confirmation, called difference
measure:

c(A,B) = μ(A|B) − μ(A).

Our formal language extends propositional logic with the unary probabilistic
operators of the form P≥r (P≥rα reads “the probability of α is at least r”),
where r ranges over the set of rational numbers from the unit interval [24],
and the binary operators c≥r and c≤r, which we semantically interpret using
the difference measure. The corresponding semantics consists of special types of
Kripke models , with probability measures defined over the worlds.

Our main result is a sound and strongly complete (every consistent set of for-
mulas is satisfiable) axiomatization for the logic. We prove completeness using
a modification of Henkin’s construction. Since the logic is not compact, in order
to obtain strong variant of completeness, we use infinitary inference rules. From
the technical point of view, we modify some of our earlier developed methods
presented in [4,5,7–9,22,26,27,29]. We point out that our languages are count-
able and formulas are finite, while only proofs are allowed to be infinite. We also
prove that our logic is decidable and we present complexity results.

Many measures on confirmation have been proposed over years. We point out
that it was not our intention to take sides. We simply chose the difference measure
because of its popularity. However, we discuss in Sect. 7 that our axiomatization
technique can be easily modified to incorporate other measures of confirmation.

The contents of this paper are as follows. In Sect. 2 we recall the basic
notions of probability. In Sect. 3 we present the syntax and semantics of our
logic and defined the satisfaction relation. In Sect. 4 we propose an axiomati-
zation for the logic, and we prove its soundness. In Sect. 5 we prove that the
axiomatization is strongly complete with respect to the proposed semantics.

1 According to Eells and Fitelson [11].
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In Sect. 6 we present complexity results for the problem of deciding satisfiability.
We conclude in Sect. 7.

2 Preliminaries

Let us introduce some basic probabilistic notions that will be use in this paper.
For a nonempty set W �= ∅, we say that H ⊆ 2W is an algebra of subsets of

W , if the following conditions hold:

1. W ∈ H,
2. if A ∈ H, then W \ A ∈ H, and
3. if A,B ∈ H, then A ∪ B ∈ H.

For a given algebra H of subsets of W , a function μ : H −→ [0, 1] is a finitely
additive probability measure, if it satisfies the following properties:

1. μ(W ) = 1,
2. μ(A ∪ B) = μ(A) + μ(B), whenever A ∩ B = ∅.

For W , H and μ described above, the triple 〈W,H, μ〉 is called a finitely
additive probability space. The elements of H are called measurable sets.

For a probability measure μ, conditional probability is defined in the following
way:

μ(A|B) =

{
µ(A∩B)
µ(B) , μ(B) > 0

undefined, μ(B) = 0.

Note that, as a consequence of this definition, the difference measure c(A,B) =
μ(A|B) − μ(A) is also not defined when μ(B) = 0.

3 The Logic LPPconf
2 : Syntax and Semantics

In this section we introduce the set of formulas of the logic LPPconf
2 , and the

class of semantical structures in which those formulas evaluated.

3.1 Syntax

Let P = {p, q, r, . . . } be a denumerable set of propositional letters. For given
rational numbers a and b such that a < b, let [a, b]Q denotes the set [a, b] ∩ Q.
The language of the logic LPPconf

2 consists of

– the elements of set P,
– classical propositional connectives ¬ and ∧,
– the list of unary probability operators of the form P≥r, for every r ∈ [0, 1]Q,
– the list of binary probability operators of the form c≥r, for every r ∈ [−1, 1]Q,

and
– the list of binary probability operators of the form c≤r, for every r ∈ [−1, 1]Q.
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Note that we use conjunction and negation as primitive connectives. The other
propositional connectives, ∨, → and ↔, are introduced as abbreviations, in the
usual way.

The introduced language is used to define two types of formulas of LPPconf
2 .

First, we have the set of classical propositional formulas over P, denoted here by
ForC . We will denote the propositional formulas by α, β and γ, possibly with
subscripts. We denote the satisfiability relation of the classical propositional logic
by |=C . Now we define the second type of formulas.

Definition 1 (Probabilistic formula). A basic probabilistic formula is any
formula of the form: P≥rα c≥r(α, β), c≤r(α, β), where α, β ∈ ForC .

A probabilistic formula is a Boolean combination of basic probabilistic for-
mulas. We denote with ForP the set of all probabilistic formulas and denote
arbitrary probabilistic formulas by φ and ψ, possibly with subscripts.

Intuitively, P≥rα means that the probability that α is true is greater or equal
to r, while c≥r(α, β) (c≤r(α, β)) means that the formula β confirms the formula
α with the degree at least r (at most r, respectively).

Example 1. The meaning of the formula

c≥ 1
2
(α, β) → c≤0(¬α, β)

is that if β confirms α to the degree 1
2 , then the degree that β confirms the

negation of α is less or equal to zero.

The other types of probabilistic operators are usually defined as follows: P<sα
is ¬P≥sα, P≤sα is P≥1−s¬α, P>sα is ¬P≤sα, and P=sα is P≥sα∧P≤sα. We use
the following abbreviations to introduce other types of confirmation operators:

– c=(α, β) is c≥(α, β) ∧ c≤(α, β),
– c>(α, β) is c≥(α, β) ∧ ¬c≤(α, β) and
– c<(α, β) is c≤(α, β) ∧ ¬c≥(α, β).

Also, we denote both α ∧ ¬α and φ ∧ ¬φ by ⊥ (and similarly for �), letting the
context determine the meaning.

One might think that c<(α, β) might be defined simply as ¬c≥(α, β), in an
analogous way as P<s is introduced. However, we will see that this does not hold
under our satisfiability relation.

By a formula of LPPconf
2 we mean either a classical of probabilistic formula.

Definition 2 (Formula of LPPconf
2 ). The set of formulas of LPPconf

2 is

ForLPPconf
2

= ForC ∪ ForP .

We denote arbitrary formulas by ρ and σ (possibly with subscripts).

Thus, no mixing of pure propositional formulas and probability formulas is
allowed.

Example 2. The expression

(β → α) → c≥0(α, β)

is not a formula of the logic LPPconf
2 .
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3.2 Semantics of LPPconf
2

Now we define the structures in which we evaluate the formulas from ForLPPconf
2

.

Definition 3 (LPPconf
2 -structure). An LPPconf

2 -structure is tuple (W,H, μ, v)
where:

1. W is a non- empty set of objects called worlds.
2. v : W × P → {true, false} assigns to each world w ∈ W a two-valued evalu-

ation v(w, ·) of the propositional letters; it is then extended to all elements of
ForC in the usual way.

3. H is an algebra of subsets of W , such that

{w ∈ W | v(w,α) = true} ∈ H,

for every formula α ∈ ForLPPconf
2

.
4. μ : H −→ [0, 1] is a finitely additive measure.

We denote with M(LPPconf
2 ) the class of all LPPconf

2 -structures.

Note that, according to Definition 3, the set of all worlds of an LPPconf
2 -

structure M in which a classical propositional formula α has the values true is a
measurable set. This requirement is crucial to ensure correctness of satisfiability
relation. In order to relax the notation, we denote the mentioned set of worlds,
{w ∈ W | v(w,α) = true}, simply by [α]M . Thus, [α]M ∈ H for every M ∈
M(LPPconf

2 ) and every α ∈ ForC . Also, we write [α] instead of [α]M when M
is clear from the context.

Next we define the satisfiability of a formula in an LPPconf
2 -structure.

Definition 4 (Satisfiability). Let M ∈ M(LPPconf
2 ). The satisfiability rela-

tion |= is defined recursively as follows:

1. M |= α iff v(w,α) = true for every w ∈ W ,
2. M |= P≥rα if μ([α]) ≥ r,
3. M |= c≥r(α, β) if μ([β]) > 0 and μ([α]|[β]) − μ([α]) ≥ r,
4. M |= c≤r(α, β) if μ([β]) > 0 and μ([α]|[β]) − μ([α]) ≤ r,
5. M |= ¬φ iff M �|= φ,
6. M |= φ ∧ ψ iff M |= φ and M |= ψ.

According to Definition 4, a classical formula α holds in an LPPconf
2 -structure

M only if it holds in every world of M , and therefore represent certain informa-
tion. In that case, the probability value of [α]M has to be equal to 1, which will
be ensured in the axiomatization by a variant of Necessitation rule.

Using Definition 4 and properties of reals, it is easy to obtain satisfiability
for the other types of operators. For example,

M |= c<r(α, β) if μ([β]) > 0 and μ([α]|[β]) − μ([α]) < r
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holds. Now it is obvious that the operator c< is not equivalent to “negation
of c≥,” i.e., M �|= c≥r(α, β) does not imply M |= c<r(α, β), the reason is that
c([α], [β]) might simply be undefined in M (if μ([β]) = 0).

At the end of this section, we define some basic semantical notions.

Definition 5 (Model). For an M ∈ M(LPPconf
2 ) and a set of formulas T , we

say that M is a model of T and write M |= T iff M |= ρ for every ρ ∈ T . T is
satisfiable, if there is M ∈ M(LPPconf

2 ) such that M |= T .

Now we define the notion of entailment relation between formulas.

Definition 6 (Entailment). We say that a set of formulas T entails a formula
ρ and write T |= ρ, if all models of T are models of ρ. Furthermore, ρ is valid if
∅ |= ρ.

4 Axiomatization of LPPconf
2

In this section we present an axiomatization of our logic, which we denote
Ax(LPPconf

2 ). The axiom system Ax(LPPconf
2 ) contains ten axiom schemes and

five inference rules. In the following axiomatization, we assume that all the for-
mulas respect Definition 1. For example, we consider only those instances of A9
and A10 for which s(r + t) ≤ 1.

Axiom schemes:

(A1) All instances of classical propositional tautologies for both ForC and ForP .
(A2) P≥0α
(A3) P�rα → P<sα whenever r < s
(A4) P<rα → P�rα
(A5) (P≥rα ∧ P≥sβ ∧ P≥1(¬α ∨ ¬β)) → P≥r+s(α ∨ β)
(A6) (P�rα ∧ P<sβ) → P<r+s(α ∨ β)
(A7) c≥r(α, β) → P>0β
(A8) c≤r(α, β) → P>0β
(A9) (P≥tα ∧ P≥sβ ∧ c≥r(α, β)) → P≥s(r+t)(α ∧ β)
(A10) (P≤tα ∧ P≤sβ ∧ c≤r(α, β)) → P≤s(r+t)(α ∧ β)

Inference rules:

(R1) From {ρ, ρ → σ} infer σ
(R2) From α infer P≥1α.
(R3) From the set of premises {φ → P≥r− 1

k
α | k ∈ N, k ≥ 1

r} infer φ → P≥rα.

(R4) From the set of premises

{φ → P>0β} ∪ {φ → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β))|t, s ∈ [0, 1]Q}

infer φ → c≥r(α, β).
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(R5) From the set of premises

{φ → P>0β} ∪ {φ → ((P≤tα ∧ P≤sβ) → P≤s(r+t)(α ∧ β)) | t, s ∈ [0, 1]Q}

infer φ → c≤r(α, β).

Let us briefly comment on the axiomatization Ax(LPPconf
2 ). The axioms

A1–A6 and the inference rules R1–R3 form the axiom system for the logic LPP2

from [24]. The rule R3 is the so-called Archimedean rule. It ensures that the
ranges of probability measures do not take non-standard values (in the sense of
non-standard analysis). Intuitively, it claims that if probability is approximately
close to r, then it must be r. The axioms A7 and A9, together with the rule R4
properly capture the third condition of Definition 4. Similarly, A8, A10 and R5
properly capture the fourth condition of Definition 4.

The rules R3-R5 are infinitary inference rules. The necessity of employing
such rules comes form the non-compactness phenomena. Indeed, it is known that
in real-valued probabilistic logic there exist inconsistent infinite sets of formulas,
such that every finite subset is consistent. As pointed out in [20], one consequence
of that fact is that any finitary axiomatization would not be strongly complete.

Let us now define some basic notions of proof theory.

Definition 7 (Proof, theorem). Let T ⊆ ForLPPconf
2

be a set of formulas.
We write T �Ax(LPPconf

2 ) ρ, and we say that ρ is deducible from T , if there is
an at most countable sequence of formulas ρ0, ρ1, ..., ρn, such that every ρi is
an axiom or a formula from T , or it is derived from the preceding formulas by
an inference rule. The sequence ρ0, ρ1, ..., ρ is a proof of ρ from T . We write �
instead of �AxLPPconf

2
when it is clear from context.

We say that ρ is a theorem of Ax(LPPconf
2 ), and write � ρ, if ∅ � ρ.

Note that the length of a proof might be any countable successor ordinal.

Definition 8 (Consistency). A set of formulas T is inconsistent if there a
formula φ ∈ ForP such that T � φ ∧ ¬φ, otherwise it is consistent.

T is maximally consistent set (mcs) if it is consistent and every proper super-
set of T is inconsistent.

At the end of this section, we show that the axiom system Ax(LPPconf
2 ) is

sound.

Theorem 1 (Soundness). The axiomatization Ax(LPPconf
2 ) is sound with

respect to the class of structures M(LPPconf
2 ).

Proof. We need to show that every instance of an axiom scheme holds in every
structure, and that the inference rules preserve the validity. Let us consider the
axioms A7 and A9 and the rule R4. For A7, assume that M ∈ M(LPPconf

2 ) is
a structure such that M |= c≥r(α, β), then μ([β]) > 0, so M |= P>0β. Now let
us consider A9. Suppose that M |= (P≥tα ∧ P≥sβ) ∧ c≥r(α, β). Then μ([α]) ≥ t,
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μ([β]) ≥ s, μ([β]) ≥ 0 and μ([α]|[β]) − μ([α]) ≥ r i.e., μ([α ∧ β]) ≥ μ([β])(r +
μ([α]). This means that μ([α ∧ β]) ≥ s(r + t). Therefore, M |= P≥s(r+t)(α ∧ β).

Now let us consider R4. In order to show that it preserves validity, assume
that M |= {φ → P>0β} ∪ {φ → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β)) | t, s ∈
[0, 1]Q}. If M �|= φ, we have M |= φ → c≥r(α, β). Now suppose that M |= φ.
Then M |= P>0β, i.e μ([β]) > 0, and M |= (P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β))
for all t, s ∈ [0, 1]Q. If the numbers t, s ∈ [0, 1]Q are such that t ≤ μ([α]) and
s ≤ μ([β]), then M |= P≥tα ∧ P≥sβ, so M |= P≥s(r+t)(α ∧ β) , i.e., μ([α ∧ β]) ≥
s(r + t). Using the fact that rationals numbers are dense in reals, we conclude
μ([α ∧ β]) ≥ μ([β])(r + μ([α])) i.e., μ([α]|[β]) − μ([α]) ≥ r, so with μ([β]) > 0,
M |= c≥r(α, β). Thus, M |= φ → c≥r(α, β). ��

5 Completeness of Ax(LPPconf
2 )

In this section we show that the axiomatization Ax(LPPconf
2 ) is strongly complete

for the logic LPPconf
2 , i.e., we prove that every consistent set of formulas has

a model. Completeness is proved in several steps, along the lines of Henkin
construction. First, we prove that the deduction theorem holds for Ax(LPPconf

2 ),
using the implicative form of the infinitary rules. Then we use the deduction
theorem to show that we can extend an arbitrary consistent set of formulas T
to a maximal consistent set (Lindenbaum’s theorem). The standard technique
needs to be adapted in presence of infinitary inference rules. Third, we use the
maximal consistent set to construct a canonical model. Finally, we show that
the canonical model is indeed a model of T .

5.1 Lindenbaum’s Theorem

We start by showing that the Deduction theorem holds.

Theorem 2 (Deduction theorem). Let T be a set of formulas, and suppose
that ρ and σ are two formulas such that either ρ, σ ∈ ForC or ρ, σ ∈ ForP .
Then

T, ρ � σ iff T � ρ → σ.

Proof. The case when ρ, σ ∈ ForC is a consequence of the fact that Ax(LPPconf
2 )

extends classical propositional calculus. Let us consider the case when ρ, σ ∈
ForP . Here we will consider the nontrivial direction – from left to right, i.e., that
T, φ � ψ implies T � φ → ψ. So, let us assume that T, φ � ψ. We proceed by the
length of the inference. Here we only focus on the case when ψ is obtained by the
rule R4, while the cases of applications of other infinitary rules can be handled in
a similar way. Suppose that ψ is the formula φ1 → c≥r(α, β), obtained from the
set of premises {φ1 → P>0β}∪{φ1 → ((P≥tα∧P≥sβ) → P≥s(r+t)(α∧β)) | t, s ∈
[0, 1]Q}. By induction hypothesis

T � φ → (φ1 → P>0β), and
T � φ → (φ1 → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β))), for every t, s ∈ [0, 1]Q.
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Then, by propositional reasoning we have

T � (φ ∧ φ1) → P>0β, and
T � (φ ∧ φ1) → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β)) for every t, s ∈ [0, 1]Q.

Applying R4 we obtain

T � (φ ∧ φ1) → c≥r(α, β).

Using A1 and R1 we obtain

T � φ → (φ1 → c≥r(α, β))
T � φ → ψ. ��
Now we can prove the key step toward completeness.

Theorem 3 (Lindenbaum’s Theorem). Every consistent set of formulas
can be extended to a maximal consistent set.

Proof. Let T be an arbitrary consistent set of formulas. Assume that {ρi | i =
0, 1, 2, ...} is an enumeration of all formulas from ForLPPconf

2
; it includes both

non-probabilistic and probabilistic formulas. We construct T ∗ recursively, in the
following way:

1. T0 = T .
2. If the formula ρi is consistent with Ti, then Ti+1 = Ti ∪ {ρi}.
3. If the formula ρi is not consistent with Ti, then there are four cases:

(a) If ρ = φ → P≥rα, then

Ti+1 = Ti ∪ {φ → P<r− 1
k
α},

where k is a positive integer such that r − 1
k ≥ 0 and Ti+1 is consistent.

(b) If ρi = φ → c≥r(α, β), then Ti+1 = Ti ∪ {ψi} where :

ψi =
{

φ → P=0β, Ti ∪ {φ → P=0β} �� ⊥
φ → (P≥tα ∧ P≥sβ ∧ P<s(r+t)(α, β)), Ti ∪ {φ → P=0β} � ⊥

and t and s are two rational numbers from the unit interval such that
Ti+1 is consistent.

(c) If ρi = φ → c≤r(α, β), then Ti+1 = Ti ∪ {ψi} where:

ψi =
{

φ → P=0β, Ti ∪ {φ → P=0β} �� ⊥
φ → (P≤tα ∧ P≤sβ ∧ P>s(r+t)(α, β)), Ti ∪ {φ → P=0β} � ⊥

and t and s are two rational numbers from the unit interval such that
Ti+1 is consistent.

(d) Otherwise, Ti+1 = Ti.
4. T ∗ =

⋃∞
n=0 Tn.
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First, using Theorem 2 one can prove that the set T ∗ is correctly defined,
i.e., there exist k, t and s from the steps 3(a)-3(b) of the construction. Here, we
will consider the step 3(b), other two steps can be shown in a similar way.

Let us assume that T ∪ {φ → c≥r(α, β)} is inconsistent. Then the set T ∪
{c≥r(α, β)} is inconsistent as well. From Theorem 2 we obtain T � ¬c≥r(α, β).
Now suppose that the set T ∪ {φ → P=0β} is inconsistent, and that the set
T ∪ {φ → (P≥tα ∧ P≥sβ ∧ P<s(r+t)(α, β))} is inconsistent for every t and s. By
Theorem 2, we obtain that T � P>0β and T � ¬(P≥tα ∧ P≥sβ ∧ P<s(r+t)(α, β)),
for every t and s. Consequently,

T � � → P>0β

and
T � � → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α, β)),

for all t and s, so from R4 we derive

T � � → c≥r(α, β).

Note that this contradicts with our assumption that T ∪{c≥r(α, β)} is an incon-
sistent set. Thus, there are rational numbers t and s such that the set

T ∪ {φ → (P≥tα ∧ P≥sβ ∧ P<s(r+t)(α, β))}
is consistent.

Next we prove that T ∗ is a maximally consistent set. Note that every Ti

is consistent by the construction. This still doesn’t imply consistency of T ∗ =⋃∞
n=0 Tn, because of the presence of the infinitary rules. In order to prove the

consistency of T ∗, we first show that it is deductively closed. If the formula ρ is
an instance of some axiom, then ρ ∈ T ∗ by construction of T ∗. Next we prove
that T ∗ is closed under the inference rules. Here we show that T ∗ is closed under
the rule R4; the other cases are similar.

First we show that for every φ ∈ ForP either φ ∈ T ∗ or ¬φ ∈ T ∗ holds. Let i
and j be the nonnegative integers such that ρi = φ and ρj = ¬φ. From Theorem
2, it follows that either φ or ¬φ is consistent with Tmax{i,j}. Then either φ ∈ Ti+1

or ¬φ ∈ Tj+1, so either φ ∈ T ∗ or ¬φ ∈ T ∗.
Let us show that T ∗ is closed under the inference rule R4. Assume that

φ → P>0β, φ → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α, β)) ∈ T ∗

for all r, s ∈ [0, 1]Q. We need to show that φ → c≥r(α, β) ∈ T ∗. Assume that
φ → c≥r(α, β) �∈ T ∗. Then, by maximality of T ∗, ¬(φ → c≥r(α, β)) ∈ T ∗.
Thus, φ ∈ T ∗, so there is i such that φ ∈ Ti. Let j be a nonnegative integer
such that ρj = φ → c≥r(α, β). By the step 3(b) of the construction ot T ∗,
φ → P=0β ∈ Tj+1, or there are t′, s′ ∈ [0, 1]Q such that φ → (P≥t′α ∧ P≥s′β ∧
P<s′(r+t′)(α, β)) ∈ Tj+1. Suppose that φ → P=0β ∈ Tj+1, and let k be the
nonnegative integer such that ρk = φ → P>0β. Then

Tmax{i,k+1} � P>0β.
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Note that we also have Tmax{i,j+1} � P=0β. Consequently, Tmax{i,j+1,k+1} � ⊥,
a contradiction.

Now suppose that φ → (P≥t′α∧P≥s′β∧P<s′(r+t′)(α, β)) ∈ Tj+1, where t′, s′ ∈
[0, 1]Q. Let k′ be the nonnegative integer such that ρk′ = φ → ((P≥t′α∧P≥s′β) →
P≥s′(r+t′)(α, β)). Then Tmax{i,k′+1} � (P≥t′α∧P≥s′β) → P≥s′(r+t′)(α, β). On the
other hand,

Tmax{i,j+1} � P≥t′α ∧ P≥s′β ∧ P<s′(r+t′)(α, β).

Thus, Tmax{i,j+1,k′+1} � ⊥, a contradiction. Consequently, the set T ∗ is deduc-
tively closed.

From deductive closedness of T ∗ we can prove that it is consistent. Indeed,
if T ∗ is inconsistent, there is a formula φ ∈ ForP such that T ∗ � φ ∧ ¬φ. But
then there is a nonnegative integer i such that φ ∧ ¬φ ∈ Ti, a contradiction. ��

5.2 Canonical Model

Now we are ready to prove our main result: the axiomatization Ax(LPPconf
2 ) is

strongly complete for the class of models M(LPPconf
2 ). For a given consistent

set T , we actually build a structure which is a model of its maximal consistent
superset T ∗. Recall that the existence of such superset is provided by Theorem 3.

Definition 9 (Canonical model). Let T ∗ be a mcs of formulas. The canonical
model MT∗ = (W,H, μ, v) is defined as follows:

– W = {w | w is a classical propositional interpretation such that w |=C T ∗ ∩
ForC},

– H = {[α] | α ∈ ForC}, where [α] = {w ∈ W | w |=C α},
– μ : H → [0, 1] such that μ([α]) = sup{r ∈ [0, 1]Q | T ∗ � P≥rα},
– for every world w and every propositional letter p ∈ P, v(w, p) = true iff

w |=C p.

It can be checked that this definition is correct, and that MT∗ ∈ M(LPPconf
2 )

for every mcs T ∗. The proof is pretty much the same as the proof of the corre-
sponding result for the logic LPP2 [24], so we omit it here.

Now we formulate the completeness theorem for our logic.2

Theorem 4. (Strong completeness of LPPconf
2 ). A set of formulas T is con-

sistent iff there is an M ∈ M(LPPconf
2 ), such that M |= T .

Proof. Note that the direction form right to left follows from Theorem 1. For the
other direction, suppose that T is a consistent set of formulas. By Theorem 3,
there is a maximally consistent superset T ∗ of T , which we can use to construct
the canonical model MT∗ . We need to show that MT∗ is a model of T ∗. It is
sufficient to show that ρ ∈ T ∗ iff MT∗ |= ρ, for every formula ρ ∈ ForLPPconf

2
. In

the case when ρ is a propositional formula, that follows from the construction of

2 The usual formulation of strong completeness is T � ρ iff T |= ρ. It is well known
that this formulation is equivalent to the formulation of Theorem 4.
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MT∗ and the completeness theorem for propositional logic. In the case when ρ
is a probabilistic formula φ, we use induction on the complexity of the formulas.
The cases when φ is a conjunction or a negation are straightforward. The case
when φ is P≥rα is essentially the same as in [24].

Let φ be of the form c≥r(α, β).
(⇒) Assume that c≥r(α, β) ∈ T ∗. Let {tn | n ∈ N} and {sn | n ∈ N} be two

strictly increasing sequences of numbers from [0, 1]Q, such that limn→∞tn =
μ([α]) and limn→∞sn = μ([β]). Let n be any number from N. Then T ∗ �
P≥tnα ∧ P≥snβ. Using the assumption c≥r(α, β) ∈ T ∗, the axioms A7 and A9
and propositional reasoning, we obtain T ∗ � P>0β and T ∗ � P≥sn(r+tn)(α ∧ β).
Finally, by Definition 9 we have μ([β]) > 0 and μ([α∧β]) ≥ limn→∞sn(r+tn) =
μ([β])(r + μ([α])), i.e.,

μ([β]) > 0

and
μ([α]|[β]) − μ([α]) ≥ r.

(⇐) Now assume that μ([β]) > 0 and μ([α]|[β])−μ([α]) ≥ r, i.e., μ([α∧β]) ≥
μ([β])(r + μ([α])). We will show that

T ∗ � P>0β

and
T ∗ � (P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β) for all t, s ∈ [0, 1]Q.

Suppose that T ∗ �� P>0β. By maximality T ∗ � P=0β, i.e., μ([β]) = 0, a
contradiction. So we have that T ∗ � P>0β.

If t > μ([α]) or s > μ([β]), then T ∗ �� P≥tα ∧ P≥sβ. By maximality of T ∗,
T ∗ � ¬(P≥tα∧P≥sβ), and consequently T ∗ � (P≥tα∧P≥sβ) → P≥s(r+t)(α∧β).
If t ≤ μ([α]) and s ≤ μ([β]), then s(r + t) ≤ μ([α ∧ β]) by assumption, so
T ∗ � P≥s(r+t)(α ∧ β) by Definition 9. Now the result follows from the fact that
T ∗ is deductively close.

The case when φ us c≤r(α, β) can be proved in a similar way. ��

6 Decidability

In this section, we discuss decidability of LPPconf
2 . We distinguish two cases,

since we have two types of formulas. We start with propositional formulas.

Theorem 5. The problem of deciding whether a formula from ForC is satisfi-
able in an LPPconf

2 structure is NP-complete.

Proof. This result follows straightforwardly from the same complexity result for
propositional formulas under the classical semantics. Indeed, if α is proposition-
ally unsatisfiable, then, according to our definition of satisfiability, α also does
not hold in any model from M(LPPconf

2 ), since v(w,α) = false for every world
w. For the other direction, note that if α is propositionally satisfiable, then it is
satisfied in the model (W,H, μ, v), where W = {w} (which uniquely determines
H = {∅,W} and μ(∅) = 0, μ(W ) = 1), with v(w, ·) being an evaluation function
such that v(w,α) = true. ��
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Let us now turn to the probabilistic formulas.

Theorem 6. There is a PSPACE procedure deciding whether a formula from
ForP is satisfiable in an LPPconf

2 structure.

Proof. Here we use the complexity result of Fagin, Halpern and Megiddo about
polynomial weight formulas [13]. Those formulas are Boolean combinations of
polynomial equations and inequalities, with integer coefficients and with vari-
ables of the form w(α), where α ∈ ForC and w stands for “weight” (probability).
For example (3w(p)w(p∨ q)+w(q → p) ≥ 2)∧5w(q) ≥ 1 is a polynomial weight
formula. Those formulas are evaluated in a Kripke structure with a probability
measure over possible worlds, just like in our logic. A PSPACE decision proce-
dure for satisfiability of polynomial weight formulas is proposed in [13]. In short,
the authors reduce the problem to a problem in the quantifier-free theory of
real closed fields and then apply Canny’s decision procedure from [1]. Instead
of repeating the same strategy for our logic, we rather translate the formulas of
our language to polynomial weight formulas, and then apply the procedure from
[13]. Our simple translation has two steps. First, we use the mapping f , defined
recursively as follows

– f(P≥rα) = w(α) ≥ r,
– f(c≥r(α, β)) = w(β) ≥ 0 ∧ w(α ∧ β) − w(α)w(β) ≥ rw(β),
– f(c≤r(α, β)) = w(β) ≥ 0 ∧ w(α ∧ β) − w(α)w(β) ≤ rw(β),
– f(ϕ ∧ ψ) = f(ϕ) ∧ f(ψ),
– f(¬ϕ) = ¬f(ϕ).

Note that we need to further transform the obtained formulas, since polynomial
weight formulas allow only integer coefficients. For that reason, we apply the
function g, whose role is to clear the denominators. Instead of giving a formal
definition, we illustrate how g works in practice. (We assume that the rational
constants are given in form of fractions using coprime integers.) For example, if
θ is the formula

w(p)w(p → q) ≥ 2
3

∨ w(q) ≤ 4
5
,

then g(θ) is
3w(p)w(p → q) ≥ 2 ∨ 5w(q) ≤ 4.

Obviously, a formula ϕ ∈ ForP is satisfiable iff g(f(ϕ)) is a satisfiable polynomial
weight formula. Thus, our result follows. ��

7 Conclusion

In this paper we presented the probabilistic logic LPPconf
2 which allows reasoning

about degrees of confirmation. The language contains both classical propositional
formulas and probabilistic formulas, and it extends the language of LPP2 [24]
with the binary operators that model measure of confirmation. We proposed an
axiomatization for the logic and prove strong completeness. Since the logic is
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not compact, the axiomatization contains infinitary rules of inference. We also
proved that the problem of deciding whether a probabilistic formula of our logic
is satisfiable is in PSPACE.

There are two avenues for further research. First, it would be interesting
to see if a more expressive language could be built on top of this logic. For
example, nesting of probability operators would allow expressions of the form
c≥r(α, P≥sβ), which model the situation in which probabilistic boundaries of one
formula confirms (to some degree) another formula. Another interesting direction
would be a first order extension, in which we could express the statements like
(∀x)c≥r(α(x), β(x)).

Second, in this paper we modeled the difference measure. We chose this
measure simply because it is most standard measure of confirmation. However,
we can easily adapt the technique developed here to capture the other popular
measures from the literature (see, for example, [28]). For example, Carnap’s
relevance measure

μ(A ∧ B) − P (A)P (B)

can be axiomatized by replacing A7-A10 and R4 and R5 with the following
axiom schemes and inference rules:

(A7’) (P≥tα ∧ P≥sβ ∧ c≥r(α, β)) → P≥r+st(α ∧ β)
(A8’) (P≤tα ∧ P≤sβ ∧ c≤r(α, β)) → P≤r+st(α ∧ β)
(R4’) From the set of premises

{φ → ((P≥tα ∧ P≥sβ) → P≥r+st(α ∧ β)) | t, s ∈ [0, 1]Q}

infer φ → c≥r(α, β).
(R5’) From the set of premises

{φ → ((P≤tα ∧ P≤sβ) → P≤r+st(α ∧ β)) | t, s ∈ [0, 1]Q}

infer φ → c≤r(α, β).

For axiomatizing Carnap’s relevance measure we need only eight axiom schemes.
Note that we can also apply the similar technique for axiomatizing log-ratio
measure

c(α, β) = log
[P (α|β)

P (α)
]
,

but the decidability results are not clear. In that case, we cannot translate a
formula to an existential sentence in the first-order language of fields, as we have
done in Sect. 6, so we cannot apply the procedure from [13].
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2. Carnap, R.: Logical Foundations of Probability, 2nd edn. The University of Chicago
Press, Chicago (1962). 1st edition (1950)

3. Delgrande, J.P., Renne, B., Sack, J.: The logic of qualitative probability. Artif.
Intell. 275, 457–486 (2019)
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