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Abstract. While logical formalizations of group notions of knowledge
such as common and distributed knowledge have received consider-
able attention in the literature, most approaches being based on modal
logic, group notions of belief have received much less attention. In this
paper we systematically study standard notions of group knowledge
and belief under different assumptions about which properties knowl-
edge and belief have. In particular, we map out (lack of) preservation
of knowledge/belief properties against different standard definitions of
group knowledge/belief. It turns out that what is called group belief most
often is not actually belief, i.e., does not have the properties of belief.
In fact, even what is called group knowledge is sometimes not actually
knowledge either. For example, under the common assumption that belief
has the KD45 properties, distributed belief is not actually belief (it does
not satisfy the D axiom). In the literature there is no detailed complete-
ness proof for axiomatizations of KD45 with distributed belief that we
are aware of, and there has been some confusion regarding soundness
of such axiomatizations related to the mentioned lack of preservation.
In this paper we also present a detailed completeness proof for a sound
axiomatization of KD45 with distributed belief.

Keywords: Knowledge · Belief · Doxastic logic · Epistemic logic ·
Group belief · Distributed belief

1 Introduction

Different notions of group knowledge, such as common knowledge or distributed
knowledge, have received considerable attention in the epistemic logic literature
[5,8,20]. While most frameworks for epistemic logic are based on the modal logic
S5 for modeling individual knowledge, frameworks for belief usually are based
on weaker systems such as KD45 or K45. Group belief is routinely defined in
the same way as group knowledge in such belief logics, but has received far less
attention in the literature. In this paper we take a systematic look at standard
notions of group knowledge and belief under different assumptions about which
properties knowledge and belief have. A key question is whether or not proper-
ties of belief (e.g., KD45 or K45 properties) are preserved under the operations
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defining group knowledge from individual knowledge. We map out the answers to
that question, for different assumptions about what the properties of knowledge
and belief are against different definitions of group knowledge.

As an example, if we assume that individual belief has the KD45 properties
it is not guaranteed that distributed belief has it – the intersection of two serial,
transitive and Euclidean binary relations is not necessary serial, so distributed
belief on KD45 lacks the consistency property (D axiom). Thus, if we assume
that belief has the KD45 properties, then “distributed belief” is not belief. In
fact, we argue that group belief most often is not belief; only under very weak
or very strong assumptions about what belief is, are standard notions of group
belief actually belief. Similarly, group knowledge is not always (S5) knowledge
either.

Some of these observations are folklore in the epistemic/doxastic logic com-
munity. However, we are not aware of any existing systematic study. And there is
evidence that more awareness of the properties of group belief is needed. As far
as we are aware, no completeness proof for KD45 with distributed belief exists in
print. Furthermore, there is a problem with the soundness of an axiomatization
of doxastic logic with distributed belief on KD45 in the literature [8], exactly
due to the lack of preservation of the consistency property for distributed belief
on KD45. In this paper we provide a detailed completeness proof for a sound
axiomatization of KD45 with distributed belief.

The rest of the paper is organized as follows. In the next section we introduce
the background from the literature: modal logics of knowledge and belief, def-
initions of group knowledge and belief, and standard (combinations of) axioms
corresponding to properties of knowledge and belief. In Sect. 3 we systemati-
cally look at (lack of) preservation of properties under different notions of group
belief. A few preservation results have been established already in existing work
on graph aggregation [6]. Key observations here are summed up in Fig. 1. In
Sect. 4 we discuss axiomatizations of KD45 with distributed belief in the litera-
ture and present a detailed completeness result for a sound axiomatization. We
discuss related and future work and conclude in Sect. 5.

2 Background

We briefly review the standard language and semantics of modal epistemic and
doxastic logic. We refer to, e.g., [8] for more details.

Let prop be a countable set of propositional variables, let ag be a finite set
of agents, and let gr = ℘(ag) \ {∅} be the set of groups, i.e., the set of all non-
empty sets of agents. We define the following variants of the epistemic language
with individual belief operators Ba and with or without various combinations of
group belief operators EG, CG and DG.



Group Belief 5

Definition 1 (languages).

(BL) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ
(BLC) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ | EGϕ | CGϕ
(BLD) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ | DGϕ
(BLCD) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ | EGϕ | CGϕ | DGϕ

where p ∈ prop, a ∈ ag and G ∈ gr. Boolean operators such as �, →, ∨ and
so on are defined as usual.

While some works (e.g., [8]) use the notation Ka for both individual knowledge
and the more general notion of individual belief, we chose to use Ba for both,
treating knowledge as a special case of belief – belief as a generalization of
knowledge. EG is the operator for what is called general belief, or everybody-
believes or mutual belief, CG is common belief, and DG is distributed belief (or
knowledge).

A Kripke model M (over agents ag and propositional variables prop) is a
triple (S,R, V ), where S is a nonempty set of states, R : ag → ℘(S × S) assigns
to every agent a a binary relation Ra on S, and V : prop → S is a valuation
which associates with every propositional variable a set of states where it is true.
For any s ∈ S, the pair (M, s) is called a pointed model.

Definition 2 (satisfaction). The truth in, or satisfaction by, a pointed model
(M, s) with M = (S,R, V ) of a formula ϕ, denoted (M, s) |= ϕ, is defined
inductively as follows.

(M, s) |= p iff s ∈ V (p)
(M, s) |= ¬ϕ iff not (M, s) |= ϕ
(M, s) |= (ϕ ∧ ψ) iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= Baϕ iff for all t ∈ S, if sRat then (M, t) |= ϕ
(M, s) |= EGϕ iff for all t ∈ S, if sRE

Gt then (M, t) |= ϕ
(M, s) |= CGϕ iff for all t ∈ S, if sRC

Gt then (M, t) |= ϕ
(M, s) |= DGϕ iff for all t ∈ S, if sRD

G t then (M, t) |= ϕ

where RE
G =

⋃
a∈G Ra, RC

G is the transitive closure of RE
G, and RD

G =
⋂

a∈G Ra.
We say that ϕ is (globally) true in a model, if it is satisfied at all states of that
model.

As discussed below, we restrict the class of models depending on which properties
we assume that belief has, the strongest assumption being that the relations are
equivalence relations in the case of knowledge.
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The semantics for group belief given above are the standard definitions in the
literature. In particular, the definition of the common knowledge/belief relation
as the transitive closure of the union of the individual knowledge/belief relations
is the one used in, e.g., the standard textbook [8]1 – not only for knowledge but
also for weaker notions of belief. Some works, however (e.g., [4,5,19]), use a
slightly different definition, namely the reflexive transitive closure – although
almost always only in the context of S5 knowledge, in which case the two defini-
tions are equivalent. In the following we will still consider the latter as a possible,
alternative definition for common belief a few times. When referring to common
belief we will henceforth mean the former definition, using transitive closure, if
not otherwise stated. The latter definition, using the reflexive transitive closure,
will be referred to as “the alternative definition” when needed.

Given a class C of models and a formula ϕ, we say ϕ is valid in C if and
only if ϕ is globally true in all models of C . We usually do not choose a class
of models arbitrarily, but are rather interested in those based on a certain set
of conditions over the binary relations in a model. Such conditions are often
called frame conditions. In this paper we are going to focus on only some frame
conditions, namely those that play the most prominent roles in the context of
knowledge and belief. These conditions are

(l) seriality : ∀s ∈ S ∃t ∈ S sRat,
(r) reflexivity : ∀s ∈ S sRas,
(t) transitivity : ∀s, t, u ∈ S ((sRat & tRau) ⇒ sRau),
(s) symmetry : ∀s, t ∈ S (sRat ⇒ tRas), and
(e) Euclidicity : ∀s, t, u ∈ S ((sRat & sRau) ⇒ tRau).

It is well known that these frame conditions are characterized by the axioms

D Baϕ → ¬Ba¬ϕ,
T Baϕ → ϕ,
4 Baϕ → BaBaϕ,
B ¬ϕ → Ba¬Baϕ, and
5 ¬Baϕ → Ba¬Baϕ,

respectively (see, e.g., [3]). There are 32 combinations of these 5 frame properties,
potentially giving rise to 32 classes of models, but some of the combinations are
equivalent.

In Table 1 we list the 32 different combinations over the 5 frame properties,
and the corresponding logics over the language BL (i.e., the set of valid formulas
on the corresponding model classes). There are 15 different logics up to logical
equivalence. For logics based on the language BLC, we add a superscript C to
the name, as in KC , DC , TC , S4C , S5C , KD4C , K45C , and so on. Similarly, for
logics based on the language BLD, we add a superscript D, e.g., K45D, KD45D,
and so on. We can use this notation for logics over BLCD as well.
1 The concrete definition of the semantics of common belief in [8], as well as in many

other works (e.g. [7,9,12,13,15–17,22]), is that (M, s) |= CGϕ iff ∀k ≥ 1 : (M, s) |=
Ek

Gϕ, where E1
Gϕ stands for EGϕ and Ek+1

G ϕ for EGEk
Gϕ. As noted by [8, Lemma

2.2.1] that definition is equivalent to using the transitive closure (for arbitrary mod-
els, not only S5 models).



Group Belief 7

Table 1. Model classes and corresponding logics over the language BL, with alterna-
tive names from the literature. Names of logics that are equivalent to one with fewer
characterization axioms/frame conditions are in parentheses.

Frame
cond.

Full
name

Short
name

Equivalent
logic

Frame
cond.

Full name Short
name

Equivalent
logic

— K — — lrt (KDT4) — S4

l KD D — lrs (KDTB) — B

r KT T — lre (KDT5) — S5

t K4 — — lts (KD4B) — S5

s KB — — lte KD45 — —

e K5 — — lse (KDB5) — S5

lr (KDT) — T rts (KT4B) — S5

lt KD4 — — rte (KT45) — S5

ls KDB — — rse (KTB5) — S5

le KD5 — — tse (K4B5) — K4B

rt KT4 S4 — lrts (KDT4B) — S5

rs KTB B — lrte (KDT45) — S5

re KT5 S5 — lrse (KDTB5) — S5

ts K4B — — ltse (KD4B5) — S5

te K45 — — rtse (KT4B5) — S5

se KB5 — K4B lrtse (KDT4B5) — S5

As is convention, because of the correspondence between frame conditions
and characterization axioms, we often use the names of the corresponding logics
to refer to the class of models. For example, the word “T models” simply stands
for the class of models based on reflexive frames, and similarly “S5 models”
means the class of models based on reflexive and Euclidean (and therefore also
transitive and symmetric) frames. As already mentioned, we use “knowledge” as
a special case of belief, i.e., when belief is assumed to have the S5 properties.

3 Group Belief in Different Logics

In this section we look at (the lack of) preservation of properties of belief when
going from individual to group belief. Syntactically, this corresponds to whether
group belief satisfies the same axioms as individual belief; semantically it corre-
sponds to whether frame conditions are preserved under the group belief oper-
ations (union, intersection, etc.). As mentioned in the previous section we only
consider combinations of the five frame conditions seriality, reflexivity, transitiv-
ity, symmetry and Euclidicity.

Definition 3 (preservation). Given a model M = (S,R, V ) and a combina-
tion of frame conditions F (i.e., F ⊆ {l, r, t, s, e}), we say that:
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1. F is preserved for general belief in M , or general belief preserves F in M ,
if RE

G satisfies F whenever Ra satisfies F for every a ∈ G, for any group G;
2. F is preserved for common belief in M , or common belief preserves F in M ,

if RC
G satisfies F whenever Ra satisfies F for every a ∈ G, for any group G;

3. F is preserved for distributed belief in M , or distributed belief preserves F
in M , if RD

G satisfies F whenever Ra satisfies F for every a ∈ G, for any
group G.

A combination of frame conditions is preserved for a variant of group belief on
a class of models iff it is preserved in every model in that class.

This notion of preservation is standard in modal logic [3]. It also corresponds to
what is called collective rationality in [6] (see Sect. 5 for more details).

It is preservation on a class of models we are interested in. This says that the
properties are guaranteed to hold on that model class, for example that Euclidic-
ity is preserved for common belief on S5 models. Conversely, if a combination of
properties is not preserved on a class of models it means that there is at least
one model in that class where it is not preserved.

Lemma 1. The following hold:

1. Seriality
(a) is preserved for general and common belief on the class of all models;
(b) is preserved for distributed belief on the class of all reflexive models;
(c) is not preserved for distributed belief on the class of F ∪ {l} models, for

any F ⊆ {t, e};
(d) is not preserved for distributed belief on the class of {l, s} models.

2. Reflexivity is preserved for general, common and distributed belief on the class
of all models.

3. Transitivity
(a) is not preserved for general belief on the class of all F ∪ {t} models, for

any F ⊆ {l, r, s, e};
(b) is preserved for common and distributed belief on the class of all models.

4. Symmetry is preserved for general, common and distributed belief on the class
of all models.

5. Euclidicity
(a) is not preserved for general belief on the class of all F ∪ {e} models, for

any F ⊆ {l, r, t, s};
(b) is preserved for common belief on the class of all symmetric models;
(c) is not preserved for common belief on the class of all F ∪{e} models, for

any F ⊆ {l, t};
(d) is preserved for distributed belief on the class of all models.

Proof.

1. (a) Straightforward: the (transitive closure of) the union of serial relations is
serial.

(b) Follows from point 2 below.
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(c) The following KD45 model is a counter-example for all the cases; the
distributed belief relation is not serial:

•t

ab
�� �� a •s

b �� •u

ab
��

(d) The following KB model is a counter-example; the distributed belief rela-
tion is not serial:

•t
�� a �� •s

�� b �� •u

2. Follows from [6, Prop. 6]2.
3. (a) Consider the following S5 counterexample with two agents (which is also

a counterexample for weaker logics):

•s

ab
�� �� a �� •t

ab
�� �� b �� •u

ab
��

This frame is transitive, however, sRE
{a,b}t and tRE

{a,b}u but not sRE
{a,b}u.

(b) The common belief relation is transitive by definition. For distributed
belief, assume that sRD

G t and tRD
Gu. That means that sRat for every

a ∈ G and that tRau for every a ∈ G; which again means that sRau
for every a ∈ G by transitivity of the individual relations and thus that
sRD

Gu.
4. The cases for general and distributed belief follow from [6, Prop. 8]3.
5. (a) Follows from the same counter-example as in the case of transitivity.

(b) Let the individual relations be symmetric and Euclidean, and let sRC
Gt

and sRC
Gu. Since there is a G-path from s to t and all relations are sym-

metric, there is a G-path from t to s and thus tRC
Gs. By transitivity of

RC
G, tRC

Gu.
(c) The KD45 counter-model in the case for seriality works as a counter-

model in this case as well: we have that sRC
{a,b}t and sRC

{a,b}u but not
tRC

{a,b}u.
(d) Let the individual relations be Euclidean, and let sRD

G t and sRD
Gu. That

means that sRat and sRau for any a ∈ G, and thus by Euclidicity of Ra

that tRau for any a ∈ G. But that means that tRD
Gu.

Note that Lemma 1 implies preservation of certain combinations of proper-
ties. For example, while Euclidicity is not preserved for common belief on the
class of all models, the combination of Euclidicity and symmetry is.

From these preservation results we can deduce (the lack of) properties of
group belief operators, under different assumptions about the properties of indi-
vidual belief. In addition to preservation, sometimes group belief gets new prop-
erties; e.g., common belief is always transitive by definition. The results are
shown in Table 2 and illustrated in Fig. 1.
2 In the terminology of [6], general, common and distributed belief all correspond to
unanimous aggregation rules.

3 In the terminology of [6], general and distributed belief all correspond to neutral
aggregation rules.
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Table 2. Frame conditions and their preservation for group belief operators. The
column EB (for general belief) lists the maximal combination of properties (among
{l, r, t, s, e}) that RE

G is guaranteed to satisfy for any G in any model with the frame
conditions given in the same row. Similar conventions are used for the columns CB for
common belief and DB for distributed belief. The column CBr is for the alternative
definition of common belief using the reflexive transitive closure instead of just the
transitive closure. Bold indicates that some frame condition(s) are not preserved.

Frame cond. EB CB CBr DB Frame cond. EB CB CBr DB

K K K4 S4 K S4 T S4 S4 S4

D D KD4 S4 K B B S5 S5 B

T T S4 S4 T S5 B S5 S5 S5

K4 K K4 S4 K4 K4B KB K4B S5 K4B

KB KB K4B S5 KB K45 K K4 S4 K45

K5 K K4 S4 K5 KD5 KD KD4 S4 K5

KD4 KD KD4 S4 K4 KDB KDB S5 S5 KB

KD45 D KD4 S4 K45

Fig. 1. Solid arrows represent common belief (transitive closure of the union), dashed
arrows represent general belief (everybody-knows), and dotted arrows represent dis-
tributed belief. An arrow from one class to another means that group belief defined
over individual belief having properties of the first class (i) has properties of the second
class and (ii) does not have all the properties of any other of the classes we consider that
strictly includes the second class. For example, distributed belief on KD45 is K45, and
is not KD45 or KD4. For the alternative definition of common belief using the reflexive
transitive closure, common belief is either S5 (underlined) or S4 (not underlined).
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We leave a discussion of most of these results to Sect. 5, but let us point
to one in particular here: that seriality is not preserved for distributed belief
on KD45. This has caused some confusion; for example is an axiomatization
of KD45 with distributed belief given in [8] not sound. In the next section we
correct that result.

4 Axiomatization of KD45D

An axiomatization of KD45 with distributed belief is given in [8]. A completeness
result is claimed, however without a proof. Furthermore, the axiomatization is
in fact not sound, due to the issue mentioned at the end of the previous section
(Theorem 3.4.1 (e) is incorrect)4: the consistency (D) axiom for distributed belief
is not valid (in the class of KD45 models). As far as we know, there is no
detailed proof of completeness for axiomatizations of KD45 with distributed
belief in print. In this section we look into the KD45 logic with distributed
belief (i.e., KD45D, which is based on the language BLD), provide a (corrected)
axiomatization for it, and present a detailed soundness and completeness proof.

The axiomatization for the logic KD45D is given in Fig. 2. It consists of a
typical KD45 proof system (with axioms PC, K, D, 4, 5, and rules MP and N)
for individual belief, and a K45 proof system (with axioms PC, KD, 4D, 5D, and
rules MP and ND

5) for distributed belief with additional axioms DB1 and DB2
characterizing the effect of group inclusion on distributed belief. The soundness
of BLD is not hard to verify by Lemma 1 (or Table 2 for a quick reference).
What remains is to show the completeness of BLD.

PC all instances of tautologies MP from ϕ infer Baϕ
K Ba(ϕ → ψ) → (Baϕ → Baψ) D Baϕ → ¬Ba¬ϕ
4 Baϕ → BaBaϕ 5 ¬Ba → Ba¬Baϕ
KD DG(ϕ → ψ) → (DGϕ → DGψ) 4D DGϕ → DGDϕ
5D ¬DG → DG¬DGϕ N from ϕ infer Baϕ
DB1 D{a}ϕ ↔ Baϕ DB2 DGϕ → DG′ϕ if G ⊆ G′

Fig. 2. Axiomatization BLD, with ϕ, ψ ∈ BLD, a ∈ ag and G, G′ ∈ gr.

In the presence of distributed belief operators, the typical canonical model
definition for KD45D does not give us a proper model, thus the method cannot be
applied straightforwardly. We adapt the method of the completeness proof from
[23] which can be traced back to [10,14,21]. The proof is presented in this way.

4 We refer here to the 1995 hardcover edition of [8]. The result appears to have been
corrected in a later (2003) paperback edition; still without a proof of completeness
however.

5 The necessitation rule ND for distributed belief, i.e., “from ϕ infer DGϕ”, is provable
via N, DB1 and DB2; hence omitted.
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We start in Sect. 4.1 by showing that BLD is sound and complete with respect
to the class of all pseudo KD45 models, in which distributed belief is treated
as individual belief (i.e., in the operator DG, the group G is treated as if it is
an individual). Then, in Sect. 4.2, we define a translation between pseudo KD45
models and (genuine) KD45 models using the model construction methods of
unraveling and folding. We show that the translation preserves truth of KD45D

in Sect. 4.3, which leads to the completeness of BLD.

4.1 Pseudo Soundness and Completeness

Definition 4 (KD45 pre-model). A KD45 pre-model (pre-model for short)
for ag over prop is a tuple M = (S,R, V ) such that S is a domain and V is
a valuation function defined as usual, while R : ag ∪ gr → ℘(S × S) assigns
to every single agent a KD45 relation (i.e., a serial, transitive and Euclidean
relation) on S, and to every group of agents a K45 relation (i.e., a transitive
and Euclidean relation) on S. A pointed pre-model is a pair consisting of a
pre-model and a state of it.

A KD45 pre-model for ag over prop can be seen as a model for ag ∪ gr
over prop, where every individual is assigned a KD45 relation, and every group
is treated similarly to an individual, but assigned a K45 relation.

Satisfaction at a pointed pre-model is therefore analogous to that at a pointed
model. More precisely, given any pre-model M = (S,R, V ) and s ∈ S,

(M, s) |= p iff s ∈ V (p)
(M, s) |= ¬ϕ iff not (M, s) |= ϕ
(M, s) |= (ϕ ∧ ψ) iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= Baϕ iff for all t ∈ S, if sRat then (M, t) |= ϕ
(M, s) |= DGϕ iff for all t ∈ S, if sRGt then (M, t) |= ϕ.

The only difference between the above and Definition 2 is in the interpretation
of DGϕ, where for pre-models, we interpret using the preliminary RG relation
instead of RD

G =
⋂

a∈G Ra. In this sense, DG operators behave similarly to a Ba

operator. This is not, of course, sufficient – we want distributed and individual
belief to have certain interaction properties. In particular we need to make the
axiomatization BLD sound in the class of all semantic structures, but it is not
the case at the moment, for the axioms DB1 and DB2 are not valid in the class
of all pre-models. For this reason we define the notion of a pseudo model.

Definition 5 (KD45 pseudo model). A KD45 pseudo model (pseudo model
for short) M = (S,R, V ) is a pre-model such that

– Ra = R{a} for every agent a, and
– RG′ ⊆ RG for every G,G′ ∈ gr such that G ⊆ G′.

It is not hard to see that BLD is sound with respect to the class of all pseudo
models, for the KD45-ness of individual belief and K45-ness of distributed belief
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are required by definition of a pre-model, and DB1 and DB2 are fulfilled by the
additional constraints for being a pseudo model.

We continue to show that BLD is also complete with respect to the class of
all pseudo models. Later we shall show that any pseudo model is equivalent to a
genuine model, so that the “pseudo” completeness result leads to a completeness
result after all.

The canonical pseudo model M is a triple (S,R,V) such that:

– S is the set of all maximal BLD consistent sets of BLD formulas;6

– R is such that for all Φ, Ψ ∈ S,
• For all a ∈ ag, Φ Ra Ψ iff for all ϕ ∈ BLD, if Baϕ ∈ Φ then ϕ ∈ Ψ , and
• For all G ∈ gr, Φ RG Ψ iff for all ϕ ∈ BLD, if DGϕ ∈ Φ then ϕ ∈ Ψ ;

– V is the valuation defined by V(p) = {Φ ∈ S | p ∈ Φ} for all p ∈ prop.

It is not hard to verify that the canonical pseudo model is in indeed a pseudo
model (in particular, one can check that Ra is a KD45 relation for any agent a,
RG is a K45 relation for any group G, and the additional properties of pseudo
models also hold for RG). The rest of the pseudo completeness proof goes just
like a standard canonical model method (cf. [3]), and together with the pseudo
soundness results argued above, we get the following.

Lemma 2 (pseudo soundness and pseudo completeness). BLD is sound
and strongly complete with respect to the class of all KD45 pseudo models.

4.2 Translating a Pseudo Model to a Model

As mentioned above, pseudo soundness and completeness is not sufficient –
pseudo models are not proper models. For a proper completeness result we need
to show that any consistent set of formulas has a proper model. What remains
to do is to show that when a set of formulas has a pseudo model, it must also
have a genuine model. We do this by introducing a truth-preserving translation
from a pseudo model to a genuine model. In this section we introduce definitions
of such a translation, with its truth-perseverance shown in the next section.

To transform a pseudo model to a genuine model, we keep the same domain
and valuation function, but redefine the uncertainty relation for every agent. We
cannot just keep the uncertainty relation for each agent from the pseudo model
and simply drop those for groups, for this will lead to a loss of uncertainty for
groups which may finally make the resulting model not equivalent to the pseudo
model. Technically speaking, in order to translate a pseudo model (S,R, V ) to
a genuine model (S,R′, V ), we need to define what R′

a is for every agent a. By
doing so we have to somehow merge the information for groups containing a
into it. For example, by the definition of a pseudo model, R{a,b,c} is a subset
of R{a} ∩ R{b} ∩ R{c} ∩ R{a,b} ∩ R{b,c} ∩ R{a,c} but not necessary equal to the

6 We refer to a modal logic textbook, say [3], for a definition of a (maximal) consistent
set of formulas.
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latter.7 If we only keep the uncertainty relations for individuals, formulas such
as D{a,b}ϕ may have a different truth value before and after the translation.

We shall follow the method of unraveling and folding used in [23] which
can be traced back to the early papers [10,14,18]. Yet we cannot simply reuse
all the definitions and lemmas there, as there are subtle differences due to the
lack of reflexivity of the uncertainty relations. The following definitions and
intermediate results are adaptions of similar constructs from the S5 case found
in [23].

Definition 6 (treelike pre-models). Given any pre-model M = (S,R, V ), a
path of M from a state s0 to a state sn is a finite non-empty sequence of the
following form:

〈s0, Rτ0 , . . . , Rτn−1 , sn〉
where each si (0 ≤ i ≤ n) is a state in S, and each τj (0 ≤ j < n) is either an
agent or a group of agents such that sjRτjsj+1 holds in M . Repetitions of states
or relations are allowed in a path.

The reduction of a path is obtained by recursively replacing all of its segments
of the type 〈x,Rτ , y, Rτ , z〉 with 〈x,Rτ , z〉. Note that the reduction of a path is
unique, and is still a path, due to the transitivity of relations.

A reduced path is a path that is identical to its reduction. A pre-model M is
called treelike, if for any two states s, t ∈ S there is at most one reduced path
from s to t.

Definition 7 (extensions and grafts). Let M = (S,R, V ) be a pre-model,
and τ an agent or a group of agents. Let s and t be two paths of M .

– s is called a τ -extension of t in M , if s extends t with 〈Rτ , u〉 for some u ∈ S;
– s is called a τ -graft of t in M , if s and t are different τ -extensions of the

same path.

We illustrate the notions of a τ -extension and a τ -graft in Fig. 3.

Definition 8 (unraveling). Given a pre-model M = (S,R, V ), its unraveled
structure Mu = (T,Q, ν) is defined as follows:

– T is the set of all reduced paths of M ;
– Given τ an agent or a group of agents, for any s, t ∈ T , sQτ t holds, iff

• t is a τ -extension of s in M , or
• s is a τ -graft of t in M ;

– ν : prop → ℘(T ) is such that for any s ∈ S and any s ∈ T which ends with
s, s ∈ ν(p) iff s ∈ V (p).

7 The two must be equal in a genuine model, but we cannot simply define R{a,b,c} to
be the intersection of all of its subsets, for that already makes a pseudo model to be
a genuine model. The whole method collapses then: we encounter the very problem
that the canonical model is not a genuine model (mostly because the intersection of
relations is not modally definable), which violates the starting point of the canonical
model method. This was discussed in more detail already in [18].
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Fig. 3. Illustrations of a τ -extension and a τ -graft. For the graph on the left, the path
below is a τ -extension of the path on top, while for the graph on the right, the two
paths are τ -grafts of each other.

Lemma 3. The unraveling of a pseudo model is a treelike pre-model.

Proof. Given a pseudo model M = (S,R, V ) and its unraveling Mu = (T,Q, ν),
we must show all of the following properties:

1. for every a ∈ ag, Qa is serial, transitive and Euclidean;
2. for every G ∈ gr, QG is transitive and Euclidean;
3. for all s, t ∈ T there is at most one reduced path of Mu from s to t.

We show these properties below.

1. Given a ∈ ag and s, t,u ∈ T (i.e., s, t,u are reduced paths of M),
– Seriality. Suppose s = 〈s0, Rb, x〉 for some b ∈ ag and x ∈ S, i.e., the

path that extends s0 with 〈Rb, x〉. By the seriality of Ra, there exists
y ∈ S such that xRay. Consider the path x = 〈s, Ra, y〉. By definition,
x is an a-extension of s in M . A subtlety is that x is a reduced path of
M only when a �= b. If a = b, s = 〈s0, Ra, x,Ra, y〉. Let y = 〈s0, Ra, y〉,
which is a reduction of x. Clearly y is an a-graph of s. By the definition
of unraveling, s Qa y. This shows that there is a state of T , i.e., x or y,
that s links to via Qa; hence the seriality of Qa.

– Transitivity. Suppose sQat and tQau. We must show sQau. By the
definition of Qa, the supposition gives us four possible combinations of
whether t is an a-extension or a-graft of s, and whether u is an a-extension
or a-graft of t. By the definitions, it is not hard to verify that u is either
an a-extension or a-graft of s (again, a subtlety is to enforce that s, t and
u are all reduced paths). Thus sQau, as wanted.

– Euclidicity. Suppose sQat and sQau. Similarly to the above, we have
four possibilities, and we can show that tQau.

2. The proof goes in the same way as in the case of individual belief. That QG

lacks seriality is due to the lack of seriality of RG.
3. Suppose there are two reduced paths (called meta-paths here) of Mu from s

to t. The length of each meta-state (which is a path of M) is non-decreasing
along each meta-path. For a Qτ that comes from a τ -extension, a different
Qτ ′ leads to a different meta-state, with Rτ ′ recorded in it. For a Qτ that
comes from a τ -graft, a different Qτ ′ also leads to a different meta-state. An
observation here is that there is no way to revisit a meta-state in a reduced
meta-path. The only way to keep the size of a meta-state (which is a path
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of M) not growing is via a τ -graph, but this cannot be made consecutively
(otherwise not a reduced path). This guarantees the uniqueness of the reduced
meta-path from s to t.

Definition 9 (folding). Let M = (S,R, V ) be a treelike pre-model. Mf , the
folding of M , is the tuple (S,Q, V ) such that for all agents a, Qa is the transitive
and Euclidean closure of Ra ∪ ⋃

G�a RG.

Technically speaking, folding can be defined on any pre-model, but the name
only makes sense for treelike pre-models, which is also revealed by Lemma 5.

Proposition 1. Let (S,Q, V ) be the folding of a treelike pre-model (S,R, V ).
For every agent a, Qa is a KD45 (i.e., serial, transitive and Euclidean) relation.

Proof. Seriality by that of Ra; transitivity and Euclidicity by definition.

Applying the processes of unraveling and folding, we can translate a pseudo
model into a genuine model. In the next subsection, we show the procedure of
unraveling and folding is truth preserving.

4.3 Truth Preservation of the Translation

We introduce with necessary adaptions the notions of trans-equivalence and
trans-bisimulation from [23], which are generalizations of modal equivalence
and bisimulation that are relations over the set of (pointed) models to relations
between a set of (pointed) models and a set of (pointed) pre-models.

Definition 10 (trans-equivalence). Let (M, s) be a pointed model and
(M ′, s′) a pointed pre-model. We say (M, s) and (M ′, s′) are trans-equivalent,
denoted (M, s) ≡t (M ′, s′), if {ϕ | (M, s) |= ϕ} = {ϕ | (M ′, s′) |= ϕ}.
Definition 11 (trans-bisimulation). Let M = (S,R, V ) be a model and M ′ =
(S′, R′, V ′) a pre-model. A non-empty binary relation Z ⊆ S × S′ is called a
trans-bisimulation between M and M ′, if the following hold for all s ∈ S and
s′ ∈ S′ such that sZs′:

– (Atom) s ∈ V (p) iff s′ ∈ V ′(p), for all propositional variables p;
– (Zig) for all G ∈ gr and t ∈ S such that sRD

G t, there is a path of M ′ from
s′ to some t′, such that tZt′ and all the edges in the path are of the form R′

τ

such that G ⊆ τ ;
– (Zag) for all τ ∈ ag ∪ gr and t′ ∈ S′ such that s′R′

τ t′, there is a state t ∈ S
such that tZt′ and sRτ t when τ ∈ ag and sRD

τ t when τ ∈ gr.

We write Z : (M, s) �t (M ′, s′) if Z is a bisimulation between M and M ′ such
that sZs′. Moreover, (M, s) �t (M ′, s′) means that there is a Z ⊆ S × S′ such
that Z : (M, s) �t (M ′, s′).

We shall also make use of the notion of a standard bisimulation (see e.g., [3]).
For a distinction, the existence of a standard bisimulation is denoted by �, and
we use �t for trans-bisimulation.
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Lemma 4 (conditional invariance of trans-bisimulation). Given a
pointed model (M, s) and a pointed pre-model (M ′, s′), if (M, s) �t (M ′, s′)
and there exists a pointed pseudo model (M ′′, s′′) such that (M ′, s′) � (M ′′, s′′),
then (M, s) ≡t (M ′, s′).

Proof. Suppose Z : (M, s) �t (M ′, s′) and Y : (M ′, s′) � (M ′′, s′′). We show
that for any formula ψ, (M ′, s′) |= ψ iff (M, s) |= ψ. The proof can be carried
out by induction on formulas. The only interesting cases are for Baϕ and DGϕ.
Let M = (S,R, V ), M ′ = (S′, R′, V ′) and M ′′ = (S′′, R′′, V ′′).

The case for Baϕ. Sufficiency. Suppose (M, s) |= Baϕ, and we must show
(M ′, s′) |= Baϕ. For any state t′ ∈ S′ such that s′R′

at′, it suffices to show
(M ′, t′) |= ϕ. By (Zag) there is a state t ∈ S such that tZt′ and sRat. From
(M, s) |= Baϕ it follows (M, t) |= ϕ. We get (M ′, t′) |= ϕ by the induction
hypothesis, as was to be shown.

For necessity, suppose (M ′, s′) |= Baϕ, and we must show (M, s) |= Baϕ.
Given any state t of M such that sRat (equivalent to sRD

{a}t as M is a model),
it suffices to show (M, t) |= ϕ. By (Zig) there is a path of M ′ from s′ to some
t′ such that (i) tZt′ and (ii) every edge in the path is of the form R′

τ with
{a} ⊆ τ . It follows from (M ′, s′) � (M ′′, s′′) that there is a path of M ′′ from
s′′ to some t′′ such that (i) t′Y t′′ and (ii) every relation in the path is of the
form Rτ with {a} ⊆ τ . s′′R′′

at′′ holds since M ′′ is a pseudo model. Since we
have (M ′′, s′′) |= Baϕ by the invariance of bisimulation, (M ′′, t′′) |= ϕ and so
(M ′, t′) |= ϕ. By the induction hypothesis we get (M, t) |= ϕ, as was to be
shown.

The case for DGϕ can be shown analogously to the case for Baϕ.

Lemma 5 (truthful translation).

1. (Unraveling preserves bisimulation) Let M be a pseudo model and s a state
of it. For any reduced path s of M that ends with s, (M, s) � (Mu, s ).

2. (Folding preserves trans-bisimulation) Let M be a treelike pre-model and s a
state of it. Then (Mf , s) �t (M, s).

Proof. 1. It is not hard to verify that the conditions of (Atom), (Zig) and (Zag)
for standard bisimulation are satisfied between a pointed model and its unrav-
eling.

2. Let M = (S,R, V ) be a treelike pre-model and Mf = (S,Q, V ) its folding. It
suffices to show that Z = {(s, s) | s ∈ S} is such that Z : (Mf , s) �t (M, s).
(Atom) holds trivially.
(Zig) Suppose there is a t ∈ S such that sQD

Gt for some group G. It suffices
to show that there is a path of M from s to t such that all the edges in the
path are of the form Rτ such that G ⊆ τ . Suppose G = a1, . . . , an, and then by
definition we have QD

G = Qa1 ∩ · · · ∩ Qan
, therefore (s, t) is in the transitive and

Euclidean closure of Rai
∪ ⋃

H�ai
RH , for all ai with 1 ≤ i ≤ n. It follows that

there are n reduced paths of M from s to t such that:
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〈s,Rτ1,1 , . . . , Rτ1,m1
t〉

...
〈s,Rτn,1 , . . . , Rτn,mn

t〉
where each τi,j is either ai or some H � ai. Since M is treelike, there can only
be a unique reduced path from s to t. It follows that (i) m1 = m2 = · · · = mn

(i.e., all possible reduced paths are of the same length; let us denote it by m)
and (ii) τ1,j = τ2,j = · · · = τn,j (i.e., all relations remain the same at the same
position of each possible reduced path; let us denote it by τj) for all possible j.
But since τi,j at least contains ai (or is ai itself), it follows that G ⊆ τj for each
j. Therefore, G ⊆ τ1 ∩ · · · ∩ τm, as was to be shown.

(Zag) Suppose there is t ∈ S such that sRτ t for some agent or group τ , and
it suffices to show sQτ t (if τ is an agent) and sQD

τ t (if τ is a group). If τ is an
agent a, we get sQat by the definition of Qa. Otherwise τ is a group G with
sRGt, and it follows from the definition of folding that sQxt for all x ∈ G, and
thus sQD

Gt.

Theorem 1. BLD is a sound and strongly complete axiomatization of KD45D.

Proof. The soundness of BLD is easy to verify. As for the completeness, given
a BLD-consistent set of BLD formulas, it can be extended to a maximal con-
sistent set Φ of formulas using the standard Lindenbaum construction. By the
pseudo completeness lemma (Lemma 2), there is a pseudo model (M, s) such
that (M, s) |= Φ. For any reduced path s of M , it follows from Lemma 5 that
(Mu, s ) � (M, s) and ((Mu)f , s ) �t (Mu, s ), where Mu is the unraveling of
M (which is a treelike pre-model by Lemma 3) and (Mu)f is the folding of Mu

(which is a genuine model by definition). By Lemma 4 ((Mu)f , s ) ≡t (Mu, s ),
and (Mu, s ) ≡ (M, s) by the known result of the invariance of standard bisim-
ulation. Therefore, ((Mu)f , s ) |= Φ.

5 Discussion

We have studied the properties of different types of group belief under different
assumptions about the properties of belief (including knowledge). These are
summed up in Fig. 1. We emphasize that we have used standard definitions that
are used for both group knowledge and group belief in the literature, in particular
in the standard textbook [8].

We can make the, perhaps surprising, observation that many group attitudes
to knowledge and belief used in the literature are not well defined in the sense
that they do not actually have the properties it is assumed that knowledge or
belief has. For example, general knowledge (everybody-knows) is actually not
knowledge, and common belief or distributed belief are most often not belief. In
particular:
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– Under the standard assumption that knowledge has the S5 properties, what
is sometimes called general knowledge or mutual knowledge in the literature,
i.e., what everybody knows, is not actually knowledge. It is (KT)B but not S5,
in particular it lacks both the positive and negative introspection properties.

– Under the assumption that belief is consistent (the D axiom) but not veridical
(the T axiom), distributed belief is not actually belief (in any of the standard
model classes). For example, distributed belief on KD45 is K45 but not KD45.
We note that “D but not T” is an extremely weak assumption about belief,
in fact a standard property distinguishing belief from knowledge.

– Under the common assumption that belief has the KD45 or just the K45
properties, then common belief is not actually belief. It is KD4 or K4, respec-
tively, and not KD45 or K45. In general, common belief typically lacks nega-
tive introspection. More precisely, common belief loses negative introspection
on any of the model classes without the B axiom (symmetry). If we take
the reflexive transitive closure of the union instead of the transitive closure,
common belief is S4 on both KD45 and K45 model classes, again lacking the
negative introspection property.

– General belief is not well defined as a notion of belief on weaker model classes
than S5 either; it loses both positive and negative introspection on any class
that has them.

None of the three (four, if we count the alternative definition for common belief)
notions of group belief are actually belief on the most common model class for
belief, namely KD45. The only cases for which all three notions of group belief
are well defined in the sense that they have belief properties, are K, (K)T, KB
and (KT)B.

Under the common assumption that belief does not have the veridicality
property, the only cases where all three notions are well defined, in the sense
that group belief actually has the properties of belief, are K and KB – i.e., under
very weak assumptions about the properties of belief. Thus, group belief, as
defined in the literature, strictly speaking typically is not actually belief, except
under very weak assumptions about what belief is.

We hope these observations might help clarify the properties of group belief
and knowledge. There has been some confusion and missing details in the
literature regarding group knowledge/belief in general and distributed knowl-
edge/belief in particular, for example about what the empty group knows [1]
or what distributed knowledge actually means [2] – and about soundness and
completeness of axiomatizations of KD45 with distributed belief. In this paper
we provided a detailed completeness proof for a sound axiomatization of KD45
with distributed belief, by adapting a technique used for the S5 case in [23] to
the KD45 case.

It should also be noted that while group belief often has fewer properties
than individual belief (like common or distributed belief on KD45 as mentioned
above), sometimes it has more properties. For example, common belief on KDB
is S5 – it gains both positive and negative introspection. The alternative defini-
tion of common belief using the reflexive transitive closure is in a way “better
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behaved”; it is always either S4 or S5. However, its requirement that common
belief must imply truth (reflexivity) does not square well with standard assump-
tions about belief (indeed, while this definition is often found for group knowl-
edge, it is rarely found for group belief for weaker variants of belief than S5).

A conceptually closely related work is by Endriss and Grandi on graph aggre-
gation [6]; the aggregation of one graph for each agent over the same set of
vertices into a collective graph over the same set, in the spirit of aggregation
problems in social choice theory. Endriss and Grandi argue that this abstrac-
tion captures many concrete natural problems, including preference aggregation,
social networks, and indeed group knowledge including general, common and dis-
tributed knowledge (belief is not mentioned explicitly but the argument does not
rely on any particular properties of knowledge). And indeed, what we have called
preservation of belief properties for different types of group belief in this paper,
is exactly the same that [6] calls collective rationality of the corresponding aggre-
gation rules with respect to the properties. Despite the close connection to the
framework, we were only able to make use of some minor results from [6], in the
proof of Lemma 1, as [6] focuses mostly on Arrow-style impossibility results.

The motivation behind this paper has been to take a critical look at standard
definitions of group knowledge and belief in the literature; i.e., the interpretation
of general, common and distributed knowledge and belief using union, transitive
closure of union, and intersection of individual accessibility relations, respec-
tively. These definitions appear in standard textbooks and in a myriad of other
works, and understanding them is therefore important. Of course, other, perhaps
less well known, formalizations of group belief exist, although they have not been
the topic of the current paper. Of particular mention here is [11], which takes
a critical look at different definitions of group belief from a philosophical per-
spective, and proposes some new formalizations in modal logic. An interesting
direction for future work would be to investigate preservation of belief properties
under different assumptions of individual belief, for other non-standard notions
of group belief. More broadly, by using the impossibility results from [6] men-
tioned above, it might be possible to say something about the impossibility of
other group belief operators under certain assumptions about belief.
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