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Preface

This book constitutes the refereed proceedings of the Third International Conference on
Logic and Argumentation, CLAR 2020, held in Hangzhou, China, as part of the
International Conferences on Logic and Artificial Intelligence at Zhejiang University
(ZJULogAI). The conference was originally planned to be in April and that the con-
ference is postponed to a later date in 2020 because of the COVID-19.

The CLAR series started as a regional workshop hosted by Zhejiang University in
2016 and has been held every two years ever since. It highlights recent advances in the
two fields of logic and argumentation and aims at bringing together researchers from
various disciplines such as logic, formal argumentation, artificial intelligence, philos-
ophy, computer science, linguistics, and law.

The call for papers of CLAR 2020 attracted 31 high-quality submissions and the
final program consisted of 14 regular papers and 7 short papers. Each paper was
selected based on an average of three reviews. The Program Committee of CLAR 2020
consisted of 53 top researchers from 19 countries. The number of submissions to the
CLAR series is growing, with 11 at CLAR 2016 and 16 at CLAR 2018. This year we
decided to accept more papers, which were presented at the conference to promote
communication between researchers in the areas relevant to CLAR from inside and
outside of China.

The topics of accepted papers cover the focus of the CLAR series very well,
including formal models of argumentation, logics for decision making and uncertain
reasoning, formal models of evidence, confirmation, and justification, logics for group
cognition and social network, reasoning about norms, formal representations of natural
language and legal texts, as well as applications of argumentation on climate
engineering.

As Program Committee chairs, we would like to thank all the members of the
Program Committee for investing their valuable time in providing high-quality reviews,
which are crucial for the quality and success of the conference. We are grateful for the
continued financial support from the Department of Philosophy at Zhejiang University
and the generous support of Springer in publishing proceedings. We would also like to
acknowledge the use of EasyChair for organizing the reviewing process. Finally, we
thank all those colleagues and students at Zhejiang University, for their efforts in
making the conference happen.

February 2020 Mehdi Dastani
Huimin Dong

Leon van der Torre
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Group Belief

Thomas Ågotnes1,2 and Yı̀ N. Wáng3(B)

1 Southwest University, Chongqing, China
2 University of Bergen, Bergen, Norway

thomas.agotnes@uib.no
3 Zhejiang University, Hangzhou, China

ynw@xixilogic.org

Abstract. While logical formalizations of group notions of knowledge
such as common and distributed knowledge have received consider-
able attention in the literature, most approaches being based on modal
logic, group notions of belief have received much less attention. In this
paper we systematically study standard notions of group knowledge
and belief under different assumptions about which properties knowl-
edge and belief have. In particular, we map out (lack of) preservation
of knowledge/belief properties against different standard definitions of
group knowledge/belief. It turns out that what is called group belief most
often is not actually belief, i.e., does not have the properties of belief.
In fact, even what is called group knowledge is sometimes not actually
knowledge either. For example, under the common assumption that belief
has the KD45 properties, distributed belief is not actually belief (it does
not satisfy the D axiom). In the literature there is no detailed complete-
ness proof for axiomatizations of KD45 with distributed belief that we
are aware of, and there has been some confusion regarding soundness
of such axiomatizations related to the mentioned lack of preservation.
In this paper we also present a detailed completeness proof for a sound
axiomatization of KD45 with distributed belief.

Keywords: Knowledge · Belief · Doxastic logic · Epistemic logic ·
Group belief · Distributed belief

1 Introduction

Different notions of group knowledge, such as common knowledge or distributed
knowledge, have received considerable attention in the epistemic logic literature
[5,8,20]. While most frameworks for epistemic logic are based on the modal logic
S5 for modeling individual knowledge, frameworks for belief usually are based
on weaker systems such as KD45 or K45. Group belief is routinely defined in
the same way as group knowledge in such belief logics, but has received far less
attention in the literature. In this paper we take a systematic look at standard
notions of group knowledge and belief under different assumptions about which
properties knowledge and belief have. A key question is whether or not proper-
ties of belief (e.g., KD45 or K45 properties) are preserved under the operations
c© Springer Nature Switzerland AG 2020
M. Dastani et al. (Eds.): CLAR 2020, LNAI 12061, pp. 3–21, 2020.
https://doi.org/10.1007/978-3-030-44638-3_1
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4 T. Ågotnes and Y. N. Wáng

defining group knowledge from individual knowledge. We map out the answers to
that question, for different assumptions about what the properties of knowledge
and belief are against different definitions of group knowledge.

As an example, if we assume that individual belief has the KD45 properties
it is not guaranteed that distributed belief has it – the intersection of two serial,
transitive and Euclidean binary relations is not necessary serial, so distributed
belief on KD45 lacks the consistency property (D axiom). Thus, if we assume
that belief has the KD45 properties, then “distributed belief” is not belief. In
fact, we argue that group belief most often is not belief; only under very weak
or very strong assumptions about what belief is, are standard notions of group
belief actually belief. Similarly, group knowledge is not always (S5) knowledge
either.

Some of these observations are folklore in the epistemic/doxastic logic com-
munity. However, we are not aware of any existing systematic study. And there is
evidence that more awareness of the properties of group belief is needed. As far
as we are aware, no completeness proof for KD45 with distributed belief exists in
print. Furthermore, there is a problem with the soundness of an axiomatization
of doxastic logic with distributed belief on KD45 in the literature [8], exactly
due to the lack of preservation of the consistency property for distributed belief
on KD45. In this paper we provide a detailed completeness proof for a sound
axiomatization of KD45 with distributed belief.

The rest of the paper is organized as follows. In the next section we introduce
the background from the literature: modal logics of knowledge and belief, def-
initions of group knowledge and belief, and standard (combinations of) axioms
corresponding to properties of knowledge and belief. In Sect. 3 we systemati-
cally look at (lack of) preservation of properties under different notions of group
belief. A few preservation results have been established already in existing work
on graph aggregation [6]. Key observations here are summed up in Fig. 1. In
Sect. 4 we discuss axiomatizations of KD45 with distributed belief in the litera-
ture and present a detailed completeness result for a sound axiomatization. We
discuss related and future work and conclude in Sect. 5.

2 Background

We briefly review the standard language and semantics of modal epistemic and
doxastic logic. We refer to, e.g., [8] for more details.

Let prop be a countable set of propositional variables, let ag be a finite set
of agents, and let gr = ℘(ag) \ {∅} be the set of groups, i.e., the set of all non-
empty sets of agents. We define the following variants of the epistemic language
with individual belief operators Ba and with or without various combinations of
group belief operators EG, CG and DG.
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Definition 1 (languages).

(BL) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ
(BLC) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ | EGϕ | CGϕ
(BLD) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ | DGϕ
(BLCD) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ | EGϕ | CGϕ | DGϕ

where p ∈ prop, a ∈ ag and G ∈ gr. Boolean operators such as �, →, ∨ and
so on are defined as usual.

While some works (e.g., [8]) use the notation Ka for both individual knowledge
and the more general notion of individual belief, we chose to use Ba for both,
treating knowledge as a special case of belief – belief as a generalization of
knowledge. EG is the operator for what is called general belief, or everybody-
believes or mutual belief, CG is common belief, and DG is distributed belief (or
knowledge).

A Kripke model M (over agents ag and propositional variables prop) is a
triple (S,R, V ), where S is a nonempty set of states, R : ag → ℘(S × S) assigns
to every agent a a binary relation Ra on S, and V : prop → S is a valuation
which associates with every propositional variable a set of states where it is true.
For any s ∈ S, the pair (M, s) is called a pointed model.

Definition 2 (satisfaction). The truth in, or satisfaction by, a pointed model
(M, s) with M = (S,R, V ) of a formula ϕ, denoted (M, s) |= ϕ, is defined
inductively as follows.

(M, s) |= p iff s ∈ V (p)
(M, s) |= ¬ϕ iff not (M, s) |= ϕ
(M, s) |= (ϕ ∧ ψ) iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= Baϕ iff for all t ∈ S, if sRat then (M, t) |= ϕ
(M, s) |= EGϕ iff for all t ∈ S, if sRE

Gt then (M, t) |= ϕ
(M, s) |= CGϕ iff for all t ∈ S, if sRC

Gt then (M, t) |= ϕ
(M, s) |= DGϕ iff for all t ∈ S, if sRD

G t then (M, t) |= ϕ

where RE
G =

⋃
a∈G Ra, RC

G is the transitive closure of RE
G, and RD

G =
⋂

a∈G Ra.
We say that ϕ is (globally) true in a model, if it is satisfied at all states of that
model.

As discussed below, we restrict the class of models depending on which properties
we assume that belief has, the strongest assumption being that the relations are
equivalence relations in the case of knowledge.
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The semantics for group belief given above are the standard definitions in the
literature. In particular, the definition of the common knowledge/belief relation
as the transitive closure of the union of the individual knowledge/belief relations
is the one used in, e.g., the standard textbook [8]1 – not only for knowledge but
also for weaker notions of belief. Some works, however (e.g., [4,5,19]), use a
slightly different definition, namely the reflexive transitive closure – although
almost always only in the context of S5 knowledge, in which case the two defini-
tions are equivalent. In the following we will still consider the latter as a possible,
alternative definition for common belief a few times. When referring to common
belief we will henceforth mean the former definition, using transitive closure, if
not otherwise stated. The latter definition, using the reflexive transitive closure,
will be referred to as “the alternative definition” when needed.

Given a class C of models and a formula ϕ, we say ϕ is valid in C if and
only if ϕ is globally true in all models of C . We usually do not choose a class
of models arbitrarily, but are rather interested in those based on a certain set
of conditions over the binary relations in a model. Such conditions are often
called frame conditions. In this paper we are going to focus on only some frame
conditions, namely those that play the most prominent roles in the context of
knowledge and belief. These conditions are

(l) seriality : ∀s ∈ S ∃t ∈ S sRat,
(r) reflexivity : ∀s ∈ S sRas,
(t) transitivity : ∀s, t, u ∈ S ((sRat & tRau) ⇒ sRau),
(s) symmetry : ∀s, t ∈ S (sRat ⇒ tRas), and
(e) Euclidicity : ∀s, t, u ∈ S ((sRat & sRau) ⇒ tRau).

It is well known that these frame conditions are characterized by the axioms

D Baϕ → ¬Ba¬ϕ,
T Baϕ → ϕ,
4 Baϕ → BaBaϕ,
B ¬ϕ → Ba¬Baϕ, and
5 ¬Baϕ → Ba¬Baϕ,

respectively (see, e.g., [3]). There are 32 combinations of these 5 frame properties,
potentially giving rise to 32 classes of models, but some of the combinations are
equivalent.

In Table 1 we list the 32 different combinations over the 5 frame properties,
and the corresponding logics over the language BL (i.e., the set of valid formulas
on the corresponding model classes). There are 15 different logics up to logical
equivalence. For logics based on the language BLC, we add a superscript C to
the name, as in KC , DC , TC , S4C , S5C , KD4C , K45C , and so on. Similarly, for
logics based on the language BLD, we add a superscript D, e.g., K45D, KD45D,
and so on. We can use this notation for logics over BLCD as well.
1 The concrete definition of the semantics of common belief in [8], as well as in many

other works (e.g. [7,9,12,13,15–17,22]), is that (M, s) |= CGϕ iff ∀k ≥ 1 : (M, s) |=
Ek

Gϕ, where E1
Gϕ stands for EGϕ and Ek+1

G ϕ for EGEk
Gϕ. As noted by [8, Lemma

2.2.1] that definition is equivalent to using the transitive closure (for arbitrary mod-
els, not only S5 models).
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Table 1. Model classes and corresponding logics over the language BL, with alterna-
tive names from the literature. Names of logics that are equivalent to one with fewer
characterization axioms/frame conditions are in parentheses.

Frame
cond.

Full
name

Short
name

Equivalent
logic

Frame
cond.

Full name Short
name

Equivalent
logic

— K — — lrt (KDT4) — S4

l KD D — lrs (KDTB) — B

r KT T — lre (KDT5) — S5

t K4 — — lts (KD4B) — S5

s KB — — lte KD45 — —

e K5 — — lse (KDB5) — S5

lr (KDT) — T rts (KT4B) — S5

lt KD4 — — rte (KT45) — S5

ls KDB — — rse (KTB5) — S5

le KD5 — — tse (K4B5) — K4B

rt KT4 S4 — lrts (KDT4B) — S5

rs KTB B — lrte (KDT45) — S5

re KT5 S5 — lrse (KDTB5) — S5

ts K4B — — ltse (KD4B5) — S5

te K45 — — rtse (KT4B5) — S5

se KB5 — K4B lrtse (KDT4B5) — S5

As is convention, because of the correspondence between frame conditions
and characterization axioms, we often use the names of the corresponding logics
to refer to the class of models. For example, the word “T models” simply stands
for the class of models based on reflexive frames, and similarly “S5 models”
means the class of models based on reflexive and Euclidean (and therefore also
transitive and symmetric) frames. As already mentioned, we use “knowledge” as
a special case of belief, i.e., when belief is assumed to have the S5 properties.

3 Group Belief in Different Logics

In this section we look at (the lack of) preservation of properties of belief when
going from individual to group belief. Syntactically, this corresponds to whether
group belief satisfies the same axioms as individual belief; semantically it corre-
sponds to whether frame conditions are preserved under the group belief oper-
ations (union, intersection, etc.). As mentioned in the previous section we only
consider combinations of the five frame conditions seriality, reflexivity, transitiv-
ity, symmetry and Euclidicity.

Definition 3 (preservation). Given a model M = (S,R, V ) and a combina-
tion of frame conditions F (i.e., F ⊆ {l, r, t, s, e}), we say that:
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1. F is preserved for general belief in M , or general belief preserves F in M ,
if RE

G satisfies F whenever Ra satisfies F for every a ∈ G, for any group G;
2. F is preserved for common belief in M , or common belief preserves F in M ,

if RC
G satisfies F whenever Ra satisfies F for every a ∈ G, for any group G;

3. F is preserved for distributed belief in M , or distributed belief preserves F
in M , if RD

G satisfies F whenever Ra satisfies F for every a ∈ G, for any
group G.

A combination of frame conditions is preserved for a variant of group belief on
a class of models iff it is preserved in every model in that class.

This notion of preservation is standard in modal logic [3]. It also corresponds to
what is called collective rationality in [6] (see Sect. 5 for more details).

It is preservation on a class of models we are interested in. This says that the
properties are guaranteed to hold on that model class, for example that Euclidic-
ity is preserved for common belief on S5 models. Conversely, if a combination of
properties is not preserved on a class of models it means that there is at least
one model in that class where it is not preserved.

Lemma 1. The following hold:

1. Seriality
(a) is preserved for general and common belief on the class of all models;
(b) is preserved for distributed belief on the class of all reflexive models;
(c) is not preserved for distributed belief on the class of F ∪ {l} models, for

any F ⊆ {t, e};
(d) is not preserved for distributed belief on the class of {l, s} models.

2. Reflexivity is preserved for general, common and distributed belief on the class
of all models.

3. Transitivity
(a) is not preserved for general belief on the class of all F ∪ {t} models, for

any F ⊆ {l, r, s, e};
(b) is preserved for common and distributed belief on the class of all models.

4. Symmetry is preserved for general, common and distributed belief on the class
of all models.

5. Euclidicity
(a) is not preserved for general belief on the class of all F ∪ {e} models, for

any F ⊆ {l, r, t, s};
(b) is preserved for common belief on the class of all symmetric models;
(c) is not preserved for common belief on the class of all F ∪{e} models, for

any F ⊆ {l, t};
(d) is preserved for distributed belief on the class of all models.

Proof.

1. (a) Straightforward: the (transitive closure of) the union of serial relations is
serial.

(b) Follows from point 2 below.



Group Belief 9

(c) The following KD45 model is a counter-example for all the cases; the
distributed belief relation is not serial:

•t

ab
�� �� a •s

b �� •u

ab
��

(d) The following KB model is a counter-example; the distributed belief rela-
tion is not serial:

•t
�� a �� •s

�� b �� •u

2. Follows from [6, Prop. 6]2.
3. (a) Consider the following S5 counterexample with two agents (which is also

a counterexample for weaker logics):

•s

ab
�� �� a �� •t

ab
�� �� b �� •u

ab
��

This frame is transitive, however, sRE
{a,b}t and tRE

{a,b}u but not sRE
{a,b}u.

(b) The common belief relation is transitive by definition. For distributed
belief, assume that sRD

G t and tRD
Gu. That means that sRat for every

a ∈ G and that tRau for every a ∈ G; which again means that sRau
for every a ∈ G by transitivity of the individual relations and thus that
sRD

Gu.
4. The cases for general and distributed belief follow from [6, Prop. 8]3.
5. (a) Follows from the same counter-example as in the case of transitivity.

(b) Let the individual relations be symmetric and Euclidean, and let sRC
Gt

and sRC
Gu. Since there is a G-path from s to t and all relations are sym-

metric, there is a G-path from t to s and thus tRC
Gs. By transitivity of

RC
G, tRC

Gu.
(c) The KD45 counter-model in the case for seriality works as a counter-

model in this case as well: we have that sRC
{a,b}t and sRC

{a,b}u but not
tRC

{a,b}u.
(d) Let the individual relations be Euclidean, and let sRD

G t and sRD
Gu. That

means that sRat and sRau for any a ∈ G, and thus by Euclidicity of Ra

that tRau for any a ∈ G. But that means that tRD
Gu.

Note that Lemma 1 implies preservation of certain combinations of proper-
ties. For example, while Euclidicity is not preserved for common belief on the
class of all models, the combination of Euclidicity and symmetry is.

From these preservation results we can deduce (the lack of) properties of
group belief operators, under different assumptions about the properties of indi-
vidual belief. In addition to preservation, sometimes group belief gets new prop-
erties; e.g., common belief is always transitive by definition. The results are
shown in Table 2 and illustrated in Fig. 1.
2 In the terminology of [6], general, common and distributed belief all correspond to
unanimous aggregation rules.

3 In the terminology of [6], general and distributed belief all correspond to neutral
aggregation rules.



10 T. Ågotnes and Y. N. Wáng

Table 2. Frame conditions and their preservation for group belief operators. The
column EB (for general belief) lists the maximal combination of properties (among
{l, r, t, s, e}) that RE

G is guaranteed to satisfy for any G in any model with the frame
conditions given in the same row. Similar conventions are used for the columns CB for
common belief and DB for distributed belief. The column CBr is for the alternative
definition of common belief using the reflexive transitive closure instead of just the
transitive closure. Bold indicates that some frame condition(s) are not preserved.

Frame cond. EB CB CBr DB Frame cond. EB CB CBr DB

K K K4 S4 K S4 T S4 S4 S4

D D KD4 S4 K B B S5 S5 B

T T S4 S4 T S5 B S5 S5 S5

K4 K K4 S4 K4 K4B KB K4B S5 K4B

KB KB K4B S5 KB K45 K K4 S4 K45

K5 K K4 S4 K5 KD5 KD KD4 S4 K5

KD4 KD KD4 S4 K4 KDB KDB S5 S5 KB

KD45 D KD4 S4 K45

Fig. 1. Solid arrows represent common belief (transitive closure of the union), dashed
arrows represent general belief (everybody-knows), and dotted arrows represent dis-
tributed belief. An arrow from one class to another means that group belief defined
over individual belief having properties of the first class (i) has properties of the second
class and (ii) does not have all the properties of any other of the classes we consider that
strictly includes the second class. For example, distributed belief on KD45 is K45, and
is not KD45 or KD4. For the alternative definition of common belief using the reflexive
transitive closure, common belief is either S5 (underlined) or S4 (not underlined).
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We leave a discussion of most of these results to Sect. 5, but let us point
to one in particular here: that seriality is not preserved for distributed belief
on KD45. This has caused some confusion; for example is an axiomatization
of KD45 with distributed belief given in [8] not sound. In the next section we
correct that result.

4 Axiomatization of KD45D

An axiomatization of KD45 with distributed belief is given in [8]. A completeness
result is claimed, however without a proof. Furthermore, the axiomatization is
in fact not sound, due to the issue mentioned at the end of the previous section
(Theorem 3.4.1 (e) is incorrect)4: the consistency (D) axiom for distributed belief
is not valid (in the class of KD45 models). As far as we know, there is no
detailed proof of completeness for axiomatizations of KD45 with distributed
belief in print. In this section we look into the KD45 logic with distributed
belief (i.e., KD45D, which is based on the language BLD), provide a (corrected)
axiomatization for it, and present a detailed soundness and completeness proof.

The axiomatization for the logic KD45D is given in Fig. 2. It consists of a
typical KD45 proof system (with axioms PC, K, D, 4, 5, and rules MP and N)
for individual belief, and a K45 proof system (with axioms PC, KD, 4D, 5D, and
rules MP and ND

5) for distributed belief with additional axioms DB1 and DB2
characterizing the effect of group inclusion on distributed belief. The soundness
of BLD is not hard to verify by Lemma 1 (or Table 2 for a quick reference).
What remains is to show the completeness of BLD.

PC all instances of tautologies MP from ϕ infer Baϕ
K Ba(ϕ → ψ) → (Baϕ → Baψ) D Baϕ → ¬Ba¬ϕ
4 Baϕ → BaBaϕ 5 ¬Ba → Ba¬Baϕ
KD DG(ϕ → ψ) → (DGϕ → DGψ) 4D DGϕ → DGDϕ
5D ¬DG → DG¬DGϕ N from ϕ infer Baϕ
DB1 D{a}ϕ ↔ Baϕ DB2 DGϕ → DG′ϕ if G ⊆ G′

Fig. 2. Axiomatization BLD, with ϕ, ψ ∈ BLD, a ∈ ag and G, G′ ∈ gr.

In the presence of distributed belief operators, the typical canonical model
definition for KD45D does not give us a proper model, thus the method cannot be
applied straightforwardly. We adapt the method of the completeness proof from
[23] which can be traced back to [10,14,21]. The proof is presented in this way.

4 We refer here to the 1995 hardcover edition of [8]. The result appears to have been
corrected in a later (2003) paperback edition; still without a proof of completeness
however.

5 The necessitation rule ND for distributed belief, i.e., “from ϕ infer DGϕ”, is provable
via N, DB1 and DB2; hence omitted.
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We start in Sect. 4.1 by showing that BLD is sound and complete with respect
to the class of all pseudo KD45 models, in which distributed belief is treated
as individual belief (i.e., in the operator DG, the group G is treated as if it is
an individual). Then, in Sect. 4.2, we define a translation between pseudo KD45
models and (genuine) KD45 models using the model construction methods of
unraveling and folding. We show that the translation preserves truth of KD45D

in Sect. 4.3, which leads to the completeness of BLD.

4.1 Pseudo Soundness and Completeness

Definition 4 (KD45 pre-model). A KD45 pre-model (pre-model for short)
for ag over prop is a tuple M = (S,R, V ) such that S is a domain and V is
a valuation function defined as usual, while R : ag ∪ gr → ℘(S × S) assigns
to every single agent a KD45 relation (i.e., a serial, transitive and Euclidean
relation) on S, and to every group of agents a K45 relation (i.e., a transitive
and Euclidean relation) on S. A pointed pre-model is a pair consisting of a
pre-model and a state of it.

A KD45 pre-model for ag over prop can be seen as a model for ag ∪ gr
over prop, where every individual is assigned a KD45 relation, and every group
is treated similarly to an individual, but assigned a K45 relation.

Satisfaction at a pointed pre-model is therefore analogous to that at a pointed
model. More precisely, given any pre-model M = (S,R, V ) and s ∈ S,

(M, s) |= p iff s ∈ V (p)
(M, s) |= ¬ϕ iff not (M, s) |= ϕ
(M, s) |= (ϕ ∧ ψ) iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= Baϕ iff for all t ∈ S, if sRat then (M, t) |= ϕ
(M, s) |= DGϕ iff for all t ∈ S, if sRGt then (M, t) |= ϕ.

The only difference between the above and Definition 2 is in the interpretation
of DGϕ, where for pre-models, we interpret using the preliminary RG relation
instead of RD

G =
⋂

a∈G Ra. In this sense, DG operators behave similarly to a Ba

operator. This is not, of course, sufficient – we want distributed and individual
belief to have certain interaction properties. In particular we need to make the
axiomatization BLD sound in the class of all semantic structures, but it is not
the case at the moment, for the axioms DB1 and DB2 are not valid in the class
of all pre-models. For this reason we define the notion of a pseudo model.

Definition 5 (KD45 pseudo model). A KD45 pseudo model (pseudo model
for short) M = (S,R, V ) is a pre-model such that

– Ra = R{a} for every agent a, and
– RG′ ⊆ RG for every G,G′ ∈ gr such that G ⊆ G′.

It is not hard to see that BLD is sound with respect to the class of all pseudo
models, for the KD45-ness of individual belief and K45-ness of distributed belief
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are required by definition of a pre-model, and DB1 and DB2 are fulfilled by the
additional constraints for being a pseudo model.

We continue to show that BLD is also complete with respect to the class of
all pseudo models. Later we shall show that any pseudo model is equivalent to a
genuine model, so that the “pseudo” completeness result leads to a completeness
result after all.

The canonical pseudo model M is a triple (S,R,V) such that:

– S is the set of all maximal BLD consistent sets of BLD formulas;6

– R is such that for all Φ, Ψ ∈ S,
• For all a ∈ ag, Φ Ra Ψ iff for all ϕ ∈ BLD, if Baϕ ∈ Φ then ϕ ∈ Ψ , and
• For all G ∈ gr, Φ RG Ψ iff for all ϕ ∈ BLD, if DGϕ ∈ Φ then ϕ ∈ Ψ ;

– V is the valuation defined by V(p) = {Φ ∈ S | p ∈ Φ} for all p ∈ prop.

It is not hard to verify that the canonical pseudo model is in indeed a pseudo
model (in particular, one can check that Ra is a KD45 relation for any agent a,
RG is a K45 relation for any group G, and the additional properties of pseudo
models also hold for RG). The rest of the pseudo completeness proof goes just
like a standard canonical model method (cf. [3]), and together with the pseudo
soundness results argued above, we get the following.

Lemma 2 (pseudo soundness and pseudo completeness). BLD is sound
and strongly complete with respect to the class of all KD45 pseudo models.

4.2 Translating a Pseudo Model to a Model

As mentioned above, pseudo soundness and completeness is not sufficient –
pseudo models are not proper models. For a proper completeness result we need
to show that any consistent set of formulas has a proper model. What remains
to do is to show that when a set of formulas has a pseudo model, it must also
have a genuine model. We do this by introducing a truth-preserving translation
from a pseudo model to a genuine model. In this section we introduce definitions
of such a translation, with its truth-perseverance shown in the next section.

To transform a pseudo model to a genuine model, we keep the same domain
and valuation function, but redefine the uncertainty relation for every agent. We
cannot just keep the uncertainty relation for each agent from the pseudo model
and simply drop those for groups, for this will lead to a loss of uncertainty for
groups which may finally make the resulting model not equivalent to the pseudo
model. Technically speaking, in order to translate a pseudo model (S,R, V ) to
a genuine model (S,R′, V ), we need to define what R′

a is for every agent a. By
doing so we have to somehow merge the information for groups containing a
into it. For example, by the definition of a pseudo model, R{a,b,c} is a subset
of R{a} ∩ R{b} ∩ R{c} ∩ R{a,b} ∩ R{b,c} ∩ R{a,c} but not necessary equal to the

6 We refer to a modal logic textbook, say [3], for a definition of a (maximal) consistent
set of formulas.
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latter.7 If we only keep the uncertainty relations for individuals, formulas such
as D{a,b}ϕ may have a different truth value before and after the translation.

We shall follow the method of unraveling and folding used in [23] which
can be traced back to the early papers [10,14,18]. Yet we cannot simply reuse
all the definitions and lemmas there, as there are subtle differences due to the
lack of reflexivity of the uncertainty relations. The following definitions and
intermediate results are adaptions of similar constructs from the S5 case found
in [23].

Definition 6 (treelike pre-models). Given any pre-model M = (S,R, V ), a
path of M from a state s0 to a state sn is a finite non-empty sequence of the
following form:

〈s0, Rτ0 , . . . , Rτn−1 , sn〉
where each si (0 ≤ i ≤ n) is a state in S, and each τj (0 ≤ j < n) is either an
agent or a group of agents such that sjRτjsj+1 holds in M . Repetitions of states
or relations are allowed in a path.

The reduction of a path is obtained by recursively replacing all of its segments
of the type 〈x,Rτ , y, Rτ , z〉 with 〈x,Rτ , z〉. Note that the reduction of a path is
unique, and is still a path, due to the transitivity of relations.

A reduced path is a path that is identical to its reduction. A pre-model M is
called treelike, if for any two states s, t ∈ S there is at most one reduced path
from s to t.

Definition 7 (extensions and grafts). Let M = (S,R, V ) be a pre-model,
and τ an agent or a group of agents. Let s and t be two paths of M .

– s is called a τ -extension of t in M , if s extends t with 〈Rτ , u〉 for some u ∈ S;
– s is called a τ -graft of t in M , if s and t are different τ -extensions of the

same path.

We illustrate the notions of a τ -extension and a τ -graft in Fig. 3.

Definition 8 (unraveling). Given a pre-model M = (S,R, V ), its unraveled
structure Mu = (T,Q, ν) is defined as follows:

– T is the set of all reduced paths of M ;
– Given τ an agent or a group of agents, for any s, t ∈ T , sQτ t holds, iff

• t is a τ -extension of s in M , or
• s is a τ -graft of t in M ;

– ν : prop → ℘(T ) is such that for any s ∈ S and any s ∈ T which ends with
s, s ∈ ν(p) iff s ∈ V (p).

7 The two must be equal in a genuine model, but we cannot simply define R{a,b,c} to
be the intersection of all of its subsets, for that already makes a pseudo model to be
a genuine model. The whole method collapses then: we encounter the very problem
that the canonical model is not a genuine model (mostly because the intersection of
relations is not modally definable), which violates the starting point of the canonical
model method. This was discussed in more detail already in [18].
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Fig. 3. Illustrations of a τ -extension and a τ -graft. For the graph on the left, the path
below is a τ -extension of the path on top, while for the graph on the right, the two
paths are τ -grafts of each other.

Lemma 3. The unraveling of a pseudo model is a treelike pre-model.

Proof. Given a pseudo model M = (S,R, V ) and its unraveling Mu = (T,Q, ν),
we must show all of the following properties:

1. for every a ∈ ag, Qa is serial, transitive and Euclidean;
2. for every G ∈ gr, QG is transitive and Euclidean;
3. for all s, t ∈ T there is at most one reduced path of Mu from s to t.

We show these properties below.

1. Given a ∈ ag and s, t,u ∈ T (i.e., s, t,u are reduced paths of M),
– Seriality. Suppose s = 〈s0, Rb, x〉 for some b ∈ ag and x ∈ S, i.e., the

path that extends s0 with 〈Rb, x〉. By the seriality of Ra, there exists
y ∈ S such that xRay. Consider the path x = 〈s, Ra, y〉. By definition,
x is an a-extension of s in M . A subtlety is that x is a reduced path of
M only when a �= b. If a = b, s = 〈s0, Ra, x,Ra, y〉. Let y = 〈s0, Ra, y〉,
which is a reduction of x. Clearly y is an a-graph of s. By the definition
of unraveling, s Qa y. This shows that there is a state of T , i.e., x or y,
that s links to via Qa; hence the seriality of Qa.

– Transitivity. Suppose sQat and tQau. We must show sQau. By the
definition of Qa, the supposition gives us four possible combinations of
whether t is an a-extension or a-graft of s, and whether u is an a-extension
or a-graft of t. By the definitions, it is not hard to verify that u is either
an a-extension or a-graft of s (again, a subtlety is to enforce that s, t and
u are all reduced paths). Thus sQau, as wanted.

– Euclidicity. Suppose sQat and sQau. Similarly to the above, we have
four possibilities, and we can show that tQau.

2. The proof goes in the same way as in the case of individual belief. That QG

lacks seriality is due to the lack of seriality of RG.
3. Suppose there are two reduced paths (called meta-paths here) of Mu from s

to t. The length of each meta-state (which is a path of M) is non-decreasing
along each meta-path. For a Qτ that comes from a τ -extension, a different
Qτ ′ leads to a different meta-state, with Rτ ′ recorded in it. For a Qτ that
comes from a τ -graft, a different Qτ ′ also leads to a different meta-state. An
observation here is that there is no way to revisit a meta-state in a reduced
meta-path. The only way to keep the size of a meta-state (which is a path
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of M) not growing is via a τ -graph, but this cannot be made consecutively
(otherwise not a reduced path). This guarantees the uniqueness of the reduced
meta-path from s to t.

Definition 9 (folding). Let M = (S,R, V ) be a treelike pre-model. Mf , the
folding of M , is the tuple (S,Q, V ) such that for all agents a, Qa is the transitive
and Euclidean closure of Ra ∪ ⋃

G�a RG.

Technically speaking, folding can be defined on any pre-model, but the name
only makes sense for treelike pre-models, which is also revealed by Lemma 5.

Proposition 1. Let (S,Q, V ) be the folding of a treelike pre-model (S,R, V ).
For every agent a, Qa is a KD45 (i.e., serial, transitive and Euclidean) relation.

Proof. Seriality by that of Ra; transitivity and Euclidicity by definition.

Applying the processes of unraveling and folding, we can translate a pseudo
model into a genuine model. In the next subsection, we show the procedure of
unraveling and folding is truth preserving.

4.3 Truth Preservation of the Translation

We introduce with necessary adaptions the notions of trans-equivalence and
trans-bisimulation from [23], which are generalizations of modal equivalence
and bisimulation that are relations over the set of (pointed) models to relations
between a set of (pointed) models and a set of (pointed) pre-models.

Definition 10 (trans-equivalence). Let (M, s) be a pointed model and
(M ′, s′) a pointed pre-model. We say (M, s) and (M ′, s′) are trans-equivalent,
denoted (M, s) ≡t (M ′, s′), if {ϕ | (M, s) |= ϕ} = {ϕ | (M ′, s′) |= ϕ}.
Definition 11 (trans-bisimulation). Let M = (S,R, V ) be a model and M ′ =
(S′, R′, V ′) a pre-model. A non-empty binary relation Z ⊆ S × S′ is called a
trans-bisimulation between M and M ′, if the following hold for all s ∈ S and
s′ ∈ S′ such that sZs′:

– (Atom) s ∈ V (p) iff s′ ∈ V ′(p), for all propositional variables p;
– (Zig) for all G ∈ gr and t ∈ S such that sRD

G t, there is a path of M ′ from
s′ to some t′, such that tZt′ and all the edges in the path are of the form R′

τ

such that G ⊆ τ ;
– (Zag) for all τ ∈ ag ∪ gr and t′ ∈ S′ such that s′R′

τ t′, there is a state t ∈ S
such that tZt′ and sRτ t when τ ∈ ag and sRD

τ t when τ ∈ gr.

We write Z : (M, s) �t (M ′, s′) if Z is a bisimulation between M and M ′ such
that sZs′. Moreover, (M, s) �t (M ′, s′) means that there is a Z ⊆ S × S′ such
that Z : (M, s) �t (M ′, s′).

We shall also make use of the notion of a standard bisimulation (see e.g., [3]).
For a distinction, the existence of a standard bisimulation is denoted by �, and
we use �t for trans-bisimulation.
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Lemma 4 (conditional invariance of trans-bisimulation). Given a
pointed model (M, s) and a pointed pre-model (M ′, s′), if (M, s) �t (M ′, s′)
and there exists a pointed pseudo model (M ′′, s′′) such that (M ′, s′) � (M ′′, s′′),
then (M, s) ≡t (M ′, s′).

Proof. Suppose Z : (M, s) �t (M ′, s′) and Y : (M ′, s′) � (M ′′, s′′). We show
that for any formula ψ, (M ′, s′) |= ψ iff (M, s) |= ψ. The proof can be carried
out by induction on formulas. The only interesting cases are for Baϕ and DGϕ.
Let M = (S,R, V ), M ′ = (S′, R′, V ′) and M ′′ = (S′′, R′′, V ′′).

The case for Baϕ. Sufficiency. Suppose (M, s) |= Baϕ, and we must show
(M ′, s′) |= Baϕ. For any state t′ ∈ S′ such that s′R′

at′, it suffices to show
(M ′, t′) |= ϕ. By (Zag) there is a state t ∈ S such that tZt′ and sRat. From
(M, s) |= Baϕ it follows (M, t) |= ϕ. We get (M ′, t′) |= ϕ by the induction
hypothesis, as was to be shown.

For necessity, suppose (M ′, s′) |= Baϕ, and we must show (M, s) |= Baϕ.
Given any state t of M such that sRat (equivalent to sRD

{a}t as M is a model),
it suffices to show (M, t) |= ϕ. By (Zig) there is a path of M ′ from s′ to some
t′ such that (i) tZt′ and (ii) every edge in the path is of the form R′

τ with
{a} ⊆ τ . It follows from (M ′, s′) � (M ′′, s′′) that there is a path of M ′′ from
s′′ to some t′′ such that (i) t′Y t′′ and (ii) every relation in the path is of the
form Rτ with {a} ⊆ τ . s′′R′′

at′′ holds since M ′′ is a pseudo model. Since we
have (M ′′, s′′) |= Baϕ by the invariance of bisimulation, (M ′′, t′′) |= ϕ and so
(M ′, t′) |= ϕ. By the induction hypothesis we get (M, t) |= ϕ, as was to be
shown.

The case for DGϕ can be shown analogously to the case for Baϕ.

Lemma 5 (truthful translation).

1. (Unraveling preserves bisimulation) Let M be a pseudo model and s a state
of it. For any reduced path s of M that ends with s, (M, s) � (Mu, s ).

2. (Folding preserves trans-bisimulation) Let M be a treelike pre-model and s a
state of it. Then (Mf , s) �t (M, s).

Proof. 1. It is not hard to verify that the conditions of (Atom), (Zig) and (Zag)
for standard bisimulation are satisfied between a pointed model and its unrav-
eling.

2. Let M = (S,R, V ) be a treelike pre-model and Mf = (S,Q, V ) its folding. It
suffices to show that Z = {(s, s) | s ∈ S} is such that Z : (Mf , s) �t (M, s).
(Atom) holds trivially.
(Zig) Suppose there is a t ∈ S such that sQD

Gt for some group G. It suffices
to show that there is a path of M from s to t such that all the edges in the
path are of the form Rτ such that G ⊆ τ . Suppose G = a1, . . . , an, and then by
definition we have QD

G = Qa1 ∩ · · · ∩ Qan
, therefore (s, t) is in the transitive and

Euclidean closure of Rai
∪ ⋃

H�ai
RH , for all ai with 1 ≤ i ≤ n. It follows that

there are n reduced paths of M from s to t such that:
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〈s,Rτ1,1 , . . . , Rτ1,m1
t〉

...
〈s,Rτn,1 , . . . , Rτn,mn

t〉
where each τi,j is either ai or some H � ai. Since M is treelike, there can only
be a unique reduced path from s to t. It follows that (i) m1 = m2 = · · · = mn

(i.e., all possible reduced paths are of the same length; let us denote it by m)
and (ii) τ1,j = τ2,j = · · · = τn,j (i.e., all relations remain the same at the same
position of each possible reduced path; let us denote it by τj) for all possible j.
But since τi,j at least contains ai (or is ai itself), it follows that G ⊆ τj for each
j. Therefore, G ⊆ τ1 ∩ · · · ∩ τm, as was to be shown.

(Zag) Suppose there is t ∈ S such that sRτ t for some agent or group τ , and
it suffices to show sQτ t (if τ is an agent) and sQD

τ t (if τ is a group). If τ is an
agent a, we get sQat by the definition of Qa. Otherwise τ is a group G with
sRGt, and it follows from the definition of folding that sQxt for all x ∈ G, and
thus sQD

Gt.

Theorem 1. BLD is a sound and strongly complete axiomatization of KD45D.

Proof. The soundness of BLD is easy to verify. As for the completeness, given
a BLD-consistent set of BLD formulas, it can be extended to a maximal con-
sistent set Φ of formulas using the standard Lindenbaum construction. By the
pseudo completeness lemma (Lemma 2), there is a pseudo model (M, s) such
that (M, s) |= Φ. For any reduced path s of M , it follows from Lemma 5 that
(Mu, s ) � (M, s) and ((Mu)f , s ) �t (Mu, s ), where Mu is the unraveling of
M (which is a treelike pre-model by Lemma 3) and (Mu)f is the folding of Mu

(which is a genuine model by definition). By Lemma 4 ((Mu)f , s ) ≡t (Mu, s ),
and (Mu, s ) ≡ (M, s) by the known result of the invariance of standard bisim-
ulation. Therefore, ((Mu)f , s ) |= Φ.

5 Discussion

We have studied the properties of different types of group belief under different
assumptions about the properties of belief (including knowledge). These are
summed up in Fig. 1. We emphasize that we have used standard definitions that
are used for both group knowledge and group belief in the literature, in particular
in the standard textbook [8].

We can make the, perhaps surprising, observation that many group attitudes
to knowledge and belief used in the literature are not well defined in the sense
that they do not actually have the properties it is assumed that knowledge or
belief has. For example, general knowledge (everybody-knows) is actually not
knowledge, and common belief or distributed belief are most often not belief. In
particular:
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– Under the standard assumption that knowledge has the S5 properties, what
is sometimes called general knowledge or mutual knowledge in the literature,
i.e., what everybody knows, is not actually knowledge. It is (KT)B but not S5,
in particular it lacks both the positive and negative introspection properties.

– Under the assumption that belief is consistent (the D axiom) but not veridical
(the T axiom), distributed belief is not actually belief (in any of the standard
model classes). For example, distributed belief on KD45 is K45 but not KD45.
We note that “D but not T” is an extremely weak assumption about belief,
in fact a standard property distinguishing belief from knowledge.

– Under the common assumption that belief has the KD45 or just the K45
properties, then common belief is not actually belief. It is KD4 or K4, respec-
tively, and not KD45 or K45. In general, common belief typically lacks nega-
tive introspection. More precisely, common belief loses negative introspection
on any of the model classes without the B axiom (symmetry). If we take
the reflexive transitive closure of the union instead of the transitive closure,
common belief is S4 on both KD45 and K45 model classes, again lacking the
negative introspection property.

– General belief is not well defined as a notion of belief on weaker model classes
than S5 either; it loses both positive and negative introspection on any class
that has them.

None of the three (four, if we count the alternative definition for common belief)
notions of group belief are actually belief on the most common model class for
belief, namely KD45. The only cases for which all three notions of group belief
are well defined in the sense that they have belief properties, are K, (K)T, KB
and (KT)B.

Under the common assumption that belief does not have the veridicality
property, the only cases where all three notions are well defined, in the sense
that group belief actually has the properties of belief, are K and KB – i.e., under
very weak assumptions about the properties of belief. Thus, group belief, as
defined in the literature, strictly speaking typically is not actually belief, except
under very weak assumptions about what belief is.

We hope these observations might help clarify the properties of group belief
and knowledge. There has been some confusion and missing details in the
literature regarding group knowledge/belief in general and distributed knowl-
edge/belief in particular, for example about what the empty group knows [1]
or what distributed knowledge actually means [2] – and about soundness and
completeness of axiomatizations of KD45 with distributed belief. In this paper
we provided a detailed completeness proof for a sound axiomatization of KD45
with distributed belief, by adapting a technique used for the S5 case in [23] to
the KD45 case.

It should also be noted that while group belief often has fewer properties
than individual belief (like common or distributed belief on KD45 as mentioned
above), sometimes it has more properties. For example, common belief on KDB
is S5 – it gains both positive and negative introspection. The alternative defini-
tion of common belief using the reflexive transitive closure is in a way “better
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behaved”; it is always either S4 or S5. However, its requirement that common
belief must imply truth (reflexivity) does not square well with standard assump-
tions about belief (indeed, while this definition is often found for group knowl-
edge, it is rarely found for group belief for weaker variants of belief than S5).

A conceptually closely related work is by Endriss and Grandi on graph aggre-
gation [6]; the aggregation of one graph for each agent over the same set of
vertices into a collective graph over the same set, in the spirit of aggregation
problems in social choice theory. Endriss and Grandi argue that this abstrac-
tion captures many concrete natural problems, including preference aggregation,
social networks, and indeed group knowledge including general, common and dis-
tributed knowledge (belief is not mentioned explicitly but the argument does not
rely on any particular properties of knowledge). And indeed, what we have called
preservation of belief properties for different types of group belief in this paper,
is exactly the same that [6] calls collective rationality of the corresponding aggre-
gation rules with respect to the properties. Despite the close connection to the
framework, we were only able to make use of some minor results from [6], in the
proof of Lemma 1, as [6] focuses mostly on Arrow-style impossibility results.

The motivation behind this paper has been to take a critical look at standard
definitions of group knowledge and belief in the literature; i.e., the interpretation
of general, common and distributed knowledge and belief using union, transitive
closure of union, and intersection of individual accessibility relations, respec-
tively. These definitions appear in standard textbooks and in a myriad of other
works, and understanding them is therefore important. Of course, other, perhaps
less well known, formalizations of group belief exist, although they have not been
the topic of the current paper. Of particular mention here is [11], which takes
a critical look at different definitions of group belief from a philosophical per-
spective, and proposes some new formalizations in modal logic. An interesting
direction for future work would be to investigate preservation of belief properties
under different assumptions of individual belief, for other non-standard notions
of group belief. More broadly, by using the impossibility results from [6] men-
tioned above, it might be possible to say something about the impossibility of
other group belief operators under certain assumptions about belief.
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2. Ågotnes, T., Wáng, Y.N.: Resolving distributed knowledge. Artif. Intell. 252, 1–21
(2017)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)



Group Belief 21

4. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Concurrent dynamic epistemic
logic. In: Hendricks, V., Jørgensen, K., Pedersen, S. (eds.) Knowledge Contribu-
tors. Synthese Library Series, pp. 105–143. Kluwer Academic Publishers, Dordrecht
(2003). https://doi.org/10.1007/978-94-007-1001-6 6

5. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese
Library, vol. 337. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-
5839-4

6. Endriss, U., Grandi, U.: Graph aggregation. Artif. Intell. 245, 86–114 (2017)
7. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM 41,

340–367 (1994)
8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.

The MIT Press, Cambridge (1995). Hardcover edition
9. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Common knowledge revisited.

Ann. Pure Appl. Logic 96(1–3), 89–105 (1999)
10. Fagin, R., Halpern, J.Y., Vardi, M.Y.: What can machines know? On the properties

of knowledge in distributed systems. J. ACM 39(2), 328–376 (1992)
11. Gaudou, B., Herzig, A., Longin, D., Lorini, E.: On modal logics of group belief. In:

Herzig, A., Lorini, E. (eds.) The Cognitive Foundations of Group Attitudes and
Social Interaction. SPS, vol. 5, pp. 75–106. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21732-1 4

12. Halpern, J.Y.: Using reasoning about knowledge to analyze distributed systems.
Ann. Rev. Comput. Sci. 2, 37–68 (1987)

13. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37(3), 549–587 (1990)

14. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artif. Intell. 54, 319–379 (1992)

15. Halpern, J.Y., Fagin, R.: Modelling knowledge and action in distributed systems.
Distrib. Comput. 3, 159–177 (1989)

16. Halpern, J.Y., Moses, Y., Waalrts, O.: A characterization of eventual byzantine
agreement. In: Proceedings of the Ninth Annual ACM Symposium on Principles
of Distributed Computing, PODC 1990, pp. 333–346. ACM, New York (1990)

17. Halpern, J.Y., Tuttle, M.R.: Knowledge, probability, and adversaries. J. ACM 40,
917–960 (1993)

18. van der Hoek, W., Meyer, J.J.C.: Making some issues of implicit knowledge explicit.
Int. J. Found. Comput. Sci. 3(2), 193–224 (1992)

19. Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundam. Inf.
63(2–3), 185–219 (2004)

20. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science.
Cambridge University Press, Cambridge (1995)

21. van der Hoek, W., Meyer, J.J.: Making some issues of implicit knowledge explicit.
Int. J. Found. Comput. Sci. 3(2), 193–224 (1992)

22. Walther, D.: Satisfiability of ATEL with common and distributed knowledge is
ExpTime-complete. Technical report, University of Liverpool (2005)
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Abstract. The semantics as to which set of arguments in a given argu-
mentation graph may be acceptable (acceptability semantics) can be
characterised in a few different ways. Among them, the labelling-based
approach allows for a concise and flexible determination of acceptability
statuses of arguments through assignment of a label indicating accep-
tance, rejection, or undecided to each argument. In this work, we con-
template a way of broadening it by accommodating may- and must- con-
ditions for an argument to be accepted and rejected, as determined by the
number(s) of rejected and accepted attacking arguments. We show that
the broadened label-based semantics can be used to express more mild
indeterminacy than inconsistency for acceptability judgement when, for
example, it may be the case that an argument is accepted and when it
may also be the case that it is rejected. We identify that finding which
conditions a labelling satisfies for every argument can be an undecid-
able problem, which has an unfavourable implication to semantics. We
propose to address this problem by enforcing a labelling to maximally
respect the conditions, while keeping the rest that would necessarily
cause non-termination labelled undecided.

1 Introduction

Dung formal argumentation [19] provides an abstract view of argumentation as
a graph of: nodes representing arguments; and edges representing attacks from
the source arguments to the target arguments. Dung argumentation allows us
to determine which arguments are acceptable in a given argumentation.

While the determination in Dung’s seminal paper is through conflict-freeness:
no members of a set attack a member of the same set, and defence: a set of argu-
ments defend an argument just when any argument attacking the argument is
attacked by at least one member of the set, there are other known approaches.
With labelling, a labelling function assigns a label indicating either of: accep-
tance, rejection, and undecided (see e.g. [14,29]) to each argument, offering
a fairly concise and also flexible (see e.g. [13]) characterisation of arguments’
acceptability, based, in case of [13,14], just on the labels of the arguments it is
attacked by. Acceptance and rejection conditions may be defined uniformly for
every argument [14,29], or per argument, as in Abstract Dialectical Frameworks
(ADF) [13], where acceptance status of an argument is uniquely determined
c© Springer Nature Switzerland AG 2020
M. Dastani et al. (Eds.): CLAR 2020, LNAI 12061, pp. 22–41, 2020.
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for each combination of the acceptance/rejection/undecided labels of associated
arguments.

1.1 Labelling-Approach with May-Must Scales

In this work, we aim to further explore the potential of labelling-approach by
broadening the labelling in [14] with what we term may-must acceptance scale
and may-must rejection scale, to be assigned, like in ADF, to each argument.
The may-must acceptance scale (respectively may-must rejection scale) of an
argument is specifically a pair of natural numbers (n1, n2) with n1 indicating the
minimum number of its attackers that need to be rejected (respectively accepted)
in order that the argument can be accepted (respectively rejected) and n2 the
minimum number of its attackers that need to be rejected (respectively accepted)
in order that it must be accepted (respectively rejected). That is, n1 is the may
condition, while n2 is the must condition, for acceptance (respectively rejection)
of the argument.

Thus, not only can they, through the must conditions, express exact condi-
tions for acceptance/rejection of an argument as with [13,14], they can addition-
ally describe minimal requirements to be satisfied in order that the argument
can be accepted/rejected. The may-must scales lead to the following distinction
to acceptance and rejection of an argument.

(1). It may be accepted. (2). It must be accepted.
(i). It may be rejected. (ii). It must be rejected.

Since each argument has its own may-must scales both for acceptance and rejec-
tion, depending on the specific numerical values given to them, we may have
several combinations in {(1) (2) neither}−{(i) (ii) neither}. Hence, the concept
of aggregation becomes relevant for obtaining an actual acceptability status of
an argument. While (2)−(neither) (i.e. it must be accepted and it is not to be
rejected), (neither)−(ii) (i.e. it is not to be accepted and it must be rejected),
(2)−(ii) (i.e. the argument is both accepted and rejected at the same time) and
(neither)−(neither) (i.e. it is neither accepted nor rejected) deterministically
indicate acceptance, rejection, undecided and undecided for the acceptability
status of the argument, the other combinations are more interesting.

Let us consider for example (1)−(i). Unlike (neither)−(neither) or (2)−(ii),
either of which leads to immediate logical inconsistency, (1)−(i) expresses milder
indeterminacy, since we can assume the possibilities of the argument to be
accepted and of the same argument to be rejected simultaneously without logical
contradiction. In fact, there may be more than one suitable label from among
acceptance, rejection and undecided as the acceptability status of an argument,
which differs from [13,14]. Such non-deterministic labels of argument(s) can trig-
ger disjunctive branches to the labels of those arguments attacked by them.
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1.2 Motivation for May-Must scales

In real-life argumentation, an argument which is attacked by a justifiable argu-
ment but by no other arguments can be seen differently from an argument which
is attacked by a justifiable argument and which is also attacked by a lot more
defeated (rejected) arguments. For example, if that argument is a scientific the-
ory, one interpretation of the two cases is that, in the first case, it meets an
objection without it having stood any test of time, and, in the second case, even
though it is not defended against one objection, it withstood all the other objec-
tions, a lot more of them in number. Such an interpretation gives us a reasonable
ground to judge that an argument, if found out to withstand an objection, attains
greater credibility, that is to say, that an attacker being rejected has a positive,
or at least a non-negative, impact on its acceptance.

Coupled with the other more standard intuition that an attacker of an argu-
ment being accepted has a non-positive impact on the argument’s acceptance,
we see that

– the larger the number of rejected attackers is, the more likely it can become
that the argument is accepted, and

– the larger the number of accepted attackers is, the more likely it can become
that the argument is rejected,

until there comes a moment where both acceptance and rejection of the argument
become so compelling, with sufficient numbers of rejected and accepted attackers,
that its acceptance status can no longer be determined. As with any reasonable
real-life phenomenon, the acceptance and rejection judgement can be somewhat
blurry, too. Introduction of the may- conditions allows the softer boundaries of
acceptance and rejection to be captured based on the number(s) of accepted and
rejected attacking arguments.

Moreover, with studies of argumentation expanding into multi-agent sys-
tems, for argumentation-based negotiations (Cf. two surveys [18,37] for two-
party negotiations and a recent work on multi-party current negotiations [3]),
strategic dialogue games and persuasions [2,6,24–28,31,35,36,38–41], and oth-
ers, it is preferable that an argumentation theory be able to accommodate a
different nuance of arguments’ acceptability locally per argument, and yet some-
how in a logically principled manner. Future applications into the domain in
mind, may-must scales are given to each argument, like local constraints in
ADF, ensuring the locality. Like in argumentation with graded acceptability
[23] (see below for comparisons), however, may-must conditions are rooted in
‘endogenous’ information of an argumentation graph, to borrow the expression
in [23], namely the cardinality of attackers, which aids retention of a level of
abstractness defining monotonic conditions, i.e. a may- or a must- condition is
satisfied minimally with n accepted or rejected attacking arguments, but also
with any (n ≤) m accepted or rejected attacking arguments. As we will show, it
for example offers an easy characterisation of: possibly accepting an argument
when 80% of attacking arguments are rejected; accepting an argument when 90%
of attacking arguments are rejected; possibly rejecting an argument when 40%
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of attacking arguments (but at least 1) are accepted; and rejecting an argument
when 50% of attacking arguments (but at least 1) are accepted.

1.3 Related Work

Resembling situations are rather well-motivated in the literature. Argumenta-
tion with graded acceptability [23] relaxes conflict-freeness and defence in Dung
abstract argumentation. For conflict-freeness, it permits a certain number k1 of
attackers to be accepted simultaneously with the attacked (see also set-attacks
[34] and attack-tolerant argumentations [1,5,20,21,33]). For defence, it allows
the defence by a set of arguments for the attacked to occur when a certain num-
ber k2 of its attackers are attacked by a certain number k3 of members of the
set. Our work follows the general idea of conditionalising acceptance statuses
of arguments on the cardinality of accepted and rejected attacking arguments.
Indeed, k1+1 corresponds to the must- condition of the may-must rejection scale
in this work. On the other hand, unlike in [23] where dependency of acceptability
status of an argument on the attackers of its attackers is enforced due to k2 and
k3, we are more conservative about the information necessary for determining
acceptability status(es) of an argument. We have it obtainable purely from its
immediate attackers. Also, may- conditions are not considered in [23]. In partic-
ular, while both may- and must- conditions of the may-must acceptance scale of
an argument interact with those of its may-must rejection scale (see Sect. 1.1),
the interaction between the non-positive and the non-negative effects on the
acceptance of the argument is, as far as we can fathom, not primarily assumed
in [23].

Ranking-based argumentations (Cf. a recent survey [11]) order arguments
by the degree of acceptability. There are many conditions around the ordering,
giving them various flavour. Ones that are somewhat relevant to our setting (see
Sect. 1.2) are in a discussion in [15], where we find the following descriptions:

– the more defence branches an argument has, the more acceptable it becomes.
– the more attack branches an argument has, the less acceptable it becomes.

Here, a branch of an argument is a chain of attacking arguments having the
argument as the last one attacked in the chain, and an attack branch (respec-
tively a defence branch) is a branch with an odd (respectively even) number of
attacks. With the principle of reinstatement (that an attacker of an attacker of an
argument has a propagating positive effect on the acceptance of the argument)
assumed, these two conditions are clearly reasonable. By contrast, our approach
assigns may- and must- acceptance and rejection conditions to each argument;
thus, the reinstatement cannot be taken for granted, which generally makes it
inapplicable to propagate argumentation ranks (which can be numerical values
[7,8,16,21,30]) through branches by a set of globally uniform propagation rules.
The cardinality precedence: the greater the number of immediate attackers of
an argument, the weaker the level of its acceptability is [11], which in itself does
not take into account acceptability statuses of the immediate attackers, does not
always hold good with our approach, either.
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For a label-based argumentation, non-deterministic labelling in argumenta-
tion as far back as we can see is discussed in [29], where an argument may be
labelled as either rejected ({−}) or ‘both accepted and rejected’ ({+,−}) when,
for example, it has just one attacker labelled {+,−}. Nonetheless, the criteria of
label assignments are global (an argument may be accepted ({+}) just when the
label(s) of all its attackers contain −; and may be rejected just when there exists
at least one argument whose label contains +), not covering the various nuances
to follow from locally given criteria. On more technical a point, while letting only
{+,−} (both accepted and rejected) be ‘undecided’ is sufficient in [29], that is
not enough in more general a case, as we are to show in this paper. Indeed,
with some argumentation graph and some may-must acceptance and rejection
scales, it can happen that whether, for example, an argument is accepted, or
both accepted and rejected, is itself an undecidable question.

Abstract Dialectical Frameworks (ADF) [13] is another labelling approach
which accommodates, with 3 values [13] (which has been recently extended to
multi-values [12]), local acceptance, rejection and undecided conditions. The
label of an argument is determined into only one of the 3 labels for a given
combination of its attackers’ labels. Since its label is determined for every com-
bination of its attackers’ labels, the ADF labelling is very specific (or concrete).
By contrast, the may-must conditions are more abstract in that they only spec-
ify, like in [14,23], the numbers of attackers but not exactly which ones. Apart
from that the abstract specification is in line with [14], the level of abstract-
ness is more favourable for our setting, since the may- and must- acceptance (or
rejection) conditions, once satisfied with n rejected (or n accepted) attacking
arguments, should remain satisfied with m rejected (or m accepted) attacking
arguments so long as n ≤ m, which they can handle in more principled a way.
Moreover, the acceptance status of an argument is evaluated both for accep-
tance and for rejection with the two scales. The independent criteria are fitting
for many real-life decision-makings, since it is common that assessments as to
why a proposal (a suspect) should/must be accepted (guilty) and as to why it
(the suspect) should/must be rejected (acquitted) are separately made before,
based on them, a final decision is delivered. The may- must- conditions based
on the cardinality of accepted or rejected attacking arguments are, as far as
we are aware, not considered in ADF including [10,12]. Some more technical
comparisons are found in the conclusion of this paper.

Fuzziness as a varying attack strength [30] and as a varying degree of accept-
ability of an argument [10,12,16] have been discussed in the literature, both of
which are closely related to ranking-based argumentation. The kind of fuzziness
that we deal with in this paper, however, is not, again borrowing the expres-
sion in [23], about ‘exogeneously given information about the relative strength
of arguments’ or the relative degree of acceptability, but about an endogenous
property of an argumentation graph, the cardinality of attackers.
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1.4 Summary of Contribution and the Structure of the Paper

We broaden the labelling in [14] with a may-must acceptance scale and a may-
must rejection scale for each argument, as we stated in Sect. 1.1, which helps
localise the nuance of acceptability of an argument based on the cardinality of
(accepted and rejected) attacking arguments. That those conditions only specify
the numbers of (accepted and rejected) attacking arguments and that their sat-
isfaction conditions are monotonic (Cf. Section 1.2) help the approach retain a
level of abstractness that facilitates a principled explanation as to why an argu-
ment is accepted, rejected, or undecided. The may-must scales accommodate
two-way evaluation for acceptance as well as rejection, and non-deterministic
labelling.

Technically, we identify that finding a labelling that satisfies local criteria for
each argument is not always possible due to a circular reasoning. We address this
problem by enforcing a labelling to maximally respect local acceptance criteria,
while keeping the rest that would necessarily cause non-termination labelled
undecided.

In the remaining, we will see: technical preliminaries, specifically of Dung
abstract argumentation labelling [14] (in Sect. 2); and present our label-based
argumentation with may-must scales and identify its connection to the above-
mentioned labelling (in Sect. 3). We will then draw conclusions with some tech-
nical remarks around ADF.

2 Technical Preliminaries

Dung abstract argumentation [19] considers an argumentation as a graph where
a node represents an argument and where an edge between arguments represents
an attack from the source argument to the target argument. Technically, let A
denote the class of abstract entities that we understand as arguments, then a
(finite) abstract argumentation is a tuple (A,R) with A ⊆fin A and R ⊆ A × A.
a1 ∈ A is said to attack a2 ∈ A if and only if, or iff, (a1, a2) ∈ R holds. We
denote the class of all Dung abstract argumentations by FD.

One of the main objectives of representing an argumentation formally as a
graph is to infer from it which set(s) of arguments may be accepted. Acceptability
of a set of arguments is determined by whether it satisfies certain criteria.

In this paper, we will uniformly use labelling [14] for characterisation of the
acceptability semantics; readers are referred to Dung’s original paper [19] for an
equivalent semantic characterisation through conflict-freeness and defence1.

Let L denote {in, out, undec}, and let Λ denote the class of all partial functions
A → L. Let ΛA for A ⊆ A denote a subclass of Λ that includes all and only
those λ ∈ Λ that is defined for all and only members of A. For the order among

1 Similar semantic characterisation with the conflict-freeness and the defence is, as
with some of the ranking-based approaches or with ADF, not actually practical in
this work, since the nuance of an attack in Dung abstract argumentation is only one
of many that are expressible in our proposal.
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members of Λ, let � be a binary relation over Λ such that λ1 � λ2 for λ1, λ2 ∈ Λ
iff all the following conditions hold. (1) There is some A ⊆fin A such that λ1, λ2 ∈
ΛA. (2) For every a ∈ A, λ1(a) = in (and respectively λ1(a) = out) materially
implies λ2(a) = in (and respectively λ2(a) = out). We may write λ1 ≺ λ2 when
λ1 � λ2 but not λ2 � λ1.

Then, λ ∈ Λ is said to be: a complete labelling of (A,R) ∈ FD iff all the
following conditions hold for every a ∈ A [14].

1. λ ∈ ΛA.
2. λ(a) = in iff there exists no ax ∈ A such that ax attacks a and that λ(ax) �=

out.
3. λ(a) = out iff there exists some ax ∈ A such that ax attacks a and that

λ(ax) = in.

First of all, (ΛA,�) is clearly a meet-semilattice (see [17] for all these notions
around a lattice). Denote the set of all complete labellings of (A,R) by Λcom

(A,R).
It is well-known that (Λcom

(A,R),�) is also a meet-semilattice.
A complete labelling λ of (A,R) (∈ FD) is said to be also a preferred labelling

of (A,R) iff, for every complete labelling λx of (A,R), λ ≺ λx does not hold. A
preferred labelling λ of (A,R) is also a stable labelling of (A,R) iff, for every
a ∈ A, λ(a) �= undec holds. Also, λ ∈ Λ is called a grounded labelling of (A,R)
iff λ is the meet of Λcom

(A,R) in (ΛA,�)2.
For any such labelling λ of (A,R), we say that a ∈ A is: accepted iff λ(a) = in;

rejected iff λ(a) = out; and undecided, otherwise.
We call the set of all complete/preferred/stable/grounded labellings of (A,R)

complete/preferred/stable/grounded semantics of (A,R).
Let a1 → a2 or a2 ← a1 be a graphical representation of (a1, a2) ∈ R. A small

concrete example a1 � a2 should suffice for illustrating the relation among the
semantics. Let λ1, λ2, λ3 ∈ Λ{a1,a2} be such that λ1(a1) = in, λ1(a2) = out (as
shown below, to the left), that λ2(a1) = out, λ2(a2) = in (as shown below, at
the centre), and that λ3(a1) = λ3(a2) = undec (as shown below, to the right).

in
a1

out
a2

out
a1

in
a2

undec
a1

undec
a2

Then, complete, preferred, stable and grounded, semantics of this argumentation
are exactly {λ1, λ2, λ3}, {λ1, λ2}, {λ1, λ2} and {λ3}.

3 Label-Based Argumentation Semantics with May-Must
Scales

We present abstract argumentation with may-must scales, and characterise its
labelling-based semantics in this section. In the remaining, for any tuple T of
2 We make it more general here in light of some more recent argumentation studies

(including this work) in which a grounded labelling is not necessarily a complete
labelling [4,9], although, in case of Dung argumentation, it is trivial that a grounded
labelling is the meet of Λcom

(A,R) in (Λcom
(A,R), �).
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n-components, we make the following a rule that (T )i for 1 ≤ i ≤ n refers to
T ’s i-th component. Since the two may-must scales (one for acceptance and one
for rejection) define a nuance of acceptability of an argument, we call the pair a
nuance tuple:

Definition 1 (Nuance tuple). We define a nuance tuple to be (XXX1,XXX2) for
some XXX1,XXX2 ∈ N × N. We denote the class of all nuance tuples by Q. For
any Q ∈ Q, we call (Q)1 its may-must acceptance scale and (Q)2 its may-must
rejection scale.

Definition 2 (Abstract argumentation with may-must scales). We
define a (finite) abstract argumentation with may-must scales to be a tuple
(A,R, fQ) with: A ⊆fin A; R ⊆ A × A; and fQ : A → Q, such that
((fQ(a))i)1 ≤ ((fQ(a))i)2 for every a ∈ A and every i ∈ {1, 2}.

We denote the class of all (finite) abstract argumentations with may-must
scales by F , and refer to its member by F with or without a subscript.

The role of a nuance tuple within an (A,R, fQ) ∈ F is as was described in
Sect. 1. If a ∈ A is such that ((fQ(a))1)1 = 2 (the first component of the first
component of fQ(a), which is the first component of (fQ(a))’s may-must accep-
tance scale, which is the may condition of (fQ(a))’s may-must acceptance scale)
and ((fQ(a))1)2 = 3 (similarly, the must condition of (fQ(a))’s may-must accep-
tance scale), then a can never be accepted unless there are at least 2 arguments
attacking a that are rejected. Once there are at least 3 arguments attacking a
that are rejected, then a must be accepted.

Given the nature of attack, it is not very intuitive to permit the value of may-
condition to be strictly larger than that of must- condition of a may-must scale:
an accepted attacking argument has a non-favourable effect on the argument(s)
it attacks; if, say, 2 arguments attacking a need to be accepted in order that a can
be rejected, intuitively 1 accepted argument attacking a does not produce strong
enough non-favourable effect on a to reject it; also into the other direction, if, say,
3 arguments attacking a need to be accepted in order that a must be rejected,
intuitively 4 accepted arguments attacking a still enforce rejection of a. It is for
this reason that we are formally precluding the possibility in Definition 2.

Definitions for satisfaction of may- and must- conditions of the may-must
scales are as below. Here and in the remaining, for any F ≡ (A,R, fQ) (∈ F),
any a ∈ A and any λ ∈ ΛA, we denote by predF (a) the set of all ax ∈ A with
(ax, a) ∈ R, by predF

λ,in(a) the set of all ax ∈ predF (a) with λ(ax) = in, and by
predF

λ,out(a) the set of all ax ∈ predF (a) with λ(ax) = out.

Definition 3 (May- and must- satisfaction). Let sat : F × A × L × Λ →
{true, false} be a predicate which is such that, with F ≡ (A,R, fQ) (∈ F), a ∈ A,
and λ ∈ ΛA:

– sat(F, a, in, λ) holds iff ((fQ(a))1)1 ≤ |predF
λ,out(a)| holds.

– sat(F, a, out, λ) holds iff ((fQ(a))2)1 ≤ |predF
λ,in(a)| holds.
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We specifically write sat�(F, a, in, λ) just when ((fQ(a))1)2 ≤ |predF
λ,out(a)|

holds. Similarly, we specifically write sat�(F, a, out, λ) just when ((fQ(a))2)2 ≤
|predF

λ,in(a)| holds.
For any F ≡ (A,R, fQ) (∈ F), any a ∈ A, and any λ ∈ ΛA, we say that a

satisfies may- acceptance condition (respectively may- rejection condition) under
λ iff sat(F, a, in, λ) (respectively sat(F, a, out, λ)) holds; we say that a satisfies
must- acceptance condition (respectively must- rejection condition) under λ iff
sat�(F, a, in, λ) (respectively sat�(F, a, out, λ)) holds.

We specifically say that a satisfies mays- acceptance condition (respectively
mays- rejection condition) under λ iff a satisfies may- but not must- acceptance
condition (respectively may- but not must- rejection condition).

We say that a satisfies not-may- acceptance condition (respectively not-may-
rejection condition) under λ iff a does not satisfy may- acceptance condition
(respectively may- rejection condition).

Now, as we described in Sect. 1, acceptance and rejection variations give rise to
several combinations. Here, we cover all possible cases exhaustively and precisely
for each λ ∈ ΛA.

(1) Must-must: a ∈ A satisfies must- acceptance and rejection conditions under
λ.

(2) Must-mays: a ∈ A satisfies must- acceptance (respectively must- rejec-
tion) condition and mays- rejection (respectively mays- acceptance) condi-
tion under λ.

(3) Must-notMay: a ∈ A satisfies must- acceptance (respectively must- rejec-
tion) condition, and not-may- rejection (respectively not-may- acceptance)
condition under λ.

(4) Mays-mays: a ∈ A satisfies mays- acceptance and rejection conditions
under λ.

(5) Mays-notMay: a ∈ A satisfies mays- acceptance (respectively mays- rejec-
tion) condition, and not-may- rejection (respectively not-may- acceptance)
condition under λ.

(6) notMay-notMay: a ∈ A satisfies not-may- acceptance and not-may- rejec-
tion conditions under λ.

Following Kleene-Priest three values logic’ negation [32] (assume: truth cor-
responds to acceptance, and falsehood corresponds to rejection), we obtain that
not-may- acceptance (respectively not-may- rejection) of a is equivalent to must-
rejection (respectively must- acceptance) of a. Thus, with the possible-world per-
spective (see any modern text on classical modal logic, e.g. [22]), satisfaction of:

– must- acceptance (respectively must- rejection) of a ∈ A implies a’s accep-
tance (respectively rejection) in every accessible possible world.

– mays- acceptance (respectively mays- rejection) of a implies a’s acceptance
(respectively rejection) in a non-empty strict subset of all accessible possi-
ble worlds and a’s rejection (respectively acceptance) in the other accessible
possible worlds.
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– not-may- acceptance (respectively not-may rejection) is equivalent to must-
rejection (respectively must- acceptance).

As a consequence, we obtain:
For (1), since a can either be accepted or rejected but not both simultane-

ously, this case where both acceptance and rejection of a are implied in every
accessible possible world is logically inconsistent. Thus, the acceptability status
of a is undecided.

For (2), in some accessible possible worlds, a’s acceptance and rejection are
both implied, leading to inconsistency, while in the other accessible possible
worlds, only a’s acceptance (respectively rejection) is implied. Hence, it is clear
that a is not judged rejected (respectively accepted) here; however, whether a is
accepted (respectively rejected) is indeterminate.

For (3), it is the case that a must be accepted (respectively rejected) in every
possible world (respectively accepted). Hence, a is judged accepted (respectively
rejected).

For (4), it is possible that only a’s acceptance is implied in some accessible
possible worlds, only a’s rejection is implied in some other accessible possible
worlds, and both a’s acceptance and rejection are implied in the remaining acces-
sible possible worlds. In short, all of: a being accepted; its being rejected; and
its acceptance status being undecided are generally a possibility.

For (5), it is analogous to (2). It is clear that a is not judged rejected (respec-
tively accepted); however, whether a is accepted (respectively rejected) is inde-
terminate.

For (6), we have logical inconsistency, and the acceptability status of a is
undecided.

Fig. 1. Corresponding expected accep-
tance status(es) of an argument for each
combination of may- must- acceptance
and rejection conditions. any is any of
in, out, undec, in? is any of in, undec, and
out? is any of out, undec.

Figure 1 to the right summarises
the expected acceptance statuses of
an argument for a given combi-
nation. In the table, [must-a] (,
[mays-a], and respectively [not-a])
indicates the case where the argu-
ment satisfies must- acceptance (,
mays- acceptance, and respectively
not-may- acceptance); analogously,
[must-r], [mays-r], and [not-r] are for
rejection. In Fig. 1, the any entry
abbreviates that either of in, out and
undec is possible; the in? entry either of in and undec; and the out? entry either
of out and undec.

To connect the labels assigned to predF (a), F ∈ F , with the label of a
expected from them, we describe that λ designates a label l for a when and only
when l is expected from the labels of predF (a) under λ, and that the label of a
is designated under λ when and only when: (1) λ designates the label for a; and
also (2) λ(a) is the label. Formally:
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Definition 4 (Label designation). For any F ≡ (A,R, fQ) (∈ F), any a ∈
A, and any λ ∈ Λ, we say that λ designates l ∈ L for a iff all the following
conditions hold.

1. λ is defined for every member of predF (a).
2. If l = in, then a satisfies may- acceptance condition but not must- rejection

condition.
3. If l = out, then a satisfies may- rejection condition but not must- acceptance

condition.
4. If l = undec, then either of the following holds.

– a satisfies must- acceptance and must- rejection conditions.
– a satisfies at least either mays- acceptance condition or mays- rejection

condition.
– a satisfies not-may- acceptance and not-may- rejection conditions.

Definition 5 (Designated label). For any F ≡ (A,R, fQ) (∈ F), any a ∈ A,
and any λ ∈ Λ, we say that a’s label is designated under λ iff all the following
conditions hold.

1. λ is defined for a. 2. λ designates λ(a) for a.

It can be easily surmised from Fig. 1 that a labelling may designate more than
one label for an argument:

Proposition 1 (Non-deterministic label designation). There exist F ≡
(A,R, fQ)(∈ F), a ∈ A, λ ∈ Λ, and l1, l2 ∈ L such that λ designates l1 and l2,
and that l1 �= l2.

The intuitive understanding of the significance of label designation is: if λ is such
that every argument’s label is designated under λ, then λ is a ‘good’ labelling
in the sense of every argument respecting the correspondences in Fig. 1.

Example 1 (Labelling). To illustrate these definitions around labelling, let us
consider the following simple acyclic argumentation graph with associated
nuance tuples. We let a

Q
be a graphical representation of an argument a with

fQ(a) = Q.

a1
((0,0),(1,1))

a2
((0,1),(1,2))

a3
((1,1),(1,1))

a4
((1,1),(1,1))

a5
((0,0),(1,1))

Denote this argumentation (with the indicated nuance tuples) by F . There are 3
labellings in Λ{a1,...,a5} under which the labels of every argument is designated,
as shown below. Let us call the labelling with the first (, second, third) label
assignment λ1 (, λ2, λ3).

in
a1

((0,0),(1,1))

out
a2

((0,1),(1,2))

in
a3

((1,1),(1,1))

out
a4

((1,1),(1,1))

in
a5

((0,0),(1,1))
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in
a1

((0,0),(1,1))

in
a2

((0,1),(1,2))

undec
a3

((1,1),(1,1))

out
a4

((1,1),(1,1))

in
a5

((0,0),(1,1))

in
a1

((0,0),(1,1))

undec
a2

((0,1),(1,2))

in
a3

((1,1),(1,1))

out
a4

((1,1),(1,1))

in
a5

((0,0),(1,1))

To see that there are no other labellings under which the labels of all the argu-
ments are designated, note firstly that, of the 5 arguments, the labels of a1,
a5 and a4 are designated under some λ ∈ Λ{a1,...,a5} iff λ(a1) = λ(a5) = in
and λ(a4) = out hold. To see that that is the case, let us firstly note that
predF (a1) = predF (a5) = ∅. Thus, expected acceptance statuses of both a1 and
a5 are known with no dependency on other arguments.3 It follows trivially from
the associated nuance tuples that both a1 and a5 satisfy must- acceptance and
not-may- rejection condition. From Fig. 1, then, in is the only one expected accep-
tance status for these two arguments. Vacuously, if any λ ∈ Λ{a1,...,a5} designates
only in for a1 and a5, it must deterministically hold that λ(a1) = λ(a5) = in, if the
two arguments’ labels are to be designated under λ. Now for a4, assume in label
for a5, it satisfies must- rejection condition (because there is 1 accepted attack-
ing argument) and not-may- acceptance condition (because there is 0 rejected
attacking argument), which finds in Fig. 1 the corresponding expected acceptance
status of out. This is deterministic provided in label for a5 is deterministic, which
happens to be the case in this example.

A more interesting case is of a2. Assume in label for a1, then it satisfies mays-
acceptance condition (because there is 0 rejected attacking argument) and mays-
rejection condition (because there is 1 accepted attacking argument), which finds
any in Fig. 1 indicating that any of the 3 labels is a possibility.

Finally for a3 for which neither mays- acceptance condition nor mays- rejec-
tion condition can be satisfied, every combination of acceptability statuses of a2

and a4 leads to at most one of the 3 labels for a3. Consequently, λ1, λ2 and λ3

are indeed the only 3 possible labellings of F such that every argument’s label
is designated under them. ♣

Since the labelling for Dung abstract argumentation (see Sect. 2) is such
that any labelling that satisfies the acceptance and rejection conditions of every
argument in (A,R) ∈ FD is a complete labelling of (A,R), we would also like
to define a complete labelling of F to be such that every argument’s label is
designated under it.

It is, however, problematic to call such a labelling a complete labelling,
because, then, there may not exist a complete labelling, as the following example
shows.

3 This does not mean that an expected acceptance status of an argument ax with
predF (ax) = ∅ is deterministic: if ax satisfies mays- acceptance or rejection condition,
there are multiple possible expected acceptance statuses. We simply mean that no
other arguments are required to know which may- must- conditions ax would satisfy.
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Example 2 (Non-termination of choosing a labelling that designates every argu-

ment). Consider a1
((0,0),(1,1))

and assume λ ∈ Λ{a1} with λ(a1) = in.

Then, λ designates undec for a1. However, if λ(a1) = undec, it follows that λ
designates in for a1. Assume λ(a1) = out instead, then λ designates in for a1. ♣
Theorem 1. There exists some (A,R, fQ) ∈ F and some a ∈ A such that, for
every λ ∈ ΛA, λ designates l �= λ(a) for a.

3.1 Maximally Designating Labellings

As the result of Theorem 1, generally with (A,R, fQ) ∈ F with an arbitrary fQ,
we can only hope to obtain maximally designating labellings under which some
arguments, even though their labels may not be designated, may still be assigned
undec. Now, since dependency of arguments’ acceptability statuses is, as with
[13,14], from source argument(s)’ to their target argument’s, we may without
loss of generality consider any maximality per strongly connected component (see
below), from ones that depend on a fewer number of other strongly connected
components to those with a larger number of them to depend on.

We recall the definition of a strongly connected component and then define
the order among them (Definition 6). In parallel, we will also need to rely on a
function that updates a labelling by changing the label of an argument whose
label is not designated under the labelling (Definition 7), so we can tell whether
we can have a every-argument-designating labelling (Definition 8).

Definition 6 (SCC and SCC-depth). For any F ≡ (A,R, fQ) (∈ F),
we say that (A1, R1) with A1 ⊆ A and R1 ≡ (R ∩ (A1 × A1)) is a strongly
connected component iff, for every ax ∈ A and every ay ∈ A1, we have:
{(ax, ay), (ay, ax)} ⊆ R∗ iff ax ∈ A1. Here, R∗ is the reflexive and transitive
closure of R.

Let Δ : F × A → 2A be such that, for any F ≡ (A,R, fQ) (∈ F) and any
a ∈ A, Δ(F, a) is the set of all arguments in a strongly connected component
that includes a. Let δ : F × A → N be such that, for any F ≡ (A,R, fQ) (∈ F)
and any a ∈ A, δ(F, a) is:

– 0 iff there is no ax ∈ Δ(F, a) and ay ∈ (A\Δ(F, a)) such that (ay, ax) ∈ R.
– 1 + maxaz∈A′ δ(F, az) with: A′ = {aw ∈ (A\Δ(F, a)) | ∃au ∈ Δ(F, a).

(aw, au) ∈ R}.
For any F ≡ (A,R, fQ) (∈ F) and any a ∈ A, we say that Δ(F, a) (and also

a) have the SCC-depth of n iff δ(F, a) = n.

Example 3 (SCC-depth). If we have a1
Q1

a2
Q2

a3
Q3

a4
Q4

we have

(denoting this graph by F ) Δ(F, a1) = Δ(F, a2) = {a1, a2}, Δ(F, a3) =
Δ(F, a4) = {a3, a4}, Δ(F, a1) (= Δ(F, a2)) has SCC-depth 0, and Δ(F, a3) (=
Δ(F, a4)) SCC-depth 1. ♣
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Definition 7 (Labelling update sequence). Let Θ denote the class of all
functions Λ → Λ such that for any F ≡ (A,R, fQ) (∈ F), any λ1 ∈ ΛA, any
A1 ⊆ A and any θF,A1 ∈ Θ, θF,A1(λ1) is:

– λ1 if, for every a ∈ A1, a’s label is designated under λ1.
– λ2 ∈ ΛA, otherwise, such that there is some a ∈ A1 such that (1) a’s label

is not designated under λ1, that (2) λ1 designates λ2(a) for a, and that (3)
λ1(ax) = λ2(ax) for every ax ∈ (A\{a}).

For any F ≡ (A,R, fQ) (∈ F), any λ1 ∈ ΛA, and any A1 ⊆ A, we say that
(λ1, . . . , λn) ∈ (ΛA)n for 2 ≤ n (∈ N) is an update sequence for A1 iff, for every
1 ≤ i ≤ n − 1, there exists some θF,A1

i ∈ Θ such that θF,A1
i (λi) = λi+1.

Definition 8 (Convergence and contamination). For any F ≡ (A,R, fQ)
(∈ F) and any A1 ⊆ A, we say that an update sequence (λ1, . . . , λn) for A1:

– updates ax ∈ A1 iff there exists some m ≤ n such that λm−1(ax) �= λm(ax);
– converges iff there exists some m ≤ n such that λm−1 = λm; and
– contaminates ax ∈ A1 iff (λ1, . . . , λn) updates ax twice.

Convergence is decidable with loop detection due to a member of F having a
finite number of arguments.

With the notions we have introduced, we can obtain a maximally-designating
labelling λ, maximal in the sense that any change of the label of an argument
which is not designated under λ into a label which λ designates for it would
find no converging update sequence, and would lead to contamination of the
argument so long as updating is fair. The fair and unfair update sequences are
at any rate an update sequence, thus it suffices to enumerate every possible one
of them for including the fair one(s).

Definition 9 (Maximally-designating labelling). For any F ≡ (A,R, fQ)
(∈ F) and any λ1 ∈ Λ, we say that λ1 is a maximally-designating labelling of F
up to n ∈ N iff both of the following conditions hold.

1. λ1 is a maximally-designating labelling of F up to every i ≤ n − 1.
2. for every a ∈ A, with δ(F, a) = n, either every ax ∈ Δ(F, a)’s label is desig-

nated under λ1 or else all of the following conditions hold.
(a) For every ax ∈ Δ(F, a), if ax’s label is not designated under λ1, then

λ1(ax) = undec.
(b) There exists no pair of n ∈ N (2 ≤ n) and an update sequence (λ1, . . . , λn)

for Δ(F, a) such that (λ1, . . . , λn) converges.
(c) There exists a pair of n ∈ N (2 ≤ n) and an update sequence (λ1, . . . , λn)

for Δ(F, a) such that it contaminates every and only ax ∈ Δ(F, a) whose
label is not designated by λ1.

We simply say that λ is a maximally-designating labelling of F iff λ is a
maximally-designating labelling of F up to every n ∈ N.
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Existence of a maximally-designating labelling is guaranteed for any F ≡
(A,R, fQ) (∈ F), since, again, A is finite. For the example in Example 2, we have
one maximally designating labelling λ ∈ Λ{a1} with λ(a1) = undec. We note that
this definition correctly picks up the source of non-termination without a false
positive from non-deterministic labels, due to the condition (b).

We define the condition under which λ ∈ Λ is regarded a complete, pre-
ferred, stable or grounded labelling of a given F ≡ (A,R, fQ) (∈ F) by rely-
ing on maximally-designating labellings. Later, we show that specific may-must
conditions to every argument reduces each type of a labelling of (A,R, fQ) to
the same type of labelling for the corresponding Dung abstract argumentation
(A,R), thus confirming the adequacy of these definitions.

Definition 10 (Labelling). For any F ≡ (A,R, fQ) (∈ F) and any λ ∈ Λ,
we say that λ is:

– a complete labelling of F iff λ ∈ ΛA and also λ is a maximally-designating
labelling of F . We denote the set of all complete labellings of F by Λcom

F .
– a preferred labelling of F iff λ ∈ Λcom

F and, for every λ′ ∈ Λcom
F , it does not

hold that λ ≺ λ′.
– a stable labelling of F iff λ ∈ Λcom

F and also, for every a ∈ A, λ(a) �= undec
holds.

– a grounded labelling of F iff λ is the meet of Λcom
F in (ΛA,�).

Definition 11 (Acceptability semantics). For any F ≡ (A,R, fQ) (∈ F),
we say that Λ′ ⊆ Λ is the complete (, preferred, stable, grounded) semantics of
F iff every complete (, preferred, stable, grounded) labelling of F is in Λ′ but no
other.

Example 4 (Semantics). Consider the example in Example 1, with the 3
maximally-designating labellings λ1 (the first) λ2 (the second), and λ3 (the last).

in
a1

((0,0),(1,1))

out
a2

((0,1),(1,2))

in
a3

((1,1),(1,1))

out
a4

((1,1),(1,1))

in
a5

((0,0),(1,1))

in
a1

((0,0),(1,1))

in
a2

((0,1),(1,2))

undec
a3

((1,1),(1,1))

out
a4

((1,1),(1,1))

in
a5

((0,0),(1,1))

in
a1

((0,0),(1,1))

undec
a2

((0,1),(1,2))

in
a3

((1,1),(1,1))

out
a4

((1,1),(1,1))

in
a5

((0,0),(1,1))

λ1, λ2 and λ3 are the only 3 possible complete labellings of F , i.e. {λ1, λ2, λ3}
is its complete semantics.

The relation among λ1, λ2 and λ3 is such that λ3 ≺ λ1, λ3 �� λ2, λ2 �� λ3,
λ1 �� λ2, and λ2 �� λ1 all hold. Hence, {λ1, λ2} is the preferred semantics of F ,
a subset of the complete semantics. Moreover, {λ1} is the stable semantics of F .
On the other hand, none of λ1, λ2, λ3 are the least in ({λ1, λ2, λ3},�), and thus
they cannot be a member of the grounded semantics; instead, it is {λ4} with:
λ4(a1) = λ4(a5) = in; λ4(a2) = λ4(a3) = undec; and λ4(a4) = out. Clearly, λ4 is
the meet of {λ1, λ2, λ3} in (Λ{a1,...,a5},�). ♣
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The relation among the semantics below follows from Definition 10 immediately,
and is almost as expected.

Theorem 2 (Subsumption).
All the following hold for any F ∈ F .

1. The complete, the preferred, and the grounded semantics of F exist.
2. The preferred semantics of F is a subset of the complete semantics of F .
3. If the stable semantics of F exists, then it consists of all and only members

λ of the preferred semantics of F such that, for every a ∈ A, λ(a) �= undec
holds.

However, it is not necessary that the grounded semantics be a subset of the
complete semantics.

There is an easy connection to Dung abstract argumentation labelling (see
Sect. 2).

Theorem 3 (Correspondences to acceptability semantics in Dung
argumentation). For any F ≡ (A,R, fQ) (∈ F), if (fQ(a))1 = (|predF (a)|,
|predF (a)|) and (fQ(a))2 = (1, 1) for every a ∈ A, then: Λx ⊆ Λ is the complete
(, preferred, stable, and respectively grounded) semantics of F iff Λx is that of
(A,R).

This should highlight some advantage of the level of abstractness of may-
must scales, in that it is very easy to determine nuance tuples globally (but also
locally) with just 4 specific natural numbers or expressions that are evaluated
into natural numbers. For example, we can specify the requirement for: possible
acceptance of an argument a to be rejection of 80% of attacking arguments;
acceptance of a to be rejection of 90% of attacking arguments; possible rejection
of a to be acceptance of at least 1 but otherwise 40% of attacking arguments;
and rejection of a to be acceptance of at least 1 but otherwise 50% of attacking
arguments, all rounded up to the nearest natural numbers. We then have: F ≡
(A,R, fQ) (∈ F) with: (fQ(a))1 = (�0.8 ∗ |predF (a)|�, �0.9 ∗ |predF (a)|�) and
(fQ(a))2 = (max(1, �0.4∗|predF (a)|�),max(1, �0.5∗|predF (a)|�)) for every a ∈ A.

4 Conclusion with Technical Comparisons

We proposed a labelling-based argumentation with may-must scales, to broaden
the labelling for Dung abstract argumentation, specifically [14]. Just as a com-
plete labelling of (A,R) ∈ FD is one that assigns to each argument a ∈ A the
label expected from the acceptance and the rejection conditions induced by the
labels it assigns to predF (a), so is ‘almost’ a complete labelling of (A,R, fQ) ∈ F .
As we have identified, however, such a labelling may not actually exist. We pro-
posed a way of addressing it. We also noted the connection to Dung abstract
argumentation labelling.

Detailed technical comparisons to ADF with 3 values [13], for its closest
connection to F among [12,13], should be of formal interest. For now, we mention
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a couple of notable technical decisions taken in ADF that generate some obvious
differences; however, more precise technical relations will be studied.

As a quick reminder, we state a formal definition of ADF with notations kept
consistent with those used in this work:

A (finite) ADF is a tuple (A,Ra, C) with: A ⊆fin A; a binary relation Ra over
A; and C = {Ca}a∈A where each Ca is a function: Λpred(A,Ra,C)(a) → L. Let us
denote the class of all ADF tuples by FADF.

For the semantics, let twoVal : A × Λ → 2Λ, which we alternatively state
twoValA : Λ → 2Λ, be such that, for any A ⊆fin A and any λ ∈ ΛA, we have:

twoValA(λ) = {λx ∈ ΛA | λ � λx and λx is maximal in (ΛA,�)}.
Every member of twoValA(λ) is such that λ(a) ∈ {in, out} for every a ∈ A.

Also, let Γ : FADF × Λ → Λ, which we alternatively state ΓFADF

: Λ → Λ, be
such that, for any (A,Ra, C) ∈ FADF and any λ ∈ ΛA, Γ (A,Ra,C)(λ) satisfies all
the following.

1. Γ (A,Ra,C)(λ) ∈ ΛA.
2. For every a ∈ A, if Γ (A,Ra,C)(λ)(a) �= undec, then there exists no

λx ∈ twoValA(λ) such that Ca(λx ↓pred(A,Ra,C)(a)) �= Γ (A,Ra,C)(λ)(a). Here,

λx↓pred(A,Ra,C)(a) denotes a member of Λpred(A,Ra,C)(a) which is such that, for
any ax ∈ pred(A,Ra,C)(a), λx(ax) = λx↓pred(A,Ra,C)(a) (ax) holds.

In a nutshell [13], Γ (A,Ra,C)(λ) gets a consensus of every λx ∈ twoValA(λ) on
the label of each a ∈ A: if each one of them says in for a, then Γ (A,Ra,C)(λ)(a) =
in, if each one of them says out for a, then Γ (A,Ra,C)(λ)(a) = out, and for the
other cases Γ (A,Ra,C)(λ)(a) = undec.

Then the grounded semantics of (A,Ra, C) ∈ FADF contains just the least
fixpoint of Γ (A,Ra,C); the complete semantics of (A,Ra, C) contains all and only
fixpoints of Γ (A,Ra,C); and the others are defined in a usual way from the com-
plete semantics.

Some differences are therefore easy to identify. For instance, the grounded
semantics of F ∈ F may not be a subset of its complete semantics (Cf. Theorem
2), while ADF enforces the property via Γ . In view of recent studies [4,9] where
the subsumption does not hold, we believe our characterisation can be accom-
modating. Consider the example in Example 4 for where a difference occurs.

Also, for any (A,R, fQ) ∈ F , which we also refer to by F , if a semantics Λ ⊆
ΛA of F is such that, for two distinct λ1, λ2 ∈ Λ, there exists some a ∈ A such
that (1) λ1(a) �= λ2(a), and that (2) λ1(ax) = λ2(ax) for every ax ∈ predF (a),
then Λ does not belong to a semantics of (A,R,C) (or (A,Ra, C) with R ≡ Ra)
above. This is rather clear, because, for any a ∈ A, Ca is a function with its range
of {in, out, undec}. An example of such Λ has been covered; see again Example 4.
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Abstract. In traditional justification logic, evidence terms have the syn-
tactic form of polynomials, but they are not equipped with the corre-
sponding algebraic structure. We present a novel semantic approach to
justification logic that models evidence by a semiring. Hence justification
terms can be interpreted as polynomial functions on that semiring. This
provides an adequate semantics for evidence terms and clarifies the role
of variables in justification logic. Moreover, the algebraic structure makes
it possible to compute with evidence. Depending on the chosen semiring
this can be used to model trust, probabilities, cost, etc. Last but not
least the semiring approach seems promising for obtaining a realization
procedure for modal fixed point logics.

Keywords: Justification logic · Semiring · Completeness

1 Introduction

Justification logic replaces the �-operator from modal logic with explicit evi-
dence terms [5,11,30]. That is, instead of formulas �A, justification logic fea-
tures formulas t : A, where t encodes evidence for A. Depending on the context,
the term t may represent a formal proof of A [5,29] or stand for an informal
justification (like direct observation, public announcement, private communica-
tion, and so on) for an agent’s knowledge or belief of A. With the introduction
of possible world models, justification logic has become an important tool to
discuss and analyze epistemic situations [6,7,14,15,36].

The terms of justification logic represent explicit evidence for an agent’s
belief or knowledge. Within justification logic, we can reason about this evi-
dence. For instance, we can track different pieces of evidence pertaining to the
same fact, which is essential for distinguishing between factive and non-factive
justifications. This is applied nicely in Artemov’s analysis of Russel’s Prime
Minister example [8]. Evidence terms can also represent the reasoning process
of an agent. Therefore, agents represented by justification logic systems are not
logically omniscient according to certain complexity based logical omniscience
tests [12–14].

In traditional justification logic, terms are built using the binary operations +
(called sum) and · (called application) and maybe other additional operations.
Thus terms have the syntactic form of polynomials and are, in the context of
the Logic of Proofs, indeed called proof polynomials.
c© Springer Nature Switzerland AG 2020
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This syntactic structure of polynomials is essentially used in the proof of
realization, which provides a procedure that, given a theorem of a modal logic,
constructs a theorem of the corresponding justification logic by replacing each
occurrence of � with an adequate justification term [5].

The main contribution of the present paper is to look at the syntactic struc-
ture of justification terms algebraically, that is, we interpret justifications by a
semiring structure. The motivation for this is threefold:

1. It provides an appropriate semantics for variables in evidence terms. It was
always the idea in justification logic that terms with variables justify deriva-
tions from assumptions. The variables represent the input values, i.e., (arbi-
trary) proofs of the assumptions [5]. But this was not properly reflected in the
semantics where usually variables are treated like constants: to each term (no
matter whether it contains variables or not) some set of formulas is assigned.
In our semiring semantics, ground terms (i.e. terms not containing variables)
are interpreted as elements of a semiring and terms with variables are inter-
preted as polynomial functions on the given semiring of justifications. Thus
terms with variables are adequately represented and the role of variables is
clarified.

2. The algebraic structure of terms makes it possible to compute with justifica-
tions. Depending on the choice of the semiring, we can use the term structure
to model levels of trust (Viterbi semiring), costs of obtaining knowledge (trop-
ical semiring), probabilistic evidence (powerset semiring), fuzzy justifications
(�Lukasiewicz semiring), and so on.

3. Considering ω-continuous semirings, i.e. semirings in which certain fixed
points exist, may provide a solution to the problem of realizing modal fixed
point logics like the logic of common knowledge. In these logics, some modal
operators can be interpreted as fixed points of monotone operations. It seems
likely that their realizations also should be fixed points of certain operations
on semirings.

1.1 Related Work

Our approach is heavily inspired by the semiring approach for provenance in
database systems [25]. There the idea is to label database tuples and to propa-
gate expressions in order to annotate intermediate data and final outputs. One
can then evaluate the provenance expressions in various semirings to obtain infor-
mation about levels of trust, data prices, required clearance levels, confidence
scores, probability distributions, update propagation, and many more [26].

This semiring framework has been adapted to many different query languages
and data models. The core theoretical work of those approaches includes results
on query containment, the construction of semirings, and fixed points [3,4,19–
21,23,24].

There are only few systems available where justification terms are equipped
with additional structure. Two prominent examples are based on λ-terms (in
contrast to the combinatory terms of the Logic of Proofs). The reflective lambda
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calculus [2] includes reduction rules on proof terms. The intensional lambda cal-
culus [10] has axioms for evidence equality and also features a reduction relation
on the terms.

2 The Syntax of SE

We begin by defining the justification language as usual except that we limit
the number of variables by some arbitrary but fixed number n. That is, we
use a countable set of constants JConst = {0, 1, c1, c2, ...} that includes two
distinguished elements 0 and 1. Further we have a finite set of variables JVar =
{x1, ..., xn}.

Definition 1 (Justification Term). Justification terms are

c ∈ JConst, x ∈ JVar, s · t, and s + t,

where s and t are justification terms. The set of all justification terms is called
Tm. A justification term that does not contain variables is called ground term.
GTm denotes the set of all ground terms.

Often we write only term for justification term. Further, we need a countable
set of atomic propositions Prop = {P1, P2, ...}.

Definition 2 (Formulas). Formulas are ⊥, P , A → B and t : A, where t is a
justification term, P ∈ Prop and A, B are formulas. The set of all formulas is
called Fml.

The remaining logical connectives ¬, ∧, ∨, and ↔ are abbreviations as usual,
e.g., ¬A stands for A → ⊥.

Now we can define a deductive system for the logic SE about the semirings
of evidence. It consists of the following axioms:

CL Every instance of a propositional tautology
j x : (A → B) → (y : A → x · y : B)
j+ x : A ∧ y : A → (x + y) : A
a+ (x + y) + z : A → x + (y + z) : A
c+ x + y : A → y + x : A
0+ x + 0 : A ↔ x : A
am (x · y) · z : A ↔ x · (y · z) : A
a0 x · 0 : A ↔ 0 : A and 0 · x : A ↔ 0 : A
a1 x · 1 : A ↔ x : A and 1 · x : A ↔ x : A
dl x · (y + z) : A ↔ x · y + x · z : A
dr (y + z) · x : A ↔ y · x + z · x : A

The rules of SE are:
MP

A A → B

B
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and

jv
A(x)
A(t)

where x is a variable, t is a term, and A(t) denotes the result of substituting t
for x in A(x).

The axiom schemes a+, c+, 0+, am, a0, a1, dl and dr are called semiring
axioms. In the axiom scheme j+, we find an important difference to traditional
justification logic where ∨ is used instead of ∧, see also Sect. 4 later. The idea
for j+ is to read s + t : A as both s and t justify A. This is useful, e.g., in the
context of uncertain justifications where having two justifications is better than
just having one. The rule jv shows the role of variables in SE, which differs from
traditional justification logic. In our approach a formula A(x) being valid means
that A(x) is valid for all justifications x.

Let us mention two immediate consequences of our axioms. First a version
of axiom 0+ with x + 0 is replaced by 0 + x is provable. Second, the direction
from right to left in axiom a+ is also provable.

Lemma 1. The following formulas are derivable in SE:

0 + x : A ↔ x : A and x + (y + z) : A ↔ (x + y) + z : A.

A theory is just any set of formulas.

Definition 3 (Theory). A theory T is a subset of Fml. We use T �SE F to
express that F is derivable from T in SE.

Often we drop the subscript SE in �SE when it is clear from the context. Moreover,
we use �CL for the derivability relation in classical propositional logic.

A theory can compensate for the absence of constant specifications. Usually,
systems of justification logic are parametrized by a constant specification, i.e., a
set containing pairs of constants and axioms. One then has a rule saying that
a formula c : A is derivable if (c,A) is an element of the constant specification.
Here we do not adopt this approach but simply use a theory that includes c : A.

Theorem 1 (Conservativity). The logic SE is a conservative extension of the
classical propositional logic CL, i.e., for all formulas A of the language of CL,
we have

�SE A iff �CL A.

Proof. The claim from right to left is trivial as SE extends CL. For the direction
from left to right, we consider a mapping ◦ from Fml to formulas of CL that
simply drops all occurrences of t :. In particular, for any CL-formula A, we have
A◦ = A. Now it is easy to prove by induction on the length of SE derivations
that for all A ∈ Fml,

�SE A implies �CL A◦.

Simply observe that for any axiom A of SE, A◦ is a propositional tautology, and
that the rules of SE respect the ◦-translation. 	
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Now consistency of SE follows immediately.

Corollary 1 (Consistency of SE). The logic SE is consistent.

Proof. Assume towards contradiction that �SE⊥. It follows �CL⊥ by conserva-
tivity of SE over CL, which is a contradiction. 	


3 The Semantics of SE

Our semantics of SE is similar to traditional semantics for justification logic
in the sense that t : A is given meaning by simply making use of an evidence
relation that assigns a set of formulas to each evidence term. The novelty of
our approach is the requirement that the interpretation of the terms forms a
semiring.

Definition 4 (Semiring). K = (S,+, ·, 0, 1), where S is the domain, is a
semiring, if for all a, b, c ∈ S:

1. (a + b) + c = a + (b + c), a + b = b + a and a + 0 = 0 + a = a
2. (a · b) · c = a · (b · c) and a · 1 = 1 · a = a
3. (a + b) · c = a · c + b · c and c · (a + b) = c · a + c · b
4. a · 0 = 0 · a = 0

Thus, unlike in a ring, there is no inverse to +. We also do not require · to
be commutative.

Note that we use + and · both as symbols in our language of justification
logic and as operations in the semiring. It will always be clear from the context
which of the two is meant.

For the following, assume we are given a semiring K = (S,+, ·, 0, 1). We use
a function I : JConst → S to map the constants of the language of SE to the
domain S of the semiring. We call this function I an interpretation if I(0) = 0
and I(1) = 1. We now extend I to a homomorphism such that I : Tm → S[JVar],
where S[JVar] is the polynomial semiring in JVar over S by setting:

1. I(x) := x for variables x
2. I(s + t) := I(s) + I(t) for terms s, t
3. I(s · t) := I(s) · I(t) for terms s, t

Let K = (S,+, ·, 0, 1) be a semiring with domain S. We define FmlS as the set
of formulas where we use elements of S instead of justification terms.

1. ⊥∈ FmlS
2. P ∈ FmlS, where P ∈ Prop
3. A → B ∈ FmlS, where A ∈ FmlS and B ∈ FmlS
4. s : A ∈ FmlS, where A ∈ FmlS and s ∈ S

Definition 5 (Evidence relation). Let S be the domain of a semiring. We
call J ⊆ S × FmlS an evidence relation if for all s, t ∈ S and all A,B ∈ FmlS:
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1. J(s,A → B) and J(t, A) imply J(s · t, B)
2. J(s,A) and J(t, A) imply J(s + t, A)

Definition 6 (Valuation). A valuation v is a function from JVar to S.

The polynomial I(t) can be viewed as a function tI : Sn → S. Hence, given an
interpretation I : JConst → S and a valuation v, every t ∈ Tm can be mapped to
an element tI(v(x1), ..., v(xn)) in S, which we denote by tvI . By abuse of notation,
we only mention the variables that occur in the term t. For a variable x we have

v(x) = xI(v(x)) = xv
I .

Given the definition of the polynomial function tI , we find, e.g.,

xv
I · yv

I = xI(v(x)) · yI(v(y)) = (x · y)I(v(x), v(y)) = (x · y)vI . (1)

For A ∈ Fml we define Av
I ∈ FmlS inductively:

1. ⊥v
I :=⊥

2. P v
I := P , where P ∈ Prop

3. (A → B)vI := Av
I → Bv

I , where A ∈ Fml and B ∈ Fml
4. (s : A)vI := svI : Av

I , where A ∈ Fml and s ∈ Tm

Let A(x1, . . . , xn) ∈ Fml. Then AI denotes the function AI : Sn → FmlS with
AI(y1, ..., yn) = Av

I where v is such that v(xi) = yi.

Definition 7 (Semiring model). A semiring model is a tuple M = (K, ∗, I, J)
where

1. K = (S,+, ·, 0, 1) is a semiring
2. ∗ is a truth assignment for atomic propositions, i.e., ∗ : Prop → {F, T}
3. I is an interpretation, i.e., I : JConst → S
4. J is an evidence relation.

First we define truth in a semiring model for a given valuation. Because
variables represent arbitrary justifications, we require a formula to be true for
all valuations in order to be true in a semiring model. This means a formula
with variables is interpreted as universally quantified.

Definition 8 (Truth in a semiring model). Let M = (K, ∗, I, J) be a semi-
ring model, v a valuation and A a formula. M,v � A is defined as follows:

– M,v �⊥
– M,v � P iff P ∗ = T

– M,v � A → B iff M,v � A or M,v � B
– M,v � s : A iff J(svI , A

v
I )

Further we set M � A iff M,v � A for all valuations v.

For a semiring model M and a theory T , M � T means M � A for all A ∈ T .
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Definition 9 (Truth in a theory). A theory T entails a formula F , in symbols
T � F , if for each semiring model M we have that M � T implies M � F .

By unfolding the definitions, we immediately get the following lemma, which
is useful to establish soundness of SE.

Lemma 2. Let M = (K, ∗, I, J) be a semiring model and let v and w be valua-
tions with v(xi) = (ti)wI for variables xi and terms ti. Then

M,v � A(x1, ..., xn) iff M,w � A(t1, ..., tn).

Proof. By induction on the structure of A.

– Case A =⊥. We have M,v �⊥ and M,w �⊥.
– Case A = P . We have M,v � P ⇔ P ∗ = 1 ⇔ M,w � P .
– Case A = B → C. We have M,v � (B → C)(x1, ..., xn)

⇔ M,v � B(x1, ..., xn) → C(x1, ..., xn)
⇔ M,v � B(x1, ..., xn) or M,v � C(x1, ..., xn)
I.H.⇔ M,w � B(t1, ..., tn) or M,w � C(t1, ..., tn)
⇔ M,w � B(t1, ..., tn) → C(t1, ..., tn) ⇔ M,w � (B → C)(t1, ..., tn).

– Case A = s : B. We have M,v � (s : B)(x1, ..., xn)
⇔ M,v � s(x1, ..., xn) : B(x1, ..., xn)
⇔ J(s(x1, ..., xn)vI , B(x1, ..., xn)vI )
⇔ J(sI(v(x1), ..., v(xn)), BI(v(x1), ..., v(xn)))
⇔ J(sI((t1)wI , ..., (tn)wI ), BI((t1)wI , ..., (tn)wI ))
⇔ J(s(t1, ..., tn)wI , B(t1, ..., tn)wI ) ⇔ M,w � s(t1, ..., tn) : B(t1, ..., tn)
⇔ M,w � (s : B)(t1, ..., tn). 	


Theorem 2 (Soundness). Let T be an arbitrary theory. Then:

T � F implies T � F.

Proof. As usual by induction on the length of the derivation of F . Let M =
(K, ∗, I, J) be a semiring model such that M � T . To establish our claim when
F is an axiom or an element of T , we let v be an arbitrary valuation and show
M,v � F for the following cases:

1. F ∈ T . Trivial.
2. CL. Trivial.
3. j. Assume M,v � x : (A → B) and M,v � y : A. That is J(xv

I , (A → B)vI )
and J(yv

I , Av
I ) hold, which by Definition 5 implies J(xv

I ·yv
I , Bv

I ). Hence by (1)
we get J((x · y)vI , B

v
I ), which yields M,v � x · y : B.

4. j+. Similar to the previous case.
5. a+. Assume M,v � (x + y) + z : A. That is J(((x + y) + z)vI , A

v
I ). Because of

((x + y) + z)vI = (v(x) + v(y)) + v(z) = v(x) + (v(y) + v(z)) = (x + (y + z))vI ,

we get J((x + (y + z))vI , A
v
I ), which yields M,v � x + (y + z) : A.

6. The remaining axioms are treated similarly to the previous case.
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The case when F has been derived by MP follows by I.H. as usual. For the
case when F = A(t) has been derived from A(x) by jv, we find by I.H. that
M � A(x), which is

M,v � A(x) for all valuations v. (2)

Given the term t and an arbitrary valuation w, we find that there exists a
valuation v such that twI = v(x). By Lemma 2 we get

M,v � A(x) iff M,w � A(t).

Thus using (2), we obtain M,w � A(t). Since w was arbitrary, we conclude
M � A(t). 	


For the completeness proof, we consider the free semiring over JConst∪ JVar.
We have for s, t ∈ Tm:

– [t] is the equivalence class of t with respect to the semiring equalities, see
Definition 4;

– [s] + [t] := [s + t];
– [s] · [t] := [s · t];
– STm := {[t] : t ∈ Tm};
– KTm := (STm,+, ·, [0], [1]) is the free semiring over JConst ∪ JVar.

The following lemma states that our truth definition respects the semiring
equalities.

Lemma 3. Let T be a theory and s, t be ground terms with [s] = [t]. For each
formula A we have

T �SE s : A iff T �SE t : A.

Lemma 4. Assume that we are given an interpretation I : JConst → STm with
I(c) = [c], a term s(x1, ..., xn), and a valuation v : JVar → STm with v(xi) = [ti].
Then we have

s(x1, ..., xn)vI = [s(t1, ..., tn)].

Proof. Induction on the structure of s:

– cvI = [c] by definition of I.
– (xi)vI = [ti] by definition of v.
– (s1 + s2)vI = (s1)vI + (s2)vI . By I.H. we have

(s1)vI = [s1(t1, ..., tn)] and (s2)vI = [s2(t1, ..., tn)].

Thus (s1)vI + (s2)vI = [s1(t1, ..., tn)] + [s2(t1, ..., tn)] = [(s1 + s2)(t1, ..., tn)].
– (s1 · s2)vI = (s1)vI · (s2)vI . By I.H. we have

(s1)vI = [s1(t1, ..., tn)] and (s2)vI = [s2(t1, ..., tn)].

Thus (s1)vI · (s2)vI = [s1(t1, ..., tn)] · [s2(t1, ..., tn)] = [(s1 · s2)(t1, ..., tn)] 	
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We extend the notion of equivalence to formulas by defining the function

[·] : Fml → FmlSTm

as follows:

– [⊥] :=⊥
– [P ] := P
– [A → B] := [A] → [B]
– [t : A] := [t] : [A]

Intuitively [A] is the formula where each justification term is replaced by its
equivalence class in the free semiring. Observe that if I(c) = [c] and v(x) = [x],
then [A] = Av

I . Now we extend Lemma 4 to formulas.

Lemma 5. Assume that we are given the interpretation I : JConst → STm

with I(c) = [c], a formula A(x1, ..., xn), and a valuation v : JVar → STm with
v(xi) = [ti]. Then we have

A(x1, ..., xn)vI = [A(t1, ..., tn)].

Proof. Induction on the structure of A:

– ⊥v
I=⊥= [⊥]

– P v
I = P = [P ]

– (A → B)(x1, ..., xn)vI = A(x1, ..., xn)vI → B(x1, ..., xn)vI
I.H.= [A(t1, ..., tn)] → [B(t1, ..., tn)] = [(A → B)(t1, ..., tn)]

– (s : A)(x1, ..., xn)vI = s(x1, ..., xn)vI : A(x1, ..., xn)vI
I.H. and L. 4= [s(t1, ..., tn)] : [A(t1, ..., tn)] = [(s : A)(t1, ..., tn)] 	

Let Prop2 be an infinite set of atomic propositions with Prop ∩ Prop2 = ∅.

Then there exists an bijective function f : STm × FmlSTm
→ Prop2. We assume

f to be fixed for the rest of this section. Based on this function we define a
translation ′ that maps formulas of Fml to pure propositional formulas containing
atomic propositions from Prop ∪ Prop2.

1. ⊥′:=⊥
2. P ′ := P
3. (A → B)′ := A′ → B′

4. (t : A)′ := f([t], [A])

Let T be a theory. We define first N := {A′ | A ∈ T or A is an axiom of SE}
and then the corresponding theory:

T ′ := {A(t1, ..., tn)′ | A(x1, ..., xn)′ ∈ N, ti ∈ Tm}.

Suppose A(x1, ..., xn)′ ∈ T ′. Then there exist a formula B(x1, ..., xn)′ ∈ N and
justification terms s1, ..., sn such that B(s1, ..., sn)′ = A(x1, ..., xn)′. This implies
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B(s1(t1, ..., tn), ..., sn(t1, ..., tn))′ = A(t1, ..., tn)′. Now we have A(t1, ..., tn)′ ∈ T ′.
Therefore the following implication is proved:

A(x)′ ∈ T ′ ⇒ A(t)′ ∈ T ′ (3)

In fact this does not only hold for formulas in T ′ but also for all formulas
derived from T ′ by classical propositional logic.

Lemma 6. If T ′ �CL A(x)′ then T ′ �CL A(t)′.

Proof. Induction on the derivation of A(x)′. Note that T ′ contains all the axioms
of CL. So we can omit this case.

1. If A(x)′ ∈ T ′ then A(t)′ ∈ T ′ by the above observation and thus T ′ �CL A(t)′.
2. If A(x)′ is obtained by MP from B and B → A(x)′ then B can be written

as C(x)′ because f is surjective. The induction hypothesis (T ′ �CL C(t)′ and
T ′ �CL C(t)′ → A(t)′) yields T ′ �CL A(t)′. 	


Lemma 7. T �SE A ⇔ T ′ �CL A′

Proof. Left to right by induction on a derivation of A:

1. If A ∈ T or A is an axiom then A′ ∈ T ′ and therefore T ′ �CL A′.
2. If A is obtained by MP from B and B → A then the induction hypothesis

(T ′ �CL B′ and T ′ �CL B′ → A′) immediately yields T ′ �CL A′.
3. If A(t) is obtained by jv from A(x) then the induction hypothesis is T ′ �CL

A(x)′. By the previous lemma we conclude T ′ �CL A(t)′.

Right to left by induction on a derivation of A′:

1. If A(x1, ..., xn)′ ∈ T ′ then there exist a formula B(x1, ..., xn)′ ∈ N and jus-
tification terms s1, ..., sn such that B(s1, ..., sn)′ = A(x1, ..., xn)′. Trivially
we have T �SE B(x1, ..., xn) and get by jv that T �SE B(s1, ..., sn). Since
f is injective, the only difference between A(x1, ..., xn) and B(s1, ..., sn) is
that some terms may be replaced by equivalent ones (modulo the semiring).
Therefore, we get T �SE A(x1, ..., xn) by using the semiring axioms of SE and
propositional reasoning.

2. If A′ is a propositional tautology then so is A because f is injective, but some
terms in A may be replaced by equivalent ones. We get T �SE A again by
using the semiring axioms and propositional reasoning.

3. If A′ is obtained by MP from B → A′ and B then B can be written as C ′.
The induction hypothesis (T �SE C → A and T �SE C) implies T �SE A.

	

Lemma 7 gives us the ability to switch from SE to CL and vice versa. There-

fore, we can use completeness of CL to obtain completeness for SE.

Theorem 3 (Completeness). Let T be an arbitrary theory. Then:

T � F implies T � F.
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Proof. We will prove the contraposition, which means for T � F we will construct
a semiring model M and find a valuation v, such that M � T and M,v � F .
Assume T � F . By Lemma 7 we get T ′

�CL F ′. The completeness of CL delivers
∗ : Prop ∪ Prop2 → {F, T}, such that for the CL-model M∗ consisting of ∗ we
have M∗ � T ′ and M∗ � F ′. Now we can define the semiring model M :

– M := (KTm, ∗|Prop, I, J)
– ∗|Prop is the restriction of ∗ to Prop
– I : JConst → STm, I(c) := [c]
– J := {([t], [A]) | M∗ � f([t], [A])}
In order to prove that M is a semiring model, we need to show that J is an
evidence relation.

1. From M∗ � T ′ we derive M∗ � (s : (A → B) → (t : A → s ·t : B))′ ∀s, t ∈ Tm
and ∀A,B ∈ Fml by using the definition of T ′ and (3). It follows

M∗ � f([s], [A → B]) → (f([t], [A]) → f([s · t], [B])).

By the truth definition in CL we find

if f([s], [A → B])∗ = T and f([t], [A])∗ = T then f([s · t], [B])∗ = T.

From the definition of J in M we get

if J([s], [A] → [B]) and J([t], [A]) then J([s] · [t], [B]).

2. From M∗ � T ′ we derive M∗ � (s : A ∧ t : A → s + t : A)′ ∀s, t ∈ Tm and
∀A ∈ Fml by using the definition of T ′ and (3). It follows

M∗ � f([s], [A]) ∧ f([t], [A]) → f([s + t], [A]) ∀s, t ∈ Tm and ∀A ∈ Fml.

By the truth definition in CL we find

if f([s], [A])∗ = T and f([t], [A])∗ = T then f([s + t], [A])∗ = T.

From the definition of J in M we get

if J([s], [A]) and J([t], [A]) then J([s] + [t], [A]).

Knowing that M is a semiring model we prove

M∗ � A(t1, ..., tn)′ ⇔ M,w � A(x1, ..., xn) (4)

by induction on the structure of A, where w(xi) = [ti]:

– Case A =⊥. We have M∗ �⊥′ and M,w �⊥.
– Case A = P . We have M∗ � P ′ ⇔ M∗ � P ⇔ P ∗ = T ⇔ M,w � P .
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– Case A = B → C. We have M∗ � (B → C)(t1, ..., tn)′

⇔ M∗ � B(t1, ..., tn)′ → C(t1, ..., tn)′

⇔ M∗ � B(t1, ..., tn)′ or M∗ � C(t1, ..., tn)′

⇔ M,w � B(x1, ..., xn) or M,w � C(x1, ..., xn) (by induction hypothesis)
⇔ M,w � B(x1, ..., xn) → C(x1, ..., xn)
⇔ M,w � (B → C)(x1, ..., xn).

– Case A = s : B. We have M∗ � (s : B)(t1, ..., tn)′

⇔ M∗ � (s(t1, ..., tn) : B(t1, ..., tn))′

⇔ M∗ � f([s(t1, ..., tn)], [B(t1, ..., tn)]) (by definition of ′)
⇔ J([s(t1, ..., tn)], [B(t1, ..., tn)]) (by definition of J)
⇔ J(s(x1, ..., xn)wI , [B(t1, ..., tn)]) (by Lemma 4)
⇔ J(s(x1, ..., xn)wI , B(x1, ..., xn)wI ) (by Lemma 5)
⇔ M,w � s(x1, ..., xn) : B(x1, ..., xn)
⇔ M,w � (s : B)(x1, ..., xn)

Now we show M � T , i.e. M,w � T for all valuations w. Hence let w be
an arbitrary valuation (assume w(xi) = [ti]) and A(x1, ..., xn) ∈ T . It follows
A(x1, ..., xn)′ ∈ T ′ and by (3) also A(t1, ..., tn)′ ∈ T ′. From M∗ � T ′ we get
M∗ � A(t1, ..., tn)′. (4) implies M,w � A(x1, ..., xn). Since w was arbitrary we
conclude M � T .

Now we consider the special case of (4) where w = v with v(x) = [x]. We
have

M∗ � A(x1, ..., xn)′ ⇔ M,v � A(x1, ..., xn)

Remembering M∗ � F ′, we derive M,v � F , which finishes the proof. 	


4 Realization

Realization is concerned with the relationship between justification logic and
modal logic. In this section, we let ◦ be the mapping from Fml to formulas of
the modal logic K that replaces all occurrences of s : in a formula of SE with �.
We immediately get the following lemma.

Lemma 8. For any formula A we have

�SE A implies �K A◦.

To investigate mappings from modal logic to SE, we need the notion of an
axiomatically appropriate theory.

Definition 10. A theory T is called axiomatically appropriate if

1. for each axiom A of SE, there is a constant c such that c : A ∈ T and
2. for each B ∈ T , there is a constant c such that c : B ∈ T .

Using axiomatically appropriate theories, we get an analogue of modal neces-
sitation in SE.
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Lemma 9 (Internalization). Let T be an axiomatically appropriate theory.
For any formula A, there exists a ground term t such that

T � A implies T � t : A.

For the following definition we need the notion of positive and negative occur-
rences of � within a given formula A. First we assign a polarity to each subfor-
mula occurrence within A as follows.

1. The only occurrence of A within A is given positive polarity.
2. If a polarity is already assigned to an occurrence B → C within A, then the

same polarity is assigned to C and the opposite polarity is assigned to B.
3. If a polarity is already assigned to an occurrence �B within A, then the same

polarity is assigned to B.

The leading � in an occurrence of �B within A has the same polarity as the
occurrence of �B within A.

Definition 11. A realization r is a mapping from modal formulas to Fml such
that for each modal formula F we have (r(F ))◦ = F . A realization is normal if
all negative occurrences of � are mapped to distinct justification variables.

For the rest of this section, we require axiomatically appropriate theories T
also to be schematic, which is a technical requirement saying roughly that T
respects substitutions, for a discussion of this property see [30]. Schematicness
is needed for the following two claims.

We are confident that Kuznets’ realization procedure [28] can be applied in
the context of SE. Thus we have the following:

Conjecture 1. Let T be an axiomatically appropriate theory such that for some
constant c,

c : (A → (A ∨ B)) ∈ T and c : (B → (A ∨ B)) ∈ T.

Then there exists a realization r such that for all modal formulas F ,

�K F implies T �SE r(F ).

However, the realization obtained by the previous theorem will not be normal.
In traditional justification logic normal realizations can be achieved using the +
operation, which there (unlike in SE) is axiomatized by s : A ∨ t : A → s + t : A.

Since we work with general theories (instead of simple constant specifications)
and with variables that are interpreted universally, we can mimick the traditional
+ operation and perform the usual realization procedure given in [5,30].

Conjecture 2. Let T be an axiomatically appropriate theory such that for some
constant c

x : A → c · x · y : (A ∨ B) ∈ T and y : B → c · x · y : (A ∨ B) ∈ T.

Then there exists a normal realization r such that for all modal formulas F ,

�K F implies T �SE r(F ).
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5 Applications

The semiring interpretation of evidence has a wide range of applications. Many of
them require a particular choice of the semiring. The following are of particular
interest to us (see also [26]):

– V = ([0, 1],max, ·, 0, 1) is called the Viterbi semiring. We can think of the
elements of V as confidence scores and use them to model trust.

– T = (R∞
+ ,min,+,∞, 0) is called the tropical semiring. This is connected to

shortest path problems. In the context of epistemic logic, we can employ this
semiring to model the costs of obtaining knowledge. Among other things, this
might provide a fresh perspective on the logical omniscience problem, related
to the approaches in [12–14].

– P = (P(S),∪,∩, ∅, S) is called the powerset lattice (semiring). This is closely
related to the recently introduced subset models for justification logic [31–33].
This semiring can be used to model probabilistic evidence and aggregation
thereof, see, e.g., [9].

– F = ([0, 1],max,max(0, a + b − 1), 0, 1) is called the �Lukasiewicz semiring.
We can use it to model fuzzy evidences. Ghari [22] provides a first study of
fuzzy justification logic that is based on this kind of operations for combining
evidence.

Another stream of possible applications emerges from the fact that terms with
variables represent actual functions. If the underlying semiring is ω-continuous,
then the induced polynomial functions are ω-continuous and, therefore, mono-
tone [27]. Hence, they have least and greatest fixed points. Thus it looks very
promising to consider this kind of semirings to realize modal fixed point logics
like common knowledge.

Common knowledge of a proposition A is a fixed point of λX.(EA ∧ EX).
There are justification logics with common knowledge available [6,18] but their
exact relationship to modal common knowledge is still open.

We believe that non-wellfounded and cyclic proof systems [1,16,17,35] are the
right proof-theoretic approach to settle this question. In those systems, proofs
can be regarded as fixed points and hence justifications realizing those cyclic
proofs will be fixed points in a semiring. For this purpose, making use of for-
mal power series, which might be thought of as infinite polynomials, look very
promising. First results in this direction have been obtained by Shamkanov [34]
who presents a realization procedure for Gödel-Löb logic based on cyclic proofs.
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Abstract. The weak completion semantics, a computational logic app-
roach, has been shown to adequately model various episodes of human
reasoning. Since the inception of abstract argumentation in the 1990s,
connections between argumentation semantics and logic programming
semantics have been studied, but existing work on this connection has
not yet covered the weak completion semantics. In this paper we define a
novel translation from logic programs to abstract argumentation frame-
works and show that under this translation the weak completion seman-
tics corresponds to the grounded semantics of abstract argumentation.
Combining this translation with argumentation semantics other than
grounded semantics gives rise to novel logic programming semantics.
We discuss the potential relevance of these novel semantics to model-
ing human reasoning and give an outlook on possible future research on
this topic.

1 Introduction

Let us consider a famous psychological study from the literature, Byrne’s sup-
pression task [3]. This experiment shows that people with no prior exposure to
formal logic suppress previously drawn conclusions when additional information
becomes available. Consider the following example: If she has an essay to fin-
ish, then she will study late in the library and she has an essay to finish. Most
participants (96%) concluded: she will study late in the library. If participants,
however, receive an additional conditional: If the library stays open, then she
will study late in the library then only 38% of them conclude: She will study late
in the library. This shows that, although the conclusion is still correct under
classical logic, participants seem to suppress that conclusion when given the
additional conditional. This example shows that humans are capable to draw
non-monotonic inferences.

Byrne [3] studied multiple variants of this suppression task, and it turned out
that her results could not be straightforwardly explained in classical logic. On
the other hand, logic programs interpreted under the weak completion semantics
have been shown to be good predictors of human responses on Byrne’s suppres-
sion task [11,19,20,22]. The weak completion semantics has also been shown to
be a cognitively plausible model of human reasoning in the context of various
other reasoning tasks [6,10,18].
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A new paradigm that recently emerged in the area of the psychology of rea-
soning is the integration of knowledge via argumentation [28]. There is strong evi-
dence from psychology that arguments are the means for human reasoning [27].
In this paper we study the connection between such human reasoning tasks, the
weak completion semantics and abstract argumentation. Abstract argumentation
is a field of research within AI based on the idea of Dung [13] that under some
conditions, the acceptance of arguments depends only on a so-called attack rela-
tion among the arguments, and not on the internal structure of the arguments.
Dung called the directed graph that represents the arguments as well as the
attack relation between them an argumentation framework (AF ). Whether an
argument is deemed acceptable depends on the decision about other arguments.
Therefore the basic concept in abstract argumentation is a set of arguments that
can be accepted together, called an extension. Crucially, there may be several
of such extensions, and these extensions may be incompatible. An (extension-
based) argumentation semantics takes as input an AF and produces as output
a set of extensions.

Since the inception of abstract argumentation in the 1990s, connections
between argumentation semantics and logic programming semantics have been
studied. Already the seminal paper by Dung [13] introduced two possible ways
of translating logic programs into argumentation frameworks. Later work has
established a rich set of correspondences between logic programming semantics
and argumentation semantics [4]. However, existing work on these correspon-
dences has not yet covered the weak completion semantics.

In this paper we define a novel translation from logic programs to abstract
argumentation frameworks and show that under this translation the weak com-
pletion semantics corresponds to the grounded semantics of abstract argumen-
tation. Combining this translation with argumentation semantics other than
grounded semantics gives rise to novel logic programming semantics that closely
resemble the weak completion semantics, but also lead to different results in
some crucial cases. We discuss the potential relevance of these novel semantics
to modeling human reasoning and give an outlook on possible future research
on this topic.

The paper is structured as follows: In Sect. 2 we introduce the formal prelim-
inaries from abstract argumentation and logic programming that are required in
this paper. In Sect. 3 we show how the various instances of the suppression task
can be modeled within the weak completion semantics. Section 4 introduces our
novel translation from logic programming to argumentation and presents a cor-
respondence theorem between the weak completion semantics of logic programs
and the grounded semantics of argumentation frameworks under this transla-
tion; the proof of this correspondence theorem is in the appendix. Furthermore,
this section explains how our translation function can be used to define novel
logic programming semantics. In Sect. 5 we discuss some properties of these novel
semantics from the perspective of their potential use as models of human rea-
soning, highlighting that more empirical research is required to establish which
of these semantics can predict human reasoning best. Section 6 concludes the
paper.
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2 Formal Preliminaries

In this section we introduce notions from abstract argumentation and logic pro-
gramming that are required in this paper.

2.1 Abstract Argumentation

We define the required notions from abstract argumentation as introduced by
Dung [13] and as explained in its current state-of-the-art form by Baroni et al. [1].

We start by defining the fundamental notion of argumentation frameworks
and the auxiliary notions of att-paths and odd att-cycles.

Definition 1. An argumentation framework (AF) F = 〈Ar, att〉 is a finite
directed graph in which the set Ar of vertices is considered to represent argu-
ments and the set att ⊆ Ar × Ar of edges is considered to represent the attack
relation between arguments, i.e. the relation between a counterargument and the
argument that it counters.

Definition 2. An att-path is a sequence 〈a0, . . . , an〉 of arguments where
(ai, ai+1) ∈ att for 0 ≤ i < n and where aj �= ak for 0 ≤ j < k ≤ n with
either j �= 0 or k �= n. An odd att-cycle is an att-path 〈a0, . . . , an〉 where a0 = an

and n is odd.

Given an argumentation framework, we want to choose sets of arguments for
which it is rational and coherent to accept them together. A set of arguments
that may be accepted together is called an extension. Multiple argumentation
semantics have been defined in the literature, i.e. multiple different ways of
defining extensions given an argumentation framework. Before we consider spe-
cific argumentation semantics, we first give a formal definition of the notion of
argumentation semantics:

Definition 3. An argumentation semantics is a function σ that maps any AF
F = 〈Ar, att〉 to a set σ(F ) of subsets of Ar. The elements of σ(F ) are called
σ-extensions of F .

Note 4. We usually define an argumentation semantics σ by specifying criteria
which a subset of Ar has to satisfy in order to be a σ-extension of F .

In this paper we consider the complete, stable, grounded, preferred, CF2 and
SCF2 semantics. The first four are based on the notion of admissibility and are
widely studied in the abstract argumentation literature. The latter two are not
based on the notion of admissibility, but have recently been shown to be good
predictors of human judgments about argument acceptability [7–9]. We now first
define the four admissibility-based semantics:
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Definition 5. Let F = 〈Ar, att〉 be an AF, and let S ⊆ Ar. The set S is called
conflict-free iff there are no arguments b, c ∈ S such that b attacks c (i.e. such
that (b, c) ∈ att). Argument a ∈ Ar is defended by S iff for every b ∈ Ar such that
b attacks a there exists c ∈ S such that c attacks b. We say that S is admissible
iff S is conflict-free and every argument in S is defended by S. We say that S
attacks a if there exists b ∈ S such that b attacks a.

– S is a complete extension of F iff S is admissible and S contains all the
arguments it defends.

– S is a stable extension of F iff S is admissible and S attacks all the arguments
of Ar \ S.

– S is the grounded extension of F iff S is a minimal with respect to set inclu-
sion complete extension of F .

– S is a preferred extension of F iff S is a maximal with respect to set inclusion
complete extension of F .

The CF2 semantics was first introduced by Baroni et al. [2]. The idea behind
it is that we partition the AF into strongly connected components and recursively
evaluate it component by component by choosing maximal conflict-free sets in
each component and removing arguments attacked by chosen arguments. We
formally define it following the notation of Dvořák and Gaggl [14]. For this we
first need some auxiliary notions:

Definition 6. Let F = 〈Ar, att〉 be an AF, and let a, b ∈ Ar. We define a ∼ b
iff either a = b or there is an att-path from a to b and there is an att-path
from b to a. The equivalence classes under the equivalence relation ∼ are called
strongly connected components (SCCs) of F . We denote the set of SCCs of
F by SCCs(F ). Given S ⊆ Ar, we define DF (S) := {b ∈ Ar | there exists
a ∈ S such that (a, b) ∈ att and a �∼ b}.
Definition 7. Let F = 〈Ar, att〉 be an AF, and let S ⊆ Ar. We write F |S for
the restricted AF 〈S, att ∩ (S × S)〉.

We now recursively define CF2 extensions as follows:

Definition 8. Let F = 〈Ar, att〉 be an AF, and let S ⊆ Ar. Then S is a CF2
extension of F iff either

– |SCCs(F )| = 1 and S is a maximal conflict-free subset of Ar, or
– |SCCs(F )| > 1 and for each C ∈ SCCs(F ), S ∩ C is a CF2 extension of

F |C\DF (S).

The SCF2 semantics was recently introduced by Cramer and van der Torre [9]
motivated both by desirable formal principles that it satisfies as well as by its
capacity to predict human judgments about the acceptability of arguments. For
defining the SCF2 semantics, we first need some auxiliary notions:

Definition 9. Let F = 〈Ar, att〉 be an AF, and let A ⊆ Ar. We define A− =
{a ∈ Ar | a attacks some b ∈ A}.
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Definition 10. Let F = 〈Ar, att〉 be an AF, and let A ⊆ Ar. We say that A is
strongly complete outside odd cycles iff for every argument a ∈ Ar such that no
argument in {a} ∪ {a}− is in an odd att-cycle and A ∩ {a}− = ∅, we have that
a ∈ A.

We now recursively define SCF2 extensions as follows:

Definition 11. Let F = 〈Ar, att〉 be an AF, and let S ⊆ Ar. Then S is an SCF2
extension of F iff either

– Ar contains at least one argument a such that a attacks itself and S is an
SCF2 extension of F |{a∈S|(a,a)/∈att}.

– Ar contains no argument a such that a attacks itself, |SCCs(F )| = 1 and S
is a maximal conflict-free subset of Ar that is strongly complete outside odd
cycles, or

– Ar contains no argument a such that a attacks itself, |SCCs(F )| > 1 and for
each C ∈ SCCs(F ), S ∩ C is an SCF2 extension of F |C\DF (S).

2.2 Logic Programming

The terminology and notation here is based on [12,17,25]. We assume a propo-
sitional language, in which atoms can be combined to formulas using the unary
connective ¬ (not) and the binary connectives ∧ (and), ∨ (or), ← (if ) and ↔
(if and only if ). The set of atoms is assumed to contain � (true), ⊥ (false) and
U (undefined). A literal is a formula that is of the form A or ¬A for an atom A.

Definition 12. Let F be a formula of the form L1 ∧ . . . ∧ Ln where Li is a
literal for 1 ≤ i ≤ n. Then pos(F ) = {Li | 1 ≤ i ≤ n and Li is an atom} and
neg(F ) = {Li | 1 ≤ i ≤ n and Li is of the form ¬A}.
Definition 13. Clauses are expressions of the forms A ← L1 ∧ . . . . . . ∧ Ln

(rules), A ← � (facts), and A ← ⊥ (assumptions), where A is an atom other
than �, U and ⊥, and Li is a literal for 1 ≤ i ≤ n. A is the head and L1∧. . . . . .∧
Ln, as well as � and ⊥, are the body of the corresponding clauses. A program P is
a finite set of clauses. A normal program P is a program without assumptions. If
P is a program, then P∗ denotes the normal program {A ← body | A ← body ∈ P
and body �= ⊥}.
Definition 14. Let P be a program. The set of all atoms occurring in P is
denoted by atoms(P). A is undefined in P iff A is not the head of any clause in
P. The set of all atoms that are undefined in P is undef(P).

Three-Valued Logics. The various logic programming approaches that we will
discuss in the following differ with respect to the underlying logic that they have
originally been introduced with. Therefore, Table 1 shows the truth tables of the
three-valued logics in consideration, where �, ⊥ and U denote the three truth-
values true, false and unknown respectively. In particular, models under the
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Table 1. Truth tables for three-valued logics. The gray highlighted �’s indicate that
formulas which are true under ←�L (↔�L) are true under ←S (↔S), and vice versa.

F ¬F

� ⊥
⊥ �
U U

∧ � U ⊥
� � U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

←�L � U ⊥
� � � �
U U � �
⊥ ⊥ U �

↔�L � U ⊥
� � U ⊥
U U � U

⊥ ⊥ U �
∨ � U ⊥
� � � �
U � U U

⊥ � U ⊥

←S � U ⊥
� � � �
U ⊥ � �
⊥ ⊥ ⊥ �

↔S � U ⊥
� � ⊥ ⊥
U ⊥ � ⊥
⊥ ⊥ ⊥ �

weak completion semantics introduced have originally been defined according
to the three-valued �Lukasiewicz logic [26], for which the set of connectives is
{¬,∧,∨,←�L,↔�L}. On the other hand, models under the well-founded semantics
have originally been defined according to the three-valued S3 logic [31], for which
the set of connectives is {¬,∧,∨,←S,↔S}. As the highlighted �’s in Table 1
show, the models with respect to these logics coincide for formulas without nested
implications or equivalences, and thus also for the models which are going to be
discussed in this paper. Therefore, in the following, we will not need to further
specify the respective underlying three-valued logic.

Definition 15. Let P be a program. A three-valued interpretation I of P is a
mapping from atoms(P) to the set of truth values {�,⊥,U} such that I(�) = �,
I(⊥) = ⊥ and I(U) = U. We represent an interpretation as a pair I = 〈I�, I⊥〉
of disjoint sets of atoms, where I� is the set of all atoms other than � that are
mapped to � by I, and I⊥ is the set of all atoms other than ⊥ that are mapped
to ⊥ by I, and where I� ∩ I⊥ = ∅. Atoms that do not occur in I� ∪ I⊥ are
mapped to U.

Definition 16. Let I = 〈I�, I⊥〉 and J = 〈J�, J⊥〉 be two interpretations. We
define I �k J iff I� ⊆ J� and I⊥ ⊆ J⊥, and we define I �t J iff I� ⊆ J� and
J⊥ ⊆ I⊥.

Definition 17. Let F be a formula. The truth value of F under I, denoted I(F )
is determined according to the truth tables in Table 1.

Definition 18. Let I be an interpretation. I is a model of a formula F , if
I(F ) = �. I is a model of P if I is a model for every clause occurring in P, i.e.
I(C) = � for all C ∈ P. A model I of P is a �k-minimal (�t-minimal) model
of P iff for any other model J of P it holds that I �k J (I �t J). I is a �k-least
(�t-least) model of P iff it is the only �k-minimal (�t-minimal) model of P.
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Weak Completion Semantics. The weak completion semantics (WCS) has
originally been introduced by Hölldobler and Kencana Ramli [19–21]. The fol-
lowing program transformation is a variation of Clark’s completion [5].

Definition 19. Let P be a program. Consider the following transformation
for P: 1. Replace all clauses in P with the same head A ← body1, A ←
body2, . . . , A ← bodyn by the single expression A ← body1 ∨ body2,∨ · · · ∨ bodyn.
2. Replace all occurrences of ← by ↔. The resulting set of equivalences is the
weak completion of P (wcP).

As Hölldobler and Kencana Ramli [20] have shown, the model intersection prop-
erty holds for weakly completed programs, which guarantees the existence of a
least model for every program. These models can be computed by the following
immediate consequence operator proposed by Stenning and van Lambalgen [33].

Definition 20. Let I be an interpretation and P a program. The Stenning and
van Lambalgen operator is defined as follows: ΦP(I) = 〈J�, J⊥〉, where

J� = {A | there exists A ← body ∈ P such that I(body) = �},
J⊥ = {A |A �∈ undef(P) and for all A ← body ∈ P we find that I(body) = ⊥}.

The �k-least fixed point of ΦP , lfp ΦP , is identical to the �k-least model of the
weak completion of P (lmwcP). It can be reached by iteratively applying ΦP
to I = 〈∅, ∅〉 [19]. We call the �k-least fixed point of Φ the WCS model of P.

Kripke-Kleene Semantics. Fitting [15] provided an immediate consequence
operator, whose least fixed point for a given program P corresponds to the least
model of Clark’s completion of P [5].

Definition 21. Let I be an interpretation and P a normal program. The Fitting
operator is defined as follows: ΨP(I) = 〈J�, J⊥〉, where

J� = {A | there exists A ← body ∈ P such that I(body) = �},
J⊥ = {A | for all A ← body ∈ P we find that I(body) = ⊥}.

The operator Φ in Definition 20 differs with respect to the Fitting operator Ψ ,
in the specification of J⊥ where the first line “A �∈ undef(P) and” is dropped in
Ψ .

The �k-least fixed point of ΨP is called the Kripke-Kleene model or KK
model of P (in the literature it is sometimes called Fitting’s model).

Stable Model Semantics. Stable models originate from Gelfond and Lifs-
chitz [16], and have been extended to three-valued stable models by Przymusin-
ski [29]. For defining the stable model of a program, we first define the notion of
a reduct:
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Definition 22. Let I be an interpretation and P a normal program. The reduct
of P with respect to I, denoted by P|I , is obtained from P by replacing in the
bodies of all clauses P each negative literal ¬A by I(¬A), that is, with the truth
value constant corresponding to the value of ¬A under I.

Definition 23. Let I be an interpretation and P a normal program. I is a three-
valued stable model or 3-St model of P if and only if I is a �t-minimal model
of P|I . I is a two-valued stable model or 2-St model of P if and only if I is a
3-St model of P that does not assign the truth value U to any atom.

Well-Founded Semantics. The Well-founded Semantics has first been pre-
sented by Gelder, Ross and Schlipf [34]. Since Przymusinski [29] established that
the well-founded model coincides with the knowledge-least three-valued stable
model, we use this characterization as our definition of the well-founded model:

Definition 24. Let I be an interpretation and P a normal program. I is the
well-founded model or WF model of P if I is the �k-least three-valued stable
model of P.

Translation and Correspondence. Two main differences between the Weak
Completion Semantics and the other logic programming approaches introduced
above, have been identified [12]: (i) The weak completion semantics, and the
Kripke-Kleene semantics deal differently with undefined atoms in a program. (ii)
Additionally to (i), under certain circumstances, the weak completion semantics
and the well-founded semantics deal differently with atoms involved in positive
cycles. The following correspondence between WCS models and WF models can
be established:

Theorem 25 (adapted from Theorem 11 in [12]). For any program P, not
containing positive cycles, and interpretation I, I is a WCS model of P iff I is
the WF model of

P∗ ∪
⋃

A∈undef(P)

{A ← ¬A′, A′ ← ¬A},

where for each A ∈ undef(P), an auxiliary atom A′ is introduced that does not
occur in P.

2.3 Correspondence of Argumentation and Logic Programming

In his seminal paper [13], Dung provided two translations from logic program-
ming to argumentation framework: One which captures the semantics of negation
as possibly infinite failure, and one which captures the semantics of negation as
finite failure. While the first one has been the basis for most of the more recent
work on the correspondence between argumentation and logic programming,
e.g. [4], we will here present Dung’s second translation, because it closely resem-
bles the translation that we will introduce and motivate in this paper.

Before we define the translation, we first need two auxiliary notions:
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Definition 26. Given a set K of literals, we define
∧ K to be L1 ∧ · · · ∧ Ln if

K = {L1, . . . , Ln} (n ≥ 1), and we define
∧ K to be � if K = ∅.

Definition 27. Given a literal L, we define the complement L̄ of L as follows:

L̄ :=
{¬L if L is an atom;

A if L is ¬A for some atom A.

Definition 28. The translation AFnaff(P) of a program P is the argumentation
framework (Ar, att), where

Ar :={(K, A) | K is a set of literals such that A ←
∧

K ∈ P}
∪ {({¬A},¬A) | A ∈ atoms(P)}

att :={((K, L), (K′, L′)) | (K, L) ∈ Ar, (K′, L′) ∈ Ar and L̄ ∈ K′}
Note 29. The subscript naff in AFnaff(P) means negation as finite failure.

Dung [13] proved the following theorem that establishes a correspondence
between the Kripke-Kleene model of a program P and the grounded extension
of AFnaff(P):

Theorem 30 (Theorem 56 in [13]). Let P be a logic program, let E be the
grounded extension of AFnaff(P). Then the Kripke-Kleene model of P is 〈{A |
(K, A) ∈ E}, {A | (K,¬A) ∈ E}〉.

Note that this correspondence between the Kripke-Kleene semantics of logic
programs and the grounded semantics of argumentation frameworks depends
on the translation between the two formalisms. If another translation is cho-
sen, the grounded semantics may correspond to a different logic programming
semantics. For example, under Dung’s translation for negation as possibly infi-
nite failure [13] as well as under the translation given by Caminada et al. [4], the
grounded semantics corresponds to the well-founded semantics. For the transla-
tion that we will introduce in Sect. 4, we will show that the grounded semantics
corresponds to the weak completion semantics.

3 The Suppression Task

Recall the suppression task from the introduction. Byrne carried out a psycho-
logical experiment that can be split up into four different cases (or variations)
for each of three different groups of participants [3]. In the following, we will only
discuss the results of the three different groups for the first two cases. Consider
the information received by Group I in case 1:

If she has an essay to finish, then she will study late in the library. (1)
She has an essay to finish. (2)
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Table 2. Logic program representation for the first two cases of the suppression task,
according to Stenning and van Lambalgen [33].

Case Program Fact/Assumption

e Pe
I = {l ← e ∧ ¬ab1, ab1 ← ⊥, e ← �}

Pe
II = {� ← e ∧ ¬ab1, � ← t ∧ ¬ab2, ab1 ← ⊥, ab2 ← ⊥, e ← �}

Pe
III = {� ← e ∧ ¬ab1, � ← o ∧ ¬ab3, ab1 ← ¬o, ab3 ← ¬e, e ← �}

ē P ē
I = {� ← e ∧ ¬ab1, ab1 ← ⊥, e ← ⊥}

P ē
II = {� ← e ∧ ¬ab1, � ← t ∧ ¬ab2, ab1 ← ⊥, ab2 ← ⊥, e ← ⊥}

P ē
III = {� ← e ∧ ¬ab1, � ← o ∧ ¬ab3, ab1 ← ¬o, ab3 ← e, e ← ⊥}

The participants had the option to choose from She will study late in the
library, She will not study late in the library, or She may or may not study late
in the library. 96% of the participants concluded that She will study late in the
library.

Additionally to (1) and (2), Group II received the following information

If she has a textbook to read, then she will study late in the library. (3)

Again, 96% of this group concluded that She will study late in the library. Addi-
tionally to (1) and (2), Group III received the following information:

If the library stays open, then she will study late in the library. (4)

In this group, only 38% concluded that She will study late in the library. This is
the so-called suppression effect as previously drawn conclusions were suppressed.
One explanation why the percentage dropped significantly, is that participants
might have thought about the necessity that the library (has to) stay open in
order to study late in the library.

In the second case, Group I now received, instead of (2), the following infor-
mation together with (1):

She does not have an essay to finish. (5)

In this case, 46% of the participants concluded that She will not study late in the
library. Similarly, in Group III, who received as information (1), (4) and (5), 63%
concluded that She will not study late in the library. Yet, when Group II received
as information (1), (3) and (5), then only 4% concluded that She will not study
late in the library. Now the suppression effect can be observed in Group II. One
explanation why the percentage dropped significantly in this group is that the
participants might have thought about an alternative possibility for her to study
late in the library, namely because She has a textbook to read.

Stenning and van Lambalgen [33] suggested to model Byrne’s suppression
task by representing the given statements within the experiment as logic program
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Table 3. Models under the respective semantics for the programs of Table 2. High-
lighted atoms show the differences between the Weak Completion Semantics and the
others.

Case Program KK/2-St/3-St/WF model of P∗ WCS model of P Byrne

e Pe
I 〈{e, �}, {ab1}〉 〈{e, �}, {ab1}〉 96% L

Pe
II 〈{e, �}, { t , ab1, ab2}〉 〈{e, �}, {ab1, ab2}〉 96% L

Pe
III 〈{e, ab1 }, { o , � , ab3}〉 〈{e}, {ab3}〉 38%L

ē P ē
I 〈∅, {e, �, ab1}〉 〈∅, {e, �, ab1}〉 46% L

P ē
II 〈∅, {e, t , � , ab1, ab2}〉 〈∅, {e, ab1, ab2}〉 4% L

P ē
III 〈{ ab1 , ab3}, {e, o , �}〉 〈{ab3}, {e, �}〉 63% L

clauses including licenses for inferences. Consider again (1), which is encoded by
the clause � ← e ∧ ¬ab1, where ab1 is an abnormality predicate assumed (by
default) to be false: � holds if e is true and nothing abnormal is known (¬ab1),
i.e. everything abnormal is false. (3) and (4) can be encoded analogously as the
clauses � ← t ∧ ¬ab2 and � ← o ∧ ¬ab3, respectively. The dependency when the
two conditionals (1) and (4) appear together was suggested to be encoded by
means of their abnormalities as follows [33]:

ab1 ← ¬o, ab3 ← ¬e,

meaning that Something is abnormal (ab1), with respect to � ← e ∧ ¬ab1, if
the library is not open (¬o), and Something is abnormal (ab3) with respect to
� ← o∧¬ab3, if She does not have an essay to finish. Depending on the case, i.e.
whether (2) or (5) is given to the participants, either e ← � or e ← ⊥, holds.

The six logic programs representing the first two cases of the suppression
task as proposed by Stenning and van Lambalgen are shown in Table 2. The
superscript and superscripts of the programs denote the group and the case.

Table 3 depicts the results of the different semantics with respect to the pro-
grams in Table 2. The third column shows the models under the weak completion
semantics: For Group II, t is unknown, and for Group III, o is unknown. This is
different for the other semantics (second column) where for Group II, t is false,
and for Group III, o is false. Consequently, under the weak completion seman-
tics, � is unknown in the cases of Pe

II and P ē
III, which coincides with the two

suppression effects reflected in Byrne’s results (last column). As for the other
semantics, they fail to model the suppression effect in both cases.

As summarized in [11], all cases of the suppression task seem to be ade-
quately modeled under the weak completion semantics. Note that the other two
cases of the suppression task not discussed here can be modeled by means of
abduction [24].
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({¬�}, ¬�) ({e, ¬ab1}, �)

({¬o}, ab1) ({¬e}, ¬e)({¬ab1}, ¬ab1)({o, ¬ab3}, �)

({¬o}, ¬o) ({o}, o)

(∅, e)({¬e}, ab3)({¬ab3}, ¬ab3)

Fig. 1. The argumentation framework AFwc(Pe
III) corresponding to Pe

III.

4 Translation, Correspondence and New LP Semantics

In this section we define a translation from logic programs to argumentation
frameworks and show that under this translation, the weak completion seman-
tics of logic programs corresponds to the grounded semantics of argumentation
frameworks. Furthermore we use this translation function to define new logic
programming semantics based on argumentation semantics.

Consider the following translation from a given program P to an AF:

Definition 31. The translation AFwc(P) of a program P is the argumentation
framework (Ar, att), where

Ar :={(K, A) | K is a set of literals such that A ←
∧

K ∈ P}
∪ {({¬A},¬A) | A ∈ atoms(P)} ∪ {({A}, A) | A ∈ undef(P)}

att := {((K, L), (K′, L′)) | (K, L) ∈ Ar, (K′, L′) ∈ Ar and L̄ ∈ K′}

Note 32. The subscript wc in AFwc(P) means weak completion, because this
translation is closely linked to the weak completion of P, as we will show below.

Example 33. Consider Pe
III, which we have already seen in Table 2 in Sect. 3 as

the program that formalizes the first case for Group III in Byrne’s suppression
task: Pe

III = {� ← e ∧ ¬ab1, � ← o ∧ ¬ab3, ab1 ← ¬o, ab3 ← ¬e, e ← �}.
The argumentation framework of Pe

III, AF (Pe
III), is depicted in Fig. 1. As

usual, arrows indicate the attack relation between arguments. The five arguments
highlighted in gray correspond to the five rules of Pe

III, five further arguments are
of the form ({¬A},¬A) for atoms A of Pe

III, and ({o}, o) is the only argument of
the third type of arguments that correspond only to undefined atoms.
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({e}, e)

({¬e}, ¬e) ({e, ¬ab1}, �) ({¬�}, ¬�)

({¬ab1}, ¬ab1)

Fig. 2. The argumentation framework AFwc(P0) corresponding to P0.

The grounded extension of AF (Pe
III) is

E0 := {(∅, e), ({¬ab3},¬ab3)}
The two stable, preferred, CF2 and SCF2 extensions of AF (Pe

III) are E1 and E2:

E1 := {(∅, e), ({¬ab3}, ¬ab3), ({¬o}, ¬o), ({¬o}, ab1), ({¬�}, ¬�)}
E2 := {(∅, e), ({¬ab3}, ¬ab3), ({o}, o), ({¬ab1}, ¬ab1), ({e, ¬ab1}, �), ({o, ¬ab3}, �)}

The complete extensions of AF (Pe
III) are E0, E1 and E2. �

The following theorem, whose proof is in Appendix A, states that under
the translation function AFwc , the grounded semantics of argumentation frame-
works corresponds to the weak completion semantics of logic programs.

Theorem 34. Let P be a logic program, let E be the grounded extension of
AFwc(P). Then the WCS model of P is 〈{A | (K, A) ∈ E}, {A | (K,¬A) ∈ E}〉.
Example 35. We continue Example 33. The grounded extension of Pe

III is E0 =
{(∅, e), ({¬ab3},¬ab3)}, and the corresponding interpretation is

I = 〈{A | (K, A) ∈ E0}, {A | (K,¬A) ∈ E0}〉 = 〈{e}, {ab3}〉,
which is indeed the WCS model of AF (Pe

III). �
We now look at how the translation function AFwc can be used to map

any argumentation semantics σ to a three-valued logic programming semantics
σ-WCS:

Definition 36. Let σ be an argumentation semantics and let P be a program. A
three-valued interpretation I of P is called a σ-WCS model of P iff there exists a
σ-extension E of AFwc(P) such that I = 〈{A | (K, A) ∈ E}, {A | (K,¬A) ∈ E}〉.
Definition 37. A logic programming semantics S is an argumentation-WCS
semantics iff there is an argumentation semantics σ such that S is identical to
σ-WCS.

By Theorem 34 we already know that grounded-WCS is the same as WCS,
i.e. the weak completion semantics. Since any argumentation framework has a
single grounded extension, any program has a single grounded-WCS model. For
other semantics this is not the case. For example, an argumentation framework
may have multiple preferred extensions, and hence a logic program may have
multiple preferred-WCS models.
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Example 38. Let us consider the program P0 = {� ← e ∧ ¬ab1, ab1 ← ⊥} that
according to Stenning and van Lambalgen’s license for inference approach cor-
responds to sentence (1) in Sect. 3. Figure 2 depicts AFwc(P0).1 The grounded
extension of AFwc(P0) is E0 := {({¬ab1},¬ab1)}, so the (grounded-)WCS model
of P0 is I0 := 〈∅, {ab1}〉.

In the stable, preferred, CF2 and SCF2 semantics, there are two extensions,
E1 and E2:

E1 := {({e}, e), ({e,¬ab1},¬�), ({¬ab1},¬ab1)}
E2 := {({¬e},¬e), ({¬�},¬�), ({¬ab1},¬ab1)}

These two extensions correspond to two P0-interpretations, I1 and I2, both of
which are therefore stable-WCS models, preferred-WCS models, CF2-WCS mod-
els and SCF2-WCS models:

I1 := 〈{e, �}, {ab1}〉 and I2 := 〈∅, {e, �, ab1}〉.
The complete extensions of AFwc(P0) are E0, E1 and E2, so the complete-WCS
models of P0 are I0, I1 and I2, which are also all the models of wcP0. �

When we apply an LP semantics that allows for multiple models to the
task of predicting what conclusions humans derive from given information, we
need to specify how to combine the information that is present in the multi-
ple models into a single prediction. There are two standard ways of combining
the information from multiple interpretations into a single belief specification,
namely credulous belief and skeptical belief. Credulously believing something
means believing it as long as it is true in at least one of the given interpreta-
tions. Skeptically believing something means believing it only if it is true in all
the given interpretations. Formally we define these notions as follows:

Definition 39. Let I be a set of interpretations. The credulous belief set over I,
denoted Cr(I), is the following set of literals:

Cr(I) := {A | there is an I ∈ I such that A ∈ I�} ∪
{¬A | there is an I ∈ I such that A ∈ I⊥}

The skeptical belief set over I, denoted Sk(I), is the following set of literals:

Sk(I) := {A | A ∈ atoms(P) and for every I ∈ I, A ∈ I�} ∪
{¬A | A ∈ atoms(P) and every I ∈ I, A ∈ I⊥}

Example 40. We continue Example 38. Recall that I1 and I2 are the models of
P0 in the stable-WCS, preferred-WCS, CF2-WCS and SCF2-WCS semantics.
The credulous and skeptical belief sets over the set {I1, I2} of interpretations
are

Cr({I1, I2}) = {e,¬e, �,¬�,¬ab1} and Sk({I1, I2}) = {¬ab1}.

1 Note that there is no argument that needs to represent ab1 ← ⊥ in P0.
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So in this example, the credulous belief is inconsistent, whereas the skeptical
belief is only the belief that the abnormality predicate ab1 is false. �

In general, the credulous belief over the complete-WCS, stable-WCS,
preferred-WCS, CF2-WCS and SCF2-WCS models of a program P is incon-
sistent whenever P contains an undefined atom. For this reason, in the rest
of the paper we will only consider skeptical belief sets over these semantics as
potential predictors of human reasoning.

Reasoning skeptically from the set of complete-WCS models is the same as
reasoning based on the (grounded-)WCS model. The reason for this is that the
grounded extension is the ⊆-least complete extension. As we will see in the next
section, reasoning skeptically from the set of stable-WCS, preferred-WCS, CF2-
WCS or SCF2-WCS models leads to predictions that in many cases coincide
with the predictions of the weak completion semantics, while disagreeing with
them in other cases.

5 Discussion on Cognitive Plausibility of New Semantics

In this section we combine theoretical observations and empirical data to com-
pare the cognitive plausibility of the new logic programming semantics intro-
duced in the previous section in contrast to the weak completion semantics. In
particular, we provide support to the hypothesis that some of these novel seman-
tics are better models of human reasoning than the weak completion semantics.

In the case of the six programs considered in Sect. 3, skeptical belief over
stable-WCS, preferred-WCS, CF2-WCS or SCF2-WCS models corresponds to
the (grounded-)WCS model. For a wide a range of programs, such as for the for-
malization of the second part of the suppression task, that has not be considered
in this paper (see [11] for the formalization of these cases as logic programs)
and other formalizations under the weak completion semantics (see [18]) this
correspondence still seems to holds. Consequently, these semantics would yield
the same results as the weak completion semantics, and thus they are also good
candidates for being adequate cognitive theories.

5.1 Differences Among the Semantics

The next example shows that skeptical belief over stable-WCS, preferred-WCS,
CF2-WCS and SCF2-WCS leads to different predictions than (grounded-)WCS:

Example 41. Consider the following two sentences:

If she has an essay to finish, she will study late in the library.
If she does not have an essay to write, she will study late in the library.
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({e}, e)

({¬e}, ¬e)

({¬e, ¬ab2}, �)

({e, ¬ab1}, �)

({¬ab1}, ¬ab1)

({¬�}, ¬�)

({¬ab2}, ¬ab2)

Fig. 3. The argumentation framework AFwc(P) corresponding to P1.

According to Stenning and van Lambalgen’s license for inference approach, they
are encoded as P1 = {� ← e∧¬ab1, ab1 ← ⊥, � ← ¬e∧¬ab2, ab2 ← ⊥}. Figure 3
depicts AFwc(P1).2 The grounded extension of AFwc(P1) is

E0 := {({¬ab1},¬ab1), ({¬ab2},¬ab2)},

so the (grounded-)WCS model of P1 is I0 := 〈∅, {ab1, ab2}〉. In the stable, pre-
ferred, CF2 and SCF2 semantics, there are two extensions, E1 and E2:

E1 := {({e}, e), ({e,¬ab1}, �), ({¬ab1},¬ab1), ({¬ab2},¬ab2)}
E2 := {({¬e},¬e), ({¬e,¬ab2}, �), ({¬ab1},¬ab1), ({¬ab2},¬ab2)}

These two extensions correspond to the two following P1-interpretations,

I1 := 〈{e, �}, {ab1, ab2}〉 and I2 := 〈{�}, {e, ab1, ab2}〉,
both of which are therefore stable-WCS models, preferred-WCS models, CF2-
WCS models and SCF2-WCS models. The skeptical belief set over {I1, I2} is

Sk({I1, I2}) = {�,¬ab1,¬ab2}.

So while the (grounded-)WCS model tells us that neither � nor ¬� follow from
P2, skeptical reasoning over stable WCS models, preferred-WCS models, CF2-
WCS models or SCF2-WCS models tells us that � does follow from P. Note that
the complete-WCS models of P1 are I0, I1 and I2, which are also the models of
wcP1.

Returning to the natural language sentences that we started with, this means
that stable-WCS, preferred-WCS, CF2-WCS and SCF2-WC2 allow for the fol-
lowing inference, which (grounded-)WCS does not allow for:

If she has an essay to finish, she will study late in the library. (6)

If she doesn′t have an essay to finish, she will study late in the library.
(7)

Therefore she will study late in the library. (8)

�
2 Again, there are no arguments that need to represent ab1 ← ⊥ and ab1 ← ⊥ in P1.
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Given that the inference from Sentence (6) and Sentence (7) to Sentence
(8) is one where the different argumentation-WCS semantics considered in this
paper make different prediction, we will now look at this inference in a bit more
detail.

In classical logic as well as other logics that use the same syntax, e.g. intu-
itionistic logic or �Lukasiewicz logic, the three sentences (6), (7) and (8) would
usually be rendered as e → �, as ¬e → � and as � respectively. In classical logic,
the set {e → �,¬e → �} entails the formula �, i.e. the inference is deemed valid.
One way of explaining the validity of this inference in classical logic is to note
that in classical logic, {ϕ∨ψ,ϕ → χ, ψ → χ} entails χ for any formulas ϕ, ψ and
χ, which is a variant of disjunction elimination. Furthermore in classical logic
(ϕ∨¬ϕ) is a tautology for any formula ϕ, which is called the law of the excluded
middle. These two principles together ensure that {ϕ → χ,¬ϕ → χ} entails χ
for any formulas ϕ and χ.

In intuitionistic logic and �Lukasiewicz logic, {e → �,¬e → �} does not entail
the formula �, i.e. the inference from Sentence (6) and Sentence (7) to Sentence
(8) is not deemed valid. Disjunction elimination still holds in these two logics,
but the law of the excluded middle does not hold, so disjunction elimination
cannot even be applied when all that is given is e → � and ¬e → �.

To our knowledge, there have not yet been any empirical studies that test
whether humans accept inferences of the form “If ϕ then χ. If ¬ϕ then χ. There-
fore χ.” However, we consider it quite plausible that most humans do accept this
inference, at least when ϕ is not instantiated with a vague proposition or with a
proposition for which paradoxical information is provided. Indeed, most psycho-
logical theories of human reasoning predict that humans accept inferences of this
form. Some such theories are based on classical logic, e.g. [32], and make this
prediction due to its validity in classical logic or due to it being derivable with a
short proof in some psychologically plausible calculus of classical logic like natu-
ral deduction, while other psychological theories of human reasoning like mental
model theory [23] have been developed with the explicit goal of predicting some
outcomes that classical-logic based approaches do not correctly predict, but still
accept inferences like the one from (6) and (7) to (8).

Example 41 showed that inferences of the form “If ϕ then χ. If ¬ϕ then χ.
Therefore χ” are accepted by stable-WCS, preferred-WCS, CF2-WCS and SCF2-
WCS as long as no additional information about ϕ and χ is provided. Do these
semantics still allow χ to be concluded independently of what additional infor-
mation is provided about ϕ and χ? In the case of stable-WCS the answer is yes,
because each stable extension contains either the argument (¬ϕ,¬ϕ) or an argu-
ment of the form (K, ϕ). In preferred, CF2 and SCF2 semantics, on the other
hand, the addition of paradoxical information about ϕ, e.g. “If ¬ϕ then ϕ”, may
lead to a situation where some or all extensions contain neither (¬ϕ,¬ϕ) nor an
argument of the form (K, ϕ). In this case, χ may become underivable accord-
ing to preferred-WCS, CF2-WCS and SCF2-WCS. However this situation only
appears when the information provided about ϕ is paradoxical in the sense of
making two-valued reasoning about ϕ incoherent.
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What our analysis of inferences of the form “If ϕ then χ. If ¬ϕ then χ.
Therefore χ” shows is that if future research confirms that such inferences are
accepted by humans, this would be a problem for the weak completion seman-
tics as originally defined, but it would not be the end for WCS-like theories of
human reasoning, as WCS may be replaceable by closely related semantics such
as stable-WCS, preferred-WCS, CF2-WCS and SCF2-WCS that accept such
inferences (either unconditionally as in the case of stable-WCS, or in the absence
of additional paradoxical information about ϕ, as in the case of preferred-WCS,
CF2-WCS and SCF2-WCS).

5.2 Empirical Studies on Argumentation

Finally we would like to discuss what can be said about the relative cognitive
plausibility of the various argumentation-WCS semantics for logic programming
based on empirical studies about the cognitive plausibility of argumentation
semantics. Three empirical studies [7,8,30] have been conducted to compare the
cognitive plausibility of argumentation semantics, each with somewhat different
methodology.

– The results of the study by Rahwan et al. [30] suggest that stable, preferred,
CF2 and SCF2 predict human judgments about the acceptability of argu-
ments better than grounded and complete semantics. Given that all the AFs
used in this study have the same extensions under stable, preferred, CF2 and
SCF2 semantics, these four semantics cannot be distinguished by the data of
this study.

– The results of the first study by Cramer and Guillaume [7] confirm Rahwan et
al.’s results that preferred, CF2 and SCF2 predict human judgments about
arguments better than grounded and complete semantics, and additionally
suggest that CF2 and SCF2 semantics predict human judgments better than
preferred semantics. The study involves AFs that have no stable extensions;
the way the predictions of semantics were specified in this study presupposes
the existence of at least one extension in each semantics; therefore the stable
semantics was discarded as a potential predictor on theoretical grounds.

– The results of the second study by Cramer and Guillaume [8] confirm their
first study’s results that CF2 and SCF2 are a better predictor of human
judgments about arguments than preferred semantics. However, unlike the
previous two studies, this study did not find a significant difference between
CF2, SCF2, grounded and complete semantics as predictors of human judg-
ments. This was the only study that involved an AF on which CF2 and SCF2
make different predictions, and on that AF the predictions of SCF2 were
closer to human judgments than the predictions of CF2; however, this differ-
ence was not statistically significant, so further research is required to confirm
this potential difference in the predictive capacity of SCF2 and CF2. Just like
the previous study be the same authors, the stable semantics was discarded
as a potential predictor on theoretical grounds.
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While these studies give us valuable insight about the relative cognitive plau-
sibility of argumentation semantics, one needs to be careful when transferring
these results to the application of argumentation-WCS semantics to conditional
reasoning that we have developed here. The studies cited above made the con-
nection between natural language information and argumentation frameworks
in ways that significantly differ from the connection that we used in this paper,
i.e. the connection based on Stenning and van Lambalgen’s license for inference
approach and on the translation function AFwc . In particular, two of the three
existing studies completely excluded stable semantics, because it did not make
meaningful predictions for the scenarios they considered, whereas stable-WCS
does make meaningful predictions when modeling the suppression task. So fur-
ther empirical work is required to make empirically well-founded claims about
the relative cognitive plausibility of the various newly presented argumentation-
WCS semantics here.

6 Conclusion

In this paper we have established a novel connection between logic programming
and abstract argumentation by defining a translation function under which the
grounded semantics of abstract argumentation corresponds to the weak com-
pletion semantics of logic programming, which has been shown to be a good
model of human reasoning for various logical reasoning tasks. We make use of
this connection to define various novel logic programming semantics that closely
resemble the weak completion semantics, but that also exhibit some crucial dif-
ferences. We have discussed the properties of these novel semantics from the
point of view of their potential role as models of human reasoning, highlighting
that more empirical research is required to establish which of these semantics
can predict human reasoning best.

Acknowledgements. We would like to thank Christian Straßer for proposing a
shorter proof of Theorem 34 (see appendix) that additionally has the advantage of
establishing a useful correspondence between the weak completion semantics and the
Kripke Kleene semantics.

A Proof of Theorem 34

As mentioned in the Acknowledgements, the proof we present is based on a proof
presented by Christian Straßer. It derives Theorem 34 from Theorem 30 with
the help of Lemma 43, which establishes a correspondence between the weak
completion semantics and the Kripke Kleene semantics.

Definition 42. Given a program P, define Pid := P ∪{A ← A | A ∈ undef(P)}.
Lemma 43. The WCS model of a program P is the KK-model of Pid.
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Proof. We prove this result by inductively proving that Φi
P(〈∅, ∅〉) = Ψ i

Pid
(〈∅, ∅〉)

for any i ≥ 1 and any program P (where Φi
P respectively Ψ i

P denotes the ith
iteration of the function based on a program P). In the proof, we will sometimes
make use of the following observation:

(	) If A /∈ undef(A), A ← body ∈ P iff A ← body ∈ Pid.

Let 〈J�
i , J⊥

i 〉 = Ψ i
Pid

(〈∅, ∅〉) and 〈K�
i ,K⊥

i 〉 = Φi
P(〈∅, ∅〉). We now show induc-

tively that (i) J�
i = K�

i and (ii) J⊥
i = K⊥

i .
We make use of a somewhat unusual variant of proof by induction in which

both i = 0 and i = 1 are first established as separate base cases, and the
induction step is from i − 1 and i to i + 1 for any i > 0.

First base case : i = 0. In this case, J�
i = ∅ = K�

i and J⊥
i = ∅ = K⊥

i .

Second base case : i = 1. We discuss each point separately. Let I = 〈∅, ∅〉.
Ad (i). Suppose A ∈ J�

1 . Thus, there is a A ← body ∈ Pid such that I(body) =
�. Since I = 〈∅, ∅〉, body is �. In view of the definition of Pid, A ← � ∈ P ∩ Pid

and so A ∈ K�
1 . K�

1 ⊆ J�
1 holds since P ⊆ Pid.

Ad (ii). Suppose A ∈ K⊥
1 . Thus, A /∈ undef(P) and for all A ← body ∈ P,

I(body) = ⊥. By (	), for all A ← body ∈ Pid, I(body) = ⊥ and hence A ∈ J⊥
1 .

Suppose now that A ∈ J⊥
1 . So, for all A ← body ∈ Pid, I(body) = ⊥. Note

that A /∈ undef(P) since otherwise I(A) = ⊥ which is impossible since I = 〈∅, ∅〉.
Since P ⊆ Pid, A ∈ K⊥

1 .

Induction step: i − 1, i ⇒ i + 1for any i > 0. Our inductive hypothesis is that
J�
i−1 = K�

i−1, J⊥
i−1 = K⊥

i−1, J�
i = K�

i and J⊥
i = K⊥

i . We again discuss (i) and
(ii) separately. Let Ii = 〈I�

i , I⊥
i 〉 where I�

i = J�
i = K�

i and I⊥
i = J⊥

i = K⊥
i .

Similarly for Ii−1.
Ad (i). Suppose A ∈ K�

i+1. Thus, there is a A ← body ∈ P for which
Ii(body) = �. Since P ⊆ Pid, A ← body ∈ Pid. Thus, A ∈ J�

i+1.
For the other direction assume A ∈ J�

i+1. Thus, there is a A ← body ∈ Pid

for which Ii(body) = �. Assume for a contradiction that A ∈ undef(P). Thus,
body = A and A ∈ I�

i = K�
i . Thus, there is a A ← body ′ ∈ P for which

Ii−1(body ′) = �. This contradicts A ∈ undef(P). So A /∈ undef(P) and therefore
A ← body ∈ P. Thus, A ∈ K�

i+1.
Ad (ii). Suppose A ∈ K⊥

i+1. Thus, A /∈ undef(P) and for all A ← body(P),
Ii(body) = ⊥. By (	), for all A ← body ∈ Pid, Ii(body) = ⊥. Thus, A ∈ J⊥

i+1.
Suppose now that A ∈ J⊥

i+1. Thus, (†) for all A ← body ∈ Pid, Ii(body) = ⊥.
Assume for a contradiction that A ∈ undef(P). Then, since A ← A ∈ Pid,
Ii(A) = ⊥ and so A ∈ I⊥

i = K⊥
i . Since for all B ∈ K⊥

i (= {C | C /∈ undef(P) and
for all C ← body ∈ P, Ii−1(body) = ⊥}), B /∈ undef(P), this is a contradiction.
So, A /∈ undef(P) and by (	) and (†), for all A ← body ∈ P, Ii(body) = ⊥. Thus,
A ∈ K⊥

i+1. ��
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Abstract. We present a probabilistic logic for reasoning about degrees
of confirmation. We provide a sound and strongly complete axiomatiza-
tion for the logic. We show that the problem of deciding satisfiability is
in PSPACE.
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1 Introduction

In the last several decades, different tools are developed for representing and
reasoning with uncertain knowledge, including probability as a dominant rep-
resentation of uncertainty. One particular line of research concerns the formal-
ization in terms of probabilistic logic. The modern development in this field
started with Keisler’s seminal work on probabilistic quantifiers [21]. After Nils-
son [23] gave a procedure for probabilistic entailment which, given probabilities
of premises, calculates bounds on the probabilities of the conclusion, researchers
from the areas of logic, computer science and artificial intelligence started inves-
tigations about formal systems for probabilistic reasoning and provided several
languages, axiomatizations and decision procedures for various probabilistic log-
ics [3,10,12,13,15–19,24,25]. Those logics extend the classical (propositional or
first order) calculus with expressions that speak about probability, while for-
mulas remain true or false. They allow one to formalize statements of the form
“the probability of α is at least a half.” The corresponding probability opera-
tors behave like modal operators and the corresponding semantics consists of
special types of Kripke models, with indistinguishability relations replaced with
probability measures defined over the worlds.

This paper contributes to the field by proposing a logical formalization of
the Bayesian measure of confirmation (or evidential support). Although con-
temporary Bayesian confirmation theorists investigated degrees of confirmation
developing a variety of different probability-based measures, that field attracted
little attention from the logical side, probably because of complexity of a poten-
tial formal language that would be adequate to capture those measures. In Car-
nap’s book [2], one of the main tasks is “the explication of certain concepts
c© Springer Nature Switzerland AG 2020
M. Dastani et al. (Eds.): CLAR 2020, LNAI 12061, pp. 80–95, 2020.
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which are connected with the scientific procedure of confirming or disconfirming
hypotheses with the help of observations and which we therefore will briefly call
concepts of confirmation”. Carnap distinguished three different semantical con-
cepts of confirmation: the classificatory concept (“a hypothesis A is confirmed
by an evidence B”), the comparative concept (“A is confirmed by B at least as
strongly as C is confirmed by D”) and the quantitative concept of confirmation.
The third one, one of the basic concept of inductive logic, is formalized by a
numerical function c which maps pairs of sentences to the reals, where c(A,B)
is the degree of confirmation of the hypothesis A on the basis of the evidence B.

Bayesian epistemology proposes various candidate functions for measuring
the degree of confirmation c(A,B), defined in terms of subjective probability.
They all agree in the following qualitative way: c(A,B) > 0 iff the posterior
probability of A on the evidence B is greater than the prior probability of A
(i.e., μ(A|B) > μ(A)), which correspond to the classificatory concept (“A is
confirmed byB”) [14]. Up to now, only the classificatory concept of confirmation
is logically formalized, in our previous work [6].

In this paper, we formalize the quantitative concept of confirmation. We
focus on the most standard1 measure of degree of confirmation, called difference
measure:

c(A,B) = μ(A|B) − μ(A).

Our formal language extends propositional logic with the unary probabilistic
operators of the form P≥r (P≥rα reads “the probability of α is at least r”),
where r ranges over the set of rational numbers from the unit interval [24],
and the binary operators c≥r and c≤r, which we semantically interpret using
the difference measure. The corresponding semantics consists of special types of
Kripke models , with probability measures defined over the worlds.

Our main result is a sound and strongly complete (every consistent set of for-
mulas is satisfiable) axiomatization for the logic. We prove completeness using
a modification of Henkin’s construction. Since the logic is not compact, in order
to obtain strong variant of completeness, we use infinitary inference rules. From
the technical point of view, we modify some of our earlier developed methods
presented in [4,5,7–9,22,26,27,29]. We point out that our languages are count-
able and formulas are finite, while only proofs are allowed to be infinite. We also
prove that our logic is decidable and we present complexity results.

Many measures on confirmation have been proposed over years. We point out
that it was not our intention to take sides. We simply chose the difference measure
because of its popularity. However, we discuss in Sect. 7 that our axiomatization
technique can be easily modified to incorporate other measures of confirmation.

The contents of this paper are as follows. In Sect. 2 we recall the basic
notions of probability. In Sect. 3 we present the syntax and semantics of our
logic and defined the satisfaction relation. In Sect. 4 we propose an axiomati-
zation for the logic, and we prove its soundness. In Sect. 5 we prove that the
axiomatization is strongly complete with respect to the proposed semantics.

1 According to Eells and Fitelson [11].
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In Sect. 6 we present complexity results for the problem of deciding satisfiability.
We conclude in Sect. 7.

2 Preliminaries

Let us introduce some basic probabilistic notions that will be use in this paper.
For a nonempty set W �= ∅, we say that H ⊆ 2W is an algebra of subsets of

W , if the following conditions hold:

1. W ∈ H,
2. if A ∈ H, then W \ A ∈ H, and
3. if A,B ∈ H, then A ∪ B ∈ H.

For a given algebra H of subsets of W , a function μ : H −→ [0, 1] is a finitely
additive probability measure, if it satisfies the following properties:

1. μ(W ) = 1,
2. μ(A ∪ B) = μ(A) + μ(B), whenever A ∩ B = ∅.

For W , H and μ described above, the triple 〈W,H, μ〉 is called a finitely
additive probability space. The elements of H are called measurable sets.

For a probability measure μ, conditional probability is defined in the following
way:

μ(A|B) =

{
µ(A∩B)
µ(B) , μ(B) > 0

undefined, μ(B) = 0.

Note that, as a consequence of this definition, the difference measure c(A,B) =
μ(A|B) − μ(A) is also not defined when μ(B) = 0.

3 The Logic LPPconf
2 : Syntax and Semantics

In this section we introduce the set of formulas of the logic LPPconf
2 , and the

class of semantical structures in which those formulas evaluated.

3.1 Syntax

Let P = {p, q, r, . . . } be a denumerable set of propositional letters. For given
rational numbers a and b such that a < b, let [a, b]Q denotes the set [a, b] ∩ Q.
The language of the logic LPPconf

2 consists of

– the elements of set P,
– classical propositional connectives ¬ and ∧,
– the list of unary probability operators of the form P≥r, for every r ∈ [0, 1]Q,
– the list of binary probability operators of the form c≥r, for every r ∈ [−1, 1]Q,

and
– the list of binary probability operators of the form c≤r, for every r ∈ [−1, 1]Q.
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Note that we use conjunction and negation as primitive connectives. The other
propositional connectives, ∨, → and ↔, are introduced as abbreviations, in the
usual way.

The introduced language is used to define two types of formulas of LPPconf
2 .

First, we have the set of classical propositional formulas over P, denoted here by
ForC . We will denote the propositional formulas by α, β and γ, possibly with
subscripts. We denote the satisfiability relation of the classical propositional logic
by |=C . Now we define the second type of formulas.

Definition 1 (Probabilistic formula). A basic probabilistic formula is any
formula of the form: P≥rα c≥r(α, β), c≤r(α, β), where α, β ∈ ForC .

A probabilistic formula is a Boolean combination of basic probabilistic for-
mulas. We denote with ForP the set of all probabilistic formulas and denote
arbitrary probabilistic formulas by φ and ψ, possibly with subscripts.

Intuitively, P≥rα means that the probability that α is true is greater or equal
to r, while c≥r(α, β) (c≤r(α, β)) means that the formula β confirms the formula
α with the degree at least r (at most r, respectively).

Example 1. The meaning of the formula

c≥ 1
2
(α, β) → c≤0(¬α, β)

is that if β confirms α to the degree 1
2 , then the degree that β confirms the

negation of α is less or equal to zero.

The other types of probabilistic operators are usually defined as follows: P<sα
is ¬P≥sα, P≤sα is P≥1−s¬α, P>sα is ¬P≤sα, and P=sα is P≥sα∧P≤sα. We use
the following abbreviations to introduce other types of confirmation operators:

– c=(α, β) is c≥(α, β) ∧ c≤(α, β),
– c>(α, β) is c≥(α, β) ∧ ¬c≤(α, β) and
– c<(α, β) is c≤(α, β) ∧ ¬c≥(α, β).

Also, we denote both α ∧ ¬α and φ ∧ ¬φ by ⊥ (and similarly for �), letting the
context determine the meaning.

One might think that c<(α, β) might be defined simply as ¬c≥(α, β), in an
analogous way as P<s is introduced. However, we will see that this does not hold
under our satisfiability relation.

By a formula of LPPconf
2 we mean either a classical of probabilistic formula.

Definition 2 (Formula of LPPconf
2 ). The set of formulas of LPPconf

2 is

ForLPPconf
2

= ForC ∪ ForP .

We denote arbitrary formulas by ρ and σ (possibly with subscripts).

Thus, no mixing of pure propositional formulas and probability formulas is
allowed.

Example 2. The expression

(β → α) → c≥0(α, β)

is not a formula of the logic LPPconf
2 .
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3.2 Semantics of LPPconf
2

Now we define the structures in which we evaluate the formulas from ForLPPconf
2

.

Definition 3 (LPPconf
2 -structure). An LPPconf

2 -structure is tuple (W,H, μ, v)
where:

1. W is a non- empty set of objects called worlds.
2. v : W × P → {true, false} assigns to each world w ∈ W a two-valued evalu-

ation v(w, ·) of the propositional letters; it is then extended to all elements of
ForC in the usual way.

3. H is an algebra of subsets of W , such that

{w ∈ W | v(w,α) = true} ∈ H,

for every formula α ∈ ForLPPconf
2

.
4. μ : H −→ [0, 1] is a finitely additive measure.

We denote with M(LPPconf
2 ) the class of all LPPconf

2 -structures.

Note that, according to Definition 3, the set of all worlds of an LPPconf
2 -

structure M in which a classical propositional formula α has the values true is a
measurable set. This requirement is crucial to ensure correctness of satisfiability
relation. In order to relax the notation, we denote the mentioned set of worlds,
{w ∈ W | v(w,α) = true}, simply by [α]M . Thus, [α]M ∈ H for every M ∈
M(LPPconf

2 ) and every α ∈ ForC . Also, we write [α] instead of [α]M when M
is clear from the context.

Next we define the satisfiability of a formula in an LPPconf
2 -structure.

Definition 4 (Satisfiability). Let M ∈ M(LPPconf
2 ). The satisfiability rela-

tion |= is defined recursively as follows:

1. M |= α iff v(w,α) = true for every w ∈ W ,
2. M |= P≥rα if μ([α]) ≥ r,
3. M |= c≥r(α, β) if μ([β]) > 0 and μ([α]|[β]) − μ([α]) ≥ r,
4. M |= c≤r(α, β) if μ([β]) > 0 and μ([α]|[β]) − μ([α]) ≤ r,
5. M |= ¬φ iff M �|= φ,
6. M |= φ ∧ ψ iff M |= φ and M |= ψ.

According to Definition 4, a classical formula α holds in an LPPconf
2 -structure

M only if it holds in every world of M , and therefore represent certain informa-
tion. In that case, the probability value of [α]M has to be equal to 1, which will
be ensured in the axiomatization by a variant of Necessitation rule.

Using Definition 4 and properties of reals, it is easy to obtain satisfiability
for the other types of operators. For example,

M |= c<r(α, β) if μ([β]) > 0 and μ([α]|[β]) − μ([α]) < r
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holds. Now it is obvious that the operator c< is not equivalent to “negation
of c≥,” i.e., M �|= c≥r(α, β) does not imply M |= c<r(α, β), the reason is that
c([α], [β]) might simply be undefined in M (if μ([β]) = 0).

At the end of this section, we define some basic semantical notions.

Definition 5 (Model). For an M ∈ M(LPPconf
2 ) and a set of formulas T , we

say that M is a model of T and write M |= T iff M |= ρ for every ρ ∈ T . T is
satisfiable, if there is M ∈ M(LPPconf

2 ) such that M |= T .

Now we define the notion of entailment relation between formulas.

Definition 6 (Entailment). We say that a set of formulas T entails a formula
ρ and write T |= ρ, if all models of T are models of ρ. Furthermore, ρ is valid if
∅ |= ρ.

4 Axiomatization of LPPconf
2

In this section we present an axiomatization of our logic, which we denote
Ax(LPPconf

2 ). The axiom system Ax(LPPconf
2 ) contains ten axiom schemes and

five inference rules. In the following axiomatization, we assume that all the for-
mulas respect Definition 1. For example, we consider only those instances of A9
and A10 for which s(r + t) ≤ 1.

Axiom schemes:

(A1) All instances of classical propositional tautologies for both ForC and ForP .
(A2) P≥0α
(A3) P�rα → P<sα whenever r < s
(A4) P<rα → P�rα
(A5) (P≥rα ∧ P≥sβ ∧ P≥1(¬α ∨ ¬β)) → P≥r+s(α ∨ β)
(A6) (P�rα ∧ P<sβ) → P<r+s(α ∨ β)
(A7) c≥r(α, β) → P>0β
(A8) c≤r(α, β) → P>0β
(A9) (P≥tα ∧ P≥sβ ∧ c≥r(α, β)) → P≥s(r+t)(α ∧ β)
(A10) (P≤tα ∧ P≤sβ ∧ c≤r(α, β)) → P≤s(r+t)(α ∧ β)

Inference rules:

(R1) From {ρ, ρ → σ} infer σ
(R2) From α infer P≥1α.
(R3) From the set of premises {φ → P≥r− 1

k
α | k ∈ N, k ≥ 1

r} infer φ → P≥rα.

(R4) From the set of premises

{φ → P>0β} ∪ {φ → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β))|t, s ∈ [0, 1]Q}

infer φ → c≥r(α, β).
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(R5) From the set of premises

{φ → P>0β} ∪ {φ → ((P≤tα ∧ P≤sβ) → P≤s(r+t)(α ∧ β)) | t, s ∈ [0, 1]Q}

infer φ → c≤r(α, β).

Let us briefly comment on the axiomatization Ax(LPPconf
2 ). The axioms

A1–A6 and the inference rules R1–R3 form the axiom system for the logic LPP2

from [24]. The rule R3 is the so-called Archimedean rule. It ensures that the
ranges of probability measures do not take non-standard values (in the sense of
non-standard analysis). Intuitively, it claims that if probability is approximately
close to r, then it must be r. The axioms A7 and A9, together with the rule R4
properly capture the third condition of Definition 4. Similarly, A8, A10 and R5
properly capture the fourth condition of Definition 4.

The rules R3-R5 are infinitary inference rules. The necessity of employing
such rules comes form the non-compactness phenomena. Indeed, it is known that
in real-valued probabilistic logic there exist inconsistent infinite sets of formulas,
such that every finite subset is consistent. As pointed out in [20], one consequence
of that fact is that any finitary axiomatization would not be strongly complete.

Let us now define some basic notions of proof theory.

Definition 7 (Proof, theorem). Let T ⊆ ForLPPconf
2

be a set of formulas.
We write T �Ax(LPPconf

2 ) ρ, and we say that ρ is deducible from T , if there is
an at most countable sequence of formulas ρ0, ρ1, ..., ρn, such that every ρi is
an axiom or a formula from T , or it is derived from the preceding formulas by
an inference rule. The sequence ρ0, ρ1, ..., ρ is a proof of ρ from T . We write �
instead of �AxLPPconf

2
when it is clear from context.

We say that ρ is a theorem of Ax(LPPconf
2 ), and write � ρ, if ∅ � ρ.

Note that the length of a proof might be any countable successor ordinal.

Definition 8 (Consistency). A set of formulas T is inconsistent if there a
formula φ ∈ ForP such that T � φ ∧ ¬φ, otherwise it is consistent.

T is maximally consistent set (mcs) if it is consistent and every proper super-
set of T is inconsistent.

At the end of this section, we show that the axiom system Ax(LPPconf
2 ) is

sound.

Theorem 1 (Soundness). The axiomatization Ax(LPPconf
2 ) is sound with

respect to the class of structures M(LPPconf
2 ).

Proof. We need to show that every instance of an axiom scheme holds in every
structure, and that the inference rules preserve the validity. Let us consider the
axioms A7 and A9 and the rule R4. For A7, assume that M ∈ M(LPPconf

2 ) is
a structure such that M |= c≥r(α, β), then μ([β]) > 0, so M |= P>0β. Now let
us consider A9. Suppose that M |= (P≥tα ∧ P≥sβ) ∧ c≥r(α, β). Then μ([α]) ≥ t,
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μ([β]) ≥ s, μ([β]) ≥ 0 and μ([α]|[β]) − μ([α]) ≥ r i.e., μ([α ∧ β]) ≥ μ([β])(r +
μ([α]). This means that μ([α ∧ β]) ≥ s(r + t). Therefore, M |= P≥s(r+t)(α ∧ β).

Now let us consider R4. In order to show that it preserves validity, assume
that M |= {φ → P>0β} ∪ {φ → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β)) | t, s ∈
[0, 1]Q}. If M �|= φ, we have M |= φ → c≥r(α, β). Now suppose that M |= φ.
Then M |= P>0β, i.e μ([β]) > 0, and M |= (P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β))
for all t, s ∈ [0, 1]Q. If the numbers t, s ∈ [0, 1]Q are such that t ≤ μ([α]) and
s ≤ μ([β]), then M |= P≥tα ∧ P≥sβ, so M |= P≥s(r+t)(α ∧ β) , i.e., μ([α ∧ β]) ≥
s(r + t). Using the fact that rationals numbers are dense in reals, we conclude
μ([α ∧ β]) ≥ μ([β])(r + μ([α])) i.e., μ([α]|[β]) − μ([α]) ≥ r, so with μ([β]) > 0,
M |= c≥r(α, β). Thus, M |= φ → c≥r(α, β). ��

5 Completeness of Ax(LPPconf
2 )

In this section we show that the axiomatization Ax(LPPconf
2 ) is strongly complete

for the logic LPPconf
2 , i.e., we prove that every consistent set of formulas has

a model. Completeness is proved in several steps, along the lines of Henkin
construction. First, we prove that the deduction theorem holds for Ax(LPPconf

2 ),
using the implicative form of the infinitary rules. Then we use the deduction
theorem to show that we can extend an arbitrary consistent set of formulas T
to a maximal consistent set (Lindenbaum’s theorem). The standard technique
needs to be adapted in presence of infinitary inference rules. Third, we use the
maximal consistent set to construct a canonical model. Finally, we show that
the canonical model is indeed a model of T .

5.1 Lindenbaum’s Theorem

We start by showing that the Deduction theorem holds.

Theorem 2 (Deduction theorem). Let T be a set of formulas, and suppose
that ρ and σ are two formulas such that either ρ, σ ∈ ForC or ρ, σ ∈ ForP .
Then

T, ρ � σ iff T � ρ → σ.

Proof. The case when ρ, σ ∈ ForC is a consequence of the fact that Ax(LPPconf
2 )

extends classical propositional calculus. Let us consider the case when ρ, σ ∈
ForP . Here we will consider the nontrivial direction – from left to right, i.e., that
T, φ � ψ implies T � φ → ψ. So, let us assume that T, φ � ψ. We proceed by the
length of the inference. Here we only focus on the case when ψ is obtained by the
rule R4, while the cases of applications of other infinitary rules can be handled in
a similar way. Suppose that ψ is the formula φ1 → c≥r(α, β), obtained from the
set of premises {φ1 → P>0β}∪{φ1 → ((P≥tα∧P≥sβ) → P≥s(r+t)(α∧β)) | t, s ∈
[0, 1]Q}. By induction hypothesis

T � φ → (φ1 → P>0β), and
T � φ → (φ1 → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β))), for every t, s ∈ [0, 1]Q.
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Then, by propositional reasoning we have

T � (φ ∧ φ1) → P>0β, and
T � (φ ∧ φ1) → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β)) for every t, s ∈ [0, 1]Q.

Applying R4 we obtain

T � (φ ∧ φ1) → c≥r(α, β).

Using A1 and R1 we obtain

T � φ → (φ1 → c≥r(α, β))
T � φ → ψ. ��
Now we can prove the key step toward completeness.

Theorem 3 (Lindenbaum’s Theorem). Every consistent set of formulas
can be extended to a maximal consistent set.

Proof. Let T be an arbitrary consistent set of formulas. Assume that {ρi | i =
0, 1, 2, ...} is an enumeration of all formulas from ForLPPconf

2
; it includes both

non-probabilistic and probabilistic formulas. We construct T ∗ recursively, in the
following way:

1. T0 = T .
2. If the formula ρi is consistent with Ti, then Ti+1 = Ti ∪ {ρi}.
3. If the formula ρi is not consistent with Ti, then there are four cases:

(a) If ρ = φ → P≥rα, then

Ti+1 = Ti ∪ {φ → P<r− 1
k
α},

where k is a positive integer such that r − 1
k ≥ 0 and Ti+1 is consistent.

(b) If ρi = φ → c≥r(α, β), then Ti+1 = Ti ∪ {ψi} where :

ψi =
{

φ → P=0β, Ti ∪ {φ → P=0β} �� ⊥
φ → (P≥tα ∧ P≥sβ ∧ P<s(r+t)(α, β)), Ti ∪ {φ → P=0β} � ⊥

and t and s are two rational numbers from the unit interval such that
Ti+1 is consistent.

(c) If ρi = φ → c≤r(α, β), then Ti+1 = Ti ∪ {ψi} where:

ψi =
{

φ → P=0β, Ti ∪ {φ → P=0β} �� ⊥
φ → (P≤tα ∧ P≤sβ ∧ P>s(r+t)(α, β)), Ti ∪ {φ → P=0β} � ⊥

and t and s are two rational numbers from the unit interval such that
Ti+1 is consistent.

(d) Otherwise, Ti+1 = Ti.
4. T ∗ =

⋃∞
n=0 Tn.
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First, using Theorem 2 one can prove that the set T ∗ is correctly defined,
i.e., there exist k, t and s from the steps 3(a)-3(b) of the construction. Here, we
will consider the step 3(b), other two steps can be shown in a similar way.

Let us assume that T ∪ {φ → c≥r(α, β)} is inconsistent. Then the set T ∪
{c≥r(α, β)} is inconsistent as well. From Theorem 2 we obtain T � ¬c≥r(α, β).
Now suppose that the set T ∪ {φ → P=0β} is inconsistent, and that the set
T ∪ {φ → (P≥tα ∧ P≥sβ ∧ P<s(r+t)(α, β))} is inconsistent for every t and s. By
Theorem 2, we obtain that T � P>0β and T � ¬(P≥tα ∧ P≥sβ ∧ P<s(r+t)(α, β)),
for every t and s. Consequently,

T � � → P>0β

and
T � � → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α, β)),

for all t and s, so from R4 we derive

T � � → c≥r(α, β).

Note that this contradicts with our assumption that T ∪{c≥r(α, β)} is an incon-
sistent set. Thus, there are rational numbers t and s such that the set

T ∪ {φ → (P≥tα ∧ P≥sβ ∧ P<s(r+t)(α, β))}
is consistent.

Next we prove that T ∗ is a maximally consistent set. Note that every Ti

is consistent by the construction. This still doesn’t imply consistency of T ∗ =⋃∞
n=0 Tn, because of the presence of the infinitary rules. In order to prove the

consistency of T ∗, we first show that it is deductively closed. If the formula ρ is
an instance of some axiom, then ρ ∈ T ∗ by construction of T ∗. Next we prove
that T ∗ is closed under the inference rules. Here we show that T ∗ is closed under
the rule R4; the other cases are similar.

First we show that for every φ ∈ ForP either φ ∈ T ∗ or ¬φ ∈ T ∗ holds. Let i
and j be the nonnegative integers such that ρi = φ and ρj = ¬φ. From Theorem
2, it follows that either φ or ¬φ is consistent with Tmax{i,j}. Then either φ ∈ Ti+1

or ¬φ ∈ Tj+1, so either φ ∈ T ∗ or ¬φ ∈ T ∗.
Let us show that T ∗ is closed under the inference rule R4. Assume that

φ → P>0β, φ → ((P≥tα ∧ P≥sβ) → P≥s(r+t)(α, β)) ∈ T ∗

for all r, s ∈ [0, 1]Q. We need to show that φ → c≥r(α, β) ∈ T ∗. Assume that
φ → c≥r(α, β) �∈ T ∗. Then, by maximality of T ∗, ¬(φ → c≥r(α, β)) ∈ T ∗.
Thus, φ ∈ T ∗, so there is i such that φ ∈ Ti. Let j be a nonnegative integer
such that ρj = φ → c≥r(α, β). By the step 3(b) of the construction ot T ∗,
φ → P=0β ∈ Tj+1, or there are t′, s′ ∈ [0, 1]Q such that φ → (P≥t′α ∧ P≥s′β ∧
P<s′(r+t′)(α, β)) ∈ Tj+1. Suppose that φ → P=0β ∈ Tj+1, and let k be the
nonnegative integer such that ρk = φ → P>0β. Then

Tmax{i,k+1} � P>0β.
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Note that we also have Tmax{i,j+1} � P=0β. Consequently, Tmax{i,j+1,k+1} � ⊥,
a contradiction.

Now suppose that φ → (P≥t′α∧P≥s′β∧P<s′(r+t′)(α, β)) ∈ Tj+1, where t′, s′ ∈
[0, 1]Q. Let k′ be the nonnegative integer such that ρk′ = φ → ((P≥t′α∧P≥s′β) →
P≥s′(r+t′)(α, β)). Then Tmax{i,k′+1} � (P≥t′α∧P≥s′β) → P≥s′(r+t′)(α, β). On the
other hand,

Tmax{i,j+1} � P≥t′α ∧ P≥s′β ∧ P<s′(r+t′)(α, β).

Thus, Tmax{i,j+1,k′+1} � ⊥, a contradiction. Consequently, the set T ∗ is deduc-
tively closed.

From deductive closedness of T ∗ we can prove that it is consistent. Indeed,
if T ∗ is inconsistent, there is a formula φ ∈ ForP such that T ∗ � φ ∧ ¬φ. But
then there is a nonnegative integer i such that φ ∧ ¬φ ∈ Ti, a contradiction. ��

5.2 Canonical Model

Now we are ready to prove our main result: the axiomatization Ax(LPPconf
2 ) is

strongly complete for the class of models M(LPPconf
2 ). For a given consistent

set T , we actually build a structure which is a model of its maximal consistent
superset T ∗. Recall that the existence of such superset is provided by Theorem 3.

Definition 9 (Canonical model). Let T ∗ be a mcs of formulas. The canonical
model MT∗ = (W,H, μ, v) is defined as follows:

– W = {w | w is a classical propositional interpretation such that w |=C T ∗ ∩
ForC},

– H = {[α] | α ∈ ForC}, where [α] = {w ∈ W | w |=C α},
– μ : H → [0, 1] such that μ([α]) = sup{r ∈ [0, 1]Q | T ∗ � P≥rα},
– for every world w and every propositional letter p ∈ P, v(w, p) = true iff

w |=C p.

It can be checked that this definition is correct, and that MT∗ ∈ M(LPPconf
2 )

for every mcs T ∗. The proof is pretty much the same as the proof of the corre-
sponding result for the logic LPP2 [24], so we omit it here.

Now we formulate the completeness theorem for our logic.2

Theorem 4. (Strong completeness of LPPconf
2 ). A set of formulas T is con-

sistent iff there is an M ∈ M(LPPconf
2 ), such that M |= T .

Proof. Note that the direction form right to left follows from Theorem 1. For the
other direction, suppose that T is a consistent set of formulas. By Theorem 3,
there is a maximally consistent superset T ∗ of T , which we can use to construct
the canonical model MT∗ . We need to show that MT∗ is a model of T ∗. It is
sufficient to show that ρ ∈ T ∗ iff MT∗ |= ρ, for every formula ρ ∈ ForLPPconf

2
. In

the case when ρ is a propositional formula, that follows from the construction of

2 The usual formulation of strong completeness is T � ρ iff T |= ρ. It is well known
that this formulation is equivalent to the formulation of Theorem 4.
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MT∗ and the completeness theorem for propositional logic. In the case when ρ
is a probabilistic formula φ, we use induction on the complexity of the formulas.
The cases when φ is a conjunction or a negation are straightforward. The case
when φ is P≥rα is essentially the same as in [24].

Let φ be of the form c≥r(α, β).
(⇒) Assume that c≥r(α, β) ∈ T ∗. Let {tn | n ∈ N} and {sn | n ∈ N} be two

strictly increasing sequences of numbers from [0, 1]Q, such that limn→∞tn =
μ([α]) and limn→∞sn = μ([β]). Let n be any number from N. Then T ∗ �
P≥tnα ∧ P≥snβ. Using the assumption c≥r(α, β) ∈ T ∗, the axioms A7 and A9
and propositional reasoning, we obtain T ∗ � P>0β and T ∗ � P≥sn(r+tn)(α ∧ β).
Finally, by Definition 9 we have μ([β]) > 0 and μ([α∧β]) ≥ limn→∞sn(r+tn) =
μ([β])(r + μ([α])), i.e.,

μ([β]) > 0

and
μ([α]|[β]) − μ([α]) ≥ r.

(⇐) Now assume that μ([β]) > 0 and μ([α]|[β])−μ([α]) ≥ r, i.e., μ([α∧β]) ≥
μ([β])(r + μ([α])). We will show that

T ∗ � P>0β

and
T ∗ � (P≥tα ∧ P≥sβ) → P≥s(r+t)(α ∧ β) for all t, s ∈ [0, 1]Q.

Suppose that T ∗ �� P>0β. By maximality T ∗ � P=0β, i.e., μ([β]) = 0, a
contradiction. So we have that T ∗ � P>0β.

If t > μ([α]) or s > μ([β]), then T ∗ �� P≥tα ∧ P≥sβ. By maximality of T ∗,
T ∗ � ¬(P≥tα∧P≥sβ), and consequently T ∗ � (P≥tα∧P≥sβ) → P≥s(r+t)(α∧β).
If t ≤ μ([α]) and s ≤ μ([β]), then s(r + t) ≤ μ([α ∧ β]) by assumption, so
T ∗ � P≥s(r+t)(α ∧ β) by Definition 9. Now the result follows from the fact that
T ∗ is deductively close.

The case when φ us c≤r(α, β) can be proved in a similar way. ��

6 Decidability

In this section, we discuss decidability of LPPconf
2 . We distinguish two cases,

since we have two types of formulas. We start with propositional formulas.

Theorem 5. The problem of deciding whether a formula from ForC is satisfi-
able in an LPPconf

2 structure is NP-complete.

Proof. This result follows straightforwardly from the same complexity result for
propositional formulas under the classical semantics. Indeed, if α is proposition-
ally unsatisfiable, then, according to our definition of satisfiability, α also does
not hold in any model from M(LPPconf

2 ), since v(w,α) = false for every world
w. For the other direction, note that if α is propositionally satisfiable, then it is
satisfied in the model (W,H, μ, v), where W = {w} (which uniquely determines
H = {∅,W} and μ(∅) = 0, μ(W ) = 1), with v(w, ·) being an evaluation function
such that v(w,α) = true. ��
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Let us now turn to the probabilistic formulas.

Theorem 6. There is a PSPACE procedure deciding whether a formula from
ForP is satisfiable in an LPPconf

2 structure.

Proof. Here we use the complexity result of Fagin, Halpern and Megiddo about
polynomial weight formulas [13]. Those formulas are Boolean combinations of
polynomial equations and inequalities, with integer coefficients and with vari-
ables of the form w(α), where α ∈ ForC and w stands for “weight” (probability).
For example (3w(p)w(p∨ q)+w(q → p) ≥ 2)∧5w(q) ≥ 1 is a polynomial weight
formula. Those formulas are evaluated in a Kripke structure with a probability
measure over possible worlds, just like in our logic. A PSPACE decision proce-
dure for satisfiability of polynomial weight formulas is proposed in [13]. In short,
the authors reduce the problem to a problem in the quantifier-free theory of
real closed fields and then apply Canny’s decision procedure from [1]. Instead
of repeating the same strategy for our logic, we rather translate the formulas of
our language to polynomial weight formulas, and then apply the procedure from
[13]. Our simple translation has two steps. First, we use the mapping f , defined
recursively as follows

– f(P≥rα) = w(α) ≥ r,
– f(c≥r(α, β)) = w(β) ≥ 0 ∧ w(α ∧ β) − w(α)w(β) ≥ rw(β),
– f(c≤r(α, β)) = w(β) ≥ 0 ∧ w(α ∧ β) − w(α)w(β) ≤ rw(β),
– f(ϕ ∧ ψ) = f(ϕ) ∧ f(ψ),
– f(¬ϕ) = ¬f(ϕ).

Note that we need to further transform the obtained formulas, since polynomial
weight formulas allow only integer coefficients. For that reason, we apply the
function g, whose role is to clear the denominators. Instead of giving a formal
definition, we illustrate how g works in practice. (We assume that the rational
constants are given in form of fractions using coprime integers.) For example, if
θ is the formula

w(p)w(p → q) ≥ 2
3

∨ w(q) ≤ 4
5
,

then g(θ) is
3w(p)w(p → q) ≥ 2 ∨ 5w(q) ≤ 4.

Obviously, a formula ϕ ∈ ForP is satisfiable iff g(f(ϕ)) is a satisfiable polynomial
weight formula. Thus, our result follows. ��

7 Conclusion

In this paper we presented the probabilistic logic LPPconf
2 which allows reasoning

about degrees of confirmation. The language contains both classical propositional
formulas and probabilistic formulas, and it extends the language of LPP2 [24]
with the binary operators that model measure of confirmation. We proposed an
axiomatization for the logic and prove strong completeness. Since the logic is



Reasoning About Degrees of Confirmation 93

not compact, the axiomatization contains infinitary rules of inference. We also
proved that the problem of deciding whether a probabilistic formula of our logic
is satisfiable is in PSPACE.

There are two avenues for further research. First, it would be interesting
to see if a more expressive language could be built on top of this logic. For
example, nesting of probability operators would allow expressions of the form
c≥r(α, P≥sβ), which model the situation in which probabilistic boundaries of one
formula confirms (to some degree) another formula. Another interesting direction
would be a first order extension, in which we could express the statements like
(∀x)c≥r(α(x), β(x)).

Second, in this paper we modeled the difference measure. We chose this
measure simply because it is most standard measure of confirmation. However,
we can easily adapt the technique developed here to capture the other popular
measures from the literature (see, for example, [28]). For example, Carnap’s
relevance measure

μ(A ∧ B) − P (A)P (B)

can be axiomatized by replacing A7-A10 and R4 and R5 with the following
axiom schemes and inference rules:

(A7’) (P≥tα ∧ P≥sβ ∧ c≥r(α, β)) → P≥r+st(α ∧ β)
(A8’) (P≤tα ∧ P≤sβ ∧ c≤r(α, β)) → P≤r+st(α ∧ β)
(R4’) From the set of premises

{φ → ((P≥tα ∧ P≥sβ) → P≥r+st(α ∧ β)) | t, s ∈ [0, 1]Q}

infer φ → c≥r(α, β).
(R5’) From the set of premises

{φ → ((P≤tα ∧ P≤sβ) → P≤r+st(α ∧ β)) | t, s ∈ [0, 1]Q}

infer φ → c≤r(α, β).

For axiomatizing Carnap’s relevance measure we need only eight axiom schemes.
Note that we can also apply the similar technique for axiomatizing log-ratio
measure

c(α, β) = log
[P (α|β)

P (α)
]
,

but the decidability results are not clear. In that case, we cannot translate a
formula to an existential sentence in the first-order language of fields, as we have
done in Sect. 6, so we cannot apply the procedure from [13].
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Abstract. We present previously unknown algebraic semantics for
Sobociński’s logics S4.4, also known as S4.3DumB2, and the autoepis-
temic logic KD45. The operators on the respective algebras are gener-
alizations of the unary discriminator defined via suitable ideals. We also
explore unification and admissible rules for these logics.

Keywords: Modal logics · Frame semantics · Algebraic semantics ·
Unification · Admissible rules · Boolean algebras with operators ·
Closure algebras

1 Introduction

Boolean algebras with operators were introduced by Jónsson and Tarski [13]:
A (modal) operator f : B → B is a function on a Boolean algebra B that is
normal, i.e. f(0) = 0, and additive, i.e. f(x) + f(y) = f(x + y) for all x, y ∈ B.
It turned out that the class of modal algebras, i.e. Boolean algebras augmented
with a modal operator, provide the algebraic semantics for the logic K. A well
studied class of modal algebras are the closure algebras: A modal operator f is
called a closure operator [16], if it satisfies

Cl1 x ≤ f(x),
Cl1 f(f(x)) = f(x)

for all x ∈ B. The class of closure algebras provides the semantics for the logic S4.
Following the investigation of the semilattice of modal operators in [6], we

consider modal operators on a Boolean algebra B which are in some sense con-
nected to an ideal of B, and determine their associated logics. The simplest
(and the strongest) such operator, the unary discriminator, is obtained from the
trivial ideal:

f(x) =

{
0, if x = 0,
1, otherwise.

c© Springer Nature Switzerland AG 2020
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We will vary this theme into two directions: Firstly, keeping f as the identity
on an ideal and sending the rest to 1, secondly, setting f(x) = 0 if x ∈ I
and f(x) = 1 otherwise; such f acts like an indicator function. Both variations
coincide with the discriminator, if I = {0}, and they differ for larger ideals.

Our motivation and starting point were algebraic, and we were quite sur-
prised that the modal logics obtained from our algebras are well known in the
logic community. Indeed, the class of ideal algebras provides algebraic semantics
for the logic S4.4 of Sobociński [20], which is also known as S4HDumB2 in the
parlance of denoting logics by their properties. The class of ideal indicator alge-
bras which we study subsequently turns out to provide an algebraic semantics
for the autoepistemic logic KD45. The logics S4.4 and KD45 play important
roles in the area of logic of knowledge and belief, as well as in non–monotonic
reasoning. In this case, the necessitation modality � is interpreted as “is known”
or “is believed”. Autoepistemic reasoning, that is, reasoning of a rational agent
capable of reasoning about its own knowledge and belief, naturally appears in
this context. Each of the logics S4.4 and KD45 are maximal in their range, that
is, among all logics which are indistinguishable as epistemic logics, see Schwarz
[18].

Non–monotonic reasoning appears very naturally in logics of knowledge and
belief, which is indicated by the following example: Let p be an elementary sen-
tence and assume that the knowledge base or the belief set is empty. Therefore,
we may assume that ¬�p (p is not known) is the autoepistemic consequence of
∅; this can be expressed by ∅ � ¬�p. Now suppose that the initial belief set
contains p. Then {p} � �p and {p} �� ¬�p, which demonstrates non-monotonic
reasoning: After extending the knowledge base with p the formula ¬�p becomes
rejected.

We assume familiarity with basic concepts of modal logics, their syntax and
algebraic and frame semantics. For both we recommend the monograph by Black-
burn et al. [1] and the essay by Bull and Segerberg [4]. Similarities and differences
between both kinds of semantics are well described by Blok [2]. Our main source
for universal algebra is the monograph by Burris and Sankappanavar [5]. We
will write names of (logical axioms) in the teletype font, and the correspond-
ing logics in bold.

Proofs and details of the constructions will be provided in the full version of
the paper.

2 Ideal Related Algebras and Their Logics

An ideal algebra is a structure 〈B, f〉, where B is a nontrivial Boolean algebra,
I an ideal of B, and f : B → B is defined by

f(x) :=

{
x, if x ∈ I,

1, otherwise.
(2.1)

A special ideal algebra is an algebra 〈B, f1〉, where f1 is the unary discrimi-
nator, for which I = {0}. By some abuse of notation we call henceforth 〈B, f〉 an
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ideal algebra if and only if there is some ideal I such that f satisfies (2.1). We
observe in passing that the set of closed elements of an ideal algebra is I ∪ {1}.
Indeed, this property can be used as a definition for ideal algebras, see e.g. [3].

In the sequel, B := 〈B, f〉 will be an ideal algebra with associated ideal I,
unless otherwise indicated; sometimes we shall indicate this by writing If for
the ideal associated with f . Clearly, f is a closure operator. The class of ideal
algebras is denoted by IMA, and the variety generated by IMA is denoted by
Eq(IMA).

Ideal algebras are a universal positive class, but not a quasi–variety, i.e. the
class cannot be axiomatized by quasi–identities, see [5, Theorem 2.25]:

Theorem 1. 〈B, f〉 is an ideal algebra if and only if (∀x)[f(x) = x or
f(x) = 1].

Structurally, IMA is very simple:

Theorem 2. IMA is locally finite, and thus, Eq(IMA) is generated by its subdi-
rectly irreducible finite members.

Considering that each minimal congruence ideal is generated by an atom, we
obtain

Theorem 3. If B is not simple, then B is subdirectly irreducible if and only if
If is generated by an atom.

Thus, IMA is generated by the finite ideal algebras 〈B, f〉, where If = {0} or
If is generated by an atom. Each finite subdirectly irreducible ideal algebra with
at least two atoms is uniquely determined by the number m+1 of atoms it has -
the atom a generating If and m other atoms. With some abuse of notation, we
shall write B(1,m) for a generic ideal algebra of this type. Noting that B(1, n)
is a homomorphic image of B(1,m), if n ≤ m, we see that Eq(B(1, n)) ⊆
Eq(B(1,m)). By Jónsson’s Lemma [14, Corollary 3.5] the inclusion is strict, and
we obtain

Eq(B(1, 1)) � Eq(B(1, 2)) � . . . � Eq(B(1, n)) � . . . � Eq(1, ω) = Eq(IMA).

It came as something of a surprise for us, that Eq(IMA) provides the algebraic
semantics of the logic S4.4, first presented by Sobociński [20]. This logic extends
S4 by the axiom

R1. p ∧ ��p =⇒ �p.

S4.4 is properly contained in S5, and it is an extension of S4.3 [20, p 306]. A
detailed discussion of the syntax of S4.4 is presented in [21]. Subsequently, this
logic was called S4R by Segerberg [19], and SW5 by Schwarz [18], who called
it the “true logic of knowledge”. In his temporal interpretation, Zeman [21] calls
S4.4 the “logic of the end of the world”.
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Theorem 4. Eq(S4.4) = Eq(IMA).

For the ⊆ part it is sufficient to show that each finite algebra in Eq(S4.4) is a
product of ideal algebras.

A different direction to generalize the discriminator considering an ideal are
the structures 〈B, f〉 where I is an ideal of B and f is an indicator function with
respect to I, i.e.

f(x) :=

{
0, if x ∈ I,

1, otherwise.
(2.2)

We call such an algebra an indI–algebra, and denote their class by indI.

Theorem 5. 〈B, f〉 is an indI–algebra if and only if (∀x)[f(x) = 0 or
f(x) = 1].

If 〈B, f〉 is an indI–algebra with determining ideal I, we let If := {x ∈ B :
f(x) = 0}. We denote the class of these algebra by indI. Similar to ideal algebras
we obtain

Theorem 6. indI is locally finite, and thus, Eq(indI) is generated by its finite
members. Furthermore, 〈B, f〉 is subdirectly irreducible if and only if If is gen-
erated by an atom.

It turns out that the modal logic belonging to indI is the well known autoepis-
temic logic determined by the axioms KD45, where D is the axiom �p =⇒ �p,
and 5 is the Euclidean axiom ��p =⇒ �p.

Theorem 7. Eq(KD45) = Eq(indI).

We also obtain a new frame condition for this logic:

Theorem 8. The logic KD45 is determined by frames with the condition

(∀x, y, z)[xRy ⇒ zRy].

3 Unification and Admissible Rules in Logics of Ideal
Related Algebras

In this section we consider rules of inference and consequence relations of logics
related to the algebras we have discussed. By a rule r : A1, . . . , An/B we mean
a subset r ⊆ Fmn × Fm which is closed under substitutions. Recall that a rule
r : A1, . . . , An/B is admissible in L if for every substitution ε, εA1, . . . , εAn ∈
L ⇒ εB ∈ L, and it is derivable in L if A1, . . . , An �L B. A system L (or a
consequence operation �L) is called structurally complete (SC) if every admissible
rule in L is also derivable in L.
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A rule r : A1, . . . , An/B is called passive, if for every substitution ε,
{εA1, . . . , εAn} �⊆ L. For example, the rule P2

�A ∧ �¬A/ B (3.1)

or, equivalently, �A ∧ �¬A/⊥, is admissible but not derivable in many modal
logics, e.g in S5. Therefore, we call L almost structurally complete (ASC), if
every rule which is admissible and not passive is derivable in L. Slightly abusing
the terminology, we say that a modal logic L is (A)SC if its consequence relation
�L, based on Modus Ponens and Necessitation, is (A)SC. For instance S5 and,
indeed, every extension of S4.3 is ASC but, in general, not SC [8].

A substitution ε of formulas is called a unifier for a formula A in the logic
L if εA ∈ L. A formula is unifiable in L, if εA ∈ L for some substitution ε.
Therefore, a rule r : A1, . . . , An/ B is passive if and only if r : A1 ∧ · · · ∧ An

is not unifiable. For L ⊇ K4D unifiability of a formula in L as well as being a
passive rule in L does not depend on the logic L and is decidable.

A projective unifier for A in L is a unifier such that A � ε(B) ↔ B for
each formula B (see [9,11]); we say that a logic L enjoys projective unification
if each L-unifiable formula has a projective unifier in L, when �L is based on
Modus Ponens and Necessitation. Projective unifiers (formulas, substitutions)
were defined and extensively used by S. Ghilardi see e.g. [10,11]. It is known [8]
that if a logic enjoys projective unification, then it is (almost) structurally com-
plete. In [8] it is shown that a logic L containing S4 enjoys projective unification
if and only if S4.3 ⊆ L.

In [12, p. 30] the following axiom D1 is defined:

�(�p → q) ∨ �(�q → p).

This axiom has no connection with the axiom D : �p → �p. It is known that
S4.3 = S4D1, but K4.3 �= K4D1. In [15] it is proved that a transitive modal
logic L has projective unification if and only if K4D1 ⊆ L.

Even though KD45 and S4.4 are not structurally complete, we obtain

Theorem 9. The logics S4.4 and KD45 as well as their extensions enjoy pro-
jective unification and are almost structurally complete.

Theorem 9 solves the problem of admissibility of rules that are not passive.
Next, we look at passive rules. In [17] it is shown that for every consistent normal
modal logic extending KD4 all passive rules can be derived from the rule P2

which is shown in (3.1). Hence, together with Theorem 9, we obtain

Corollary 1. 1. Each admissible rule in S4.4 (as well as in any of its exten-
sions) is derivable or can be derived by means of the rule P2.

2. Each admissible rule in KD45 (as well as in any of its extensions) is derivable
or can be derived by means of the rule P2.

3. Admissibility of rules in S4.4 and in KD45 is decidable.

For a variety of algebras K, FK(λ) denotes its λ-generated free algebra. The
following description of ASC, adopted here to closure algebras, is known, see [7],
Corollary 3.2.
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Theorem 10. Let K be a locally finite variety of closure algebras. Then K is
ASC iff for every finite subdirectly irreducible algebra A in K , A ×F (0) embeds
into F (ω).

In particular, FIMA(λ) and FindI(λ) denote the λ-generated free algebra in
IMA and in indI, respectively. Based on Theorem 10 we have the following:

Theorem 11. 1. For every finite subdirectly irreducible ideal algebra A, A ×
FIMA(0) embeds into the free algebra FIMA(ω).

2. For every finite subdirectly irreducible indI algebra A, A × FindI(0) embeds
into the free algebra FindI(ω).

The results above can be expressed in terms of quasi-varieties determined by
ideal related algebras. Recall that a class of algebras is called a quasi–variety if
it is axiomatized by quasi–identities, that is, by algebraic expressions of the form
t1 = t′1 ∧ · · · ∧ tn = t′n ⇒ t′ = t′′, where all ti, t

′
i, t

′, t′′ are terms. Equivalently,
a class of algebras is a quasi-variety if it is closed under isomorphic copies,
subalgebras, reduced products, and contains the trivial algebra. A quasi–identity
t1 = t′1 ∧ · · · ∧ tn = t′n → t′ = t′′ is called admissible in a quasi-variety Q, if it
holds in the countable free algebra in Q. It is called derivable, if t1 = t′1∧· · ·∧tn =
t′n |= t′ = t′′ in Q.

Theorem 12. 1. The quasivariety generated by IMA is axiomatized by equations
obtained from the axioms of S4.4 and the single quasi-identity �x ∧ �¬x =
1 → y = 1.

2. The quasivariety generated by indI is axiomatized by equations obtained from
the axioms of KD45 and the single quasi-identity �x ∧ �¬x = 1 → y = 1.

Let us note that �x ∧ �¬x = 1 → 0 = 1 is a translation of the passive rule
P2, see e.g. [9].

4 Summary and Outlook

We have presented two universal classes of modal algebras related to ideals,
and have investigated their algebraic and logical properties. It turned out that
the considered algebras provided previously unknown semantics for well known
autoepistemic logics. We have also discussed unification and admissible rules of
these logics.

In logics of knowledge and belief (in particular in autoepistemic logic) Kripke
frames are used as a semantics. The logics determined by ideal-related algebras
are Kripke-complete, that is, they are determined by classes of Kripke frames.
It is well known that some modal logics are Kripke-incomplete, i.e. they cannot
be determined by (a class of) Kripke frames; for these logics the algebraic app-
roach is necessary. We are not aware of immediate applications of the algebraic
semantics approach to logic of knowledge and belief, but expect that our alge-
braic approach gives a new perspective and offers new methodology for studies
on non-monotonic reasoning.
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In the full paper we shall give all proofs and discuss the canonical frames of
our algebra classes. We shall also consider projective unification and admissible
rules for these systems in more detail, as well as their complexity.
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Abstract. Climate Engineering (CE) is the intentional large-scale inter-
vention in the Earth’s climate system to counter climate change. CE is
highly controversial, spurring global debates about whether and under
which conditions it should be considered. We focus on the computer-
supported analysis of a small subset of the arguments pro and contra
CE interventions as presented in the work of Betz and Cacean (2012),
namely those drawing on the “ethics of risk”; these arguments point
out uncertainties in future deployment of CE technologies. The aim of
this paper is to demonstrate and explain the application of higher-order
interactive and automated theorem proving (utilizing shallow semantical
embeddings) to the logical analysis of “real-life” argumentative discourse.
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1 Introduction

Climate Engineering (CE), aka. Geo-engineering, is the intentional large-scale
intervention in the Earth’s climate system in order to counter climate change. Pro-
posed CE technologies (e.g., solar radiation management, carbon dioxide removal)
are highly controversial, spurring global debates about whether and under which
conditions they should be considered. Criticisms to CE range from diverting atten-
tion and resources from much needed mitigation policies to potentially catas-
trophic side-effects; thus the cure may become worse than the disease. The ana-
lyzed arguments around the CE debate presented in this paper originate from Betz
and Cacean’s book [6], which is a slightly modified and updated translation of a
study commissioned by the German Federal Ministry of Education and Research
(BMBF) on “Ethical Aspects of Climate Engineering” finalized in spring 2011.
Betz and Cacean’s work aimed at providing a quite complete overview of the argu-
ments around CE at the time. However, it is to expect that it has become partially
outdated meanwhile. The illustrative analysis carried out in the present paper
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focuses on a small subset of the CE argumentative landscape, namely on those
arguments concerned with the “ethics of risk” ([6] p. 38ff.) which point out (poten-
tially dangerous) uncertainties in future deployment of CE.

Our objective is to further illustrate and explore an approach previously
presented at the CLAR-2018 conference [14], which concerns the application of
(higher-order) interactive theorem proving to the logical analysis of individual
arguments and argument networks. In that work we reconstructed several vari-
ants of Gödel’s ontological argument1 using the proof assistant Isabelle; initially
as networks of abstract nodes, which were mechanically tested for validity and
(in)consistency after adding or removing dialectical relations (attack or support);
and later each node became “instantiated” by identifying it with a formula of a
target (higher-order modal) logic and the experiments were repeated. Employ-
ing theorem provers and model finders, we showed that, e.g., consistency results
for the abstracted arguments provide no guarantee at all at the instantiated
level, i.e., after the semantics of the argument nodes is added. Drawing on this
and other similar results, we argued that the analysis of non-trivial natural-
language arguments at the abstract argumentation level is useful, but of limited
explanatory power. Achieving such explanatory power requires the extension of
techniques from abstract argumentation with means for deep semantical analysis
using expressive logic formalisms (cf. approaches inspired by Montague seman-
tics [15]) and, vice versa, methods for semantical analysis can become enriched
by integrating them with contemporary argumentation frameworks.

In the current work we are formalizing and evaluating an extract from a
quite contemporary and controversial discourse topic (in contrast to the previ-
ous, more philosophical arguments). This time we focus from the beginning on
instantiated argument networks and on the use of automated tools to support the
process of reconstructing both individual arguments and attack (resp. support)
relations, by adding missing (implicit) premises. We aim at illustrating how the
utilization of reasoning technology for very expressive (e.g. higher-order) logics
has realistic prospects in the analysis of “real-life” argumentative discourse. In
particular, our results suggest that this technology can be very useful to help in
the reconstruction of argument networks using structured, deductive approaches
(e.g. ABA [12] and Deductive Argumentation [4,5])2 and also to identify implicit

1 Ontological arguments (or proofs) are arguments for the existence of a Godlike
being, common since centuries in philosophy and theology. More recently, they have
attracted the attention of logicians, not only because of their interesting history, but
also because of their quite sophisticated logical structures.

2 Our reason for choosing a deductive approach over a defeasible one had originally a
technical motivation: the base logic provided (off-the-shelf) in Isabelle/HOL is clas-
sical (monotonic). In fact, the shallow semantical embedding of non-classical object
logics reuses the consequence relation (i.e. the proof methods) of the meta-logic.
Embedding a non-monotonic logic in Isabelle/HOL can certainly be done (e.g. by
deep embeddings or by explicit modeling of a non-monotonic consequence relation),
but we are not currently pursuing such an approach, since this would be more com-
plex from a user perspective and also take a toll on the performance of automated
tools). In this respect we have chosen to treat arguments as deductions, thus locating
all fallibility of an argument in its (sometimes implicit) premises.
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and idle premises in arguments (cf. our previous work [13]). The case study pre-
sented in Sect. 3 has been carried out employing the Isabelle/HOL proof assis-
tant [16] for classical higher-order logic (HOL).3 Sources for this case study have
been made available online (https://github.com/davfuenmayor/CE-Debate). We
encourage the interested reader to try out (and improve on) this work.

2 Framework

In previous work on the logical analysis of argumentative discourse, we have pre-
sented an interpretive approach named computational hermeneutics, amenable
to partial mechanization using three kinds of automated reasoning technology:
(i) theorem provers, which tell us whether a (formalized) claim logically follows
from a set of assumptions; (ii) model finders, which give us (counter-)examples
for formulas in the context of a background set of assumptions; and (iii) so-
called “hammers”, which automatically invoke (i) as to find minimal sets of
relevant premises sufficient to derive a claim, whose consistency can later be
verified by (ii). We exemplified this approach by using some implementations
of (i-iii) for higher-order logic provided by the Isabelle/HOL proof assistant. In
computational hermeneutics, we work iteratively on an argument by choosing
(tentatively at first) a logic for formalization and then working back and forth
on the formalization of its premises and conclusion, while getting real-time feed-
back about the suitability of our choices (including the chosen logic) from a proof
assistant. In particular, following the interpretive “principle of charity” [10], we
aim at formalizations which render the argument as logically valid, while having
a consistent and minimal set of assumptions. These actions are to be repeated
until arriving at a state of reflective equilibrium: a state where our arguments
and claims have the highest degree of coherence and acceptability according to
syntactic and, particularly, inferential criteria of adequacy (see [13,14]).

Drawing upon the literature on structured argumentation graphs, in par-
ticular on Besnard and Hunter’s work [5], we conceive an argument as a pair
consisting of (i) a set of formulas (premises), from which (ii) another formula
(conclusion) logically follows according to a previously chosen logic for formal-
ization. Besnard and Hunter further introduce and interrelate different kinds of
attack relations between arguments (defeaters, undercuts, and rebuttals; cf. [5])
which can be all subsumed, as we do, by considering an attack between (a set of)
arguments A and B as the inconsistency of the set of formulas formed by the con-
clusion(s) of A together with the premises of B. Drawing upon the work of Cayrol
and Lagasquie-Schiex on bipolar argumentation frameworks (BAF) [9], we also
consider support relations between arguments. The original support notion of
BAFs will also be extended to the case where two (or more) arguments jointly
support another one (as happens with arguments A47 and A48 jointly support-
ing A22 in our case study). To put it more formally:
3 HOL, also known as Church’s type theory, is a logic of functions formulated on top

of the simply typed lambda-calculus, which also provides a foundation for functional
programming [2].

https://github.com/davfuenmayor/CE-Debate


Analyzing Arguments in Climate Engineering 107

Definition 1. A (deductive) argument is an ordered pair 〈ϕ, α〉, where ϕ �(L) α
for some chosen logic L (which may not be explicitly mentioned). ϕ is the support,
or premises/assumptions of the argument, and α is the claim, or conclusion, of
the argument. Other constraints we set on arguments are consistency: ϕ has to be
logically consistent (according to the chosen logic L); and minimality: there is no
ψ ⊂ ϕ such that ψ � α. For an argument A = 〈ϕ, α〉 the function Premises(A)
returns ϕ and Conclusion(A) returns (a singleton set containing) α. Note that
while every pair 〈ϕ, α〉 can be seen as a candidate argument during the process
of formal reconstruction, only those pairs which satisfy the given constraints are
considered as arguments proper.

Definition 2. An argument A attacks (is a defeater of) B iff the set
Conclusion(A) ∪ Premises(B) is inconsistent. Notice that this definition sub-
sumes the more traditional one for classical logic, Conclusion(A) � ¬X for some
X ∈ Premises(B), while allowing for paraconsistent formalization logics where
explosion (inconsistency) does not necessarily follow from pairs of contradictory
formulas. This definition can be seamlessly extended to two (or more) arguments:
A1 and A2 (jointly) attack B iff the set Conclusion(A1) ∪ Conclusion(A2) ∪
Premises(B) is inconsistent.

Definition 3. An argument A supports B iff Conclusion(A) � X for some
X ∈ Premises(B). This definition can be seamlessly extended to two (or
more) arguments: A1 and A2 (jointly) support B iff Conclusion(A1) ∪
Conclusion(A2) � X for some X ∈ Premises(B).

We want to highlight the similarity in spirit between ours and Besnard and
Hunter’s [5] “descriptive approach” to reconstructing argument graphs (from
natural language sources); where we have some abstract argument graph as the
input, together with some informal text description of each argument. Thus, the
task becomes to find the appropriate logical formulas for the premises and con-
clusion of each argument, compatible with the choice of the logic of formalization.
As will become clear when analyzing our case study in Sect. 3, there is a need for
finding appropriate “implicit” premises which render the individual arguments
logically valid and additionally honor their intended dialectical role in the input
abstract graph (i.e., attacking or supporting other arguments). This interpretive
aspect, in particular, has been emphasized in our computational hermeneutics
approach [13,14], as well as the possibility of modifying the input abstract argu-
ment graph as new insights, resulting from the formalization process, appear. In
their exposition of structured argumentation (see, e.g., [5]) Besnard and Hunter
duly highlight the fact that “richer” logic formalisms (i.e., more expressive than
“rule-based” ones like, e.g., logic programming) are more appropriate for recon-
structing “real-world arguments”. Such representational and interpretive issues
are tackled in our approach by the use of different (combinations of) non-classical
and higher-order logics for formalization. For this we utilize the shallow seman-
tical embeddings (SSE) approach to combining logics [3]. SSE exploits HOL as
a meta-logic in order to embed the syntax and semantics of diverse object logics
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A50 A51

A47 A48 A49 A45 A46

∗

A22

@
@

@

Fig. 1. Abstract argumentation network for the ethics of risk cluster in the CE debate
(arrows labeled with @ indicate attack); the * indicates a joint support.

(e.g. modal, deontic, paraconsistent), thereby turning theorem proving systems
for higher-order logics into universal reasoning engines [1].

3 Case Study

3.1 Individual (Component) Arguments

As has been observed by Betz and Cacean [6], incalculable side-effects and
imponderables constitute one of the main reasons against CE technology deploy-
ment. Thus, arguments from the ethics of risk primarily support the thesis: “CE
deployment is morally wrong” (named T9 in [6]) and make for an argument clus-
ter with a non-trivial dialectical structure which we aim at reconstructing in this
section. We focus on six arguments from the ethics of risk, which entail that the
deployment of CE technologies (today as in the future) is not desirable because
of being morally wrong (argument A22). Supporting arguments of A22 are: A45,
A46, A47, A48, A49 (using the original notation in Betz and Cacean’s work [6]).
In particular, two of these arguments, namely A48 and A49, are further attacked
by A50 and A514 (Fig. 1).

Ethics of Risk Argument (A22). The argument has as premise: “CE deploy-
ment is morally wrong” and as conclusion: “CE deployment is not desirable”.
Notice that both are formalized as (modally) valid propositions, i.e., true in

4 We strive to remain as close as possible to the original argument network as intro-
duced by Betz and Cacean [6] (with one exception concerning the dialectical relation
among arguments A47, A48, A50 and A22, which will be commented upon later on).
The reader will notice that some of the arguments could have been merged together.
However, Betz and Cacean have deliberately decided not to do so. We conjecture
that this is due to traceability concerns, given the fact that most arguments have
been compiled from different bibliographic sources and authors. See [9] and [17] for
a discussion on this issue.
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all possible worlds or situations. We are thus presupposing a possible-worlds
semantics for our logic of formalization while restricting ourselves, for the time
being, to a propositional logic (to keep it simple). Also notice that we introduce
two new, uninterpreted propositional constants (“CEisWrong” and “CEisNot-
Desirable”) and interrelate them by means of an implicit premise (A22-P2), but
without further constraining their meaning at this stage of the modeling process.
In general, term meanings (understood as their inferential roles) will gradually
become determined as we add other companion arguments to the analysis.

Since this is the first argument to be represented in the proof assistant Isabelle
in this work, we will pay special attention to the syntactic elements used for its
formulation in the system. First notice that we use the keyword consts to intro-
duce two non-interpreted constants; their type is w⇒bool, which corresponds to
the type for characteristic functions of sets of worlds (of type w).

consts CEisWrong::w⇒bool — type for world-contingent propositional constants
consts CEisNotDesirable::w⇒bool

Now we use Isabelle’s keyword definition to introduce interpreted constants
(of Boolean type). The first two definitions introduce the premises of the argu-
ment, labeled A22-P1 and A22-P2, and the last one introduces its conclusion,
labeled A22-C.5 We introduce an equivalence between two formulas (by employ-
ing the symbol ≡) with the definiendum on its left-hand side and the definiens
on its right-hand side. The expression [� P ] for some proposition P stands for
modal validity, i.e., truth in all worlds, formalized as: ∀w. P (w) (not shown).

definition A22-P1 ≡ [� CEisWrong]
definition A22-P2 ≡ [� CEisWrong →CEisNotDesirable]
definition A22-C ≡ [� CEisNotDesirable]

Below we employ the model finder Nitpick [7] to find a model satisfying both
premises and conclusion of the formalized argument. This shows consistency.

lemma assumes A22 -P1 and A22-P2 and A22-C shows True
nitpick [satisfy] oops — Nitpick presents a simple model (not shown)

This first argument (A22) serves as a quite straightforward illustration of
the role of implicit, unstated premises in enabling the reconstruction of a can-
didate argument as a valid argument (proper). Since, in our approach, we treat
arguments as deductions, we will encode them as meta-logical theorems stating
that a formula (conclusion) logically follows from a collection of other formulas
(premises) in this form: ϕ1, . . . ϕn � α (recall Definition 1 in Sect. 2); which
is encoded using Isabelle notation as assumes ϕ1 and . . . ϕn shows α.6 In
this first example, we utilize the tableaux-based prover blast to verify that the
conclusion follows from the premises.
5 Notice that we will keep this same suffix convention throughout this work.
6 Notice the similarly to sequents in Gentzen-type deductive systems. In fact,

Isabelle/HOL’s meta-logic is based upon (higher-order) Gentzen-type natural deduc-
tion. It is also worth mentioning that our implementation in Isabelle/HOL handles
arguments as (sequent-like) inferences independently from each other. This is dif-



110 D. Fuenmayor and C. Benzmüller

theorem A22-valid : assumes A22-P1 and A22-P2 shows A22-C
using A22-C-def A22-P2-def A22-P1-def assms(1 ) assms(2 ) by blast

Termination Problem (A45). CE measures do not possess viable exit
options. If deployment is terminated abruptly, catastrophic climate change
ensues.7 Notice that we add as implicit premise (A45-P1) that there a real pos-
sibility of CE interventions being terminated abruptly.

consts CEisTerminated::w⇒bool — world-contingent propositional constants
consts CEisCatastrophic::w⇒bool
definition A45-P1 ≡ [� ♦CEisTerminated] — additional (implicit) premise
definition A45-P2 ≡ [� CEisTerminated → CEisCatastrophic]
definition A45-C ≡ [� ♦CEisCatastrophic]

Notice that we have introduced in the above formalization the ♦ modal oper-
ator to signify that a proposition is possibly true (e.g. at a future point in time).

theorem A45-valid: assumes A45-P1 and A45-P2 shows A45-C
using A45-C-def A45-P1-def A45-P2-def assms(1 ) assms(2 ) by blast

No Long-Term Risk Control (A46). Our social systems and institutions
are possibly not capable of controlling risk technologies on long time scales and
of ensuring that they are handled with proper technical care [6]. Notice that
we can make best sense of this objection as (implicitly) presupposing a risk of
CE-caused catastrophes (A46-P2).

consts RiskControlAbility::w⇒bool
definition A46-P1 ≡ [� ♦¬RiskControlAbility]
definition A46-P2 ≡ [� ¬RiskControlAbility → ♦CEisCatastrophic] — implicit
definition A46-C ≡ [� ♦CEisCatastrophic]

As before, we can use automated tools to find further implicit premises,
which may actually correspond to modifications to the logic of formalization. In
fact, the argument A46 needs a (stronger) modal logic K4 to succeed, so the
corresponding additional premise is: Ax4: [� ∀ ϕ. �ϕ → ��ϕ] (which can be
read intuitively as: “necessary propositions are so, necessarily” corresponding to
transitivity of the accessibility relation, cf. possible-worlds semantics for modal
logic).

lemma assumes A46-P1 and A46-P2 shows A46-C
nitpick oops — counterexample found (not shown – modal axiom 4 is required).

theorem A46-valid : assumes A46-P1 and A46-P2 and Ax4 shows A46-C
using A46-C-def A46-P1-def A46-P2-def assms(1 ) assms(2 ) assms(3 ) by blast

ferent than having the premises for all arguments as axioms in a same theory resp.
knowledge-base and drawing conclusions as theorems. In our approach, two argu-
ments with mutually inconsistent premises will not cause any problems nor trivialize
anything. In the same vein, conflicting arguments with the same explicit premises
are also possible; the cause for the conflicting conclusions is to be found in additional
(implicit) premises.

7 Cf. Betz and Cacean’s work [6] for sources for these and other proposed theses and
arguments in the CE debate.
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CE Interventions Are Irreversible (A47). As presented in [6], this argu-
ment consists of a simple sentence (its conclusion), which states that CE repre-
sents an irreversible intervention, i.e., that once the first interventions in world’s
climate have been set in motion, there is no way to “undo” them. In the following
arguments we work with a predicate logic (including quantification), and thus
introduce an additional type (“e”) for actions (interventions).

typedecl e — introduces a new type for actions
consts CEAction::e⇒w⇒bool — notice type for (world-dependent) predicates
consts Irreversible::e⇒w⇒bool
definition A47-C ≡ [� ∀ I . CEAction(I ) → Irreversible(I )]

No Ability to Retain Options After Irreversible Interventions (A48).
Irreversible interventions (of any kind) narrow the options of future generations
in an unacceptable way, i.e., it is wrong to carry them out [6].

consts WrongAction::e⇒w⇒bool
definition A48-C ≡ [� ∀ I. Irreversible(I) → WrongAction(I)]

Unpredictable Side-Effects Are Wrong (A49). As long as side-effects of
CE technologies cannot be reliably predicted, their deployment is morally wrong
[6]. A49-P2 suggests that interventions with unpredictable side-effects are wrong.

consts USideEffects::e⇒w⇒bool
definition A49-P1 ≡ [�∀ I. CEAction(I) →USideEffects(I)]
definition A49-P2≡ [�∀ I. USideEffects(I)→ WrongAction(I)] — implicit
definition A49-C ≡ [�∀ I. CEAction(I) → WrongAction(I)]

theorem A49 -valid: assumes A49 -P1 and A49 -P2 shows A49 -C
using A49 -C-def A49 -P1 -def A49 -P2 -def assms(1 ) assms(2 )by blast

Mitigation Is Also Irreversible (A50). Mitigation of climate change (i.e.,
the “preventive alternative” to CE), too, is, at least to some extent, an irre-
versible intervention with unforeseen side-effects [6].

consts Mitigation::e — constant of same type as actions/interventions
definition A50-C ≡ [� Irreversible(Mitigation)∧USideEffects(Mitigation)]

All Interventions Have Unpredictable Side-Effects (A51). This defense
of CE states that we do never completely foresee the consequences of our actions
(anyways), and thus aims at somehow trivializing the concerns regarding unfore-
seen side-effects of CE.

definition A51-C ≡ [� ∀ I.USideEffects(I)]
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3.2 Reconstructing the Argument Graph

The claim that an argument (or a set of arguments) attacks resp. supports
another argument is, in our approach, conceived as an argument in itself, which
also needs to be reconstructed as logically valid by (possibly) adding implicit
premises. Below we introduce our generalized attack resp. support relations
between arguments along the lines of structured and bipolar argumentation (cf.
[5] and [9] respectively; and also recall Definitions 2 and 3 in Sect. 2).8

abbreviation attacks1 ϕ ψ ≡ (ϕ ∧ ψ) −→ False — for one attacker

abbreviation supports1 ϕ ψ ≡ ϕ −→ ψ — for one supporter

abbreviation attacks2 γ ϕ ψ ≡ (γ ∧ ϕ ∧ ψ) −→ False — for two attackers

abbreviation supports2 γ ϕ ψ ≡ (γ ∧ ϕ) −→ ψ — for two supporters

Does A45 Support A22? In this example, as in others, we have utilized
three kinds of automated tools integrated into Isabelle: the model finder Nit-
pick [7], which finds a counterexample to the claim that A45 supports A22
(without further implicit premises); the tableaux-based prover blast,9 which can
indeed verify that by adding an implicit premise (if CE is possibly catastrophic
then its deployment is wrong) the support relation obtains; and the “ham-
mer” tool Sledgehammer [8], which automatically finds minimal sets of assump-
tions needed to prove a theorem. Let us recall the corresponding definitions:
A45-C ≡ [� ♦CEisCatastrophic] and A22-P1 ≡ [� CEisWrong].

lemma supports1 A45 -C A22 -P1 nitpick oops — countermodel found
theorem assumes [� ♦ CEisCatastrophic → CEisWrong] — implicit
shows supports1 A45 -C A22 -P1 using A22 -P1 -def A45 -C-def assms(1 ) by blast

Does A46 Support A22? The same implicit premise as before is needed
(recall the definition: A46-C ≡ [� ♦CEisCatastrophic]).

lemma supports1 A46 -C A22 -P1 nitpick oops — countermodel found
theorem assumes [� ♦CEisCatastrophic → CEisWrong] — implicit
shows supports1 A46 -C A22 -P1 using A22 -P1 -def A46 -C-def assms(1 ) by blast

Do A47 and A48 (together) Support A22? Here we have diverged from
the argument network as introduced in Betz and Cacean [6], where A48 is ren-
dered as an argument supporting A47. We claim that our reconstruction is more
faithful to the given natural language description of the arguments and also bet-
ter represents their intended dialectical relations. Also notice that an implicit
premise is needed to reconstruct this support relation as logically valid, namely
that if every CE action is wrong, then deployment of CE is wrong. (Let us recall
again the definitions: A47-C ≡ [� ∀ I. CEAction(I) → Irreversible(I)] and
A48-C ≡ [� ∀ I. Irreversible(I) → WrongAction(I)].)
8 Notice that we use Isabelle’s keyword abbreviation to introduce these definitions

as “syntactic sugar”.
9 This is a prover among several others integrated into Isabelle [16].
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lemma supports2 A47 -C A48 -C A22 -P1 nitpick oops — countermodel found
theorem assumes [�∀ I. CEAction(I) → WrongAction(I)]−→[� CEisWrong]

shows supports2 A47 -C A48 -C A22 -P1
using A22 -P1 -def A47 -C-def A48 -C-def assms(1 ) by blast

Does A49 Support A22? Note that the previous implicit premise is needed
too (recall the definition: A49-C ≡ [�∀ I. CEAction(I) → WrongAction(I)]).

lemma supports1 A49 -C A22 -P1 nitpick oops — countermodel found
theorem assumes [� ∀ I. CEAction(I) → WrongAction(I)] −→ [� CEisWrong]
shows supports1 A49 -C A22 -P1 using A22 -P1 -def A49 -C-def assms(1 ) by blast

Does A50 Attack Both A48 and A49? Here, again, we diverge from Betz
and Cacean’s [6] original argument network. We think that, given the natural
language description of the arguments, an attack relation between A50 and A48
is better motivated than between A50 and A47 (as originally presented). The
indirect attack towards the main thesis (conclusion of A22) persists, since A47
and A48 jointly support A22 (see above). Also notice that we employ an addi-
tional, implicit premise to reconstruct the attack relation, namely that mitigation
of climate change is not a wrong action. (Let us recall again the corresponding
definitions: A50-C ≡ [� Irreversible(Mitigation) ∧ USideEffects(Mitigation)],
A48-C ≡ [� ∀ I. Irreversible(I) → WrongAction(I)] and finally
A49-P2 ≡ [�∀ I. USideEffects(I) → WrongAction(I)].)

lemma attacks1 A50 -C A48 -C nitpick oops — countermodel found
lemma attacks1 A50 -C A49 -P2 nitpick oops — countermodel found

theorem assumes [� ¬WrongAction(Mitigation)] — implicit premise
shows attacks1 A50 -C A48 -C
using A48 -C-def A50 -C-def assms(1 ) by blast

theorem assumes [� ¬WrongAction(Mitigation)] — implicit premise
shows attacks1 A50 -C A49 -P2
using A49 -P2 -def A50 -C-def assms(1 ) by blast

Does A51 Attack A49? Notice that the previous additional premise is
required again to reconstruct this attack relation as logically valid. (Recall
the definitions: A49-P2 ≡ [�∀ I. USideEffects(I) → WrongAction(I)] and
A51-C ≡ [�∀ I.USideEffects(I)].)

lemma attacks1 A51 -C A49 -P2 nitpick oops — countermodel found
theorem assumes [� ¬WrongAction(Mitigation)] — implicit premise
shows attacks1 A51 -C A49 -P2 using A49 -P2 -def A51 -C-def assms(1 ) by blast
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4 Challenges and Prospects

We are working on extending the current analysis to other argument clusters
in the CE discourse, as presented in [6] (also drawing on more recent sources).
An analysis at the abstract level, e.g. by using Dung’s dialectic semantics [11],
is also in sight (also extended with support relations, cf. BAF [9]). Preliminary
experiments have shown that the expressivity of higher-order logic (HOL) indeed
allows us to encode Dung’s definitions for complete, grounded, preferred and sta-
ble semantics in Isabelle/HOL and to use automated tools for HOL to carry out
computations. This can be very useful for prototyping tasks and as well for
reasoning with arguments at the abstract and structural level in an integrated
fashion. Further work is necessary to obtain a satisfactorily usable and scalable
implementation. We are further working on utilizing shallow semantic embed-
dings (SSE) of non-classical logics (modal, intensional, deontic, paraconsistent,
among several others) into HOL in order to continue fostering a logico-pluralist
approach towards the reconstruction of structured argument graphs (e.g. by
employing attack resp. support relations parameterized with different base log-
ics). Concerning the prospects for a fully automated argument reconstruction
process, it is worth mentioning that the initial step from natural language to
formal representations lies outside our proposed framework. For example, in the
presented case study we have “outsourced” the argumentation-mining task to the
researchers who carried out the analysis (Betz and Cacean), while the semantic-
parsing task was carried out “manually” by us. However, we are much impressed
by recent progress in natural language processing (NLP) for these applications
and follow with great interest the latest developments in the argumentation min-
ing community. Another important challenge concerns the problem of coming up
with candidates for additional (implicit) premises that render an inference valid,
which is an instance of the old problem of abduction. The evaluation of candi-
date formulas is indeed supported by our tool-set, e.g. (counter)model finders can
determine (in)consistency automatically, and theorem provers and “hammers”
help us verify validity using minimal sets of assumptions (also useful to iden-
tify “question-begging” ones). The creative part of coming up with (plausible)
candidates is, however, still a task for humans in our approach. Abductive rea-
soning techniques for the kind of expressive logics we work with (e.g. intensional,
first- and higher-order) remain, to the best of our knowledge, very limited, so as
to support full automation. We could reuse techniques and tools for some less
expressive fragments of HOL (in cases where formalized arguments are bound to
remain inside those fragments); but in general we strive for the finest granularity
level in the semantic analysis (e.g. along the lines of Montague semantics [15]).
With all its pros and cons, this is the distinguishing aspect of our approach.
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Abstract. We introduce a logic of knowledge and belief in a framework
in which belief has a standard KD45 characterization and knowledge
undergoes the classical tripartite analysis that knowledge is justified true
belief, which has a natural link to the studies of logics of evidence and
justification. The characterization of knowledge is based on a flexible
model that avoids unwanted properties concerned with the problem of
logical omniscience. We axiomatize the logic, prove its soundness and
completeness, and then extend the logic to a multi-agent setting. We also
compare our framework with existing logics of knowledge and belief.

Keywords: Knowledge · Belief · Epistemic logic · Doxastic logic ·
Justified true belief

1 Introduction

Modern studies in epistemic logic and doxastic logic was initiated in [26,46] and
later examined extensively in [20,33]. Most variants of epistemic and doxastic
logics do not mix the two notions. Although there are traditions characterizing
both knowledge and belief in one framework (say, [29,38]), this has received far
less attention compared with the efforts made in either side.

For the literature on the logics of both knowledge and belief, and in par-
ticular of the relationship between them, there are various approaches that can
largely be classified into two categories: those treating both knowledge and belief
as primitive concepts, and those where knowledge or belief is a derived concept.
We will look more into this in Sect. 5, but just to mention here approaches
based on the famous tripartite definition of knowledge dating back to Plato,
that knowledge is “justified true belief” (though Gettier [23] argues this is insuf-
ficient), which falls into the second category (see, e.g., [32] for an implementation
in logic). Our work lies in this category as well.

We study knowledge and belief in the field of modal logic. We interpret belief
using a primitive KD45 relation (a binary relation that is serial, transitive and
Euclidean), and interpret knowledge as a true belief which has an appropriate
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argument, in the sense that all of the basic facts in the argument are beliefs. This
clearly relates to the work on logical approaches in the justification of knowledge
[10,40], in particular, the fruitful direction of justification logic [3,4,21], which
will be discussed in Sect. 5.

The application of justification logic in the discipline of epistemic logic [6,7]
connects to the problem of logical omniscience. In normal modal systems, all
logical validities are necessarily true, since the technical characterization in a
normal epistemic logic makes it true that the modal box operator is closed under
logical consequence. This becomes a problem when the modal box is used to
express knowing and believing in epistemic and doxastic logics. Classical modal
systems, such as those between S4 and S5 which are typically used to characterize
knowledge and those like KD45 and K45 for belief, all have the problem of
logical omniscience. This problem has been recognized already in [26, p. 31], and
we refer to [36,37] for more details. One of the main solutions to this problem
was to view knowledge or belief defined in this way to be implicit or potential
(or more generally, some concept that is not knowledge or belief, but closely
related), that one can only obtain in an ideal case, such as having an extreme
power of reasoning. Only when the one is aware of the implicit knowledge or
belief, it becomes explicit. This tradition has attracted a lot of attention since
the seminal work on the logic of (un)awareness [19].

There have been solutions to the problem of logical omniscience without using
the notion of awareness, since very early [16,27] to very new attempts [11,18].
For example, [45] introduces a logic of knowledge that does not have the problem
by means of treating “knowing p” requiring the truth of p and the truth of its
“epistemic counterparts”. This has a close relationship to our model, and will
be discussed in Sect. 5. Our framework avoids the problem of logical omniscience
for knowledge, due to a similar style of construction.

The paper is presented in this way. We first introduce a logic of knowledge and
belief called LKB in the next section. An axiomatization of LKB is introduced in
Sect. 3, and we show its soundness and completeness there. In Sect. 4 we extend
LKB to characterize multiple agents. We discussed related work in Sect. 5 and
conclude in Sect. 6.

2 The Logic LKB

In this section we introduce a logic LKB for reasoning about knowledge and belief
in a framework based on abstract justification. We first introduce the language
of LKB, called L here. We assume a countably infinite set P of propositional
variables.

Definition 1 (languages). The language L for LKB is given by the following
grammar rule:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Bϕ | Kϕ,

where p ∈ P . Moreover, let PL be the language of propositional logic, i.e., the
sublanguage of L without the operators B and K.
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Bϕ and Kϕ are read as “the agent believes ϕ” and “the agent knows ϕ”,
respectively. For simplicity, here we focus on a single-agent system. We shall
study a multi-agent extension in Sect. 4. Other propositional connectives are
defined by usual abbreviations.

Now we introduce the formal models for LKB.

Definition 2 (models). A model is a quadruple M = (W,R, S, V ) such that:

– W is a non-empty set of (possible) worlds (or states),
– R ⊆ W × W is a binary relation that is serial, transitive and Euclidean,
– S : W → ℘(℘(℘(W ))) is an argumentation function, and
– V : P → ℘(W ) is a valuation that assigns every propositional variable a set

of possible worlds.

As usual, M , together with a state w of it, forms a pointed model (M,w).

In the above definition, it is clear that (W,R, V ) forms a standard Kripke
model, more precisely, a KD45 model, as the relation R is serial, transitive
and Euclidean. This follows the classical way of modeling belief [20,33]. What
deserves extra explanation is the argumentation function S, which maps a state
to a set of sets of sets of states. This has a flavor of neighborhood semantics [15].
Intuitively, a set of states will be used to stand for the states where a formula is
true. A set of formulas is understood as a argument (or proof). Hence S will be
used in an interpretation to link a state to a set of arguments, which will play
an important role in the interpretation of knowledge.

Let us first introduce the formal semantics.

Definition 3 (satisfaction). Given a model M = (W,R, S, V ) and a world
w ∈ W , that a formula α is satisfied (or true) in the pointed model (M,w)
(notation: M,w |= α) is inductively defined as follows:

M,w |= p iff w ∈ V (p)
M,w |= ¬ϕ iff not M,w |= ϕ
M,w |= (ϕ ∧ ψ) iff M,w |= ϕ and M,w |= ψ
M,w |= Bϕ iff for all u ∈ W , if wRu then M,u |= ϕ
M,w |= Kϕ iff M,w |= ϕ and there exists X ∈ S(w) such that: [[ϕ]]M ∈ X

and for all ψ ∈ PL ∪ {ϕ} , if [[ψ]]M ∈ X then M,w |= Bψ

where [[ϕ]]M = {x ∈ W | M,x |= ϕ} denotes the truth set of ϕ in M (similarly
for the truth set of ψ). We omit the subscript M when it is clear from the context.

A formula ϕ is called valid, denoted |= ϕ, if for all pointed models (M,w),
M,w |= ϕ; otherwise it is called invalid. For any set Γ of formulas, we say ϕ
is a semantic consequence of Γ , denoted Γ |= ϕ, if every pointed model (M,w)
that satisfies all formulas of Γ also satisfies ϕ.

The interpretation of Kϕ follows the tripartite definition of knowledge, that
knowledge is “justified true belief”, as it can be easily observed from the inter-
pretation that the truth of Kϕ implies the truth of ϕ and Bϕ, and that there is
an argument for ϕ.
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More precisely, Kϕ is true, if ϕ is true and there is an appropriate argument of
it, in the sense that all propositional formulas following that argument, together
with ϕ itself, must be believed to be true. In short, an argument comprises
the truth sets of its consequences, and an appropriate argument is one such
that the consequences are beliefs. A technical issue here is that we could not
enforce the belief of all formulas in an argument, or otherwise the inductive
definition contains a vicious circle. A typical solution is to consider only simpler
formulas (say, according to modal depths), but to make it simple in this paper
we consider only propositional formulas and the relevant formula ϕ. This does
get an intuitive explanation: beliefs and disbeliefs are not so important for an
argument compared to basic facts. We give an example below to make the above
clearer.

Example 1. Consider an agent who believes that the number 47 is a prime and
all her argument for this is that 47 is not divisible by 7. We may all agree that
the agent does not know that 47 is a prime since the composite 8 is also not
divisible by 7 and the agent’s belief happens to be true.

Let p denote the proposition “47 is a prime” and q “8 is a prime”, respectively.
In the above setting, we see that the agent proposes an argument/reason for p,
i.e., every number not divisible by 7 is a prime. In addition to p, the argument
leads to other consequences including q. In the formal semantics the argument is
represented by some X ∈ S(w) which comprises the truth sets of its consequences
(i.e., the truth sets of p and q).1

This scenario can be modeled in our framework by a model M = (W,R, S, V )
with W = {w}, R = {(w,w)}, S(w) = {{{w}, ∅}}, V (p) = {w} and V (q) =
∅. Note that S(w) here consists of a unique argument, i.e., X = {[[p]], [[q]]} =
{{w}, ∅}. The frame (W,R) on which M is based is typically represented by the
following diagram:

�������	w��

It is not hard to verify that M,w |= Bp and M,w |= p. Now one can see that
M,w �|= Kp: the two consequences of the unique argument X, i.e., p and q, are
not all beliefs, for M,w �|= Bq.

Two immediate notes are:

1. We have chosen to model arguments in a semantic way, i.e., truth sets of
consequences are used in the interpretation of arguments. We could have
used a syntactical method to interpret an argument as a set of formulas
(consequences of the argument). A benefit of the latter is to give us a weaker
logic that lacks the rule of the replacements of equivalents. We on the other
hand tend to admit this rule (see Proposition 1).

2. The interpretation of the knowledge operator includes an ∃∀ type of iden-
tification of the appropriate arguments, which may lead to undecidability.
A natural constraint can be enforced on the argumentation function S so

1 There are of course other consequences following from this argument, e.g., 1 is a
prime, 2 is a prime, etc. But for simplicity, we limit our focus in the formal model.
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that there is only a finite number of possible arguments in each state. For
simplicity we do not carry out the constraint in this paper.

We list some (in)validities of the logic regarding the characterization of knowl-
edge, including those for characterizing that knowledge is true belief.

Proposition 1 (LKB knowledge). The following properties hold for all for-
mulas ϕ and ψ:

1. (verity) |= Kϕ → ϕ
2. (being belief) |= Kϕ → Bϕ
3. (replacement of equivalents) if |= ϕ ↔ ψ then |= Kϕ ↔ Kψ

The following hold for some formulas ϕ and ψ:

1. (lack of distribution over implication) �|= K(ϕ → ψ) → (Kϕ → Kψ)
2. (lack of positive introspection) �|= Kϕ → KKϕ
3. (lack of negative introspection) �|= ¬Kϕ → K¬Kϕ
4. (lack of generalization) Even if |= ϕ, it is not necessarily |= Kϕ
5. Even if |= ϕ → ψ, it is not necessarily |= Kϕ → Kψ.

Proof. The first two clauses can be seen easily from the definitions.

3. Assume |= ϕ ↔ ψ. Let M = (W,R, S, V ) be a model and w ∈ W . We
need to show that M,w |= Kϕ ↔ Kψ, namely M,w |= Kϕ if and only
if M,w |= Kψ. Without loss of generality, suppose M,w |= Kϕ, and it
suffices to show that M,w |= Kψ. By definition M,w |= ϕ and there is an
appropriate argument X for ϕ, in the sense that X ∈ S(w) and [[ϕ]] ∈ X
and ∀χ ∈ PL ∪ {ϕ} : [[χ]] ∈ X ⇒ M,w |= Bχ. By the assumption we have
[[ϕ]] = [[ψ]]. Moreover, |= Bϕ ↔ Bψ (B is a standard KD45 modal operator).
Therefore X is also appropriate for ψ. This shows M,w |= Kψ, and thus
M,w |= Kϕ ↔ Kψ.

4. We give a countermodel. Consider the model M1 = (W1, R1, S1, V1) such that
W1 = {w, u, v}, R1 = {(w,w), (u, u), (v, v)}, with (W1, R1) illustrated below:

�������	w
��


������u
��


������v
��

and V1(p) = {w}, V1(q) = {w, v}, S1(w) = {{{w, u, v}}, {{w}}} and S1(u) =
S1(v) = ∅.

We have M1, w |= K(p → q), because (1) M1, w |= p → q and (2) {{w, u, v}}
is an appropriate argument since [[p → q]]M1 = {w, u, v} ∈ {{w, u, v}} and
M1, w |= Bψ for any ψ ∈ PL ∪ {(p → q)} (for {x ∈ W1 | wRx} ⊆ {w, u, v}).
Similarly, we have M1, w |= Kp, but M1, w �|= Kq. So, M1, w �|= K(p → q) →
(Kp → Kq).

5. consider a countermodel M2 = {W2, R2, S2, V2} with (W2, R2) illustrated
below:

�������	w
�� �� �� 
������u

��

S(w) = {{{w, u}}}, S(u) = ∅, and V (p) = {w, u}. We have M2, w |= Kp and
M2, u �|= Kp. Thus M2, w �|= BKp. Since |= KKp → BKp, M2, w �|= KKp.
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6. Consider a countermodel M3 = {W3, R3, S3, V3} with W3, R3 illustrated
below:

�������	w
��

S(w) = ∅ and V p = ∅. We have M3, w |= ¬Kp but M3, w �|= K¬Kp.
7. The model M3 introduced in clause 6 is a suitable countermodel, since

|= ¬(p ∧ ¬p) and M3, w �|= K¬(p ∧ ¬p).
8. It is clear that |= p → (p ∨ q). Using the model M1 in clause 4, we can

show that M1, w |= Kp. We can also show that M1, w �|= K(p ∨ q). Therefore
�|= Kp → K(p ∨ q).

Remark 1. The lack of generalization and distribution over implication for
knowledge is what we would like to see, for these are direct causes of the prob-
lem of logical omniscience. The reader may instead want to have the principles
of positive and negative introspection. Here we presented a logic without these
principles mainly for the purpose of pursuing a simple and flexible framework.
If one would like to enforce, for example, positive introspection, it can be done
by adding the following constraint on the argumentation function S in a model:
for all worlds w, for all X ∈ S(w),

1. for all formulas ϕ, if [[ϕ]] ∈ X then [[Kϕ]] ∈ X, and
2. for all worlds u such that wRu, if X ∈ S(w), then X ∈ S(u).

Remark 2. The semantics we introduced for LKB still has the problem of log-
ical omniscience for the belief operator. We choose to do so mainly to keep
the interpretation simple. Our framework extends easily if we adopt a weaker
interpretation for the belief operator that does not involve the problem.

Moreover, the weak logic LKB does not enforce some relationships between
knowledge and belief either. For example, positive and negative introspection
(Bϕ → KBϕ, ¬Bϕ → K¬Bϕ, Kϕ → BKϕ and ¬Kϕ → B¬Kϕ) are not valid.

3 Axiomatization

In this section we introduce a sound and complete axiomatization of the logic
LKB, i.e., LKB, which is given in Fig. 1. The axioms PC, K, D, 4, 5 and the
rules N and MP form an axiomatization of the standard KD45 logic of belief.
There are a few more axioms and rules for the characterization of knowledge.

The soundness of LKB is not hard to verify. All the axioms are valid, and
the rules preserve validity, some of which are shown in Proposition 1. As for
the completeness, we prove by the canonical model method, and this will be our
main task for the rest of this section.

We refer to a modal logic textbook (say, [12]) for the definitions of proof,
deduction and a (maximal) consistent set of formulas in an axiomatization. A
well-known Lindenbaum’s Lemma claims that any consistent set of formulas is
a subset of a maximal consistent set of formulas, which also holds for LKB.
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Fig. 1. The axiomatization LKB

As a notational convention, the set of all maximal consistent sets of L for-
mulas is denoted MCS. Moreover, we shall write [[ϕ]]c for the set of all maximal
consistent sets of formulas containing ϕ, i.e., [[ϕ]]c = {Γ ∈ MCS | ϕ ∈ Γ}.

We first introduce some properties of maximal consistent sets of formulas.

Lemma 1. Let Γ ∈ MCS. The following hold:

1. Γ is closed under modus ponens, i.e., if ϕ, (ϕ → ψ) ∈ Γ , then ψ ∈ Γ ;
2. For all formulas ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ , but not both;
3. [[ϕ]]c = [[ψ]]c if and only if ϕ ↔ ψ is a LKB theorem.

Proof. The first two clauses can be shown in the same way as in the literature.
Now for the third:

From left to right. Suppose �LKB ϕ ↔ ψ, then {ϕ,¬ψ} or {¬ϕ,ψ} is con-
sistent. Without loss of generality, we consider the first case, i.e., {ϕ,¬ψ} is
consistent. Then there is Δ ∈ MCS such that {ϕ,¬ψ} ⊆ Δ. By the second
clause of this lemma, ψ /∈ Δ, which implies that [[ϕ]]c �= [[ψ]]c, as is to be shown.

From right to left. Suppose [[ϕ]]c �= [[ψ]]c and �LKB ϕ ↔ ψ. Without loss of
generality, consider the case when there exists Δ ∈ MCS such that ϕ ∈ Δ and
ψ /∈ Δ. It follows that �LKB ϕ ↔ ψ, for otherwise there is a violation of the first
and second clauses of this lemma.

Definition 4 (canonical model). The canonical model for LKB is the struc-
ture M c = (W c, Rc, Sc, V c) where:

– W c = MCS, i.e., the set of all maximal consistent sets of formulas;
– Rc is binary relation on W c defined by: (w, u) ∈ Rc iff for all formula ϕ, if

Bϕ ∈ w then ϕ ∈ u;
– Sc : W c → ℘(℘(℘(W c))) is such that Sc(w) = {{[[ϕ]]c} | Kϕ ∈ w};
– V c is the valuation defined by: V c(p) = [[p]]c for all p ∈ P .
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It is easy to see that M c = (W c, Rc, V c) forms the canonical model for
the standard KD45 logic. Since LKB includes an axiomatization of KD45 as a
subsystem, we can use the classical method to show that Rc is serial, transitive
and Euclidean (cf., say, [12]). Moreover, Sc matches the type of an argumentation
function. It is not hard to verify that the canonical model is a model of LKB.

Lemma 2 (truth). For any formula ϕ ∈ L and any w ∈ MCS:

Mc, w |= ϕ iff ϕ ∈ w

Proof. First of all, we can define the modal degree of any formula ϕ ∈ L, notation
d(ϕ), as follows:

d(p) = 0
d(¬ϕ) = d(ϕ)

d((ϕ ∧ ψ)) = max(d(ϕ), d(ψ))
d(Bϕ) = d(ϕ) + 1
d(Kϕ) = d(ϕ) + 1.

Our proof is carried out by nested induction on d(ϕ) and within that on
the structure of ϕ. The case d(ϕ) = 0 is trivial. Suppose for every ϕ such that
d(ϕ) ≤ n: Mc, w |= ϕ ⇔ ϕ ∈ w. We are going to show that the same holds for
all ϕ such that d(ϕ) ≤ n + 1. The only interesting case is the inductive step for
Kϕ:

From left to right. Suppose Kϕ /∈ w. We claim that {[[ϕ]]c} /∈ Sc(w). Suppose
not, there must be a ψ such that Kψ ∈ w and [[ψ]]c = [[ϕ]]c. This implies that
�LKB ϕ ↔ ψ by Lemma 1(3). Therefore �LKB Kϕ ↔ Kψ by rule the RE. But
Kϕ /∈ w, this contradicts the fact that w is closed under modus ponens. Thus
{[[ϕ]]c} /∈ Sc(w). Since d(ϕ) < d(Kϕ), by the induction hypothesis, [[ϕ]] = [[ϕ]]c,
therefore {[[ϕ]]} /∈ Sc(w), and so Mc, w � Kϕ.

From right to left. We need to show that: (1) Mc, w |= ϕ and (2) there is X
in Sc(w) such that [[ϕ]] ∈ X and ∀ψ ∈ PL ∪ {ϕ} : [[ψ]] ∈ X ⇒ Mc, w |= Bψ. For
(1), from � Kϕ → ϕ it follows that ϕ ∈ w. Since d(ϕ) < d(Kϕ), Mc, w |= ϕ
by the induction hypothesis. For (2), since Kϕ ∈ w, {[[ϕ]]c} ∈ Sc(w). We claim
that {[[ϕ]]c} is the suitable X. Firstly, by the induction hypothesis, [[ϕ]] = [[ϕ]]c,
so [[ϕ]] ∈ {[[ϕ]]c}. Secondly, for each ψ ∈ PL ∪ {ϕ}, [[ψ]] = [[ψ]]c by the induction
hypothesis. If [[ψ]] ∈ {[[ϕ]]c}, it must be that [[ψ]]c = [[ψ]] = [[ϕ]]c. By Lemma 1(3),
it follows that �LKB ϕ ↔ ψ. Since Kϕ ∈ w and �LKB Kϕ → Bϕ, Bϕ ∈ w.
Therefore Bψ ∈ w. So it suffices to show that Mc, w |= Bψ, which is a standard
result for a normal modal logic. Therefore, Mc, w |= Kϕ.

With the above lemma, a standard argument leads us to the following theo-
rem.

Theorem 1 (soundness and completeness). For any formula ϕ and any set
Γ of formulas, Γ �LKB ϕ if and only if Γ |= ϕ.
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4 Extending to Multiple Agents

In this section we study the extension of LKB to allow multiple agents. Let
A be a finite set of agents. It is natural to introduce the following multi-agent
language:

Definition 5 (language Lm). The language Lm is given as follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Baϕ | Kaϕ,

where p ∈ P is a propositional variable and a ∈ A.

To make a difference, we shall call the multi-agent extension of LKB the
logic LKBm. Definitions of the semantics can also be extended naturally from
the single-agent case.

Definition 6 (LKBm models). An LKBm model (or simply, a model, when
there is no confusion in the context) is a tuple M = (W,R, S, V ) such that:

– W is a non-empty set of worlds;
– R : A → ℘(W × W ) assigns every agent a serial, transitive and Euclidean

relation on W ; for convenience, we write Ra for R(a) for any a ∈ A;
– S : W → ℘(℘(℘(W ))) is an argumentation function; and
– V : P → ℘(W ) is a valuation that assigns every propositional variable a set

of possible worlds.

As usual, M , together with a state w of it, forms a pointed model (M,w).

Definition 7 (LKBm satisfaction). Given an LKBm model M = (W,R, S, V )
and a world w ∈ W , that a formula α is satisfied in the pointed model (M,w)
(notation: M,w |= α) is defined as follows:

M,w |= p iff w ∈ V (p)
M,w |= ¬ϕ iff not M,w |= ϕ
M,w |= (ϕ ∧ ψ) iff M,w |= ϕ and M,w |= ψ
M,w |= Baϕ iff for all u ∈ W , if wRau then M,u |= ϕ
M,w |= Kaϕ iff M,w |= ϕ and there exists X ∈ S(w) such that: [[ϕ]] ∈ X

and for all ψ ∈ PL ∪ {ϕ} , if [[ψ]] ∈ X then M,w |= Baψ .

Conventions are made as in Definition 3.

The extension goes smoothly by equipping the knowledge and belief opera-
tors, together with their semantic counterparts, for all the agents. In fact, we can
carry out in the same way to reach an axiomatization for the multi-agent logic.
The axiomatization LKBm given in Fig. 2 is a sound and complete axiomatiza-
tion of the logic LKBm.

Theorem 2 (LKBm soundness and completeness). For any Lm formula
ϕ and any set Γ of Lm formulas, Γ �LKBm ϕ if and only if Γ |= ϕ.
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Fig. 2. The axiomatization LKBm

Proof. The theorem can be shown in very much the same way as for LKB.

Remark 3 (global vs. local argumentation functions). In the definition of a model
for the multi-agent logic, we kept the argumentation function S the same as in
a model for the single-agent logic. One may argue that we also have a reason to
introduce an argumentation function for each agent:

S : A → W → ℘(℘(℘(W ))).

Both options have an explanation.
For what we defined above, for an agent to achieve knowledge, an argument

must be global, in the sense that it works as well for all other agents. What this
represents is more like a mathematical proof which does not easily get refused
by others. Yet a local argumentation function allows an agent to have its own
argument for something, even though others may disagree. This is perhaps more
like an argument in daily life.

Our framework allows the flexibility of making a distinction between global
and local argumentation, which we expect a good impact on the approaches to
reasoning about different levels of knowledge.

That said, we do not introduce a logic for knowledge based on local argumen-
tation. One of the main difficulties is to understand what higher-order knowledge
means in this case. For example, a formula KaKbϕ requires that agent a has an
argument for Kbϕ, which in turn requires that agent b has an argument for
ϕ. But do we assume there is information adopt in common by both agents,
say some simple tautologies? How can these be characterized? We leave such
questions for future work.

5 Related Work

In this section we compare our work with existing literature. As already men-
tioned in the introduction, there have been a great amount of work in the area of
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logics of knowledge, belief and their relationships, which connects to the research
on the concepts of proof, evidence and justification, and the logics of them.

Of special relevance is Williamson’s work on knowledge and evidence [43,44].
In a later development [45], he introduces a logic of knowledge which is capable
of solving the problem of logical omniscience, based on the idea that “knowing p
requires safety from the falsity of p and of its epistemic counterparts.” Formally,
a model is a structure (W,R, V ), where R consists of triples 〈w,w∗, f〉 in which w
and w∗ are worlds, and f is a function mapping a formula in w to a counterpart
formula of it in w∗ which may endure extra constraints. Knowledge is interpreted
in a way that:

w |= Kϕ iff for all 〈w,w∗, f〉 ∈ R,w∗ |= f(ϕ).

By an epistemic counterpart, he refers to a belief that is alike in various epis-
temically relevant respects, such as how they are formed, which circumstance
they are formed in, etc. Our framework, though technically quite different, are
conceptually close to this type of modeling.

Justification logics [3,4,21] are a family of modal logics with the modalities
replaced with justification terms, inspired by the logic of proofs [1,2] where a
justification of a formula is largely a deductive proof of it, or more precisely, a
“proof polynomial” that encodes a proof. Fitting [21] adapted Artemov’s frame-
work using a semantic solution that can be traced back to [34]. An evidence func-
tion E is added to a standard Kripke model, making a quadruple (W,R, E , V ).
The function E assigns an evidence set of formulas to each proof polynomial t
at each world w that consists of everything t justifies at w. The interpretation
looks as follows:

M,w |= t : ϕ iff ϕ ∈ E(w, t) and for all u, if wRu then M,u |= ϕ.

Along the line of [21], Artemov and Nogina [6,7] introduced justification into
the framework of epistemic logic. A model there is a quintuple (W,R,Re, E , V )
where (W,R, V ) is a standard Kripke model with the binary relation R used for
interpreting potential knowledge in the standard way. E is an evidence function
as in [21], together with an extra relation Re, the justification of a formula ϕ is
interpreted as follows:

w |= t : ϕ iff ϕ ∈ E(w, t) and for all u, if wReu then M,u |= ϕ

This is used to model a type of explicit knowledge. We need to point out here
that the concept of justification has been brought into the field of epistemic logic
already in [10].

Although epistemic justifications are mainly used to characterize only the
notion of knowledge, the differences in the interpretation of implicit and explicit
knowledge has a technical similarity to that of belief and knowledge in this
paper. This similarity is even more obvious when implicit/potential knowledge
is regarded as belief.

Now we move on the literature on logics with both knowledge and belief,
in particular the relationship between them. These can be classified into two
categories:
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(i) those taking both knowledge and belief as primitive and focus on the inter-
action properties between the two notions;

(ii) those in which knowledge or belief is not a primitive, but a derived notion
from the other or some notions different from the two.

In the first category, various axioms that hold for knowledge and/or belief
have been discussed already in [26]. The JTB definition of knowledge (“justified
true belief”) has been implemented in epistemic logic in [32]. In [29], a combined
system of knowledge and belief was introduced based on Kripke semantics (the
notions of common knowledge and belief are also studied there). In their models,
two accessibility relations are used to represent epistemic uncertainty and dox-
astic uncertainty, respectively. The logic in [29] has some interesting validities
characterizing the relationship between knowledge and belief. For example, for
all agents a and formulas ϕ, the following are valid:

Kaϕ → Baϕ (and also Ka¬ϕ → ¬Baϕ)
Baϕ ↔ KaBaϕ and ¬Baϕ ↔ Ka¬Baϕ
Kaϕ ↔ BaKaϕ and ¬Kaϕ ↔ Ba¬Kaϕ

And Baϕ → BaKaϕ is invalid there. Some of these principles, together with
others (such that Bϕ ↔ ¬K¬Kϕ), were examined in [38] and followed by [28].
Also based on [38], recently [8,9] introduced a logic of knowledge and belief using
a topological style of semantics. Different logics were introduced for reasoning
about knowledge and belief in a combined way in [41,42]. More sophisticated
constructions are used there, which goes further away from the topic here. In
[30], formulas of the forms Kϕ, Cϕψ and Bϕψ are taken to be primitive, which
are interpreted as “the agent knows ϕ”, “the agent is certain of ψ under the
evidence ϕ” and “the agent believes ψ under the evidence ϕ”, respectively. Then
Bϕ (“ϕ is believed”) is defined as B�ϕ.

In the second category, besides the well-known JTB analysis of knowledge
using belief and many work in this strand (see, e.g., [31,39,44]), there are also
approaches defining belief out of knowledge. For example, [22] defines belief in
terms of knowledge and plausibility: an agent believes ϕ if he knows that ϕ is
more plausible than ¬ϕ. [13] defines belief in a similar fashion. It’s worth noting
that, though from a very different motivation, their models have a flavor of
neighborhood semantics which is similar to ours (we use a neighborhood function
that selects the truth set of not mere a single formula). In [35], Moses and Shoham
suggest that belief be viewed as defeasible knowledge. In particular, they come
up with a definition of belief to be knowledge-relative-to-assumptions, and make
a connection to the notion of nonmonotonicity.

6 Conclusion

In this paper we introduced a logic of knowledge and belief in which we pro-
vided with an alternative implementation of the tripartite analysis of knowl-
edge (knowledge = justified true belief). Our work has a conceptual link to
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the research on justification logic, bringing a formal notion of justification into
the definition of knowledge, yet different in that justification is used in forming
knowledge out of true belief, instead of forming explicit knowledge out of implicit
knowledge. Our model is a combination of standard KD45 model for belief with
an argumentation function for knowledge that is of a flavor of the neighborhood
semantics.

We introduced a sound and completeness axiomatization for our logic, and
extended it to model multiple agents. In the multi-agent setting, we had two
options, to model global or local arguments. We studied a logic of global argu-
ments, and leave that of local ones for future work. As the reader may observe,
our logic characterizes a weak notion of knowledge, without the problem of logi-
cal omniscience, but also lacking properties such as positive and negative intro-
spection (Kϕ → KKϕ and ¬Kϕ → K¬Kϕ) as well as the principle for the
interaction between belief and knowledge (e.g. Bϕ → KBϕ). The model we pro-
pose is capable of modeling these principles by imposing further constraints (see
Remark 1 for an example). We leave this also for future work.

One of the requirements of a formula to be knowledge is to have an argu-
ment for it. Occasionally we used other words, such as “proof”, “justification”,
“evidence”, etc., in place of “argument”, though we do not in fact impose any
structures of the argument – it is simply treated as a set of formulas. This is one
of the reasons we call it “abstract argument” as in the title. Our work, however,
does not have a direct link to the study of formal argumentation, in particular
that of abstract argumentation framework [17]. We are interested in achieving a
connection to that, perhaps by means of bringing an argumentation framework
into the interpretation of knowledge, so that only the accepted ones are counted
as arguments.

Also interesting to look into are the group notions of knowledge and belief. It
is a natural task to study the extensions of our logic by incorporating common
and distributed knowledge/belief. We are interested in comparing these with the
logic of knowledge and belief presented in [29], and also extensions of justification
logic with common knowledge [5,14] and distributed knowledge [24,25]. Other
interesting tasks include modeling dynamics in our framework.
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Büning, H., Martini, S., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 14–28.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56992-8 3

2. Artemov, S.N.: Logic of proofs. Ann. Pure Appl. Logic 67(1), 29–59 (1994)
3. Artemov, S.N.: Operational modal logic. Technical report, Mathematical Sciences

Institute, Cornell University (1995)
4. Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symbolic

Logic 7(1), 1–36 (2001)
5. Artemov, S.N.: Justified common knowledge. Theoret. Comput. Sci. 357(1), 4–22

(2006)
6. Artemov, S.N., Nogina, E.: Introducing justification into epistemic logic. J. Logic

Comput. 15(6), 1059–1073 (2005)

https://doi.org/10.1007/3-540-56992-8_3


A Logic of Knowledge and Belief Based on Abstract Arguments 129

7. Artemov, S.N., Nogina, E.: On epistemic logic with justification. In: Proceedings
of the 10th Conference on Theoretical Aspects of Rationality and Knowledge, pp.
279–294. National University of Singapore (2005)
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9. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: A topological approach to full
belief. J. Philos. Logic 48(2), 205–244 (2019). https://doi.org/10.1007/s10992-018-
9463-4

10. van Benthem, J.F.A.K.: Reflections on epistemic logic. Logique et Analyse 34(133–
134), 5–14 (1991)

11. Bjerring, J.C., Skipper, M.: A dynamic solution to the problem of logical omni-
science. J. Philos. Logic 48(3), 501–521 (2019). https://doi.org/10.1007/s10992-
018-9473-2

12. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

13. Bonanno, G.: Logics for belief as maximally plausible possibility. Studia Logica
(2019). https://doi.org/10.1007/s11225-019-09887-w

14. Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. J. Appl.
Non-Class. Logics 21(1), 35–60 (2011)

15. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

16. Chisholm, R.M.: The logic of knowing. J. Philos. 60(25), 773–795 (1963)
17. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-

monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

18. Dutant, J.: Epistemic logics for derived knowledge and belief (manuscript)
19. Fagin, R., Halpern, J.: Belief, awareness, and limited reasoning. Artif. Intell. 34(1),

39–76 (1988)
20. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.

The MIT Press, Cambridge (1995)
21. Fitting, M.: The logic of proofs, semantically. Ann. Pure Appl. Logic 132(1), 1–25

(2005)
22. Friedman, N., Halpern, J.Y.: Modeling belief in dynamic systems, Part I: founda-

tions. Artif. Intell. 95(2), 257–316 (1997)
23. Gettier, E.L.: Is justified true belief knowledge? Analysis 23(6), 121–123 (1963)
24. Ghari, M.: Distributed knowledge with justifications. In: Lassiter, D., Slavkovik,

M. (eds.) ESSLLI 2010-2011. LNCS, vol. 7415, pp. 91–108. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31467-4 7

25. Ghari, M.: Distributed knowledge justification logics. Theory Comput. Syst. 55(1),
1–40 (2014). https://doi.org/10.1007/s00224-013-9492-x

26. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of Two Notions.
Cornell University Press, Ithaca (1962)

27. Hintikka, J.: Impossible possible worlds vindicated. J. Philos. Logic 4(4), 475–484
(1975). https://doi.org/10.1007/BF00558761

28. Klein, D., Roy, O., Gratzl, N.: Knowledge, belief, normality, and introspection.
Synthese 195(10), 4343–4372 (2018). https://doi.org/10.1007/s11229-017-1353-8

29. Kraus, S., Lehmann, D.: Knowledge, belief and time. Theoret. Comput. Sci. 58(1),
155–174 (1988)

https://doi.org/10.1007/978-3-662-54332-0_12
https://doi.org/10.1007/978-3-662-54332-0_12
https://doi.org/10.1007/s10992-018-9463-4
https://doi.org/10.1007/s10992-018-9463-4
https://doi.org/10.1007/s10992-018-9473-2
https://doi.org/10.1007/s10992-018-9473-2
https://doi.org/10.1007/s11225-019-09887-w
https://doi.org/10.1007/978-3-642-31467-4_7
https://doi.org/10.1007/s00224-013-9492-x
https://doi.org/10.1007/BF00558761
https://doi.org/10.1007/s11229-017-1353-8


130 X. Li and Y. N. Wáng
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Abstract. There are many legal texts which can greatly benefit from
the support of automated reasoning. Such support depends on the exis-
tence of a logical formalization of the legal text. Among the methods
used for the creation of these knowledge bases, annotation tools attempt
to abstract over the logical language and support non-logicians in their
efforts to formalize documents. Nevertheless, legal documents use a rich
language which is not easy to annotate. In this paper, an existing anno-
tation tool is being extended in order to support the formalization of a
complex example - the GDPR’s article 13. The complexity of the article
prevents a direct annotation using logical and deontical operators. This is
overcome by the implementation of several macros. We demonstrate the
automated reasoning over the formalized article and argue that macros
can be used to formalize complex legal texts.

Keywords: Automated reasoning · Knowledge bases · Annotation
tools

1 Introduction

Computer systems are playing a substantial role in assisting people in a wide
range of tasks, including searching in large data and decision-making; and their
employment is progressively becoming vital in an increasing number of fields.
One of these fields is legal reasoning: New court cases and legislations are accu-
mulated every day and navigating through the vast amount of complex informa-
tion is far from trivial. In addition, the understanding of those texts is reserved
only for experts in the legal domain despite the fact that they are usually of
interest to the general public.

A key component of legal reasoning is the transformation of legal texts into
a machine readable format. This transformation must capture the legal under-
standing of the text in order to allow computers to reason over it.

Supporting automated reasoning over legislation is an old idea, dating back
to LEGOL [23] and made popular by the formalisation of the British Nationality
Act [21]. These approaches and others (see for example [4,22]) were based on
the use of the Prolog programming language for the formalization of the leg-
islation. Since then, many other systems have followed the same path and the
formalization of legal texts in Prolog is also done today [13].
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M. Dastani et al. (Eds.): CLAR 2020, LNAI 12061, pp. 131–150, 2020.
https://doi.org/10.1007/978-3-030-44638-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44638-3_9&domain=pdf
http://orcid.org/0000-0003-3261-0180
https://doi.org/10.1007/978-3-030-44638-3_9


132 T. Libal

Prolog is very suitable for such formalizations but still depends on the works
of programmers and logicians. In order to verify that the formalization is correct,
methodologies were created which allow legal experts to be able to give back
feedback to the programmers and logicians [1]. In addition to Prolog-based, legal
knowledge bases were created which are based on other logical formalizations,
such as IO logics [19] and modal logics [11].

In order to allow legal experts to create knowledge bases directly, user friendly
interfaces can be created which aim at hiding the logical complexity. Annotation
editors for legal texts [12,16] allow users to add a legal interpretation to texts by
the use of annotations. The editor then produces a logical formalization which
can be used for automated reasoning.

Despite the advances described above, “good” logical formalizations are hard
to achieve [3]. Among the most important properties of such formalizations, one
can list faithfulness to the original text, efficient support for the required rea-
soning operations and being well engineered [20]. In order to be faithful to the
original text, one must not only describe the legal terms and their logical relations
in a faithful way but also meta-level concepts such exceptions, counterfactuals
and deeming provisions. This normally increases the complexity of the formal-
ization. Being well engineered, on the other hand, normally means being simple
and easy to verify, validate, update and maintain.

The tension between the two can be demonstrated by looking at the third
paragraph of article 13 of the GDPR1:

“Where the controller intends to further process the personal data for a
purpose other than that for which the personal data were collected, the controller
shall provide the data subject prior to that further processing with information
on that other purpose and with any relevant further information as referred to
in paragraph 2.”.

This paragraph discusses cases not handled by previous paragraphs and ask
to apply certain points in a new context. Attempting to faithfully represent this
paragraph while keeping to the best engineering principals is not easy.

One approach for tackling such problems is to manually simplify the structure
of the sentence such that logical annotations then become easier. In the example
above, one can copy the relevant parts of the previous paragraphs and replace
parts of their context with the one of paragraph 3.

From the engineering point of view, there are several problems with this
approach. First, manual processing and copying is error-prone. By delegating
work to the computer, we decrease the chance of error as long as the algorithm
is correct. Second, it might be a tedious and time-consuming work which can be
automated by a computer. Lastly, the manual work needs to be repeated when
a change to the understanding or context of the legislation occurs.

In this paper, an extension to the NAI Suite’s annotation editor [12] is dis-
cussed. The NAI Suite follows a certain methodology which aims at being faithful
and well engineered at the same time. This methodology, closely related to the
Isomorphism approach [2], uses two levels of annotations in order to create an

1 https://eur-lex.europa.eu/eli/reg/2016/679/oj.

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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intermediary representation of the legal text which is faithful and well engi-
neered, in the sense defined above. This intermediary representation is then
translated automatically into logical representations which can then be used for
efficient automated reasoning.

This methodology is still insufficient when facing the GDPR’s paragraph from
above. The two levels of annotations which are supported cover vocabulary and
logical relations, but the paragraph requires complex modifications of a cross
referenced paragraph as well.

The extension to the NAI Suite discussed in this paper supports an addi-
tional level of annotations. These meta-level annotations can handle complex
legal structures, such as the one in the above example. In addition to this exten-
sion, a domain specific language (DSL) for describing meta-level annotations is
presented and applied to these annotations. It is then being shown that with
hardly any change to the original text, a formalization is created which can be
used for automated reasoning. Some examples of automated query answering are
demonstrated.

In the next section, an introduction to the NAI Suite, its theoretical foun-
dations and its graphical user interface is given. The following section describes
the extension of the tool, while Sect. 4 demonstrates how the new features can
be applied to easily formalize and reason over article 13. A conclusion and future
work discussion are given last.

2 The NAI Suite

The NAI suite integrates novel theorem proving technology into a usable graph-
ical user interface (GUI) for the computer-assisted formalization of legal texts
and applying automated normative reasoning procedures on these artifacts. In
particular, NAI includes

1. a legislation editor that graphically supports the formalization of legal texts,
2. means of assessing the quality of entered formalizations, e.g., by automati-

cally conducting consistency checks and assessing logical independence,
3. ready-to-use theorem prover technology for evaluating user-specified queries

wrt. a given formalization, and
4. the possibility to share and collaborate, and to experiment with different

formalizations and underlying logics.

NAI is realized using a web-based Software-as-a-service architecture, cf. Fig. 1.
It comprises a GUI that is implemented as a Javascript browser application, and
a NodeJS application on the back-end side which connects to theorem provers,
data storage services and relevant middleware. Using this architectural layout,
no further software is required from the user perspective for using NAI and its
reasoning procedures, as all necessary software is made available on the back
end and the computationally heavy tasks are executed on the remote servers
only. The results of the different reasoning procedures are sent back to the GUI
and displayed to the user. The major components of NAI are described in more
detail in the following.
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Fig. 1. Software-as-a-service architecture of the NAI reasoning framework. The front
end software runs in the user’s browser and connects to the remote site, and its different
services, via a well-defined API through the network. Data flow is indicated by arrows.

2.1 The Underlining Logic

The logical formalism underlying the NAI framework is based on a universal
fragment first-order variant of the deontic logic DL* [11], denoted DL*1. Its
syntax is given by

Definition 1 (Syntax of DL*1). Let V , P and F be disjoint sets of symbols
for variables, predicate symbols (of some arity) and function symbols (of some
arity), respectively. DL*1 formulas φ, ψ are given by:

φ, ψ ::= p(t1, . . . , tn) | ¬φ | φ ∧ ψ | φ ∨ ψ | φ ⇒ ψ

| Idφ | Obφ | Pmφ | Fbφ

| φ ⇒Ob ψ | φ ⇒Pm ψ | φ ⇒Fb ψ

where p ∈ P is a predicate symbol of arity n ≥ 0 and the ti, 1 ≤ i ≤ n, are
terms. Terms are freely generated by the function symbols from F and variables
from V . �

DL*1 extends Standard Deontic Logic (SDL) with the normative concepts of
ideal and contrary-to-duty obligations, and contains predicate symbols, the stan-
dard logical connectives, and the normative operators of obligation (Ob), per-
mission (Pm), prohibition (Fb), their conditional counter-parts, and ideality (Id).
Free variables are implicitly universally quantified at top-level.
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This logic is expressive enough to capture many interesting normative struc-
tures. For details on its expressivity and its semantics, we refer to previous
work [11].

2.2 The Reasoning Module

The NAI suite supports formalizing legal texts and applying various logical oper-
ations on them. These operations include consistency checks (non-derivability of
falsum), logical independence analysis as well as the creation of user queries that
can automatically be assessed for (non-)validity. After formalization, the formal
representation of the legal text is stored in a general and expressive machine-
readable format in NAI. This format aims at generalizing from concrete logical
formalisms that are used for evaluating the logical properties of the legal docu-
ment’s formal representation.

There exist many different logical formalisms that have been discussed for
capturing normative reasoning and extensions of it. Since the discussion of such
formalisms is still ongoing, and the choice of the concrete logic underlying the
reasoning process strongly influences the results of all procedures, NAI uses
a two-step procedure to employ automated reasoning tools. NAI stores only
the general format, as mentioned above, as result of the formalization process.
Once a user then chooses a certain logic for conducting the logical analysis, NAI
will automatically translate the general format into the specific logic resp. the
concrete input format of the employed automated reasoning system. Currently,
NAI supports only the DL*1 logic from Sect. 2.1; however, the architecture of
NAI is designed in such a way that further formalisms can easily be supported.

The choice in favor of DL*1 is primarily motivated by the fact that it can
be effectively automated using a shallow semantical embedding into normal
(bi-)modal logic [11]. This enables the use of readily available reasoning sys-
tems for such logics; in contrast, there are few to none automated reasoning
systems available for normative logics (with the exception of [9]). In NAI, we
use the MleanCoP prover [15] for first-order multi-modal logics as it is currently
one of the most effective systems and it returns proof certificates which can be
independently assessed for correctness [14]. It is also possible to use various dif-
ferent tools for automated reasoning in parallel (where applicable). This is of
increasing importance once multiple different logical formalisms are supported.

2.3 The Annotation Editor

The annotation editor of NAI is one of its central components. Using the editor,
users can create formalizations of legal documents that can subsequently used
for formal legal reasoning. The general functionality of the editor is described in
the following.

One of the main ideas of the NAI editor is to hide the underlying logical
details and technical reasoning input and outputs from the user. We consider
this essential, as the primary target audience of the NAI suite are not necessarily
logicians and it could greatly decrease the usability of the tool if a solid knowledge
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about formal logic was required. This is realized by letting the user annotate legal
texts and queries graphically and by allowing the user to access the different
reasoning functionalities by simply clicking buttons that are integrated into the
GUI. Note that the user can still inspect the logical formulae that result from the
annotation process and also input these formulae directly. However, this feature
is considered advanced and not the primary approach put forward by NAI.

The formalization proceeds as follows: The user selects some text from the
legal document and annotates it, either as a term or as a composite (complex)
statement. In the first case, a name for that term is computed automatically, but
it can also be chosen freely. Different terms are displayed as different colors in the
text. In the latter case, the user needs to choose among the different possibilities
(which roughly correspond to logical connectives) and the containing text can
be annotated recursively. Composite statements are displayed as a box around
the text. An example of an annotation result is displayed in Fig. 2.

Fig. 2. GDPR article 13, paragprah 3: annotation

The editor also features direct access to the consistency check and logical
independence check procedures (as buttons). When such a button is clicked, the
current state of the formalization will be translated and sent to the back-end
provers, which determine whether it is consistent resp. logically independent.

User queries are also created using such an editor. In addition to the steps
sketched above, users may declare a text passage as goal using a dedicated
annotation button, whose contents are again annotated as usual. If the query is
executed, the back-end provers will try to prove (or refute) that the goal logically
follows from the remaining annotations and the underlying legislation.
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2.4 The Abstract Programming Interface (API)

All the reasoning features of NAI can also be accessed by third-party applica-
tions. The NAI suite exposes a RESTful (Representational state transfer) API
which allows (external) applications to run consistency checks, checks for inde-
pendence as well as queries and use the result for further processing. The expo-
sure of NAI’s REST API is particularly interesting for external legal applica-
tions that want to make use of the already formalized legal documents hosted by
NAI. A simple example of such an application is a tax counseling web site which
advises its visitors using legal reasoning over a formalization of the relevant tax
law done in the NAI suite.

3 A Meta-level Annotation Language

An essential element in the compliance checking of privacy policies and data col-
lection procedures, the GDPR’s article 132 is concerned with their transparency.
This article contains 4 paragraphs, where the first two contain each 6 subsec-
tions. The third paragraph extends and modify the second one while the last
states a situation in which the three previous paragraphs do not hold.

Let us consider the first paragraph.

Paragraph 1 of GDPR’s Article 13: Where personal data relating to a data
subject are collected from the data subject, the controller shall, at the time when
personal data are obtained, provide the data subject with all of the following
information:

(a) the identity and the contact details of the controller and, where applicable,
of the controller’s representative;

(b) the contact details of the data protection officer, where applicable;
(c) the purposes of the processing for which the personal data are intended as

well as the legal basis for the processing;
(d) where the processing is based on point (f) of Article 6(1), the legitimate

interests pursued by the controller or by a third party;
(e) the recipients or categories of recipients of the personal data, if any;
(f) where applicable, the fact that the controller intends to transfer personal

data to a third country or international organisation and the existence or
absence of an adequacy decision by the Commission, or in the case of trans-
fers referred to in Article 46 or 47, or the second subparagraph of Article
49(1), reference to the appropriate or suitable safeguards and the means by
which to obtain a copy of them or where they have been made available.

The above paragraph is not easy to read but is even harder to annotate.
There are several reasons.

2 https://eur-lex.europa.eu/eli/reg/2016/679/oj.

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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– The structure of the paragraph is not trivial. It starts by declaring some
conditions, then it states the obligation to communicate information. The
exact information to communicate and other possible conditions are then
specified in each item.

– Most conditions and the obligation are specified once only but the content of
the obligation, i.e. the precise information which should be communicated to
the data subject, is changing for each point.

In order to understand the paragraph, the reader is expected to reconstruct
each of the 6 items with the relevant further conditions and the precise content
of the obligation.

Clearly, new types of annotations must be added. For example, one can con-
sider changing the precise information to communicate in each item as a replace-
ment operation. Such operations are normally not a part of any logical language
but of their meta-language. We need therefore a new kind of annotations for
annotating meta-level concepts.

An even more complex structure appears in the third paragraph.

Paragraph 3 of GDPR’s Article 13: Where the controller intends to further
process the personal data for a purpose other than that for which the personal
data were collected, the controller shall provide the data subject prior to that
further processing with information on that other purpose and with any relevant
further information as referred to in paragraph 2.

Here, in addition to all the issues which were just discussed, the annotation
should also apply it to another, already existing, paragraph. The annotation
should not only add further conditions to the referenced paragraph but modify
it as well. For example, The sentence “the controller shall provide the data
subject prior to that further processing with information on that other purpose
and with any relevant further information as referred to in paragraph 2.” requires
the reader to adapt the obligations of paragraph 2 to the new processing.

Two possible solutions for annotating such complex legal structure come to
mind. First, one can ask the user to simplify the structure manually. In the
above case, the user will transform the complex sentence into many simple ones
and will take care of replacing different values in the right places. This is the
approach taken by current formalizations of the GDPR [19].

The solution suggested in this paper is to automatize this process by pro-
viding an additional layer of annotations for describing the complex structures
of legal texts. These annotations will be called macros. Macros are tailored to
specific situations and are capable of arbitrary modifications of the result. For
example, in the case of paragraph 1, a macro could take the original sentence
and break it down automatically into the several required sentences.

From the engineering point of view, the second approach is better. First,
it saves the user from the need to copy and duplicate parts of the sentence.
In addition, it generates automatically the relevant conditions of each item and
thus is more rigorous. Lastly, by automatizing parts of the formalization process,
future editions of this paragraph become easier - one just needs to change the
relevant parts of the paper and the macro can be called again.
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Clearly, a disadvantage of such an approach is the possible high number of
required macros. For the purpose of having a precise and simple annotation of
article 13, there is a need of 4 such macros. Nevertheless, as we will see next,
these macros are general in nature and will possibly fit a wide range of legal
sentences, which are usually of a restricted form. As a possible extension of the
work discussed in this paper, there is also a plan to add to the NAI suite the
ability to design new macros using a Domain Specific Language (DSL).

A possible such DSL is defined next. This DSL will be used in this paper to
describe the macros which are required for the formalization of article 13.

Definition 2 (Annotation’s syntax). Annotations will be denoted using
English capital letters A,B, . . . with possibly subscripts and superscripts. There
are two types of annotations. Simple annotations, denoted by As are term anno-
tations (also called vocabulary annotations), i.e. annotations applied to term and
therefore do not contain any nested annotation. Complex annotations are of the
form ANNOT(args) where ANNOT is the name of the logical connective which is
used for the annotation and args is an ordered list of the top level annotations
which are included in it. The connectives were described in Sect. 2.1.

For example, a conjunction annotation over the term annotations t(a, b) and
s(X, b) is denoted as AND(t(a, b), s(X, b)).

Definition 3 (Parsing state). Labels are defined as simple annotations which
denote a name and are normally purely propositional. The parsing state is a pair
(annots,map) where annots is an array of annotations which were extracted
from the annotated texts and map is a mapping between labels and annotations.
We denote the map which is obtained by setting the value y for the label x in
map by map(x, y). We denote the value which is associated with the label x in
map by map[x].

Definition 4 (Macros). A macro is a transformation from one parsing state
into another and is denoted by (annots1,map1) =⇒ (annots2,map2). Macros
normally apply to only one annotation J1 in the annots array. In these cases,
we will simplify the notation and write (J1,map1) =⇒ (J2,map2). In addition,
when the map does not change, we will sometimes further simplify the notation
and write J1 =⇒ J2.

Lastly, we need to define occurrences of subterm annotations within annota-
tions in order to be able to formally desscribe replacements.

Definition 5 (Subterm occurrences). Given an arbitrary annotation A, we
denote by A[x] all occurrences of a subterm annotation x appearing in it. In the
definition of a macro (A[x],map1) =⇒ (A[y],map2), A[y] on the right hand side
is obtained from A[x] by replacing all occurrences of x in A with y.

For example, assuming that the conjunction in the previous example is
denoted by A, the occurrences of the subterm b in it are denoted by A[b].
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We can denote the macro which replaces those occurrences of b with c using
A[b] =⇒ A[c].

We can now give a formal definition of the specific macros.

The Multi-obligation Macro. This macro takes two annotations, where the
second annotation has the following restrictions. First, it must be a conjunction.
Second, each conjunct except the first must be either a term, an “If/Then”
or an “Always/If” annotation. Third, its first conjunct must be a term which
contains the placeholder VAR. This placeholder can also appear anywhere in the
first annotation.

Definition 6 (The multi-obligation macro). The multi-obligation macro is
defined by (M-OBS(C[VAR], AND(A[VAR], B1, .., Bn)),map)
=⇒
(AND(IF-THEN-OB(AND(C[B1

1 ], B
0
1), A[B1

1 ]), . . . ,
IF-THEN-OB(AND(C[B1

n], B0
n), A[B1

n])),map).
Where

– n ≥ 1
– For each 0 < i ≤ n, Bi is one of the following

• IF-THEN(B0
i , B

1
i )

• ALWAYS-IF(B1
i , B

0
i )

• A simple annotation B1
i . In this case B0

i is empty.

Informally, when applied to two annotations, the macro does the following.
For each conjunct beyond the first in the second annotation, the macro creates
a new conditional obligation. The type of obligation and the form of conditions
is defined according to the type of annotation:

– In case the annotation is simple, the set of conditions is the one defined in
the first annotation and the obligation is the first conjunct, where the VAR
placeholder is replaced by the simple annotation.

– In case the annotation is an “If/Then” or an “Always/If”, we define the condi-
tion part of the annotation to be the first formula of the “If/Then” annotation
and the second in “Always/If”, while the conclusion part is defined to be the
second formula and first, respectively. The set of conditions is a conjunc-
tion of the one defined in the first annotation and conditions of the complex
annotation. The obligation is the first conjunct, where the VAR placeholder is
replaced by the conclusion of the complex annotation.

Similarly to the above, any occurrence of the placeholder VAR in the condi-
tions is replaced with the same term as in the obligation.

Paragraph 3 is relatively short syntactically but complex semantically. It
expands on paragraph 2 and places further conditions and obligations. While
paragraph 2 describes the obligations in case of the first data processing, para-
graph 3 describes those in all subsequent ones. Clearly, additional macros are
required. The first macro is used for cross-reference and allows the users of the
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editor to label annotated sentences with a certain name. Using this name, a sec-
ond macro then takes the referenced annotated sentence, copies it and replaces
relevant parts.

The Labeling Macro. This macro, which helps other macros to function by
changing the state, expects two annotations. The first is a simple annotation
denoting the label while the second can be any possible annotation. It enables the
use of labels in other macros which are defined later. In our example, the simple
annotation is just the term a13_p2 which is used to name the second paragraph,
while the second annotation is the whole content of the second paragraph.

Definition 7 (The labeling macro). The labeling macro is defined as follows
(LABEL(As, B),map) =⇒ (B,map(As, B))

The Copying Macro. This macro takes three arguments. An optional anno-
tation containing further conditions, a conjunction of further obligations of the
form stated in the Multi-obligation Macro and a label which is used in order to
copy an annotated sentence. It uses the first conjunct of the second annotation
to replace the obligation of the copied annotation and adds further obligations
according to the other conjuncts. In our example, this macro copies the second
paragraph, while adding further conditions referring to subsequent processing
and the order between them. It then replaces the obligation to refer to the sub-
sequent processing and adds a further obligation to communicate information
about the purpose of the processing. It also states that the information should
be communicated to the data subject before the processing takes place and not
at the time of the collection, as is the case in paragraph 2.

Definition 8 (The copying macro). The copying macro is defined as follows
(COPY(D?[VAR], AND(E[VAR], F1, ..Fm), Gs),map)
=⇒
(M-OBS(AND(D?[VAR], C[VAR]), AND(E[VAR],
B1, . . . , Bn, F1, . . . , Fm)),map) Where

– m ≥ 0
– map[Gs] =

M-OBS(C[VAR], AND(A[VAR], B1, .., Bn)) with all the conditions as in Defini-
tion 6.

– For each 0 ≤ j ≤ m, Fi is one of the following
• IF-THEN(F 0

i , F 1
i )

• ALWAYS-IF(F 1
i , F 0

i )
• A simple annotation F 1

i . In this case F 0
i is empty.

– D? refers to an optional arbitrary annotation.

The last macro is based on the forth paragraph.

Paragraph 4 of GDPR’s Article 13: Paragraphs 1, 2 and 3 shall not apply
where and insofar as the data subject already has the information.
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The last paragraph in the article has a standard legal form. Its purpose is
to set exceptional circumstances in which other paragraphs do not hold. In our
example, none of the obligations in the previous paragraphs should hold in case
the data subject already has the required information.

In the previous subsection, we have seen a utility macro for labeling anno-
tations. This macro is handy here as well as we will need to be able to refer to
other annotations, in order to apply a macro for exceptional circumstances.

The Exception Macro. This macro gets a list of simple annotations, which
denote labels of other annotations. It additionally gets an annotation which
serves as the exceptional circumstances. When applied, this macro will add the
negation of the exceptional circumstances to the conditions of all referred obli-
gations in the state. In our example, it will make sure that all the obligations
described in this article hold only in case the relevant information in the spe-
cific obligation is not already known to the data subject. Since many of these
obligations are generated by one of the other macros, the exceptional circum-
stances can contain the VAR placeholder, similarly to the Multi-obligation and
Copy macros. In our example, this placeholder is indeed used and is replaced,
for every obligation, with the exact information which should be communicated
and should not be already known.

Definition 9 (The exception macro). The exception macro is defined as
follows
(EXCEP(As

1, . . . , A
s
n, B),map) =⇒ (∅,map(As

1, C1)(. . .)(As
n, Cn)) where

– n ≥ 1
– For each 0 < i ≤ n

• map[As
i ] = C ′

i

• In case C ′
i = M-OBS(A,D), Ci = M-OBS(AND(NOT(B), A),D)

• Otherwise Ci = IF-THEN(NOT(B), C ′
i)

A note about the above interpretation of legal exceptions. The macro defined
in Definition 9 applies further conditions to previously defined sentences. The
purpose of these further conditions is to specify situations in which these sen-
tences are defeated. Most approaches to defeasible reasoning are based on non-
monotonic logics [18]. Nevertheless, monotonic logics have been proposed as well
[6]. Clearly, more discussion is required in order to justify the choice in Defini-
tion 9. While this discussion is beyond the scope of this paper, I would like to
point out the main difference between the two approaches and suggest, in a very
informal and imprecise way, a remedy, which is made possible by using the NAI
Suite. Improving and implementing this remedy is planned as a future work.

In contrary to classical logics, non-monotonic logics allow a decrease in the
amount of possible deductions given an increase in factual information. This
advantage is no longer relevant if all possible knowledge is known in advance
(please refer to Section 6 in [20] for more information). While knowing everything
in advance is not feasible, knowing what is known in advance is. After all, the
known information must be input into the NAI Suite and the total amount of
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relevant information is finite, since it must appear in the legislation, which is
finite (or more precisely, can be finitely denoted). The NAI Suite can decide for
each piece of information if it is known or not and adapt the reasoning process
in order to take it into account.

It should be further noted that the macros abstract over the exact inter-
pretation of exceptions. The precise treatment is handled by the underlining
logic and theorem prover. It is true that in Definition 9 an explicit negation was
used. The reason for that is that right now there is no other underlining logic. A
better definition would use a new operator for denoting evidence which defeats
obligations. The current underlining logic will interpret this operator as classi-
cal negation while a Prolog based solution would interpret it as a “negation as
failure”, etc.

4 Example: Automated Reasoning over GDPR Article 13

This section describes the formalization of article 13 of the GDPR using the NAI
Suite and the extensions to the suite which were implemented in the previous
section. The macros currently appear in the suite in the same drop list as the
logical and normative connectives, just below a separator. In later versions of
the tool, they will probably be allocated their own drop list.

The reader is invited to follow this section while simultaneously looking at
the formalization in the tool itself. The formalization and queries which resulted
from this work are integral artefacts of this paper and can be accessed via the
NAI Suite web application3. This section will constantly make references to the
tool.

4.1 Annotating Paragraph 1

The NAI Suite, as described in Sect. 2.3, requires us first to create a new legis-
lation and then copy the original text into the editor pane. The first paragraph
describes a situation in which a controller is obliged to communicate different
information to the data subject, according to different conditions. Although not
explicitly written, this paragraph also talks about processors and the processing
of the data itself, as well as of its collection. In order to formalize the article,
we must make these elements explicit in the text. We therefore add this infor-
mation in brackets (‘[’,‘]’) as can be seen in the already annotated text in the
editor pane.

Given the explicit text of the paragraph, we are ready to annotate it. The first
step of every formalization using the NAI Suite is to annotate all terms which
are part of the vocabulary of the text. These terms correspond to the colorful
annotations in the editor. There are many relations between the different legal
terms. For example, the personal data of the data subject is being collected and
3 Please login to https://nai.uni.lu using the email address: gdpr@nai.lu and password:

nai. Please note that this account is write protected and cannot be changed. Note
also that no registration is required in order to use the above account!.

https://nai.uni.lu
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processed and is subject to the supervision of a Data Privacy Officer (DPO).
Such complex relations require an expressive language such as fist-order logic,
which is used in the annotations of the article.

As an example of term annotations, one can consider the phrases “data sub-
ject” and “personal data”, for which the following first-order terms were assigned
(respectively): data_subject(Subject) andpersonal_data(Data, Subject).
When annotating terms, words starting with a lower-case letter are considered
as constants while those starting with a capital letter are considered as variables
which are quantified over the whole logical expression. The full list of the anno-
tated legal terms can be found on the “Vocabulary” tab in the legislation editor.

Once all legal terms are annotated, we can proceed with annotating the rela-
tionsips between them. The structure of the paragraph is the following. A set of
conditions for the whole paragraph is followed by an obligation to communicate
information. The precise information to communicate then follows in each of the
items, possibly with some further conditions.

The NAI suite supports such a sentence structure via the “Multi-obligation
Macro”. This macro accepts an annotation denoting the general conditions and
a second annotation denoting the additional obligations and their specific con-
ditions. When applied, the macro generates a conjunction of obligations, one for
each of the annotated obligations and with the general conditions as well as the
specific ones. We therefore annotate the whole paragraph 1 with this annotation.

We now proceed with annotating the conditions and obligations. First, we
use the “And” connective to annotate all the general conditions, such as the
existence of a processor and a controller, etc. We then proceed by using the
“And” connective to annotate all the obligations. Each obligation can have one
of three forms. A simple obligation contains just a term. The macro will convert
this obligation into a conditional obligation where the conditions are all the
general ones from the first conjunction. The more complex obligations are either
“If/Then” and “Always/If”.

The difference between these two connectives is syntactical only. While in
“If/Then”, the conditions are specified by the first annotation and the conclusion
with the second, the order is reversed in “Always/If”. By using one of these
two annotations for the different obligations, the macro will know to add the
additional, specific conditions to the conditions of each resulted obligation.

The application of the macro to the annotation of paragraph 1 generates
multiple annotations. The DSL denotation of the generated annotation of the
first item of paragraph 1 can be seen in Fig. 3

Fig. 3. Generated annotation of item 1 in paragraph 1
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The specific annotations can be seen by hovering with the mouse over the
relevant parts of the text. The full formalization of this article can be seen on
the “Formalization” tab. This formalization is a conjunction of the obligations
specified in the article. Note that since some items contain more than just one
obligation, the conjunction contains more than 6 conjuncts.

The annotation of paragraph 2 is similar.

4.2 Annotating Paragraph 3

Using the “Copy” macro, annotating this paragraph becomes relatively simple.
The annotation takes 3 elements. The first contains optional additional condi-
tions. Indeed, since we consider now further processing of the data, there are
additional conditions such as the processor of the new processing, its purpose,
etc. We also need, in the conditions, to stress that the new processing is different
from the previous one. Finally, we group these further conditions in an “And”
annotation.

The second element contains the further obligations. The first of which is
the obligation template which contains the VAR placeholder. This element will
replace the obligation template in the copied annotation which is referenced by
the third element. The remaining items in this element are additional values
which should be substituted for VAR in each of the generated obligations. These
items add to those from the referenced annotation.

The annotated text can be seen in Fig. 2.
The resulting formalization, which can be seen at the bottom (the third

element) of the “Formalization” tab, contains therefore more obligations that
the referenced paragraph 2. In addition, all the obligations refer to the new
purpose and state a new communication time, as stated in the new conditions.

Facilitating Correct Formalization. There is a further interesting issue
which relates to this paragraph. Clearly, its annotation is far from trivial and is
error prone. Still, by using macros and annotations, the chance of error occur-
ring is reduced since there is a clear connection between the text itself and its
annotation, as demanded by the Isomorphism approach to legal formalization
[2]. This is not the case when the paragraph is translated into a logical formula
manually. As an example, consider the DAPRECO formalization of the GDPR
[19]. As mentioned in the introduction to this paper, this ambitious knowledge
base contains a manual translation of almost all articles of the GDPR.

Nevertheless, if we focus on the translation of this paragraph4, we can see
several errors. First, the translation does not mention at all the fact that all of
the required information mentioned in paragraph 2 is required here as well. Even
more important though, there is no distinction between the two processing events
of the data, except in the name of the variable used to denote them. There is a
4 Please search for the text “statements51Formula” in https://raw.githubusercontent.

com/dapreco/daprecokb/master/gdpr/rioKB GDPR.xml, of a version no later than
11/2019.

https://raw.githubusercontent.com/dapreco/daprecokb/master/gdpr/rioKB_GDPR.xml
https://raw.githubusercontent.com/dapreco/daprecokb/master/gdpr/rioKB_GDPR.xml
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relation between the times of the two occurrences but it is defined as “greater or
equal”. Clearly, this formalization will always apply to any processing, whether
first or not, since one can substitute for the universally quantified variables the
same processing and the same time.

Such an error is not easy to spot, when one translates regulations manually.
On the other hand, when using annotations and macros, we could more easily
spot this and use a correct annotation.

4.3 Annotating Paragraph 4

Annotating exceptions is now also relatively straightforward. We use the “Excep-
tion” macro to state all the annotations which should take an additional condi-
tion and the condition itself. The result can be seen in Fig. 4.

Fig. 4. Annotating the exception in paragraph 4

While in the intermediary annotations-based level we add a new annotation
to faithfully capture the exception, in the underlining logical representation no
new formula is added but existing formulae are modified to accommodate the
exception. This is an example of an hierarchical formalization [20] which aims
at being both faithful, well engineered and efficient.

4.4 Automated Reasoning over the GDPR

Section 2 has described several automated deduction based tools, such as consis-
tency or independence checking. These tools can be used for checking the correct-
ness of the formalization. Nevertheless, the main usage of automated deduction
within the NAI Suite is for allowing the computer to answer questions and make
legal deductions. Given a correctly formalized legislation, NAI can currently
answer Yes/No questions. This is done by employing the state-of-the-art theo-
rem prover MleanCoP [15], which in turn tries to build a formal proof that the
question logically follows from the formalization and assumptions. Since first-
order modal resolution is only semi-decidable [8], some negative answers cannot
be given. The NAI Suite displays a warning in this case.

The main expected usage of this feature is by third-party tools, which will
use the deduction engine of the NAI Suite over an already formalized legislation
in order to answer arbitrary questions. For example, privacy policies can be
checked automatically for compliance by constructing the relevant queries [17]
and executing them in the NAI Suite.

Nevertheless, the NAI Suite also supports the possibility of writing queries
directly in the tool. This feature is mainly used for testing and as a support tool
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for lawyers and jurists. Similarly, this feature can be used in order to demonstrate
automatic reasoning over the article. The example consists of five questions
relating to the precise time the controller is obliged to communicate different
information to the data subject. These questions can be found and executed
on the “Queries” menu of the tool. In the remaining of this section, they are
described in detail.

Precise Time of Communicating Information in Case There is at Most
One Processing of the Data. In order to be able to answer this question,
three different scenarios are given. In each, we check if the controller is obliged
to communicate specific information.

In all the example questions, the variable denoting the required information
is instantiated with a specific one. In general, queries can also be executed over
free variables and can represent a more general question.

The basic scenario which is described in all queries is the following. The birth
date of the data subject Albert was collected on the 1/8/2017. The Controller
Brian has nominated the Processor John to process the data for the purpose of
improving the business. The processing took place on the 1/9/2017.

In the first question we assume that Albert does not yet know the Contact
Details of the Data Protection Officer, who is named Charles. We ask if, in this
case, Brian is obliged to communicate this information to Albert at the time of
processing. When we execute the query, NAI tells us that this is not the case.

The way a theorem prover answers Yes/No questions is by trying to prove
them. In case a proof is found, we have a mathematical argument that the answer
is Yes. When a proof cannot be found, the theorem prover might answer that
either the query is counter-satisfiable, or that the search for proof has timed out.

In the case the query is counter-satisfiable, we know that based on the infor-
mation we have given, the prover has found cases where the opposite of what
we have asked is true and that therefore, proving the validity of the argument is
impossible. If we have given all relevant information, then this answer is effec-
tively a No. On the other hand, if we have forgotten some important information,
such as the fact that Brian is the Controller, then being counter-satisfiable means
that in some cases, the answer is No, but in others, it might be Yes. For exam-
ple, when we omit the information about the controller, it might be that it is
not Brian who is obliged to communicate the data and therefore, we have found
a counter example. This means that the quality of the answer is based on the
quality of the question.

In the case the prover times out, we can only know that we have terminated
its execution before an answer was found. Usually, the theorem prover answers
in less than a second. While we can normally assume that a futile search for a
proof usually means that there is none, we cannot count on this result.

For the first question, we have obtained the answer that a counter-example
exists. By considering the “Vocabulary” tab, we can confirm that we have con-
sidered all relevant information and that therefore, this answer means no - Brian
has no such obligation.
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For the second question, the obligation was changed from communicating
the information at the time of processing to communicating it at the time of the
collection of data. The prover answers in this case Yes - Indeed, Brian is under
such a legal obligation.

The last question checks if this obligation also holds when the information
is not Charles contact details, but the purpose of processing. The prover still
answers Yes.

Precise Time of Communicating Information in Case of a Second Pro-
cessing of the Data. In the following two questions, we expand the case as
follows. Besides nominating John to process the data, Brian has also nominated
Chris to process it for the purpose of a collaboration with Facebook. Chris has
processed the data on the 1/10/2017.

The first question in this group tries to determine, again in case Albert is
not aware of this second purpose of processing his Data, if Brian is obliged to
communicate this information at the time of the second processing. The prover
answers No.

The last query states the same question, but places the time of communi-
cating the information to before the time of the second processing. The prover
affirms that this is indeed an obligation of Brian.

The examples above have shown how arbitrary Yes/No questions can be
answered by the tool. In a similar fashion, questions can be asked by third-party
tools via the exposed API (see Sect. 2.4), such as whether a certain privacy policy
complies with the GDPR.

5 Conclusion and Future Work

The formalization of legal texts is a non-trivial and error-prone task. Annotations
can help generating correct formalizations. Nevertheless, legal texts contain sen-
tence structures which go beyond logical and deontic connectives. The solution
which was described and demonstrated in this paper uses macros to describe
meta-level properties and to annotate such structures.

The four macros which were introduced are relatively general and appear
in other legal texts, as well as in other articles of the GDPR. The immediate
followup of the current work is the formalization of articles 5 and 6, which have
a similar structure. Other macros will be added when needed.

In addition, the macro DSL which was introduced in Sect. 3 can be extended
into a macro editing functionality within the NAI Suite. Such a feature will allow
users to create arbitrary macros and handle any kind of legal text efficiently.

Currently, the NAI suite supports an expressive deontic first-order language.
This language is rich enough to describe many scenarios which appear in legal
texts. Nevertheless, more work is required in order to capture all such scenar-
ios. Among those features with the highest priority, we list support for excep-
tions, temporal sentences and arithmetic. In Sect. 4.3, one possible direction for
addressing exceptions was given. Other possible solutions for these issues already
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exist in the form of tools such as non-monotonic reasoners [10], temporal provers
[24] and SMT solvers [7].

On the level of usability, the tool currently does not give any information as
to why a query is counter-satisfiable. The user needs to look on the vocabulary in
order to determine possible reasons. Integrating a model finder, such as Nitpick
[5], will help “debugging” formalizations and enriching the query language.

NAI’s graphical user interface (GUI) aims at being intuitive and easy to use
and tries to hide the underline complexities of the logics involved. A continuously
updated list of new features can be found on the GUI’s development website5.
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Abstract. A methodology for the formalization of legal texts is pre-
sented. This methodology is based on features of the NAI Suite, a recently
developed formalization environment for legal texts. The ability of the
tool to execute queries is used in order to drive a correct formalization
until all queries are validated. The approach is studied on a fragment
of the Smoking Prohibition (Children in Motor Vehicles) (Scotland) Act
2016 of the Scottish Parliament.
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1 Introduction

The generation and maintenance of knowledge bases as a formalized representa-
tion of domain specific information is a well-established approach for enabling the
employment of automated procedures that process this information in a suitable
way. In the context of Computational Law, knowledge bases may act as large
repositories of interpretations of legal documents and therein contained norms,
for the purpose of providing semantic access to them, e.g., for employment in
legal drafting, compliance checking, and legal reasoning. While earlier research
in Legal Informatics focused on structured document representations and infor-
mation retrieval, e.g. [3], more recent work also addresses the logical structure of
the legal documents’ semantical content [14]. This structure is thereby captured
by logical rules of some adequate logical formalism which describe the contained
obligations, permissions, prohibitions, etc. and may then, in conjunction with a
concrete state of affairs, be used to derive the legal consequences with respect
to the given normative document using a deductive reasoning procedure.

In this paper, we follow the idea of using (semi-)automated reasoning tech-
nology for legal norms, but focus on the validation of legal knowledge bases
themselves. Knowledge bases may be (partly) engineered by IT professionals
since quite some expertise about its underlying technical details, e.g. knowledge
about the computer-readable input format, is potentially necessary. How can
we make sure that the representation of the legal norms actually captures the
intended meaning? The knowledge engineering can of course include erroneous
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inputs because of limited domain knowledge available. Regardless of the domain
expertise, general errors and inaccuracies may, of course, occur in any case.
State-of-the-art methodologies for building legal ontologies [9] and for validating
formal representations of legal texts [1] rely on communication between domain
experts and IT experts for ensuring correctness. In the approach of Bartolini et
al., the knowledge is modeled by IT experts and then translated algorithmically
to a natural language representation. The latter representation is then given to
domain experts who assess its correctness. Potential errors or problems are then
reported back to the IT experts which try to accommodate the feedback. This
whole process is repeated until certain quality criteria are met. Of course, com-
munication between different domains is error-prone and laborious; the natural
language translation result is still quite complex and might hinder the proper
assessment of the data.

In contrast to this approach, we describe ongoing work towards a method-
ology that, intuitively speaking, treats the creation of legal knowledge bases as
a domain-specific agile software engineering process. The methodology aims at
enabling non-technical domain experts, here legal professionals, to control the
knowledge engineering process by using a graphical and interactive interface that
uses automated reasoning technology for providing real-time assessments of the
given inputs. This design decision is in line with other systems that address
the formalization of legal knowledge for non-technical audience, as done e.g. in
“Oracle Policy Automation” (OPA) by Oracle Corporation.1 The methodologi-
cal approach in this paper is prototypically implemented in the new normative
reasoning framework NAI [8]. NAI features a graphical annotation-based editor
which abstracts from the underlying logical language of the knowledge base. It
also incorporates easily accessible functionality for assessing the quality require-
ments of the presented methodology, including consistency, non-redundancy and
functional correctness.

Additionally, the architecture of NAI is modular in the sense that it allows
the use of different logics and reasoning engines that seem fit for the task at
hand. It also provides an API, which can be used by other tools in order to
reason over the formalized legislation. NAI is a web application and is readily
available at https://nai.uni.lu. It is open-source and its source code is freely
available at GitHub2 under GPL-3.0 license.

The contributions of the paper are: A description of a new agile methodology
inspired by behaviour-driven Development (BDD) for the creation and validation
of legal knowledge bases. Furthermore, we show how the NAI tool can be used to
implement this methodology by exemplarily formalizing a fragment of a concrete
legal document and testing the resulting knowledge basis for correctness.

1 See http://oracle.com/technetwork/apps-tech/policy-automation for further infor-
mation.

2 See https://github.com/normativeai.

https://nai.uni.lu
http://oracle.com/technetwork/apps-tech/policy-automation
https://github.com/normativeai
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2 Preliminaries

The logical formalism underlying the NAI framework is based on a universal
fragment first-order variant of the deontic logic DL* [7], denoted DL*1. Its
syntax is given by

Definition 1 (Syntax of DL*1). Let V , P and F be disjoint sets of symbols
for variables, predicate symbols (of some arity) and function symbols (of some
arity), respectively. DL*1 formulas φ, ψ are given by:

φ, ψ ::= p(t1, . . . , tn) | ¬φ | φ ∧ ψ | φ ∨ ψ | φ ⇒ ψ

| Idφ | Obφ | Pmφ | Fbφ | φ ⇒Ob ψ | φ ⇒Pm ψ | φ ⇒Fb ψ

where p ∈ P is a predicate symbol of arity n ≥ 0 and the ti, 1 ≤ i ≤ n, are
terms. Terms are freely generated by the function symbols from F and variables
from V . �
DL*1 extends Standard Deontic Logic (SDL) with the normative concepts of
ideal and contrary-to-duty obligations, and contains predicate symbols, the stan-
dard logical connectives, and the normative operators of obligation (Ob), per-
mission (Pm), prohibition (Fb), their conditional counter-parts, and ideality (Id).
Free variables are implicitly universally quantified at top-level.

This logic is expressive enough to capture many interesting normative struc-
tures. For details on its expressivity and its semantics, we refer to [7].

3 The NAI Suite

The NAI suite integrates novel theorem proving technology into a usable graph-
ical user interface (GUI) for the computer-assisted formalization of legal texts
and applying automated normative reasoning procedures on these artifacts. In
particular, NAI includes

1. a legislation editor that graphically supports the formalization of legal texts,
2. means of assessing the quality of entered formalizations, e.g., by automatically

conducting consistency checks and assessing logical independence,
3. ready-to-use theorem prover technology for evaluating user-specified queries

wrt. a given formalization, and
4. the possibility to share and collaborate, and to experiment with different

formalizations and underlying logics.

NAI is realized using a web-based Software-as-a-service architecture, cf. Fig. 1.
It comprises a GUI that is implemented as a Javascript browser application, and
a NodeJS application on the back-end side which connects to theorem provers,
data storage services and relevant middleware. Using this architectural layout,
no further software is required from the user perspective for using NAI and its
reasoning procedures, as all necessary software is made available on the back
end and the computationally heavy tasks are executed on the remote servers
only. The results of the different reasoning procedures are sent back to the GUI
and displayed to the user. The major components of NAI are described in more
detail in the following.
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Fig. 1. Software-as-a-service architecture of the NAI reasoning framework. The front
end software runs in the user’s browser and connects to the remote site, and its different
services, via a well-defined API through the network. Data flow is indicated by arrows.

3.1 The Reasoning Module

The NAI suite supports formalizing legal texts and applying various logical oper-
ations, such as consistency checks (non-derivability of falsum), logical indepen-
dence analysis as well as the creation of user queries that can automatically be
assessed for (non-)validity. After formalization, the formal representation of the
legal text is stored in a general and expressive machine-readable format in NAI.
This format aims at generalizing from concrete logical formalisms that are used
for evaluating the logical properties of the legal document’s formal representa-
tion.

There exist many different logical formalisms for capturing normative reason-
ing and extensions of it. Since the discussion of such formalisms is still ongoing,
and the choice of the concrete logic underlying the reasoning process strongly
influences the results of all procedures, NAI uses a two-step procedure to employ
automated reasoning tools. NAI stores only the general format, as mentioned
above, as the result of the formalization process. Once a user then chooses a cer-
tain logic for conducting the logical analysis, NAI will automatically translate
the general format into the specific logic resp. the concrete input format of the
employed automated reasoning system. Currently, NAI supports only the DL*1
logic from Sect. 2; however, the architecture of NAI is designed in such a way
that further formalisms can easily be supported. Some possible extensions, such
as for the treatment of exceptions, are described in Sect. 5.

The choice in favor of DL*1 is primarily motivated by the fact that it can
be effectively automated using a shallow semantical embedding into normal
(bi-)modal logic [7]. This enables the use of readily available reasoning systems
for such logics; in contrast, there are few to none automated reasoning systems
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available for normative logics (with the exception of [5]). In NAI, we use the
MleanCoP prover [11] for first-order multi-modal logics as it is currently one of
the most effective systems and it returns proof certificates which can be inde-
pendently assessed for correctness [10]. It is also possible to use various different
tools for automated reasoning in parallel (where applicable). This is of increasing
importance once multiple different logical formalisms are supported.

3.2 The Annotation Editor

The annotation editor of NAI is one of its central components. Using the editor,
users can create formalizations of legal documents that can subsequently be used
for formal legal reasoning. The general functionality of the editor is described
in the following. A more detailed exemplary application on a concrete legal
document is presented in Sect. 4.3.

One of the main ideas of the NAI editor is to hide the underlying logical
details and technical reasoning input and outputs from the user. We consider
this essential, as the primary target audience of the NAI suite are not necessarily
logicians and it could greatly decrease the usability of the tool if a solid knowledge
about formal logic was required. This is realized by letting the user annotate legal
texts and queries graphically and by allowing the user to access the different
reasoning functionalities by simply clicking buttons that are integrated into the
GUI. Note that the user can still inspect the logical formulae that result from the
annotation process and also input these formulae directly. However, this feature
is considered advanced and not the primary approach put forward by NAI.

The formalization proceeds as follows: The user selects some text from the
legal document and annotates it, either as a term or as a composite (complex)
statement. In the first case, a name for that term is computed automatically, but
it can also be chosen freely. Different terms are displayed as different colors in the
text. In the latter case, the user needs to choose among the different possibilities
(which roughly correspond to logical connectives) and the containing text can
be annotated recursively. Composite statements are displayed as a box around
the text. An example of an annotation result is displayed in Fig. 4a.

The editor also features direct access to the consistency check and logical
independence check procedures (as buttons). When such a button is clicked, the
current state of the formalization will be translated and sent to the back-end
provers, which determine whether it is consistent resp. logically independent.

User queries are also created using such an editor. In addition to the steps
sketched above, users may declare a text passage as goal using a dedicated
annotation button, whose contents are again annotated as usual. If the query is
executed, the back-end provers will try to prove (or refute) that the goal logically
follows from the remaining annotations and the underlying legislation.

3.3 The Abstract Programming Interface (API)

All the reasoning features of NAI can also be accessed by third-party applica-
tions. The NAI suite exposes a RESTful (Representational state transfer) API
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which allows (external) applications to run consistency checks, checks for inde-
pendence as well as queries and use the result for further processing. The expo-
sure of NAI’s REST API is particularly interesting for external legal applica-
tions that want to make use of the already formalized legal documents hosted by
NAI. A simple example of such an application is a tax counseling web site which
advises its visitors using legal reasoning over a formalization of the relevant tax
law done in the NAI suite.

4 A Methodology for the Creation of Correct
Formalizations

The formalization process essentially consists of translating an informal natural
language text into a formal logical formula or code. As mentioned before, this
step is essential for being able to apply automated reasoning techniques.

We can choose various formulae in the logic DL*1 which seem to describe a
text at hand. Each of these formulae differs in the cases in which it holds, and
in the consequences which can be derived from it.

A correct formalization means that the right formula is chosen. How can
we pick up this formula? In [1], Bartolini et al. define a methodology for the
validation of the formal representation of legal texts by a backward translation to
a human-readable text. The text is then being validated by legal experts. Mockus
and Palmirani [9] define a method for the iterative refinement of ontologies, which
is inspired by a previous work by Peroni [13]. Peroni’s work adapts approaches
from the agile methodology in software engineering. The above approaches still
depend on humans for validation. In this section we describe a new methodology
which is based on Behaviour Driven Development (BDD)3. The “behaviours”
defined by this methodology are validated by machines, similarly to those in
software engineering.

4.1 Behaviour-Driven Development in Software Engineering

Behaviour-driven development (or BDD for short)4 emerged from the process
known as test-driven development (TDD). The concept behind BDD is to provide
development and management teams with a shared process and shared tools, so
that they can effectively collaborate while developing software. To this end, it
combines the basic principles of TDD with object-oriented analysis and domain-
driven design, to make the process of creating software as optimized and effective
as possible.

In its core, BDD is simply the idea that software development should be
governed by both technical proficiencies and business interests alike. However,
besides the ideological concept, BDD does make use of specialized software in
order to achieve the desired goals. The main tool of the method is a simple

3 https://www.agilealliance.org/glossary/bdd/.
4 The description is based on the definition in http://behaviour-driven.org/.

https://www.agilealliance.org/glossary/bdd/
http://behaviour-driven.org/
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domain-specific language (DSL): Instead of complex lines of code, this language
uses normal English words and logical constructs to express how the software
should behave.

Using BDD in Software Engineering. BDD is a branch of the test-driven devel-
opment method, which also uses domain-specific language to convert natural
language phrases and statements into executable tests. We are talking about
sentences that start with a conditional word (should, given, when, if, etc.) and
define an outcome. For example:

– If I have two apples
– And my friend takes one
– Then I will have one apple

Basic Principles of BDD. BDD follows the basic principle that each unit of
software must be individually tested. The process usually goes like this:

1. A test is designed for the specific software unit
2. The test is made to fail
3. The unit is then implemented into the test
4. The test is done again, verifying that the implementation of the unit makes

it succeed

This basic outline allows the testing of both high and low-level software, as well
as anything in between. When using the BDD methodology, the tests should be
specified in terms of the desired behaviour of the unit in question. This behaviour
is basically the requirements set by the business entity that commissioned the
creation of the software.

Benefits of BDD. There are various benefits of using BDD in software engi-
neering. In [12] they identify seven themes in which research has shown the
advantages of BDD over other methods. Among the themes, three are especially
relevant to legal formalization and are discussed below.

Cost. Some research suggests that BDD can help keep projects within budget.
Findings are inconclusive about that. The same advantages can exist when
formalizing legal texts.

Time. There is much evidence that BDD can reduces the development time.
One of BDD’s main goals is to keep implementation limited to passing the
tests and therefore reduces implementation time. In addition, tests assure
that changes to the code still conform to previous requirements. These benefits
hold for legal formalization as well. There is much flexibility when formalizing
legal text, from very specific and detailed formalization to a more abstract
one. The level of detail depends on the intended use of the formalization. For
example, if the intended queries we plan on executing over the text do not
deal with specific laws regarding the age of the offender, there is no need to
formalize those. Similarly, changes to formalizations are required from time
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to time, either because of changes in the law or the need to use a more
detailed level. Tests ensure that those changes are compatible with previous
requirements.

People. BDDs help bridge the gap between stack holders and programmers.
The tests are normally written by stack holders and are automatically con-
verted to code. This point is even more relevant to the legal domain. One
of the main difficulties in legal formalization is the need to have both legal
and technical/logical skills. The most popular approach to legal formalization
depends on Prolog programming skills, for example. Using BDD in legal for-
malization will allow legal experts to write the tests while programmers and
logicians will focus on the implementation of a formalization which satisfies
them.

4.2 Towards Behaviour-Driven Development of Legal Formalization

BDD has been successfully used in software engineering and we believe that it
can be adapted to legal text formalization as follows.

The lawyer writes down different scenarios which should be true (or false),
given her interpretation of the legal text. The lawyer then annotates these sce-
narios in order to translate them into test formulae. In the last step, a person
needs to annotate the legal text in a way such that all the test formulae will be
validated. It should be noted that the person in the last step must not have a
full legal understanding of the text and that in principle, this last step can even
be executed by a machine, which tries different formalization possibilities until
all test formulae are satisfied.

More formally and in alignment with the BDD process, we define the
behaviour-driven development of a legal formalization as follows:

1. The legal expert writes down a set of legal cases and their intended resolution.
2. The cases naturally fail since they are not yet handled by the formalization.

The failure is determined by the execution of the tests in a theorem prover.
3. Programmers or logicians then attempt to formalize the specific part of the

legislation which covers those cases. If the number of possibilities is finite, this
step can be automated in the future. Even if full automation is not possible,
approaches like machine learning can make it more feasible.

4. The cases are executed again to verify that the formalization correctly cap-
tures the elements of the legislation which corresponds to the cases.

We need therefore to start with a comprehensive list of scenarios and their
outcomes based on our legal interpretation. It should be noted that such scenarios
are normally based on many articles or even on the whole text. In our example,
we will derive them from one article only.

4.3 Case Study: Scottish Smoking Regulation

In this section we are going to demonstrate how the NAI suite can be used for
implementing the above methodolgy on a legal text. The text we will use is
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the “Smoking Prohibition (Children in Motor Vehicles) (Scotland) Act 2016”5.
This text is a good candidate for legal reasoning as it is short and relatively self
contained. It has also featured in previous research [16].

This legislation contains 19 articles which go from describing the conditions
of committing the offence to how a fine can be given and contested. In this exam-
ple, we will focus on article 1 only. A more comprehensive formalization which
includes sentences of the second part as well, is available online6.

Article 1: Offence of smoking in a motor vehicle with children

1. It is an offence for an adult to smoke in a private motor vehicle when: (a)
there is a child in the vehicle, and (b) the vehicle is in a public place.

2. Subsection (1) does not apply to a private motor vehicle that is designed or
adapted for use as living accommodation and which, at the time the smoking
occurs, is parked and is being used as living accommodation.

3. A person who commits an offence under subsection (1) is liable on summary
conviction to a fine not exceeding level 3 on the standard scale.

In order to apply automated reasoning to this text, we first need to formalize
our understanding of its meaning. In other words, we need to formalize a legal
interpretation of the text.

There are various interpretations possible even for this, relatively simple,
text. For the purpose of this example, we interpret the article as prohibiting
adults to smoke in a private motor vehicle in case: (1) there is a child in the
vehicle, (2) the vehicle is in public space and (3) the vehicle is not adapted or
designed to be used, and at the same time is being used, as living accommodation.

Violating this prohibition, the adult is liable to a fine via a summary convic-
tion.

Here we describe just a few of these scenarios. The reader is referred to the
live example in the application for more cases.

The first step in the methodology is to create the vocabulary used in the
formalization. As mentioned in Sect. 3.2, this is being done by using the term
annotation on the text. The annotated terms can then be seen on the “Vocabu-
lary” tab of the NAI suite. Figure 2 summarizes those for Article 1.

The test queries can now be created based on this vocabulary. The task of
the lawyer is to consider different terms from the vocabulary and decide what is
the expected outcome of them.

Scenario 1. An adult was smoking in a car which has a child in it and is
not in public space. We expect the adult not to be liable to a fine.

Scenario 2. An adult was smoking in a car which has a child in it, is in public
space and was not designed as living accommodation. We expect the adult to
be liable to a fine.

5 https://www.legislation.gov.uk/asp/2016/3/contents.
6 Please visit https://nai.uni.lu and log in with the credentials: smoking@nai.lu / nai.

https://www.legislation.gov.uk/asp/2016/3/contents
https://nai.uni.lu
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Fig. 2. Vocabulary Smoking legislation article 1

The lawyer now uses the queries tab in the NAI suite in order to enter these
two scenarios. In order to differentiate the test queries from case queries (queries
written in order to solve a specific case), the test queries names are prefixed with
“Test”.

We can now annotate the two scenarios. We proceed first by annotating the
conditions with the terms from the vocabulary. The user needs to select those
from a drop down list. The expectation is then annotated as a goal. Within the
goal, we annotate our expectation that the person is liable to a fine by using
the Permission connective over the punishment fine term. The two annotated
scenarios, as well as their formalization, can be seen in Figs. 3a and b. When
executing these queries, they naturally may fail. When annotating the legal text
in the next phase, we must make sure that all the queries are now being validated.

We can now proceed with the last step - the annotation of Article 1. After
some trial and error, we have ended up with the annotation in Fig. 4a. This
annotation passes all of our test queries and we therefore conclude that it is a
faithful formalization of our interpretation of Article 1. The DL*1 formulae are
shown in Fig. 4b.

It should be mentioned that on each step, we are advised to check the consis-
tency of our annotations as well as those of the queries. The reasoning engine can
find automatically inconsistencies in our annotations, which can lead to wrong
results. In addition, it is recommended to check, on the “Formalization” tab,
that each DL*1 formula is independent. Dependent formulae are normally a
sign of an incorrect formalization.
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(a) Scenario 1.

(b) Scenario 2.

Fig. 3. Annotations and corresponding DL*1 formulae of the different scenarios as
presented by the NAI tool.
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(a) Annotations as entered into the editor.

(b) Automatically created DL*1 formulae corresponding to the annotations.

Fig. 4. Formalization of article 1 of the smoking legislation in NAI.

Case Queries. Given enough tests, we can increase our confidence that the for-
malization is faithful to our interpretation. we can now better trust it to resolve
legal questions with regard to specific cases. Writing case queries is identical to
the writing of test queries. As an example, consider the following case.

Case 1. A client got a fine while driving his home car while smoking. His
teen daughter was sitting next to him. Is there a case to appeal this decision?

Here we want to check if there was an obligation in the law not to give
our client the fine. In case it is true, an appeal should be successful. When we
annotate the case above, we get that a conclusion cannot be drawn (the query
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is counter-satisfiable). The reason for that is because some of the conditions are
not used. Since there might be two different values to these conditions which
result in two different conclusions, the reasoner cannot determine if the query
holds. In this case, we can find in the “Vocabulary” tab one further condition -
the car should be in public space - and one further exception - the car should
also be used as a home car, and not only be designed as one. We therefore ask
the client to share more information about the case.

Case 2. The client adds further that he was indeed driving in public space.
The home car though, was not used as a home car at the time. The client has
removed the home facilities and is using the car for transportation of goods.

The addition of the new annotations gives us the answer that the policeman
was indeed permitted to give the fine. The client could enjoy the exception of
subsection (b), but he failed to use the car for accommodation. It seems better
not to appeal the fine.

5 Conclusion and Future Work

In this paper we have described a new methodology for validating legal knowl-
edge bases that is inspired by the behaviour-driven development approach from
the field of software engineering. As a first step towards implementing this
methodology, the NAI suite for normative reasoning is introduced and its appli-
cation is demonstrated on an exemplary regulation.

The presented case study suggests that the NAI tool can be used by people
without a strong IT background, as only few technical details are exposed to
the user and most of the task is supported by a graphical user interface. In
fact, one could argue that our approach also enables a broad range of users to
contribute to the built-up of a reliable legal knowledge base; once the intended
behaviour of the formalized norms are agreed upon (by legal experts), it is easy
to automatically check compliance of the generated knowledge with the afore
stated goal.

The tools presented in this paper are prototypes. Further work is required on
both the tools and their supporting theories in order to make the formalization
of legal texts easier and more intuitive. Among those improvements, the most
notable ones relate to the supporting theory and to the usability of the user
interface. We mention several such improvements here.

Currently, the NAI suite supports an expressive deontic first-order language.
This language is rich enough to describe many scenarios which appear in legal
texts. Nevertheless, more work is required in order to capture all such scenarios.
Among those features with the highest priority, we list support for exceptions,
temporal sentences and arithmetic. In this paper, we overcame the fact that sub-
section 1(b) is an exception to subsection 1(a) by explicitly mentioning the values
of the conditions of the exception. This solution is not optimal since it requires
the setting of values to these properties in all tests and cases. Possible support
for these features already exists in the form of tools such as non-monotonic
reasoners [6], temporal provers [15] and SMT solvers [4].
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On the level of usability, the tool currently does not give any information as
to why a query is counter-satisfiable. The user needs to look on the vocabulary
in order to determine possible reasons. Integrating a model finder, such as Nit-
pick [2], will help “debugging” formalizations. Also, scalability of the proposed
approach as to be investigated in larger case studies.

NAI’s graphical user interface (GUI) aims at being intuitive and easy to use
and tries to hide the underline complexities of the logics involved. A continuously
updated list of new features can be found on the GUI’s development website7.
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Abstract. We use computational argumentation to both analyse and
generate solutions for reasoning in multimorbidity about consistent rec-
ommendations, according to different patient-centric goals. Reasoning
in this setting carries a complexity related to the multiple variables
involved. These variables reflect the co-existing health conditions that
should be considered when defining a proper therapy. However, current
Clinical Decision Support Systems (CDSSs) are not equipped to deal
with such a situation. They do not go beyond the straightforward appli-
cation of the rules that build their knowledge base and simple inter-
pretation of Computer-Interpretable Guidelines (CIGs). We provide a
computational argumentation system equipped with goal-seeking mech-
anisms to combine independently generated recommendations, with the
ability to resolve conflicts and generate explanations for its results. We
also discuss its advantages over and relation to Multiple-criteria Decision-
making (MCDM) in this particular setting.

1 Introduction

Multimorbidity is the presence of two or more chronic medical conditions in an
individual. It is a complex situation, particularly when the number of existing
conditions is high and there are treatment conflicts [26]. These conflicts are typ-
ically: drug-drug interactions, when treatments have a negative combined effect
on the patient; and drug-disease interactions, when a treatment for a condition
negatively affects the evolution of another condition. Clinical Decision Support
Systems (CDSSs) based on Computer-Intepretable Guidelines (CIGs) are not
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capable of combining different CIG executions to address multiple health condi-
tions, as CIGs are designed to handle a single disease [10,21]. Furthermore, com-
putational approaches that aim to tackle this problem [27,28] are limited in the
dimensions of multimorbidity they consider, namely when it comes to: patient
preferences, patient-specific prioritized goals, and decidable mechanisms for con-
flict resolution. These dimensions are considered to be fundamental in reasoning
for patient management and, in what preferences and goals are concerned, should
result from a discussion between patient and health care professional [16,25]. In
recent years, several works call for the use of Multiple Criteria Decision-making
(MCDM) methods to address conflicts in medical decision-making, produce deci-
sions based on priorities over various criteria, and handle complexity in this
setting [3,13]. However, a general MCDM method lacks the ability to explain
and justify decisions and lay out their respective implications. These elements
become opaque when scores are computed and presented.

We explore structured argumentation to formalize conflict resolution in mul-
timorbidity and compute aggregated consistent sets of CIG recommendations
that take into account the above-mentioned dimensions. The appeal of argu-
mentation in comparison to other computational approaches is in reasoning with
conflicting and incomplete information in a way that aims to emulate human rea-
soning, while allowing important conflicts to be highlighted and analyzed [2]. We
augment the ASPIC+ [14] argumentation system for it provides sub-argument
structure, important for explanations, and has been extensively studied and jus-
tified in regards to semantics for preferences over defeasible rules and mechanisms
to perform defeasible reasoning. It also allows for contraposition, a useful feature
when analyzing conflicts. We propose the ASPIC+G argumentation system for
multimorbidity as a goal-driven argumentation system to select best solutions
and map basic elements in multimorbidity reasoning to it. Following from this,
we also provide a reasoning framework that takes into account drug-drug and
drug-disease conflicts, patient preferences, and prioritized patient-specific goals.
We demonstrate that the selected best solution can be used to derive in-depth
explanations and provide mechanisms to produce justifications for conclusions.
Finally, we show that the proposed argumentation system subsumes MCDM,
with the added benefit of providing explanations for multimorbidity decisions.

2 Case Example

The case example to demonstrate the computational argumentation framework
was adapted from a clinical case in [23], simplified for the sake of brevity and
understanding. There are slight differences such as the addition of chronic kidney
disease to showcase reasoning features.

Example 1. Patient A has a history of type 2 diabetes. Upon consultation and
the completion of medical exams, it was possible to conclude that the patient,
besides type 2 diabetes, has obesity, hypertension, and chronic kidney disease.
The case is run in a CDSS with CIG agents that handle each health condition
separately, yielding recommendations:
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– CIG Agent 1 (for obesity): Define weight decrease (wd) as a therapy goal.
To reduce weight, the patient should practice diet and exercise (de) [19].

– CIG Agent 2 (for diabetes): Define blood glucose decrease (gd) as a ther-
apy goal. Sulfonylurea (sulf) or meglitinide (meg) can reduce blood glucose
elevations, but they cause weight increase (wi). Metformin (met) can lower
blood glucose, but its use in the presence of chronic kidney disease (ckd)
should be avoided as it may accelerate chronic kidney disease (ackd). The
patient should only take one of the drugs [20].

– CIG Agent 3 (for kidney disease): Define delay chronic kidney disease
(dckd) as a therapy goal. The patient is advised to take angiotensin convert-
ing enzyme inhibitors (acei) as they delay the progression of chronic kidney
disease to kidney failure [17].

– CIG Agent 4 (for hypertension): Define blood pressure decrease (bpd) as
a therapy goal. Administer an angiotensin converting enzyme inhibitor (acei)
or a calcium channel blocker (ccb) to decrease blood pressure. However, a
calcium channel blocker compromises the effectiveness of glucose control drugs
such as meglitinide or metformin [18].

Following the four CIG agents separately would produce drug-disease inter-
actions. When considering CIG Agent 1 and CIG Agent 2, there is a conflict
with the use of sulfonylurea and meglitinide from CIG Agent 2, as these drugs
cause weight increase and this effect is contrary to the therapy goal outlined for
obesity in CIG Agent 1, weight decrease. When adding the recommendations of
CIG Agent 3 to the first two, other conflicts appear. The use of metformin for the
treatment of diabetes is compromised by the recommendation to avoid the use
of metformin in the presence of chronic kidney disease. Additionally, from CIG
Agent 4, the recommendation to take a calcium channel blocker compromises the
effectiveness of metformin and meglitinide. This is a drug-drug interaction. The
mutually exclusive use of drugs for diabetes also constitutes drug-drug interac-
tions.

In practice, the case is handled by establishing a priority over patient-specific
goals and eliciting patient preferences [16]. Reproducing the source of the exam-
ple [23], the health care professional acknowledges obesity is the most severe
issue for the patient, thus weight decrease is the most preferred goal, followed
by blood glucose decrease as the second goal, with blood pressure decrease at
the same level. Delaying kidney disease is the least preferred goal. Additionally,
the patient shows a clear preference for sulfonylurea or meglitinide, as the use
of metformin has caused him severe adverse reactions in the past.

The knowledge enclosed in CIGs typically follows a task network model where
each element is a task to carry out. A task recommending a treatment is nor-
mally called an Action and contains certain structured information about the
treatments to be applied, respective outcomes and pre-conditions for applica-
tion reflecting interactions [21]. This is the task we focus on and the basis for
CIG Agent recommendations. Further ahead we use Example 1 to instantiate
ASPIC+G. The process of preference elicitation and goal prioritization, includ-
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ing the functions that bring them about (e.g. severity of disease), are outside
the scope of this work, so they will only be referred to as examples.

3 The ASPIC+G Argumentation System

The intuition behind ASPIC+G is that argumentation is often driven by goals
which reflect the multiple objectives that may be achieved in a discussion. This
fits reasoning in a multimorbidity setting particularly well due to the goal-
oriented nature of the process.

3.1 Definition and Argument Construction

We define an ASPIC+G argumentation theory as follows.

Definition 1. An argumentation theory in ASPIC+G is a tuple 〈L,R,n,�Rd
,

G,�G〉, where:

– L is a logical language closed under negation (¬).
– R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) rules of the form

φ1, . . . , φn → φ and φ1, . . . , φn ⇒ φ respectively, where n ≥ 0 and φi, φ ∈ L;
– n is a partial function s.t. 1 n : R → L;
– �Rd

is a partial pre-order over defeasible rules Rd, denoting a preference
relation, with a strict counterpart <Rd

given by X <Rd
Y iff X �Rd

Y and
Y �Rd

X;
– G ⊆ L is a set of goals that the arguments will try to fulfil s.t. ∀ θ ∈ G, there

exists a rule φ1, . . . , φn → φ in Rs or φ1, . . . , φn ⇒ φ in Rd s.t. φ = θ;
– �G is a total pre-order on G, denoting preferences over goals, with <G given

by φ <G ψ iff φ �G ψ and ψ �G φ, and �G given by φ �G ψ iff φ �G ψ and
ψ �G φ.

In ASPIC+G, knowledge is represented either as strict rules or defeasible
rules. Therefore, an undisputable fact is a strict rule with empty antecedents
and a disputable fact is represented as a defeasible rule with empty antecedents.
The relation �G is a total pre-order which allows for equally preferred goals, as it
is often the case that distinctions between goals cannot be specified. In order to
understand the construction of arguments, we specify functions to convey argu-
ment features. Conc(A) denotes the conclusion of argument A. Sub(A) denotes
the set of sub-arguments of A. DefRules(A) denotes the set of all defeasible rules
used in A. Finally, TopRule(A) denotes the last inference rule used in the argu-
ment. We use the following definition for argument construction, adapted from
[14].

Definition 2. An argument A of an argumentation theory 〈L,R,n,�Rd
,G,�G〉

has one of the following forms:

1 s.t.: such that.



170 T. Oliveira et al.

– A1, . . . , An → ψ if A1, . . . , An are arguments s.t. there exists a strict rule
Conc(A1), . . . ,Conc(An) → ψ in Rs, with Conc(A) = ψ, Sub(A) = Sub(A1) ∪
. . . ∪ Sub(An) ∪ {A}, DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An), and
TopRule(A) = Conc(A1), . . . ,Conc(An) → ψ;

– A1, . . . , An ⇒ ψ if A1, . . . , An are arguments s.t. there exists a defea-
sible rule Conc(A1), . . . ,Conc(An) ⇒ ψ in Rd, with Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}, DefRules(A) = DefRules(A1) ∪
. . . ∪ DefRules(An) ∪ {Conc(A1), . . . ,Conc(An) ⇒ ψ}, and TopRule(A) =
Conc(A1), . . . ,Conc(An) ⇒ ψ.

3.2 Attack, Defeat, and Goal Fulfilment

Attacks follow two of the three possible ways in ASPIC+ [14]. Arguments may be
attacked on a conclusion of a defeasible inference (rebutting) or on a defeasible
inference step itself (undercutting). Undermining attacks are represented as a
special case of rebuttal. It is considered that an argument cannot be attacked
on the conclusion of a strict inference. To define an undercutting attack, n is
used to assign elements of Rd a well-formed formula in L. n(r) : r ∈ Rd denotes
that r is applicable and ¬n(r) denotes that r is not applicable. An argument
using r is undercut by any argument concluding ¬n(r). The following definition
of attack was adapted from [14].

Definition 3. An argument A attacks an argument B iff A undercuts or rebuts
B, where: A undercuts B (on B′) iff Conc(A) = ¬n(r) for some B′ ∈ Sub(B) s.t.
the top rule r of B′ is defeasible; A rebuts B (on B′) iff Conc(A) = ¬φ for some
B′ ∈ Sub(B) of the form B′′

1 , . . . , B′′
n ⇒ φ.

The introduction of goals in argumentation demands the definition of a ful-
filment relation.

Definition 4. An argument A fulfils goal θ ∈ G iff Conc(A) = θ. If A fulfils a
goal, we denote it with Goal(A). For a set of arguments S, we write Goal(S) for
the set of goals fulfilled by the arguments in S, i.e. Goal(S) = {Goal(A) | A ∈ S
s.t. A fulfils a goal }.

We use a preference order over arguments � determined by a weakest-link
principle on �Rd

, as described in [14]. To specify �, we resort to an ordering of
defeasible rule sets �Rd

, defined over an elitist criterion, i.e., the set with the
overall weakest rule is the weakest. Therefore, given two sets of defeasible rules
R and R′: if R = ∅ then R �/Rd

R′; if R = ∅ and R′ �= ∅ then R′ �Rd
R; else,

assuming a pre-order �Rd
over the elements in R ∪ R′, if ∃X ∈ R s.t. ∀Y ∈ R′,

X �Rd
Y , then R �Rd

R′.
Considering two arguments A and B, we say that A � B iff DefRules(A) �Rd

DefRules(B). We can define the strict counterpart ≺ directly under the weakest-
link principle, in terms of �Rd

.
Attack and argument preference bring about a defeat relation D. It is consid-

ered that: an argument A successfully rebuts an argument B if A rebuts B on B′
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and A ⊀ B′; an argument A defeats an argument B iff A undercuts or successfully
rebuts B.

We now define an ASPIC+G framework as follows.

Definition 5. An argumentation framework in ASPIC+G is a tuple
(A,D,G,�G ,F), where A is a set of arguments, D ⊆ A × A is a binary relation
of defeat, G is the set of goals, �G is a preference order over goals, and F is a
binary relation of fulfilment s.t. F ⊆ A × G.

To select arguments, the framework uses the semantics presented in Dung’s
abstract argumentation framework [7], according to the following definition.

Definition 6. Let (A,D,G,�G ,F) be an ASPIC+G argumentation framework.
For any X ∈ A, X is acceptable with respect to some set S ⊆ A iff ∀Y ∈ A s. t.
(Y, X) ∈ D, ∃Z ∈ S s.t. (Z, Y) ∈ D. Let S ⊆ A be a conflict free set, i.e., there
are no A, B in S s.t. (A, B) ∈ D. Then: S is an admissible extension iff X ∈ S
implies X is acceptable with respect to S; and S is a preferred extension iff it is
a set inclusion maximal admissible extension.

It is of interest within the context of multimorbidity to produce the preferred,
and thus maximal sets of arguments, which are the most inclusive self-defended
sets, containing all the sub-arguments that lead to a conclusion and the argu-
ments that defend it.

3.3 Goal Set Ordering

The preferred extensions are viewed as consistent argumentation paths in the
discussion and the possible solutions to solve a problem. However, it is necessary
to compare the sets of goals that they fulfil in order to rank them. We now define
a goal set ordering �G over sets of goals.

Definition 7. Let S and S′ be two finite sets of goals. We define the goal set
ordering, denoted by the operator �G, as: S′ �G S iff S′ = ∅ or ∃g ∈ (S \ S′)
such that ∀g′ ∈ (S′ \ S), g′ �G g.

A goal set ordering S′ �G S denotes that S is at least as preferred as S′,
possibly more. The underlying principle is that the argumentation will always
try to fulfil the goals by their order of importance. Due to the base relation �G
being a total pre-order, �G is also a total pre-order. We also allow for different
goal extensions to be equally preferred by fulfilling goals of equal preference.

With the goal set ordering, it becomes possible to find the best goal-driven
solutions, i.e., the top preferred extensions.

Definition 8. Let F = (A,D,G,�G ,F) be an ASPIC+G argumentation frame-
work and S a preferred extension of F . We say that S is a top preferred extension
of F iff for every preferred extension S′ of F , Goal(S′) �G Goal(S).

ASPIC+G will be used to model Example 1 and demonstrate the outcomes of
reasoning in multimorbidity using patient preferences and patient-specific goals.
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4 Modelling Multimorbidity with ASPIC+G

We perform a mapping of basic components in CIG multimorbidity management
to ASPIC+G and demonstrate its reasoning features. We also demonstrate how
the given solutions can produce explanations.

4.1 Formalization and Reasoning

Let us consider A as a set containing all aggregated Action tasks recommended
by all CIG agents, such as the ones in Example 1. We denote an action Ax,a ∈ A,
where x is the index and a the CIG agent recommending the action. For instance,
A1,2 is the first action recommended by CIG Agent 2. An action Ax,a is a tuple
〈tx,a,Ox,a,Px,a〉, where:

– tx,a is a treatment;
– Ox,a = {(e1,C1, λ1), . . . , (en,Cn, λn) : n > 0} stands for outcomes and is a set

containing effects (ei,Ci, λi), i ∈ {1, . . . , n} brought about by treatment tx,a,
where: ei is a description of an effect; Ci = {c1, . . . , cm : m ≥ 0} is a set with
patient-specific conditions unifiable with the patient state cj , j ∈ {1, . . . , m}
that enable the occurrence of effect ei over treatment tx,a; λi is the impact of
an effect ei, if ei is a positive effect, then λi = ⊕, otherwise, if it is a negative
effect, λi = �.

– Px,a = {p1, . . . , pn : n ≥ 0} denotes pre-conditions and contains constraints
for the application of a treatment tx,a.

From Example 1, we have the following actions in A:

A1,1〈de, {(wd, ∅,⊕)}, ∅〉 ;
A1,2〈sulf, {(gd, ∅,⊕), (wi, ∅,�)}, {¬meg,¬met}〉;
A2,2〈meg, {(gd, ∅,⊕), (wi, ∅,�)}, {¬sulf,¬met}〉;
A3,2〈met, {(gd, ∅,⊕), (ackd, {ckd},�)}, {¬sulf,¬meg}〉;
A1,3〈acei, {(dckd, ∅,⊕)}, ∅〉;
A1,4〈acei, {(bpd, ∅,⊕), (¬(meg → gd), ∅,�)}, {¬ccb}〉;
A2,4〈ccb, {(bpd, ∅,⊕), (¬(meg → gd), ∅,�)}, {¬acei}〉.

While there are CIG languages, such as PROForma [6], that encode the
impact λ of an effect, this is not always the case. As such, we assume that this
evaluation of effects is provided by either the CIG language or a joint assessment
by health care professional and patient.

The next component of multimorbidity management is a set containing the
contraries of effects E = {C1, . . . , Cn : n ≥ 0} where each Ci, i ∈ {1, . . . , n},
is a tuple (ej , ek) s.t. ∃ Ax,a = 〈tx,a,Ox,a,Px,a〉,Ay,b = 〈ty,b,Oy,b,Py,b〉 ∈ A, s.t.
(ej ,Cj, λj) ∈ Ox,a and (ek,Ck, λk) ∈ Oy,b. Example 1 provides effect contraries:
E = {(wd,wi), (dckd, ackd)}. The automatic retrieval of contraries from a CIG
language may be performed by analysing the clinical effects with medical termi-
nologies and identifying the medical concept (e.g., weight) and term denoting
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a transition (e.g, increase, decrease), with a posterior matching with its oppo-
site. Given the freedom associated with the expression of these effects, contrary
identification is not addressed herein.

The last component for reasoning in multimorbidity is the state of the patient
S = {s1, . . . , sn : n ≥ 0}, where each element is a condition manifested by the
patient. In Example 1, we consider that S = {ckd}, as this is the only element
that interacts with the elements of other components.

With A, E and S becomes possible to express applicability of treatments,
treatment/effect relations, treatment conflicts, and effect conflicts in a logical
language for ASPIC+G. The purpose is to aggregate the knowledge elements
provided by CIG agents through argumentation and augment them with patient
preferences over treatments and treatment goals.

Definition 9. Let A, E and S, be the basic components for decision-making in
multimorbidity. An argumentation theory in ASPIC+G for multimorbidity is a
tuple 〈L,R,n,�Rd

,G,�G〉, where 2:

– R = Rd ∪ Rs are respectively defeasible and strict rules in which:
• Rd = R1 ∪ R2 where R1 = {⇒ tx,a | ∃Ax,a = 〈tx,a,Ox,a,Px,a〉 ∈

A.} and R2 = {tx,a, c1, . . . , cn ⇒ ez | ∃Ax,a = 〈tx,a,Ox,a,Px,a〉 ∈
A, (ez, {c1, . . . , cn},⊕) ∈ Ox,a, n ≥ 0};

• Rs = R3 ∪ R4 ∪ R5 ∪ R6 where R3 = {tx,a, c1, . . . , cn → ez | ∃ Ax,a =
〈tx,a,Ox,a,Px,a〉 ∈ A, (ez, {c1, . . . , cn},�) ∈ Ox,a, n ≥ 0}, R4 = {tx,a →
¬ty,b | ∃ Ax,a = 〈tx,a,Ox,a,Px,a〉,Ay,b = 〈ty,b,Oy,b,Py,b〉 ∈ A,¬ty,b ∈ Px,a},
R5 = {ej → ¬ek | (ej , ek) ∈ E or (ek, ej) ∈ E, and R6 = {→ s | s ∈ S};

– �Rd
is a partial pre-order over defeasible rules R1, denoting a preference

relation over treatments;
– G = {e1, . . . , en | n ≥ 0,∃Ax,a = 〈tx,a,Ox,a,Px,a〉 ∈ A, (en, Cn,⊕) ∈ Ox,a} is a

set of goals in terms of the positive effects of treatments;
– �G is a total pre-order over treatment goals in G.

Note that the treatments provided by CIG agents are handled as disputable
facts and, thus, represented as defeasible rules with empty antecedents in R1.
This stems from treatments being viewed as interventions that could be applied
to the patient, but may not, given the context. Therefore, this element is defea-
sible. As for the treatment/effect relations, they are handled in two possible
ways. In R2, this relation is depicted as a defeasible rule, when the effect of a
treatment is positive. We consider that treatments only create a presumption
in favour of their positive effect. However, when it comes to negative effects, we
adopt a more conservative approach in R3, for negative effects are considered as
something that compromises their corresponding positive effects, and, in a goal-
driven search of solutions it is important to maximize the possibility of achieving
the most preferred goals. For this reason, we represent a relationship between
treatments and negative effects as strict rules. This also allows, by contraposi-
tion, to obtain the negation of treatments that compromise positive effects. R4

2 We omit L and n, as they are implicit from the formalization.
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represents drug-drug conflicts extracted from pre-conditions of actions, indicat-
ing that two treatments must not be combined. Similarly, R5 presents effects
that are contrary to each other. This allows for the derivation of drug-disease
conflicts. Finally, R6 is used to describe patient state, consisting of undisputable
facts. Accordingly, we apply strict rules with no antecedents.

We now instantiate ASPIC+G for Example 1 by Definition 9. L consists of
all atoms defined for Example 1 and their negations. n, R, �Rd

, G, and �G are
as follows:

– Rd = {⇒ de, ⇒ sulf, ⇒ meg, ⇒ met, ⇒ acei, ⇒ ccb} ∪ {de ⇒
wd, sulf ⇒ gd, r1 : meg ⇒ gd, r2 : met ⇒ gd, acei, ckd ⇒ dckd, acei ⇒
bpd, ccb ⇒ bpd};

– Rs = {sulf → wi, meg → wi, met, ckd → ackd, ccb → ¬r1, ccb → ¬r2} ∪
{sulf → ¬meg, sulf → ¬met, meg → ¬met, acei → ¬ccb} ∪ {wd →
¬wi, ackd → ¬dckd} ∪ {→ ckd};

– R = Rd ∪ Rs;
– �Rd

: (⇒ met) <Rd
(⇒ sulf), (⇒ met) <Rd

(⇒ meg);
– G = {wd, gd, dckd, bpd};
– �G : dckd <G gd �G bpd <G wd.

In R, ASPIC+G allows for the representation of a situation in which a treat-
ment negates defeasible rules r1 and r2, meaning that there is a medical circum-
stance in which these rules do not apply. In turn, these rules, due to their nature,
are defeasible. The remaining defeasible rules reflect the possible treatments for
diabetes, kidney disease, obesity, and hypertension. We need not be exhaustive
in the listing of treatment conflicts in actions and treatment contraries, since
the negation of the antecedent is obtained by contraposition. The relation �Rd

reflects the treatment preference of the patient for sulf or meg over met. The
goal set G contains the goals driving the treatment and their preference order
is specified in �G . These goals are selected from positive effects in actions. wd
is the most preferred goal since obesity is the most significant concern of the
patient. bpd and gd are equally preferred. Lastly, dckd is the least preferred.

By Definition 2, we build the arguments A for the argumentation framework
along with representation of goals G:

A = {A1 :⇒ de, A2 : A1 ⇒ wd, A′
2 : A2 → ¬wi, A′′

2 : A′
2 → ¬sulf , A′′′

2 : A′
2 →

¬meg, B1 :⇒ sulf , B2 : B1 ⇒ gd, B′
2 : B1 → ¬met, B′′

2 : B1 → ¬meg, B′′′
2 :

B1 → wi, B′′′′
2 : B′′′

2 → ¬wd, C1 :⇒ meg, C2 : C1 → gd, C′
2 : C1 → ¬met, C′′

2 :
C1 → ¬sulf , C′′′

2 : C1 → wi, C′′′′
2 : C′′′

2 → ¬wd, D1 :⇒ met, D2 : D1 → gd, D′
2 :

D1 → ¬meg, D′′
2 : D1 → ¬sulf, E1 :⇒ acei, E′

1 :→ ckd, D′′′
2 : D1, E′

1 → ackd, D3 :
D′′′
2 → ¬dckd, E2 : E1, E

′
1 ⇒ dckd, E3 : E2 → ¬ackd, E4 : E′

1, E3 → ¬met, E5 :
E1 ⇒ bpd, E6 : E1 ⇒ ¬ccb, F1 :⇒ ccb, F2 : F1 ⇒ bpd, F′

1 : F1 → ¬acei, F′′
1 :

F1 → ¬r1, F′′′
1 : F1 → ¬r2};

G = {G1 : wd, G2 : gd, G3 : dckd, G4 : bpd}.

By Definition 3, we are able to derive the attack relations among arguments.
Additionally, by Definition 4, we establish the fulfilment relations between argu-
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ments and goals. Attacks, fulfilments, and sub-argument relations are repre-
sented in the graph of Fig. 1. The explanatory power of a graph, describing an
ASPIC+G argumentation theory in the context of multimorbidity, lies in iden-
tifying how and where treatment conflicts arise in the clinical process leading
up to a goal. The attacks in Fig. 1 are mostly rebuttals appearing from the drug-
drug interactions caused by the group sulf , meg, and met and the group acei
and ccb and the contrary effects of treatments. From Fig. 1, it is also possible
to identify that the argument for met (D1) is also rebutted by an argument (E4)
resulting from the patient having chronic kidney disease and having to delay its
progression. This attack is caused by a drug-disease interaction. The only under-
cutting attacks are made to argument C2 by argument F′′

1 and to argument D2
by argument F′′′

1 . The arguments attack the applicability of rules r1 (used in C2)
and r2 (used in D2) in the presence of ccb. This type of situation is useful for a
physician to know in what circumstances a piece of knowledge is not valid. Going
back to attacks brought about by the drug interactions, the attacks highlighted
in blue do not result in defeat for D′′

2 ≺ B1 and D2′ ≺ C1. This happens due to
the preferences of the patient expressed in �Rd

which, in turn, are responsible
for DefRules(D′′

2) �Rd
DefRules(B1) and DefRules(D′

2) �Rd
DefRules(C1), i.e, the

use of sulf or meg is preferred to met and arguments that use the latter cannot
defeat arguments that use one of the first two. The graph also determines which
arguments fulfil the treatment goals established for the patient. By Definitions
6 and 7, we calculate the preferred extensions and respective goal sets:

– S1 = {A1, A2, A′
2, A

′′′
2 , E1, E′

1, E2, E3, E4, E5, E6}, Goal(S1) = {G1, G3, G4};
– S2 = {A1, A2, A′

2, A
′′′
2 , D1, D′

2, D
′′
2 , D2′′′, D3, E′

1, F1, F′
1, F

′′
1 , F1′′′, F2}, Goal(S2) =

{G1, G4};
– S3 = {A1, B1, B2, B′

2, B
′′′
2 , B′′′′

2 , E1, E′
1, E2, E3, E4, E5, E6}, Goal(S3) = {G2, G3, G4};

– S4 = {A1, B1, B2, B′
2, B

′′′
2 , B′′′′

2 , E′
1, F1, F

′
1, F

′′
1 , F1′′′, F2}, Goal(S4) = {G2, G4};

– S5 = {A1, C1, C2, C′
2, C

′′′
2 , C′′′′

2 , E1, E′
1, E2, E2, E3, E4, E5, E6}, Goal(S5) = {G2, G3,

G4};
– S6 = {A1, C1, C′

2, C
′′′
2 , C′′′′

2 , E′
1, F1, F

′
1, F

′′
1 , F′′′

1 , F2}, Goal(S6) = {G4}.

There are six possible solutions for the argumentation theory in the form of
preferred extensions: S1 − S6. Considering the already established goal ordering
of �G , by Definition 7, we calculate the goal set ordering �G. Since extension
S1 fulfils wd, bpd and dckd, by Definition 8 it is the top preferred extension.
This is the case due to the respective goal extension fulfilling the most preferred
combination of goals and being the largest doing so. This means that in Example
1, patient A should practice diet and exercise and take angiotensin converting
enzyme inhibitor to address obesity, hypertension and delay the progression of
kidney disease. In this way, the ASPIC+G argumentation system ensures that
the most important goals in the treatment process are achieved.

4.2 Explanation of Results

The explainable nature of argumentation, as analyzed in [8,29], also contributes
to making it a useful tool in the domain. We do not intend to exhaustively
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show explanatory properties of ASPIC+G and leave this aspect for future work.
Nonetheless, we present a feature that puts it in advantage in the later compar-
ison with MCDM. We show how one can justify a given formula concluded by
a top preferred extension using the notions of defense and sub-argument. In the
upcoming formalization we will resort to a defends relation with the following
definition.

Fig. 1. Argumentation graph for Example 1.

Definition 10. Let F = (A,D,G,�G ,F) be an ASPIC+G argumentation
framework. An argument C ∈ A defends an argument A ∈ A iff: there exists
an argument B ∈ A s.t. B attacks A and C attacks B; or there exists an argument
B ∈ A s.t. B defends A and C defends B.

As mentioned, we regard an explanation for a conclusion as a justification
and define it as follows.
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Definition 11. Let F = (A,D,G,�G ,F) be an ASPIC+G argumentation
framework generated from some argumentation theory and S a top preferred
extension of F . The possible explanations of a conclusion φ, with Conc(A) = φ for
some A ∈ S, is the set Exp(φ, S) =

{
Sub(A) ∪ {b ∈ Sub(B) | B defends A} | A ∈ S

s.t. Conc(A) = φ
}
.

Thus, an explanation Exp(φ, S) contains all the support (in the form of sub-
arguments) and defense for a conclusion.

Example 2. Let F = (A,D,G,�G ,F) be the ASPIC+G argumentation frame-
work for Example 1 and S1 its top preferred extension. The only explanation
for top goal (G1 : wd) = Conc(A2) in Exp(wd, S1) is the set {A1, A2, A′

2, A
′′
2 , A′′′

2 }.
Transforming this set into one containing its conclusions yields {de, wd,¬wi,
¬sulf,¬meg}.

In the explanation of Example 2, A1 is a sub-argument of A2 and therefore
supports it. A′

2 defends A2 by being a sub-argument of both A′′
2 and A′′′

2 , which,
in turn, defend A2 by attacking B1 and C1 respectively. From the conclusions, de
supports wd, and by concluding ¬wi, we are also concluding ¬sulf and ¬meg,
which are drugs that cause weight increase. Therefore, these arguments justify
the fulfilment of weight decrease. With Definition 11 it becomes possible to
explain why goals are fulfilled and why treatments are in the solution for patient
management. Note that generating compound explanations for any combina-
tion of conclusions amounts to performing the union of their respective single
explanations.

Some interesting properties of explanations include the closure under the
sub-argument relation and direct consistency. The first ensures that for every
argument in an explanation, all of its sub-arguments are also included in the
explanation, and one can see that it is satisfied by the way the explanation
sets are constructed. This property, together with the transitive nature of the
notion of defense, ensures that every explanation also contains an explanation
for every single one of its sub-conclusions, and hence provides maximal depth
for the explanation. On the other hand, direct consistency guaranties that no
two arguments in an explanation have opposite conclusions, and follows from
the consistency of preferred extensions in ASPIC+ [14], since explanations are
subsets of preferred extensions. Note that this last remark also implies that
explanations are indirectly consistent, i.e. even after applying as many strict
rules as desired to form new arguments from the ones present in an explanation,
it is impossible to find two arguments with opposite conclusions. This ensures
the well-behavior of the explanatory feature.

5 Relation with Multiple Criteria Decision

Our argumentation system can also be used to solve MCDM problems. There
are numerous variations of MCDM methods [24], but there is no clear method
proposed for health care, only a set of guidelines on how to conduct such an
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analysis, mainly criteria elicitation [13], which are not within the scope of this
paper. Therefore, in this comparison we will focus on a general MCDM problem,
defined as in [15].

Definition 12. A multiple-criteria decision problem P = (D,C, agg) consists
of:

1. A sequence of decisions D = (d1, ..., dn);
2. A sequence of criteria C = (c1, ..., ck), where each ci ∈ C is a function ci :

D → R;
3. An aggregation function agg : R|D|×|C| → R|D|.

We denote with VP the two-dimensional vector of the criteria values for each
decision:

VP =

⎡

⎢
⎣

c1(d1) ... ck(d1)
...

. . .
c1(dn) ck(dn)

⎤

⎥
⎦

In MCDM, a decision which is at least as good as every other one according
to the aggregation function agg is called a preferred decision.

Definition 13. Given a multiple-criteria decision problem P = (D,C, agg), a
decision di ∈ D is preferred iff for all dj ∈ D agg(VP )j ≤ agg(VP )i.

We now provide a mapping to translate a problem into an argumentation
theory in ASPIC+G, with a similar construction to the one done in [15].

Definition 14. Let P = (D,C, agg) be a multiple-criteria decision problem. We
construct the argumentation theory P ′ = (A,D,G,�G ,F), such that:

1. L is the smallest set closed under negation which contains all elements of D
and R;

2. R = R1 ∪ R2 ∪ R3 ∪ R4, where: a) R1 = {⇒ di | di ∈ D}; b) R2 =
{di → ¬dj | di, dj ∈ D}; c) R3 = {di → vi,j | di ∈ D, vi,j ∈ VP }; d)
R4 = {vi,1, ..., vi,k → agg(VP )i | vi,j ∈ VP , k = |C|}.

3. n is the empty function;
4. ≤Rd

= ∅;
5. G = {agg(VP )i | di ∈ D};
6. agg(VP )i ≤G agg(VP )j iff agg(VP )i ≤ agg(VP )j.

In the resulting argumentation theory P ′, each decision di gives rise to a
series of arguments which eventually lead to the fulfilment of the respective goal
agg(VP )i. The preferred decisions are then retrieved in ASPIC+G in the form
of top preferred extensions thanks to the ordering on the goals.

Theorem 1. Let P = (D,C, agg) be a multiple-criteria decision problem and
P ′ its mapping into an argumentation theory in ASPIC+G as defined in Def.
14. Then, for all d ∈ D, d is a preferred decision in P iff there exists a top
preferred extension in P ′ containing the argument ⇒ d.
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The proof of this theorem lies in the fact that all decisions are in conflict
with each other thanks to the rules in R2. These being the only conflicts present
in the framework, together with the lack of preferences over defeasible rules,
ensures that every preferred extension represents exactly one decision and its
consequences. By using the ranking over goals in ASPIC+G, which is derived
from the ranking over the aggregations in P , we filter out the preferred exten-
sions which do not represent preferred decisions, and hence obtain a bijection
between preferred decisions in P and top preferred extensions in P ′. 3 This shows
that ASPIC+G can be built on top of MCDM, presenting the same data in a
different kind of structure. While there has been some work on explainability
in MCDM [12], our argumentative approach provides more transparency in the
reasoning process and allows for explanations of preferred decisions (top pre-
ferred extensions), which is of extreme importance in medical reasoning for the
sake of clarity and compliance with recommendations. Within a multimorbidity
context, an MCDM method would produce a decision consisting of a set con-
taining recommended treatments and respective aggregated score, which cannot
easily be further decomposed and analyzed to demonstrate how that decision is
brought about.

6 Related Work

Wilk et al. [27] propose a first order-logic framework in order to detect and
mitigate adverse interactions (both drug-drug and drug-disease) between con-
currently applied recommendations based on constraint logic programming. Rea-
soning requires that all stable solutions be encoded beforehand in the form of
revision operators and computation mechanism is undecidable, as opposed to the
computation of preferred extensions. Zamborlini et al. [28] use their transition-
based medical recommendation model to represent interactions in association
with recommendations from different CIGs. Interaction types are defined exten-
sively. However, there is no reasoning mechanism to deal with conflicting rec-
ommendations. Spiotta et al. [22] propose a framework to analyze the temporal
conformance of followed actions against a single CIG. Using answer set program-
ming they provide explanations on conflicting situations, based on events in the
state of a patient. There, the setting is different from the presented herein and
the method does not aim to combine different CIGs.

Regarding argumentative approaches, Fox et al. [9] introduce argumentation
to help physicians decide for or against treatments. There, patient preferences
and patient-specific goals are not featured. Hunter and Williams [11] offer a
formal approach to aggregating clinical evidence. Based on the available evi-
dence, arguments are generated for claiming that one treatment is superior, or
equivalent, to another. This approach does not concern multimorbidity nor the
combination of different CIG recommendations. Brando et al. [5] developed an

3 The complete proof is provided in the appendix.
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argumentation-based decision support system which can be used to both rep-
resent medical decisions within a single guideline and dynamically choose the
most suitable plans to achieve a unique goal. Goal prioritization is not featured.

Amgoud and Prade [1] propose an abstract argument-based framework for
decision-making. They formulate a series of decision principles that are goal-
driven. Yet, this argumentation framework would not fit decision-making in
multimorbidity particularly well for it does not provide sub-argument structure,
contrasting to our interest in showing a mapping from CIGs to rule patterns
in argumentation. The notions of pro and con arguments are used to evaluate
options, while our mechanism is solely based on explicit goal preferences and
does not require the user to elicit all possible solutions beforehand. Muller and
Hunter [15] formulate a structured argumentation framework for decision-making
where goals are used to select decisions. In their work, there is a form of backward
reasoning from goals to arguments and a direct comparison of their framework
with MCDM. Given the importance of the latter in medical reasoning, we adapt
their procedure to perform our own comparison. Note that the type of reasoning
performed in our work goes in the opposite direction, from arguments to goals.
We first check what are the possible preferred extensions, which, within the
context, provide all possible treatment solutions without conflict and respective
effects, and then verify which goals each solution fulfils in order to determine its
ranking. This kind of reasoning and prioritization of goals are more adequate for
assessing the recommendations proposed by CIG agents in a multimorbidity, as
these recommendations are already the product of a reasoning process within the
CIG agent. Black and Atkinson [4] present a dialogical argumentation framework
for reasoning among different agents. Each agent, according to its perspective,
has an input as to how a goal can be achieved. ASPIC+G does not possess this
dialogical nature, nor it an objective in the current presentation. Furthermore,
Black and Atkinson [4] do not specify an argument evaluation method, whereas
our approach establishes detailed semantics for ordering preferred extensions
based on respective goal sets.

7 Conclusions and Future Work

ASPIC+G models discussions driven by goals, where it is not only important
to have explanatory arguments in favour or against a position, but also to know
where paths lead to. As such, the presented argumentation system is a contribu-
tion in medical reasoning as it is fit for reasoning in multimorbidity. It combines
the recommendations of agents, deriving drug-drug and drug-disease conflicts
that arise from them, using patient preferences over treatments and preferred
semantics so resolve the conflicts and produce solutions, then selecting the best
solution based on patient-specific goal preferences. We also show that best solu-
tions are capable of providing explanations in the form of sub-argument and
defending argument sets, which are closed under the sub-argument relation, and
both directly and indirectly consistent. ASPIC+G can be built on top of MCDM
to produce preferred solutions, with the advantage of having a more transparent
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structure, an important feature in CDSSs. The present work does not specify
preference elicitation or goal prioritization methods. We plan to address this and
manage different types of preferences, mainly over defeasible rules, stemming
from different sources. An example to be considered is the strength of evidence
backing recommendations in relation to effects. We also plan to explore adding
weights to the argumentation framework, in order to allow the representation
of side effects of varying degrees of severeness and also therefore allowing for a
slightly more detailed reasoning process.

8 Appendix

Proof of Theorem 1

Proof. We prove Theorem 1 in two steps:

– We first prove that if di is a preferred decision in P , then there exists a top
preferred extension containing the argument A :⇒ di.
For all arguments A′, there exists a j such that (⇒ dj) ∈ Sub(A′). If j �=
i, then the argument A → ¬dj rebuts A′ on (⇒ dj). Since there are no
preferences over the defeasible rules, this attack results in a defeat. Otherwise,
j = i and thus by construction, A′ is not in conflict with A. Hence, the
set containing A and all its super-arguments of the form A → ¬dj make
an admissible set, and therefore there exists a preferred extension E which
contains them.
Since di is a preferred decision in P , for all dj ∈ D, agg(VP )j ≤ agg(VP )i,
and so agg(VP )j ≤G agg(VP )i. By closure under strict rules, the argument
Aagg with top rule vi,j , ... → agg(VP )i is included in E. Hence, E is a top
preferred extension which contains A.

– We now prove that if there exists a top preferred extension E containing the
argument A :⇒ di, then di is a preferred decision in P .
By closure under strict rules, an argument Aagg with top rule vi,j , ... →
agg(VP )i is included in E. There is no j �= i for which there is an argument
in E with conclusion agg(VP )j , as such an argument requires an argument of
the form ⇒ dj as sub-argument, which would get rebutted by the argument
A → ¬dj which is in E by closure under strict rules. Take any other arbitrary
preferred extension E′. By similar reasoning, E′ may only contain one single
argument with a conclusion of the form agg(VP )j for some j. Since E is a
top preferred extension, GEE′ �GE GEE . E and E′ are disjoint since they
each only contain a single different argument of the form agg(VP )x, and hence
agg(VP )j ≤ agg(VP )i. Therefore, di is a preferred decision in P . �
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Abstract. Generics are used frequently in various natural languages.
Cohen’s theory (1999) is one of the most promising theories of generics.
Cohen proposes a probabilistic account of generics. Leslie (2007, 2008)
points out the three shortcomings of Cohen’s theory. Asher and Pelletier
(2013) point out five more shortcomings of Cohen’s theory. The aim of
this paper is to propose a new version of logic for generics—First-Order
Logic for Generics (FLG)—that can overcome all of the eight shortcom-
ings. To accomplish this goal, we provide the language of FLG with an
intuitionistic-Bayesian semantics.
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probability theory · Philosophy of language · Probabilistic semantics ·
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1 Motivation: Cohen’s Theory and Its Eight
Shortcomings

The following sentences are examples of generics:

(1) Dogs bark.

(2) Mosquitoes carry the West Nile Virus.

Generics are used ubiquitously in various natural languages. Cohen’s theory [2]
is one of the most promising theories of generics. Cohen proposes a probabilistic
account of generics. According to Leslie [8,9], we summarize Cohen’s theory of
generics as follows: Let Alt(F ) denote a contextually determined set of alterna-
tives to a predicate F and Alt(K) a contextually determined set of alternatives to
a kind K. Cohen distinguishes between two different classes of generics: absolute
and relative generics:

Absolute Generics: ‘Ks are F ’ is true iff the probability (relative frequency)
that an arbitrary K that satisfies some predicate in Alt(F ) satisfies F is
greater than 0.5.
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Relative Generics: ‘Ks are F ’ is true iff the probability (relative frequency)
that an arbitrary K that satisfies some predicate in Alt(F ) satisfies F is
greater than the probability (relative frequency) that an arbitrary member
of Alt(K) that satisfies some predicate in Alt(F ) satisfies F .

(1) is a true absolute generic because the probability that an arbitrary dog barks
is greater than 0.5. (2) is a true relative generic because an arbitrary mosquito
is far more likely to carry the virus than an arbitrary insect. Cohen adds the
following condition to his theory:

Homogeneity : These truth conditions must hold for all salient partitions
of a kind K.

For example, gender is a salient partition in animal kinds. Female and male
chickens are almost as likely to be born. However, after a chick is found to
be male, it is unfortunately customary to be killed and used as fertilizer and
feedstock. As a result, over 80% of chickens become female. Despite this fact,
(3) is a false generic:

(3) Chickens are female.

For Homogeneity is violated because the probability of an arbitrary male chicken
being female is 0. Leslie [8,9] points out the following three shortcomings of
Cohen’s theory:

– Shortcoming 1: Cohen’s theory wrongly makes (4) false for the same reason
as (3).

(4) Lions have manes.
– Shortcoming 2: The number of legs is considered to constitute a salient

partition of the kind Dog. For example, Homogeneity is violated because the
probability of an arbitrary dog that becomes three-legged by means of an
unexpected accident being four-legged is 0. So (5) results in being false in
Cohen’s theory:

(5) Dogs are four-legged.
– Shortcoming 3: Let us suppose that fleas also carry the virus. If the flea

population grew so rapidly as to vastly outnumber all other insects, at some
point it would cease to be the case that an arbitrary mosquito would be more
likely than an arbitrary insect to carry the virus. At this point, (2) would fail
to be a true relative generic on Cohen’s theory. Intuitively, however, it would
remain true.

On the other hand, Asher and Pelletier [1] point out the following five shortcom-
ings of Cohen’s theory:

– Shortcoming 4: Let us suppose that in a little more than 50, for example,
50.05% of the cases cats have (long) tails. Our intuitions say that in this case,
the generic (6) is not true:

(6) Cats have tails.
But in Cohen’s theory (6) is true.
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– Shortcoming 5: In Cohen’s theory, it is not at all clear how to adapt the
semantics to capture uncertain inference.

– Shortcoming 6: The only way to have a chance of modeling common-sense
reasoning patterns using probabilities is to use nonstandard probabilities in
which probabilities can have infinitesimal values1. However, Cohen’s theory
has no structure for nonstandard probabilities. By means of the following
example, we would like to illustrate what Asher and Pelletier seem to intend
to say:
Example 1 (Nonstandard Probabilities). According to our common
sense, the two-dimensional geometric probability, for example, of picking a
point from the diagonal D1(D2) of a rectangle, given that the point is on one
of D1 and D2, will equal 1

2 . However, under Kolmogorov probability theory,
it equals 0

0 (undefined). On the other hand, under nonstandard infinitesimal
probability theory, it equals 1

2 .
– Shortcoming 7: The assignment of probabilities to formulae cannot be done

in a compositional fashion due to the dependence of one formula on another:
The probability assignment to P(ϕ ∧ ψ) cannot be defined in terms of P(ϕ)
and P(ψ).

– Shortcoming 8: Cohen’s theory cannot deal with embedded generics prop-
erly.

The aim of this paper is to propose a new version of logic for generics—First-
Order Logic for Generics (FLG)—that can overcome all of the eight shortcomings
of Cohen’s theory pointed out by Leslie [8,9] and Asher and Pelletier [1]. To
accomplish this goal, we provide the language of FLG with an intuitionistic-
Bayesian semantics.

The structure of this paper is as follows. In Sect. 2, we touch upon conceptual
roles, Bayesian semantics, the Ramsey Test, and the Stalnaker Thesis. In Sect. 3,
we argue about Bayesian semantics and the triviality result. In Sect. 4, we show
the four advantages of intuitionistic-Bayesian semantics. In Sect. 5, we define the
language LFLG of FLG and provide FLG with an intuitionistic-Bayesian semantics.
And furthermore, we give the logical forms of some generics and provide them
with their truth conditions. In Sect. 6, we summarize the ways of overcoming the
eight shortcomings by means of FLG. In Sect. 7, we finish with brief concluding
remarks.

2 Bayesian Semantics, Ramsey Test, and Stalnaker
Thesis

Harman says, in connection with truth-theoretic semantics and conceptual-role
semantics, that

1 For nonstandard probability theory, consult [14]. For the relation between epistemic
modals and nonstandard probability theory, refer to [18].
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· · · meaning depends on role in conceptual scheme rather than on truth
conditions. That is, meaning has to do with evidence, inference, and rea-
soning, including the impact sensory experience has on what one believes,
the way in which inference and reasoning modify one’s beliefs and plans,
and the way beliefs and plans are reflected in action [4, p. 11].

Field argues against this view as follows:

My view rather is that truth-theoretic semantics and conceptual-role
semantics must supplement each other: truth-theoretic semantics cannot
account for certain differences in sense unaccompanied by differences in
reference; and conceptual-role semantics · · · cannot properly answer ques-
tions · · · about relations between language and the world. But, taken
together, I claim, truth-theoretic semantics and conceptual-role seman-
tics provide an account of all the facts about meaning that there are [3, p.
380].

Field argues that there are two versions of truth-theoretic semantics. One is a
non-referential version whose paradigm is as follows:

(7) ‘Beethoven wohnte in Deutschland’ is true iff Beethoven lived in Ger-
many [3, p. 389].

The other version is a referential version whose paradigm is as follows:

(8) ‘Beethoven lived in Germany’ is true iff there are objects x and y and
a relation R such that ‘Beethoven’ stands for x, ‘Germany’ stands for y,
‘lived in’ stands for R, and x bears R to y [3, p. 389].

The referential meaning of ‘Beethoven lived in Germany’ is given by (8) together
with a specification of the referents of the three components of this sentence. To
specify the referential meaning of a sentence is not fully to specify its mean-
ing. The meaning of a sentence is given by its referential meaning together with
its conceptual role. The following sentences have the same referential meaning
(Frege’s Puzzle).

(9) Hesperus = Hesperus,
(10) Hesperus = Phosphorus.

Field explains the difference in meaning between (9) and (10) by saying that these
two sentences differ in conceptual role. Moreover, he explains the difference in
conceptual role by saying that these two sentences differ in subjective (Bayesian)
conditional probability. He argues that (9) and (10) have different conceptual role
for an agent iff his or her subjective probability (degree of belief ) of (9) under
the condition Γ is different from his or her subjective probability of (10) under
Γ , that is,

P(Hesperus = Hesperus, Γ ) �= P(Hesperus = Phosphorus, Γ ),

when his or her belief state is represented by a conditional probability function
P [3, pp. 389–390].
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Remark 1 (Bayesian Probability). Cohen interprets probability as relative
frequency, whereas in this paper we consider Bayesian probability from a seman-
tic point of view.

Remark 2 (Binary Probability Function and Semantic Entailment). In
this paper we adopt as conditional probability functions not defined probability
functions but primitive binary probability functions that take a formula and a
set of formulae as arguments. For in this paper we intend to use these binary
probability functions in order to define an after-mentioned semantic entailment
in FLG of a set of formulae with a formula.

As for evaluation of the acceptability of conditionals, Ramsey wrote as follows:

If two people are arguing ‘If ϕ, will ψ?’ and are both in doubt as to ϕ,
they are adding ϕ hypothetically to their stock of knowledge and arguing
on that basis about ψ. . . [15, p. 155].

This is called the Ramsey Test. Stalnaker materialized this test in terms of
subjective probability. Let P represent a belief state of one of these people, and
let Γ denote his or her stock of knowledge. Then, for any ϕ,ψ, P(ϕ → ψ, Γ ) =
P(ψ, {ϕ} ∪ Γ ) is called the Stalnaker Thesis [17, p. 75].

3 Bayesian Semantics and Triviality Result

Suppose that the language L of first-order logic with equality is given. The
set of all well-formed formulae of L is denoted by ΦL . Suppose that both the
derivability �IL in intuitionistic first-order logic with equality and the derivabil-
ity �CL in classical first order logic with equality are defined. We define finite
axiomatizability of superintuitionistic logics as follows:

Definition 1 (Finite Axiomatizability of Superintuitionistic Logics).
Let IL+ (Ψ1(ϕ,ψ, χ, . . .) + . . . + Ψn(ϕ,ψ, χ, . . .)) be the system of superintuition-
istic first-order logic with equality that has Ψ1(ϕ,ψ, χ, . . .), . . . , Ψn(ϕ,ψ, χ, . . .) as
axioms besides the axioms of IL. If a system X of superintuitionistic first-order
logic can be represented by X = IL+ (Ψ1(ϕ,ψ, χ, . . .) + . . . + Ψn(ϕ,ψ, χ, . . .)), for
finite n, then X is said to be finitely axiomatizable. The derivability �X , for
any finitely axiomatizable system X of superintuitionistic first-order logic with
equality can be defined.

First, let us consider a conditional probability function PI : ΦL ×℘(ΦL ) −→
[0, 1] satisfying Conditions 1–11 below [13] for any ϕ,ψ ∈ ΦL and for any Γ ⊂
℘(ΦL ):
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Condition 1 0 ≤ PI(ϕ, Γ ) ≤ 1,
Condition 2 If ϕ ∈ Γ, then PI(ϕ, Γ ) = 1,
Condition 3 PI(ϕ, {ψ} ∪ Γ ) × PI(ψ, Γ ) = PI(ψ, {ϕ} ∪ Γ ) × PI(ϕ, Γ ),
Condition 4 PI(ϕ → ψ, Γ ) = PI(ψ, {ϕ} ∪ Γ ) (Stalnaker Thesis),
Condition 5 PI(ϕ ∧ ψ, Γ ) = PI(ϕ, {ψ} ∪ Γ ) × PI(ψ, Γ ),
Condition 6 PI(ϕ, {ψ, χ} ∪ Γ ) = PI(ϕ, {ψ ∧ χ} ∪ Γ ),
Condition 7 PI(ϕ, {ψ ∨ χ} ∪ Γ ) = PI(ϕ, {ψ} ∪ Γ ) × PI(ϕ, {χ, ψ → ϕ} ∪ Γ ),
Condition 8 PI(ϕ, {⊥} ∪ Γ ) = 1,
Condition 9 PI(∀xF (x), Γ ) = lim

n→∞PI(F (t1) ∧ F (t2) ∧ · · · ∧ F (tn), Γ ),

Condition 10 PI(ϕ, {∃xF (x)} ∪ Γ )
= lim

n→∞PI(ϕ, {F (t1) ∨ F (t2) ∨ · · · ∨ F (tn)} ∪ Γ ),

Condition 11 For any t, t′,PI(t = t′, Γ ) = 1 iff PI(ϕ, Γ ) = PI(ϕ′, Γ ),
where ϕ′ is obtained from ϕ by replacing t
in zero or more (but not necessarily all) places by t′.

Second, let us consider a conditional probability function PS(Ψ1∧...∧Ψn) : ΦL ×
℘(ΦL ) −→ [0, 1] satisfying Conditions 1–11 and Condition 12 below, for any
ϕ,ψ, χ, . . . ∈ ΦL and for any Γ ⊂ ℘(ΦL ):

Condition 12 PS(Ψ1∧...∧Ψn)(Ψ1(ϕ,ψ, χ, . . .) ∧ . . . ∧ Ψn(ϕ,ψ, χ, . . .), Γ ) = 1.

Third, let us consider a conditional probability function PC : ΦL × ℘(ΦL ) −→
[0, 1] satisfying Conditions 1–11 and Condition 13 below [13], for any ϕ ∈ ΦL

and for any Γ ⊂ ℘(ΦL ):

Condition 13 If there is ψ ∈ ΦL such that PC(ψ, Γ ) �= 1,
then PC(ϕ, Γ ) + PC(¬ϕ, Γ ) = 1.

Considering the strong soundness and completeness of intuitionistic first-order
logic with respect to PI

2, we call PI an intuitionistic conditional probability
function. Considering the strong soundness and completeness of superintuition-
istic first-order logics with respect to PS(Φ1∧...∧Φn) for any finitely axiomatizable
system X of superintuitionistic first-order logic3, we call PS(Φ1∧...∧Φn) a super-
intuitionistic conditional probability function. Considering the strong soundness
and completeness with respect to PC

4, we call PC a classical conditional prob-
ability function. On the basis of [13], we derive the following triviality result5:

Fact 1 (Triviality). For any ϕ,ψ ∈ ΦL and any Γ ⊂ ℘(ΦL ), if PC(ϕ, Γ ) <
1 and PC(ψ, Γ ) < 1, then PC(ϕ, Γ ) = PC(ψ, Γ ). Moreover, for any Γ,Δ ⊂

2 For the strong soundness and completeness of intuitionistic first-order logic with
respect to PI , consult [12] and [13].

3 For the strong soundness and completeness of superintuitionistic first-order logics
with respect to PS(Φ1∧...∧Φn), consult [13].

4 For the strong soundness and completeness with respect to PC , consult [7] and [13].
5 The arguments on triviality results originate in [10] and [11].
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℘(ΦL ), if both Γ \ Δ is finite and Δ \ Γ is finite, then, for any ϕ ∈ ΦL ,
PC(ϕ, Γ ) = PC(ϕ,Δ) unless PC(ϕ, Γ ) = 1 or PC(ϕ,Δ) = 1.

Field [3] explains the difference in meaning between two sentences by saying that
they differ in conceptual role. Moreover, he explains the difference in conceptual
role by saying that these two sentences differ in subjective conditional probability.
However, Fact 1 shows that except for the trivial cases, the probability of one
sentence under a condition is always the same as that of another sentence under
it and the probability of a sentence under one condition is always the same as
that of it under another condition. Therefore PC , which is constrained by Stal-
naker Thesis (Condition 4), cannot represent properly an agent’s rational belief
state. Condition 13 is necessary to prove Fact 1. Neither PI nor PS(Φ1∧...∧Φn)

satisfies Condition 13. Therefore neither invites the triviality result. Then in this
sense both PI in intuitionistic Bayesianism and PS(Φ1∧...∧Φn) in superintuition-
istic Bayesianisms might represent an agent’s rational belief states. Which can
represent more properly an agent’s rational belief states, PI or PS(Φ1∧...∧Φn)?

4 Four Advantages of Intuitionistic-Bayesian Semantics

There are an infinite number of superintuitionistic logics. However, in general,
it is difficult to attach any significance to the axioms peculiar to them respec-
tively. So it is difficult to attach any importance in conceptual roles to each
superintuitionistic Bayesianism. Then we would like to consider the features
of intuitionistic Bayesianism. We summarize Weatherson’s possible (though not
decisive) arguments [20] that intuitionistic Bayesianism has the three advantages
over classical one as follows6:

1. According to verificationism, classical Bayesianism has no way of representing
complete uncertainty : Because verificationism implies the failures of Laplace’s
principle of indifference, it cannot be said that uncertainty about ϕ is rep-
resented, as classical Bayesianism does, by assigning the probability 1

2 to ϕ.
Then classical Bayesianism must abandon either assigns the probability 1 to
the law of the excluded middle or finite additivity. On the other hand, because
intuitionistic Baysianism does not need to assign the probability 1 to the law
of the excluded middle, it does not need to abandon finite additivity.

2. According to antirealism about future, no propositions about the future have
positive probabilities. Also in this case, classical Bayesianism must abandon
either assigns the probability 1 to the law of the excluded middle or finite
additivity.

3. Intuitionistic Bayesianism can provide a justification for rejecting the pos-
itive arguments, e.g., Dutch Book arguments, for classical Bayesianism.
All such Dutch Book arguments have assumed that the classical—rather
than intuitionistic—reasoning is appropriate. But Weatherson argues that a
Dutch Book argument is also possible even if the intuitionistic—rather than
classical—reasoning is appropriate.

6 Weatherson provides four arguments for intuitionistic Bayesianism. However, these
four arguments can be reduced to the following three arguments.
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In general, intuitionistic-Bayesian semantics on the basis of intuitionistic
Bayesianism has these three advantages over classical-Bayesian semantics. The
fourth advantage, which is most essential, is that, in providing a First-Order
Logic for Generics (FLG) with its semantics, classical-Bayesian semantics can
invites the triviality result (Fact 1), whereas intuitionistic-Bayesian semantics
cannot invite it. For, as we explain in detail, in Condition 15, absolute generics
will be probabilistically characterized by indicative conditionals, and further-
more, in Condition 16, relative generics will be also probabilistically charac-
terized by indicative conditionals. So providing FLG with its classical-Bayesian
semantics, via Stalnaker Thesis (Condition 4 ), can result in inviting the triviality
result (Fact 1), whereas providing FLG with its intuitionistic-Bayesian semantics,
via Stalnaker Thesis, cannot result in inviting the triviality result. These four
are the reasons why we provide FLG with its intuitionistic-Bayesian semantics.

5 First-Order Logic for Generics (FLG)

5.1 Language of FLG

We define the language LFLG of FLG as follows:

Definition 2 (Language of FLG).

– Let V denote a set of individual variables, C a set of individual constants,
and P a set of predicate symbols.

– The language LFLG of FLG is given by the following BNF grammar:

t ::= x | a,

ϕ ::= Fi(t) | F̃m(t) | t = t′ | ⊥ | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ |
ϕ → ψ | ϕ ⇒ ψ | ϕ � ψ | ∀xϕ | ∃xϕ,

where x ∈ V , a ∈ C , Fi∈{1,2,...,m}, F̃m ∈ P, and where there are neither
nestings of ⇒ nor those of �.

– � and ↔ are introduced by the standard definitions.
– F̃m is an (F1, F2, . . . , Fm)-membered superordinate predicate symbol of

Fi∈{1,2,...,m}.

Example 2 (Superordinate Predicate Symbol). In the situation of
(2) [Mosquitoes carry the West Nile Virus.], being an insect is a (being a
mosquito, being a flea,. . . )-membered superordinate predicate.

– For any Fi∈{1,2,...,m} ∈ P, there is an (F1, F2, . . . , Fm)-membered superordi-
nate predicate symbol F̃m ∈ P of Fi∈{1,2,...,m}.

– We interpret → as an indicative conditional connective, ⇒ as an absolute
generic conditional connective, and � as a relative generic conditional con-
nective.
Remark 3 (Indicative Conditional Connective → ). In FLG, → is not a
material conditional connective but an indicative conditional connective. The
semantics of → is given by the Stalnaker Thesis (Condition 4).

– The set of all well-formed formulae of LFLG is denoted by ΦLFLG
.
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5.2 Intuitionistic-Bayesian Semantics of FLG

Now we would like to introduce as a main semantic device of FLG atemporal
nonstandard conditional probability function P(u)

I : ΦLFLG
× ℘(ΦLFLG

) × U −→∗

[0, 1], where ∗[0, 1] denotes the interval of nonstandard reals in [0,1] containing
infinitesimals7 in order to achieve the following two purposes:

1. In order to overcome Shortcoming 6 in Sect. 1,
2. In order to describe after-mentioned Conditions 15 (Diachronic Stability in

Absolute Genericity) and 16 (Diachronic Stability in Relative Genericity).

Let U denote a set of times. Suppose that P(u)
I satisfies not only Conditions

1–11 but also Conditions 14–16 below, for any ϕ,ψ, χ, . . . ∈ ΦLFLG
and any

Γ ⊂ ℘(ΦLFLG
); In any (F1, F2, . . . , Fm)-membered superordinate predicate sym-

bol F̃m, F1, F2, . . . , Fm should be jointly exhaustive and mutually exclusive:

Condition 14 ((F1, F2, . . . , Fm)-Membered Superordinate Predicate Symbol F̃m)
For any u ∈ U and for any i, j ∈ {1, 2, . . . ,m},

P(u)
I (∀x((F1(x) ∨ F2(x) ∨ · · · ∨ Fm(x))

↔ F̃m(x)) ∧ ¬∃x(Fi(x) ∧ Fj(x)), Γ ) = 1.

In Sect. 1 we summarized Cohen’s distinction between absolute generics and rel-
ative generics. Cohen’s theory has as an essential part Homogeneity that can
bring the several shortcomings that were pointed out in Sect. 1. In place of
Homogeneity, FLG has as semantically essential parts Diachronic Stability in
Absolute Genericity and Diachronic Stability in Relative Genericity. The prob-
abilistic relations that characterize absolute generics in Sect. 1 should be stable
diachronically and formalized as follows:

Condition 15 (Diachronic Stability in Absolute Genericity)
P(u1)

I (ϕ ⇒ ψ, Γ ) = 1 for a particular u1 ∈ U

iff P(u)
I (ϕ → ψ, Γ ) > P(u)

I (ϕ → (¬ψ ∧ ψ̃), Γ ) for any u ∈ U ,

where ψ̃ is gained by substituting F̃m for each Fi∈{1,2,...,m} of ψ.

Remark 4 (Condition 15 and Triviality Result). If we provide FLG with its
classical-Bayesian semantics, then Condition 15 together with Stalnaker Thesis
(Condition 4) can result in inviting the triviality result (Fact 1), whereas if we
provide FLG with its intuitionistic-Bayesian semantics, Condition 15 together
with Stalnaker Thesis cannot result in inviting the triviality result.

Let us return to (3). Female and male chickens are almost as likely to be born.
However, after a chick is found to be male, it is unfortunately customary to
be killed and used as fertilizer and feedstock. As a result, over 80% of chickens
become female. So according to Condition 15, (3) is a false absolute generic.

7 For nonstandard probability theory, consult [14]. For the relation between epistemic
modals and nonstandard probability theory, refer to [18].
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Furthermore, the probabilistic relations that characterize relative generics in
Sect. 1 also should be stable diachronically and formalized as follows:

Condition 16 (Diachronic Stability in Relative Genericity)
P(u1)

I (ϕ � ψ, Γ ) = 1 for a particular u1 ∈ U

iff P(u)
I (ϕ → ψ, Γ ) > P(u)

I (ϕ̃ → ψ, Γ ) for any u ∈ U ,

where ψ̃ is gained by substituting F̃m for each Fi∈{1,2,...,m} of ψ.

Remark 5 (Condition 16 and Triviality Result). If we provide FLG with its
classical-Bayesian semantics, then Condition 16 together with Stalnaker Thesis
(Condition 4) can result in inviting the triviality result (Fact 1), whereas if we
provide FLG with its intuitionistic-Bayesian semantics, Condition 16 together
with Stalnaker Thesis cannot result in inviting the triviality result.

According to Morgan and Mares [13], we define the semantic entailment �u
I

relative to u ∈ U as follows:

Definition 3 (�u
I ). Let Γ denote the finite set of well-formed formulae in LFLG

and let ϕ denote a well-formed formula in LFLG. Then

Γ �P
(u)
I

FLG ϕ

iff P(u)
I (ϕ, Γ ∪ Δ) = 1 for a particular PI-part of P(u)

I and any Δ ⊂ ℘(ΦLFLG
).

Γ �u
FLG ϕ

iff P(u)
I (ϕ, Γ ∪ Δ) = 1 for any PI-part of P(u)

I and any Δ ⊂ ℘(ΦLFLG
).

5.3 FLG-Logical Forms of Generics and Their Truth Conditions

Let us return to (1) [Dogs bark.]. Let D(x) denote ‘x is a dog’, V1(x) ‘x barks’,
Ṽm (V1, V2, . . . , Vm)-membered superordinate predicate symbol of Vi∈{1,2,...,m}.
Then the FLG-logical form of (1) is as follows:

(11) ∀x(D(x) ⇒ V1(x)).

On the basis of Condition 14 ((F1, F2, . . . , Fm)-Membered Superordinate Predi-
cate Symbol F̃m) and Condition 15 (Diachronic Stability in Absolute Genericity),
we give the truth condition of the FLG-logical form of an absolute generic (1) by
the Stalnaker Thesis without inviting the triviality result:

Proposition 1 (Truth Condition of (11)).

Γ �P
(u1)
I

FLG ∀x(D(x) ⇒ V1(x))
for a particular P(u1)

I and a particular Γ ⊂ ℘(ΦLFLG
)

iff for any u ∈ U ,

lim
n→∞((P(u)

I (V1(t1), {D(t1)} ∪ Γ ) > P(u)
I (¬V1(t1) ∧ Ṽm(t1), {D(t1)} ∪ Γ )) and

(P(u)
I (V1(t2), {D(t2)} ∪ Γ ) > P(u)

I (¬V1(t2) ∧ Ṽm(t2), {D(t2)} ∪ Γ )) and · · · and
(P(u)

I (V1(tn), {D(tn)} ∪ Γ ) > P(u)
I (¬V1(tn) ∧ Ṽm(tn), {D(tn)} ∪ Γ ))).
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Proof.

Γ �P
(u1)
I

FLG ∀x(D(x) ⇒ V1(x))
iff P(u1)

I (∀x(D(x) ⇒ V1(x), Γ ) = 1
iff lim

n→∞(P(u1)
I ((D(t1) ⇒ V1(t1))

∧(D(t2) ⇒ V1(t2)) ∧ · · · ∧ (D(tn) ⇒ V1(tn)), Γ )) = 1
iff lim

n→∞((P(u1)
I (D(t1) ⇒ V1(t1), Γ ) = 1) and (P(u1)

I (D(t2) ⇒ V1(t2), Γ ) = 1)

and · · · and (P(u1)
I (D(tn) ⇒ V1(tn), Γ ) = 1))

iff for any u ∈ U ,

lim
n→∞((P(u)

I (D(t1) → V1(t1), Γ ) > P(u)
I (D(t1) → (¬V1(t1) ∧ Ṽm(t1)), Γ )) and

(P(u)
I (D(t2) → V1(t2), Γ ) > P(u)

I (D(t2) → (¬V1(t2) ∧ Ṽm(t2)), Γ )) and · · · and
(P(u)

I (D(tn) → V1(tn), Γ ) > P(u)
I (D(tn) → (¬V1(tn) ∧ Ṽm(tn)), Γ )))

iff for any u ∈ U , for any P(u)
I ,

lim
n→∞((P(u)

I (V1(t1), {D(t1)} ∪ Γ ) > P(u)
I (¬V1(t1) ∧ Ṽm(t1), {D(t1)} ∪ Γ )) and

(P(u)
I (V1(t2), {D(t2)} ∪ Γ ) > P(u)

I (¬V1(t2) ∧ Ṽm(t2), {D(t2)} ∪ Γ )) and · · · and
(P(u)

I (V1(tn), {D(tn)} ∪ Γ ) > P(u)
I (¬V1(tn) ∧ Ṽm(tn), {D(tn)} ∪ Γ ))). �

Let us return to (2) [Mosquitoes carry the West Nile Virus.]. Let I1(x) denote ‘x
is a mosquito’, C(x, y) ‘x carries y’, w the West Nile Virus, Ĩm (I1, I2, . . . ,m)-
membered superordinate predicate symbol of Ii∈{1,2,...,m}. Then the FLG-logical
form of (2) is as follows:

(12) ∀x(I1(x) � C(x,w)).

On the basis of Condition 14 ((F1, F2, . . . , Fm)-Membered Superordinate Predi-
cate Symbol F̃m) and Condition 16 (Diachronic Stability in Relative Genericity),
we give the truth condition of the FLG-logical form of a relative generic (2) by
the Stalnaker Thesis without inviting the triviality result:

Proposition 2 (Truth Condition of (12)).

Γ �P
(u1)
I

FLG ∀x(I1(x) � C(x,w))
for a particular P(u1)

I and a particular Γ ⊂ ℘(ΦLFLG
)

iff for any u ∈ U ,

lim
n→∞((P(u)

I (C(t1, w), {I1(t1)} ∪ Γ ) > P(u)
I (C(t1, w), {Ĩm(t1)} ∪ Γ )) and

(P(u)
I (C(t2, w), {I1(t2)} ∪ Γ ) > P(u)

I (C(t2, w), {Ĩm(t2)} ∪ Γ )) and · · · and
(P(u)

I (C(tn, w), {I1(tn)} ∪ Γ ) > P(u)
I (C(tn, w), {Ĩm(tn)} ∪ Γ ))).
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Proof.

Γ �P
(u1)
I

FLG ∀x(I1(x) � C(x,w))
iff P(u1)

I (∀x(I1(x) � C(x,w), Γ ) = 1
iff lim

n→∞(P(u1)
I ((I1(t1) � C(t1, w)) ∧ (I1(t2) � C(t2, w))

∧ · · · ∧ (I1(tn) � C(tn, w)), Γ )) = 1
iff lim

n→∞((P(u1)
I (I1(t1) � C(t1, w), Γ ) = 1)

and (P(u1)
I (I1(t2) � C(t2, w), Γ ) = 1)

and · · · and (P(u1)
I (I1(tn) � C(tn, w), Γ ) = 1))

iff for any u ∈ U ,

lim
n→∞((P(u)

I (I1(t1) → C(t1, w), Γ ) > P(u)
I (Ĩm(t1) → C(t1, w), Γ )) and

(P(u)
I (I1(t2) → C(t2, w), Γ ) > P(u)

I (Ĩm(t2) → C(t2, w), Γ )) and · · · and
(P(u)

I (I1(tn) → C(tn, w), Γ ) > P(u)
I (Ĩm(tn) → C(tn, w), Γ )))

iff for any u ∈ U , for any P(u)
I ,

lim
n→∞((P(u)

I (C(t1, w), {I1(t1)} ∪ Γ ) > P(u)
I (C(t1, w), {Ĩm(t1)} ∪ Γ )) and

(P(u)
I (C(t2, w), {I1(t2)} ∪ Γ ) > P(u)

I (C(t2, w), {Ĩm(t2)} ∪ Γ )) and · · · and
(P(u)

I (C(tn, w), {I1(tn)} ∪ Γ ) > P(u)
I (C(tn, w), {Ĩm(tn)} ∪ Γ ))). �

Next we would like to consider embedded generics. (13) is an example of an
embedded generic provided by Asher and Pelletier [1, p. 318] :

(13) People who go to bed late don’t get up early.

(13) is considered to express a high probabilistic relation between an object being
a member of people and going to bed late and it not getting up early. Let P (x)
denote ‘x is a member of people’, L(x) ‘x goes to bed late’, G1(x) ‘x gets up
early’ and G̃m (G1, G2, . . . , Gm)-membered superordinate predicate symbol of
Gi∈{1,2,...,m}. Then the FLG-logical form of (13) is as follows:

(14) ∀x((P (x) ∧ L(x)) ⇒ ¬G1(x)).

On the basis of Condition 14 ((F1, F2, . . . , Fm)-Membered Superordinate Predi-
cate Symbol F̃m) and Condition 15 (Diachronic Stability in Absolute Genericity),
we give the truth condition of the FLG-logical form of an embedded generic (13)
by the Stalnaker Thesis without inviting the triviality result:
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Proposition 3 (Truth Condition of (14)).

Γ �P
(u1)
I

FLG ∀x((P (x) ∧ L(x)) ⇒ ¬G1(x))
for a particular P(u1)

I and a particular Γ ⊂ ℘(ΦLFLG
)

iff for any u ∈ U ,

lim
n→∞((P(u)

I (¬G1(t1), {P (t1), L(t1)} ∪ Γ )

> P(u)
I (¬¬G1(t1) ∧ G̃m(t1), {P (t1), L(t1)} ∪ Γ )) and

(P(u)
I (¬G1(t2), {P (t2), L(t2)} ∪ Γ )

> P(u)
I (¬¬G1(t2) ∧ G̃m(t2), {P (t2), L(t2)} ∪ Γ )) and · · · and

(P(u)
I (¬G1(tn), {P (tn), L(tn)} ∪ Γ )

> P(u)
I (¬¬G1(tn) ∧ G̃m(tn), {P (tn), L(tn)} ∪ Γ ))).

Proof.

Γ �P
(u1)
I

FLG ∀x((P (x) ∧ L(x)) ⇒ ¬G1(x))
iff P(u1)

I (∀x((P (x) ∧ L(x)) ⇒ ¬G1(x)), Γ ) = 1
iff lim

n→∞(P(u1)
I (((P (t1) ∧ L(t1)) ⇒ ¬G1(t1)) ∧ ((P (t2) ∧ L(t2)) ⇒ ¬G1(t2))

∧ · · · ∧ ((P (tn) ∧ L(tn)) ⇒ ¬G1(tn)), Γ )) = 1
iff lim

n→∞((P(u1)
I ((P (t1) ∧ L(t1)) ⇒ ¬G1(t1), Γ ) = 1)

and (P(u1)
I ((P (t2) ∧ L(t2)) ⇒ ¬G1(t2), Γ ) = 1)

and · · · and (P(u1)
I ((P (tn) ∧ L(tn)) ⇒ ¬G1(tn), Γ ) = 1))

iff for any u ∈ U ,

lim
n→∞((P(u)

I ((P (t1) ∧ L(t1)) → ¬G1(t1), Γ )

> P(u)
I ((P (t1) ∧ L(t1)) → (¬¬G1(t1) ∧ G̃m(t1)), Γ )) and

(P(u)
I ((P (t2) ∧ L(t2)) → ¬G1(t2), Γ )

> P(u)
I ((P (t2) ∧ L(t2)) → (¬¬G1(t2) ∧ G̃m(t2)), Γ )) and · · · and

(P(u)
I ((P (tn) ∧ L(tn)) → ¬G1(tn), Γ )

> P(u)
I ((P (tn) ∧ L(tn)) → (¬¬G1(tn) ∧ G̃m(tn)), Γ )))

iff for any u ∈ U ,

lim
n→∞((P(u)

I (¬G1(t1), {P (t1), L(t1)} ∪ Γ )

> P(u)
I (¬¬G1(t1) ∧ G̃m(t1), {P (t1), L(t1)} ∪ Γ )) and

(P(u)
I (¬G1(t2), {P (t2), L(t2)} ∪ Γ )

> P(u)
I (¬¬G1(t2) ∧ G̃m(t2), {P (t2), L(t2)} ∪ Γ )) and · · · and

(P(u)
I (¬G1(tn), {P (tn), L(tn)} ∪ Γ )

> P(u)
I (¬¬G1(tn) ∧ G̃m(tn), {P (tn), L(tn)} ∪ Γ ))). �

(15) is another example of an embedded generic provided by Asher and Pelletier
[1, p. 318] :

(15) Dogs chase cats that chase mice.
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(15) is considered to express a high probabilistic relation between the first being a
dog and the second being a cat and the third being a mouse and the first chasing
the second and the second chasing the third. Let D(x) denote ‘x is a dog’, C(x)
‘x is a cat’, M(x) ‘x is a mouse’, O1(x, y) ‘x chases y’, and Õk (O1, O2, . . . , Ok)-
membered superordinate predicate symbol of Oi∈{1,2,...,k}. Then the FLG-logical
form of (15) is as follows:

(16) ∀x∀y∀z((D(x) ∧ C(y) ∧ M(z)) ⇒ (O1(x, y) ∧ O1(y, z))).

On the basis of Condition 14 ((F1, F2, . . . , Fm)-Membered Superordinate Predi-
cate Symbol F̃m) and Condition 15 (Diachronic Stability in Absolute Genericity),
we give the truth condition of the FLG-logical form of another embedded generic
(15) by the Stalnaker Thesis without inviting the triviality result:

Proposition 4 (Truth Condition of (16)).

Γ �P
(u1)
I

FLG ∀x∀y∀z((D(x) ∧ C(y) ∧ M(z)) ⇒ (O1(x, y) ∧ O1(y, z)))
for a particular P(u1)

I and a particular Γ ⊂ ℘(ΦLFLG
)

iff for any u ∈ U ,

lim
l→∞

lim
m→∞ lim

n→∞((P(u)
I (O1(r1, s1) ∧ O1(s1, t1), {D(r1), C(s1),M(t1)} ∪ Γ ) >

P(u)
I (¬(O1(r1, s1) ∧ O1(s1, t1)) ∧ (Õk(r1, s1) ∧ Õk(s1, t1)),

{D(r1), C(t1),M(t1)} ∪ Γ ))
and · · · and (P(u)

I (O1(r1, s1) ∧ O1(s1, tn), {D(r1), C(s1),M(tn)} ∪ Γ ) >

P(u)
I (¬(O1(r1, s1) ∧ O1(s1, tn)) ∧ (Õk(r1, s1) ∧ Õk(s1, tn)),

{D(r1), C(t1),M(tn)} ∪ Γ ))
and · · · and (P(u)

I (O1(rl, sm) ∧ O1(sm, tn), {D(rl), C(sm),M(tn)} ∪ Γ ) >

P(u)
I (¬(O1(rl, sm) ∧ O1(sm, tn)) ∧ (Õk(rl, sm) ∧ Õk(sm, tn)),

{D(rl), C(tm),M(tn)} ∪ Γ ))).

Proof.

Γ �P
(u1)
I

FLG ∀x∀y∀z((D(x) ∧ C(y) ∧ M(z)) ⇒ (O1(x, y) ∧ O1(y, z)))
iff P(u1)

I (∀x∀y∀z((D(x) ∧ C(y) ∧ M(z)) ⇒ (O1(x, y) ∧ O1(y, z))), Γ ) = 1
iff lim

n→∞(P(u1)
I (∀y∀z((D(r1) ∧ C(y) ∧ M(z)) ⇒ (O1(r1, y) ∧ O1(y, z)))

∧∀y∀z((D(r2) ∧ C(y) ∧ M(z)) ⇒ (O1(r2, y) ∧ O1(y, z)))
∧ · · · ∧ ∀y∀z((D(rn) ∧ C(y) ∧ M(z)) ⇒ (O1(tl, y) ∧ O1(y, z))), Γ )) = 1
iff lim

l→∞
lim

m→∞ lim
n→∞(P(u1)

I (((D(r1) ∧ C(s1) ∧ M(t1))

⇒ (O1(r1, s1) ∧ O1(s1, t1))) ∧ · · · ∧
((D(r1) ∧ C(s1) ∧ M(tn)) ⇒ (O1(r1, s1) ∧ O1(s1, tn))) ∧ · · · ∧
((D(r1) ∧ C(sm) ∧ M(t1)) ⇒ (O1(r1, sm) ∧ O1(sm, t1))) ∧ · · · ∧
((D(r1) ∧ C(sm) ∧ M(tn)) ⇒ (O1(r1, sm) ∧ O1(sm, tn))) ∧ · · · ∧
((D(rl) ∧ C(s1) ∧ M(t1)) ⇒ (O1(rl, s1) ∧ O1(s1, t1))) ∧ · · · ∧
((D(rl) ∧ C(s1) ∧ M(tn)) ⇒ (O1(rl, s1) ∧ O1(s1, tn))) ∧ · · · ∧
((D(rl) ∧ C(sm) ∧ M(t1)) ⇒ (O1(rl, sm) ∧ O1(sm, t1))) ∧ · · · ∧
((D(rl) ∧ C(sm) ∧ M(tn)) ⇒ (O1(rl, sm) ∧ O1(sm, tn))), Γ )) = 1
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iff lim
l→∞

lim
m→∞ lim

n→∞((P(u1)
I ((D(r1) ∧ C(s1) ∧ M(t1))

⇒ (O1(r1, s1) ∧ O1(s1, t1)), Γ ) = 1)
and · · · and (P(u1)

I ((D(r1) ∧ C(s1) ∧ M(tn))
⇒ (O1(r1, s1) ∧ O1(s1, tn)), Γ ) = 1)
and · · · and (P(u1)

I ((D(rl) ∧ C(sm) ∧ M(tn))
⇒ (O1(rl, sm) ∧ O1(sm, tn)), Γ ) = 1))
iff for any u ∈ U ,

lim
l→∞

lim
m→∞ lim

n→∞((P(u)
I ((D(r1) ∧ C(s1) ∧ M(t1))

→ (O1(r1, s1) ∧ O1(s1, t1)), Γ )
> P(u)

I ((D(r1) ∧ C(s1) ∧ M(t1))
→ (¬(O1(r1, s1) ∧ O1(s1, t1)) ∧ (Õk(r1, s1) ∧ Õk(s1, t1))), Γ ))
and · · · and (P(u)

I ((D(r1) ∧ C(s1) ∧ M(tn)) → (O1(r1, s1) ∧ O1(s1, tn)), Γ )
> P(u)

I ((D(r1) ∧ C(s1) ∧ M(tn))
→ (¬(O1(r1, s1) ∧ O1(s1, tn)) ∧ (Õk(r1, s1) ∧ Õk(s1, tn))), Γ ))
and · · · and (P(u)

I ((D(rl) ∧ C(sm) ∧ M(tn)) → (O1(rl, sm) ∧ O1(sm, tn)), Γ )
> P(u)

I ((D(rl) ∧ C(sm) ∧ M(tn))
→ (¬(O1(rl, sm) ∧ O1(sm, tn)) ∧ (Õk(rl, sm) ∧ Õk(rl, sm))), Γ )))
iff for any u ∈ U ,

lim
l→∞

lim
m→∞ lim

n→∞((P(u)
I (O1(r1, s1) ∧ O1(s1, t1), {D(r1), C(s1),M(t1)} ∪ Γ ) >

P(u)
I (¬(O1(r1, s1) ∧ O1(s1, t1)) ∧ (Õk(r1, s1) ∧ Õk(s1, t1)),

{D(r1), C(t1),M(t1)} ∪ Γ ))
and · · · and (P(u)

I (O1(r1, s1) ∧ O1(s1, tn), {D(r1), C(s1),M(tn)} ∪ Γ ) >

P(u)
I (¬(O1(r1, s1) ∧ O1(s1, tn)) ∧ (Õk(r1, s1) ∧ Õk(s1, tn)),

{D(r1), C(t1),M(tn)} ∪ Γ ))
and · · · and (P(u)

I (O1(rl, sm) ∧ O1(sm, tn), {D(rl), C(sm),M(tn)} ∪ Γ ) >

P(u)
I (¬(O1(rl, sm) ∧ O1(sm, tn)) ∧ (Õk(rl, sm) ∧ Õk(sm, tn)),

{D(rl), C(tm),M(tn)} ∪ Γ ))). �

6 Some Remarks on Overcoming of Shortcomings
by Means of FLG

We summarize the ways of overcoming the eight shortcomings by means of FLG:

– Shortcoming 1: According to Leslie [8,9], Shortcoming 1 results from Homo-
geneity that is an essential part of Cohen’s theory. We do not that this analysis
is correct. By means of FLG, we give the reason why it is not correct. In FLG,
let M(x) denote ‘x is male’, L(x) ‘x is a lion’, S1(x) ‘x has manes’, and S̃m

(S1, S2. . . . , Sm)-membered superordinate predicate symbol of Si∈{1,2,...,m}.
Then whether the FLG-logical form of (4) is (17) or (18) is determined not
semantically in FLG but pragmatically out of FLG:

(17) ∀x(L(x) ⇒ S1(x)).
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(18) ∀x((M(x) ∧ L(x)) ⇒ S1(x)).

It is determined pragmatically that FLG-logical form of (4) is (18). Then,
according to Condition 15, (18) is a true absolute generic. If (18) is considered
to be a logical form of (4) in Cohen’s theory, then (18) is a true absolute
generic, too.

– Shortcoming 2: We agree that Shortcoming 2 results from Homogeneity in
Cohen’s theory. On the other hand, the semantics of FLG does not requires
Homogeneity. According to the Diachronic Stability in Absolute Genericity
(Condition 15 ), (5) is a true absolute generic in FLG.

– Shortcoming 3: We do not share with Leslie the intuition that (2) would
remain true in the changed situation. We can explain our position in terms
of the Diachronic Stability in Relative Genericity (Condition 16 ). The truth
of (2) in FLG requires Condition 16. But the changed situation would cause
a violation of Condition 16.

– Shortcoming 4: The mere fact that 50.05% of cats have tails at a particular
time is not sufficient to guarantee that (6) is true in FLG. For the truth of (6)
in FLG requires the Diachronic Stability in Absolute Genericity (Condition
15 ) that is a much stronger condition than the fact above.

– Shortcoming 5: In FLG, it is clear how to adapt the semantics (i.e.,
intuitionistic-Bayesian semantics) to capture uncertain inference.

– Shortcoming 6: We have introduced nonstandard probabilities into the
semantics of FLG.

– Shortcoming 7: As Szabó [19] argues, the most widely known objection to
compositionality comes from Frege’s Puzzle dealt in Sect. 2: Even if e and
e′ are synonyms, the truth values of sentences where they occur embedded
within the clausal complement of a mental attitude verb may well differ. So
we have a case of apparent violation of compositionality. Some (e.g., [5,16]
and [6]) give up compositionality, but still provide recursive semantic clauses.
In the semantics of FLG, we takes this line.

– Shortcoming 8: We have provided embedded generics (13) and (15) with
their truth conditions in terms of FLG.

7 Concluding Remarks

In this paper we have proposed a new version of logic for generics—First-Order
Logic for Generics (FLG)—that can overcome all of the eight shortcomings of
Cohen’s theory pointed out by Leslie [8,9] and Asher and Pelletier [1]. To accom-
plish this goal, we have provided the language of FLG with an intuitionistic-
Bayesian semantics.

Acknowledgements. The author would like to thank three anonymous reviewers of
CLAR 2020 for their very helpful comments.
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Abstract. Lexical ambiguity is present in many natural languages, but
ambiguous words and phrases do not seem to be advantageous. There-
fore, the presence of ambiguous words in natural language warrants
explanation. We justify the existence of ambiguity from the perspective
of the context dependence. The main contribution of the paper is that
we constructed a context learning process such that the interlocutors can
infer opponent’s private belief from the conversation. A sufficient condi-
tion is proved to show if the learning can be successful. Furthermore, we
investigate when the learning fails, how the interlocutors choose among
degrees of ambiguous expressions through an adaptive learning.

Keywords: Ambiguity · Context learning · Uncertain signaling ·
Reinforcement learning

1 Introduction

Natural language involves various kinds of uncertainties such as vagueness, syn-
onymy and ambiguity. Among those uncertainties, lexical ambiguity is one of
the most common features in language. Lexical ambiguity lies in the fact that a
word could have more than one interpretations. For example, the word “mole”
in English can be used to refer to “a dark spot on the skin”, to “a burrowing
mammal”, to “a spy”. In terms of information transaction, ambiguity does not
seem an optimal choice. It is because the use of ambiguous expressions may cause
the failure of information transaction and misunderstandings. We have not run
out of possible words, why not invent a new word for any one of the meanings
for ambiguous words? Therefore, the existence of ambiguous words needs an
explanation.

In linguistics and game theory, many people have discussed this problem,
and in most works, it is argued that being precise is expensive and unnecessary.
Language, therefore, optimizes the balance of the benefits of precision with the
costs of lexicon size (see Piantadosi et al. 2012; O’Connor 2014a; Santana 2014).
The core of this argument relies on the fact that the context of the conversation
can fill in information gaps left by ambiguity. According to Grice’s cooperative
principle (see Grice 1968) the conversational inference is based on the notion
c© Springer Nature Switzerland AG 2020
M. Dastani et al. (Eds.): CLAR 2020, LNAI 12061, pp. 201–218, 2020.
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of common ground. From Stalnaker (2002), common ground is defined as the
mutually recognized shared information in a situation where an act of trying to
communicate takes place. In a conversation, common ground is treated as the
conversational context, which plays an essential role in the pragmatic under-
standing of the language.

Furthermore, the influence of the context on the use of language depends on
how much mutual information the interlocutors share and what kind of vocab-
ularies is available. As the context gets clear, the more ambiguous word may
be sufficient for transferring the information. However, it has not been fully
investigated that where the context comes from and how the context affects the
interlocutors’ choice of words with different degrees of ambiguity.

The goal of this paper is to justify the existence of ambiguity from the per-
spective of the context dependence. We construct a context learning process in
a signaing game for building the common ground of the conversation along the
interactions. After that, the interlocutors’ preferences of ambiguous words can
be tracked as the context varies.

More specifically, we consider two interlocutors, a sender (S) and a receiver
(R), are conducting a conversation for transferring information. They both have
some personal beliefs about the communicating information. As the communi-
cation goes on, the interlocutors gradually infer the other’s private belief from
the result of each interaction. After repeated interactions, players are able to
form a common ground, which serves as the context for the conversation. In
addition, during the learning process, interlocutors’ choices of ambiguous words
may change as their beliefs about the context vary.

The following graph summarises the discussion above.

Preferences of ambiguous words 

change along the conversation

For implementing the idea above, we use Lewis’s signaling game as our base
model for the learning process (see Lewis 1969). Lewis’s signaling game describes
a very general communication scenario where a sender observes the situation (a
state of the world) and then sends a signal to a receiver. The receiver takes
an action based on the signal he receives. The payoff in the game depends on
the state of the world and the action the receiver takes. The uncertainty of the
signaling game comes from the receiver’s ignorance of the true state. He can only
obtain the information from the signals that the sender sends. The model has
been widely used in exploring language communication (see O’Connor 2014b;
Huttegger et al. 2010; Huttegger 2007; Zollman 2005; Jäger 2014).
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Based on the Lewis’s signaling game, we made two main changes to the
model. The first change is to add players’ private beliefs about the communicat-
ing information into the game. The second change is to expand the set of signals
such that we can discuss ambiguous words with different degrees. With these
two changes, we construct a context learning process through which the players
are learning each other’s beliefs during the repeated interactions. A sufficient
condition is provided under which the learning is successful. After the players
learned each other’s private belief, they can form a mutual belief that serves as
the common ground of the conversation. Furthermore, when the learning fails,
though there is uncertainty about opponent’s belief, we show that players still
have a strong tendency to choose ambiguous expressions. We explore an uncer-
tain signaling through the reinforcement learning mechanism.

The structure of the paper is the following. In Sect. 2, we first extend Lewis’s
signaling game such that each player has private belief about the communicating
information. Then we discuss how players can learn opponent’s private belief
from the repeated communication. In Sect. 3, we establish a sufficient condition
on the game under which the learning is successful. Under this condition, we
discuss how the common ground of the conversation can be formed. In Sect. 4,
we explore, when the learning fails, players’ preferences of different ambiguous
expressions through the reinforcement learning signaling. The paper ends with
a comparison between our model and existing models on discussing uncertain
signaling and pragmatic reasoning in conversation.

2 Signaling Game with Private Belief (SPB)

As the conversation goes, the interlocutors’ beliefs about the communicating
information change. For studying this dynamic process, we develop a new sig-
naling game called signaling game with private belief (SPB). Based on Lewis’s
classical model, we assume that each player has private belief about the com-
municating information before the communication starts. Formally, we define
players’ private beliefs as partitions on the set of the states as follows.

Definition 1. Given a set of finite states T , a private belief of player i indicated
as Bi is defined as a partition on T . Each component of the belief partition is
called an element of the partition that is indicated as Bik, k ∈ N .

When the game begins, nature reveals the information to the sender. At
the same time, since the receiver has private information about the state, he is
also aware of relative information about the true state1. The sender then sends
a signal that carries information about the true state. By combining the signal
information and his private information, the receiver takes an action that decides
both players’ benefits. Moreover, We argue that by observing the outcome of the
game, the sender can possibly infer the receiver’s private belief.

States and actions can have a broad interpretation. The most obvious way
to understand them is that the state is some important fact about the outside
1 Similar idea appeared in Santana (2014)’s work.
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world and the action is some response to that fact. The state might be whether
it is raining and the action might be to take an umbrella. But, the state might be
something more internal, like the desire for the receiver to hold a certain belief.
Similarly the action might be private, like coming to believe something.

Formally, SPB model is defined as follows.

Definition 2. A signaling game with private belief (SPB) consists of the fol-
lowing parts:

– two players: player 1 and player 2;
– two roles: a sender and a receiver;
– a set of states T : {1, 2, . . . , n}, each state is assumed to occur with the same

probability.
– a set of possibly ambiguous signals S with conventional meanings;
– each player i has private belief Bi that is unknown to their opponents;
– a set of actions A : {a1, a2, . . . , an};
– Sender’s strategy is a function f : T → S, the receiver’s strategy is a function

g : S × Bi → P(A), i ∈ {1, 2}, where P(A) is the power set on A.
– A payoff function u for both players,

u(t, A,Bi∈{1,2}) =
{ 1

|A| if at ∈ A, |A| represents the size of the setA,
0 Otherwise.

where t ∈ T and A ∈ P(A);

An example (Example 1) is provided below for illustrating the concepts of
the game.

Example 1. The game consists of the following parts.

– Two players: player 1, player 2
– Two roles: a sender, a receiver
– A set of states {1, 2, 3, 4} occuring with equal probability;
– A set of signals s1, s2 with commonly known conventional meanings (s1 indi-

cates the states {1, 2},s2 indicates the states {3, 4}).

1, 2||3, 4
s1||s2

Since each signal can represent two different states, we say both signals are
ambiguous. We use “||” to indicate partitions on the meaning of signals and
“|” to indicate the partitions of the private belief.

– Each player has a private belief about the states and does not know the
opponent’s belief. We assume that player 1’s private belief is

1, 2|3, 4
B11|B12
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which means that player 1 can distinguish {1, 2} from {3, 4} but not further.
And player 2’s private belief is

1|2, 3, 4
B21|B22

– A set of actions {a1, a2, a3, a4}
Firstly, we suppose that player 1 is the sender and player 2 is the receiver.

Then, for each possible state, the game is played as follows.

Table 1. Play of the game in Example 1 (1)

State Signal Revealed information Receiver’s reasoning Payoff

1 s1 B21 B21 ∩ s1 1

2 s1 B22 B22 ∩ s1 1

3 s2 B22 B22 ∩ s2 1/2

4 s2 B22 B22 ∩ s2 1/2

Table 1 shows for each state, what signal the sender sends, how the receiver
reasons and what the outcome of the game is. For instance, the first row indi-
cates that when state 1 occurs, the sender sends signal s1. The receiver reads
the information from the signal that is {1, 2}, then combines it with his private
belief B21 that is {1}, which yields the information {1}. Because {1} is precise,
the receiver is able to take the correct action which guarantees the best payoff
for both players. In this example, the result holds trivially because the receiver’s
private belief already reveals the precise state information even without the infor-
mation from the sender. Since the sender does not know the receiver’s private
belief, he sends the ambiguous signal anyway. But in row 3, the outcome infor-
mation is {3, 4}, which yields the finer information than the receiver’s private
belief. Hence, combining personal belief and signal information is essential in
this case.

After communicating repeatedly, player 1 (sender) is able to infer player
2’s (receiver) private belief by comparing the differences between the outcomes
resulting from his inference and the actual outcome of the game. Player 1’s
inference about player 2’s private belief with respect to Table 1 can be described
as follows. For simplicity, we assume that both players know that players’ belief
partition contains two elements2. At each stage of the inference, from the sender’s
point of view, all the possible configurations of the receiver’s private belief are
listed.

At the initial stage, since only partitions with two elements are considered,
the receiver’ private belief has only three possibilities. They are

1|2, 3, 4 1, 2|3, 4 1, 2, 3|4
2 This assumption is just for simplifying the illustration.
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After state 1 occurs, the sender does some counterfactual reasoning. Specifi-
cally, the sender reasons that what the outcome of the game will be if he plays
the game with the receiver who holds one of the three possible beliefs. It is easy
to observe that only the first one yields payoff 1, which is consistent with the
actual outcome in Table 1. Therefore, the other two possibilities are eliminated.
Therefore, player 1 has learned that player 2’s private belief is 1|2, 3, 4.

The order of the occurrence of the states affect the learning process. If state
3 or state 4 occurs first, then the learning procedure may be different. The
following analysis shows player 1’s reasoning process when state 3 occurs first.

The initial stage is the same, there are three possibilities

1|2, 3, 4 1, 2|3, 4 1, 2, 3|4

After state 3 is communicated, the third possibility yields payoff 1 that is
different from the actual payoff in Table 1. Therefore, the third posibility can be
eliminated. Hence, two possibilities still remain.

1|2, 3, 4 1, 2|3, 4

After state 1 is communicated, applying the similar reasoning, player 1 infers
player 2’s private belief precisely as follows.

1|2, 3, 4

Therefore, in this simple toy game, in at most two steps, namely, after com-
municating state 3 or state 4 and state 1 or state 2, player 1 (sender) is able to
infer player 2’s (receiver) private belief correctly. In addition, if player 1 is lucky
enough that state 1 or state 2 occurs earlier than state 3 or state 4, then player
1 is able to learn player 2’s private belief quickly.

Similarly, player 2 is also able to infer player 1’s private belief by playing the
role of the sender. The following part shows the reasoning process where player
2 is the sender and player 1 is the receiver.

Table 2. Play of the game in Example 1 (2)

State Signal Revealed information Receiver’s reasoning Payoff

1 s1 B11 B11 ∩ s1 1/2

2 s1 B11 B11 ∩ s1 1/2

3 s2 B12 B12 ∩ s2 1/2

4 s2 B12 B12 ∩ s2 1/2

Table 2 shows the outcomes of the game for different states. Player 2’s infer-
ence about player 1’s private belief with respect to Table 2 is simply described
as follows.
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At the initial stage, there are three possible beliefs.

1|2, 3, 4 1, 2|3, 4 1, 2, 3|4
After state 1, the first one can be eliminated.

1, 2|3, 4 1, 2, 3|4
After state 2, it keeps the same.

1, 2|3, 4 1, 2, 3|4
After state 3, only one belief remains. That is

1, 2|3, 4
In this process, state 1 (or state 2) and state 3 (or state 4) are important for

player 2 to learn player 1’s private belief.
Therefore, after a few rounds of signaling communication with role switching,

both players can learn each other’s private belief. After the opponents’ beliefs are
learned, both players can combine their beliefs. Then a common belief 1|2|3, 4
can be induced, which is obtained by taking the coarsest common refinement of
the two belief partitions.

This common belief is important for further communication. It severs as
the knowledge base for processing ambiguous expressions. For example, under
this common belief, a two signal language s1 and s2 indicating the informa-
tion {1, 2, 3} and {4} is sufficient to communicate precisely all the information
in Example 1. Nevertheless, this kind of successful communication can not be
achieved before the common belief is formed.

Moreover, if another set of signals {s1, s2, s3, } (with meanings 1, 2||3||4) is
available as well, then the more ambiguous signal set {s1, s2} (with meanings
1, 2, 3||4) is preferred given that each signal is costly.

As a result, we have built a dynamic learning process between interlocutors
through the repeated SPB model. After the learning is accomplished, even by
using the ambiguous language, players might be able to communicate all the
information precisely.

However, the learning may not be successful in the sense that some player’s
private belief can not be singled out from all possible belief partitions. Therefore,
it is natural to ask under what conditions players’ private belief is learnable. We
answer this question in details in the next section.

3 When Is Private Belief Learnable?

In the previous section, we developed a learning procedure for players to learn
each other’s private belief in a conversation. However, there are situations in
which the learning fails. The following is an example to demonstrate that players
may sometimes fail to learn their opponent’s private belief.
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Example 2. Suppose there are six states {1, 2, 3, 4, 5, 6} occurring with equal
probability, the signal structure is the following.

12||34||56
s1||s2||s3

Assume player 1’s private belief and play 2’s private belie are the followings:

1, 2, 3|4, 5, 6 1, 2|3, 4, 5, 6
B11|B12 B21|B22

Firstly, we assume that player 1 is the sender and player 2 is the receiver.
Then from the sender’s point of view, his inference is as follows.

Table 3. Play of the game in Example 2

State Signal Revealed information Receiver’s reasoning Payoff

1 s1 B21 B21 ∩ s1 1/2

2 s1 B21 B21 ∩ s1 1/2

3 s2 B22 B22 ∩ s2 1/2

4 s2 B22 B22 ∩ s2 1/2

3 s3 B22 B22 ∩ s3 1/2

4 s3 B22 B22 ∩ s3 1/2

Following Table 3, we examine player 1’s learning process for player 2’s private
belief. Similarly, we assume that player 1 knows that player 2’s belief takes the
form of a two-element partition on the set of the states. Therefore, player 1’s
learning process can be constructed as follows. Without lose of generality, we
list player 1’s learning process by communicating from state 1 to state 6.

At the initial stage, there are five possibilities.

1|2, 3, 4, 5, 6 1, 2|3, 4, 5, 6 1, 2, 3|4, 5, 6 1, 2, 3, 4, |5, 6 1, 2, 3, 4, 5|6

After state 1, the first possible belief can be eliminated.

1, 2|3, 4, 5, 6 1, 2, 3|4, 5, 6 1, 2, 3, 4, |5, 6 1, 2, 3, 4, 5|6

After state 2, it stays the same.

1, 2|3, 4, 5, 6 1, 2, 3|4, 5, 6 1, 2, 3, 4, |5, 6 1, 2, 3, 4, 5|6

After state 3, the second possible belief above can be eliminated.

1, 2|3, 4, 5, 6 1, 2, 3, 4, |5, 6 1, 2, 3, 4, 5|6
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After state 4, it keeps the same.

1, 2|3, 4, 5, 6 1, 2, 3, 4, |5, 6 1, 2, 3, 4, 5|6

After state 5, one more possibility is eliminated.

1, 2|3, 4, 5, 6 1, 2, 3, 4, |5, 6

After state 6, two possibilities still remain.

1, 2|3, 4, 5, 6 1, 2, 3, 4, |5, 6

From this learning process, it is obvious that even though every state is
communicated, player 1 still can not distinguish player 2’s private belief from
1, 2|3, 4, 5, 6 to 1, 2, 3, 4, |5, 6. In other words, player 1 knows that player 2’s pri-
vate belief is one of these two, but there is no means for player 1 to figure out
which one it is. Therefore, it is an example where players’ private belief is not
learnable. Thus, it arises a natural question that under what conditions play-
ers are able to learn each other’s private belief. For answering this question, we
examine more about the reason of the failure in Example 2.

We calculate the payoffs in the remaining two possible private belief under
each state in Example 2.

Table 4. Payoff under each state

Private belief State 1 State 2 State 3 State 4 State 5 State 6

1, 2|3, 4, 5, 6 1/2 1/2 1/2 1/2 1/2 1/2

1, 2, 3, 4, |5, 6 1/2 1/2 1/2 1/2 1/2 1/2

From Table 4, both possible beliefs yield the same payoffs under all the states.
Recall that, in the learning process, the trigger for the sender to eliminate some
private belief is the payoff differences. For example, in Example 2, from the
initial stage to stage one, the private belief 1|2, 3, 4, 5, 6 is eliminated from the
possible set. It is because 1|2, 3, 4, 5, 6 yields the payoff 1 for state 1, whereas all
other possibilities yield 1/2 for state 1. Since the true payoff is 1/2, therefore,
1|2, 3, 4, 5, 6 should be eliminated. The essential feature here is that the payoff
differences resulting from different possible private beliefs provide the sender
the opportunities to learn about the receiver’s private belief. If all the possible
private beliefs yield the same payoff, then the sender has no chance to learn
anything.

Inspired by this phenomena, we established a sufficient condition under which
the player’s private belief is learnable. Before stating the condition, we first define
formally what it means that two possible private belief are distinguishable.
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Definition 3. Given a SPB game with the set of states T , a set of actions A
and a set of signals, we say that from the player i’s point of view, two possible
private beliefs B1

−i, B
2
−i are distinguishable, if there exists a state j, such that

u(j, Aj |sj∩B1j
−i) �= u(j, Aj |sj∩B2j

−i), where j ∈ T , sj is the corresponding signal,
B1j

−i and B2j
−i are partition elements containing state j, and A ∈ P(A).

Where B−i indicates player i’s opponent’s possible private belief. u(j, Aj |sj ∩
B1j

−i) is read as the payoff with respect to the receiver’s action set Aj (indicating
that aj ∈ A) given signal sj and the private information B1j

−i.
The intuition behind this definition is just saying that if there exists a state

under which two belief partitions yield different payoffs, then they are distin-
guishable. For example, in Example 2, the belief partitions 1|2, 3, 4, 5, 6 and
1, 2|3, 4, 5, 6 are distinguishable under state 1. Moreover, the structure of the
game guarantees that under state 1, at least one of the two beliefs yields the
wrong payoff and can be eliminated.

Now we can present the sufficient condition under which a private belief is
learnable by using Definition 3.

Theorem 1. Given the SPB game, if any two of receiver’s possible private belief
partitions from the sender’s point of view are distinguishable, then the receiver’s
private belief is learnable.

Proof: See Appendix.

Theorem 1 tells us under what conditions receiver’s private belief is learnable.
The sufficient condition meets our intuition that the payoff differences provide
the sender an indication of distinguishing possible private beliefs from impossible
ones. An example can illustrate the intuition behind the theorem.

Conversation A:

Ann: Hi, morning! Are you going to the bank?
Bob: Yes, I go there every day.

Conversation B

Ann: Hi, morning! Are you going to the bank?

Bob: Yes, I have an appointment with the financial manager.

In the two conversations above, because of the ambiguity of the word “bank”,
there maybe uncertainty in the conversation. In conversation A, Ann does not
know which meaning of the bank that Bob is using. It is because from Bob’s
response, Ann can not distinguish the financial bank from the river bank. On
the contrary, in conversation B, Ann can easily infer from Bob’s response that
Bob is using the word “bank” for the financial institute.
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4 Uncertain Signaling and Ambiguity Preference

In the previous section, we provide a sufficient condition under which the players
can learn opponents’ private beliefs through the repeated signaling game. How-
ever, there are many situations such as Example 2 in which the learning fails.
We want to ask if the players are uncertain about each other’s belief, whether
ambiguous signals can be chosen. In this section, we conduct simulation studies
for exploring players’ preferences of ambiguous expressions when the opponent’s
private belief is not fully learned.

The idea is to model a communicative scenario where given a set of signaling
systems with different ambiguities, players are learning which signaling system is
more optimal. A signaling system is a set of signals with conventional meanings
with respect to the given set of the states. In the classical signaling game and
our previous discussions, we consider a game with single signaling system only.
In this section, we consider multiple signaling systems simultaneously.

In Lewis’s signaling game, each equilibrium can be represented as a partition
on a set of states, we call it a signaling system. For example, given a set of states
T : {1, 2, 3, 4, 5, 6}, the separating equilibrium can be induced from the partition
{1||2||3||4||5||6}, where we simply use || to indicate the elements in the partition.
One of the possible meaningful set of signals for the partition is that signal si
carries the meaning of state i. Apparently, in the separating equilibrium, each
signal precisely represents each state information.

One the other hand, the partial pooling equilibrium involves uncertainties for
the meaning of the signals. For instance, the partition {1234||56} can produce a
partial pooling equilibrium, in which two signals are used and each signal carries
the meanings of multiple states. Therefore, ambiguous signals can appear in
the partial pooling equilibrium. We say that signaling system {1||2||3||4||5||6}
containing more signals is more precise than the signaling system {1234||56}. In
general, for different partitions on the same set of states, the partition contains
more signals is considered less ambiguity than the one with fewer signals. We
assume that each signal in a partition have a cost c, then the partition with more
signals is more precise but more expensive.

Assuming the existence of multiple signaling systems, we assign each sig-
naling system a weight m by considering three factors. Firstly, the signaling
system gains credences from two simultaneously occurring process: one is from
the conversational information transaction, the other is from providing partial
information about opponent’s personal beliefs. In addition, we take into account
of the cost of signals. Through keeping track of the weight of each signaling
system in a reinforcement learning process, we show that ambiguous signaling
systems have advantages in this uncertain signaling process.

The reinforcement learning has been widely applied in the studies of lan-
guage evolution (see O’Connor 2014b; Skyrms 2010; Wagner 2009; Zollman 2005;
Franke and van Rooij 2011). Reinforcement learning can be described by a sim-
ple urn model with two colored balls. Every time a ball is drawn from the urn
randomly. Then, the same ball and another same colored ball are returned to
the urn. As a result, the probability of the ball with the same color being drawn
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next time is increased. When reinforcement learning is applied in the signaling
game, players’ strategies can be imagined as drawing the colored balls from the
urns of signals and acts.

We define the reinforcement learning for only sender’s choice among the
signaling systems. Since we assume the signaling systems are common knowledge,
once the sender’s strategy is fixed, the receiver’s action is also fixed. Hence, it is
sufficient to consider only the sender’s strategy.

The updating rule is the following.

wPi
(t + 1) = wPi

(t) + uj + ul − kc

where wPi
is the weight for the signaling system Pi, uj is the payoff for the result

of communicating the state information j, ul is the credence from learning the
opponent’s private beliefs while Pi is used. Formally, kc is the cost of the signaling
system Pi in which k number of signals are contained. ul is decided by counting
how many possible belief partitions can be eliminated when Pi is used. ul = l,
if one possibility is eliminated. ul = 2l, if two possibilities are eliminated. ul

is understood as how much impossibilities can be eliminated by using certain
signals. The more impossible belief can be eliminated the more learning credences
the signal can obtain. The learning here is an epistemic learning process which
is also a process of reducing uncertainties.

By calculating the weight of each signaling system, we can define a response
rule for the learning system to capture how frequently certain signals are used.
The response rule for the reinforcement learning is defined as follows.

pPi
(t) =

wPi
(t)∑

j wPj
(t)

in which the probability of Pi being chosen is calculated by the proportion of
the weight of Pi among the weight of all the possible partitions. The higher
the probability of certain signaling system is, the more frequently this signaling
system is used and hence more advantages this signaling system obtains in the
evolutionary system.

We use Example 2 for the simulation study. The signaling systems under the
consideration are

P1 : 12||34||56 P2 : 1234||56 P3 : 123456

The costs of the signaling systems are 3c, 2c and c. The ambiguity increases
from P1 to P3.

The reinforcement learning process is the following. Firstly, the occurring
state and who plays the role of the sender are decided randomly with equal
probability. Then, the sender chooses the signaling system by the response rule.
The results of communication and learning are reflected on the weight w. We
assume the original weights for all the signaling systems are the same.
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If we assume the response probability pPi
= 1

3 , i = 1, 2, 3 at time t = 0, we
can calculate the expected weights according to the following equation.

EwPi
=

1
2

∑
j

1
6

∗ 1
3
(uj + ul) +

1
2

∑
j

1
6

∗ 1
3
(uj + ul) − kc

Therefore,

EwP1
=

7
12

+
3
2
l ≈ 0.58 + 1.5l − 3c,

EwP2
=

4
9

+ 3l ≈ 0.44 + 3l − 2c,

EwP3
=

1
3

+
7
2
l ≈ 0.33 + 3.5l − c

Apparently, for comparing EwPi
, we have to specify the particular values of

l and c. As the proportion of Pi changes along the learning process, it becomes
impossible to calculate manually. Hence we conduct simulations to explore the
dynamic of this learning process.

By changing the values of l and c, we got the simulation results by conducting
each trial for 2000 generations.

Figure 1 presents one instance of simulation results for different values of l
and c. The X axis shows the repeated times of communication. We repeated
2000 times for each trial. The Y axis shows the probability of each signaling
system being chosen. It is obvious that in a short time of communication, the
most precise signaling system P1 still has some advantages. However, in the long
run, the precise signaling system is dominated by the more ambiguous signaling
systems P2 and P3.

For examining the stability of the result, we also conduct simulations for
200 trials for each case. During the 200 trails, we record the frequency of each
signaling system being the best among the three with respect to the best average
probability in each trial. For example, when l = 0.2, c = 0.15 (case (f)), in the
200 trials, 77% times, P3 has the best average performance, P2 takes 22.5% of
the time while P1 takes only 0.5% of the time. When l = 0.1, c = 0.05 (case (a)),
among the 200 trials, P3 has the best average performance 45% of the time,
P2 takes 41% of the time while P1 takes 14% of the time. Overall, the most
ambiguous signaling system has the best average performance among the given
three signaling systems.

The explanation of the simulation results relies on two facts. Firstly, on bal-
ancing the information transaction and the costs of signals, the ambiguous sig-
naling systems turn out to be more optimal. Secondly, the ambiguous signaling
systems have advantages in the learning process in our models. When the com-
munication is successful through using the ambiguous expression, which means
the receiver’s private belief plays an important role in the information transac-
tion, as a result, the sender can infer the receiver’s private belief through the
outcome of this play. On the contrary, the precise signals do not have this merit.
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(a) (l=0.1, c=0.05) (b) (l=0.1, c=0.1)

(c) (l=0.1, c=0.15) (d) (l=0.2, c=0.05)

(e) (l=0.2, c=0.1) (f) (l=0.2, c=0.15)

Fig. 1. The probability of each signaling system being chosen

To conclude, in this section, we use simulation studies to examine player’s
preference on ambiguous signals when the opponent’s private belief is uncertain.
Three factors are considered in the simulations: the benefits from information
transactions, the partial information of opponents’ belief through the learning
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and the cost of the signals. The simulation results show that more ambiguous
signals are preferred in most of the situations.

5 Discussion and Conclusion

In the literature, there are many discussions about uncertain signaling and its
communication features. We discuss the similarities and differences between our
model and the established models in the literature. The models we concern are
Santana’s signaling model with belief context (see Santana 2014), the rational
speech act model from Frank and Goodman (2012), the iterated response model
by Franke and Jäger (2014) and the uncertain signaling model from Thomas
(2017).

We proposed a dynamic learning procedure of private belief for communica-
tion, which differs from the models in which a common prior of beliefs is assumed.
Santana’s signaling model is a typical signaling game with a given context back-
ground. It studies the emergence of ambiguity in a cooperation signaling game.
Based on Lewis’s signaling game, a context is added to the model. Players com-
bine both the signal information and the independent context information for
making decisions. The paper argues that the evolution favors the ambiguous sig-
naling. Our model has the similar motivation and structure as Santana’s model.
The major difference is that in Santana’s model, the context is given as the
common knowledge independent of the communication. One of the main contri-
butions of our paper is building a learning process of the context belief during
the communication. A dynamic perspective is taken in our model for both the
context formation and the preference of ambiguities.

Our model is also different from the models built on the probabilistic
(Bayesian) iterated learnings (see Frank and Goodman 2012; Goodman and
Frank 2016; Franke and Jäger 2014). Rational language use is captured by a
hierarchy over reasoning types in Franke and Jäger’s hierarchy model. An iter-
ated rationality reasoning is constructed on the strategy types in the model,
which captures the back and forth pragmatics reasoning. Rational speech act
game (in Frank and Goodman 2012) uses a Bayesian reasoning to predicate
interlocutors’ language use. Franke and Jäger’s model and the Rational speech
act model focus on the rationality and pragmatics in use of the language. The
interlocutors’ context belief is coded into the strategy types and the context
information is not fully explored.

Thomas (2017)’s uncertain signaling model generates an adaptive dynamic
to predicate ambiguous communication under which the players are lacking a
common prior. Brochhagen’s model focuses on the learning of the context belief,
but only the adaptive dynamics is explored. It lacks a full analysis of whether
and when a common context is possible to be established.

The investigation in this paper is built on the notion of information partition
that is more basic than the concept of probability. The model follows Aumann
(1976)’s tradition of “Agree to Disagree”. The difference is that Aumann’s theo-
rem has a common prior assumption and is based on only one random variable. In
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our model, we works on multiple random variables (all possible private beliefs)
and different priors. Another advantage of using information partition is that
we can discuss the content of the information from the signals as well as from
the context beliefs instead of just posterior probabilities. From the discussion
in Geanakoplos and Polemarchakis (1982), the learning of posterior probability
does not equal to learning the information itself. Hence, a model built on the
notion of information partition has more potential for exploring belief updat-
ing and learning. Moreover, the discussion based on information partition can
be easily extended to other related fields such as other extensive games and
possible world semantics in Modal Logic.

To conclude, the paper tries to justify the existence of language ambigu-
ity from the perspective of context dependence. When the context about the
conversation is commonly known, the ambiguous expression is possible to com-
municate all the information. Furthermore, as the interlocutors’ beliefs change
during the repeated conversations, the interlocutors’ preferences of degrees of
ambiguity may change as well. The main contribution of the paper is that we
construct a learning process for the players to update beliefs from the result of
each conversation. We also establish a testing condition under which whether
the learning process is successful. In addition, we discussed players’s choice of
ambiguous language when the opponent’s private belief is not fully known. A
reinforcement learning signaling game is developed for the uncertain signaling
situations.
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Appendix

Theorem 1. Given the SPB game, if any two of receiver’s possible private belief
partitions from the sender’s point of view are distinguishable, then the receiver’s
private belief is learnable.

Proof: This theorem can be proved from the players’ reasoning process on infer-
ring opponent’s private belief by playing the SPB game repeatedly. The algo-
rithm of this learning can be described as follows. For convenience, we eliminate
the subscribe indicating the players in B in the proof.

Step 1 Since T is finite, we can list all the possible private belief partitions as a
sequence B : B1, . . . , Bm;

Step 2 Calculate all the expected payoffs yielded by each Bj , j ∈ {1, 2, . . . ,m}
for each state i, i ∈ {1, 2, . . . , n};
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Step 3 Pick the first two partitions in the sequence B, B1 and B2, since any
belief partition are distinguishable, then there exists a state k such that
u(k,Ak|sk ∩ B1k) �= u(k,Ak|sk ∩ B2k). Therefore, once state k happens
(the occurrence of state k can be guaranteed because players are playing
this game repeatedly and every state is possible to occur.), by comparing
the true payoff with the payoffs given by B1 and B2, There are two
situations:
– One of the beliefs yields the true payoff, then the sender just return

the correct partition back to the sequence B.
– Neither belief yields the true payoff, then both beliefs should be elim-

inated.
Step 4 Update the sequence B, then repeat from step 1.

Since for any two private belief partitions, they are distinguishable, and at
least one of them is wrong. Hence, the list B can be eliminated to only one
element in finite steps. The remaining belief partition is receiver’s true private
belief. Therefore, receiver’s private belief is learnable. �

References

Aumann, R.J.: Agreeing to disagree. Ann. Stat. 4, 1236–1239 (1976)
Frank, M.C., Goodman, N.D.: Predicting pragmatic reasoning in language games. Sci-

ence 336(6084), 998–998 (2012)
Franke, M., Gerhard, J.: Pragmatic back-and-forth reasoning. In: Reda, S.P. (ed.) Prag-

matics, Semantics and the Case of Scalar Implicatures, pp. 170–200. Springer, Lon-
don (2014). https://doi.org/10.1057/9781137333285 7

Geanakoplos, J.D., Polemarchakis, H.M.: We can’t disagree forever. J. Econ. Theory
28(1), 192–200 (1982)

Goodman, N.D., Frank, M.C.: Pragmatic language interpretation as probabilistic infer-
ence. Trends Cogn. Sci. 20(11), 818–829 (2016)

Grice, H.P.: Utterer’s meaning, sentence-meaning, and word-meaning. Found. Lang. 4,
225–242 (1968)

Huttegger, S.M.: Evolution and explaining of meaning. Philos. Sci. 74(1), 1–24 (2007)
Huttegger, S.M., Skyrms, B., Smead, R., Zollman, K.J.S.: Evolutionary dynamics of

Lewis signaling games: signaling systems vs. partial pooling. Synthese 172(1), 177–
191 (2010)
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Abstract. We formally introduce a novel, yet ubiquitous, category of
norms: norms of instrumentality. Norms of this category describe which
actions are obligatory, or prohibited, as instruments for certain purposes.
We propose the Logic of Agency and Norms (LAN) that enables reasoning
about actions, instrumentality, and normative principles in a multi-agent
setting. Leveraging LAN, we formalize norms of instrumentality and com-
pare them to two prevalent norm categories: norms to be and norms to
do. Last, we pose principles relating the three categories and evaluate
their validity vis-à-vis notions of deliberative acting. On a technical note,
the logic will be shown decidable via the finite model property.
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Andersonian reduction · Decidability · Deontic logic · Norms
of instrumentality

1 Introduction

The formal analysis of normative reasoning, roughly starting with the intro-
duction of deontic logic in the 1950s [21], has been guided by the conviction
that action and agency are pivotal components of normative reasoning [8,22].
In relation to this, an important development took place in the 1970s: the intro-
duction of Propositional Dynamic Logic (PDL) [10]. Modal logics of PDL focus
on the analysis of complex actions (or programs) and their relation to results.
The framework was soon adapted to deontic reasoning [17] and it continues to
receive attention to the present day [20]. The emphasis on action and agency
in normative reasoning led to the distinction between two categories of norms:
norms to be and norms to do [1,8]. Norms of the former category address states
of affairs, without making reference to how such states of affairs are obtained
by the agent. The latter category normatively prescribes actions to agents, yet,
without specifying the possible outcomes that might be produced by the action.

However, there is a third category of norms merging both approaches, which,
to the best of our knowledge, has not been formally investigated. These norms
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prescribe a specific normative relation between an action and a goal, with the
action serving as an instrument to achieve the goal. We will refer to such norms
as norms of instrumentality. Consider the following example:

Although it is neither prohibited to use nonpublic information, nor is it
prohibited to acquire financial profit on the stock market, it is in fact
prohibited to use such information as an instrument to attain the latter.

The above principle is known as the law on ‘insider trading’ and belongs to this
third category. Prohibitions of the form expressed above articulate which actions
cannot be employed as instruments for achieving particular goals. Despite the
ubiquity of normative constraints on instrumentality in legal, social, and ethical
systems (e.g. protocols, rules of games, fairness constraints, etc.), an investigation
of their philosophical ramifications in formal logic is absent. This work aims to
provide the formal foundations for the analysis of norms of instrumentality.

In [1], a formal investigation of the first two norm categories is provided. The
formalism employed there brings together Anderson’s reduction of norms of the
first class [2] and Meyer’s reduction of norms of the second class [17] in a single
system of modal logic called PDeL (i.e. deontic PDL). The first is a reduction of
deontic operators to alethic formulae containing violation constants (e.g. a result
A is obligatory when ¬A strictly implies a violation). The second reduces deontic
operators to formulae using action modalities and violation constants (e.g. an
action Δ is obligatory when not performing Δ strictly implies a violation).

In [4], a third reduction is discussed, where action modalities of PDL are
reduced to alethic formulae containing action constants. The resulting logic facil-
itates reasoning about agent-dependent actions within the object language and
formally captures different notions of instrumentality (in a non-normative set-
ting). Decidability of this logic was left as an open problem.

The current work brings together the three reductions found in [1] and [4], and
introduces a Logic of Agency and Norms called LAN (Sect. 3). The resulting logic
extends previous approaches by permitting us to reason with agent-dependent
actions, as well as agent-dependent obligations and prohibitions, in multi-agent
settings. The language of LAN will enable us to formally investigate the three
norm categories; we will pose principles describing relations between the three
categories and evaluate their validity vis-à-vis different notions of deliberative
acting (Sect. 4). Last, we prove the decidability of LAN in Appendix A of the
paper.

2 A Benchmark Example

In order to understand the distinct nature of the three kinds of norms, we provide
an example protocol serving as a benchmark in developing our formal framework.
In Sect. 5, we formalize and analyze the protocol using our developed logic.

A Hospital Health and Safety Protocol. The Health and Safety Committee
of a public hospital in Vienna recently established a new set of guidelines to
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govern and redirect the behaviour of surgeons and nurses in the assistance and
treatment of its patients. In particular, motivated by the increased awareness
of the dangers of accidental self-inflicted wounds, caused by using sharp tools
during surgery, the committee has proposed a new policy: that is, limiting the
use of scalpels in surgery to surgeons and prohibiting assisting nurses the use of
such instruments in the operation room. The protocol is summed up accordingly:

P1 A surgeon is obliged to use the prescribed scalpel to bring about a necessary
incision during surgery.

P2 Assisting nurses are not allowed to use scalpels during surgery when the
situation is not dire.1

P3 Nurses and surgeons alike have the obligations to (i) promote the health of
their patients and (ii) preserve hygiene safety in the operation room.

First, we observe that the norm expressed by P1 is a norm belonging to the
third, novel, category of norms of instrumentality ; that is, it describes a norm
that specifically relates an action as an instrument to a particular outcome. P2
is a prohibition subsumed under norms to do, and holds independent of the
instrument’s intended purpose. P3 is an obligation pertaining to norms to be,
and holds independent of the instruments used to obtain (i) and (ii).

To stress the irreducibility of norms of instrumentality to norms to be and
norms to do, consider the following: although a surgeon might be obliged to
use a scalpel to ensure a required incision, it does not follow that she has the
obligation to use scalpels independent of their intended purpose (some outcomes
obtained by using scalpels could be prohibited), nor does it mean that she has
the obligation to bring about the incision by any means necessary (some means
could be prohibited). In fact, in case of P1, the surgeon has only the obligation
to ensure the required incision by means of using the scalpel.2

To continue, the committee makes two assumptions in drafting the protocol:

T1 The protocol resolves all normative issues in surgical situations by offering
rules of conduct that ultimately provide ways out of any possible conflict.

T2 The protocol assumes that the choices described, and suggested, to the
agents can be consistently performed together.

The committee is aware that sub-ideal situations can occur (e.g. whenever an
employee (in)voluntarily violates an initial rule). Given T1, the committee pro-
vides the following principle which activates whenever P3 cannot be satisfied:
1 Notice that principle P2 incorporates a form of defeasible reasoning through explicit

exception, for the present analysis of norms of instrumentality, the above will suffice.
2 Notice that in the present example, we use a material tool to exemplify instruments.

However, we stress that the notion of instrumentality is more general and refers to
all actions serving goals; e.g. ‘opening the window’ is an instrument for ‘changing
the room’s temperature’ [22]. Following Von Wright [23], an action is a classified φ-
instrument—where φ is the purpose—whenever the action serves the purpose of φ.
Consequently, although in the above example reference is made to a ‘scalpel’ (i.e. a
tool) the instrument under consideration—serving the purpose of ‘the incision being
made’—is in fact the action ‘using the scalpel (for the purpose of incision)’. See [4]
for a philosophical discussion on different notions of instrumentality.
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E1 In case of failing to preserve hygiene standards during surgery (e.g., in the
case of self-inflicted wounds) the employee in question is obliged to imme-
diately leave the operation room and call the safety-emergency number.

The purpose of the above rule is to ensure that damage in sub-ideal scenarios
is controlled. Principle E1 prescribes measures to be taken in case of failure to
comply with other prescriptions. As can be seen, there is a close connection
between principle E1 and what is called contrary-to-duty reasoning; that is,
reasoning about secondary norms that arise from violating primary norms. We
come back to this point during the formalization of the example in Sect. 5.

Last, the committee desires that the above protocol is captured in a log-
ical system, enabling them (i) to analyse the consistency of the protocol and
(ii) to reason with the protocol whenever critical circumstances occur. As can
be observed, the logical language must contain agents, actions, results and vio-
lations, in order to facilitate the formal distinction between the three norm
categories.

3 Deontic Logic of Actions, Agency and Norms

In what follows, we introduce the language, semantics and axiomatization of
our Logic of Agency and Norms, henceforth, LAN (the logic will be a deontic
extension of the machinery provided in [4]). As motivated in the introduction, we
will employ a reductionist approach to norms via violation constants (following
[17]) and to actions via action constants (following [4]). In order to reason with
actions in a normative setting, we use a Boolean algebra of actions. The language
of LAN will depend on this algebra of actions, which will enable us to talk about
complex, compound actions as formulae in the object language.

Definition 1 (Algebra of Actions ActLAN). Let Act = {δ1, ..., δn} be a set of
atomic action-types and let δi ∈ Act. The language ActLAN of complex action-
types Δ is given via the following BNF grammar:

Δ ::= δi | Δ ∪ Δ | Δ

The operations ∪ and — represent disjunction and complement (resp.), allowing
us to generate complex expressions such as ‘closing-the-door or opening-the-
window’ and ‘not closing-the-window’. The conjunction operator & over actions
is defined as Δ1&Δ2 := Δ1 ∪ Δ2. Let Agt = {α1, . . . , αn} be a set of agent labels;
we say Δαi is an agent-dependent action-type iff Δ ∈ ActLAN and αi ∈ Agt.

We let V ar = {p1, p2, . . . } be a countable set of propositional variables, and
for any αi ∈ Agt, we let Witαi = {dαi

1 , ..., dαi
n } be the set of propositional con-

stants that witness the performance of atomic action-types δ1, ..., δn by αi (this
is made formally precise in Definition 3). Let Wit be the union

⋃
αi∈Agt Witαi

and note that |Witαi | = |Act| = n, for some n ∈ N. Also, we take vαi to
be a propositional constant witnessing a norm violation for agent αi and let
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V io = {vαi | αi ∈ Agt } be the set of all agential violation constants. Last, we
let Atoms = V ar ∪ Wit ∪ V io.3

Definition 2 (The Language LLAN). LLAN is given by the following BNF:

φ ::= pi | vαj | dαj

i | ¬φ | φ → φ | �φ | [N]φ

where pi ∈ V ar, αj ∈ Agt, vαj ∈ V io and d
αj

i ∈ Wit.

In short, the operators ∧, ∨ and ≡ are defined in the usual way. Formulae of
the form �φ and [N]φ express, respectively, ‘in all possible successor (future)
states φ holds’ and ‘in the actual successor (future) state φ holds’. We take �
and 〈N〉 as the duals of � and [N], respectively. Last, we take d

αj

i and vαj to
stand for ‘agent αj has performed action δi’ and ‘agent αj has violated a norm’,
respectively.

Following [4], we define a translation that maps agent-dependent action-types
to formulae of LLAN, enabling us to reason with actions inside the logic:

Definition 3 (Translation t between ActLAN and LLAN).

– For any δi ∈ Act and αj ∈ Agt, t(δαj

i ) = d
αj

i , with d
αj

i ∈ LLAN.
– For any Δ ∈ ActLAN and αi ∈ Agt, t(Δαi) = ¬t(Δαi).
– For any Δ,Γ ∈ ActLAN and αi, αj ∈ Agt, t(Δαi ∪ Γαj ) = t(Δαi) ∨ t(Γαj ).

Consequently, from the above we can derive t(Δαi&Γαi) = t(Δαi) ∧ t(Γαi).4

To demonstrate the potential of LLAN, we present below the agency operators
for would, could and will, as introduced in [4]. These operators will play a central
role in determining an agent’s compliance with the formalized example protocol
in Sect. 5. We leave the introduction of normative operators to Sect. 4.

(1) For any Δ ∈ ActLAN and αi ∈ Agt, [Δαi ]wouldφ := �(t(Δαi) → φ)
(2) For any Δ ∈ ActLAN and αi ∈ Agt, [Δαi ]couldφ := �(t(Δαi) → φ)∧ �t(Δαi)
(3) For any Δ ∈ ActLAN and αi ∈ Agt, [Δαi ]willφ := �(t(Δαi) → φ)∧〈N〉t(Δαi)

The above operators capture different relations between actions and results
obtained at successor states. The first notion is interpreted as ‘currently, by
performing the action Δ, agent αi would bring about φ’ (i.e. Δ suffices for
guaranteeing φ). This definition, however, does not ensure that the agent can in
fact perform Δ. The second definition extends the first by adding a notion of
ability to it, reading ‘currently, by performing action Δ, agent αi would bring
about φ and agent αi could currently perform Δ’. The third notion connects the
actual course of events with the possible actions available to the agent, stating
that ‘currently, by performing Δ, agent αi would bring about φ and agent αi

will actually execute Δ’. (Note that (3) implies (2), and (2) implies (1) within
the logic LAN; see Definition 4).

3 Following [1], to avoid paradoxes vαi is read as ‘norm violation’ instead of ‘sanction’.
4 We note in passing that one could define other action operators of PDL within the

reduced logic LAN; for example ‘composition’ as [Δαi ; Γ αi ]φ := [Δαi ][Γ αi ]φ.
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The logic LAN is specified through a Hilbert-axiomatization presented in
Definition 4. The axioms A1, A2, A4 and R1 specify that both � and [N] behave
as normal modal operators. In addition, we make a few minimal assumptions for
our logic: Axiom A3 ensures that every state has at most one actual successor.
Axiom A4 guarantees that every actual future is also a possible future. Axiom
A5 expresses that any list of available actions performable by different agents
can be consistently performed together. Axiom A5 corresponds to clause T2
from the example of Sect. 2, and is an adaptation of the independence of agents
principle (a pivotal condition for multi-agent STIT logics; see [3, Ch. 7]). Last,
for our deontic setting we adopt a weak contingency axiom with respect to agent-
dependent norm violations. This condition, captured by axiom A6, ensures that
no agent αi can end up in a state at which norm violations cannot be avoided;
i.e. if there is a violation possible, there is also a successor state in which the
violation is avoided. This axiom corresponds to requirement T1 made in Sect. 2.
For a discussion of the contingency axiom A6 we refer to [2,18].

Definition 4 (Axiomatization of LAN).

A0 All propositional tautologies
A1 �(φ → ψ) → (�φ → �ψ)
A2 [N](φ → ψ) → ([N]φ → [N]ψ)
A3 〈N〉φ → [N]φ
A4 �φ → [N]φ
A5 For distinct α1, ..., αn∈Agt and not necessarily distinct Δ1, ...,Δn∈ActLAN,

( �t(Δα1
1 ) ∧ ... ∧ �t(Δαn

n )) → �(t(Δα1
1 ) ∧ ... ∧ t(Δαn

n ))
A6 For any αj ∈ Agt, �vαj → �¬vαj

R0 Modus Ponens: 
LAN φ and 
LAN φ → ψ imply 
LAN ψ
R1 Necessitation: 
LAN φ implies 
LAN �φ

A derivation of φ in LAN from a set Σ, written Σ 
LAN φ, is defined in the usual
way (See [5, Def. 4.4]). When Σ = ∅, we say φ is a theorem, and write 
LAN φ.

The corresponding relational frames for LAN are those of [4], modified to a
deontic setting using violation constants:

Definition 5 (Relational LAN Frames and Models). An LAN-frame is a
tuple F = (W, {W

d
αj
i

: dαj

i ∈ LLAN}, {Wvαj : vαj ∈ LLAN}, R,RN), such that:

� W is a non-empty set of worlds w, v, u, . . . such that:
(R1) For each d

αj

i ∈ Wit, W
d

αj
i

⊆ W .
(R2) For each vαj ∈ V io, Wvαj ⊆ W .

� R,RN ⊆ W × W are binary relations between worlds in W such that:
(R3) For all w, u, v ∈ W , if wRNu and wRNv, then u = v.
(R4) For all w, v ∈ W , if wRNv, then wRv.
(R5) For all w ∈ W and for all 1 ≤ i, j,≤ n, if there are (not necessarily

distinct) action-types Δ1, ...,Δn such that for 1 ≤ i ≤ n there is a world
ui ∈ W , for which wRui and ui ∈ Wt(Δ

αi
i ), then there is a world v ∈ W

such that wRv and v ∈ Wt(Δ
α1
1 ) ∩ ... ∩ Wt(Δαn

n ).†
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(R6) For all w ∈ W and all αj ∈ Agt, if there exists a v ∈ W such that
wRv and v ∈ Wvαj , then there is a world u ∈ W for which wRu and
u ∈ W−Wvαj .

(†) For an arbitrary Δαi , s.t. Δ ∈ ActLAN and αi ∈ Agt, we define
Wt(Δαi ) using the following recursive clauses: Wt(δ

αi
i ) = Wd

αi
i

, Wt(Δαi ) =
W−Wt(Δαi ) and Wt(Δαi ∪Γ αj ) = Wt(Δαi ) ∪ Wt(Γ αj ).

An LAN-model is a tuple M = (F, V ) where F is an LAN-frame and V is a
valuation function mapping propositional atoms to subsets of W , that is V :
Atoms �→ P(W ), for which the following two restrictions hold:

� V (dαj

i ) = W
d

αj
i

, for any d
αj

i ∈ LLAN.
� V (vαj ) = Wvαj , for any vαj ∈ LLAN.

Let CLAN
f be the class of LAN-frames. (NB. One can easily show that CLAN

f �= ∅.)
The relation R represents transitions between successive states. Whereas

transitions represented by R capture possible transitions from the current state,
the relation RN represents the actual transition from the current state. The only
restrictions imposed are: there is at most one actual future (R3) and the actual
future must be one of the possible futures (R4) (cf. A3 and A4 of Definition 4,
resp.). The concept of ‘actual future’ is taken as state-dependent, which enables
reasoning about states that would lie in the actual future of a counterfactual
state (e.g., ‘although it is Monday, if it would have been Thursday today, then
it would actually be Friday tomorrow’; see [4]). Next, condition (R5) ensures
that any combination of actions performed by distinct agents is consistent (cf.
A5 of Definition 4). Condition (R6) enforces that, if there is a possible future in
which a norm violation occurs for some agent, then there is also an alternative
future available in which a norm violation is avoided for that agent (cf. A6 of
Definition 4).

The semantics of LLAN is defined accordingly:

Definition 6 (Semantics for LLAN). Let M be an LAN-model and w ∈ W of
M . The satisfaction of a formula φ ∈ LLAN in M at w is inductively defined as:

(1) M,w � χ iff w ∈ V (χ), for any χ ∈ Atoms
(2) M,w � ¬φ iff M,w � φ
(3) M,w � φ → ψ iff M,w � φ or M,w � ψ
(4) M,w � �φ iff for all v ∈ W s.t. wRv we have M,v � φ
(5) M,w � [N]φ iff for all v ∈ W s.t. wRNv, we have M,v � φ

The semantic clauses for the dual operators � and 〈N〉, as well as global
truth, validity and semantic entailment are defined as usual (see [5]).

(NB. propositional constants for actions and violations maintain their seman-
tic interpretation in all models over a frame. See [4] for a discussion.)

The adequacy of LAN is directly obtained through a slight modification of
the soundness and completeness proofs for the logic of actions and expectations
presented in [4] (i.e. we substitute expectation constants for violation constants).
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Theorem 1 (Adequacy [4]). For all φ ∈ LLAN, we have that φ is an LAN
theorem if and only if φ is valid with respect to the frame class CLAN

f .

Furthermore, the logic LAN is decidable and has the finite model property:

Theorem 2 (Finite Model Property). LAN has the finite (tree) model prop-
erty (FMP), i.e. every satisfiable formula is satisfiable on a finite, treelike model.

Proof. The proof is presented in Appendix A at the end of this paper.

Corollary 1 (Decidability). The satisfiability problem of LAN is decidable.

As a closing comment, we observe that the decidability of LAN obtained here,
implies decidability of the logic of actions and expectations, left as an open
problem in [4] (this can be affirmed through a quick comparison of the axioma-
tizations).

4 Norms, Ability and Deliberation in LAN

The logic LAN allows us to reason about both actions and results. We can dis-
tinguish three different types of normative statements: normative statements
about (1) results, (2) actions, and (3) actions in relation to results. We refer to
the first two categories as norms to be and norms to do, respectively, and to the
third category as norms of instrumentality. The last category articulates which
actions must or must not be employed as instruments for obtaining particular
goals (see [4,23] for a discussion of different notions of instrumentality). In this
section, we demonstrate the expressive power of LAN through formalizing the
aforementioned three categories, and use our formalization to investigate the
dependencies between the different norm types. With this, we take a first step
towards a formal analysis of norms of instrumentality. In the following section,
we apply the attained notions to a formal analysis of our case study.

Before moving to our formal investigation, we need to establish some desider-
ata concerning the three norm-types and their interdependencies. First, we notice
that according to [1], it is generally agreed upon that the categories of norms
to be and norms to do cannot be completely reduced to one another. In Sect. 2
we discussed principle P1 of the protocol and argued that, in the case of obli-
gations, norms of instrumentality are neither an instance of the former nor the
latter category and, consequently, must be regarded as a category proper (the
‘insider trading’ example from Sect. 1 demonstrates the case for prohibitions).
Still, we can identify several reasonable principles expressing certain interdepen-
dencies between the three categories:

D1 If a result is prohibited, then it will be prohibited regardless of the action
used in obtaining it (i.e. prohibited given any action).

D2 If an action is prohibited, then its performance is prohibited irrespective of
its outcome (i.e. prohibited given any outcome).
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D3 If it is obligatory to perform a certain action to obtain a particular result
(instrumentality), then it must be prohibited to not perform the action, as
well as prohibited to not bring about the result.

In addition to the above, we will consider two pivotal principles from the
realm of normative agency and investigate their effect on the three norm cat-
egories. The first is expressed as the no vacuously satisfied norms principle
which states that all norms should be violable (see D4 below). This desider-
atum imposes a deliberate component on all norms (cf. Anderson’s contingency
principles [2,18] and Belnap and Horty’s notion of deliberative agency [3,15]).
As a second principle, we adopt a generalized variant of the ‘ought implies can’
principle—accredited to Immanuel Kant [16, A548/B576]—to which we will refer
as the norm implies can principle. We will make a further distinction within the
principle by considering two interpretations of the term ‘can’ (cf. [7] and [23] for
different notions of ability). First, we take ‘can’ to denote ‘possible’ (D5 below).
Second, we interpret ‘can’ as the stronger agentive notion of ‘ability’ (D6 below).

D4 Norms must be violable: If X is prohibited (obligatory), then (the negation
of) X must be possible.

D5 Norms must be satisfiable: If X is obligatory (prohibited), then (the negation
of) X must be possible.

D6 Norms must be agentively satisfiable: If X is obligatory (prohibited), then
the agent must have the ability to guarantee (the negation of) X.
(NB. Where X can be substituted for a result or an action.)

Clauses D5 and D6 express, respectively, the weak and strong norm implies can
principle. We emphasize that for prohibitions (obligations), in order to fulfill
(defy) its duty, an agent must ensure the opposite of what is forbidden (obliga-
tory). In the following sections, we will see that the D1–D3 break down when we
consider them together with the above deliberation constraints on norms D4–D6.

4.1 Norms to Be

In what follows, we will use the symbol F to refer to what is forbidden and we
will use O to denote what is obligatory. Adapting Anderson’s deontic reduction
[2], we formally define the first category of norms to be (i.e. forbidden to be and
ought to be, respectively) in accordance with principle D4 as follows:

F1. F[�αi ]φ := �(φ → vαi) ∧ �φ
O1. O[�αi ]φ := �(¬φ → vαi) ∧ �¬φ

We interpret F[�αi ]φ as ‘φ is forbidden to become the case for agent αi, iff (i)
every possible transition to φ would mean a norm violation for agent αi and (ii)
φ is possible’ and we read O[�αi ]φ as ‘φ ought to become the case for agent αi, iff
(i) every possible transition to ¬φ would mean a norm violation for agent αi and
(ii) ¬φ is possible’. The first conjunct (i) of F1 and O1 corresponds to Anderson’s
reduction (referred to as the reduction clause), whereas the second conjunct (ii)
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captures that the norm can be violated (referred to as the violation clause of
principle D4). We take �αi to represent αi’s vacuously satisfied action: that is,
�αi := (δ1 ∪ δ1)αi (cf. the universal action [17]). We take ⊥αi := (δ1&δ1)αi to
denote the impossible action, used in definitions F1′ and O1′ below.

We may extend the above formalizations to define norms to be in accordance
with the more stringent principle D6. We write F′ and O′ to indicate what is
forbidden and what is obligatory, respectively, within this paradigm:5

F1′. F′[�αi ]φ := �(φ → vαi) ∧ �φ ∧
∨

[[Δαi ]]∈[[Act∗
LAN]]

�(t(Δαi) → ¬φ)

O1′. O′[�αi ]φ := �(¬φ → vαi) ∧ �¬φ ∧
∨

[[Δαi ]]∈[[Act∗
LAN]]

�(t(Δαi) → φ)

The norms F′[�αi ]φ and O′[�αi ]φ are similar to F[�αi ]φ and O[�αi ]φ in that
they contain a reduction clause and a violation clause. However, in addition they
also contain a norm implies ability clause. This additional third clause expresses
that (iii) ‘there exists an action available to the agent that would serve as a
suitable instrument for satisfying the norm’ (cf. the ‘would’ operator, Sect. 3).

Principle D4 is explicitly satisfied by definition F1, O1, F1′, and O1′, whereas
the latter two also explicitly satisfy D6. What is more, in LAN we derive that
all four definitions satisfy D5 too. This result is obtained through the follow-
ing reasoning: Suppose F[�αi ]φ. By definition, �φ holds. Through basic LAN
reasoning and the reduction clause, �vαi holds and, by applying axiom A6,
we obtain �¬vαi . Last, from LAN reasoning and the reduction clause we can
derive �¬φ. Similar arguments can be given for the remaining norms. Hence,
we obtain the following LAN theorem:

F[�αi ]φ ∨ O[�αi ]φ ∨ F′[�αi ]φ ∨ O′[�αi ]φ → ( �φ ∧ �¬φ)

In other words, in LAN we derive that norms to be range over contingent state-
of-affairs; i.e. the norms can be both satisfied and violated. We refer to this result
as the contingency property of norms (cf. [2,18]).

4.2 Norms to Do

With respect to the second category of norms to do, we adopt Meyer’s reduction
[17] to the LAN setting and formally define our forbidden to do and ought to do
operators, respectively, as follows:
5 Notice, since ActLAN represents a Boolean algebra of actions built over a finite num-

ber of actions types from Act, there are only finitely many equivalence classes
[[Δαi ]] := {Γ αi | �LAN t(Γ αi) ≡ t(Δαi)} of equivalent actions. We let [[Act∗

LAN]]
in F1′ and O1′ represent the set of all such equivalence classes minus the class [[⊥αi ]]
of all impossible actions. Additionally, since obligatory or forbidden results are cen-
tral to norms to be, as opposed to obligatory or forbidden actions, we impose the
following restriction on F1, O1, F1′ and O1′: the formula φ is free of action constants
from Wit. Without this restriction, norms to do could be seen as instances of norms
to be—i.e. norms to bring about the witness of a performed action as a result—thus
contradicting the observations made in [1] about the irreducibility of the two.
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F2. F[Δαi ]� := �(t(Δαi) → vαi) ∧ �t(Δαi)
O2. O[Δαi ]� := �(¬t(Δαi) → vαi) ∧ �¬t(Δαi)

We read F[Δαi ]� as ‘the performance of Δ is forbidden for agent αi, iff (i)
every possible performance of Δ would mean a norm violation for agent αi and
(ii) Δ can be performed by αi’ and we interpret O[Δαi ]� as ‘Δ ought to be
performed by agent αi, iff (i) every possible performance of Δ would mean a
norm violation for agent αi and (ii) Δ can be performed by αi’. We take � to
represent the vacuously satisfied result; that is, we say that the norm applies
independent of its result. The reduction clause (i) of F2 and O2 corresponds to
Meyer’s deontic reduction, whereas clause (ii) captures the norm’s deliberative
nature by requiring the possibility of norm violation.

The above, together with axiom A6, implies that also norms to do have the
desired contingency characteristics; i.e. the following is an LAN theorem:

F[Δαi ]� ∨ O[Δαi ]� → ( �t(Δαi) ∧ �¬t(Δαi))

However, the distinction between D5 and D6 breaks down for norms to do: the
implied contingency clause in these norms directly incorporates the notion of
ability. This is due to our interpretation of actions, which corresponds to the use
of actions in PDeL [1,17]; i.e. when an agent has an action at its disposal this
means that it has the ability to guarantee its performance. Hence, in the current
framework these two notions equate.

4.3 Norms of Instrumentality

So far, the first two categories have been formally defined on the basis of their
converged interpretation in the literature (e.g., [1,8]) and extended with deliber-
ative clauses. How should we formally capture the third, novel category of norms
of instrumentality? The above analyses would suggest a definition comprising at
least a reduction clause and a violation clause. However, with respect to norms
of instrumentality this twofold reading does not suffice.

Let us first consider the obligations belonging to norms of instrumentality.
First, recall that we take as instruments those actions that are suitable for
serving a particular purpose. Hence, for an agent to be committed to such an
obligation, we require that the prescribed action is in fact an instrument for
bringing about the desired result; i.e. the action would guarantee the envisaged
outcome. Observe that, given this reading, the strong norm implies can principle
is immediately satisfied: i.e. the agent must be able to produce the desired result
through the desired action. Hence, for the third category, we opt for a formaliza-
tion that directly incorporates the agential notion of would (cf. Sect. 3). Second,
we need to identify what it means for an agent to violate an obligation of the
third category: If an agent αi has the obligation to employ Δ (as an instrument)
to obtain φ, then αi violates this obligation whenever either αi does not perform
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Δ (independent of whether αi produced φ) or αi does not bring about φ (inde-
pendent of whether αi performed Δ). On the basis of the above two observations,
we thus say that ‘an agent αi has the obligation to employ Δ as an instrument
to obtain φ iff (i) performing Δ or bringing about ¬φ would lead to a norm
violation for agent αi, (ii) such a norm violation is possible through ¬φ or Δ,
and (iii) the performance of Δ by αi would ensure φ (i.e. Δ is a φ-instrument
for αi).’ We formally define this norm as follows:

O3. O[Δαi ]φ := �(¬(t(Δαi) ∧ φ) → vαi) ∧ �¬(t(Δαi) ∧ φ) ∧ �(t(Δαi) → φ)

Notice that, in the three conjuncts of definition O3 we recognize: (i) the
reduction clause, (ii) the violation clause, and (iii) the ability clause, respectively.
Moreover, as with F1, O1, F1′, and O1′ we stipulate that φ must be free of action
constants from Wit (in both O3 and F3).

Should we give a similar reading for prohibitions of this category? The answer
is not straightforward. Let us reconsider the example from Sect. 1: ‘it is prohib-
ited to use non-public information as an instrument to attain financial profit on
the stock market’. We say that an agent αi violates this prohibition whenever
αi uses non-public information and consequently attains financial profit from it.
However, should we additionally require that αi is only subject to this prohi-
bition whenever αi has the strict ability to guarantee financial profit through
using non-public information? The answer seems to be negative: we also desire
to include cases in which αi accidentally obtains financial profit on the stock
market through using non-public information.6 Nevertheless, in adopting the
strong norm implies can principle we still require that the agent must have the
ability to avoid violating the prohibition in question, thus satisfying its duty.
Putting the above together, we say that ‘agent αi is prohibited to employ action
Δ as an instrument for the purpose φ, iff (i) in every case in which Δ has been
performed and φ has been successfully ensured, a norm violation has occurred,
(ii) the norm can in fact be violated and, most importantly, (iii) either αi has
the ability to avoid performing Δ or there is an action to αi’s disposal that is a
suitable instrument for avoiding φ.’ Formally, this is expressed accordingly:

F3. F[Δαi ]φ := �((t(Δαi) ∧ φ) → vαi) ∧ �(t(Δαi) ∧ φ) ∧ θ

where θ := �¬t(Δαi) ∨
∨

[[Γ αi ]]∈[[Act∗
LAN]]

�(t(Γαi) → ¬φ)

The first two conjuncts of F3 correspond to the reduction and violation clause,
respectively. The additional third conjunct explicitly stipulates the ability and
instrumentality relations which enable the agent in question to fulfil its duty.

Let us discuss the interaction between the proposed definitions of norms of
instrumentality and the list of desiderata presented at the beginning of this
6 The assumption avoids risk by forbidding acts that possibly produce violations;

e.g. ‘it is forbidden to injure someone with a sharp tool, independent of the ability
to guarantee the injury’. However, one could consider inclusion of instrumentality
clauses for prohibitions when analyzing responsibility. We leave this for future work.
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section. First, we observe that the second conjunct of F3, ensuring the prohibi-
tion’s deliberative nature, invalidates principles D1 and D2. That is, an LAN-
model can be constructed to show the following are satisfiable for some Δαi and
φ:

F[�αi ]φ ∧ ¬F[Δαi ]φ, F′[�αi ]φ ∧ ¬F[Δαi ]φ, and F[Δαi ]� ∧ ¬F[Δαi ]φ

The inconsistency of F3 with principles D1 and D2 can be understood as follows:
a prohibition to bring about a result (action) should not imply that the result
(action) must be avoided given any action (result), but only relative to those
actions (results) possible. In other words, impossible combinations of actions
and results are not forbidden because they are inviolable. Observe that D1 and
D2 can be salvaged by abandoning principles D4, D5 and D6.

Second, as for the other two norm categories, definitions O3 and F3 imply
the desired LAN theorem concerning the contingency of instrumentality norms:

O[Δαi ]φ ∨ F[Δαi ]φ → (
�(t(Δαi) ∧ φ) ∧ �¬(t(Δαi) ∧ φ)

)

Third, as stated by principle D3, when an agent αi has the obligation to
ensure φ, but only specifically through performing Δ, we would like to be able
to derive that for αi the state of affairs ¬φ, as well as the performance of Δ,
is prohibited. However, this principle only holds in our context when we forgo
the weak norm implies can principle. In other words, by omitting the violation
clause (ii) (and therefore the implied contingency property) of definitions F1,
F1′, F2, and O3, we obtain the following LAN theorems, satisfying principle D3:

O[Δαi ]φ → (F[�αi ]¬φ ∧ F[Δαi ]�) and O[Δαi ]φ → (F′[�αi ]¬φ ∧ F[Δαi ]�)

That in the present setting definition O3 is incompatible with principle D3,
follows from the observation that impossible combinations of actions and states
of affairs cannot be violated and, thus, will not classify as deliberative norms.

As a final remark, we believe that clause (iii) is pivotal for norms of instru-
mentality: That is, we do not want to commit agents to a cause whose outcome
is merely accidental (i.e. uncontrollable). This would be too stringent. Instead,
we desire that the envisaged outcome is a proper consequence of the agent’s
behaviour. In other words, when the agent has also the ability to fulfill its
duty—i.e. guarantee that the action under consideration leads to the desired
outcome—only then the agent can be demanded to ensure the outcome by per-
forming the action. This claim is in line with principle D6, the strong, agentive
reading of norm implies can where ‘can’ denotes ‘ability’ or ‘choice’ (cf. [3,7,15]).
Given such a clause, our definitions avoid the overburdening of an agent by not
committing the agent to a cause it cannot effectively fulfill. The following LAN
theorems capture the strong norm implies can reading of O3 and F3:

F[Δαi ]φ → [Δαi ]couldφ and O[Δαi ]φ → [Δαi ]couldφ

In conclusion, the final definitions—i.e. F1, F1′, F2, F3, O1, O1′, O2 and
O3—are based on (i) Anderson’s and Meyer’s reduction, (ii) the no vacuously
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Table 1. Formulae based on F1–F3, O1–O3, F1′ and O1′ considered with only the
reduction clause (i) and considered with all clauses of the given definition. ‘Yes’ means
the formula is a theorem for all Δαi and φ; ‘no’ means otherwise. We let F∗ ∈ {F,F′}
and O∗ ∈ {O,O′}.

Only clause (i) Complete clauses

V1. F∗[�αi ]φ → F[Δαi ]φ and F[Δαi ]� → F[Δαi ]φ yes no

V2. O[Δαi ]φ → O∗[�αi ]φ and O[Δαi ]φ → O[Δαi ]� yes no, yes (resp.)

V3. O∗[�αi ]φ → F[Δαi ]¬φ and O[Δαi ]� → F[Δαi ]φ yes no

V4. F∗[�αi ]φ → O[Δαi ]¬φ and F[Δαi ]� → O[Δαi ]φ no no

V5. F∗[�αi ]φ ≡ O∗[�αi ]¬φ and F[Δαi ]� ≡ O[Δαi ]� yes yes

V6. O[Δαi ]φ → F∗[�αi ]¬φ ∧ F[Δαi ]� yes no

V7. O[Δαi ]φ ≡ O[Δαi ]� ∧ O∗[�αi ]φ yes no

V8. F∗[�αi ]φ ∧ F[Δαi ]� → F[Δαi ]φ yes no

satisfied norms principle (of which the weak norm implies can principle was a
logical consequence in LAN), and (iii) the strong norm implies can (i.e. abil-
ity) principle for norms of instrumentality. We saw that, by adopting principles
enforcing minimal deliberative criteria on norms (i.e. D4 and D5), we canceled
basic dependencies between the three categories (i.e. D1, D2 and D3). In Table 1
we gathered some LAN theorems that bear significance to the present analy-
sis. For example, in losing the norm implies can principle altogether, we obtain
interdependencies such as V 1−V 3 of Table 1 first column. That O[Δαi ]φ implies
O[Δαi ]� with complete clauses (V 2) is (in part) due to the ability clause, which
ensures the violation clause necessary for the implied norm to do. The dependen-
cies described by V 4 and V 5 are invariant to deliberation. Last, V 6–V 8 express
some dependencies between combinations of norms. Still, further investigation of
the proposed definitions and interdependencies is required. The present analysis
establishes a first step towards such an investigation by exhibiting the expressive
power of the logic LAN. Let us now formally address our case study.

5 The Benchmark Example Revisited

In what follows, we apply our formal machinery to the example of Sect. 2. We
formalize the protocol in LAN by making use of definitions F1–F3 and O1–O3,
and apply it to two concrete situations where an agent must invoke the protocol
to make a decision. Our formalization will be used to demonstrate that the
protocol is insufficient relative to its assumed aims (i.e. T1 and T2 of Sect. 2).
We close by discussing the source of the aforementioned failure, arguing how the
protocol and corresponding logic could be extended to repair such deficiencies.

For the formalization of the protocol, we take sur and nur to denote the
agents ‘surgeon’ and ‘nurse’, respectively. The action language consists of the
atoms scalp, leave and call, respectively describing ‘using a scalpel’, ‘leav-
ing the operation room’ and ‘calling the safety-emergency number’. Let incis,
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operation, dire, health, safety nur and safety sur be propositional atoms
denoting ‘the incision is made’, ‘the situation is an operation’, ‘the situation is
dire’, ‘the patient’s health is promoted’, ‘hygiene safety is promoted from the
nurse’s perspective’ and ‘hygiene safety is promoted from the surgeon’s perspec-
tive’, respectively. Consider the following possible formalization of the protocol:

P1. (operation ∧ O[�sur]incis) → O[scalpsur]incis
P2. (operation ∧ ¬dire) → F[scalpnur]�
P3. O[�nur]health ∧ O[�nur]safety nur and

O[�sur]health ∧ O[�sur]safety sur
E1. ¬safety nur → (O[leavenur]� ∧ O[callnur]�) and

¬safety sur → (O[leavesur]� ∧ O[callsur]�)

As an example of how to interpret the formulae above, we read P2 as: ‘if there is
an operation and the situation is not dire, then the nurse is prohibited to use the
scalpel (irrespective of its outcome)’. We are currently interested in whether the
protocol is consistent, and whether it can provide agents with sufficient tools to
solve normative issues (in situations relevant to our example). Concerning the
former, consistency will be shown via the construction of a model for P1–P3 and
E1 (below). Regarding the latter, let us consider some possible situations.

Situation 1. In the operation room Anna, the head-surgeon, and a nurse named
Bill are performing a tonsillectomy on a patient (i.e. the patient’s tonsils are to be
removed). Anna must make a final highly demanding dissection, involving both
hands, when she realizes that another crucial incision had to be made using the
harmonic scalpel (a scalpel that simultaneously cauterizes tissue). Since Anna is
preoccupied and unable to do it, she appeals in this dire situation to Bill, asking
whether he could make the other necessary incision with the harmonic scalpel,
thus ensuring the patient’s health. The situation is formalized accordingly:

(i) operation ∧ dire ∧ [scalpsur]will�
(ii) [scalpnur]wouldincis

(iii) [scalpnur]would¬health
(iv) �(incis → health)

Bill is aware of the new protocol: he knows he is not allowed to use scalpels
in regular situations but remembers his duty to the patient’s health too. What
should Bill do? The protocol tells Bill that he has the obligation to promote
the patient’s health (i.e. O[�nur]health, follows from P3). Since the surgical
situation is dire (i) principle P2 does not apply. What is more, since using the
scalpel to make the incision is Bill’s only way to promote the patient’s health—
by (ii)–(iv)—Bill in fact has the obligation to make the incision with the scalpel;
that is, the following is valid:

(i) ∧ (ii) ∧ (iii) ∧ (iv) ∧ P1 ∧ P2 ∧ P3 ∧ E1 → O[scalpnur]incis

Consequently, Bill is not prohibited from using the scalpel (i.e. ¬F[scalpnur]�
follows from definition O3, LAN reasoning and V5).

Furthermore, to see whether Bill complies with the protocol when he actually
brings about the incision with the scalpel—i.e. (v) [scalpnur]willincis—consider
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the corresponding LAN-model in Fig. 1. Namely, the model shows that Bill’s
behaviour (v), together with the formalized protocol P1–P3 and E1 and the
present situation (i)–(iv), can be consistently represented together with Bill’s
actual norm compliance; i.e. (vi) 〈N〉¬vnur. For that reason, Bill’s decision to
make the incision using the scalpel preserves the state of compliance (neverthe-
less, as expected, it can still be the case that, due to some other action of Bill’s,
a violation is generated). (See [12] for a discussion of protocol consistency, com-
pliance and model checking.) Conversely, if Bill actually decides to not use the
scalpel, a norm violation will be inevitable; that is, the following is valid:

(i)∧ (ii)∧ (iii)∧ (iv)∧P1∧P2∧P3∧E1∧ [scalpnur]will� → [scalpnur]willvnur

Last, we note that Fig. 1 also shows the consistency of the formalized protocol.

Fig. 1. An LAN-model satisfying P1–P3, E1 and (i)–(v); that is, showing the consis-
tency of the protocol and Bill’s actual behaviour with Bill being compliant in situa-
tion 1.

Situation 2. Let us continue the above example: right before Bill performs
the procedure involving the scalpel, Bill accidentally hits his own arm with the
harmonic scalpel and inflicts a painful wound. Bill and Anna know, since Bill
has now violated his obligation (P3) to preserve the required hygiene safety, that
he is obliged (E1) to immediately leave the operation room and call the safety-
emergency number for assistance. However, Anna observes that the necessary
incision still has to be made in order to secure the agent’s health, so she concludes
that Bill must stay and assist her immediately without further ado. The situation
is formalized accordingly:

(vii) ¬safety nur (viii) [leavenur]would¬health

First, we observe that given E1 and (vii) , Bill has the obligation to leave (i.e.
O[leavenur]�). However, through (viii), the act of leaving would imply that Bill
violates his obligation to preserve the patient’s health (i.e. O[�nur]health). In
fact, the current situation and the formalized protocol are inconsistent; namely,
(vii)–(viii), together with P1–P3 and E1, would render in LAN that Bill has an



A Decidable Logic for Reasoning About Actions, Instruments, and Norms 235

obligation to leave and to not leave (i.e. O[leavenur&leave
nur]�). This incon-

sistency depends on the assumption T1 (cf. (R6) of Definition 5), which is the
committee’s assumption that there is a way out to every possible dilemma. In
conclusion, the formalism tells us that the protocol is current inadequate.

The source of the conflict that arises in the second situation above relates
to Chisholm’s Paradox [9] and the issue of contrary-to-duty (CTD) reasoning.
Principle E1, in fact, can be seen as a contrary-to-duty obligation and the present
system suffers from the similar problem of detachment as the initial paradox
does. In brief, a contrary-to-duty obligation is a specific obligation that comes
into force whenever a primary obligation has been violated. What is more, their
purpose is to (partially) restore compliance with the norm system (e.g. [11]).
They are often referred to as secondary obligations, to denote the fact that they
depend upon the possibility of violating primary obligations (cf. [9,19]). Such a
violation is always possible when employing norms F1–F3, O1–O3, F1′, and O1′

with LAN due to the contingency requirements addressed in Sect. 4. An extension
of our formalism to adequately account for such reasoning, is outside the scope
of this paper, and so, we leave this to future work.

6 Conclusion

In this work, we provided the sound and complete logic LAN that brings together
Anderson’s reduction of norms to be and Meyer’s reduction of norms to do. We
introduced a new category of norms—norms of instrumentality—and analyzed
its relationships with the former two classes vis-à-vis different notions of deliber-
ative action. The technical contribution of this work consists in proving the finite
model property and decidability of LAN. Since the non-normative logic presented
in [4] is an instance of LAN, we also answered the open problem for that logic’s
decidability. These results show that LAN has the potential to be employed in
automated reasoning with norms relating agency, actions and results.

In comparing the present logic with state of the art frameworks, we see three
possible directions for future work. First, as mentioned in Sect. 5, a natural way
to extend our framework would be to incorporate normative reasoning about sub-
ideal scenarios, involving a notion of contrary-to-duty norms that are primarily
designed to bring the agent back into a state of compliance with the system. We
aim to address this issue and analyze its relation to the three norm categories.

Second, our current analysis omitted consideration of permissions. The
behaviour of permissions in relation to the three norm categories is not imme-
diately clear. For example, although the notion of a weak permission appears
equivalent to the dual of an unconditional obligation in the form of O1 or O2 ,
the concept of strong permission seems to require explicit formulations in per-
missive form (cf. [13]). Moreover, as argued in [13,14], the traditional way of
representing permissions as duals of obligations is an over-simplification that
cannot adequately model many real-life scenarios. We plan to extend our for-
malism to incorporate such permissions.
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Last, since the logic LAN encompasses the Andersonian reductions analysed
in [17], but uses a third reduction using action constants, we plan to devote
future work to investigating the logic’s relation to the deontic action logic PDeL.

Acknowledgments. Work funded by projects: FWF I2982, FWF W1255-N23, FWF
Y544-N2, and WWTF MA16-028.

A Finite Model Property and Decidability

In this appendix, we provide the main technical contribution of this paper: we
show that LAN is decidable (Corollary 1), via proving the finite model property
(FMP) for the logic (Theorem 2). Our strategy is, accordingly: first, we show that
every satisfiable formula is satisfiable on a treelike model (Lemma 1). Second,
we show that the depth of the treelike model can be bounded (Lemma 2). Last,
we prove that the breadth of the model can be bounded (Lemma 3).

Lemma 1. Every formula φ ∈ LLAN satisfiable on a LAN-model, is satisfiable
at the root of a treelike LAN-model.

Proof. Let M = (W, {Wd
αi
j

: dαi
j ∈ LLAN}, {Wvαi : vαi ∈ LLAN}, R,RN, V ) be a

LAN-model with w ∈ W and assume M,w |= φ (i.e. φ is satisfiable). To show that
φ is satisfiable at the root of a treelike model we evoke an unraveling procedure
similar to the one in [5, Ch. 2.1]. We define the treelike model M t as follows:

M t = (W t, {W t
d

αi
j

: dαi
j ∈ LLAN}, {W t

vαi : vαi ∈ LLAN}, Rt, Rt
N, V t), where

– W t ⊆ ⋃
n∈N

Wn is the set of all finite sequences (w,w1, ..., wn) s.t. wRw1,
w1Rw2, ..., wn−1Rwn;

– For each αi ∈ Agt and each dαi
j ∈ Witαi , W t

d
αi
j

⊆ W t is the set of all finite

sequences (w,w1, ..., wn) s.t. wn ∈ Wd
αi
j

;
– For each αi ∈ Agt, W t

vαi ⊆ W t is the set of all finite sequences (w,w1, ..., wn)
s.t. wn ∈ Wvαi ;

– For all w,u ∈ W t, wRtu iff w = (w,w1, ..., wn), u = (w,w1..., wn, wn+1),
and wnRwn+1;

– For all w,u ∈ W t, wRt
Nu iff w = (w,w1, ..., wn), u = (w,w1..., wn, wn+1),

and wnRNwn+1;
– For all w ∈ W t, w = (w,w1, ..., wn) ∈ V t(p) iff wn ∈ V (p).

The model M t is clearly treelike. Further, Prop. 2.14 and 2.15 of [5] imply:

(1) For any formula ψ ∈ LLAN, each u ∈ W , and each u ∈ W t of the form

(w,w1, ..., u), we have that M,u |= ψ iff M t,u |= ψ.
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This result, together with the assumption M,w |= φ, implies M t, (w) |= φ,
where (w) is the root of the treelike model M t. To complete the proof, we
must argue that M t is a LAN-model, i.e., it satisfies conditions (R3)–(R6) of
Definition 5:

(R3) Let w,u,v ∈ W t and suppose wRt
Nu and wRt

Nv. By definition of
Rt

N we get (i) w is a sequence of the form (w,w1, ..., wn), (ii) u is a sequence
(w,w1, ..., wn, wn+1), (iii) v is a sequence (w,w1, ..., wn, w′

n+1), (iv) wnRNwn+1,
and (v) wnRNw′

n+1. Since the original model M satisfies (R3), it follows from
(iv) and (v) that wn+1 = w′

n+1, which, together with (ii) and (iii), implies u = v.
(R4) Let w,u ∈ W t and assume wRt

Nu. By definition of Rt
N we get (i) w is

a sequence of the form (w,w1, ..., wn), (ii) u is a sequence (w,w1, ..., wn, wn+1),
and (iii) wnRNwn+1. Since the original model M satisfies (R4), it follows from
(iii) that wnRwn+1, which, together with (i) and (ii), implies wRtu.

(R5) Let w ∈ W t and Agt = {α1, ..., αn}. Suppose there are (not nec-
essarily distinct) action-types Δ1, ...,Δn ∈ ActLAN s.t. for 1 ≤ i ≤ n there
exist ui ∈ W t s.t. wRtui and ui ∈ W t

t(Δ
αi
i )

. It follows that w is of the form
(w,w1, ..., wn) and each ui is of the form (w,w1, ..., wn, ui) with wnRui. The
model M satisfies condition (R5), and hence there exists a world v ∈ W
s.t. wnRv and v ∈ Wt(Δ

α1
1 ) ∩ · · · ∩ Wt(Δαn

n ). By definition of M t, we have
v = (w,w1, ..., wn, v) ∈ W t, implying that wRtv and v ∈ W t

t(Δ
α1
1 )

∩· · ·∩W t
t(Δαn

n )
.

(R6) Let w ∈ W t and αi ∈ Agt. Assume there is a v ∈ W t s.t. wRtv and
v ∈ W t

vαi . This implies w = (w,w1, ..., wn) and v = (w,w1, ..., wn, v) with wnRv.
Since M satisfies (R6), there is a u s.t. wnRu and u ∈ W − Wvαi . By definition
of M t, there is a u = (w,w1, ..., wn, u) ∈ W t s.t. wRtu and u ∈ W t − W t

vαi .

For the second transformation we define the following auxiliary concepts:

Definition 7 (Degree deg(·)). The modal degree is recursively defined as:

– deg(p) = deg(dαi
j ) = deg(vαi) = 0;

– deg(¬φ) = deg(φ);
– deg(φ → ψ) = max{deg(φ), deg(ψ)};
– deg( �φ) = deg(�φ) = deg(〈N〉φ) = deg([N]φ) = deg(φ) + 1.

Definition 8 (Height height(·) and Depth). Let M be a treelike model. We
define the height of a node w in M recursively as follows:

– height(w) = 0, if w is the root of M ;
– height(w) = height(u) + 1, if uRw in M .

The depth of M is the maximum height among all the worlds in M .

Lemma 2. Every formula φ satisfiable at the root of a treelike LAN-model, is
satisfiable at the root of a treelike LAN-model with finite depth (specifically, with
a depth equal to deg(φ)).
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Proof. Let M = (W, {Wd
αi
j

: dαi
j ∈ LLAN}, {Wvαi : vαi ∈ LLAN}, R,RN, V ) be a

treelike LAN-model with root w ∈ W and assume M,w |= φ. We first construct
a treelike model Md of finite depth by restricting the depth of Md to deg(φ) and
argue that φ is satisfiable at the root w of Md. We define Md as follows:

Md = (W d, {W d
d

αi
j

: dαi
j ∈ LLAN}, {W d

vαi : vαi ∈ LLAN}, Rd, Rd
N, V d), where

– For all w ∈ W , w ∈ W d iff height(w) ≤ deg(φ);
– For all dαi

j ∈ LLAN, W d
d

αi
j

= Wd
αi
j

∩ W d;

– For all vαi ∈ LLAN, W d
vαi = Wvαi ∩ W d;

– Rd = R ∩ (W d × W d);
– Rd

N = RN ∩ (W d × W d);
– For all p ∈ V ar, V d(p) = V (p) ∩ W d.

The model Md is treelike with finite depth. Further, Lem. 2.33 in [5] gives us:

(2) For any formula ψ ∈ LLAN s.t. deg(ψ) ≤ deg(φ) and any world u ∈ W d s.t.

height(u) ≤ deg(φ) − deg(ψ),M, u |= ψ iff Md, u |= ψ.

From (2) we conclude that Md, w |= φ. Last, we show that Md is a LAN-model:
(R3) Let w, u, v ∈ W d and assume wRd

Nu and wRd
Nv. By definition of Md,

we know that w, u, v ∈ W and that wRNu and wRNv. Since the original model
M satisfies property (R3), we have that u = v.

(R4) Let w, u ∈ W d and assume wRd
Nu. By definition of Md, we get w, u ∈ W

and wRNu. Since M satisfies property (R4), it follows that wRu. By the fact
that w, u ∈ W d and the definition of Md, we obtain wRdu.

(R5) Let w ∈ W d and Agt = {α1, ..., αn}. Suppose there are (not necessarily
distinct) complex action-types Δ1, ...,Δn ∈ ActLAN s.t. for 1 ≤ i ≤ n there exist
ui ∈ W d s.t. wRdui and ui ∈ W d

t(Δ
αi
i )

. By definition of Md, it follows that wRui

holds for each i ∈ {1, ..., n} with height(ui) ≤ deg(φ). Since M satisfies (R5),
we know there exists a v ∈ W s.t. wRv and v ∈ Wt(Δ

α1
1 ) ∩ · · · ∩ Wt(Δαn

n ). We
know v ∈ W d since height(v) = height(ui) ≤ deg(φ), which implies wRdv and
v ∈ W d

t(Δ
α1
1 )

∩ · · · ∩ W d
t(Δαn

n )
by definition of Md.

(R6) Let w ∈ W d and αi ∈ Agt. Assume there exists a v ∈ W d s.t. wRdv
and v ∈ W d

vαi . By definition of Md, we know that wRv holds with height(v) ≤
deg(φ). Since M satisfies (R6), we know there exists a u ∈ W s.t. wRu and
u ∈ W − Wvαi . Since height(u) = height(v) ≤ deg(φ), it follows that u ∈ W d,
wRdu, and u ∈ W d − W d

vαi .

Lemma 3. Every formula φ satisfiable at the root of a treelike LAN-model with
finite depth equal to deg(φ), is satisfiable at the root of a treelike LAN-model with
finite depth and finite branching (i.e., φ is satisfiable on a finite model).
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Proof. Let M = (W, {Wd
αi
j

: dαi
j ∈ LLAN}, {Wvαi : vαi ∈ LLAN}, R,RN, V ) be a

treelike LAN-model with depth equal to deg(φ) with root w ∈ W and assume
M,w |= φ. Let V ar(φ) be the set of propositional variables occurring in φ. We
define the set Atoms as V ar(φ) ∪ Wit ∪ {vαi : αi ∈ Agt}. By Prop. 2.29 in
[5], we know there are only a finite number of modal formulae (up to logical
equivalence) built from the finite set Atoms with degree less than or equal to
deg(φ). We use Θ to denote this collection of (equivalence classes of) formulae.

Using Θ, we first provide a selection procedure, similar to Thm. 2.34 of [5],
to construct a finite model Mf and show that the root of this model satisfies φ.
Last, we show that Mf is indeed a LAN-model. We construct Mf as follows:

Mf = (W f , {W f

d
αi
j

: dαi
j ∈ LLAN}, {W f

vαi : vαi ∈ LLAN}, Rf , Rf
N, V f ), where

– W f is the set obtained from the selection procedure (below);
– For all dαi

j ∈ LLAN, W f

d
αi
j

= Wd
αi
j

∩ W f ;

– For all vαi ∈ LLAN, W f
vαi = Wvαi ∩ W f ;

– Rf = R ∩ (W f × W f );
– Rf

N = RN ∩ (W f × W f );
– For all p ∈ V ar, V f (p) = V (p) ∩ W f .

Selection Procedure. We build our domain W f by selecting a sequence of states
S0, S1, ..., Sdeg(φ) up to a height of deg(φ), where S0 = {w}. Each subscript i
of Si represents that the states contained in the associated set are at a height
of i in the original model M . Suppose that the sets S0, S1, ..., Si have already
been chosen; we now explain how to select the set Si+1 with i + 1 ≤ deg(φ).
For each formula ψ ∈ Θ equivalent to a formula of the form �χ or 〈N〉χ with
deg(ψ) ≤ deg(φ) − i s.t. M,u |= ψ for some u ∈ Si ⊆ W , we choose a v ∈ W s.t.
uRv (or, uRNv, depending on the modality in ψ) and M,v |= χ. We define the
domain W f = S0 ∪ S1 ∪ ... ∪ Sdeg(φ).

The next statement is a consequence of this selection procedure [5, pp. 76–77]:

(3) For any formula ψ ∈ Θ s.t. deg(ψ) ≤ deg(φ) and any world u ∈ W f s.t.

height(u) ≤ deg(φ) − deg(ψ),M, u |= ψ iff Mf , u |= ψ.

From (3), together with M,w |= φ, φ ∈ Θ, deg(φ) ≤ deg(φ), w ∈ W f, and
height(w) ≤ deg(φ), we infer Mf , w |= φ. We show that Mf is an LAN-model:

(R3) Let w, u, v ∈ W f and assume wRf
Nu and wRf

Nv. By definition of Mf ,
wRNu and wRNv hold. Since the model M satisfies (R3), we obtain u = v.

(R4) Let w, u ∈ W f and assume wRf
Nu. By definition of Mf , wRNu must

hold. Since the original model M satisfies (R4), we have wRu, and because Rf

is the set R restricted to W f , which contains w and u, we infer wRfu.
(R5) Let w ∈ W f and let Agt = {α1, ..., αn}. Suppose there are (not neces-

sarily distinct) complex action-types Δ1, ...,Δn ∈ ActLAN s.t. for all 1 ≤ i ≤ n

there exists a ui ∈ W f s.t. wRfui and ui ∈ W f

t(Δ
αi
i )

. By definition of Mf , this
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implies wRui, ui ∈ Wt(Δ
αi
i ), and height(ui) ≤ deg(φ) for each i ∈ {1, ..., n}.

Since M satisfies (R5), we know that there exists a v such that wRv and
v ∈ Wt(Δ

α1
1 ) ∩ · · · ∩ Wt(Δαn

n ), i.e., M,w |= �(
∧

1≤i≤n t(Δαi
i )). Observe that

because height(w) + 1 = height(ui) ≤ deg(φ) that 1 ≤ deg(φ), implying that
�(

∧
1≤i≤n t(Δαi

i )) ∈ Θ, because deg(
∧

1≤i≤n t(Δαi
i )) = 0. Consequently, by the

selection procedure a v′ ∈ W such that wRv′ and M,v′ |= ∧
1≤i≤n t(Δαi

i ) must
have been selected and placed in Sheight(v′). Hence, there exists a v′ ∈ W f s.t.
wRfv′ and v′ ∈ W f

t(Δ
α1
1 )

∩ · · · ∩ W f
t(Δαn

n )
.

(R6) Let w ∈ W f , αi ∈ Agt, and assume there is a v ∈ W f s.t. wRfv and v ∈
W f

vαi . By definition of Mf we infer wRv and v ∈ Wvαi with height(v) ≤ deg(φ);
hence, there exists a u ∈ W s.t. wRu and u ∈ W−Wvαi with height(u) ≤ deg(φ).
It follows that M,w |= �¬vαi . Since height(w) = height(v) + 1 ≤ deg(φ), we
know that 1 ≤ deg(φ), and so, �¬vαi ∈ Θ. By the selection procedure, a u′ ∈ W
s.t. wRu′ and u′ ∈ W − Wvαi must have been chosen and placed in Sheight(u);
hence, u′ ∈ W f , wRfu′, and u′ ∈ W f − W f

vαi .

Theorem 2. LAN has the finite (tree) model property, i.e., every satsifiable
formula is satisfiable on a finite, treelike model.

Proof. Follows from Lemmas 1, 2, and 3.

Corollary 1. The satisfiability problem of LAN is decidable.

Proof. By [5, Thm. 6.15], we know that if a normal modal logic is finitely axiom-
atizable and has the FMP, then it is decidable, which is the case for LAN.
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Abstract. The paper considers the problem of in what circumstances
an aggregation rule guarantees an admissible output extension that rep-
resents a good compromise between several input extensions of abstract
argumentation framework, each provided by a different individual. To
achieve this, we introduce the concept of concrete admissibility for
abstract argumentations by strengthening Dung’s admissibility. We also
define a model for extension aggregation that clearly separates the con-
straint supposed to be satisfied by individuals and the constraint that
must be met by the collective decision. Using this model, we show that
the majority rule guarantees admissible sets on newly defined admissible
sets.

1 Introduction

Admissibility is an importance semantic property of argumentation frameworks.
It lies in the heart of all semantics discussed in [8], and is shared by many
more recent proposals [2]. Under Dung’s argumentation framework [8], a set of
arguments satisfies admissibility if it defends all its members in the sense that
for any argument A in the set, either A is un-attacked, or if attacked by some
argument B, then there is an argument in the set that attacks B, and it does
not contain internal attacks.

When a group of agents are confronted with the same abstract argumenta-
tion framework, and each of them chooses an extension, we may wish to aggre-
gate such extensions into a collective one, which represents the consensus of the
group. Similar question has been received attention in the last decades or so
(see, e.g., [1,4–6,17]). In this paper, we address the question of in what circum-
stances, an aggregation rule will guarantee admissible outputs during aggrega-
tion of extensions of abstract argumentation framework. In existing work, men-
tion that Chen and Endriss [6] have shown that no aggregation rule preserves
Dung’s admissibility in general. Under their settings, all agents report extensions
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that are admissible, and they aggregate such extensions by making use of a set of
conceptually and computationally simple aggregation rules, quota rules, which
have been studied in depth in judgment aggregation [7].

The graded semantics is a new theory of justification of arguments developed
by Grossi and Modgil [13], in which the degree of acceptance of arguments can
be weakened or strengthened. In the graded semantics, the number of attack-
ers and defenders are given a fine-grained assignment when deciding whether
a specific argument is acceptable. The notion of admissibility is extended to
mn-admissibility. Such notion has the potential to require that if a set of argu-
ments Δ is admissible, then any attacker of A ∈ Δ is attacked by more than
one argument in Δ. While preserving Dung’s admissibility is difficult, there is
still no good news for the preservation of graded admissibility. Using the model
proposed by Chen and Endriss [6], our results show that no quota rule can guar-
antee admisible outcomes on graded admissble sets. Thus, preserving graded
admissibility is difficult as well.

In this paper, we introduce the concept of concrete admissibility and a new
model for extension aggregation. When we consider whether an argument A
is acceptable with respect to a set of arguments Δ, graded admissibility only
considers the number of A’s defenders in Δ, while in concrete admissibility, Δ
included all defenders of A, i.e., for any attacker B of argument A, Δ includes
all attacker of B.

For the model, we point out that in nearly all existing work on extension
aggregation, there is only one single type of constraint (see, e.g., [6,17]). Such
constraint is explicitly represented or left implicit. Following the model pro-
posed by Endriss [10] for judgment aggregation [9,14], we introduce a model
for extension aggregation that allows the constraints assumed to be satisfied by
the individual agents can be different from the constraints met by the collective
decision returned by the aggregation rule. Using this model, we show that the
majority rule guarantees admissible outcomes on concretely admissible sets.

The paper is organized as follows. In Sect. 2, we review some of Dung’s basic
concepts of the theory of abstract argumentation. Section 3 recalls the preserva-
tion results of Dung’s semantics introduced by Chen and Endriss [6]. In Sect. 4 we
show that preserving new graded semantics yields similar impossibility results.
In Sect. 5, we introduce concrete admissibility and a new model with integrity
and feasibility constraints, and illustrates a positive result with majority rule.
We conclude in Sect. 6 outlining some future research directions.

2 Abstract Argumentation

2.1 Abstract Argumentation Framework

In this section, we recall some of the basic concepts of the theory of abstract
argumentation first introduced by [8]. An argumentation framework is a pair
AF = 〈Arg ,⇀〉, in which Arg is a finite set of arguments and ⇀ is a binary
relation on Arg . We say that A attacks B, if A ⇀ B holds for two arguments
A,B ∈ Arg . For Δ ⊆ Arg and B ∈ Arg , we write Δ ⇀ B (namely Δ attacks B)
in case A ⇀ B for at least one argument A ∈ Δ. For Δ ⊆ Arg and C ∈ Arg we
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say that Δ defends C in case Δ attacks all arguments B ∈ Arg with B ⇀ C.
We write 2Arg for the powerset of Arg .

Given an argumentation framework AF = 〈Arg ,⇀〉, the question arises
which subset Δ of the set of arguments Arg one should accept. Any such set
Δ ⊆ Arg is called an extension of AF . Different criteria have been put forward
for choosing an extension. While Dung has defined several semantic, notably
complete, grounded, preferred, and stable semantics [8], it is worth mentioning
that conflict-freeness, being self-defending, and admissibility are fundamental
properties supposed to be satisfied by extensions of semantics.

Definition 1. Let AF = 〈Arg ,⇀〉 be an argumentation framework and let Δ ⊆
Arg be a set of arguments. We adopt the following terminology:

– Δ is called conflict-free if there are no arguments A,B ∈ Δ such that A ⇀ B.
– Δ is called self-defending if Δ ⊆ {C | Δ defends C}.
– Δ is called admissible if it is both conflict-free and self-defending.

Thus, a set of arguments is admissible if it is conflict-free and being self-defending.
In the original paper, Dung defines some other semantics, including complete,
grounded, preferred, and stable semantics [8]. All of them are admissibility-based
in the sense that every extension of such semantics is admissible.

2.2 Abstract Argumentation Semantics and Propositional Logic

Following the work by Besnard and Doutre [3] and Chen and Endriss [6], we rep-
resent the properties of extensions in a purely syntactic manner, using a logical
language. So fix an argumentation framework AF = 〈Arg ,⇀〉, think of Arg as
a set of propositional variables, and let LAF be the corresponding propositional
language. Now extensions Δ ⊆ Arg correspond to models of formulas in LAF :

– Δ |= A for A ∈ Arg if and only if A ∈ Δ
– Δ |= ¬ϕ if and only if Δ |= ϕ is not the case
– Δ |= ϕ ∧ ψ if and only if both Δ |= ϕ and Δ |= ψ

Given a formula ϕ, we use Mod(ϕ) = {Δ ⊆ Arg | Δ |= ϕ} to denote the set
of all models of ϕ. Every formula ϕ identifies a property of extensions of AF ,
namely σ = Mod(ϕ). When using a formula ϕ to describe such a property of
extensions, we usually refer to ϕ as an integrity constraint. The following simple
result characterise the properties of being conflict-free and self-defending in terms
of integrity constraints expressed in LAF .

Proposition 1. Let AF = 〈Arg ,⇀〉 be an argumentation framework and let
Δ ⊆ Arg be an extension. Then Δ is conflict-free if and only if:

Δ |= ICCF where ICCF =
∧

A,B∈Arg
A⇀B

(¬A ∨ ¬B)

That is, Proposition 1 states that Mod(ICCF) = {Δ ⊆ Arg | Δ is conflict-free}.
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Proposition 2. Let AF = 〈Arg ,⇀〉 be an argumentation framework and let
Δ ⊆ Arg be an extension. Then Δ is self-defending if and only if:

Δ |= ICSD where ICSD =
∧

C∈Arg

[C →
∧

B∈Arg
B⇀C

∨

A∈Arg
A⇀B

A]

We can now use the integrity constraints defined above to construct integrity
constraints for the property of admissibility:

– Δ is admissible if and only if Δ |= ICAD where ICAD = ICCF ∧ ICSD.

Example 1. Consider the argumentation framework AF = 〈{A,B,C,D}, {A ⇀
C,B ⇀ C,C ⇀ D}〉, as illustrated in Fig. 1. Then ICSD = (¬D ∨A∨B)∧ (¬C),
ICAD = (¬D ∨ A ∨ B) ∧ (¬C) ∧ (¬A ∨ ¬C) ∧ (¬B ∨ ¬C) ∧ (¬C ∨ ¬D).

DC

B

A

Fig. 1. An AF with four arguments

3 Preservation of the Dung’s Admissibility

3.1 Extension Aggregation

In this section, we recall a model for extension aggregation defined by Chen and
Endriss [6]. Such model allows a single type of constraint. Fix an argumentation
framework AF = 〈Arg ,⇀〉. Let U = {1, . . . , u} be a finite set of agents. Suppose
each agent i ∈ U supplies us with an extension Δi ⊆ Arg , reflecting her indi-
vidual views of what constitutes an acceptable set of arguments in the context
of AF . Thus, we are supplied with a profile Δ = (Δ1, . . . ,Δu), a vector of exten-
sions, one for each agent. An aggregation rule is a function F : (2Arg)u → 2Arg ,
mapping any given profile of extensions to a single extension.

Definition 2. A quota rule Fq with quota q is the aggregation rule mapping any
given profile of extensions to the extension including exactly those arguments
accepted by at least q agents.

The quota rules have low computational complexity in the sense that it is
straightforward to compute outputs [11]. The nomination rule is the quota rule
with quota q = 1. The majority rule is another example of quota rules for which
its quota q = 	u+1

2 
.
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3.2 Preservation of Dung’s Admissibility

Chen and Endriss [6] have considered the problem of aggregation of alterna-
tive extensions by making use of quota rules. They exploit known encodings
of argumentation semantics in propositional logic. They study the preservation
of semantic properties of extensions, including conflict-freeness, self-defending,
reinstating, admissibility, and I-Maximal properties. Our focus is admissibility.

Proposition 3 (Chen and Endriss, 2018). Every quota rule Fq for u agents
with a quota q > u

2 preserves admissibility for all argumentation frameworks AF
with MaxDef(AF ) � 1.

Note that MaxDef(AF ) is the maximum number of attackers of an argument
that itself is the source of an attack.

Theorem 1 (Chen and Endriss, 2018). No quota rule preserves admissibility
for all argumentation frameworks.

Thus, no quota rule can guarantee the preservation of admissibility in general.

4 Preservation of Graded Admissibility

4.1 Graded Semantics

In this part, we present the graded semantics introduced by Grossi and Mod-
gil [13]. The graded semantics can be seen as a generalisation of Dung’s seman-
tics. Extensions of the graded semantics are weakened or strengthened depending
on level of self-defending and conflict-freeness they meet.

An argument A is defended by a set of arguments Δ whenever A is attacked
by some argument B, there at least one argument in Δ that attacks B. Grossi
and Modgil generalize the notion of defense to obtain the notion of graded
defense [13].

Definition 3. The defense function is defined as follows. For any Δ ⊆ Arg:

d(Δ) = {X ∈ Arg | ∀Y ∈ Arg : IF Y ⇀ X THEN Δ ⇀ Y } (1)

Definition 4. Let AF = 〈Arg ,⇀〉 be an argumentation framework, and m and
n be two positive integers (m,n > 0). The graded defense function for Δ is
defined as follows. For any Δ ⊆ Arg:

dm
n (Δ) =

{
X ∈ Arg s.t. |{Y ∈ X s.t. |Y ∩ Δ| < n}| < m

}
(2)

where X̄ denotes {Y ∈ Arg | Y ⇀ X}.
So, dm

n (Δ) denotes the set of arguments that have at most m − 1 attackers
that are not counter-attacked by at least n arguments in Δ.

Example 2. Let us consider the argumentation framework depicted below.
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Let Δ = {A,D}, it is easy to verify that D ∈ d11(Δ) but D /∈ d12(Δ).

Definition 5. A set of arguments Δ is said to be acceptable at grade mn(or,
mn-acceptable) whenever all of its arguments are such that at most m − 1 of
their attackers are not counter-attacked by at least n arguments in Δ.

Definition 6. A set of arguments Δ is said to be mn-self-defending whenever
all of its arguments are such that at most m−1 of their attackers are not counter-
attacked by at least n arguments in Δ.

Definition 7. A set of arguments Δ is said to be at grade mn-admissible when-
ever Δ is mn-acceptable and being conflict-free.

In fact, when m = n = 1, we recover the standard definition of being self-
defending, admissibility. It is worth mentioning that Grossi and Modgil define
graded admissibility as mn-acceptability plus l-conflict-freeness (a set of argu-
ments Δ is said to be l-conflict-free whenever no arguments A ∈ Δ such that
A is attacked by at least l arguments in Δ [13]). But for the sake of simplic-
ity, we define graded admissibility as mn-acceptability plus Dung’s notion of
conflict-freeness.

4.2 Preservation Result for Graded Admissibility

In this section, we start with encoding the property of being graded self-defending
in propositional logic and show a preservation result for such property. We then
present a result for the property of graded admissibility. The following simple
result characterises the property of being graded self-defending in terms of the
integrity constraint expressed in LAF .

Proposition 4. Let AF = 〈Arg ,⇀〉 be an argumentation framework and let
Δ ⊆ Arg be an extension. Then Δ is mn-self-defending if and only if:

Δ |= ICmnSD where ICmnSD =
∧

C∈Arg

[C →

∨

{B1,...,B(|C̄|−m+1)}∈( |C̄|
|C̄|−m+1)

(
|C̄|−m+1∧

i=1

(
∨

{A1,...,An}∈(|Bi|
n )

(
n∧

j=1

Aj)))] (3)

To get the preservation results for being graded self-defending, we need a
result regarding binary aggregation with integrity constraints [12], a variant of
judgment aggregation.
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Lemma 1 (Grandi and Endriss, 2013). Let AF = 〈Arg ,⇀〉 be an argumen-
tation framework and let ϕ be a clause in LAF with k1 positive literals and
k2 negative literals. Then a quota rule Fq for u agents preserves the property
Mod(ϕ) if and only if:

q · (k2 − k1) > u · (k2 − 1) − k1 (4)

Note that a clause is a disjunction of literals, all integrity constraints can
be translated into conjunctions of clauses. The following result shows that if
we know the preservation result for some clauses, then we know results for the
conjunction of such clauses.

Lemma 2 (Grandi and Endriss, 2013). Let AF = 〈Arg ,⇀〉 be an argumen-
tation framework, let ϕ1 and ϕ2 be integrity constraints in LAF , and let F be
an aggregation rule that preserves both Mod(ϕ1) and Mod(ϕ2). Then F also
preserves Mod(ϕ1 ∧ ϕ2).

Thus, given a quota rule Fq and some clauses ϕ1, . . . ϕl, if Fq satisfies all
clause ϕi, then it preserves Mod(ϕ1 ∧ · · · ∧ ϕl).

Example 3. Given an integrity constraint ϕ = (¬A ∨ ¬B) ∧ C. By Lemma 1, a
quota rule preserves ¬A ∨ ¬B only if q · (2 − 0) > u · (2 − 1) − 0, i.e., only if
q > u

2 . A quota rule preserves C only if q · (0 − 1) > u · (0 − 1) − 1, which is
always the case, thus, C is preserved by every quota rule. Thus, by Lemma 2, a
quota rule preserves ϕ only if q > u

2 .

Recall that the nomination rule is the quota rule for which its quota is 1.

Proposition 5. The nomination rule preserves the property of being a mn-self-
defending set.

Proof. Recall that ICmnSD is a conjunction of formulas of the form

C →
∨

{B1,...,B(|C̄|−m+1)}∈( |C̄|
|C̄|−m+1)

(
|C̄|−m+1∧

i=1

(
∨

{A1,...,An}∈(|Bi|
n )

(
n∧

j=1

Aj)))

which can be rewritten as

C →
∧

B1,...,Bm∈(|C̄|
m )

[

c1∨

i=1

(Aπi(1) ∧ · · · ∧ Aπi(n))1] ∨ · · · ∨ [

cm∨

i=1

(Aπi(1) ∧ · · · ∧ Aπi(n))m],

(5)

where ci =
(|B̄i|

n

)
for i = 1, · · · ,m, respectively. We take one such clause

C → [
c1∨

i=1

(Aπi(1) ∧ · · · ∧ Aπi(n))] ∨ · · · ∨ [
cm∨

i=1

(Aπi(1) ∧ · · · ∧ Aπi(n))], (6)
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which can be rewritten as

C →
n∧

j=1

[
m∨

i=1

(Aπi(j) ∨ · · · ∨ Aπ(|B̄j |−n)(j)
)]. (7)

We take one such clause

C → [
m∨

i=1

(Aπi(j) ∨ · · · ∨ Aπ(|B̄j |−n)(j)
)]. (8)

Its number of positive literals is (|B̄j | − n) · m, its number of negative literals
is 1. Thus, according to Lemma 1, a uniform quota rule with quota q preserves
it if and only if q <

(|B̄j |−n)·m
(|B̄j |−n)·m−1

. As ICmnSD is a conjunction of such clauses,
therefore we need to satisfy this inequality for all relevant m, n and Bj . This
requirement is most demanding for largest values of n, and smallest of m and
Bj . However, we point out that if q = 1, then q <

(|B̄j |−n)·m
(|B̄j |−n)·m−1

is always the
case. Thus, we have the proposition.

Theorem 2. No quota rule preserves mn-admissibility for all argumentation
frameworks.

Proof. Recall that standard definition of admissibility is a special case of mn-
admissibility for which m = n = 1. By Theorem 1, we get that no quota rule
preserves 11-admissibility. Thus, we have the theorem.

Thus, we obtain a similar result for mn-admissibility.

5 Preservation Results for Concrete Admissbility

5.1 Concrete Admissibility

The graded semantics provides a theory of degree of justification of arguments.
Under the graded semantics, the assignment of status of arguments are defined by
the numbers of attackers and defenders. Theses graded semantics provide ways of
strengthening or weakening the standard Dung semantics. While grade semantics
appeals to the numbers of attackers and defenders to define acceptability of
arguments, it is worth mentioning that, in some scenarios, given two arguments
for which the numbers of attackers and defenders of such pair of arguments are
different, but they share similar features. Consider the following example.

Example 4. Let us consider two sets of arguments Δ1 = {C,A} in AF 1, Δ2 =
{C,A,D,E} in AF2, as illustrated in Fig. 2. The numbers of defenders of C
in AF 1 and AF 2 are different: C has one defender in AF 1, and C has three
defenders in AF 2. But both of them are concretely defended in the sense that
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CBA

AF1

CB

A

D

E

AF2

Fig. 2. Two argumentation frameworks

for every argument A, if C is defended by A, then A is included in Δ. Argument
C has one defender in AF 1, namely A, and A is included in Δ1; Argument C
have three defenders in AF 2, namely A, D, E, and they are included in Δ2. The
similarity of C between AF1 and AF2 is not captured by Modgil and Grossi’s
graded semantics.

In above example, arguments share the same degree of justification of accept-
ability of arguments, can have different numbers of defenders.

Take an argument A ∈ Arg and a set of arguments Δ ⊆ Arg , under Dung’s
admissibility, we say that Δ defends A if for every attack B ∈ Arg of argument
A, Δ accepts at least one attacker of B, we say that Δ is admissible if Δ defends
all its members and being conflict-free. We introduce the concept of concrete
admissibility. We say that Δ concretely defends A if for every attacker B of
arguments A, Δ accepts all attackers of B, i.e, Δ includes all defenders of A, we
say that Δ satisfies concrete admissibility if Δ concretely defends all its members
and Δ is conflict-free. Note that the requirement of concrete acceptability of
arguments is a strong requirement.

We use the notion of concrete defense to define concrete admissibility.

Definition 8. Take an argument A ∈ Arg and a set of arguments Δ ⊆ Arg.
We say that Δ concretely defends A if Δ for every attacker B of arguments A,
Δ accepts all attackers of B.

For example, in Fig. 2, {A} concretely defends C in AF 1, {A,D,E} con-
cretely defends C in AF 2.

Definition 9. Take an argument A ∈ Arg and a set of arguments Δ ⊆ Arg. We
say that Δ is concretely admissible if Δ concretely defends all of its members,
and Δ is conflict-free.

Recall that we use ϕ to refer a property of extensions, or an integrity con-
straint. The following simple result characterises the properties of being concrete
defending in terms of the integrity constraint expressed in LAF .
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Proposition 6. Let AF = 〈Arg ,⇀〉 be an argumentation framework and let
Δ ⊆ Arg be an extension. Then Δ is concrete defending if and only if:

Δ |= ICCD where ICCD =
∧

C∈Arg

∧

B∈Arg
B⇀C

∧

A∈Arg
A⇀B

[C → A]

We can now use the integrity constraint defined above to construct the integrity
constraint for the property of concrete admissibility:

– Δ is concretely admissible if and only if Δ |= ICCA where ICCA = ICCF ∧
ICCD.

Example 5. Consider the argumentation framework AF = 〈{A,B,C,D}, {A ⇀
C,B ⇀ C,C ⇀ D}〉. Then ICSD = (¬D ∨ A ∨ B) ∧ (¬C), ICCD = (¬D ∨ A) ∧
(¬D ∨ B) ∧ (¬C). In this example, {A,D} and {B,D} are admissible, but they
are not concretely admissible. {A,B,D}, {A}, {B}, {A,B}, ∅ are all admissible
and concretely admissible sets.

DC

B

A

5.2 Concrete Admissibility and Prime Implicates

In the section, we generalize the notion of prime implicate to our context, a
clause π ∈ LAF is a prime implicate of a formula Γ ∈ LAF if (i) Γ |= π and
(ii) for every clause π′ ∈ LAF with Γ |= π′ if π′ |= π then π = π′ [16]. In other
words, the prime implicates are the logically strongest clauses entailed by Γ .

Recall that a clause is a disjunction of literals. A clause is simple if it has
at most two literals, a clause is nonsimple if it cannot be simplified to a clause
with less than three literals. A formula is simple if it logically equivalent to a
conjunction of clauses with at most two literals (it is also called Krom formula).
We first present three results concerning prime implicates.

Fact 3. A formula Γ is simple if and only if all its prime implicates are simple.

Lemma 3 (Marquis, 2000). If Γ |= Γ ′ is the case, then for every prime impli-
cate π′ of Γ ′ there exists a prime implicate π of Γ such that π |= π′.

Definition 10 (Endriss, 2018). A pair of formulas (Γ, Γ ′) is simple, if for every
nonsimple prime implicate π′ of Γ ′ there exists a simple prime implicate π of Γ
such that π |= π′.

Using the results above, we are now ready to present some results concerning
the relation between self-defending and concrete defending, and the relation
between Dung’s admissibility and concrete admissibility.
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Lemma 4. ICCD |= ICSD.

Proof. Recall that ICSD is a conjunction of a collection of formulas of the form
C → ∧

B∈Arg
B⇀C

∨
A∈Arg
A⇀B

A. We take the one indexed by C ∈ Arg and rewrite as∧
B∈Arg
B⇀C

(¬C ∨ ∨
A∈Arg
A⇀B

A). This formula is a conjunction of a collection of clauses
of the form (¬C ∨ ∨

A∈Arg
A⇀B

A). We take the one indexed by B ∈ Arg with B ⇀ C

and rewrite as (¬C ∨ A1 ∨ A2 ∨ . . . ∨ An), in which A1, A2, . . . An defend C by
attacking B. We denote it by ϕ′. Obviously ϕ′ is a clause of ICSD. We are going
to show that there is at least one clause ϕ of ICCD such that ϕ |= ϕ′.

Recall that ICCD is a conjunction of a collection of formulas of the form∧
B∈Arg
B⇀C

∧
A∈Arg
A⇀B

[C → A]. Let us consider one such formulas
∧

B∈Arg
B⇀C

∧
A∈Arg
A⇀B

[C →
A] which indexed by C ∈ Arg . This formula is a conjunction of a collection
of formulas indexed by an argument B ∈ Arg with B ⇀ C. Let us consider
one formula

∧
A∈Arg
A⇀B

[C → A] which indexed by B ∈ Arg with B ⇀ C. This
formula can be rewritten as (¬C ∨ A1) ∧ (¬C ∨ A2) ∧ . . . ∧ (¬C ∨ An) in which
A1, A2, . . . An defend C by attacking B as well. We denote it by ϕ1∧ϕ2∧. . .∧ϕn.
Since A1, A2, . . . An defending C by attacking B, we know that (¬C ∨ Ai) |=
(¬C ∨A1∨A2∨ . . .∨An) for i ∈ {1, 2, . . . , n}. Thus, ϕi |= ϕ′ for i ∈ {1, 2, . . . , n}.

Using the same construction, we can show that for every clause ϕ′ of ICSD,
there is at least one clause ϕ of ICCD such that ϕ |= ϕ′. Thus, ICCD |= ICSD.

Proposition 7. (ICCD, ICSD) is simple.

Proof. From Lemma 4, we know that ICCD |= ICSD. With Lemma 3, we know
that for every prime implicate π′ of ICSD there exists a prime implicate π of
ICCD such that π |= π′. Obviously ICCD is a conjunction of clauses with at most
two literals. Thus, it is simple. By Fact 3, we have that every prime implicate of
ICCD is simple.

Putting together the above facts we are able to conclude that for every (simple
and nonsimple) prime implicate π′ of ICSD there exists a simple prime implicate
π of ICCD such that π |= π′, and we are done.

Lemma 5. ICCA |= ICAD.

Proof. Recall that ICCA = ICCD ∧ ICCF, ICAD = ICSD ∧ ICCF. By Lemma 4,
we get that ICCD |= ICSD. Thus, we have ICCA |= ICAD.

Proposition 8. (ICCA, ICAD) is simple.

Proof. Putting Lemma 5 and Lemma 3 together we get that for every prime
implicate π′ of ICAD there exists a prime implicate π of ICCA such that π |= π′.
Since ICCF is a conjunction of clauses with at most two literals, we know that
ICCA is a conjunction of clauses with at most two literals as well, i.e., ICCA

is simple. Thus, with Fact 3 we get that every (simple and nonsimple) prime
implicate π′ of ICAD there exists a simple prime implicate π of ICCA such that
π |= π′. We are done.
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5.3 A Model with Rationality and Feasibility Constraints

In nearly all existing work on judgment aggregation [12,15] as well as some
work on extension aggregation [6], only a single type of constraint, namely the
integrity constraint is considered. Integrity constraints decide what is permissible
for both the input and the output. As we have shown in Sects. 3 and 4, Dung’s
admissibility and graded admissibility fail to be preserved under the model that
allows for integrity constraints only. In this section, we propose a new model that
allows for a distinction between rationality constraints and feasibility constraints.
Let us illustrate the model with an example, adapted from [10]:

Example 6. A university council with 5 members needs to decide on the funding
for three projects: (ϕ1): refurbishing the university stadium, (ϕ2): organising an
international conference, (ϕ3): building a new student dormitory. The budget is
limited and it is not feasible to fund all three projects. However, the councilors
are not required to keep this constraint in mind when casting their votes on the
projects. Instead, they assumed to please at least one of the issues, i.e., it would
be irrational for a councilor not to recommend any of the projects for funding.
Suppose their votes are as follows:

Thus, every council’s vote meets the rationality constraint. However, the
outcome of the majority rule violates the feasibility constraint (Table 1).

Table 1. Scenario used in Example 6

ϕ1 ϕ2 ϕ3

Councillor 1 1 1 0

Councillor 2 0 0 1

Councillor 3 1 0 1

Councillor 4 1 1 0

Councillor 5 1 1 1

We reuse terminologies introduced in Sect. 3: let AF = 〈Arg ,⇀〉 be an
argumentation framework, let U be a finite set of agents. Suppose that every
agent provides an extension Δi, which gives rise to a profile of extensions
Δ = {Δ1, . . . ,Δu}. A profile is Γ -rational if Δi |= Γ for all i ∈ U . Thus, we use
Γ to define the permissible profiles of extensions, which is called a rationality
constraint. An outcome is Γ ′-feasible if the outcome satisfies such constraint. We
call Γ ′ a feasibility constraint, which defines the acceptable outcomes.

Definition 11. An aggregation rule F : (2Arg)u → 2Arg is said to guarantee Γ ′-
feasible on Γ -rational profiles if for every profile Δ ∈ Mod(Γ )u it is the case
that F (Δ) ∈ Mod(Γ ′).

Thus, we say F guarantees Γ ′-feasible outcomes on Γ -rational profiles if for
any profile Δ for which Δi |= Γ for all i ∈ U is the case, we have Δ |= Γ ′.
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5.4 Preservation Results for Concrete Admissibility

In this section, we are ready to present a positive result for obtaining an admissi-
ble set on concretely admissible sets with rationality and feasibility constraints.
Before going any further, we show a result from Endriss [10], which is needed to
prove our main results.

Theorem 4 (Endriss, 2018). The majority rule guarantees Γ ′-feasible out-
comes on Γ -rational profiles if and only if Γ |= Γ ′ and (Γ, Γ ′) is simple.

Theorem 5. The majority rule guarantees ICSD-feasible outcomes on ICCD-
rational profiles.

Proof. This theorem is a consequence of Lemma 4, Proposition 7, and Theo-
rem 4.

In [6], we have shown that no uniform quota rule preserves admissibility for
all argumentation frameworks. In contrast to this, we have a relatively positive
result when the profiles we are considering are strengthened to concrete admis-
sibility.

Theorem 6. The majority rule guarantees admissible outcomes on concretely
admissible profiles.

Proof. This theorem is a consequence of Lemma 5, Proposition 8, and Theo-
rem 4.

6 Conclusion

In this paper, we have explored the possibility of obtaining an admissible set
of arguments during the aggregation of extensions of an abstract argumenta-
tion framework. We have introduced the concrete admissibility, which allows
for strong assignments of status to arguments. To achieve this, we have pro-
posed a model that allows for a clear distinction between integrity and feasi-
bility constraints, which is supposed to be satisfied by individual decisions and
collective decisions, respectively. We have shown the majority rule, a fair rule
that is appealing on normative grounds, guarantees admissible sets on concrete
admissible sets. In this paper, only admissibility is considered. Even though
admissibility is a fundamental property of extension of argumentation frame-
work, other properties are of particular interest as well. Thus, it is interesting
to formulate variants for other semantics based on concrete admissibility, such
as completeness, preferredness, stability, and consider the preservation of such
semantic properties by making use of our new model. It would be natural to
investigate whether it is possible to obtain positive results for such semantic
properties using our new model.
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Abstract. This study is an approach to encompass uncertainty in the
well-known Argumentation Scheme from Negative Consequences and in
the more recent “Basic Slippery Slope Argument” proposed by Douglas
Walton. This work envisages two new kinds of uncertainty that should be
taken into account, one related to time and one related to the material
relation between premises and conclusion. Furthermore, it is argued that
some modifications to the structure of these Argumentation Schemes
or to their Critical Questions could facilitate the process of Knowledge
Extraction and modeling from these two argumentative patterns. For
example, the study suggests to change the premises of the Basic Slippery
Slope related to the Control and the Loss of Control.
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1 Introduction

In this first introductory Section, after a brief introduction to the theory of Argu-
mentation Schemes and their associated Critical Questions, some conceptual
issues related to the Basic Slippery Slope and Negative Consequences arguments
are reported, such as the problem of designing a unique and definitive scheme
that can represent all the types of Slippery Slope arguments, and the relation
between the two schemes. We then introduce the problem and the importance of
modelling Natural Language uncertainty in Argumentation Schemes. Moreover,
we target some theoretical limitations and non-uniformity and suggest some
potential way to tackle them. In Sect. 2, we briefly introduce the Argumentation
Scheme from Negative Consequences, its structure and Critical Questions. In
Sect. 3, a modelling for encompassing the uncertainty of this scheme is proposed
following the approach of Baroni et al. [1] and suggesting the presence of a kind
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of uncertainty defined as “Equal-Opposite Material Relation Uncertainty” and
another one related to time. We also propose a different formalization of the
Critical Questions that could enhance the uniformity of the scheme. In Sect. 4,
we describe the Basic Slippery Slope Argument, its structure and its Critical
Questions. Then, in the Sect. 5, we apply a formalization for encompassing the
uncertainty of the scheme suggesting, also in this case, the presence of the two
above-mentioned kinds of uncertainty. We also argue that a different formaliza-
tion of the scheme could be advisable for both theoretical and practical reasons.
The Sect. 6 concludes the paper.

1.1 Argumentation Schemes and Critical Questions

Before proceeding with our analysis, we briefly describe the concept of Argu-
mentation Scheme and Critical Question following the theories of Walton et al.
[10]. According to these theories, Argumentation Schemes describe stereotypical
patterns of reasoning and can be seen as structures of inferential connections
composed by premises supporting a conclusion.

Following this model, the two Argumentation Schemes analyzed in the
present work, namely the Negative Consequence and the Basic Slippery Slope,
will be represented as a set of linked premises [10] (for a the distinction between
linked and convergent argument see Freeman [3]). The connection of these
premises is thus described with a conjunction of the various semantic relations
(see Fig. 1). For a more precise description of the concept of material (or seman-
tic) relation, please refer to Macagno et al. [6].

Conclusion +

Premisen

Premise1

...
semantic information

semantic information

Fig. 1. Structure of an Argumentation Scheme

Although all the premises of an Argumentation Scheme provide semantic
information (causal, definitional, and so on), some schemes contain major and
minor premises, which seems to suggest the existence of a internal hierarchical
order, with some premises having a stronger role in the inferential connection
between premises and conclusion. In any case, all the Argumentation Schemes
have a warranting function which enables the main inference to be drawn from
the set of premises to the conclusion [6]. The warrant can be found in explicit or
implicit premises [10] and it usually contains the main semantic relation. In this
paper, we will follow the idea that the semantic connection between premises
and conclusion, and the warranting function of the schemes, can be thought as
an aggregate result of the actions of all the premises.
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An Argumentation Scheme can be attacked in three ways [6], namely by
arguing that:

– the premises are not true;
– the conclusion does not follow from the premises;
– the conclusion is false.

In other words, an attack can target premises, conclusions and the inferential
connections. Moreover, the notion of attacking an Argumentation Scheme can
be seen also from the point of view of its Critical Questions, since each Argu-
mentation Scheme has a set of Critical Questions associated to it which aims at
criticizing the scheme itself.

As explained by Walton et al. [10], the nature of Critical Questions may be
somehow controversial, since they can sometimes target implicit premises, while
other times they can be used as the starting point for an attack to a specific
point of the scheme, requiring a further burden of proof. A clarification has been
offered by Verheij [8], according to which critical questions have four roles:

– Questioning whether a premise holds;
– Pointing to exceptional situations in which the scheme defaults;
– Framing conditions for the correct use of a scheme;
– Indicating other arguments that might be used to attack the scheme.

1.2 The Basic Slippery Slope and the Negative Consequences
Arguments

A common misunderstanding is that of confusing the Slippery Slope Argument
and the Argument from Negative Consequences. We follow the idea that the first
one is a subspecies of the second one, having its own characteristics [9]. These
two argumentative patterns are conceptually similar, since their aim is similar:
showing that an action may (will) result in a negative outcome. However, as will
be described in Sect. 4, the Basic Slippery Slope argument proposed by Walton
has a peculiar set of premises and if one these premises is missing, then we are not
dealing with a Basic Slippery Slope, but with a different instance or subspecies
of a Negative Consequences argument (notice that sometimes premises can be
implicit, and if they are implicit they should not be considered missing) [9].

Importantly, this study must mention the existence of an extended debate
about the uniqueness of the Slippery Slope Argument. The fact that the very
existence of the Slippery Slope as a unique and definitive Argumentation Scheme
is a topic of debate shows the non-triviality of analyzing the characteristics of
this argumentative pattern. In this regard, Walton [11] identified four types of
Slippery Slope Argument: one depending on causality, one depending on prece-
dents, one depending on vagueness, and one that is a mixture of the previous
ones. However, this study failed in finding common elements among those four
types of Slippery Slope Argument. In fact, the problem of the Slippery Slope
arguments is that they have a structure that can be difficult to understand and
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that can make it difficult to define a single, basic scheme embracing all the pos-
sible types and sub-types of Slippery Slope. For this reason, some scholars have
argued that there is not such a unique and definitive structure that can include
all these argumentative patterns [5]. A proposal of a “Basic Slippery Slope Argu-
ment” that could include all the typologies of Slippery Slope arguments has been
proposed in Walton [9].

Following the formalization proposed in Baroni et al. [1], the present study
proposes a modeling of the uncertainty of both the Basic Slippery Slope scheme
and the Negative Consequences scheme.

1.3 The Problem of Uncertainty and Why It Is Useful

Baroni et al. [1] suggested the presence of at least three kinds of uncertainty
that can be found in natural language:

– Uncertainty related to the presence and credibility of a source (e.g. expression
referring to sources such as “According to professor Mario Rossi, ...”) [U1];

– Uncertainty about the commitment (related to how the agents involved into
an argument express their commitment, generally through the use of linguistic
indicators) [U2];

– Uncertainty within the use of language (mostly related to the vagueness or
ambiguity of some linguistic modifiers) [U3].

These three uncertainties are presented as a starting point for further exten-
sions. The study suggests to investigate further to assess which kinds of uncer-
tainty can be related to specific Argumentation Schemes.

Importantly, sometimes the source is not explicitly mentioned in the Argu-
mentation Scheme, however we assume that any Argumentation Scheme has
a source. If we consider Argumentation Schemes as patterns of reasoning that
agents use to express and support their arguments, we assume that there is at
least one basic source for any Argumentation Scheme: the arguer itself.

Baroni et al. [1] aimed at proposing a formalization for encompassing these
kinds of natural language uncertainty directly within Argumentation Schemes.
In this regard, they offer two examples: the Argumentation Scheme from Cause
to Effect and the Argumentation Scheme from Position to Know, showing
how to encompass Natural Language uncertainty into these two Argumenta-
tion Schemes. Finding a way to encompass uncertainty into Argumentation
Schemes can be useful to evaluate argument strength and acceptability, because
they can be “ranked” depending on their uncertainties, following the idea of
the preference-dependent attack in Baroni et al. [2]. Interestingly, this way of
encompassing uncertainty from Natural Language means that we can extract,
from Natural Language, elements that can then be used within semi-formal and
formal argumentation layers of evaluation. In other words, this methodology
could be considered part of a broader approach in which linguistic indicators
coming from Natural Language and Natural Arguments can provide elements
of formal evaluation into Abstract Argumentation. This goes into the direction
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of building a common ground where Abstract Argumentation and Structured
Argumentation can cooperate smoothly.

The ability to encompass uncertainty into Argumentation Schemes it is not
only an elegant way to tighten the connection between Abstract Argumentation,
NLP and Structured Argumentation; it can be useful also for practical purposes
and applications: for example, in the legal domain, where modelling Legal Knowl-
edge from Argumentation Schemes can be used to assess weakness and strength
of legal argumentation [7]. Furthermore, this approach can be useful for several
other applications of Formal Argumentation [4].

1.4 Theoretical Limitations and the Problem of Non-uniformity

In order to encompass uncertainty, this study suggests that some Argumenta-
tion Schemes should be reformulated. In some cases, in fact, the Argumentation
Schemes formalized by Walton et al. [10] are not uniform. Particularly, these
non-uniformities can be found in:

– How linguistic elements of uncertainty are used within the definition of Argu-
mentation Schemes;

– How Critical Questions encompass uncertainty.

This is a long-term research goal which partially depends on the theoret-
ical background. For example, it is not clear how the semantic links and the
inferential warrants of Argumentation Schemes are inherited by their sub-types.
Moreover, it is not always clear why some Critical Questions are targeting spe-
cific aspects of their scheme while the Critical Questions of other Argumentative
Schemes seems focused on other aspects.

For example, similarly to Baroni et al. [1], we wonder why the Argumentation
Scheme from Position to Know has two Critical Questions attacking the semantic
information channeled by the two premises, while the Argumentation Scheme
from Cause to Effect does not. As can be seen in Table 1, a further Critical

Table 1. An example of non-uniformity in the design of Critical Questions (CQs).

Argumentation Scheme “Position to Know”

Component Sentence Targeted by:

Premise 1 α is in position to know in domain
S containing preposition A

CQ1
Is α in position to know?

Premise 2 α asserts that A (in domain S) is
true (false)

CQ3
Did α assert that A is true?

Argumentation Scheme “Cause to Effect”

Component Sentence Targeted by:

Premise 1 If A occurs, then B occurs CQ1
How strong is the causal
generalization?

Premise 2 In this case, A occurs MISSING
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Question could be added (as suggested by Baroni et al. [1]) targeting Premise 2
of the Cause to Effect argument. This could be something like “Does A actually
occur?”

Moreover, why some Critical Questions explicitly target the main semantic
relation of the inferential connection between premises and conclusion, while
other schemes (even those sharing the same kind of main semantic relation) do
not? For example, as will be described later, the Negative Consequence argument
has a Critical Question targeting its causal relation, while the Slippery Slope
argument (which is a sub-type of Negative Consequence argument) does not.

In this sense, it could be useful to harmonize the design of the Critical Ques-
tions or, at least, to clarify their scope (e.g., whether it is targeting an inferential
connection, an explicit premise, an implicit premise, the semantic information of
one premise, an aggregated semantic information, the whole inferential structure,
and so on).

2 The Argumentation Scheme from Negative
Consequences

The Argumentation Scheme from Negative Consequences is an argumentative
pattern which points out the negative consequences of an action. For example,
it is used by arguers who try to discourage people from bringing about specific
actions, by claiming that those actions would have “bad consequences”. Although
there is also a positive counterpart (the Positive Consequences scheme), this work
will focus only on the negative one, for reasons of space.

2.1 Structure of the Argumentation Scheme from Negative
Consequences

The structure of this Argumentation Scheme is relatively straightforward:

Premise 1: If the agent α brings about (doesn’t bring about) A, then B
will occur.
Premise 2: B is a bad outcome (from the point of view of α’s goals).
Conclusion: α should not bring about A.

As can be seen from the previous description, the scheme has a combination
of two semantic connections: the causal relation of Premise 1 (in the form if A
then B) and a definitional relation coming from Premise 2 (in the form B is
good/bad) which aims at classifying the result of the previous causal relation.

Therefore, the inferential connection between premises and conclusion can be
described as the aggregation of these two semantic connections (See Fig. 2). As
already stated before, an Argumentation Scheme can be attacked in three ways:
rebutting the conclusion of the Scheme, undermining a premise of the Scheme,
undercutting the inferences between premises and conclusions. Regarding the
ways of attacking an Argumentation Scheme from Negative Consequences, Wal-
ton et al. [10] propose three main Critical Questions:
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Conclusion +

Premise 2

Premise 1causal

definitional

Fig. 2. Structure of the Negative Consequences Argumentation Scheme

Critical Question 1
How strong is the likelihood that the cited consequences will (may, must)
occur?
Critical Question 2
What evidence supports the claim that the cited consequences will (may,
must) occur, and is it sufficient to support the strength of the claim ade-
quately?
Critical Question 3
Are there other opposite consequences (bad as opposed to good, for exam-
ple) that should be taken into account?

3 Encompassing the Uncertainty of the Argumentation
Scheme from Negative Consequences

The uncertainty of the Argumentation Scheme from Negative Consequence could
be encompassed in the following way:

Premise 1:
{If the agent α brings about (doesn’t bring about) A, then B will
occur}[U1, Ut].
Explanation:
The assumption that if α brings (doesn’t bring) about A, then B will occur
may have a source. For this reason, there is an uncertainty U1. Further-
more, we introduce a specific type of uncertainty that we call Ut, related
to the use of the modal “will”. A justification for adding this kind of
uncertainty is that there are specific linguistic elements in Natural Lan-
guage that are connected to the idea of time and can discriminate among
different kinds of Negative Consequence arguments: for example, words
such as “future” or verbal forms indicating an hypothetical results (e.g.
“would”) can be crucial to differentiate a Slippery Slope argument from a
bare Negative Consequence argument [9].

Premise 2:
{B is a bad outcome (from the point of view of α’s goals)}[U1].
Explanation:
The assumption that B is a bad outcome (from the point of view of α’s
goals) may have a source. For this reason, there is an uncertainty U1.

Conclusion: {α should not bring about A}.[DU]
Explanation:
This is the Derived Uncertainty (DU).



266 D. Liga and M. Palmirani

3.1 Modelling the Critical Questions of the Argumentation Scheme
from Negative Consequences

The Critical Questions of the scheme could be modelled as follows:

Critical Question 1
{How strong is the likelihood that the cited consequences will (may, must)
occur?}[U3, Ut]
Explanation:
The word “strong” implies a linguistic uncertainty (U3). Also in this case,
we suggest the presence of an uncertainty Ut, related to the use of the
modals “will”, “may” or “must”.

Critical Question 2
{What evidence supports the claim that the cited consequences will (may,
must) occur?}[U1, Ut] {and is it sufficient to support the strength of the
claim adequately?}[U3]
Explanation:
This Critical Question explicitly questions the source (evidences) that can
support the argument. This can be considered an uncertainty about the
source U1, while we consider the verbal uncertainty related to the use of
the modals “will”, “may” or “must” as Ut. The second part refers again
to the “strength” of the claim, so it is U3.

Critical Question 3
{Are there other opposite consequences (bad as opposed to good, for exam-
ple) that should be taken into account?}[Ueomr]
Explanation:
Here we formulate the presence of an uncertainty that we call “Equal-
Opposite Material Relation”. Baroni et al. [1] detected an analogous uncer-
tainty within the Argumentation Scheme from Cause to Effect. In that
case, Baroni et al. wondered what kind of uncertainty it was. We are
attempting to give an answer to this question here. We argue that: when
the main semantic (or “material”) relation of an Argumentation Scheme
(e.g. a causal relation [3]) produces effects that have an equal nature (i.e.
they derive from the same material relation, e.g. a causal relation) but
go towards an opposite direction w.r.t. the inferential connection of the
Argumentation Scheme (i.e. these effects undercut the inference between
premises and conclusion), we have an “Equal-Opposite Material Relation”
(EOMR). Whenever an Argumentation Scheme is questioned in this way,
there is an “Equal-Opposite Material Relation” (EOMR).

While we argue that the existence of a EOMR can be plausibly considered true,
we underline that its theoretical usefulness in the analysis of Argumentation
Schemes is not in the scope of this work and should be further investigated.

Following the ideas of Verheij [8], it seems that the role of the first Critical
Question is to question whether Premise 1 holds. More precisely, it questions how
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strong is the probability that the causal information channeled by Premise 1 (i.e.
the causal connection between the action A and the result B) occurs. While the
role of the first Critical Question is clear, the second Critical Question seems
somehow redundant and is split in two parts. In fact, while the first Critical
Question is about how strong is the likelihood of the causal relation between A
and B, the second one is about what evidence supports the same causal relation.
Although, this appears as a partially redundant attack on the first premise,
the role of the second Critical Question seems slightly different if we consider
that it requires a burden of proof. This is made explicit in the second part of
the question: “is [the evidence] sufficient to support the strength of the claim
that if A then B?”. Finally, the role of the third Critical Question, is to point to
exceptional situations in which the scheme defaults. This means that this Critical
Question is somehow related to the causal semantic information channelled by
Premise 1.

Another aspect that should be mentioned is related to the definition of addi-
tional Critical Questions designed to reject each premise of the Scheme. This
is a suggestion proposed by Baroni et al. [1], which aims at both uniforming
the formulation of the Critical Questions and facilitating the modelling of their
uncertainty. The Critical Questions 1 and 2 partially do it with regard to Premise
1, but they don’t question the basic assumption that the agent is really bringing
about (or not bringing about) the action A. In other words, the basic semantic
information is not challenged. Furthermore, Premise 2 is not questioned at all.
This means that we could add two new Critical Questions directly targeting the
semantic information provided by the two premises:

Critical Question 4
{Is the agent α bringing about A?}[U1]
Explanation:
This is undermining Premise 1; namely, it is as an uncertainty about the
source’s assumption that the agent α is bringing about A (U1).

Critical Question 5
{Is B really a bad outcome from the point of view of α’s goals?}[U1]
Explanation:
This is undermining Premise 2; namely, it is an uncertainty about the
source’s assumption that B is a bad outcome from the point of view of α’s
goals (U1).

4 The Basic Slippery Slope Argument

The Basic Slippery Slope Argument can be considered a general Argumenta-
tion Scheme designed to include all the types of Slippery Slope arguments that
can be found in Natural Argumentation. As suggested by Walton [9], it can
be considered a particular sub-type of the Argumentation Scheme from Nega-
tive Consequence, but with a more complex structure that span over a temporal
sequence of events. This temporal sequence can be explicitly mentioned or it can
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be “compressed” by using special words that implicitly involve time spans (e.g.
the word “future”). We will come back to this temporal aspect in the Sect. 4.1,
which describe a proposal to encompass natural language uncertainties within
the Basic Slippery Slope Argumentation Scheme.

Before describing the scheme, it is important to underline the difference with
the Argumentation Scheme from Negative Consequences and the Slippery Slope
arguments. The main conceptual difference between these two Schemes is that
the Slippery Slope arguments have a sequence of actions that go in and out
an undetermined “gray zone”. In other words, the negative outcome must pass
through a sequence of steps which has an undetermined nature.

4.1 The Structure of Basic Slippery Slope Argument

The general structure of the Basic Slippery Slope Argument described by Walton
[9] is the following:

Initial Premise: An agent α is considering carrying out an action A0.
Sequential Premise: Carrying out A0 would lead to A1, which would
in turn lead to carrying out A2, and so forth, through a sequence
A2, . . . , Ax, . . . Ay, . . . , An.
Indeterminacy Premise: There is a sequence A0, A1, A2, . . . , Ax, . . .
Ay, . . . , An that contains a sub-sequence Ax, . . . Ay called “the gray zone”
where x and y are indeterminate points.
Control Premise: α has control over whether to stop carrying out the
actions in the sequence until α reaches some indeterminate point in the
gray zone Ax, . . . Ay.
Loss of Control Premise: Once α reaches the indeterminate point in
the gray zone Ax, . . . Ay, α will lose control and will be compelled to keep
carrying out actions until he/she reaches An.
Catastrophic Outcome Premise: An is a catastrophic outcome that
should be avoided if possible.
Conclusion: A0 should not be brought about.

Being a sub-type of the Negative Consequences argument, it can be noticed
that the Sequential Premise is an evolution of Premise 1 of the Negative Conse-
quences argument, while the Catastrophic Outcome Premise is an evolution of
Premise 2 of the Negative Consequences argument. At the same time, it seems
that the main semantic relation of the super-type, which is a causal relation
(channeled by Premise 1) is preserved not only in the Sequential Premise, but
also in the Loss of Control Premise (See Fig. 3). All the other premises, instead,
seem to convey a definitional/classificatory value. In any case, also in the case
of the Basic Slippery Slope, the final inferential strength connecting premises
and conclusion can be described as the aggregation of the semantic information
conveyed by the six linked premises.

Walton also suggested the possible presence of some contextual factors, called
“drivers”. A driver is described as a “catalyst that helps to propel the argument
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Fig. 3. Structure of the Basic Slippery Slope, dashed connections are optional links.

along the sequence in the argument, making it progressively harder for the agent
to resist continuing” [9].

Walton chose not to clarify the nature of drivers in depth, maybe because a
driver is an element that can be closely related to the peculiarities of the context
where the argument takes place. Since the formulation of the Basic Slippery
Slope Argument aims at designing a general model suitable for all the types
of Slippery Slope argument, being too specific about the nature of drivers is
probably not advisable. However, we may consider them as some sort of factors
that can influence the main agent α either directly (influencing the actions of
the agent α) or indirectly (perhaps, operating on the contextual environment).

Plausibly enough, we could even consider them as some sort of pseudo-agents,
in some more specific instances of the Basic Slippery Slope argument. In this
sense, the choice of the word “compelled” in the Loss of Control Premise is
flexible enough to open the door for the possibility that the control (which is
progressively lost by the agent α) flows towards some other drivers. In some
more specific instances of Slippery Slope argument, a driver acquiring control
over the sequence of actions could be, in our view, equivalent to consider that
driver not anymore as a mere contextual factor, but as a proper agent involved
into the sequence of the events of the slippery slope. For this reason, we may
consider drivers as pseudo-agent or potential agents.
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In any case, for the more general Basic Slippery Slope Argument, the drivers
should be considered just as contextual factors that contribute in making the
sequence flow towards the catastrophic result An. In such general instance of
Slippery Slope argument, Walton suggest to model them as additional (optional)
premises that can support some of the main premises of the scheme [9]. Intu-
itively, drivers are more likely to be connected with premises related to the
sequence, and premises related to the control (see Fig. 3).

Following the Argumentation Scheme above, we can summarize the compo-
nents of the Basic Slippery Slope Argument according to the Table 2.

Table 2. Components of the Basic Slippery Slope Argument.

Component Comment

Agent α Targeted agent

The critic β Source agent

The drivers γx ⊆ Γ Optional

A starting action A0

A catastrophic result An

A sequence A0, A1,
A2, . . . , Ax, . . . Ay, . . . , An (containing an
indeterminate sub-sequence Ax, . . . Ay)

The indeterminate
sub-sequence is the “gray
zone”

According to Walton, the main way of attacking a Slippery Slope is by asking
if there is a bright line of separation in the so-called “gray zone”. In other words,
it is an attack to the Indeterminacy Premise and, indirectly, also to the premises
related to the control and its loss. For this reason, the Basic Slippery Slope
Argument has the following main Critical Question:

Main Critical Question
Is there a bright line in the gray zone?

In fact, if a bright line can be found into the allegedly “indeterminate gray
zone”, it means that the Slippery Slope does not exist at all.

5 Encompassing the Uncertainty of the Basic Slippery
Slope Argument

Considering the Argumentation Scheme above and the formalization of Baroni
et al. [1], we attempt to model the uncertainty behind each premise of the Basic
Slippery Slope Argument. Also, we propose to reformulate some of the premises
to eliminate some non-uniformities and because it seemed more appropriate for
the modelling of uncertainty.
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Initial Premise: {An agent α is considering carrying out an action
A0}[U1, U2].
Explanation:
The observation “α is considering carrying out an action” has a source
(the critic), for this reason there is an uncertainty connected to the source
(U1), which is to say, to the critic β.
The word “considering” could be seen as an uncertainty about the com-
mitment (U2) of the agent α.

Sequential Premise: {Carrying out A0 would lead to A1, which would
in turn lead to carrying out A2, and so forth, through a sequence
A2, . . . , Ax, . . . Ay, . . . , An}[U1, Ut]
Explanation:
The assumption “A0 would lead to A1 (...)” has a source, the critic β. For
this reason, there is a source uncertainty U1.
Similarly to the Negative Consequence argument, we introduce a specific
type of uncertainty that we call Ut, related to the temporality of the
sequence. A justification for adding this kind of uncertainty is that there
are linguistic elements in Natural Language that are connected to the idea
of time and can discriminate among different kinds of Slippery Slope Argu-
ment: words such as “future” or verbal forms indicating an hypothetical
results (e.g. “would”) can be crucial to detect, for example, the so-called
“Compressed” Slippery Slope Argument [9]. Since temporality is an ele-
ment that discriminates not just between Slippery Slope and non-Slippery
Slope Arguments but also between different kinds of Slippery Slope argu-
ments (e.g. the “Compressed” one), we argue that it is also important to
model temporal expressions as a type uncertainty.

Indeterminacy Premise: {There is a sequence A0, A1, A2, . . . , Ax, . . .
Ay, . . . , An that contains a sub-sequence Ax, . . . Ay called “the gray zone”
where x and y are indeterminate points}[U1, U3].
Explanation:
The assumption that there is a “gray zone” where x and y are not recog-
nizable has a source (the critic β). So, also in this case there is an instance
of uncertainty related to the source (U1).
The expression “indeterminate” can be considered as a linguistic uncer-
tainty (U3).

Control Premise:* {α has control over whether to stop carrying out the
actions in the sequence until α reaches some indeterminate point in the
gray zone Ax, . . . Ay}[U1, U3].
Explanation:
The assumption that α will has control only until a certain point has a
source (the critic β) and for this reason, there is an uncertainty U1.
The expression “indeterminate” can be considered as a linguistic uncer-
tainty (U3).
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Loss of Control Premise:* {Once α reaches the indeterminate point in
the gray zone Ax, . . . Ay, α will lose control}[U1, U3] {and will be compelled
to keep carrying out actions until he/she reaches An}[U1, U3].
Explanation:
The assumption that α will lose control has a source (the critic β) and for
this reason, there is an uncertainty U1.
Moreover, the expression “indeterminate” can be considered as a linguistic
uncertainty (U3).
Interestingly, this premise can be considered as a group of two premises:
the first one seems concerned with the concept that α will lose the control
and can be considered partially overlapped with the previous premise,
while the second one seems concerned with the direction of this loss (i.e.
the direction of the loss is the catastrophic result An) and also with the
existence of some not explicit compelling factors.
Always in the second part, we should consider the word “compelled” as
linguistic uncertainty (U3). A justification for this, is the fact that behind
this word there is a potential crucial element in the definition of the drivers:
why is the agent α compelled? What factors contribute to this condition?
This definition, in fact, could be determinant in the definition of some
more specific instance of Slippery Slope argument. So, we argue that also
the general Basic Slippery Slope argument should encompass this element.

Catastrophic Outcome Premise: {An is a catastrophic outcome that
should be avoided if possible}[U1].
Explanation:
The assumption that An is catastrophic has a source (the critic β) and for
this reason, there is an uncertainty U1.

Conclusion: {A0 should not be brought about}[DU].
Explanation:
This is the Derived Uncertainty (DU).

As already suggested above, the Sequential Premise might be considered
a derivation from the super-type’s Premise 1, while the Catastrophic Outcome
can be considered a derivation from the super-type’s Premise 2. Interestingly, the
premises of the sub-type (i.e., the premises of the Basic Slippery Slope argument)
seems to reflect the same kinds of uncertainty of the super-type’s premises (i.e.,
the premises of the Negative Consequence argument). In fact, U1 and Ut seems
to be inherited by the Sequential Premise from Premise 1, while U1 is inherited
by the Catastrophic Premise from Premise 2.

A similar phenomenon can be observed with the Critical Questions conveying
the main semantic relation (which is a causal relation in the case of the two
schemes analyzed in this work). In fact, the uncertainties U1 and Ut seem to be
inherited by the Critical Question 3 of the Basic Slippery Slope (i.e. the Critical
Question related to the main causal relation) from the first two Critical Questions
of the Negative Consequence Argument (i.e. the two Critical Questions focused
on Premise 1, which we considered as partially redundant).
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5.1 The Problem of the Non-uniformity

It is important to underline that there is a potential non-uniformity between
the Control Premise and the Loss of Control Premise (for this reason, they have
been marked with an asterisk).1 It seems that the former wants to describe
the fact of having control, while the latter is focused on the loss of control.
However, the first one already says that the control exists just until a specific
point, which implicitly means that the control is lost after reaching that point.
In other words, the Control Premise is already about losing control (not just
about having control).

On the other hand, while the Loss of Control Premise (which should be
focused on the loss of the control) starts by mentioning the loss explicitly, it
seems also focused on the description of another aspect: in fact, the second part
of this premise (starting with “and will be compelled ...”) seems more focused
on the direction of the loss, rather than on the loss itself.

The partial overlapping between the Control Premise and the Loss of Control
Premise (regarding the loss of control) along with the fact that the Loss Premise
also mention a different concept (the direction of the Loss towards the catas-
trophic event An), could be a non-uniformity issue that can potentially affect
the attempt to model knowledge starting from the this Argumentation Scheme.

For this reason, we argue that it is advisable to solve this non-uniformity.
In this direction, we suggest a possible solution to reformulate the two premise
avoid repetitions and ambiguities of the premises’ scope. The solution could be
that of having a premise for the loss of the control (“Loss of Control Premise”)
and another for the direction of the loss (“Slope Premise” or “Direction of the
Loss Premise”). There is probably no need to create a premise which is just
dedicated to the fact that the agent α have control until the point Ax.

Moreover, a “Direction of the Loss Premise” formulated in this way would
give more importance and conceptual room to the potentialities behind the word
“compelled” which is the only linguistic element referring to the potential exis-
tence of drivers.

Briefly, our suggestion can be described as follows:

Loss of Control Premise: {α has control over whether to stop carrying
out the actions in the sequence until α reaches some indeterminate point
in the gray zone Ax, where the control is lost ... Ay}[U1, U3].
Explanation:
The assumption that α will have control only until a certain point has a
source (the critic β) and for this reason, there is an uncertainty U1.
The expression “indeterminate” can be considered as a linguistic uncer-
tainty (U3).

Direction of the Loss Premise: {α is compelled to keep carrying out
actions until he/she reaches An}[U1, U3].

1 Also Baroni et al. [1] noticed a similar issue and suggested a different formulation
for the Argumentation Schemes analyzed in their work and for the related Critical
Questions.
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Explanation:
The assumption that α is compelled to keep carrying out actions has a
source (the critic β) and for this reason, there is an uncertainty U1.
We should consider the word “compelled” as linguistic uncertainty (U3),
as already specified before.

As partially argued before, the fact of mentioning that the agent α has the
control, before losing it, seems not necessary both from a logical point of view
(losing it already imply having had it) and from the point of view of the practical
implementation of the scheme in a real example: to instantiate a Basic Slippery
Slope scheme there is no need to mention the fact of having control in a dedicated
premise; on the contrary, to reach the theoretical purposes of the scheme, it
should be sufficient to mention that the agent α lost it. This changes are not a
mere linguistic change. We think that they can be useful for a better modelling of
the knowledge and uncertainty within the Basic Slippery Slope Argumentation
Scheme.

5.2 Modelling the Critical Questions of the Basic Slippery Slope
Argumentation Scheme

As described by Baroni et al. [1], the Critical Questions can be used in the
formulation of the uncertainty in the premises. For this reason, we can model
the main Critical Questions of the Basic Slippery Slope Argument as follow:

Critical Question 1
{Is there a bright line in the gray zone?}[U1]
Explanation:
This Critical Question can directly undermine the source’s assumption
that there is a Slippery Slope. For this reason there is an uncertainty U1.

In the above-mentioned Critical Question, the “bright line” should be con-
sidered as a distinctive point in the sequence from A0 to An where agent α
understands that it is time to stop. It should be mentioned, however, that answer-
ing to this question is not simple, because the answer can depend on at least
two points of view: the ability of α and the condition of the context (drivers
included). In this sense, mentioning a “bright line” in the Critical Question is
a good metaphorical resort, which however risks to hide the direction where
the answers should be searched for. In fact, if the point of view is only on the
“ability of α” to stop before the slope, the origin of the uncertainty would be
intrinsically related with the agent. However, watching at the context (e.g. at
the drivers involved into the sequence from A0 to An), we may find that the
origin of the uncertainty can be related to how drivers influence the slope. This
distinction is not merely aesthetical. For example, if we wanted to investigate
the presence of uncertainty related to the “bright line” in the gray zone directly
within Natural Language sentences, we should consider not only those sentences
in which the ability of the agent is mentioned, but also the sentences referred to
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contextual elements or drivers. This can be even more important in more specific
instances of Slippery Slope arguments, where drivers could play a more defined
role.

Also in this case, for uniformity, some Critical Questions may be explicitly
formulated to attack the existence of each premise. This would produce other
six Critical Questions:

Critical Question 2
{Is α considering carrying out A0?}[U1, U2]
Explanation:
Questioning that An is considering carrying out A0 would undermine the
source’s assumption that we are in a context of Slippery Slope (U1).
While the verb “considering” can be seen as a U2 (uncertainty about the
commitment of the agent α).

Critical Question 3
{Is A0 leading towards An?}[U1, Ut]
Explanation:
Questioning that A0 leading towards An would undermine the source
assumption that we are in a context of Slippery Slope (U1).
Moreover, since the sequence that would “lead” from A0 to An is located
into an indeterminate span of time, there could be an uncertainty con-
nected to time also in this case (Ut).

Critical Question 4
{Does the sequence A0 . . . An contain the indeterminate sub-sequence?}
[U1, U3]
Explanation:
Questioning that the sequence from A0 to An contain the indeterminate
sub-sequence would undermine the source assumption that we are in a
context of Slippery Slope (U1).

Critical Question 5
{What elements indicate that α may lose the control?}[U1, U3, Ut] {Are
these elements strong enough to support the claim?}[U3]
Explanation:
This Critical Question targets the potential presence of elements indicat-
ing that α could lose the control, undermining the existence of the Argu-
mentation Scheme itself (U1). While the word “strong” can be considered
a linguistic uncertainty (U3) and the word “may” can be referred to an
uncertainty related to time (Ut).

Critical Question 6
{What elements indicate that α may be compelled to go towards An?}[U1,
U3, Ut] {Are these elements strong enough to support the claim?}[U3]
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Explanation:
This Critical Question targets the potential presence of elements indicating
that α could be compelled to go towards An, undermining the existence
of the Argumentation Scheme itself (U1). While the word “strong” can
be considered a linguistic uncertainty (U3) and the word “may” can be
referred to an uncertainty related to time (Ut).

Critical Question 7
{What elements indicate that An may be a catastrophe?}[U1, U3, Ut] {Are
these elements strong enough to support the claim?}[U3]
Explanation:
This Critical Question targets the potential presence of elements indicating
that An is a catastrophe, undermining the existence of the Argumentation
Scheme itself (U1). While the word “strong” can be considered a linguistic
uncertainty (U3) and the word “may” can be referred to an uncertainty
related to time (Ut).

It should be noted that the Critical Questions 5, 6 and 7 are the most exposed
to the problem of the time, basic characteristic element of the Slippery Slope
Arguments. In fact, these questions could be not answerable, since their answers
could be just arbitrary predictions on future events. For these reasons, they are
formulated in terms of “What elements indicate that X may be true”. Finally, it
could be useful to underline that attacking the existence itself of the Argumen-
tation Scheme is considered as an attack to the source of the argument (U1).

At this point, it seems natural to envisage the existence of a Critical Question
indicating the existence of a Ueomr, similarly to the Critial Question 3 of the
super-type. In this sense, there would be another Critical Question questioning
the existence of other factors (e.g. other consequences or even drivers) which
despite being related to the same causal relation could go towards the opposite
direction w.r.t the inference from premises to the conclusion.

Critical Question 8
{Are there other consequences or factors to be considered, which may be
triggered through the sequential process from A0 onward?}[Ueomr, Ut]
Explanation:
In this case, the main semantic relation (i.e. a causal relation) may pro-
duce effects or factors having an equal nature (i.e. they derive from the
same causal material relation) but an opposite direction w.r.t. the inferen-
tial connection of the Argumentation Scheme, undercutting the inference
between premises and conclusion (Ueomr). However, since these effects are
in the future, there is an uncertainty related to time (Ut), channelled by
the word “may”.

6 Conclusions

In this paper, we encompassed the uncertainty of both the famous Argumen-
tation Scheme from Negative Consequence and the novel Basic Slippery Slope
Argument following the methodology proposed in Baroni et al. [1].
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Noticeably, we described the presence of two potentially new kinds of uncer-
tainty: one related to time (defined as Ut), and one related to the main semantic
relation in the inferential connection between premises and conclusion, which we
defined as “Equal-Opposite Material Relation” uncertainty (Ueomr).

Regarding the Argumentation Scheme from Negative Consequences, we sug-
gested a partial reformulation of current model adding two more Critical Ques-
tions which target the semantic information channeled by the two premises of
the scheme.

Regarding the Basic Slippery Slope Argument, we also suggested a reformu-
lation of two premises in order to solve some non-uniformity that could affect
the attempts to model knowledge from this Argumentation Scheme. Namely, we
intervened in the two premises related to the loss of control to avoid redundan-
cies. Moreover, similarly to the Negative Consequence argument, we suggested
to add a new Critical Question for each premise, targeting the relative seman-
tic information. Finally, we added another Critical Question which is related to
the Ueomr uncertainty and is meant to target the potential existence of factors
which may undercut the inferential connection between premises and conclusion
despite being originated by the same main semantic relation of the scheme’s
inferential connection (i.e. the same causal relation).

In future research we will follow the suggestion of Baroni et al. [1] to use
the modelled Argumentation Schemes with uncertainty together with Natural
Language uncertainties in order to reach the “semi-formal argumentation with
uncertainty”. In this sense, some classifiers could be trained using NLP tech-
niques in order to automatically evaluate the presence of uncertainty directly
within Natural Language sentences.

This is a long-term research path which is strictly dependent on the formal-
ization choices and on the theoretical background. In this regard, further studies
on the philosophical side of the Argumentation Scheme theory can be crucial for
a successful implementation of the present approach. For example, a more in-
depth clarification about how the semantic links and the inferential warrants of
an Argumentation Scheme are inherited by its sub-types could be useful for mod-
eling uncertainty in a more appropriate way. Moreover, a further standardisation
of the types (and sub-types) of Argumentation Schemes and Critical Questions
is strongly advisable. We think that there is the need to reinforce the theoretical
background designing Critical Questions in a more uniform way, making clear,
and possibly unambiguous, what is the target of a Critical Question; for example,
whether it is targeting an inferential connection, a (possibly implicit) premise,
a semantic information, the whole inferential structure, and so on.
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Abstract. By considering reasoning as speech acts, the paper gives a
new perspective to evaluate good reasoning, that is, not only involving
the consequence relation between premisses and conclusions, but also
involving the goal of doing reasoning by an agent. Moreover, in this
paper, we propose a framework for characterizing the reasoning for per-
suasion from the logical perspective.
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1 Motivation

Consider the following conversation:
Edmund: Knowledge is not justified true belief. (1)
Alfred: Why? (Or why should I believe it?) (2)
Edmund: Well, here are two possible cases indicating that it is possible to

have justified true belief without knowledge... (3)
Although the conversation proceeds back and forth and could last for a long

time, it is clear to see that Edmund is trying to persuade Alfred to accept that
“knowledge is not justified true belief” by a series of arguments. In fact, Edmund
is demonstrating a speech act (assertion), involving reasoning from (3) to (1). It
is commonly agreed that we can evaluate reasoning through concerning whether
the conclusion logically follows from its premises via different standards, e.g.
deductive reasoning, inductive reasoning, abductive reasoning, etc. What mat-
ters here is to evaluate the reasoning by the content of it only. In the above
example, Edmund’s argument is good if it is the case that: (1) is a logical conse-
quence of (3)1. However, it seems to us that this evaluation is not enough since
it ignores the aim of the argument, that is, to persuade Alfred to accept that
1 Though the example is usually taken as deductive reasoning, the concept of logical
consequence might also be concerned with inductive or abductive reasoning. That
is, a good argument might not be truth preserving, while it is probability preserving
(or has explanatory power).
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“knowledge is not justified true belief”. According to [3], “reasoning is char-
acteristically addressed to problems”, and then it should be seen as a mental
activity with goals and purposes. That is, whether a certain argument expressed
by a speech act is good depends on if it achieves its goal. In the example, Alfred
believes that knowledge is justified true belief in the beginning, and Edmund
is trying to persuade Alfred to give up this belief. If Alfred were to change his
mind, then Edmund’s speech act (what he said) is successful (in the sense of
achieving his goal). Therefore, reasoning expressed by speech acts is good2, if it
satisfies two conditions: what an agent says constitutes good reasoning (infor-
mally) from A1, . . . , An to B just in case (i) what the agent says exemplifies
reasoning which satisfies certain standards (for example, validity) and that (ii)
the audience (the agents spoke to) should accept B after the agents’ speaking.
(i) indicates that the content of the speech act instantiates a valid logical form,
for example; and (ii) indicates that the goal of the speech act is achieved (for
example, the audience’s belief changed). In this paper, (ii) is our main concern.

To show that (i) and (ii) are different, though related to each other in most
cases, let’s see a real case that teaching students how to identify an invalid
argument. While saying an invalid argument, at the same time the teacher shows
reasoning exemplifying an invalid logical form. Does she succeed in teaching
students how to identify an invalid argument? If yes, her speech act is successful
and should be rendered good; otherwise, not good. On the other hand, while
saying ϕ therefore ϕ, will people thereby turn to accept ϕ if they accept ϕ, given
that they disbelieve ϕ at the beginning? Therefore, (i) and (ii) are different,
though satisfying (i) may simultaneously satisfy (ii) in most cases. Since many
people have focused on (i), we plan to take (ii) as our focus here. That is, we
focus on reasoning hiding in speech acts.

2 General Idea

To give an adequate account of reasoning, some phenomena should be explained:
(a) not all actual reasoning is good; (b) actual reasoning may be incomplete;
and (c) not all valid arguments are good reasoning. To explain (a), Grice [3]
proposes taking the derivability, as thought by the reasoner, to be derivable
by canonical principles. To explain (b), Grice proposes that we shall consider
ourselves facing different reasoning dealing with actual reasoning. To explain
(c), Grice proposes that we shall treat reasoning as an activity with goals and
purposes. In this paper, we propose that reasoning can be demonstrated by
speech acts (in Austin’s sense [1]), which is goal-oriented (e.g. persuading). In this
sense, x reasons (informally) from A to B, in case (1) x thinks A and intends that,
in thinking B, (2) he should be thinking something which would be the conclusion
of a formally valid argument the premises of which are a supplementation of A.
Although condition (2) is too strict to be satisfied by most of actual reasonings
2 According to [2], “good” is an incomplete predicate, for its precise meaning will be
shown once being completed. In the present paper, whether “good” is ambiguous or
incomplete is not our concern here.
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since it implies that any mental activity which can be called reasoning should
follow a formally valid argument, it still gives us a different perspective to think
about reasoning practically, that is, reasoning as an action. To evaluate reasoning
is to see if an agent achieve his/her goal after doing it (whether certain reasoning
results in persuading audiences in question successfully). The idea is that, to
explain the reason why a valid argument may (or may not) persuade people,
we have to consider reasoning as speech acts and neglect the content of the
reasoning, though usually the content is related to the goal (e.g. persuasion) of
reasoning. There are three characters are involved in a speech act: what is said
(locutionary act), speaker’s intention (illocutionary act), and a result caused by
what is said (perlocutionary act). Take a typical example, wedding ceremony.
While saying “now I pronounce you husband and wife” (what is said), the priest
has an intention to notarize the couple in front of him (speaker’s intention). In
general, the upshot will be two unrelated people becoming a couple, indicating
that they are bounded in certain relationship. However, a possible upshot is
that the priest’s intention fails to be realized; for example, the wife runs away,
after finding out her husband cheating on her all the time (e.g. flirting with
other females). The thing is, perlocutionary act is what resulted from what is
said, and we are not sure whether speaker’s intention will be satisfied. When
we consider reasoning demonstrated by speech acts, we can talk about what its
end is and how to achieve its end. In this paper, we simply consider persuasion
(to the audience) as the end of reasoning. Describing reasoning as an action
towards persuasion, enables us to deal with each individual reasoning as a step
of the process of persuasion. However, there are other ways to persuade except
reasoning, we only focus on being persuaded to accept something by reasoning
in this paper.

Describing reasoning as an action towards persuasion, enables us to deal with
each individual reasoning as a step of the process of persuasion. However, there
are other ways to persuade except doing a reasoning, we only focus on “being
persuaded to accept ϕ after doing a reasoning” in this paper. In what follows,
we give a formal framework to characterize “what is an agent being persuaded”
(a logic for persuation). The basic idea is that we consider reasonings as actions
with some structures, and the result of reasoning (“being persuaded to accept
‘ϕ”’) as information update: from the state of not accepting ϕ to the state of
accepting ϕ. That is, the audience will accept ϕ, if the speaker persuades him/her
successfully by a reasoning.

3 The Logic for Persuation

In [5], Herzig and Longin proposed a new logic for intention with cooperative
principle and with assertive speech acts. They characterized the assertive type
of speech acts by the form of <i, j, A>, where i is the author, j is the addressee,
and A is a formula representing the propositional content of the act. In their
example, <u, s,Blue(sky)> represents a assertive speech act achieved by agent
u’s utterance towards agent s: “The sky is blue”. Furthermore, each action asso-
ciates with two modal operators After and Before, for example, Beli Before
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<j, i, p> Belj p means that the agent i believes that before informing that p, j
believed that p. By introducing belief and intention operators, [5] could describe
an agent’s mental attitude before and after an assertive speech act. However, we
also consider a speech act as a perlocutionary act, i.e. a result caused by what
is said. What happened to the addressee when the author makes an assertion?
A possible result may be belief adoption, as [5] suggested, “an agent adopts j’s
belief if he believes that j is competent at that belief.” In our opinion, the process
of belief adoption involves many different considerations, such as, the author’s
competence at p, the truthfulness and credibility of his report, and so on. All of
these considerations can be concluded by Grice’s cooperative principle, and the
addressee make a belief adoption by his own reasoning and judgment. In this
paper, we propose to give a description for reasoning as speech acts, and put
more emphasis on the result caused by it rather than its content. By Pi(αj , ϕ),
we mean that “i is persuaded to accept ϕ after j did reasoning α. A simple
idea is that the audience doesn’t accept ϕ until the speaker has the reasoning
α, regardless of the exact content of this reasoning. Unlike [5] intending to dis-
cover the relation between mental attitudes and describing the rules of belief
adoption and intention generation, our work is to deal with each primitive and
atomic reasoning as a step of the process of persuasion. In what follows, we give
a formal frame work to characterize “an agent being persuaded by reasoning”
(a logic for persuasion). The basic idea is that we consider reasonings as actions
with some structures, and the result of reasoning (“being persuaded to accept
something”) as information update: from “the state of not accepting sth.” to
“the state of accepting sth.”. That is, the audience will accept sth. after the
speaker persuading him/her successfully by reasoning.

Let A = {a, b, c, d, . . .} be a denumerable set of atomic reasoning actions, and
Ag = {i, j} be a set of two agents (for simplicity, we only consider two agents’
case). The set of arbitrary reasoning actions R are defined recursively as follows:

αi:: = ai | (αi ⊕ αi) | (αi;αi)

where i ∈ Ag. In what follows, we use α, β, γ etc. to denote reasoning. Notice
that, in this language, αi;βi means sequential reasoning, that is, agent i does
reasoning α first and then does reasoning β. αi ⊕ βi means “agent i chooses
either reasoning α or reasoning β” intuitively. For example, to prove “ϕ”, you
have no idea whether the proof α or proof β could get it, you may try one of
them arbitarily.

Let Atop = {p, q, r, . . .} be a denumerable set of atomic propositions. The
set of formulas F are defined recursively as follows:

ϕ:: = p | ¬ϕ | [αi]ϕ | Pi(αj , ϕ) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ → ϕ)

where i ∈ Ag. In what follows, we use ϕ,ψ, χ etc. to denote formulas. Intuitively,
[α]ϕ means “ϕ holds after agent i doing reasoning α”, and Pi(αj , ϕ) means: “after
agent j doing reasoning α, agent i has been persuaded to accept ϕ”. Notice that
it is possible that j = i, then it means an agent has been persuaded him(her)-self
after doing reasoning α.
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Definition 3.1 (Model and Frame). A model is a structure M =
(W,N,Rαi

,Ag, V ), where:

(1) W is a non-empty set of states;
(2) N : W × Ag → PP(W ) s.t.

(a) for any w ∈ W, i ∈ Ag and X,Y ⊆ W , if X ∈ N(w, i) and X ⊆ Y , then
Y ∈ N(w, i);

(b) for any w ∈ W, i ∈ Ag and X ⊆ W , if X ∈ N(w, i), then X �∈ N(w, i),
where X = W/X;

(c) for any w ∈ W, i ∈ Ag and X,Y ⊆ W , if X ∈ N(w, i) and Y ∈ N(w, i),
then X ∩ Y ∈ N(w, i);

(3) Rαi
is defined inductively as follows:

(a) Rai
⊆ W × W , and satisfies: for any w ∈ W , there exits v ∈ W , s.t.

(w, v) ∈ Rai
.

(b) Rαi⊕βi
= {(w, u) | (w, u) ∈ Rαi

or (w, u) ∈ Rβi
};

(c) Rαi;βi
= {(w, u) | there exists v ∈ W , s.t. (w, v) ∈ Rαi

and (v, u) ∈ Rβi
};

(4) V : Atop → P(W ).

A frame is a structure F = (W,N,Rαi
,Ag) satisfying (1)–(3) above.

In what follows, we use F to denote the class of all frames and M to denote
the class of all models.

From (3a), It is not difficult to see that for any w ∈ W , there exits v ∈ W ,
s.t. (w, v) ∈ Rαi

for any αi. Intuitively, N(w, i) means “the set of all information
agent i accepted in the state w”. In this sense, the empty set (which corresponds
to contradictory propositions) cannot be in any agent’s information set in any
state. Conversely, the whole set (which corresponds to tautologies) as the default
information is in all agent’s information sets in all states. Notice that our con-
dition is a bit strict in the sense that it is not allowed that the inconsistent
information exits in ant agent’s information set in any state.

Definition 3.2 (Truth set). Let M be a model. For any ϕ ∈ F , the truth set
V (ϕ) with respect to M is defined recursively as follows: for any w, v ∈ W ,

(1) V (¬ϕ) = V (ϕ);
(2) V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ);
(3) V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ);
(4) V (ϕ → ψ) = V (ϕ) ∪ V (ψ);
(5) V ([αi]ϕ) = {w | Rαi

(w) ⊆ V (ϕ)};
(6) V (Pi(αj , ϕ)) = {w | if v ∈ Rαj

(w), then V (ϕ) ∈ N(v, i) for any v ∈ W}.
where Rαi

(w) = {v | (w, v) ∈ Rαi
}.

Definition 3.3 (Validity). Let F be a frame and M be a model. A formula ϕ
is valid in M (note as: M |= ϕ) if V (ϕ) = W ; a formula ϕ is valid in F (note
as: F |= ϕ) if V (ϕ) = W for any V . A formula ϕ is valid in the class M of all
models (note as: M |= ϕ) if it is valid in any model M ∈ M. A formula ϕ is valid
in the class F of all frames (note as: F |= ϕ) if it is valid in any frame F ∈ F.
A rule ϕ1, . . . ϕn/ψ is valid in M, if M |= ϕ1, . . . ,M |= ϕn, then M |= ψ. The
validity of a rule in F (or M, or F) is defined analogously as above.
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The axiomatization of the logic for persuasion HP is defined as follows:

Axioms:
(a) all tautologies in propositional logic;
(b) [αi](ϕ → β) → ([αi]ϕ → [αi]β);
(c) [αi](ϕ ∧ ψ) ↔ [αi]ϕ ∧ [αi]ψ;
(d) [αi]ϕ → ¬[αi]¬ϕ;
(e) [αi;βi]ϕ ↔ [αi][βi]ϕ;
(f) [αj ⊕ βj ]ϕ ↔ [αj ]ϕ ∧ [βj ]ϕ;
(g) Pi(αj , ϕ → ψ) → (Pi(αj , ϕ) → Pi(αj , ψ));
(h) Pi(αj , ϕ) ∧ Pi(αj , ψ) → Pi(αj , ϕ ∧ ψ);
(i) Pi(αj , ϕ) → ¬Pi(αj ,¬ϕ);
(j) Pi(αj ;βj , ϕ) ↔ [αj ]Pi(βj , ϕ);
(k) Pi(αj ⊕ βj , ϕ) ↔ Pi(αj , ϕ) ∧ Pi(βj , ϕ);

Rules:
ϕ ϕ → ψ

(MP)
ψ

ϕ
([α])

[αi]ϕ
ϕ

(P)
Pi(αj , ϕ)

Corollary 3.4. The following formulas hold in HP:

(1) Pi(αj , ϕ ∧ ψ) → Pi(αj , ϕ) ∧ Pi(αj , ψ);
(2) Pi(αj , ϕ) ∨ Pi(αj , ψ) → Pi(αj , ϕ ∨ ψ);
(3) ¬Pi(αj , ϕ ∧ ¬ϕ).

Proof. (1)

1. ϕ ∧ ψ → ϕ Axioms (a)
2. Pi(αj , ϕ ∧ ψ → ϕ) 1, (P)
3. Pi(αj , ϕ ∧ ψ → ϕ) → (Pi(αj , ϕ ∧ ψ) → Pi(αj , ϕ)) Axiom (g)
4. Pi(αj , ϕ ∧ ψ) → Pi(αj , ϕ) 2,3, (MP)
5. Pi(αj , ϕ ∧ ψ) → Pi(αj , ψ) 1-4
6. Pi(αj , ϕ ∧ ψ) → Pi(αj , ϕ) ∧ Pi(αj , ψ) 4, 5, Axioms (a)

(2)

1. ϕ → ϕ ∨ ψ Axioms (a)
2. Pi(αj , ϕ → ϕ ∨ ψ) 1, (P)
3. Pi(αj , ϕ → ϕ ∨ ψ) → (Pi(αj , ϕ) → Pi(αj , ϕ ∨ ψ)) Axiom (g)
4. Pi(αj , ϕ) → Pi(αj , ϕ ∨ ψ) 2,3, (MP)
5. Pi(αj , ψ) → Pi(αj , ϕ ∨ ψ) 1-4
6. Pi(αj , ϕ ∨ ψ) → Pi(αj , ϕ) ∨ Pi(αj , ψ) 4, 5, Axioms (a)

(3)

1. ¬(ϕ ∧ ¬ϕ) Axioms (a)
2. Pi(αj ,¬(ϕ ∧ ¬ϕ)) 1, (P)
3. Pi(αj ,¬(ϕ ∧ ¬ϕ)) → ¬Pi(αj ,¬¬(ϕ ∧ ¬ϕ)) Axiom (i)
4. ¬Pi(αj ,¬¬(ϕ ∧ ¬ϕ)) 2,3, (MP)
5. (ϕ ∧ ¬ϕ) → ¬¬(ϕ ∧ ¬ϕ) Axioms (a)
6. Pi(αj , (ϕ ∧ ¬ϕ) → ¬¬(ϕ ∧ ¬ϕ)) 5, (P)
8. Pi(αj , ϕ ∧ ¬ϕ) → Pi(αj ,¬¬(ϕ ∧ ¬ϕ)) 6, Axioms (g), (MP)
9. ¬Pi(αj ,¬¬(ϕ ∧ ¬ϕ)) → ¬Pi(αj , ϕ ∧ ¬ϕ) 6, Axiom(a)
10. ¬Pi(αj , ϕ ∧ ¬ϕ) 4,9, (MP) �



Reasoning as Speech Acts 285

Theorem 3.5 (Soundness). HP is sound with respect to F.

Proof. As to axioms, the proofs for (a)–(f) are standard and can be found in [4,
Chapter 5.6]. We only prove (g)–(k).

(g) In order to show F |= Pi(αj , ϕ → ψ) → (Pi(αj , ϕ) → Pi(αj , ψ)), by
Definition 3.3, it suffices to show that F |= Pi(αj , ϕ → ψ) → (Pi(αj , ϕ) →
Pi(αj , ψ)) for any F ∈ F, that is, it is enough to show that V (Pi(αj , ϕ → ψ) →
(Pi(αj , ϕ) → Pi(αj , ψ))) = W for any F ∈ F and for any V . Assume that it is not
the case, that is, there exits a w ∈ W s.t. w �∈ V (Pi(αj , ϕ → ψ) → (Pi(αj , ϕ) →
Pi(αj , ψ))). By Definition 3.2(4), w ∈ V (Pi(αj , ϕ → ψ)) and w ∈ V (Pi(αj , ϕ))
but w �∈ V (Pi(αj , ψ)). Hence, w ∈ V (Pi(αj , ϕ → ψ)) ∩ V (Pi(αj , ψ)). Definition
3.2(6) implies that: for any v ∈ W , if v ∈ Rαj

(w), then V (ϕ → ψ) ∈ N(v, i)
and V (ϕ) ∈ N(v, i), by Definition 3.1(2c), which implies: for any v ∈ W , if
v ∈ Rαj

(w), then V (ϕ → ψ) ∩ V (ϕ) ∈ N(v, i) (*). By Definition 3.2(4), V (ϕ →
ψ) ∩ V (ϕ) ⊆ V (ψ). Combining with Definition 3.1(2a), (*) implies: for any
v ∈ W , if v ∈ Rαj

(w), then V (ψ) ∈ N(v, i), that is, w ∈ V (Pi(αj , ψ)) which
contradicts with the assumption.

(h) It suffices to show that V (Pi(αj , ϕ) ∧ Pi(αj , ψ) → Pi(αj , ϕ ∧ ψ)) = W
for any F ∈ F and for any V , by Definition 3.2(4), it is enough to show that
V (Pi(αj , ϕ) ∧ Pi(αj , ψ)) ⊆ V (Pi(αj , ϕ ∧ ψ)) for any F ∈ F and for any V . It
follows from 3.2(6) and 3.1(2c), and the proof is omitted.

(i) It suffices to show that V (Pi(αj , ϕ) → ¬Pi(αj ,¬ϕ)) = W for any F ∈ F
and for any V . By Definition 3.2(4), it is enough to show that V (Pi(αj , ϕ)) ⊆
V (¬Pi(αj ,¬ϕ)) for any F ∈ F and for any V . Let w ∈ V (Pi(αj , ϕ)), that is, for
any v ∈ W , if v ∈ Rαj

(w), then V (ϕ) ∈ N(v, i) by Definition 3.2(6). Definition
3.2(1) and 3.1(2b) implies that: for any v ∈ W , if v ∈ Rαj

(w), then V (¬ϕ) �∈
N(v, i)(*). Since Rαj

(w) is not empty by Definition 3.1(3a), (*) implies w ∈
V (¬Pi(αj ,¬ϕ)) by Definition 3.2(1).

The proof for (j) is analogous with the proof for (e), and the proof for (k) is
analogous with the proof for (f), hence proofs are omitted.

As to the rules, the proofs for the first two are standard and can be found in
[4, Chapter 5.6]. We only prove the third one. By Definition 3.3, let V (ϕ) = W
for any F ∈ F and for any V , it suffices to show that V (Pi(αj , ϕ)) = W for any
F ∈ F and for any V . By Definition 3.2(6), it is enough to show that: for any
F ∈ F and for any V , “if v ∈ Rαj

(w), then V (ϕ) ∈ N(v, i) for any v ∈ W” (*)
holds. Since W ∈ N(v, i) by Definition 3.1(2), (*) always holds. �

Consider the following situation: two philosophers arguing whether we can
justify our modal beliefs, such like “it is possible that Trump lost in the 2016
Presidential Election”. One thinks so but the other not. As a philosopher, both
are good at reasoning, and intend to convince another through reasoning. One
may argue that we can justify our modal beliefs by conceivability: conceivability
implies metaphysical possibility, by the argument which is proposed by David
Chalmers, then the other philosopher accept it. In this case, we can use the formal
language introduced above to characterize this process as follows: P1(αc, ϕ),
P2(α1, ϕ), where ϕ stands for “conceivability is the key to justifying our modal
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beliefs”, αc stands for David Chalmers’ arguments for ϕ. α1 stands for Phi1
showing the David Chalmers’ arguments for ϕ. Philosopher 1 comes to accept ϕ
after reading David Chalmers’ arguments for ϕ. The first formula means: “after
reading David Chalmers’ argument, Phi1 has been persuaded to accept ϕ”, and
the second formula means: “after Phi1 showing the David Chalmers’ argument
to Phi2, Phi2 has been persuaded to accept ϕ”.

4 Future Work

In the above section, we give a logic for persuasion to characterize the an agent
being persuaded by reasoning. We showed the soundness of this logic, the com-
pleteness of this logic will be our next work. This logic has also some connections
with argumentation theory and justification logic. Comparing these logics is also
an interesting work for the future. Since our framework is quite rough (but gen-
eral), in order to deal with some real arguments happened in our daily life, we
should make the frame more fine. For example, if the audience undergoes cer-
tain information update, that is, from the state of not accepting ϕ to the state
of accepting ϕ, the agent’s intention is satisfied and the reasoning (the speech
act) results in information update. However, sometimes persuasion is a matter
of degree, for the achievement may come in degree. To explain this further, let’s
consider cycling. Many people are able to ride a bike, but it does not follow
that each can demonstrate this very ability to the same degree. For example, an
20-miles cycle ride may be easy for some, but difficult for others. Similarly, after
doing reasoning, the audience may raise the degree of credence to certain belief.
Therefore, a fine-grained representation of belief-revision is called for, e.g. the
degree of achieving the goal (persuasion).
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Abstract. Dung’s theory of abstract argumentation plays an incremen-
tal role in artificial intelligence. The research about the dynamics the-
ory of argumentation efficiently identifies the justified arguments when
arguments or attacks change. However, the dynamics theory is absent in
fuzzy argumentation framework (FAF). We want to calculate the seman-
tics of the updated FAF by partially reusing the semantics of the previ-
ous FAF. In this paper, we explore the dynamics theory in FAFs. First,
we introduce all the changes of FAF, including not only the changes of
arguments and attacks but also the increases or decreases of their fuzzy
degrees. Thus, the changes in FAFs are more complicated than standard
AF. Then by extending Liao’s division-based approach, we provide an
efficient algorithm for computing some basic semantics. This algorithm
conserves part of the semantics in the previous FAF. Thus, we can effi-
ciently compute the belief degree to which arguments are justified.

Keywords: Dynamics of argumentation · Division-based approach ·
Fuzzy argumentation frameworks · Argumentation semantics

1 Introduction

Dung’s theory [7] of argumentation frameworks (AFs) plays an increasingly
important role in artificial intelligence and nonmonotonic reasoning. A Dung’s
AF is essentially a directed graph. The nodes represent the arguments and the
arrows represent the attack relation between the arguments. Dung’s theory is to
seek reasonable subsets of the arguments under some criterions.

In order to handle the uncertain, incompleteness, and inconsistency of infor-
mation, standard AFs are extended by quantifying arguments or attacks. More
specifically, in these quantitative AFs, numerical values are combined with argu-
ments/attacks, such as probabilistic AFs [9,12], fuzzy AFs (FAFs) [5,10,15],
weighted AFs [8] and so on. FAFs characterize AFs by fuzzy arguments or fuzzy
attack relation. In [10,15], the main task of FAFs is to find the subsets over
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justified fuzzy arguments. The extension semantics to FAFs have been proposed
in [10,15]. Changes in arguments and attack relationships are intrinsic to vari-
ous argumentation systems [2,4,11]. According to some research, arguments and
their attack relation develop with the changes in basic knowledge or information
or observations [3,6,14]. In [4], Cayrol et al. address the problem of the change
of adding an argument in Dung’s AF. They focus on the change of the argumen-
tation systems and its extension. In [13], Liao et al. proposed a division-based
approach for dynamics of AFs. The division-based approach provides an efficient
algorithm for the dynamics of argumentation systems.

In quantitative AFs, the arguments and attack relation are also changed with
the changes of basic knowledge, information, and observations. However, the
research about the dynamics of quantitative AFs is absent. In this paper, we take
the Gödel FAFs (GFAFs) as an example to explore the dynamics of quantitative
AFs. However, the changes in the dynamics of FAFs are more complicated than
standard AF. This is because FAF is changed not only by adding (or removing)
arguments or attack relation but also by increasing (or decreasing) the belief
degree of arguments or attack relation.

The main task of this paper is to provide an efficient algorithm for basic
semantics in the updated FAF. We first establish the directionality principle
in FAFs. Then we extend the division-based approach, each updated FAF is
divided into three parts: unaffected FAF, affected FAF, conditioned FAF. We
then compute the extension semantics of the updated FAF by computing the
semantics of unaffected FAF and affected FAF under the conditioned FAF. In
this way, we can calculate the complete, preferred and grounded semantics which
partially reuses the extensions computed in the previous FAF.

This paper is structured as follows: In Sect. 2, we specify the motivation of the
dynamics of FAF. In Sect. 3, we review some basic definitions of FAF and fuzzy
set theory. In Sect. 4, we explore the various changes in the dynamics of FAFs.
In Sect. 5, we extend the division-based method into the dynamics of FAFs. The
paper ends with conclusions and remarks about future work.

2 Motivation

As we showed in the Introduction, changes in arguments and attack relationships
are intrinsic to various argumentation systems. And compared with standard
AFs, the dynamics of FAFs are more complicated. We first specify the intuition
of the dynamics of FAFs. To understand the dynamics of FAFs, we consider the
following example:

A patient goes to the hospital because of chest tightness. If we only make
an empirical judgment about the patient, there are two diseases that may cause
chest tightness: coronary heart disease and bronchitis. So we obtain two argu-
ments:

A: The patient’s chest tightness is caused by coronary heart disease;
B: The patient’s chest tightness is caused by bronchitis.
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Assuming that the patient’s chest tightness is not caused by these two dis-
eases at the same time. Thus these two arguments are contradictory. We can
establish an FAF and the initial belief degree of that the patient’s chest tight-
ness is caused by coronary heart disease is 0.4 and the initial belief degree of that
the patient’s chest tightness is caused by bronchitis is 0.6. If we do a preliminary
examination of the patient, the result of the examination shows that the patient
has bronchitis and has no history of coronary heart disease. Consequently, the
degree of A may naturally decrease and the degree of B may naturally increase,
one may change the system by decreasing the degree of A into 0.1 and increas-
ing the degree of B into 0.9. Therefore, in FAF, the change of initial degree of
arguments or attack relation also changes the system. In addition, if we take a
further examination of this patient, we have that patient suffers from cardiac
failure. We then change the systems by adding the fuzzy argument ‘the patient’s
chest tightness may be caused by cardiac failure’.

The dynamics of FAFs in this paper are shown as following:

1. adding arguments that interact with the previous FAF.
2. deleting arguments from the previous FAF.
3. adding attack relation which does not appear in the previous FAF.
4. deleting attack relation from the previous FAF.
5. increasing the initial belief degree of arguments.
6. decreasing the initial belief degree of arguments.
7. increasing the initial belief degree of attack relation.
8. decreasing the initial belief degree of attack relation.

Next, when a fuzzy argumentation system is changed by these above cases,
we obtain an updated FAFs. Then, the main task is to find the belief degree
to which arguments are justified. Thus, to cope with the semantics of updated
FAFs, we extend Liao’s division-based approach. By extending Liao’s theory, we
can compute the complete, preferred and grounded semantics which partially
reuses the extensions computed in the previous FAF.

3 Preliminaries

Our work is based on Gödel fuzzy argumentation frameworks [15]. Let’s first
review the notions of fuzzy set and GFAFs.

3.1 Fuzzy Set Theory

We only show some notions of fuzzy set theory [16] that appear in this paper.
Let X be a nonempty set. A fuzzy set (X,S) is determined by its membership

function S: X → [0, 1], such that for each x ∈ X the value S(x) is interpreted
as the grade of membership of x within X. Given some constant set X, we may
denote a fuzzy set (X,S) as S for convenience. A crisp set S′ is a classical set,
namely for any x ∈ X, S′(x) = 0 or S′(x) = 1.
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A fuzzy set S is contained in another fuzzy set S
′
, if ∀x ∈ X, S(x) ≤ S

′
(x),

which is denoted by S ⊆ S
′
.

A fuzzy set S is called a fuzzy point if its support is a single point x ∈ X,
and is denoted by (x, S(x)). We denote all the support of S as Supp(S), where
Supp(S) = {x | S(x) �= 0}.

A fuzzy point (x, S(x)) is contained in a fuzzy set S if it is a subset of S.
The t-norm is a binary operator on [0, 1]. In this paper, we focus on Gödel

t-norm. Gödel t-norm T : [0, 1] × [0, 1] → [0, 1] such that ∀x, y ∈ [0, 1], T (x, y) =
min{x, y}. For simplify, in this paper, we denote ∗ as Gödel t-norm, namely for
any x, y ∈ [0, 1], x ∗ y = T (x, y) = min{x, y}.

3.2 Gödel Fuzzy Argumentation Frameworks

In this paper, an FAF consists of fuzzy arguments and fuzzy attack relation
between the arguments, and Gödel FAF specializes it using Gödel t-norm.

Definition 1. A fuzzy argumentation framework is a tuple 〈A, ρ〉 where A :
Args → (0, 1] and ρ : Args × Args → (0, 1] are total functions. We refer to A
as a fuzzy set of arguments, and ρ as a fuzzy set of attacks, while Args is a crisp
set of arguments.

From [15], we call the elements in A as fuzzy arguments and the elements
in ρ as fuzzy attack. We refer to an FAF using the Gödel t-norm as a GFAF.
It is notable that Gödel t-norm is just a composition operator to combine fuzzy
arguments and fuzzy attack relation. The FAFs explored in this paper all are
GFAFs, and for simplify, we briefly denote GFAF as FAF.

An important distinction between the FAFs and AFs is that the attack rela-
tion may have no influence on the choice of acceptable arguments in FAF. We
borrow the notions of sufficient attack and tolerable attack from [15].

Definition 2. Given two arguments (A, a) and (B, b) as well as a fuzzy attack
relation ((A,B), ρ

AB
), if a ∗ ρ

AB
+ b ≤ 1, then the attack is tolerable, otherwise

it is sufficient.

A sufficient attack weakens the attacked argument. If (A, a) sufficiently
attacks (B, b), then (B, b) is weakened to (B, b′) by (A, a), where b′ = 1−a∗ρ

AB
.

We provide the definition of weakening defend.

Definition 3. Given an FAF = 〈A, ρ〉, a fuzzy set S ⊆ A weakening defends a
fuzzy argument (C, c) in A if for any (B, b) ∈ A there is some (A, a) ∈ S such
that (A, a) weakens (B, b) to (B, b

′
) and (B, b

′
) tolerably attacks (C, c).

We provide an alternate definition of weakening defend.

Definition 4. Given an FAF = (A, ρ), a fuzzy set S ∈ A weakening defends a
fuzzy argument (A, a) ∈ A if for any (B, b) sufficiently attacks (A, a) there exists
(C, c) ∈ S such that c ∗ ρ

CB
= a. Namely there exists (C, c) weakens (B, b) to

(B, 1 − a) and the attack relation from (B, 1 − a) to (A, a) is clearly tolerable.
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It is notable that if the attack relation from A to B is always tolerable, namely
A(A)∗ρ

AB
+A(B) ≤ 1, then the attack relation has no influence in this system.

Thus, for simplify, we don’t show this attack relation in this paper.
We list the extensions semantics in GFAFs as follows.

Definition 5. Given a GFAF = 〈A, ρ〉 and S ⊆ A.
S is a conflict-free set if all attacks between the arguments in S are tolerable.
A conflict-free set S is an admissible extension if S weakening defends each ele-
ment in S.
A conflict-free set S is a complete extension if it contains all the fuzzy arguments
in A that S weakening defends.
An admissible extension is a preferred extension if it is maximal.
A complete extension is a grounded extension if it is minimal.
A conflict-free set is stable if it sufficiently attacks every element in A not in E.

In GFAFs, the grounded extension is unique and it is the least complete
extension. The stable extensions coincide with the preferred extensions.

4 Dynamics of Fuzzy Argumentation Frameworks

In this section, we give the definition of change in FAFs. The notion of change
is cited from [4], we introduce all the changes in FAFs. In [4,13], I denoted the
interactions between arguments under the context of change. I represents the
changed attack relation. For simplicity, we provide the notion of I in FAFs.

– IAr1:Ar2 is the set of interactions related to Ar2 and of the form ((A,B), ρ
AB

),
((B,A), ρ

BA
), or ((B,B′), ρ

BB′ ), in which A ∈ Ar1 and B,B′ ∈ Ar2.
– IAr is a set of interactions between the arguments in Ar, and of the form

((A,A′), ρ
AA′ ), in which A,A′ ∈ Ar.

– I(Ar1,Ar2) is the set of interactions from the arguments in Ar1 to the argu-
ments in Ar2, and of the form ((A,B), ρ

AB
), in which A ∈ Ar1 and B ∈ Ar2.

Analogously, we define a form of a set of fuzzy attack relation within FAF:

– ρAr is a set of attack relation between the arguments in Ar, and of the form
((A,A′), ρ

AA′ ), in which A,A′ ∈ Ar.
– ρ(Ar1,Ar2) is the set of attack relation from the arguments in Ar1 to the

arguments in Ar2, and of the form ((A,B), ρ
AB

), in which A ∈ Ar1 and
B ∈ Ar2.

Definition 6. Given an FAF = 〈A, ρ〉 and Supp(A) = Ar1.

1. adding a set of fuzzy attack relation I
Ar1

(for any (A,B) ∈ Supp(I
Ar1

),
I

Ar1
(A,B) > ρ(A,B) = 0) is a change which is defined by:

〈A, ρ〉 ⊕ I
Ar1

= 〈A, ρ ∪ I
Ar1

〉.
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2. removing a set of fuzzy attack relation I
Ar1

⊆ ρ (for any (A,B) ∈ Supp(I
Ar1

),
I

Ar1
(A,B) = ρ(A,B)) from FAF is a change which is defined by:

〈A, ρ〉  I
Ar1

= 〈A, ρ − I
Ar1

〉.
3. adding a set of fuzzy arguments B (Supp(B) = Ar2 and Ar1 ∩Ar2 = ∅) which

interacts with FAF is a change which is defined by:

〈A, ρ〉 ⊕ 〈B, I
Ar1:Ar2

〉 = 〈A ∪ B, ρ ∪ I
Ar1:Ar2

〉.
4. removing arguments B ⊆ A (Supp(B) = Ar2 and ∀A ∈ Ar2, B(A) = A(A))

from FAF is a change which is defined by:

〈A, ρ〉  〈B, I
Ar1:Ar2

〉 = 〈A − B, ρ − I
Ar1:Ar2

〉.
5. increasing the initial belief degree of arguments, for simplify, we only increase

the initial degree of an argument. We increase the initial degree of A into a,
namely we use (A, a) replaces (A,A(A)) and a > A(A), it is a change which
is defined by:

〈A, ρ〉 ⊕ (A, a) = 〈A ∪ (A, a), ρ〉.
6. decreasing the initial belief degree of arguments, for simplify, we only decrease

the initial degree of an argument, we first decrease the initial degree of A into
0, and the we increase the degree of A into a, namely, we use (A, a) replaces
(A,A(A)) and a < A(A), it is a change which is defined by:

〈A, ρ〉  (A, a) = 〈(A − (A,A(A))) ∪ (A, a), ρ〉.
7. increasing the initial belief degree of attack relation, for simplify, we increase

the initial degree of an attack relation. We increase the initial degree of (A,B)
into ρ′(A,B), namely we use ((A,B), ρ′(A,B)) replaces ((A,B), ρ(A,B)) and
ρ′(A,B) > ρ(A,B), it is a change which is defined by:

〈A, ρ〉 ⊕ ((A,B), ρ′(A,B)) = 〈A, ρ ∪ ((A,B), ρ′(A,B))〉.
8. decreasing the initial belief degree of attack relation, for simplify, we only

decrease the initial degree of an argument, we first decrease the initial degree of
(A,B) into 0, and then we increase the degree of (A,B) into ρ′(A,B), namely,
we use ((A,B), ρ′(A,B)) replaces ((A,B), ρ(A,B)) and ρ′(A,B) < ρ(A,B),
it is a change which is defined by:

〈A, ρ〉  ((A,B), ρ′(A,B)) = 〈A, (ρ − ((A,B), ρ(A,B))) ∪ ((A,B), ρ′(A,B))〉.
Although we only increase the initial degree of an argument in (5)–(8), the

case of multiple arguments can be done by iteratively applying the formalism of
(5)–(8).

Next, we will define the dynamics of FAFs. Obviously, all the changes in
Definition 6 are dynamics of FAFs. Additionally, the arbitrary combinations of
1–8 are also the dynamics of FAF. We introduce the dynamics of FAF when
combined with an addition of FAF.
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Definition 7. Let FAF = 〈A, ρ〉, where A : Ar1 → (0, 1] and ρ : Ar1 × Ar1 →
(0, 1] are total functions. An addition of FAF is represented as a tuple (B, I

Ar1
∪

I
Ar1:Ar2

), in which B is a set of fuzzy arguments to be added and Ar2 = Supp(B),
I

Ar1
∪ I

Ar1:Ar2
is a set of fuzzy attacks to be added.

In the above definition, we have some explanations about the addition of
FAF. As far as the addition of fuzzy arguments B is considered, for each fuzzy
argument (A, a) ∈ B, there are two cases:

– A /∈ Ar1, then it coincides with the case 3 in Definition 6;
– A ∈ Ar1, but B(A) > A(A), then it coincides with the case 5 in Definition 6.

For each attack relation (A,B) ∈ Supp(I
Ar1

) ∪ Supp(I
Ar1:Ar2

), there are also
two cases:

– (A,B) ∈ Supp(I
Ar1:Ar2

)\Supp(I
Ar1

), then it coincides with the case 1 in
Definition 6;

– (A,B) ∈ Supp(I
Ar1

), but ρ(A,B) < I
Ar1

(A,B), then it coincides with the
case 7 in Definition 6.

From the above definition, an updated FAF with respect to an addition FAF
is defined as follows:

Definition 8. Let FAF = 〈A, ρ〉, where A : Ar1 → (0, 1] and ρ : Ar1 × Ar1 →
(0, 1] are total functions. Let (B, I

Ar1
∪ I

Ar1:Ar2
) be an addition. The updated

FAF w.r.t. (B, I
Ar1

∪ I
Ar1:Ar2

) is represented as follows:

〈A⊕, ρ⊕〉 = 〈A, ρ〉 ⊕ (B, I
Ar1

∪ I
Ar1:Ar2

) =def 〈A ∪ B, ρ ∪ I
Ar1

∪ I
Ar1:Ar2

〉

Fig. 1. An example of updated FAF w.r.t. an addition of FAF (Example 1)

We provide an example to illustrate the above definition.

Example 1. Let FAF = 〈{(A, 0.8), (B, 0.6)}, {((A,B), 0.6), ((B,A), 0.7)}〉.
Suppose (B, I

Ar1
∪I

Ar1:Ar2
) be an addition, in which B = {(B, 0.9), (C, 0.8)} and

I
Ar1

∪ I
Ar1:Ar2

= {(A,B), 0.9), ((B,C), 0.7)}. In Fig. 1, the arrows and nodes in
red represent changed arguments and attack relation. Then we obtain an updated
FAF 〈A ∪ B, ρ ∪ I

Ar1
∪ I

Ar1:Ar2
〉 = 〈{(A, 0.8), (B, 0.9), (C, 0.8)}, {((A,B), 0.9),

((B,A), 0.7), ((B,C), 0.7)}〉.
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5 The Argumentation Semantics of Dynamic Fuzzy
Argumentation Frameworks

In this section, we will extend the division-based approach in [13] to the dynamics
of FAFs. In this paper, we only consider the efficient algorithms for calculating
the complete, grounded and preferred semantics.

5.1 The Directionality Principle in FAFs

The division-based approach in [13] is based on the directionality principle, and
thus we first extend the directionality principle into FAFs.

The notion of directionality principle is first provided in [1]. Intuitively, under
Dung’s AF, the justification status of an argument A is only depended on the
status of the defeaters of the argument A (which in turn are affected by their
defeaters and so on), while the arguments which only receive an attack from A
(and in turn those which are attacked by them and so on) should not have any
effect on the status of A. Then Baroni et al. extended the directionality principle
by considering the unattacked set which doesn’t receive attacks from outside.
Here, we extend the directionality principle to FAFs. In FAFs, the belief degree
of each argument is only depended on the belief degrees of attackers (which in
turn are affected by their defeaters and so on).

Definition 9. Given an FAF = (A, ρ), a fuzzy set U ∈ A is unattacked if and
only if there exists no A /∈ Supp(U), B ∈ Supp(U) such that (A,B) ∈ Supp(ρ).
The set of unattacked sets of FAF is denoted as US(FAF ).

We also provide the notion of restricted FAF. Let FAF = 〈A, ρ〉. The restric-
tion of FAF to S ⊆ A is FAF ↓S= 〈S, ρ

S
〉. The directionality criterion can then

be defined, the semantics extensions of an unattacked set are not affected by the
remaining parts of the FAF.

Definition 10. A semantics S satisfies the directionality principle if and only
if for any FAF, ∀U ∈ US(FAF ):

AES(FAF,U) = ES(FAF ↓U ) where AES(FAF,U) = {E ∩ U | E ∈ ES(FAF )}

Similar to Dung’s AF, the complete, grounded and preferred semantics satisfy
the directionality principle in FAF. This is because ∀E ∈ AECO(FAF,U), there
exists no fuzzy argument in E is sufficiently attacked by the fuzzy argument
outside the unattacked set.

5.2 The Basic Theory of the Division-Based Approach in FAF

According to the definition of directionality principle, under a certain argumen-
tation semantics S ∈ {CO,PR,GR}, the justified belief degree of argument is
only affected by its attacker. Thus, as for a certain semantics that is based on the
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directionality principle, if an argument is not affected by the newly added argu-
ment and attack relation, then its justified degree will not change. Therefore,
analogous to Liao’s division-based theory in standard AF, in the updated FAF,
we should identify the unaffected part and the affected part w.r.t. the changed
arguments and attack relation. As far as the unaffected part of the updated FAF
is concerned, its semantics can be conserved to calculate the semantics of the
updated FAF. Thus, the complexity of computing the semantics of the dynam-
ics of FAF might be decreased. Next, we should consider how to calculate the
semantics of the affected part. We will Liao’s approach by extending the notion
of the conditioned part of the updated FAF to handle the problem. Finally, we
combined these two parts of semantics and prove the soundness and complete-
ness of the combined semantics. To cope with these problems, we extend the
Liao’s theory to FAF in the following section.

5.3 Conditioned Fuzzy Argumentation Frameworks

In order to handle the semantics of the updated FAFs, we extend the division-
based approach to FAFs. Firstly, we restate the definition of conditioned FAF.

Definition 11. Given a fuzzy argumentation framework FAF1 = 〈A1, ρ1〉, a
conditioned fuzzy argumentation framework w.r.t. FAF1 is a tuple

CFAF = (〈A2, ρ2〉, (C(A1), ρ(C(Ar1),Ar2)))

in which

– Ar1 = Supp(A1), Ar2 = Supp(A2) and C(Ar1) = Supp(C(A1));
– 〈A2, ρ2〉 is an FAF that is conditioned by C(A1), in which A1 ∩ A2 = ∅;
– C(A1) ⊆ A1 is a nonempty set of fuzzy arguments (called conditioning argu-

ments) that attacks the fuzzy arguments in A2, i.e., ∀A ∈ C(Ar1), ∃B ∈ Ar2,
s.t. (A,B) ∈ Supp(ρ(C(Ar1),Ar2)).

Since 〈A1, ρ1〉 is an FAF that independent of 〈A2, ρ2〉, we can obtain the rea-
sonable set of FAF 1, i.e., the semantics extensions of FAF 1 is directly obtained
by the corresponding criterion. Given a specific extension E ∈ ES(FAF1),
C(A1)[E] is also called a condition of 〈A2, ρ2〉 under the reasonable extension E
of FAF 1. CFAF[E] = (〈A2, ρ2〉, (C(A1)[E], ρ(C(Ar1),Ar2))) is called an assigned
CFAF. The semantics of an assigned CFAF are related to the semantics of con-
ditioning arguments, which are defined as follows:

Definition 12. Let CFAF [E1] = (〈A2, ρ2〉, (C(A1)[E1], ρ(C(Ar1),Ar2))) be an
assigned CFAF w.r.t. FAF1 = 〈A1, ρ1〉, in which E1 ∈ ES(FAF1), S ∈
{CO,PR, GR}.
– A set E ∈ A2 of fuzzy arguments is conflict-free if and only if there exists no

(A, a), (B, b) ∈ E s.t. (A, a) sufficiently attacks (B, b) w.r.t. ρ2.
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– A fuzzy argument (A, a) ∈ A2 is weakening defended by a set E ∈ A2 of
fuzzy arguments under the condition C(A1)[E1] if and only if the following
two conditions hold:

• ∀(B, b) ∈ A2, if (B, b) sufficiently attacks (A, a), then ∃(C, c) ∈ E s.t.
c ∗ ρ

CB
= a, or ∃(D, d) ∈ C(A1), s.t. (D, d) is weakening defended by E1

and d ∗ ρ
DB

= a;
• ∀(B, b) ∈ C(A1), if (B, b) sufficiently attacks (A, a), then ∃(C, c) ∈ E1

s.t. c ∗ ρ
CB

= a.
– A conflict-free set E is admissible if and only if each argument in E is weak-

ening defended by E under the condition C(A1)[E1].

Definition 13. Let CFAF[E1] = (〈A2, ρ2〉, (C(A1)[E1], ρ(C(Ar1),Ar2))) be an
assigned CFAF w.r.t. FAF1 = 〈A1, ρ1〉, in which E1 ∈ ES(FAF1), S ∈
{CO,PR, GR}. Let E ⊆ A2 be an admissible set of fuzzy arguments.

– E is a preferred extension if and only if E is a maximal (w.r.t. set-inclusion)
admissible set of fuzzy arguments.

– E is a complete extension if and only if each argument that is weakening
defended by E under the condition C(A1)[E1] is in E.

– E is a grounded extension if and only if E is the minimal (w.r.t. set-inclusion)
complete extension.

– E is ideal if and only if E is admissible and it is contained in every pre-
ferred set of fuzzy arguments. The ideal extension is the maximal (w.r.t. set-
inclusion) ideal set.

5.4 The Division of Updated Fuzzy Argumentation Framework

The division of an FAF is based on the directionality principle of argumentation
semantics. Notably, in this paper, if the attack relation has no influence in the
FAF, i.e., the attack relation is always tolerable, then we will not show this attack
relation. This can help us simplify the FAF. Given an FAF = 〈A, ρ〉, for each
pair arguments A,B ∈ Ar, if the attack relation from A to B is valid, i.e., A has
influence on B, then we denote B is affected by A. Otherwise, B is independent
of A. Based on this idea, the notion of reachability, as well as the notions of
affected and unaffected between two arguments can be defined as follows:

Definition 14. Let FAF = 〈A, ρ〉, where Supp(A) = Ar. The reachability of
two arguments A,B ∈ Ar w.r.t ρ is recursively defined as follows:

– If there exists (A,B) ∈ Supp(ρ), then B is reachable from A;
– If C is reachable from A, and B is reachable from C, then B is reachable from

A.

Definition 15. Let A,B ∈ Ar, and ρAr be a set of fuzzy attacks within Ar.
We say that under the semantics that satisfies the directionality principle, B is
affected by A, iff B is reachable from A w.r.t. ρAr. Otherwise, B is unaffected by
A w.r.t ρAr. In addition, B is affected by I, iff B is reachable from an argument
w.r.t. I.
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Example 2. Given an FAF with arguments A, B and C:
FAF = ({(A, 0.6), (B, 0.7), (C, 0.8)}, {((A,B), 0.8), ((B,C), 0.6)}).
Here, from that (A, 0.6) sufficiently attacks (B, 0.7) and (B, 0.7) sufficiently
attacks (C, 0.8), we have that B is reachable from A and C is reachable from
B. Hence, C is reachable from A. From Definition 15, C is affected by A and B.

From the above definition, when an addition of FAF 〈B, I
Ar1

∪ I
Ar1:Ar2

〉 is
added to an FAF 〈A, ρ〉, we can identify the subset of A which is affected by B
or I

Ar1
∪ I

Ar1:Ar2
. The initial FAF will be divided into three parts:

– a component of A that is affected by (B, I
Ar1

∪ I
Ar1:Ar2

);
– a component of A that is unaffected by (B, I

Ar1
∪ I

Ar1:Ar2
);

– a subset of the unaffected component that conditions the affected components.

Therefore, we are ready to define the notion of the division of an updated FAF.
Formally, we can provide the division of an updated FAF w.r.t. an addition
(B, I

Ar1
∪ I

Ar1:Ar2
).

Definition 16. Let FAF = 〈A, ρ〉, and Supp(A) = Ar1. Suppose (B, IAr1:Ar2 ∪
IAr1) be an addition to the FAF . The updated FAF 〈A⊕, ρ⊕〉 is divided into three
parts: 〈A⊕

a , ρ⊕
a 〉, 〈A⊕

u , ρ⊕
u 〉, (A⊕

c , ρ⊕
c ) where a, u and c stand for, respectively,

affected, unaffected and conditioning.
A⊕

a = {(A,A⊕(A)) | A ∈ Supp(B) or A is affected by IAr1 ∪ IAr1:Ar2 or A is
affected by an argument C ∈ Supp(A⊕

a ) w.r.t. ρ⊕}
A⊕

u = A⊕ − A⊕
a

A⊕
c = {(A,A⊕(A)) ∈ A⊕

u | ∃B ∈ Supp(Aa) s.t. (A,B) ∈ Supp(ρ⊕) w.r.t. ρ⊕}
ρ⊕
a = ρ⊕ ∩ ρSupp(A⊕

a )

ρ⊕
u = ρ⊕ ∩ ρSupp(A⊕

u )

ρ⊕
c = ρ⊕ ∩ ρ(Supp(A⊕

c ),Supp(A⊕
a ))

From this definition, for a given updated FAF 〈A⊕, ρ⊕〉, A⊕
u coincides with

the arguments that are unaffected by (B, I
Ar1

∪I
Ar1:Ar2

), A⊕
a coincides with the

arguments that are affected by (B, I
Ar1

∪I
Ar1:Ar2

) as well as the fuzzy arguments
in B, A⊕

c coincides with the fuzzy arguments in A⊕
u that condition A⊕

a .
After we have the division of the updated FAF, the next step is to construct

two sub-frameworks of the updated FAF 〈A⊕, ρ⊕〉: the unaffected FAF and the
affected FAF under the condition. The unaffected FAF is 〈A⊕

u , ρ⊕
u 〉. And the con-

ditioned FAF w.r.t. 〈A⊕
u , ρ⊕

u 〉 is constructed according to 〈A⊕
a , ρ⊕

a 〉 and (A⊕
c , ρ⊕

c )
as follows:

CFAF = (〈A⊕
a , ρ⊕

a 〉, (A⊕
c , ρ⊕

c ))

From the Definition 16, we have A⊕
c ∩A⊕

a = ∅, A⊕
c ⊆ A⊕

u and ρ⊕
c ⊆ ρ(A⊕

c ,A⊕
a ).

Namely, it satisfies the definition of condition.

Example 3. Let FAF = 〈A, ρ〉, in which A = {(A, 0.8), (B, 0.7), (C, 0.7),
(D, 0.6), (E, 0.8), (F, 0.6), (G, 0.7)} and ρ = {((A,B), 0.8), ((A,C), 0.7),
((C,D), 0.6), ((C,F ), 0.6), ((B,D), 0.9), ((D,E), 0.9), ((E,D), 0.7), ((F,G), 0.7)}.
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Fig. 2. An example of the division of a fuzzy argumentation framework (Example 3)

Let (B, IAr1:Ar2 ∪ IAr1) be an addition FAF, in which B = {(D, 0.9), (H, 0.6)},
Ar1 = Supp(A), Ar2 = Supp(B), and IAr1:Ar2 ∪ IAr1 = {((C,F ), 0.9),
((H,B), 0.7)}. The updated FAF is 〈A ∪ B, ρ ∪ I

Ar1
∪ I

Ar1:Ar2
〉, in this example,

the division of the updated FAF is showed as follows:

– 〈A⊕
a , ρ⊕

a 〉 = 〈{(B, 0.7), (D, 0.9), (E, 0.8), (F, 0.6), (G, 0.7), (H, 0.6)}, {((B,D),
0.9), ((D,E), 0.9), ((E,D), 0.7), ((F,G), 0.7), ((H,B), 0.7)}〉;

– 〈A⊕
u , ρ⊕

u 〉 = 〈{(A, 0.8), (C, 0.7)}, {((A,C).0.7)}〉;
– (A⊕

c , ρ⊕
c ) = ({(A, 0.8), (C, 0.7)}, {((A,B), 0.8), ((C,D), 0.6), ((C,F ), 0.9).

CFAF = (〈A⊕
a , ρ⊕

a 〉, (A⊕
c , ρ⊕

c )). In this example, it is obvious that 〈A⊕, ρ⊕〉 is
equal to the combination of 〈A⊕

u , ρ⊕
u 〉 and CFAF.

5.5 Computing the Semantics of an Updated Argumentation
Framework Based on the Division

Under semantics S ∈ {CO,PR,GR}, based on the extensions of the two kinds
of sub-frameworks, we will compute the extensions of 〈A⊕, ρ⊕〉 by combining
ES(〈A⊕

u , ρ⊕
u 〉) and ES(CFAF[E]), in which E ∈ ES(〈A⊕

u , ρ⊕
u 〉).

Definition 17. Let 〈A⊕
u , ρ⊕

u 〉 be the unaffected sub-framework of FAF = 〈A, ρ〉
w.r.t an addition (B, I

Ar1
∪ I

Ar1:Ar2
), ES〈A⊕

u , ρ⊕
u 〉 be the set of extensions of

〈A⊕
u , ρ⊕

u 〉, and CFAF[E1] = (〈A⊕
a , ρ⊕

a 〉, (A⊕
c [E1], ρ⊕

c )) be an assigned conditioned
sub-framework w.r.t. E1 ∈ ES〈A⊕

u , ρ⊕
u 〉. The result of combining ES〈A⊕

u , ρ⊕
u 〉 and

ES(CFAF[E1]), ∀E1 ∈ ES〈A⊕
u , ρ⊕

u 〉, to form the set of combined extensions of
(〈A⊕, ρ⊕〉), denoted as CombExtS(〈A⊕, ρ⊕〉), is defined as follows:

CombExtS(〈A⊕, ρ⊕〉) = {E1 ∪ E2 | E1 ∈ ES(〈A⊕
u , ρ⊕

u 〉) ∧ E2 ∈ ES(CFAF[E1])}

Next, we will prove that under each semantic S ∈ {CO,PR,GR}, the exten-
sion of an updated FAF 〈A⊕, ρ⊕〉) coincides with the CombExtS(〈A⊕, ρ⊕〉).
Before the important theorem, we first figure out the relationship between a
complete extension of an updated FAF and a complete extension of an assigned
conditioned sub-framework of it. We have the following lemma:
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Lemma 1. For all E ∈ ECO(〈A⊕, ρ⊕〉), it holds that E ∩A⊕
a ∈ ECO(CFAF[E1]),

in which E1 = E ∩ A⊕
u .

Proof. Since complete semantics satisfies the directionality criterion, and A⊕
u is

an unattacked set, according to Definition 12, it holds that E1 = E ∩ A⊕
u ∈

ECO(〈A⊕
u , ρ⊕

u 〉). According to the definition of assigned CFAF, it can be con-
cluded that E ∩ A⊕

a ⊆ A⊕
a and E ∩ A⊕

a is conflict-free. In order to prove that
E∩A⊕

a is a complete extension of CFAF[E1], we only need to verify the following
two points:

– Every fuzzy argument in E ∩A⊕
a is weakening defended by E ∩A⊕

a under the
condition C(A⊕

u )[E1], which is proved as follows:

Since every fuzzy argument in E ∩ A⊕
a ∈ E is weakening defended by E, it

holds that ∀(A, a) ∈ E ∩ A⊕
a ⊆ A⊕

a , if (B, b) sufficiently attacks (A, a), then
there exists (C, c) in E s.t. c ∗ ρ

CB
= a. From the definition of A⊕

a , (A, a) is
only attacked by the fuzzy argument in A⊕

a and A⊕
c . So, we have the following

two cases:
(i) If (B, b) ∈ A⊕

a , then (B, b) is attacked by A⊕
c or A⊕

a . It holds that ∃(C, c)
in E ∩A⊕

c s.t. c∗ρ
CB

= a or in E ∩A⊕
a s.t. c∗ρ

CB
= a (satisfying the first

condition of weakening defense of fuzzy arguments in an assigned CFAF,
in Definition 12).

(ii) If (B, b) ∈ A⊕
c , since the fuzzy argument in A⊕

c is only attacked by the
fuzzy argument in A⊕

u , we have that ∃(C, c) ∈ E∩A⊕
u = E1 s.t. c∗ρ

CB
= a

(satisfying the second condition of weakening defense of fuzzy arguments
in an assigned CFAF, in Definition 12).

– Every fuzzy argument which is weakening defended by E ∩ A⊕
a under the

condition C(A⊕
u )[E1] is in E ∩ A⊕

a , which is proved as follows:
Since (A, a) in A⊕

a is attacked by A⊕
c or A⊕

a , when (A, a) is weakening
defended by E ∩ A⊕

a under the condition C(A⊕
u )[E1], we have the follow-

ing two cases:
(i) If (B, b) in A⊕

a sufficiently attacks (A, a), then according to the first con-
dition of weakening defense of fuzzy arguments in Definition 12, there
exists (C, c) ∈ E ∩ A⊕

a ⊆ E s.t. c ∗ ρ
CB

= a or (D, d) ∈ E1 ∩ A⊕
c ⊆ E s.t.

d ∗ ρ
DB

= a.
(ii) If (B, b) in A⊕

c sufficiently attacks (A, a), then according to the second
condition of weakening defense of fuzzy arguments in Definition 12, there
exists (C, c) ∈ E1 ⊆ E s.t. c ∗ ρ

CB
= a.

Consequently, for any (B, b) sufficiently attacks (A, a), there exists (C, c) in
E s.t. c ∗ ρ

CB
= a. Therefore, (A, a) is weakening defended by E. According

to the definition of complete extension, every fuzzy argument in A⊕
a ⊆ A⊕

that is weakening defended by E is in E, it holds that (A, a) ∈ E. Since
(A, a) /∈ E1, it holds that (A, a) ∈ E ∩ A⊕

a .

Thus for all E ∈ ECO(〈A⊕, ρ⊕〉), it holds that E ∩ A⊕
a ∈ ECO(CFAF[E1]), in

which E1 = E ∩ A⊕
u . ��
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Based on the Lemma 1, we first show that the combined extensions are
semantics extensions of the updated FAF. The result is formulated in the fol-
lowing theorem.

Theorem 1. Under each argumentation semantics S ∈ {CO,PR,GR}, ∀E ∈
CombExtS(〈A⊕, ρ⊕〉), it holds that E ∈ ES(〈A⊕, ρ⊕〉), in which E = E1 ∪ E2,
an extension by combining E1 ∈ ES(〈A⊕

u , ρ⊕
u 〉) and E2 ∈ ES(CFAF [E1]).

Proof. Under complete semantics, let E = E1 ∪ E2, where E1 ∈ ECO(〈A⊕
u , ρ⊕

u 〉)
and E2 ∈ ECO(CFAF[E1]). In order to prove that E is a complete extension of
〈A⊕, ρ⊕〉, we need proof that: (1) E is conflict-free; (2) every fuzzy argument
in E is weakening defended by E; (3) every fuzzy argument which is weakening
defended by E is in E.

(1) First of all, E1 and E2 include no conflict which is entailed by the hypothesis
E1 ∈ ECO(〈A⊕

u , ρ⊕
u 〉) and E2 ∈ ECO(CFAF[E1]). In addition, ∀(A, a) ∈ E1 ⊆

A⊕
a , ∀(B, b) ∈ E2 ⊆ A⊕

u , it holds that (B, b) does not sufficiently attack
(A, a), for the reason that A⊕

u is unaffected, and it also holds that (A, a)
does not sufficiently attack (B, b). Otherwise, (B, b) is sufficiently attacked
by a conditioning fuzzy argument that is accepted w.r.t. E1. According to the
second condition of acceptability of arguments in an assigned CFAF, (B, b)
is not acceptable w.r.t. E2 under the condition C(A⊕

u )[E1], i.e., (B, b) /∈ E2,
contradicting (B, b) ∈ E2. Thus E is conflict-free.

(2) We need prove that for any (A, a) ∈ E, if (B, b) sufficiently attacks (A, a),
then there exists (C, c) ∈ E s.t. c ∗ ρ

CB
= a, namely there exist elements in

E weakening defends (A, a).
For any (A, a) ∈ E, there are two possible cases: (A, a) ∈ E1 or (A, a) ∈ E2.

(i) If (A, a) ∈ E1, then (A, a) ∈ A⊕
u . Thus (A, a) is only attacked by the fuzzy

arguments in Au. Form the hypothesis E1 ∈ ECO(〈A⊕
u , ρ⊕

u 〉), (A, a) is weak-
ening defended by E1 in 〈A⊕

u , ρ⊕
u 〉. Therefore E weakening defends (A, a).

(ii) If (A, a) ∈ E2, then (A, a) ∈ A⊕
a and (A, a) is weakening defended by E2

under the condition C(A⊕
u )[E1] in CFAF [E1]. If (B, b) sufficiently attacks

(A, a), then (B, b) ∈ A⊕
a or (B, b) ∈ C[A⊕

u ]. Since (A, a) is weakening
defended by E2 under the condition C(A⊕

u )[E1] in CFAF[E1], it holds that:

(a) if (B, b) ∈ C(A⊕
u ), then from Definition 12, ∃(C, c) ∈ E1 s.t. c ∗ ρ

CB
= a.

Namely there exist elements in E weakening defends (A, a).
(b) if (B, b) ∈ A⊕

a , then from Definition 12, ∃(C, c) ∈ E s.t. c ∗ ρ
CB

= a, or
∃(D, d) ∈ C(A1), s.t. (D, d) is weakening defended by E1 and d ∗ ρ

DB
= a.

Since E1 is a complete extension, (D, d) ∈ E1. Thus there exist elements in
E weakening defends (A, a).

From (i) and (ii), it can be concluded that E weakening defends all the fuzzy
arguments in E.

(3) We assume that ∃(A, a) ∈ A⊕ s.t. (A, a) is weakening defended by E, but
(A, a) /∈ E.
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(i) If (A, a) ∈ A⊕
u , then (A, a) is only attacked by the fuzzy arguments in A⊕

u .
Since (A, a) is weakening defended by E, we have that for any (B, b) ∈ Au

sufficiently attacks (A, a), there exists (C, c) ∈ E s.t. c ∗ ρ
CB

= a. From
that the fuzzy arguments in A⊕

u are only attacked by the fuzzy arguments in
A⊕

u , we have that (C, c) ∈ A⊕
u ∩ E = E1. Thus (A, a) is weakening defended

by E1. According to that E1 is a complete extension of 〈A⊕
u , ρ⊕

u 〉, it can be
concluded that (A, a) ∈ E1. But (A, a) /∈ E. Thus it holds that (A, a) /∈ E1.
Contradiction!

(ii) If (A, a) ∈ A⊕
a , then (A, a) is only attacked by the fuzzy arguments in A⊕

a

or C(A⊕
u ). Since (A, a) is weakening defended by E, it holds that:

(a) If (A, a) is sufficiently attacked by a fuzzy argument (B, b) in A⊕
a , then there

exists (C, c) ∈ E s.t. c ∗ ρ
CB

= a. It is obvious that (C, c) ∈ E1 or E2. Thus,
if (B, b) sufficiently attacks (A, a), then ∃(C, c) ∈ E2 s.t. c ∗ ρ

CB
= a, or

∃(D, d) ∈ C(A⊕
u ), s.t. (D, d) is weakening defended by E1 and d ∗ ρ

DB
= a

(satisfying the first condition of weakening defense of fuzzy arguments in
Definition 12).

(b) If (A, a) is sufficiently attacked by a fuzzy argument (B, b) in C(A⊕
u ), then

there exists (C, c) ∈ Au ∩ E = E1 s.t. c ∗ ρ
CB

= a. Thus for any (B, b) ∈
C(A⊕

u ), if (B, b) sufficiently attacks (A, a), then ∃(C, c) ∈ E1 s.t. c∗ρ
CB

= a
(satisfying the second condition of weakening defense of fuzzy arguments in
Definition 12).

Consequently, (A, a) is weakening defended by E2 under the condition
C(A⊕

u )[E1]. Since (A, a) /∈ E, it holds that (A, a) /∈ E2. Contradicting that
E2 is a complete extension of CFAF[E1].

According to (i) and (ii), we have that for any (A, a) which is weakening
defended by E is contained in E. Therefore, every fuzzy argument which is
weakening defended by E is in E.

– Under the preferred semantics, E = E1 ∪ E2 where E1 ∈ EPR(〈A⊕
u , ρ⊕

u 〉)
and E2 ∈ EPR(CFAF[E1]): since a preferred extension is also a complete
extension, we only need to prove that E is a maximal complete extension
(with respect to set inclusion) of 〈A⊕, ρ⊕〉. Assume that E is not a maximal
complete extension. Then there exists a preferred extension S of 〈A⊕, ρ⊕〉
which strictly contains E. We suppose S1 = S ∩ A⊕

u and S2 = S ∩ A⊕
a .

Then from that A⊕
a ∩ A⊕

u = ∅, we have that S1 ∩ S2 = ∅. According to the
directionality principle and the preferred semantics satisfy the directionality
principle, from that A⊕

u is an unattacked set of 〈A⊕, ρ⊕〉, we have that S1 is
a preferred extension of 〈A⊕

u , ρ⊕
u 〉. Thus if E1 � S1, then contradicting that

E1 ∈ EPR(〈A⊕
u , ρ⊕

u 〉). Therefore, E1 = S1, it follows that E2 � S2. Since
a preferred extension is also a complete extension, according to Lemma 1,
it holds that S2 is a complete extension of CFAF[E1]. Contradicting that
E2 is a preferred extension of CFAF[E1]. Consequently, we conclude that
E is a maximal complete extension (i.e., preferred extension). Hence E ∈
EPR(〈A⊕, ρ⊕〉).
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– Under grounded semantics, E = E1 ∪ E2 where E1 ∈ EGR(〈A⊕
u , ρ⊕

u 〉) and
E2 ∈ EGR(CFAF[E1]): since the grounded extension is also a complete exten-
sion, we only need to prove that E is a minimal complete extension (with
respect to set inclusion) of 〈A⊕, ρ⊕〉. Assume that E is not a minimal com-
plete extension. Then there exists a grounded extension S of 〈A⊕, ρ⊕〉 which
is strictly contained by E. We suppose S1 = S ∩ A⊕

u and S2 = S ∩ A⊕
a .

Then from that A⊕
a ∩ A⊕

u = ∅, we have that S1 ∩ S2 = ∅. According to the
directionality principle and the grounded semantics satisfy the directionality
principle, from that A⊕

u is an unattacked set of 〈A⊕, ρ⊕〉, we have that S1

is a grounded extension of 〈A⊕
u , ρ⊕

u 〉. Thus if S1 � E1, then contradicting
that E1 ∈ EGR(〈A⊕

u , ρ⊕
u 〉). Therefore, E1 = S1, it follows that S2 � E2. Since

a grounded extension is also a complete extension, according to Lemma 1,
it holds that S2 is a complete extension of CFAF[E1]. Contradicting that
E2 is a grounded extension of CFAF[E1]. As a result, we may conclude
that E is a minimal complete extension (i.e., grounded extension). Hence
E ∈ EGR(〈A⊕, ρ⊕〉). ��
According to Lemma 1, and Theorem 1, we immediately obtain Lemma 2.

Lemma 2. Under each semantics S ∈ {PR,GR}, ∀E ∈ ES(〈A⊕, ρ⊕〉), it holds
that E ∩ A⊕

a ∈ ES(CFAF[E1]), in which E1 = E ∩ A⊕
u .

Proof. From Lemma 1, under complete semantics, E ∩ A⊕
a ∈ ECO(CFAF[E1]).

As far as preferred semantics are concerned, we need to prove that E ∩ A⊕
a

is a maximal complete extension. If ∃E2 ∈ EPR(CFAF[E1]) and E ∩ A⊕
a � E2,

then it follows that E = (E ∩ A⊕
u ) ∪ (E ∩ A⊕

a ) � E1 ∪ E2. According to
the directionality principle and E1 = E ∩ A⊕

u , we have that E1 is a preferred
extension of 〈A⊕

u , ρ⊕
u 〉. From Theorem 1, we have that E1 ∪ E2 is a preferred

extension of 〈A⊕, ρ⊕〉. This contradicts to the fact that E is a preferred extension
of 〈A⊕, ρ⊕〉. Hence, E ∩ A⊕

a ∈ EPR(CFAF[E1]).
As far as grounded semantics are concerned, we need to prove that E ∩ A⊕

a

is a minimal complete extension. If ∃E2 ∈ EGR(CFAF[E1]) and E2 � E ∩ A⊕
a ,

then it follows that E1 ∪ E2 � (E ∩ A⊕
u ) ∪ (E ∩ A⊕

a ) = E. According to
the directionality principle and E1 = E ∩ A⊕

u , we have that E1 is a grounded
extension of 〈A⊕

u , ρ⊕
u 〉. From Theorem 1, we have E1∪E2 is a grounded extension

of 〈A⊕, ρ⊕〉. This contradicts to the fact that E is a grounded extension of
〈A⊕, ρ⊕〉. Hence, E ∩ A⊕

a ∈ EGR(CFAF[E1]). ��
Based on Lemmas 1 and 2, we show that the semantics extensions are the

combined extension of the updated FAF. The result is formulated in the following
theorem.

Theorem 2. Under each semantics S ∈ {CO,PR,GR}, ∀E ∈ ES(〈A⊕, ρ⊕〉), it
holds that E ∈ CombExtS(〈A⊕, ρ⊕〉).
Proof. Under each semantics S ∈ {CO,PR,GR}, ∀E ∈ ES(〈A⊕, ρ⊕〉) let E1 =
A⊕

u ∩ E, and E2 = A⊕
a ∩ E. It holds that E = E1 ∪ E2. According to Definition

10, Lemmas 1 and 2, it holds that E1 ∈ ES(〈A⊕
u , ρ⊕

u 〉) and E2 ∈ ES(CFAF[E1]).
According to Definition 17, it holds that E ∈ CombExtS(〈A⊕, ρ⊕〉). ��
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We give an example to illustrate the process of computing the extensions of
an updated FAF by the division method.

Fig. 3. The computation of semantics of an updated fuzzy argumentation framework
(Example 4)

Example 4. Let FAF = 〈A, ρ〉, in which A = {(A, 0.8), (B, 0.7), (C, 0.6),
(D, 0.6), (E, 0.8)} and ρ = {((A,B), 0.8), ((B,A), 0.7), ((B,C), 0.9), ((D,E),
0.7), ((E,D), 0.5)}. Let (B, IAr1:Ar2 ∪ IAr1) be an addition, in which B = {(C,
0.9), (F, 0.7)}, and IAr1:Ar2 ∪ IAr1 = {((A,F ), 0.7), ((C,D), 0.6), ((F,D), 0.8)}.
Then, updated FAF is 〈{(A, 0.8), (B, 0.7), (C, 0.9), (D, 0.6), (E, 0.8), (F, 0.7)},
{((A,B), 0.8), ((B,A), 0.7), ((B,C), 0.8), ((C,D), 0.6), ((D,E), 0.7), ((E,D), 0.5),
((A,F ), 0.7), ((F,D), 0.8)}〉, the division of the updated FAF is showed as follows:

– 〈A⊕
a , ρ⊕

a 〉 = 〈{(C, 0.9), (D, 0.6), (E, 0.8), (F, 0.7)}, {((F,D), 0.8), ((C,D), 0.6),
((D,E), 0.7), ((E,D), 0.5)}〉;

– 〈A⊕
u , ρ⊕

u 〉 = 〈{(A, 0.8), (B, 0.7)}, {((A,B), 0.8), ((B,A), 0.7)}〉;
– (A⊕

c , ρ⊕
c ) = ({(A, 0.8), (B, 0.7)}, {((A,F ), 0.7), ((B,C), 0.8)}).

We can obtain CFAF = (〈A⊕
a , ρ⊕

a 〉, (A⊕
c , ρ⊕

c )). For simplicity, we only discuss
the case under the preferred semantics. And we only consider the limit cases.

Under preferred semantics, EPR(〈A⊕
u , ρ⊕

u 〉) = {E ∩ A⊕
u | E ∈

EPR(〈A⊕, ρ⊕〉)}. Two limit cases are E1 = {(A, 0.8), (B, 0.2)}, E2 =
{(A, 0.3), (B, 0.7)}. Then we get two assigned CFAFs: CFAF[E1],CFAF[E2].
Next, we compute the preferred extensions of CFAF[E1] and CFAF[E2]
according to Definitions 12 and 13. For simplicity, we only show a
preferred extension Ê1 of CFAF[E1] and a preferred extension Ê2 of
CFAF[E2], where Ê1 = {(C, 0.8), (D, 0.4), (E, 0.6), (F, 0.3)} and Ê2 =
{(C, 0.3), (D, 0.3), (E, 0.7), (F, 0.7)}. Finally, we combine the semantics exten-
sions of 〈A⊕

u , ρ⊕
u 〉 and CFAF. From Theorem 1, E1 ∪ Ê1, E2 ∪ Ê2 are two

preferred extensions of the updated FAF.

5.6 The Conclusion About the Dynamics of FAF w.r.t. a Deletion
of FAF

The dynamics of FAF have been explored when attached with an addition of
FAF. In addition, from Definition 6, there exists the case of the deletion of
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FAF. Indeed, we only need to explore the case of the removing of the arguments
and attack relation. This is because the decrease of initial degree of arguments
or attack relation can be regarded as we first remove the arguments or attack
relation, and then we add the new belief degree of arguments or attack relation
to the FAF.

Since the case of deletion of FAFs is similar to the addition of FAFs, we only
list some definitions and theorems as follows and the proof procedure is omitted.
And we only provide the case of the removing of arguments and attack relation.

Definition 18. Let FAF = 〈A, ρ〉, where A : Ar1 → (0, 1] and ρ : Ar1 ×
Ar1 → (0, 1] are total functions. A deletion of FAF is represented as a tuple
(B, I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
), in which, B ⊆ A is a set of fuzzy arguments to be

removed and Supp(B) = Ar2, ∀A ∈ Ar2, B(A) = A(A), I
Ar1\Ar2

∪I
Ar1\Ar2:Ar2

is
a set of fuzzy attacks to be removed and ∀(A,B) ∈ Supp(I

Ar1\Ar2
∪I

Ar1\Ar2:Ar2
),

I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

(A,B) = ρ(A,B).

Definition 19. Let FAF = 〈A, ρ〉, in which A : Ar1 → (0, 1] and ρ : Ar1 ×
Ar1 → (0, 1] are total functions. Let (B, I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
) be a deletion.

The updated FAF w.r.t. (B, I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

) is represented as follows:

〈A, ρ〉  (B, I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

) = 〈A − B, ρ − I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

〉
From the above definition, given an updated FAF 〈A − B, ρ − I

Ar1\Ar2
∪

I
Ar1\Ar2:Ar2

〉 with a deletion of FAF (B, I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

), we can iden-
tify the subset of A which is affected by B or I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
. Therefore,

we are ready to define the concept of the division of an updated FAF. When a
deletion (B, I

Ar1\Ar2
∪I

Ar1\Ar2:Ar2
) is deleted from an FAF = 〈A, ρ〉, the updated

FAF will be divided into three parts:

– a component of A that is affected by (B, I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

);
– a component of A that is unaffected by (B, I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
);

– a subset of the unaffected component that conditions the affected components.

Formally, we can provide the definition of the division of an FAF w.r.t. an addi-
tion (B, I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
).

Definition 20. Let FAF = 〈A, ρ〉, and Supp(A) = Ar1. Suppose
(B, IAr1\Ar2:Ar2 ∪IAr1\Ar2) be a deletion to the FAF . The updated FAF
〈A�, ρ�〉 is divided into three parts: 〈A�

a , ρ�
a 〉, 〈A�

u , ρ�
u 〉, (A�

c , ρ�
c ) where a, u

and c stand for, respectively, affected, unaffected and conditioning.
A�

a = {(A,A�(A)) | A is affected by B w.r.t. IAr1\Ar2:Ar2 or A is affected by
IAr1\Ar2 or A is affected by an argument in Supp(A�

a ) w.r.t. ρ�}
A�

u = A� − A�
a

A�
c = {(A,A�(A)) ∈ A�

u | ∃B ∈ Supp(Aa) s.t. (B,A) ∈ Supp(ρ�) w.r.t. ρ�}
ρ�
a = ρ� ∩ ρSupp(A�

a )

ρ�
u = ρ� ∩ ρSupp(A�

u )

ρ�
c = ρ� ∩ ρ(Supp(A�

c ),Supp(A�
a ))
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In this definition, for a given updated FAF 〈A�, ρ�〉, A�
u coincides with the

arguments that are unaffected by (B, I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

), A�
a coincides with

the arguments that are affected by (B, I
Ar1\Ar2

∪I
Ar1\Ar2:Ar2

) A�
c coincides with

the arguments in A�
u that attack A�

a .
After we have the division of the updated FAF, the next step is to construct

two sub-frameworks of the updated FAF 〈A�, ρ�〉: the unaffected FAF and the
affected FAF under the condition. The unaffected FAF is 〈A�

u , ρ�
u 〉. And the

conditioned FAF w.r.t. 〈A�
u , ρ�

a 〉 is constructed as:

CFAF = (〈A�
a , ρ�

a 〉, (A�
c , ρ�

c ))

From Definition 20, we have A�
c ∩ A�

a = ∅, A�
c ⊆ A�

u and ρ�
c ⊆ ρ(A�

c ,A�
a ).

Namely, it satisfies the definition of condition.
Based on the extensions of the two kinds of sub-frameworks, we will compute

the extensions of 〈A�, ρ�〉 by combining ES(〈A�
u , ρ�

u 〉) and ES(CFAF[E]), in
which E ∈ ES(〈A�

u , ρ�
u 〉).

Definition 21. Let 〈A�
u , ρ�

u 〉 be the unaffected sub-framework of FAF = 〈A, ρ〉
w.r.t. a deletion (B, I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
), ES〈A�

u , ρ�
u 〉 be the set of extensions

of 〈A�
u , ρ�

u 〉, and CFAF[E1] = (〈A�
a , ρ�

a 〉, (A�
c [E1], ρ�

c )) be an assigned condi-
tioned FAF w.r.t. E1 ∈ ES〈A�

u , ρ�
u 〉. The result of combining ES〈A�

u , ρ�
u 〉 and

ES(CFAF[E1]), ∀E1 ∈ ES〈A�
u , ρ�

u 〉, to form the set of combined extensions of
〈A�, ρ�〉, denoted as CombExtS(〈A�, ρ�〉), is defined as follows:

CombExtS(〈A�, ρ�〉) = {E1 ∪ E2 | E1 ∈ ES(〈A�
u , ρ�

u 〉) ∧ E2 ∈ ES(CFAF[E1])}

Next, we prove that under each semantic S ∈ {CO,PR,GR}, the extension
of an updated framework 〈A�, ρ�〉) coincides with the CombExtS(〈A�, R�〉).
We have the following important conclusion.

Lemma 3. Under each semantics S ∈ {CO,PR,GR}, ∀E ∈ ES(〈A�, ρ�〉), it
holds that E ∩ A�

a ∈ ES(CFAF[E1]), in which E1 = E ∩ A�
u .

Based on Lemmas 3, the coincidence of the semantics extensions and the
combined extensions can be showed as follows:

Theorem 3. Under each argumentation semantics S ∈ {CO,PR,GR}, ∀E ∈
CombExtS(〈A�, ρ�〉), it holds that E ∈ ES(〈A�, ρ�〉), in which E = E1 ∪ E2,
an extension by combining E1 ∈ ES(〈A�

u , ρ�
u 〉) and E2 ∈ ES(CFAF[E1]).

Theorem 4. Under each semantics S ∈ {CO,PR,GR}, ∀E ∈ ES(〈A�, ρ�〉), it
holds that E ∈ CombExtS(〈A�, ρ�〉).

6 Conclusion

In this paper, we explore the dynamics of FAFs. The changing of the argument
and attack relation as well as the initial belief degree of the arguments and attack
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relation is an intrinsic property of FAFs with the changes of observations, basic
knowledge, and information.

First, we list the whole changes in the dynamics of FAFs. The dynamics of
FAFs include not only the changes of arguments and attack relation but also the
changes of initial belief degree of arguments and attack relation. Furthermore,
the arbitrary combination of these cases is also a dynamic FAF. Additionally,
our main task is to compute the semantics of the dynamics FAFs. We focus on
the complete, preferred and grounded semantics by extending Liao’s division-
based approach. First, we divide the updated FAF into three parts: affected
FAF, unaffected FAF, conditioned FAF. Then we compute the semantics of the
affected FAFs under the conditioned FAF. Due to the directionality principle,
the semantics of the unaffected AF are directly obtained from the previous FAF.
Thus, this algorithm conserves part of the semantics in the previous FAF.

In the future, we will continue exploring the residual semantics of the dynam-
ics of FAFs, such as stable semantics, ideal semantics. We also want to prove that
a variety of principles are satisfied in FAFs, such as reinstatement principle and
SCC-recursiveness principle. Then we can provide an incremental computation
in FAFs which can efficiently compute the semantics by the topology-related
properties.
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Abstract. Dung’ AF has been extended in many different directions.
One particular direction is to allow uncertainty in AFs. Among others,
probability and fuzzy theory are typical approaches used in this direc-
tion. In this paper, we argue that arguments can be both fuzzy and ran-
dom. We thus introduce probabilistic-fuzzy argumentation frameworks
in which probabilities and fuzzy values are combined to describe fuzzy
and random arguments. We introduce an algorithm for revising probabil-
ities. Based on this algorithm, we study semantics of probabilistic-fuzzy
argumentation frameworks.

1 Introduction

An abstract argumentation framework (AF) [5] contains a set of arguments and
an attack relation between the arguments. Dung’s AF theory [1,5] selects various
kinds of accepted arguments. This theory has been applied in many fields in
artificial intelligence, such as decision making, multi-agent systems, the law and
so on.

Dung’s theory has been extended in many different directions. One particular
direction is to allow uncertainty in AFs. Among others, probability and fuzzy
theory are typical techniques used in this direction. For example, probabilities are
assigned to arguments and/or attacks to capture uncertainty in AFs in [4,8–10,
13]. Fuzzy theory is adopted to extend AFs in [2,3,11,12,14]. However, there are
relatively sparse works on combining these two techniques in AFs. Probabilities
and fuzzy values are joint together in [3], but arguments are evaluated in separate
layers in each of which either probability-based or fuzzy-based analysis is carried
out.

As discussed in [3], probabilistic and vague (fuzzy) arguments can co-exist
in a dialectical process. In certain cases, information expressed by an argument
can be both fuzzy and random. To illustrate, consider the following argument:

Ar: The weather forecast says it will rain tomorrow. The football match
should be cancelled.
c© Springer Nature Switzerland AG 2020
M. Dastani et al. (Eds.): CLAR 2020, LNAI 12061, pp. 308–323, 2020.
https://doi.org/10.1007/978-3-030-44638-3_19
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This argument is both fuzzy and random. On the one hand, it is fuzzy because
different people have different cognition that the rain prevents the match. For
example, most football matches continue in light rain; some matches are played in
moderate rain; and few important matches may be took place in heavy rain. Thus
for different states of the rain, the argument can have different fuzzy statuses.
On the other hand, the forecasted rain has randomness. There will be chances
of light rain, moderate rain and heavy rain. Hence, the argument Ar is random.

In this paper, we present a novel argumentation framework, called
probabilistic-fuzzy argumentation framework (PFAF), in which arguments can
be both fuzzy and random. The fuzzyness and randomness of arguments are
described by a model called PF-matrices. We study semantics of PFAFs based
on revising the probabilities of fuzzy statuses.

The contents are arranged as follows: In the next section, we introduce
PF-matrices for describing fuzzy and random arguments. We then present our
probabilistic-fuzzy argumentation frameworks. In Sect. 3, we introduce an algo-
rithm to revising the probabilities. In Sect. 4, we study semantics of PFAFs. We
discuss how our work is related to other works in Sect. 5 and we conclude in
Sect. 6.

2 Definition of PFAFs

We introduce PFAFs in this section. We begin with how we describe fuzzyness
and randomness of arguments. In this paper, we simplify the fuzzyness, i.e., for
each argument, we only consider three fuzzy statuses. We denote them by values
0, 0.5 and 1. We then assign a probability value to each fuzzy status to capture
the randomness. For an argument A, its fuzzy and probability values form a
matrix as shown in the following:

MA =

⎡
⎣

1 P1,A

0.5 P0.5,A

0 P0,A

⎤
⎦ ,

In the above matrix, the first column shows the three statuses of argument
A and the second column shows the probabilities of the three statuses.

For every argument, there are three fuzzy statuses of it and the probabilities
assigned to the three statuses should sum up to 1. Thus we have the following
the definition of probabilistic-fuzzy matrices. These matrices describe fuzzyness
and randomness of arguments.

Definition 1. Given an argument A, the probabilistic-fuzzy matrix (PF-matrix)
is a matrix

MA =

⎡
⎣

1 P1,A

0.5 P0.5,A

0 P0,A

⎤
⎦ , (1)

where P1,A + P0.5,A + P0,A = 1.
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In order to characterize the semantics of PFAFs, we introduce an order
between the PF-matrices.

Take the argument Ar for an example. If it has two PF-matrices M and M
′.

then each of them represents a forecast of the rain. Which forecast indicates
heavier rain?

Intuitively, if the probability of heavy rain is higher and the probability of
light rain is lower, then we can recognize that the forecast shows heavier rain.
In other words, if P1 ≤ P ′

1 and P0 ≥ P ′
0, then the rain forecasted by PF-matrix

M will be no heavier than the one forecasted by PF-matrix M
′. Similarly, the

order between the PF-matrices is introduced as follow:

Definition 2. Given two PF-matrices MA and MB, MA ≤ MB if and only if
P1,A ≤ P1,B and P0,A ≥ P0,B.

Particularly, MA < MB if and only if MA ≤ MB and MA �= MB
1.

Given a PFAF, let Args be the set of all the arguments and M be the set of
all the PF-matrices. In order to show the probabilities of the fuzzy statuses of the
arguments, each argument is associated with a PF-matrix. It can be represented
by a function S : Args → M, where ∀A ∈ Args, S(A) = MA is the PF-matrix
of A. Similar to the fuzzy sets, the function S is called a PF-set on Args here.
Particularly, if the set

Ar = {A ∈ Args : S(A) �=
⎡
⎣

1 0
0.5 0
0 1

⎤
⎦} ⊆ Args

is finite, the set S can be represented in the form S = {(A,MA) : A ∈ Ar}.
Given two PF-sets S1 and S2 on Args, we say that S1 is included in S2,

denoted by S1 ⊆ S2, iff S1(A) ≤ S2(A), for all A ∈ Args.
The empty set ∅ stands for the PF-set S, s.t. for all A ∈ Args, in the PF-

matrix S(A), P0,A = 1. Obviously, ∅ is the least element of all the PF-sets on
Args w.r.t. the set inclusion ⊆.

With the notion of PF-sets, PFAFs can now be formally introduced.

Definition 3. Let (Args,Atts) be a Dung’s AF. A PFAF is a tuple (A, Atts),
where A : Args → M is a PF-set on Args.

Example 1. A conference is beginning in 45 min. The organizers are discussing
whether or not to wait for Jim.

A: Hi, all. Jim is driving here. But he is still 60 miles away. He may arrive very
late. I don’t think we should wait for him.

B: The speed limit of the highway is 80 mph. He can drive fast and arrive nearly
on time. I think we’d better wait for him.

1 If MA ≤ MB and MB ≤ MA, MA = MB . It is the same as the common “=” between
matrices in algebra.
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AB

C

D

Fig. 1. AF of Example 1

C: In general, the speed limit is 80 mph. But it rains now. And the forecast
says the rain is going heavier soon. Jim can’t drive so fast. His speed may
decrease to 60 mph or 40 mph.

B: How heavy the rain will be?
C: By the forecast, there is a 20% chance of a heavy rain, a 30% chance of a

moderate rain, and a 50% chance of a light rain.
D: By the way, I heard that some lanes of the highway are closed for road

working. It may also decrease Jim’s speed.
B: Are you sure? How serious?
D: I don’t think it is serious. I think there is a roughly 40% chance that the

work is already finished, a 30% chance that one lane is still closed and a
30% chance that two lanes are still closed.

The discussion in the above scenario can be represented by a Dung’s AF
depicted as follows:

In Fig. 1, the arrows stand for the relation attack and the arguments are as
follows:

A: Jim will arrive very late. We should not wait for him.
B: On the highway, Jim drives very fast.
C: The rain goes heavier. Jim cannot drive so fast in the rain.
D: The road working drops Jim’s speed down.

The PF-matrices of C and D are obvious. For argument B, its probabilities
are determined by the driving habit of Jim. But there is no information about his
driving habit. In this case, we suppose that Jim will drive as quickly as possible.
In other words, the initial probability of “driving fast and late for not long”
is 1, i.e., in the PF-matrix of B, P1,B = 1. It follows that P0.5,B = P0,B = 0.
Similarly, we suppose P1,A = 1 and P0.5,A = P0,A = 0 initially. Then the function
A : Args → M in the PFAF (A, Atts) can be shown as follows:

A(D) = MD =

⎡
⎣

1 0.3
0.5 0.3
0 0.4

⎤
⎦ , A(C) = MC =

⎡
⎣

1 0.2
0.5 0.3
0 0.5

⎤
⎦ ,

A(B) = MB =

⎡
⎣

1 1
0.5 0
0 0

⎤
⎦ , A(A) = MA =

⎡
⎣

1 1
0.5 0
0 0

⎤
⎦ .
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3 Revising the Probabilities

In the scenario of Example 1, if the probabilities of the fuzzy statuses of the argu-
ments C (rain) and D (road working) are already known, then the probabilities
of the fuzzy statuses of the arguments B and A are determined. Decisions can
be made according to the probabilities (of A). In this paper, we will concentrate
on the algorithm to calculate the probabilities. The process of making decisions
will not be discussed here.

In a PFAF, the initial matrices (or the initial probabilities) of the arguments
may not be consistent, for instance, the arguments B and C in the scenario.
In this section, we will introduce a method to revise the probabilities of the
arguments, so that they become consistent in some sense.

Firstly, let’s only consider the effect of C on B. The probabilities of Jim’s
speed and arrival time are determined by the probabilities of the rain. Then the
probabilities in the PF-matrix of B should be revised according to the PF-matrix
of C. More specifically, if the rain is heavy, his speed is around 40 mph; if the
rain is moderate, his speed is around 60 mph; and if the rain is light, his speed
is around 80 mph. As a result, the probability that Jim drives very fast is 50%,
which is the probability of light rain; the probability that Jim drives at moderate
speed is 30%, which is the probability of moderate rain; and the probability that
Jim drives very slowly is 20%, which is the probability of heavy rain. Then the
PF-matrix of B should be revised to the following:

M
′
B =

⎡
⎣

1 0.5
0.5 0.3
0 0.2

⎤
⎦

Now, consider the arguments D in the scenario together. Because B is
attacked by C and D, the probabilities of the statuses of B should be influ-
enced by the probabilities of C and D. Let’s check the probabilities of the status
of B. Suppose C and D are independent.

Case 1: The fuzzy degree of argument B is 1, i.e., Jim drives very fast. This
requires that the rain is light and the road working has been finished. In
other words, the fuzzy degrees of both C and D are 0. The probability
P1,B should be revised to the product of P0,C and P0,D. Denote the revised
probability by P ′

1,B . We then have:

P ′
1,B = P0,C × P0,D.

Case 2: The fuzzy degree of B is 0, i.e., Jim drives very slowly. In general,
Jim drives so slowly, either because the rain is heavy or because the road
working limits the speed seriously. In other words, either C or D is of degree
1. And the probability is the probabilistic sum of P1,C and P1,D. Denote the
revised probability of P0,B by P ′

0,B . We have:

P ′
0,B = P1,C + P1,D − P1,C × P1,D = 1 − (P0,C + P0.5,C) × (P0,D + P0.5,D).
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Case 3: Otherwise, the argument B is of fuzzy degree 0.5, i.e., Jim drives at
moderate speed. Its revised probability can be obtained by the following
equation:

P ′
0.5,B = 1 − P ′

0,B − P ′
1,B .

Putting the three values P ′
1,B , P

′
0.5,B and P ′

0,B into a PF-matrix, we obtain
the revised probabilities of the fuzzy degrees of B. This illustrates the idea of
revising probabilities. It should be noted that in the above calculations of P1,B ,
P0.5,B and P0,B , we assumed the following:

– Independence All arguments are independent. With this assumption, the
probabilities can be calculated easily.

– Maximum The attack relation cannot increase the probability of an argu-
ment. In other words, the revised PF-matrix of an argument is no more than
its initial PF-matrix w.r.t. the order between PF-matrices.

An algorithm for revising the PF-matrix of an argument is then introduced
in the next definition.

Definition 4. Suppose an argument B with a PF-matrix MB is attacked by
a finite set of arguments {Ai : i = 1, 2, ..., n}, and for each argument Ai, i =
1, 2, ..., n, its PF-matrix is

MAi
=

⎡
⎣

1 P1,Ai

0.5 P0.5,Ai

0 P0,Ai

⎤
⎦ .

We say that the PF-set {(Ai,MAi
) : i = 1, 2, ..., n} revises B’s PF-matrix

MB =

⎡
⎣

1 P1,B

0.5 P0.5,B

0 P0,B

⎤
⎦ to M

′
B =

⎡
⎣

1 P ′
1,B

0.5 P ′
0.5,B

0 P ′
0,B

⎤
⎦

where

P ′
1,B = min{P1,B ,

n∏
i=1

P0,Ai
},

P ′
0,B = max{P0,B , 1 −

n∏
i=1

(P0,Ai
+ P0.5,Ai

)}

and
P ′
0.5,B = 1 − P ′

1,B − P ′
0,B .

Obviously, the revised PF-matrix M
′
B is no more than the original PF-matrix

MB , i.e. M′
B ≤ MB .
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Example 2. Consider the PFAF in Example 1. The initial matrices of the three
arguments B, C and D are:

MB =

⎡
⎣

1 1
0.5 0
0 0

⎤
⎦ , MC =

⎡
⎣

1 0.2
0.5 0.3
0 0.5

⎤
⎦ and MD =

⎡
⎣

1 0.3
0.5 0.3
0 0.4

⎤
⎦ .

We can obtain:
P ′
1,B = P0,C × P0,D = 0.5 × 0.4 = 0.2,

P ′
0,B = 1− (P0,C +P0.5,C)× (P0,D +P0.5,D) = 1− (0.3+0.5)× (0.3+0.4) = 0.44,

and
P ′
0.5,B = 1 − P ′

0,B − P ′
1,B = 1 − 0.2 − 0.44 = 0.36.

In other words, the PF-matrix of B is revised to:

M
′
B =

⎡
⎣

1 0.2
0.5 0.36
0 0.44

⎤
⎦ .

Similarly, the PF-matrix of A is revised by (B,M′
B) to

M
′
A =

⎡
⎣

1 0.44
0.5 0.36
0 0.2

⎤
⎦ .

From this PF-matrix, there is a 44% chance that Jim will be late for a long time,
a 36% chance that he will be late for a moderate time, and a 20% chance that
he will arrive nearly on time. Then the decision can be made according to the
probabilities.

Suppose S ⊆ A is a PF-set in a PFAF (A, Atts). Let’s consider that it revises
the PF-matrix of an argument A ∈ Args. Obviously, A is only influenced by the
arguments B with (B,A) ∈ Atts. Then we have the following definition.

Definition 5. In a PFAF (A, Atts), suppose S ⊆ A is a PF-set on Args. S
revises the PF-matrix MA of an argument A to M

′
A, if and only if the PF-set

{(B,S(B)) : (B,A) ∈ Atts} revises MA to M
′
A.

In Definition 4, the PF-set {(Ai,MAi
) : i = 1, 2, ..., n} is on {Ai : i =

1, 2, ..., n}, which is not Args in general. This is the distinction between Def-
initions 4 and 5.

Note that in general, P ′
0.5,B ≤ P0.5,B is not valid. But we have the following

proposition.

Proposition 1. In a PFAF, if the PF-matrix of B is revised to M
′
B, then

P ′
0.5,B + P ′

1,B ≤ P0.5,B + P1,B.

Proof. Because P ′
0,B ≥ P0,B , we have 1 − P ′

0,B ≤ 1 − P0,B . It is P ′
0.5,B + P ′

1,B ≤
P0.5,B + P1,B .
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Next proposition shows the monotonicity of the revision, which follows obvi-
ously from Definition 4.

Proposition 2. Let S ⊆ S′ be two PF-sets and MA ≤ M
′
A be two PF-matrices

of an argument A.

1. If S revises MA to MA,1 and S′ revises MA to MA,2, then MA,1 ≥ MA,2.
2. If S revises MA to MA,1 and S revises M

′
A to MA,2, then MA,1 ≤ MA,2.

Next definition introduces the revision between PF-sets.

Definition 6. Let S1 and S2 be two PF-sets in a PFAF. S1 revises S2 to S′
2,

iff for each A ∈ Args, S1 revises the PF-matrix S2(A) to the PF-matrix S′
2(A).

Particularly, if S2 is a single point set {(A,MA)}, we simply say that S1

revises (A,MA) to (A,M′
A).

The following proposition follow from Proposition 1.

Proposition 3. If S is revised to S′, then ∀A ∈ Args, S′(A) ≤ S(A), i.e.,
S′ ⊆ S.

4 PFAF Semantics

In this section, we will explore the consistency of the probabilities of the argu-
ments in a PFAF. We then establish a semantics system that parallels Dung’s
theory [5].

4.1 Conflict-Free Semantics

Consider arguments B and C in the PFAF of the scenario, and their associated
PF-matrices MB and MC . Since P1,C = 0.2, there is a 20% chance that it will
rain heavily; and since P1,B = 1 it is certain (a 100% chance) that Jim will
drive around 80 mph. They are obviously in contradiction. Thus we can reach
the conclusion that the two arguments with such PF-matrices are conflict with
each other.

On the other hand, suppose MB is revised to

M
′
B =

⎡
⎣

1 0.2
0.5 0.36
0 0.44

⎤
⎦ .

This matrix means that there are 20%, 36% and 44% chances that Jim drives
around 80 mph, 60 mph and 40 mph respectively. From this matrix and argument
C, we obtain that there is:
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– 20% chance that it rains heavily and Jim drives around 40 mph;
– 30% chance that it rains moderately and Jim drives at 40 mph (24% chance)

or 60 mph (6% chance);2
– 50% chance that it rains lightly, and Jim drives at 60 mph (30% chance) or

80 mph (20% chance).

Now we can conclude that (B,M′
B) is no longer conflict with (C,MC).

Similarly, in PFAFs if a PF-set S revises (A,MA) to (A,M′
A), S is consistent

with (A,M′
A). This is similar to the conflict-free semantics in AFs.

Definition 7. In a PFAF (A, Atts), a PF-set S : Args → M is conflict-free, iff
for any A ∈ Args, S revises S(A) to itself, i.e. S revises S to itself.

Example 3. Consider the PFAF in the scenario. The PF-set S is conflict-free,
where S is defined as follows:

S(D) = MD =

⎡
⎣

1 0.3
0.5 0.3
0 0.4

⎤
⎦ , S(C) = MC =

⎡
⎣

1 0.2
0.5 0.3
0 0.5

⎤
⎦ ,

S(B) = MB =

⎡
⎣

1 0.2
0.5 0.36
0 0.44

⎤
⎦ , S(A) = MA =

⎡
⎣

1 0.44
0.5 0.36
0 0.2

⎤
⎦ .

Note that from Definition 7, the empty PF-set ∅ is conflict-free. It seems un-
intuitive. For example, in the scenario, the empty PF-set means that P0,B = 1
and P0,A = 1 hold at the same time. In other words, Jim drives at no more
than 40 mph and Jim is late for no more than 10 min. How can these two events
happen at the same time? In our opinion, it can be illustrated as follows. If the
speed is 80 mph, then Jim is certainly not late very much. But if the speed is not
so high, Jim may also not be late very much. For instance, there may be some
shortcuts such that Jim can arrive not very late in the speed 40 mph. Therefore,
we permit the conflict-free between the two cases, though they are not perfect.

On the other hand, according to the definition of conflict-free sets, the attacks
between PF-sets can be classified into two kinds. Here, we introduce the sufficient
attacks from a PF-set to an argument with a PF-matrix.

Definition 8. In a PFAF, let S be a PF-set and A be an argument with a
PF-matrix M. Suppose S revises (A,M) to (A,M′). If M > M

′, then we say S
sufficiently attacks (A,M).

Then the conflict-free sets can be represented by the sufficient attacks.

Proposition 4. Let S be a PF-set in a PFAF. S is conflict-free, iff ∀A ∈ Args,
S does not sufficiently attack (A,S(A)).

Proof. (⇒) Suppose S is conflict-free. Then S revises S(A) to itself, i.e., S does
not sufficiently attack (A,S(A)).

(⇐) Because for all A ∈ Args, S does not sufficiently attack (A,S(A)), we
have S revises S(A) to M

′ such that M′ ≤ S(A). Hence, S revises S(A) to itself,
i.e., S is conflict-free.
2 The two percentages 24% and 6% show the influence of the road working.
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4.2 Acceptability

The acceptability is a core concept in Dung’s theory [5]. All the extension-based
semantics are built on it. In this paper, our semantics are also established on
the acceptability. We first introduce the acceptability in PFAFs.

Consider the PFAF in the scenario. Since the rain and the road working
drop Jim’s speed down, Jim arrives late. When only the fuzzy degrees or the
probabilities are considered, we have:

Fuzziness If the rain is heavier and the road working occupies more lanes, then
Jim’s speed will be lower. It follows that Jim arrives later.

Probability If the probabilities of the rain and the road working are higher,
the probability that Jim drives fast is lower. Then the probabilities that Jim
arrive late will be higher.

When both the fuzziness and the randomness are considered together, we
will discuss the consistency between the probabilities of the fuzzy statuses of the
arguments. For example, if the probability of heavy rain is 20%, the probability
of closing two or more lanes is 30%, then the probability that Jim’s speed is less
than 40 mph is 44%. Consequently, we can get the probability that Jim is late
for a long time is 44%. It can be read as that the two probabilities (20% of heavy
rain and 30% of closing two or more lanes) defend the probability 44% of Jim’s
late arrival in some sense. Similarly, because the probability of the light rain is
50% and the probability that the road working has been finished is 40%, there is
a 20% chance that Jim will drive around 80 mph and will arrive nearly on time.
From the probabilities of statuses of C and D, the probability that Jim drives
around 60 mph and arrives late for around 20 min is 1 − 44% − 20% = 36%.
These three can be represented by the PF-matrices:

The arguments C,D with the PF-matrices MC and MD defend the argument
A with a PF-matrix

MA =

⎡
⎣

1 0.44
0.5 0.36
0 0.2

⎤
⎦

by revising the PF-matrix MB of B.
Following the above idea, the defence relation in PFAFs can be defined.

Definition 9. In a PFAF (A, Atts), an argument A with a PF-matrix MA ≤
A(A) is acceptable to a PF-set S ⊆ A, iff ∀B with (B,A) ∈ Atts and MB ≤
A(B), S revises MB to M

′
B, such that the PF-set {(B,M′

B) : (B,A) ∈ Atts}
revises MA to itself.

Simply, we say (A,MA) is acceptable to (or defended by) S.

Note that the function A shows the initial probabilities of the arguments,
which are also the highest probabilities of the arguments. In a semantics, for any
argument, the probabilities should not be higher than it. Therefore, in Definition
9, we require that MA ≤ A(A), MB ≤ A(B) and S ⊆ A.

Because of MB ≤ A(B) from the second part of Proposition 2, we have the
following proposition.
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Proposition 5. In a PFAF, (A,MA) is acceptable to (or defended by) S,
iff ∀B with (B,A) ∈ Atts, S revises A(B) to M

′
B, such that the PF-set

{(B,M′
B) : (B,A) ∈ Atts} revises MA to itself.

This proposition help us to calculate the acceptability easily.

Example 4. Consider the conflict-free PF-set S in Example 3. It revises A(B) to

M
′
B =

⎡
⎣

1 0.2
0.5 0.36
0 0.44

⎤
⎦ .

Because M
′
B revises

M
′
A =

⎡
⎣

1 0.44
0.5 0.36
0 0.2

⎤
⎦

to itself, S defends (A,M′
A).

On the other hand, M′
B revises

MA =

⎡
⎣

1 1
0.5 0
0 0

⎤
⎦ to M

′
A =

⎡
⎣

1 0.44
0.5 0.36
0 0.2

⎤
⎦ .

Hence, S does not defend (A,MA).

Example 5. Consider the empty set ∅ in the PFAF in Example 1. It revises A(C)
and A(D) to themselves. Because {(C,A(C)), (D,A(D))} revises

M
′
B =

⎡
⎣

1 0.2
0.5 0.36
0 0.44

⎤
⎦

to itself, we get that ∅ defends (B,M′
B).

But ∅ does not defend (A,M′
A), where

M
′
A =

⎡
⎣

1 0.44
0.5 0.36
0 0.2

⎤
⎦ .

Because ∅ revises A(B) to itself, which revises M
′
A to

⎡
⎣

1 0
0.5 0
0 1

⎤
⎦ .

The monotonicity of the acceptability follows obviously from the first part of
Proposition 2.

Proposition 6. Let S1 ⊆ S2 be two PF-sets in a PFAF. If S1 defends (A,MA),
then S2 defends it.
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Proof. For any B with (B,A) ∈ Atts, suppose S1 revises MB to MB,1 and S2

revises MB to MB,2. Because S1 ⊆ S2, we have MB,2 ≤ MB,1.
Suppose the PF-set {(B,MB,2 : (B,A) ∈ Atts} revises MA to M

′
A. Because

the PF-set {(B,MB,1 : (B,A) ∈ Atts} revises MA to itself, from Proposition 2
we have the MA ≤ M

′
A. Together with M

′
A ≤ MA, we have MA = M

′
A. It ends

the proof.

Given a PFAF (A, Atts), let S be the set of all the PF-sets in it, i.e., S =
{S ⊆ A | S : Args → M}.

Definition 10. Let (A, Atts) be a PFAF. Suppose the function F : S → S is
defined as follows:

F (S) = {(A,MA) ∈ A : (A,MA) is defended by S}, ∀S ∈ S.
Then F is called the characteristic function of the PFAF.

It follows from proposition 2 that F is monotone.

Proposition 7. Let F be the characteristic function of a PFAF. Suppose S1 ⊆
S2 ⊆ A. Then F (S1) ⊆ F (S2).

4.3 Extension-Based Semantics

In this part, we establish the semantics of PFAFs similar to Dung’s extensions.

Definition 11. In a PFAF (A, Atts), S ⊆ A is a conflict-free PF-set. A PF-set
S is

admissible if it defends itself, i.e., S ⊆ F (S).
complete if it defends itself and does not defend any (A,MA) with MA > S(A),

i.e., F (S) = S.
preferred if it is a maximal admissible PF-set w.r.t. set inclusion.
grounded if it is the least complete PF-set.
stable if for any (A,MA) with MA > S(A), S revises MA to S(A).

Example 6. Consider the PFAF in Example 1. The PF-set S is admissible, com-
plete, preferred, grounded and stable.

The empty set ∅ is admissible. From Example 5, it is not complete. Thus it
is not preferred or grounded.

Example 7. Consider the PFAF (A, Atts), where

A(A) =

⎡
⎣

1 1
0.5 0
0 0

⎤
⎦ ,A(B) =

⎡
⎣

1 1
0.5 0
0 0

⎤
⎦

and Atts = {(A,B), (B,A)}. It is the graph A � B.
The grounded extension is the empty PF-set ∅. It is also complete, but not

preferred.
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A B

Fig. 2. A simple PFAF

The following four PF-sets are preferred, which are also complete and stable.

S1: S1(A) =

⎡
⎣

1 1
0.5 0
0 0

⎤
⎦ and S1(B) =

⎡
⎣

1 0
0.5 0
0 1

⎤
⎦.

S2: S2(A) =

⎡
⎣

1 0
0.5 1
0 0

⎤
⎦ and S2(B) =

⎡
⎣

1 0
0.5 1
0 0

⎤
⎦.

S3: S3(A) =

⎡
⎣

1 0.7
0.5 0
0 0.3

⎤
⎦ and S3(B) =

⎡
⎣

1 0.3
0.5 0
0 0.7

⎤
⎦.

S4: S4(A) =

⎡
⎣

1 x
0.5 1 − x − y
0 y

⎤
⎦ and S4(B) =

⎡
⎣

1 y
0.5 1 − x − y
0 x

⎤
⎦, where x, y ∈

[0, 0.5].

For these four PF-sets, S1 is a preferred extension in Dung’s theory; S2 is a
preferred extension in PFAFs; S3 is a special semantics of crisp probabilistic
AFs; and S4 shows the general case of preferred PF-sets in our theory.

Example 8. Consider the PFAF in Fig. 2, where the initial PF-matrix of each
argument is ⎡

⎣
1 1

0.5 0
0 0

⎤
⎦ .

The PF-set S is preferred but not stable, where

S(A) =

⎡
⎣

1 0.75
0.5 0
0 0.25

⎤
⎦ and S(B) =

⎡
⎣

1 0.2
0.5 0
0 0.8

⎤
⎦ .

Obviously, S is admissible and maximal w.r.t. set inclusion. But S revises

MA =

⎡
⎣

1 0.8
0.5 0
0 0.2

⎤
⎦

to itself, which does not equal to S(A).
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5 Related Works

In this section, we compare PFAFs with related works. Dondio [3] introduces
multi-valued and probabilistic argumentation frameworks. Our work is moti-
vated by a similar intention to this work, i.e., modelling probabilistic and fuzzy
(vague) arguments. But the two works differs significantly. A key difference lies
in the use of probabilities. In [3], probabilities are assigned to arguments to
represent whether or not (e.g., P (A) and 1 − P (A)) arguments hold. In our
work, probabilities are assigned to the fuzzy statuses of arguments to represent
the likelihood of fuzzy statuses, e.g., P1,A, P0.5,A and P0,A. This leads to dif-
ferent approaches for analysing arguments. In [3], probabilities and fuzzy values
(referred to as “multi-valued” in [3]) are used separately. More specifically, argu-
ments are evaluated in a two-layer model. At the first layer, probabilistic analysis
is carried out based on the approach in [13] and at the second layer fuzzy analysis
is done based on multi-valued argumentation frameworks [3]. In PFAFs, fuzzy
values are fixed and we revise probabilities in order to make them coherent with
the fuzzy statuses and the AF structure. Based revising probabilities, semantics
of PFAFs is defined in an analogue way to Dung’s theory.

Probability theory has been used to extend AFs in various forms. Dung and
Thang [4] introduce a probabilistic argumentation model designed for jury-based
dispute resolution. In this model, a probability distribution over subsets of argu-
ments is used to represent how an individual juror weight the arguments. The
model then computes the probability of arguments being in grounded exten-
sion as the juror’s degree of acceptance of the arguments. The jury’s decision is
then obtained by certain criteria aggregating all jurors’ opinions. The work by
Li et al. [13] generalize the idea of [4] and introduce probabilistic argumenta-
tion frameworks. In this proposal, probabilities are assigned to arguments and
attacks to describe the likelihood that arguments and attacks exist in the AF.
The semantics of PrAFs is captured by the notion of probabilistic justification
that indicates the likelihood of a set of arguments being accepted under certain
AF semantics.

The approach of [13] and [4] uses probabilities to capture uncertain in argu-
mentation. The semantics is based on theories of probability and possible worlds.
In PFAFs, probabilities are associated with fuzzy statuses to describe the likeli-
hood of fuzzy statuses. The semantics of PFAFs is based on revising probabilities.

Hunter [8] introduces the epistemic approach to probabilistic argumentation.
In this approach, a probability distribution is associated with the set of sub-
graphs. The probability of an individual argument is obtained by computing the
marginal probability. This probability represents the degree of belief one puts
in the argument. Hunter then studies a set of postulates that a probability dis-
tribution over subgraphs should satisfy in order to be coherent with respect to
the structure of the argument graph. For example, a probability distribution is
called rational iff for all argument A attacks argument B, if P (A) > 0.5, then
P (B) < 0.5.

It seems that the probabilities associated with arguments in the epistemic
approach play a similar role to the fuzzy values in PFAFs, because it is
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reasonable to read fuzzy values as belief degrees. Probabilities in PFAFs describe
the likelihood of different belief degrees. A coherent probability distribution over
fuzzy statuses is achieved by revising probabilities.

Regarding fuzzy argumentation, there are two main ways to discuss the fuzzy
degrees of the arguments in fuzzy AFs. One is to find algorithms to revise the
fuzzy degrees. The works [2,6,7] introduce an equation to revise the fuzzy degrees
of the arguments according to the attackers’ fuzzy degrees. In order to deal with
the degrees of the arguments in cycles, the values are revised step by step, and the
limit values are the semantics of the fuzzy AFs. The other is to built extension
systems by fuzzy sets. [11] introduces equations such that if a fuzzy set satisfies
some equations, it is a corresponding extension. [14] defines conflict-free sets
and acceptability by developing the methods in [2,7]. A variety of extension-
based semantics are then introduced in Dung’s way. The main idea of this paper
is similar to [14]. We introduce an algorithm to revise the PF-matrices of the
arguments. Based on it, the conflict-free sets and the acceptability are then
defined and the extension-based semantics are established in Dung’s way. In a
PFAF, if for every argument, the probability of one of its three fuzzy status is
1, then the PFAF can be seen as a fuzzy AF in [14] where the fuzzy status are
restricted to three cases of all the arguments. In this case, our semantics will
coincide with the semantics in [14].

6 Conclusion

In this paper, we discussed the need for the presence of both fuzzyness and
randomness in AFs. We introduced PF-matrices and probabilistic-fuzzy argu-
mentation frameworks. We designed an algorithm for revising PF-matrices of
arguments in a PFAF. Based on this algorithm, we studied semantics of PFAFs.
We showed by examples that PF-matrices and PFAFs are a feasible approach
to the goal of allowing for fuzzyness and randomness in AFs. We discussed how
PFAFs are related with other works.

This paper contributes on the following aspects: First, a formal definition
of PFAFs is introduced based on PF-matrices with finite (three) fuzzy statuses.
This forms a basis for the future study of fuzzy and random AFs. Second, the PF-
matrices are applied to characterize the semantics of PFAFs. We have shown that
PF-matrices are an effective tool for investigating PFAFs. Finally, the semantics
of PFAFs is introduced, which provides a theory for analysing fuzzy and random
arguments.

Regarding future work, the current work presented in this paper has limi-
tations and weakness. For example, the arguments’ fuzzy statuses are discrete
and finite; the arguments are assumed to be independent; and when revising
an argument’s PF-matrix, the PF-matrix of itself is neglected. These all give
directions for future work.
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Abstract. In this paper we look at different ways of modally defining
properties related to the concept of balance in signed social networks
where relations can be either positive or negative. The motivation is to
be able to formally reason about the social phenomenon of group polar-
ization, for which balance theory forms a network-theoretical underpin-
ning. The starting point is a recently developed basic modal logic that
axiomatizes the class of social networks that are balanced up to a cer-
tain degree. This property is not modally definable but can be captured
using a deduction rule. In this paper we examine different possibilities for
extending this basic language, in order to, first, be able to define frame
properties such as balance and related properties such as non-overlapping
positive and negative relations and collective connectedness as axioms,
and, second, be able to define the property of full balance rather than
balanced-up-to-a-degree. We consider extensions with both static modal-
ities such as the universal and the difference modality, the intersection
modality, and nominals known from hybrid logic, as well as dynamic
global bridge modalities known from sabotage logic. Along the way we
provide axioms for weak balance. Finally, to explore measures of how far
a network is from polarization, we consider and compare variations of
distance measures between models in relation to balance.

Keywords: Polarization · Balance · Social network logic · Modal
logic · Network theory

1 Introduction

The way in which we receive and exchange information changes rapidly with
the advances of new technology in our current world. Simultaneously we are
facing local and global issues that are driving our opinions to the extremes of
the political landscape. A social phenomenon related to these trends considered
to be increasingly dangerous is group polarization.
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Group polarization, or polarization for short, is not a new concept but has
gained increasing relevance in the age of social media [20]. The phenomenon
has been extensively researched by, among others, Cass Sunstein [28,29]. Polar-
ization describes the tendency for people to develop more extreme views after
deliberation within a group. Although issues up for debate often are complex
and dependent on a number of factors, an effect of polarization is that fine lines
are blurred and that answers to complicated questions are driven into opposing
parties of either ‘for’ or ‘against’. This applies to juries in court rooms and par-
ticipants in political discussions, but can also find its way into mundane everyday
social settings.

Reasons behind polarization include a combination of peer pressure and the
way information exchange is carried out within group settings [29]. One impor-
tant aspect of this process is that individuals with a weak inclination towards
one opinion are likely to be confronted with louder voices expressing a radical-
ized version of the same opinion. As a result of exposure to new arguments and
desire to be part of a community, uncertain agents might leave their insecurities
behind and adopt a stronger position.

One purely network-theoretical factor related to polarization phenomena is
balance theory. Balance theory goes back to the foundation of the field of social
network analysis [17], and asserts that certain configurations of connections
between friends and enemies in a signed network with positive and negative links,
such as a triangle of two positive and one negative relation, are unstable and
therefore comparatively rarely observed. Key results in balance theory originat-
ing in the works of Harary [17] link this local property of unstable configurations
to the global property of a formation of groups of friends who are enemies with
everyone else. Group polarization is captured precisely in this global balance
property of networks divided into opposing parties.

In this paper we are interested in formal reasoning about polarization and
therefore about balance. First steps in this direction have been made: positive
and negative relations logic (PNL) [31,32] is a basic modal logic that uses two-
sorted Kripke frames to model networks where agents can be related positively
or negatively, but not both, and is used to axiomatize the class of networks
that are balanced (to a certain degree). While PNL can be seen as a logical
foundation for reasoning about balance, it has two particular downsides. First,
balance properties, and related properties such as non-overlapping positive and
negative relations and collective connectedness, are not modally definable in the
logical language, but can only be captured using a deduction rule. Second, the
logic only axiomatises the class of “almost” balanced networks, networks that
are balanced up to a degree set by a fixed parameter, and not the class of all
fully balanced networks. In this paper we study possible extensions of the basic
language of PNL in order to increase the expressive power in general and in
particular to be able to define the mentioned properties, including full balance, as
axioms. Towards this end, we systematically look at several expressive modalities
known from the literature, both static modalities such as the universal and the
difference modalities, the intersection modality, and nominals known from hybrid
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logic, and dynamic global bridge modalities known from sabotage modal logic [4].
We focus on the possibility of modal definability of the mentioned properties, as
first steps towards possible axiomatisations. In particular, we provide a logical-
dynamic characterisation of (full) balance. Along the way we also characterize
weak balance, which has not been logically characterized before.

We also introduce and evaluate several distance metrics on the class of mod-
els, and develop a tool to measure the distance between models which enables
us for any network to determine how far it is from being polarized.

The structure of the remainder of the paper is as follows. The following Sect. 2
consists of preliminaries; we present the social concept of balance and polariza-
tion as well as the basic PNL. In the next Sect. 3 we propose additions to PNL
in order to define a balance axiom, and show that the logic with these extensions
is not compact. Then in Sect. 4 we look at the in PNL modally undefinable frame
properties: collective connectedness and non-overlapping positive/negative rela-
tions. We discuss and compare the inclusion of various known modalities with
respect to definability. Section 5 is devoted to measures of distance in terms of
balance to analyze how close a network is to polarization. We present three
metrics and discuss strengths and weaknesses before using an example for com-
parison. In the final Sect. 6 we conclude the paper and discuss future directions
of the work.

2 Preliminaries: Balance and PNL

We begin by presenting PNL which we extend and use in later sections. We also
look at structural balance theory and its relation to polarization while studying
how this particular logic expresses essential properties of the theory. The section
concludes with a discussion of motivations to expand on this framework.

As a well-known concept from the field of social network analysis, balance
is defined on signed social networks. A signed network is an undirected graph
consisting of agents and relations between them, represented as strictly either
positive or negative, but not both. For simplification we think of agents as friends
if they share a positive edge and as enemies if they are connected by a negative
edge.

Positive and negative relations logic (PNL) [31,32] models signed networks
as two-sorted Kripke frames1 with a set of possible worlds representing agents
and positive ‘+’ and negative ‘−’ binary relations representing friendships and
enmities, respectively. See Fig. 1 for an example.

2.1 Syntax and Semantics of PNL

Definition 1 (Syntax of PNL [31]). Let At be a countable set of propositional
letters. We define the well-formed formulas of the language LPNL to be generated
by the following grammar:

φ ::= p | ¬φ | (φ ∧ φ) | �φ | �φ

1 We will assume some familiarity with Kripke semantics for modal logic; see, e.g., [5].
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where p ∈ At. We define propositional connectives like ∨,→ and the formulas
�,⊥ as usual. Further, we define the duals as standard ⊞ := ¬�¬ and ⊟ := ¬�¬.

To rightfully depict relations R+ and R− as edges in a signed graph, both
relations are symmetric as signed graphs are undirected. R+ is reflexive, demand-
ing agents to have a positive relation to themselves. Moreover, relations are non-
overlapping [31,32]: no two agents can be related by both a positive and negative
relation. Some networks, but not all, are collectively connected : all agents in the
graph or subgraph that constitutes the network under consideration, are related,
either positively or negatively. Formal definitions of non-overlapping and collec-
tive connectedness follow.

Definition 2 (Non-overlapping and Collective Connectedness). Let A
be a non-empty set of agents and R+ and R− be two binary relations on A. We
define the following properties of R+ and R−:

– R+ and R− are non-overlapping iff ∀a, b ∈ A : (a, b) ∉ R+ or (a, b) ∉ R−.
– R+ and R− are collectively connected iff ∀a, b ∈ A : aR+b or aR−b.

We can now define signed frames and models, and the semantics of PNL.

Definition 3 (Signed Frame and Model [31]). Let A be a non-empty set of
agents and R+ and R− be two symmetric and non-overlapping binary relations
on A where R+ is reflexive. Further, let V : At → ℘(A) be a valuation function.
A signed model is a tuple M = 〈A,R+, R−, V 〉. We define a pointed signed
model (M, a) where M is a signed model and a ∈ A its distinguished point, at
which evaluation takes place.

We call a signed model without valuation F = 〈A,R+, R−〉 a signed frame.

Definition 4 (Semantics of PNL [31]). Let M be a signed model and a an
agent in A. We define the truth conditions for PNL as follows:

M, a � p iff a ∈ V (p)
M, a � ¬φ iff M, a 
� φ

M, a � φ ∧ ψ iff M, a � φ and M, a � ψ

M, a � �φ iff ∃b ∈ A such that aR+b and M, b � φ

M, a � �φ iff ∃b ∈ A such that aR−b and M, b � φ

For a signed frame F and a formula φ ∈ LPNL, we write F � φ when φ is
valid in F: if φ is valid at every agent in F.

Intuitively, we read �φ to hold at an agent if and only if the current agent is
positively related to an agent where φ is true. Similarly, we read �φ to hold at
an agent if and only if the current agent is related negatively to an agent where
φ holds.



328 M. Y. Pedersen et al.

2.2 The Balance Theorem: Polarized Networks

Structural balance, referred to as balance for short, originates from theories
in social psychology [19], and also carries empirical support (in e.g. [22]). We
first define balance on a collectively connected network. A collectively connected
network with the balance property consists of triangles with either all positive
edges, or two negative edges and one positive edge. These triangles correspond
to the sociology-psychological motivation that “the enemy of my enemy is my
friend” and similarly “the friend of my enemy is my enemy” and “the friend of
my friend is my friend”. The last tendency has also been characterized as triadic
closure in social networks [16] and has been formalized in a logical framework in
[25]. We formally define balance on collectively connected signed frames as local
balance.

Definition 5 (Local Balance [32]). A signed frame F = 〈A,R+, R−〉 has the
local balance property iff ∀a, b, c ∈ A:

– if aR+b and bR+c, or aR−b and bR−c, then aR+c, and
– if aR+b and bR−c, or aR−b and bR+c, then aR−c.

We note that a network can have the local balance property without being
collectively connected: it can have single disconnected agents or consist of dis-
connected subgraphs each of which are collectively connected.

The Balance Theorem, proved by Harary in 1953 [17] shows an equivalence
on collectively connected networks between the local property of sets of three
agents and a global property of the network in its entirety: that all agents can
be divided into two groups where agents within groups are friends and agents
across groups are enemies.

The general version of the Balance Theorem defined on general signed net-
works as discussed in [13] states the following equivalence: a signed network can
be divided into two opposing groups if and only if it is possible to “fill in the
missing edges” to construct a collectively connected signed frame with the local
balance property. See the signed frame F in Fig. 1 for an example. For simplicity,
we have omitted positive reflexive arrows. Here we can divide agents into the
two sets X = {a, c} and Y = {b, d} where within the sets, agents are friends,
and, if related, enemies towards members of the other set. Note that we can “fill
in” a negative relation between c and d such that the signed frame has the local
balance property.

The characterization of balance does not end here: a signed frame is balanced
if and only if there are no simple cycles with an odd number of negative edges
[8]. We refer to these cycles as negative cycles. A simple cycle, often just called
a cycle, is defined in graph theory as a path of nodes and at least three edges,
in which the first and last nodes are the same and visited exactly twice [13].
Otherwise all nodes are distinct. Examples of cycles in Fig. 1 are aR−bR−cR+a
and aR−bR+dR−a. We note in agreement with the Balance Theorem that the
cycles are not negative. The general Balance Theorem is summarized below.



Further Steps Towards a Logic of Polarization in Social Networks 329

Fig. 1. Division of agents in A into sets X and Y .

Theorem 1 (The Balance Theorem). Let F = 〈A,R+, R−〉 be a signed
frame. F has the balance property iff it satisfies the following equivalent prop-
erties:

1. There exists a collectively connected signed frame F
′ = 〈A′, R+′

, R−′〉 such
that A = A′, R+ ⊆ R+′

and R− ⊆ R−′
that has the local balance property;

2. There exists a set of agents S ⊆ A such that ∀a, b ∈ A:
– if aR+b, then a, b ∈ S or a, b ∈ A ∖ S, and
– if aR−b, then a ∈ S and b ∈ A ∖ S, or a ∈ A ∖ S and b ∈ A;

3. There are no negative cycles in F.

The resemblance between balance and polarization is captured in the global
definition of balance. A balanced signed frame can be divided into two opposing
groups, just as in a polarized social setting. A balanced network is a polarized
one. However, it is important that we specify that this interpretation of polariza-
tion is not a general definition; we are looking specifically at signed networks of
positive and negative relations constructed on certain properties like symmetry
and non-overlapping. Still, we also note that to speak of polarization one must
assume some positive and negative attitudes. Signed networks turn out to pro-
vide a useful foundation for analyzing a simplification of personal and collective
opinion, and of polarization in particular. Analogies between balance and polar-
ization is not novel in this paper, and can be found in literature such as [6,10,30].
We will therefore use the terms balance and polarization interchangeably in what
follows.

2.3 Weak Balance: More than Two Extremes

Before we turn to examine the axiomatization of PNL, we briefly introduce
the notion of weak balance, first proposed by Davis in 1967 [10]. Weakly locally
balanced frames are supersets of locally balanced frames that disallow only one
type of triangle: with two positive edges and one negative edge.
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Definition 6 (Weak Local Balance). A signed frame F = 〈A,R+, R−〉 has
the weak local balance property iff ∀a, b, c ∈ A:

– if aR+b and bR+c, then aR+c, and
– if aR+b and bR−c, or aR−b and bR+c, then aR−c.

Davis [10] proved a similar Balance Theorem for weak balance, although in
this case the global property of weak balance characterizes the possibility of
dividing agents into not just two, but any number of sets of ‘friends’. Weakly
balanced signed frames are polarized with respect to a collection of groups,
where relations within each group are positive and all relations between agents in
different groups are negative. Analogous to (strong) balance, a weakly balanced
signed frame also has a cycle property: it cannot contain a simple cycle with
only one negative edge. We state the Weak Balance Theorem as follows.

Theorem 2 (Weak Balance Theorem). Let F = 〈A,R+, R−〉 be a signed
frame. F has the weak balance property iff it satisfies the following equivalent
properties:

1. There exists a collectively connected signed frame F
′ = 〈A′, R+′

, R−′〉 such
that A = A′, R+ ⊆ R+′

and R− ⊆ R−′
that has the weak local balance

property;
2. ∃S1, . . . , Sn ⊆ A for n ∈ N such that ∀a, b ∈ A:

– if aR+b, then a, b ∈ Sm for some m, and
– if aR−b, then a ∈ Ss and b ∈ St for some s 
= t;

3. There are no cycles with exactly one negative edge in F.

Studies, such as [21], have found strong balance to be too restrictive as a
common property of real-world social networks and propose weak balance as a
more likely alternative. In the literature on PNL, weak balance is only mentioned
in passing and not included in the formalization. We keep both definitions as
they serve different purposes. A network of football fans might converge to a
weakly balanced graph structure where supporters of the same team agree and
disagree with supporters from other teams in plural. In the context of particular
political issues, like Brexit or anti-vaccination, the same network could converge
to a strongly polarized network in camps of ‘yes’ and ‘no’. Depending on the
social context and research goal, both balance definitions are valuable in their
own respect.

2.4 Axiomatization

It is important to first note that balance, non-overlapping and collective connect-
edness are all undefinable in the language of PNL. Balance (up to a degree n)
and non-overlapping are defined in the axiomatization given in [32] with a rule,
not an axiom, and there is no axiomatization for full balance. In later sections
we discuss possible extensions to the language of PNL to define these properties
with axioms.
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As shown in [32], local balance is definable by the following axiom 4B.

((�� p ∨�� p) → �p) ∧ ((�� p ∨�� p) → �p) (4B)

Lemma 1 ([32]). For any signed frame F, F � 4B iff F has the local balance
property.

Recall that local balance is the balance property relevant for collectively
connected signed frames, where we assume that all agents are related to one
another. For this reason, the 4B-axiom is not included in the axiomatic system
for PNL.

By modifying the 4B-axiom to adapt to the local weak balance conditions,
we get the 4W-axiom with the corresponding lemma, novel in this paper.

(�� p → �p) ∧ ((�� p ∨�� p) → �p) (4W)

Lemma 2. For any signed frame F, F � 4W iff F has the weak local balance
property.

Proof. (⇒) Proof by contraposition. Let F = 〈A,R+, R−〉 be a signed frame
without the weak local balance property. Then, without loss of generality
∃a, b, c ∈ A such that aR+b, bR+c and aR−c. Now, let V be a valuation on
F such that V (p) = {c}. It follows that 〈F, V 〉, a � � � p. However, by the
non-overlapping property, we have that (a, c) ∉ R+. Thus 〈F, V 〉, a 
� �p. We
have that 〈F, V 〉, a 
� �� p → �p and hence F 
� 4W.

(⇐) Let F = 〈A,R+, R−〉 be a signed frame with the weak local balance
property and fix an arbitrary valuation V and a ∈ A. Assume that 〈F, V 〉, a �
� � p. Then ∃b ∈ A such that aR+b and 〈F, V 〉, b � �p. Thus it follows that
∃c ∈ A such that bR+c and 〈F, V 〉, c � p. By the weak local balance property
aR+c and hence 〈F, V 〉, a � �� p → �p. Now assume that 〈F, V 〉, a � �� p.
Then ∃b, c ∈ A such that aR+b and bR−c where 〈F, V 〉, c � p. The weak local
balance property of F demand aR−c and therefore 〈F, V 〉, a � �p. By similar
reasoning 〈F, V 〉, a � �p if we assume 〈F, V 〉, a � �� p. Hence it follows that
〈F, V 〉, a � (��p → �p)∧ ((��p∨��p) → �p) and as we fixed an arbitrary
V and a ∈ A we conclude that F � 4W. ��

In [32], the axiomatic system called pnln over the language LPNL is intro-
duced for each n ∈ N+.2 The number represents balance up to the degree n: that
there are no negative cycles of length less than or equal to n. [32] proves that
pnln is sound and weakly complete with respect to the class of n-balanced mod-
els. This gives us an axiomatization of n-balance, not of balance in the general
sense. Included in the axiomatization as the only component dependent on n is
an inference rule called Nbn. As this rule requires an extensive presentation of
concepts with details outside the scope of this paper, we refer to the original
literature in [32] or to the presentation of PNL in [24].

2 We denote N ∖ {0} as N
+.
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We conclude this preliminary section with a short recap of the essential prop-
erties of PNL and the motivations leading us to expand on this framework.
PNL is a two-sorted modal logic developed to analyze the concept of balance
in social networks. A full axiomatic system is given, but there is no formula in
LPNL that defines the frame property of being balanced for all signed frames;
balance is captured by a rule, not an axiom. Additionally, this rule only defines
n-balance, not general balance. Furthermore, the non-overlapping property, i.e.,
that no two agents can be both positively and negatively related, is similarly not
modally definable in PNL and also captured by the Nbn-rule. Local balance
is the balance property on signed frames that are collectively connected: where
all agents have a relation to each other. Signed frames with single disconnected
points or a set of collectively connected frames disconnected to one another can
also have the local balance property. Local balance is characterized with the
4B-axiom, whereas collective connectedness is modally undefinable. We extend
the formal landscape by taking weak balance into account and define the 4W-
axiom. Motivated by the undefinability of the properties mentioned above, in
the next sections we explore additions to the language of PNL such that they
become definable.

3 Speaking of Balance

In this section we introduce a universal operator and dynamic modalities for
global link addition to define a dynamic characterization of balance. We also
show that this extended fragment of PNL is non-compact.

3.1 A Balance Axiom

Recall that the only formula we have in PNL to define balance on a signed frame
is axiom 4B defining the local balance property. To begin to resolve the issue
of defining balance, we introduce the standard global modality [A] and global
link-adding modalities 〈�+〉 and 〈�−〉. The global link-adding modalities take
inspiration from sabotage modal logic [4] and bridge operators found in literature
such as [3]. The semantics of these modalities is presented below.

Definition 7 (Semantics of Global Addition Modalities). Let M =
〈A,R+, R−, V 〉 be a signed model and a ∈ A. We define truth conditions for
the new modalities as follows:

M, a � [A]φ iff ∀b ∈ A : M, b � φ

M, a � 〈�+〉φ iff ∃b, c ∈ A such that b, c ∉ R− and

〈A,R+ ∪ {(b, c), (c, b)}, R−, V 〉, a � φ

M, a � 〈�−〉φ iff ∃b, c ∈ A such that b, c ∉ R+ and

〈A,R+, R− ∪ {(b, c), (c, b)}, V 〉, a � φ
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Intuitively, the formula [A]φ states that φ is true at all agents in the network.
〈�+〉φ is forced at an agent if and only if φ is true at the current agent after
adding a positive link somewhere in the network. Similarly in the negative sense
for 〈�−〉φ.

We also include choice and iteration modalities inspired by known dynamic
logics such as propositional dynamic logic (PDL) [5]. We accommodate them to
the global link-adding modalities of our language and define them accordingly.

Definition 8 (Semantics of Choice and Iteration Modalities). Let M =
〈A,R+, R−, V 〉 be a signed model and a ∈ A. We define truth conditions for the
global addition choice and iteration modalities as follows:

M, a � 〈� + ∪ � −〉φ iff 〈�+〉φ or 〈�−〉φ
M, a � 〈(� + ∪ � −)∗〉φ iff ∃n ľ 0 such that
M, a � 〈� + ∪ � −〉 · · · 〈� + ∪ � −〉

︸ ︷︷ ︸

n

φ

〈� + ∪ � −〉φ is true at an agent if and only if φ is true at the current agent
after adding a positive or negative link somewhere in the network. We read the
iterated modality as 〈(� + ∪ � −)∗〉φ true at an agent if and only if φ holds at
the current agent after adding a finite number of positive or negative edges to
the signed frame. With the newly defined modalities we present the axiom BG.

〈(� + ∪ � −)∗〉[A]4B (BG)

To show that BG defines balance, we need Corollary 1 of the Balance
Theorem.

Corollary 1. A locally balanced signed frame F = 〈A,R+, R−〉 is balanced.

When a signed frame F is locally balanced and collectively connected, Corol-
lary 1 is one direction of the Balance Theorem. As mentioned, a frame can
however have the local balance property while not being collectively connected.
It might consist of groups (subgraphs) each of which are collectively connected,
but not related to each other. Yet, this locally balanced signed frame will still
be generally balanced. By the Balance Theorem, every disconnected component
of the frame will have the cyclic balance property. Having them together in the
same frame will not affect this cyclicness. Hence, the corollary follows directly
from the Balance Theorem. We now present the subsequent lemma.

Lemma 3. For any finite signed frame F, F � BG iff F has the balance property.

Proof. (⇒) Let F = 〈A,R+, R−〉 be a finite signed frame such that F �
BG. Let V be an arbitrary valuation on F and let M = 〈F, V 〉. Let a ∈
A. We have that M, a � BG. Then there exists b1, . . . , bj ∈ A such that
〈A,R+ ∪ {(bm, bn), . . . }, R− ∪ {(bs, bt), . . . }, V 〉 � [A]4B. For simplicity, call
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〈A,R+ ∪ {(bm, bn), . . . }, R− ∪ {(bs, bt), . . . }〉 = F
′ and 〈F′, V 〉 = M

′. We now
have that ∀b ∈ A, M′, b � 4B. Since we fixed an arbitrary valuation V , it follows
that F

′ � 4B. By Lemma 1 we have that F
′ has the local balance property. By

Corollary 1, F′ is balanced and thus by the Balance Theorem 1 there exists a
collectively connected frame F

′′ = 〈A′′, R+′′
, R−′′〉 with the local balance prop-

erty such that A′′ = A′, R+′ ⊆ R+′′
and R−′ ⊆ R−′′

. Since F ⊆ F
′ ⊆ F

′′ it
follows that F ⊆ F

′′ and hence again by the Balance Theorem, F has the balance
property.

(⇐) Let F = 〈A,R+, R−〉 be a finite signed frame with the balance property.
Then by the Balance Theorem 1 there exists a collectively connected frame
F

′ = 〈A′, R+′
, R−′〉 such that A = A′, R+ ⊆ R+′

and R− ⊆ R−′
that has

the local balance property. It follows from Lemma 1 that F
′ � 4B. Fix an

arbitrary valuation V and an arbitrary a ∈ A. It follows that 〈F′, V 〉, a � [A]4B.
Since A = A′, R+ ⊆ R+′

and R− ⊆ R−′
, it follows directly that 〈F, V 〉, a �

〈(� + ∪ � −)∗〉[A]4B. As we chose an arbitrary V and a ∈ A, we conclude that
F � BG. ��

The BG formula holds at any agent in the network if and only if axiom 4B
will be forced at all agents after adding a finite number of positive and negative
edges anywhere in the signed frame. This is essentially characterizing the Balance
Theorem: the formula holds at an agent in a signed frame F if and only if there
exists a superframe of F where the local balance property holds.

It follows directly that we have the analogous BW -axiom relative to weak
balance with a lemma proved similarly as in the case of Lemma 3.

〈(� + ∪ � −)∗〉[A]4W (BW )

Lemma 4. For any signed frame F, F � BW iff F has the weak balance property.

3.2 Non-compactness

Logics with iteration modalities such as common knowledge [15] or iteration in
PDL [5], are often not compact. Non-compactness is a consequence of the interac-
tion of the iteration modalities and the other modalities, and it is not completely
obvious that the extended logic with the iteration modality introduced above is
not compact. However, we show that it is not. As a counter example to compact-
ness, consider the following theory, where S∗ denotes the set of finite strings of
symbols from the set S (so {〈�+〉, 〈�−〉}∗ below denotes the set of all sequences
of the 〈�+〉 and 〈�−〉 modalities; e.g, 〈�+〉〈�−〉〈�−〉):

Γ = {〈(� + ∪ � −)∗〉 ⊟�p,¬X ⊟�p : X ∈ {〈�+〉, 〈�−〉}∗}
Γ is not satisfiable (there is no pointed signed model that satisfies all formulas

in Γ ): if M, a � 〈(� + ∪ � −)∗〉 ⊟ �p then there is some n such that M, a �
〈�+∪�−〉n ⊟�p, which by the semantics means that M, a � X ⊟�p for some
X ∈ {〈�+〉, 〈�−〉} with |X| = n, which is a contradiction.
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However, every finite subset Γ ′ of Γ is satisfiable. First, observe that if Γ ′ does
not contain 〈(�+∪�−)∗〉⊟�p it is trivially satisfiable (say, by two connected
points where p is false in both). Second, assume that 〈(�+ ∪ �−)∗〉⊟�p ∈ Γ ′ and
let m ≥ 0 be the largest m such that there is a X ∈ {〈�+〉, 〈�−〉}∗ with |X| = m
and ¬X⊟�p ∈ Γ ′. Let M be the model in Fig. 2. We see that M, a � ¬Y ⊟�p for
any Y ∈ {〈�+〉, 〈�−〉}∗ with |Y | ≤ m; all m + 1 dotted edges need to be added
for ⊟� p to be true in a – which is exactly why M, a � 〈(� + ∪ � −)∗〉 ⊟�p as
well.

Fig. 2. Model M, consisting of all points and the solid edges. The dotted edges are the
potential edges that if added make ⊟ � p true in a. All edges are symmetric. Positive
reflexive loops omitted.

Consequently, the logic with the iteration modality is not strongly
axiomatizable.

4 Collective Connectedness and Non-overlapping

We proceed with a discussion of additions to LPNL to define collective connected-
ness and non-overlapping. We show that collective connectedness can be defined
by the inclusion of the universal modality introduced in the previous section. We
present nominals, an intersection modality and a difference operator as possi-
ble candidates for extensions guaranteeing an axiom for non-overlapping, where
the latter also gives us a collective connectedness axiom without the universal
modality.

4.1 Universal Modality

Recall that the collective connectedness property is modally undefinable in
PNL. By adding the global modality [A] we get the axiom C for collective
connectedness.

(⊞p → [A]p) ∨ (⊟p → [A]p) (C)

Lemma 5. For any signed frame F, F � C iff F satisfies collective
connectedness.
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Proof. (⇒) Let F = 〈A,R+, R−〉 be a signed frame and F � (⊞p → [A]p)∨(⊟p →
[A]p). Fix a ∈ A arbitrarily. For any V : 〈F, V 〉, a � (⊞p → [A]p) ∨ (⊟p →
[A]p). Then 〈F, V 〉, a � ⊞p → [A]p or 〈F, V 〉, a � ⊟p → [A]p. Let V (p) = {b |
aR+b or aR−b}. Fix c ∈ A arbitrarily. We want to prove that 〈F, V 〉, c � p.
Assume that 〈F, V 〉, a � ⊞p → [A]p. By V , we have 〈F, V 〉, a � ⊞p and thus
〈F, V 〉, a � [A]p. Therefore 〈F, V 〉, c � p. Similarly for the case where 〈F, V 〉, a �
⊟p → [A]p. Since we fixed a, c ∈ A arbitrarily, we conclude that F is collectively
connected.

(⇐) Let F = 〈A,R+, R−〉 be a signed frame with the collective connectedness
property. Then ∀a, b ∈ A : aR+b or aR−b. Suppose for reduction that ∃a ∈ A and
V such that 〈F, V 〉, a 
� (⊞p → [A]p) ∨ (⊟p → [A]p). Then 〈F, V 〉, a � ¬(⊞p →
[A]p)∧¬(⊟p → [A]p). Thus 〈F, V 〉, a � (⊞p∧⊟p)∧¬[A]p. Then ∃b ∈ A such that
〈F, V 〉, b 
� p. As 〈F, V 〉, a � ⊞p ∧ ⊟p and aR+b or aR−b, this is a contradiction.
Hence F � (⊞p → [A]p) ∨ (⊟p → [A]p). ��

The following corollaries follow directly from this lemma.

Corollary 2. For any signed frame F, F � 4B+C iff F is locally balanced and
has the collective connectedness property.

Corollary 3. For any signed frame F = 〈A,R+, R−〉, F � BG iff ∃F′ =
〈A′, R+′

, R−′〉 such that A = A′, R+ ⊆ R+′
, R− ⊆ R−′

and F
′ � 4B + C.

4.2 Nominals

One possibility is to add nominals in the hybrid tradition. We keep the formal
discussion of nominals rather brief and suggest that the reader turns to [2] for
further details. Nominals are a set of propositional variables where output of the
valuation function is a singleton: any nominal can only be true at exactly one
world. In practice, this lets us assign a name to individual agents in the network.

We extend the set of propositional variables to be the union of two sets At and
Nom with an empty intersection. At is the set of propositional atoms, whereas
Nom is the set of nominals. We also modify our valuation function and call it VH

such that VH : At∪Nom → ℘(A) satisfies the property: for all i ∈ Nom, |VH(i)| =
1. We denote members of At = {p, q, r, . . . } and Nom = {i, j, k, . . . }. Satisfaction
of nominals in a signed model with nominals M = 〈A,R+, R−, VH〉 and a ∈ A is
defined as with propositional variables:

M, a � i iff a ∈ VH(i)

We call the language of PNL including nominals LPNLi
and present the

nominal axiom for non-overlapping NH with a matching lemma.

i → ⊟(�i → i) (NH)

Since we defined signed frames as already having the non-overlapping prop-
erty, we define general frames and general models to be signed frames and models
without any restrictions on the binary relations R+ and R−.
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Definition 9 (General Frame and Model). Let A be a non-empty set of
agents and R+ and R− be two binary relations on A. Further, let V : At → ℘(A)
be a valuation function. A general model is a tuple M = 〈A,R+, R−, V 〉.

We call a general model without valuation F = 〈A,R+, R−〉 a general
frame.

Lemma 6. For any symmetric general frame F = 〈A,R+, R−〉 of LPNLi
, F �

NH iff F has the non-overlapping property.

Proof. (⇒) Proof by contraposition. Let F = 〈A,R+, R−〉 be a symmetric
general frame without the non-overlapping property. Then ∃a, b ∈ A such
that aR+b and aR−b. Let VH(i) = {a} be a valuation on F. It follows that
〈F, VH〉, b 
� i. By symmetry bR+a and thus 〈F, VH〉, b � �i. Therefore we have
〈F, VH〉, b � ¬(�i → i) and as aR−b it follows that 〈F, VH〉, a 
� ⊟(�i → i).
Hence F 
� i → ⊟(�i → i).

(⇐) Let F = 〈A,R+, R−〉 be a symmetric general frame with the non-
overlapping property. Suppose for reduction that there exists a ∈ A and a val-
uation VH on F such that 〈F, VH〉, a 
� i → ⊟(�i → i). Then 〈F, VH〉, a � i
and 〈F, VH〉, a � �(�i ∧ ¬i). It follows that ∃b ∈ A such that aR−b and
〈F, VH〉, b � �i ∧ ¬i. Since |VH(i)| = 1, it must be the case that bR+a. By
symmetry bR−a and thus we have reached a contradiction by non-overlapping.
We conclude that F � i → ⊟(�i → i). ��

Nominals greatly extends the expressivity of a logic. It is not always evident
what the motivation is beyond simply being allowed to express otherwise unde-
finable properties like irreflexivity, asymmetry, antisymmetry and intransitivity,
to mention some. However, when modeling agent based networks with a logic
like PNL, we already have an incentive to add nominals to make it clear who
we are modeling. Of course, this is not a novel approach to social network logics,
see, e.g., [9,25,27].

4.3 Intersection

Another possible option is to introduce an intersection modality, perhaps most
commonly used as a distributed knowledge operator known in the literature of
dynamic epistemic logic, such as [11,26]. We modify it to our purpose.

Definition 10 (Semantics of Intersection Modality). Let M = 〈A,R+,
R−, V 〉 be a general model and let a ∈ A. We define the semantics of the inter-
section modality 〈+ ∩ −〉 as follows:

M, a � 〈+ ∩ −〉φ iff ∃b ∈ A such that aR+b, aR−b and M, b � φ

By including this operator, the axiom for non-overlapping NI would sim-
ply be:

〈+ ∩ −〉 ⊥ (NI)
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Lemma 7. For any general frame F = 〈A,R+, R−〉, F � NI iff F has the non-
overlapping property.

We read 〈+ ∩ −〉φ to hold at an agent if and only if there exists another agent
that is both a friend and an enemy of the current agent where φ is true. That two
agents cannot be both friends and enemies is a property assumed in the original
work on signed graphs, and it is therefore difficult to see how the intersection
operator would have any application outside axiomatizing the non-overlapping
property.

4.4 Difference

A third possible solution is to introduce the difference operator 〈D〉.
Definition 11 (Semantics of Difference Operator [5]). Let M = 〈A,R+,
R−, V 〉 be a general model and let a ∈ A. The semantics of 〈D〉 is defined as
follows:

M, a � 〈D〉φ iff ∃b ∈ A such that b 
= a and M, b � φ.

With this definition, we introduce the axiom ND for the non-overlapping
property:

(p ∧ ¬〈D〉p) → (⊞(�p → p) ∧ ⊟(�p → p)) (ND)

Inclusion of the 〈D〉 modality is not hard to motivate. 〈D〉φ holds at an agent
if and only if there is another agent in the network where φ is true. We show the
following lemma.

Lemma 8. For any symmetric general frame F = 〈A,R+, R−〉, F � ND iff F

has the non-overlapping property.

Proof. (⇒) Let F = 〈A,R+, R−〉 be a symmetric general frame of LPNL〈D〉 such
that F � ND. Let a, b ∈ A and without loss of generality assume that aR+b. We
want to prove that (a, b) ∉ R−. Let V be a valuation on F such that V (p) = {a}.
It follows that 〈F, V 〉, a � p ∧ ¬〈D〉p. Since F � (p ∧ ¬〈D〉p) → (⊞(�p →
p) ∧ ⊟(�p → p)), we have that 〈F, V 〉, a � ⊞(�p → p) ∧ ⊟(�p → p). As aR+b,
then 〈F, V 〉, b � �p → p. We know that 〈F, V 〉, b 
� p, thus 〈F, V 〉, b 
� �p. Hence,
(b, a) ∉ R− and by symmetry (a, b) ∉ R−.

(⇐) Let F = 〈A,R+, R−〉 be a symmetric general frame of LPNL〈D〉 with the
non-overlapping property. Fix an arbitrary valuation V on F and a ∈ A. Assume
that 〈F, V 〉, a � p ∧ ¬〈D〉p. Then ¬∃b ∈ A such that b 
= a and 〈F, V 〉, b � p.
It follows that V (p) = {a}. Let c ∈ A such that aR+c. By symmetry and non-
overlapping (c, a) ∉ R−. Thus 〈F, V 〉, c 
� �p and hence 〈F, V 〉, c � �p → p.
Then 〈F, V 〉, a � ⊞(�p → p). Now, let d ∈ A such that aR−d. By similar
reasoning 〈F, V 〉, d � �p → p and thus 〈F, V 〉, a � ⊟(�p → p). It follows that
〈F, V 〉, a � (p ∧ ¬〈D〉p) → (⊞(�p → p) ∧ ⊟(�p → p)) and as we chose an
arbitrary V and a ∈ A, we conclude that F � ND. ��
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We show that we can also define collective connectedness with this operator:

(p ∨ 〈D〉p) → (�p ∨�p) (CD)

Lemma 9. For any signed frame F = 〈A,R+, R−〉, F � CD iff F has the col-
lective connectedness property.

Proof. (⇒) Proof by contraposition. Let F = 〈A,R+, R−〉 be a signed frame
without the collective connectedness property. Then ∃a, b ∈ A such that (a, b) ∉
R+ and (a, b) ∉ R−. Now let V (p) = {b} be a valuation on F. Thus, 〈F, V 〉, a �
〈D〉p. Yet we have that 〈F, V 〉, a � ¬�p∧¬�p as a and b are neither positively
nor negatively related. It follows that 〈F, V 〉, a 
� (p ∨ 〈D〉p) → (�p ∨�p) and
hence F 
� (p ∨ 〈D〉p) → (�p ∨�p).

(⇐) Let F = 〈A,R+, R−〉 be a signed frame with the collective connectedness
property. Let a ∈ A be an arbitrary agent and V an arbitrary valuation on F. Now
assume that 〈F, V 〉, a � p ∨ 〈D〉p. Then ∃b ∈ A such that 〈F, V 〉, b � p. By the
collective connectedness property aR+b or aR−b and thus 〈F, V 〉, a � �p ∨�p.
Since we chose a and V arbitrarily we conclude that F � (p∨〈D〉p) → (�p∨�p).

��
5 Measuring Polarization

The aim of this section is to investigate networks that can change from imbal-
anced to balanced, and in particular to analyze how far a network is to being
polarized. We begin by assessing different properties that a measure of distance
might have. Then we introduce several measures of distance from a balanced
model found in the literature, but accommodated to a logical framework. We
contrast advantages and disadvantages of each metric and compare them using
an example.

5.1 Distance Properties

In literature such as [1,7], the distance between two standard Kripke models is
defined as a mapping from an ordered pair of two models to a real number. This
mapping usually has to satisfy certain properties. The core feature of what we
will call balanced distance is to measure how far a signed model is from being
balanced. Therefore, we define balanced distance as a mapping from one signed
model to a real number.

Definition 12 (Balanced Distance Measure). Let M be the class of signed
models. A balanced distance measure is a mapping d : M → R which satisfies
the following properties:

[nonnegativity] d(M) ľ 0,
[balance indistinguishability] d(M) = 0 iff M is balanced.
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There are other restrictions we can impose on balanced distance depending
on motivation and purpose. One candidate is long cycle discrimination. Studies
show that longer cycles have less effect on people’s tension than shorter cycles
[14]. Moreover, the number of cycles in a network of a given length generally
increases with length [21]. A count of cycles would therefore be dominated by
long cycles. This might motivate the need for a metric that downplays the role
of longer cycles in the calculation.

By simply counting the number of negative cycles, we do not distinguish
between cases where the cycles overlap and cases where they do not. Imagine
a network containing only two overlapping negative cycles on one edge. There
is only need of a single link change for the network to become balanced. In a
network of the same two negative cycles, however in this case not overlapped,
we require two link changes for the purpose of a balanced network. Counting
the number of negative cycles determines the same balanced distance between
these two networks. This problem might provoke the need for an overlapping
cycle discrimination.

Lastly, note that for all measures of balanced distance there is a correspond-
ing weakly balanced version. As balance always entails weak balance, balanced
and weakly balanced measures might, but not necessarily, be identical. With all
properties listed here in mind, we turn to examine some options for a concrete
notion of balanced distance.

5.2 Counting Cycles

By the Balance Theorem, imbalance is directly related to negative cycles. This
observation was applied to balanced distance already in a paper by Cartwright
and Harary in 1956 [8] and realized as degree of balance. Degree of balance in its
original form is the number of non-negative cycles, divided by the total number of
cycles. To ensure output 0 when the model is balanced, we appropriately rename
our variation degree of imbalance and divide the number of negative cycles by the
number of cycles. We also consider the weak version in the following definition.

Definition 13 (Degree of Imbalance). Let c−(M) be the number of negative
cycles in M, and c(M) be the total number of cycles in M. Let c−W (M) be the
number of cycles in M that have exactly one single negative edge. Note that
c−W (M) ⊆ c−(M) ⊆ c(M). Let M be the class of signed models. The degree of

imbalance is the map dDB : M → R such that dDB(M) = c−(M)
c(M) . The degree

of weak imbalance is the map dDBW : M → R such that dDBW (M) = c−W (M)
c(M) .

We observe that although this simple measure of distance is a balanced dis-
tance metric by Definition 12, it does not satisfy neither the long cycle nor
the overlapping cycle discrimination property. [21] defines another cycle count-
ing measure of balance motivated by long cycle discrimination, called level of
imbalance.

Definition 14 (Level of Imbalance [21]). Let M be the class of signed mod-
els. The level of imbalance is the map dBz : M → R such that dBz(M) =
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∑∞
k=1

Ik
zk

where Ik is the number of negative cycles of length k and z > 1 is a
free parameter. The weak level of imbalance is the map dBzW : M → R such

that dBzW (M) =
∑∞

k=1

IWk

zk
where IWk is the number of cycles with a single

negative edge of length k.

The level of imbalance satisfies the long cycle discrimination property in addi-
tion to being a measure of balanced distance. The measure divides the number of
negative cycles by a free parameter that increases by the negative cycle’s length.
Like the degree of imbalance, this metric does not satisfy the overlapping cycle
discrimination property.

5.3 Line Index of Imbalance

Line index of imbalance was proposed by Harary in 1959 [18] and follows a simple
idea: it measures the minimal number of edges to be deleted for the network to
be balanced. The measure has also been implemented in terms of weak balance
in [12].

Transition from a signed model to a submodel of fewer edges can seem unin-
tuitive when we imagine links between agents to represent positive and negative
relations. Where it is easy to imagine relations in a network to be created,
it might be slightly harder to think of situations where agents completely lose
touch. We can still of course regard line index of imbalance as a fruitful measure-
ment, although we also remark that the minimal number of edges deleted is the
same number as the smallest number of edges changing signs in order to make
the network balanced. The reasoning is as follows. By the Balance Theorem, a
network is balanced if and only if it has the potential to have the local structural
balance property for each set of three agents. That is, as long as it is possible
to fill in missing edges such as to create a collectively connected model where
all triangles have either three positive signs or one positive and two negative,
the signed model is balanced. Thus, changing signs in an imbalanced network
have the same purpose as deleting edges in terms of balance: each edge needed
to change signs could be deleted and now have the potential of the desired sign.

We present a novel definition of line index of imbalance for signed models.

Definition 15 (Line Index of Imbalance). Let M be the class of signed
models. The line index of imbalance is the map dLI : M → R such that

dLI(M) = min{∑

i∈{+,−} | |Ri|−|Ri′ |
2(|R+∪R−|−|A|) | | M′ = 〈A′, R+′

, R−′
, V ′〉 where A′ =

A and M
′ is balanced} where M = 〈A,R+, R−, V 〉. The line index of

weak imbalance is the map dLIW : M → R such that dLIW (M) =

min{∑

i∈{+,−} | |Ri|−|Ri′ |
2(|R+∪R−|−|A|) | | M

′ = 〈A′, R+′
, R−′

, V ′〉 where A′ =
A and M

′ is weakly balanced} where M = 〈A,R+, R−, V 〉.
Line index of imbalance satisfies the properties of a balanced distance. It does

not discriminate long cycles; in a network with both shorter and longer negative
cycles, line index of imbalance will output a number independent on the ratio
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between short and long negative cycles. As mentioned, line index of imbalance
satisfies the overlapping cycle property: in networks where cycles overlap, this
metric will not count twice any edges needed to be changed for the purpose of
balance.

5.4 Comparing Measures: How Far from Polarization?

We now look at an example to compare the different measures we have considered
in this section. How far the network is from being polarized or weakly polarized is
decided with respect to the measure one chooses to adopt. Consider the network
in Fig. 3 and call it M. Positive reflexive arrows are omitted for simplicity. We
calculate and compare the distance towards polarization in Table 1.

Fig. 3. A network that is not yet polarized.

We make some observations on Table 1. For the level of imbalance, z is a free
parameter with the choice z = 3 made deliberately for comparison. The degree
of imbalance is higher than the level of imbalance and line index of imbalance
for strong polarization. We also note that line index of imbalance has a slightly
higher measure than the other metrics with respect to weak polarization. As a
general analysis over all three measurements, we see that the network is relatively
far from being strongly polarized. Nevertheless, this is a social setting quite close

Table 1. How far is M in Fig. 3 from being polarized?

Strong polarization Weak polarization

Degree of Imbalance

dDB(M) =
c−(M)

c(M)
= 15

27 ≈ 0.556 dDBW (M) =
c−W (M)

c(M)
= 2

27 ≈ 0.074

Level of Imbalance

dBz(M) =
∑∞

k=1

Ik

zk
= 183

729 ≈ 0.251 for z = 3 dBzW (M) =
∑∞

k=1

IWk

zk
= 2

27 ≈ 0.074 for z = 3

Line Index of Imbalance

dLI(M) = 1
4 = 0.25 dLIW (M) = 1

6 ≈ 0.167
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to being weakly polarized. Recall that this would indicate a situation where the
agents are divided into a number of groups where there would be friendships
within, but hostility towards all other groups.

6 Conclusions and Future Work

After introducing structural balance and group polarization through positive
and negative relations logic known from the literature, we set out to expand this
logical framework with several intentions in mind. We presented a number of
additions to PNL to be able to define previously undefinable frame properties.
By extending the language with the universal modality and dynamic modali-
ties we introduced a dynamic characterization of the balance property. We also
showed that an axiom for collective connectedness is secured by the universal
modality or the difference operator, while non-overlapping can be defined with
an axiom by inclusion of nominals, an intersection modality or the difference
operator. Finally, we considered and compared a variation of distances in rela-
tion to balance to explore measures of how far a network is from polarization.

One obvious direction for future work is to prove completeness for the differ-
ent logics with the axioms we have identified. This is not trivial. First, as far as
we know there is no complete axiomatization of sabotage modal logic with the
bridge modality. Second, as we already pointed out, if we include the global iter-
ation modality together with the global addition modalities, the logic becomes
non-compact. As a consequence, the standard canonical model method cannot
be used (the standard truth lemma does not hold), but finitary methods, such
as using an appropriate notion of closure like in completeness proofs for PDL,
can possibly be used.

Another exciting prospect for future directions is to analyze network change
in signed models, by extensions to the language of PNL with further dynamic
modalities. Possible candidates are the following local link change and addition
modalities inspired by sabotage modal logic, most notably [4,23].

Definition 16 (Semantics of Local Dynamic Modalities). Let M =
〈A,R+, R−, V 〉 be a signed model and a ∈ A. We define truth conditions for
the local link change modalities as follows:

M, a � 〈⊕〉Lφ iff ∃b ∈ A such that aR−b and

〈A,R+ ∪ {(a, b), (b, a)}, R−
∖ {(a, b), (b, a)}, V 〉, a � φ

M, a � 〈⊖〉Lφ iff ∃b ∈ A such that aR+b, a 
= b and

〈A,R+
∖ {(a, b), (b, a)}, R− ∪ {(a, b), (b, a)}, V 〉, a � φ

M, a � 〈�+〉Lφ iff ∃b ∈ A such that (a, b) ∉ R+, (a, b) ∉ R− and

〈A,R+ ∪ {(a, b), (b, a)}, R−, V 〉, a � φ

M, a � 〈�−〉Lφ iff ∃b ∈ A such that (a, b) ∉ R+, (a, b) ∉ R− and

〈A,R+, R− ∪ {(a, b), (b, a)}, V 〉, a � φ
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We read 〈⊕〉Lφ to be true at an agent if and only if φ holds at the current
agent after changing one edge connected to this agent from negative to positive.
Similarly, we read 〈⊖〉Lφ to be true at an agent if and only if φ holds at the
current agent after changing one edge connected to this agent from positive to
negative. The modalities 〈�+〉L and 〈�−〉L operate in a close similarity to
〈�+〉 and 〈�−〉. Although where 〈�+〉φ holds at an agent if and only if φ is
true at the current agent after any link addition to the signed model, 〈�+〉Lφ
holds if and only if φ is true at the current agent after a link addition to the
signed model at that specific agent. Note that 〈�+〉Lφ implies 〈�+〉φ, but the
converse does not hold. The analogous implication holds for 〈�−〉 and 〈�−〉L.
These modalities enable stepwise analyses of the network dynamics from the
perspective of single agents. In a network M and agent a ∈ M, we could have
formulas like M, a � 〈�+〉L〈⊖〉L〈D〉φ stating that φ holds at another agent
than a after adding a positive link to a and changing a negative link to positive
from a.

On a final note, in light of logical analyses of social concepts it could be
interesting to give certain attributes to agents in the network. One alternative
is knowledge, as in epistemic frameworks such as [27]: could a polarized setting
change depending on what agents know about their social situations? Another
is communication: by implementing an information flow in the network we could
analyze which agents are likely to become friends based on information and infor-
mation access, e.g., by adopting a dynamic epistemic logic approach including
public and private announcements [11].
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32. Xiong, Z., Ågotnes, T.: On the logic of balance in social networks. J. Logic Lang.
Inf. 29, 53–75 (2020). https://doi.org/10.1007/s10849-019-09297-0

https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-3-319-32765-5
https://doi.org/10.1007/978-3-319-32765-5
https://doi.org/10.1007/978-3-662-60292-8_14
https://doi.org/10.1007/978-3-662-60292-8_14
https://doi.org/10.1007/s10849-019-09297-0


A Formalization of the Slippery Slope
Argument

Zhe Yu(B)

Institute of Logic and Cognition, Department of Philosophy,
Sun Yat-sen University, Guangzhou 510275, China

yuzh28@mail.sysu.edu.cn

Abstract. To bridge the gap between human reasoning and machine
reasoning, one of the key problems in argumentation research is how to
model natural language arguments by formal argumentation. The slip-
pery slope argument (SSA) is a commonly used type of argument in
the context of deliberation, with the intent of persuading people not to
take a particular action. In this paper, an argumentation theory for the
basic form of SSA is given based on the formal argumentation framework
ASPIC+ and argumentation schemes of SSA. Then, an SSA occurrence
in a popular blog post about gene editing is taken as an example. By ana-
lyzing the case, this paper tries to model these arguments based on our
argumentation theory and evaluates the arguments using abstract argu-
mentation frameworks. The paper then points out that since whether
an SSA is persuasive rests on whether its ultimate consequence is really
unacceptable to the audience, value judgement should play an important
role in the deliberation.

Keywords: Formal argumentation · Argumentation schemes ·
Slippery slope argument · Structured argumentation

1 Introduction

Argumentation is a cross-disciplinary topic involving multiple subjects such as
philosophy, cognitive science, logic, linguistics and computer science. There are
several research directions in the field of artificial intelligence, such as natural
language processing and argumentation mining, that can be combined with argu-
mentation and benefits from it [5]. As an approach for non-monotonic reasoning,
formal argumentation is promising to bridge the gap between human reasoning
and machine reasoning. To achieve this goal, a key problem is how to model
natural language arguments by formal argumentation.
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Based on this concern, argumentation schemes can be seen as a “semi-formal”
generalization of arguments [18]. Many researchers have shown their interests
in the formalization of argumentation schemes, such as the concerns for the
argumentation scheme of argument from expert opinion [1,9,16].

In [20], Walton mentioned that the slippery slope argument (SSA), as a sub-
class of argument from negative consequences, is commonly used in the context
of deliberation, with the intent of persuading people not to take an action that
is under consideration. Here is an interpretation of the possible applications of
SSA, taken from a book on informal logic [19].

Example 1. “You may hear such arguments in court. For example, the prosecut-
ing attorney may encourage you (the jury) to be stern, severe, and courageous
and not to shrink from your duty of demanding severe punishment for this guilty
defendant; otherwise, this crime will be unpunished, criminals will run amok, and
the social fabric of society will be threatened.”

Though has been introduced in many logic textbooks as a sort of fallacy,
there is also a lot of researchers hold the opinion that slippery slope arguments
can be legitimate if good reasons are given for deeming that the first action will
lead to catastrophic consequences [10,11,19,20]. Typically, SSA can be found
in the discussions about legal, biomedical, and ethical issues. For instance, the
topics of abortion, gay marriage, euthanasia, human gene therapy, etc.

This paper aims to formalise slippery slope arguments based on formal argu-
mentation theory, and discuss if we can evaluate a slippery slope argument using
formal methods. Firstly, by consulting the argumentation schemes for slippery
slope argument presented by Walton [21,22], we give a formal model of slippery
slope argument based on the structured argumentation framework ASPIC+

[14,15]. Afterwards, we attempt to give a formal definition of the Critical Ques-
tions for slippery slope argument schemes, thus bring the informal way for eval-
uating a slippery slope argument into our theory. Meanwhile, we point out that
the value judgement is an important factor in the evaluation of a slippery slope
argument. For illustration, this paper models an application of the slippery slope
argument found in a popular blog post using our argumentation theory.

The rest of this paper is structured as follows. In Sect. 2, we first summarize
the basic features of SSA according to Walton’s basic argumentation scheme for
SSA. Then an argumentation theory for SSA (called SSAT) based on a formal
argumentation system is constructed. After that, we try to define the Critical
Questions for evaluation of SSA. In Sect. 3, we analyze an SSA from nature
language text, and model it by SSAT. In Sect. 4, we briefly discuss some key
ideas of this paper and list several related works, while in Sect. 5 we summarize
this paper.

2 Argumentation Theory for SSA

In this section, we model the slippery slope argument based on Walton’s basic
scheme for this kind of argument and the structured argumentation framework
ASPIC+.
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2.1 Basic Components of SSA

Several kinds of SSA as well as their schemes have been mentioned in [10,20,
23], such as the Causal Slippery Slope Argument, the Sorites Slippery Slope
Argument, etc. In [21], Walton gives a basic scheme for SSA, intending to capture
the basic features of SSA. He also emphasized that “there are factors that help
to propel the argument and series of consequences along the sequence, making
it progressively harder for the agent to resist continuing to move ahead”. These
factors have been called “Drivers” [21].

Based on Walton’s interpretation, in this paper we use ‘a0’ to denote an
action under consideration, ‘an’ to denote a catastrophic outcome; ‘a1, a2, . . .,
ax, . . ., ay’ denotes a sequence of action or events between ‘a0’ and ‘an’, each
causes the next one, and ‘di’ (i = 1, 2, 3, . . .) denotes the drivers. Then we can
set out that an SSA has the following 8 basic components:

1. An initial event/action a0.
2. A sequence of events/actions: a0, a1, a2, . . ., ax, . . ., ay, . . ., an. As the

sequence proceeds, the consequences tend to become more serious.
3. Drivers: di. Catalyst that helps to propel the argument along the sequence

in the argument. Drivers could be factors like precedent, public acceptance,
vagueness, climate of social opinion, public acceptance, etc. [21]

4. Gray area: the area that starts at an undetermined point x (denoted by ax),
and end at another undetermined point y (denoted by ay). In this area a
slippery slope argument is turning form controllable to uncontrollable.

5. Controllable area: the area between the initial event/action and the gray area.
6. Uncontrollable area: the area between the gray area and the catastrophic

consequence.
7. Catastrophic consequence: an, which should be avoided if possible.
8. Conclusion: not to take the initial step a0.

According to this summarization, the developing process of an SSA can be
illustrated by Fig. 1.1

2.2 SSAT

Our current work is mainly based on the structured argumentation framework
ASPIC+, which is proposed by Prakken et al. in [14]. ASPIC+ is not a system
but a framework, so that people can specify or extend it as an instantiation, as
long as meeting some specific requirements.

Based on the above analysis of SSA, we can define an argumentation theory
for SSA. First of all, an argumentation theory starts with a logical language L.
Since an SSA always leads to a negative consequence, we add a symbol “⊥”
into the language of the argumentation theory, which denotes “bad/unwanted
(consequence)”.

1 In a proper SSA, Drivers should always exist within every step. Here we write d1,
d2 and d3 as an example.
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d1, a0: initial event/action

Gray Area

Uncontrollable Area

an: catastrophic outcome

d2, ax

d3, ay

Controllable Area

sequence of events/actions

Fig. 1. Process of an SSA

What’s more, we divide the rules used in the SSA into two kinds: slippery
slope rules and consequence judgements rules, denote as Rsl and Rj respec-
tively. The slippery slope rules are always defeasible, and that’s the reason an
SSA is “sloping”; on the contrary, since an SSA must include a bad/unwanted
consequence, the consequence judgements rules are always strict.

Then a knowledge base K is needed, which contains the premise sets of an
argumentation theory, and from which we can proceed to build arguments. We
put “¬⊥” into the premise set, because if something is bad/unwanted, people
are supposed to resist it instinctively. As for the premises of the SSA, the initial
step is more like a presumption, or something that is still under consideration,
so that we use K0 = {a0, b0, c0, . . .} to denote the set of initial actions/events.2

Since an argument A = a0 represents a pending event or action, if A attacks
other arguments without any supporter, it seems counterintuitive. Conversely, if
A is not attacked by any other argument, it should be acceptable. Meanwhile,
there is no reason not to accept any argument that depend on A, otherwise the
entire SSA and its sub-arguments would be unacceptable.

Last but not least, we use C to denote the set of actions/events, and D to
denote the set of drivers.

An argumentation theory for SSA can be defined as follows.

Definition 1 (SSAT). A slippery slope argumentation theory (SSAT ) is a
tuple SSAT = (L, ,̄R, n,K, C,D), where:

2 The idea of K0 was inspired by Prakken [15], where the knowledge base K consists of
4 disjoint subsets: Kn, Kp, Ka, Ki, which are respectively the sets of axioms, ordinary
premises, assumptions, and issues. The definitions of the axioms and the ordinary
premises are the same as in this paper, while attacks on the assumptions are always
succeed, and an issue must always be backed with a further argument. However,
since the initial premise in the SSA is not only an event/action under consideration,
but also the premise of the SSA and its sub-arguments, none of the above premise
sets is particularly suitable as the set of initial premises of the SSA.
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– L is a logical language; ⊥ ∈ L.
– ¯ is a function from L to 2L, such that

1. ϕ is a contrary of ψ if ϕ ∈ ψ, ψ /∈ ϕ;
2. ϕ is a contradictory of ψ, if ϕ ∈ ψ, ψ ∈ ϕ (denoted by ‘ϕ = −ψ’); 3

3. each ϕ ∈ L has at least one contradictory.
– n is a partial function such that n: Rd → L.
– R = Rs ∪Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the

form ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively ( ϕi, ϕ are elements
in L), and Rs ∩ Rd = ∅. rsl ∈ Rsl ⊆ Rd is slippery slope rule of the form
ϕ1, . . . , ϕn ⇒sl ϕ, Rsl 
= ∅; rj ∈ Rj ⊆ Rs is consequence judging rule of the
form rj = ϕ1, . . . , ϕn →j ⊥, Rj 
= ∅.

– K ⊆ L is a knowledge base in an argumentation system, consisting of three
disjoint subsets Kn, Kp and K0 (i.e. K = Kn ∪ Kp ∪ K0), where:
1. Kn is a set of axioms;
2. Kp is a set of the ordinary premises, such that ¬⊥ ∈ Kn ∪ Kp;
3. K0 is a set of initial steps in a slippery slope argument of the form K0 =

{a0, b0, c0, . . .}, where a0, b0, c0 are initial actions or events.
– C is a set of actions or events in a slippery slope argument of the form

C = {a0, . . . , an, b0, . . . , bm, c0, . . . , cq, . . .} ⊆ L, where ai, bj, ck are actions
or events; K0 ⊆ C.

– D is a set of drivers, D = {d1, . . . , dn} ⊆ Kp, where di is a driver.

We use Prem(A) to denote all the formulas of K that used to build an
argument A, Conc(A) to denote the conclusion of A, Sub(A) to denote all the
sub-arguments of A, DefRule(A) to denote all the defeasible rules of A, and
TopRule(A) to denote the last rule of A. Depending on ASPIC+, an argument
in SSAT can be defined as follows.

Definition 2 (Arguments). An argument A on the basis of an SSAT =
(L, ,̄R, n,K, C,D) is defined as:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}, Conc(A) = ϕ, Sub(A) = {ϕ},
DefRules(A) = ∅, TopRule(A) = undefined.

2. A1, . . ., An → ψ if A1, . . ., An (n ≥ 1) are arguments such that there
exists a strict rule Conc(A1), . . ., Conc(An) → ψ in Rs with: Prem(A) =
Prem(A1) ∪ . . . ∪ Prem(An); Conc(A) = ψ; Sub(A) = Sub(A1) ∪ . . . ∪
Sub(An) ∪ {A}; DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An);
TopRule(A) = Conc(A1) . . . Conc(An) → ψ.

3. A1, . . .,An ⇒ ψ if A1, . . ., An (n ≥ 1) are arguments such that there exists
a defeasible rule Conc(A1), . . ., Conc(An) ⇒ ψ in Rd with: Prem(A) =
Prem(A1) ∪ . . . ∪ Prem(An); Conc(A) = ψ; Sub(A) = Sub(A1) ∪ . . . ∪
Sub(An) ∪ {A}; DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(αn)∪
{Conc(A1), . . ., Conc(An) ⇒ ψ}; TopRule(A) = Conc(A1) . . . Conc(An)
⇒ ψ.

3 For all ϕ ∈ L, we have ¬ − ϕ ∈ ϕ and for all ¬ϕ ∈ L, we have ϕ ∈ ¬ϕ.
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According to Walton [20–22], an integrated SSA should consists of two main
lines, one from the initial action a0 to a catastrophic consequence, and the other
from the undesirability of the catastrophic consequence to the final conclusion
(¬a0). However, from Example 1 we can see that in practical applications, the
proponent of an SSA may only state the first line explicitly. If the SSA is used
properly, the audiences will automatically infer the second line through rational
intuition, and draw a conclusion ¬a0. Since the main focus of this paper is on
SSAs expressed in natural language, we consider an arguments containing the
components in the first line as an SSA. Therefore, we define an SSA in the SSAT
as follows.

Definition 3 (SSA). If an argument A in SSAT = (L, ,̄R, n,K, C,D), such
that: Prem(A) ∩ K0 
= ∅, Prem(A) ∩ D 
= ∅, SlRule(A) 
= ∅, JRule(A) 
= ∅,
Conc(A) = ⊥, for every A′ ∈ Sub(A) and A′ 
= A, Conc(A′) ∈ C∪D, then A is
a slippery slope argument (SSA).

Note that Definition 3 is not strictly corresponding to Walton’s basic scheme
of SSA, for it does not include the final conclusion. We have two reasons for this.
On the one hand, with this definition, we can better identify an SSA, for the
conclusion of an SSA is omitted in many cases. On the other hand, based on
the current argumentation theory, an argument with the conclusion ¬a0 would
otherwise attack its sub-argument with the conclusion a0 (see Definition 5). As
a result, the SSA will cause inconsistency and cannot be accepted.

By claiming that the bad outcome is unacceptable, the slippery slope argu-
ment always attempt to draw a conclusion that the initial step should not be
taken. To capture this feature, in addition to transposition under strict rules
required by ASPIC+, we define a “weak transposition” for the slippery slope
rule used in the SSA.

Definition 4 (Transposition and Weak Transposition). Let SSAT =
(L, ,̄R, n,K, C,D) be an SSAT , SSAT is closed under transposition and weak
transposition, iff the following two conditions hold:

1. if ϕ1, . . . , ϕn → ψ ∈ Rs, then for each i = 1 . . . n, there is
ϕ1, . . . , ϕi−1,−ψ,ϕi+1, . . . ϕn → −ϕi ∈ Rs;

2. if ϕ1, . . . , ϕn ⇒sl ψ ∈ Rsl, then for each i = 1, . . . , n, such that ϕi ∈ C, there
is ϕ1, . . . , ϕi−1,−ψ,ϕi+1, . . . ϕn ⇒slt −ϕi ∈ Rd. The set of transposed rules
is denoted as Rslt ⊆ Rd; the transposed rule of a slippery slope rule ri ∈ Rsl

(i = 1 . . . n) is denoted as rit ∈ Rslt.

Weak transposition enables us to achieve the second main line of reasoning
of the SSA. According to this definition, the weak transposition can only apply
on the sequence of action/events that are linked by slippery slope rules. It is
possible that one of the drivers is in fact refutable. However, on the one hand,
the attack on drivers can be achieved by means other than weak transposition;
on the other hand, we realize that applying transposition to all defeasible rules
is dangerous because it can lead to counter-intuitive results. The transposition
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of slippery slope rules may still cause some disagreement, we will discuss this in
Sect. 4.

In ASPIC+, arguments could be attacked in three ways: (1) undermining
attack on the ordinary premises; (2) rebutting attack on the conclusions (only
when the last rule is defeasible); (3) undercutting attack on the defeasible rules.
In this paper we add a special set of premises K0, whose elements are more
like presumptions. So that we define the undermining attack slightly different
from in ASPIC+. Besides, since we have defined the weak transposition, the
undercutting attack should also become different. Thus the attack relation in
SSAT is defined as follows.

Definition 5 (Attack). Let A, B and X be arguments in SSAT =
(L, ,̄R, n,K, C,D), ϕ,ψ ∈ L. A attacks B (and X), iff A undercuts, rebuts
or undermines B, where:

– A undercuts B on B′ iff:
1. B′ ∈ Sub(B) such that TopRule(B′) = r and r ∈ Rd, Conc(A) ∈ n(r)4;
2. ∃X, X ′ ∈ Sub(X), TopRule(X ′) = ri(i = 1, . . . , n), ri ∈ Rsl, and ∃rit ∈

Rslt
5, Conc(A) ∈ n(ri) (i.e. A undercuts X on X ′), while B′ ∈ Sub(B),

such that TopRule(B′) = rit.
– A rebuts B on B′, iff Conc(A) ∈ ϕ for some B′ ∈ Sub(B) of the form

B′′
1 , . . . , B′′

n ⇒ ϕ, and if A = ψ, then ψ /∈ K0; A contrary-rebuts B iff Conc(A)
is a contrary of ϕ.

– A undermines B on B′, iff:
1. B′ = ϕ and ϕ ∈ Prem(B) ∩ Kp, such that Conc(A) ∈ ϕ and if A = ψ,

then ψ /∈ K0;
2. B′ = ϕ and ϕ ∈ Prem(B) ∩ K0, such that Conc(A) ∈ ϕ.

A contrary-undermines B iff Conc(A) is a contrary of ϕ.

Based on this definition, if an argument undercuts an SSA on one of its
slippery slope rules ri, it will also undercut another argument that contains
the defeasible rule rit, which is obtained by applying weak transposition on ri.
Besides, a presumption can only attack another presumption, which means that
an argument consisting only of element in K0 can merely undermine another
argument that is also consisted only of element in K0.

In ASPIC+, whether an attack from A to B (on its sub-argument B′) suc-
ceeds as a defeat depends on the relative strength of A and B′. In [14], this is
determined by a binary ordering  on the set of all arguments. With arguments
and the defeat relations, we can evaluate the status of arguments using Dung
style abstract argumentation frameworks [8] and decide the set of arguments
that jointly acceptable (called an extension) under particular argumentation
semantics. Due to limitation of space, we omit the formal introduction of defeat
relation in ASPIC+ and the abstract argumentation framework here, the read-
ers are referred to paper [8] and [14] to find more details.

4 ‘n(r)’ means that rule r is applicable.
5 rit is the transposed rule of ri.
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2.3 Evaluation of SSA

According to the set-up of argumentation schemes, each scheme is corresponded
with a specific sequence of critical questions. Basically, there are two ways to
evaluate a given argument: (1) use relevant schemes to check the form of the
argument; (2) ask the corresponding critical questions, to see if the questions
can be answered satisfactorily.

In this section, we try to give some way to evaluate a slippery slope argu-
ment based on formal argumentation. The main idea is to formalize the critical
questions of the argumentation scheme for SSA, thus we can involve the criti-
cal questions into an argumentation framework and evaluate all the arguments
together.

Critical Questions. In [22], the author gives 5 critical questions for the basic
scheme of SSA, as described below.

CQ1 What intervening links in the sequence of events a1, a2, . . ., ai needed to
drive the slope forward from a0 to an are explicitly stated?

CQ2 What missing steps are required as links to fill in the sequence of events
from a0 to an, to make the transition forward from a0 to an plausible?

CQ3 What are the weakest links in the sequence, where additional evidence
needs to be given on whether one event will really lead to another?

CQ4 Is the sequence of argumentation meant to be deductive, so that if the
first step is taken, it is claimed that the final outcome an must necessarily
come about?

CQ5 Is the final outcome an shown to be catastrophic by the value-based
reasoning needed to support this claim?

Suppose that a proposed SSA fails to answer CQ1, CQ2 or CQ4 properly, it
means that (at least one of) the links from the initial step a0 to the bad outcome
an is too weak. In other words, the slippery slope rules between premises to the
conclusion is too weak to apply (then we have n(rsl)). And if a proposed SSA
fails to answer CQ3 properly, it perhaps that there lacks a driver to back up
the ‘sloping’, or the given driver is not good enough. For the first situation, it
could also be seen as that the related link is too weak; for the second situation,
it means at least one of the given drivers has been attacked (then we have di).
At last, if a proposed slippery slope argument cannot answer CQ5, it means that
the final outcome of this argument is not really unacceptable or cause resistance
as it has been claimed to (then we have ¬⊥).

Thus we define the critical questions for slippery slope argument as following.

Definition 6 (Critical Question). Let argument A, B be arguments in
SSAT = (L, ,̄R, n,K, C,D), ϕ,ψ ∈ L. Let A be an SSA, such that di ∈
Prem(A), rsli ∈ SlRule(A), Conc(A) = ⊥. B is an argument of critical ques-
tion for A (denoted by CQA) iff TopRule(B)= ϕ1, . . . , ϕn → / ⇒ ψ, while
ψ = n(rsli), ψ = di or ψ = ¬⊥.
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Here the CQ5 make us aware that the persuasive powers of an SSA should
be rested on the fact that the ultimate consequence is catastrophic and really
unacceptable to its audiences. Which indicates that the value judgement of the
audience may need to be taken into account. Through the case analysis in Sect. 3,
the readers should be able to see this point clearer, then we could look back upon
this issue and further discuss about it.

3 A Case Analysis

In this section, we apply our argumentation theory for SSA on a slippery slope
argument observed in natural language text. The argument came from a Chinese
biologist’s comments on the Chinese gene editing baby experiment exposed in
November 2018.

3.1 The Gene Editing Baby Case: A Practical Application of SSA

On November 26, 2018, Chinese researcher Jiankui He claims that his lab had
been editing embryos’ genetic codes for seven couples undergoing in-vitro fertil-
ization. Twin girls had been born with DNA altered to make them resistant to
HIV, which is the virus that causes AIDS.6 He used a tool known as CRISPR-
cas9 to disable a gene called CCR5, which could form a protein doorway that
allows HIV to enter a cell. By doing this, as He claimed, the twin babies are
immune to HIV.

Editing the genes of embryos intended for pregnancy is banned in many
countries, while in some other countries, editing of embryos may be permitted
for research purposes with strict regulatory approval. Jiankui He’s experiment is
the world’s first case of germline gene therapy that performed on humans, which
is likely to spark significant ethical questions around gene editing and so-called
designer babies. This action shocked and outraged scientists around the world.

Liming Wang, a professor of Zhejiang University who is familiar with genetic
technology, released a blog post online to announce his attitude to this event
immediately after the news was announced. In which he clearly explained his
opinion from several perspectives. In short, there are already many ways to con-
trol the genetics of AIDS and reduce the impact of it on patients’ lives, therefore
the benefit of this action to the newborn children is actually negligible. In turn,
the risk of gene editing, including CRISPR-cas9 technique, is still unpredictable
and uncontrollable. Furthermore, Wang says, “In addition to the scientific con-
siderations, I have deeper concerns: concerns about the future fate of human
beings.” In the following text, we can clearly find an application of slippery
slope argument. From the following excerpts, we can see more distinctly (trans-
late from Chinese):
6 The news can be find at the following websites: https://edition.cnn.com/2018/11/

26/health/china-crispr-gene-editing-twin-babies-first-intl/index.html, https://www
.theguardian.com/science/2018/nov/26/worlds-first-gene-edited-babies-created-in-
china-claims-scientist, etc.

https://edition.cnn.com/2018/11/26/health/china-crispr-gene-editing-twin-babies-first-intl/index.html
https://edition.cnn.com/2018/11/26/health/china-crispr-gene-editing-twin-babies-first-intl/index.html
https://www.theguardian.com/science/2018/nov/26/worlds-first-gene-edited-babies-created-in-china-claims-scientist
https://www.theguardian.com/science/2018/nov/26/worlds-first-gene-edited-babies-created-in-china-claims-scientist
https://www.theguardian.com/science/2018/nov/26/worlds-first-gene-edited-babies-created-in-china-claims-scientist


A Formalization of the Slippery Slope Argument 355

Example 2. “... from “treatment” to “prevention” greatly extends the applica-
tion of gene editing technology. An apparent question is: where is the bound-
ary of this technology? You will find it’s very difficult to draw a line.”

“Since editing CCR5 for treating AIDS is reasonable, then isn’t it nature to
modify CCR5 gene in advance for protection? In this case, is it wrong that an
ordinary person also want to protect his children from AIDS? Take one more
step, if a person has 1% higher risk of getting a genetic disease, isn’t it reasonable
that he asks for gene editing to reduce the risk? If it is reasonable, can one in
ten thousand of the risks be genetically edited? How about one in a million? If
it is unreasonable, how much risk can make us allow the gene editing?”

“What more terrible is that once the boundaries of ‘treatment’ and ‘preven-
tion’ are broken, it will be much easier to break the line between ‘prevention’
and ‘improvement’ ! What if people want their children to get more muscle, get
taller, have blonde hair, double eyelids, or high nose bridges? Even further, what
if they want their children to be smarter, have greater abilities on language, anal-
ysis and leadership? ”

“Though so far, our knowledge about human genes may not achieve these
goals, I believe that one day in the future we can figure out all of these things.
At that time, will the development of gene technology bring human beings
into the abyss? Will gene editing destroy the diversity of human gene pool?
Will it make human beings monotonous and uncharacteristic? Most seriously,
will it cause eternal inequalities? ...... If some people’s children get genetically
improved, they may have competitive advantages not only in appearance but
also in intelligence. What even worse is that these advantages are written into
the genome and can be inherited. Thus the other children may never catch up
with them!”

The words like “draw a line”, “boundary”, “one more step”, “even further”,
“break the line”, “bring ... to the abyss” appearing in these statements indicate
that the SSA is applied.

3.2 Modeling of SSA

The SSA in Example 2 contains arguments from precedent and causal arguments.
Apart from some analogies and metaphors in the detail, the author’s main idea
is as follows:

Firstly, because the boundary of gene editing application is difficult to
delimit, if using gene editing to prevent AIDS is approved, then we can hardly
stop people to use gene editing on the prevention of other genetic diseases, even
if the possibility of getting these diseases are very small but the risks are unpre-
dictable;

Next, since it’s much easier to break the line between ‘prevention’ and
‘improvement’, then from appearance, physique to intelligence, gradually people
will use gene editing techniques to achieve human enhancement.

Then the author gives several negative consequences that may occur. Appar-
ently, he believes that the public will think the most unwanted consequence is
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“causing eternal inequalities”, which is because those people who cannot get
genetic improvement, including their offspring, will never be able to catch up
with those who have adopted genetic improvement.

In this process, the substantial changing is from approving the gene-edited
HIV-immune babies (a presumption, the initial step), to the abuse of gene editing
techniques on genetic diseases prevention (the first step), then to use gene editing
techniques for human enhancement (the second step), and ultimately lead to
eternal inequalities of human society (disastrous consequence) and other bad
consequences.

The first and second steps can be seen as indications for the beginning and
ending of the “gray area” in this SSA respectively. The author gives three reasons
to support his statements: (1) it’s very difficult to draw a line; (2) it will be much
easier to break the line between ‘prevention’ and ‘improvement’ ; and (3) the other
children may never catch up with them.

We use a0 to denote “approving the gene-edited HIV-immune babies”, ax

to denote “abuse of gene editing techniques on genetic diseases prevention”, ay

to denote “use gene editing techniques for human enhancement”, an to denote
“eternal inequalities of human society”; 7 d1, d2, and d3 denote the three reasons
(drivers) respectively. According to the definition of SSAT in Sect. 2.2, we can
get the following argumentation theory.

Example 3 (Example 2 continued). L = {a0, ax, ay, an, d1, d2, d3,⊥,¬⊥};
K = {a0, d1, d2, d3,¬⊥}; K0 = {t0};
Kn = {}; Kp = {d1, d2, d3,¬⊥};
Rd = Rsl ∪ Rslt = {a0, d1 ⇒sl ax; ax, d2 ⇒sl ay; ay, d3 ⇒sl an}
∪{¬ax, d1 ⇒slt ¬a0;¬ay, d2 ⇒slt ¬ax;¬an, d3 ⇒slt ¬ay};
Rs = {an →j ⊥} ∪ {¬⊥ → ¬an}.

Arguments are:
A1 : a0 A2 : d1 A3 : d2
A4 : d3 A5 : A1, A2 ⇒sl ax A6 : A3, A5 ⇒ ay

A7 : A4, A6 ⇒ an A8 : A7 →j ⊥ A9 : ¬⊥
A10 : A9 → ¬an A11 : A4, A10 ⇒slt ¬ay A12 : A3, A11 ⇒slt ¬ax

A13 : A2, A12 ⇒slt ¬a0

According to Definition 5, assuming that all the attack relations we get are
success as defeats, we have the following set D of defeat relations:

D = {(A5, A12), (A5, A13), (A6, A11), (A6, A12), (A6, A13), (A8, A9), (A8, A10),

(A8, A11), (A8, A12), (A8, A13), (A10, A7), (A10, A8), (A11, A6), (A11, A7), (A11, A8),

(A12, A5), (A12, A6), (A12, A7), (A12, A8), (A13, A1), (A13, A5), (A13, A6), (A13, A7),

(A13, A8)}.8

7 We use x, y and n instead of 1, 2 and 3 because actually between these steps, many
intervening small steps are omitted.

8 Due to the restricted rebutting applied in ASPIC+, A9 does not directly attack A8

because the last rule of A8 is strict. Instead, A10 obtained by the transposition of
rule ‘an →j ⊥’ rebuts A8’s sub-argument A7, and thus also attacks A8.
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Now we can get an abstract argumentation framework based on [8] as shown
in Fig. 2.

A2

A11

A1

A8

A3 A6

A10

A4 A5

A7

A13

A9

A12

Fig. 2. An abstract argumentation framework

Applying the argumentation semantics [8], we can get four extensions
under preferred semantics: EP1 = {A2, A3, A4, A9, A10, A11, A12, A13}, EP2 =
{A1, A2, A3, A4, A5, A9, A10, A11}, EP3 = {A1, A2, A3, A4, A5, A6, A7, A8}, EP4

= {A1, A2, A3, A4, A5, A6, A9, A10}. Compared with extensions under other
semantics, preferred extensions can reflect a more credulous attitude. If the argu-
ments has equal priorities and there is no additional information, a credulous
agent may accept one of the above extensions.9 Besides, we can get one extension
under grounded semantics: EG1 = {A2, A3, A4}. The grounded extension reflects
the most skeptical attitude of agents. In the argumentation framework of Fig. 2,
only argument A2, A3 and A4 (whose conclusions are d1, d2 and d3 respectively)
are not attacked, thus a very skeptical agent will only accept these three argu-
ments. There are other argumentation semantics introduced in [8], [2], etc. Here
we only take two of them for instance.

In Example 2, the blogger mentions that the key reason he disagree with the
CCR5 gene-edited babies experiment is that the benefit it will bring is far less
than the risk. Apparently, in addition to the unpredictable accidents such as “off-
target effects” during operations, the catastrophic consequence (i.e. cause eternal
inequalities in human society) mentioned in his SSA is also one of the risks -
perhaps the worst one. This kind of statements reflects his value judgement:

9 The proponent of an SSA will expect the audience to accept EP1. However, the
persuasiveness of an SSA depends on audiences, and many factors will affect their
final decision. For example, whether the audience is worried enough about the catas-
trophic consequence. Since we has assumed that all the attacks are successful (while
the proponent won’t consider that a8 will defeats a9), from the perspective of the
audience, we believe that the current result is in line with human intuition, i.e. some
audiences are successfully persuaded by the SSA (thus accepting ¬a0), whereas some
audiences are not.
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The value of avoiding the catastrophic consequence is much higher than the
value of enjoying the benefit of CCR5 gene editing. And he believes that the
public will agree with this opinion.

In fact, many other experts also expressed their opposition to this experi-
ment in the mass media.10 In popular social media platforms in China, such as
Weibo, people almost unanimously criticized the experiment of He’s team. Lim-
ing Wang’s blog post has also been widely reposted by users of various social
media platforms. These phenomena reveal that Wang’s point of view and value
judgment are generally approved, and his arguments are convincing to the public.

In argumentation theory, the statement “the babies are immune to HIV,
which is good; good thing should not be resisted and we should approve the
gene-edited HIV-immune babies” can be modeled as:

Example 4 (Example 3 continued). (‘imH’ and ‘G’ denote ‘immune to HIV’
and ‘good’ respectively, ¬⊥ denotes ‘not be resisted’11, here we add them into
L. Three more rules are obtained: a0 ⇒ imH, imH ⇒ G and G → ¬⊥. We add
them into Rd and Rs respectively.)

A14 : A1 ⇒ imH A15 : A14 ⇒ G A16 : A15 ⇒ ¬⊥
A17 : A15 ⇒ a0

According to Definition 5, A16 conflicts with argument A9 and arguments
A10, A11, A12, A13 (because A9 is their sub-argument), A17 conflicts with
argument A13. Suppose that based on argument A1 − A17, there is an audi-
ence who prefer a0 than ¬a0, ¬⊥ than ¬⊥, then the only preferred exten-
sion and grounded extension of the updated argumentation framework will be
{A1, A2, A3, A4, A5, A6, A7, A8, A14, A15, A16, A17}. So that the initial action a0

is acceptable to this particular audience. On the contrary, if we obtain an order-
ing on arguments according to the value judgement of most people in this case,
it’s more likely that A13 will has higher priority than A17, A9 will has higher
priority than A16, thus both the attack from A16 to A13 and from A17 to A9−13

will not be successful.

4 Discussion and Related Work

In this section we discuss some basic ideas and important issues in this paper,
and introduce some related works.

4.1 Discussion About the Weak Transposition

Firstly, in addition to defining the transposition of strict rules, we also give a
definition of ‘weak transposition’ of defeasible rules in Sect. 2.2. The reason lies in
the operating mechanism of the slippery slope argument: unacceptable outcomes

10 Refer to the news https://edition.cnn.com/2018/11/26/health/china-crispr-gene-
editing-twin-babies-first-intl/index.html and [24,25].

11 Remember that ¬⊥ in K represents “resistance to something bad/unwanted”.

https://edition.cnn.com/2018/11/26/health/china-crispr-gene-editing-twin-babies-first-intl/index.html
https://edition.cnn.com/2018/11/26/health/china-crispr-gene-editing-twin-babies-first-intl/index.html
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indicate that its premise is unacceptable. Though going through a long chain, it
still implies a backward reasoning. What’s more, without the weak transposition,
in order to come up with a final conclusion (which is “not to take the first step”),
the slippery slope argument is self-attacking based on the formal argumentation
theory.

However, although the application of this transposition may raise criticism
and controversy, the current paper is neither the unique nor the first to propose
the contraposition/transposition of defeasible rules. In [7], Caminada examined
Socrates’s elenchus, which always leads the audience to make an inference that
discredits his own reasoning (thus called “hang yourself argument”), and put
forward the issue of contraposition and defeasible reasoning. Then in [6], he dis-
tinguished between epistemical reasoning and constitutive reasoning, and con-
cluded that whether there should be contraposition of defeasible rules depends
on which type of reasoning one is considering. In many aspects, the slippery
slope argument is comparable to the “hang yourself argument”, thus analysis in
[6,7] are considerable references.

4.2 Discussion About Value Judgement

Through the case analysis in Sect. 3, it is not difficult to find that: if there is a
counter-argument which asserts that the benefits may outweigh the harm claimed
by an SSA, whether the attacks will succeed depends on the value judgement of
the audience.

As Walton mentioned in [22], SSA is a subspecies of argument from nega-
tive consequence, and could also be seen as an approach to achieve practical
reasoning. A slippery slope argument works by claiming that take the first step
will lead to a highly undesirable consequence, which means that the consequence
strongly contravenes values held by the audience [22].

In the current work, we model the negative value by adding a symbol “⊥”
into the language L of an argumentation system. Correspondingly, we add a
symbol “¬⊥” into the knowledge base K to represent the intrinsic unaccept-
ability of something bad. Then a slippery slope argument can be attacked by
statements like “the final outcome is not as bad as it has been claimed”, i.e.,
based on Definition 6, a CQA with the conclusion ¬⊥. In ASPIC+, conflicts can
be resolved by comparing arguments based on preference, thus when we consider
the preference in an SSAT, value judgement deserved to be taken into account.

Several systems that consider values based on formal argumentation have
already been proposed. In [12], Liao and Oren et al. introduced a hierarchical
abstract theory of normative system (called HANS) to resolve conflicts amongst
norms. In simpler terms, this system associated numbers that indicating prior-
ities of norms to an abstract theory of normative system defined by Tosatto et
al. [17]. When conflicts arise between norms, HANS resolve it by the priorities
assigned to them, and derive extensions according to different detachment pro-
cedure. In [13], Liao and Slavkovik et al. consider moral values and present an
approach based on formal argumentation and normative systems to reach moral
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agreements. In [3], Bench-Capon clarified the role of persuasion in practical argu-
mentation, and extends the abstract argumentation frameworks to a value-based
argumentation framework (VAFs). In [4], Bench-Capon and Atkinson et al. focus
on legal reasoning and discusses how to instantiate a VAF.

5 Summary

On the basis of the basic scheme of an SSA given in [21] and the formal argumen-
tation framework ASPIC+ [14,15], the present paper gives an argumentation
theory for SSA (called SSAT). In addition, we give a definition of critical ques-
tions. Accordingly, based on the SSAT, we can model the basic form of SSA and
evaluate it by formal argumentation system.

We apply this argumentation theory to model an SSA found in a popular blog
post, which criticized the gene-edited babies experiment. The blog post has got a
lot of attention since the news released in last November. The blogger, a Chinese
biologist, used an SSA to back up the opinion that the benefits of adopting such
an experiment are far less than the risk. By argumentation evaluation based on
an abstract argumentation framework, we get extensions of arguments (and thus
we can get the corresponding extensions of conclusions). It shows that our SSAT
is able to model SSAs found in natural language text, and get reasonable results.

Furthermore, we point out that value judgement plays an important role in
the evaluation of effectiveness of an SSA. How to lift preference on arguments
through the value assignment or ranking in SSA, is a topic for future studies.
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