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Abstract. We formally introduce a novel, yet ubiquitous, category of
norms: norms of instrumentality. Norms of this category describe which
actions are obligatory, or prohibited, as instruments for certain purposes.
We propose the Logic of Agency and Norms (LAN) that enables reasoning
about actions, instrumentality, and normative principles in a multi-agent
setting. Leveraging LAN, we formalize norms of instrumentality and com-
pare them to two prevalent norm categories: norms to be and norms to
do. Last, we pose principles relating the three categories and evaluate
their validity vis-à-vis notions of deliberative acting. On a technical note,
the logic will be shown decidable via the finite model property.
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1 Introduction

The formal analysis of normative reasoning, roughly starting with the intro-
duction of deontic logic in the 1950s [21], has been guided by the conviction
that action and agency are pivotal components of normative reasoning [8,22].
In relation to this, an important development took place in the 1970s: the intro-
duction of Propositional Dynamic Logic (PDL) [10]. Modal logics of PDL focus
on the analysis of complex actions (or programs) and their relation to results.
The framework was soon adapted to deontic reasoning [17] and it continues to
receive attention to the present day [20]. The emphasis on action and agency
in normative reasoning led to the distinction between two categories of norms:
norms to be and norms to do [1,8]. Norms of the former category address states
of affairs, without making reference to how such states of affairs are obtained
by the agent. The latter category normatively prescribes actions to agents, yet,
without specifying the possible outcomes that might be produced by the action.

However, there is a third category of norms merging both approaches, which,
to the best of our knowledge, has not been formally investigated. These norms
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prescribe a specific normative relation between an action and a goal, with the
action serving as an instrument to achieve the goal. We will refer to such norms
as norms of instrumentality. Consider the following example:

Although it is neither prohibited to use nonpublic information, nor is it
prohibited to acquire financial profit on the stock market, it is in fact
prohibited to use such information as an instrument to attain the latter.

The above principle is known as the law on ‘insider trading’ and belongs to this
third category. Prohibitions of the form expressed above articulate which actions
cannot be employed as instruments for achieving particular goals. Despite the
ubiquity of normative constraints on instrumentality in legal, social, and ethical
systems (e.g. protocols, rules of games, fairness constraints, etc.), an investigation
of their philosophical ramifications in formal logic is absent. This work aims to
provide the formal foundations for the analysis of norms of instrumentality.

In [1], a formal investigation of the first two norm categories is provided. The
formalism employed there brings together Anderson’s reduction of norms of the
first class [2] and Meyer’s reduction of norms of the second class [17] in a single
system of modal logic called PDeL (i.e. deontic PDL). The first is a reduction of
deontic operators to alethic formulae containing violation constants (e.g. a result
A is obligatory when ¬A strictly implies a violation). The second reduces deontic
operators to formulae using action modalities and violation constants (e.g. an
action Δ is obligatory when not performing Δ strictly implies a violation).

In [4], a third reduction is discussed, where action modalities of PDL are
reduced to alethic formulae containing action constants. The resulting logic facil-
itates reasoning about agent-dependent actions within the object language and
formally captures different notions of instrumentality (in a non-normative set-
ting). Decidability of this logic was left as an open problem.

The current work brings together the three reductions found in [1] and [4], and
introduces a Logic of Agency and Norms called LAN (Sect. 3). The resulting logic
extends previous approaches by permitting us to reason with agent-dependent
actions, as well as agent-dependent obligations and prohibitions, in multi-agent
settings. The language of LAN will enable us to formally investigate the three
norm categories; we will pose principles describing relations between the three
categories and evaluate their validity vis-à-vis different notions of deliberative
acting (Sect. 4). Last, we prove the decidability of LAN in Appendix A of the
paper.

2 A Benchmark Example

In order to understand the distinct nature of the three kinds of norms, we provide
an example protocol serving as a benchmark in developing our formal framework.
In Sect. 5, we formalize and analyze the protocol using our developed logic.

A Hospital Health and Safety Protocol. The Health and Safety Committee
of a public hospital in Vienna recently established a new set of guidelines to
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govern and redirect the behaviour of surgeons and nurses in the assistance and
treatment of its patients. In particular, motivated by the increased awareness
of the dangers of accidental self-inflicted wounds, caused by using sharp tools
during surgery, the committee has proposed a new policy: that is, limiting the
use of scalpels in surgery to surgeons and prohibiting assisting nurses the use of
such instruments in the operation room. The protocol is summed up accordingly:

P1 A surgeon is obliged to use the prescribed scalpel to bring about a necessary
incision during surgery.

P2 Assisting nurses are not allowed to use scalpels during surgery when the
situation is not dire.1

P3 Nurses and surgeons alike have the obligations to (i) promote the health of
their patients and (ii) preserve hygiene safety in the operation room.

First, we observe that the norm expressed by P1 is a norm belonging to the
third, novel, category of norms of instrumentality ; that is, it describes a norm
that specifically relates an action as an instrument to a particular outcome. P2
is a prohibition subsumed under norms to do, and holds independent of the
instrument’s intended purpose. P3 is an obligation pertaining to norms to be,
and holds independent of the instruments used to obtain (i) and (ii).

To stress the irreducibility of norms of instrumentality to norms to be and
norms to do, consider the following: although a surgeon might be obliged to
use a scalpel to ensure a required incision, it does not follow that she has the
obligation to use scalpels independent of their intended purpose (some outcomes
obtained by using scalpels could be prohibited), nor does it mean that she has
the obligation to bring about the incision by any means necessary (some means
could be prohibited). In fact, in case of P1, the surgeon has only the obligation
to ensure the required incision by means of using the scalpel.2

To continue, the committee makes two assumptions in drafting the protocol:

T1 The protocol resolves all normative issues in surgical situations by offering
rules of conduct that ultimately provide ways out of any possible conflict.

T2 The protocol assumes that the choices described, and suggested, to the
agents can be consistently performed together.

The committee is aware that sub-ideal situations can occur (e.g. whenever an
employee (in)voluntarily violates an initial rule). Given T1, the committee pro-
vides the following principle which activates whenever P3 cannot be satisfied:
1 Notice that principle P2 incorporates a form of defeasible reasoning through explicit

exception, for the present analysis of norms of instrumentality, the above will suffice.
2 Notice that in the present example, we use a material tool to exemplify instruments.

However, we stress that the notion of instrumentality is more general and refers to
all actions serving goals; e.g. ‘opening the window’ is an instrument for ‘changing
the room’s temperature’ [22]. Following Von Wright [23], an action is a classified φ-
instrument—where φ is the purpose—whenever the action serves the purpose of φ.
Consequently, although in the above example reference is made to a ‘scalpel’ (i.e. a
tool) the instrument under consideration—serving the purpose of ‘the incision being
made’—is in fact the action ‘using the scalpel (for the purpose of incision)’. See [4]
for a philosophical discussion on different notions of instrumentality.
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E1 In case of failing to preserve hygiene standards during surgery (e.g., in the
case of self-inflicted wounds) the employee in question is obliged to imme-
diately leave the operation room and call the safety-emergency number.

The purpose of the above rule is to ensure that damage in sub-ideal scenarios
is controlled. Principle E1 prescribes measures to be taken in case of failure to
comply with other prescriptions. As can be seen, there is a close connection
between principle E1 and what is called contrary-to-duty reasoning; that is,
reasoning about secondary norms that arise from violating primary norms. We
come back to this point during the formalization of the example in Sect. 5.

Last, the committee desires that the above protocol is captured in a log-
ical system, enabling them (i) to analyse the consistency of the protocol and
(ii) to reason with the protocol whenever critical circumstances occur. As can
be observed, the logical language must contain agents, actions, results and vio-
lations, in order to facilitate the formal distinction between the three norm
categories.

3 Deontic Logic of Actions, Agency and Norms

In what follows, we introduce the language, semantics and axiomatization of
our Logic of Agency and Norms, henceforth, LAN (the logic will be a deontic
extension of the machinery provided in [4]). As motivated in the introduction, we
will employ a reductionist approach to norms via violation constants (following
[17]) and to actions via action constants (following [4]). In order to reason with
actions in a normative setting, we use a Boolean algebra of actions. The language
of LAN will depend on this algebra of actions, which will enable us to talk about
complex, compound actions as formulae in the object language.

Definition 1 (Algebra of Actions ActLAN). Let Act = {δ1, ..., δn} be a set of
atomic action-types and let δi ∈ Act. The language ActLAN of complex action-
types Δ is given via the following BNF grammar:

Δ ::= δi | Δ ∪ Δ | Δ

The operations ∪ and — represent disjunction and complement (resp.), allowing
us to generate complex expressions such as ‘closing-the-door or opening-the-
window’ and ‘not closing-the-window’. The conjunction operator & over actions
is defined as Δ1&Δ2 := Δ1 ∪ Δ2. Let Agt = {α1, . . . , αn} be a set of agent labels;
we say Δαi is an agent-dependent action-type iff Δ ∈ ActLAN and αi ∈ Agt.

We let V ar = {p1, p2, . . . } be a countable set of propositional variables, and
for any αi ∈ Agt, we let Witαi = {dαi

1 , ..., dαi
n } be the set of propositional con-

stants that witness the performance of atomic action-types δ1, ..., δn by αi (this
is made formally precise in Definition 3). Let Wit be the union

⋃
αi∈Agt Witαi

and note that |Witαi | = |Act| = n, for some n ∈ N. Also, we take vαi to
be a propositional constant witnessing a norm violation for agent αi and let
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V io = {vαi | αi ∈ Agt } be the set of all agential violation constants. Last, we
let Atoms = V ar ∪ Wit ∪ V io.3

Definition 2 (The Language LLAN). LLAN is given by the following BNF:

φ ::= pi | vαj | dαj

i | ¬φ | φ → φ | �φ | [N]φ

where pi ∈ V ar, αj ∈ Agt, vαj ∈ V io and d
αj

i ∈ Wit.

In short, the operators ∧, ∨ and ≡ are defined in the usual way. Formulae of
the form �φ and [N]φ express, respectively, ‘in all possible successor (future)
states φ holds’ and ‘in the actual successor (future) state φ holds’. We take �
and 〈N〉 as the duals of � and [N], respectively. Last, we take d

αj

i and vαj to
stand for ‘agent αj has performed action δi’ and ‘agent αj has violated a norm’,
respectively.

Following [4], we define a translation that maps agent-dependent action-types
to formulae of LLAN, enabling us to reason with actions inside the logic:

Definition 3 (Translation t between ActLAN and LLAN).

– For any δi ∈ Act and αj ∈ Agt, t(δαj

i ) = d
αj

i , with d
αj

i ∈ LLAN.
– For any Δ ∈ ActLAN and αi ∈ Agt, t(Δαi) = ¬t(Δαi).
– For any Δ,Γ ∈ ActLAN and αi, αj ∈ Agt, t(Δαi ∪ Γαj ) = t(Δαi) ∨ t(Γαj ).

Consequently, from the above we can derive t(Δαi&Γαi) = t(Δαi) ∧ t(Γαi).4

To demonstrate the potential of LLAN, we present below the agency operators
for would, could and will, as introduced in [4]. These operators will play a central
role in determining an agent’s compliance with the formalized example protocol
in Sect. 5. We leave the introduction of normative operators to Sect. 4.

(1) For any Δ ∈ ActLAN and αi ∈ Agt, [Δαi ]wouldφ := �(t(Δαi) → φ)
(2) For any Δ ∈ ActLAN and αi ∈ Agt, [Δαi ]couldφ := �(t(Δαi) → φ)∧ �t(Δαi)
(3) For any Δ ∈ ActLAN and αi ∈ Agt, [Δαi ]willφ := �(t(Δαi) → φ)∧〈N〉t(Δαi)

The above operators capture different relations between actions and results
obtained at successor states. The first notion is interpreted as ‘currently, by
performing the action Δ, agent αi would bring about φ’ (i.e. Δ suffices for
guaranteeing φ). This definition, however, does not ensure that the agent can in
fact perform Δ. The second definition extends the first by adding a notion of
ability to it, reading ‘currently, by performing action Δ, agent αi would bring
about φ and agent αi could currently perform Δ’. The third notion connects the
actual course of events with the possible actions available to the agent, stating
that ‘currently, by performing Δ, agent αi would bring about φ and agent αi

will actually execute Δ’. (Note that (3) implies (2), and (2) implies (1) within
the logic LAN; see Definition 4).

3 Following [1], to avoid paradoxes vαi is read as ‘norm violation’ instead of ‘sanction’.
4 We note in passing that one could define other action operators of PDL within the

reduced logic LAN; for example ‘composition’ as [Δαi ; Γ αi ]φ := [Δαi ][Γ αi ]φ.
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The logic LAN is specified through a Hilbert-axiomatization presented in
Definition 4. The axioms A1, A2, A4 and R1 specify that both � and [N] behave
as normal modal operators. In addition, we make a few minimal assumptions for
our logic: Axiom A3 ensures that every state has at most one actual successor.
Axiom A4 guarantees that every actual future is also a possible future. Axiom
A5 expresses that any list of available actions performable by different agents
can be consistently performed together. Axiom A5 corresponds to clause T2
from the example of Sect. 2, and is an adaptation of the independence of agents
principle (a pivotal condition for multi-agent STIT logics; see [3, Ch. 7]). Last,
for our deontic setting we adopt a weak contingency axiom with respect to agent-
dependent norm violations. This condition, captured by axiom A6, ensures that
no agent αi can end up in a state at which norm violations cannot be avoided;
i.e. if there is a violation possible, there is also a successor state in which the
violation is avoided. This axiom corresponds to requirement T1 made in Sect. 2.
For a discussion of the contingency axiom A6 we refer to [2,18].

Definition 4 (Axiomatization of LAN).

A0 All propositional tautologies
A1 �(φ → ψ) → (�φ → �ψ)
A2 [N](φ → ψ) → ([N]φ → [N]ψ)
A3 〈N〉φ → [N]φ
A4 �φ → [N]φ
A5 For distinct α1, ..., αn∈Agt and not necessarily distinct Δ1, ...,Δn∈ActLAN,

( �t(Δα1
1 ) ∧ ... ∧ �t(Δαn

n )) → �(t(Δα1
1 ) ∧ ... ∧ t(Δαn

n ))
A6 For any αj ∈ Agt, �vαj → �¬vαj

R0 Modus Ponens: 
LAN φ and 
LAN φ → ψ imply 
LAN ψ
R1 Necessitation: 
LAN φ implies 
LAN �φ

A derivation of φ in LAN from a set Σ, written Σ 
LAN φ, is defined in the usual
way (See [5, Def. 4.4]). When Σ = ∅, we say φ is a theorem, and write 
LAN φ.

The corresponding relational frames for LAN are those of [4], modified to a
deontic setting using violation constants:

Definition 5 (Relational LAN Frames and Models). An LAN-frame is a
tuple F = (W, {W

d
αj
i

: dαj

i ∈ LLAN}, {Wvαj : vαj ∈ LLAN}, R,RN), such that:

� W is a non-empty set of worlds w, v, u, . . . such that:
(R1) For each d

αj

i ∈ Wit, W
d

αj
i

⊆ W .
(R2) For each vαj ∈ V io, Wvαj ⊆ W .

� R,RN ⊆ W × W are binary relations between worlds in W such that:
(R3) For all w, u, v ∈ W , if wRNu and wRNv, then u = v.
(R4) For all w, v ∈ W , if wRNv, then wRv.
(R5) For all w ∈ W and for all 1 ≤ i, j,≤ n, if there are (not necessarily

distinct) action-types Δ1, ...,Δn such that for 1 ≤ i ≤ n there is a world
ui ∈ W , for which wRui and ui ∈ Wt(Δ

αi
i ), then there is a world v ∈ W

such that wRv and v ∈ Wt(Δ
α1
1 ) ∩ ... ∩ Wt(Δαn

n ).†
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(R6) For all w ∈ W and all αj ∈ Agt, if there exists a v ∈ W such that
wRv and v ∈ Wvαj , then there is a world u ∈ W for which wRu and
u ∈ W−Wvαj .

(†) For an arbitrary Δαi , s.t. Δ ∈ ActLAN and αi ∈ Agt, we define
Wt(Δαi ) using the following recursive clauses: Wt(δ

αi
i ) = Wd

αi
i

, Wt(Δαi ) =
W−Wt(Δαi ) and Wt(Δαi ∪Γ αj ) = Wt(Δαi ) ∪ Wt(Γ αj ).

An LAN-model is a tuple M = (F, V ) where F is an LAN-frame and V is a
valuation function mapping propositional atoms to subsets of W , that is V :
Atoms �→ P(W ), for which the following two restrictions hold:

� V (dαj

i ) = W
d

αj
i

, for any d
αj

i ∈ LLAN.
� V (vαj ) = Wvαj , for any vαj ∈ LLAN.

Let CLAN
f be the class of LAN-frames. (NB. One can easily show that CLAN

f �= ∅.)
The relation R represents transitions between successive states. Whereas

transitions represented by R capture possible transitions from the current state,
the relation RN represents the actual transition from the current state. The only
restrictions imposed are: there is at most one actual future (R3) and the actual
future must be one of the possible futures (R4) (cf. A3 and A4 of Definition 4,
resp.). The concept of ‘actual future’ is taken as state-dependent, which enables
reasoning about states that would lie in the actual future of a counterfactual
state (e.g., ‘although it is Monday, if it would have been Thursday today, then
it would actually be Friday tomorrow’; see [4]). Next, condition (R5) ensures
that any combination of actions performed by distinct agents is consistent (cf.
A5 of Definition 4). Condition (R6) enforces that, if there is a possible future in
which a norm violation occurs for some agent, then there is also an alternative
future available in which a norm violation is avoided for that agent (cf. A6 of
Definition 4).

The semantics of LLAN is defined accordingly:

Definition 6 (Semantics for LLAN). Let M be an LAN-model and w ∈ W of
M . The satisfaction of a formula φ ∈ LLAN in M at w is inductively defined as:

(1) M,w � χ iff w ∈ V (χ), for any χ ∈ Atoms
(2) M,w � ¬φ iff M,w � φ
(3) M,w � φ → ψ iff M,w � φ or M,w � ψ
(4) M,w � �φ iff for all v ∈ W s.t. wRv we have M,v � φ
(5) M,w � [N]φ iff for all v ∈ W s.t. wRNv, we have M,v � φ

The semantic clauses for the dual operators � and 〈N〉, as well as global
truth, validity and semantic entailment are defined as usual (see [5]).

(NB. propositional constants for actions and violations maintain their seman-
tic interpretation in all models over a frame. See [4] for a discussion.)

The adequacy of LAN is directly obtained through a slight modification of
the soundness and completeness proofs for the logic of actions and expectations
presented in [4] (i.e. we substitute expectation constants for violation constants).
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Theorem 1 (Adequacy [4]). For all φ ∈ LLAN, we have that φ is an LAN
theorem if and only if φ is valid with respect to the frame class CLAN

f .

Furthermore, the logic LAN is decidable and has the finite model property:

Theorem 2 (Finite Model Property). LAN has the finite (tree) model prop-
erty (FMP), i.e. every satisfiable formula is satisfiable on a finite, treelike model.

Proof. The proof is presented in Appendix A at the end of this paper.

Corollary 1 (Decidability). The satisfiability problem of LAN is decidable.

As a closing comment, we observe that the decidability of LAN obtained here,
implies decidability of the logic of actions and expectations, left as an open
problem in [4] (this can be affirmed through a quick comparison of the axioma-
tizations).

4 Norms, Ability and Deliberation in LAN

The logic LAN allows us to reason about both actions and results. We can dis-
tinguish three different types of normative statements: normative statements
about (1) results, (2) actions, and (3) actions in relation to results. We refer to
the first two categories as norms to be and norms to do, respectively, and to the
third category as norms of instrumentality. The last category articulates which
actions must or must not be employed as instruments for obtaining particular
goals (see [4,23] for a discussion of different notions of instrumentality). In this
section, we demonstrate the expressive power of LAN through formalizing the
aforementioned three categories, and use our formalization to investigate the
dependencies between the different norm types. With this, we take a first step
towards a formal analysis of norms of instrumentality. In the following section,
we apply the attained notions to a formal analysis of our case study.

Before moving to our formal investigation, we need to establish some desider-
ata concerning the three norm-types and their interdependencies. First, we notice
that according to [1], it is generally agreed upon that the categories of norms
to be and norms to do cannot be completely reduced to one another. In Sect. 2
we discussed principle P1 of the protocol and argued that, in the case of obli-
gations, norms of instrumentality are neither an instance of the former nor the
latter category and, consequently, must be regarded as a category proper (the
‘insider trading’ example from Sect. 1 demonstrates the case for prohibitions).
Still, we can identify several reasonable principles expressing certain interdepen-
dencies between the three categories:

D1 If a result is prohibited, then it will be prohibited regardless of the action
used in obtaining it (i.e. prohibited given any action).

D2 If an action is prohibited, then its performance is prohibited irrespective of
its outcome (i.e. prohibited given any outcome).
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D3 If it is obligatory to perform a certain action to obtain a particular result
(instrumentality), then it must be prohibited to not perform the action, as
well as prohibited to not bring about the result.

In addition to the above, we will consider two pivotal principles from the
realm of normative agency and investigate their effect on the three norm cat-
egories. The first is expressed as the no vacuously satisfied norms principle
which states that all norms should be violable (see D4 below). This desider-
atum imposes a deliberate component on all norms (cf. Anderson’s contingency
principles [2,18] and Belnap and Horty’s notion of deliberative agency [3,15]).
As a second principle, we adopt a generalized variant of the ‘ought implies can’
principle—accredited to Immanuel Kant [16, A548/B576]—to which we will refer
as the norm implies can principle. We will make a further distinction within the
principle by considering two interpretations of the term ‘can’ (cf. [7] and [23] for
different notions of ability). First, we take ‘can’ to denote ‘possible’ (D5 below).
Second, we interpret ‘can’ as the stronger agentive notion of ‘ability’ (D6 below).

D4 Norms must be violable: If X is prohibited (obligatory), then (the negation
of) X must be possible.

D5 Norms must be satisfiable: If X is obligatory (prohibited), then (the negation
of) X must be possible.

D6 Norms must be agentively satisfiable: If X is obligatory (prohibited), then
the agent must have the ability to guarantee (the negation of) X.
(NB. Where X can be substituted for a result or an action.)

Clauses D5 and D6 express, respectively, the weak and strong norm implies can
principle. We emphasize that for prohibitions (obligations), in order to fulfill
(defy) its duty, an agent must ensure the opposite of what is forbidden (obliga-
tory). In the following sections, we will see that the D1–D3 break down when we
consider them together with the above deliberation constraints on norms D4–D6.

4.1 Norms to Be

In what follows, we will use the symbol F to refer to what is forbidden and we
will use O to denote what is obligatory. Adapting Anderson’s deontic reduction
[2], we formally define the first category of norms to be (i.e. forbidden to be and
ought to be, respectively) in accordance with principle D4 as follows:

F1. F[�αi ]φ := �(φ → vαi) ∧ �φ
O1. O[�αi ]φ := �(¬φ → vαi) ∧ �¬φ

We interpret F[�αi ]φ as ‘φ is forbidden to become the case for agent αi, iff (i)
every possible transition to φ would mean a norm violation for agent αi and (ii)
φ is possible’ and we read O[�αi ]φ as ‘φ ought to become the case for agent αi, iff
(i) every possible transition to ¬φ would mean a norm violation for agent αi and
(ii) ¬φ is possible’. The first conjunct (i) of F1 and O1 corresponds to Anderson’s
reduction (referred to as the reduction clause), whereas the second conjunct (ii)
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captures that the norm can be violated (referred to as the violation clause of
principle D4). We take �αi to represent αi’s vacuously satisfied action: that is,
�αi := (δ1 ∪ δ1)αi (cf. the universal action [17]). We take ⊥αi := (δ1&δ1)αi to
denote the impossible action, used in definitions F1′ and O1′ below.

We may extend the above formalizations to define norms to be in accordance
with the more stringent principle D6. We write F′ and O′ to indicate what is
forbidden and what is obligatory, respectively, within this paradigm:5

F1′. F′[�αi ]φ := �(φ → vαi) ∧ �φ ∧
∨

[[Δαi ]]∈[[Act∗
LAN]]

�(t(Δαi) → ¬φ)

O1′. O′[�αi ]φ := �(¬φ → vαi) ∧ �¬φ ∧
∨

[[Δαi ]]∈[[Act∗
LAN]]

�(t(Δαi) → φ)

The norms F′[�αi ]φ and O′[�αi ]φ are similar to F[�αi ]φ and O[�αi ]φ in that
they contain a reduction clause and a violation clause. However, in addition they
also contain a norm implies ability clause. This additional third clause expresses
that (iii) ‘there exists an action available to the agent that would serve as a
suitable instrument for satisfying the norm’ (cf. the ‘would’ operator, Sect. 3).

Principle D4 is explicitly satisfied by definition F1, O1, F1′, and O1′, whereas
the latter two also explicitly satisfy D6. What is more, in LAN we derive that
all four definitions satisfy D5 too. This result is obtained through the follow-
ing reasoning: Suppose F[�αi ]φ. By definition, �φ holds. Through basic LAN
reasoning and the reduction clause, �vαi holds and, by applying axiom A6,
we obtain �¬vαi . Last, from LAN reasoning and the reduction clause we can
derive �¬φ. Similar arguments can be given for the remaining norms. Hence,
we obtain the following LAN theorem:

F[�αi ]φ ∨ O[�αi ]φ ∨ F′[�αi ]φ ∨ O′[�αi ]φ → ( �φ ∧ �¬φ)

In other words, in LAN we derive that norms to be range over contingent state-
of-affairs; i.e. the norms can be both satisfied and violated. We refer to this result
as the contingency property of norms (cf. [2,18]).

4.2 Norms to Do

With respect to the second category of norms to do, we adopt Meyer’s reduction
[17] to the LAN setting and formally define our forbidden to do and ought to do
operators, respectively, as follows:
5 Notice, since ActLAN represents a Boolean algebra of actions built over a finite num-

ber of actions types from Act, there are only finitely many equivalence classes
[[Δαi ]] := {Γ αi | �LAN t(Γ αi) ≡ t(Δαi)} of equivalent actions. We let [[Act∗

LAN]]
in F1′ and O1′ represent the set of all such equivalence classes minus the class [[⊥αi ]]
of all impossible actions. Additionally, since obligatory or forbidden results are cen-
tral to norms to be, as opposed to obligatory or forbidden actions, we impose the
following restriction on F1, O1, F1′ and O1′: the formula φ is free of action constants
from Wit. Without this restriction, norms to do could be seen as instances of norms
to be—i.e. norms to bring about the witness of a performed action as a result—thus
contradicting the observations made in [1] about the irreducibility of the two.
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F2. F[Δαi ]� := �(t(Δαi) → vαi) ∧ �t(Δαi)
O2. O[Δαi ]� := �(¬t(Δαi) → vαi) ∧ �¬t(Δαi)

We read F[Δαi ]� as ‘the performance of Δ is forbidden for agent αi, iff (i)
every possible performance of Δ would mean a norm violation for agent αi and
(ii) Δ can be performed by αi’ and we interpret O[Δαi ]� as ‘Δ ought to be
performed by agent αi, iff (i) every possible performance of Δ would mean a
norm violation for agent αi and (ii) Δ can be performed by αi’. We take � to
represent the vacuously satisfied result; that is, we say that the norm applies
independent of its result. The reduction clause (i) of F2 and O2 corresponds to
Meyer’s deontic reduction, whereas clause (ii) captures the norm’s deliberative
nature by requiring the possibility of norm violation.

The above, together with axiom A6, implies that also norms to do have the
desired contingency characteristics; i.e. the following is an LAN theorem:

F[Δαi ]� ∨ O[Δαi ]� → ( �t(Δαi) ∧ �¬t(Δαi))

However, the distinction between D5 and D6 breaks down for norms to do: the
implied contingency clause in these norms directly incorporates the notion of
ability. This is due to our interpretation of actions, which corresponds to the use
of actions in PDeL [1,17]; i.e. when an agent has an action at its disposal this
means that it has the ability to guarantee its performance. Hence, in the current
framework these two notions equate.

4.3 Norms of Instrumentality

So far, the first two categories have been formally defined on the basis of their
converged interpretation in the literature (e.g., [1,8]) and extended with deliber-
ative clauses. How should we formally capture the third, novel category of norms
of instrumentality? The above analyses would suggest a definition comprising at
least a reduction clause and a violation clause. However, with respect to norms
of instrumentality this twofold reading does not suffice.

Let us first consider the obligations belonging to norms of instrumentality.
First, recall that we take as instruments those actions that are suitable for
serving a particular purpose. Hence, for an agent to be committed to such an
obligation, we require that the prescribed action is in fact an instrument for
bringing about the desired result; i.e. the action would guarantee the envisaged
outcome. Observe that, given this reading, the strong norm implies can principle
is immediately satisfied: i.e. the agent must be able to produce the desired result
through the desired action. Hence, for the third category, we opt for a formaliza-
tion that directly incorporates the agential notion of would (cf. Sect. 3). Second,
we need to identify what it means for an agent to violate an obligation of the
third category: If an agent αi has the obligation to employ Δ (as an instrument)
to obtain φ, then αi violates this obligation whenever either αi does not perform
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Δ (independent of whether αi produced φ) or αi does not bring about φ (inde-
pendent of whether αi performed Δ). On the basis of the above two observations,
we thus say that ‘an agent αi has the obligation to employ Δ as an instrument
to obtain φ iff (i) performing Δ or bringing about ¬φ would lead to a norm
violation for agent αi, (ii) such a norm violation is possible through ¬φ or Δ,
and (iii) the performance of Δ by αi would ensure φ (i.e. Δ is a φ-instrument
for αi).’ We formally define this norm as follows:

O3. O[Δαi ]φ := �(¬(t(Δαi) ∧ φ) → vαi) ∧ �¬(t(Δαi) ∧ φ) ∧ �(t(Δαi) → φ)

Notice that, in the three conjuncts of definition O3 we recognize: (i) the
reduction clause, (ii) the violation clause, and (iii) the ability clause, respectively.
Moreover, as with F1, O1, F1′, and O1′ we stipulate that φ must be free of action
constants from Wit (in both O3 and F3).

Should we give a similar reading for prohibitions of this category? The answer
is not straightforward. Let us reconsider the example from Sect. 1: ‘it is prohib-
ited to use non-public information as an instrument to attain financial profit on
the stock market’. We say that an agent αi violates this prohibition whenever
αi uses non-public information and consequently attains financial profit from it.
However, should we additionally require that αi is only subject to this prohi-
bition whenever αi has the strict ability to guarantee financial profit through
using non-public information? The answer seems to be negative: we also desire
to include cases in which αi accidentally obtains financial profit on the stock
market through using non-public information.6 Nevertheless, in adopting the
strong norm implies can principle we still require that the agent must have the
ability to avoid violating the prohibition in question, thus satisfying its duty.
Putting the above together, we say that ‘agent αi is prohibited to employ action
Δ as an instrument for the purpose φ, iff (i) in every case in which Δ has been
performed and φ has been successfully ensured, a norm violation has occurred,
(ii) the norm can in fact be violated and, most importantly, (iii) either αi has
the ability to avoid performing Δ or there is an action to αi’s disposal that is a
suitable instrument for avoiding φ.’ Formally, this is expressed accordingly:

F3. F[Δαi ]φ := �((t(Δαi) ∧ φ) → vαi) ∧ �(t(Δαi) ∧ φ) ∧ θ

where θ := �¬t(Δαi) ∨
∨

[[Γ αi ]]∈[[Act∗
LAN]]

�(t(Γαi) → ¬φ)

The first two conjuncts of F3 correspond to the reduction and violation clause,
respectively. The additional third conjunct explicitly stipulates the ability and
instrumentality relations which enable the agent in question to fulfil its duty.

Let us discuss the interaction between the proposed definitions of norms of
instrumentality and the list of desiderata presented at the beginning of this
6 The assumption avoids risk by forbidding acts that possibly produce violations;

e.g. ‘it is forbidden to injure someone with a sharp tool, independent of the ability
to guarantee the injury’. However, one could consider inclusion of instrumentality
clauses for prohibitions when analyzing responsibility. We leave this for future work.
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section. First, we observe that the second conjunct of F3, ensuring the prohibi-
tion’s deliberative nature, invalidates principles D1 and D2. That is, an LAN-
model can be constructed to show the following are satisfiable for some Δαi and
φ:

F[�αi ]φ ∧ ¬F[Δαi ]φ, F′[�αi ]φ ∧ ¬F[Δαi ]φ, and F[Δαi ]� ∧ ¬F[Δαi ]φ

The inconsistency of F3 with principles D1 and D2 can be understood as follows:
a prohibition to bring about a result (action) should not imply that the result
(action) must be avoided given any action (result), but only relative to those
actions (results) possible. In other words, impossible combinations of actions
and results are not forbidden because they are inviolable. Observe that D1 and
D2 can be salvaged by abandoning principles D4, D5 and D6.

Second, as for the other two norm categories, definitions O3 and F3 imply
the desired LAN theorem concerning the contingency of instrumentality norms:

O[Δαi ]φ ∨ F[Δαi ]φ → (
�(t(Δαi) ∧ φ) ∧ �¬(t(Δαi) ∧ φ)

)

Third, as stated by principle D3, when an agent αi has the obligation to
ensure φ, but only specifically through performing Δ, we would like to be able
to derive that for αi the state of affairs ¬φ, as well as the performance of Δ,
is prohibited. However, this principle only holds in our context when we forgo
the weak norm implies can principle. In other words, by omitting the violation
clause (ii) (and therefore the implied contingency property) of definitions F1,
F1′, F2, and O3, we obtain the following LAN theorems, satisfying principle D3:

O[Δαi ]φ → (F[�αi ]¬φ ∧ F[Δαi ]�) and O[Δαi ]φ → (F′[�αi ]¬φ ∧ F[Δαi ]�)

That in the present setting definition O3 is incompatible with principle D3,
follows from the observation that impossible combinations of actions and states
of affairs cannot be violated and, thus, will not classify as deliberative norms.

As a final remark, we believe that clause (iii) is pivotal for norms of instru-
mentality: That is, we do not want to commit agents to a cause whose outcome
is merely accidental (i.e. uncontrollable). This would be too stringent. Instead,
we desire that the envisaged outcome is a proper consequence of the agent’s
behaviour. In other words, when the agent has also the ability to fulfill its
duty—i.e. guarantee that the action under consideration leads to the desired
outcome—only then the agent can be demanded to ensure the outcome by per-
forming the action. This claim is in line with principle D6, the strong, agentive
reading of norm implies can where ‘can’ denotes ‘ability’ or ‘choice’ (cf. [3,7,15]).
Given such a clause, our definitions avoid the overburdening of an agent by not
committing the agent to a cause it cannot effectively fulfill. The following LAN
theorems capture the strong norm implies can reading of O3 and F3:

F[Δαi ]φ → [Δαi ]couldφ and O[Δαi ]φ → [Δαi ]couldφ

In conclusion, the final definitions—i.e. F1, F1′, F2, F3, O1, O1′, O2 and
O3—are based on (i) Anderson’s and Meyer’s reduction, (ii) the no vacuously
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Table 1. Formulae based on F1–F3, O1–O3, F1′ and O1′ considered with only the
reduction clause (i) and considered with all clauses of the given definition. ‘Yes’ means
the formula is a theorem for all Δαi and φ; ‘no’ means otherwise. We let F∗ ∈ {F,F′}
and O∗ ∈ {O,O′}.

Only clause (i) Complete clauses

V1. F∗[�αi ]φ → F[Δαi ]φ and F[Δαi ]� → F[Δαi ]φ yes no

V2. O[Δαi ]φ → O∗[�αi ]φ and O[Δαi ]φ → O[Δαi ]� yes no, yes (resp.)

V3. O∗[�αi ]φ → F[Δαi ]¬φ and O[Δαi ]� → F[Δαi ]φ yes no

V4. F∗[�αi ]φ → O[Δαi ]¬φ and F[Δαi ]� → O[Δαi ]φ no no

V5. F∗[�αi ]φ ≡ O∗[�αi ]¬φ and F[Δαi ]� ≡ O[Δαi ]� yes yes

V6. O[Δαi ]φ → F∗[�αi ]¬φ ∧ F[Δαi ]� yes no

V7. O[Δαi ]φ ≡ O[Δαi ]� ∧ O∗[�αi ]φ yes no

V8. F∗[�αi ]φ ∧ F[Δαi ]� → F[Δαi ]φ yes no

satisfied norms principle (of which the weak norm implies can principle was a
logical consequence in LAN), and (iii) the strong norm implies can (i.e. abil-
ity) principle for norms of instrumentality. We saw that, by adopting principles
enforcing minimal deliberative criteria on norms (i.e. D4 and D5), we canceled
basic dependencies between the three categories (i.e. D1, D2 and D3). In Table 1
we gathered some LAN theorems that bear significance to the present analy-
sis. For example, in losing the norm implies can principle altogether, we obtain
interdependencies such as V 1−V 3 of Table 1 first column. That O[Δαi ]φ implies
O[Δαi ]� with complete clauses (V 2) is (in part) due to the ability clause, which
ensures the violation clause necessary for the implied norm to do. The dependen-
cies described by V 4 and V 5 are invariant to deliberation. Last, V 6–V 8 express
some dependencies between combinations of norms. Still, further investigation of
the proposed definitions and interdependencies is required. The present analysis
establishes a first step towards such an investigation by exhibiting the expressive
power of the logic LAN. Let us now formally address our case study.

5 The Benchmark Example Revisited

In what follows, we apply our formal machinery to the example of Sect. 2. We
formalize the protocol in LAN by making use of definitions F1–F3 and O1–O3,
and apply it to two concrete situations where an agent must invoke the protocol
to make a decision. Our formalization will be used to demonstrate that the
protocol is insufficient relative to its assumed aims (i.e. T1 and T2 of Sect. 2).
We close by discussing the source of the aforementioned failure, arguing how the
protocol and corresponding logic could be extended to repair such deficiencies.

For the formalization of the protocol, we take sur and nur to denote the
agents ‘surgeon’ and ‘nurse’, respectively. The action language consists of the
atoms scalp, leave and call, respectively describing ‘using a scalpel’, ‘leav-
ing the operation room’ and ‘calling the safety-emergency number’. Let incis,
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operation, dire, health, safety nur and safety sur be propositional atoms
denoting ‘the incision is made’, ‘the situation is an operation’, ‘the situation is
dire’, ‘the patient’s health is promoted’, ‘hygiene safety is promoted from the
nurse’s perspective’ and ‘hygiene safety is promoted from the surgeon’s perspec-
tive’, respectively. Consider the following possible formalization of the protocol:

P1. (operation ∧ O[�sur]incis) → O[scalpsur]incis
P2. (operation ∧ ¬dire) → F[scalpnur]�
P3. O[�nur]health ∧ O[�nur]safety nur and

O[�sur]health ∧ O[�sur]safety sur
E1. ¬safety nur → (O[leavenur]� ∧ O[callnur]�) and

¬safety sur → (O[leavesur]� ∧ O[callsur]�)

As an example of how to interpret the formulae above, we read P2 as: ‘if there is
an operation and the situation is not dire, then the nurse is prohibited to use the
scalpel (irrespective of its outcome)’. We are currently interested in whether the
protocol is consistent, and whether it can provide agents with sufficient tools to
solve normative issues (in situations relevant to our example). Concerning the
former, consistency will be shown via the construction of a model for P1–P3 and
E1 (below). Regarding the latter, let us consider some possible situations.

Situation 1. In the operation room Anna, the head-surgeon, and a nurse named
Bill are performing a tonsillectomy on a patient (i.e. the patient’s tonsils are to be
removed). Anna must make a final highly demanding dissection, involving both
hands, when she realizes that another crucial incision had to be made using the
harmonic scalpel (a scalpel that simultaneously cauterizes tissue). Since Anna is
preoccupied and unable to do it, she appeals in this dire situation to Bill, asking
whether he could make the other necessary incision with the harmonic scalpel,
thus ensuring the patient’s health. The situation is formalized accordingly:

(i) operation ∧ dire ∧ [scalpsur]will�
(ii) [scalpnur]wouldincis

(iii) [scalpnur]would¬health
(iv) �(incis → health)

Bill is aware of the new protocol: he knows he is not allowed to use scalpels
in regular situations but remembers his duty to the patient’s health too. What
should Bill do? The protocol tells Bill that he has the obligation to promote
the patient’s health (i.e. O[�nur]health, follows from P3). Since the surgical
situation is dire (i) principle P2 does not apply. What is more, since using the
scalpel to make the incision is Bill’s only way to promote the patient’s health—
by (ii)–(iv)—Bill in fact has the obligation to make the incision with the scalpel;
that is, the following is valid:

(i) ∧ (ii) ∧ (iii) ∧ (iv) ∧ P1 ∧ P2 ∧ P3 ∧ E1 → O[scalpnur]incis

Consequently, Bill is not prohibited from using the scalpel (i.e. ¬F[scalpnur]�
follows from definition O3, LAN reasoning and V5).

Furthermore, to see whether Bill complies with the protocol when he actually
brings about the incision with the scalpel—i.e. (v) [scalpnur]willincis—consider
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the corresponding LAN-model in Fig. 1. Namely, the model shows that Bill’s
behaviour (v), together with the formalized protocol P1–P3 and E1 and the
present situation (i)–(iv), can be consistently represented together with Bill’s
actual norm compliance; i.e. (vi) 〈N〉¬vnur. For that reason, Bill’s decision to
make the incision using the scalpel preserves the state of compliance (neverthe-
less, as expected, it can still be the case that, due to some other action of Bill’s,
a violation is generated). (See [12] for a discussion of protocol consistency, com-
pliance and model checking.) Conversely, if Bill actually decides to not use the
scalpel, a norm violation will be inevitable; that is, the following is valid:

(i)∧ (ii)∧ (iii)∧ (iv)∧P1∧P2∧P3∧E1∧ [scalpnur]will� → [scalpnur]willvnur

Last, we note that Fig. 1 also shows the consistency of the formalized protocol.

Fig. 1. An LAN-model satisfying P1–P3, E1 and (i)–(v); that is, showing the consis-
tency of the protocol and Bill’s actual behaviour with Bill being compliant in situa-
tion 1.

Situation 2. Let us continue the above example: right before Bill performs
the procedure involving the scalpel, Bill accidentally hits his own arm with the
harmonic scalpel and inflicts a painful wound. Bill and Anna know, since Bill
has now violated his obligation (P3) to preserve the required hygiene safety, that
he is obliged (E1) to immediately leave the operation room and call the safety-
emergency number for assistance. However, Anna observes that the necessary
incision still has to be made in order to secure the agent’s health, so she concludes
that Bill must stay and assist her immediately without further ado. The situation
is formalized accordingly:

(vii) ¬safety nur (viii) [leavenur]would¬health

First, we observe that given E1 and (vii) , Bill has the obligation to leave (i.e.
O[leavenur]�). However, through (viii), the act of leaving would imply that Bill
violates his obligation to preserve the patient’s health (i.e. O[�nur]health). In
fact, the current situation and the formalized protocol are inconsistent; namely,
(vii)–(viii), together with P1–P3 and E1, would render in LAN that Bill has an
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obligation to leave and to not leave (i.e. O[leavenur&leave
nur]�). This incon-

sistency depends on the assumption T1 (cf. (R6) of Definition 5), which is the
committee’s assumption that there is a way out to every possible dilemma. In
conclusion, the formalism tells us that the protocol is current inadequate.

The source of the conflict that arises in the second situation above relates
to Chisholm’s Paradox [9] and the issue of contrary-to-duty (CTD) reasoning.
Principle E1, in fact, can be seen as a contrary-to-duty obligation and the present
system suffers from the similar problem of detachment as the initial paradox
does. In brief, a contrary-to-duty obligation is a specific obligation that comes
into force whenever a primary obligation has been violated. What is more, their
purpose is to (partially) restore compliance with the norm system (e.g. [11]).
They are often referred to as secondary obligations, to denote the fact that they
depend upon the possibility of violating primary obligations (cf. [9,19]). Such a
violation is always possible when employing norms F1–F3, O1–O3, F1′, and O1′

with LAN due to the contingency requirements addressed in Sect. 4. An extension
of our formalism to adequately account for such reasoning, is outside the scope
of this paper, and so, we leave this to future work.

6 Conclusion

In this work, we provided the sound and complete logic LAN that brings together
Anderson’s reduction of norms to be and Meyer’s reduction of norms to do. We
introduced a new category of norms—norms of instrumentality—and analyzed
its relationships with the former two classes vis-à-vis different notions of deliber-
ative action. The technical contribution of this work consists in proving the finite
model property and decidability of LAN. Since the non-normative logic presented
in [4] is an instance of LAN, we also answered the open problem for that logic’s
decidability. These results show that LAN has the potential to be employed in
automated reasoning with norms relating agency, actions and results.

In comparing the present logic with state of the art frameworks, we see three
possible directions for future work. First, as mentioned in Sect. 5, a natural way
to extend our framework would be to incorporate normative reasoning about sub-
ideal scenarios, involving a notion of contrary-to-duty norms that are primarily
designed to bring the agent back into a state of compliance with the system. We
aim to address this issue and analyze its relation to the three norm categories.

Second, our current analysis omitted consideration of permissions. The
behaviour of permissions in relation to the three norm categories is not imme-
diately clear. For example, although the notion of a weak permission appears
equivalent to the dual of an unconditional obligation in the form of O1 or O2 ,
the concept of strong permission seems to require explicit formulations in per-
missive form (cf. [13]). Moreover, as argued in [13,14], the traditional way of
representing permissions as duals of obligations is an over-simplification that
cannot adequately model many real-life scenarios. We plan to extend our for-
malism to incorporate such permissions.
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Last, since the logic LAN encompasses the Andersonian reductions analysed
in [17], but uses a third reduction using action constants, we plan to devote
future work to investigating the logic’s relation to the deontic action logic PDeL.

Acknowledgments. Work funded by projects: FWF I2982, FWF W1255-N23, FWF
Y544-N2, and WWTF MA16-028.

A Finite Model Property and Decidability

In this appendix, we provide the main technical contribution of this paper: we
show that LAN is decidable (Corollary 1), via proving the finite model property
(FMP) for the logic (Theorem 2). Our strategy is, accordingly: first, we show that
every satisfiable formula is satisfiable on a treelike model (Lemma 1). Second,
we show that the depth of the treelike model can be bounded (Lemma 2). Last,
we prove that the breadth of the model can be bounded (Lemma 3).

Lemma 1. Every formula φ ∈ LLAN satisfiable on a LAN-model, is satisfiable
at the root of a treelike LAN-model.

Proof. Let M = (W, {Wd
αi
j

: dαi
j ∈ LLAN}, {Wvαi : vαi ∈ LLAN}, R,RN, V ) be a

LAN-model with w ∈ W and assume M,w |= φ (i.e. φ is satisfiable). To show that
φ is satisfiable at the root of a treelike model we evoke an unraveling procedure
similar to the one in [5, Ch. 2.1]. We define the treelike model M t as follows:

M t = (W t, {W t
d

αi
j

: dαi
j ∈ LLAN}, {W t

vαi : vαi ∈ LLAN}, Rt, Rt
N, V t), where

– W t ⊆ ⋃
n∈N

Wn is the set of all finite sequences (w,w1, ..., wn) s.t. wRw1,
w1Rw2, ..., wn−1Rwn;

– For each αi ∈ Agt and each dαi
j ∈ Witαi , W t

d
αi
j

⊆ W t is the set of all finite

sequences (w,w1, ..., wn) s.t. wn ∈ Wd
αi
j

;
– For each αi ∈ Agt, W t

vαi ⊆ W t is the set of all finite sequences (w,w1, ..., wn)
s.t. wn ∈ Wvαi ;

– For all w,u ∈ W t, wRtu iff w = (w,w1, ..., wn), u = (w,w1..., wn, wn+1),
and wnRwn+1;

– For all w,u ∈ W t, wRt
Nu iff w = (w,w1, ..., wn), u = (w,w1..., wn, wn+1),

and wnRNwn+1;
– For all w ∈ W t, w = (w,w1, ..., wn) ∈ V t(p) iff wn ∈ V (p).

The model M t is clearly treelike. Further, Prop. 2.14 and 2.15 of [5] imply:

(1) For any formula ψ ∈ LLAN, each u ∈ W , and each u ∈ W t of the form

(w,w1, ..., u), we have that M,u |= ψ iff M t,u |= ψ.
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This result, together with the assumption M,w |= φ, implies M t, (w) |= φ,
where (w) is the root of the treelike model M t. To complete the proof, we
must argue that M t is a LAN-model, i.e., it satisfies conditions (R3)–(R6) of
Definition 5:

(R3) Let w,u,v ∈ W t and suppose wRt
Nu and wRt

Nv. By definition of
Rt

N we get (i) w is a sequence of the form (w,w1, ..., wn), (ii) u is a sequence
(w,w1, ..., wn, wn+1), (iii) v is a sequence (w,w1, ..., wn, w′

n+1), (iv) wnRNwn+1,
and (v) wnRNw′

n+1. Since the original model M satisfies (R3), it follows from
(iv) and (v) that wn+1 = w′

n+1, which, together with (ii) and (iii), implies u = v.
(R4) Let w,u ∈ W t and assume wRt

Nu. By definition of Rt
N we get (i) w is

a sequence of the form (w,w1, ..., wn), (ii) u is a sequence (w,w1, ..., wn, wn+1),
and (iii) wnRNwn+1. Since the original model M satisfies (R4), it follows from
(iii) that wnRwn+1, which, together with (i) and (ii), implies wRtu.

(R5) Let w ∈ W t and Agt = {α1, ..., αn}. Suppose there are (not nec-
essarily distinct) action-types Δ1, ...,Δn ∈ ActLAN s.t. for 1 ≤ i ≤ n there
exist ui ∈ W t s.t. wRtui and ui ∈ W t

t(Δ
αi
i )

. It follows that w is of the form
(w,w1, ..., wn) and each ui is of the form (w,w1, ..., wn, ui) with wnRui. The
model M satisfies condition (R5), and hence there exists a world v ∈ W
s.t. wnRv and v ∈ Wt(Δ

α1
1 ) ∩ · · · ∩ Wt(Δαn

n ). By definition of M t, we have
v = (w,w1, ..., wn, v) ∈ W t, implying that wRtv and v ∈ W t

t(Δ
α1
1 )

∩· · ·∩W t
t(Δαn

n )
.

(R6) Let w ∈ W t and αi ∈ Agt. Assume there is a v ∈ W t s.t. wRtv and
v ∈ W t

vαi . This implies w = (w,w1, ..., wn) and v = (w,w1, ..., wn, v) with wnRv.
Since M satisfies (R6), there is a u s.t. wnRu and u ∈ W − Wvαi . By definition
of M t, there is a u = (w,w1, ..., wn, u) ∈ W t s.t. wRtu and u ∈ W t − W t

vαi .

For the second transformation we define the following auxiliary concepts:

Definition 7 (Degree deg(·)). The modal degree is recursively defined as:

– deg(p) = deg(dαi
j ) = deg(vαi) = 0;

– deg(¬φ) = deg(φ);
– deg(φ → ψ) = max{deg(φ), deg(ψ)};
– deg( �φ) = deg(�φ) = deg(〈N〉φ) = deg([N]φ) = deg(φ) + 1.

Definition 8 (Height height(·) and Depth). Let M be a treelike model. We
define the height of a node w in M recursively as follows:

– height(w) = 0, if w is the root of M ;
– height(w) = height(u) + 1, if uRw in M .

The depth of M is the maximum height among all the worlds in M .

Lemma 2. Every formula φ satisfiable at the root of a treelike LAN-model, is
satisfiable at the root of a treelike LAN-model with finite depth (specifically, with
a depth equal to deg(φ)).
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Proof. Let M = (W, {Wd
αi
j

: dαi
j ∈ LLAN}, {Wvαi : vαi ∈ LLAN}, R,RN, V ) be a

treelike LAN-model with root w ∈ W and assume M,w |= φ. We first construct
a treelike model Md of finite depth by restricting the depth of Md to deg(φ) and
argue that φ is satisfiable at the root w of Md. We define Md as follows:

Md = (W d, {W d
d

αi
j

: dαi
j ∈ LLAN}, {W d

vαi : vαi ∈ LLAN}, Rd, Rd
N, V d), where

– For all w ∈ W , w ∈ W d iff height(w) ≤ deg(φ);
– For all dαi

j ∈ LLAN, W d
d

αi
j

= Wd
αi
j

∩ W d;

– For all vαi ∈ LLAN, W d
vαi = Wvαi ∩ W d;

– Rd = R ∩ (W d × W d);
– Rd

N = RN ∩ (W d × W d);
– For all p ∈ V ar, V d(p) = V (p) ∩ W d.

The model Md is treelike with finite depth. Further, Lem. 2.33 in [5] gives us:

(2) For any formula ψ ∈ LLAN s.t. deg(ψ) ≤ deg(φ) and any world u ∈ W d s.t.

height(u) ≤ deg(φ) − deg(ψ),M, u |= ψ iff Md, u |= ψ.

From (2) we conclude that Md, w |= φ. Last, we show that Md is a LAN-model:
(R3) Let w, u, v ∈ W d and assume wRd

Nu and wRd
Nv. By definition of Md,

we know that w, u, v ∈ W and that wRNu and wRNv. Since the original model
M satisfies property (R3), we have that u = v.

(R4) Let w, u ∈ W d and assume wRd
Nu. By definition of Md, we get w, u ∈ W

and wRNu. Since M satisfies property (R4), it follows that wRu. By the fact
that w, u ∈ W d and the definition of Md, we obtain wRdu.

(R5) Let w ∈ W d and Agt = {α1, ..., αn}. Suppose there are (not necessarily
distinct) complex action-types Δ1, ...,Δn ∈ ActLAN s.t. for 1 ≤ i ≤ n there exist
ui ∈ W d s.t. wRdui and ui ∈ W d

t(Δ
αi
i )

. By definition of Md, it follows that wRui

holds for each i ∈ {1, ..., n} with height(ui) ≤ deg(φ). Since M satisfies (R5),
we know there exists a v ∈ W s.t. wRv and v ∈ Wt(Δ

α1
1 ) ∩ · · · ∩ Wt(Δαn

n ). We
know v ∈ W d since height(v) = height(ui) ≤ deg(φ), which implies wRdv and
v ∈ W d

t(Δ
α1
1 )

∩ · · · ∩ W d
t(Δαn

n )
by definition of Md.

(R6) Let w ∈ W d and αi ∈ Agt. Assume there exists a v ∈ W d s.t. wRdv
and v ∈ W d

vαi . By definition of Md, we know that wRv holds with height(v) ≤
deg(φ). Since M satisfies (R6), we know there exists a u ∈ W s.t. wRu and
u ∈ W − Wvαi . Since height(u) = height(v) ≤ deg(φ), it follows that u ∈ W d,
wRdu, and u ∈ W d − W d

vαi .

Lemma 3. Every formula φ satisfiable at the root of a treelike LAN-model with
finite depth equal to deg(φ), is satisfiable at the root of a treelike LAN-model with
finite depth and finite branching (i.e., φ is satisfiable on a finite model).
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Proof. Let M = (W, {Wd
αi
j

: dαi
j ∈ LLAN}, {Wvαi : vαi ∈ LLAN}, R,RN, V ) be a

treelike LAN-model with depth equal to deg(φ) with root w ∈ W and assume
M,w |= φ. Let V ar(φ) be the set of propositional variables occurring in φ. We
define the set Atoms as V ar(φ) ∪ Wit ∪ {vαi : αi ∈ Agt}. By Prop. 2.29 in
[5], we know there are only a finite number of modal formulae (up to logical
equivalence) built from the finite set Atoms with degree less than or equal to
deg(φ). We use Θ to denote this collection of (equivalence classes of) formulae.

Using Θ, we first provide a selection procedure, similar to Thm. 2.34 of [5],
to construct a finite model Mf and show that the root of this model satisfies φ.
Last, we show that Mf is indeed a LAN-model. We construct Mf as follows:

Mf = (W f , {W f

d
αi
j

: dαi
j ∈ LLAN}, {W f

vαi : vαi ∈ LLAN}, Rf , Rf
N, V f ), where

– W f is the set obtained from the selection procedure (below);
– For all dαi

j ∈ LLAN, W f

d
αi
j

= Wd
αi
j

∩ W f ;

– For all vαi ∈ LLAN, W f
vαi = Wvαi ∩ W f ;

– Rf = R ∩ (W f × W f );
– Rf

N = RN ∩ (W f × W f );
– For all p ∈ V ar, V f (p) = V (p) ∩ W f .

Selection Procedure. We build our domain W f by selecting a sequence of states
S0, S1, ..., Sdeg(φ) up to a height of deg(φ), where S0 = {w}. Each subscript i
of Si represents that the states contained in the associated set are at a height
of i in the original model M . Suppose that the sets S0, S1, ..., Si have already
been chosen; we now explain how to select the set Si+1 with i + 1 ≤ deg(φ).
For each formula ψ ∈ Θ equivalent to a formula of the form �χ or 〈N〉χ with
deg(ψ) ≤ deg(φ) − i s.t. M,u |= ψ for some u ∈ Si ⊆ W , we choose a v ∈ W s.t.
uRv (or, uRNv, depending on the modality in ψ) and M,v |= χ. We define the
domain W f = S0 ∪ S1 ∪ ... ∪ Sdeg(φ).

The next statement is a consequence of this selection procedure [5, pp. 76–77]:

(3) For any formula ψ ∈ Θ s.t. deg(ψ) ≤ deg(φ) and any world u ∈ W f s.t.

height(u) ≤ deg(φ) − deg(ψ),M, u |= ψ iff Mf , u |= ψ.

From (3), together with M,w |= φ, φ ∈ Θ, deg(φ) ≤ deg(φ), w ∈ W f, and
height(w) ≤ deg(φ), we infer Mf , w |= φ. We show that Mf is an LAN-model:

(R3) Let w, u, v ∈ W f and assume wRf
Nu and wRf

Nv. By definition of Mf ,
wRNu and wRNv hold. Since the model M satisfies (R3), we obtain u = v.

(R4) Let w, u ∈ W f and assume wRf
Nu. By definition of Mf , wRNu must

hold. Since the original model M satisfies (R4), we have wRu, and because Rf

is the set R restricted to W f , which contains w and u, we infer wRfu.
(R5) Let w ∈ W f and let Agt = {α1, ..., αn}. Suppose there are (not neces-

sarily distinct) complex action-types Δ1, ...,Δn ∈ ActLAN s.t. for all 1 ≤ i ≤ n

there exists a ui ∈ W f s.t. wRfui and ui ∈ W f

t(Δ
αi
i )

. By definition of Mf , this
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implies wRui, ui ∈ Wt(Δ
αi
i ), and height(ui) ≤ deg(φ) for each i ∈ {1, ..., n}.

Since M satisfies (R5), we know that there exists a v such that wRv and
v ∈ Wt(Δ

α1
1 ) ∩ · · · ∩ Wt(Δαn

n ), i.e., M,w |= �(
∧

1≤i≤n t(Δαi
i )). Observe that

because height(w) + 1 = height(ui) ≤ deg(φ) that 1 ≤ deg(φ), implying that
�(

∧
1≤i≤n t(Δαi

i )) ∈ Θ, because deg(
∧

1≤i≤n t(Δαi
i )) = 0. Consequently, by the

selection procedure a v′ ∈ W such that wRv′ and M,v′ |= ∧
1≤i≤n t(Δαi

i ) must
have been selected and placed in Sheight(v′). Hence, there exists a v′ ∈ W f s.t.
wRfv′ and v′ ∈ W f

t(Δ
α1
1 )

∩ · · · ∩ W f
t(Δαn

n )
.

(R6) Let w ∈ W f , αi ∈ Agt, and assume there is a v ∈ W f s.t. wRfv and v ∈
W f

vαi . By definition of Mf we infer wRv and v ∈ Wvαi with height(v) ≤ deg(φ);
hence, there exists a u ∈ W s.t. wRu and u ∈ W−Wvαi with height(u) ≤ deg(φ).
It follows that M,w |= �¬vαi . Since height(w) = height(v) + 1 ≤ deg(φ), we
know that 1 ≤ deg(φ), and so, �¬vαi ∈ Θ. By the selection procedure, a u′ ∈ W
s.t. wRu′ and u′ ∈ W − Wvαi must have been chosen and placed in Sheight(u);
hence, u′ ∈ W f , wRfu′, and u′ ∈ W f − W f

vαi .

Theorem 2. LAN has the finite (tree) model property, i.e., every satsifiable
formula is satisfiable on a finite, treelike model.

Proof. Follows from Lemmas 1, 2, and 3.

Corollary 1. The satisfiability problem of LAN is decidable.

Proof. By [5, Thm. 6.15], we know that if a normal modal logic is finitely axiom-
atizable and has the FMP, then it is decidable, which is the case for LAN.
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