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Chapter 8
Raman Spectroscopy and Advanced 
Statistics for Cancer Diagnostics

Nicole M. Ralbovsky and Igor K. Lednev

8.1  Introduction

Whether it be indirectly or directly, cancer has a vast impact on the majority of 
society. In 2018 alone, there was approximately 18.1 million newly diagnosed cases 
of cancer and an estimated 9.6 million deaths due to cancer, worldwide [1]. Cancer 
is the second-leading cause of death in the USA, where national expenses for care 
totaled $147.3 billion in 2017 [2].

Diagnosing the various forms of cancer often requires a myriad of methods. The 
main diagnostic approaches involve lab tests for blood, urine, and other body fluid 
samples; imaging tests, such as a CT scan, PET scan, X-ray, ultrasound, or MRI 
scan; and biopsy with either a needle, endoscope, or via surgery [2]. Detailed infor-
mation regarding diagnosing cancers can be found elsewhere [3]—however, it is 
important to note that many cases of cancer can go undiagnosed or are misdiag-
nosed, and in some cases healthy individuals are even falsely diagnosed. Further, 
the time of diagnosis plays a crucial role in the survival rate of the afflicted. Early 
detection and diagnosis of cancer typically improves an individual’s prognosis and 
increases the chances for successful treatment by allowing for care to be adminis-
tered at the earliest opportunity. While early diagnostics and screening methods do 
exist, not all results are definitive or accurate. Even more, certain exams are inva-
sive, expensive, and not accessible to all who require them. Financial burdens, as 
well as geographic and sociocultural barriers, prevent large groups of people from 
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seeking proper diagnostic opportunities. Another pressing issue, which is of further 
interest here, exists—there is no singular universal method that can accurately diag-
nose all forms of cancer early on. As such, there is a crucial unmet need for develop-
ing the first universal method for the non-invasive, inexpensive, and accurate 
diagnosis of all cancers which can be made accessible to all individuals who require 
testing. This chapter will discuss how the combination of Raman spectroscopy (RS) 
and advanced statistical analysis (or, chemometrics) has emerged with a strong 
potential to solve this imposing issue.

RS is advantageous over other techniques used for disease diagnostics due to its 
ability to produce a spectral “fingerprint” which specifically represents the total 
biochemical composition of a sample. As quoted by Mann and Vickers, RS “is 
unusually, if not uniquely, suited to be the process control star of the next century” 
[4]. This is because “the intrinsic selectivity of RS allows for accurate identification 
of organic, inorganic and biological species, an advantage that is lacking in many 
other analytical techniques, such as ultraviolet absorbance and fluorescence spec-
troscopies” [5]. RS provides considerable detail regarding the biochemical compo-
sition of a sample, and is thus able to detect changes that occur in biological samples 
during the onset and progression of a disease. RS has the ability to be non-invasive 
and has the potential for in vivo use, which makes it a much more appealing tech-
nique for diagnosing diseases over other methods, such as biopsies. It is much less 
expensive than imaging tests, and it is objective, making it a better choice than some 
diagnostic methods which require subjective analysis of the results. RS goes beyond 
simply ruling out other possible diagnoses, as it has the potential to definitively 
determine both the presence and the stage of disease progression. What’s more, RS 
is a fast, easy-to-use, and reliable technique that can be easily incorporated into 
clinical settings, making it an exceptionally valuable diagnostic tool.

While RS has a high level of chemical specificity, the changes that occur between 
spectra of different classes of samples can oftentimes be minute and difficult to 
visually observe. Thus, advanced statistical analysis, or chemometrics, is utilized to 
better understand the information found within the obtained data. Chemometrics is 
essentially “the art of extracting chemically relevant information from data pro-
duced in chemical experiments.” [6] Chemometrics is suitable to use with RS 
because the spectral data exists in the form of a data matrix consisting of wavenum-
bers (cm−1) and corresponding intensities for each spectrum. Different algorithms 
can be applied to the spectral data matrix for the purpose of building statistical 
models. These models identify the most useful chemical data and separate it from 
less informative data and insignificant noise, all while learning how to recognize 
patterns and similarities within the data matrix. In this way, the models are able to 
learn to recognize similarities and differences between either labeled or unlabeled 
data, which it can then use to return either a qualitative or quantitative response.

Many chemometric algorithms exist to answer a wide array of questions a 
researcher may have. Notably, the two main categories of statistical models that can 
be built include supervised and unsupervised techniques. Unsupervised algorithms 
do not utilize sample labels or user-defined information when the model is being 
constructed [7]. Examples of unsupervised modeling include principal component 
analysis (PCA) and hierarchical clustering analysis (HCA). These models are 
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exploratory types of analysis and are not used for classification but rather can be 
used to display similarities or differences between groups of data. On the other 
hand, supervised models take into account user-defined labels, known as classes, for 
all samples in order to build prediction models. Supervised models can be further 
split into regression models or classification techniques. A regression model is often 
used for calibration purposes and will give a quantitative answer, while a classifica-
tion model will give a qualitative response, such as the classification of a spectrum. 
A common regression model is multiple linear regression (MLR), while various 
classification techniques include partial least squares discriminant analysis 
(PLS-DA), support vector machine discriminant analysis (SVM-DA), and artificial 
neural networks (ANN).

Because of the significant ability to pick out important information and recog-
nize patterns and similarities within sets of data, chemometric techniques are ideal 
for analyzing Raman spectral data. Specifically, these advanced statistical methods 
are used in this chapter for the purpose of understanding the spatial distribution of 
biochemical components within a sample, identifying potential biomarkers, differ-
entiating healthy biological samples from diseased ones, and for determining the 
stage of a disease, all for the purpose of diagnosing cancer.

This chapter presents research published between 2014 and 2018. Specifically, 
articles that focus on the application of RS combined with chemometrics for diag-
nosing cancer are considered. Modifications of RS will be considered, such as 
incorporating the use of fiber-optic techniques, which have not been well reviewed 
in the past. Studies using all forms of biological materials (cells, tissue, bodily flu-
ids) will be included, and studies will not be limited by the Raman spectral range 
examined (i.e., high wavenumber region versus the fingerprint region). Research 
that does not utilize any advanced statistical techniques will not be considered. It is 
anticipated that in order for the RS methodology to be implemented clinically, an 
automatic data analysis procedure will be required to interpret the Raman spectral 
data and to make a diagnosis. Statistical analysis can be performed using software 
which can lead to automatic and definitive diagnoses in real-time, making diagnos-
ing cancer much more accurate, rapid, and inexpensive. Furthermore, the goal of 
this chapter is to show that spontaneous RS is sufficient enough for cancer diagnos-
tics, and that more complicated or expensive technology is not required to achieve 
highly accurate diagnoses. In this chapter, we aim to support and buttress the claim 
that RS in combination with chemometrics has a strong potential to be implemented 
as a novel universal method for diagnosing all forms of cancer in the near future.

8.2  Discussion

8.2.1  Spontaneous Raman Spectroscopy

Spontaneous Raman spectroscopy utilizes a monochromatic laser beam to radiate 
the sample being studied. Inelastically scattered light which interacts with molecu-
lar vibrations of the sample will be detected by the instrument. The outcome is a 
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very specific spectral fingerprint of the sample. Spontaneous RS is uniquely suitable 
for characterizing microheterogeneous environments; specifically, the collection of 
multiple spectra from a single sample will allow for the detection and spatial distri-
bution of biochemical components within a sample to be determined [8]. RS can be 
used to collect and process spectral information obtained from multiple positions on 
a sample with the purpose of providing statistically significant characterization of a 
sample’s heterogeneity and multicomponent composition. By collecting multiple 
spectra, biomolecules present at high local concentrations can be detected, allowing 
for identification of potential biomarkers, including those present at low average 
concentrations [9]. A great advantage of RS resides in its ability to probe the entire 
biochemical composition of a sample, thus producing a spectroscopic signature for 
different disease states which are based on the simultaneous integration of multiple 
biomarkers. This capability significantly improves the sensitivity and selectivity of 
the diagnostic technique. The following studies have capitalized on the advantages 
of spontaneous Raman spectroscopy for the purpose of diagnosing various cancers 
through analysis of either tissue, cells, or bodily fluids.

8.2.1.1  Tissue

Tissue is frequently analyzed in disease diagnostic studies due to its ability to indi-
cate the presence of cancer in the body. As such, tissue is frequently biopsied and 
thus readily available for in vitro Raman spectroscopic analysis and especially for 
the purpose of diagnosing cancer.

In a study conducted by Kalkanis et al., 95 regions from 40 tissue samples were 
analyzed to distinguish normal brain tissue from glioblastoma multiforme (GBM) 
and necrosis using discriminant function analysis (DFA), achieving 99.6% and 
97.8% accuracy in the training and validation datasets, respectively (Fig. 8.1) [10]. 
On the other hand, an average 87.6% accuracy for diagnosing a tissue sample as 

Fig. 8.1 Plot of 
discriminant function 
analysis scores for training 
data (Reprinted with 
permission from [10])
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originating from a healthy donor or from an individual with a brain tumor was 
achieved through analysis of only 20 tissue samples by a learning vector quantiza-
tion neural network (LVQNN) technique [11]. The apparent role of number of sam-
ples and chemometric technique used for obtaining successful results is already 
well demonstrated.

Several attempts for using RS to diagnose breast cancer have been made in the 
last 4 years. The carbonate intercalation signature in type II microcalcifications in 
tissue, a common diagnostic feature of breast cancer, was used to demonstrate the 
differences between benign and malignant breast lesions. Raman decision algo-
rithms were developed to distinguish between benign and malignant lesions with 
type II microcalcifications. The differences in carbonate intercalation could differ-
entiate benign and malignant lesions; specifically, empirical decision algorithms 
based on carbonate and cytoplasmic protein content achieved 77–83% accuracy for 
discrimination [12]. Raman spectroscopic analysis of 39 breast tissue samples was 
employed to understand the differences between normal, atypical ductal hyperpla-
sia, ductal carcinoma in situ, and invasive ductal carcinoma lesions of the breast. A 
support vector machine (SVM) diagnostic model was built using the radial basis 
function (RBF) with leave-one-out cross-validation (LOO-CV) and achieved an 
overall accuracy of 74.39% for identifying a sample as belonging to one of the four 
classes [13]. Fallahzadeh et al. aimed to diagnose breast cancer by using ant colony 
optimization (ACO) to find the most useful Raman features for discrimination. With 
five spectral features selected by ACO, the algorithm could correctly classify the 11 
tissue samples as normal, benign, or cancerous with 87.7% accuracy [14]. Based on 
the results of these small studies, RS analysis of tissue samples is not suggested as 
the most optimal method for diagnosing breast cancer. Results are greatly improved 
when cells are instead analyzed, as is later discussed.

The mortality rate of cervical cancer can be reduced if the disease is detected in 
the premalignant stage. As such, Rashid et al. utilized Raman spectral mapping to 
elucidate biochemical changes associated with premalignant stages of the cancer. 
When analyzed by K-means cluster analysis (KCA), cervical biopsies classified as 
negative for intraepithelial lesion and malignancy were divided into three different 
layers—stroma, basal/para-basal, and superficial—based on differences in colla-
gen, DNA bases, and glycogen spectral features. For low-grade and high-grade 
squamous intraepithelial lesion (SIL) samples, KCA clustered regions of the basal 
layer together with the superficial layer. When morphological changes were not 
apparent, PCA could identify biochemical changes associated with the cancer, cre-
ating a useful method for detecting premalignant changes in cervical tissue [15]. 
Raman spectral mapping was further used to understand the differences between 
neoplasia and malignancy of cervical tissues. Gradual biochemical changes associ-
ated with cancer progression were identified using PCA and KCA, including 
changes in glycogen, collagen, lipids, protein, carotene, and the nucleus to cyto-
plasm ratio [16]. While both of the previous studies demonstrated the usefulness of 
RS to detect biochemical differences between different samples, Daniel et al. went 
on to improve the usefulness of RS by obtaining quantifiable results through analy-
sis of spectral data by PCA in combination with ANN. The method could classify 
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tissue as normal, premalignant, or malignant with an overall accuracy of 99%. 
Following this, well differentiated, moderately differentiated, and poorly differenti-
ated squamous cell carcinoma (SCC) samples were investigated using PCA com-
bined with linear discriminant analysis (LDA), achieving 94% diagnostic 
accuracy [17].

Tissue obtained from healthy donors and from colorectal cancer patients was 
investigated by several groups. In one proof-of-concept experiment, different exci-
tation wavelengths were used to study the disease. Near-infrared (NIR) Fourier 
transform-Raman (1064  nm), NIR-visible-Raman (785  nm) and visible-Raman 
(532  nm) excitation wavelengths were used to collect spectra from 14 samples. 
Each of the three sets of spectra was analyzed using PCA, and partial spectral dif-
ferences in each dataset were observed between the normal and diseased samples. 
Interestingly, when the datasets were combined, the clearest separation between the 
two classes was seen [18]. While the previous study was useful for establishing 
biochemical differences between groups, Li et al. obtained quantitative results using 
ACO-SVM.  ACO identified five diagnostically important Raman bands, which 
were then used to build the SVM diagnostic model. Results showed 93.2% accuracy 
for identifying colorectal cancer in 44 patients [19]. Two different chemometric 
systems were used in an additional study to evaluate which could best diagnose 
colorectal cancer based on tissue analysis of 81 patients. PCA-LDA and PLS-DA 
models were built and validated using leave-one-patient-out cross-validation 
(LOPO-CV). PLS-DA performed better, achieving a diagnostic accuracy of 84.3%, 
which was an improvement over the 79.2% accuracy achieved by PCA-LDA [20].

Tissue samples from patients with early-stage (stage 0 or I) esophageal cancer 
were examined ex vivo; Raman bands that showed a statistically significant differ-
ence in band intensity, determined using a t-test, were analyzed using LDA. The 
stage of tissue was correctly predicted with 81.0% sensitivity and 94.0% specificity 
[21]. However, it should be noted that the algorithm was not tested with comparison 
to healthy tissue samples.

Several studies were aimed at identifying gastric cancer. In the first study, which 
used a significant number of samples as well as a robust validation method, Jin et al. 
analyzed 105 tissue samples from cancerous and pre-cancerous lesions and normal 
gastric mucosa (NGM). Raman spectra showed differences between the samples 
related to protein, nucleic acid, and lipid content. Using PCA-LDA with LOO-CV, 
an average sensitivity of 88.9% and specificity of 94.6% were achieved for discrimi-
nating the three classes [22]. Yao et al. achieved 91.7% accuracy for distinguishing 
normal gastric tissue from cancerous tissue using Fisher discriminate analysis 
(FDA); however, only 12 samples were analyzed [23]. Two studies were conducted 
by Hsu and co-workers with a similar goal. In the first, PCA could differentiate the 
four main histological types of gastric adenocarcinoma (AC), including papillary 
adenocarcinoma (PAC), tubular adenocarcinoma (TAC), mucinous adenocarcinoma 
(MAC), and signet ring cell adenocarcinoma (SRC) by analyzing 79 tissue samples. 
PCA distinguished all gastric AC types from NGM in a binary system. SRC and 
MAC were able to be differentiated from TAC and PAC; however, TAC and PAC 
showed no significant differences between each other. Furthermore, LDA scatter 
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plots successfully differentiated all gastric AC types from NGM [24]. In the second 
study, the results improved to show gastrointestinal stromal tumors (GISTs) could 
be differentiated from AC and benign lesions from 119 patients. PCA-LDA was 
employed with CV, achieving an average sensitivity of 99.67%, specificity of 
95.45%, and accuracy of 98.32% for distinguishing GISTs, gastric AC, and NGM; 
this information can be used to help clinicians determine an appropriate treatment 
path [25]. Based on the range of experiments performed, RS is clearly capable of 
detecting gastric cancer within tissue samples.

To diagnose nasopharyngeal carcinoma (NPC), tissue samples were collected 
from 15 individuals with the cancer and from 15 healthy donors. Investigators gen-
erated four models using PCA-LDA to discriminate spectra collected from NPC 
tissue and healthy tissue at various depths of the sample. Each model achieved 
greater than 95% sensitivity and specificity, with the exception of the deepest level 
of tissue [26]. Another group also utilized PCA-LDA with LOO-CV to distinguish 
normal tissue from NPC tissue, achieving a sensitivity of 81% and specificity of 
87%. When the method was coupled with PLS, the sensitivity and specificity 
increased to 85% and 88%, respectively, showing how the chemometric technique 
selected plays a role in performance success [27]. Mian et  al. constructed tissue 
engineered models of normal, dysplastic, and head and neck SCC using correspond-
ing cell lines. PCA was used to analyze the Raman spectral data collected from the 
tissues to determine the maximum variance between the groups. LDA was then used 
to test the discriminatory capacity of the data and classify the tissue samples as 
normal, dysplastic, or cancerous. Predictions showed an average specificity of 70% 
and sensitivity of 100% in a binary model of normal versus cancerous tissue. For 
differentiating dysplastic versus cancerous tissue, 90% sensitivity and 98% sensitiv-
ity were achieved. To further validate the study, predictions were made for 12 
blinded samples, obtaining 75% specificity for predicting normal tissue, 90% sensi-
tivity for dysplastic tissue, and 98% sensitivity for cancer tissue [28].

Pence et al. utilized two different excitation wavelengths (785 and 1064 nm) to 
study a total of 15 healthy, AC, and hepatocellular carcinoma (HCC) liver tissue 
samples for the purpose of diagnosing liver cancer. Spectral data collected using the 
1064  nm excitation wavelength was classified using sparse multinomial logistic 
regression (SMLR); data collected using the 785 nm laser suffered from an intense 
and highly variable fluorescence background that dominated the Raman spectra and 
was thus not analyzed further. Two different models were generated using the data 
collected with 1064 nm excitation. The binary model (healthy versus all tumor tis-
sue) showed 100% sensitivity and 89% specificity and the tertiary model (AC ver-
sus healthy versus HCC tissue) achieved an average accuracy of 75.67% [29]. 
Notably, greater success for diagnosing liver cancer was achieved using Raman 
hyperspectral imaging, as is later discussed.

Wang et al. aimed to understand mutations of the epidermal growth factor recep-
tor (EGFR), its relation to lung AC, and its potential to be used in future diagnostic 
studies through RS analysis of 156 lung AC tissues. Tissue samples of carriers with-
out the mutation showed increased levels of amino acids and DNA, whereas sam-
ples from donors with a specific mutation group, L858R, exhibited increased 
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arginine levels. To predict to which class a sample belonged, PCA-SVM with 
LOO-CV was used. The L858R and E19del mutation groups were differentiated 
from wild-type EGFR tissue with 87.8% accuracy; considering the sample-size and 
the level of accuracy, this study provides significant evidence for a novel lung can-
cer screening method based on RS analysis of EGFR mutations [30].

Oral tumor and healthy tissue (10 samples each) were qualitatively analyzed 
using KCA and PCA; KCA was used to generate Raman maps which correlated to 
the sample’s histopathology. In healthy tissue sections, stratification of epithelial 
layers was observed. Each of the three layers detected within the normal epithelium 
tissue was successfully distinguished from the tumor section using PCA.  In the 
unhealthy tissue samples, inflammatory regions of tumor cells and tumor-stroma 
regions were detected; while not providing quantifiable results, this study shows 
how Raman mapping can provide novel insight for understanding pathological 
states [31]. Continuing in the same manner, Raman maps of normal and cancerous 
oral tissue were obtained by Daniel et al. The maps showed an increase in glycogen, 
lipid, and protein content within the healthy tissue and an increase in nucleic acid 
content in the cancerous tissue. Similarly, PCA and KCA were again used to dem-
onstrate the distribution of biochemical components within the samples. Dissimilarly, 
to improve the usefulness of the results, a discrimination line was computed, result-
ing in 98.9% accuracy for discerning the two groups. Raman spectral data was col-
lected from a blind sample, which was then subjected to histological evaluation. A 
Raman image was generated, and the sample was determined to be dysplastic, 
which was confirmed by H&E staining (Fig. 8.2) [32]. In a third study, Raman spec-
tral data was collected from 24 tissue samples of 14 donors with oral SCC and 
analyzed using multivariate curve resolution (MCR). The spectral maps of the tissue 

Fig. 8.2 Reconstructed Raman mapping (a) and their respective hematoxylin and eosin-stained 
image (b) of blinded sample; the box indicates the site of the Raman image (Reprinted with per-
mission from [32])
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were automatically and objectively compared through spectral matching of the 
MCR decomposed Raman spectra and the Raman spectrum of keratin, a biomarker 
of oral SCC. The oral SCC tissues were correctly identified with 77–92% sensitivity 
and 100% specificity, with the difference in sensitivity level depending on how posi-
tivity was defined [33].

RS was used to understand the pathological changes occurring in ovarian tissue 
for the purpose of distinguishing adenoma and early AC from benign tumors. Using 
PLS-DA and LOO-CV, the discrimination model provided an accuracy of 85.2% for 
diagnosing ovarian cancer [34].

Raman spectra from 25 malignant and benign pheochromocytoma and paragan-
glioma (PPGL) tissue samples were identified using PCA-LDA with a sensitivity of 
80.0% and specificity of 100.0%. PPGLs are tumors that arise from adrenal or extra-
adrenal chromaffin tissues. Notably, the obtained results were higher than those 
obtained using the pheochromocytoma of the adrenal gland scaled score, which is a 
current method for distinguishing between benign and malignant PPGLs [35].

In a thorough study performed by Liu et  al., discriminate analysis (DA) with 
LOO-CV was applied to spectral data collected from tissue of 63 different patients 
to determine if RS could distinguish malignant and benign renal tumors using 
biopsy specimens. Results showed success not only in separating tumor and normal 
tissue samples (82.53% accuracy) but also in distinguishing malignant and benign 
tumors (91.79% sensitivity and 71.15% specificity) and low-grade and high-grade 
tumors (86.98% accuracy). Oncocytoma and angiomyolipoma, two different forms 
of benign tumors, were successfully differentiated from clear cell renal carcinoma 
with 100% and 89.25% accuracy, respectively, and subtypes of cell carcinoma were 
distinguished from each other with an accuracy of 93.48%. Notably, Raman spec-
troscopic analysis further resulted in successful diagnoses for 7 of 11 cases whose 
diagnoses were missed during biopsy, illustrating an improvement of the RS meth-
odology over current diagnostic methods [36].

A selective-sampling method was used to collect Raman spectra of tissue sam-
ples from individuals with basal cell carcinoma (BCC) and healthy volunteers. A 
multinomial logistic regression classifier indicated 100% sensitivity and 92.9% 
specificity for correct classification of an independent set of skin tissue samples 
[37]. In a large study by Zhao et al., wavenumber selection based analysis was used 
to diagnose skin cancer. Multivariate techniques PCA-general discriminant analysis 
(GDA) and PLS with LOO-CV were employed; both were capable of classifying 
645 lesions (including skin cancer, pre-cancer, and benign skin lesions) from 573 
patients with skin cancer [38]. Interestingly, skin cancer is not well studied using 
biological fluids or cell samples, suggesting the greatest success for diagnosing skin 
cancer is through tissue analysis.

Raman spectral data collected from a total of 30 normal thyroid, goiter, and thy-
roid cancer tissue samples were analyzed by PCA and LDA in combination with 
CV and binary logistic regression (BLR). The results of LDA with CV showed 
normal versus cancerous tissues reached a discriminant value of 78.3%; goiter ver-
sus cancerous tissue reached a discriminant value of 75%; and normal versus goiter 
tissue reached a discriminant value of 68% when the spectral region was limited to 
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1200–1400 cm−1. The results of the BLR model showed the same three groups each 
achieved greater than 80% concordance [39]. Senol et al. diagnosed papillary thy-
roid carcinoma (PTC) using an orthogonal PLS algorithm which discriminated 23 
tumor and healthy tissue samples with 100% sensitivity and 81.8% specificity for 
the calibration dataset; the root mean square error of CV was about 47.8%, which is 
considered low [40]. Using 28 samples (18 for the calibration dataset and 10 for the 
test dataset) Palermo et al. was better able to differentiate healthy parathyroid tissue 
and parathyroid adenoma using PLS-DA, achieving 100% accuracy. Further, chief 
cell adenoma and oxyphil cell adenoma were distinguished from each other with 
100% of oxyphil and 99.8% of the chief cell adenoma samples correctly predicted 
during external validation [41]. When observed together, these studies demonstrate 
the interesting effect that different chemometric techniques can have on developing 
successful prediction algorithms.

The Raman spectral data of biopsies from 27 women suspected to have vulval 
lichen sclerosus (LS), a condition associated with an increased risk of developing 
vulval carcinoma, were analyzed using PCA-LDA with LOPO-CV. LS tissue was 
separated from tissue of other inflammatory vulval conditions with 91.0% sensitiv-
ity and 80.0% specificity [42]. It is important to note that a comparison to healthy 
vulval tissue was not taken into consideration.

As these studies clearly show, tissue samples have an immense potential to diag-
nose various forms of cancer when studied by spontaneous RS and chemometrics. 
However, the collection of tissue samples can be invasive and uncomfortable for the 
afflicted patient. On the other hand, RS analysis of tissue samples can be used to 
confirm typical histopathological diagnosis, which can oftentimes be hindered by 
subjective and experience-based analysis, making RS advantageous for incorporat-
ing into diagnostic procedures. Further in vivo analysis is required, and has been 
conducted, to better understand the capacity of RS for diagnosing cancer, as is later 
discussed.

8.2.1.2  Cells

Cytology has been widely used for diagnosing cancer—this is most likely due to the 
fact that cytology specimens are usually easier to obtain while causing less discom-
fort, cost less money, and are less likely to result in complications when compared 
to biopsied tissue samples. In this regard, several recent studies have successfully 
applied spontaneous RS analysis of cells in combination with chemometrics for 
diagnosing cancers.

Kerr et al. conducted four different experiments to evaluate the potential of RS to 
diagnose bladder cancer. In each experiment, various standard clinical procedures 
were used in order to prepare the cell samples for analysis. Spectral data from each 
experiment was analyzed through PCA-LDA with LOO-CV, with each experiment 
achieving greater than 88% sensitivity and specificity. Importantly, it was deter-
mined that none of the standard procedures that was tested significantly impacted 
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the methodology’s ability to diagnose bladder cancer, setting the foundation for RS 
analysis of cells to be used under a wide variety of clinical settings for diagnostic 
purposes [43].

Four brain cancer GBM cell lines were obtained from four different patients who 
each had grade IV astrocytoma. Raman spectra of single cells from each cell line 
were investigated using multivariate analysis. While this study did not focus on 
discriminating healthy and diseased states, the results do show that cell lines were 
similar among all four afflicted patients, thus confirming the reliability of RS analy-
sis of cells for cancer diagnostics and staging for future studies [44].

RS was popularly used to examine cells for the purpose of detecting and diagnos-
ing breast cancer. The results are generally an improvement over those achieved 
when tissue was analyzed and provide additional information regarding the effect of 
drugs, which is generally difficult or impossible to do through analysis of other 
biological samples. Marro et al. utilized RS to study cells undergoing an epithelial- 
to- mesenchymal transition, a process indicative of breast cancer metastasis. MCR 
was used to determine how the transition affected the lipid profiles of the cells; 
specifically, the transition resulted in increased levels of tryptophan and mainte-
nance of a low fatty acid content as compared to highly metastatic cells. PLS-DA 
successfully discriminated cells within various stages of the transition process, 
achieving 94% sensitivity and 100% specificity, providing the ability to identify 
breast cancer in the earliest stages of malignancy [45]. Bi et al. studied the overex-
pression of human epidermal growth factor receptor 2 (HER2), which is associated 
with increased chances of developing breast cancer. Three different cell lines were 
studied—BT474 (HER2 positive breast cancer cell), MCF-10A (HER2 negative 
healthy control cell), and HER2+ MCF-10A (HER2 positive healthy control cell). 
The data was analyzed using lasso and elastic-net generalized linear models with 
CV, which achieved an average 99.8% sensitivity and 99.6% specificity for separat-
ing the three cell lines. Following this, Raman spectra of 104 Lapatinib-treated and 
104 Lapatinib-resistant breast cancer cells were collected. Lapatinib, a tyrosine 
kinase inhibitor, is a common drug used to treat breast cancer patients. Significant 
differences between the spectral signatures of the two cell lines were observed, 
revealing vital biochemical information which could potentially identify cells resis-
tant to important cancer-fighting drugs as well as demonstrating a novel method for 
studying the response of cancer cells to therapeutic interventions [46]. In a different 
study, the effect of pentoxifylline, a drug used to treat muscle pain, on human breast 
cancer cells was examined. Spectral changes suggested a linear relationship between 
alterations in DNA, protein, and lipid content with drug dosage. Further, PC-LDA 
with LOO-CV could separate the control group from cells treated with different 
levels of pentoxifylline, providing an opportunity to monitor changes occurring 
within cell lines as a result of medications [47]. Talari and co-workers published two 
studies on analyzing breast cancer cell lines. In one, a combination of PCA and 
LDA differentiated two different breast cancer cell lines and one normal breast cell 
line with 100% sensitivity and 91% specificity [48]. In a later study, normal prolif-
erating, hypoxic, and necrotic regions of a T-47D human breast cancer spheroid 
model were analyzed by RS to identify chemical changes that occur as the regions 
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progress to necrosis. PCA showed lipid, amide I and III, and nucleic acid content 
differ significantly between the three regions, providing information for understand-
ing the progression of cells to necrosis [49]. Winnard Jr. and researchers studied 
organ-specific isogenic metastatic breast cancer cell lines. PLS-DA with LOO-CV 
was used to classify the different cell lines with 96.8% accuracy; SVM was also 
used and provided similar results [50].

Ramos et al. evaluated the potential of RS to screen for cervical cancer using cell 
samples. Both the cervical intraepithelial neoplasia (CIN) and the SIL terminology 
systems for classifying cervical cancer cells were tested in the process. Biochemical 
fingerprints of normal and abnormal cell samples were used for discrimination by 
PCA. Subsequently, PCA-LDA models with LOO-CV were built for classification 
using either CIN or SIL terminology. The model built using SIL terminology, which 
characterizes lesions into low-grade and high-grade categories, achieved an average 
93.45% sensitivity and 97.55% specificity. The model using CIN terminology gave 
better results—CIN divides classification of cells into three grades where CIN1 cor-
responds to mild dysplasia, CIN2 to moderate dysplasia, and CIN3 to both severe 
dysplasia and carcinoma in situ. The CIN model reached an average sensitivity of 
96.3% and specificity of 98.27% [51]. Notably, the terminology system used plays 
a small but identifiable role in the classification efficiency of the chemometric tech-
nique employed in this study.

Hundreds of live colorectal cancer cells, derived from primary and secondary 
tumor cells of the same patient, were studied by Gala de Pablo et al. Using PCA- 
LDA with CV to analyze the RS data, an accuracy of 98.7% was achieved for clas-
sifying cells as either SW480 or SW620 (Fig. 8.3). These results were better than 
those achieved with SVM and discriminant trees, illustrating the usefulness of cer-
tain chemometric techniques over others. PCA-LDA was also used to classify 
HL60, HT29, HCT116, SW620, and SW480 cells with 92.4% accuracy [52].

Efforts to diagnose non-Hodgkin lymphoma was assessed through examination 
of normal B-cells and non-Hodgkin lymphoma B-cells using asymmetric least 
squares (ALS) baseline correction and PCA. K-nearest neighbor (KNN) was used 

Fig. 8.3 PCA/LDA results. (A) Shape of the PCs 1 to 4 and of the LD (B) 2D plot of the scores 
for the first two PCs. (C) Histogram of the individual cell scores when projecting the cell data onto 
the LD from (A) with a vertical dashed line at the point of best separation. LD = linear discrimi-
nant; LDA = linear discriminant analysis; PC = principal component; PCA = principal component 
analysis (Reprinted with permission from [52])
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to confirm the discriminatory powers of PCA, resulting in 100% accuracy, thus 
providing a potentially novel method for diagnosing the cancer [53]. It was further 
found that the Raman spectral data from peripheral blood mononuclear cells 
(PBMC) could be used to discriminate a significantly pure population of T-cell lym-
phocytes from other PBMC myeloid cells. Several classifiers, including PCA-LDA, 
SVM, and Random Forests (RF), were used for discrimination. SVM built using 
RBF performed the most optimally, achieving 98% sensitivity and 92% specificity. 
This study demonstrates fundamental differences between myeloid cells and lym-
phocytes which can be used to identify different PBMC subtypes for diagnostic 
functions, as well as the importance of testing different chemometric techniques for 
the purpose of optimizing diagnostic capabilities [54].

Carvalho and researchers collected Raman spectra of the nucleoli, nuclei and 
cytoplasm of oral epithelial cancer and pre-cancerous cell lines, as well as from 
normal oral epithelial primary cell cultures. PCA exhibited significant differences 
between the cell lines, and contributions from nucleic acids and proteins of nucleo-
lar and nuclear sites and from lipids of the cytoplasmic area were primarily respon-
sible for discrimination. This study shows the ability of RS analysis of cells to 
uncover incredibly useful information regarding cellular components which cannot 
be achieved through tissue or biological fluid analysis, and that can contribute sig-
nificantly toward diagnosing cancer [55].

Cisplatin-resistant and cisplatin-sensitive ovarian carcinoma cells were discrimi-
nated using PCA-LDA with LOO-CV. Cisplatin, an anti-cancer chemotherapy drug, 
is often used to treat ovarian cancer. Using the classifier, a diagnostic accuracy of 
82% was obtained [56]. These results are similar to those obtained from the previ-
ously described analysis of tissue samples; however, the analysis of cells provides 
the added benefit of monitoring the effect of anti-cancer drugs.

Corsetti et al. analyzed the Raman fingerprints of normal and metastatic hormone- 
resistant prostate cancer cells by PCA-LDA with CV, which reliably distinguished 
the two with 95% sensitivity and 88% specificity [57]. Alternatively, Olmos et al. 
aimed to understand the effect of the pesticide Aldrin on human prostate cancer 
cells. A portion of prostate cancer cells were exposed to Aldrin, which has been 
shown to increase the risk of developing prostate cancer in men exposed to it. To 
assess the differences between the normal and treated prostate cell populations, 
PLS-DA with CV identified biomarkers associated with pollutant stress, and the 
best classifier built achieved 91.3% specificity and 80.0% sensitivity for distin-
guishing the two cell classes [58]. Most recently, deep-ultraviolet Raman spectros-
copy (excitation wavelength of 198 nm) also showed that normal human primary 
prostate epithelial cells and grade IV adenocarcinoma PC-3 prostate cancer cells 
could be successfully differentiated [59]. The results obtained here are comparable 
to those obtained using both high-throughput methods and fiber-optic probes, which 
are further discussed, suggesting the powerful diagnostic capability of spontaneous 
RS analysis of cells.

The combination of RS and chemometrics has the ability to detect chemical sig-
natures of cells in order to quickly and accurately diagnose various types of cancer. 
Cells provide unique information regarding the mixtures of metabolites present at a 
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single point in the lifetime of the cell and can be used to probe cellular components 
which cannot be accessed in other biological samples. Furthermore, cells can be 
manipulated and exposed to different drugs as well as carcinogens in order to better 
understand the pathology of cancer as well as the effect of drugs on cancer, provid-
ing advantageous and unique information which cannot be easily accomplished 
using other biological samples. While the reported results are promising, it should 
be noted that in several of the previously reviewed studies, there is a slight problem 
of the number of samples analyzed—that is, Raman spectra were collected from a 
significant number of cells, but not a significant number of donors. This, however, 
is a straightforward criticism to address in future work; as such, because of the other 
advantages which outweigh this small issue, the potential for RS analysis of cells to 
diagnose cancer should not be disregarded.

8.2.1.3  Body Fluids

In an effort to create a more simple and less-invasive sample collection procedure, 
many studies have focused on studying various body fluids, including blood, urine, 
and saliva, for cancer diagnostics. These body fluids provide biochemical informa-
tion which can be used not only for identifying cancer but also for determining the 
stage of the cancer. Body fluid analysis tends to be less costly and is a much more 
appealing option for reoccurring testing due to the ease of non-invasive collection; 
thus, many researchers have used RS and advanced statistical techniques to analyze 
body fluids for cancer diagnostic purposes.

Blood serum of 35 subjects with meningioma was investigated by RS and com-
pared to blood serum collected from 35 control subjects. Through PCA and PC-LDA 
followed by LOO-CV, healthy and meningioma subjects were correctly classified 
with efficiency levels of 92% and 80%, respectively. Similar results were also 
obtained for identifying different grades of meningioma [60].

Blood serum and urine were both studied in an attempt to diagnose cervical can-
cer. In one study, González-Solís et al. utilized PCA to distinguish serum samples 
from 19 cervical cancer patients, 3 pre-cancer individuals, and 20 healthy controls. 
Differences in Raman spectra indicated a high amount of carotenoids and intense 
protein contribution in the control serum and higher concentrations of glutathione 
and tryptophan in the disease serum (Fig. 8.4). Using a LOPO-CV technique, 100% 
sensitivity and specificity were achieved [61]. Pappu et  al. investigated 27 urine 
samples collected from healthy volunteers and patients with cancer. Using an LDA 
diagnostic algorithm with CV, 100% accuracy was achieved for discrimination [62]. 
Interestingly, these studies suggest that regardless of the body fluid type analyzed, 
markedly successful results are obtained for diagnosing cervical cancer.

The potential to diagnose colon cancer using blood serum was examined in a 
large study with 75 healthy volunteers, 65 colon cancer patients, and 60 post- 
operation colon cancer patients. Differences in Raman spectra were assigned to 
changes due to nucleic acids, amino acids, and chromophores. PCA and KNN 
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analyses were used to discriminate between the three classes, resulting in 91.0% 
accuracy [63].

Khan et al. used RS analysis of blood serum to diagnose NPC. PCA was used to 
highlight spectral differences and SVM with RBF and CV classified the serum as 
belonging to either the pathological class or the healthy class with 93% accuracy. 
Although a smaller dataset was used, these results are generally an improvement 
over those achieved through RS analysis of tissue [64].

Happillon et al. diagnosed chronic lymphocytic leukemia based on Raman spec-
tral analysis of blood smears collected from 27 healthy volunteers and 49 individu-
als with the disease. Two SVM models were built with CV—the first could 
discriminate between the two main subpopulations of leukemia (lymphocytes and 
polymorphonuclears) with sensitivity and specificity levels both over 98.5%. The 
second SVM model discriminated neoplastic and healthy lymphocyte spectra with 
an average sensitivity of 88% and specificity of 91% [65]. These results are rela-
tively comparable to those obtained through the analysis of cells, indicating this 
method should be considered further due to easier sample collection.

Interestingly, blood serum was used in two different studies to successfully diag-
nose lung cancer, suggesting the advantage of blood serum over other body fluids 
for this purpose. Li et al. tested several different modeling techniques to distinguish 
blood serum of 29 healthy donors and of 68 donors with lung cancer. Uncorrelated 

Fig. 8.4 Mean Raman spectra of the control and cervical cancer serum samples (Reprinted with 
permission from [61])
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linear discriminant analysis (ULDA) and LDA in combination with multiple scatter 
correction (MSC) pretreatment could each make the distinction with 100% sensitiv-
ity and specificity each. Interestingly, MSC combined with PLS-DA was unsuccess-
ful in achieving the goal, further demonstrating the significance of chemometric 
technique selection [66]. Wang et al. analyzed 91 blood serum samples from healthy 
individuals and individuals with varying stages of non-small cell lung cancer (stages 
I–IV), and found LDA with CV could distinguish the five different groups with an 
overall accuracy of 92% [67].

Urine samples were obtained from patients with oral cancer and from healthy 
donors; the corresponding Raman spectra were  analyzed using PCA-LDA with 
LOO-CV.  The model achieved 98.6% sensitivity and 87.1% specificity, with an 
overall accuracy of 93.7% for identifying the cancer patients [68]. Pachaiappan 
et al. utilized both blood plasma and saliva to diagnose oral cancer. In one study, the 
blood plasma of 30 healthy individuals, 27 patients with oral sub mucous fibrosis, 
and 34 with oral SCC was analyzed by PCA-LDA. The algorithms could separate 
the normal group from the premalignant group with 96.3% sensitivity and 80.0% 
specificity and the normal group from the malignant group with 91.2% sensitivity 
and 96.7% specificity [69]. Saliva of 83 individuals from the same aforementioned 
groups was also subjected to analysis via PCA-LDA with LOO-CV. The algorithms 
separated normal from premalignant samples with 96.4% sensitivity and 70.2% 
specificity and normal from malignant samples with 93.8% sensitivity and 95.7% 
specificity [70]. These studies show that regardless of body fluid analyzed, high 
levels of performance can be achieved for diagnosing oral cancer.

Body fluid analysis is advantageous over analysis conducted using other biologi-
cal materials for many significant reasons. Collection of body fluids is considerably 
less-invasive, and even non-invasive in certain cases; it is inexpensive and the pro-
cess is quick, which allows for rapid results as well as repeat analyses as necessary, 
and can be conducted during routine exams. Biological fluids provide a great 
amount of biochemical information regarding the composition of the sample and 
have a great potential to diagnose all forms of cancer when analyzed by RS.

8.2.1.4  Spontaneous Raman Spectroscopy with Expanded Raman 
Spectral Range

The majority of the aforementioned studies using spontaneous RS in combination 
with chemometrics have focused on analyzing the “fingerprint” (FP) region of the 
Raman spectral data range. The FP region usually refers to the section of Raman 
spectral bands existing between 400 and 1800 cm−1. It has been discovered that a 
wider Raman spectral range, which includes the high wavenumber (HWN) region, 
provides additional information that can be used for many analytical purposes, 
including disease diagnostics and biomarker detection. The HWN region of spectral 
data usually refers to the spectral range between 2800 and 3600 cm−1 which is found 
to contain important contributions from water, various C–H bond vibrational modes 
of lipids and proteins, as well as other N–H and O–H bond vibrations of 
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biomolecules. Notably, the HWN region does not usually suffer as much from auto-
fluorescence signal as the FP region. Several studies have exhibited the usefulness 
of this region for diagnosing cancers.

Several studies have used the HWN region to successfully investigate oral can-
cer. Barroso et al. aimed to differentiate healthy tissue from oral SCC tumor tissue 
within 14 patients. Various bands attributed to water were used to quantify the water 
content in each sample. Specifically, the bands located between 3350 and 3550 cm−1, 
for O–H-stretching vibrations, and 2910 and 2965 cm−1, for C–H-stretching, were 
used. It was found that the water content values determined for the oral SCC sam-
ples were significantly higher than the healthy tissue values (Fig. 8.5). A receiver 
operating characteristic (ROC) curve determined that, using a water content cutoff 
value of 69%, tumor tissue could be identified with 99% sensitivity and 92% speci-
ficity [71]. In a different study, Pachaiappan et  al. performed PCA-LDA with 
LOPO-CV of the HWN region (here, 2500–3500  cm−1) of Raman spectra from 
blood plasma of 64 individuals. Results showed that oral malignancy could be iden-
tified with 92.2% accuracy for the training dataset and 84.4% accuracy for the CV 
dataset. Analysis of the HWN region allowed researchers to discover additional 
lipid and water spectral contributions useful for distinguishing the two classes [72]. 
Further, the HWN region of spectral data for 197 urine samples collected from 
healthy subjects, oral premalignant, and malignant patients was analyzed using 
PCA-LDA with LOO-CV. Three different models were built—normal and oral pre-
malignant subjects were classified with 94.9% accuracy, normal and oral malignant 
groups with 92.1% accuracy, and all three groups with 91.2% accuracy for CV [73]. 
In a fourth study, Carvalho et al. showed that the HWN region of Raman spectra 
could differentiate the nucleolus, nucleus, and cytoplasmic areas of oral epithelial 
cancer, dysplastic, and normal epithelial primary cell lines. The combination of 
PCA and feature discriminate analysis showed that the cell type could be identified 
with 99.9% sensitivity and 97.4% specificity using the cytoplasm, 100% sensitivity 
and 99.1% specificity using the nucleus, and 100% sensitivity and 95.4% specificity 
using the nucleoli [74]. These studies clearly show the usefulness of the HWN 
region of Raman spectral data for diagnosing oral cancer; interestingly, these results 
are generally either comparable or an improvement over those obtained through 
analysis of other biological samples using only the FP region.

Melanoma and benign melanocytic lesions suspected of melanoma were investi-
gated by Santos et al. Raman bands in the range of 2840–2930 cm−1 displayed sig-
nificant spectral differences between the two groups; PCA-LDA with LOPO-CV of 
this region could distinguish samples which were considered difficult to distinguish 
by trained dermatologists. A ROC curved was used to set an optimal discrimination 
threshold; results showed that melanoma and benign melanocytic lesions often mis-
diagnosed as being melanoma could be discriminated based on the information 
found in the C–H-stretching region of HWN Raman data, thus suggesting the poten-
tial of the method for improving clinical diagnosis of skin malignancies [75].

While the HWN region provides novel useful and unique information, in several 
other recent studies, analysis of both the FP and HWN regions was considered for 
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Fig. 8.5 Examples of HWNR spectra measured in (a.1) H&E stained thin tissue section of SCC, 
(a.2) typical Raman spectrum of SCC, (b.1) H&E stained thin tissue section showing adipose tis-
sue (arrow), (b.2) Raman spectrum of adipose tissue, (c.1) H&E stained thin tissue section show-
ing muscle tissue (arrow) and (c.2) representative Raman spectrum of muscle (Reprinted with 
permission from [71])
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diagnostic purposes. The best results are most consistently seen when the two spec-
tral regions are considered together.

The diagnostic potential of RS for gastric cancer was evaluated through a com-
parison of the FP and HWN regions. Raman spectra were collected from normal 
mucosa and gastric cancer tissue areas. Diagnostic algorithms were generated using 
PLS-DA with LOPO-CV, which yielded 94.59% sensitivity and 86.48% specificity 
for the FP region and 81.08% sensitivity and 71.05% specificity for the HWN 
region. Although both regions provide useful information, here, the FP region was 
better able to diagnose gastric cancer [76].

Huang et al. obtained FP and HWN region spectral data of nasopharyngeal tis-
sue. Non-cancerous tissue was differentiated from cancerous tissue using only FP 
spectral data (800–1800 cm−1), only HWN spectral data (2700–3100 cm−1), and an 
integrated FP/HWN dataset (Fig. 8.6). The results, using PCA-LDA with LOPO-CV, 
showed the samples could be distinguished with 87.8% sensitivity and 86.5% speci-
ficity for the FP region, 85.4% sensitivity and 91.9% specificity for the HWN 
region, and 95.1% sensitivity and 89.2% specificity for the integrated dataset, thus 
demonstrating the potential of both FP and HWN regions to diagnosis NPC [77]. 
Sun et al. performed a study with a similar goal, with spectral data collected from 
biopsy tissue smear samples of 74 patients in the regions of 800–1800 cm−1 and 
2800–3100  cm−1. Using PCA-LDA of the combined FP/HWN regions dataset, 
87.2% sensitivity and 85.7% specificity were achieved for classifying a sample as 

Fig. 8.6 Comparison of the mean intensities of FP/HW Raman spectra from NPC tissue (red line, 
n = 41) versus that of non-cancerous tissue (black line, n = 37) in the FP and HW spectral regions. 
For better visualization, the mean Raman spectra of nasopharyngeal non-cancerous tissue are 
shifted vertically. The shaded areas represent the respective standard deviations of the means. 
((non-cancerous)-cancerous)∗2 was used to represent the corresponding mean difference spectrum 
(blue line), which is also shown at the bottom. The Raman spectral ranging from 1800 cm−1 to 
2800 cm−1 was not shown by using the broken interval (—//—) to indicate which does not contain 
tissue biochemical information (Reprinted with permission from [77])
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belonging to the NPC group or to the non-cancerous group [78]. Clearly, the HWN 
region provides unique additional information useful for diagnosing cancer based 
on RS and chemometrics.

8.2.1.5  Raman Hyperspectral Imaging

Spontaneous RS in combination with chemometrics has shown great potential for 
generating a diagnosis based on the analysis of biological specimens; however, it is 
important to consider the advantages of Raman hyperspectral imaging (HSI). 
Raman HSI utilizes an imaging camera to collect additional information regarding 
the sample being analyzed; as such, the result is the combination of spectral infor-
mation with spatial information. Raman spectral information is collected from each 
pixel of an image. The spectral signature from each pixel, or small volume of the 
sample, depends on the biochemical components present in that small volume—
these components can vary within the sample itself and between different samples 
(i.e., tissue from a healthy donor or tissue from a donor with cancer). In Raman HSI, 
a three-dimensional (x, y, λ) hyperspectral data cube is formed where the x and y 
components are spatial dimensions and the λ component is the spectral signature. 
Together, this information can generate an image which provides information 
regarding the distribution of biochemical components within the sample. In fact, the 
hyperspectral images are useful for depicting the relative concentrations of various 
biomarkers in a biological sample, potentially indicating which areas of the sample, 
if any, are affected by the disease in question. Furthermore, Raman hyperspectral 
images of tissue in particular can be compared to the tissue after it has been stained 
using hematoxylin and eosin (H&E) staining. Thus, Raman HSI is useful for medi-
cal diagnostics as it can confirm the presence of a disease, distinguish between 
normal and diseased samples, and distinguish between disease stages, all through 
objective analysis. The following studies employ Raman HSI for the purpose of 
understanding the distribution of biochemical components within samples in order 
to identify cancer. Additionally, some studies go a step further and utilize advanced 
statistical analysis to build algorithms for quantitative diagnosis of various cancers.

In a study by Kast et al., the concentrations of Raman spectral bands correspond-
ing primarily to lipid and protein content (1004, 1300:1344, and 1660 cm−1) were 
imaged across forty brain tissue sections diagnosed as normal, GBM, necrosis, or 
infiltrating GBM. The goal was to understand the boundaries that exist between 
gray matter, white matter, and diseased tissue in an attempt to develop a novel 
method for rapid and non-destructive imaging of brain tissue for cancer diagnosis. 
The resulting Raman imaging maps corresponded with adjacent H&E-stained sec-
tions and could therefore successfully discriminate between the various regions of 
brain tissue [79].

In the last few years, several manuscripts were published concerning applying 
Raman HSI for breast cancer analysis. These studies were able to pinpoint valuable 
differences in biochemistry between diseased and healthy samples, which can be 
more easily detected with the advantages of HSI.  In one study, tumor regions of 
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breast cancer tissue were discriminated from healthy tissue based on altered con-
centrations of nucleic acids, collagen, and fat as determined by Raman HSI and 
KCA. Furthermore, LDA could diagnose ductal carcinoma in breast tissue samples 
with 95.6% sensitivity and 96.2% specificity. Fresh samples were then subjected to 
Raman imaging using a selective-sampling strategy in order to decrease data acqui-
sition time based on auto fluorescence imaging (AFI); results were in agreement 
with the diagnosis made by conventional histopathology [80]. In a different study, 
live non-malignant, mildly malignant, and malignant breast cancer cells as well as 
breast cancer tissue were analyzed. Results from Raman HSI suggested that lipid 
droplets in the various cell lines differ not only in concentration but also in bio-
chemical composition, suggesting their potential role in breast cancer pathology. 
Differences were observed in the lipid composition within breast epithelial cells as 
well as in breast tissue. Further, PCA displayed identifiable differences in the Raman 
signatures of the cells, suggesting a method for predicting the state of the oncogenic 
pathway [81]. Brozek-Pluska et al. showed that RS and Raman HSI could detect 
relative amounts of acetylated and methylated lysine, which have been previously 
designated as biomarkers for breast cancer. The stretching vibration of the acetyl 
group observed near 2938–2942 cm−1 and of the methyl group around 2970 cm−1 
allowed these molecular changes occurring in human breast tissue cancer cells to be 
monitored. Further, PLS-DA with CV provided 85.3% sensitivity and 91.3% speci-
ficity for detecting cancer [82].

Vanna et al. successfully distinguished the four subtypes of acute myeloid leuke-
mia (AML), which include myeloblasts, promyelocytes, abnormal promyelocytes, 
and erythroblasts. Bone marrow samples of seven patients, each affected with one 
of the four AML subtypes, were collected. For each cell isolated from the bone mar-
row aspirate, 4096 spectra were collected in order to generate Raman images which 
could accurately demonstrate morphological features. When the Raman images 
were analyzed by HCA, automatic discrimination and localization of the nucleus, 
cytoplasm, myeloperoxidase-containing granules, and hemoglobin was achieved. 
The images provide additional biochemical information than what could be obtained 
using only spontaneous RS. Following this, the average Raman fingerprint of each 
cell was analyzed by PCA-LDA with LOO-CV. Myeloblasts, promyelocytes (both 
abnormal and normal), and erythroblasts were differentiated with 100% accuracy. 
Normal and abnormal promyelocytes were correctly classified with 95% accuracy, 
and all four subtypes could be classified with 98% accuracy [83].

Interestingly, when Raman HSI was used to study liver cancer specimens, the 
results were a great improvement and provided useful biochemical information as 
compared to those results obtained through spontaneous RS tissue analysis. Two 
liver cancer cell lines, HepG2—including HepG2 cells in different cellular growth 
phases—and SK-Hep1, were analyzed by Tolstik et al. The collected spectral data 
was used to generate color-coded images which were analyzed by HCA and PCA; 
this provided significant information regarding the biochemical composition of the 
samples. Spectral differences were mainly attributed to higher expression of unsatu-
rated fatty acids in the HCC cells as well as during the proliferation phase of cellular 
growth. Through SVM analysis with CV, previously unknown cells were classified 
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as belonging to one of the two cell lines with 93% accuracy. Predictions of the 
unknown proliferation phase for HepG2 cells showed 100% sensitivity and 98% 
specificity. Raman HSI uniquely provides information regarding cell type and pro-
liferation behavior, which are essential tools in identifying features of malignant 
tumors [84]. In a second study by the same group, Raman imaging of liver tissue 
was used to identify molecular information beneficial for diagnosing liver cancer. 
The most notable difference between HCC and fibrosis regions of tissue was found 
to be due to fatty acids, especially palmitic acid. A RF model with CV classified 
malignant and non-malignant tissue regions with 86% accuracy [85]. More recently, 
Ryabchykov et al. discriminated three different cell lines (HepG2, nondifferentiated 
hepatic stem cell line HepaRG, and differentiated hepatocyte-like HepaRG) using 
Raman HSI. KCA was used to visualize clusters of different cell components within 
the cells. Following this, a three-class LDA with LOO-CV model was constructed 
to achieve cell line classification, reaching 96% accuracy [86].

Raman HSI shows great capabilities for detecting oral cancer, in both paraffin- 
free and paraffin-embedded tissue. Oral SCC and healthy tissue samples were ana-
lyzed to assess the potential of RS to perform discrimination tasks at the histological 
level. 127 Raman images were generated from 25 unstained thin tissue sections; the 
images were comparable to corresponding histological evaluation obtained through 
H&E staining. After imaging, the spectra were labeled as cancerous or as a sur-
rounding healthy tissue structure (squamous epithelium, connective tissue, adipose 
tissue, muscle, gland, or nerve) (Fig. 8.7). LDA models were built to analyze the 
labeled spectra for classification purposes. A total of six binary LDA models were 
built to distinguish oral SCC spectra from each of the surrounding healthy tissue 
structures, achieving an overall average accuracy of 93.17% [87]. In a unique study, 
Meksiarun et al. aimed to first understand if multivariate methods could extract the 
paraffin component of paraffin-embedded oral cancer tissue spectra. Typically, oral 
SCC tissue will be removed from a patient, fixed with formalin, and embedded in 
paraffin to prevent degradation. However, the Raman spectral features of paraffin 
overlap with main Raman spectral tissue bands, including the amide I and III bands. 
Three methods were tested for their ability to remove the paraffin spectral features 
while maintaining the integrity of the rest of the Raman spectrum, including PLS, 
independent component (IC) analysis, and IC-PLS. All methods were successful, 
however, PLS and IC-PLS were the most successful at removing the paraffin spec-
tral component while still maintaining spectral integrity of the cancer tissue. The 
paraffin-removed spectra obtained via IC-PLS were analyzed by PCA to construct 
Raman images. Main Raman markers for discriminating healthy and malignant tis-
sue were found to be collagen, phosphate, and DNA. The produced Raman images 
showed similarity to H&E stained tissue, thus demonstrating the ability of Raman 
HSI to diagnose oral cancer in paraffin-embedded tissue [88].

Human prostatic cells were collected and analyzed using Raman HSI. An empha-
sis was placed on the C–H vibration region (2800–3100 cm−1) of the spectra due to 
its ability to pinpoint the main differences between normal and tumor cell lines. 
PCA was used for image processing and identified protein and lipid fractions which 
were important for differentiation. A self-modeling curve resolution (SMCR) 
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algorithm was also employed and revealed tumor cells experience a 97% increase of 
the lipid fraction with respect to the control cells. Analysis by least squares curve 
fitting gave reproducible results for identifying differences at the molecular level 
between normal and tumor cells [89].

Raman imaging was performed on healthy and neoplastic thyroid tissue to 
improve the diagnosis of PTC (Fig. 8.8). Biochemical features of PTC were charac-
terized by the significant presence of carotenoids in comparison to healthy tissue. 
LDA with LOO-CV was applied to estimate tissue classification. Healthy and PTC 
thyroid tissue were discriminated with 100% accuracy and classical and follicular 
variants of PTC were discriminated with 95% accuracy [90]. The performance of 
this study is generally an improvement over analysis of tissue by spontaneous 
RS alone.

Fig. 8.7 H&E stained sections and corresponding pseudo-color Raman images. H&E-stained tis-
sue sections (a, c, e, and g) and corresponding pseudo-color images (b, d, f, and h). The K-means 
cluster averages were annotated as one of the following tissue structures: OCSCC (central part, 
peripheral part, or n.o.s.), squamous epithelium (superficial layers, suprabasal layers, or basal lay-
ers), CT (dense and collagen-rich, mixed, or inflammation- and capillary-rich), gland (mucinous or 
serous), muscle, adipose tissue, or nerve. CT = connective tissue; n.o.s. = not otherwise specified; 
OCSCC = oral cavity squamous cell carcinoma (Reprinted with permission from [87])
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Raman HSI capitalizes on the advantages of spontaneous Raman spectroscopy 
while providing additional tools that can be used in diagnosing cancer. The images 
produced are comparable to those produced by H&E staining and the information 
provided is useful for understanding presence of a disease as well as the stage of a 
disease. Importantly, Raman HSI is able to identify incredibly valuable biochemical 
differences between healthy and diseased samples, further enabling the identifica-
tion of biochemical changes that occur during pathogenesis as well as potential 
novel biomarkers that have not yet been considered. What’s more, Raman HSI 
opens to the door for in vivo applications where the images can indicate tumor loca-
tion which can be useful for surgical procedures.

Fig. 8.8 Typical example of Raman chemigram map (1156 cm−1 band reference) of a mixed zone 
of thyroid tissue (blue-healthy; red-yellow-green–PTC): (a) dark field optical image, (b) Raman 
map, (c) average reference Raman spectrum corresponding to healthy tissue, (d) average reference 
Raman spectrum corresponding to PTC tissue. The red square on the right side (a) corresponds to 
the investigated tissue area shown on the left (b). The scale bars are expressed in μm (reprinted 
with permission from [90])
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8.2.2  Spontaneous Raman Spectroscopy Combined with Other 
Analytical Techniques

In an attempt to increase the amount of useful information obtained for cancer diag-
nostics, some research efforts have focused on combining RS with other analytical 
techniques. Ideally, these additional methods will provide complimentary informa-
tion to that obtained by Raman spectroscopic analysis and will increase the confi-
dence and statistical significance of the methodology for diagnosing cancer.

RS was used to study 12 healthy and 30 tumor bladder tissue samples. Using 
HCA and differences in peak ratios, the tissue type could be classified with 96.7% 
sensitivity and 66.7% specificity. Major differences between the two classes 
included higher tryptophan, cholesterol, and lipid content levels in healthy tissue, 
and increased levels of nucleic acids, collagen, and carotenoids in bladder tumor 
tissue. High-performance liquid chromatography (HPLC), an analytical technique 
useful for separating, identifying, and quantifying individual components within a 
mixture, was employed to analyze carotenoids extracted from the two tissue types. 
While the Raman spectra reflect contribution due to carotenoids, HPLC was able to 
further narrow down this contribution to a specific biomarker; it was found that 
β-carotene was the major carotenoid present in tumor tissue, marking the first time 
this biomarker has been identified for bladder cancer [91].

RS and Raman HSI were combined with atomic force microscopy (AFM) to 
discriminate brain tumor from normal brain tissue samples. AFM, a type of scan-
ning probe microscopy, was used to obtain nanomechanical properties to form 
images of healthy and cancerous brain tissue, while RS was used to glean informa-
tion regarding the biochemical composition of the tissues. High-grade medulloblas-
toma (grade IV) and non-tumor samples from tissue of the central nervous system 
were compared. After analyzing the Raman spectra and images, it was determined 
that proteins within medulloblastoma tumors exist in the β-sheet conformation at 
enhanced levels and in the α-helix conformation at decreased levels as compared to 
proteins within normal tissue. Upon comparison of Raman peak ratios, it was dis-
covered that in normal brain tissue, the relative amount of lipids compared to pro-
teins is considerably higher. Mechanical indentation by AFM discovered that 
medulloblastoma tissue mechanical properties are strongly heterogeneous. Lastly, 
RS data was analyzed using PLS-DA with CV, indicating 96.3% sensitivity and 
92% specificity for separating the two tissue types. Through combination of Raman 
HSI and AFM, the biochemical and nanomechanical signatures obtained have the 
potential to identify biomarkers associated with the development of brain cancer 
[92]. Although these results are comparable to studies which use only spontaneous 
RS, the added information that is obtained improves the usefulness of the methodol-
ogy for diagnosing brain cancer.
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A novel approach combining spontaneous RS and optical pH sensing was used 
to differentiate healthy and cancerous breast tissue. To better prepare the Raman 
spectroscopic method for in vivo cancer detection, pH sensing can be first used to 
detect areas of tissue with lower pH levels, which is associated with cancer, thus 
ideally increasing the accuracy of the method as opposed to just using RS (Fig. 8.9). 
Fiber-optic-based Raman and pH probes were used to evaluate tissue samples; the 
pH sensing is based upon the pH level’s dependence on the optical transmission 
spectrum. Raman spectra were collected first, followed immediately by collection 
of transmission spectra using the optical pH probe. The Raman spectra were com-
bined with the transmission spectra from the same sample. PC-LDA with LOO-CV 
was employed for classification, first using only Raman spectra and then using the 
combined pH-Raman spectra. When Raman spectra were analyzed alone, the algo-
rithm achieved 100% sensitivity and 91.5% specificity. When the algorithm ana-
lyzed the combined pH-Raman spectra, 100% sensitivity and 98% specificity were 
achieved, indicating the added advantage of pH sensing for diagnosing breast can-
cer using RS [93].

Both Raman and infrared (IR) spectroscopies were used in combination in sev-
eral studies for the purpose of identifying various types of cancer. IR spectroscopy, 
another vibrational spectroscopic technique, is known to provide complimentary 
information to that obtained by RS.  Specifically, IR spectroscopy analyzes the 
interaction of IR light with a molecule, generating an IR spectrum of energy that is 
absorbed or transmitted by the molecule as a function of either frequency or wave-
length of light. The spectral information can then be used to identify and study the 
sample. The vibrational signatures of 164 invasive ductal carcinoma and invasive 
lobular carcinoma breast tissue samples were analyzed by both Raman and IR spec-
troscopies for the purpose of discriminating non-cancerous and cancerous tissue. 
Here, KCA followed by PCA and PLS-DA with CV were used to analyze the 
Raman spectral data. Raman imaging identified differences in spectral regions cor-
responding to vibrations of carotenoids, fatty acids, and proteins between normal 

Fig. 8.9 Experimental setup using the fiber-optic-based pH probe for measuring the transmission 
spectra varying according to the pH level of the normal and cancerous breast tissue samples. The 
intensity of transmission spectra varies due to the absorbance change of the polymeric coating 
layer, which consists of neutral red/poly(acrylic acid) bilayers (Reprinted with permission 
from [93])
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and cancerous tissue, while IR spectra depict differences in proteins and phospho-
lipids. Results of statistical analysis showed 84.7% sensitivity and 71.9% specific-
ity for determining if breast tissue displayed either normal biochemistry or cancer 
pathology [94]. Owens et al. aimed to determine whether attenuated total reflection 
Fourier-transform infrared (ATR-FTIR) spectroscopy or RS could better character-
ize the biomolecular signatures of blood plasma or serum collected from patients 
with ovarian cancer as compared to healthy controls. FTIR is used to simultane-
ously collect data over a wide spectral range; the ATR attachment allows for sur-
face properties of a sample to be measured rather than bulk properties, thus 
decreasing the potential for strong attenuation of the IR signal in samples that are 
highly absorbent. Here, 60 blood samples were analyzed using ATR-FTIR spec-
troscopy, while only 8 samples were studied using RS. All spectra were subjected 
to PCA-LDA, which showed statistically significant differences between healthy 
and cancerous samples using both spectroscopic methods. A SVM classifier suc-
cessfully differentiated Raman spectral data of blood plasma with 74% accuracy; 
notably, the IR spectral data of blood plasma was successfully classified with 
93.3% accuracy. It was further found that blood plasma was better suited for diag-
nostic discrimination than blood serum. Although ATR-FTIR spectroscopy is 
shown here to better diagnose ovarian cancer, one should consider the different 
sample sizes used in each part of the experiment [95]. In another study, Raman and 
ATR-FTIR spectroscopies were used to determine if either could identify the pri-
mary site of a metastatic tumor. Metastases were obtained from primary lung and 
colorectum AC as well as from metastatic melanoma. PCA-LDA determined points 
of dissimilarity between spectra; PCA in combination with a linear discriminate 
classifier (LDC) calculated classification accuracy. In a three-class algorithm built 
using Raman spectral data, 69% accuracy for predicting colorectal AC, 69% for 
lung AC, and 72% for melanoma were achieved. Using ATR-FTIR spectral data, 
60% accuracy for predicting colorectal AC, 59% for lung AC, and 47% for mela-
noma were achieved. Interestingly, combination of the two AC groups improves 
results to 85% accuracy for predicting AC and 75.4% for melanoma using the 
Raman data and to 96% accuracy for AC and 72% for melanoma using the ATR-
FTIR data [96]. In general, IR spectroscopy performs similarly to, if not better than, 
RS in these studies. It should be noted that differences in sample sizes may play a 
role, and that spontaneous RS has already been shown in other studies to success-
fully diagnose these same cancers.

In a unique study by Tatarkoič et al., blood plasma samples from 55 individuals 
were investigated using a combination of electronic circular dichroism (ECD), 
Raman optical activity (ROA), and conventional Raman and FTIR spectroscopies 
for the purpose of diagnosing colon cancer. ECD is a useful technique for analyzing 
stereochemistry; an ECD spectrum is the difference between absorption of left and 
right circularly polarized lights due to electronic transitions in the UV or visible 
regions of the spectrum [97]. Similarly, ROA measures the difference in intensity of 
Raman scattered left and right circularly polarized light which arises because of 
molecular chirality [98]. These techniques help to provide more specific informa-
tion regarding the biochemical composition of a sample in order to better increase 
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the ability to identify cancer with chemometrics. The results of LDA showed that, 
for each of the individual methods, limited discrimination between control group 
subjects and patients with colon cancer was achieved. However, when spectra from 
all methods were combined and again evaluated using LDA with LOO-CV, sensitiv-
ity and specificity reached 93% and 81%, respectively, with an overall accuracy of 
87% for discriminating the two classes of blood plasma samples [99]. Despite the 
combination of so many techniques, the performance of the model is not necessarily 
a significant improvement over those built using spontaneous RS data of various 
biological samples.

Lin et al. also used the combination of several different techniques, this time for 
diagnosing NPC. Here, a 4-modality endoscopy system comprised of white light 
imaging (WLI), AFI, diffuse reflectance spectroscopy (DRS), and RS was used for 
in vivo NPC detection. WLI can locate suspicious lesions, but has low diagnostic 
sensitivity and relies on subjective analysis. AFI, which has a higher diagnostic 
sensitivity, has the ability to monitor biochemical changes that occur in tissue based 
on the fluorescence profile of internal fluorophores which are associated with cancer 
progression. DRS can improve AFI by providing morphological and functional 
quantitative information regarding the tissue samples. RS and DRS data were col-
lected from patients with NPC and from healthy subjects under the assistance of 
AFI and WLI. When the combined DRS/RS dataset was applied to PCA-LDA, the 
algorithm achieved 98.6% sensitivity and 95.1% specificity for separating the two 
groups of tissue samples, showing the usefulness of combining multiple methods to 
improve results [100].

The combination of RS and AFI was used in multiple studies to diagnose skin 
cancer. Zakharov et al. used fluorescence analysis first to quickly scan large areas of 
tissue samples for abnormality detection; when malignancy was suspected, Raman 
spectral analysis of the tissue was performed. Quadratic discriminant analysis 
(QDA) of the data provided a diagnosis of malignant melanoma with 89% sensitiv-
ity and 87% specificity [101]. In a proceeding study, Raman and auto fluorescence 
(AF) spectroscopies were used to identify skin neoplasms as melanoma, BCC, or 
benign tumors. Here, the Raman and AF signals were combined and analyzed via 
PLS-DA with LOO-CV. Results showed 98.3% accuracy for separating malignant 
and benign tumors [102]. Similarly, Bratchenko et al. differentiated skin melanoma 
and BCC tissue samples through the combination of Raman and AF spectra 
(Fig. 8.10). When considered separately, neither set of spectra was able to exceed 
79% accuracy; however, PCA-DA analysis of a combined spectral dataset with six 
selected spectral features provided 97.3% accuracy for malignant skin detection 
[103]. Interestingly, these studies each show how AF can be used to increase the 
reliability of the RS method for diagnosing skin cancer.

While RS is oftentimes suitable for identifying cancer by itself, analysis can 
oftentimes be improved when additional methodologies are combined, as is dis-
played by the previously mentioned studies. However, it is important to note that the 
combination of multiple techniques increases the level of complexity of the meth-
odology as well as potentially increasing the time, cost, and effort required to 
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achieve a diagnosis, indicating the importance of considering the costs and the ben-
efits that accompany a more complex methodology system.

8.2.3  Modifications of Spontaneous Raman Spectroscopy

While conventional spontaneous RS has shown it is capable of diagnosing different 
cancers, some studies have advocated for the implementation of modifications of 
the technique. Variations of spontaneous RS have been proposed as effective meth-
ods to enhance diagnostic efforts. Those methods considered here are simple modi-
fications of conventional RS; inclusion of techniques such as surface-enhanced and 
tip-enhanced RS are beyond the scope of this review chapter.

Fullwood et al. employed immersion Raman spectroscopy (IRS) to investigate 
brain cancer. Because IRS utilizes a specific immersion lens, the lens can have 
direct contact with a specific liquid; in this study, the liquid used was deionized 
water which covered the tissue sample being studied. Immersion of the sample in 
liquid protects the tissue from potential photo-damage and increases the spectral 
quality by reducing contribution of stray light to the spectral background. Both 

Fig. 8.10 Experimental setup: L1, L2, L4, and L5: matching lenses, L3: focusing lens, BPF: band-
pass filter, M1 and M2: mirrors, DM1, DM2, and DM3: dichroic mirrors, and LPF1 and LPF2: long-
pass filters (Reprinted with permission from [103])
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spontaneous RS and IRS data were collected from 48 tissue samples. It was deter-
mined that a lower background contribution was observed in the IRS data as com-
pared to the RS data. A PC-LDA diagnostic algorithm was therefore built using the 
IRS data which could successfully discriminate between normal, GBM, and meta-
static brain tissue spectra. Following this, researchers effectively distinguished dif-
ferent primary sites of cancerous tissue and investigated the biochemical differences 
between primary and metastatic cancer using samples from the same patient [104].

The majority of previously mentioned manuscripts have used dispersive RS; in a 
paper published in 2017, Fourier transformation (FT)-NIR RS was used to diagnose 
oral epithelial dysplasia. FT-NIR RS excites samples using a laser, such as the 
Nd:YAG used in this study, at a wavelength of 1064 nm; excitation in the IR region 
of light helps eliminate fluorescence but provides a weaker Raman signal. To adjust 
for this, an interferometer is used to convert the Raman signal to an interferogram 
which allows the entire Raman spectrum to be collected simultaneously by the 
detector, improving the signal-to-noise ratio. The FT algorithm then converts the 
interferogram to a conventional Raman spectrum. In this study, the goal was to dif-
ferentiate normal oral mucosa, oral SCC, and dysplastic tissue samples. After spec-
tra were collected, a SVM classifier was built and results were verified using 
PCA-LDA. Through SVM, accuracies for distinguishing mild, moderate, and severe 
dysplasia from oral SCC were 100%, 44.44%, and 71.15%, respectively. PCA-LDA 
analysis did not allow for successful discrimination of the stages, either, suggesting 
the need for improvements to the classification system. However, PCA-LDA could 
still identify biochemical discrepancies between normal, oral SCC, and dysplastic 
tissue samples [105]. Interestingly, these results are not necessarily an improvement 
of those performed using spontaneous RS analysis of biological specimens.

Coherent anti-Stokes Raman scattering (CARS) imaging was used in an attempt 
to diagnose both bladder and lung cancer. Similar to spontaneous RS, CARS is 
sensitive to molecular vibrational modes. Dissimilarly, three laser beams will each 
emit photons of particular frequencies to produce a coherent optical signal, at the 
anti-Stokes frequency, with the goal of producing a much stronger signal as com-
pared to normal RS.  Weng et  al. used CARS to collect cellular-level images of 
normal and cancerous lung tissue samples. A deep convolutional neural network 
(DCNN) learning algorithm automatically differentiated normal, small cell carci-
noma, AC, and SCC lung images with 89.2% accuracy [106]. Yosef et al. collected 
both CARS and second harmonic generation (SHG) images. The CARS imaging of 
urine sediments was used to preselect urothelial cancer cells. Next, Raman HSI of 
the cells was performed (Fig. 8.11). Through HCA, it was found that the cancer 
cells displayed a decrease in glycogen and an increase in fatty acid levels as com-
pared to healthy controls. A RF classifier was built which could identify cancerous 
urothelial cancer cells based on the analysis of full cells or cytoplasm with 100% 
accuracy and based on nuclei with 90% accuracy after LOPO-CV [107]. The results 
of using CARS for diagnosing cancer are inconsistent, seeming to depend on the 
type of sample analyzed and the cancer being targeted.

Shifted-excitation Raman difference spectroscopy (SERDS) was employed as a 
label-free and non-invasive method for diagnosing oral SCC.  During SERDS 
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measurements, spectra are first collected when the wavelength is set to a particular 
number (here, 783 nm). Then, the excitation wavelength undergoes a small shift to 
a second number (here, 785 nm), and a second spectral dataset is acquired. The 
dataset collected at each wavelength is averaged and the mean spectrum using the 
first excitation wavelength is subtracted from the mean spectrum collected using the 
second, ideally removing any contribution from fluorescence emission. In this man-
ner, 72 SERDS spectra were collected, one from each of three different physiologi-
cal tissue points and three different pathological lesions from 12 different patients. 
The SERDS spectra of malignant and benign tissues were discriminated using 
PCA-LDA, which achieved 86.1% sensitivity and 94.4% specificity for diagnosing 
oral SCC [108]. Although these results indicate success, it should be noted that 
many other research groups were able to accomplish similarly effective outcomes 
with much more simple RS technology.

Polarized Raman spectroscopy (PRS) was used by Daniel et al. for observing the 
biomolecular structural changes that occur in cervical cancer tissue samples. PRS is 
observed as the result of polarized light interacting with vibrating molecules, where 
the polarization is either parallel or perpendicular to the excitation laser’s intrinsic 
polarization. Here, PRS provided information regarding the differences in orienta-
tion of biomolecules such as tyrosine, collagen, and DNA between normal and 
malignant cervical tissue samples. Depolarization ratios were analyzed by LDA 
with CV, yielding sensitivity, specificity and accuracy levels of 96%, 97.2%, and 
96.7%, respectively. This is an improvement over the 92% sensitivity, 72.2% speci-
ficity, and 80.3% accuracy achieved using only spontaneous RS [109].

Fig. 8.11 Different imaging techniques applied to normal (A–E) and high-grade cancerous (F–J) 
urothelial cells in urine sediments: (A, F) SHG images, (B, G) CARS images, (C, D, H, I) inte-
grated Raman intensity of cells in the (C, H) 2800–3050 cm−1 and (D, I) in 785–805 cm−1 regions, 
and (E, J) H&E-stained images (Reprinted with permission from [107])
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Stimulated Raman scattering (SRS) microscopy was used to reveal the infiltra-
tion of brain tumors in fresh surgical specimens collected from 22 neurosurgical 
patients. The basic mechanism of SRS is similar to spontaneous RS; however, SRS 
can enhance the signal of specific vibrational transitions due to the introduction of 
a second photon, a Stokes photon at a particular frequency, which can stimulate a 
specific molecular transition. By maintaining the pump laser beam at a constant 
frequency and scanning the Stokes laser beam, the spectral fingerprint of the sample 
can be improved. Here, results of SRS were in near-perfect agreement with results 
of H&E light microscopy. The data was interpreted using quasi-likelihood general-
ized additive models. Based on cellularity, axonal density, and protein/lipid ratios 
observed in SRS images, the classifier could successfully detect tumor infiltration 
with a sensitivity of 97.5% and specificity of 98.5%. The classifier was also able to 
distinguish between various categories of tumor infiltration including normal to 
minimal hypercellularity, infiltrating glioma, or dense glioma with high levels of 
accuracy [110]. Stimulated Raman histology (SRH) was used in a complimentary 
study for the intra-operative diagnosis of pediatric-type brain tumors. Based on RF 
analysis, 25 pediatric-type surgical specimens were correctly classified as normal 
versus lesional tissue and low-grade versus high-grade tumors all with 100% accu-
racy [111]. These results are generally better than those obtained through analysis 
of various biological samples by spontaneous RS for brain cancer diagnosis.

High-throughput (HT) RS was used for rapid screening of blood plasma samples 
collected from prostate cancer patients and healthy volunteers. In general, HT 
screening methods have the ability to automatically control and conduct millions of 
tests with a specific goal, saving time and effort for the user. Medipally et al. devel-
oped a HT-RS method which was optimized through testing a series of different 
instrumental and sample preparation parameters (Fig.  8.12). Once adjusted, the 
method was able to automatically record multiple Raman spectra from each of the 
well throughputs in a 94-well plate. To test the method, Raman spectra were 
obtained for blood plasma collected from 10 healthy volunteers and 10 prostate 
cancer patients using both 785 and 532 nm excitation. The best results were seen 
using the 785 nm excitation, with PCA-LDA yielding 96.5% sensitivity and 95% 
specificity after CV, demonstrating the ability of HT screening methods to be suc-
cessfully incorporated with RS methodology [112].

A unique study performed by Stables et al. classified brain tumor spectra using 
spontaneous RS in combination with sound and listening tests. Metastatic brain 
cancer, glioblastoma, and non-cancer tissue samples were analyzed using RS. Three 
different chemometric techniques (SVM, KNN, and LDA) with CV were evaluated 
for their potential to identify brain cancer within the tissue samples using a feature 
extraction approach. Compared to using PCA for spectral dimensionality reduction, 
the feature extraction approach increased classification accuracy of the KNN classi-
fier by 25% to 91.02% and of the SVM classifier by 26.25% to 97.01%. For LDA, 
the classification accuracy decreased from 96.54% to 95.38%. The results suggest 
feature extraction to be a more effective approach as opposed to dimensionality 
reduction for classification efficiency. Sonification was then used on the reduced 
Raman dataset of extracted features. Frequency modulation synthesis was used to 
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generate audio clips for each tissue sample based on the subset of extracted features, 
thus giving each one its own sound timbre, with similar tissue types having similar 
timbres. Listening tests were implemented with 25 participants, and based on the 
sound timbres, a mean classification accuracy of 71.1% was achieved, presenting a 
novel tool which can be used in addition to RS for clinicians to generate a diagnosis 
during endoscopic procedures [113].

Interestingly, not all modifications of spontaneous RS were completely effective 
in improving diagnostic accuracy. It should be observed that, on the other hand, 
there were some studies which did provide improvements. However, with the addi-
tion of more sophisticated methodology comes an increase in difficulty for bringing 
the technology into clinical settings. The more complicated the method, the less 
likely it is to be introduced as a new technology for universal cancer detection. 
While these aforementioned studies provide unique variations of RS, spontaneous 
RS alone has still shown great success in diagnosing cancers, suggesting the previ-
ously summarized alterations of the methodology may not ultimately be necessary 
for bringing the method to clinical settings.

Fig. 8.12 Schematic 
representation of 
HT-Raman spectroscopy 
method. (A) Top view, (B) 
bottom view (these 
schematics are developed 
using Google Sketch up 
software) (Reproduced 
from [112] with permission 
from The Royal Society of 
Chemistry)
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8.2.4  Fiber-Optic Studies

To reach the ultimate goal of in vivo diagnoses, probes have been increasingly 
incorporated into RS studies. Special instrument setups have been created in which 
a fiber-optic probe can analyze tissue in vivo and collect Raman spectral data. Fiber- 
optic probes have the advantage of being less bulky and less expensive than typical 
Raman spectrometers; probes can be used intra-operatively, preventing the need for 
additional biopsy or ex vivo studies. They provide a shorter analysis time than typi-
cal histopathological examinations of biopsied tissue do, while still objectively cap-
turing vital biochemical compositional changes that occur during disease 
progression. Probes can also allow for the identification of tumors, signaling where 
a surgeon should make excisions. When Raman spectral data collected through 
probes is analyzed using advanced statistical methods, research scientists are able to 
greatly reduce false positive biopsy results and increase the ease of and success of 
diagnosing cancers. Recent research which has incorporated probes into Raman 
spectroscopic systems, through either in vivo or ex vivo studies, for the purpose of 
diagnosing cancer are reviewed here. A schematic of a general fiber-optic probe 
setup is seen in Fig. 8.13.

Chen et al. used a low-resolution fiber-optic Raman sensing system to evaluate 
its diagnostic potential for ex vivo identification of different bladder pathologies. 
Spectra of 32 normal bladder tissue and low- and high-grade tumor bladder tissues 
were analyzed using a PCA fed ANN with CV. An overall accuracy of 93.1% was 
obtained for predicting to which class a sample belonged, introducing the possibil-
ity for further experiments to be successfully conducted in vivo [114].

Fig. 8.13 Schematic of the experimental setup showing the 785 nm laser directed into the Raman 
probe via the 10× objective lens. The probe illuminates the tissue sample and collects the scattered 
light. The elastically scattered signal is removed via a long pass filter in the filter/lens assembly 
before the light is transmitted into the Maya Pro 2000 NIR spectrometer for dispersion and storage 
(Reprinted with permission from [153])
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Three different studies show the strength of Raman probe systems for diagnosing 
brain cancer in vivo. A handheld RS probe system was used to collect in vivo spec-
tral data from normal, cancerous, and necrotic brain tissue of ten patients (Fig. 8.14). 
Using PCA and a boosted trees (BT) classification algorithm with LOO-CV, an 
accuracy of 87% for distinguishing necrosis from tumor and normal brain tissue 
was achieved [115]. Jermyn et al. used a handheld contact RS probe to differentiate 
normal brain, dense cancer, and normal brain invaded by cancer cells with 93% 
sensitivity and 91% specificity, using the BT machine learning method with CV. The 
RS probe system was also able to detect previously unidentifiable invasive brain 
cancer cells in patients with grade II through IV gliomas, showing the usefulness of 
fiber-optic probes for detecting cancerous cells which are oftentimes missed during 
normal surgery [116]. In a following study, RS data was collected intra-operatively 
from 17 patients with grades II through IV gliomas. Both BT and ANN were used 
for classifying the spectra. ANN performed better than BT when algorithms for 
distinguishing cancer from normal brain were built including light artifacts but per-
formed the same when they were built excluding light artifacts due to operating 
room sources. Specifically, when light artifacts were excluded from the spectra, 
ANN achieved 92% classification accuracy, an improvement over 90% accuracy 
achieved when light artifacts were not excluded [117].

Li and co-researchers performed several studies using a miniature Raman spec-
trometer equipped with a fiber-optic probe for the purpose of diagnosing breast 
cancer. In the earliest study, 16 breast tissue samples were analyzed and an adaptive 
weight k-local hyperplane (AKWH) algorithm was used for differentiation. Three 

Fig. 8.14 Raman spectroscopy system for intra-operative detection. (A) Photograph of the hand-
held contact probe, with the attached neuronavigation tracking unit. (B) Illustration of the probe 
being used intra-operatively, with the neuronavigation system showing the location of the tip of the 
probe (cross hairs) on the preoperative magnetic resonance images (Reprinted with permission 
from [115])

8 Raman Spectroscopy and Advanced Statistics for Cancer Diagnostics



308

different data processing schemes were generated based on varied splitting of the 
Raman spectral dataset; on average, the AWKH algorithm gave a 95.8% accuracy 
for classifying breast tissue as either cancerous or healthy [118]. The same samples 
were then analyzed using an adaptive net analyte signal AWKH pattern recognition 
method. Again, three different data processing mechanisms were generated based 
on different splitting of the Raman spectral dataset; the average accuracy of classi-
fication was 94.83% [119]. In their last study, new normal and malignant breast 
tissue samples were obtained, with the cancerous tissue existing at various stages of 
the disease. An adaptive local hyperplane K-nearest neighbor method was used for 
binary classification, achieving 93.2% accuracy [120]. While these successful 
results are generally comparable to those previously reviewed, they indicate the 
vital diagnostic potential of RS to be used intra-operatively.

A fiber-optic Raman system was used to obtain 68 spectra from benign and low- 
and high-grade SIL of 25 cervical tissue specimens. Multiclass PLS-DA with 
LOPO-CV showed an average sensitivity of 86.6% and specificity of 93.6% for 
classification [121]. Shaikh et al. performed two studies to explore in vivo classifica-
tion of normal and cervix tumor tissue Raman spectra. First, 314 Raman spectra 
were collected from 63 subjects; the data was subjected to PC-LDA with LOO-CV, 
and classification efficiency reached 96.7% and 100% for the normal and cancerous 
conditions, respectively [122]. In the second study, PC-LDA was used to distinguish 
between normal and cancerous tissue as well as tissue collected from the vagina of 
both healthy controls and cancer patients, in an attempt to design an internal control. 
PC-LDA could classify normal and tumor spectra with 97% efficiency. When a 
PC-LDA algorithm was built to discriminate between all controls (normal cervix, 
and vagina of tumor and normal subjects) high misclassification levels were seen, 
suggesting similarities in biochemical composition among the control samples. 
Results of classification between tumor tissue and all controls support the idea of 
using the vagina as an internal control in cervical cancer diagnostics [123].

Wood et al. evaluated biopsy samples collected during colonoscopy using probe- 
based RS. The in vitro study examined 356 colon biopsies, including from normal 
colon mucosa, hyperplastic polyps (HP), adenomatous polyps, AC, and ulcerative 
colitis specimens. PC-LDA with LOO-CV was used to make two-group and three- 
group classification systems. For the binary models, accuracies ranged between 
72.1% and 95.9% with ten-second acquisition times and between 61.5% and 95.1% 
with one-second acquisition times. For the tertiary model, normal tissue, adenomas, 
and AC tissue were identified with an overall accuracy of 74.1% for the ten-second 
acquisition time and 63.5% for the one-second acquisition time [124]. Raman fiber- 
optic measurements of colon biopsy samples, which were categorized as AC, tubu-
lar adenomas (TA), HP, and normal tissue, were analyzed from 151 patients. A 
SVM classifier was trained and validated using a LOPO-CV approach. For classify-
ing AC versus normal tissue, 75% accuracy was achieved. To improve results, three 
different methods for outlier identification were applied: One Class Classification 
with SVM, Local Outlier Factor, and Refinement of Training Data (RoTD). The 
best improvement was seen with RoTD, which increased the accuracy of AC versus 
normal tissue classification to 81%. To classify high-risk (AC and TA) and low-risk 

N. M. Ralbovsky and I. K. Lednev



309

(HP and normal tissue) lesions, the SVM model without outlier identification 
reached 71% accuracy; with RoTD, accuracy increased to 77% [125]. Although 
other studies performed using typical spontaneous RS were more successful, it is 
important to note the beginning successes of an in vivo approach toward diagnosing 
colorectal cancer using RS and chemometrics.

A custom-built fiber-optic endoscopic Raman probe was used to analyze 673 
ex vivo esophageal tissue samples from patients with Barrett’s esophagus (BE). BE 
is known to increase the risk of developing esophageal cancer. The tissue was evalu-
ated with PCA-fed LDA with LOPO-CV, which discriminated BE-associated high- 
grade dysplasia (HGD) and AC from low-grade dysplasia, nondysplastic BE, and 
normal squamous esophagus with 86% sensitivity and 88% specificity. AC was dif-
ferentiated from normal squamous esophagus with 94% sensitivity and 91% speci-
ficity. Finally, BE and gastric mucosa were differentiated with 96% sensitivity and 
92% specificity [126]. A beveled fiber-optic confocal Raman probe was evaluated 
for in vivo diagnosis of BE using epithelial tissue from 373 patients, obtained at 
endoscopy. Trichotomous probabilistic PLS-DA was used to discriminate columnar- 
lined epithelium, nondysplastic BE, and HGD BE. For in vivo detection of HGD 
BE, 87.0% sensitivity and 84.7% specificity were attained [127]. In another study, a 
Raman endoscopic probe measured 673 ex vivo benign and esophageal cancer spec-
imens from 62 patients. The results of using a semi-supervised LDA technique, 
where some of the data is labeled and some is left unlabeled, was compared to stan-
dard (supervised) LDA results. Identification of intestinal metaplasia versus dyspla-
sia improved from sensitivity and specificity levels of 73% and 78% with standard 
PCA-LDA to 78% and 84% for the semi-supervised method. Similarly, perfor-
mance for differentiating intestinal metaplasia and low-grade dysplasia increased 
from 44% and 66% using standard PCA-LDA to 63% and 72% sensitivity and spec-
ificity levels, respectively, with semi-supervised LDA [128]. In a different study, 
Maeda et  al. performed ex vivo experiments using a portable Raman system 
equipped with a micro-Raman probe. Spectra collected of normal and early-stage 
(stage 0) cancerous regions within six esophageal samples were analyzed by 
PC-LDA, which predicted the tissue type with 80% accuracy [129]. Interestingly, 
these studies all used either PCA-LDA or PLS-DA, showing that the number of 
samples and the method of sample probing can have a significant impact on the 
results of a study.

A fiber-optic depth-resolved NIR Raman endoscopic technique was integrated 
with diagnostic algorithms for in vivo epithelial diagnosis of gastric cancer with the 
assistance of wide-field imaging techniques. Generated diagnostic models using 
probabilistic PLS-DA with LOPO-CV identified gastric dysplasia with 81.3% sen-
sitivity and 88.3% specificity [130]. Wang et al. compared the performance of two 
different endoscope-based fiber-optic Raman probe methods. Beveled and volume 
Raman probes were used for real-time in vivo detection of gastric dysplasia. The 
beveled probe consists of a central flat fiber used for laser light delivery, surrounded 
by 18 beveled collection fibers positioned in a ring formation; the volume probe also 
consists of a central flat fiber for excitation but is surrounded by 18 flat collection 
fibers positioned in a ring formation. A total of 1050 Raman spectra of normal and 
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dysplastic sites were collected from 66 gastric patients using the beveled Raman 
probe, while 1913 Raman spectra were collected from 98 gastric patients using the 
volume Raman probe. PLS-DA with LOPO-CV yielded diagnostic accuracies of 
93.0% and 88.4% for the beveled and the volume fiber-optic probes, respectively, 
suggesting the beveled probe is better suited for further studies [131].

A miniature fiber-optic probe was used to investigate NPC in patients. Raman 
spectra were collected from nasopharynx tissue of patients with newly diagnosed 
NPC, post-irradiated nasopharynx (received radiotherapy greater than 6 months 
ago), or normal nasopharynx. A posterior probability model using PLS distin-
guished normal nasopharynx and NPC with 91% sensitivity and 95% specificity; 
the same method could distinguish post-irradiated nasopharynx versus NPC tissue 
with 77% sensitivity and 96% specificity [132]. A Raman spectrometer with a 
beam-steered fiber-optic probe was used to detect normal parotid gland and parotid 
gland tumors, including pleomorphic adenoma, Warthin’s tumor, and mucoepider-
moid carcinoma, for the purpose of identifying head and neck cancer. SVM with 
CV was used to distinguish each parotid gland tumor type against normal parotid 
glands, achieving an average accuracy of 99.43%. Three additional binary models 
were then built to distinguish the three tumor types from each other, achieving an 
average accuracy of 97.23% [133]. Here, it is observed that fiber-optic probes are 
successful for detection of head and neck cancers through both in vivo and ex vivo 
studies.

Lung cancer was studied using an endoscopic RS system. Spectra were collected 
in vivo from 280 tissue sites (including 72 HGD/malignant lesions and 208 normal/
benign lesions) of 80 patients. Using stepwise multiple regression PLS with 
LOO-CV, HGD and malignant lesions were detected with 90% sensitivity and 65% 
specificity [134].

Oral cancer has been widely studied using Raman fiber-optic systems. In one 
study, Raman spectra were collected from the oral cavity of 18 human subjects 
in vivo, and premalignant/malignant lesions were correctly distinguished from nor-
mal and benign tissue with 100% sensitivity and 77% specificity using PCA-LDA 

Fig. 8.15 (a) A photograph and (b) a schematic of the portable clinical Raman spectroscopy sys-
tem for in vivo Raman measurements (Reprinted with permission from [136])
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with LOO-CV [135]. Krishna et al. aimed to diagnose malignant and potentially 
malignant lesions of the oral cavity from 28 healthy volunteers and 171 patients. In 
vivo Raman spectra were collected from normal oral mucosa sites as well as histo-
pathological sites including oral SCC, oral sub-mucous fibrosis, and leukoplakia 
using a portable clinical RS system (Fig.  8.15). A maximum representation and 
discrimination feature coupled with SMLR provided an average accuracy of 85.25% 
for classifying all four sites based on LOPO-CV; a binary model resulted in a sensi-
tivity and specificity each of 94% for discriminating normal tissue spectra from all 
abnormal tissue spectra [136]. Research led by Sahu resulted in four studies pub-
lished on diagnosing oral malignancies. In the earliest study, in vivo Raman spectra 
were collected from sera of buccal mucosa, tongue cancer, and healthy subjects 
using a fiber-optic Raman microprobe. Through PC-LDA with LOO-CV, binary 
models showed normal and cancer serum groups could be differentiated with about 
70% classification efficiency and buccal mucosa and tongue cancer groups with 
about 68% efficiency [137]. Raman spectra were collected from oral exfoliated cells 
from healthy volunteers, healthy tobacco users, and subjects with oral cancer (from 
both tumor and healthy sites). PCA and PC-LDA showed distinct differences 
between the two healthy groups and the two cancer groups. Furthermore, PC-LDA 
with LOO-CV showed about 67% efficiency for predicting to which class the sam-
ples belonged, based on spectra-wise classification. Using a patient-wise approach, 
about 69% classification efficiency was achieved [138]. Following this, serum was 
collected from 22 oral cancer patients before and after surgery and analyzed using a 
Raman microprobe. PC-LDA followed by LOO-CV was again employed for dis-
crimination, providing 78% classification efficiency for distinguishing recurrence 
and non-recurrence groups after surgery. The same method could distinguish recur-
rence and non-recurrence groups before surgery with only about 53% efficiency 
[139]. In the last study by Sahu et al., oral exfoliated samples were analyzed from 
healthy volunteers, healthy volunteers with tobacco habits, and patients with oral 
premalignant conditions (OPC) by the Raman microprobe. In the three-group 
model, OPC spectra were classified with 77% and 70% sensitivity for PC-LDA with 
spectra-wise and patient-wise CV methods, respectively. The sensitivity improved 
to 86% (spectra-wise) and 83% (patient-wise) using a binary model [140]. 
Interestingly, each of the studies performed by Sahu et al. show the ability of fiber- 
optic probes to be used for ex vivo studies performed on samples other than tissue. 
Yasser et al. analyzed the Raman spectra from parental oral cancer cell lines and 
from two different developed radio-resistant sublines using a fiber-optic microprobe 
system. Spectral differences were observed between the three different cell lines, 
and PCA showed distinct clustering, depicting the ability of RS to predict radio- 
resistance in cells, which can be used for improved prognosis of oral cancer [141]. 
Notably, the best results for diagnosing oral cancer were achieved using the probe 
systems in vivo rather than ex vivo.

Spectra of fresh and non-processed post-prostatectomy specimens were col-
lected using a macroscopic handheld RS probe. The areas of the tissue were labeled 
with tissue type (extra-prostatic or prostatic), malignant or benign, cancer grade 
(grade groups I–V), and tissue glandular level. Neural networks were used to 
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classify the spectra in binary models. Prostate and extra-prostatic tissue were distin-
guished with 82% sensitivity and 83% specificity, whereas benign and malignant 
tissue were correctly classified with 87% sensitivity and 86% specificity. Benign 
spectra were differentiated from each of the five cancer grade groups in multiple 
binary models, achieving an average sensitivity of 81.8% and specificity of 85.2% 
[142]. Silveira Jr. et al. collected 160 spectra from 16 benign tissue and 16 prostate 
cancer tissue samples. A discrimination model was built using Euclidean distance 
based on the relative concentrations of phosphatidylcholine and water in the tissue 
samples. The two kinds of tissues were discriminated with 74% accuracy [143]. 
While these ex vivo studies are less successful than others previously reviewed, the 
results are still accomplished enough to indicate the potential for the method to be 
used intra-operatively.

A Raman instrument equipped with a fiber-optic probe was used to collect spec-
tra in vivo from 137 lesions in 76 skin cancer patients; biopsies of the lesions were 
classified as malignant melanoma (MM), non-melanoma pigmented lesion (PL), 
BCC, actinic keratosis (AK), and SCC. The collected data was analyzed by PCA, 
and LOO-logistic regression classifiers were built, the results of which were com-
pared to the histopathology of the lesions. The sensitivity and specificity for binary 
classification of MM versus PL were 100% and 100%; of SCC and BCC versus AK 
was 95% and 71%; and of AK, SCC, and BCC versus normal tissue was 90% and 
85%, respectively [144]. Zakharov et al. investigated the potential for diagnosing 
malignant tumors in both skin and lung tissue. 40 ex vivo lung tissue samples and 50 
in vivo skin tumor samples were investigated through a combination of LDA, QDA, 
and SVM. It was discovered that MM could be diagnosed with 88.9% sensitivity 
and 87.8% specificity, lung AC with 100% sensitivity and 81.5% specificity, and 
lung SCC with 90.9% sensitivity and 77.8% specificity [145]. In a different study, 
lesions suspected of being MM, BCC, or SCC were subjected to in vivo Raman 
spectral analysis through a fiber-coupled probe. Non-melanoma skin cancers were 
discriminated from normal skin through PLS-DA with accuracies of 73% (BCC) 
and 85% (SCC). MM and pigmented nevi (moles) were discriminated with 91% 
accuracy [146]. A dispersive spectrometer connected to a Raman probe collected 
data from non-melanoma (BCC and SCC), pre-cancerous (AK), and benign lesions 
and from normal tissue. Using PCA-DA and PLS-DA algorithms, non- melanoma 
and pre-cancerous lesions were differentiated from benign and normal tissue with 
accuracies of 82.8% and 91.9%, respectively [147]. Zhao et al. used PC-GDA and 
PLS, built with selected wavenumber windows, to classify 645 cases of pre-cancer-
ous, benign, and skin cancer lesions. Malignant and benign skin lesions could be 
identified in vivo with high levels of diagnostic accuracy [148]. The success for skin 
cancer detection in vivo through Raman probe systems is clear; these results are 
comparable with those from other studies, and indicate that the method should be 
strongly considered for real-time diagnosis of skin cancer in clinical settings.
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8.2.4.1  Fiber-Optic Studies with Expanded Raman Spectral Range

In several additional papers, the HWN region of spectral data collected using Raman 
probe systems was considered in addition to the FP region for real-time diagnoses 
of cancers. Specifically, a fiber-optic Raman endoscope was used to collect in vivo 
Raman spectra in the FP (800–1800 cm−1) and HWN (2800–3600 cm−1) regions 
from colorectal tissue. Raman measurements were made at five different anatomical 
locations of normal colorectal tissue and PLS-DA with LOPO-CV was used to iden-
tify the different tissue sites. An average sensitivity of 29.27% and specificity of 
83.51% were achieved, indicating low levels of inter-anatomical molecular vari-
ability between normal colorectal tissue areas. For discriminating between normal 
tissue areas and tissue affected by colorectal cancer, PLS-DA with LOPO-CV of the 
FP/HWN dataset was again performed, attaining a diagnostic accuracy of 88.8% 
[149]. In a follow-up study, researchers again simultaneously acquired in vivo FP 
and HWN region Raman spectra from colorectal tissue. Adenoma and HP were dif-
ferentiated with 90.9% sensitivity and 83.3% specificity using PLS-DA with 
LOPO-CV, which is superior to results achieved using only FP or only HWN region 
spectral data [150]. Both studies show the advantages of collecting FP/HWN spec-
tral data via Raman probes for intra-operative diagnoses of colorectal cancer. In vivo 
diagnosis of esophageal SCC at the time of clinical endoscopy was investigated by 
Wang et al. FP and HWN region Raman spectra were collected from 48 patients 
using the developed fiber-optic RS technique. Through PLS-DA with LOPO-CV, a 
sensitivity of 92.7% and specificity of 93.6% for esophageal SCC identification 
were achieved. Again, these results were found to be superior to those obtained 
using only FP or HWN region spectral data [151]. Wang et al. applied their rapid 
fiber-optic RS technique for diagnosing gastric pre-cancer during endoscopic exam-
ination. FP/HWN region Raman spectra from normal, dysplasia, and AC tissue sites 
were collected. PLS-DA with LOPO-CV reached an average sensitivity of 88.67% 
and specificity of 92.53% for detecting each of the three groups. A binary model 
could detect gastric dysplasia with 90.9% sensitivity and 95.9% specificity [152]. 
Further, the discrimination of diseased tissue and adjacent healthy tissue from 
patients who have head and neck cancer was accomplished using a wide Raman 
spectral range of 100–4300 cm−1. PCA showed effective separation between healthy 
controls and malignant tissue samples, which included SCC and tonsil SCC; the 
separation was better observed through analysis of the full spectrum then it was of 
only the FP region [153].

Lin et al. utilized fiber-optic RS to develop a method for in vivo diagnosis of 
NPC at the time of endoscopy using the FP and HWN regions. Spectral data was 
collected from 204 different tissue sites of 95 subjects; PCA-LDA with LOO-CV 
provided a diagnostic accuracy of 93.1% [154]. In another study, Lin et al. acquired 
FP and HWN region spectral data of 101 healthy and diseased tissue sites from 60 
patients with laryngeal cancer undergoing endoscopic examination. Here, PLS-DA 
with LOPO-CV could discriminate the two classes with an accuracy of 91.1% 
[155]. In both of those studies, and in general, the results were improvements over 
those achieved using just FP or HWN region spectral data.
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The combination of Raman spectroscopic analysis with optical probing systems 
provides the first crucial step toward bringing the methodology to the clinical set-
ting. By allowing for collection of spectral data in  vivo, the need for additional 
sample collection which can be time-consuming, expensive, and invasive is elimi-
nated. The spectral data can still be analyzed using a wide variety of chemometric 
techniques, as was shown, in order to develop an automatic diagnostic system which 
can be incorporated into clinical settings for quick and accurate diagnoses. Although 
not every study was an improvement upon those performed without using probes, 
each of the aforementioned projects serves to indicate that the technology is capable 
of use within clinical settings. This is an exciting first step toward introducing RS as 
a universal method for cancer detection that can be used in vivo and provide accu-
rate results in real-time.

8.3  Critical Evaluation

There has been a vast amount of research published on utilizing Raman spectros-
copy and advanced statistical analysis for the purpose of diagnosing cancer. 
Obviously, the methodology has great potential. Regardless of the biological sam-
ple analyzed, the exact variation of RS used, or the statistical technique applied—it 
is impossible to disagree that based on the incredible amount of research conducted 
and published, RS and advanced statistical analysis have a great potential for creat-
ing the first universal method for cancer detection.

While the potential of the method is obvious, it is important to note that some 
results published in the aforementioned studies may overstress their significance, 
and as such there is a need to address the risk associated with overestimating the 
capabilities of the methodology based on the reported results. A small number of 
studies do not report quantitative results, and focus more on the qualitative success 
of the methodology; while these findings are still important for indicating the ability 
of RS to detect biochemical differences between different sample types, it is neces-
sary to remember that quantitative results are necessary for supporting efforts to 
bring the methodology into clinical settings. Several studies suffered from too small 
of a dataset to be considered significant. Some research achieved sensitivity, speci-
ficity, or accuracy levels which are not necessarily an improvement of those achieved 
using current methods for diagnosing cancer. The balance between number of sam-
ples used and performance results is something that needs to be kept in mind when 
evaluating the significance of different experiments with comparison to each other. 
Ideally, the most reliable studies are those which use a statistically significant num-
ber of samples and achieve impressive performance levels. Further, the methods of 
validation for several experiments are considered “internal” validation—this means 
that the model was tested with the same spectral data that was also used to build it. 
This can lead to the potential for the model to “over-fit” itself to the data it sees, 
preventing it from being able to accurately predict spectral data from new unknown 
samples.
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On the other hand, many more studies can be considered reliable—those experi-
ments that utilized external validation are more trustworthy than those that did not. 
External validation utilizes an independent spectral dataset, which the algorithm has 
not yet seen, in order to test the performance of the model. In this regard, there are 
much lower chances of the model becoming over-fit, and the results are abundantly 
more dependable. Furthermore, while a small number of samples is useful to accom-
plish a proof-of-concept study, many more published manuscripts used a statisti-
cally significant number of samples which also obtained impressive levels of 
accuracy. Most importantly, the number of strong research studies heavily outweigh 
those that are less ideal.

Based on the extensive amount of recent evidence which suggests the potential 
for RS to diagnose cancer, not to mention the plethora of significant research pub-
lished greater than 4 years ago, one important question remains: why has this meth-
odology not yet been introduced into clinical settings as a solitary method for 
diagnosing cancer? Although the answer is complicated and multifaceted, the truth 
remains that research has already shown RS is being used intra-operatively. In fact, 
many of the previously reviewed experiments performed using fiber-optic probes 
were conducted in vivo. In 2013, Kallaway et al. summarized the clinical usage of 
Raman spectroscopy for diagnosing colorectal, esophagus, breast, and bladder dis-
eases and cancers [156]. Pence et al. detail the necessary considerations required for 
clinical implementation of RS as well as review large (considered as greater than 50 
samples) in  vivo applications of the method [157]. More recently, Santos et  al. 
greatly covered the translation of RS into clinical settings for detecting cancer, 
reviewing many studies which successfully detected cancer with high levels of 
accuracy under conditions that resemble the intended clinical environment [158].

Although research repeatedly advocates for the potential of the method, as Santos 
importantly points out, there needs to be an increase in communication as well as 
trust between spectroscopists and clinicians in order to bring this methodology 
closer to the goal of true clinical applications. Understanding the methods behind 
the technology as well as understanding the needs of clinicians are important areas 
that are still being developed. However, the stepping stones have been laid, and 
there remains a clear path forward for introducing Raman-based technology to clin-
ical oncology departments for cancer detection purposes.

Lastly, there is an essential need to consolidate the classification techniques used 
in order to unite the automatic analysis and disease detection portion of the method-
ology. A multiclass discrimination technique will need to be developed and fine- 
tuned which considers all cancers, or at least considers many groups of similar 
cancers. Based on typical expectations of the medical field, a major clinical trial 
needs to be conducted with a wide cohort of participants ranging in age, gender, 
race, ethnicity, location of residence, prescribed medications, and comorbidities. 
While research has repeatedly shown success on a smaller scale, a successful large- 
scale clinical trial is needed in order to convince all involved parties of the method’s 
capabilities. Although there is work to still be done, RS has shown every indication 
that it has the potential to be used in clinical settings in the future for universal can-
cer detection.
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8.4  Conclusion

Cancer affects millions of individuals every year and is a leading cause of death 
worldwide. Because of its association with mortality, it is vitally important to diag-
nose cancer as early on in its progression as possible. Early diagnoses provide the 
best chance for the afflicted individual to seek effective treatment options. While 
many methods exist to diagnose cancers individually, there is a strong unmet need 
to accurately, definitively, and with minimal invasiveness diagnose all cancers using 
one universal method. This chapter proposes Raman spectroscopy as a potential 
solution for this task. In countless different ways, the combination of Raman spec-
troscopy with chemometric analysis has proven its usefulness for diagnosing can-
cer. Innumerous studies have been published on over twenty different forms of 
cancer in the last few years alone. Regardless of the sample studied or which varia-
tion of the technique is used, if a probe is used to collect data or a second analytical 
technique is used to provide complimentary information, the obvious capability of 
RS for diagnosing cancers cannot be denied. The abundance of information that is 
obtained through Raman spectral data provides not only helpful material for clas-
sification purposes, but also delivers insight into the biochemical composition of 
samples, revealing both useful information as well as potential biomarkers indica-
tive of different cancers. The plethora of herein reported studies have repeatedly 
shown evidence that RS is sensitive, specific, and overall a reliable technique for 
differentiating healthy samples from diseased samples. The next step for this meth-
odology is to unite researchers to work toward conducting a large-scale clinical trial 
where a combined algorithm can be developed which can diagnose all forms of 
cancer. The results of such a trial would need to be confirmed using already estab-
lished methods for cancer diagnosis; however, if such a trial is successful, it is pos-
sible that Raman spectroscopy with advanced statistical analysis may become the 
first singular universal method for diagnosing cancer.
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