
Towards an Executable Methodology
for the Formalization of Legal Texts

Tomer Libal1(B) and Alexander Steen2

1 American University of Paris, Paris, France
shaolintl@gmail.com

2 University of Luxembourg, Luxembourg City, Luxembourg

Abstract. A methodology for the formalization of legal texts is pre-
sented. This methodology is based on features of the NAI Suite, a recently
developed formalization environment for legal texts. The ability of the
tool to execute queries is used in order to drive a correct formalization
until all queries are validated. The approach is studied on a fragment
of the Smoking Prohibition (Children in Motor Vehicles) (Scotland) Act
2016 of the Scottish Parliament.

Keywords: Legal reasoning · Deontic logic · Automated reasoning

1 Introduction

The generation and maintenance of knowledge bases as a formalized representa-
tion of domain specific information is a well-established approach for enabling the
employment of automated procedures that process this information in a suitable
way. In the context of Computational Law, knowledge bases may act as large
repositories of interpretations of legal documents and therein contained norms,
for the purpose of providing semantic access to them, e.g., for employment in
legal drafting, compliance checking, and legal reasoning. While earlier research
in Legal Informatics focused on structured document representations and infor-
mation retrieval, e.g. [3], more recent work also addresses the logical structure of
the legal documents’ semantical content [14]. This structure is thereby captured
by logical rules of some adequate logical formalism which describe the contained
obligations, permissions, prohibitions, etc. and may then, in conjunction with a
concrete state of affairs, be used to derive the legal consequences with respect
to the given normative document using a deductive reasoning procedure.

In this paper, we follow the idea of using (semi-)automated reasoning tech-
nology for legal norms, but focus on the validation of legal knowledge bases
themselves. Knowledge bases may be (partly) engineered by IT professionals
since quite some expertise about its underlying technical details, e.g. knowledge
about the computer-readable input format, is potentially necessary. How can
we make sure that the representation of the legal norms actually captures the
intended meaning? The knowledge engineering can of course include erroneous

c© Springer Nature Switzerland AG 2020
M. Dastani et al. (Eds.): CLAR 2020, LNAI 12061, pp. 151–165, 2020.
https://doi.org/10.1007/978-3-030-44638-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44638-3_10&domain=pdf
http://orcid.org/0000-0003-3261-0180
http://orcid.org/0000-0001-8781-9462
https://doi.org/10.1007/978-3-030-44638-3_10

152 T. Libal and A. Steen

inputs because of limited domain knowledge available. Regardless of the domain
expertise, general errors and inaccuracies may, of course, occur in any case.
State-of-the-art methodologies for building legal ontologies [9] and for validating
formal representations of legal texts [1] rely on communication between domain
experts and IT experts for ensuring correctness. In the approach of Bartolini et
al., the knowledge is modeled by IT experts and then translated algorithmically
to a natural language representation. The latter representation is then given to
domain experts who assess its correctness. Potential errors or problems are then
reported back to the IT experts which try to accommodate the feedback. This
whole process is repeated until certain quality criteria are met. Of course, com-
munication between different domains is error-prone and laborious; the natural
language translation result is still quite complex and might hinder the proper
assessment of the data.

In contrast to this approach, we describe ongoing work towards a method-
ology that, intuitively speaking, treats the creation of legal knowledge bases as
a domain-specific agile software engineering process. The methodology aims at
enabling non-technical domain experts, here legal professionals, to control the
knowledge engineering process by using a graphical and interactive interface that
uses automated reasoning technology for providing real-time assessments of the
given inputs. This design decision is in line with other systems that address
the formalization of legal knowledge for non-technical audience, as done e.g. in
“Oracle Policy Automation” (OPA) by Oracle Corporation.1 The methodologi-
cal approach in this paper is prototypically implemented in the new normative
reasoning framework NAI [8]. NAI features a graphical annotation-based editor
which abstracts from the underlying logical language of the knowledge base. It
also incorporates easily accessible functionality for assessing the quality require-
ments of the presented methodology, including consistency, non-redundancy and
functional correctness.

Additionally, the architecture of NAI is modular in the sense that it allows
the use of different logics and reasoning engines that seem fit for the task at
hand. It also provides an API, which can be used by other tools in order to
reason over the formalized legislation. NAI is a web application and is readily
available at https://nai.uni.lu. It is open-source and its source code is freely
available at GitHub2 under GPL-3.0 license.

The contributions of the paper are: A description of a new agile methodology
inspired by behaviour-driven Development (BDD) for the creation and validation
of legal knowledge bases. Furthermore, we show how the NAI tool can be used to
implement this methodology by exemplarily formalizing a fragment of a concrete
legal document and testing the resulting knowledge basis for correctness.

1 See http://oracle.com/technetwork/apps-tech/policy-automation for further infor-
mation.

2 See https://github.com/normativeai.

https://nai.uni.lu
http://oracle.com/technetwork/apps-tech/policy-automation
https://github.com/normativeai

Towards an Executable Methodology for the Formalization of Legal Texts 153

2 Preliminaries

The logical formalism underlying the NAI framework is based on a universal
fragment first-order variant of the deontic logic DL* [7], denoted DL*1. Its
syntax is given by

Definition 1 (Syntax of DL*1). Let V , P and F be disjoint sets of symbols
for variables, predicate symbols (of some arity) and function symbols (of some
arity), respectively. DL*1 formulas φ, ψ are given by:

φ, ψ ::= p(t1, . . . , tn) | ¬φ | φ ∧ ψ | φ ∨ ψ | φ ⇒ ψ

| Idφ | Obφ | Pmφ | Fbφ | φ ⇒Ob ψ | φ ⇒Pm ψ | φ ⇒Fb ψ

where p ∈ P is a predicate symbol of arity n ≥ 0 and the ti, 1 ≤ i ≤ n, are
terms. Terms are freely generated by the function symbols from F and variables
from V . �
DL*1 extends Standard Deontic Logic (SDL) with the normative concepts of
ideal and contrary-to-duty obligations, and contains predicate symbols, the stan-
dard logical connectives, and the normative operators of obligation (Ob), per-
mission (Pm), prohibition (Fb), their conditional counter-parts, and ideality (Id).
Free variables are implicitly universally quantified at top-level.

This logic is expressive enough to capture many interesting normative struc-
tures. For details on its expressivity and its semantics, we refer to [7].

3 The NAI Suite

The NAI suite integrates novel theorem proving technology into a usable graph-
ical user interface (GUI) for the computer-assisted formalization of legal texts
and applying automated normative reasoning procedures on these artifacts. In
particular, NAI includes

1. a legislation editor that graphically supports the formalization of legal texts,
2. means of assessing the quality of entered formalizations, e.g., by automatically

conducting consistency checks and assessing logical independence,
3. ready-to-use theorem prover technology for evaluating user-specified queries

wrt. a given formalization, and
4. the possibility to share and collaborate, and to experiment with different

formalizations and underlying logics.

NAI is realized using a web-based Software-as-a-service architecture, cf. Fig. 1.
It comprises a GUI that is implemented as a Javascript browser application, and
a NodeJS application on the back-end side which connects to theorem provers,
data storage services and relevant middleware. Using this architectural layout,
no further software is required from the user perspective for using NAI and its
reasoning procedures, as all necessary software is made available on the back
end and the computationally heavy tasks are executed on the remote servers
only. The results of the different reasoning procedures are sent back to the GUI
and displayed to the user. The major components of NAI are described in more
detail in the following.

154 T. Libal and A. Steen

Fig. 1. Software-as-a-service architecture of the NAI reasoning framework. The front
end software runs in the user’s browser and connects to the remote site, and its different
services, via a well-defined API through the network. Data flow is indicated by arrows.

3.1 The Reasoning Module

The NAI suite supports formalizing legal texts and applying various logical oper-
ations, such as consistency checks (non-derivability of falsum), logical indepen-
dence analysis as well as the creation of user queries that can automatically be
assessed for (non-)validity. After formalization, the formal representation of the
legal text is stored in a general and expressive machine-readable format in NAI.
This format aims at generalizing from concrete logical formalisms that are used
for evaluating the logical properties of the legal document’s formal representa-
tion.

There exist many different logical formalisms for capturing normative reason-
ing and extensions of it. Since the discussion of such formalisms is still ongoing,
and the choice of the concrete logic underlying the reasoning process strongly
influences the results of all procedures, NAI uses a two-step procedure to employ
automated reasoning tools. NAI stores only the general format, as mentioned
above, as the result of the formalization process. Once a user then chooses a cer-
tain logic for conducting the logical analysis, NAI will automatically translate
the general format into the specific logic resp. the concrete input format of the
employed automated reasoning system. Currently, NAI supports only the DL*1
logic from Sect. 2; however, the architecture of NAI is designed in such a way
that further formalisms can easily be supported. Some possible extensions, such
as for the treatment of exceptions, are described in Sect. 5.

The choice in favor of DL*1 is primarily motivated by the fact that it can
be effectively automated using a shallow semantical embedding into normal
(bi-)modal logic [7]. This enables the use of readily available reasoning systems
for such logics; in contrast, there are few to none automated reasoning systems

Towards an Executable Methodology for the Formalization of Legal Texts 155

available for normative logics (with the exception of [5]). In NAI, we use the
MleanCoP prover [11] for first-order multi-modal logics as it is currently one of
the most effective systems and it returns proof certificates which can be inde-
pendently assessed for correctness [10]. It is also possible to use various different
tools for automated reasoning in parallel (where applicable). This is of increasing
importance once multiple different logical formalisms are supported.

3.2 The Annotation Editor

The annotation editor of NAI is one of its central components. Using the editor,
users can create formalizations of legal documents that can subsequently be used
for formal legal reasoning. The general functionality of the editor is described
in the following. A more detailed exemplary application on a concrete legal
document is presented in Sect. 4.3.

One of the main ideas of the NAI editor is to hide the underlying logical
details and technical reasoning input and outputs from the user. We consider
this essential, as the primary target audience of the NAI suite are not necessarily
logicians and it could greatly decrease the usability of the tool if a solid knowledge
about formal logic was required. This is realized by letting the user annotate legal
texts and queries graphically and by allowing the user to access the different
reasoning functionalities by simply clicking buttons that are integrated into the
GUI. Note that the user can still inspect the logical formulae that result from the
annotation process and also input these formulae directly. However, this feature
is considered advanced and not the primary approach put forward by NAI.

The formalization proceeds as follows: The user selects some text from the
legal document and annotates it, either as a term or as a composite (complex)
statement. In the first case, a name for that term is computed automatically, but
it can also be chosen freely. Different terms are displayed as different colors in the
text. In the latter case, the user needs to choose among the different possibilities
(which roughly correspond to logical connectives) and the containing text can
be annotated recursively. Composite statements are displayed as a box around
the text. An example of an annotation result is displayed in Fig. 4a.

The editor also features direct access to the consistency check and logical
independence check procedures (as buttons). When such a button is clicked, the
current state of the formalization will be translated and sent to the back-end
provers, which determine whether it is consistent resp. logically independent.

User queries are also created using such an editor. In addition to the steps
sketched above, users may declare a text passage as goal using a dedicated
annotation button, whose contents are again annotated as usual. If the query is
executed, the back-end provers will try to prove (or refute) that the goal logically
follows from the remaining annotations and the underlying legislation.

3.3 The Abstract Programming Interface (API)

All the reasoning features of NAI can also be accessed by third-party applica-
tions. The NAI suite exposes a RESTful (Representational state transfer) API

156 T. Libal and A. Steen

which allows (external) applications to run consistency checks, checks for inde-
pendence as well as queries and use the result for further processing. The expo-
sure of NAI’s REST API is particularly interesting for external legal applica-
tions that want to make use of the already formalized legal documents hosted by
NAI. A simple example of such an application is a tax counseling web site which
advises its visitors using legal reasoning over a formalization of the relevant tax
law done in the NAI suite.

4 A Methodology for the Creation of Correct
Formalizations

The formalization process essentially consists of translating an informal natural
language text into a formal logical formula or code. As mentioned before, this
step is essential for being able to apply automated reasoning techniques.

We can choose various formulae in the logic DL*1 which seem to describe a
text at hand. Each of these formulae differs in the cases in which it holds, and
in the consequences which can be derived from it.

A correct formalization means that the right formula is chosen. How can
we pick up this formula? In [1], Bartolini et al. define a methodology for the
validation of the formal representation of legal texts by a backward translation to
a human-readable text. The text is then being validated by legal experts. Mockus
and Palmirani [9] define a method for the iterative refinement of ontologies, which
is inspired by a previous work by Peroni [13]. Peroni’s work adapts approaches
from the agile methodology in software engineering. The above approaches still
depend on humans for validation. In this section we describe a new methodology
which is based on Behaviour Driven Development (BDD)3. The “behaviours”
defined by this methodology are validated by machines, similarly to those in
software engineering.

4.1 Behaviour-Driven Development in Software Engineering

Behaviour-driven development (or BDD for short)4 emerged from the process
known as test-driven development (TDD). The concept behind BDD is to provide
development and management teams with a shared process and shared tools, so
that they can effectively collaborate while developing software. To this end, it
combines the basic principles of TDD with object-oriented analysis and domain-
driven design, to make the process of creating software as optimized and effective
as possible.

In its core, BDD is simply the idea that software development should be
governed by both technical proficiencies and business interests alike. However,
besides the ideological concept, BDD does make use of specialized software in
order to achieve the desired goals. The main tool of the method is a simple

3 https://www.agilealliance.org/glossary/bdd/.
4 The description is based on the definition in http://behaviour-driven.org/.

https://www.agilealliance.org/glossary/bdd/
http://behaviour-driven.org/

Towards an Executable Methodology for the Formalization of Legal Texts 157

domain-specific language (DSL): Instead of complex lines of code, this language
uses normal English words and logical constructs to express how the software
should behave.

Using BDD in Software Engineering. BDD is a branch of the test-driven devel-
opment method, which also uses domain-specific language to convert natural
language phrases and statements into executable tests. We are talking about
sentences that start with a conditional word (should, given, when, if, etc.) and
define an outcome. For example:

– If I have two apples
– And my friend takes one
– Then I will have one apple

Basic Principles of BDD. BDD follows the basic principle that each unit of
software must be individually tested. The process usually goes like this:

1. A test is designed for the specific software unit
2. The test is made to fail
3. The unit is then implemented into the test
4. The test is done again, verifying that the implementation of the unit makes

it succeed

This basic outline allows the testing of both high and low-level software, as well
as anything in between. When using the BDD methodology, the tests should be
specified in terms of the desired behaviour of the unit in question. This behaviour
is basically the requirements set by the business entity that commissioned the
creation of the software.

Benefits of BDD. There are various benefits of using BDD in software engi-
neering. In [12] they identify seven themes in which research has shown the
advantages of BDD over other methods. Among the themes, three are especially
relevant to legal formalization and are discussed below.

Cost. Some research suggests that BDD can help keep projects within budget.
Findings are inconclusive about that. The same advantages can exist when
formalizing legal texts.

Time. There is much evidence that BDD can reduces the development time.
One of BDD’s main goals is to keep implementation limited to passing the
tests and therefore reduces implementation time. In addition, tests assure
that changes to the code still conform to previous requirements. These benefits
hold for legal formalization as well. There is much flexibility when formalizing
legal text, from very specific and detailed formalization to a more abstract
one. The level of detail depends on the intended use of the formalization. For
example, if the intended queries we plan on executing over the text do not
deal with specific laws regarding the age of the offender, there is no need to
formalize those. Similarly, changes to formalizations are required from time

158 T. Libal and A. Steen

to time, either because of changes in the law or the need to use a more
detailed level. Tests ensure that those changes are compatible with previous
requirements.

People. BDDs help bridge the gap between stack holders and programmers.
The tests are normally written by stack holders and are automatically con-
verted to code. This point is even more relevant to the legal domain. One
of the main difficulties in legal formalization is the need to have both legal
and technical/logical skills. The most popular approach to legal formalization
depends on Prolog programming skills, for example. Using BDD in legal for-
malization will allow legal experts to write the tests while programmers and
logicians will focus on the implementation of a formalization which satisfies
them.

4.2 Towards Behaviour-Driven Development of Legal Formalization

BDD has been successfully used in software engineering and we believe that it
can be adapted to legal text formalization as follows.

The lawyer writes down different scenarios which should be true (or false),
given her interpretation of the legal text. The lawyer then annotates these sce-
narios in order to translate them into test formulae. In the last step, a person
needs to annotate the legal text in a way such that all the test formulae will be
validated. It should be noted that the person in the last step must not have a
full legal understanding of the text and that in principle, this last step can even
be executed by a machine, which tries different formalization possibilities until
all test formulae are satisfied.

More formally and in alignment with the BDD process, we define the
behaviour-driven development of a legal formalization as follows:

1. The legal expert writes down a set of legal cases and their intended resolution.
2. The cases naturally fail since they are not yet handled by the formalization.

The failure is determined by the execution of the tests in a theorem prover.
3. Programmers or logicians then attempt to formalize the specific part of the

legislation which covers those cases. If the number of possibilities is finite, this
step can be automated in the future. Even if full automation is not possible,
approaches like machine learning can make it more feasible.

4. The cases are executed again to verify that the formalization correctly cap-
tures the elements of the legislation which corresponds to the cases.

We need therefore to start with a comprehensive list of scenarios and their
outcomes based on our legal interpretation. It should be noted that such scenarios
are normally based on many articles or even on the whole text. In our example,
we will derive them from one article only.

4.3 Case Study: Scottish Smoking Regulation

In this section we are going to demonstrate how the NAI suite can be used for
implementing the above methodolgy on a legal text. The text we will use is

Towards an Executable Methodology for the Formalization of Legal Texts 159

the “Smoking Prohibition (Children in Motor Vehicles) (Scotland) Act 2016”5.
This text is a good candidate for legal reasoning as it is short and relatively self
contained. It has also featured in previous research [16].

This legislation contains 19 articles which go from describing the conditions
of committing the offence to how a fine can be given and contested. In this exam-
ple, we will focus on article 1 only. A more comprehensive formalization which
includes sentences of the second part as well, is available online6.

Article 1: Offence of smoking in a motor vehicle with children

1. It is an offence for an adult to smoke in a private motor vehicle when: (a)
there is a child in the vehicle, and (b) the vehicle is in a public place.

2. Subsection (1) does not apply to a private motor vehicle that is designed or
adapted for use as living accommodation and which, at the time the smoking
occurs, is parked and is being used as living accommodation.

3. A person who commits an offence under subsection (1) is liable on summary
conviction to a fine not exceeding level 3 on the standard scale.

In order to apply automated reasoning to this text, we first need to formalize
our understanding of its meaning. In other words, we need to formalize a legal
interpretation of the text.

There are various interpretations possible even for this, relatively simple,
text. For the purpose of this example, we interpret the article as prohibiting
adults to smoke in a private motor vehicle in case: (1) there is a child in the
vehicle, (2) the vehicle is in public space and (3) the vehicle is not adapted or
designed to be used, and at the same time is being used, as living accommodation.

Violating this prohibition, the adult is liable to a fine via a summary convic-
tion.

Here we describe just a few of these scenarios. The reader is referred to the
live example in the application for more cases.

The first step in the methodology is to create the vocabulary used in the
formalization. As mentioned in Sect. 3.2, this is being done by using the term
annotation on the text. The annotated terms can then be seen on the “Vocabu-
lary” tab of the NAI suite. Figure 2 summarizes those for Article 1.

The test queries can now be created based on this vocabulary. The task of
the lawyer is to consider different terms from the vocabulary and decide what is
the expected outcome of them.

Scenario 1. An adult was smoking in a car which has a child in it and is
not in public space. We expect the adult not to be liable to a fine.

Scenario 2. An adult was smoking in a car which has a child in it, is in public
space and was not designed as living accommodation. We expect the adult to
be liable to a fine.

5 https://www.legislation.gov.uk/asp/2016/3/contents.
6 Please visit https://nai.uni.lu and log in with the credentials: smoking@nai.lu / nai.

https://www.legislation.gov.uk/asp/2016/3/contents
https://nai.uni.lu

160 T. Libal and A. Steen

Fig. 2. Vocabulary Smoking legislation article 1

The lawyer now uses the queries tab in the NAI suite in order to enter these
two scenarios. In order to differentiate the test queries from case queries (queries
written in order to solve a specific case), the test queries names are prefixed with
“Test”.

We can now annotate the two scenarios. We proceed first by annotating the
conditions with the terms from the vocabulary. The user needs to select those
from a drop down list. The expectation is then annotated as a goal. Within the
goal, we annotate our expectation that the person is liable to a fine by using
the Permission connective over the punishment fine term. The two annotated
scenarios, as well as their formalization, can be seen in Figs. 3a and b. When
executing these queries, they naturally may fail. When annotating the legal text
in the next phase, we must make sure that all the queries are now being validated.

We can now proceed with the last step - the annotation of Article 1. After
some trial and error, we have ended up with the annotation in Fig. 4a. This
annotation passes all of our test queries and we therefore conclude that it is a
faithful formalization of our interpretation of Article 1. The DL*1 formulae are
shown in Fig. 4b.

It should be mentioned that on each step, we are advised to check the consis-
tency of our annotations as well as those of the queries. The reasoning engine can
find automatically inconsistencies in our annotations, which can lead to wrong
results. In addition, it is recommended to check, on the “Formalization” tab,
that each DL*1 formula is independent. Dependent formulae are normally a
sign of an incorrect formalization.

Towards an Executable Methodology for the Formalization of Legal Texts 161

(a) Scenario 1.

(b) Scenario 2.

Fig. 3. Annotations and corresponding DL*1 formulae of the different scenarios as
presented by the NAI tool.

162 T. Libal and A. Steen

(a) Annotations as entered into the editor.

(b) Automatically created DL*1 formulae corresponding to the annotations.

Fig. 4. Formalization of article 1 of the smoking legislation in NAI.

Case Queries. Given enough tests, we can increase our confidence that the for-
malization is faithful to our interpretation. we can now better trust it to resolve
legal questions with regard to specific cases. Writing case queries is identical to
the writing of test queries. As an example, consider the following case.

Case 1. A client got a fine while driving his home car while smoking. His
teen daughter was sitting next to him. Is there a case to appeal this decision?

Here we want to check if there was an obligation in the law not to give
our client the fine. In case it is true, an appeal should be successful. When we
annotate the case above, we get that a conclusion cannot be drawn (the query

Towards an Executable Methodology for the Formalization of Legal Texts 163

is counter-satisfiable). The reason for that is because some of the conditions are
not used. Since there might be two different values to these conditions which
result in two different conclusions, the reasoner cannot determine if the query
holds. In this case, we can find in the “Vocabulary” tab one further condition -
the car should be in public space - and one further exception - the car should
also be used as a home car, and not only be designed as one. We therefore ask
the client to share more information about the case.

Case 2. The client adds further that he was indeed driving in public space.
The home car though, was not used as a home car at the time. The client has
removed the home facilities and is using the car for transportation of goods.

The addition of the new annotations gives us the answer that the policeman
was indeed permitted to give the fine. The client could enjoy the exception of
subsection (b), but he failed to use the car for accommodation. It seems better
not to appeal the fine.

5 Conclusion and Future Work

In this paper we have described a new methodology for validating legal knowl-
edge bases that is inspired by the behaviour-driven development approach from
the field of software engineering. As a first step towards implementing this
methodology, the NAI suite for normative reasoning is introduced and its appli-
cation is demonstrated on an exemplary regulation.

The presented case study suggests that the NAI tool can be used by people
without a strong IT background, as only few technical details are exposed to
the user and most of the task is supported by a graphical user interface. In
fact, one could argue that our approach also enables a broad range of users to
contribute to the built-up of a reliable legal knowledge base; once the intended
behaviour of the formalized norms are agreed upon (by legal experts), it is easy
to automatically check compliance of the generated knowledge with the afore
stated goal.

The tools presented in this paper are prototypes. Further work is required on
both the tools and their supporting theories in order to make the formalization
of legal texts easier and more intuitive. Among those improvements, the most
notable ones relate to the supporting theory and to the usability of the user
interface. We mention several such improvements here.

Currently, the NAI suite supports an expressive deontic first-order language.
This language is rich enough to describe many scenarios which appear in legal
texts. Nevertheless, more work is required in order to capture all such scenarios.
Among those features with the highest priority, we list support for exceptions,
temporal sentences and arithmetic. In this paper, we overcame the fact that sub-
section 1(b) is an exception to subsection 1(a) by explicitly mentioning the values
of the conditions of the exception. This solution is not optimal since it requires
the setting of values to these properties in all tests and cases. Possible support
for these features already exists in the form of tools such as non-monotonic
reasoners [6], temporal provers [15] and SMT solvers [4].

164 T. Libal and A. Steen

On the level of usability, the tool currently does not give any information as
to why a query is counter-satisfiable. The user needs to look on the vocabulary
in order to determine possible reasons. Integrating a model finder, such as Nit-
pick [2], will help “debugging” formalizations. Also, scalability of the proposed
approach as to be investigated in larger case studies.

NAI’s graphical user interface (GUI) aims at being intuitive and easy to use
and tries to hide the underline complexities of the logics involved. A continuously
updated list of new features can be found on the GUI’s development website7.

References

1. Bartolini, C., Lenzini, G., Santos, C.: An interdisciplinary methodology to validate
formal representations of legal text applied to the GDPR. In: JURISIN (2018)

2. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14052-5 11

3. Boella, G., Di Caro, L., Humphreys, L., Robaldo, L., Rossi, P., van der Torre, L.:
Eunomos, a legal document and knowledge management system for the web to
provide relevant, reliable and up-to-date information on the law. Artif. Intell. Law
24(3), 245–283 (2016). https://doi.org/10.1007/s10506-016-9184-3

4. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: an open, trustable
and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI),
vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02959-2 12

5. Governatori, G., Shek, S.: Regorous: a business process compliance checker. In:
Proceedings of the 14th International Conference on Artificial Intelligence and
Law, pp. 245–246. ACM (2013)

6. Kifer, M.: Nonmonotonic reasoning in FLORA-2. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 1–12. Springer,
Heidelberg (2005). https://doi.org/10.1007/11546207 1

7. Libal, T., Pascucci, M.: Automated reasoning in normative detachment structures
with ideal conditions. In: Proceedings of ICAIL, pp. 63–72 (2019). https://doi.org/
10.1145/3322640.3326707

8. Libal, T., Steen, A.: NAI: the normative reasoner. In: Proceedings of ICAIL, pp.
262–263. ACM (2019)

9. Mockus, M., Palmirani, M.: Legal ontology for open government data mashups. In:
2017 Conference for E-Democracy and Open Government (CeDEM), pp. 113–124.
IEEE (2017)

10. Otten, J.: Implementing connection calculi for first-order modal logics. In: IWIL@
LPAR, pp. 18–32 (2012)

11. Otten, J.: MleanCoP: a connection prover for first-order modal logic. In: 7th Inter-
national Joint Conference, IJCAR, pp. 269–276 (2014). https://doi.org/10.1007/
978-3-319-08587-6 20

12. Park, S., Maurer, F.: A literature review on story test driven development. In:
Sillitti, A., Martin, A., Wang, X., Whitworth, E. (eds.) XP 2010. LNBIP, vol.
48, pp. 208–213. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13054-0 20

7 https://github.com/normativeai/frontend/issues.

https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/s10506-016-9184-3
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/11546207_1
https://doi.org/10.1145/3322640.3326707
https://doi.org/10.1145/3322640.3326707
https://doi.org/10.1007/978-3-319-08587-6_20
https://doi.org/10.1007/978-3-319-08587-6_20
https://doi.org/10.1007/978-3-642-13054-0_20
https://doi.org/10.1007/978-3-642-13054-0_20
https://github.com/normativeai/frontend/issues

Towards an Executable Methodology for the Formalization of Legal Texts 165

13. Peroni, S.: A simplified agile methodology for ontology development. In: Drag-
oni, M., Poveda-Villalón, M., Jimenez-Ruiz, E. (eds.) OWLED/ORE 2016. LNCS,
vol. 10161, pp. 55–69. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
54627-8 5

14. Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., Lenzini, G.:
Formalizing GDPR provisions in reified I/O logic: the DAPRECO knowledge base.
J. Logic Lang. Inf., 1–49 (2019). https://doi.org/10.1007/s10849-019-09309-z

15. Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with
partial model guidance. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 537–543. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31365-3 42

16. Wyner, A.Z., Gough, F., Lévy, F., Lynch, M., Nazarenko, A.: On annotation of
the textual contents of Scottish legal instruments. In: JURIX, pp. 101–106 (2017)

https://doi.org/10.1007/978-3-319-54627-8_5
https://doi.org/10.1007/978-3-319-54627-8_5
https://doi.org/10.1007/s10849-019-09309-z
https://doi.org/10.1007/978-3-642-31365-3_42
https://doi.org/10.1007/978-3-642-31365-3_42

	Towards an Executable Methodology for the Formalization of Legal Texts
	1 Introduction
	2 Preliminaries
	3 The NAI Suite
	3.1 The Reasoning Module
	3.2 The Annotation Editor
	3.3 The Abstract Programming Interface (API)

	4 A Methodology for the Creation of Correct Formalizations
	4.1 Behaviour-Driven Development in Software Engineering
	4.2 Towards Behaviour-Driven Development of Legal Formalization
	4.3 Case Study: Scottish Smoking Regulation

	5 Conclusion and Future Work
	References

