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Abstract. Lexical ambiguity is present in many natural languages, but
ambiguous words and phrases do not seem to be advantageous. There-
fore, the presence of ambiguous words in natural language warrants
explanation. We justify the existence of ambiguity from the perspective
of the context dependence. The main contribution of the paper is that
we constructed a context learning process such that the interlocutors can
infer opponent’s private belief from the conversation. A sufficient condi-
tion is proved to show if the learning can be successful. Furthermore, we
investigate when the learning fails, how the interlocutors choose among
degrees of ambiguous expressions through an adaptive learning.

Keywords: Ambiguity · Context learning · Uncertain signaling ·
Reinforcement learning

1 Introduction

Natural language involves various kinds of uncertainties such as vagueness, syn-
onymy and ambiguity. Among those uncertainties, lexical ambiguity is one of
the most common features in language. Lexical ambiguity lies in the fact that a
word could have more than one interpretations. For example, the word “mole”
in English can be used to refer to “a dark spot on the skin”, to “a burrowing
mammal”, to “a spy”. In terms of information transaction, ambiguity does not
seem an optimal choice. It is because the use of ambiguous expressions may cause
the failure of information transaction and misunderstandings. We have not run
out of possible words, why not invent a new word for any one of the meanings
for ambiguous words? Therefore, the existence of ambiguous words needs an
explanation.

In linguistics and game theory, many people have discussed this problem,
and in most works, it is argued that being precise is expensive and unnecessary.
Language, therefore, optimizes the balance of the benefits of precision with the
costs of lexicon size (see Piantadosi et al. 2012; O’Connor 2014a; Santana 2014).
The core of this argument relies on the fact that the context of the conversation
can fill in information gaps left by ambiguity. According to Grice’s cooperative
principle (see Grice 1968) the conversational inference is based on the notion
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of common ground. From Stalnaker (2002), common ground is defined as the
mutually recognized shared information in a situation where an act of trying to
communicate takes place. In a conversation, common ground is treated as the
conversational context, which plays an essential role in the pragmatic under-
standing of the language.

Furthermore, the influence of the context on the use of language depends on
how much mutual information the interlocutors share and what kind of vocab-
ularies is available. As the context gets clear, the more ambiguous word may
be sufficient for transferring the information. However, it has not been fully
investigated that where the context comes from and how the context affects the
interlocutors’ choice of words with different degrees of ambiguity.

The goal of this paper is to justify the existence of ambiguity from the per-
spective of the context dependence. We construct a context learning process in
a signaing game for building the common ground of the conversation along the
interactions. After that, the interlocutors’ preferences of ambiguous words can
be tracked as the context varies.

More specifically, we consider two interlocutors, a sender (S) and a receiver
(R), are conducting a conversation for transferring information. They both have
some personal beliefs about the communicating information. As the communi-
cation goes on, the interlocutors gradually infer the other’s private belief from
the result of each interaction. After repeated interactions, players are able to
form a common ground, which serves as the context for the conversation. In
addition, during the learning process, interlocutors’ choices of ambiguous words
may change as their beliefs about the context vary.

The following graph summarises the discussion above.

Preferences of ambiguous words 

change along the conversation

For implementing the idea above, we use Lewis’s signaling game as our base
model for the learning process (see Lewis 1969). Lewis’s signaling game describes
a very general communication scenario where a sender observes the situation (a
state of the world) and then sends a signal to a receiver. The receiver takes
an action based on the signal he receives. The payoff in the game depends on
the state of the world and the action the receiver takes. The uncertainty of the
signaling game comes from the receiver’s ignorance of the true state. He can only
obtain the information from the signals that the sender sends. The model has
been widely used in exploring language communication (see O’Connor 2014b;
Huttegger et al. 2010; Huttegger 2007; Zollman 2005; Jäger 2014).
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Based on the Lewis’s signaling game, we made two main changes to the
model. The first change is to add players’ private beliefs about the communicat-
ing information into the game. The second change is to expand the set of signals
such that we can discuss ambiguous words with different degrees. With these
two changes, we construct a context learning process through which the players
are learning each other’s beliefs during the repeated interactions. A sufficient
condition is provided under which the learning is successful. After the players
learned each other’s private belief, they can form a mutual belief that serves as
the common ground of the conversation. Furthermore, when the learning fails,
though there is uncertainty about opponent’s belief, we show that players still
have a strong tendency to choose ambiguous expressions. We explore an uncer-
tain signaling through the reinforcement learning mechanism.

The structure of the paper is the following. In Sect. 2, we first extend Lewis’s
signaling game such that each player has private belief about the communicating
information. Then we discuss how players can learn opponent’s private belief
from the repeated communication. In Sect. 3, we establish a sufficient condition
on the game under which the learning is successful. Under this condition, we
discuss how the common ground of the conversation can be formed. In Sect. 4,
we explore, when the learning fails, players’ preferences of different ambiguous
expressions through the reinforcement learning signaling. The paper ends with
a comparison between our model and existing models on discussing uncertain
signaling and pragmatic reasoning in conversation.

2 Signaling Game with Private Belief (SPB)

As the conversation goes, the interlocutors’ beliefs about the communicating
information change. For studying this dynamic process, we develop a new sig-
naling game called signaling game with private belief (SPB). Based on Lewis’s
classical model, we assume that each player has private belief about the com-
municating information before the communication starts. Formally, we define
players’ private beliefs as partitions on the set of the states as follows.

Definition 1. Given a set of finite states T , a private belief of player i indicated
as Bi is defined as a partition on T . Each component of the belief partition is
called an element of the partition that is indicated as Bik, k ∈ N .

When the game begins, nature reveals the information to the sender. At
the same time, since the receiver has private information about the state, he is
also aware of relative information about the true state1. The sender then sends
a signal that carries information about the true state. By combining the signal
information and his private information, the receiver takes an action that decides
both players’ benefits. Moreover, We argue that by observing the outcome of the
game, the sender can possibly infer the receiver’s private belief.

States and actions can have a broad interpretation. The most obvious way
to understand them is that the state is some important fact about the outside
1 Similar idea appeared in Santana (2014)’s work.
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world and the action is some response to that fact. The state might be whether
it is raining and the action might be to take an umbrella. But, the state might be
something more internal, like the desire for the receiver to hold a certain belief.
Similarly the action might be private, like coming to believe something.

Formally, SPB model is defined as follows.

Definition 2. A signaling game with private belief (SPB) consists of the fol-
lowing parts:

– two players: player 1 and player 2;
– two roles: a sender and a receiver;
– a set of states T : {1, 2, . . . , n}, each state is assumed to occur with the same

probability.
– a set of possibly ambiguous signals S with conventional meanings;
– each player i has private belief Bi that is unknown to their opponents;
– a set of actions A : {a1, a2, . . . , an};
– Sender’s strategy is a function f : T → S, the receiver’s strategy is a function

g : S × Bi → P(A), i ∈ {1, 2}, where P(A) is the power set on A.
– A payoff function u for both players,

u(t, A,Bi∈{1,2}) =
{ 1

|A| if at ∈ A, |A| represents the size of the setA,
0 Otherwise.

where t ∈ T and A ∈ P(A);

An example (Example 1) is provided below for illustrating the concepts of
the game.

Example 1. The game consists of the following parts.

– Two players: player 1, player 2
– Two roles: a sender, a receiver
– A set of states {1, 2, 3, 4} occuring with equal probability;
– A set of signals s1, s2 with commonly known conventional meanings (s1 indi-

cates the states {1, 2},s2 indicates the states {3, 4}).

1, 2||3, 4
s1||s2

Since each signal can represent two different states, we say both signals are
ambiguous. We use “||” to indicate partitions on the meaning of signals and
“|” to indicate the partitions of the private belief.

– Each player has a private belief about the states and does not know the
opponent’s belief. We assume that player 1’s private belief is

1, 2|3, 4
B11|B12
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which means that player 1 can distinguish {1, 2} from {3, 4} but not further.
And player 2’s private belief is

1|2, 3, 4
B21|B22

– A set of actions {a1, a2, a3, a4}
Firstly, we suppose that player 1 is the sender and player 2 is the receiver.

Then, for each possible state, the game is played as follows.

Table 1. Play of the game in Example 1 (1)

State Signal Revealed information Receiver’s reasoning Payoff

1 s1 B21 B21 ∩ s1 1

2 s1 B22 B22 ∩ s1 1

3 s2 B22 B22 ∩ s2 1/2

4 s2 B22 B22 ∩ s2 1/2

Table 1 shows for each state, what signal the sender sends, how the receiver
reasons and what the outcome of the game is. For instance, the first row indi-
cates that when state 1 occurs, the sender sends signal s1. The receiver reads
the information from the signal that is {1, 2}, then combines it with his private
belief B21 that is {1}, which yields the information {1}. Because {1} is precise,
the receiver is able to take the correct action which guarantees the best payoff
for both players. In this example, the result holds trivially because the receiver’s
private belief already reveals the precise state information even without the infor-
mation from the sender. Since the sender does not know the receiver’s private
belief, he sends the ambiguous signal anyway. But in row 3, the outcome infor-
mation is {3, 4}, which yields the finer information than the receiver’s private
belief. Hence, combining personal belief and signal information is essential in
this case.

After communicating repeatedly, player 1 (sender) is able to infer player
2’s (receiver) private belief by comparing the differences between the outcomes
resulting from his inference and the actual outcome of the game. Player 1’s
inference about player 2’s private belief with respect to Table 1 can be described
as follows. For simplicity, we assume that both players know that players’ belief
partition contains two elements2. At each stage of the inference, from the sender’s
point of view, all the possible configurations of the receiver’s private belief are
listed.

At the initial stage, since only partitions with two elements are considered,
the receiver’ private belief has only three possibilities. They are

1|2, 3, 4 1, 2|3, 4 1, 2, 3|4
2 This assumption is just for simplifying the illustration.
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After state 1 occurs, the sender does some counterfactual reasoning. Specifi-
cally, the sender reasons that what the outcome of the game will be if he plays
the game with the receiver who holds one of the three possible beliefs. It is easy
to observe that only the first one yields payoff 1, which is consistent with the
actual outcome in Table 1. Therefore, the other two possibilities are eliminated.
Therefore, player 1 has learned that player 2’s private belief is 1|2, 3, 4.

The order of the occurrence of the states affect the learning process. If state
3 or state 4 occurs first, then the learning procedure may be different. The
following analysis shows player 1’s reasoning process when state 3 occurs first.

The initial stage is the same, there are three possibilities

1|2, 3, 4 1, 2|3, 4 1, 2, 3|4

After state 3 is communicated, the third possibility yields payoff 1 that is
different from the actual payoff in Table 1. Therefore, the third posibility can be
eliminated. Hence, two possibilities still remain.

1|2, 3, 4 1, 2|3, 4

After state 1 is communicated, applying the similar reasoning, player 1 infers
player 2’s private belief precisely as follows.

1|2, 3, 4

Therefore, in this simple toy game, in at most two steps, namely, after com-
municating state 3 or state 4 and state 1 or state 2, player 1 (sender) is able to
infer player 2’s (receiver) private belief correctly. In addition, if player 1 is lucky
enough that state 1 or state 2 occurs earlier than state 3 or state 4, then player
1 is able to learn player 2’s private belief quickly.

Similarly, player 2 is also able to infer player 1’s private belief by playing the
role of the sender. The following part shows the reasoning process where player
2 is the sender and player 1 is the receiver.

Table 2. Play of the game in Example 1 (2)

State Signal Revealed information Receiver’s reasoning Payoff

1 s1 B11 B11 ∩ s1 1/2

2 s1 B11 B11 ∩ s1 1/2

3 s2 B12 B12 ∩ s2 1/2

4 s2 B12 B12 ∩ s2 1/2

Table 2 shows the outcomes of the game for different states. Player 2’s infer-
ence about player 1’s private belief with respect to Table 2 is simply described
as follows.
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At the initial stage, there are three possible beliefs.

1|2, 3, 4 1, 2|3, 4 1, 2, 3|4
After state 1, the first one can be eliminated.

1, 2|3, 4 1, 2, 3|4
After state 2, it keeps the same.

1, 2|3, 4 1, 2, 3|4
After state 3, only one belief remains. That is

1, 2|3, 4
In this process, state 1 (or state 2) and state 3 (or state 4) are important for

player 2 to learn player 1’s private belief.
Therefore, after a few rounds of signaling communication with role switching,

both players can learn each other’s private belief. After the opponents’ beliefs are
learned, both players can combine their beliefs. Then a common belief 1|2|3, 4
can be induced, which is obtained by taking the coarsest common refinement of
the two belief partitions.

This common belief is important for further communication. It severs as
the knowledge base for processing ambiguous expressions. For example, under
this common belief, a two signal language s1 and s2 indicating the informa-
tion {1, 2, 3} and {4} is sufficient to communicate precisely all the information
in Example 1. Nevertheless, this kind of successful communication can not be
achieved before the common belief is formed.

Moreover, if another set of signals {s1, s2, s3, } (with meanings 1, 2||3||4) is
available as well, then the more ambiguous signal set {s1, s2} (with meanings
1, 2, 3||4) is preferred given that each signal is costly.

As a result, we have built a dynamic learning process between interlocutors
through the repeated SPB model. After the learning is accomplished, even by
using the ambiguous language, players might be able to communicate all the
information precisely.

However, the learning may not be successful in the sense that some player’s
private belief can not be singled out from all possible belief partitions. Therefore,
it is natural to ask under what conditions players’ private belief is learnable. We
answer this question in details in the next section.

3 When Is Private Belief Learnable?

In the previous section, we developed a learning procedure for players to learn
each other’s private belief in a conversation. However, there are situations in
which the learning fails. The following is an example to demonstrate that players
may sometimes fail to learn their opponent’s private belief.
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Example 2. Suppose there are six states {1, 2, 3, 4, 5, 6} occurring with equal
probability, the signal structure is the following.

12||34||56
s1||s2||s3

Assume player 1’s private belief and play 2’s private belie are the followings:

1, 2, 3|4, 5, 6 1, 2|3, 4, 5, 6
B11|B12 B21|B22

Firstly, we assume that player 1 is the sender and player 2 is the receiver.
Then from the sender’s point of view, his inference is as follows.

Table 3. Play of the game in Example 2

State Signal Revealed information Receiver’s reasoning Payoff

1 s1 B21 B21 ∩ s1 1/2

2 s1 B21 B21 ∩ s1 1/2

3 s2 B22 B22 ∩ s2 1/2

4 s2 B22 B22 ∩ s2 1/2

3 s3 B22 B22 ∩ s3 1/2

4 s3 B22 B22 ∩ s3 1/2

Following Table 3, we examine player 1’s learning process for player 2’s private
belief. Similarly, we assume that player 1 knows that player 2’s belief takes the
form of a two-element partition on the set of the states. Therefore, player 1’s
learning process can be constructed as follows. Without lose of generality, we
list player 1’s learning process by communicating from state 1 to state 6.

At the initial stage, there are five possibilities.

1|2, 3, 4, 5, 6 1, 2|3, 4, 5, 6 1, 2, 3|4, 5, 6 1, 2, 3, 4, |5, 6 1, 2, 3, 4, 5|6

After state 1, the first possible belief can be eliminated.

1, 2|3, 4, 5, 6 1, 2, 3|4, 5, 6 1, 2, 3, 4, |5, 6 1, 2, 3, 4, 5|6

After state 2, it stays the same.

1, 2|3, 4, 5, 6 1, 2, 3|4, 5, 6 1, 2, 3, 4, |5, 6 1, 2, 3, 4, 5|6

After state 3, the second possible belief above can be eliminated.

1, 2|3, 4, 5, 6 1, 2, 3, 4, |5, 6 1, 2, 3, 4, 5|6
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After state 4, it keeps the same.

1, 2|3, 4, 5, 6 1, 2, 3, 4, |5, 6 1, 2, 3, 4, 5|6

After state 5, one more possibility is eliminated.

1, 2|3, 4, 5, 6 1, 2, 3, 4, |5, 6

After state 6, two possibilities still remain.

1, 2|3, 4, 5, 6 1, 2, 3, 4, |5, 6

From this learning process, it is obvious that even though every state is
communicated, player 1 still can not distinguish player 2’s private belief from
1, 2|3, 4, 5, 6 to 1, 2, 3, 4, |5, 6. In other words, player 1 knows that player 2’s pri-
vate belief is one of these two, but there is no means for player 1 to figure out
which one it is. Therefore, it is an example where players’ private belief is not
learnable. Thus, it arises a natural question that under what conditions play-
ers are able to learn each other’s private belief. For answering this question, we
examine more about the reason of the failure in Example 2.

We calculate the payoffs in the remaining two possible private belief under
each state in Example 2.

Table 4. Payoff under each state

Private belief State 1 State 2 State 3 State 4 State 5 State 6

1, 2|3, 4, 5, 6 1/2 1/2 1/2 1/2 1/2 1/2

1, 2, 3, 4, |5, 6 1/2 1/2 1/2 1/2 1/2 1/2

From Table 4, both possible beliefs yield the same payoffs under all the states.
Recall that, in the learning process, the trigger for the sender to eliminate some
private belief is the payoff differences. For example, in Example 2, from the
initial stage to stage one, the private belief 1|2, 3, 4, 5, 6 is eliminated from the
possible set. It is because 1|2, 3, 4, 5, 6 yields the payoff 1 for state 1, whereas all
other possibilities yield 1/2 for state 1. Since the true payoff is 1/2, therefore,
1|2, 3, 4, 5, 6 should be eliminated. The essential feature here is that the payoff
differences resulting from different possible private beliefs provide the sender
the opportunities to learn about the receiver’s private belief. If all the possible
private beliefs yield the same payoff, then the sender has no chance to learn
anything.

Inspired by this phenomena, we established a sufficient condition under which
the player’s private belief is learnable. Before stating the condition, we first define
formally what it means that two possible private belief are distinguishable.
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Definition 3. Given a SPB game with the set of states T , a set of actions A
and a set of signals, we say that from the player i’s point of view, two possible
private beliefs B1

−i, B
2
−i are distinguishable, if there exists a state j, such that

u(j, Aj |sj∩B1j
−i) �= u(j, Aj |sj∩B2j

−i), where j ∈ T , sj is the corresponding signal,
B1j

−i and B2j
−i are partition elements containing state j, and A ∈ P(A).

Where B−i indicates player i’s opponent’s possible private belief. u(j, Aj |sj ∩
B1j

−i) is read as the payoff with respect to the receiver’s action set Aj (indicating
that aj ∈ A) given signal sj and the private information B1j

−i.
The intuition behind this definition is just saying that if there exists a state

under which two belief partitions yield different payoffs, then they are distin-
guishable. For example, in Example 2, the belief partitions 1|2, 3, 4, 5, 6 and
1, 2|3, 4, 5, 6 are distinguishable under state 1. Moreover, the structure of the
game guarantees that under state 1, at least one of the two beliefs yields the
wrong payoff and can be eliminated.

Now we can present the sufficient condition under which a private belief is
learnable by using Definition 3.

Theorem 1. Given the SPB game, if any two of receiver’s possible private belief
partitions from the sender’s point of view are distinguishable, then the receiver’s
private belief is learnable.

Proof: See Appendix.

Theorem 1 tells us under what conditions receiver’s private belief is learnable.
The sufficient condition meets our intuition that the payoff differences provide
the sender an indication of distinguishing possible private beliefs from impossible
ones. An example can illustrate the intuition behind the theorem.

Conversation A:

Ann: Hi, morning! Are you going to the bank?
Bob: Yes, I go there every day.

Conversation B

Ann: Hi, morning! Are you going to the bank?

Bob: Yes, I have an appointment with the financial manager.

In the two conversations above, because of the ambiguity of the word “bank”,
there maybe uncertainty in the conversation. In conversation A, Ann does not
know which meaning of the bank that Bob is using. It is because from Bob’s
response, Ann can not distinguish the financial bank from the river bank. On
the contrary, in conversation B, Ann can easily infer from Bob’s response that
Bob is using the word “bank” for the financial institute.
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4 Uncertain Signaling and Ambiguity Preference

In the previous section, we provide a sufficient condition under which the players
can learn opponents’ private beliefs through the repeated signaling game. How-
ever, there are many situations such as Example 2 in which the learning fails.
We want to ask if the players are uncertain about each other’s belief, whether
ambiguous signals can be chosen. In this section, we conduct simulation studies
for exploring players’ preferences of ambiguous expressions when the opponent’s
private belief is not fully learned.

The idea is to model a communicative scenario where given a set of signaling
systems with different ambiguities, players are learning which signaling system is
more optimal. A signaling system is a set of signals with conventional meanings
with respect to the given set of the states. In the classical signaling game and
our previous discussions, we consider a game with single signaling system only.
In this section, we consider multiple signaling systems simultaneously.

In Lewis’s signaling game, each equilibrium can be represented as a partition
on a set of states, we call it a signaling system. For example, given a set of states
T : {1, 2, 3, 4, 5, 6}, the separating equilibrium can be induced from the partition
{1||2||3||4||5||6}, where we simply use || to indicate the elements in the partition.
One of the possible meaningful set of signals for the partition is that signal si
carries the meaning of state i. Apparently, in the separating equilibrium, each
signal precisely represents each state information.

One the other hand, the partial pooling equilibrium involves uncertainties for
the meaning of the signals. For instance, the partition {1234||56} can produce a
partial pooling equilibrium, in which two signals are used and each signal carries
the meanings of multiple states. Therefore, ambiguous signals can appear in
the partial pooling equilibrium. We say that signaling system {1||2||3||4||5||6}
containing more signals is more precise than the signaling system {1234||56}. In
general, for different partitions on the same set of states, the partition contains
more signals is considered less ambiguity than the one with fewer signals. We
assume that each signal in a partition have a cost c, then the partition with more
signals is more precise but more expensive.

Assuming the existence of multiple signaling systems, we assign each sig-
naling system a weight m by considering three factors. Firstly, the signaling
system gains credences from two simultaneously occurring process: one is from
the conversational information transaction, the other is from providing partial
information about opponent’s personal beliefs. In addition, we take into account
of the cost of signals. Through keeping track of the weight of each signaling
system in a reinforcement learning process, we show that ambiguous signaling
systems have advantages in this uncertain signaling process.

The reinforcement learning has been widely applied in the studies of lan-
guage evolution (see O’Connor 2014b; Skyrms 2010; Wagner 2009; Zollman 2005;
Franke and van Rooij 2011). Reinforcement learning can be described by a sim-
ple urn model with two colored balls. Every time a ball is drawn from the urn
randomly. Then, the same ball and another same colored ball are returned to
the urn. As a result, the probability of the ball with the same color being drawn
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next time is increased. When reinforcement learning is applied in the signaling
game, players’ strategies can be imagined as drawing the colored balls from the
urns of signals and acts.

We define the reinforcement learning for only sender’s choice among the
signaling systems. Since we assume the signaling systems are common knowledge,
once the sender’s strategy is fixed, the receiver’s action is also fixed. Hence, it is
sufficient to consider only the sender’s strategy.

The updating rule is the following.

wPi
(t + 1) = wPi

(t) + uj + ul − kc

where wPi
is the weight for the signaling system Pi, uj is the payoff for the result

of communicating the state information j, ul is the credence from learning the
opponent’s private beliefs while Pi is used. Formally, kc is the cost of the signaling
system Pi in which k number of signals are contained. ul is decided by counting
how many possible belief partitions can be eliminated when Pi is used. ul = l,
if one possibility is eliminated. ul = 2l, if two possibilities are eliminated. ul

is understood as how much impossibilities can be eliminated by using certain
signals. The more impossible belief can be eliminated the more learning credences
the signal can obtain. The learning here is an epistemic learning process which
is also a process of reducing uncertainties.

By calculating the weight of each signaling system, we can define a response
rule for the learning system to capture how frequently certain signals are used.
The response rule for the reinforcement learning is defined as follows.

pPi
(t) =

wPi
(t)∑

j wPj
(t)

in which the probability of Pi being chosen is calculated by the proportion of
the weight of Pi among the weight of all the possible partitions. The higher
the probability of certain signaling system is, the more frequently this signaling
system is used and hence more advantages this signaling system obtains in the
evolutionary system.

We use Example 2 for the simulation study. The signaling systems under the
consideration are

P1 : 12||34||56 P2 : 1234||56 P3 : 123456

The costs of the signaling systems are 3c, 2c and c. The ambiguity increases
from P1 to P3.

The reinforcement learning process is the following. Firstly, the occurring
state and who plays the role of the sender are decided randomly with equal
probability. Then, the sender chooses the signaling system by the response rule.
The results of communication and learning are reflected on the weight w. We
assume the original weights for all the signaling systems are the same.



Uncertain Signaling 213

If we assume the response probability pPi
= 1

3 , i = 1, 2, 3 at time t = 0, we
can calculate the expected weights according to the following equation.

EwPi
=

1
2

∑
j

1
6

∗ 1
3
(uj + ul) +

1
2

∑
j

1
6

∗ 1
3
(uj + ul) − kc

Therefore,

EwP1
=

7
12

+
3
2
l ≈ 0.58 + 1.5l − 3c,

EwP2
=

4
9

+ 3l ≈ 0.44 + 3l − 2c,

EwP3
=

1
3

+
7
2
l ≈ 0.33 + 3.5l − c

Apparently, for comparing EwPi
, we have to specify the particular values of

l and c. As the proportion of Pi changes along the learning process, it becomes
impossible to calculate manually. Hence we conduct simulations to explore the
dynamic of this learning process.

By changing the values of l and c, we got the simulation results by conducting
each trial for 2000 generations.

Figure 1 presents one instance of simulation results for different values of l
and c. The X axis shows the repeated times of communication. We repeated
2000 times for each trial. The Y axis shows the probability of each signaling
system being chosen. It is obvious that in a short time of communication, the
most precise signaling system P1 still has some advantages. However, in the long
run, the precise signaling system is dominated by the more ambiguous signaling
systems P2 and P3.

For examining the stability of the result, we also conduct simulations for
200 trials for each case. During the 200 trails, we record the frequency of each
signaling system being the best among the three with respect to the best average
probability in each trial. For example, when l = 0.2, c = 0.15 (case (f)), in the
200 trials, 77% times, P3 has the best average performance, P2 takes 22.5% of
the time while P1 takes only 0.5% of the time. When l = 0.1, c = 0.05 (case (a)),
among the 200 trials, P3 has the best average performance 45% of the time,
P2 takes 41% of the time while P1 takes 14% of the time. Overall, the most
ambiguous signaling system has the best average performance among the given
three signaling systems.

The explanation of the simulation results relies on two facts. Firstly, on bal-
ancing the information transaction and the costs of signals, the ambiguous sig-
naling systems turn out to be more optimal. Secondly, the ambiguous signaling
systems have advantages in the learning process in our models. When the com-
munication is successful through using the ambiguous expression, which means
the receiver’s private belief plays an important role in the information transac-
tion, as a result, the sender can infer the receiver’s private belief through the
outcome of this play. On the contrary, the precise signals do not have this merit.
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(a) (l=0.1, c=0.05) (b) (l=0.1, c=0.1)

(c) (l=0.1, c=0.15) (d) (l=0.2, c=0.05)

(e) (l=0.2, c=0.1) (f) (l=0.2, c=0.15)

Fig. 1. The probability of each signaling system being chosen

To conclude, in this section, we use simulation studies to examine player’s
preference on ambiguous signals when the opponent’s private belief is uncertain.
Three factors are considered in the simulations: the benefits from information
transactions, the partial information of opponents’ belief through the learning
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and the cost of the signals. The simulation results show that more ambiguous
signals are preferred in most of the situations.

5 Discussion and Conclusion

In the literature, there are many discussions about uncertain signaling and its
communication features. We discuss the similarities and differences between our
model and the established models in the literature. The models we concern are
Santana’s signaling model with belief context (see Santana 2014), the rational
speech act model from Frank and Goodman (2012), the iterated response model
by Franke and Jäger (2014) and the uncertain signaling model from Thomas
(2017).

We proposed a dynamic learning procedure of private belief for communica-
tion, which differs from the models in which a common prior of beliefs is assumed.
Santana’s signaling model is a typical signaling game with a given context back-
ground. It studies the emergence of ambiguity in a cooperation signaling game.
Based on Lewis’s signaling game, a context is added to the model. Players com-
bine both the signal information and the independent context information for
making decisions. The paper argues that the evolution favors the ambiguous sig-
naling. Our model has the similar motivation and structure as Santana’s model.
The major difference is that in Santana’s model, the context is given as the
common knowledge independent of the communication. One of the main contri-
butions of our paper is building a learning process of the context belief during
the communication. A dynamic perspective is taken in our model for both the
context formation and the preference of ambiguities.

Our model is also different from the models built on the probabilistic
(Bayesian) iterated learnings (see Frank and Goodman 2012; Goodman and
Frank 2016; Franke and Jäger 2014). Rational language use is captured by a
hierarchy over reasoning types in Franke and Jäger’s hierarchy model. An iter-
ated rationality reasoning is constructed on the strategy types in the model,
which captures the back and forth pragmatics reasoning. Rational speech act
game (in Frank and Goodman 2012) uses a Bayesian reasoning to predicate
interlocutors’ language use. Franke and Jäger’s model and the Rational speech
act model focus on the rationality and pragmatics in use of the language. The
interlocutors’ context belief is coded into the strategy types and the context
information is not fully explored.

Thomas (2017)’s uncertain signaling model generates an adaptive dynamic
to predicate ambiguous communication under which the players are lacking a
common prior. Brochhagen’s model focuses on the learning of the context belief,
but only the adaptive dynamics is explored. It lacks a full analysis of whether
and when a common context is possible to be established.

The investigation in this paper is built on the notion of information partition
that is more basic than the concept of probability. The model follows Aumann
(1976)’s tradition of “Agree to Disagree”. The difference is that Aumann’s theo-
rem has a common prior assumption and is based on only one random variable. In
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our model, we works on multiple random variables (all possible private beliefs)
and different priors. Another advantage of using information partition is that
we can discuss the content of the information from the signals as well as from
the context beliefs instead of just posterior probabilities. From the discussion
in Geanakoplos and Polemarchakis (1982), the learning of posterior probability
does not equal to learning the information itself. Hence, a model built on the
notion of information partition has more potential for exploring belief updat-
ing and learning. Moreover, the discussion based on information partition can
be easily extended to other related fields such as other extensive games and
possible world semantics in Modal Logic.

To conclude, the paper tries to justify the existence of language ambigu-
ity from the perspective of context dependence. When the context about the
conversation is commonly known, the ambiguous expression is possible to com-
municate all the information. Furthermore, as the interlocutors’ beliefs change
during the repeated conversations, the interlocutors’ preferences of degrees of
ambiguity may change as well. The main contribution of the paper is that we
construct a learning process for the players to update beliefs from the result of
each conversation. We also establish a testing condition under which whether
the learning process is successful. In addition, we discussed players’s choice of
ambiguous language when the opponent’s private belief is not fully known. A
reinforcement learning signaling game is developed for the uncertain signaling
situations.
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Appendix

Theorem 1. Given the SPB game, if any two of receiver’s possible private belief
partitions from the sender’s point of view are distinguishable, then the receiver’s
private belief is learnable.

Proof: This theorem can be proved from the players’ reasoning process on infer-
ring opponent’s private belief by playing the SPB game repeatedly. The algo-
rithm of this learning can be described as follows. For convenience, we eliminate
the subscribe indicating the players in B in the proof.

Step 1 Since T is finite, we can list all the possible private belief partitions as a
sequence B : B1, . . . , Bm;

Step 2 Calculate all the expected payoffs yielded by each Bj , j ∈ {1, 2, . . . ,m}
for each state i, i ∈ {1, 2, . . . , n};
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Step 3 Pick the first two partitions in the sequence B, B1 and B2, since any
belief partition are distinguishable, then there exists a state k such that
u(k,Ak|sk ∩ B1k) �= u(k,Ak|sk ∩ B2k). Therefore, once state k happens
(the occurrence of state k can be guaranteed because players are playing
this game repeatedly and every state is possible to occur.), by comparing
the true payoff with the payoffs given by B1 and B2, There are two
situations:
– One of the beliefs yields the true payoff, then the sender just return

the correct partition back to the sequence B.
– Neither belief yields the true payoff, then both beliefs should be elim-

inated.
Step 4 Update the sequence B, then repeat from step 1.

Since for any two private belief partitions, they are distinguishable, and at
least one of them is wrong. Hence, the list B can be eliminated to only one
element in finite steps. The remaining belief partition is receiver’s true private
belief. Therefore, receiver’s private belief is learnable. �
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Jäger, G.: Rationalizable signaling. Erkenntnis 79(4), 673–706 (2013). https://doi.org/
10.1007/s10670-013-9462-3

Zollman, K.J.S.: Talking to neighbors: the evolution of regional meaning. Philos. Sci.
72(1), 69–85 (2005)

Lewis, D.: Convention. A Philosophical Study. Harvard University Press, Cambridge
(1969)
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