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Preface

The purpose of this book is to outline the state-of-the-art optical approaches for the 
enhancement of medical diagnostics and earlier cancer detection and classification. 
The book brings together a description of the wide variety of optical techniques that 
have recently emerged for the specific study of the tumors of different organs and 
tissues. The appearance of this book was stimulated by the recent rapid progress in 
novel photonics technologies, the development of robust and cost-effective low- 
noise detectors and lasers, and fiber-optics devices. The multimodal approach pro-
vides a unique combination of structural, morphological, molecular, and metabolic 
information. The complexities of different methods of integration are compensated 
by the potential increase in both sensitivity and specificity of cancer diagnosis, 
screening, treatment monitoring, or image-guided intervention.

The diagnosis of cancer is a complex process and requires a number of diagnos-
tic studies. But standard imaging modalities such as computed tomography, mag-
netic resonance imaging, and positron emission tomography require significant 
financial resources and infrastructure, which limits access to these modalities and 
excludes their usage for screening. In contrast, optical imaging strategies, with the 
potential for reduced cost and enhanced portability, are emerging as additional tools 
to facilitate the early detection and diagnosis of cancer. Many spectroscopic 
methodo logies and optical imaging technologies have been established for nearly 
all kinds of cancer. However, the current gold-standard in cancer diagnosis is the 
examination of a neoplasm by the trained eye of a physician followed by histologi-
cal examination of an invasive excisional biopsy of the tumor tissue specimen. 
Pathologists rely on the microscopic analysis of tissue samples or additionally 
employ immune histochemical or molecular pathological analyses for a more pre-
cise diagnosis, classification, and prognosis regarding the cancerous tumor. In the 
majority of cases, the pathologist works with fixated and embedded tissue samples 
or, at least, with frozen sections. Intrinsically, the histological process is time- 
consuming. It is obvious that new methods and approaches are required for quick 
and reliable in vivo production of diagnostically relevant additional information. 
The optical methods meet these challenges through the implementation of molecu-
lar sensitive spectroscopic methods, including linear and nonlinear Raman 
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 spectroscopy and its combination with other spectroscopic/optical modalities to a 
multimodal imaging approach for precise surgical guidance and intraoperative his-
topathologic examination of tissue.

However, due to the rather long acquisition times of spectroscopic tissue exami-
nation, the scanning of larger regions is quite challenging. This problem can be 
circumvented by combining detailed tumor spectral study with a fast imaging tech-
nique providing a quick selection of the region of interest (ROI). At the same time, 
the diagnostic accuracy depends as on the sensitivity of cancer detection as on the 
precision of correct ROI selection. Therefore, each optical imaging method also 
needs to be optimized for cancer detection and a multimodal approach should pro-
vide a synchronous sequential multilevel refinement of the diagnosis, both by spa-
tial localization and cancer type detection. Hyperspectral imaging (HIS), optical 
coherence tomography (OCT), or fluorescence lifetime imaging (FLIM) offers a 
great potential for such a combination with the possibility of fiber-optics implemen-
tation suitable for clinical conditions.

Expanding the role of spectral analysis and optical imaging became a reality in 
global cancer management, including screening, early detection at the point-of- 
care, biopsy guidance, and real-time histology. In combination with online data 
analysis and multivariate statistics, multimodal spectral diagnostics and optical 
imaging have the potential to aid in the high-sensitive detection and management of 
precancer and early cancer by combining the tissue topology features and chemical 
composition.

This book is divided into four parts: Part I Tumor Tissue Optics and Multimodal 
Microscopy (Chaps. 1–4); Part II Diffuse Spectroscopy and Fluorescence Analysis 
for Cancer Detection (Chaps. 5–7); Part III Raman Spectroscopy and Cancer 
Diagnostics (Chaps. 8–10); and Part IV Multimodal Cancer Imaging (Chaps. 11–16).

Part I describes the tissue optical properties and their alteration with cancer pro-
gression. The malignant tissue alteration results in specific changes in nucleic acid, 
protein, lipid, and carbohydrate quantities of neoplastic cells. It is the basis for any 
optical cancer diagnostic applications, which might distinguish the tissue strongly 
associated with cancer development. The morphologic and biochemical changes 
that occur with malignant tissue are numerous and in many cases depend on the 
specific type and location of the cancer.

Chapter 1 reviews the light scattering spectroscopic methods and different 
approaches for tumor tissue optical properties and spectral features characteriza-
tion. The inverse Monte Carlo simulation and diffuse approximations are used for 
modeling of light scattering in tumor and normal tissues. The physiological and 
optical properties of various types of lung, breast, colorectal, prostate, cervical, 
bladder, stomach, liver, kidney, skin, oral, and brain cancer are considered. The 
biochemical diagnostic models have been discussed as an instrument that helps to 
derive the morphological and biochemical composition, the functional state of cel-
lular metabolism, and, as a result, determine the key features for the pathologist 
diagnostic decisions for appropriate cancer treatment.

In Chap. 2, the authors discuss the enhancement of optical diagnostics of tumors 
by using optical clearing (OC) methods. The OC-assisted optical imaging  techniques 
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allow for acquiring high-resolution structural and functional images of neoplasms 
and their microvasculature. The monitoring of OC agents diffusion in tissues with 
high temporal and depth resolution allows one to differentiate healthy from malig-
nant tissues.

The application of fluorescence lifetime imaging (FLIM) for recognition of 
changes in structural information accompanied by certain biochemical processes in 
living organisms is explored in Chap. 3. This chapter describes three main tech-
niques on the basis of fluorescence time-resolved measurements—microscopic, 
spectroscopic, and macroscopic—and provides multiple examples of their applica-
tions in probing metabolism in cancer.

Chapter 4 describes the imaging of extracellular vesicles, including exosomes, 
for diagnosis, monitoring, and prediction of cancer. Different methods of light scat-
tering, fluorescence, and single- and two-photon resonance absorption for exosome 
morphology and size measurements are presented.

In Part II, Chap. 5, the authors review the application of functional near-infrared 
spectroscopy to cancer diagnostics and therapy monitoring. It is discussed the capa-
bilities of tissue differentiation, imaging of microvasculature and blood oxygena-
tion concentrations, the possibility of brain cancer detection, and enhancement of 
noninvasive diagnostics in combination with other imaging modalities.

Chapter 6 describes the methods of volatile organic compounds measurements 
and details the spectral analysis of breath air samples for understanding specific 
biochemical processes and as a diagnostic tool for lung cancer diagnosis. High 
accuracy of multiclass classification of patients with several pulmonary diseases 
was demonstrated using a set of binary support vector machine classifiers.

A combined light-induced autofluorescence analysis and diffuse reflectance 
spectroscopy for the diagnosis of skin tumors are investigated in Chap. 7. It was 
demonstrated the preference of autofluorescence methods for detection and dis-
crimination of nonpigmented skin tumors, but the whole set of benign, dysplastic, 
and malignant cutaneous lesions can be diagnosed with high sensitivity and speci-
ficity only with a multimodal approach, which serves as an “optical biopsy” tool.

Part III presents Raman spectroscopy as an especially potent technology with 
respect to molecular sensitivity providing detection of subtle changes in morpho-
logy and the distribution of endogenous molecular markers connected to disease 
initiation and disease progression in a label-free and noninvasive manner. Chapter 8 
discusses the application of Raman spectroscopy in combination with advanced 
multivariate statistical analysis as a universal and cost-effective method of early 
cancer diagnosis and presents the benefits and the risks of the methodology.

The authors of Chap. 9 discuss the methods of Raman signal enhancement effects 
such as surface-enhanced Raman scattering, coherent anti-Stokes Raman scattering, 
and stimulated Raman scattering. Applications of Raman-based approaches for can-
cer diagnostics are summarized. Complementary optical methods including auto-
fluorescence, optical coherence tomography, second harmonic generation, and 
two-photon excited fluorescence in combination with Raman scattering as multi- 
contrast modalities are presented for pathological screening of cancer cells and tis-
sues under ex vivo and in vivo conditions.
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Chapter 10 compares the discussed Raman spectroscopic methods for optical 
analysis and screening of malignant and benign skin tissues. The clinical applica-
tions of skin cancer screening using a multimodal approach and in  vivo Raman 
spectroscopy are presented.

Part IV describes different aspects of multimodal cancer imaging. In Chap. 11, 
the optical instruments for minimally invasive interventions in abdominal surgery 
are considered. Fine-needle optical probes with immediate comparison of tumor 
and healthy tissue optical properties are presented for the determination of the tissue 
state, in particular, for the diagnosis of hepatocellular carcinoma. The integration of 
multimodal fiber-optical probes with standard semiautomatic biopsy systems is 
discussed.

Chapter 12 describes the applications of multimodal optical coherence tomogra-
phy (OCT) for characterizing tumorous tissues, including polarization-sensitive 
OCT providing complementary images in the initial and cross-polarization chan-
nels (CP-OCT), label-free angiography (OCA), and compressional variant of OCT- 
based elastography (OCE). The principles of realization and examples of various 
biomedical applications are considered for each modality. The authors present the 
results of using CP-OCT for detection of tumorous and non-tumorous regions in 
brain and breast tissues, application of OCA for monitoring the results of photody-
namic therapy of murine model tumor CT26 and patients' basal cell carcinoma, 
utilization of OCA for studying mucositis on patients during radiation therapy, as 
well as monitoring of tumor response to chemotherapy with OCE.

Different statistical, frequency, and stochastic methods of texture analysis of der-
matoscopic and OCT images for differentiation of various malignant and benign 
tumors are discussed in Chap. 13. The recognition of various tumors contempora-
neously with a high-score identification of a tumor type is demonstrated in real 
clinical conditions by calculating comparative personal textural descriptors and 
implementation of multi-texture analysis when used texture features (Haralick, 
Tamura, Gabor, Markov Random Field, Complex Directional Field, Fractal 
Dimensions) complement each other.

Chapter 14 is dedicated to the specification of hyperspectral imaging devices 
based on acousto-optical tunable filters and their application for the detection and 
recognition of skin cancer. The basic concepts related to this technology are detailed. 
The applicability of hyperspectral imagers for endoscopic, microscopic, and macro-
scopic studies, as well as image reconstruction is demonstrated for different HSI 
schemes. The details of skin hyperspectral image analysis are presented along with 
the accuracy of a skin neoplasm detection.

Chapter 15 focuses on innovations using inelastic Raman scattering analysis for 
molecular fingerprinting of tissue combined with morphological information 
obtained from OCT. The combination of Raman and OCT, particularly recording 
co-localized three-dimensional information, could lead to a new form of diagnostic 
or screening tool for cancer studies.

A description of Terahertz (THz) spectroscopy and imaging for label-free diag-
nosis of malignancies with different nosology and localization is presented in Chap. 
16. The brief introduction to THz technology, peculiarities of THz-wave–tissue 
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interactions, and THz pulsed spectroscopy are provided. The authors discuss THz 
imaging of brain tumors ex vivo and in vivo for mice and rat glioma models, human 
brain gliomas of different grades, as well as the pilot measurement of human brain 
meningioma.

This book is aimed at researchers, postgraduate and undergraduate students, 
laser engineers, biomedical engineers, and physicians who are interested in design-
ing and applying laser and optical methods and instruments for cancer diagnostics 
and treatment, general application of optical methods in medicine and the medical 
device industry. Because of the large amount of fundamental and basic research on 
optical methods presented in this book, it should be useful for a broad audience 
including students and physicians. Physicians and biomedical engineers will be par-
ticularly interested in the chapters covering clinical applications and instrumenta-
tion. Optical engineers will also find many critical applications to stimulate novel 
ideas of laser and optical design.

Finally, the editors would like to thank all the authors who devoted their precious 
time to contribute very interesting and knowledgeable chapters, all who helped us 
in the preparation of the book, authors and publishers for their permission of repro-
ducing their figures in this book, and the editorial staff of the publisher.

Saratov, Russia  Valery V. Tuchin 
Jena, Germany   Jürgen Popp 
Samara, Russia   Valery Zakharov  
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Chapter 1
Malignant Tissue Optical Properties

Alexey N. Bashkatov, Valery P. Zakharov, Alla B. Bucharskaya, 
Ekaterina G. Borisova, Yulia A. Khristoforova, Elina A. Genina, 
and Valery V. Tuchin

1.1  Introduction

Despite the development of medicine, cancer remains one of the most dangerous 
diseases nowadays. World Health Organization (WHO) has reported 18.1 million 
new cancer cases and 9.6 million cancer deaths in 2018 [1]. Therefore, the detection 
and treatment of cancer is one of the most challenges for medicine in the twenty- 
first century. An effective solution of the problem is the use of modern 

A. N. Bashkatov (*) E. A. Genina 
Department of Optics and Biophotonics, Saratov State University, Saratov, Russian Federation 

Laboratory of Biophotonics, Tomsk State University, Tomsk, Russian Federation 
e-mail: bashkatovan@sgu.ru; geninaea@sgu.ru

V. P. Zakharov · Y. A. Khristoforova 
Department of Laser and Biotechnical Systems, Samara National Research University, 
Samara, Russian Federation
e-mail: zakharov@ssau.ru 

A. B. Bucharskaya 
Saratov State Medical University, Saratov, Russian Federation
e-mail: Ckp@sgmu.ru 

E. G. Borisova 
Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
e-mail: borisova@ie.bas.bg 

V. V. Tuchin 
Department of Optics and Biophotonics, Saratov State University, Saratov, Russian 

Laboratory of Biophotonics, Tomsk State University, Tomsk, Russian 

Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision 
Mechanics and Control of the Russian Academy of Sciences, Saratov, Russian 

Laboratory of Molecular Imaging, Bach Institute of Biochemistry, Research Center  
of Biotechnology of the Russian Academy of Sciences, Moscow, Russian
e-mail: tuchinvv@mail.ru

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44594-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-44594-2_1#DOI
mailto:bashkatovan@sgu.ru
mailto:geninaea@sgu.ru
mailto:zakharov@ssau.ru
mailto:Ckp@sgmu.ru
mailto:borisova@ie.bas.bg
mailto:tuchinvv@mail.ru


4

interdisciplinary technologies. Most often, if the tumor is diagnosed earlier and 
treated, the patient will have a better prognosis and much greater opportunities for 
complete recovery. Many recent technological innovations have used physics prin-
ciples, such as optics and coherent photonics, to improve early diagnostic and thera-
peutic procedures to reduce cancer incidence and mortality.

The development of optical methods in modern medicine in the field of diagnos-
tics, surgery, and therapy has stimulated the study of the optical properties of human 
and animal tissues, since the efficiency of optical sensing of tissues depends on the 
photon propagation and fluence rate distribution [2].

Examples of diagnostic use are the following: monitoring of blood oxygenation 
and tissue metabolism, analysis of main tissue components, detection of malignant 
neoplasms, and recently proposed various techniques for optical imaging. The latter 
is particularly interesting for virtual optical biopsy and the precise determination of 
tumor boundaries during surgical operations. Therapeutic usage mostly includes 
applications in photodynamic therapy. For all these applications, knowledge of the 
optical properties of tissues is of great importance for the interpretation and quanti-
fication of diagnostic data and for predicting the distribution of light and absorbed 
energy for therapeutic and surgical use.

In this chapter, we provide an overview of the optical properties of benign and 
malignant tumors measured over a wide wavelength range and discuss the main 
cancer markers for various types of tumors.

1.2  Tumor Optical Properties Measurements: 
A Brief Description

Among the numerous methods for measuring the optical properties of tissue, the 
most widely used are integrating spheres spectroscopy, reflectance spectroscopy as 
well as Raman and fluorescence spectroscopy.

Iterative methods for processing experimental data, as a rule, take into account 
discrepancies between the refractive indices at the boundaries of the sample as well 
as the multilayer nature of the sample. The following factors are responsible for the 
errors in the estimated values of the optical coefficients and need to be borne in 
mind in a comparative analysis of the optical parameters obtained in various experi-
ments [3]:

• The physiological conditions of tissues (the degree of hydration, homogeneity, 
species-specific variability, frozen/thawed or fixed/unfixed state, in vitro/in vivo 
measurements, smooth/rough surface);

• The geometry of irradiation;
• The matching/mismatching interface refractive indices;
• The numerical aperture of photodetectors;
• The separation of radiation experiencing forward scattering from unscattered 

radiation;
• The theory used to solve the inverse problem.

A. N. Bashkatov et al.



5

To analyze the propagation of light under multiple scattering conditions, it is 
assumed that absorbing, fluorescence, and scattering centers are uniformly distrib-
uted across the tissue. UV-A, visible, or NIR radiation is usually subjected to aniso-
tropic scattering characterized by a clearly apparent direction of photons undergoing 
single scattering, which may be due to the presence of large cellular organelles 
(mitochondria, lysosomes, Golgi apparatus, etc.) [3–5].

When the scattering medium is illuminated by unpolarized light and/or only the 
intensity of multiply scattered light needs to be computed, a sufficiently strict math-
ematical description of continuous wave (CW) light propagation in a medium is 
possible in the framework of the scalar stationary radiation transfer theory (RTT) 
[3–6]. This theory is valid for an ensemble of scatterers located far from each other 
and has been successfully used to develop some practical aspects of tissue optics. 
The main stationary equation of RTT for average spectral power flux density 
I r s�
 

,� �  (in W/cm2 sr) for wavelength λ at point 


r  in the given direction 


s  and 
monochromatic irradiation has the form

 

� � �
�

� � � � � � � � � � ���I r s

s
I r s I r s p s s dt
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�
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��

�
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, � ss s,

��� �,
 

(1.1)

where p s s
� ��
, �� � is the scattering phase function, 1/sr; dΩ′ is the unit solid angle about 

the direction 


s ′ , sr; μt = μa + μs is the total attenuation coefficient, 1/cm; μa is the 
absorption coefficient, 1/cm; μs is the scattering coefficient, 1/cm; and �  s s, �� �  is 
the internal light source, which accumulates the effects of fluorescence and Raman 
spectroscopy. However, in most practically interesting cases, the measurement of 
the absorption and scattering coefficients of tissues can be performed neglecting the 
effects of fluorescence and Raman scattering, since their quantum efficiency is rela-
tively small. It is equivalent to Eq. (1.1) in the absence of the internal radiation 
sources.

The scalar approximation of the radiative transfer equation (RTE) gives poor 
accuracy when the size of the scattering particles is much smaller than the wave-
length, but provides acceptable results for particles comparable to and exceeding 
the wavelength [7].

The phase function p s s
� ��
, �� �  describes the scattering properties of the medium 

and is actually the probability density function for scattering in the direction 


s ′  of a 
photon traveling in the direction 



s ; in other words, it characterizes an elementary 
scattering event. If scattering is symmetric relative to the direction of the incident 
wave, then the phase function depends only on the scattering angle θ (angle between 
directions 



s  and 


s ′ ), i.e., p s s p
� ��
, �� � � � �� . The assumption of random distribution 

of scatterers in a medium (i.e., the absence of spatial correlation in the tissue struc-
ture) leads to normalization:

 
� � � �
0

2 1
�
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In practice, the phase function is usually well approximated with the aid of the 
postulated Henyey–Greenstein function [2–6, 8]:

 

p
g

g g
�

� �
� � � �

� �� �
1

4

1

1 2

2

2 3 2
cos

/
,

 

(1.2)

where g is the scattering anisotropy parameter (mean cosine of the scattering 
angle θ):

 
g p d� � � � � � �cos cos sin� � � � � �

�

0
2 .

 

The value of g varies in the range from −1 to 1; g = 0 corresponds to isotropic 
(Rayleigh) scattering, g = 1 to total forward scattering (Mie scattering at large par-
ticles), and g =−1 to total backward scattering [3–9].

Other phase functions commonly used to analyze the propagation of light in 
turbid media, including tissue, are the small-angle scattering phase function [10, 
11], the Mie phase function [12–15], the δ-Eddington phase function [16, 17], the 
Reynolds–McCormick phase function [18–20], the Gegenbauer kernel phase func-
tion [14, 15, 21, 22], and their modifications [23–25].

1.2.1  Integrating Sphere Spectroscopy

Integrating sphere spectroscopy (ISS) is commonly used as an optical calibration 
and measurement tool and, in particular, it is successfully used to measure optical 
properties of tissues [2, 3, 5]. A detailed theory of the integrating sphere spectros-
copy is presented in [26–32]. The inner surface of an integrating sphere is uniformly 
coated with highly reflective diffuse materials (exceeding 0.98) to achieve homog-
enous distributions of light radiation at the sphere’s inner wall. A light beam falling 
on the inner surface of an integrating sphere is evenly scattered to all directions 
(Lambertian reflections) and the light fluxes are evenly distributed (spatially inte-
grated) on the homogenous inner surface of the sphere after multiple Lambertian 
reflections. A standard integrating sphere usually has three ports: an input port, an 
output port, and a third port for the detector. In certain applications, the fourth port 
is also used so that the specular reflection beam can go out from the sphere in a light 
trap. However, for real integrating spheres, the surfaces do not have perfect 
Lambertian reflection. To prevent measurement errors by specular reflection, 
baffle(s) coated with a highly reflective material is often placed inside the sphere to 
further diffuse the specular reflection and avoid the direct reflection from reaching 
the detector.

There are several advantages of using spectroscopy with integrating sphere for 
measuring the spectral reflectance and transmittance of tissue samples, in 
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comparison with direct measurement of the samples by a spectrometer. First, in a 
regular spectrometer measurement the incident light directly illuminates the sample 
surface, and the detected reflectance often has a dependency on the angle and dis-
tance between the incident beam and the detector. When an integrating sphere is 
used, all backreflected fluxes are captured and normalized by the sphere. Therefore, 
the angular dependency is no longer an issue. Second, the detector-object distance 
is often fixed in the integrating sphere measurement. Even if there is a small change 
in the sample-sphere distance, it will not affect the results of the measurements as 
long as all reflected light bounces back into the sphere. Additionally, by using inte-
grating spheres, the spectral measurements are less dependent on the shape of the 
light beam and the homogeneity of the sample, since both incident light beam and 
the reflected/scattered light will be normalized on the inner surface of the sphere 
before being captured by the detector.

The optical parameters of tissue samples (namely the absorption coefficient μa, 
the scattering coefficient μs, and the anisotropy factor of scattering g) could be mea-
sured by various methods. The single- or double-integrating sphere method com-
bined with collimated transmittance measurement (see Fig. 1.1) is the most often 
used for in vitro tissue studies. Briefly, this approach implies either sequential or 
simultaneous determination of three parameters: the total transmittance Tt = Tc + Td 
(Td is the diffuse transmittance), the diffuse reflectance Rd, and the collimated trans-
mittance Tc = Id/I0 (Id is the intensity of transmitted light measured using a distant 
photodetector with a small aperture, and I0 is the intensity of incident radiation).

Any three measurements from the following five are sufficient for the evaluation 
of all three optical parameters [3]:

 1. Total (or diffuse) transmittance for collimated or diffuse radiation;
 2. Total (or diffuse) reflectance for collimated or diffuse radiation;
 3. Absorption by a sample placed inside an integrating sphere;
 4. Collimated transmittance;
 5. Angular distribution of radiation scattered by the sample.

The optical parameters of the tissue are deduced from these measurements using 
different theoretical expressions or numerical simulations: the inverse Monte Carlo 
(IMC) [33–41] or inverse adding-doubling (IAD) [42–51] methods, or methods 
based on the diffusion approximation of the transfer equation [52–56]. However, the 
diffusion approximation has limitations, including describing tissue with a low 
albedo and accurate consideration of boundary conditions. To overcome these 
shortcomings other techniques such as the IAD and the IMC are the most com-
monly used.

The adding-doubling technique is a numerical method for solving the 1D trans-
port equation in slab geometry. It can be used for tissue with an arbitrary phase 
function, arbitrary angular distribution of the spatially uniform incident radiation, 
and infinite beam size as lateral light losses cannot be taken into account. The angu-
lar distribution of the reflected radiance (normalized to an incident diffuse flux) is 
given by Prahl et al. [42]:

1 Malignant Tissue Optical Properties
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I I R dc c c c c cref in , ,� � � � � �� � � � � � � �� � � �

0

1

2
 

(1.3)

where Iin(ηc) is an arbitrary incident radiance angular distribution, ηc is the cosine of 
the polar angle, and R c c� ��� �,  is the reflection redistribution function determined 
by the optical properties of the slab.

The distribution of the transmitted radiance can be expressed in a similar manner, 
with obvious substitution of the transmission redistribution function T c c� ��� �, . If 
M quadrature points are selected to span over the interval (0, 1), the respective 
matrices can approximate the reflection and transmission redistribution functions:

 
R R T T� � � �ci cj ij ci cj ij, , .� �� � � � � �;

 
(1.4)

Fig. 1.1 Measurement of tissue optical properties using an integrating sphere. (a) Total transmit-
tance mode, (b) diffuse transmittance mode, (c) diffuse reflectance mode, (d) collimated transmit-
tance mode, (e) double-integrating sphere. 1 is the incident beam; 2 is the tissue sample; 3 is the 
integrating sphere; 4 is the entrance port; 5 is the transmitted radiation; 6 is the exit port; 7 is the 
diffuse reflected radiation
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These matrices are referred to as the reflection and transmission operators, 
respectively. If a slab with boundaries indexed as 0 and 2 is comprised of two layers, 
(01) and (12), with an internal interface 1 between the layers, the reflection and 
transmission operators for the whole slab (02) can be expressed as:

 
T T E R R T02 12 10 12 1 01� �� �� ,

 

 
R T E R R R T R20 12 10 12 1 01 12 21� �� � �

�
,
 

 
T T E R R T20 10 12 10 1 21� �� �� ,

 

 
R T E R R R T R02 10 12 10 1 12 01 10� �� � �

�
,
 

(1.5)

where E is the identity matrix defined in this case as:

 
E

wi
ij

ci
ij ,�

1

2�
�

 
(1.6)

where wi is the weight assigned to the i-th quadrature point and δij is a Kronecker 
delta symbol, δij = 1 if i = j, and δij = 0 if i ≠ j.

The definition of the matrix multiplication also slightly differs from the standard. 
Specifically,

 
AB� � �

�jk ij cj jk .� �
j

M

jA w B
1

2
 

(1.7)

Equations (1.5) allow one to calculate the reflection and transmission operators 
of a slab when those of the comprising layers are known. The idea of the method is 
to start with a thin layer for which the RTE can be rather easily simplified and 
solved, producing the reflection and transmission operators, and then proceed by 
doubling the thickness of the layer until the thickness of the whole slab is reached. 
Several techniques exist for layer initialization. The single-scattering equations for 
reflection and transmission for the Henyey–Greenstein function are given by van de 
Hulst [57] and Prahl [58]. The refractive index mismatch can be taken into account 
by adding effective boundary layers of zero thickness and having the reflection and 
transmission operators determined by Fresnel’s formulas. Both total transmittance 
and reflectance of the slab are obtained by straightforward integration of Eq. (1.3). 
Different methods of performing the integration and the IAD program provided by 
S. A. Prahl [42, 58] allow one to obtain the absorption and the scattering coefficients 
from the measured diffuse reflectance Rd and total transmittance Tt of the tissue slab. 
This program is the numerical solution to the steady-state RTE (Eq. (1.1)) realizing 
an iterative process, which estimates the reflectance and transmittance from a set of 
optical parameters until the calculated reflectance and transmittance match the 
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measured values. Values for the anisotropy factorg and the refractive indexn must be 
provided to the program as input parameters.

It was shown that using only four quadrature points, the IAD method provides 
optical parameters that are accurate to within 2–3% [42]. Higher accuracy, however, 
can be obtained by using more quadrature points, but it would require increased 
computation time. Another valuable feature of the IAD method is its validity for the 
study of samples with comparable absorption and scattering coefficients [42], since 
other methods based on only diffusion approximation are inadequate. Furthermore, 
since both anisotropic phase function and Fresnel reflection at boundaries are accu-
rately approximated, the IAD technique is well suited to optical measurements of 
biological tissues and blood held between two glass slides. The adding-doubling 
method provides accurate results in cases when the side losses are not significant, 
but it is less flexible than the Monte Carlo (MC) technique.

Both the real geometry of the experiment and the tissue structure may be compli-
cated. Therefore, inverse Monte Carlo method has to be used if reliable estimates 
are to be obtained. A number of algorithms to use the IMC method are available 
now in the literature [5, 15, 19, 33, 37–39, 59–61]. Many researches use the Monte 
Carlo (MC) simulation algorithm and program provided by S.  L. Jacques, and 
L. Wang et al. [35, 62, 63]. The MC technique is employed as a method to solve the 
forward problem in the inverse algorithm for the determination of the optical prop-
erties of tissues and blood. The MC method is based on the formalism of the RTT, 
where the absorption coefficient is defined as a probability of a photon to be 
absorbed per unit length, and the scattering coefficient is defined as the probability 
of a photon to be scattered per unit length. The effects of fluorescence and Raman 
scattering may be also taken into account in a similar way by introducing the prob-
ability of generating new photons with different frequencies for the correspondingly 
absorbed or scattered initial photons. Using these probabilities, a random sampling 
of photon trajectories is generated. Among the firstly designed IMC algorithms, 
similar algorithms for determining all three optical parameters of the tissue (μa, μs, 
and g) based on the in vitro evaluation of the total transmittance, diffuse reflectance, 
and collimated transmittance using a spectrophotometer with integrating spheres 
can be also mentioned [5, 15, 33, 37, 38, 40, 41, 44, 50, 60, 61, 64]. The initial 
approximation (to speed up the procedure) is achieved with the help of the Kubelka–
Munk theory, specifically its four-flux variant [3, 5, 33, 37, 38, 65–67]. The algo-
rithms take into consideration the sideways loss of photons, which becomes essential 
in sufficiently thick samples. Similar results have been obtained using the condensed 
IMC method [5, 60, 61, 68–73]. Figure 1.2 demonstrates the typical flowchart of the 
IMC method [41].

In the basic MC algorithm a photon described by three spatial coordinates and 
two angles (x, y, z, θ, ϕ) is assigned its weight W = W0 and placed in its initial posi-
tion, depending on the source characteristics. The step size s of the photon is deter-
mined as s = − ln (ξ)/μt, where ξ is the random number between (0, 1). The direction 
of the photon’s next movement is determined by the scattering phase function sub-
stituted as the probability density distribution. Several approximations for the scat-
tering phase function of tissue and blood have been used in MC simulations. They 
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include two empirical phase functions widely used to approximate the scattering 
phase function of tissue and blood, Henyey–Greenstein phase function (HGPF) (see 
Eq. (1.2)), the Gegenbauer kernel phase function (GKPF), and Mie phase function.

In most cases, azimuthal symmetry is assumed. This leads to p(ϕ) = 1/2π and, 
consequently, ϕrnd = 2πξ. At each step, the photon loses part of its weight due to 
absorption: W = W(1 − Λ), where Λ = μs/μt is the albedo of the medium.

When the photon reaches the boundary, part of its weight is transmitted accord-
ing to the Fresnel equations. The amount transmitted through the boundary is added 
to the reflectance or transmittance. Since the refraction angle is determined by the 
Snell’s law, the angular distribution of the out-going light can be calculated. The 
photon with the remaining part of the weight is specularly reflected and continues 
its random walk.

When the photon’s weight becomes lower than a predetermined minimal value, 
the photon can be terminated using “Russian roulette” procedure [35, 62, 63]. This 
procedure saves time, since it does not make sense to continue the random walk of 
the photon, which will not essentially contribute to the measured signal. On the 
other hand, it ensures that the energy balance is maintained throughout the simula-
tion process.

The MC method has several advantages over the other methods because it may 
take into account mismatched medium-glass and glass-air interfaces, losses of light 
at the edges of the sample, any phase function of the medium, and the finite size and 
arbitrary angular distribution of the incident beam. The only disadvantage of this 
method is the long time needed to ensure good statistical convergence, since it is a 
statistical approach. The standard deviation of a quantity (diffuse reflectance, 

Fig. 1.2 The typical flowchart of the IMC method [41]
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transmittance, etc.) approximated by MC technique decreases proportionally to 
1 / N , where N is the total number of launched photons. It is worthy of note that 
stable operation of the algorithm is maintained by generation of from 105 to 5 × 105 
photons per iteration. Two to five iterations are usually necessary to estimate the 
optical parameters with approximately 2% accuracy.

1.2.2  Diffuse Backscattered Reflectance Spectroscopy

Diffuse backscattered reflectance spectroscopy (BS) [5, 72–87] is well suited for 
use in biomedical applications due to its low instrumentation cost, easy implemen-
tation, and non-destructive measurement setup. Hence, many different BS measure-
ment configurations have been developed. Optical fiber arrays and non-contact 
reflectance imagery are two typical sensing configurations in BS measurement, 
which can be implemented with fiber-optic probe (FOP), monochromatic imaging 
(MCI), and hyperspectral imaging (HSI). In the FOP measurement, a single spec-
trometer, multiple spectrometers, or a spectrograph-camera combination coupled 
with multiple detection fibers can be used to measure diffuse reflectance at different 
distances from the light incident point. Moreover, it is also desirable to measure a 
tissue sample at a greater depth. To overcome the shortcomings of a rigid FOP, a 
flexible FOP with numerous optical fibers covering a spatial distance range of 
0–30 mm can be used for measuring the tissue optical properties. Optical fibers have 
to be coupled to a multichannel hyperspectral imaging system, which allows simul-
taneous acquisition of reflectance spectra from the sample. The use of several differ-
ent sizes of fibers for the probe also expands effectively the dynamic range of the 
camera, allowing acquiring spectra at greater depth of the sample.

As a non-contact method, MCI is more suitable for measuring optical properties 
of tissues for monochromatic irradiation. A laser diode or a combination of a super-
continuum laser and a monochromator can be used to illuminate a sample at a spe-
cific wavelength. The diffuse reflectance is acquired with a CCD camera. This BS 
configuration is simple and relatively easy to implement. The acquired 2D scatter-
ing images are reduced to 1D scattering profiles by radial averaging when the scat-
tering images are axisymmetric with respect to the laser incident point. However, 
this assumption is not satisfied for anisotropic tissues where the light is guided by 
the tissue fibers. For example, in the case of bovine muscle tissue, the effect of the 
fibers resulted in scatter spots with a rhombus shape. Measurement at multiple 
wavelengths requires sequential wavelength scanning. In addition, a substantial por-
tion of the signal of each pixel comes from the surrounding areas, which may affect 
the accuracy of the measurement. Therefore, the characterization of the point-spread 
function (PSF) is necessary in order to minimize errors in the obtained intensity 
values for the image data interpretation.

In the hyperspectral imaging, spectral and spatial information is acquired simul-
taneously and, therefore, it has advantageous for measuring diffuse reflectance pro-
files over a broad spectral range. As a rule typical hyperspectral imaging-based BS 
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system in line scan mode has high spatial resolution and mainly consists of a high-
performance CCD camera, an imaging spectrograph, a zoom or prime lens, a light 
source, and an optical fiber coupled with a focusing lens for delivering a broadband 
beam to the sample.

As an indirect method for optical property measurement, computation of the 
optical parameters from the BS measurements usually requires sophisticated mod-
eling based on the diffusion approximation of radiative transfer theory or MC simu-
lation, coupled with appropriate inverse algorithms. Numerical methods are 
generally required for solving the radiative transfer equation or using inverse MC 
simulation. These methods are flexible and allow possibility for modeling of differ-
ent geometries of experimental setups but they may be subjected to statistical uncer-
tainties during the estimation of the reflectance. Moreover, one of the major 
drawbacks with the numerical methods is that they require substantial computa-
tional time. To overcome the shortcomings the condensed IMC method can be used, 
that is, a library of MC simulated BS profiles for a grid of μs, μa and g values can be 
calculated, and then the library can be used either as a look-up table or for training 
a neural network.

Another way to reconstruct the tissue optical parameters (such as μa and reduced 

scattering coefficient � �s s g� � �� �1 ) has been proposed by Zonios et al. [88–91]. 

Their approach is based on diffusion approximation and assumes 

that R
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. Here R(λ) is the diffuse reflectance, λ is the wavelength, 

k1 and k2 are constants that depend on the probe geometry. The optical coefficients 

μa and �s
�  can be related to the absorption and scattering properties of the tissue 

through Eqs. (1.8) and (1.9) (for example):
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where CHb is the total concentration of hemoglobin, α is the oxygen saturation of 
hemoglobin, Cw is the concentration of water, Cmel is the concentration of melanin, 
Ccol is the concentration of collagen, and εHbO, εHb, εw, εmel, εcol are the absorption 
coefficients of oxyhemoglobin, deoxyhemoglobin, water, melanin, and collagen, 
respectively.

 
� �

�s w

A� � � � ,
 

(1.9)

where parameter A is defined by the concentration of scattering particles in the tis-
sue, and the wavelength exponent w is independent of the particles concentration, 
characterizes the mean size of the particles, and defines the spectral behavior of the 
scattering coefficient [92].
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Accurate estimation of optical parameters by inverse algorithms is not an easy 
task due to the complexity of analytical solutions and potential experimental errors 
in the measurement of diffuse reflectance from a medium. Moreover, for many bio-
logical materials, the values of the absorption coefficient over a specific spectral 
region (especially in the region from 700 to 900 nm) are rather small that makes it 
more difficult to obtain an accurate estimation of the optical parameters. For these 
reasons, it is generally considered acceptable or accurate when errors for measuring 
μa and �s

�  are within 10%. In general, the estimation of optical parameters can be 
defined as the nonlinear least-squares optimization problem with several important 
assumptions, that is, constant variance errors, uncorrelated errors, and a Gaussian 
error distribution. The results will not be valid if these assumptions are violated. In 
addition, for estimating the optical parameters of layered media, the increased num-
ber of free parameters can dramatically increase the computational time, further 
exacerbating the estimation of optical parameters, and/or causing ill-posed prob-
lems. Different strategies such as a multi-step method, sensitivity analysis, statisti-
cal evaluation, etc. [93] have been proposed to optimize the inverse algorithms and 
improve the estimation accuracies.

1.2.3  Raman Spectroscopy

Raman Scattering Neoplastic cells are characterized by increased nuclear mate-
rial, an increased nuclear-to-cytoplasmic ratio, increased mitotic activity, abnormal 
chromatin distribution, and decreased differentiation [94, 95]. There is a progressive 
loss of cell maturation, and proliferation of these undifferentiated cells results in 
increased metabolic activity. The morphologic and biochemical changes that occur 
with malignant tissue are numerous and in many cases depend on the specific type 
and location of the cancer. Biochemical tumor markers include cell surface anti-
gens, cytoplasmic proteins, enzymes, and hormones. These general features of neo-
plastic cells result in specific changes in nucleic acid, protein, lipid, and carbohydrate 
quantities and/or conformations [95]. There are multiple molecular markers, located 
in the membrane, the cytoplasm, the nucleus, and the extracellular space that may 
be indicative of neoplasia. As most biological molecules are Raman active, with 
distinctive spectra in the fingerprint region (500–1800 cm−1), vibrational spectros-
copy is a desirable tool for cancer detection.

Raman spectroscopy is based on the inelastic scattering of photons by molecular 
bond vibrations. Therefore the alteration of molecular signatures in a cell or tissue 
undergone cancer transformation can be detected by noninvasive Raman scattering 
without labeling.

In general, the majority of scattered photons have the same frequency as incident 
photons when light passes through the tissue (Fig. 1.3). This is known as Rayleigh 
or elastic scattering. However, a very small portion of photons alters the energy after 
collision with molecular due to inelastic of Raman scattering. The energy difference 
between the incident and scattered photons (Raman shift, measured by wavenumber 
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in cm−1) corresponds to the vibrational energy of the specific molecular bond inter-
rogated [96–98].

The ground state vibrational frequencies and energies vary depending on the 
strengths of bonds and masses of atoms involved in the normal mode motion. The 
greatest varieties of vibrational transitions in biological molecules occur in the fin-
gerprint range (500–1800) cm−1. Signatures in the higher wavenumber (HW) range 
(2800–3500) cm−1 arise from transitions between states of modes involving sym-
metric or asymmetric stretching of C–H bonds. The intensity of the Raman peaks 
for a particular molecule is directly proportional to the concentration of that mole-
cule within a sample so the resulting spectrum is a superposition of Raman response 
of all the Raman active molecules from within a sample. Therefore, a Raman spec-
trum is an intrinsic molecular fingerprint of the sample, revealing detailed informa-
tion about DNA, protein, and lipid content as well as macromolecular conformations, 
which can be extracted from the measured spectra. The spectral capacity of encod-
ing chemical information can be estimated as the maximum number of distinct 
spectral states one can discriminate and include up to 50 spectral peaks in the entire 
Raman spectrum [99]. The original analyses for Raman signals are based on differ-
ences in intensity, shape, and location of the various Raman bands between normal 
and cancerous cells and tissues. These characteristic Raman bands elucidate not 
only information about biological components of the cell but also their quality, 
quantity, symmetry, and orientation. They can be used for understanding the spec-
tral signature as it pertains to the disease process. However, it should be taken into 
account that high sensitivity to small biochemical changes is accompanied by weak 
Raman signal (inelastic scattering cross section is ~10−30 cm2/molecular) often in 
the presence of high background. Therefore, significant problems exist for acquir-
ing viable Raman signatures inherent to the chemically complex and widely varying 
biological tissue. The primary challenge for obtaining Raman spectra from biologi-
cal materials is the intrinsic fluorescence, which is ubiquitously presented in almost 
all tissues and in several orders of magnitude intense than Raman signal.

Typical Raman setup is shown in Fig. 1.4 and consists of three primary compo-
nents—laser source (1), sample light delivery and collection module (2), and spec-
trometer with CCD detector (3). The diagnostic effectiveness of Raman system is 

ωp ωp ωas =2ωp - ωsωs

Rayleigh scattering

Excited states

Raman scattering
Ω

Stokes Anti-Stokes

Ground states
(vibrational)

Fig. 1.3 Energy level diagram for elastic (Rayleigh) and inelastic spontaneous Raman scattering
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tightly bound by the instrumentation parameters, which have to be chosen very 
carefully to measure the weak Raman signals. Generally, the choice of instrumenta-
tion is always a compromise between different factors driven by tissue under study 
and the pathophysiological processes. For example, the laser power is limited by 
signal-to-noise ratio (SNR) and maximum permissible exposure.

The key component of a Raman system is the detector, which in most cases is a 
charged coupled device (CCD). Several important factors have to be considered 
when choosing the appropriate CCD array for any Raman spectroscopy application. 
Specifically, the noise level and the quantum efficiency (QE) are of great impor-
tance. A typical CCD camera used in spectroscopy consists of a rectangular chip 
wherein the horizontal axis corresponds to the wavelength/wavenumber axis and 
the vertical axis is used to stack multiple fibers for increased throughput, which can 
subsequently be binned for improved SNR. While different types of chips are com-
mercially available for different applications, a back-illuminated, deep-depletion 
CCD provides the highest QE in the NIR region. Most CCDs use a thermoelectric 
(TE) multistage Peltier system to actively cool the camera down to at least −70 °C 
in order to realize excellent dark noise performance. In fact, current Raman systems 

Fig. 1.4 The typical Raman setup: 1—laser; 2—sample light delivery and collection module; 
3—spectrometer with CCD detector; 4—PC. L1, L2 fiber-coupling lens, OBJ objective lens, DM 
dichroic mirror, M mirror, BPF bandpass filter, LPF longpass filter
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for most biomedical applications are only limited by shot noise. Selection of appro-
priate wavelengths for excitation is often governed by the reduction of fluorescence 
and scattering background, which decreases with wavelength increasing. However, 
due to 1/λ4 dependency the Raman intensity also reduces with wavelength increas-
ing and quantum efficiency of silicon-based CCD detector falls rapidly for wave-
lengths over 1000 nm.

Overall, researchers in this field tend to prefer 785 nm and 830 nm excitation as 
a reasonable compromise for most tissues. A comprehensive overview of different 
Raman-instrumentation schemes and various probe designs is given in [100–102].

Data Processing and Analysis The direct background subtraction from raw signal 
may be achieved by excitation wavelength shifting within a few nanometers with 
following differentiation of acquiring signals, but such hardware technique requires 
specific design considerations including the use of tunable stabilized lasers [103, 
104]. The other common methods for fluorescence elimination use software-based 
mathematical techniques like frequency-domain filtering [105], wavelet transfor-
mation [106], polynomial fitting [107, 108]. The polynomial curve fitting has an 
advantage over other fluorescence reduction techniques due to its inherent ability to 
retain the spectral contours and intensities of the input Raman spectra and minimal 
presence of artificial peaks in low SNR spectra [100, 108].

As Raman scattering intensity is extremely weak the measured Raman spectra 
require significant noise smoothing and binning for extraction of the underlying 
Raman bands, including median filter, the moving average window filter, the 
Gaussian filter, the Savitzky–Golay filter of various orders [109–111], and multi-
variate statistical approaches to remove the higher order components and noise [112].

Raman spectra are complex in nature as tissue contains a diverse set of small and 
large biomolecules. The vibrational frequencies associated with different functional 
groups and backbone chains, for example, in proteins, saccharides, and nucleic 
acids often overlap, thus, making it difficult to assign a specific observed band in the 
Raman spectrum to a specific functional group of a particular molecule in the tissue 
[113]. Moreover, while the peak location of an isolated functional group of atoms is 
typically known, the actual peak location of a functional group in a molecule may 
slightly differ from the isolated case because of interactions and bonding with its 
neighbors. Nevertheless, functional groups associated with specific molecules often 
give rise to relatively narrow and well-resolved bands in the Raman spectra. 
Table 1.1 summaries the major Raman spectral modes, where spectral differences 
have been found for normal and cancerous tissues [94, 95, 98, 114–121]. A detailed 
description of Raman spectral modes for malignant tissues may be found in Refs. 
[94, 115]. Characteristic Raman peaks arise from nucleic acids, lipids (C–C, C–O 
stretching), proteins (C–C, C–N stretching), and C–O stretching of carbohydrates in 
the region between 800 and 1200 cm−1; C–N stretching and N–H bending (amide III 
band) with contributions from proteins (CH3CH2 wagging, twisting, bending), poly-
saccharides, lipids (CH3CH2 twisting, wagging, bending), and nucleic acids in the 
region between 1200 and 1400 cm−1; C–H, CH2, and CH3 vibrations in the region 
between 1400 and 1500 cm−1; C=O stretching vibrations (amide I band), proteins 
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(C=C), nucleic acids, and lipids (C=C stretch) in the region between 1500 and 
1760 cm−1; CH2 symmetric and asymmetric stretching modes of lipids and proteins 
in the region between 2850 and 3000 cm−1; OH stretching modes of water in the 
region from 3100 to 3500 cm−1. Despite there being clear Raman bands in malig-
nant tissue that probably connected to the abundance of different biomolecules, 
there were no unique peaks that could be assigned to any type of cancer alone.

The prognostic value of Raman diagnostics follows from its inherent chemical 
specificity, which makes it possible to determine changes in the content of the tumor 
compared with the surrounding tissue. Observed content alteration includes several 
biomarkers, such as relative abundance of DNA [122–124], changes in structural 

Table 1.1 Major molecular vibrational modes and biochemical assignments observed for normal 
and malignant tissues [94, 95, 98, 114–121]

Vibrational modes
Band frequencya 
(cm−1) Chemical

C–С stretching mode 855 Protein (collagen)
C–С stretching mode 935 Proline and valine, protein (α-helix)/

glycogen
C–С symmetric ring breathing 
mode

1004 Phenylalanine (collagen)

C–H bending mode 1031 Phenylalanine
PO2

− symmetric stretching mode 1080 Phospholipids
C–С stretching mode 1158 Carotenoids
PO2

− asymmetric stretching 
mode

1259 Phospholipids

CH2 twisting mode 1302 Proteins (collagen)/phospholipids
CH2CH3 wagging mode 1335 DNA/protein (collagen)
CH2 scissoring mode 1444 Lipids
C=C stretching mode 1518 Carotenoids
C=O C–C stretching mode 1600–1700 Amide I, α-helix conformation
C=C stretching mode 1618 Porphyrin, protein (tryptophan)
OH bending mode 1642 Water
C=C stretching mode 1660 Unsaturated bonds of lipids
C=O stretching mode 1750 Lipids
CH2 symmetric stretching mode 2854 Saturated bonds of lipids
(CH2)C–H asymmetric stretching 
mode

2888 Saturated bonds of lipids

CH2 asymmetric stretching mode 2884
CH2 asymmetric stretching mode 2926 Saturated bonds of lipids
CH3 symmetric stretching mode 2930 proteins
H–C=C stretching mode 3009 Unsaturated bonds of lipids
OH stretching mode 3258 Water
OH stretching mode 3410 Water
OH stretching mode 3450 Water

aPlease note that Raman vibrations may shift in wavenumber depending on the sample and that 
these values should not be regarded as absolute
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and hydrogen bonding information for lipid, protein, and nucleic acids [122, 125, 
126], variation of collagen and elastin context [122, 123, 127–130], increase or 
decrease in chemical components content like tryptophan [113, 123, 128, 129], 
keratin [113], carotenoids [129, 131], glycogen [123, 128, 131], cholesterol ester 
[122, 131], tyrosine and proline [123, 128]. Most markers have several peaks, facili-
tating increased robustness in detection. In some cases it is possible to determine 
identity of diagnostically relevant species by a few factors. For example, Haka et al. 
[122] have shown that relative abundances in calcium hydroxyapatite and calcium 
oxalate dehydrate correlate with malignancies in breast cancer. Peak pairs also can 
provide information on protein-to-DNA and protein-to-lipid ratios. It has been 
shown by several research groups that the ratio of intensities at 1455  cm–1 and 
1655 cm–1 may be used for classification of tumor vs. normal tissue in the lung, 
brain, breast, colon, and cervix [109, 124, 129], since the 1655 cm–1 band corre-
sponds to the C=O stretching of collagen and elastin, and the 1445 cm–1 band (CH2 
scissoring) varies with the lipid-to-protein ratio. But in most cases spectral changes 
between healthy and diseased tissue appear in the context of entire highly complex 
spectra from the tissue, and diagnostic information may be derived only with a help 
of spectral pattern recognition approaches. The Raman spectra also contain hidden 
links between different bands of the spectrum due to the contribution of the same 
chemical components. This leads to the emergence of multiple correlations. 
Consequently, multivariate statistical techniques have become the accepted practice 
for the development of discrimination and classification algorithms for diagnostic 
applications. Chemometrics is one of the powerful tools that are able to identify 
variations that lead to accurate and reliable separation of malignant and normal tis-
sue. In the past few years discrimination techniques such as linear and nonlinear 
regression [132–134], principal component analysis (PCA) for data compression 
[112, 114] as well as classification techniques such as support vector machines 
(SVMs) [135], neural networks [125, 136], classification trees [137, 138], partial 
least-squares discriminant analysis (PLS-DA) [139, 140] have been employed. One 
of the perceived advantages of PLS-DA is that it has the ability to analyze highly 
collinear and noisy data. As a result, a combination of Raman spectral data and 
chemometrics is capable of differentiation between cancer and normal tissues as 
surveyed from the publications reviewed in Table 1.2.

Tissue Analysis To assess the applicability of Raman spectroscopy for the clinical 
diagnosis of cancer, numerous studies have been conducted with extracted tissues 
that have been frozen (with liquid nitrogen or dry ice) at the time of collection and 
thawed for study or fixed in formalin to prevent deterioration. The fixation process 
chemically alters the tissue, primarily cross-linking the collagen proteins, and thus, 
affects the Raman spectral signature of the tissue. Although some differences are 
observed in the Raman spectra of fresh and fixed tissues, the variation appears to be 
small and does not fundamentally affect the potential diagnostic capability of the 
spectrum [95].

Lyng et al. [141] have examined formalin fixed paraffin preserved specimens of 
benign lesions (fibrocystic, fibroadenoma, intraductal papilloma) and cancer 
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(invasive ductal carcinoma and lobular carcinoma) aiming an aid to histopathologi-
cal diagnosis of breast cancer. Several modes of vibration have been found to be 
significantly different between the benign and malignant tissues. The band at 
1662 cm−1 is assigned to the amide I mode originating mainly from proteins and 
nucleic acids. The two weak bands at 1610 and 1585 cm−1 observed in the breast 
tissue are due to the ν(C=C) modes of aromatic amino acids (phenylalanine, tyro-
sine, and tryptophan). The band at 1448 cm−1 is assigned to the ν(CH2/CH3) modes 
from a combination of lipoproteins from the cell membrane, adipose tissue, and 
nucleic acids. The amide III bands are observed in the region of 1295–1200 cm−1, 
which are attributed to a combination of ν(CN) and ν(NH) modes of the peptide 
bond ν(–CONH). The bands at 936 and 856 cm−1 are assigned to the ν(C–C) modes 
of proline and valine and the ν(C–CH) modes of proline and tyrosine, respectively. 
The spectrum exhibits three major characteristic bands in this region including 
those due to the ν(C=C) mode at 1515 cm−1, the ν(C–C) mode at 1156 cm−1, and the 
ring breathing mode at 1004  cm−1. The performance of the different algorithms 
PCA-LDA, PCA-QDA, PLS-DA, linear c-SVC, linear nu-SVC, RBF c-SVC, and 
RBF nu-SVC has been evaluated using sensitivity and specificity calculated based 
on the results from the Raman data and histopathology as the gold standard. PCA- 
LDA, PCA-QDA, and PLS-DA models have achieved similar sensitivity and speci-
ficity of 80%. SVM models have achieved sensitivity and specificity exceeding 
90%, but required more processing time than other models.

Cell Lines The complexity of tissue structure and environment makes the interpre-
tation of tissue Raman spectra difficult. An understanding of the molecular, micro-
scopic, and macroscopic origin of observed tissue Raman signals may be achieved 
by in vitro study of Raman spectra of biologically important molecules in solution, 
in single living cells, in cell cultures prepared from surgically removed human tis-
sues [142] or established with cancer cell lines [114]. Cell lines are widely used in 
many aspects of laboratory research and particularly as in vitro models in cancer 
research. They have a number of advantages, for example, they are easy to handle 
and represent an unlimited self-replicating source that can be grown in almost infi-
nite quantities. In addition, they exhibit a relatively high degree of homogeneity and 
ease of handling [143]. Raman spectra not only reveal differences in biological 
composition between cell lines but also represent the combined effect of these 
parameters in order to study various aspects of elementary biological processes 
such as the cell cycle, cell differentiation, and apoptosis.

The majority of researchers have primarily been focused on spectral differences 
in the fingerprint range 600–1800 cm−1 as it includes peaks that can be assigned to 
different biochemical compounds, such as lipids, proteins, or nucleic acids. The 
lipid content and the chemical structure of these compounds, for instance, can be 
evaluated using peak frequencies of 1754 cm−1 (C=O), 1656 cm−1 (C=C), 1440 cm−1 
(CH2 bend), and 1300 cm−1 (CH2 twist). Specification of the protein content of bio-
logical samples can also be understood from 1656 cm−1 (amide I), 1450 cm−1 (CH2 
bend), 1100–1375 cm−1 (amide III), and 1004 cm−1 (phenylalanine) [99, 115, 127, 
142–149].
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Oshima et al. [150] have demonstrated differences among cultures of normal and 
cancerous lung cell lines, namely adenocarcinoma and squamous cell carcinoma 
with low to medium and high malignancy. Single-cell Raman spectra have been 
obtained by using 532-nm excitation wavelength. Strong bands at 747, 1127, and 
1583 cm−1 have been assigned to cytochrome c (cyt-c) indicating resonance near 
550 nm with excitation light. Peaks at 1449, 1257, 1003, and 936 cm−1 have been 
assigned to the CH2 deformation, amide III, the symmetric ring breathing bands of 
phenylalanine of the protein, and C–C stretching, respectively. The bands at 720, 
785, 830, 1086, 1340, 1421, and 1577 cm−1 have been assigned to nucleic acids 
(DNA and RNA). The overlapping modes of the amide I band of protein and the 
C=C stretching band of lipids form strong Raman peak at 1659 cm−1. PCA has suc-
cessfully applied and 80% accuracy has been achieved in discrimination between 
four cancer cell lines.

Guo et al. [151] have reported that Raman spectroscopy can be used to differenti-
ate malignant hepatocytes from normal liver cells. It has been shown that the strong 
bands at 1447 and 1656 cm−1 can be attributed to the CH2 deformation mode and the 
C=C stretching mode of the lipids and proteins, respectively. The band originating 
at 786 cm−1 can be assigned to the O–P–O stretching mode of DNA. The bands 
appearing at 1004 and 1032 cm−1 can be assigned to the symmetric ring breathing 
mode and the C–H in-plane bending mode of phenylalanine, respectively. Statistical 
methods such as t test, PCA, and LDA have been used to analyze the Raman spectra 
of both cell lines. The results of t test have confirmed that the intensities of these 
bands are considerably different between two cell lines, except for the 1585 and 
1625–1720 cm−1 bands.

Crow et al. [128] have studied different prostatic adenocarcinoma cell lines and 
have found that principal components allow identification of molecular species 
from their Raman peaks and provide an understanding of the origins of the statisti-
cal variations. PC1 represents increased concentrations of nuclear acids (721, 783, 
1305, 1450, and 1577 cm−1), DNA backbone (O–P–O) (827 and 1096 cm−1), and 
unordered proteins (1250 and 1658 cm−1). PC2 represents decreased concentrations 
of α-helix proteins (935, 1263, and 1657 cm−1) and phospholipids (719, 1094, 1125, 
and 1317 cm−1). PC3 represents decreased concentrations of lipids (1090, 1302, and 
1373 cm−1), glycogen (484 cm−1), and nucleic acids (786, 1381, and 1576 cm−1). 
The PCA/LDA algorithm has achieved near perfect identification of each cell line, 
with sensitivities ranging from 96 to 100% and specificities all 99% or higher.

Krishna et  al. [152] have used micro-Raman spectroscopy to investigate ran-
domly mixed cancer cell populations, including human promyelocytic leukemia, 
human breast cancer, and human uterine sarcoma, as well as their respective pure 
cell lines. According to the results, cells from different origins can display variances 
in their spectral signatures and the technique can be used to identify a cell type in a 
mixed cell population via its spectral signatures.

Recent attention has been directed towards the use of high-wavenumber range 
(2800–3600 cm–1), as the HW spectral range exhibits stronger tissue Raman signals 
with less autofluorescence interference. In this spectral region most of the spectral 
features obtained from tissue are overlapping symmetric and asymmetric stretching 
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of CH2 and CH3 vibrations of phospholipids and proteins with four main peaks, 
located at 2850 cm−1, 2880 cm−1, 2920 cm−1, and 2960 cm−1 [144, 147, 148]. There 
are also minor peaks of SH-stretching vibrations 2500–2600 cm−1 [115, 145] and 
broad band of OH-stretching vibrations (primarily due to water) in the spectral 
interval 3100–3500 cm−1 [145–147]. The CH stretch vibrations are sensitive to their 
environment by direct coupling and through Fermi resonances with C–H bending 
modes near 1500 cm−1. Together, these influences can introduce significant shifts 
and broadening of the CH stretch peaks [99, 127].

For example, Telari et al. [114] have studied Raman spectra of normal (MCF-10A) 
and two breast cancerous cell lines with different concentrations of nucleic acid 
(MDA-MB-436 and MCF-7) in fingerprint and HW ranges using noninvasive dis-
persive micro-Raman system equipped with a 532-nm laser. Peak intensities have 
shown clear differences among three cell lines in lipids (2934  cm−1), amide I 
(1658 cm−1), and amide III (1244 cm−1) ranges. PCA with the whole spectral range 
has shown good overall separation between the three cell lines, but it has not formed 
separate clusters representing “normal” and “cancerous/diseased” classes [114]. 
This suggests a very large biochemical variation even between the two breast can-
cerous cell lines. The MCF-7 cell line appears to be much higher in lipids compared 
to MDA-MB 436 and MCF 10A, and PCA works well to single out this cell line in 
view of the high-wavenumber region, which includes major peaks of symmetric and 
asymmetric stretching CH2 vibrations of lipids at 2882 cm−1, C–H, CH2 symmetric 
vibrations in lipids and proteins (2940 cm−1, 2921 cm−1, and 2948 cm−1). Although 
MCF-7 and MDA-MB-436 are both breast cancer subtypes, the MDA-MB-436 
does not appear to contain lipids at a concentration vastly different to those found in 
the normal MCF-10A cell line. Instead, the difference lies more in the relative pro-
tein and amino acid concentrations, which may be identified in fingerprint region 
for adenine and guanine (1337 cm−1), CH2 deformation of lipids, adenine, and cyto-
sine (1258, 1299, and 1304 cm−1), and methylene twisting vibrations (1294 cm−1) 
and different conformations in C=O stretching of proteins (1687 cm−1), anti-parallel 
ß-sheets of amide I (1670 cm−1), tryptophan or ß-sheet of protein (1621 cm−1), C=C 
of phenylalanine ring vibration, tyrosine (1607 cm−1), and tryptophan (1548 cm−1).

Gala de Pablo et  al. [153] have studied Raman spectra distinction (Fig.  1.5) 
between primary (SW480) and secondary (SW620) tumor cells, derived from a pri-
mary Duke’s stage B adenocarcinoma and secondary tumor in a lymph node from 
the same patient. The CH2 and CH3 stretching contributions in the region of 
2800–3200 cm−1 have shown higher overall intensity for primary tumor cells and a 
greater CH2:CH3 ratio for secondary cells, indicating differences in lipid composi-
tion between the two cell lines with higher lipid content for the larger size of pri-
mary cells.

When normalizing to the amide I band, secondary tumor cells (SW620) show a 
larger contribution of α-helix proteins, saccharides, nucleic acids, and double bonds 
related bands, whereas primary tumor cells (SW480) show larger contribution of 
lipids, β-sheet, and disordered structure proteins. Principal component analysis with 
linear discriminant analysis yields the best classification between the SW620/
SW480 cell lines, with an accuracy of 98.7 ± 0.3% (standard error).
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Laser-Trapped Single-Cell Diagnostics The combination of laser tweezers and 
Raman detection is a very attractive application for the identification of malignant 
cells in cytological diagnosis systems. Chen et al. [142] have employed PCA analy-
sis of Raman spectra from laser trapping of single cell of colorectal epithelial cells 
solution to differentiate cancerous and normal epithelial cells. The higher concen-
trations of nuclear acids and proteins in cancerous cells are reflected in major varia-
tions and an increase in Raman intensities at 788 cm−1 (DNA backbone O–P–O 
stretching), 853 cm−1 (ring breathing mode of tyrosine and C–C stretching of pro-
line ring), 938 cm−1 (C–C backbone stretching of protein α-helix), 1004 cm−1 (sym-
metric ring breathing of phenylalanine), 1095  cm−1 (DNA PO2

− symmetric 
stretching), 1257 cm−1 (amide III β-sheet), 1304 cm−1 (lipids CH2 twist), 1446 cm−1 
(CH2 deformation of all components in cell), and 1657 cm−1 (C=O stretching of 
amide I α-helix). The PCA scores have been fed into logistic regression algorithm 
to determine the parameter equation that best differentiates the cancer cells from the 
normal ones, obtaining an overall sensitivity of 82.5% and specificity of 92.5%.

The extensive ex vivo studies have helped to form a reliable and detailed database 
of accurate Raman peak definitions and have given the knowledge about differences 
in spectral features of normal, benign, and malignant tissues (see references in 
Table 1.1). However, the real benefit of the method can only be explored through 
in vivo applications, which has become possible due to the advantages in the detec-
tor technology and progress in the development of miniature Raman fiber-optic 

Fig. 1.5 Average single-cell spectra and variability spectrum, for primary (SW480) and secondary 
(SW620) tumor cells, normalized to the amide I peak. The error around the average shows one 
standard deviation. The region around 2900 cm−1 is shown reduced by a factor of 4 to enhance the 
details in the fingerprint region. Adapted with permission from [153]
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probes. As such, it has been a significant movement from ex vivo to in vivo studies 
in recent years. A partial list of different Raman clinical applications for cancer 
diagnostics can be found in Table 1.2. Strong efforts have been made towards trans-
fer of ex vivo tissue statistical models and classifiers to an in vivo clinical situation. 
For example, Molchovsky et al. [154] have found that the ex vivo classifier has not 
performed well; indeed, the PCA analyses of ex vivo and in vivo tissue are different. 
Therefore, the designed models need to be adapted to in vivo applications. In vivo 
studies are focused on three major clinical targets: early cancer diagnosis, biopsy 
guidance, and oncologic surgery guidance. As it may be seen in Table 1.2 the aver-
age sensitivity and specificity obtained using Raman spectroscopy for different can-
cer types vary from 83 up to 96% and from 77 up to 94%, respectively. It is 
interesting to point out that multimodal approaches, combining different modalities 
(OCT, fluorescence and Raman spectroscopy), improve the sensitivity of in  vivo 
Raman diagnostic system by 5–8% and allow the more accurate diagnosis of prema-
lignant lesions. Implementation of biophysical models together with cross- validation 
algorithms allows obtaining a statistical predictor for cancer diagnostics with bio-
chemical semi-quantitative justification.

1.2.4  Fluorescence Spectroscopy

Light-induced autofluorescence spectroscopy is a very attractive tool for early diag-
nosis of cancer due to its high sensitivity, easy-to-use methodology for measure-
ments, lack of need for an exogenous contrast agents’ application, possibilities for 
real-time measurements, and noninvasive character of the detection technique in 
general, which allows one to work in vivo without pre-preparation of the samples [5, 
79, 80, 83–85]. Highly-sensitive cameras and narrow-band filters application nowa-
days allow obtaining fluorescent maps of the tissues investigated in 2-D image 
modality, which support the exact tumor borders and safety margins determination, 
which is required and very useful information in the following therapeutical plan-
ning. Fluorescence spectroscopy is a very sensitive tool with broad applicability for 
tumor detection. Its diagnostic sensitivity depends on many factors related to the 
lesions investigated: their biochemical content, metabolic state, morphological 
structure, localization and stage of tumor development.

Internal chemical compounds, which can fluoresce after irradiation with a light, 
are called endogenous fluorophores. Investigation of such chemicals’ fluorescent 
emission properties can give information about their concentration, distribution into 
the different tissue structures and layers, as well about alterations in microenviron-
ment, related to disease progress, including changes in pH, temperature, or chemi-
cal transformations or reactions, preceded in these fluorophores. Typical endogenous 
fluorophores used for evaluation of the tissue state are divided into several groups 
depending on their chemical nature, including amino acids, proteins, co-enzymes, 
vitamins, lipids, and porphyrins. Protein cross-links, being overmolecular struc-
tures, which are related to the tissues’ extracellular matrices, add their fluorescent 
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signals as well, to enrich the picture of emission properties that can be used for tis-
sues’ biomedical diagnostics. Both the endogenous fluorophores concentration and 
distribution into the tissues depend on the metabolic and structural peculiarities of 
the tissue investigated. Some of them during alteration of microenvironment of the 
tissue or cells, where they are situated, go through chemical transformations as well, 
which can alter their emission properties and also can be used for evaluation of the 
processes of tumor growth and metabolic activity in the lesions investigated.

The compounds that absorb the light without re-emission in normal conditions in 
the form of fluorescence signal are known as endogenous chromophores and also 
influent the emission response, when fluorescent spectroscopy technique is used for 
analysis and can significantly alter the emission detected from the tissues investi-
gated. In the ultraviolet (UV) spectral range, most of the biologically important 
molecules including amino acids, DNA, RNA, structural proteins, co-enzymes, and 
lipids absorb light. Typical endogenous chromophores with absorption bands in vis-
ible and near-infrared range, where the tissue endogenous fluorescence is observed 
typically, are melanin (pheo- and eumelanin, the pigments typical for mammal skin 
and eye tissues), pigment in the red blood cells—hemoglobin, in its oxidized and 
reduced form (oxy- and deoxyhemoglobin), and bilirubin (yellow pigment, product 
of catabolism of heme in hemoglobin). These absorbers can have significant influ-
ence on the emission signal from the tissue investigated due to filtering effect, when 
they directly absorb excitation light leading to decreased effective absorption in the 
fluorophores and lower yield of emitted photons as a result, and due to lower levels 
of their excitation, as well indirectly, when they reabsorb the resultant emission 
from the fluorophores. Their absorption bands are observed in the reported emission 
spectra for different types of tumors and localizations. The cancerous tissues are 
characterized by different content and distribution of such chromophores in the tis-
sue volume. Therefore, their influence on the emission spectra is significant index to 
the process of malignization being non-specific but diagnostically-important addi-
tive indicator for tumor development process in the tissue investigated.

Fluorescent properties investigated for the tissue cancer diagnostics needs are 
based on the steady-state or time-resolved measurements of excitation and emission 
spectral and fluorescent decay properties, respectively.

Steady-state fluorescence spectroscopy technique is based on the detection of 
fluorescence intensity as a function of the registered wavelength (energy and fre-
quency) for fixed excitation wavelength. Each fluorophore is characterized with 
specific pair of excitation (1) and emission (2) maxima—(1) wavelength with light 
absorption maximal efficiency, which is transformed to a fluorescent signal and (2) 
wavelength, where the fluorescent intensity observed is maximal by its absolute 
value in comparison with all others into the emission range for a given compound. 
Such pair of excitation and emission wavelengths is unique for each fluorophore 
appeared in the biological tissue and can be used as indicator of the presence of this 
compound. If multiple excitation wavelengths are used for consequent detection of 
such fluorescent intensities functions of registered wavelength, the so-called excita-
tion–emission matrix can be developed, which allows to address whole set of 
endogenous fluorophores in a complex sample, such as biological tissues that are 
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consisted from a mixture of several different fluorescent compounds. Excitation–
emission matrices developed in such a way consist of specific islands with high 
fluorescent emission detected that correspond to the specific pairs of excitation and 
emission wavelengths. In ideal case, the number of such “islands” in excitation–
emission matrix corresponds to the number of endogenous fluorophores existing in 
the tissue investigated. The fluorescent emission intensity corresponds to the num-
ber of excited molecules of given type of fluorophore, which re-emit light, that cor-
relate directly to the quantity of this compound in the sample investigated. In such 
a way, the steady-state fluorescence intensity measurements allow the determina-
tion of the fluorophores’ presence and concentration inside of the object investi-
gated, and they are broadly used in experimental studies of neoplasia due to simple 
approaches needed for spectral data detection, processing, and analysis.

Time-resolved fluorescence spectroscopy technique is not so popular for biologi-
cal tissue investigations due to the required very sensitive and fast detection equip-
ment, which lead to higher costs for the last. Time-resolved fluorescence allows 
finding the values of the fluorescence decay time of the endogenous fluorophores 
after irradiation with short pulse of excitation light. Fluorescence decay time, also 
called fluorescence lifetime, occurs as emissive decays from the excited to ground 
singlet – state energy levels of the endogenous fluorophore molecule. The typical 
decay time for diagnostically important fluorophores lies in the region from pico-
seconds to nanoseconds. This parameter is specific for a given chemical compound 
by its value, but also can vary due to strong sensitivity to the small perturbations in 
the microenvironment around such fluorophore molecule. Information about the 
fluorescent decay time and its deviations allows to obtain knowledge about the 
interaction with surrounding molecules for a given fluorophore and for the microen-
vironment conditions for the molecular ensemble in general.

In the process of malignancy development prominent alterations in biochemical 
and morphological properties of the biological tissues are observed. They can lead 
to significant differences in the fluorescent spectra of normal and abnormal biologi-
cal tissues, which can be detected and used as diagnostic indicators and/or as pre-
dictors of tumor lesion development.

Table 1.3 presents the typical endogenous fluorophores and chromophores, the 
dynamics of their fluorescent properties, which are indicative of malignant altera-
tions in the biological tissues. Reasons for these changes are also briefly indicated, 
according to the investigations of research groups referred.

The most often alterations observed and discussed in the literature are related to 
the changes in the ratio of NADH/NAD+ that lead to changes in the level of the 
autofluorescent intensity—reduced form of the coenzyme NAD+ is not fluorescent, 
but its concentration increases in tumor cells due to alteration in their metabolism 
related to hypoxic environment in the tumor, which leads to general decrease of the 
tumor fluorescent intensity in 420–460 nm spectral region. Fluorescence intensity 
decrease in the region of 470–500 nm is observed as well due to the tissue partial 
destruction in the process of tumor lesion growth and changes in the extracellular 
matrix and decrease or even partial demolition in the structural protein content in 
the area of tumor. That extracellular matrix damages affect the signals coming from 
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Table 1.3 Endogenous fluorophores—excitation and emission maxima, the dynamics of their 
fluorescence intensity from normal to cancerous tissue development and origins of the observed 
alterations in cancer tissues’ fluorescent properties

Endogenous 
fluorophore

Excitation 
(nm)

Emission 
(nm)

Origins of fluorescent changes observed in cancerous 
tissues

Amino acids

Phenylalanine 260 280 General increase in the signal from amino acids due to 
increased metabolic activity in tumor tissues [231, 232]Tyrosine 275 300

Tryptophan 280 350
Structural proteins

Collagen 280, 
320–350, 
390

370–440 General decrease in the collagen and elastin fluorescent 
signals is usually observed. Protein cross-links 
fluorescence signal is lower in tumor vs. normal tissues 
due to destruction of extracellular matrix (ECM) during 
tumor lesion growth. ECM degradation is associated 
with the secretion of proteolytic enzymes such as 
metalloproteinases [233] and changes in morphology 
caused by the expression of tumor cell matrix proteins, 
such as laminins [234]

Elastin 290–325 340, 400
Collagen 
cross-links

380–420 440–500

Elastin 
cross-links

320–360, 
400

480–520

Keratin 380–400, 
450–470

500–550 For skin tumors an increase in keratin content is usually 
observed and in non-pigmented tumors the fluorescence 
signal is higher than in normal tissue [231]

Enzymes and co-enzymes

NADH 290, 
350–370

440, 460 NAD+/NADH increasing ratio is observed in tumor 
tissues, which leads to general decrease in the 
fluorescence signal, due to non-fluorescent form NAD+ 
[235]

NADPH 340 460

FAD, Flavins 420–450 520–550 The excess of tyrosine and tryptophan residues 
resulting from their intensive metabolism in tumor cells 
is a prerequisite for a lower intensity of FAD 
fluorescence from tumor relative to healthy tissues due 
to quenching the fluorescence of FAD [236]. Hypoxia 
also leads to a decrease in flavin content in tumor cells 
[237]

FMN 420–500 520–570

Vitamins

Vitamin A 327 510 Fluorescence of vitamins is reported in tumor tissues 
by different research groups, especially the fat-soluble 
vitamins, but no specific tendencies related to their 
appearance and peculiar dynamics of fluorescent 
properties are reported in literature [238]

Vitamin K 335 480
Vitamin D 290, 

350–390
400–480

Vitamin B6 
compounds

315, 330, 
340

385, 400, 
425

Vitamin B12 275 305
Lipids

Phospholipids 430 500, 540 Lamina propria of GIT tract (as an example) is 
saturated with lipofuscin granules and as this part of 
the mucosal layer progressively diminishes with the 
progress of tumors, a decrease in the intensity of 
lipofuscin fluorescence is observed [239]

Lipofuscin 340–395 430–460, 
540

Ceroid 340–395 430–460, 
540

(continued)
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collagen and elastin, the main structural proteins, as well as from the cross-link 
protein structures. In some specific cases the opposite tendency is observed, where 
the tumor reveals increased metabolic activity, fast growth, and low pigmentation, 
such as for cutaneous squamous cell carcinoma (SCC) lesions. There, the autofluo-
rescence intensity can be higher than that of surrounding normal skin, and in 
advanced stages of SCC flavin green fluorescence can be detected and easily 
observed even with naked eye.

Red fluorescence signals in vivo are also observed and reported in the literature. 
Hypothesis related to the origin of this signal is related to accumulation of endoge-
nous porphyrins in the tumor cells of various types of tumors. The specific signature 
of fluorescent emission with bright maximum at 635  nm and less pronounced 
704 nm fluorescence peaks related to the endogenous porphyrins can be observed in 
advanced stages of tumor growth (grade III and IV), which make it specific but not 
optimistic index of lesion development. However, usually the fluorescent maxima at 
635 and 704 nm on the initial stage of lesion development are with low intensity or 
even absent and not typically observed for lesions on grade I or II of their develop-
ment. Porphyrins’ fluorescent signal can be increased using exogenous delta- 
aminolevulinic acid application, which is precursor of protoporphyrin IX.  After 
accumulation of 5-ALA in the cells it transforms to heme of hemoglobin. In normal 
cells for few hours all chain of heme synthesis is accomplished, but in tumor ones, 
due to blockage of enzyme ferrochelatase the iron ion cannot be added to the proto-
porphyrin IX molecule, which will transform it to heme molecule, and the concen-
tration of PpIX is rapidly increased in the cancerous area. In many clinical 
applications exogenous fluorophores from the family of porphyrins photosensitizers 
are applied as exogenous fluorescent contrast agents.

1.3  Optical and Physiological Properties 
of Malignant Tissues

1.3.1  Lung cancer

In both sexes combined, lung cancer is the most commonly diagnosed cancer 
(11.6% of the total cases) and the leading cause of cancer death (18.4% of the total 
cancer deaths) [1]. Reasons for the high mortality rate are the fact that patients tend 

Table 1.3 (continued)

Endogenous 
fluorophore

Excitation 
(nm)

Emission 
(nm)

Origins of fluorescent changes observed in cancerous 
tissues

Porphyrins 390–450, 
630

635–690, 
704

Increased fluorescence in tumors due to ferrochelatase 
enzyme blocking in tumor cells, leading to abnormal 
increase in porphyrins’ content in tumor cells vs. 
normal ones. Level of porphyrins’ fluorescence 
emission correlates with the stage of tumor growth 
[231, 240, 241]
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to be diagnosed at an advanced stage and a lack of effective treatments. Part of the 
diagnostic process is white light or fluorescence bronchoscopy combined with tis-
sue biopsy for definitive pathology. A problem with this technique is that it suffers 
from either low sensitivity or specificity and it is difficult to ensure the representa-
tiveness and quality of the biopsies during the procedure [242].

In early study Huang et al. [129] demonstrated the potential of Raman spectros-
copy to differentiate accurately normal bronchial tissue specimens, squamous cell 
carcinoma, and adenocarcinoma. The Raman spectra of malignant tumor tissue 
were characterized by higher intensity bands corresponding to nucleic acids (PO2

− 
asymmetric stretching 1223  cm−1 and CH3CH2 wagging 1335  cm−1), tryptophan 
(752, 1208, 1552, and 1618 cm–1), and phenylalanine (1004, 1582, and 1602 cm–1) 
and lower signals for phospholipids (CH2CH3 bending modes 1302 and 1445 cm–1) 
and proline (855 cm–1), compared to normal tissue. The peak at 1078 cm–1 in normal 
tissue due to the C–C or C–O stretching mode of phospholipids was shifted to 
1088 cm–1 in tumor tissue and had lower normalized percentage signals, reflecting a 
decreased vibrational stability of lipid chains in tumors. The authors found that the 
ratio of the Raman band intensity at 1445 cm−1 (CH2 scissoring) and 1655 cm−1 
(C=O stretching of collagen and elastin) had high discrimination power between 
normal and tumor tissues with sensitivity and specificity of 94% and 92%, respec-
tively. Zakharov et al. [111, 243] used three ratios of maximum scattering intensities 
in the 1300–1340  cm−1 bands, in the 1640–1680  cm−1 bands, and in the 
1440–1460 cm−1 bands to separate lung tumor from healthy tissue with following 
differentiation adenocarcinoma and squamous cell carcinoma by ratios contrast 
with surrounding normal tissue. It was achieved sensitivity and specificity of 91% 
and 79%, respectively. However, the diagnostically useful information contained 
not only in a few peaks, the entire spectral information could be important for the 
accuracy of tissue classification and cancer detection.

Similar spectral features were obtained by Magee et al. [244] using shifted sub-
tracted Raman spectroscopy for reduction of the fluorescence from the lung tissue 
and principal component with a leave-one-out analysis for accurate tissues classifi-
cation. The first in  vivo study was conducted in 2008 by Short et  al. [148]. The 
authors fail to obtain precise Raman spectra in fingerprint range due to high fluores-
cence background, which were explained by high levels of hemoglobin close to the 
tissue surface. Clear Raman peaks were registered only in HW range, where the 
intensity ratio of extracted Raman peaks to the fluorescence was six times greater 
for the most intense Raman peaks compared to those in the fingerprint range. 
Preliminary research on 26 patients demonstrated that the combination of Raman 
spectroscopy with white light bronchoscopy and autofluorescence bronchoscopy 
could reduce the number of unnecessary biopsies and achieve the sensitivity and 
specificity above 90% for detection of lung cancer and high-grade dysplasia 
lesions [159].

Recently, McGregor et  al. [156] used the bronchoscopic Raman spectroscopy 
in  vivo in 80 patients. The authors acquired Raman spectra from the high- 
wavenumber region (from 2775 to 3040 cm−1) with an acquisition time of 1 s. Major 
Raman peaks were observed for CH2 symmetric stretching modes of fatty acids and 
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lipids at 2850 cm–1; CH3 symmetric stretching modes at 2885 cm–1; overlapping CH 
vibrations in proteins and CH3 asymmetric stretching modes of lipids and nucleic 
acids at 2940 cm–1; in-plane and out-of-plane asymmetric CH3 stretching in lipid 
and fatty acid molecule at 2965 cm–1 and 2990 cm–1. It was found that spectra with 
malignant lesions presented a distinctive loss in lipid at 2850 cm−1. The intensity of 
the inflammation group was relatively higher than all other categories between 
2850 cm–1 and 2900 cm–1. To extract a more reliable correlation of spectra with 
pathology, principal components with generalized discriminant analysis and 
PLS-DA with leave-one-out cross-validation (LOOCV) were used for spectral clas-
sification. The detection of high-grade dysplasia and malignant lung lesions resulted 
in a reported sensitivity of 90% at a specificity of 65%. In 2018 same group devel-
oped novel miniature Raman probe (1.35 mm in diameter) capable of navigating the 
peripheral lung architecture [245]. The in vivo collected spectra showed lipid, pro-
tein, and deoxyhemoglobin signatures in fingerprint (1350–1800  cm−1) and HW 
(2300–2800 cm−1) ranges that might be useful for classifying pathology.

It is known that repeated exposure to carcinogens, in particular, cigarette smoke, 
leads to lung epithelium dysplasia. Further, it leads to genetic mutations and affects 
protein synthesis and can disrupt the cell cycle and promote carcinogenesis. The 
most common genetic mutations responsible for lung cancer development are MYC, 
BCL2, and p53 for small cell lung cancer (SCLC) and EGFR, KRAS, and p16 for 
non-small cell lung cancer (NSCLC) [246–248]. The broad divisions of small cell 
lung cancer (SCLC) and non-small cell lung cancer (NSCLC) represent more than 
95% of all lung cancers.

Small Cell Lung Cancer Histologically, SCLC is characterized by small cells with 
scant cytoplasm and no distinct nucleoli. The WHO classifies SCLC into three cell 
subtypes: oat cell, intermediate cell, and combined cell (SCLC with NSCLC com-
ponent, squamous, or adenocarcinoma). SCLC is almost usually with smoking. It 
has a higher doubling time and metastasizes early; therefore, it is always considered 
a systemic disease on diagnosis. The central nervous system, liver, and bone are the 
most common sites. Certain tumor markers help differentiate SCLC from 
NSCLC. The most commonly tested tumor markers are thyroid transcription factor-
 1, CD56, synaptophysin, and chromogranin. Characteristically, NSCLC is associ-
ated with a paraneoplastic syndrome which can be the presenting feature of the 
disease.

Non-small Cell Lung Cancer Five types of NSCLC are distinguished: squamous 
cell carcinoma, adenocarcinoma, adenosquamous carcinoma, large cell carcinoma, 
and carcinoid tumors. Squamous cell carcinoma is characterized by the presence of 
intercellular bridges and keratinization. These NSCLCs are associated with smok-
ing and occur predominantly in men. Squamous cell cancers can present as Pancoast 
tumor and hypercalcemia. Pancoast tumor is the tumor in the superior sulcus of the 
lung. The brain is the most common site of recurrence postsurgery in cases of 
Pancoast tumor.
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Adenocarcinoma is the most common histologic subtype of NSCLC. It is also the 
most common cancer in women and non-smokers. Classic histochemical mar kers 
include napsin A, cytokeratin-7, and thyroid transcription factor-1. Lung adenocar-
cinoma is further subdivided into acinar, papillary, and mixed subtypes.

Adenosquamous carcinoma comprises 0.4–4% of diagnosed NSCLC.  It is 
defined as having more than 10% mixed glandular and squamous components. It 
has a poorer prognosis than either squamous and adenocarcinomas. Molecular test-
ing is recommended for these cancers.

Large cell carcinoma lacks the differentiation of a small cell and glandular or 
squamous cells [249].

Optical and physiological properties of the lung tumor tissue were investigated 
in [36, 250–252]. Earlier Qu et al. [250] investigated the optical properties of 10 
human lung tumor samples (without indicating the king of the tumors) using inte-
grating sphere technique and IAD method in the spectral range from 400 to 700 nm. 
The result of the measurements is presented in Table 1.4. Fishkin et al. [251] mea-
sured the optical properties of human large-cell primary lung carcinoma using 
multi-wavelength frequency-domain photon migration instrument and found sig-
nificant absorption differences between normal and tumor tissue at all wavelengths. 
Scattering changes were less significant, but exhibited consistent wavelength- 
dependent behavior. Lower tumor scattering parameters (versus normal tissue) 
could be due to a loss of cellularity and increased water content in necrotic zones 
[251]. The authors demonstrated that total hemoglobin content varied from 
29.2 ± 2.4 to 42.9 ± 2.9 μM for normal tissue and from 85.1 ± 8.2 to 102 ± 10 μM 
for tumor tissue. Deoxyhemoglobin content varied from 6.22  ±  0.64 to 
9.68 ± 1.04 μM for normal tissue and from 15.9 ± 3.2 to 20.2 ± 5.2 μM for tumor 
tissue. Oxyhemoglobin content is varied from 23.0 ± 2.1 to 33.2 ± 2.7 μM for nor-
mal tissue and from 66.0 ± 7.4 to 86.0 ± 9.6 μM for tumor tissue. In turn oxygen-
ation degree varied from 77.4 ± 8.2 to 82.2 ± 8.3 (%) for normal tissue and from 
77 ± 18 to 84 ± 13 (%) for tumor tissue. Water content varied from 3.95 ± 1.94 to 
5.87 ± 1.31 M for normal tissue and 20.1 ± 10.8 M for tumor tissue [251]. Similar 
results were obtained by Fawzy et al. [252]. In the study, the author measured in vivo 
100 reflectance spectra of normal tissue, benign and malignant lesions (small cell 
lung cancer, combined squamous cell carcinoma and non-small cell lung cancer, 
non-small cell lung cancer, and adenocarcinoma) in 22 patients. As follows from 
their analysis, the mean value of the blood volume fraction was higher for malignant 
lesions (0.065 ± 0.03) compared to the benign lesions (0.032 ± 0.02). The mean 
value of the oxygen saturation parameter was reduced from 0.90 ± 0.11 for benign 
lesions to 0.78 ± 0.13 for malignant lesions [252]. The significant increasing in the 
volume fraction of blood in malignant tissue related to the overgrowth of the tumor 
microvasculature [253]. A significant decrease in blood oxygenation in malignant 
lesions was consistent with hypoxia-related changes during the development of can-
cer [254], which could be related to the increase in tissue metabolism and a high 
proliferation rate of the cancerous cells [252].
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Table 1.4 The optical properties of lung tumor tissues measured in vitro and in vivo [36, 250, 251]

Tissue
λ 
(nm) μa (cm−1)

μs 
(cm−1) g �s

�  (cm−1) Remarks

In vitro 
human lung 
tumor 
(n = 10)

400 20.56 299.2 0.918 24.42 ISS, IAD; data from [250]
  μs = 5.209 × 103λ−0.476

  μs′ = 4.638 × 105λ−1.639

  g = 0.921 + 0.061(1–
exp(–(λ–419.2)/324.91)), [λ] 
in nm

450 6.27 286.2 0.9266 21.02

500 2.97 271.4 0.934 17.79

550 2.18 257.9 0.942 14.89

600 1.38 245.3 0.947 12.97

650 1.13 238.5 0.952 11.39

700 1.02 236.2 0.958 10.01

In vitro  
Lewis lung 
carcinoma 
(n = 2). 
Mouse

350 7.598 – – 14.58 ISS, IMC; data from [36]
  μs′ = 4.238 × 104λ−1.355, 

[λ] in nm
400 8.883 – – 12.63

450 8.294 – – 10.81

500 4.289 – – 9.55

550 7.274 – – 8.32

600 3.716 – – 7.40

650 1.787 – – 6.57

700 1.495 – – 5.88

750 1.344 – – 5.34

800 1.155 – – 4.88

850 1.071 – – 4.49

900 1.077 – – 4.21

950 1.158 – – 3.91

1000 1.158 – – 3.69

Normal 
tissue/human 
large-cell 
primary  
lung 
carcinoma 
(n = 1).  
In vivo 
measurement

674 0.0883 ± 0.0061/ 
0.174 ± 0.022

– – 10.7 ± 0.4/ 
10.4 ± 0.9

Frequency-domain photon 
migration spectroscopy, 
in vivo, data from [251]811 0.0892 ± 0.0050/ 

0.177 ± 0.013
– – 9.99 ± 0.27/ 

9.23 ± 0.5

849 0.0915 ± 0.0030/ 
0.190 ± 0.010

– – 9.65 ± 0.15/ 
9.20 ± 0.3

956 0.127 ± 0.0305/ 
0.186 ± 0.058

– – 6.3 ± 0.95/ 
4.7 ± 2.65
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1.3.2  Breast Cancer

The second leading cause of cancer-related deaths in women worldwide is breast 
cancer with a worldwide incidence rate of more than 2,088,849 (11.6% of the total 
cases) and a mortality rate of 522,000 (6.6% of the total cancer deaths) [1]. A low- 
dose X-ray mammogram is the most common technique used for screening of 
microcalcifications in breast cancers. Mammography is not effective in dense 
female breasts and does not discriminate whether a lesion is benign or malignant. 
Therefore, it is always followed by either surgical excision biopsy or needle biopsy 
and only 36.5% of found microcalcifications are identified as malignant tumor 
[255]. The intra-surgical assessment of the tumor margins is often quite challenging 
and requires an objective and rapid guidance to eliminate the risk of additional 
resections, whose rate varies between 7 and 73% as reported by different institu-
tions [256].

Frank et al. [257] demonstrated in 1995 the possibility of Raman biopsy by fiber- 
optic sampling through a hypodermic needle. It was remotely shown that differ-
ences between benign lesion (fibrocystic) and infiltrating ductal carcinoma were 
smaller than those between normal and malignant specimens. Rehman et al. [126] 
reported about spectral differences between the nuclear grades of ductal carcinoma 
in situ and invasive ductal carcinoma of the breast. It was confirmed the increase of 
protein content and relative decrease in the lipids/acylglyceride content in the can-
cerous tissues. The intensity at 1662 cm−1 (amide I group of proteins) varied with 
the degree of fatty acid unsaturation and it depended mainly on the lipid-to- protein 
ratio. The normal tissue showed weaker intensity at 1442 cm−1, which represented 
CH2 scissoring and CH3 bending in lipids and proteins, and increased with the 
increase in nuclear grades. The same trend was observed for the OH–NH–CH peaks 
in the 2700–3500  cm−1 region, indicating varying concentrations of fatty acyl 
chains, phospholipids, cholesterol, creatine, proteins, and nucleic acids.

Haka et al. [160] showed that the types of microcalcifications could be easily 
distinguished based on the presence or absence of vibrational bands characteristic 
of calcium oxalate dihydrate at 912 cm−1 and 1477 cm−1 and calcium hydroxyapa-
tite at 960 cm−1, and that their relative abundances correlated with malignancies in 
breast cancer [99]. Further Saha et al. [116] presented ex vivo studies for real-time 
identification of microcalcifications in stereotactic core needle breast biopsy speci-
mens collected from freshly excised tissue from 33 patients. The authors employed 
ordinary least-squares fitting to approximate the acquired spectra with a breast 
model, including fit coefficients for total calcium, collagen, and fat. Further the 
same group demonstrated the utility of Raman spectroscopy as a guidance tool for 
mastectomy procedures [159]. The modified classification model used SVM algo-
rithm for the diagnosis of lesions irrespective of microcalcification status followed 
by logistic regression algorithm for detection of microcalcifications. The accuracy 
obtained for differentiation between normal, fibrocystic change, fibroadenoma, and 
breast cancer was 82.2% [159]. Haka et al. [117] reported on the feasibility to use 
Raman spectroscopy for in vivo diagnostics in an operation surgery environment. 
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With their classification model, they reached an overall accuracy of 93% (28 of 30) 
[258]. The highest sensitivity and specificity (94.9% and 93.8%, respectively) were 
achieved by Li et  al. [162] with proposed adaptive weight k-local hyperplane 
(AWKH) algorithm, which extended K-local hyperplane distance nearest-neighbor 
algorithm of breast cancer classification.

Brozek-Pluska et al. [161] showed clear differences in carotenoids and fatty acid 
composition and products of their metabolism between cancerous tissue and sur-
rounding noncancerous. The most pronounced differences were observed in the 
region of the bands at 1158 and 1518 cm−1 assigned to the C–C and C=C stretching 
modes of carotenoids, the symmetric and asymmetric C–H vibrations of lipids at 
2850 and 2940 cm−1, and the region of the OH stretching mode of water around 
3300 cm−1. The Raman intensities of lipid peaks were significantly smaller in the 
cancerous tissue than in the noncancerous tissue as in fingerprint region (854, 1444, 
1660, 1750 cm−1) as in HW spectral range (2888, 2926 cm−1). It was reported to 
effectively diagnose early-stage breast cancer with a sensitivity of 72% for malig-
nant tissue and 62% for benign tissue and a specificity for normal tissue of 83% 
[161]. It was also observed by Abramczyk et al. [157, 158] after testing the same 
Raman system on 150 patients. The group found that the fatty acid composition and 
products of their metabolism in cancerous breast tissue had an increased content of 
20-carbon essential fatty acid, whereas surrounding noncancerous tissue was almost 
identical to monounsaturated oleic acid. This study suggested that carotenoids and 
lipids can be used as Raman biomarkers in breast cancer pathology.

Optical properties of breast tumors were investigated in [45, 259–264], the data 
partially summarized in [265] and presented in Table 1.5. Zhang et al. [45] com-
pared the optical properties of normal breast tissue, benign and malignant neoplasm 
using integrating sphere technique and IAD method in the spectral range from 400 
to 2200 nm. The authors observed an increase in water concentration and a decrease 
in lipid content in malignant tissue compared with normal tissue. Moreover, as can 
be seen in Table 1.5, spectral behavior of the scattering properties of tumor tissue is 
determined primarily by relative small (so-name Rayleigh) scatterers in comparison 
with normal tissue. Earlier similar results were obtained in [259, 263, 264] for 
in vitro and ex vivo experiments in visible and near-infrared spectral range. In vivo 
studies of normal and malignant breast tissues were performed by Fantini et  al. 
[260], Grosenick et al. [261], and Cerussi et al. [262] using frequency- and time-
domain techniques. The authors observed an increase in both the absorption and 
scattering coefficients for the tumor tissue in comparison with normal tissue. 
Moreover, the authors found a significant increase in total hemoglobin concentra-
tion: from 17.3 ± 6.2 μmol/L for normal tissue to 53 ± 32 μmol/L for tumor tissue 
[261] or from 17.5 ± 7.5 μM (normal tissue) to 24.7 ± 9.8 μM (tumor tissue) [262]. 
At the same time, the blood oxygen saturation was not changed: 74 ± 7% for normal 
tissue and 72 ± 14% for tumor tissue [261] or 67.7 ± 9.3% for normal tissue and 
67.5 ± 8.4% for tumor tissue [262]. Lipid content in the tumor tissue decreased: 
from 66.1 ± 10.3% (normal tissue) to 58.5 ± 14.8%, and on the contrary the water 
content increased: from 18.7 ± 10.3% (normal tissue) to 25.9 ± 13.5% for tumor 
[262]. Similar results were presented in [266–268].

A. N. Bashkatov et al.



45

Table 1.5 The optical properties of breast tumor tissues measured in in vitro and in vivo [45, 259–264]

Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�

 (cm−1) Remarks

Normal breast 
tissue (n = 16)/
benign tumor 
tissue (n = 5)/
malignant  
tumor (n = 11)

400 9.57 ± 5.61/5.54  
± 1.91/9.29 ± 5.57

– – 20.4 ± 8.8/40.9  
± 4.0/40.9 ± 4.0

ISS, IAD, in vitro; data 
from [45]: 
μs′ = 2.072 × 109λ−3.173 
+ 19.876λ−0.103 (normal 
tissue), 
μs′ = 7.115 × 108λ−2.8 
+ 30.69λ−0.187 (benign 
and malignant tumor 
tissues), [λ] in nm

500 3.23 ± 1.78/1.79  
± 0.28/3.16 ± 1.69

– – 16.2 ± 6.0/30.3  
± 4.4/30.3 ± 4.4

600 1.61 ± 0.96/0.86  
± 0.01/1.69 ± 0.91

– – 13.9 ± 4.6/22.6  
± 3.3/22.6 ± 3.3

700 1.16 ± 0.45/0.65  
± 0.01/0.79 ± 0.24

– – 12.2 ± 4.0/18.0  
± 2.7/18.0 ± 2.7

800 1.13 ± 0.49/0.63  
± 0.03/0.75 ± 0.19

– – 11.3 ± 3.9/15.2  
± 2.8/15.2 ± 2.8

900 1.13 ± 0.48/0.65  
± 0.28/0.65 ± 0.01

– – 10.8 ± 3.7/13.0  
± 2.9/13.0 ± 2.9

1000 0.99 ± 0.25/0.71  
± 0.12/0.84 ± 0.03

– – 10.4 ± 3.6/11.4  
± 2.9/11.4 ± 2.9

1100 1.20 ± 0.46/0.68  
± 0.05/1.01 ± 0.15

– – 10.0 ± 3.6/10.2  
± 2.6/10.2 ± 2.6

1200 2.56 ± 0.22/1.90  
± 0.17/1.85 ± 0.11

– – 9.6 ± 3.6/9.0  
± 2.7/9.0 ± 2.7

1300 1.55 ± 0.06/1.56  
± 0.16/1.79 ± 0.24

– – 9.6 ± 3.9/8.3  
± 2.3/8.3 ± 2.3

1400 4.92 ± 0.64/9.78  
± 0.51/12.30 ± 3.01

– – 9.5 ± 3.7/8.6  
± 2.0/8.6 ± 2.0

1500 4.65 ± 1.02/10.05  
± 1.19/13.23 ± 4.08

– – 9.4 ± 3.5/9.0  
± 1.7/9.0 ± 1.7

1600 2.58 ± 0.06/4.81  
± 0.61/6.21 ± 1.46

– – 9.1 ± 3.9/7.7  
± 1.7/7.7 ± 1.7

1700 6.63 ± 0.22/5.43  
± 1.21/5.39 ± 1.23

– – 9.1 ± 3.8/7.1  
± 1.9/7.1 ± 1.9

1800 5.46 ± 0.51/6.77  
± 0.74/7.45 ± 1.82

– – 9.3 ± 4.0/7.0  
± 1.8/7.0 ± 1.8

1900 14.29 ± 3.02/31.60  
± 4.99/36.19 ± 8.98

– – 9.5 ± 4.6/8.5  
± 2.1/8.5 ± 2.1

2000 12.48 ± 4.80/33.31  
± 8.72/42.20 ± 14.94

– – 9.3 ± 4.4/8.8  
± 2.3/8.8 ± 2.3

2100 8.02 ± 2.76/18.94  
± 3.57/22.88 ± 7.46

– – 9.2 ± 4.2/8.0  
± 2.0/8.0 ± 2.0

2200 7.10 ± 2.30/13.71  
± 2.17/16.19 ± 4.93

– – 9.6 ± 4.5/7.5  
± 1.4/7.5 ± 1.4

(continued)
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Table 1.5 (continued)

Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�

 (cm−1) Remarks

Human breast 
(normal  
glandular tissue) 
(n = 3)/human 
breast (normal 
adipose tissue) 
(n = 7)/human 
breast  
(fibrocystic 
tissue) (n = 8)/
human breast 
(fibroadenoma) 
(n = 6)/human 
breast (ductal 
carcinoma)  
(n = 9)

500 3.42/2.73/2.28/ 
4.02/2.60

461.8/313.8/ 
879.2/ 
447.7/426.4

0.947/0.971/ 
0.980/ 
0.970/0.954

24.3/9.1/18.0/ 
13.4/19.4

ISS, IMC, in vitro, data 
from [259] for normal 
glandular tissue
  μs′ = 2.802 × 109λ−3.029 

+ 18.615λ−0.146 and
  g = 0.737 + 0.229(1–

exp(–(λ–282.7)/93.5)); 
for normal adipose 
tissue

  μs′ = 5.717 × 108λ−3.227 
+ 17.657λ−0.13 and 
g = 0.741 + 0.236(1–
exp(–(λ+23.3)/148)); 
for fibrocystic tissue: 
μs′ = 1.556 × 109λ−3.012 
+ 22.187λ−0.157 and

  g = 0.749 + 0.234(1–
exp(–(λ+15.1)/ 
177.8)); for 
fibroadenoma

  μs′ = 1.625 × 109λ−3.029 
+ 17.803λ−0.229 and

  g = 0.749 + 0.235(1–
exp(–(λ–255.9)/89.4)); 
for ductal carcinoma

  μs′ = 1.951 × 109λ−3.016 
+ 19.858λ−0.186 and

  g = 0.727 + 0.236(1–
exp(–(λ)/156.5)); [λ] 
in nm

600 0.92/0.99/0.47/ 
1.76/1.61

431.5/294.1/ 
623.5/ 
492.6/337.5

0.959/0.972/ 
0.977/ 
0.979/0.958

17.6/8.1/14.6/ 
10.3/14.3

700 0.48/0.81/0.24/ 
0.53/0.44

409.1/306.3/ 
568.0/ 
438.4/277.4

0.965/0.975/ 
0.978/ 
0.982/0.961

14.1/7.7/12.3/ 
7.9/10.9

800 0.55/0.82/0.28/ 
0.34/0.34

332.7/313.8/ 
548.8/ 
384.0/233.0

0.965/0.976/ 
0.981/ 
0.983/0.962

11.7/7.4/10.5/ 
6.5/8.9

900 0.67/0.84/0.39/ 
0.79/0.45

275.1/306.1/ 
536.5/ 
327.3/181.2

0.965/0.976/ 
0.981/ 
0.983/0.957

9.7/7.4/9.8/ 
5.5/7.8

1000 0.90/0.90/0.63/ 
1.57/0.64

213.7/306.2/ 
485.6/ 
269.1/143.7

0.957/0.976/ 
0.982/ 
0.982/0.950

9.1/7.4/8.8/ 
5.0/7.2

1100 0.82/1.14/0.84/ 
1.48/0.52

200.2/332.2/ 
465.9/ 
209.2/123.0

0.961/0.977/ 
0.983/ 
0.979/0.946

7.8/7.8/7.8/ 
4.4/6.7

Human  
papillary  
cancer in vivo 
(n = 1)

690 0.084 ± 0.014 – – 15.0 ± 0.3 Frequency-domain 
mammography. In vivo 
[260]

825 0.085 ± 0.017 – – 12.7 ± 0.3

Human healthy 
breast tissue/
carcinomas 
(n = 87)

670 0.036 ± 0.008/0.110 
± 0.066

– – 10.5 ± 1.3/13.5 ± 4.7 Time-domain optical 
mammography. In vivo 
[261]

785 0.039 ± 0.011/0.100 
± 0.060

– – 9.5 ± 1.4/11.6 ± 3.9

843 0.036 ± 0.005/0.118 
± 0.096

– – 8.4 ± 0.4/12.2 ± 1.7

884 0.059 ± 0.016/0.124 
± 0.089

– – 8.0 ± 1.0/9.1 ± 1.9

(continued)
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Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�

 (cm−1) Remarks

Human  
adenocarcinoma  
(n = 1)

650 0.069 – – 8.44 Diffuse optical 
spectroscopy in vivo. 
Data from [262]: 
μs′ = 571.326λ−0.65; [λ] in 
nm

700 0.044 – – 8.06

750 0.053 – – 7.70

800 0.044 – – 7.39

850 0.055 – – 7.10

900 0.093 – – 6.84

950 0.125 – – 6.60

1000 0.131 – – 6.40

Normal adipose  
tissue (n = 39)/ 
invasive ductal 
carcinoma  
(n = 28)

400 16.191/9.049 – – 13.7/23.9 Reflectance spectroscopy  
ex vivo. IMC.  
Data from [263]: 
μs′ = 1.168 × 109λ−3.26  
+ 3.26λ−0.129 (for normal 
adipose tissue) and 
μs′ = 1.004 × 109λ−3.186  
+ 23.151λ−0.037 (for 
invasive ductal 
carcinoma); [λ] in nm

450 21.796/2.293 – – 12.9/21.8

500 5.556/0.590 – – 11.6/21.3

550 1.209/1.209 – – 11.1/20.5

600 0.155/0.144 – – 11.0/18.7

Normal adipose  
tissue (n = 38)/ 
fibrous/benign  
tissue (n = 8)/ 
malignant tissue 
(invasive ductal 
carcinoma)  
(n = 37)

350 2.80/4.45/5.78 – – 14.2/28.3/33.5 Reflectance spectroscopy  
ex vivo. IMC. Data  
from [264]:  
μs′ = 4.094 × 108λ−3.168  
+ 33.493λ−0.192  
(for normal adipose 
tissue);  
μs′ = 6.721 × 108λ−3.085  
+ 30.765λ−0.075  
(for fibrous/ 
benign tissue); 
μs′ = 6.98 × 108λ−3.055  
+ 33.39λ−0.063  
(for malignant tissue);  
[λ] in nm

400 7.49/9.33/8.50 – – 12.9/25.9/30.5

450 8.76/6.90/5.30 – – 12.6/25.2/29.9

500 3.25/2.95/2.12 – – 11.7/23.1/27.5

550 0.97/1.64/1.62 10.7//20.9/24.6

600 0.74/1.37/1.38 10.1/19.5/22.4

Table 1.5 (continued)
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1.3.3  Skin Cancer

Malignant melanoma (MM) is the most aggressive form of skin cancer with a 
worldwide incidence of 287,723 (1.6% of the total cases) and mortality rate as high 
as 60,712 (0.6% of the total cancer deaths) [1]. Although nonmelanoma skin can-
cers (NMSC), such as the basal cell carcinoma (BCC) and squamous cell carcinoma 
(SCC), are associated with low mortality rate deaths, they are particularly common 
in fair-skinned populations of European descent (5.8% of the total cases), with high 
incidence rates found in Australia/New Zealand, North America, and Northern 
Europe [1, 269]. Standard type of treatment of skin cancer is complete removal of 
the lesion with a high cure rate without reducing life expectancy (5-year relative 
survival rate for melanoma is approximately 92% [269]). Therefore, investigations 
of Raman spectroscopy for skin cancer primarily focused on early detection and 
discrimination of skin tumor types.

In early ex vivo studies Gniadecka et al. [125, 270] revealed clear-cut changes in 
skin tumor tissues allowing to differentiate MM from normal skin, seborrheic kera-
tosis, and BCC. The major spectra alteration was found in the region 1200–1750 cm−1. 
An increase in the intensity of Raman bands was observed for pigmented tumors in 
the region 2500–3500 cm−1. To demonstrate spectral changes for proteins, the ratio 
between the amide I band and δ(CH2)(CH3) in proteins and lipids (I1650/I1450) and the 
ratio between the amide III and lipids at around 1320 cm−1 were calculated (I1270/
I1320). Neural network analysis of Raman spectra in a range 200–3500 cm−1 achieved 
a diagnostic sensitivity of 85% and specificity of 99% for the diagnosis of MM.

In 2008 Zhao et al. [230] reported 289 in vivo measurements of Raman spectra 
from nine different types of lesions. The authors stated a sensitivity of 91% and a 
specificity of 75% in differentiating malignant lesions from benign lesions. Further, 
the same group utilized a Raman probe to study MM, BCC, SCC, actinic keratosis, 
atypical nevi, melanocytic nevi, blue nevi, and seborrheic keratosis from 453 
patients in 2012 [227] and from 645 patients in 2015 [225]. The collected single- 
point spectra were acquired in 1 s and subjected to principal component with gener-
alized discriminant analysis (PC-GDA) and PLS for statistical data evaluation. The 
sensitivity to differentiate skin cancer versus benign lesions ranged between 95 and 
99%, with a related specificity of 15–54%. Similar results were achieved by Silveira 
et al. [224] for a set of 145 spectra from biopsy fragments of normal (n = 30), BCC 
(n = 96), and MM (n = 19) skin tissues. The authors applied the best-fitting model 
to the spectra of biochemicals and verified that actin, collagen, elastin, and triolein 
were the most important biochemicals representing the spectral features of skin 
tissues.

Typical in vivo Raman spectra for normal skin tissue, melanoma, and BCC are 
depicted in Fig. 1.6. Overall all skin lesions appear to share similar major Raman 
peaks and bands in fingerprint region. There are no distinctive Raman peaks or 
bands that can be uniquely assigned to specific skin cancers by visual inspection 
alone. The strongest Raman peak is located around 1445 cm−1 with other major 
Raman bands centered at 855, 936, 1002, 1271, 1302, 1655, and 1745 cm−1. The 

A. N. Bashkatov et al.



49

development of the malignant skin disease increases the content of metabolic prod-
ucts in the pathological areas of the skin, changes the concentration of proteins and 
lipids. Proteins predominantly contribute to the appearance of bands in the spectral 
range 1240–1270, 1340, 1440–1460, and 1665 cm−1, the spectral features arising 
from the contribution of lipids, predominantly of triolein, are observed in the 
1271–1301, 1440, 1650–1660 cm−1 bands [224]. One of the significant differences 
between malignant and benign formations is the process of metabolism and destruc-
tion of collagen. Cells of malignant tumors form fast-growing, low-differentiated 
structures, and the development of such structures is accompanied by the increased 
activity of collagenase [95]. Collagenase destroys the molecular bonds of collagen 
fibers, and changes in Raman spectra of skin tissue can be observed in 1248, 1454, 
and 1665 cm−1 bands associated with peaks of collagen [121].

Schleusener et al. [229] performed in vivo measurements on 104 subjects with 
lesions using a multi-fiber Raman probe, which was optimized for collecting scat-
tered light from within the epidermal layer’s depth down to the basal membrane, 
where early stages of skin cancer developed. NMSC were discriminated from nor-
mal skin with a balanced accuracy of 73% (BCC) and 85% (SCC) using partial 
least-squares discriminant analysis (PLS-DA). Discriminating MM and pigmented 
nevi (PN) resulted in a balanced accuracy of 91%.

Lim et al. [223] employed fiber-optic Raman probe in combination with fluores-
cence and diffuse backscattered reflectance techniques in order to improve diagnos-
tic outcomes. Raman, fluorescence, and reflectance spectra were acquired from 137 
lesions in 76 patients. Raman spectroscopy alone demonstrated to achieve 100% 
sensitivity and specificity for discriminating melanoma from benign pigmented 

Fig. 1.6 Average Raman spectra and standard deviation of melanoma (MM), basal cell carcinoma 
(BCC), and normal skin (NORM). Each spectrum was acquired by Raman setup [140] and prepro-
cessed with baseline removal, smoothing by the Savitzky–Golay method, data normalization, and 
centering
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lesions, but only 68% sensitivity and 55% specificity for distinguishing NMSC 
from normal tissues. However, for multimodal approach NMSC were classified 
with a sensitivity of 95% and specificity of 71%. To support the data analysis, the 
group also analyzed the spectral contributions of individual skin components such 
as collagen, elastin, triolein, nuclei, keratin, ceramide, melanin, and water, by fitting 
spectra obtained in vitro using Raman microscopy [222]. It was demonstrated that 
the biophysical model had consistent diagnostic capability similar to statistical 
PCA-LDA model with leave-one-lesion-out cross-validation. More importantly, the 
biophysical model captured the relevant biophysical changes accounting for the 
diagnosis. In particular, the authors found that collagen and triolein were the most 
important biomarkers in discriminating MM from benign pigmented lesions, and 
BCC had a significantly different concentration of nucleus, keratin, collagen, tri-
olein, and ceramide compared to surrounding healthy skin. Recently, the group 
demonstrated the capability to use developed biophysical model for skin cancer 
margin assessment in BCC surgery resection [226].

In 2017 Bratchenko et al. [228] tested combined Raman and autofluorescence 
ex vivo diagnostics of MM (n = 39) and BCC (n = 40) in near-infrared and visible 
regions. The authors stated the accuracy of 97.3% for discriminating each of skin 
cancers in multimodal approach, whereas the determined accuracy for each modal-
ity separately was 79%. Further, the same group has performed in vivo measure-
ments on 17 MM, 18 BBC, and 19 various types of benign neoplasms with portable 
Raman system and confirmed the higher accuracy of multimodal approach [140]. 
The diagnostic efficiency of portable system was defined by PLS-DA analysis of 
entire spectra, taking into account each feature of the spectra in a range from 300 to 
1800 cm−1 including maxima intensities and exact bands position estimation. For 
combined Raman and autofluorescence diagnostics, the authors reported the accu-
racy of 89.5% and 91.1% for classifying MM vs other neoplasms and BCC vs other 
neoplasms, respectively.

The other multimodal approach includes combination of optical coherence 
tomography (OCT) and Raman spectroscopy (RS) for noninvasive characterization 
of skin lesions based on either morphological or biochemical features of disease 
[271]. Although the OCT not clearly defines features associated with malignancy, it 
provides a morphological context to guide placement of the RS acquisition axes for 
specific biochemical analysis of the tissue. In 2015, Zakharov et al. [111] reported 
the increase in average accuracy of in vivo diagnosis of skin tumors (9 MM, 9 BCC, 
and various benign tumors) by multimodal RS-BS-OCT system. It was shown that 
these methods were complementary and increased the diagnostic specificity for a 
variety of tumor types by 5–11%. In 2018, Varkentin et al. [272] presented trimodal 
RS-OA-OCT with optoacoustic (OA) modality, which provided precise tumor depth 
determination due to potentially deeper penetration compared to OCT. The Raman 
signal was collected via the OCT scanning lens to maximize the signal-to-noise 
ratio of the measured signal while keeping radiation levels below maximum permis-
sible exposure limits. The preliminary results of first RS-OA-OCT clinical trials 
showed good agreement with histology results and distinctive differences in Raman 
data between normal skin and different areas of melanocytic lesions.
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The optical properties of skin tumor tissue are presented in Table  1.6, which 
demonstrates qualitatively similar behavior for all investigated nonmelanoma types 
of skin tumors [39, 273]. Scattering coefficient gradually decreases with the increas-
ing wavelength. Quantitatively, infiltrative BCC is characterized by a higher scatter-
ing coefficient in comparison with the scattering of nodular BCC and SCC. The 
higher scattering coefficient of infiltrative BCC may be explained by its structural 
characteristics. Typically, these tumors have thin strands or cords of tumor cells 
extending into the surrounding highly scattering dermis. The value of �s

�  for SCC 
is consistently lower than for both types of BCC in the entire wavelength range [39].

Similar result was obtained by Garcia-Uribe et al. [273] (see Table 1.6). Higher 
light scattering in cancerous tissue can be explained by the larger average effective 
size of the scattering centers. SCC in situ has not yet penetrated through the base-
ment membrane of the dermoepidermal junction. SCCs typically appear as scaling 
plaques with sharply defined red color. Histologically, all epidermal layers may 
contain atypical keratinocytes. The larger amount of atypical keratinocytes in SCCs 
can increase the light scattering in this type of skin lesion and significantly affect its 
contribution to diffusely reflected light on the surface. SCCs can penetrate the base-
ment membrante to become invasive [273].

Actinic keratosis can appear rough and scaly and can develop into SCCs. 
Histologically, actinic keratosis is recognized by the presence of atypical keratino-
cytes in the deeper parts of the epidermis. Defective maturation of the superficial 
epidermal layers results in parakeratosis, alternating with hyperkeratosis [274, 275]. 
The amounts of atypical keratinocytes and collagen are factors related to the amount 
of light scattering in the lesion [273].

BCC is derived from the basal layer of keratinocytes, the deepest cell layer of the 
epidermis. BCCs can present nodular aggregates of basal cells in the dermis and 
exhibit peripheral palisading and retraction artifacts. Melanin can also be present in 
the tumor and in the surrounding stroma, as observed in pigmented BCCs. The 
aggregation of basal cells can increase the light scattering in these types of malig-
nant lesions. The progression of seborrheic keratosis into BCC and SCC is rare 
[276, 277]. Seborrheic keratosis, composed of basaloid cells admixed with some 
squamous cells, can be pigmented when some cells contain melanin transferred 
from neighboring melanocytes [273].

Cugmas et  al. [81] investigated ex  vivo optical properties of canine skin and 
ex vivo and in vivo subcutaneous tumors and found that average water volume frac-
tion in the skin samples was 81.4%. Darkly pigmented skin contained almost 10 
times more melanin (2.22 mmol/L) than lightly pigmented skin (0.26 mmol/L). The 
authors estimated melanin concentrations of 115.0 and 443.5 mg/L for the lightly 
and darkly pigmented human skin, respectively. The average hemoglobin mass con-
centration was 1.07 g/L and saturation was 46%. For tumors the water volume frac-
tion was around 82%, saturation was slightly above 50%. However, benign tumors 
contained 0.62  g/L of hemoglobin and malignant tumors contained 7.93  g/L of 
hemoglobin [81].
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Table 1.6 The optical properties of skin tumor tissues measured in in vitro and in vivo [39, 273]

Tissue
λ 
(nm) μa (cm−1) �s

�  (cm−1) Remarks

Infiltrative  
basal cell  
carcinoma  
(n = 6)/nodular 
basal cell  
carcinoma  
(n = 5)/squamous 
cell carcinoma 
(n = 8)

370 5.19/7.19/7.70 67.0/47.7/43.9 ISS, IMC, in vitro;  
data from [39];  
spectral range  
400–1350 nm
  μs′ = 8.608 × 108λ−2.767  

+ 109.912λ−0.335  
(infiltrative basal 
 cell carcinoma), 
 μs′ = 7.641 × 108λ−2.791  
+ 67.29λ−0.284  
(nodular basal  
cell carcinoma),  
μs′ = 8.389 × 108λ−2.811  
+ 42.079λ−0.263  
(squamous cell  
carcinoma),  
[λ] in nm

400 5.20/7.04/8.68 65.7/46.2/43.5
450 3.99/4.72/7.54 57.2/42.7/38.9
500 2.06/2.52/2.46 46.5/35.9/30.4
550 1.56/1.67/2.43 37.7/30.2/25.5
600 1.20/1.11/1.47 31.9/26.2/21.4
650 0.94/0.75/0.83 27.9/22.6/18.1
700 0.87/0.55/0.65 25.3/19.8/16.1
750 0.77/0.37/0.52 22.8/17.9/14.2
800 0.64/0.19/0.37 20.5/15.8/12.9
850 0.52/0.09/0.28 19.0/14.7/12.0
900 0.40/0.05/0.22 17.4/13.6/11.2
950 0.44/0.05/0.24 15.9/12.9/10.5
1000 0.49/0.03/0.25 14.4/12.3/9.8
1050 0.48/0.01/0.27 12.9/11.8/8.9
1100 0.53/0.01/0.26 12.2/11.3/8.6
1150 0.89/0.05/0.54 11.6/10.8/8.4
1200 1.14/0.11/0.79 11.1/10.4/8.2
1250 1.15/0.08/0.73 10.7/10.2/7.9
1300 1.53/0.23/1.00 10.4/9.9/7.6
1350 3.70/1.81/2.47 10.6/10.0/8.1
1400 13.79/11.19/10.68 13.1/13.1/11.3
1450 24.06/17.01/21.21 17.1/16.3/14.6
1500 17.98/10.45/13.81 14.7/14.3/12.7
1550 10.38/5.71/8.63 11.5/11.5/9.8
1600 5.95/3.43/5.33 11.6/10.3/8.9

(continued)
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Tissue
λ 
(nm) μa (cm−1) �s

�  (cm−1) Remarks

Skin type  
I/skin type  
II/skin type III/
common nevi/
dysplastic nevi/
melanoma/actinic 
keratosis/ 
seborrheic  
keratosis/ 
squamous  
cell carcinomas/
basal cell 
carcinomas

455 0.60/0.74/0.83/ 
1.20/1.40/1.78/0.79/
0.96/1.17/1.28

12.8/13.5/14.1/ 
15.4/19.8/22.2/22.9
/20.7/27.0/22.4

Oblique incidence 
diffuse reflectance, 
in vivo; data from [273];  
for skin type I: 
μs′ = 1.095 × 109λ−3.256  
+ 20.658λ−0.111;  
for skin type II:  
μs′ = 1.212 × 109λ−3.236  
+ 21.316λ−0.114;  
for skin type III:  
μs′ = 9.575 × 108λ−3.2  
+ 23.143λ−0.117;  
for common nevi:  
μs′ = 5.818 × 108λ−3.177  
+ 22.682λ−0.084;  
for dysplastic nevi:
μs′ = 7.607 × 108λ−3.111  
+ 24.242λ−0.07;  
for melanoma:  
μs′ = 8.341 × 108λ−3.149  
+ 22.058λ−0.031;  
for actinic keratosis:  
μs′ = 1.067 × 109λ−3.123  
+ 23.134λ−0.042;  
for seborrheic keratosis:  
μs
′ = 1.248 × 109λ−3.114  

+ 23.535λ−0.08;  
for squamous cell 
carcinomas: 
μs′ = 1.619 × 109λ−3.104  
+ 21.012λ−0.024;  
for basal cell 
carcinomas: 
 μs′ = 9.903 × 108λ−3.131  
+ 22.773λ−0.04; [λ] in nm

500 0.46/0.57/0.63/ 
1.08/1.24/1.59/0.70/
0.85/0.97/1.05

12.2/12.7/13.4/ 
15.0/18.7/20.9/21.8
/19.2/24.8/21.2

550 0.55/0.63/0.68/ 
1.12/1.29/1.67/0.78/
0.96/1.01/1.15

11.6/12.1/12.8/ 
14.6/17.9/20.1/20.9
/18.1/23.2/20.4

600 0.29/0.36/0.37/ 
0.68/0.76/0.97/0.42/
0.52/0.55/0.63

11.1/11.5/12.2/ 
14.2/17.3/19.5/20.0
/17.0/21.9/19.6

650 0.21/0.28/0.31/ 
0.50/0.57/0.72/0.33/
0.39/0.42/0.48

10.8/11.1/11.8/ 
13.8/16.8/19.2/19.5
/16.2/21.0/19.1

700 0.19/0.24/0.27/ 
0.39/0.44/0.55/0.28/
0.30/0.33/0.40

10.6/10.8/11.5/ 
13.5/16.4/19.1/18.9
/15.7/20.3/18.7

750 0.16/0.21/0.24/ 
0.30/0.33/0.43/0.25/
0.27/0.27/0.36

10.4/10.5/11.3/ 
13.4/16.1/19.0/18.5
/15.1/19.7/18.4

765 0.18/0.21/0.24/ 
0.30/0.34/0.42/0.24/
0.26/0.26/0.37

10.4/10.5/11.2/ 
13.3/16.0/19.1/18.4
/15.0/19.6/18.4

Table 1.6 (continued)
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1.3.4  Colorectal Cancer

Over 1.8 million new colorectal cancer cases and 881,000 deaths are estimated to 
occur in a year, accounting for about 1 in 10 cancer cases and deaths [1]. Overall, 
colorectal cancer ranks third in terms of incidence but second in terms of mortality. 
Surgery is the only curative modality for localized colon cancer. Colonoscopy is the 
most sensitive instrument for screening and detection of early-stage malignancies 
and premalignant polyps (adenomas). However, colonoscopy miss rates are about 
20% for adenomas [277].

Li et al. [163] identified the differences between colorectal normal and cancer 
tissues in five spectral bands in the regions around 815–830, 935–945, 1131–1141, 
1447–1457, and 1665–1675 cm−1. The strongest signals were observed at 1004 cm−1 
(C–C stretching ring breathing of phenylalanine), 1323 cm−1 (CH3CH2 twisting of 
proteins and nucleic acids), 1450 cm−1 (δ(CH2) of phospholipids and collagen), and 
1665 cm−1 (C=O stretching mode of amide I and lipids). It was shown that normal-
ized intensities of Raman bands in the ranges of 800–860 and 1580–1660 cm−1 were 
greater in normal tissue than in cancer tissue, while Raman signals at 1210–1400 cm−1 
increased in cancer tissue, which correlated with dysplasia progression. Raman 
peaks 1323  cm−1 became widened and intense in cancer tissue than in normal 
colorectal tissue, revealing the increase of nucleic acid contents in tumor cells. The 
Raman bands 1665–1675 cm−1 which are attributed to the amide I bands of protein 
in the α-helix conformation were increased in malignant tissue, suggesting that 
malignancy may be associated with an increase in the relative amounts of protein in 
the β-pleated sheet or random coil conformation. The authors stated the increase in 
the intensity of amide I band 1665–1675 cm−1 in malignant tissue is associated with 
the increase in relative amount of protein in the β-pleated sheet and significant 
decrease in the intensity of band 1131–1141 cm−1 (C–N stretching mode of pro-
teins, lipids) indicating relative reduction of lipid content in cancer tissue in accor-
dance with early micro-Raman investigations [278]. The diagnostic statistical model 
was built with the help of the ant colony optimization, and support vector machine 
provided a diagnostic accuracy of 93.2% for identifying colorectal cancer from nor-
mal tissue.

In a similar study Widjaja et  al. [279] investigated ex vivo 105 colonic tissue 
specimens from 59 patients (41 normal, 18 hyperplastic polyps, and 46 adenocarci-
nomas) using PCS-SVM diagnostic algorithm that utilized the entire Raman spec-
trum from 800 to 1800  cm−1. The Gaussian radial basis function kernel SVM 
algorithm was proven to be the best classifier for providing the highest diagnostic 
specificity 98.1–99.7% and 100% sensitivity for multiclass classification. Wood 
et al. [280] measured Raman spectra from a total of 356 colon biopsies (81 of nor-
mal colon mucosa, 79 of hyperplastic polyps, 92 of adenomatous polyps, 64 of 
adenocarcinoma, and 40 of ulcerative colitis) from 177 patients. Spectral classifica-
tion accuracies comparing pathology pairs ranged from 72.1 to 95.9% for 10-s 
acquisitions and from 61.5 to 95.1% for 1-s acquisitions, reflecting the improved 
signal-to-noise ratio with longer spectral acquisition times.
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Short et al. [155] and Li et al. [164] separately analyzed Raman spectra in regions 
from 1000 to 1800 cm−1 and from 2800 to 3800 cm−1 for ex vivo samples collected 
during endoscopic biopsy. It was shown that the peak intensity of C–H stretching 
vibration bands relating to the lipids (near 2958 cm−1, 2924 cm−1, and 2858 cm−1) 
decreased and even disappeared in the spectra of malignant tissues due to essential 
consumption of fat in carcinoma development. The entropy weight local-hyperplane 
k-nearest-neighbor classifier provided a sensitivity of 81.38% and a specificity of 
92.69% for differentiating cancer from colitis samples. Petersen et al. [166] per-
formed Raman fiber-optical measurements of 242 colon biopsy samples. The 
authors stated that better accuracy was achieved for leave-one-patient-out cross-
validation in comparison with leave-one- spectrum-out cross-validation schemes 
due to minimization of systematic errors. Cancer was differentiated from normal 
tissue with a sensitivity of 79%, specificity of 83%, and an accuracy of 81%. PCA-
LDA and PLS-DA discrimination models were compared on the same dataset of 
Raman spectra acquired in normal (n = 78) and cancerous (n = 81) colorectal tissues 
resulting in the preference of PLS-DA algorithm with LOOCV [170]. PLS-DA 
modeling yielded a diagnostic accuracy of 84.3% for colorectal cancer detection, 
while the accuracy of PCA-LDA classification was 79.2%.

Bergholt et al. [119] demonstrated that simultaneous Raman endoscopy in fin-
gerprint and high-wavenumber regions provided a diagnostic sensitivity of 90.9% 
and specificity of 83.3% for differentiating colorectal adenoma from hyperplastic 
polyps, which was superior to considering either region alone. It was found that 
adenomas were associated with significantly reduced Raman peak intensities at 
1078 cm–1 (C=C stretching), 1425 cm–1 (δ(CH2) scissoring), 2850 and 2885 cm−1 
(symmetric and asymmetric CH2 stretching), and 3009 cm–1 compared to hyperplas-
tic polyps pointing to a relative reduction in lipid content. An up-regulated protein 
content was largely indicated by the biomarkers at 1004  cm–1 (symmetric C–C 
stretching, ring breathing of phenylalanine) and band broadening of the 1655 cm–1 
(amide I C=O stretching mode of proteins). The peak-ratio of the asymmetric to 
symmetric OH stretching (defined as mean intensity ratio I3250/I3400) showed signifi-
cant differences, which represented the evidence of re-arrangements in hydrogen- 
bonded networks in epithelial cells caused by local interactions with macromolecules 
such as proteins [281]. The fingerprint range contains highly specific information 
about proteins, lipids, and DNA conformations. On the other hand, the HW tech-
nique contains information related to the CH2/CH3 stretching of lipids/proteins, as 
well as intense water bands reflecting the local conformation of water that are not 
contained in the FP range. The complementary properties of the FP and HW Raman 
spectral modalities for enhancing tissue diagnosis can partially be explained by 
back-tracking the misclassified spectra of each Raman modality.

Physiological differences between normal and tumorous tissues were investi-
gated in [282, 283] and colon tumor optical properties were investigated in [284, 
285]. In in vivo studies, Zonios et al. [282] showed that normal colorectal mucosa 
had a total hemoglobin concentration of 13.6 ± 8.8 mg/dL, whereas the correspond-
ing value for the adenomatous polyp was approximately 72.0 ± 29.2 mg/dL. The 
hemoglobin oxygen saturation was found to be 0.59  ±  0.08 and 0.63  ±  0.1, 
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respectively. The effective scattering size was found to be 0.94 ± 0.44 μm for polyps 
and 0.56 ± 0.18 μm for normal mucosa. It was found that the values for scatterer 
density are (9.2 ± 7.5) × 108 mm−3 and (3.5 ± 4.0) × 108 mm−3 for the normal mucosa 
and the adenomatous polyp, respectively. The mean oxygen saturation was deter-
mined by Knoefel et al. [283] as 37 ± 19, 46 ± 13, 45 ± 10, and 49 ± 15% for adeno-
carcinomas, adenomatous polyps, hyperplastic polyps, and normal mucosa, 
respectively. Colon tissue properties are presented in Table 1.7.

1.3.5  Cervical Cancer

With an estimated 570,000 cases and 311,000 deaths in 2018 worldwide, this dis-
ease ranks as the fourth most frequently diagnosed cancer and the fourth leading 
cause of cancer death in women [1]. Cervical cancer ranks second in incidence and 
mortality behind breast cancer; however, it is the most commonly diagnosed cancer 
in 28 countries and the leading cause of cancer death in 42 countries, the vast major-
ity of which are in Sub-Saharan Africa and South-Eastern Asia [1]. In 2001, Utzinger 
et al. [109] first demonstrated in vivo detection of squamous dysplasia, a precursor 
of cervical cancer, using Raman fiber-optic probe in 24 measurements in 13 patients. 
It was introduced simple algorithm of classification involving two intensity ratios 
I1454/I1556 and I1330/I1454, which were correspondently greater and lower for samples 
with squamous dysplasia than all other tissue types. By integrating analytical algo-
rithms with data collection, diagnostic accuracies as high as 88% were achieved 
[203]. Observed strong peaks at 1660 (amide I), 1450 (δ(CH2) deformation), and 
1340 cm−1 (DNA) of the Raman spectra were characteristic of a cervical tumor, 
which indicated increased DNA and protein while decreased peaks at 1280 and 
1240 cm−1 indicated collagenous proteins [197]. By considering the variations in 
the Raman spectra of normal cervix due to the hormonal or menopausal status of 

Table 1.7 The optical properties of colon tumor tissues measured in in vitro [284, 285]

Tissue
λ 
(nm) μa (cm−1) μs (cm−1) g

�s
�  

(cm−1) Remarks

Healthy colon 
tissue  
(n = 30)/colon 
carcinoma 
(n = 30)

850 0.8 ± 0.1/ 
0.4 ± 0.1

93.9 ± 22.5/ 
71.4 ± 12.2

0.93 ± 0.01/ 
0.92 ± 0.01

– ISS, IMC, 
in vitro; data 
from [284]980 0.7 ± 0.1/ 

0.5 ± 0.1
86.4 ± 21.1/ 
63.3 ± 12.0

0.92 ± 0.01/ 
0.92 ± 0.01

–

1060 0.3 ± 0.1/ 
0.2 ± 0.1

82.1 ± 20.7/ 
59.7 ± 12.5

0.92 ± 0.01/ 
0.92 ± 0.02

–

Colon 
adenocarcinoma 
CC 531 (n = 14)

632.8 1.4 ± 0.2 280 ± 20 0.946 ± 0.004 15.0 ± 2.0 ISS, IAD, 
in vitro; data 
from [285]

1064 2.5 ± 0.5 180 ± 10 0.952 ± 0.005 9.0 ± 1.0
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women, the diagnostic accuracy was improved from 88 to 94% [118, 286]. To fur-
ther increase the diagnostic accuracy, the authors also incorporated spectral varia-
tions linked to confounding factors, such as age, race, smoking habits, body mass 
index, and menopausal status in cervical Raman spectra [287].

Duraipandian et al. [198] reported an in vivo investigation on cervical precancer 
detection based on the measurement of 105 near-infrared Raman spectra from 57 
sites in vivo of 29 patients. The authors employed a genetic algorithm partial least- 
squares discriminant analysis (GA-PLS-DA-dCV) to identify seven significant 
bands associated with lipids, proteins, and nucleic acids in tissue 925–935  cm−1 
(CCH deformation mode of glycogen, C–C stretching mode of protein and colla-
gen), 979–999 cm−1 (phospholipids), 1080–1090 cm−1 (PO2

− symmetric stretching 
mode of nucleic acids and C–C stretching mode of phospholipids), 1240–1260 cm−1 
(amide III), 1320–1340  cm−1 (CH3CH2 wagging of nucleic acids and proteins), 
1400–1420 cm−1 (CH3 bending vibration of proteins), and 1625–1645 cm−1 (C=O 
stretching mode amide I, a-helix). It was achieved a diagnostic accuracy of 82.9% 
for differentiation of low- and high-grade precancerous lesions. The potential of 
high-wavenumber (2800–3700 cm−1) Raman spectroscopy for in vivo detection of 
cervical precancer has been investigated by Mo et al. [201]. Significant differences 
in CH2 stretching bands of lipids at 2850 and 2885 cm−1, CH3 stretching bands of 
proteins at 2940  cm−1, and the broad Raman band of water at 3400  cm−1 were 
observed in normal and dysplastic cervical tissue. A follow-up study by Duraipandian 
et al. [288] explored the advantages of using both the low- and high-wavenumber 
regions for in vivo detection of cervical precancer, acquiring 473 Raman spectra 
from 35 patients. Raman spectral differences between normal and dysplastic cervi-
cal tissue were observed at 854, 937, 1001, 1095, 1253, 1313, 1445, 1654, 2946, 
and 3400 cm−1, mainly related to proteins, lipids, glycogen, nucleic acids, and water 
content in the tissue. PLS-DA together with LOPOCV yielded the diagnostic sensi-
tivities of 84.2%, 76.7%, and 85.0%, respectively; specificities of 78.9%, 73.3%, 
and 81.7%, respectively; and overall diagnostic accuracies of 80.3%, 74.2%, and 
82.6%, respectively, using FP, HW, and integrated FP/HW Raman spectroscopic 
techniques for in vivo diagnosis of cervical precancer.

1.3.6  Prostate Cancer

Prostate cancer is among the most common cancers in men worldwide, with an 
incidence of 1,276,106 (7.1% of the total cases) and mortality rate of 358,989 (3.8% 
of the total cancer deaths) [1]. The diagnosis of prostate cancer is often made 
through transrectal ultrasound guided prostatic biopsy. Ten to twelve core biopsies 
are recommended [289]. When the diagnosis of prostate cancer is made, grading is 
used to describe the histologic appearance of the tumor cells. Prostate cancer is 
most commonly graded using the Gleason score (GS), which categorizes the degree 
of cancerous tissue as compared to normal prostate tissue.
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As Raman probes are suitable for use during endoscopic, laparoscopic, or open 
procedures they can be used for screening, biopsy, margin assessment, and monitor-
ing of prostate cancer treatment efficacy [290]. Patel and Martin [291] used Raman 
spectroscopy to characterize the transitional, central, and peripheral zones of nor-
mal prostates, revealing larger concentrations of DNA and RNA in the peripheral 
zone, as well as differences in the relative concentration of lipids and proteins 
between the three zones. Crow et al. [187, 292] and Stone et al. [123] showed the 
ability to differentiate prostate cancer into three categories (GS < 7, GS = 7, and GS 
> 7) and from benign prostatic hyperplasia with 89% accuracy from in vitro analysis 
of frozen biopsies. They found that the nucleus/cytoplasm (actin) ratio increased 
with malignancy, with malignant Raman spectra showing increased DNA concen-
tration. An increase in the relative concentration of choline and cholesterol was 
shown to be associated with malignancy, potentially representing increased cell 
membrane synthesis from increased proliferation and increased necrosis, 
respectively.

Devpura et al. [196] detected benign epithelia and adenocarcinoma, distinguish-
ing GS of 6, 7, and 8  in deparaffinized bulk tissues. The intensity of 782  cm−1, 
associated with DNA bases, increased with malignancy, as did the ratio of I726/I634. 
An intensity of 726 cm−1 correlated with DNA, and the intensity of 634 cm−1 was 
constant across all tissues, which again demonstrated a relative increase in DNA 
content with malignancy. Spectral variation by Gleason score was observed in the 
ranges 900–1000 and 1292–1352 cm−1. Adenocarcinoma was identified using PCA 
with 94% sensitivity and 82% specificity, and Gleason scores of 6, 7, and 8 were 
distinguished with 81% accuracy. PCA and SVM were used by Wang et al. [194] to 
classify the spectra of 50 patients into two groups according to their GS (≤7 and 
>7), achieving 88% sensitivity, specificity, and accuracy. In the experiments per-
formed with the 1064-nm laser, significant differences were found predominantly in 
the 1000–1450 cm−1 range [195]. Using SVM the prostate samples were classified 
into malignant and benign with 96% accuracy and prediction of their GSs with 95% 
accuracy. The specificity of the method was consistently high, with an average of 
98%. The sensitivity varied from 67 to 100%, with an average of 89%.

In 2018, Aubertin et al. [193] demonstrated availability of accurate diagnosis and 
grading of prostate cancer using handheld contact Raman fiber probe with the 
785 nm excitation laser. It was shown that the sensitivity and specificity of differen-
tiation of benign and cancerous tissues vary depending on GS from 76 to 90% and 
from 73 to 89%, respectively. Later, the same group enhanced the accuracy of pros-
tate cancer determination up to 91% by duel wavelength excitation (785 nm and 
671 nm) with simultaneous Raman spectra measurements in fingerprint and high- 
wavenumber regions and SVM classification model with leave-one-patient-out 
cross-validation procedure.

Optical properties of experimental prostate tumors in vivo were investigated in 
[293]. The authors measured absorption and reduced scattering coefficients of 
R3327-AT and R3327-H prostate tumors at 630 and 789  nm and found that the 
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absorption coefficient of the tumors was 0.9 ± 0.4 (630 nm) and 0.4 ± 0.2 (789 nm) 
for R3327-AT tumor, and 0.9 ± 0.4 (630 nm) and 0.5 ± 0.3 (789 nm) for R3327-H 
tumor. The reduced scattering coefficient of the tumors was 10.1 ± 3.5 (630 nm) and 
5.3 ± 1.4 (789 nm) for R3327-AT tumor, and 12.3 ± 3.2 (630 nm) and 6.7 ± 1.7 
(789 nm) for R3327-H tumor.

1.3.7  Bladder Cancer

Tumors of the genitourinary system account for almost one-fourth of malignancies 
[294]. Bladder cancer is the sixth most commonly occurring cancer in men and the 
17th most commonly occurring cancer in women. There were almost 550,000 new 
cases in 2018 and mortality was 199,922 (2.1% of the total cancer deaths) [1].

According to the clinical course, there are muscle-noninvasive (TIS, Ta, T1), 
muscle-invasive (T2–T4), and metastatic bladder cancer. Superficial and muscle- 
invasive tumors of the bladder in 90–95% are represented by urothelial carcinoma, 
but differ in molecular genetic, morphological, and immuno-histochemical charac-
teristics. Muscle-invasive bladder cancer (MIBC) is a potentially fatal disease, as 
patients die within 24 months without treatment. In 50% of patients with magnetic 
resonance imaging operated radically, relapse develops, which is associated with 
the morphological stage of development of the primary tumor and the state of the 
regional lymph nodes. The most common localization of metastases of urothelial 
cancer is regional lymph nodes (78%), liver (38%), lungs (36%), bones (27%), 
adrenal glands (21%), and intestines (13%), less often (1–8%) metastases develop 
in the heart, brain, kidneys, spleen, pancreas, meninges, uterus, ovaries, prostate 
[295, 296].

To reduce the mortality of patients with MIBC, the early detection of relapses 
and metastases in the pre- and postoperative periods is of leading importance. 
Metastasis in patients with bladder cancer most often affects the regional lymph 
nodes of the pelvis, the bifurcation area of the common iliac arteries, distant metas-
tases capture the bones, liver, and lungs [297]. After radical treatment in the first 
year, the probability of tumor recurrence reaches 10–67%, progression over 
5 years—0–55% [298].

The WHO 1973 grading system proposed by Mostofi et al. [299] differentiates 
papillary urothelial lesions into three grades: G1, G2, and G3 [300]. Tumors are 
graded according to the degree of cellular and architectural atypia. The lowest grade 
(G1) displays nearly no atypia, while the highest grade (G3) displays major atypia 
with major architectural disorders, such as loss of polarity or pseudostratification.

In 1997, a new multidisciplinary consensus meeting was held to revise terminol-
ogy and provide updated recommendations to the WHO on the pathology of urothe-
lial carcinomas. The WHO/International Society of Urological Pathology (ISUP) 
classification of 1998 distinguishes papilloma, papillary urothelial neoplasm of low 
malignant potential (PUNLMP), and low-grade (LG) and high-grade (HG) 
carcinomas.
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The WHO 2016 system is based on the WHO/ISUP 1998 classification and the 
WHO 2004 classification, which refined the criteria of WHO/ISUP 1998. According 
to the WHO 2016 system, pTa and pT1 tumors are graded into LG and HG and all 
detrusor muscle-invasive urothelial carcinomas are considered to be HG tumors. 
pTa tumors do not invade the lamina propria (no lymphovascular invasion and dis-
tant metastasis). However, pT1 tumors grow under the basement membrane into the 
lamina propria, and lymphovascular invasion and metastasis can be seen in these 
cases. In many instances pathologists identify pT1 tumors as HG tumors, indepen-
dently of their atypia [301, 302].

There are no reliable screening tests available for detecting bladder cancer; 
hence, the diagnosis is usually made based on clinical signs and symptoms. 
Microscopic or gross painless hematuria is the most common presentation and a 
hematuria investigation in an otherwise asymptomatic patient detects bladder neo-
plasm in roughly 20% of gross and 5% of microscopic cases [303, 304].

Currently, the definition of generally accepted criteria for the stage of bladder 
cancer, such as the depth of tumor invasion, the degree of differentiation of cells, the 
defeat of regional lymph nodes for prediction, does not always lead to a positive 
treatment outcome. This is also confirmed by the analysis of the long-term results of 
treatment of patients with the same diagnosed stage of bladder cancer. Some patients 
after organ-preserving surgery have a favorable outcome, while others relapse and 
tumor progression quickly develops [305].

Cystoscopy is an essential procedure for the diagnosis and treatment of bladder 
cancer, allowing for direct access to a tumor for biopsy, fulguration, and/or resec-
tion. Low-grade (LG), papillary (Ta) tumors can be reliably eradicated with one 
treatment but more advanced disease (high grade and/or T1) often requires repeat 
resection for complete eradication. Following an initial diagnosis of HG Ta or T1 
between 40% and 78% of re-TUR specimens can contain residual disease, with 
muscle invasion presented in 2% and 14%, respectively [306–309].

Carcinoma in situ (CIS) of the urinary bladder is extremely hard to diagnose. The 
symptoms are highly unspecific and the small, flat CIS lesions can easily be missed, 
thus remaining unseen in standard white light cystoscopy. Photodynamic diagnosis 
(PDD) is recommended by the European Association of Urology (EAU) as a diag-
nostic procedure in cases of suspected CIS [310]. PDD represents a great enhance-
ment in the urological diagnosis of CIS of the urinary bladder and is a superior 
method to standard white light cystoscopy in cases, where CIS is suspected [311].

The standard for diagnosis is cystoscopy, with biopsies of suspicious lesions, and 
transurethral resection to confirm the diagnosis [302]. Early in  vitro and ex  vivo 
studies demonstrated the potential of Raman spectroscopy to detect bladder tumors 
by increased DNA and cholesterol content and decreased collagen content [123,  
312, 313]. In 2005, Crow et al. [187] were the first research group to integrate a 
fiber-optic probe into Raman spectroscopy to differentiate between benign and 
malignant bladder tissue in vitro. In 2009, Grimbergen and colleagues [189] also 
investigated the potential of using Raman spectroscopy for bladder tissue diagnosis 
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during cystoscopy by examining 107 bladder tissue biopsies ex vivo using an endo-
scopic probe. Raman spectral measurements were obtained from fresh tissue sam-
ples immediately after surgery with an integration time of 2 s. Developed PCA-LDA 
model with a leave-one-out cross-validation distinguishes normal and malignant 
tissue with sensitivity and specificity of 78.5% and 78.9%, respectively.

In 2010, Draga et al. [190] were the first research group to investigate the use of 
Raman fiber-optic probe [189] for the diagnosis of bladder cancer in vivo. Raman 
spectra were obtained during transurethral resection of bladder tumor procedures on 
38 patients. Spectra were measured with a previously reported high-volume Raman 
probe [194] with a penetration depth of 2 mm for integration times of 1–5 s. The 
authors found a significant peak at 875 cm−1 in the spectra of normal bladder tissues, 
which could be assigned to hydroxyproline, an important molecular component of 
collagen. In addition, the cancer spectra also showed significant elevated peaks at 
the wavenumbers 1003, 1208, 1580, and 1601 cm−1 and 1208, 1548, and 1617 cm−1, 
which might be attributed to the amino acidsphenylalanine and tryptophan, respec-
tively. Bladder cancer spectra were significantly expressed by elevated intensities of 
the wavenumbers 680, 789, 1180, 1580, and 1610 cm−1 that were most likely due to 
nucleotide chains. However, the relative increase of lipid content in malignant 
mucosa in vivo was not ascertain in contradiction to the results of [192, 200], which 
could be explained by the influence of Raman spectra collected from deeper layers 
due to the use of the high-volume Raman probe. PCA-LDA and leave-one-out 
cross-validation were used to distinguish cancer from normal tissue, achieving a 
sensitivity of 85% and specificity of 79%.

And most recently, in 2012, Barman et al. [314] proposed the use of a confocal 
fiber-optic Raman probe to increase the specificity (in terms of tissue depth dis-
crimination) for bladder cancer diagnosis. The confocal probe was designed by 
placing a pinhole aperture into the high-volume probe to decrease the depth of field 
to 280 μm, thus suppressing the spectral information from surrounding regions and 
from deeper tissue layers beyond the region of interest. All spectra were prepro-
cessed and diagnostic algorithms were developed using PCA and logistic regression 
analysis along with a leave-one-out cross-validation. The high-volume probe pro-
duced a sensitivity of 85.7% and specificity of 85.7%, whereas the confocal probe 
had a sensitivity of 85.7% and specificity of 100%. The significant increase in speci-
ficity values of the confocal probe in comparison to the high-volume probe was 
associated with the smaller depth of field values, giving this particular device an 
advantage in the application of Raman probes for real-time in  vivo diagnosis of 
bladder pathology.

In 2018, Chen et al. [191] implemented a low-resolution fiber-optic Raman sens-
ing system for different bladder pathologies discrimination. With the help of a spe-
cially trained and cross-validated PCA-ANN classification model, an overall 
diagnostic accuracy of 93.1% was obtained for the determination of normal, low- 
grade, and high-grade bladder tissues.
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Bovenkamp et al. [188] demonstrated the applicability of RS-OCT for improved 
diagnosis, effective staging, and grading of bladder cancer by linking the comple-
mentary information provided by either modality. OCT well discriminated urothe-
lium, lamina propria, and muscularis layers, which specifically identify the 
pathological degeneration of the tissue. Raman spectroscopy determines the molec-
ular characteristics via point measurements at suspicious sites. It was shown that 
OCT differentiated healthy and malignant tissues with an accuracy of 71% in tumor 
staging and Raman spectroscopy yielded an accuracy of 93% in discriminating low- 
grade from high-grade lesions.

1.3.8  Stomach and Esophageal Cancer

Stomach cancer (cardia and noncardia gastric cancer combined) remains an important 
cancer worldwide and is responsible for over 1,000,000 new cases in 2018 and an 
estimated 783,000 deaths (equating to 1 in every 12 deaths globally), making it the 
fifth most frequently diagnosed cancer and the third leading cause of cancer death. 
Esophageal cancer is the eighth most frequent cancer with a worldwide incidence rate 
of more than 572,034 (3.2% of the total cases) and a mortality rate of 508,585 (5.3% 
of the total cancer deaths) [1]. By adapting Raman fiber-optic probe designs for endo-
scopic compatibility, in situ measurements of these disease targets have been enabled 
by many research groups (Table 1.3). In 2008, Teh et al. [181, 184] studied 73 gastric 
tissue samples from 53 patients and found that Raman peaks at 875 and 1745 cm−1 to 
be two of the most significant features to discriminate gastric cancer from normal tis-
sue. A sensitivity of 90% and specificity of 95% between cancerous and healthy tissue 
were reported. In a follow-up studies, it was demonstrated sensitivity of 94% and 
specificity of 96.3% for distinction of gastric dysplastic tissue with a help of narrow-
band image-guided Raman endoscopy associated with PCA-LDA model [182]; pre-
dictive accuracies were evaluated as 88, 92, and 94% for normal stomach and 
intestinal- and diffuse-type gastric adenocarcinomas, respectively [182]. Bergholt 
with co-authors performed in vivo studies for diagnostic gastric dysplasia in Barrett’s 
esophagus [315, 316], premalignant and malignant lesions in the upper gastrointesti-
nal tract [176], ulcers in the stomach [179], gastric dysplasia and neoplasia [167], 
intestinal metaplasia, Helicobacter pylori infection, and adenocarcinoma [177].

Gastric tissue Raman spectra contain a large contribution from triglyceride 
(major peaks at 1078, 1302, 1445, 1652, and 1745 cm−1) that reflects the interroga-
tion of subcutaneous fat in the gastric wall [167, 179]. Remarkable Raman spectral 
alterations are observed in the Raman peaks 875, 936, 1004, 1078, 1265, 1302, 
1335, 1445, 1618, 1652, and 1745 cm−1 between different tissue pathologies due to 
major pathological features such as upregulation of mitotic and proteomic activity, 
increase in DNA contents and relative reduction in lipid as well as the onset of 
angiogenesis leading to neovascularization in the tissue [169, 178]. It has been dem-
onstrated that the diagnostic capabilities can be optimized through the combination 
of near-infrared autofluorescence with Raman spectroscopy [178]. A total of 1098 
normal tissue samples and 140 cancer gastric tissue samples from 81 patients were 
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measured with a spectral acquisition time of 0.5 s. The differentiation between 
gastric cancer and normal tissue was achieved with a sensitivity of 97.9% and speci-
ficity of 91.5%. It was proposed and tested several probabilistic models for online 
in vivo diagnostics and pathology prediction: PLS-DA [168], PCA-LDA [178, 184], 
ACO-LDA [176], CART [181]. The PLS-DA modeling provided the predictive 
accuracy of 80.0% [168], suggesting that Raman endoscopy with the integration of 
online diagnostic framework could be a diagnostic screening tool for real-time 
in vivo gastric cancer identification.

It was demonstrated that the acquisition of both the fingerprint and the high- 
wavenumber regions of a Raman spectrum meaningfully enhanced the detection of 
esophageal neoplasia [175] and gastric intestinal metaplasia [176] in vivo in com-
parison with each region alone. A total of 157 patients were included. PCA-LDA 
model with the leave-one tissue site-out, cross-validation on in vivo tissue Raman 
spectra yielded the diagnostic sensitivities of 89.3%, 89.3%, and 75.0% and speci-
ficities of 92.2%, 84.4%, and 82.0%, respectively, by using the integrated FP/HW, 
FP, and HW Raman techniques for identifying intestinal metaplasia from normal 
gastric tissue. Wang et al. [174] achieved a diagnostic accuracy of 93.0% (sensitiv-
ity of 92.5%; specificity of 93.1%) for differentiating gastric dysplasia from normal 
gastric tissue by using the beveled fiber-optic Raman probe, which was superior to 
the diagnostic performance (accuracy of 88.4%; sensitivity of 85.8%; specificity of 
88.6%) by using the volume Raman probe.

Optical properties of stomach and esophagus, measured in the spectral range 
from 300 to 1140 nm in [317], are presented in Table 1.8. It is clearly visible that the 

Table 1.8 The optical properties of stomach/esophageal tumor tissues measured in vitro [317]

Tissue
λ 
(nm) μa (cm−1) μs (cm−1) g

�s
�  

(cm−1) Remarks

Stomach  
(healthy)/
adenocarcinoma 
(n = 21)

300 44.14/33.10 233.4/231.7 0.752/0.807 57.9/44.7 ISS; Kubelka–Munk;  
in vitro;  
data from [317]:  
for healthy  
stomach tissue
  μs = 2.632 × 104λ−0.829

  μs′ = 2.925 × 109λ−3.135  
+ 16.336λ−0.278  
and g = 0.801 + 0.147 
(1–exp(–(λ–330.724)/ 
106.543));  
for adenocarcinoma  
μs = 1.481 × 105λ−1.106

  μs′ = 1.503 × 109λ−3.044  
+ 17.073λ−0.273  
and g = 0.841 + 0.106 
(1–exp(–(λ–331.335)/ 
112.427));  
[λ] in nm

350 40.26/14.90 196.1/213.8 0.825/0.857 34.3/30.5

400 72.37/19.72 192.6/186.6 0.871/0.889 24.8/20.6

450 39.56/14.40 152.1/163.8 0.900/0.910 15.2/14.7

500 9.13/3.89 155.7/156.2 0.918/0.923 12.8/11.9

550 17.60/4.35 139.3/142.9 0.929/0.932 9.9/9.7

600 6.18/2.63 138.9/134.4 0.936/0.937 8.9/8.4

650 3.10/1.50 139.5/126.0 0.941/0.941 8.2/7.5

700 2.46/0.91 134.8/118.9 0.943/0.943 7.6/6.8

750 1.52/0.21 122.7/107.6 0.945/0.944 6.7/5.9

800 0.98/0.19 113.4/96.8 0.946/0.945 6.1/5.3

850 0.49/0.18 104.2/88.9 0.947/0.946 5.5/4.8

900 0.51/0.15 81.9/69.1 0.947/0.946 4.3/3.7

950 0.37/0.17 84.6/69.2 0.948/0.947 4.4/3.7

1000 0.27/0.10 82.3/66.0 0.948/0.947 4.3/3.5

1050 0.22/0.20 80.1/62.8 0.948/0.947 4.2/3.3

1100 0.19/0.27 76.8/60.3 0.948/0.947 4.0/3.2

1140 0.15/0.21 75.3/89.2 0.948/0.947 3.9/4.7

(continued)
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Esophagus 
(healthy)/
squamous cell 
carcinoma 
(n = 15)

300 37.22/36.53 224.5/229.3 0.811/0.827 42.5/39.7 ISS. Kubelka–Munk.  
In vitro;  
data from [317]:  
for healthy  
esophagus tissue
  μs = 8.131 × 104λ−1.021

  μs′ = 2.63 × 109λ−3.178  
+ 13.711λ−0.214 and  
g = 0.849 + 0.094 
(1–exp(–(λ–328.74)/84.581));  
for squamous cell 
carcinoma 
μs = 5.229 × 105λ−1.347

  μs′ = 1.521 × 109λ−3.098  
+ 15.494λ−0.229 and 
g = 0.86  
+ 0.061(1–exp(–(λ–329.851)/ 
69.083)); [λ] in nm

350 28.35/15.67 192.5/189.3 0.870/0.875 25.0/23.6

400 43.18/22.41 165.9/166.3 0.903/0.899 16.2/16.8

450 34.27/16.38 151.6/137.6 0.921/0.910 12.0/12.3

500 5.49/2.77 147.2/129.6 0.931/0.916 10.2/10.9

550 11.61/5.80 131.1/109.7 0.936/0.918 8.4/8.9

600 4.69/2.82 127.6/97.9 0.939/0.920 7.8/7.9

650 2.05/1.41 122.0/89.4 0.941/0.920 7.2/7.1

700 1.97/1.04 114.7/80.0 0.942/0.921 6.7/6.3

750 0.93/1.04 103.8/73.3 0.942/0.921 6.0/5.8

800 0.94/1.04 94.4/66.5 0.943/0.921 5.4/5.3

850 1.14/0.85 86.4/60.5 0.943/0.921 4.9/4.8

900 1.14/0.83 69.8/50.6 0.943/0.921 4.0/4.0

950 1.14/1.03 68.7/48.5 0.943/0.921 3.9/3.8

1000 0.86/1.04 66.1/46.6 0.943/0.921 3.8/3.7

1050 0.93/0.83 63.6/43.2 0.943/0.921 3.6/3.4

1100 1.14/1.04 60.5/40.4 0.943/0.921 3.4/3.2

1140 1.15/0.83 58.9/40.2 0.943/0.921 3.4/3.2

Table 1.8 (continued)

absorption of light in healthy tissues (both the stomach and the esophagus) pre-
dominates over absorption in tumor tissues (adenocarcinoma and squamous cell 
carcinoma). At the same time, scattering properties of these tissues are comparable 
across the entire wavelength range.

1.3.9  Oral Cancer

The global incidence rate for oral cancer is 354,864 (2.0% of the total cases) and 
mortality is 177,384 (1.9% of the total cancer deaths) [1]. These are mostly associ-
ated with tobacco and alcohol use, which affect the entire upper aerodigestive tract 
mucosa resulting in molecular changes that can progress further into carcinomas. 
The diagnoses of oral cancers are typically performed using a biopsy and histopa-
thology of the tissue [318]. The first in  vivo study of site wise variations in the 
human oral cavity was carried out by Guze et al. [319] in high-wavenumber region 
and by Bergholt et al. [320] in the fingerprint region. It was found that the Raman 
signal was not influenced by gender or ethnicity [319]; however, the inter- anatomical 
variability is significant and should be considered as an important parameter in the 
interpretation and rendering of Raman diagnostic algorithms for oral tissue 
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diagnosis and characterization [320]. Singh et al. [321, 322] reported the discrimi-
nation of normal control, premalignant, and cancerous sites with prediction accura-
cies ranging from 75 to 98% depending on oral cancer location in smoking and 
non-smoking population. Krishna et al. [211] investigated the classification between 
spectra acquired from multiple normal sites of 28 healthy volunteers and 171 
patients with oral lesions. Using probability- based multiclass diagnostic algorithm, 
each oral tissue type (squamous cell carcinoma, submucosa fibrosis, leukoplakia, 
and normal mucosa) was correctly classified in 89%, 85%, 82%, and 85% of the 
cases, respectively.

Sahu et al. [323] investigated the influence of anatomical differences between 
subsites on healthy vs pathological classification by examining Raman spectra 
acquired from 85 oral cancer and 72 healthy subjects. Mean spectra indicated pre-
dominance of lipids in healthy buccal mucosa, contribution of both lipids and pro-
teins in lip, while major dominance of protein was found in tongue spectra. From 
healthy to tumor, changes in protein secondary-structure, DNA, and heme-related 
features were observed. PC-LDA followed by LOOCV yielded an overall classifica-
tion of 98%, 54%, 29%, and 67% for healthy, contralateral normal, premalignant, 
and malignant conditions.

Amelink et al. [324] examined the physiological differences between normal and 
tumorous (squamous cell carcinoma) oral mucosa and stated that oxygen saturation 
was (95 ± 5)% for normal tissue and (81 ± 21)% for SCC; the vessel diameter was 
24 ± 14 μm for normal tissue and 25 ± 12 μm for SCC, and the blood volume frac-
tion was equal (1.0 ± 0.9)% for normal tissue and (2.2 ± 2.3)% for SCC.

1.3.10  Liver Cancer

The global incidence rate for liver cancer is 841,080 (4.7% of the total cases) and 
mortality is 781,631 (8.2% of the total cancer deaths) [1]. Surgical intervention is 
often indicated as a potential treatment for liver cancers identified at early stages. 
The liver’s highly specialized tissues regulate a wide variety of high-volume bio-
chemical reactions and are characterized by strong background autofluorescence 
that overwhelms the Raman scattered signal in fingerprint region. For Raman 
excitation laser with wavelength 785 nm the feasibility of recovering the spectral 
signature from bulk liver specimens with sufficient signal-to-noise ratios for inter-
pretation was achieved only from high-wavenumber regions [325]. Therefore, 
most of the investigations with liver malignancy were conducted in cell lines and 
thin slices of tissue, where the use of confocal collection geometry reduced auto-
fluorescence [186, 326]. For example, Tolstic et  al. [186] reported the precise 
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multivariate PCA- SVM separation of two types of hepatocellular carcinoma cells 
by the recognition of spectral pattern with peak intensities at 2900–2850, 1655, 
1440, 1304, 1266, and 1060 cm−1. The results confirmed that a lot of molecular 
differences were hidden in lipids and associated with specific wavenumbers of 
unsaturated fatty acids.

Pence at al. [132] reported the use of a dispersive 1064 nm Raman system using 
a low-noise indium-gallium-arsenide (InGaAs) array to discriminate highly auto-
fluorescent bulk tissue ex vivo specimens from healthy liver, adenocarcinoma, and 
hepatocellular carcinoma. The resulting spectra were combined with a multivariate 
discrimination algorithm, sparse multinomial logistic regression (SMLR), to predict 
class membership of healthy and diseased tissues, and spectral bands selected for 
robust classification were extracted. These spectral bands included retinol, heme, 
biliverdin, or quinones (1595 cm−1); lactic acid (838 cm−1); collagen (873 cm−1); 
and nucleic acids (1485 cm−1). It was achieved 100% sensitivity and 89% specificity 
for normal versus tumor classification.

Cholangiocarcinoma (СС) is a group of malignant tumors originating from bile 
duct epithelium. According to WHO classification [327] the term cholangiocarci-
noma is reserved for carcinomas arising in the intrahepatic bile ducts. The prognosis 
of this malignancy is dismal owing to its silent clinical character, difficulties in early 
diagnosis, and limited therapeutic approaches.

CC is the most common malignant tumor of the biliary tract found in the bile 
duct epithelial cells and the second most common primary tumor of the liver 
[328]. Depending on anatomical localization, CC is classified as intrahepatic СC 
or extrahepatic CC, including perihilar CC and distal CC. The Bismuth–Corlette 
classification provides preoperative assessment of local spread. The anatomic 
margins for distinguishing intra- and extrahepatic CCs are the second-order bile 
ducts [329].

The Liver Cancer Study Group of Japan proposed in 2000 a new classification 
based on growth (morphologic) characteristics being identified as mass forming, 
periductal-infiltrating, and intraductal-growing types [330].

Intrahepatic СC is a primary liver malignancy arising from the epithelial cells of 
the distal branch intrahepatic bile duct [331]. The incidence of intrahepatic СC 
exhibits wide geographical variation and generally accounts for between 5 and 30% 
of primary liver cancers [332–334]. Approximately 67% of CCs are perihilar.

Distal CCs are those that arise in the mid or distal bile duct. They are potentially 
amenable to pancreaticoduodenectomy.

The Classification of Malignant Tumors (TNM) of the American Joint Committee 
on Cancer and the International Union Against Cancer applies to all primary carci-
nomas of the liver, including hepatocellular carcinomas, intrahepatic bile duct car-
cinomas, and mixed tumors [335].

Hilar CC arises from the extrahepatic bile ducts (right and left hepatic ducts at or 
near their junction) and is considered an extrahepatic carcinoma [336].
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In most peripheral CCs, hard, compact, and grayish-white massive or nodular 
lesions are found in the liver. They may grow inside the dilated bile duct lumen or 
show an infiltrative growth along the portal pedicle. Usually the tumors are not big 
compared to the whole liver. Hemorrhage and necrosis are infrequent, and the asso-
ciation with cirrhosis is only occasional. Tumor located just beneath the capsule of 
the liver shows umbilication, as in metastatic liver cancer.

In most hilar CCs, the tumor infiltrates and proliferates along the extrahepatic 
bile duct, which is thickened in most cases. Mass formation can be minimal and 
there can be thickening and enlargement of the portal region. The infiltration in the 
liver has an arborescent appearance. Extensive parenchymal infiltration is also 
observed in most cases [337].

Currently, surgical resection remains the most effective treatment for intrahe-
patic СC [338]. The prognosis for patients with this disease remains disappointing 
despite advances in the operative and nonoperative management [339]. A positive 
bile duct resection margin is correlated with higher local recurrence rate and poor 
prognosis and its role is similar to a positive lymph node [340].

However, because of vague symptomatic presentation, most patients are at an 
advanced stage by the time of diagnosis, and only nearly one-third of patients are 
eligible for surgical resection [341]. As a result, the overall outcome of intrahepatic 
СC remains extremely poor, in which patients who are unable to undergo surgical 
resection have a less than 10% survival rate at 5 years. Moreover, the reported out-
come after hepatic resection is also not optimistic, with a 5-year survival rate of 
30–35% [342].

The principal reason for the dismal outcome of surgical treatment is the high 
incidence of postoperative intrahepatic СC recurrence, in which more than 60% of 
patients can subsequently develop cancer recurrence after hepatic resection.

The earliest description of CC of bile ducts without palpable surface liver mass 
on laparotomy was described by Sanford in 1952 [343]. Tsushimi et al. hypothe-
sized that CC arising within bile ducts was from ectopic liver tissue [344].

1.3.11  Thyroid Cancer

Thyroid cancer is responsible for 567,000 cases worldwide, ranking in ninth place 
for incidence. The global incidence rate in women of 10.2 per 100,000 is three 
times higher than in men; the disease represents 5.1% of the total estimated female 
cancer burden, or 1 in 20 cancer diagnoses in 2018 [1]. The diagnosis is commonly 
based on clinical perceptions and ultrasonography-guided fine needle aspiration, 
often presenting inconclusive results, which can indicate surgery as the main treat-
ment for these cases. Therefore, the need to biochemically characterize the thyroid 
gland during surgery is extremely important. Raman spectroscopy may greatly 
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speed up the diagnostic process whether pre-operatively or in the theater setting. 
The applicability of Raman spectroscopy for thyroid cancer diagnostics was con-
firmed in cell line studies [215, 216, 345]. In 2009, Harris et al. [215] reported the 
accuracy of 95% for identification of cancerous cell lines using neural network 
analysis. O’Dea et al. [216] demonstrated the possibility to correctly classify cell 
lines representing benign thyroid cells and various subtypes of thyroid cancer. 
Spectral differences were consistently observed between the benign and cancerous 
cell lines with the strongest signals occurring at ~470, ~780, 855, 941, ~1230, 
1278, 1343, 1402, 1436, 1456, 1571, 1650, 1690, and 1677  cm−1, representing 
significant differences in the molecular composition of carbohydrates, nucleic 
acids, lipids, protein structures, and amides. A PC-LDA model was applied to 
examine the possibility of correct classification of various subtypes of thyroid can-
cer. The well-differentiated papillary and follicular thyroid carcinoma cell lines 
were detected with sensitivities >90% and specificities >80%, although the model 
yielded lower performance scores for identifying the undifferentiated thyroid car-
cinoma cell lines (sensitivities of 77% and specificities of 73%). Rau et al. [217] 
demonstrated ex vivo the significant presence of carotenoids in papillary thyroid 
carcinoma with respect to the healthy tissue. The authors stated the sensitivity of 
93% and specificity 100% in discrimination of papillary and follicular thyroid car-
cinoma using combined fingerprint and high-wavenumber regions of Raman spec-
tra and PC-LDA statistical model with leave-one-out cross-validation. In 2019, 
Medeiros-Neto et al. [346] compared in vivo and ex vivo spectra of papillary carci-
nomas, confirming the efficacy of the technique in the biochemical identification of 
the analyzed tissue. The intense peaks related to an increased amount of DNA were 
registered at 1017, 991, 829, and 810 cm−1 (in vivo samples) and at 1421, 1324, 
828, 810 cm−1 (ex vivo samples). The amino acid tyrosine, a very important metab-
olite for the proper functioning of the thyroid gland, was evidenced by the peaks at 
1205, 863, 854 cm−1 (in vivo) and at 1605, 1206, 863, 853, and 828 cm−1 (ex vivo). 
The phenylalanine, produced from the hydroxylation process and essential for the 
thyroid, was observed at the peak situated at 1174 cm−1 (in vivo), and at 1174 and 
1103 cm−1 (ex vivo), proving the increase in protein concentration in carcinogenic 
tissues. Another important observed amino acid was tryptophan, at 1366 and 
877 cm−1 (in vivo), and at 1556, 1360, and 878 cm−1 (ex vivo). This amino acid is 
important because it participates in the production of the hormones serotonin and 
melatonin and of the enzyme tryptamine, which are tumor growth inhibitory 
substances.

1.3.12  Brain Cancer

The global incidence rate for brain cancer is 296,851 (1.6% of the total cases) and 
mortality is 241,037 (2.5% of the total cancer deaths) [1]. Raman spectroscopy is 
a potential modality that can identify the margins of the tumor intraoperatively. 
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For example, Kalkanis et  al. [347, 348] demonstrated identification of normal 
gray matter and white matter from pathologic glioblastoma and necrosis in frozen 
brain tissue sections by imaging of relative concentrations of 1004, 1300, 1344, 
and 1660 cm−1, which correspond primarily to protein and lipid content. Leslie 
et al. [349] investigate the application of Raman spectroscopy to diagnose pediat-
ric brain tumors acquiring Raman spectra from fresh tissue samples. Support vec-
tor machine analysis was used to classify spectra using the pathology diagnosis as 
a gold standard. Normal brain (321 spectra), glioma (246 spectra), and medullo-
blastoma (82 spectra) were identified with 96.9, 96.7, and 93.9% accuracy, respec-
tively. Jermyn et al. [350] demonstrated that a handheld Raman probe could detect 
cancer cells intraoperatively that could not be detected by T1-contrast-enhanced 
and T2-weighted MRI. The gliomas were detected with 93% sensitivity and 91% 
specificity using supervised machine learning boosted-trees classification algo-
rithm that utilized all spectral data. Recently, the same research group demon-
strated the increase in accuracy of brain cancer detection by multimodal optical 
system from 91% for standalone RS to 97% when combined with fluorescence 
analysis [319].

Desrochers et al. [218] tested the use of high-wavenumber Raman spectros-
copy in a practical fiber-optic probe that satisfied the stringent miniaturization 
constraints required for direct integration with a commercial brain biopsy needle. 
As it was expected, in comparison with gray matter, the white matter spectrum 
demonstrated larger contributions from lipids (2845 cm−1) and a lower contribu-
tion from proteins and nucleic acids (2930 cm−1) in comparison with gray matter. 
These data demonstrated an increase in the protein/lipid ratio for dense cancer 
compared to normal brain samples, consistent with findings [351] in brain ex vivo 
samples. However, when compared with that of normal brain, the protein/lipid 
ratio in infiltrated samples did not show significant differences. The authors 
showed that HW Raman spectroscopy could detect human dense cancer with 
>60% cancer cells in situ during surgery with a sensitivity and specificity of 80% 
and 90%, respectively.

Optical properties of brain tumors were studied in [41, 43, 77, 352–355] and 
summary of those investigations is presented in Table 1.9. Genina et al. [41] mea-
sured absorption, scattering, reduced scattering coefficients, and scattering anisot-
ropy factor of brain tissues in a wide spectral range from 350 to 1800  nm (see 
Table 1.9) for healthy rats and rats with model C6 glioblastoma. Glioblastoma mul-
tiforme (GBM) is the most common and aggressive form among all brain tumors 
(grade IV WHO). The development of the glioblastoma is accompanied by the fol-
lowing main symptoms: headaches, dysfunction of memory and general brain func-
tion, visual impairment, poor speech, impaired sensitivity and motor activity, 
pathological changes in behavior, loss of appetite, etc.

Gebhart et al. [43] investigated human glioma optical properties using integrating 
sphere technique and inverse adding-doubling method in the spectral range 
400–1300 nm. Astrocytoma of optic nerve and medulloblastoma were investigated 
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Table 1.9 The optical properties of brain tumor tissues measured in in vitro [41, 43, 77, 352–355]

Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�  (cm−1) Remarks

Healthy brain 
tissue (n = 12)

350 1.95 ± 0.93 413.1 ± 69.6 0.767 ± 0.038 95.8 ± 18.8 ISS; IMC; in vitro;  
data from [41]
  μs = 1.165 × 105λ−1.178  

+ 345.365λ−0.024

  μs′ = 1.177 × 105λ−1.147  
+ 48.742λ−0.308 and  
g = 0.739+0.215 
(1–exp(–(λ–505.34)/ 
705.497)); [λ] in nm

400 1.80 ± 0.85 400.5 ± 67.3 0.771 ± 0.038 91.6 ± 17.6

450 1.31 ± 0.62 384.9 ± 64.6 0.765 ± 0.038 90.4 ± 17.8

500 0.80 ± 0.38 371.7 ± 61.4 0.737 ± 0.036 97.4 ± 19.4

550 0.93 ± 0.44 366.0 ± 60.9 0.766 ± 0.038 85.4 ± 17.0

600 0.78 ± 0.37 357.5 ± 58.9 0.766 ± 0.038 83.3 ± 16.5

650 0.69 ± 0.33 351.1 ± 57.2 0.770 ± 0.038 80.4 ± 15.9

700 0.70 ± 0.33 346.0 ± 55.5 0.784 ± 0.039 74.5 ± 14.7

750 0.73 ± 0.34 341.7 ± 54.1 0.797 ± 0.039 69.3 ± 13.7

800 0.75 ± 0.35 337.9 ± 52.9 0.810 ± 0.040 64.1 ± 12.6

850 0.76 ± 0.36 335.4 ± 52.4 0.819 ± 0.041 60.4 ± 11.8

900 0.77 ± 0.36 331.5 ± 52.1 0.829 ± 0.041 56.5 ± 10.9

950 0.79 ± 0.37 328.4 ± 51.5 0.840 ± 0.042 52.2 ± 10.0

1000 0.78 ± 0.37 326.2 ± 51.4 0.850 ± 0.042 48.8 ± 9.3

1050 0.76 ± 0.36 324.1 ± 51.3 0.856 ± 0.042 46.5 ± 8.8

1100 0.75 ± 0.35 322.1 ± 51.3 0.863 ± 0.043 44.0 ± 8.3

1150 0.80 ± 0.38 320.0 ± 51.2 0.871 ± 0.043 41.0 ± 7.7

1200 0.83 ± 0.39 318.1 ± 51.2 0.878 ± 0.043 38.6 ± 7.3

1250 0.79 ± 0.37 316.5 ± 51.1 0.882 ± 0.044 37.1 ± 7.0

1300 0.79 ± 0.37 315.0 ± 51.2 0.887 ± 0.044 35.4 ± 6.7

1350 0.91 ± 0.43 313.1 ± 51.1 0.893 ± 0.044 33.2 ± 6.3

1400 1.63 ± 0.83 313.3 ± 51.4 0.891 ± 0.044 33.9 ± 6.8

1450 2.44 ± 1.32 314.6 ± 51.9 0.881 ± 0.044 37.1 ± 7.8

1500 1.96 ± 1.03 311.3 ± 51.5 0.892 ± 0.044 33.4 ± 6.8

1550 1.41 ± 0.70 308.8 ± 51.2 0.903 ± 0.045 29.7 ± 5.8

1600 1.13 ± 0.55 307.6 ± 51.3 0.908 ± 0.045 28.1 ± 5.5

1650 1.01 ± 0.49 306.9 ± 51.5 0.911 ± 0.045 27.1 ± 5.2

1700 1.03 ± 0.50 306.4 ± 51.5 0.913 ± 0.045 26.4 ± 5.1

1750 1.13 ± 0.56 305.7 ± 51.5 0.914 ± 0.045 26.1 ± 5.1

1800 1.17 ± 0.8 305.4 ± 51.5 0.914 ± 0.045 26.2 ± 5.1

(continued)
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Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�  (cm−1) Remarks

7-day C6-glioma 
(n = 6)

350 5.58 ± 1.58 164.3 ± 61.2 0.524 ± 0.120 78.2 ± 15.3 ISS; IMC; in vitro;  
data from [41]
  μs = 2.235 × 105λ−1.16  

+ 41.77λ−0.209

  μs′ = 7.449 × 105λ−1.59  
+ 185.056λ−0.446 and  
g = 0.521+0.255 
(1–exp(–(λ–368.293)/ 
167.548)); [λ] in nm

400 5.21 ± 1.59 157.6 ± 53.2 0.571 ± 0.104 67.5 ± 14.8

450 4.17 ± 1.31 154.3 ± 46.2 0.610 ± 0.098 60.1 ± 14.6

500 3.08 ± 1.03 152.5 ± 39.2 0.638 ± 0.096 55.1 ± 14.7

550 3.18 ± 1.08 148.3 ± 37.1 0.686 ± 0.087 46.5 ± 12.9

600 2.88 ± 0.99 142.2 ± 32.9 0.709 ± 0.080 41.3 ± 11.6

650 2.68 ± 0.94 135.4 ± 28.2 0.729 ± 0.072 36.7 ± 10.4

700 2.62 ± 0.92 129.5 ± 23.5 0.748 ± 0.062 32.6 ± 9.1

750 2.61 ± 0.90 123.4 ± 19.6 0.762 ± 0.055 29.2 ± 8.0

800 2.63 ± 0.88 117.4 ± 16.5 0.773 ± 0.049 26.5 ± 7.0

850 2.63 ± 0.87 109.1 ± 13.6 0.777 ± 0.045 24.2 ± 6.3

900 2.57 ± 0.81 101.5 ± 12.8 0.779 ± 0.043 22.3 ± 5.5

950 2.53 ± 0.76 94.6 ± 11.6 0.781 ± 0.040 20.6 ± 4.9

1000 2.49 ± 0.75 87.9 ± 23.8 0.777 ± 0.040 19.5 ± 4.5

1050 2.39 ± 0.73 81.9 ± 21.9 0.774 ± 0.040 18.4 ± 4.1

1100 2.33 ± 0.72 76.7 ± 20.4 0.772 ± 0.040 17.4 ± 3.9

1150 2.33 ± 0.71 72.0 ± 18.9 0.767 ± 0.040 16.7 ± 3.6

1200 2.29 ± 0.71 67.9 ± 17.6 0.764 ± 0.039 16.0 ± 3.3

1250 2.19 ± 0.69 64.0 ± 16.4 0.761 ± 0.039 15.2 ± 3.1

1300 2.13 ± 0.68 60.5 ± 15.4 0.757 ± 0.039 14.6 ± 3.0

1350 2.25 ± 0.69 57.6 ± 14.6 0.750 ± 0.039 14.3 ± 2.7

1400 3.55 ± 0.69 58.4 ± 14.0 0.703 ± 0.041 17.3 ± 2.7

1450 5.04 ± 0.76 60.1 ± 14.6 0.649 ± 0.043 21.0 ± 2.8

1500 4.08 ± 0.71 54.8 ± 13.4 0.675 ± 0.042 17.8 ± 2.5

1550 2.97 ± 0.67 50.2 ± 12.2 0.707 ± 0.040 14.6 ± 2.3

1600 2.41 ± 0.67 47.2 ± 11.7 0.719 ± 0.041 13.2 ± 2.2

1650 2.16 ± 0.65 44.9 ± 11.4 0.720 ± 0.041 12.5 ± 2.2

1700 2.15 ± 0.64 43.8 ± 11.4 0.717 ± 0.042 12.3 ± 2.1

1750 2.30 ± 0.64 43.3 ± 11.3 0.709 ± 0.041 12.5 ± 2.0

1800 2.40 ± 0.60 42.6 ± 11.1 0.701 ± 0.040 12.7 ± 1.8

Table 1.9 (continued)
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Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�  (cm−1) Remarks

10-day C6-glioma 
(n = 5)

350 8.76 ± 1.94 253.5 ± 21.8 0.522 ± 0.080 121.0 ± 18.0 ISS; IMC; in vitro;  
data from [41]
  μs = 9267 × 103λ−0.702  

+ 246.785λ−0.09

  μs′ = 3.328 × 105λ−1.349  
+ 60λ−0.385 and  
g = 0.514+0.371(1–
exp(–(λ–355.468) 
/289.003)); [λ] in nm

400 8.22 ± 2.04 250.3 ± 23.0 0.566 ± 0.083 108.4 ± 18.0

450 6.55 ± 1.26 249.4 ± 24.4 0.617 ± 0.074 95.3 ± 18.3

500 4.85 ± 0.63 253.0 ± 26.1 0.656 ± 0.067 86.8 ± 19.7

550 5.15 ± 0.74 246.8 ± 25.8 0.698 ± 0.058 74.4 ± 17.2

600 4.61 ± 0.56 240.6 ± 27.6 0.723 ± 0.055 66.5 ± 16.3

650 4.27 ± 0.44 235.6 ± 29.1 0.748 ± 0.053 59.2 ± 14.9

700 4.19 ± 0.44 231.8 ± 30.6 0.772 ± 0.053 52.7 ± 13.3

750 4.19 ± 0.44 228.1 ± 32.3 0.792 ± 0.052 47.4 ± 11.8

800 4.22 ± 0.45 224.4 ± 32.7 0.807 ± 0.053 43.1 ± 10.5

850 4.22 ± 0.50 220.5 ± 31.0 0.820 ± 0.053 39.5 ± 9.2

900 4.19 ± 0.47 215.0 ± 29.6 0.829 ± 0.055 36.6 ± 8.1

950 4.17 ± 0.48 210.3 ± 28.8 0.837 ± 0.056 34.1 ± 7.0

1000 4.11 ± 0.50 206.1 ± 27.9 0.843 ± 0.056 32.1 ± 6.5

1050 4.00 ± 0.50 202.2 ± 27.0 0.849 ± 0.058 30.4 ± 6.1

1100 3.93 ± 0.50 198.7 ± 26.0 0.854 ± 0.059 28.8 ± 5.7

1150 3.96 ± 0.53 195.4 ± 24.9 0.858 ± 0.060 27.6 ± 5.4

1200 3.93 ± 0.54 192.5 ± 24.0 0.862 ± 0.061 26.4 ± 5.1

1250 3.78 ± 0.54 189.8 ± 23.1 0.867 ± 0.062 25.2 ± 4.8

1300 3.71 ± 0.54 187.4 ± 22.2 0.870 ± 0.062 24.2 ± 4.5

1350 3.92 ± 0.61 185.0 ± 21.7 0.871 ± 0.063 23.7 ± 4.3

1400 5.78 ± 0.96 185.5 ± 20.6 0.850 ± 0.062 27.7 ± 4.8

1450 7.96 ± 1.38 186.9 ± 18.6 0.821 ± 0.061 33.3 ± 5.7

1500 6.55 ± 1.12 182.7 ± 18.1 0.843 ± 0.063 28.6 ± 4.9

1550 4.97 ± 0.86 179.3 ± 18.5 0.866 ± 0.064 23.9 ± 4.1

1600 4.19 ± 0.72 177.3 ± 18.3 0.877 ± 0.064 21.7 ± 3.7

1650 3.83 ± 0.68 175.8 ± 17.8 0.882 ± 0.065 20.6 ± 3.4

1700 3.89 ± 0.67 175.1 ± 17.4 0.883 ± 0.066 20.4 ± 3.5

1750 4.08 ± 0.74 174.5 ± 17.3 0.881 ± 0.065 20.7 ± 3.4

1800 4.16 ± 0.76 174.0 ± 16.8 0.880 ± 0.065 20.8 ± 3.3
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Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�  (cm−1) Remarks

30-day C6-glioma 
(n = 1)

350 6.21 278.3 0.607 82.5 ISS; IMC; in vitro;  
data from [41]
  μs = 2.413 × 105λ−1.104  

+ 27.561λ−0.038

  μs′ = 3.82 × 106λ−1.89  
+ 251.221λ−0.438 and  
g = 0.596+0.231(1–exp 
(–(λ–362.975)/128.855));  
[λ] in nm

400 5.60 249.4 0.643 67.2

450 4.71 241.3 0.694 55.7

500 3.67 243.2 0.739 47.8

550 3.67 238.6 0.776 40.3

600 3.41 232.6 0.801 34.9

650 3.24 221.1 0.814 30.9

700 3.18 206.9 0.822 27.7

750 3.17 192.7 0.825 25.3

800 3.20 178.6 0.825 23.5

850 3.19 168.1 0.825 22.1

900 3.10 157.2 0.826 20.6

950 3.05 149.0 0.826 19.5

1000 2.96 141.7 0.825 18.7

1050 2.83 133.3 0.823 17.7

1100 2.71 127.3 0.822 17.1

1150 2.70 121.3 0.820 16.5

1200 2.65 116.4 0.818 16.0

1250 2.51 110.4 0.816 15.2

1300 2.41 106.0 0.814 14.8

1350 2.58 102.6 0.798 14.8

1400 4.49 104.8 0.754 19.2

1450 6.65 109.1 0.719 25.3

1500 5.23 101.2 0.729 20.7

1550 3.56 93.1 0.762 16.4

1600 2.83 88.3 0.783 14.2

1650 2.46 85.6 0.791 13.4

1700 2.40 84.4 0.792 13.2

1750 2.60 83.3 0.790 13.5

1800 2.76 82.5 0.789 13.9

Glioma (n = 39) 400 21.50 – – 38.0 ISS; IAD; in vitro;  
data from [43]
  μs′ = 2.25 × 107λ−2.279  

+ 266.6λ−0.495; [λ] in 
nm

500 4.08 – – 28.1

600 2.35 – – 22.7

700 1.42 – – 18.3

800 1.34 – – 15.5

900 1.39 – – 14.4

1000 1.88 – – 11.2

1100 1.70 – – 10.0

1200 2.85 – – 8.9

1300 2.62 – – 8.8

Table 1.9 (continued)
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Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�  (cm−1) Remarks

Astrocytoma of 
optic nerve (n = 1)

674 1.4 ± 0.3 – – 12.5 ± 1.0 Spatially resolved diffuse 
reflectance; in vivo; 
human; data from [77]

811 1.2 ± 0.3 – – 9.5 ± 1.0

849 0.9 ± 0.3 – – 7.6 ± 1.0

956 1.5 ± 0.3 – – 7.3 ± 1.0

Medulloblastoma 
(n = 1)

674 2.6 ± 0.5 – – 14.0 ± 1.0 Spatially resolved diffuse 
reflectance; in vivo; 
human; data from [77]

849 1.0 ± 0.2 – – 10.7 ± 1.0

956 0.75 ± 0.2 – – 4.0 ± 1.0

Human 
glioblastoma  
(n = 14)

350 12.25 – – 54.9 IS; IMC; in vitro; μs′ = 
1.514 × 104λ-0.948; [λ] 
in nm; data from [352]

400 13.68 – – 49.4

450 7.63 – – 44.9

500 4.10 – – 42.3

550 4.49 – – 38.9

600 2.80 – – 36.9

650 1.79 – – 35.5

700 1.46 – – 32.6

750 1.20 – – 29.2

800 1.02 – – 26.4

850 0.95 – – 24.5

900 0.86 – – 23.1

950 0.94 – – 21.9

1000 0.97 – – 21.1

Human 
meningioma (n = 
9)

350 11.17 – – 43.9 ISS; IMC; in vitro
μs′ = 2.098 × 105λ−1.448;  
[λ] in nm; data from 
[352]

400 12.18 – – 36.9

450 8.15 – – 30.7

500 4.38 – – 25.4

550 4.93 – – 22.0

600 2.95 – – 20.1

650 2.09 – – 17.2

700 1.76 – – 15.9

750 1.42 – – 13.6

800 1.20 – – 12.8

850 1.06 – – 12.3

900 0.86 – – 11.1

950 0.93 – – 10.8

1000 0.95 – – 9.7
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Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�  (cm−1) Remarks

Human 
oligodendroglioma  
(n = 3)

350 11.31 – – 23.1 ISS; IMC; in vitro;  
data from [352]
  μs′ = 7.147 × 103λ−0.981;  

[λ] in nm

400 16.17 – – 18.9

450 9.93 – – 17.9

500 5.48 – – 16.1

550 8.21 – – 14.7

600 2.68 – – 14.1

650 1.85 – – 13.2

700 1.63 – – 11.8

750 1.43 – – 10.7

800 1.37 – – 9.9

850 1.34 – – 9.7

900 1.26 – – 9.0

950 1.38 – – 8.2-

1000 1.38 – – 8.2

Human metastasis 
(n = 6)

350 22.99 – – 76.9 ISS; IMC; in vitro;  
data from [352]
  μs′ = 8.367 × 103λ−0.79;  

[λ] in nm

400 25.40 – – 71.3

450 18.46 – – 63.9

500 12.23 – – 60.1

550 12.83 – – 60.8

600 7.43 – – 57.4

650 3.81 – – 53.1

700 2.86 – – 49.6

750 2.52 – – 45.0

800 2.15 – – 41.9

850 2.08 – – 39.2

900 2.03 – – 38.2

950 2.11 – – 36.1

1000 1.94 – – 33.6
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Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�  (cm−1) Remarks

Human low-grade 
glioma 
(astrocytoma 
WHO grade II)

350 17.25 230.9 0.679 74.1 ISS; IMC; in vitro;  
data from [353]
  μs = 5.337 × 104λ−0.931

  μs′ = 3.204 × 1014λ−5  
+ 10.894λ−0.258;  
g = 0.719+0.247(1–exp 
(–(λ–353.984)/67.287));  
[λ] in nm

400 15.31 204.6 0.867 27.3

450 6.85 182.8 0.909 16.7

500 3.86 164.1 0.932 11.1

550 4.12 149.4 0.938 9.2

600 3.52 140.1 0.958 5.8

650 2.37 123.8 0.958 5.2

700 2.01 120.8 0.964 4.3

750 2.07 110.5 0.964 3.9

800 1.72 102.3 0.968 3.2

850 1.88 100.2 0.968 3.2

900 1.90 96.5 0.967 3.1

950 2.06 90.1 0.966 3.1

1000 1.98 89.3 0.966 2.9

1050 1.85 82.0 0.967 2.6

1100 1.96 82.3 0.971 2.4

Human high-grade 
glioma (WHO 
grade III)

400 11.14 88.7 0.892 9.5 ISS; IMC; in vitro;  
data from [353]
  μs = 3.397 × 103λ−0.608;
  μs′ = 4.107 × 1013λ−5.049  

+ 21.957λ−0.187; g = 
0.891 
+5.608 × 10−3(1–exp(–
(λ–409.326) 
/23.73)); [λ] in nm;

450 8.19 82.7 0.894 8.7

500 7.16 76.3 0.897 7.8

550 5.52 71.9 0.891 7.8

600 5.20 71.5 0.902 7.0

650 4.62 65.6 0.895 6.9

700 4.39 61.2 0.896 6.3

750 3.80 61.0 0.898 6.2

800 3.14 60.2 0.897 6.2

Human glioma (n 
= 1)

400 6.39 – – 8.3 ISS; Kubelka–Munk;  
in vitro; data from [354]
  μs′ = 8.928 × 1010λ−3.975  

+ 16.391λ−0.209; [λ] in 
nm

450 16.47 – – 7.5

500 12.91 – – 5.4

550 9.93 – – 4.5

600 7.44 – – 4.5

650 2.62 – – 4.5

700 1.80 – – 4.3

750 1.35 – – 4.4

800 0.84 – – 4.4

850 0.93 – – 4.2

900 0.94 – – 4.2

950 1.12 – – 4.4

1000 1.22 – – 4.5

1050 0.91 – – 4.4

1100 0.51 – – 4.4

Table 1.9 (continued)

(continued)
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Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�  (cm−1) Remarks

Human 
meningioma (n = 
6)/human 
astrocytoma 
(WHO grade II) (n 
= 4)

360 3.14/11.78 194.7/218.5 0.818/0.710 35.4/63.3 ISS; IMC; in vitro;  
data from [355]
For human meningioma
  μs = 7.137 × 103λ−0.59

  μs′ = 7.358 × 1010λ−3.673  
+ 18.164λ−0.229; g = 
0.825+0.134 
(1–exp(–(λ–

368.148)/78.556))
For human astrocytoma
  μs = 9.254 × 104λ−1.025;
  μs′ = 6.181 × 1014λ−5.146  

+ 8.463λ−0.215; g = 
0.903+0.06 
(1–exp(–(λ–410.5)/33.7)) 
[λ] in nm

400 3.75/15.98 196.1/200.3 0.872/0.889 25.1/22.3

450 2.09/3.13 191.2/177.3 0.912/0.943 16.7/10.2

500 1.07/2.03 183.4/155.4 0.932/0.958 12.4/6.5

550 0.81/2.37 182.2/145.0 0.943/0.961 10.3/5.6

600 0.67/1.19 174.9/130.3 0.953/0.962 8.2/4.9

650 0.39/0.76 163.2/119.4 0.956/0.958 7.2/5.0

700 0.29/0.41 154.9/111.9 0.956/0.959 6.9/4.5

750 0.22/0.51 146.7/102.6 0.959/0.963 6.0/3.8

800 0.22/0.49 138.8/96.9 0.959/0.967 5.7/3.2

850 0.27/0.39 131.1/90.6 0.958/0.965 5.6/3.2

900 0.21/0.31 125.9/86.6 0.958/0.963 5.3/3.2

950 0.20/0.48 121.8/81.9 0.958/0.959 5.1/3.3

1000 0.36/0.44 116.8/78.8 0.956/0.961 5.1/3.1

1050 0.42/0.37 115.0/74.5 0.961/0.963 4.5/2.8

1100 0.64/0.48 115.2/72.2 0.964/0.968 4.1/2.3

Table 1.9 (continued)

in vivo by Bevilacqua et al. [77] using spatially resolved diffuse reflectance. Absorption 
and reduced scattering coefficients of different human tumor tissues (glioblastoma, 
meningioma, oligodendroglioma, and metastasis) were investigated by Honda et al. 
[352] by double-integrating sphere and IMC technique. Schwarzmaier et  al. [353] 
investigated optical properties of human low (astrocytoma WHO grade II) and high 
(WHO grade III) grade glioma with integrating sphere technique and IMC method. 
Optical properties of glioma were investigated by Sterenborg et al. [354]. Yaroslavsky 
et al. [355] studied optical properties of human meningioma and astrocytoma (WHO 
grade II).

1.3.13  Kidney Cancer

The global incidence of renal cell cancer is increasing annually and the causes are 
multifactorial. It ranks the second most common neoplasm found in the urinary 
system [356].

Renal cell carcinoma (RCC) is the commonest solid lesion within the kidney and 
accounts for approximately 90% of all kidney malignancies and 2–3% of all can-
cers, with the highest incidence occurring in Western countries [357]. The 
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proportion of small and incidental renal tumors has significantly increased owing to 
the widespread use of abdominal imaging. Consequently, more than 50% of RCCs 
are currently detected incidentally [358]. Diagnosis and subtyping of RCC can usu-
ally be accomplished through a thorough morphologic investigation of the resected 
tumor, which in itself offers valuable prognostic information [301]. The main sub-
types of RCC are clear cell, papillary, chromophobe, collecting duct, and unclassi-
fied [359].

The most frequent histological type of RCC is clear cell renal cell carcinoma, it 
occurs in 75% of all primary kidney cancers. Papillary and chromophobe RCC are 
less common subtypes [360, 361].

The classic clear cell renal cell carcinoma has a yellow-brown cut surface and it 
is inhomogeneous due to hemorrhage and necrosis. Macroscopically, it is relatively 
well separated from the normal renal tissue, but there may be a risk to form micro-
scopic tumor satellites. The tumor cells are derived from the proximal convoluted 
tubule. The rich content of glycogen and fat in the cytoplasm of the cells produces 
a clear appearance in conventional staining. But there are also eosinophilic, sarco-
matoid, and mixed patterns of differentiation.

The distinction of clear cell RCC from papillary renal cell carcinomas is not 
particularly difficult, but the distinction between RCC and other neoplasms in some 
cases is problematic and requires additional research methods, such as immunohis-
tochemistry. Occasionally, the tumor cells harbor granular to pink eosinophilic 
cytoplasm and can resemble chromophobe RCC, which more typically contains 
polygonal cells with transparent to reticulated cytoplasm rimmed by thickened cell 
membranes [362].

The most effective treatment of RCC remains the surgical resection of the tumor 
mass by partial or total nephrectomy [363]. The functional benefits of nephron- 
sparing procedures have driven the indication of partial nephrectomy, which is rec-
ommended as the standard treatment in patients with T1a tumors [364]. Adjuvant 
therapy after nephrectomy has not been proven to prolong survival or to have any 
significant patient benefit [365].

The less invasive approaches include percutaneous radiofrequency ablation 
and laparoscopically assisted cryoablation. Indications for thermal ablations 
are usually small renal masses in elderly more comorbid patients unable to 
undergo surgical intervention and patients with bilateral tumors or solitary kid-
ney [366].

Optical properties of kidney tumor transplanted in rat were investigated in [48] 
(see Table 1.10).
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Table 1.10 The optical properties of kidney tumor tissues measured in in vitro [48]

Tissue
λ 
(nm) μa (cm−1) μs (cm−1) g �s

�  (cm−1) Remarks

Tumor 
capsule  
(n = 10)

350 20.56 ± 12.12 152.0 ± 74.9 0.563 ± 0.091 58.8 ± 35.3 ISS; IMC; in vitro;  
in the spectral  
range 350–1850 nm
  μs = 1.968 × 108λ−2.44  

+ 59.956λ−0.023;
  μs′ = 4.293 × 109λ−3.116  

+ 83.768λ−0.298 and in the  
spectral range  
350–1350 nm:  
g = 0.544 + 0.27 
(1–exp(–(λ–

364.598)/126.05));  
[λ] in nm

400 24.06 ± 14.72 143.9 ± 69.7 0.587 ± 0.085 53.5 ± 33.4

500 7.19 ± 3.33 101.3 ± 40.1 0.745 ± 0.072 24.6 ± 10.6

600 5.86 ± 2.66 86.3 ± 30.6 0.779 ± 0.070 18.9 ± 7.7

700 4.27 ± 2.27 76.1 ± 24.8 0.798 ± 0.073 15.8 ± 6.3

800 4.35 ± 2.25 69.9 ± 21.5 0.805 ± 0.066 13.8 ± 5.5

900 4.53 ± 2.07 64.8 ± 19.5 0.806 ± 0.064 12.5 ± 5.2

1000 4.34 ± 1.79 61.1 ± 18.3 0.809 ± 0.063 11.5 ± 4.9

1100 3.95 ± 1.61 57.7 ± 17.4 0.812 ± 0.061 10.6 ± 4.6

1200 4.10 ± 1.42 55.5 ± 16.9 0.811 ± 0.059 10.2 ± 4.5

1300 3.81 ± 1.28 53.1 ± 16.3 0.812 ± 0.058 9.7 ± 4.3

1400 8.45 ± 1.29 56.9 ± 17.2 0.756 ± 0.037 13.5 ± 4.5

1500 10.97 ± 1.45 57.2 ± 17.7 0.721 ± 0.029 15.9 ± 4.4

1600 5.51 ± 1.28 49.8 ± 16.1 0.787 ± 0.046 10.3 ± 4.0

1700 4.80 ± 1.38 47.9 ± 15.7 0.792 ± 0.049 9.6 ± 3.9

1800 5.79 ± 1.33 48.3 ± 16.1 0.776 ± 0.043 10.5 ± 4.0

1900 21.99 ± 6.04 76.9 ± 30.6 0.583 ± 0.084 31.1 ± 9.6

2000 24.88 ± 4.74 69.4 ± 28.7 0.526 ± 0.190 34.5 ± 7.5

2100 13.98 ± 1.32 54.4 ± 19.1 0.651 ± 0.036 19.2 ± 4.9

2200 11.05 ± 1.42 50.8 ± 17.8 0.671 ± 0.036 15.9 ± 5.3

2300 13.91 ± 1.96 52.7 ± 18.4 0.628 ± 0.034 18.9 ± 5.9

2400 19.38 ± 3.99 61.2 ± 22.3 0.560 ± 0.054 26.7 ± 7.1

2500 28.69 ± 11.64 75.3 ± 37.2 0.423 ± 0.312 42.5 ± 16.5

(continued)
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Tissue
λ 
(nm) μa (cm−1) μs (cm−1) g �s

�  (cm−1) Remarks

Tumor 
tissue on 
the 
periphery 
(n = 10)

350 26.52 ± 4.13 209.4 ± 40.4 0.697 ± 0.085 53.6 ± 7.1 ISS; IMC; in vitro;  
in the spectral range  
350–1850 nm
  μs = 4.105 × 108λ−2.519  

+ 102.777λ−0.03

  μs′ = 4.085 × 109λ−3.149  
+ 84.286λ−0.238 and  
in the spectral range  
350–1350 nm: g = 
0.691+0.145 
(1–exp(–(λ–

361.102)/195.813));  
[λ] in nm

400 30.51 ± 4.41 199.4 ± 25.5 0.714 ± 0.063 51.4 ± 6.1

500 11.08 ± 3.41 151.7 ± 24.8 0.768 ± 0.056 27.6 ± 3.9

600 9.39 ± 2.98 133.9 ± 17.1 0.796 ± 0.041 22.7 ± 2.6

700 8.09 ± 2.63 121.1 ± 14.3 0.809 ± 0.035 19.8 ± 1.9

800 8.67 ± 2.65 112.2 ± 10.1 0.818 ± 0.029 18.9 ± 1.6

900 8.91 ± 2.14 104.7 ± 8.5 0.826 ± 0.026 18.0 ± 1.2

1000 8.48 ± 1.62 98.8 ± 7.9 0.831 ± 0.024 17.1 ± 1.1

1100 7.84 ± 1.41 93.2 ± 7.4 0.834 ± 0.023 16.2 ± 0.8

1200 7.61 ± 1.43 89.3 ± 7.1 0.833 ± 0.023 15.8 ± 0.7

1300 7.04 ± 1.45 85.3 ± 6.8 0.835 ± 0.023 15.1 ± 0.7

1400 11.57 ± 2.16 88.1 ± 5.1 0.788 ± 0.027 18.8 ± 1.3

1500 13.36 ± 2.61 87.1 ± 4.4 0.759 ± 0.033 20.2 ± 1.9

1600 7.55 ± 2.05 78.3 ± 5.8 0.814 ± 0.029 15.1 ± 1.1

1700 6.69 ± 2.02 75.5 ± 6.1 0.819 ± 0.029 14.4 ± 1.0

1800 7.61 ± 2.15 75.3 ± 5.7 0.805 ± 0.030 15.1 ± 1.2

1900 28.74 ± 3.25 109.7 ± 1.5 0.639 ± 0.038 39.2 ± 4.8

2000 29.32 ± 3.66 100.8 ± 0.5 0.610 ± 0.057 39.3 ± 5.9

2100 15.75 ± 2.60 81.4 ± 3.7 0.721 ± 0.043 22.5 ± 2.5

2200 12.64 ± 2.20 77.4 ± 5.2 0.749 ± 0.041 19.2 ± 1.8

2300 16.01 ± 2.88 79.3 ± 5.7 0.722 ± 0.042 21.9 ± 1.7

2400 22.76 ± 2.57 89.9 ± 2.3 0.654 ± 0.061 30.8 ± 4.7

2500 35.99 ± 2.01 110.8 ± 2.5 0.536 ± 0.093 51.8 ± 11.5

Table 1.10 (continued)
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Tissue
λ 
(nm) μa (cm−1) μs (cm−1) g �s

�  (cm−1) Remarks

Tumor 
tissue in 
the center 
(n = 10)

350 33.79 ± 12.92 140.6 ± 71.6 0.497 ± 0.144 66.8 ± 25.9 ISS; IMC; in vitro;  
in the spectral range  
350–1850 nm
  μs = 4.89 × 105λ−1.47  

+ 95.529λ−0.062

  μs′ = 3.002 × 109λ−3.012  
+ 72.049λ−0.251 and  
in the spectral range  
350–1350 nm:  
g = 0.484 + 0.34 
(1–exp(–(λ–

382.365)/158.714));  
[λ] in nm

400 43.09 ± 16.82 139.9 ± 75.0 0.483 ± 0.199 68.5 ± 30.7

500 11.03 ± 3.70 115.3 ± 53.5 0.703 ± 0.103 31.1 ± 9.3

600 9.37 ± 3.06 106.1 ± 47.1 0.745 ± 0.091 24.5 ± 6.8

700 6.59 ± 1.98 98.0 ± 42.4 0.778 ± 0.081 19.8 ± 5.4

800 6.65 ± 1.97 92.9 ± 39.1 0.795 ± 0.066 17.6 ± 4.8

900 6.54 ± 1.82 87.8 ± 36.6 0.805 ± 0.056 15.9 ± 4.5

1000 6.14 ± 1.59 83.3 ± 34.4 0.814 ± 0.049 14.5 ± 4.1

1100 5.59 ± 1.44 79.0 ± 32.3 0.821 ± 0.045 13.4 ± 3.9

1200 5.55 ± 1.25 75.8 ± 30.8 0.822 ± 0.042 12.7 ± 3.8

1300 5.14 ± 1.11 72.4 ± 29.3 0.825 ± 0.041 12.0 ± 3.5

1400 10.03 ± 1.23 75.1 ± 29.4 0.775 ± 0.055 15.9 ± 4.0

1500 12.27 ± 1.33 74.2 ± 28.8 0.743 ± 0.067 17.7 ± 4.0

1600 6.52 ± 0.63 66.3 ± 26.5 0.802 ± 0.051 12.3 ± 3.3

1700 5.72 ± 0.61 63.7 ± 25.4 0.807 ± 0.048 11.6 ± 3.2

1800 6.67 ± 0.53 63.3 ± 25.3 0.792 ± 0.056 12.3 ± 3.2

1900 26.09 ± 4.16 83.9 ± 37.7 0.526 ± 0.128 36.1 ± 10.5

2000 28.29 ± 4.14 78.3 ± 36.1 0.438 ± 0.180 38.8 ± 10.1

2100 15.29 ± 2.25 66.4 ± 27.7 0.652 ±  ± 0.122 20.6 ± 4.1

2200 12.27 ± 1.78 63.4 ± 25.8 0.700 ± 0.102 17.2 ± 3.7

2300 15.08 ± 2.58 64.8 ± 26.7 0.661 ± 0.112 19.8 ± 4.3

2400 22.52 ± 4.69 71.1 ± 30.5 0.555 ± 0.129 28.5 ± 6.7

2500 36.68 ± 8.44 80.1 ± 36.7 0.378 ± 0.180 45.6 ± 14.2

Table 1.10 (continued)

1.3.14  Pancreatic Cancer

Pancreatic adenocarcinoma (AC), the 4th leading cause of cancer death in the USA 
with a 5-year survival rate of less than 6%, is often detected at late stages of devel-
opment when treatment is ineffective. Intraductal papillary mucinous neoplasm 
(IPMN) is a precursor lesion of pancreatic cancer, characterized by an intraductal 
proliferation of neoplastic cells with mucin production [367].

Lee et al. [367] measured human pancreatic malignant precursor, IPMN, using 
methods of reflectance and fluorescence spectroscopy. They found morphological 
property differences between normal tissue, IPMN, and AC (see Table 1.11).

Optical properties of normal and cancerous pancreas were investigated in [368, 
369] (see Table 1.12) using integrating sphere technique.
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Table 1.11 Morphological properties of normal tissue, IPMN, and AC

Tissue
Nuclear diameter 
(μm) Refractive index

Cell density 
(cm−1)

Collagen density 
(cm−1)

Normal 8.89 ± 0.13 1.372 ± 0.002 (8.07 ± 0.12) × 107 (1.28 ± 0.16) × 106

IPMN 11.50 ± 0.88 1.394 ± 0.004 (7.15 ± 0.09) × 107 (6.15 ± 1.56) × 106

AC 11.64 ± 0.37 1.396 ± 0.002 (7.21 ± 0.09) × 107 (8.58 ± 0.62) × 106

Table 1.12 The optical properties of pancreas tumor tissues measured in vitro [368, 369]

Tissue λ (nm) μa (cm−1) μs (cm−1) g �s
�  (cm−1) Remarks

Normal tissue/
malignant 
pancreas 
neoplasm  
(n = 8)

500 29.84/12.07 – – 27.3/46.0 ISS; IAD;  
in vitro;  
data from [368]

550 11.38/6.25 – – 27.0/20.6
600 11.58/5.38 – – 28.4/19.7
650 22.17/18.1 – – 17.1/28.3

Pancreatic 
neuroendocrine 
tumor
Freezing/
Paraffin 
embedding

1064 0.9 ± 0.1/ 
56 ± 3

130 ± 1/ 
539 ± 4

0.82 ± 0.01/ 
0.96 ± 0.01

– ISS, IMC; 
in vitro; data 
from [369]

1.4  Biochemical Cancer Model

To date, most Raman studies of cancerous tissues have used multivariate statistical 
algorithms to describe the spectral differences of spectral data, such as PCA-LDA 
or PLS-DA. However, the principal components and loading vectors are difficult to 
relate to the biophysical origin of the disease, such as the microstructural organiza-
tion of proteins and lipids and the functional state of cellular metabolism, which are 
the key features for the pathologist diagnostic decisions for appropriate cancer treat-
ment. Therefore, several research groups have proposed biochemical diagnostic 
models extracting physiologically relevant markers from Raman spectra of tissues 
(Table 1.13). The biochemical model derives the morphological and biochemical 
composition of the modeling tissue from its Raman spectrum. The building blocks 
of the model are Raman active components either measured directly from synthetic/
purified chemicals [123, 167, 169, 177, 224, 313, 316, 370–373] or morphologi-
cally extracted from tissue sections in situ [98, 122, 222]. In the last case, a Raman 
spectrometer is coupled to a microscope and is scanned across the tissue section to 
obtain Raman images that can then be correlated with serial hematoxylin–eosin 
stained sections to identify relevant morphologic components and their Raman 
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Table 1.13 Raman biochemical diagnostics models of tumor tissues

Cancer Model Method Components
Research 
Group Ref.

Breast Morphologically 
derived 
components

NNLS Cell cytoplasm, cell nucleus, 
collagen, fat, cholesterol-like, 
β-carotene, calcium hydroxyapatite, 
calcium oxalate dehydrate, water

Shafer- 
Peltier 
et al. 
(2002)

[98]

Breast Morphologically 
derived 
components

NNLS Cell cytoplasm, cell nucleus, 
collagen, fat, cholesterol-like, 
β-carotene, calcium hydroxyapatite, 
calcium oxalate dehydrate, and water

Haka 
et al. 
(2005)

[122]

Brain Synthetic/
purified 
chemicals

OLS Cholesterol, cholesterol ester, lipids, 
proteins, nucleic acids, carotene, 
phosphate buffer solution

Bergner 
et al. 
(2013)

[370]

Oral Synthetic/
purified 
chemicals

NNCLS Hydroxyapatite, oleic acid, DNA, 
collagen, and keratin

Bergholt 
et al. 
(2012)

[320]

Cervix Synthetic/
purified 
chemicals

NNLS Actin, DNA, histone, collagen, 
glycogen, protein—human serum 
albumin, glycerol triolate, 
cholesterol, and β-carotene

Daniel 
et al. 
(2016)

[371]

Stomach Synthetic/
purified 
chemicals

NNCLS Actin, albumin, collagen type I, 
DNA, histones, triolein, pepsinogen, 
and phosphatidylcholine

Huang 
et al. 
(2010)

[169]

GI Synthetic/
purified 
chemicals

NNCLS Actin, albumin, pepsin, pepsinogen, 
B-NADH, RNA, DNA, myosin, 
hemoglobin, collagen I, collagen II, 
collagen V, mucin 1, mucin 2, mucin 
3, flavins, elastin, 
phosphatidylcholine, cholesterol, 
glucose, glycogen, triolein, histones, 
beta-carotene

Bergholt 
et al. 
(2011)

[167]

GI Synthetic/
purified 
chemicals

NNLS Actin, collagen, DNA, histones, 
triolein, glycogen

Bergholt 
et al. 
(2011)

[316]

GI Synthetic/
purified 
chemicals

NNLS Glycogen, DNA, oleic acid, collagen 
I, choline, actin, triolein

Shetti 
et al. 
(2006)

[372]

Bladder; 
prostate

Synthetic/
purified 
chemicals

OLS Actin, β-carotene type 1, cholesterol, 
choline, collagen type 1, collagen 
type 3, collagen type 4, DNA, 
glycogen, lycopene, oleic acid, PSA, 
triolein

Stone 
et al. 
(2006)

[123]

Bladder Synthetic/
purified 
chemicals

OLS Collagen I and III, actin, albumin, 
DNA, RNA, cholesterol, β-carotene, 
glycogen, gangliosides, 
phosphatidylcholine, 
phosphatidylethanolamine, 
arachidonic acid, palmitic acid, 
palmitoleic acid, stearic acid, oleic 
acid methyl ester, linoleic acid

de Jong 
et al. 
(2006)

[313]

(continued)
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signature. In situ constituents better represent the milieu of biological tissues that 
cannot be recapitulated in a synthetic environment. For example, collagen can be 
presented in human tissue in many different forms, each one having a slightly dif-
ferent Raman spectrum. However, if both of them are included in the model, it may 
lead to overfitting and unstable results [123, 372]. In addition, skin constituents 
synthesized in the lab or from commercial sources are not in their natural state. 
Nevertheless, the advantage of using synthetic/purified chemicals as model compo-
nents is that they can be easily measured using the same Raman instrument as used 
to measure the biological specimen, providing evaluation of more specific molecu-
lar constituent changes.

Construction of a biochemical model of the tissue relies on three assumptions: 
first, that the Raman spectrum of a mixture equals to the weighted linear sum of the 
individual components of the mixture; second, that the biological morphological 
features, such as cells, have the same Raman spectrum from one patient to another; 
and third, that the basis spectra included in the model are sufficiently distinct to 
enable their differentiation based on their Raman spectrum [98]. In such approach 
the fitting of the vector normalized constituents to the mean spectra of the different 
pathologies can be performed by linear least-squares analysis with a nonnegative 
constraint for model fitting (NNLS), according to the following equation:

 X c S E� � ,  (1.10)

where X is the measured spectra of the tissue, c is the matrix of concentrations to 
be predicted, and S is the matrix of spectral components. This can be used to pro-
vide a linear “best fit” of the spectral components with minimum residuals. Here 
E gives the error or residual, which can be mainly attributed to the noise in the 

Table 1.13 (continued)

Cancer Model Method Components
Research 
Group Ref.

Skin Synthetic/
purified 
chemicals

OLS Oleic acid, palmitic acid, collagen I, 
keratin, hemoglobin

Zhao 
et al. 
(2008)

[374]

Skin Synthetic/
purified 
chemicals

OLS Triolein, cholesterol, actin, collagen 
I, collagen III, elastin, keratin, DNA, 
phenylalanine, carotene, melanin, 
squalene

Silveira 
et al. 
(2012)

[224]

Skin Morphologically 
derived 
components

NNLS Collagen, elastin, triolein, cell 
nucleus, keratin, ceramide, melanin, 
water

Feng 
et al. 
(2017)

[222]

GI gastrointestinal, OLS ordinary least-squares fitting algorithm, NNLS non-negativity-constrained 
least-squares minimization, NNCLS non-negativity-constrained least-squares minimization
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measured signal. The NNLS model presumes that the Raman spectra measured 
from the tissue is a linear combination of its biochemical components’ spectra and 
the signal intensity scales linearly with the relative concentration of biochemical 
components in the tissue. The biochemical model determines the relative concen-
tration profiles of major tissue biochemical constituents responsible for prominent 
tissue Raman spectral features and its changes associated with disease progres-
sion. If components are not included the omitted variable bias can introduce some 
errors in the fit [375]. Observation of the residual E enables the quality of the fit 
to be observed and any remaining features of the spectra to be included in the next 
iteration of the model.

One important factor that may influence the performance of the model is a col-
linearity of the basis spectra. Collinearity is a common issue in linear regression that 
can lead to an unstable result [123]. Any collinearity in the components selected 
will skew the fit. An example being amino acids and the proteins containing them 
being used in the same model. Hence, the collinearity coefficients of the basis com-
ponents must be calculated:

 

R
x y

x x y y

T

T T
�
� �� �

,

 

(1.11)

where x and y are any two component spectra and T indicates the transpose of the 
respective spectra. The orthogonality matrix represents the degree of orthogonal-
ity between the components. If the orthogonality value is zero, then the two com-
ponents are orthogonal, and if the orthogonality value is one, then the two 
components are identical. For instance, DNA and RNA have an orthogonality 
value close to 1. As usual, this equation is used for the initial evaluation of the 
model components.

The choices of biochemical substances used in the model are mainly based on 
their known presence in the correspondent tissue, and the contributions they would 
give to the observed tissue spectrum. For example, Stone et  al. [123] diagnosed 
bladder and prostate cancer by quantifying differences in actin, collagen, choline, 
triolein, oleic acid, cholesterol, and DNA, assessing the gross biochemical changes 
in each pathology. De Jong et al. [313] demonstrated that spectra from normal blad-
der tissue showed a higher collagen content, while spectra from tumor tissue were 
characterized by higher lipid, nucleic acid, protein, and glycogen. Haka et al. [122] 
used a biochemical model to correlate changes in the amounts of fat (adipocytes), 
collagen, cholesterol, and calcium oxalate in the cell nucleus and cytoplasm, aiming 
at breast cancer diagnosis in vivo.

Huang et  al. [169] developed biochemical model for effective gastric cancer 
diagnosis, including eight reference tissue constituents (actin, albumin, collagen 
type I, DNA, histones, triolein, pepsinogen, and phosphatidylcholine). The authors 
showed that albumin, nucleic acid, phospholipids, and histones were found to be the 
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most significant features for diagnosing the epithelial neoplasia of the stomach, giv-
ing rise to an overall accuracy of 93.7%.

In 2011, Bergholt et al. [167] based on NNLS analyses of over 35 basis refer-
ence Raman spectra obtained from different biomolecules associated with GI tis-
sue (e.g., actin, albumin, pepsin, pepsinogen, B-NADH, RNA, DNA, myosin, 
hemoglobin, collagen I, collagen II, collagen V, mucin 1, mucin 2, mucin 3, fla-
vins, elastin, phosphatidylcholine, cholesterol, glucose, glycogen, triolein, his-
tones, beta-carotene, etc.) showed that the following five biochemicals, i.e., actin, 
histones, collagen type I, DNA, and triolein were the most significant Raman-
active biochemical constituents that could effectively characterize gastric and 
esophageal tissue with very small fit-residuals. For instance, DNA represented 
nucleic acids within the cell nucleus; triolein represented typical lipid signals; 
actin and histones resembled proteins of different conformations and were the 
major components of the cytoskeleton and chromatin, respectively, whereas col-
lagen type I was a substantial part of the extracellular matrix [95, 123, 169]. In a 
follow-up study [307] the authors added glycogen to the model, which was pres-
ent in the squamous epithelium.

The comparisons of the mean in vivo measured Raman spectra and the recon-
structed Raman spectra of different normal and cancerous tissues are shown in 
Fig. 1.7 and indicate good fitting (with residual less than 10%) [167]. The diag-
nostic sensitivity of GI cancer was 97.0%, and the specificity was 95.2% 
[177, 316].

The six-component biochemical model showed that neoplastic tissue was 
mainly associated with a decrease in actin, collagen, lipids, and glycogen, while 
an increase in DNA and histones concentration [316]. More specifically, it was 
found a significant increased fit coefficient of DNA (highly related to the Raman 
peak at 1335  cm−1) and histones (associated with amide III at 1265  cm−1 and 
amide I (C=O) stretching vibration at 1655 cm−1), the relative reduction in actin, 
which represented a major part of the Raman signal originating from cell cyto-
plasm. This reflected the increase in the nuclear-to-cytoplasm ratio of neoplastic 
cells, which was a well-established qualitative indicator of malignancies used by 
pathologists. The fit coefficient of collagen representing the extracellular matrix 
was noted to be lower for cancerous as compared to normal tissue. The model also 
revealed a considerable decrease in fit coefficients of lipids (associated with 
Raman peaks at 1078, 1302, 1445, 1745  cm−1) and a reduction in glycogen in 
cancer tissue related to the abnormal glucose metabolism in cancer cells [372]. 
Incorporation of significant biochemical fit coefficients in LDA-DA statistical 
analysis provided an inherent separation of different tissue types based on the 
biomolecular information.

Feng et  al. [222] designed skin biochemical model with eight primary model 
components: collagen, elastin, triolein, nucleus, keratin, ceramide, melanin, and 
water, which were collected from human skin in situ and were averaged over mul-
tiple patients. Those components contained both biochemical and structural 
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information. For instance, nucleus referred to the nuclear material in the cell. 
Collagen and elastin referred to dermal extracellular matrix. Keratin represented 
epidermal extracellular matrix. Triolein mainly represented subcutaneous fat. The 
fit coefficients provided the relative concentration of those components and were 
used as the input variables of the discriminant analysis. The authors showed that a 
biophysical model could achieve consistent diagnostic performance with the statis-
tical model while simultaneously extracting the relevant biomarkers accounting for 
the diagnosis [121, 226].

In general, Raman spectral biochemical modeling in conjunction with linear dis-
criminant analysis shows good classification results and also provides new insights 
into biochemical origins of Raman spectroscopy for tissue diagnosis and 
characterization.

Fig. 1.7 Comparison of the in vivo Raman spectra measured with the reconstructed tissue Raman 
spectra through the employment of the five basis reference Raman spectra: (a) normal esophagus, 
(b) esophageal cancer, (c) normal gastric, (d) gastric cancer. Residuals (measured spectrum minus 
fit spectrum) are also shown in each plot. Reprinted with permission from [167]
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1.5  Summary

Numerous experimental studies have shown the capability of Raman spectroscopy 
for malignant lesion detection and grading based on objective and quantifiable 
molecular information. Consequently, the use of this technique can reduce the num-
ber of unnecessary biopsies and guide the precise tumor margin detection improv-
ing the surgical outcome of the patients.

Despite the advantages that the Raman spectroscopy can offer, there are some 
challenges existing in cancer diagnosis with Raman spectroscopy. First, it has low 
measurement speed. One way to overcome this is to complement Raman spectros-
copy with other techniques, such as autofluorescence imaging and OCT. Image- 
guided Raman spectroscopy substantially reduces the time spent on redundant or 
non-relevant Raman measurements.

The translation for clinical use involves the development of comprehensive spec-
tral databases and tissue classification methodologies, which can draw effective 
diagnostic information from usually overlapping Raman spectra with subtle spectral 
differences between neoplastic and normal tissues. Validation studies need to be 
performed to confirm that classification diagnostic algorithms developed on ex vivo 
specimens are applicable to in vivo tissues. Deep learning training, using large num-
bers of spectra, can also discriminate different cancer types and become predictors 
of the aggressiveness of the cancer. Combination of statistical and biochemical 
models can lead to new classification methodologies that can be comparable with 
current gold standards.

Recently optical properties of many kinds of tumor have been investigated spec-
troscopically using integrating sphere spectroscopy and reflectance spectroscopy 
methods. From the analysis of the above presented tables we can conclude that dur-
ing tumor development both absorption and scattering properties of tumor tissues 
increase (as a rule) in comparison with normal tissue. Hemoglobin and water con-
tent increase, whereas oxygenation degree does not change or changes insignifi-
cantly. The presented data can be used for the development of novel methods of 
cancer diagnostics and treatment.
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Chapter 2
Optical Clearing of Biological Tissues: 
Prospects of Application for Multimodal 
Malignancy Diagnostics

Elina A. Genina, Luís M. C. Oliveira, Alexey N. Bashkatov, 
and Valery V. Tuchin

2.1  Introduction

The reduction of tissue light scattering gives improvement of image quality and 
precision of spectroscopic information, decreasing of irradiating light beam distor-
tion and its sharp focusing. Various physical and chemical actions such as compres-
sion, dehydration, and impregnation by biocompatible chemical agents are widely 
described in literature as tools for controlling of tissue optical properties. All 
approaches have benefits in specific applications. Special interest is related to opti-
cal differentiation of pathology modified tissues. For example, compression of soft 
tissues as mucosa and skin are developed in optical coherence tomography (OCT) 
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for increasing in the brightness of the OCT-image and, thus, contrast of tumor visu-
alization inside tissues [1, 2]. Dehydration of upper layers of tissues under action of 
hyperosmotic optical clearing agents (OCAs) allows for increasing of optical prob-
ing depth of spectral methods in VIS-NIR [3, 4] and THz ranges [5, 6]. The immer-
sion optical clearing (OC) is based on the impregnation (immersion) of the tissue by 
a biocompatible agent, possessing sufficiently high refractive index (RI) to match 
the RIs of the scatterers and the surrounding medium, penetrating into the intersti-
tial space of the tissue. This approach is widely used in optical imaging techniques, 
such as laser speckle contrast imaging [7–9], OCT [10–13], Raman spectroscopy 
[14, 15], multiphoton microscopy [16, 17], etc., and demonstrates high potentiality 
of their mutual use not only for getting high-resolution structural and functional tis-
sue images in vitro, but also in vivo. The study of scattering kinetics during penetra-
tion of OCAs in tissues allows one to evaluate the OCA diffusion and permeability 
coefficients [10, 18–21]. Using these techniques, based mostly on collimated light 
transmittance measurements for in vitro studies and OCT for in vivo, the diffusion 
rates of glucose, some drugs, and OCAs were determined in eye tissues [22–25], 
muscle [26], skin [20, 27], dura mater [28], arterial [29], and lung [30] tissues. The 
monitoring of OCA diffusion with high temporal and depth resolution allows one, 
in turn, to differentiate healthy from malignant tissues [31–36].

In the chapter, we discuss the possibilities of enhancement of optical diagnostics 
of tumors using immersion OC approach.

2.2  Mechanisms of Immersion Optical Clearing

The OCAs can be roughly divided into polyatomic alcohols (glycerol, polyethylene 
glycol (PEG), polypropylene glycol, combined mixtures on the base of polypropyl-
ene glycols and polyethylene glycols, mannitol, sorbitol, xylitol, etc.) [5, 6, 26, 28, 
32, 34, 37–40], solutions of sugars (glucose, dextrose, fructose, ribose, sucrose, 
etc.) [18, 19, 25, 27–30, 33, 36, 41], organic acids (oleic and linoleic acids) [42, 43], 
organic solvents (dimethyl sulphoxide (DMSO) [44, 45], and x-ray contrast agents 
(verografin, trasograf, and omnipaque) [46–48]. For increasing effectiveness of the 
multicomponent OCAs, organic solvents (DMSO, thiazone, azone, ethanol, sali-
cylic acid) [11, 13, 40, 42, 43, 49–56], propylene glycol [56, 57], and oleic acid [43, 
58–60] are included to their composition. Recently, specially optimized multicom-
ponent solutions as FocusClear™ [61–64], BABB [64–66], Scale A2, U2, and S 
[64, 66, 67], CLARITY [16, 66], FASTClear [68], ClearT [66], SeeDB [64, 69], 
CUBIC [64, 66, 70], PACT [64, 71], PARS [64, 71], 3DISCO [72], iDISCO [64, 
73], uDISCO [64, 74], and others are developed for application in vitro at studies 
with modern microscopic techniques.

Such properties as hydrophilicity, lipophilicity, hyperosmoticity, ability to dis-
solve lipids and others determine mechanisms of optical clearing. The most of 
OCAs are hydrophilic ones and include hyperosmotic components such as poly-
atomic alcohols and sugars. For them several physical and chemical mechanisms of 
the light scattering reduction are proposed and described as follows: (1) dehydration 
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of tissue components, (2) partial replacement of interstitial fluid with the immersion 
agent, and (3) structure modification or dissociation of tissue proteins [4, 5, 18, 28, 
37, 39, 42, 46, 51, 75–86]. The contact of hyperosmotic OCA with the tissue surface 
causes the water diffusion from the tissue. These processes produce fast and consid-
erable clearing effect, since, first, tissue becomes denser, and the ordering of scat-
tering components increases, and, second, the concentration of salts and proteins 
dissolved in the interstitial fluid increases and, therefore, the RI of the interstitial 
fluid becomes closer to that of the scattering fibrils. It has been shown that hyperos-
motic OCAs cause decreasing in weight and volume of tissue samples [37, 85, 86]. 
The measurement of the tissue spectrum at the wavelengths corresponded to the 
water absorption band in the NIR and THz ranges has allowed assess the water 
content change in the tissue during OC [4–6, 26, 84]. In Ref. [87] a quantitative 
assessment of the dehydration of skin and tumor tissue when using hyperosmotic 
OCAs by the method of multi-wavelength refractometry for the visible and NIR 
spectral regions has been presented. The resulting decrease in the RI of the OC solu-
tion made it possible to estimate the volume of the fluid extracted from the tissue 
[37]. However, the complete dehydration of tissue does not occur. When hygro-
scopic OCAs penetrate tissue the reverse process of rehydration after dehydration 
can be observed, for example, glycerol, ethylene glycol, glucose solutions, etc., 
induce rehydration due to the bounding of water molecules inside tissues [37, 86].

For fibrous tissues, such as sclera, dura mater, dermis, muscle, etc., both pro-
cesses, namely, the water loss and the diffusion of the hyperosmotic OCAs into the 
tissues, occur simultaneously, since molecular size of OCAs is much smaller than 
the mean separation between fibrils [46]. Rehydration can induce a decrease in tis-
sue transparency after achievement of the maximal value by some percents [80, 86].

Low-molecular OCAs (for example, sugars and polyatomic alcohols) can induce 
a reversible solubility of tissue protein and lead to the additional reduction of tissue 
scattering due to decrease of the basic scatterer size [40, 81–83, 86]. The collagen 
fibers have complex self-organization structure and are the main scattering centers 
in many fibrous tissues. The measured forces between the triple helices of type I 
collagen at different temperatures, pH, and solute concentrations [88], together with 
studies on the interaction of low-molecular agents with collagen leading to its dis-
solution related to violation of the water network of hydrogen bonds [89], have 
formed the basis for a theoretical description of this process [40, 81–83]. A molecu-
lar mechanism involving a partial substitution of water molecules connected with 
collagen by molecules of the OCAs, subsequent reversible collagen dissolution, and 
adjustment of the RI to the index of interfibrillar medium characterizes the post dif-
fusion stage of tissue OC.

The main mechanism of tissue OC with lipophilic OCAs as, for example, oils, 
includes only penetration of OCAs into intercellular space and matching effect 
between the RIs of the interstitial fluid and scatterers. However, diffusion of oils 
into water-containing interstitial space of fibrous tissues is hindered [42]. As the oils 
are lipophilic, they interact with the lipophilic components, i.e. intercellular lipids 
(ICL), which consists of free fatty acid, ceramides, and cholesterol with an equimo-
lar ratio [90, 91]. Thus, the use of oils is effective for the optical clearing of such 
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tissues as, for example, stratum corneum (SC). The ICL matrix in the SC plays the 
key role in maintaining the skin barrier function, the trans-epidermal water loss 
regulation, penetration of xenobiotics, and drug delivery [91–93]. The skin barrier 
function is determined by the lateral organization of ICL, which can have three 
main forms: the orthorhombic structure, which has less permeable and highly 
ordered states, the hexagonal structure, which is medium permeable and more dis-
ordered than orthorhombic, and the fluid state, which is the most permeable and 
disordered [91, 94–96]. In the mammalian SC, all types of ICL structures are pres-
ent and vary depth-dependently [96–98].

In vivo studies have shown that most oils are distributed in the uppermost layers 
of SC [99, 100]. Some oils cause swelling of the skin [99]. In other studies it has 
been demonstrated that the oils are able to permeate the SC at the application of 
chemicals (e.g., ethanol) disrupting the SC’s barrier integrity [101] or sonophoresis 
[43]. Thus, oils have a tendency to disorder ICL, disrupt the skin barrier function 
[102], and enhance the permeation of other substances including hydrophilic OCAs 
[43, 58–60].

The study of the OC mechanisms in both normal and pathological tissues can 
provide differentiated results that allow for discriminating pathology. Generally, 
water content is higher in tumor tissue because angiogenesis occurs to compensate 
for the lack of oxygen and nutrients. Additionally, the number of cell nuclei (per 
unit area) is greater in tumor tissue than in normal tissue because the rapid prolifera-
tion of tumor cells results in a higher number of cells in the tumor region. An 
approximately 5% increase of water content in tumor tissues and a greater than 15% 
increase in percentage of cell nuclei per unit area in tumor tissues were reported [21, 
103]. High cell density resulted in higher refractive index by approximately 0.05 in 
tumor tissues [103]. Since pathological tissues present higher sized structures, have 
higher mobile water content and higher protein concentrations, the water and OCA 
diffusivity will be different between normal and pathological tissues. Besides, path-
ological tissues have higher protein concentrations [104]; evaluation of protein dis-
sociation during OC treatments may also allow for discrimination between normal 
and pathological tissues.

2.3  Evaluation of Water and OCA Diffusivity in Normal 
and Pathological Tissues

The OC method can be used to retrieve differentiated information from normal and 
malignant tissues. When some pathologies like cancer start developing in tissue 
locations, high-sized structures are built and proteins aggregate in those locations at 
greater concentrations than in other locations where the tissue is normal [104]. 
Considering the water content in tissues, similar values have been observed for the 
total water in normal and pathological mucosa tissues from the human colorectal 
wall [105], while for the mobile water, pathological tissues present about 5% more 
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than normal tissues [21]. Such difference indicates that when pathology develops, 
some of the bound water becomes available to transport nutrients and can eventually 
flow out, if stimulated.

To evaluate differentiated diffusivity of water and OCA in normal and pathologi-
cal tissues, we need to model such diffusivity and apply such model to experimental 
results obtained from both tissues. Considering that in most biological tissues, water 
and OCA diffusion is not made through membranes, we can assume that such diffu-
sion obeys the laws of free diffusion [106]. This means that Fick’s law for diffusion 
can be used to describe the OCA flux in the tissue [18, 46, 106–108].
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The time dependence of the OCA concentration Ca at any unidirectional position x 
between the two surfaces of the tissue slab is characterized by Eq. (2.1), where the 
diffusion coefficient of the OCA in the slab is expressed as Da [18, 26]. The diffu-
sion time τ of the OCA can be calculated from the sample thickness d, and Da 
through Eq. (2.2) [18, 26, 46, 107–109].
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Using treating solutions with a volume 10× higher than the slab’s volume to guar-
antee a continuous OCA flux into the tissue, the amount of dissolved matter mt in 
the tissue at an instant t relative to its equilibrium value m∞ can be determined by 
Eq. (2.3) [26, 106, 107].
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The volume averaged concentration of the OCA Ca(t) that is located inside the tis-
sue slab at a particular time of treatment t is represented by the ratio in Eq. (2.3). 
Using a first order approximation, the solution of Eq. (2.3) is given by [18, 26, 
46, 108].
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A relation between the time dependence of OCA concentration within the slab and 
its characteristic diffusion time in the tissue (τ) is established in Eq. (2.4) [26, 109].
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We should consider that Eqs. (2.1)–(2.4) are valid for the description of free dif-
fusion of one type of molecules in a medium. If two fluxes are induced in the sys-
tem, such as the water flux out and the OCA flux into the tissue, these equations can 
also be applicable, but the estimated diffusion coefficient Da or the diffusion time τ 
in that case will characterize the diffusivity of the global mixed flux [26].

The partial replacement of water by the OCA in the tissue will provide changes 
both in tissue thickness and in the RI of the interstitial locations and/or inside tissue 
cells. By measuring tissue thickness and its collimated transmittance (Tc) during 
treatment, we should be able to evaluate those changes, as it has already been dem-
onstrated [21, 26, 105, 109–113].

If we normalize Ca(t) in Eq. (2.4) to the agent concentration in the treating solu-
tion Ca0, we obtain a time dependence relation that can be used to fit the Tc increase 
observed during treatments [21, 26, 105, 109, 111–113].
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Some studies have been published where Eqs. (2.2) and (2.5) were used to evaluate 
the diffusion properties of water and OCAs, such as glucose, glycerol, or ethylene 
glycol in various tissues [21, 26, 109, 114]. One of those studies was made using 
both normal and pathological mucosa from the human colorectal wall and allowed 
to obtain different free water content and different diffusion properties for glucose 
in normal and pathological tissues [21, 114].

For the case of colorectal carcinoma, adenomatous polyps begin their develop-
ment in the innermost layer of the colorectal wall—the mucosa, progressing from 
polyps into invasive adenocarcinoma, which sequentially infiltrates the outer layers 
of the wall, first the submucosa and then the muscularis propria—see Fig. 2.1 [114]. 
The risk of infiltrating adjacent organs is high if early detection is not made.

Fig. 2.1 (a) Human colorectal histology section showing the distinct layers that compose its wall 
and (b) The gross features of an invasive colorectal adenocarcinoma viewed in a surgical speci-
men. Images collected at the Portuguese Oncology Institute of Porto, Portugal (reprinted with 
permission from Ref. [114]
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With the objective of obtaining discriminating data between normal and patho-
logical mucosa from the human colorectal wall that can be useful for future diag-
nostic procedures, both tissues were submitted to OC treatments with glucose 
solutions. Glucose was diluted in distilled water in different concentrations between 
10 and 54% to obtain different osmolarities. After collection from surgical speci-
mens, all fresh normal and pathological samples were prepared with a cryostat 
microtome with approximated circular slab-form, having a diameter of ~1 cm and a 
fixed thickness of d = 0.5 mm [21]. Considering a particular treatment with a spe-
cific glucose osmolarity, a tissue sample was immersed in the solution for 30 min to 
acquire the collimated transmittance (Tc) spectra during the treatment. The solution 
had a volume of 10× the sample volume. Three normal mucosa samples were treated 
with each of the solutions and such procedure was repeated for pathological sam-
ples [21, 114]. Since both tissues and glucose do not show significant absorption 
bands between 600 and 800 nm, wavelengths within this range were selected to 
evaluate Tc time dependence. Figure 2.2 shows the mean Tc time dependencies at 
those wavelengths for some of the treatments of normal and pathological mucosa.

According to graphs (a) and (b) of Fig. 2.2, solutions containing low glucose 
concentrations have more water than the mobile water in the tissues and conse-
quently the water flux out and OCA flux in are limited to the first 5–6 min of treat-
ment. This means that the data after the beginning of saturation must be neglected 
for the following calculations [21, 114]. Similar behavior is presented in graphs (e) 
and (f) for treatments with highly concentrated solutions. The water balance between 
the treating solution and the mobile water in the tissues has been found for solutions 
containing 40% of glucose for normal mucosa and containing 35% of glucose for 
pathological mucosa. In these cases (represented in graphs (c) and (d) of Fig. 2.2), 
a smooth behavior is obtained during the entire treatment.

With the exception of the data in graphs (c) and (d) of Fig. 2.2, the data from all 
other treatments needed to be trimmed to the first minutes, before saturation is 
reached. The following step consisted of displacing each of the Tc time dependen-
cies to have Tc = 0 at t = 0 (untreated tissue) and then normalizing to the highest 
value in the dataset. After this rearrangement of Tc data, each of the datasets in each 
treatment has been fitted with a curve described by Eq. (2.5) to estimate τ. By aver-
aging the obtained τ values for each particular treatment, a representation of the 
mean diffusion time as a function of glucose concentration in the treating solution 
can be made. Such representation is made in Fig. 2.3 for normal and pathological 
mucosa of the human colorectal wall [21, 114]. The correspondent numerical values 
are presented in Table 2.1.

The estimated diffusion time values in Fig.  2.3 have been connected using a 
smooth spline to evaluate their dependence on the glucose concentration in the 
treating solution. We see from Fig. 2.3 that the diffusion time is maximum for a 
glucose concentration of 35.7% in the treating solution for the case of pathological 
mucosa and for a concentration of 40.6% in the case of normal mucosa. This means 
that pathological mucosa has a higher mobile water content (64.3%) than normal 
mucosa (59.4%). From Fig. 2.3, we can also retrieve the τ values for unique glucose 
(or water) diffusion in both tissues. For glucose, τ has a mean value of 302.4 s in 
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Fig. 2.2 Tc time dependencies of normal mucosa treated with: (a) 20% glucose, (c) 40% glucose, 
and (e) 54% glucose. Tc time dependencies of pathological mucosa treated with: (b) 20% glucose, 
(d) 35% glucose, and (f) 54% glucose (reprinted with permission from Ref. [114])

Fig. 2.3 Mean diffusion time as a function of the glucose concentration in the treating solution 
(reprinted with permission from Ref. [114])
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Table 2.1 Mean and standard deviation values for the glucose diffusion time in normal and 
pathological colorectal mucosa

Tissue type Normal mucosa
Glucose concentration 
(%) 10 15 20 25 30 35 40 45 50 54

Mean diffusion time 
(τ ) (s)

— — 65.1 69.4 81.1 138.4 299.2 211.5 104.3 55.7

Standard deviation — — 0.2 3.2 6.1 5.9 4.7 6.1 1.3 5.9
Pathological mucosa

Mean diffusion time 
(τ ) (s)

62.9 68.6 71.1 73.9 136.1 320.6 234.9 139.0 82.7 58.4

Standard deviation 0.5 0.2 0.5 1.5 1.1 10.6 4.1 14.0 2.0 1.7

normal mucosa and a mean value of 325.1 s in pathological mucosa, showing that it 
takes more time for glucose to diffuse in pathological tissue. For water, τ presents 
similar mean values for both tissues: 55.7 s in normal mucosa and 58.4 s in patho-
logical mucosa [21, 114].

Using these values in Eq. (2.2) with the corresponding sample thickness d 
retrieved from the graphs in Fig. 2.4, the diffusion coefficients for glucose and water 
can be calculated for normal and pathological mucosa. These values are: 
Dglucose  =  5.8  ×  10−7  cm2/s and DH O2

  =  3.3  ×  10−6  cm2/s in normal mucosa and 
Dglucose = 4.4 × 10−7 cm2/s and DH O2

 = 2.4 × 10−6 cm2/s in pathological mucosa [114].
Each of the datasets in graphs of Fig. 2.4 represents the mean of three thickness 

variation studies, where all natural samples (at t  =  0) had 0.5  mm thickness. 
Considering the initial thickness decrease that is associated with tissue dehydration 
and occurs within the first 2 min, the standard deviation (SD) for the three studies 
begins with high values, typically near 10% of the mean thickness values repre-
sented. SD decreases during the dehydration of tissues, reaching values between 1.5 
and 2% of the mean thickness near 2 min of treatment. After 2 min, as a result of 
glucose inclusion, thickness begins to increase again until it stabilizes between 10 
and 15 min. From 2 min to thickness stabilization, the SD decreases to zero.

This study showed that glucose diffusion properties are different for normal and 
pathological colorectal mucosa. It has also demonstrated the existence of different 
mobile water content in both tissues. Similar studies can be performed for other 
 tissues and using different OCAs. Although this method can be applied only for 
ex vivo tissues, an in vivo methodology can also be applied using a diffuse reflec-
tance (Rd) setup [110] to acquire spectral measurements and OCT imaging to evalu-
ate sample thickness variations during treatment [25].

Combination OCT with OC has a great prospect as a routine research tool for 
analysis of identifying the boundaries between normal and diseased breast tissue 
in vitro and in vivo. Ref. [32] shows that the OCT imaging depth and imaging con-
trast of breast tissues have been improved after application of 60% glycerol in the 
2-D OCT images. Besides, the permeability coefficient of a hyperosmotic agent in 
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a specific region of tissues ex  vivo can be calculated by the OCT signal slope 
(OCTSS) method, which is computed by analyzing the slope changes in the OCT 
signal caused by the hyperosmotic agent diffusion [24, 25, 27, 32]. Due to the OCA 
diffusion in tissues, the light scattering coefficient decreases in the specific depth 
region, which can be clearly seen from the OCTSS graphs (see Fig. 2.5) [32].

It is clearly seen that the slope of OCT signals for breast tissues decreases with 
the diffusion of glycerol into the tissues, therefore, the water and intercellular fluids 
are drawn out from tissues. Then the reverse process starts due to water is drawn 
back into the cells as a result of its affinity for water.

Fig. 2.4 Thickness variations for (a) normal and (b) pathological mucosa under treatment with 
glucose solutions (reprinted with permission from Ref. [114])
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Fig. 2.5 OCTSS graphs as a function of time from normal breast tissues treatment with 60% 
glycerol (a), breast cancer tissues treatment with 60% glycerol (b). The monitored region was 
about 290 μm in thickness and 300 μm away from the surface. The tick marks indicate the interval 
of glycerol diffusion (reprinted with permission from Ref. [32])
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A linear region with minimal fluctuations from the 1-D OCT signal is selected to 
analyse the changes of the sample optical properties as a function of time after treat-
ment. The permeability coefficients of the 60% glycerol of breast tissues were cal-
culated using the following equation:

 

P
z

t
= region

region

,

 

(2.6)

where P is the permeability coefficients, the zregion is the thickness of the selection 
region, and tregion is the time for diffusing through that region [25].

The permeability coefficient of 60% glycerol is (3.14 ± 0.07) × 10−5 cm/s in 
breast cancer tissues, and (0.89 ± 0.02) × 10−5 cm/s in normal breast tissues, respec-
tively. Thus, the permeability coefficient of glycerol in cancer tissues is 3.54-fold 
than that in normal tissues.

The same approach has been used for the study of diffusion of 20% aqueous 
solution of glucose in normal stomach and gastric tumor tissues [115]. The perme-
ability coefficients in a model gastric cancer and stomach tissue have been evaluated 
as (5.32 ± 0.17) × 10−5 cm/s and (0.94 ± 0.04) × 10−5 cm/s, respectively, that also 
demonstrates a higher permeability coefficient of tumor tissues compared to normal 
tissues quantified from OCT images.

It has been shown that terahertz radiation is promising for establishing early 
stages of skin cancer [116, 117]. As compared with healthy tissues, cancer cells 
contain a larger amount of water, which intensively absorbs radiation in the THz. 
The use of THz spectroscopy (from 16 to 30 THz) has allowed for estimating dehy-
dration degree of skin and model tumor of liver cancer in rat under action of the 
following OCAs: 40% aqueous solution of glucose, propylene glycol (99.9%), 
polyethylene glycol 600, and glycerol (99.9%). Significant increase in transmission 
for the transplanted-tumor tissue has been observed in this spectral range due to 
hyperosmotic impact of the OCAs that can be an addition criterion of tissue malig-
nancy [5].

2.4  Discrimination of Pathological from Normal Tissues 
Using Protein Dissociation

The third OC mechanism, protein dissociation, is also important and it allows dis-
criminating pathological from normal tissues. According to Ref. [104], pathological 
tissues have higher protein concentrations than normal tissues. It has also been dem-
onstrated that during the application of OC treatments to the skin, proteins dissoci-
ate under the action of agents like glycerol or ethylene glycol [118, 119], and such 
dissociation is reversible after treatment application [118]. Proteins present a sig-
nificant absorption band at 200 nm [120], meaning that if we can measure at that 
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wavelength, we can possibly obtain differentiated data for normal and pathological 
tissues regarding protein dissociation. Using both normal and pathological colorec-
tal mucosa samples, Tc spectra between 200 and 1000 nm from these samples under 
treatment with glycerol (93% pure) were measured. The samples were prepared in 
the same way as the samples used in the study to evaluate glucose diffusion proper-
ties presented above. As we can see from Fig. 2.6, the Tc levels at deep UV are very 
low for both tissues. For visible—NIR wavelengths, Tc increases fast at the begin-
ning and then saturates. For deep UV, near 200 nm, we do not see variations due to 
the low levels of Tc.

Fig. 2.6 Time dependence for tissue Tc spectra during treatment with 93% glycerol: (a) normal 
mucosa and (b) pathological mucosa
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If we zoom the above graphs between 200 and 350 nm, we can see that OC also 
creates a Tc increase on both sides of the DNA absorption band (located at 260 nm 
[120])—see Fig. 2.7.

From the graphs in Fig. 2.7 we already see that Tc also increases above and below 
260 nm, but the increase observed at 200 nm seems negligible. For better visualiza-
tion of such increase at short wavelengths and comparison of it with the increase 
seen for visible-NIR wavelengths, it is need to calculate the percent increase of Tc 
for the entire wavelength range, using Eq. (2.7):

Fig. 2.7 Tc increase at low wavelengths during treatment with 93% glycerol: (a) normal mucosa 
and (b) pathological mucosa
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(2.7)

The resulting graphs from this calculation are presented in Fig. 2.8.
The graphs in Fig. 2.8 provide more information than the previous. First, we see 

that above 260 nm, Tc increases fast at the beginning and then saturates. This behav-
ior is observed between 260 nm (DNA absorption band [120]) and 420 nm (Soret 
band) and above 420 nm. In these ranges, the Tc time dependencies can be fitted 

Fig. 2.8 Percent increase of Tc during treatment with 93% glycerol: (a) normal mucosa and (b) 
pathological mucosa
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with a curve described by Eq. (2.5), as we have done for the determination of glu-
cose diffusion properties above. For wavelengths shorter than 260 nm, we see a 
different type of increase in Tc. Such anomalous increase is created by protein dis-
sociation, and different magnitudes for this increase between normal and pathologi-
cal tissues are observed. Considering the 30 min treatment, we see that for normal 
mucosa, the percent increase reaches approximately 950%, while for the pathologi-
cal mucosa, a percent increase of about 3200% is observed. The fact that a higher 
percent increase is observed for pathological mucosa proves the concept that these 
tissues have higher protein concentrations than normal mucosa. Considering the 
time dependencies for both tissues at 200 nm, the data cannot be fitted by Eq. (2.5). 
Since for future diagnostic procedures it is desirable to use a fast method, we have 
considered only the data between 3 and 10 min. Such data can be fitted for both tis-
sues by a straight line, as presented in graphs of Fig. 2.9.

Since the data between 3 and 10 min has linear behavior, the slope of the calcu-
lated lines can be found and shown that it is bigger for pathological mucosa. The 
slope obtained for the case of normal mucosa is 27.4. while for the case of patho-
logical mucosa the slope is 79.1.

Although these measurements have been obtained from ex vivo tissue samples, 
same methodology can be implemented using an Rd setup for in  vivo 
measurements.

2.5  Optical Clearing Assisted Multimodal Tumor Imaging

The OC technique allows greatly enhancing the resolution, contrast, and visualiza-
tion depth of optical methods for tumor diagnostics. In particular, OC-assisted 
microscopy has opened up new avenues to visualize the entire central nervous sys-
tem, blood microvessel system, whole organs, and whole body with subcellular 
resolution in health and tumors, allowed for single-cell studies and biomedical engi-
neering [121]. For example, Cui et  al. [122] used OCA in Hyper Spectral 

Fig. 2.9 Linear fitting of the percent increase of Tc at 200 nm for: (a) normal mucosa and (b) 
pathological mucosa
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Dark-Field Microscopy (HSDFM) that allowed quantitative mapping of the dimer-
ization-activated receptor kinase HER2 (Human Epidermal Growth Factor Receptor 
2) in a single cancer cell by non-fluorescent approach. In situ multiplex detection of 
mRNA and HER2protein was made possible by HSDFM in a dual-labeled cell (see 
Fig. 2.10a). The authors also showed high spatiotemporal resolution at the charac-
terization of intracellularly grown gold particulates achieved owing to optical clear-
ing [122].

Using OC-assisted label-free stimulated Raman scattering microscopy Wei et al. 
[123] could reveal significant differences in lipid- to- protein ratios between healthy 
brain and glioblastoma tissues and interestingly, also between glioblastoma tumor 
cells itself. Fluorescent confocal imaging, two-photon imaging, photoacoustic 
imaging, and image reconstruction of optically cleared brain tissue (using CLARITY 
and iDISCO) allowed quantification of the 3D microvascular characteristics in 
healthy mouse brains and in tissues with diffuse, infiltrative growing GBM8 brain 
tumors [124].

Treatment of human prostate biopsy specimens [125] and bladder tumors [126] 
with either CUBIC or PACT resulted in GFP (Green Fluorescent Protein) fluores-
cence preservation, minimal tissue deformation, and feasibility of whole-mount 
two-photon imaging. van Royen et al. [127] showed that Murray’s Clear combined 
with immunochemistry allowed to shed light on architectural differences between 
grades of prostate cancer. Using iDISCO protocols the authors characterized 3D 

Fig. 2.10 (a) Multiplex detection of HER2 protein and mRNA in the same cancer cell. (Scale 
bars: 10 μm) (reprinted from Ref. [122] with permission), (b) Visualization of tumor cells (red) and 
tumor-associated macrophages (green) in lung (reprinted from Ref. [133] with permission), (c) 
Simultaneous visualization of cancer metastases within various organs at the whole-body clearing 
(reprinted with permission from Ref. [135])
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architecture of both benign and pre-cancerous prostate lesions [128] and described 
two distinct growth patterns of prostate cancer in patients [129].

Hume et al. [130] proved CUBIC to be an effective clearing agent for human 
breast tumor biopsy and further applied this method in conjunction with immunos-
taining to monitor structural integrity of engineered 3D in vitro adipose tissue model 
recapitulating breast tumor microenvironment.

Pioneering lung BABB clearing was reported by Scott et  al. [131], who pre-
sented the first detailed view on the relationship between nerves, vessels, and air-
ways architecture, detected novel patterns of pleural innervations, and connectivity 
patterns of pleural nerves. Solvent-based clearing proved also beneficial for the 
detection and analysis of lung tumor metastases [132]. OC of lungs was also essen-
tial for studies analyzing tumor-immune microenvironment, for example, 3D pat-
tern of tumor-associated macrophages distribution (see Fig. 2.10b) [133, 134].

Kubota et al. [135] demonstrated the possibilities of whole-body clearing for the 
monitoring of tumor metastases in the variety of cancer cell lines using CUBIC (see 
Fig. 2.10c).

OC was successfully used to monitor the hidden tumors: for example, in laser 
speckle contrast imaging of microvessels [136] and prostate tumor [8]; in optical 
transmission and emission tomography of blood vessels stained with light-absorb-
ing inks [137, 138]; in Raman spectroscopy of subcutaneous tumor [139].

Pires et  al. [140] used white-light diffuse reflectance spectroscopy and near-
infrared optical coherence tomography to evaluate the effect of a topically applied 
OCA in melanoma in vivo and to image the microvascular network. Improved con-
trast resolution of the microvasculature in the pigmented melanoma tissue was 
achieved with optical clearing to a depth of ~750 μm.

2.6  Conclusion

We have reviewed the specific features and methods of optical clearing related to 
visualization of tumors and differentiation of healthy and malignant tissues. The 
impact of the OCA on a tissue allows for efficient control of the optical properties, 
particularly, the reduction of tissue scattering coefficient, which facilitates the 
increase of efficiency of optical imaging (optical biopsy) in cancer diagnostics. 
Differences in structure and composition of normal and pathological tissue cause 
differences in OCA diffusivity and protein dissociation during OC treatments that 
may also allow discrimination between them.
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Chapter 3
Exploring Tumor Metabolism  
with Time- Resolved Fluorescence Methods: 
from Single Cells to a Whole Tumor

Marina V. Shirmanova, Vladislav I. Shcheslavskiy, Maria M. Lukina, 
Wolfgang Becker, and Elena V. Zagaynova

3.1  Introduction

Multiple alterations in cancer metabolism are now evident. The key underlying rea-
sons for metabolic changes accompanying neoplastic transformation are the high 
bioenergetic and biosynthetic demands of growing and proliferating cells and adap-
tation to limited nutrient and oxygen supply and to an acidic environment.

One of the primary metabolic features of cancer is enhanced rate of glycolysis. 
While it is natural to switch to glycolysis in hypoxic conditions, which occur in 
many advanced tumors, cancer cells actively use glycolysis even in the presence of 
oxygen—a phenomenon known as the Warburg effect—or aerobic glycolysis [1]. 
Aerobic glycolysis makes cancer cells insensitive to fluctuations of oxygen in cel-
lular environment and gives them several other important advantages. Specifically, 
it provides a constant supply of metabolic intermediates to support tumor growth, 
reduces level of reactive oxygen species (ROS), thus, protecting cells against ROS- 
mediated cell death, generates adenosine triphosphate (ATP) more rapidly than oxi-
dative phosphorylation (OXPHOS), and produces lactate that has an important 
functional role in promoting tumorigenesis [2, 3].
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Mitochondrial respiration is frequently impaired in cancer cells due to dysfunc-
tional mitochondria. Meanwhile, there is a growing body of evidence that some 
cancer cells preserve mitochondrial function and rely mainly on OXPHOS for 
energy production [4, 5].

The fate of lactate secreted by glycolytic cancer cells remains to be clarified. 
Recent findings suggest that adjacent oxidative cancer cells can consume and use it 
as a source for the tricarboxylic acid (TCA) cycle intermediates and for ATP pro-
duction [6]. Moreover, cancer-associated fibroblasts, being in a metabolic crosstalk 
with cancer cells, also can extrude lactate to directly feed cancer cells [7].

Glucose is a major, but not the only fuel source for cancer cells. Many cancer 
cells have been shown to rely heavily upon an exogenous supply of glutamine [8]. 
Glutamine is converted to glutamate, which is further metabolized to α-ketoglutarate 
for utilization through the TCA cycle. Another important energy source in cancer 
cells is fatty acids, catabolized by the fatty acid oxidation (FAO; also known as 
β-oxidation) pathway [9]. FAO produces a pool of the reduced electron carriers 
NADH and FADH2, which are oxidized in the mitochondrial electron transport 
chain for ATP production, and acetyl CoA, which together with oxaloacetate is 
transformed in the TCA cycle into citrate, which on export to the cytoplasm, can 
enter NADPH-producing reactions.

There are number of factors that collectively determine metabolic phenotype of a 
tumor, including the tissue of origin, the underlying cancer genetics and subtype, the 
tumor microenvironment, and other variables such as diet and host physiology, which 
lead to a vast intertumor heterogeneity in metabolism. In addition, individual cells 
within a tumor can explore distinct metabolic programs. The emerging view on cancer 
metabolism is that malignant cells have an ability to switch between different biochemi-
cal pathways in order to satisfy their immediate biosynthetic and energetic demands and 
to adopt to varying microenvironment [10]. However, the mechanisms by which cancer 
cells coordinate their metabolic activities and the conditions upon which cancer cells 
upregulate specific metabolic pathways are poorly defined.

Multiple studies suggest that cellular metabolism has an impact not only on bio-
logical behavior of tumors, but also on treatment response. The links between meta-
bolic processes and response to cancer therapeutics are complex and not fully 
understood. On the one side, metabolism and its derangement are involved in the 
initiation and execution of cell death at multiple levels and in regulation of cell sur-
vival [11, 12]. A hallmark of cancer cells is the ability to evade apoptosis. On the 
other side, increased aerobic glycolysis and glutamine metabolism under suppres-
sion of mitochondrial respiration in cancer cells contribute to resistance to various 
therapies by providing higher intracellular ATP and NADPH levels and extracellu-
lar acidification, to name a few proposed mechanisms [13]. Significant intertumor 
and intratumor heterogeneity and metabolic plasticity of tumors impose additional 
difficulties for cancer treatment.

To reach a deeper understanding of cancer metabolism, highly sensitive, quanti-
tative, high-resolution metabolic assays are critically needed. Established methods 
to characterize cellular metabolic activity include both solely laboratory techniques, 
e.g. mass spectrometry, routine analytical methods, molecular and genetic analyses, 
optical biosensors, and clinical imaging, e.g. positron emission tomography (PET) 
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with 18F-labeled fluoro-2-deoxyglucose, 13C magnetic resonance spectroscopy 
(MRS). All these methods, however, either destructive or require the use of exoge-
nous labeling of molecules of interests. Time-resolved optical imaging of endoge-
nous fluorophores has emerged as a powerful approach for non-invasive, label-free 
assessment of metabolic state of living cells in vitro and tissues in vivo.

The book chapter is organized as following. Section 3.2 gives biochemical basis 
of optical metabolic imaging by introducing fluorescent metabolic cofactors. In 
Sect. 3.3 we address theoretical background for time-correlated single photon 
counting (TSCPC) technique as all the described systems are based on it. 
Fluorescence lifetime imaging on a microscopic scale together with the examples of 
metabolic imaging in cancer cells, spheroids, and tumors is presented in Sect. 3.4. 
Section 3.5 reports about the developed system for fiber-based fluorescence lifetime 
measurements and its applications for interrogation of metabolic state of a tumor 
in vivo. Section 3.6 describes fluorescence lifetime imaging on a macroscale and its 
applications in cancer studies. Finally, the conclusions of the book chapter are pre-
sented in the Summary section.

3.2  Fluorescence Lifetime of Metabolic Cofactors 
as an Indicator of a Metabolic State

There are two groups of fluorescent molecules involved in various metabolic path-
ways in cells (1) reduced nicotinamide adenine dinucleotide NADH and its phos-
phorylated derivative NADPH (collectively denoted NAD(P)H) and (2) oxidized 
flavin adenine dinucleotide FAD and flavin mononucleotide FMN. These molecules 
function as coenzymes, being linked with various dehydrogenases. There is a con-
stant interchange between the reduced and the oxidized states of these molecules, 
which jointly constitute a redox couple (NAD+/NADH, NADP+/NADPH, FAD/
FADH2, FMN/FMNH2). The primary role of these cofactors, except NADPH, is 
the transfer of electrons across the respiratory chain of mitochondria. Reduced elec-
tron carriers NADH and FADH2 are produced in catabolic pathways by transferring 
electrons from the substrate to NAD+ and FAD. Subsequently, NADH feeds elec-
trons into complex I and FADH2—into complex II of the mitochondrial electron 
transport chain (ETC). ETC and oxidative phosphorylation (OXPHOS) reoxidize 
NADH and FADH2 and trap the released energy in the form of adenosine triphos-
phate (ATP). FMN, a prosthetic group of NADH-ubiquinone oxidoreductase (com-
plex I), accepts electrons from NADH and passes to FeS centers (iron-sulfur 
clusters). NADPH acts as a reducing agent during the synthesis of nucleic acids and 
lipids and plays a central role in defense against oxidative damage and detoxifica-
tion of reactive oxygen species.

NAD(P) H, FAD and FMN possess intrinsic fluorescence, detection of which is 
the basis for a group of methods referred as “optical metabolic imaging.” NADH 
and NADPH are spectrally identical—excitation peaks at 260  nm and 340  nm, 
emission peak at 460 nm. Flavin cofactors absorb light maximally at ~450 nm and 
emit at ~520 nm, with minor variations in spectra of FAD and FMN.
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While fluorescence of NAD(P)H is derived from both mitochondria and cytosol 
(mitochondrial NAD(P)H fluorescence is dominant), flavin fluorescence originates 
predominantly from mitochondrial flavoproteins [14], although additional subcel-
lular localizations (e.g., nucleus) cannot be ruled out.

The first approach to probe metabolism using fluorescence of the metabolic 
cofactors was developed in 1970th by B. Chance, who measured oxidation- reduction 
states of mitochondria taking the ratio of the fluorescence intensities of oxidized 
flavoproteins to reduced NADH [15, 16].

The “optical redox ratio” has been widely used as a simple, label-free metric of 
cellular redox states [16–18]. In a general case, the redox ratio is sensitive to the 
changes in the rates of glycolysis and mitochondrial respiration. NADH is gener-
ated during glycolysis, therefore enhanced glycolysis causes decrease in FAD/
NADH ratio, which is often observed in cancer. Activation of oxidative metabolism 
increases the portion of oxidized and decreases the portion of reduced cofactors, 
which results in increased FAD/NADH ratio. However, the intensity-based redox 
ratio imaging and interpretation face some challenges associated with the fact that 
emission intensity is influenced by many factors besides concentration of the fluo-
rophores, e.g. conformation or binding to proteins, light scattering and absorption—
especially in tissues, excitation power, and participation of the same cofactors in 
various metabolic pathways.

Fluorescence lifetimes of NAD(P)H and flavoproteins provide an additional 
dimension to probing the cellular metabolic status.

For NAD(P)H, the fluorescence lifetime largely depends on binding to enzyme. 
This observation was first reported by Lakowicz et al. in 1992 [19]. Freely diffusing 
NAD(P)H has distinctly shorter fluorescence lifetime (~0.3–0.5 ns) due to the large 
rate of non-radiative relaxation mediated by small scale motion of the nicotinamide 
ring [20]. The fluorescence lifetime of protein-bound NADH is, at least, threefold 
higher and strongly vary—on average, in the range 1.2–2.5 ns in solutions [21, 22], 
when bound to different enzymes, which is presumably attributed to different levels 
of conformational restriction upon binding. Moreover, the fluorescence lifetime of 
enzyme-bound NADH may increase upon formation of a ternary complex with the 
specific substrate [23]. Protein-bound NADPH possesses a significantly larger fluo-
rescence lifetime (~4.4 ns) than protein-bound NADH within the cellular environ-
ment [24]. Therefore, fluorescence lifetime of NAD(P)H depends on the composition 
and activity of NADH-binding enzymes and the amount of the phosphorylated form 
of NADH.

Currently, nonlinear curve-fitting analysis is the most common approach to ana-
lyze fluorescence lifetimes. With a large range of different enzymes to which 
NAD(P)H can bind, it is natural that its fluorescence is characterized by a complex 
multi-exponential decay. However, limited photon counts, acquisition and computa-
tional times, especially when measurements are made in live cells or tissues, allow 
to resolve most effectively only two lifetime components. When using a bi- 
exponential function for fitting NAD(P)H fluorescence decay, the first (short, t1) 
component is attributed to its free, and the second (long, t2) component to its 
protein- bound state, and their relative amplitudes (a1 ~ 85% and a2 ~ 15%) reflect 
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the relative amounts of free and protein-bound NAD(P)H. The three-exponential 
model for fitting NAD(P)H fluorescence decay is appropriate for estimation of the 
contribution of protein-bound NADPH, as was suggested by Blacker et  al. [24]. 
Three-exponential fitting requires larger photon numbers compared to single and 
bi-exponential fitting. Therefore, fixation of the one of the fluorescence lifetimes 
significantly relaxes the requirements on the minimum photon numbers and speeds 
up the computational times. This approach is more appropriate for the cells with 
increased NADPH level, for example, for stem cells undergoing adipogenic differ-
entiation [25]. In general, NADPH contribution in FLIM of most cell and tissue 
types is not taken into account, because of its much lower concentration compared 
with NADH and insensitivity to perturbations in energy metabolism [26].

There is also possible to use four-exponential model for fitting NAD(P)H fluores-
cence decay curves bearing in mind that the free NADH has two decay components 
[27]. However, as in case with three-exponential fitting, one has to fix at least two 
lifetime components to be able to analyze the data with the limited photon budget.

We have to mention that phasor analysis has become recently a quite effective 
tool in the evaluation of the fluorescence lifetime data of NADH [28, 29]. However, 
the detailed description of it is out of scope of this book chapter.

In contrast to NAD(P)H, flavin cofactor in the form of FAD or FMN, more spe-
cifically termed a prosthetic group, is permanently linked to the protein [30]. 
Fluorescence of FAD decays multiexponentially with two major lifetime compo-
nents—around 7 ps and 2.7 ns in aqueous solution [31]. The presence of two life-
time components is due to existence of FAD in two conformations—“closed” or 
stacked, in which the coplanar isoalloxazine and adenine rings interact through π-π 
interactions, resulting in very efficient fluorescence quenching, and “open” or 
unstacked, in which the two aromatic ring are separated from each other. The major-
ity of FAD molecules are in a closed conformation, that determines low quantum 
yield of its fluorescence (0.033) [32]. FMN and riboflavin (vitamin B2), the precur-
sor of flavin cofactors, exhibit monoexponential fluorescence decays with lifetime 
~4.7 ns and ~5.1 ns, correspondingly [17].

Among flavins, FAD is the most abundant in tissues, while concentration of 
FMN is typically 3–5 times lower and riboflavin—40-400 times lower [33, 34], 
although in cultured cells riboflavin concentration can be comparable with FAD 
[35]. For flavoproteins, the emission maxima and quantum yield are dependent on 
the nature of the flavin-binding site [36].

It is common for fluorescence decay of the cellular flavins to be best fit by a bi- 
exponential model, where the short lifetime component (~0.3 to 0.4 ns, ~75 to 85%) 
is consistent with the quenched state of FAD and the long lifetime component (~2.5 to 
2.8 ns, ~15 to 25%) contains contributions from unquenched FAD, FMN, and ribofla-
vin. Given that the discrimination of different flavins within cells is problematic, bio-
chemical interpretation of the fluorescence lifetime measurements remains a challenge.

Furthermore, in cancer cells and tumors with mitochondrial respiration malfunc-
tion fluorescence emission from flavins is often fairly weak and insufficient to col-
lect the required number of photons for FLIM. Therefore, most of the metabolic 
studies with FLIM are concentrated on NAD(P)H.
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3.3  Technical Basis of Time-Correlated Single 
Photon Counting

Time-correlated single photon counting (TCSPC) is a technique that allows to 
record photons, measure their time relative to the excitation pulse, and build up a 
histogram of the photon times [37]. The technique uses the fact that for low level, 
high-repetition-rate signals the probability to detect one photon per laser period is 
extremely low. That means that there are many signal periods that do not contain 
photons, and only few contain just one.

To measure fluorescence decay curves, one excites the sample with a train of 
short pulses (typically in the ps or fs range). Then emitted fluorescence photons are 
registered by a detector operating in a single photon counting mode, and their time 
with respect to the excitation pulse is recorded. With each pulse, more and more 
photons are recorded and the statistical distribution of the photons within the laser 
period is built up. The principle of TCSPC is shown in Fig. 3.1.

This method of decay curves measurements is very effective as all the registered 
photons contribute to the statistical distribution. The efficiency in this case is much 
higher than for recording techniques that shift a time-gate over the optical wave-
form [38].

Another advantage of using TCSPC for fluorescence decay measurements com-
pared to other methods is that its time resolution is better than the width of the 
single- electron response of the detector, as the arrival times of the detector pulses 

Fig. 3.1 The principle of time-correlated single photon counting technique
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can be measured with an accuracy much better than the width of the pulses. That in 
its turn means that the instrument response function determined by the transient 
time spread of the pulses at the detector can be much shorter than the single photon 
response of the detector. Finally, TCSPC technique is not sensitive to the waveform 
changes during the recording process as it measures an average waveform.

On the other side, if a time-gating approach is used, this may result in a distorted 
waveform in this case.

The photon distribution can be built up not only with respect to the time after the 
excitation pulse (one-dimensional TCSPC), but also with respect to other parame-
ters (multi-dimensional TCSPC), like the spatial coordinates, the wavelength, the 
time from the start of experiment, polarization, etc. Depending on which and how 
many additional parameters are used, different photon distributions are obtained. 
The data that will be presented later in this book chapter is based on the TCSPC 
measurements recorded with one or two variable parameters. In the first case (one 
parameter-time after the excitation laser pulse) the experiments represent single 
point, or fluorescence lifetime spectroscopy measurements. In the latter case (two 
parameters, and that are the time after the excitation pulse in each laser period and 
the spatial coordinates within an image area), the measurements result in the build-
ing up fluorescence lifetime image, or FLIM.

3.4  FLIM-Microscopy

The principle of multi-dimensional TCSPC in laser scanning microscopy (LSM) is 
shown in Fig. 3.2.

In LSM, the sample is scanned with a focused beam of a pulsed laser (usually 
femtosecond or picosecond). Unlike one-dimensional TCSPC, the multi-parameter 
TCSPC involves determination of the laser beam position in addition to counting 
the number of photons in each period of laser pulses and estimation of the arrival 
times at  the detector. The spatial coordinates are determined by transferring scan 
synchronization signals from the scanner to the single photon counting module: a 
“frame” pulse indicates the beginning of a new frame, a “line” pulse—the beginning 

Fig. 3.2 Concept of multi-dimensional TCSPC
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of a new line, and a pixel pulse—the transition to the new pixel within the line. The 
spatial coordinates of the photons are determined by counting these pulses.

Based on the registered parameters (number of photons, photon arrival times, 
and spatial coordinates), spatial-temporal photon histograms which are in the basis 
of the time-resolved fluorescence microscopy, or fluorescence lifetime imaging 
are built up. If other photon parameters (e.g., wavelength) are registered in addition 
to spatial coordinates, this represents the three-parameter version of FLIM—spec-
tral time-resolved fluorescence microscopy [39, 40].

From the point of view of biological studies, it is essential that the TCSPC-based 
FLIM allows identification of curves with complex (multi-exponent) profiles of 
fluorescence decay. It is also important that this method is insensitive to fluctuations 
in the laser power and fully compatible with fast scanning realized in modern LSM: 
scanning is continued until the photon statistics sufficient for the generation of reli-
able results of image analysis is accumulated. It should be mentioned that while 
photon statistics is not so essential in the standard fluorescence microscopy, the 
number of photons is a defining factor for accurate data analysis in the time-resolved 
fluorescence microscopy.

Apparently, the more complex the exponential descriptions of the decay curves 
are, the higher number of photons must be accumulated for correct estimation of 
fluorescence lifetimes. That is why the times for data accumulation in the TCSPC- 
based FLIM are longer than in the standard LSM.

Furthermore, the counting rate in the TCSPC-based systems is limited by the so- 
called accumulation effects [37]. The essence of these effects lies in the fact that if 
a very powerful laser radiation hits the sample and the rate of fluorescence photon 
emission is very high, the probability of the second photon arrival at the detector 
over one laser period (which means that this photon will be “ignored” by the elec-
tronics) increases, which can alter the decay curve profile. To avoid this, the rate of 
photon emission by the sample should not exceed 10% of the laser pulse repetition 
rate. This mode is realized in the majority of LSM setups to prevent the photodeg-
radation of biological samples.

Laser scanning microscopes that allow to do FLIM experiments are typically 
equipped with either ps or fs lasers. While one-photon excitation with ps lasers 
makes a system cheaper, there are number of advantages of using two-photon exci-
tation with fs lasers. First, multiphoton processes are excited only at the focal spot 
where the photon flux density is high enough for the nonlinear process to occur, 
eliminating the need for the confocal detector pinhole. Second, the illuminating 
laser is typically operates in the near infrared rather than in the visible or ultraviolet 
spectral regions. Using such long excitation wavelengths results in a deeper penetra-
tion due to lower scattering and causes less photodamage to the samples [41].

The first metabolic study with the use of multiphoton TSCPC-based FLIM- 
microscopy was reported by Bird et al. in 2005 [42]. The authors measured fluores-
cence lifetimes and ratio of free and protein-bound NADH in live cultured human 
breast cells upon chemical perturbations.

Multiphoton FLIM-microscopy of NADH was reported to detect the changes in 
metabolism with neoplasia development in vivo [43]. Using hamster cheek pouch 
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model of carcinogenesis, the authors showed that the fluorescence lifetime of 
protein- bound NADH and its contribution to the fluorescence signal could serve as 
a marker that allowed differentiation between normal and pre-cancer tissue. Later 
the ability of FLIM-microscopy to distinguish cancer cells from normal ones on the 
basis of autofluorescence was demonstrated in different systems—from cultured 
cells of different origin to tumor samples. For example, this was shown for leukemia 
cells in vitro [44], breast cancer cells [21, 45], squamous carcinoma cells [46], head 
and neck squamous cell carcinoma [47] and for human lung cancer ex vivo [48], 
experimental glioma tissue [49], and mouse breast tumors [50]. Several of these 
studies [21, 44, 45, 47, 48] observed a shift towards shorter mean fluorescence life-
time and a higher ratio of free/bound NADH in malignant cells, which correlated 
with their glycolytic phenotype, while others reported on elongation of the NADH 
lifetime in cancer [45, 46, 49, 50], suggesting an important role of 
OXPHOS. Combination of metabolic FLIM-microscopy with phosphorescence 
lifetime measurements from oxygen-sensitive probes was shown to be promising 
approach to explore a relation between metabolic phenotypes and oxygen tension 
[51, 52].

A significant advantage of FLIM-microscopy over other FLIM modalities is the 
ability to produce a (sub)cellular resolution, which is essential in terms of metabolic 
heterogeneity at the cellular level.

As revealed by two-photon FLIM-microscopy, NAD(P)H exhibits a heteroge-
neous fluorescence lifetime (i.e., quantum yield) throughout living cells. The appre-
ciable differences in NAD(P)H lifetime were shown between different cellular 
compartments; particularly, the relative contribution of the protein-bound species in 
mitochondria is larger than in cytosol or in nucleus [18, 21, 53]. Segmented cell 
analysis of FLIM images was proposed as a relevant approach to separate mito-
chondrial OXPHOS from cytosolic glycolysis in cancer cells [18].

Specifics of cellular metabolism enables FLIM-microscopy to distinguish 
between different subpopulations of cells that constitute the tumor and visualize the 
changes accompanying cellular interactions. For example, Heaster et  al. demon-
strated the feasibility of using the NAD(P)H and FAD fluorescence lifetimes and 
intensity-based redox ratio to discriminate proliferating, quiescent, and apoptotic 
cell populations in an acute myeloid leukemia model and generated classification 
algorithms based on a combination of all measured variables to improve separation 
between cell groups [54]. Using FLIM we also observed significant metabolic dif-
ferences between proliferating cells of the outer layers and quiescent cells of the 
inner layers of multicellular spheroids (Fig. 3.3B) [55]. The common observation is 
that proliferating cancer cells use more glycolytic metabolism compared to quies-
cent cells and, consequently, display increased contribution of free NAD(P)H; other 
parameters can differ as well. Apoptotic cells show increased mean fluorescence 
lifetimes of NAD(P)H and FAD, increased lifetimes of the long components 
NAD(P)H and FAD, decreased contribution of free NAD(P)H, and decreased con-
tribution of short lifetime FAD, indicating an elevated level of OXPHOS and bind-
ing cofactors to different enzymes [54, 56, 57].
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Trinh et al. identified a significant shift towards longer NADH fluorescence life-
times, suggesting an increase in the fraction of protein-bound NADH, in the inva-
sive stem-like tumor-initiating cell subpopulation relative to the tumor mass-forming 
cell subpopulation of malignant gliomas [58].

The metabolic crosstalk between cancer cells and cancer-associated fibroblasts—
the main stromal cell type of solid tumors—was examined in several studies with 
the use of FLIM.  Specifically, it was shown that metabolic changes occurred in 
cancer cells and normal fibroblasts as a result of their interaction in a co-culture 
model; we observed a shift towards glycolysis in HeLa cancer cells, and from gly-
colysis to OXPHOS in fibroblasts (Fig. 3.3A) [59]. Walsh et al. found that isolated 
tumor-associated fibroblasts displayed decreased redox ratio NAD(P)H/FAD and 
increased mean fluorescence lifetimes of NAD(P)H and FAD compared to 3D 
organoids generated from primary pancreatic ductal adenocarcinoma [60]. Analysis 
of the metabolic status of cancer-associated and normal fibroblasts using FLIM 
revealed increased metabolic activity of fibroblasts derived from patient’s colon 
tumor with a shift to more oxidative metabolism compared to dermal fibroblasts [61].

Cellular-level metabolic heterogeneity was visualized by FLIM-microscopy in 
tumor models in  vivo in a few studies. The elegant experiments by Szulczewski 

Fig. 3.3 Metabolic heterogeneity at the cellular level visualized by two-photon FLIM-microscopy. 
(A) The NAD(P)H-τm and FAD-τm FLIM images of co-culture of HeLa cancer cells and human 
skin fibroblasts. (B) The transmitted-light (upper) and NAD(P)H – a1% fluorescence lifetime (bot-
tom) images of HeLa tumor spheroid. FLIM corresponds to the square area marked with a dashed 
white line. (C) The varying responses to chemotherapy with cisplatin in HeLa cells. The NAD(P)
H-a1/a2 images are shown for the same field of view before treatment (control, left image) and at 
6 h exposure (cisplatin, right image). Scale bar: 50 μm
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et al. demonstrate that at least two different sets of abundant cell types can be dis-
tinguished in a live mouse tumor by their endogenous fluorescence: cancer cells 
with high NAD(P)H fluorescence intensity and stromal cells with high FAD inten-
sity. The latter were found predominantly outside of the tumor and concentrated 
mainly in the stroma, along collagen fibers, and verified to be tumor-associated 
macrophages. Notably, macrophages had significantly shorter τ mean of NAD(P)H 
with a greater fractional component of free NADH, indicating glycolytic- like 
metabolism [62]. In our previous study on human cervical carcinoma xenografts, 
we also detected a cellular population with greater contribution of free NAD(P)H in 
a collagen-rich zones compared to majority of cells comprising the tumor mass 
[63]. Yet, the interpretation of in vivo data remains challenging due to the difficulty 
of identifying specific cell types within tumor and a variety of factors that collec-
tively determine the metabolic profile of cells.

Multiple studies demonstrate that anti-tumor therapies induce changes in the 
optical redox ratio and fluorescence lifetimes of NAD(P)H and FAD, and the extent 
of these changes correlate with responsiveness to the treatment. For example, in the 
study by Shah et al. head and neck squamous cell carcinoma cell lines were treated 
with cetuximab (anti-EGFR antibody), BGT226 (PI3K/mTOR inhibitor), or cispla-
tin (chemotherapy) [47]. Results showed a decreased redox ratio NAD(P)H/FAD 
and decreased contribution of free NADH-a1 with BGT226 and cisplatin treatment 
and decreased FAD-a1 with cisplatin treatment, which agreed with decreased pro-
liferation and glycolytic rates. Treatment with cetuximab had no effects on the met-
abolic imaging variables neither on proliferation nor on glycolysis rate. Similar 
changes in redox ratio and NAD(P)H lifetime were detected in our study on human 
cervical cancer cells and xenografts after therapy with cisplatin, which correlated 
with inhibition of cancer cells growth [64]. Walsh et al. detected decreased redox 
ratio NAD(P)H/FAD and decreased mean fluorescence lifetime (τmean) NAD(P)H 
and FAD in HER2-overexpressing human breast cancer xenografts in mice treated 
with trastuzumab (herceptin, HER2 inhibitor). This response was confirmed with 
tumor growth curves and stains for Ki67 and cleaved caspase-3 [45]. In general, 
targeted therapy promoted more complex metabolic rearrangements, not easily 
interpreted, due to alterations at the level of signaling pathways and genes involved 
in regulation of cellular metabolism. In a recent work, we observed increase in the 
NAD(P)H τmean m and decrease in the free/bound NAD(P)H ratio in mouse colorec-
tal tumors after chemotherapy with each of three drugs—cisplatin, paclitaxel, and 
irinotecan [65]. We should note that the treatment with different chemotherapeutic 
agents caused similar changes in the optical metabolic parameters. These changes 
serve as an indicator of the switch to a more oxidative/less glycolytic metabolism, 
which is rational for cells with disrupted cell division and decreased proliferative 
capacity.

It is important to mention that the changes in cellular metabolism, resolved by 
FLIM, precede manifestations of cell death and tumor size reduction, which allows 
to consider autofluorescence parameters as early indicators of drug efficacy.

With FLIM-microscopy longitudinal tracking of cells can be performed in the 
course of treatment, and subpopulations with different drug sensitivities can be 
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identified on the basis of optical metabolic metrics. In our previous study, we moni-
tored the metabolic activity of the same cervical cancer cells using fluorescence 
intensity and lifetime measurements of NAD(P)H and FAD in response to paclitaxel 
or cisplatin treatment (Fig. 3.3C) [55]. Among the optical metrics (the fluorescence 
intensity-based redox ratio FAD/NAD(P)H, and the fluorescence lifetimes of 
NAD(P)H and FAD), the fluorescence lifetime of NAD(P)H was the most sensitive 
to resolve heterogeneous drug response. It was found that metabolic changes devel-
oped faster in the more responsive (dying) cells. In the recent studies, the measure-
ments of NAD(P)H, FAD, and tryptophan (Trp) lifetimes and their enzyme-bound 
fractions in individual cancer cells allowed to map heterogeneity in response to 
doxorubicin treatment [66, 67]. By measuring the optical redox ratio NAD(P)H/
FAD and fluorescence lifetimes of NAD(P)H and FAD, Shah et  al. observed 
increased metabolic heterogeneity in FaDu tumor xenografts of mice treated with 
cetuximab or cisplatin compared with untreated control [68]. To quantify the level 
of cellular metabolic heterogeneity and make quantitative comparisons across treat-
ment groups, they developed a heterogeneity index that incorporates the number of 
subpopulations, evenness between subpopulations, and distance between subpopu-
lations in frequency histograms for each optical metabolic imaging variable.

A series of studies was performed by Melissa Skala’ group to validate micro-
scopic metabolic imaging of primary tumor organoid cultures to accurately predict 
drug response [60, 69, 70]. The possibility to detect early, heterogeneous treatment 
response, on a label-free basis with cellular resolution makes FLIM-microscopy an 
attractive platform for testing drugs on patient-derived cancer cells for individual-
ized treatment planning.

3.5  Time-Resolved Fluorescence Spectroscopy

The measurement of autofluorescence signals from the coenzymes for comprehen-
sive tumor analysis in vivo is technically challenging. While the signals from the 
surface of the tumors can be analyzed rather easily, the analysis of the luminescence 
from the volume of the tumor is hindered by strong absorption and scattering in the 
UV and blue spectral region. Even in red and near-infrared regions scattering in the 
tissue still deteriorate the signals. Thus, luminescence from tissues can be retrieved 
only within 1 mm from a surface irrespective of a wavelength and makes the quan-
titative analysis of NAD(P)H/FAD fluorescence rather difficult.

Fiber-optic based spectroscopic sensing and imaging have been previously 
employed for chemical quantification of the tissues, including FLIM and Raman 
spectroscopy [71, 72]. Fiber-optic probes have also been used for in vivo depth-
resolved neuron-activity mapping, both with two-photon and one-photon configura-
tions [73, 74]. One of the first applications of time-resolved spectroscopy for skin 
cancer based on analysis of autofluorescence from NAD(P)H and using a fiber was 
described in the work of P.A.A. de Beule et  al. from P.  French group [75]. The 
authors presented an approach based on analysis of both fluorescence spectrum and 
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fluorescence lifetime of endogenous fluorophores that allowed to discriminate basal 
cell carcinoma skin cancer from healthy skin tissue in ex vivo human skin lesions.

An optical fiber integrated in a thin needle that is inserted into a tumor is a prom-
ising approach for the delivery and collection of the luminescence signal from the 
internal layers of the tissue. Such an attempt has been demonstrated for two-photon 
probing of xenograft tumors in mice using MCA 207 cells expressing green fluores-
cent protein (GFP) [76]. Measuring the fluorescence of intrinsic fluorophores poses 
a few challenges. The quantum yields of NADH and FAD are low, and so are the 
intensities [77]. A second problem is fluorescence from the optical fibers. The exci-
tation wavelength is in the ultraviolet or blue range of the optical spectrum. 
Fluorescence from the fibers at these wavelengths can easily be stronger than that 
from the sample. Two-photon excitation may be employed to overcome the difficul-
ties generated by autofluorescence from fibers, but at the expense of costs and bulki-
ness of the setups. Alternatively, one may use hollow waveguide (HW) [78] or an 
air-core photonic crystal fibers (PCF) [79]. In both cases, the excitation beams are 
guided through the air-core, thus, the background signals originating from the core 
material are not inherently generated. However, the HW has a disadvantage of a low 
numerical aperture (NA), which reduce the collection efficiency of the signal. 
Moreover, the air holes of the HW and PCF should not be directly in contact with 
the liquids to avoid damage due to the capillary action. Finally, there are no readily 
available PC fibers in the UV region and, in general, they are very expensive.

The problems associated with the time-resolved fluorescence measurements 
with a fiber have been addressed in our recent paper [80]. The authors proposed a 
fiber-optic configuration that allowed to overcome the problem with background 
autofluorescence from the fiber core and enable measurement of weak fluorescence 
from NAD(P)H and phosphorescence from oxygen sensors from the deep layers of 
a tumor in vivo. The generalized scheme of the experimental setup is presented in 
Fig. 3.4.

Using this system, spectroscopic measurements of NAD(P)H fluorescence life-
time were performed in model experiment in solutions and in colorectal tumors in 
mice in vivo. The mean fluorescence lifetime in tumors was considerably shorter, 
and the relative contribution of free NAD(P)H in tumors was greater than in muscle, 
indicating a shift to more glycolytic metabolism in tumor tissue as compared to 
muscle. Simultaneous measurements of phosphorescence lifetime of oxygen-sensi-
tive probe administrated into the tissue showed increased values in tumor reflecting 
reduced oxygenation, which correlated with its glycolytic state.

In a recent study, we have used fiber-optic-based spectroscopy to investigate 
metabolic response of the tumors to chemotherapy with irinotecan. In vivo fluores-
cence time-resolved sensing of NAD(P)H showed decreased contribution from the 
unbound NAD(P)H fraction in the treated tumors in mice compare with untreated 
control (Fig. 3.5), which is in agreement with our studies using FLIM-microscopy.

Although the examples of time-resolved measurements of intrinsic fluorescence 
using optical fiber-based systems are rather few, this approach has promises for 
development of clinical FLIM endoscopy.
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Fig. 3.4 Experimental setup for fluorescence/phosphorescence spectroscopy measurements. 
MMF1: Multimode fiber (core diameter: 50 μm, cladding diameter: 65 μm); MMF2: Multimode 
fiber (core diameter: 200 μm, cladding diameter: 220 μm); C: miniature connector; P: exchange-
able probe with a multimode fiber (core diameter: 300 μm, cladding diameter: 350 μm) in a needle 
G26) (see Visualization 1); FC-FC connector; D1 and D2: HPM-100-40 detector. F1/2: emission 
filters 510LP and 632/90 BP. F3/4: 405LP and 450/60BP. DM: 510 LP dichroic mirror. (Reprinted 
with permission from [80])

Fig. 3.5 In vivo one-photon fluorescence time-resolved spectroscopy of NAD(P)H in mouse 
colorectal tumors in response to irinotecan. (A) Fluorescence decay curves of NAD(P)H in the 
specific spots in subcutaneous tumors. (B) Relative amplitude of free NAD(P)H (a1%) calculated 
from the in vivo decay curves. Mean ± SD, n = 3 tumors, 5–7 measurements from each tumor. 
Measurements were performed on the 14th day of tumor growth
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3.6  FLIM-Macroscopy

Extending FLIM from microscopy to macroscopy is an extremely important issue 
in cancer studies. While it is essential to have a subcellular resolution to follow 
metabolic processes on a single cell level, it is also critical to understand metabolic 
status of a living system at the large scale. Intratumoral metabolic heterogeneity at 
the cellular level is, to a considerable degree, determined by heterogeneous micro-
environment within a tumor, namely, the architecture of extracellular matrix, orga-
nization of vasculature, infiltration of immune cells and fibroblasts, and interaction 
with surroundings. As a result, heterogeneity of the metabolic picture on the macro-
scopic level can be even more pronounced than on the cellular level.

Although there have been a few systems developed for whole-body small animal 
FLIM, they are insensitive to tissue autofluorescence and have poor spatial resolu-
tion [81–83].

Recently, we have used a confocal macro-FLIM system to record fluorescence of 
NAD(P)H and to investigate heterogeneity of tumors on macroscale. The operation 
of the macroscanner is described in detail elsewhere [84, 85]. Briefly, the macro-
scopic imaging is performed by scanning of the objects placed directly in the image 
plane of a confocal scan head. To combine NAD(P)H imaging with observation of 
other spectrally distinct fluorophores, there are two excitation and two detection 
channels in the system.

The optical principle for time-resolved macroscopic scanning system is shown in 
Fig. 3.6. The image plane of the scan lens is brought in coincidence with the sample 
surface. As the galvo-mirrors change the beam angle the laser focus scans across the 

Fig. 3.6 Schematics of the macroscanner for two-channel FLIM.  D: HPM-100-40 detector 
(Becker & Hickl GmbH, Germany), F1, F3: long pass filters; F2, F4: bandpass filters; A: pinhole; 
L3: detector focusing lenses (f = 50 mm); L1&L2 telescope lenses (f1 = 7.5 mm; f2 = 45 mm); BC 
beam combiner mirror, MD main dichroic mirror, GM galvo-mirrors, SL scan lens (f = 40 mm); S 
sample. (Reprinted with permission from [85])
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sample. Fluorescence signal produced by the sample is collimated by the scan lens, 
descanned by the galvo-mirrors, and separated from the excitation light by the main 
dichroic beamsplitter.

Usually, the signal further can be separated into two spectral or polarization 
channels, and focused into the pinholes. Light passing the pinholes is sent to detec-
tors. The maximum diameter of the image area in the primary image plane of the 
scanner is about 18 mm. The size of the laser spot in the image plane is about 15 μm. 
While the numerical aperture of the excitation beam path is determined by the beam 
diameter (about 1.5 mm) and the focal length of the scan lens (40 mm), the detection 
path is determined by the scan lens and the aperture of the galvo-mirrors (3 mm). 
Since the incoming laser beam under-fills the lens aperture, the numerical aperture 
in excitation is smaller than in the detection.

Overall, collection efficiency of a macroscanner is considerably lower compared 
to the system consisting of the scanner combined with a microscope. However, in 
macroscopic imaging one can use much higher laser power, which compensates for 
low collection efficiency. The power is distributed over a large area so that photo-
bleaching is not a problem. The acquisition time of this system depends on the 
number of pixels and the desired number of photons for the accurate evaluation of 
the fluorescence lifetimes.

The performance of metabolic FLIM on a macroscale was demonstrated in 
mouse tumors in vivo and rat glioma samples ex vivo.

In the in vivo study we visualized NAD(P)H fluorescence lifetime in a whole 
tumor inoculated subcutaneously in live mice. Since 375 nm wavelength is used for 
one-photon excitation of NAD(P)H, the skin flap was surgically opened to image 
tumor. As expected, a solid advanced tumor displayed essential spatial variations of 
the fluorescence lifetime parameters of NAD(P)H. Comparisons between tumor and 
muscles showed an increase in the contribution of the free NAD(P)H in tumor tis-
sue, suggesting a shift to glycolytic metabolism, similarly to the above mentioned 
spectroscopic measurements [84].

A large field of view in the macro-FLIM opens the opportunity to explore metab-
olism not only in the whole tumor in animal, but also in intraoperational centimeter 
sized samples of patients’ tumors. The metabolic differences between cancer and 
adjacent normal tissue, if detected by FLIM at the macroscale, can serve for delin-
eation of tumor margins, which is extremely important in glioma surgery. We have 
made an attempt to evaluate the capability of macroscopic FLIM to delineate gli-
oma margins in rat models on the basis of NAD(P)H fluorescence lifetime parame-
ters recently (Fig. 3.7) [86]. It was found that, in comparison with normal brain 
tissue, anaplastic astrocytoma had longer values of mean fluorescence lifetime and 
fluorescence lifetime of a bound fraction of NAD(P)H. Moreover, we have observed 
decreased contribution from a free NAD(P)H. This shows the potential of macro- 
FLIM for tumor delineation. The changes in the optical metabolic readouts in the 
brain tumors are consistent with studies that report on elevated levels of fatty acid 
oxidation and glutaminolysis in glioma cells [8, 87]. With further development, 
macro-FLIM can find use in the clinic as a sensitive and precise method for identify-
ing the edges of tumors during surgery.
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3.7  Summary

A significant progress in the field of cancer metabolism led to understanding that the 
changes in metabolism in cancer cells are not a simple consequence of the uncon-
trolled proliferation, but are rather a coordinated and complementary program that 
promote tumor growth. An increased interest in tumor metabolism in recent years 
has been driven by the idea to exploit the altered and heterogeneous metabolism of 
cancer cells to develop personalized therapeutic approaches and to find new targets 
for therapy. Novel imaging technologies that allow detection of intrinsic fluores-
cence and measurement of its lifetime open the possibility to monitor metabolic 
state of living cells and tissues non-invasively, in real time. FLIM based on TCSPC 
is one of such technologies. Metabolic imaging done by fluorescence lifetime and 
intensity measurements is often associated with Fluorescence Lifetime Imaging 
Microscopy. Consequently, it is often believed that FLIM of metabolism is related 

Fig. 3.7 Macro-FLIM of glioma in rat brain. Representative fluorescence lifetime images of 
NAD(P)H in freshly excised brain with anaplastic astrocytoma. τmean is an amplitude weighted 
fluorescence lifetime. a1/a2 is free/bound ratio. In the histogram of the normalized pixel frequency 
red and black lines represent the distribution of free NAD(P)H in the tumor and in the adjacent 
tissue, respectively. The tumor is marked with a white dashed line. Collection time: 120 s. Scale 
bar: 5 mm
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to the microscopic level. This is certainly not correct, because now TCSPC-based 
fluorescence lifetime measurements can be also realized on the macroscale. Recently 
developed macro-FLIM allows to interrogate metabolism on the scale of a whole 
tumor. It gives an opportunity not only to observe the heterogeneity of the tumor on 
a large scale, which is important from a fundamental point of view, but also to deter-
mine the surgical margins of tumors with high precision, and this is essential for 
clinical applications. Another method to probe tumor metabolism is not related to 
imaging option, but rather to time-resolved fluorescence single point measurement 
via a fiber. While this approach does not deliver a map of metabolic state of the 
tumor, it offers an opportunity to explore its deep layers, since strong scattering and 
absorption of an excitation light at the surface of the tissue is not an issue any more. 
Combination of all the modalities may give new insights in the complicated picture 
of tumor metabolism, not only being limited to experimental models of cancer but 
also extending to patient’s tumors. Moreover, correlation of metabolic measure-
ments with other physiological parameters measured using spectrally distinct exog-
enous sensors, i.e. multi-parametric recordings, will enhance their value and provide 
more details of fundamental aspects of cancer biology.
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Chapter 4
Optical Imaging of Exosomes for Cancer 
Diagnosis, Monitoring, and Prognosis

Natalia V. Yunusova, Alexey V. Borisov, and Yury V. Kistenev

4.1  Exosomes: Composition and Function

Extracellular vesicles (EVs) participate in cancer progression and metastasis by 
transferring bioactive molecules between cancer and various cells in the local and 
distant microenvironments.

Two subtypes of microscopic EVs are considered: microvesicles and exosomes, 
which vary significantly in morphology, biophysical characteristics (shape, size, 
density), biogenesis, and functions.
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Exosomes are nanosized EVs (with a diameter of 30–100 nm) that are secreted 
by almost all types of cells. Exosomes are found in biological fluids, including 
blood, saliva, urine, seminal fluid, amniotic liquid, ascites, bronchoalveolar lavage 
fluid, synovial fluid, breast milk, and cerebrospinal fluid. The size of exosomes 
seems to depend on cell origin, being ∼50 nm in reticulocytes, ∼100 nm in B cell 
lymphoma cells, or 80–120 nm in adipocytes [1].

The formation of exosomes is preceded by the strengthening of plasma mem-
brane microdomains carrying clathrin. The endosomal sorting complex required for 
transport turns the membrane invaginations into early endosomes. The multivesicu-
lar bodies are formed in early endosomes during their re-invagination. These bodies 
either merge with lysosomes and degrade or they merge with the cytoplasmic mem-
brane, and exosomes are released into extracellular space [2].

Microvesicles (ectosomes) are EVs with diameter from 100 to 1000 nm. The 
mechanism of microvesicles formation includes the formation of protrusions of the 
plasma membrane, followed by their pinching into the extracellular space.

Biogenesis and release of exosomes and microvesicles are presented in 
Fig. 4.1 [3].

Tetraspanins are a protein superfamily that organizes membrane microdomains 
by forming clusters and interacting with a large variety of transmembrane and cyto-
solic signaling proteins [4]. The ability of tetraspanins to interact with molecules 
and to form supramolecular complexes determines their ability of influence on a 
wide range of biological and pathological processes, for example, exosome biogen-

Fig. 4.1 Biogenesis and release of exosomes and microvesicles [3] (reprinted under license of 
Elsevier, License Number 4545321351777)
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esis, exosomal proteins, and miRNA sorting, binding and uptake of exosomes by 
recipient cells, ability of exosomes to present antigens in the context of a subsequent 
immune response [5].

Exosomes have a large content of the cytoskeleton and actin-binding proteins 
(F-and G-actin, cofilin-1, profilin-1, tubulin), GTPases of the Rab superfamily and 
annexins, which promote membrane fusion.

Exosomes also carry specific proteins, reflecting their origin from a defined cell 
type. In particular, exosomes derived from cells of the immune system are rich by 
class II histocompatibility proteins; exosomes derived from melanoma cells con-
tain, for example, a tumor-associated MART antigen; ascitic exosomes in patients 
with epithelial ovarian cancer carry EpCAM [1, 6].

4.1.1  Exosome Composition

4.1.1.1  Proteins

The exosome proteins include tetraspanins, integrins, heat shock proteins (HSP60, 
HSP70, HSP90) (Fig. 4.2) [4].

The study of saliva revealed two types of exosomes. The dominant component of 
type I exosomes of saliva is shown to be the coenzyme, derived from B-lymphocytes 
and widely represented in all the salivary glands. Carbonyl anhydrase 6 was detected 
only in type II exosomes [7].

Fig. 4.2 Tetraspanins, tetraspanin-associated and tetraspanin-non-associated proteins in exo-
somes [4]
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Exosomes carry a complex of proteases and their activators (metalloproteinases 
ADAM10, MMP2, and MMP9), pregnancy-associated protein PAPP-A, 
 proheparanase, extracellular inducer MMP (EMMPRIN, CD147), urokinase-type 
plasminogen activator (uPA) [4, 5, 8–10].

4.1.1.2  Lipids

Sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, gangliosides, and 
phosphatidylinositol, as well as lysophosphatidic acid, are the main lipids of EVs. 
Sphingomyelin and cholesterol are shown to be responsible for the exosomes stabil-
ity, while the gangliosides prevent the consumption of exosomes by cells of the 
reticuloendothelial system [11, 12]. Lysophosphatidic acid in the composition of the 
exosomes induces fusion and rearrangement of intracellular membranes in the bio-
genesis process of VV [1].

Exosomal lipids are shown to be involved in the process of tumor progression 
and the formation of chemoresistance [13], as well as in the pathogenesis of some 
neurodegenerative diseases [14].

4.1.1.3  Nucleic Acids

Exosomes contain both ribo- and deoxyribonucleic acids (RNA and DNA). It has 
been found that serum and urine exosomes contain a significant number of other 
types of RNA besides matrix and microRNA, namely tRNA, rRNA, snRNA, 
piRNA, and scaRNA [15]. The ExoCarta database containing the library of detected 
lipids, proteins, mRNA, and miRNA in the composition of exosomes includes more 
than 760 miRNAs and 1600 mRNAs (Fig. 4.3) [16].

The exosomal DNA was shown to contain genetic material of all chromosomes, 
the exosomes of the blood of oncological patients contain mutant forms of KRAS 
and p53 tumor DNA [17]. Thus, exosomal DNA of biological fluids of cancer 
patients can be an additional source of diagnostic material.

4.1.1.4  Techniques for Exosome Isolation

Most of the exosome detection techniques require their initial isolation from the 
complex biological milieu using separation methods such as differential ultracentri-
fugation, ultrafiltration, precipitation using water-excluding polymers, immunoaf-
finity capture, and microfluidics-based techniques [18–20].

Ultracentrifugation is a gold standard of exosome isolation and represents one of 
the most commonly used techniques. Ultrafiltration using nanomembrane is faster 
and does not rely on specialized equipment; however, the shear stress might cause 
deterioration, exosomes might be lost due to trapping in the pores of the filters. 
Exosome precipitation using polymers such as PEG is more efficient than ultracen-
trifugation and nanomembrane concentration.

N. V. Yunusova et al.



161

Immunological separation based on selective recognition of proteins on the 
membrane of exosomes using corresponding antibodies-modified magnetic beads 
enables specific and fast purification of exosomes; however, it is difficult to apply to 
large-volume samples. Microfluidic devices in combination with size/
immunoaffinity- based techniques as well as acoustic/electrokinetic sorting provide 
fast separation of exosomes from large number of samples [18].

Simple purification by differential ultracentrifugation is not sufficient to qualify 
vesicles as exosomes and a combination of quantitative protein composition and 
morphological and physical criteria must be used to identify exosomes among 
other EVs.

The use of enzyme inhibitors and/or preservatives in the collection of biological 
material, centrifugation conditions (number of centrifugations, speed, duration, 
type of rotor, temperature, etc.), type of filter, and pore size during ultrafiltration 
affect the efficiency of exosomes isolation and their functional activity [21].

Fig. 4.3 Most common exosomal microRNAs in various biological fluids [16] (reprinted under 
license of Springer Nature, License Number 4545980782857)
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4.1.2  Exosome Functions

Researchers’ interest in exosomes increased significantly after the ability of exo-
somes to incorporate and transfer their contents into recipient cells (hematopoietic, 
dendritic, mesothelium, and tumor cells, also endotheliocytes and fibroblasts) was 
discovered. The main mechanisms for the absorption of exosomes include:

• ligand–receptor interactions without membrane fusion (antigen presentation),
• the fusion of the exosome membranes and target cells,
• internalization of exosomes by endocytosis (all fragments of exosomes are trans-

located into the cell), and
• the action of the components of exosomes on the cell after is their lysis in the 

extracellular environment (at low pH, for example, in the tumor 
microenvironment).

The most important physiological functions of exosomes are presented below.

4.1.2.1  Intercellular Communication

Intercellular communication is a necessity for the functioning of a multicellular 
organism and can be carried out directly by intercellular contacts, and a means of 
transferring secreted molecules by exocytosis. Mechanisms of intercellular com-
munication carried out through EVs are actively studied (Fig.  4.4). It has been 
established that exosomes, penetrating recipient cells, can cause cascade changes in 
the cells on the genomic (due to DNA integration) and epigenomic (due to changes 
in the expression/content of proteins, miRNA, and so on) levels [20].

4.1.2.2  Immunomodulatory Function

In a normal pregnancy, exosomes derived from syncytiotrophoblast cells partici-
pate in the formation of a common immunosuppressive background [22]. 
Exosomes, derived from tumor cell lines, have been shown to contain molecules 
capable of modulating the function of natural killer (NK) cells [23, 24]. It was 
shown that tumor exosomes induce apoptosis of activated CD8+ T cells, promote 
differentiation of T-helper cells to T-regulatory cells, which in turn is resistant to 
exosome- induced apoptosis [1]. The large amount of immunoglobulin A on the 
membrane of exosomes of saliva allows suggesting that pathogens associated with 
exosomal IgA can be delivered to the tonsils or dendritic cells. In addition, exo-
somes of type II saliva contain a number of proteases (CD26) that regulate the 
functions of dendritic cells. Thus, saliva exosomes appear to play an important role 
in eliminating pathogens of various nature and modulating the function of the local 
immune system [7].
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4.1.2.3  Induction of Angiogenesis and Stromal Remodeling

The induction of angiogenesis and stromal remodeling by exosomes is mainly asso-
ciated with exosomal tetraspanins. Currently, there is evidence that tetraspanins in 
the composition of the exosomes lead to the induction of angiogenesis factors 
(VEGF, VEGFR1, VEGFR2, uPA, MMP-2, MMP-9) and inhibition of expression 
of antiangiogenic factors in peritoneal macrophages and mesothelium cells [25].

4.1.2.4  The Effect on Cell Motility

Cell movements affect the formation of many pathological conditions of vascular 
diseases, chronic inflammatory processes, and degenerative diseases. Hoshino et al. 
[26] showed that the invasive cell line of squamous cell carcinoma formed multiple 
invadopodia and they are the main sites for exosome-containing multivesicular 
endosomes. Inhibition of the formation of invadopodia significantly reduces the 
secretion of exosomes into the incubation medium. The addition of purified exo-
somes to the incubation medium or the inhibition of their biogenesis or secretion 
significantly influences on formation and functioning of the invadopodia of tumor 
cells: the formation of invadopodia, their stabilization, exocytosis of proteases from 
invadopodia for the degradation of the extracellular matrix [26]. Thus, a certain 
synergism is noted in the processes of formation and functioning of invadopodia 
and EVs secretion in highly invasive tumor cell lines.

Intercellular communication
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Transient direct  
linkup of cell’s 
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Fig. 4.4 Mechanisms of intercellular communication
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4.2  Exosomes in the Diagnosis, Monitoring, and Prognosis 
of Malignant Tumors

Tumor cells, as well as the tumor microenvironment, are prone to produce EVs, 
involved in both tumorigenesis and cancer progression. Moreover, exosomes 
derived from cancer cells transfer physiological information to normal cells initiat-
ing their transformation into malignant cells. Cells from the tumor microenviron-
ment generate EVs, which increase angiogenesis of new blood vessel generation 
necessary to supply oxygen and nutriments facilitating the growth of cancer cells. 
Markers of oncological diseases (TAX + exosomes, miR-34a down expression in 
exosomes, miR-15a down expression in exosomes, miR-23a exosomes, and others) 
were identified and the functional role of extracellular vesicles in metastasis, genetic 
instability, the oncogenic transformation of fatty stem cells, oncological cells prolif-
eration and migration were demonstrated [1].

The potential of exosomes and other explosives of blood plasma, urine, saliva for 
the diagnosis of cancer is sufficiently high [27–31]. It is proposed to use exosomal 
biomarkers as predictive markers during targeted therapy [32, 33], as predictors of 
the effectiveness of neoadjuvant chemotherapy [34] and as prognostic markers [35].

The role of exosomes in the pathogenesis of malignant tumors is extremely 
diverse. Fundamentally, it can be noted:

• tumor exosomes constitute a significant part of the exosome population circulat-
ing in the blood of patients with malignancies;

• in general, exosomes circulating in the blood of patients have a depressant effect 
on antitumor immunity;

• tumor exosomes stimulate metastasis;
• tumor exosomes are involved in the process of tumor adaptation to therapy, the 

development of chemo- and hormone resistance [36, 37];
• the level of circulating exosomes in patients with malignant neoplasms corre-

lated with the effect of antitumor therapy.

Potential ways of using exosomes in clinical oncology is presented in Fig. 4.5.

4.3  Imaging of Exosomes

After purification, the exosomes should be characterized [1]. The most frequently 
used methods for exosome analysis are presented in Table 4.1 [2]. A more rigorous 
exosome characterization must take into account molecular content in combination 
with those methods.
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Potential of exosomes in clinical oncology

Diagnostic
potential of
exosomes  

Exosomal
biomarkers as
predictors for

targeted therapy  

Exosomal biomarkers
as prognosis markers

and predictors of
neoadjuvant

chemotherapy
effectiveness    

Proteins

miRNAs

DNA

Fig. 4.5 Potential ways of using exosomes in clinical oncology

Table 4.1 The most common methods for exosome analysis [2]

Technique Effects used Useful information

Flow cytometry Scattering of lights and 
fluorescence

Phenotype, absolute 
number, and size

Dynamic light scattering (DLS) Scattering of light as a function 
of time

Size and distribution

Nanoparticle tracking analysis 
(NTA)

Scattering of light Size, size distribution, 
concentration, phenotype

Transmission electron 
microscopy (TEM)

Scattering of electron beam Morphology, size

Atomic force microscopy (AFM) Interaction forces between the 
probing tip and surface

Three-dimensional 
topography, diameter

Nanoparticle tracking analysis Brownian motion of exosomes 
in suspension

Hydrodynamics sizes

Infrared spectroscopy Resonant absorption Protein composition
Raman scattering or surface- 
enhanced Raman spectroscopy 
(SERS)

Raman scattering Protein composition

Two-photon microscopy Second-harmonic generation, 
two-photon autofluorescence

Protein composition
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4.3.1  Dynamic Light Scattering

Dynamic light scattering (DLS) is based on monochromatic laser radiation scatter-
ing on medium inhomogeneity due to Brownian exosome motion. Due to the inter-
ference of radiation scattered from various particles, the autocorrelation function of 
the intensity spectra brings information about exosome size. The advantage of the 
DLS method is its ability to measure particles ranging from 1 nm to 6 μm. However, 
DLS allows reliable data only when one type of exosomes is present in the suspen-
sion. The method is less accurate in polydispersed suspensions of exosomes. In such 
cases, the obtained profile of exosome size is strongly influenced by larger exo-
somes, since they scatter more light. Therefore, when larger vesicles are present in 
the suspension, even in a low quantity, the detection of smaller events becomes 
problematic [38].

4.3.2  Transmission Electron Microscopy

Morphology of isolated exosomes can be analyzed by transmission electron micros-
copy (TEM). TEM imaging is based on electron beam interaction with a sample. 
The TEM resolution is of 1 nm due to a short wavelength of the electron waves [2]. 
TEM allows to carry out an ultrastructural study of isolated exosomes, size distribu-
tion, and membrane integrity [3].

This method has essential limitations of samples properties, including thickness, 
contrast, etc. The results of TEM exosome analysis strongly depend on the protocol 
of sample preparation. In this regard, the Society for the Study of EVs strongly 
recommends that the articles provide detailed information on the methodological 
approaches used to isolate EVs/exosomes and also characterize the selected vesicles 
by electron or atomic force microscopy [39].

Negative staining allows increasing the contrast of exosome TEM images. The 
colored background is achieved by adding neutral solutions containing heavy metal 
atoms that are not connected with biological objects [5].

Figure 4.6 presents the results of TEM analysis of exosomes specimens extracted 
from the blood plasma of patients with malignant neoplasms, as well as from the 
blood plasma and ascites of ovarian cancer patients [40]. Venous blood (9 mL) from 
all subjects was collected in K3EDTA spray-coated vacutainers, immediately mixed 
using a rotary mixer for vacutainers. Ascites fluid (18–20  mL) was collected in 
K3EDTA spray-coated vacutainers during the laparoscopic staging of ovarian can-
cer patients. Blood and ascites fluid samples from illness patients were obtained 
before any treatment. Blood was centrifuged at 290 g for 20 min at 4 °C, blood 
plasma was transferred into a new tube and centrifuged a second time at 1200 g for 
20 min at 4  °C. For isolation of exosomes, plasma samples were centrifuged at 
17,000 g for 20 min at 4 °C to pellet cell debris. Supernatants were diluted as 1:5 
by phosphate-buffered saline (PBS) and were passed through 100-nm pore-size 
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filter, then the filtrates were ultracentrifuged at 100,000 g for 90 min at 4 °C, ultra-
centrifugation and re-suspending steps were repeated three times. The supernatant 
was removed and the pellet containing plasma exosomes was resuspended in 
150 μL of PBS.

Ascites fluids were centrifuged at 900 g for 20 min at 4 °C, the supernatant was 
transferred into a new tube and centrifuged to pellet cell debris, then supernatants 
were diluted as 1:3 by PBS and were filtered and ultracentrifuged under the same 
condition listed above. The supernatant was removed and the pellet containing asci-
tes fluid exosomes was resuspended in 150 μL of PBS.

For negative staining, a drop of exosomes was incubated for 1 min on a copper 
grid, covered with formvar film, which was stabilized by carbon. Then the grids 
were exposed for 5–10  s on a drop of 0.5% uranyl acetate or 2% phosphotung-
stic acid.

Fig. 4.6 Electron microscopic images of exosomes and “non-vesicle” structures isolated from: 
(A, C, D) blood plasma of patients with ovarian cancer, (B) ascitic fluid of patients with ovarian 
cancer, (E, F) blood plasma of healthy donors, (G) blood plasma of patients with squamous cell 
carcinoma of the head and neck, (H) blood plasma of patients with colorectal cancer. Arrows show 
“non- vesicle” structures, ellipses—exosomes. Scale bars correspond to 100 nm. Negative staining 
by phosphotungstic acid was used [40] (reprinted under license of AIP Publishing, License Number 
4546000387063)
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The grids, holding adsorbed exosomes, were examined by transmission electron 
microscope JEM 1400 (Jeol, Japan) supplied with digital camera Veleta (Olympus 
Corporation, Japan). The measurements were made directly on the camera screen 
using iTEM (Olympus Corporation, Japan) software.

Obvious structures of a cup-shaped low electron density with a preserved mem-
brane were found in the preparations of exosomes. Their morphology was typical 
for exosomes of patients with different malignant neoplasms. In the preparations, 
there were also particles called “non-vesicles,” which were very low or low-density 
lipoproteins [6].

In [2], isolated exosomes from mouse melanoma B16F0 cells were resuspended 
in cold DPBS containing 2% paraformaldehyde. Exosome samples were mounted 
on copper grids, fixed by 1% glutaraldehyde in cold DPBS for 5 min to stabilize the 
immunoreaction, washed in sterile distilled water, contrasted by the uranyl-oxalate 
solution at pH 7 for 5 min, and embedded by methyl cellulose-UA.

In the study [6], the standard method for cell preparation (fixation, dehydration, 
embedding, and sectioning) was applied to reduce the exosome drying effect. Using 
plastic embedding allowed to reduce artifacts caused by denaturation. Glutaraldehyde 
(GA) was used for the cross-linking (covalent interactions between amino groups) 
to provide chemical fixation. Osmium tetroxide was used for fixation of lipids and 
contrast improving.

4.3.3  Nanoparticle Tracking Analysis

A method of nanoparticle tracking analysis (NTA) allows one visualizing and ana-
lyzing exosomes in suspension based on the dependence of nanoparticles Brownian 
motion rate on their size, modal value, and size distribution. The standard NTA 
equipment includes a laser source, a microscope connected to a CCD or CMOS 
camera, a hydraulic pump, and a measuring chamber (Fig. 4.7) [38].

However, NTA allows obtaining only evaluative parameters as it operates with 
hydrodynamics sizes of particles, which can significantly exceed the physical par-
ticle sizes. The device also lacks selectivity in structural analysis of particles as it 
registers all particles and aggregates in the suspension [41].

4.3.4  Atomic Force Microscopy

Atomic force microscopy (AFM) is a very high-resolution type of scanning probe 
microscopy, which reveals and registrations interactions between a probing tip and 
a sample surface, when the surface is explored by a sharp tip of small spring-like 
cantilever. The deviation of the cantilever associated with the interaction of forces 
when the tip approaches very close to the sample is recorded by the detection sys-
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tem. Such a system usually consists of a laser and a position- sensitive detector 
(Fig. 4.8) [38].

To obtain a real three-dimensional image of the surface topography with high 
resolution, it is necessary to fix all the vesicles on an atomic-flat surface, such as 
mica. Note that to avoid flattening of the vesicles and changing their shape when 
interacting with mica, functionalization of the mica surface by molecules is usu-
ally used.

EV associated with the surface of specific monoclonal antibodies can be used to 
collect quantitative information about their specific interaction with the surface of 
the substrate [24, 25]. Using this approach, one can detect the presence of specific 
proteins with better resolution than when labeled with an immunogold [26].

However, for a more specific characterization of EV, including the analysis of 
miRNA, lipids, and proteins, a combination of several methods with the addition of 
omics technology is necessary.

4.3.5  Infrared Spectroscopy

Infrared (IR) spectroscopy is a non-destructive method that can investigate cells and 
extracellular vesicles. It acts on the principle of vibrating molecular bonds and the 
resulting absorption wavelengths, which depend on the involved atoms and strength 
of intermolecular interactions, determine the chemical profile of a specific material. 
IR spectroscopy of extracellular vesicles allows one to obtain overall information 
about the molecular components and their structures [42]. IR spectra of different 
extracellular vesicles derived from Jurkat cell line, together with the spectrum of the 
original cell line, are shown in Fig. 4.9A [42]. Almost any biological sample spectra 
are characterized by amide absorption peaks, one around 1651 cm−1 (termed amide 
I, originating mainly from C=O stretching vibrations of the protein-peptide back-

Fig. 4.7 The principle of the nanoparticle tracking analysis (NTA) [38]
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bone) and another at 1540 cm−1 (termed amide II, arising from N–H bending vibra-
tions of the peptide groups). Amide A termed strong band at 3285 cm−1 superposed 
with the broad, overlapped –OH stretching vibrations treats to the N–H stretching 
vibrations of the peptide groups of proteins.

The distinct lipid absorption near 1738 cm−1 originates from the ester groups of 
phospholipids, triglycerides, and cholesterol esters, together with the dominant 
antisymmetric and symmetric stretching vibrations of the lipid acyl CH2 groups 
corresponding to the bands at 2924 and 2850 cm−1, accordingly. Bands from the 
spectral region of 1200–950 cm−1 generally are featured to the stretching vibrations 
of the phosphodiester groups of phospholipids and the C–O–C stretching vibra-
tions of phospholipids, triglycerides, and cholesterol esters. This spectral region is 
completely masked by the broad phosphate vibrations bands of the isotonic PBS 
buffer [42].

A detailed examination of the spectral region from 1800 to 1350 cm−1 for various 
EV subpopulations (Fig.  4.9B) shows slight changes in the shape and relative 
 intensity of the tensile vibrations of amide I and the lipid-linked C=O ester. The 

Fig. 4.8 Schematic illustration of atomic force microscopy [38]
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Fig. 4.9 (A) Representative ATR-FTIR spectra of EVs isolated by differential centrifugation from 
Jurkat cell line. (B) Representative ATR-FTIR spectra of EVs after PBS buffer subtraction in the 
1800–1350 cm−1 wavenumber region: CO stretching from lipid esters, amide I and amide II bands 
of proteins. (C) Second derivative IR spectra of the amide I region for protein secondary structure 
assessing. Jurkat T cell line cell culture (Jurkat), apoptotic bodies (AB), microvesicles (MV), exo-
somes (EXO) [42] (reprinted under license of Elsevier, License Number 4545310060059)
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amide I region (1700–1600 cm−1) is used for the secondary structure determination 
of the proteins. The broad shell of the amide I can be divided into individual band 
components, which can be used to characterize the α-helical, β-sheet, random, etc. 
content of the given proteins [43].

Protein secondary structure was assessed by second derivative IR spectra of 
amide I band (Fig. 4.9C). Regarding the EVs, exosomes changes in protein compo-
sition can be witnessed favoring β-turns (band component at 1676 cm−1) and unor-
dered protein motifs (1640  cm−1) at the expense of β-sheet conformations 
(1635 cm−1) [44]. The arising band component around 1627 cm−1 in MV and EXO 
spectra, characteristic of non-native intermolecular β-sheets, suggests the presence 
of aggregated proteins or apolipoproteins [44]. The new band component at 
1660 cm−1 might be related to triple-helix structure characteristic for some immune 
complexes [45] or associated with nucleic acid (RNA) content of the EVs [46].

The authors [42] also calculated the “spectroscopic protein-to-lipid ratio” 
(P/ Lspectr) as a ratio of amide I intensity to total integrated intensity of CH2/CH3 
stretching vibration from 3040 to 2700 cm−1, which was associated with lipid con-
tent. The process of P/Lspectr calculation is illustrated in Fig. 4.10 [42].

Differences between exosomes isolated from the saliva of oral cancer (OC) 
patients and healthy individuals (HI) were evaluated by the Fourier-transform IR 
spectroscopy (FTIR) in attenuated total reflection (ATR) mode (FTIR-ATR) [47]. 
These differences occurred in biomolecules that constitute carbohydrates, nucleic 

Fig. 4.10 Selected wavenumber regions of a “contaminated” Jurkat cell derived exosome (isola-
tion JK4) used for P/L determination protocol: (A) amide I and amide II wavenumber region 
(1770–1470 cm−1) deconvoluted by curve fitting with Lorentz-function (band denoted by dotted 
lines), (B) CH stretching region (3040–2700 cm−1) acting for lipid components [47] (reprinted 
under Elsevier license, License Number 4545310060059)
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acids, proteins, and lipids. The entire absorbance spectra (range 950–3650 cm− 1) of 
the OC and HI exosomes are shown in Fig. 4.11 [47].

Bands at 1033  cm−1 are responsible for the vibrational modes of –CH2OH 
groups and the C–O stretching vibration coupled with C–O bending of the C–OH 
groups of carbohydrates (i.e., glucose, fructose, and glycogen) [48]. The peak of 
HI exosomes in this region was slightly higher. HI and OC exosomes showed a 
peak of absorbance intensity at 1072 cm−1. It is the region of the symmetric stretch-
ing modes of the phosphodiester groups of cellular nucleic acids of DNA and RNA 
[48, 49]. The spectral peaks at 2924 cm−1 and 2854 cm−1 of HI exosomes are asso-
ciated with the absorption bands of asymmetric and symmetric C–H stretching 
vibrations of CH2 and CH3 methylene groups, which are contained in fatty acids 
within cellular membranes [48, 49]. The band at 1743 cm−1 is attributed to C=O 
stretching vibration in cellular lipids [48–50]. The OC exosome spectrum was of 
lower intensity in this region. The protein spectra are positioned in the region of 
1300–1800 cm−1 wavenumbers [48]. Bands in this region represent mainly amide 
II, likely attributed to the region of transmembrane proteins [51]. In general,  
the absorbance spectrum of the OC exosomes was of higher intensity compared to 
the HI exosomes.

Fig. 4.11 The entire average absorbance spectra in the range of 950–3650 cm−1 of the OC and HI 
exosomes [47] (reprinted under license of Springer Nature, License Number 4545321072023)
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4.3.6  Surface-Enhanced Raman Scattering

Raman scattering is a kind of inelastic scattering of optical radiation by molecules. 
The frequency shifts of scattered light are caused by vibrations of specific chemical 
groups and can identify the molecular composition of a sample. Thus, Raman scat-
tering holds a unique signature based on the molecular compound of a sample [52]. 
Hence, Raman spectroscopy can differentiate exosomes as a function of the mem-
brane lipid/protein content along with other various surface modifications.

Raman characterization of optically trapped biological particles in liquids was 
performed for cellular organelles [53], entire cells [54], single unilamellar lipid 
vesicles [55], for liposomal membrane composition [56] and single bacterial 
spores [57].

The main disadvantage of Raman spectroscopy is significantly smaller Raman 
scattering cross-section compared with resonance absorption. To overcome it, vari-
ous plasmonic sensing strategies are used, including surface plasmon resonance 
(SPR) [58, 59], surface-enhanced Raman scattering (SERS) [60–62]. Nanoplasmonic 
sensing is based on plasmon nanoparticle local refractive index change at contact 
with a detected object, producing spectral shift [63]. Nanoplasmonic sensing is 
label-free, does not require complex instrumentation, and can be easily designed to 
allow multiplex detection using small sample volumes. Since nanoplasmonic sen-
sors essentially operate as optical sensors, the measured parameter is the dry mass 
of target molecules. As a result, nanoplasmonic sensors are less likely to suffer from 
solution-based interferences (i.e., effects of bound or coupled solvents) [64].

The size of the exosomes closely corresponds to the distance of SPR perception; 
therefore, as a rule, the detection of the exosomes by SPR is carried out without 
labeling [65, 66]. The SPR-based label-free detection platform was developed, 
which consists of antibody microarray, combined with SPR imaging [67]. Specific 
to exosome transmembrane proteins antibodies were localized on gold surfaces on 
the chip. The laser beam passes through the coupling prism at a fixed angle of inci-
dence, and the reflected beam intensity is recorded by a CCD camera. The latter is 
directly correlated with the amount of captured exosomes.

Various techniques have been introduced to improve the SPR detection perfor-
mance. Rupert et  al. [68] described a dual-wavelength SPR for determining not 
only the presence but also the size and concentration of extracellular vesicles 
subpopulations.

Noble metal nanoparticles (Au/Ag) or rough nanostructures can be used to 
enhance the Raman scattering. This phenomenon is called surface-enhanced Raman 
scattering, the corresponding technique is called surface-enhanced Raman spectros-
copy (SERS) [69–71]. SERS is widely applied for many years; however, only 
recently, it was employed to analyze exosomes [72, 73].

Two different approaches are typically used for SERS-based characterization of 
biomolecules and nanosize bioparticles, in particular, exosomes: label-free detec-
tion and indirect detection using SERS tags [74].
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In label-free SERS detection (Fig. 4.12, left), samples for analysis directly adsorb 
to the surface of metallic nanostructures and intrinsic fingerprint spectra of the bio-
molecules are obtained [18, 72, 75, 95]. The main problem is associated with essen-
tial RS enhancement that depends strongly on the distance between the molecule 
and the SERS surface and disappears at distances more than a few nanometers [76]. 
Also, only Raman modes, which are perpendicular to the surface molecular vibra-
tions, can be increased. Consequently, an overall SERS vibrational spectrum is frag-
mented, distorted, and often difficult to interpret. Thereby, only biomolecules that 
are attached to or incorporated into the particle’s membrane can be detected and 
analyzed. Complex spectral analysis is usually a prerequisite to interpret the spec-
tral  information for discriminating biomolecules at different status or cells/microor-
ganisms of different species [77].

According to the “indirect” approach [78, 79], SERS nanotags functionalized 
with biorecognition molecules, which specifically bind to a specific target, are used 
as quantitative reporters. SERS tags (Fig.  4.12, right) are typically composed of 
metallic nanoparticles coated with Raman reporter molecules emitting strong and 
distinct Raman signals. By conjugating specific recognition molecules such as anti-
bodies or aptamers, SERS tags can be used as optical labeling tools for indirect 
sensing/imaging of the target biomolecules in vitro and in vivo [80, 81].

Fig. 4.12 SERS-based liquid biopsy analysis using a label-free SERS approach (left) or SERS 
tags (right). In label-free SERS, the spectroscopic signal results from analyte adsorption onto the 
SERS substrate, whereas in SERS tags-based specific recognition assays, the spectroscopic signal 
results from the reporter molecules on the SERS tags [18]
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The “indirect” SERS strategy is very sensitive and competes directly with fluo-
rescent molecular probes. Compared to traditional external labeling reagents like 
organic dyes or fluorophores, SERS tags offer advantages such as ultrasensitivity, 
tremendous multiplexing capacity, high photostability, the need of only a single 
laser to excite all SERS labels, and minimized interference by autofluorescence 
from cells/tissues [74, 82]. However, general information about the particle’s con-
stituent biomolecules is lost; only the amount of target molecules is assessed via the 
signal from SERS nanotags.

In the past decade, both label-free SERS detection and SERS tags have been 
increasingly applied to liquid biopsy analysis, providing qualitative and quantitative 
information for cancer diagnosis, prognosis, and real-time monitoring of therapy 
response.

The detection of exosomes using a SERS-based detection platform was mostly 
conducted in solution. For example, Zong et al. [78] described the facile detection 
of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. The 
magnetic nanobeads and SERS nanoprobes captured the exosomes by forming a 
sandwich-type immunocomplex, which was precipitated by a magnet. As a result, 
high-intensity SERS signals were detected in the precipitates. In the absence of 
exosomes, there will be no immunocomplex formed, and the SERS signals will be 
very weak. Stremersch et al. [75] described the method to distinguish exosome-like 
vesicles derived from different cellular origins, using partial least squares discrimi-
nant analysis on the obtained SERS spectra.

The importance of combining SERS fingerprinting with statistical analysis to 
develop effective cancer diagnosis was pointed out [18]. At the same time, SERS 
fingerprinting can be conducted either through the identification of specific peaks or 
through analysis of the entire SERS spectra. Park et  al. [72] described exosome 
pattern-based classification for lung cancer diagnosis. In this case, the detection was 
performed on a solid support in which exosomes are attached to gold nanoparticle 
coated glass slides without any biorecognition element. The exosomes from lung 
cancer cells were distinguished from normal cell exosomes with 95.3% sensitivity 
and 97.3% specificity.

To characterize exosome SERS signatures, Raman shifts in the range of 
719–1800 cm−1 were measured for exosomes derived from CD18/HPAF, MiaPaCa, 
HPDE, and from control (AuNPs) (Fig. 4.13) [83]. Spectra in the 719–1800 cm−1 
region exhibited peaks corresponding to lipids and proteins, which are the major 
contributors of exosome surface composition.

High reproducibility and consistency for SERS measurements were observed 
providing validity to each SERS peak as specific to that sample exosome population 
and not merely arising from background noise.

This observation highlights the ability of Raman spectroscopy to distinguish 
exosomes by their lipid composition. The gold nanoparticles can be used to increase 
the SERS effect [72].

The method of Raman tweezers microspectroscopy (RTM) for extracellular ves-
icles characterization with particles’ size from 50 nm to a few hundreds of nm was 
described [84]. Figure  4.14 explains the concept of RTM, using the example of 
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Fig. 4.13 Characteristic SERS of exosomes from the normal and pancreatic cancer cell line. 
Averaged SERS spectra for the four exosome populations: Gold nanoparticles only were used as a 
control, and all SERS of exosomes was conducted on sucrose density gradient purified particles 
[83] (reprinted under license of Elsevier, License Number 4545330658630)

Fig. 4.14 Explanation of the RTM experiment using DOPC liposomes “100 nm.” (A) Raw Raman 
spectra recorded at indicated time delays after the start of the experiment, together with an aver-
aged spectrum of PBS; (B) averaged Raman spectra of different “particle sets” [84]
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DOPC liposomes “100 nm” with a lipid concentration of 20 μg mL−1 in PBS [84]. 
Liposomes have been chosen instead of exosomes because it is chemically uniform, 
and their Raman spectra are always the same.

The Raman band assignment for the biomolecular composition of extracellular 
vesicles is presented in Fig.  4.15, the most-characteristic bands are indicated by 
vertical dashed lines [84].

Thus, RTM was shown to be useful for identifying various subpopulations that 
are present in the extracellular vesicles [84]. An approach for analyzing biomolecu-
lar components for assessing the major biomolecular contributions of extracellular 
vesicles (proteins, lipids, nucleic acids, etc.) was reliably obtained with millimolar 
local concentration for exosomes from human urine.
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4.3.7  Flow Cytometry

If exosomes are labeled with fluorescent dyes that either introduced to their interior 
or immobilized on their surface, e.g., by monoclonal antibodies, then the fluorescent 
technique can be used for exosomes imaging. This method is called flow cytometry 
(Fig. 4.16) [38]. The relative size and granulation of the studied particles, as well as 
data from fluorescently labeled molecules, can be analyzed using flow cytometry.

Compared with other methods flow cytometry allows to detect rare vesicles, to 
study a large number of extracellular vesicles, the presence of surface antigens of 
vesicles that characterize their cellular origin, and to evaluate co-expression of sur-
face markers as well as the detection of individual subpopulations of vesicles.

There is a limitation in exosome size detected, due to limited sensitivity and 
resolution of flow cytometers. Typical flow cytometers can detect exosomes larger 
than 500 nm, few of them can detect up to 200 nm exosomes [38]. Newer models 
allow detecting particles up to 150 nm.

Forward scattering (FSC) signal is frequently used. On the other hand, side- 
scattered light (15–150°) provides information about smaller exosomes. The last 
generation of flow cytometers uses multiple angles for FSC detection, which results 
in better resolution of particles [38].

The technique with latex particles coated with monoclonal antibodies is most 
often used for exosomes imaging [38]. Visualization of exosomes absorption by 
endotheliocytes, macrophages, hepatocytes, tumor, and other types of cells by con-
focal laser microscopy is quite common [85]. Exosomes isolated by various meth-
ods are suitable for this study. 3D data reconstruction allowed researchers to 
demonstrate EVs internalization and cellular localization. EVs internalization has 
been observed using confocal microscopy after staining with different fluorescent 
lipid membrane dyes including rhodamine, DiD, Dil, PKH26, PKH67. Membrane- 
permeable compounds are also used for EVs staining [85].

In addition to the limitation of the size detection, conventional flow cytometers 
can identify multiple vesicles as a single one at high concentrations of exosomes. 

Fig. 4.16 The principle of 
flow cytometry [38]
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The reason is that every vesicle provides too weak fluorescence to measure the sepa-
rate event.

Another problem related to exosome flow cytometry analysis is connected with 
the determination of their size. Due to light scattering, it depends not only on the 
particle diameter but also on the refractive index, absorption coefficient, and parti-
cle shape properties [38].

Colorectal cancer (CRC) remains one of the most common tumors of the gastro-
intestinal tract and ranks 2–3  in the structure of cancer morbidity in most of the 
countries of the world, both in men and women [86]. ADAM10 and ADAM17 are 
transmembrane “molecular scissors” [87]. We have evaluated the level of ADAMs 
in exosomes from CRC patients with stage T2-4N0-2M0–1 (n = 60, 58.6 ± 1.6 years) 
depending on invasion and metastasis. Control subjects (CSs) had neither colorectal 
cancer nor other malignant neoplasms, but CSs colorectal polyps were presented.

Blood plasma exosomes were isolated using ultrafiltration with ultracentrifuga-
tion. Venous blood (18 mL) from CSs and colorectal cancer patients (CRCPs) was 
collected in K3EDTA spray-coated vacutainers. The blood cells were pelleted by 
centrifugation for 20 min at 1200 g (bucket rotor, Labofuge 400R, Thermo Fisher) 
and 4 °C. To remove the cell debris, plasma samples were centrifuged at 17,000 g 
(angular rotor, centrifuge 5415R, Eppendorf) and 4 °C for 20 min. To remove vesi-
cles more than 100 nm, the supernatant was diluted five-fold with PBS (10 mM 
phosphate buffer, 0.15 M NaCl, pH 7.5) and filtered through 100 nm pore-size filter 
(Minisart high flow, 16,553-K, Sartorius). For the exosome precipitation, the filtrate 
was centrifuged at 100,000  g (bucket rotor, Optima XPN 80, Beckman Coulter, 
USA) and 4 °C for 90 min, the pellet was resuspended in 10 mL PBS and twice 
centrifuged under the same conditions. The isolated exosomes were resuspended in 
200 μl of PBS, were aliquoted, frozen in liquid nitrogen and stored at −80 °C.

The 4  μm-diameter aldehyde/sulfate latex beads (Thermo Fisher Scientific, 
USA) were incubated with anti-CD9 (ab134375, Abcam) antibodies at room tem-
perature for 14 hours at gentle agitation. The aliquots of exosomes (about 30 μg 
exosomal protein) were incubated with antibody-coated latex beads in 100 μl of 
PBS at 4 °C for 14 hours at gentle agitation. The reaction was blocked with 0.2 M 
glycine for 30 min at 4 °C. The exosomes–antibody–bead complexes were washed 
twice with washing buffer (2% exosome depleted bovine serum in PBS), were incu-
bated with a blocking immunoglobulin G (BD Biosciences, USA) at room tempera-
ture for 10 min with washing. Then there was incubation with FITC-conjugated 
anti-tetraspanins (CD63, CD81, CD24) antibodies (BD Biosciences, USA) at 4 °C 
for 50 min. The complexes were washed twice with washing buffer and acquired per 
sample in a FACS Canto II (BD Biosciences), and data were analyzed using FACS 
Diva 6.1 Software. The median fluorescence intensity (MFI) of the exosomes was 
compared with the isotypic control (BD Biosciences, USA).

The isolated exosomes were characterized by flow cytometry. A combination of 
conjugated and unconjugated antibodies made it possible to identify different sub-
populations of exosomes (Fig. 4.17).

The CD9/CD24 subpopulation in plasma exosomes predominated in CPs and all 
subgroups of CRCPs. There was a difference in MFI СD9/CD24 exosomes between 
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Fig. 4.17 Expression of CD63, CD81, and CD24 on CD9-positive plasma exosomes of CSs (A), 
stage II CRCPs (B), stage III CRCPs (C), and metastatic CRCPs (D). Isotype control and negative 
control (latex beads labeled anti-CD9 with anti CD81 FITC antibody) (E). Mean MFI are shown
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stage III and stage II as well as between non-metastatic and metastatic CRCPs. A 
NanoOrange Protein kit was used to determine the protein concentration. There was 
no statistically significant difference in the level of exosomal protein between CSs 
and CRCPs.

Aliquots of exosomes (about 30  μg exosomal protein) were incubated with 
3 × 105 latex beads labeled anti-CD9 antibody in 150 μL of PBS at 4 °C overnight 
at gentle agitation, blocked in 0.2 M glycine for 30 min, then stained with anti- 
ADAM10 (CD156c)-PE (5 μL on test, BioLegend, USA) and anti-ADAM17/TACE 
antibody (dilution 1:10, Lifespan Biosciences, USA) for 20 min at room tempera-
ture. Then complexes were stained with anti-Rabbit IgG secondary antibody, Alexa 
Fluor 488 (dilution 1:3000, Thermo Fisher Scientific, USA). Single beads were 
gated and acquired in a Cytoflex (Beckman Coulter, USA).

We used anti-CD9 coated latex beads for detection ADAM10/ADAM17 sub-
populations of exosomes in CSs and CRCPs plasma (Fig. 4.18A) [35]. Distribution 
of subpopulations of ADAM10/ADAM17 of CSs and of CRCPs was different 
(Fig.  4.18B–D ). The ADAM10-/ADAM17- population predominated in plasma 
exosomes of CRCPs and the level of ADAM10+ exosomes was significantly higher 
in exosomes of CSs compared with CRCPs (Fig. 4.18D).

Fig. 4.18 Differences between ADAM10/ADAM17 exosomes are present in the plasma of CSs 
and CRCPs. (A) Forward scatter area (FSC-A) and side scatter area (SSC-A) dot plot representing 
exosomal samples with aldehyde/sulfate latex beads. (B, C) Double labeling ADAM10 versus 
ADAM17 of plasma exosomes of CSs (B) and CRCPs (C). (D) Data show the percentage of 
ADAM10/ADAM17 subpopulations of plasma exosomes. Flow cytometry analysis of plasma exo-
somes [35]

N. V. Yunusova et al.



183

The statistically significant decrease in the level of ADAM10+/ADAM17- exo-
somes was revealed in patients with metastatic CRC compared to CRCPs with stage 
III (Fig. 4.19) [35].

The photoacoustic flow cytometry (PAFC) is a promising approach for high sen-
sitivity exosome detecting [88]. PAFC is based on the irradiation of selected vessels 
using short laser pulses followed by time-resolved detection of laser-induced acous-
tic waves with an ultrasound transducer gently held against the skin (Fig. 4.20) [88].

The general principle of photoacoustic flow cytometry is as follows: cells in 
blood vessels (including exosomes) absorb variated on amplitude light on a specific 
wavelength, and then acoustic waves are generated due to thermo-acoustic effect. 
These waves can be registered by an acoustic receiver, which is placed on a patient’s 

Fig. 4.19 ADAM10/ADAM17 subpopulations (in percentage) of plasma exosomes of CRCPs, 
depending on the stage of colorectal cancer. ∗- difference was significant (p < 0.05) compared to 
CRCPs with stage III [35]

Fig. 4.20 In vivo 
integrated photoacoustic 
and fluorescence flow 
cytometry. Schematic for 
simultaneous detection of 
circulating cells (e.g., 
circulating tumor cells 
including exosomes) with 
both absorption and 
fluorescence properties 
[88] (reprinted under 
license of Elsevier, License 
Number 4639160402261)
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body surface. PAFC is a combination of laser and ultrasound techniques, which 
combines high sensitivity and spectral specificity of optical methods and high spa-
tial resolution and depth penetration of ultrasound methods. PAFC molecular speci-
ficity is provided by label-free intrinsic absorption spectroscopic contrast.

The use of a single technique limits the range of detectable cells with different 
optical properties. Conventional flow cytometry usually combines fluorescent and 
scattering detection methods for increasing the number of detectable cells. Using a 
combination of the methods described above, Nolan et al. [89] provided a unique 
diagnostic platform for the detection and identification of nanoparticles directly in 
the bloodstream. This platform offers the opportunity to study almost the entire 
blood volume (up to 3–5 liters), which allows a significant increase in the sample 
volume and, therefore, the chances of detecting markers of diseases. Thus, it was 
shown the in vivo flow cytometry platform for the detection of tumor-associated 
particles, including exosomes at early disease stages [89].

4.3.8  Two-Photon Microscopy

Along with other methods of fluorescent imaging of extracellular vesicles, two- 
photon microscopy is a promising tool for imaging exosomes. Several different non-
linear processes can occur when light interacts with matter. Fluorescence excitation 
by two-photon absorption is extensively used in biomedical imaging. To promote the 
molecule to an excited state, two photons that arrive “simultaneously” (within 
∼0.5 fs) at a molecule combine their energies, which then proceeds along the normal 
fluorescence-emission. Similarly, three or more photons can combine to cause exci-
tation. The efficiency of multiphoton absorption depends on the physical properties 
of the molecule and the spatial and temporal distribution of the excitation light.

In two-photon imaging, two near-infrared (NIR) (or longer wavelengths) pho-
tons are usually used to excite a fluorophore within a visible range [90]. The use of 
NIR-excitation of light in two-photon imaging allows you to improve the depth of 
visualization to several hundred micrometers.

During the past few years, two-photon excited photodynamic therapy has been 
performed on in vitro cells, based on various photosensitizers and nanoparticles, 
under the 700–900 nm fs excitation.

Macklin et  al. [91] used multiphoton microscopy with fluorescence lifetime 
imaging microscopy (FLIM) to track the distribution of PKH67-labeled HiMet-C6 
extracellular vesicles in mice after intravenous injection. The authors note that the 
fluorescence signals of PKH67-labeled extracellular vesicles in phosphate-buffered 
saline (PBS) in vitro could only be detected at 920 nm excitation and emission chan-
nel from 450 to 515 nm. The pseudo-color was based on the average fluorescence 
lifetimes (μm) in individual pixels.

The spatial distribution of the FLIM signal of PKH67-labeled extracellular vesi-
cles in the mouse lung is shown in Fig. 4.21 [91]. The fluorescence signal from 
collagen second-harmonic generation mainly appears in the 350–450 nm spectral 
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range. The spectral range of 450–515  nm captured the fluorescence signals of 
PKH67-labeled extracellular vesicles as well as autofluorescence signals from fla-
vin adenine dinucleotide in cells. The image color changed to orange in the pulmo-
nary capillary (Fig. 4.21B, D) after injection of PKH67-labeled extracellular vesicles 
and μm increased significantly (from 1089 ± 75 ns to 1663 ± 168 ns, P < 0.05) 
compared to the pre-injection value, demonstrating the localization of the fluores-
cence signals of PKH67-labeled extracellular vesicles in the lung.

Therefore, it was demonstrated in  vivo the specific localization of HiMet-C6 
extracellular vesicles to lung tissue which shows the lung as the major site for the 
development of secondary metastases in osteosarcoma [91].

The first visual evidence on targeting CD4+ T cell-based vaccine to cognate 
CD8+ T cells in vivo via exosomal peptide/major histocompatibility complex was 
provided using two-photon microscopy [92]. The pathways of a targeting CD4+ T 
cell and an OTI CD8+ T cell remained interconnected during the recording period 
(Fig. 4.22), indicating that CD4+ specific CD4+ T cells directly interact with the 
cognate CD8+ T cells in vivo.

Lu
ng

λex  = 920 nm λex  = 920 nmλex  = 920 nmλex  = 920 nm
λem = 350-450 nm λem = 450-515 nm λem = 350-450 nm λem = 450-515 nm

Fig. 4.21 HiMet-C6 EVs migrate to the lung. (A–D) Pseudocolored τm fluorescence lifetime 
image of PKH67-labeled HiMet-C6 EVs in mouse lung before (A, B) and 30 min after bolus injec-
tion (C, D) [91]

0 min 15 min 30 min

Fig. 4.22 Motility of CD8+ T cells during ovalbumin-specific or non-specific interactions. CD8+ 
T cells (red) follow targeted CD4+ T cells (green) in their migration. The pathways of a targeted 
CD4+ T (green/gray line) and a CD8+T cell (red/gray line) remaining interlocked for 30 min are 
shown [92] (reprinted under license of Springer Nature, License Number 4545331401388)
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The FLIM refers to the average time the molecule stays in its excited state before 
emitting a photon, which is an intrinsic property of a fluorophore. Fluorescence 
lifetime is sensitive to the local environment, including pH, refractive index, tem-
perature, and insensitive to change in concentration and laser excitation intensity. 
FRET (fluorescent resonant energy transfer) technology is used as a useful tool of 
fluorescence microscopy to quantify the dipole–dipole interaction [93]. In this case, 
one of the molecules is a donor, and the other is an acceptor. This process leads to 
acceptor fluorescence at the expense of the donor. As the speed of this process 
depends on the distance between the objects, it allows measuring the distance 
between the molecules. In most cases, this distance is about 2–5 nm.

Wong et al. [94] carried out monitoring oncogenic receptor signal rewiring using 
exosomal FRET/FLIM to predict clinical outcome. The receptors of interest were 
labeled with extracellular Anti-EGFR-IgG-Alexa 546 and Anti-HER3-IgG-Cy5. 
FRET/FLIM measures the fluorescence lifetime of the donor in the absence and 
presence of the acceptor and allows for the distinction between average FRET effi-
ciency and FRET subpopulation, independent of the local concentration and stoi-
chiometry of donor and acceptor. The non-interacting donors do not undergo FRET 
and thus emit fluorescence with the lifetime of the unquenched donor. The donors 
undergoing FRET expose shortened fluorescence decay.

4.4  Conclusion

Exosomes are microscopic extracellular vesicles (EVs) with a diameter of 30–100 
nanometers secreted by all type of cells in various biological fluids, related with 
many physiological (inflammation, aging, antigen presentation) and pathological 
processes (pathology of pregnancy, cardiovascular, autoimmune, neurodegenerative 
diseases, cancer formation, and cancer metastasis). Exosomes provide intercellular 
communication, immunomodulatory function, induction of angiogenesis and stro-
mal remodeling, cell motility. Cells from the tumor microenvironment generate 
EVs, which increase angiogenesis of new blood vessel generation necessary to sup-
ply oxygen and nutriments facilitating the growth of cancer cells. Thus, exosomes 
can be considered as predictive cancer markers during targeted therapy, as predic-
tors of the effectiveness of neoadjuvant chemotherapy and as prognostic markers.

After isolation, the exosomes are usually characterized using techniques such as 
flow cytometry, dynamic light scattering, nanoparticle tracking analysis, transmis-
sion electron microscopy, atomic force microscopy, nanoparticle tracking analysis, 
infrared spectroscopy, Raman scattering or surface-enhanced Raman spectroscopy, 
two-photon microscopy to evaluate the number of exosomes or their expression lev-
els of disease-related proteins. A more rigorous exosome characterization demands a 
combination of similar methods with taking into account molecular content.

Compared with other methods flow cytometry allows to detect rare vesicles, to 
study a large number of extracellular vesicles, the presence of surface antigens of 
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vesicles that characterize their cellular origin, and to evaluate co-expression of sur-
face markers as well as the detection of individual subpopulations of vesicles. The 
technique with latex particles coated with monoclonal antibodies is most often used 
for exosomes imaging.

Fourier transform infrared (FTIR) spectroscopy analysis of saliva-derived exo-
somes isolated from oral cancer healthy patients in attenuated total reflection (ATR) 
mode FTIR-ATR was carried out.

In the past decade, both label-free SERS detection and SERS tags have been increas-
ingly applied to liquid biopsy analysis, providing qualitative and quantitative informa-
tion for cancer diagnosis, prognosis, and real-time monitoring of therapy response.

Two-photon microscopy is a promising tool for imaging exosomes. FRET/FLIM 
fluorescence assay of circulating exosomes extracted from blood serum allows eval-
uating FRET (fluorescent resonant energy transfer) technology is used as a useful 
tool for analyzing the dipole–dipole interaction.

Thus, the optical imaging of extracellular vesicles, including exosomes, is an 
intensively developing scientific field promising for cancer diagnosis, monitoring, 
and prognosis.
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Chapter 5
Functional Near-Infrared Spectroscopy 
in Cancer Diagnostics

Teemu Myllylä and Vesa Korhonen

5.1  Introduction

Functional near-infrared spectroscopy (fNIRS), or diffuse optical spectroscopy 
(DOS), has been utilized for over three decades as a non-invasive tool for monitor-
ing blood circulation related parameters, and particularly oxygenation changes in 
the cerebral cortex that are linked to brain function [1]. The principle of fNIRS is 
based on wavelength-dependent absorption. Each chromophore (a light absorbing 
molecule) has a distinct absorption spectrum determined by its content and energy 
level structure. These individual spectra can be used as a profile for identifying 
individual compounds in a substance [2]. Most applications exploit the spectrum 
range between 650 nm and 950 nm, where light attenuation in tissue is sufficiently 
low to enable light to penetrate deeper into tissue. A typical fNIRS measurement 
setup consists of near-infrared (NIR) receivers/sources and fiber optic accessories. 
As light source, these setups employ a LED, laser, laser diode or broadband thermal 
source, using a fiber optic probe to deliver light on the patient’s skin [3, 4].

Different applications require a different fNIRS probe source and detector sepa-
ration distance. In breast cancer detection, for instance, the distance ranges from 28 
to 40 mm, which enables tumor detection at 10–40 mm depth in breast tissue [5, 6]. 
In brain imaging, the source–detector distance tends to be 30–40 mm to allow sens-
ing of gray matter. In general, a longer separation distance enables deeper photon 
penetration in tissue, albeit at the cost of reduced signal-to-noise ratio and spatial 
accuracy [7].
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Once fNIRS raw signals have been detected, we may apply the modified Beer–
Lambert law to calculate quantitative tissue concentrations of deoxyhemoglobin 
(HbR), oxyhemoglobin (HbO), water, and lipids. Concentrations of specific sub-
stances in a tissue can be optically determined using a relative spectroscopic mea-
surement at two or more wavelengths [8, 9].

5.2  fNIRS Cancer Diagnostics

In differentiating between cancerous and normal tissue with label-free fNIRS tech-
niques, the most important chromophores are HbO, HbR, lipid, and water, or a 
combination of these [10]. In addition, they can be used to determine the tissue opti-
cal index

 

TOI
HbR x water

lipid
.�

� � � �
� �  

(5.1)

These provide a basis for fNIRS based diagnosis and therapy monitoring of several 
cancers. TOI is a composite index showing contrasts in metabolically active regions 
developed to detect breast tumor locations [11, 12]. Spatial variation in TOI enables 
rapid pinpointing of areas with maximum lesion optical contrast.

5.2.1  Brain Cancer

fNIRS has been used to some degree in brain cancer research. For instance, it may 
have potential in preoperative localization of tumors [13] and in therapy monitoring. 
In comparison with fMRI, one of the main benefits of fNIRS is that it allows mea-
suring concentration changes in both HbO and HbR, while blood oxygenation level-
dependent contrast functional fMRI (BOLD-fMRI) is only sensitive to changes in 
HbR concentration in blood. fNIRS activation studies show that, in normal adults, 
neuronal activation decreases HbR and increases both HbO and HbT [14, 15]. 
However, this is not always the case with brain tumors, as Fujiwara et al. pointed out 
in 2004, when they measured evoked cerebral blood oxygenation (CBO) in brain 
tumors [16] in combination with BOLD-fMRI. They found that, on the lesion side, 
fNIRS revealed a decrease in HbR in five patients and an increase in seven patients, 
even though both HbO and HbT typically increased during a hand- grasping task in 
both groups, indicating the occurrence of a regional cerebral blood flow increase in 
response to neuronal activation. The non-lesion side demonstrated more typical 
findings, including a decrease in HbR and an increase in both HbO and HbT in the 
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primary sensorimotor cortex of all patients. The fNIRS device used by the group 
included four laser diodes directed on the primary sensorimotor cortex with a 
source–detector distance of 3 or 4 cm. Repeated six times, the activation paradigm 
consisted of 40 s of rest, alternating with 40 s of self-paced hand grasping. In sum-
mary, their results indicated that false-negative activations in the BOLD- fMRI of 
patients with brain tumors were associated with a rise in HbR during activation 
measured by fNIRS, even though there was an increase in regional cerebral blood 
flow. As a result, important cortical activation areas may be overlooked in such 
patients [16].

Saxena et  al. studied the vascular status and pathophysiological changes that 
occur during tumor vascularization in an orthotopic brain tumor model. They moni-
tored concentrations of HbO, HbR, and water within the tumor region and found a 
direct correlation between tumor size, intratumoral microvessel density, and tumor 
oxygenation. The relative decrease in tumor oxygenation with growth indicated 
that, although blood vessels infiltrate the tumor region and proliferate in it, a hypoxic 
trend is clearly present [17]. Further, a preclinical study on a murine model of head 
and neck cancer suggests that monitoring of tumor oxygenation status could be used 
to predict treatment outcome in solid tumors [18].

More recently, fNIRS has been utilized before neurosurgery to map language 
areas in patients suffering from tumors such as glioma [19, 20] and to assess oxygen 
status in patients with glioblastoma [21, 22]. Presurgical evaluation of language 
functions is of great importance in brain tumor patients in order to spare these areas 
during surgery and to reduce the risk of postsurgical language deficits [19, 20]. 
fNIRS offers a valuable and easy tool for identification of essential language func-
tions, especially in children. Sato et al. have also demonstrated that expressive and 
receptive language functions can be identified separately using fNIRS in presurgical 
glioma patients [20]. fNIRS revealed increases of HbO and decreases of HbR activ-
ity in language areas elicited by a verb generation and a story listening task. These 
results were completely consistent with those of the WADA test, which is com-
monly used to look at language and memory on one side of the brain at a time. 
fNIRS measurements were carried out using a commercial Hitachi ETG-4100 
Spectrometer with 695 and 830 nm wavelength lasers at a source–detector distance 
of 3 cm and a sampling rate of 10 Hz. For each hemisphere, 8 emitters and 8 detec-
tors were placed alternately on a head shell constituting 24 measuring channels. To 
determine areas associated with language functions, all channels were mounted on 
both hemispheres and controlled such that the area of measurement covered the 
inferior frontal regions and superior temporal regions. More recently, Callagher 
et al. showed that fNIRS permits identification of language networks in children at 
rest, i.e., without them needing to perform a task [19]. They recorder fNIRS data 
during rest and during an expressive language task in a single recording session 
using a frequency domain (FD) fNIRS device (Imagent, ISS Inc) equipped with 8 
detectors and 64 sources (32 at 690 nm and 32 at 830 nm). The light sources and 
detectors were held in place using a comfortable, age-adapted helmet with 
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source–detector distances varying between 2 and 5 cm, thus optimizing the record-
ing of brain signals at various depths in the region of interest, particularly the ante-
rior and posterior language-related regions, Broca’s and Wernicke’s areas and the 
Brodmann area. Results obtained in resting state were compared to those of a more 
conventional task-based fNIRS measurement. This comparison indicated very good 
correspondence between both approaches for language localization (dice similarity 
coefficient  =  0.81  ±  0.13) and hemispheric language dominance (kappa  =  0.86, 
p < 0.006). This makes fNIRS technique an even more valuable and easy to use tool 
for language mapping in clinical populations, including children and patients with 
cognitive and behavioral impairments.

In their review characterizing hypoxia in glioblastoma, Corroyer-Dulmont et al. 
concluded that PET imaging seems the most relevant tool for the purpose [22]. 
However, they also contended that fNIRS offers a simple and non-invasive, albeit 
indirect, method of characterizing blood oxygenation levels.

5.2.2  Breast Cancer

In detecting breast cancer, fNIRS utilizes HbO, HbR, HbT, water, and lipid concen-
trations and an increasing array of extrinsic organic compounds available in the NIR 
optical window [23–26]. These techniques have been applied to non-invasive mea-
surements of subtle physiological differences in healthy breast tissue [27–29], to 
detecting and localizing tumors [5, 6, 23], and to determining tumor responses to 
neoadjuvant chemotherapy [5, 30–32]. Enabled by a high tumor tissue signal-to- 
noise ratio, optical cancer detection has found increasing use as a supplementary 
diagnostic tool for breast cancer [5, 33].

Cancer regions typically show significantly higher concentrations of HbT and 
water and significantly lower lipid concentration compared to surrounding healthy 
breast tissue [29, 33–35]. A preclinical study by Orlova et  al. demonstrated that 
tumor oxygenation and hemoglobin content are the key indicators of the tumor sta-
tus. These can be measured using fNIRS techniques. Further, they concluded that 
tumor oxygenation decrease is not caused by the reduction of oxygen delivery to the 
tumor tissue rate, but, more likely, because of the increase of tissue oxygen con-
sumption and decreased blood outflow rate [36].

Table 5.1 presents the specific parameters and chromophores used in fNIRS 
human breast cancer studies in 10 selected research articles.

Anderson et al. studied chromophore concentration and hemoglobin saturation 
contrast in breast cancer using broadband optical mammography [33]. As light 
source, a broadband optical mammography device utilizes an arc lamp whose emis-
sion is first spectrally filtered (400–1000 nm) to reject ultraviolet and infrared light 
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and then focused onto a 3 mm diameter illumination fiber bundle delivering light to 
the breast [37, 38]. A collection optical fiber (diameter 5 mm) bundle is located on 
the opposite side of the breast, always collinear with the illumination fiber. The 
breast is gently compressed between two parallel glass plates, whose distance is 
recorded for every examination. This stabilizes the position of the breast during the 
scan without any discomfort to the subject. Having imaged a total of 29 breast can-
cer patients (3 were excluded from analysis) with the device, Anderson et al. found 
that, relative to surrounding healthy tissue, the cancer region exhibited significantly 
higher concentrations of HbT and water and significantly lower lipidconcentration 
and hemoglobin oxygen saturation. Furthermore, they demonstrated a significant 
correlation between tumor optical contrast and the grade of breast cancer as quanti-
fied by the Nottingham histologic score. This means that optical signatures may 
represent metabolic and morphological features and indicate the aggressive poten-
tial of the tumor. To conclude, their key finding is that breast cancer produces a 
marked reduction in the oxygen saturation of hemoglobin, which can be used to 
enhance the information content of optical mammograms.

Subjects Wavelengths Technique Reported change in response (if any) Ref

HbO HbR HbT Water Lipid Spo2
1 29 (26) breast cancer patients Broadband 

650–1000 nm

650–1000 nm

650–1000 nm

CW ↑ ↑ ↑ ↑ ↓ ↓ [33]

2 12 malignant breast tumor 
patients + 1undergoing 
neoadjuvant chemotherapy

Broadband FD ↑ ↑ ↑ ↓ not
reliable

[5]

3 6 large breast carcinomas. 2 get 
neoadjuvant chemotherapy.

780 nm, 830 nm, 660 nm AM/FD +Ultra - sound ↓ [30]

4 3 ductal carcinomas + 9 healthy 
controls

FD: 661 nm,761 nm,785 nm,
808 nm,826 nm,849 nm
+
CW: 903 nm,912 nm, 948 nm

FD + CW ↑ ↑ ↓ [37]

5 58 state 2/3 malignant breast 
tumors

Broadband FD + IM and CW ↑
(50%)

↑
(50%)

↑
(50%)

↓
(20%)

[34]

6 11, (1 fibroadenoma, 1invasive
ductal carcinoma and 9 of 11
negative mammographic
findings)

750 nm, 800 nm CW ↑ [38]

7 breast of 49 women 760 nm, 780nm, 830nm, 
850 nm

TD ↑ malign

↑benign

↑ malign 

↑benign

↓malign

↑benign

[35]

8 38 patients, variety of benign and 
malignant lesions

32 channel, 780 nm & 815 nm TR, optical images ↓ malign

↑ fibroadenoma

[39]

9 125 subjects, with negative 
findings and 51 breasts with 
lesions

RF unit: 685 nm & 830 nm
MUX: 685 nm, 810 nm,
830 nm

TOBI (RF + CW) ↑ [29]

10 154 patients, 87 histologically 
validated carcinomas

670 nm & 785 nm
+
843 nm or 883 nm

TD not 
significant

↑ Both higher or 
lower ↑ ↓

[40]

Table 5.1 Breast cancer studies with background information, including patient group, 
wavelength, and technique information as well as reported results regarding intrinsic physiological 
properties
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Tromberg et al. as well used broadband fNIRS to detect tumors in pre- menopausal 
women and to monitor neoadjuvant chemotherapy in breast cancer treatment [5]. 
They used a laser breast scanner in conjunction with a handheld probe, in essence, 
a bedside-capable system combining FD photon migration with steady-state tissue 
spectroscopy. They measured NIR absorption from 650 nm to 1000 nm and reduced 
scattering spectra of breast tissue in vivo. At a source–detector distance of 2.8 cm, 
the measuring probe was moved along a linear grid of steps spaced 1 cm apart on 
both the tumor region (previously identified) and the contralateral normal side. 
Diagnosed with a malignant breast tumor, the 12 pre-menopausal subjects ranged 
from 30 to 39 years in age. The results established a statistically significant contrast 
between normal and tumor regions of tissue for HbR (increased), HbO (increased), 
water (increased), and lipids (decreased). However, tissue hemoglobin saturation 
did not prove a reliable parameter for distinguishing between tumor and normal tis-
sue. In addition, results from one patient, undergoing neoadjuvant chemotherapy for 
locally advanced breast cancer, showed a 50% decrease in TOI within 1 week in 
response to received chemotherapy. All of these results suggested the potential of 
diffuse optics to be utilized in the development of new strategies for individualized 
cancer therapy.

Wang et al. studied in vivo quantitative imaging of normal and cancerous breast 
tissue using broadband diffuse optical tomography (DOT) [39]. Their DOT system 
combined FD and CW measurements to image normal and malignant breast tissue. 
Owing to detector features, FD acquisitions were limited to wavelengths of less than 
850 nm (661 nm, 761 nm, 785 nm, 808 nm, 826 nm, and 849 nm), whereas light at 
longer wavelengths, up to 948 nm (903 nm, 912 nm, and 948 nm), was measured in 
CW mode with a CCD-coupled spectrometer. Having combined the two data sets, 
Wang et al. processed them into a single spectrally constrained reconstruction. They 
mapped concentrations of hemoglobin, water, and lipid, as well as scattering param-
eters in the breast. Nine healthy and asymptomatic subjects were imaged to evaluate 
their intrasubject and intersubject variability. The recorded data showed physiologi-
cally expected trends. Next, three patients with invasive ductal carcinoma were 
imaged and compared to the control data. The added CW data revealed an increase 
in water and a decrease in lipid content within the patients’ malignancies. 
Furthermore, these areas showed a 1.5–2 fold contrast increase in hemoglobin and 
water values. As a conclusion, relative to stand-alone FD data, in vivo breast imag-
ing with instrumentation that combines FD and CW NIR data acquisition in a single 
spectral reconstruction produces more accurate hemoglobin, water, and lipid results.

Cerussi et al. studied in vivo absorption, scattering, and physiological properties 
of 58 state 2/3 malignant breast tumors by broadband fNIRS using a handheld 
device [28, 34]. The fNIRS equipment combines multi-frequency intensity- 
modulated and continuous wave (CW) NIR light to quantify tissue absorption and 
scattering spectra within the spectral range of 650–1000 nm. Values of such intrinsic 
physiological properties as HbO, HbR, water, lipid, and scatter power provide 
detailed information on breast physiology. Scanning was performed in eight posi-
tions over tumor and contralateral healthy breast tissue for each subject. Cerussi 
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et  al. found statistically significant variation in intrinsic physiological properties 
between malignant and normal tissue for all subjects regardless of patient age or 
tumor size/type stratification. Compared to normal breast tissue, malignant tumors 
displayed reduced lipid content and increased water, HbR, and HbO. Furthermore, 
functional perturbations caused by a tumor were significantly larger than corre-
sponding variations in normal tissue. In addition, the TOI derived from intrinsic 
physiological properties doubled the contrast difference between malignant tumors 
and intrinsic tissue properties. In summary, we may conclude that functional pertur-
bations have an effect on intrinsic optical signals characteristic of a malignant 
transformation.

Furthermore, in the study by Chance et al. it was shown that fNIRS provides a 
rapid, safe, and patient-compliant method for detecting breast cancer with a very 
high ROC/AUC score (95%) for a population of breast tumors [6]. All in all, 116 
subjects (44 were cancer-verified by biopsy and histopathology) were measured 
using a handheld NIR breast cancer detector pad with a 3-wavelength (760  nm, 
805 nm, and 850 nm) LED and 8 detectors. The source–detector distance was 4 cm 
and the pad was placed on the subject’s breast. HbT and its relative oxygenation 
were calculated in the breast with cancer and compared to the contralateral breast in 
a 2D nomogram to enable diagnostic evaluation.

In a pilot study, Gu et al. demonstrated the ability to quantitatively image cysts 
ranging from 1 to 4 cm in diameter and differentiate them from solid tumors in the 
breast with DOT [40]. Six cases were studied using compact parallel-detection DOT 
system. Cysts could be differentiated from solid breast tumors by a lower absorption 
and scattering coefficient compared with surrounding normal tissue. Solid tumors, 
on the other hand, manifest higher concurrent absorption and scattering than nor-
mal tissue.

5.3  fNIRS Monitoring in Cancer Therapy

Cancer therapy treatments produce extensive changes in the physiological and mor-
phological properties of tissues, including angiogenesis, hypoxia, alterations in cell 
nuclear size and density, and denaturation [41]. Consequently, great clinical interest 
has been attached to measuring and tracking these biomarkers and changes. A key 
challenge involves developing tailored cancer therapy, geared toward considering 
individual biological responses during therapy.

fNIRS offers an effective technique for monitoring such biomarkers, particu-
larly tumor hypoxia and responses to chemo- and radiotherapy, which involves 
modulating tumor oxygenation to increase or decrease tumor hypoxia [47]. 
However, this measurement is often performed by magnetic resonance imaging 
(MRI), which may not be an ideal solution. Howe et al. used fNIRS to determine 
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absolute hemoglobin and changes in HbR and HbO in subcutaneous tumors in 
rodents. To better interpret MRI data, they paid particularly attention to factors 
that alter blood flow and oxygenation. Both carbogen and O2 breathing produced 
a significant reduction in HbR and an increase in HbO, but a negligible change in 
HbT. This contrasts with N2 breathing in terminal anoxia and intravenous hydrala-
zine regime, which produced a negligible increase in HbR, but large reductions in 
HbO and HbT. Since HbT is proportional to blood volume, they suggested that 
large blood volume drops are likely to cause reduced arterial blood pressure. It 
then follows that MRI techniques that measure the R2∗ relaxation rate, which var-
ies linearly with total HbR, will underestimate the effects of hypotensive agents 
with increasing tumor hypoxia [42].

A pilot study by Sunar et al. in 2006 investigated how patients with head and 
neck tumors responded to chemo-radiation therapy. Blood flow and oxygenation 
were measured using diffuse reflectance spectroscopy (DCS) and fNIRS. The DCS 
setup was a four-channel system with a long coherence length laser operating at 
785 nm. The shortest and largest separation between source and detector fibers was 
2 and 3  cm, respectively. Also comprising four channels, the fNIRS instrument 
operated at the wavelengths of 690 nm, 785 nm, and 830 nm using four source–
detector distances (1.8  cm, 2.2  cm, 2.6  cm, and 3  cm) to quantify oxygenation 
parameters. Significant changes in relative blood flow, tissue oxygen saturation, and 
HbT were observed even in the first 2 weeks of treatment. The study protocol con-
sisted of preradiation measurements providing baseline data and weekly follow-up 
optical measurements, conducted just before each new weekly treatment. Their pre-
liminary results suggest diffuse optics-based therapy monitoring may have clinical 
promise [21].

To monitor tumor neoadjuvant chemotherapy (NAC) responses in women with 
locally advanced breast cancer, Schaafsma et al. performed optical mammography, 
combining fNIRS with standard treatment monitoring by dynamic contrast- 
enhanced MRI (DCE-MRI). Their fNIRS (or DOS) system consisted of four indi-
vidual pulsed diode lasers operating at 690 nm, 730 nm, 780 nm, and 830 nm. Light 
was collected by a mobile detector in a 1 cm-X constellation composed of five opti-
cal fibers and detected by a photomultiplier. Each breast scan took approximately 
10–20 min. Based on measured absorption and scattering, the group obtained accu-
rate estimates of HbO, HbR, HbT, water, lipids, scattering amplitude (SA) and 
power (SP). A significant difference between responders and nonresponders was 
found using fNIRS and these differences continued during treatment. The study 
concluded that fNIRS allows tumor response assessment and is capable of differen-
tiating between responders and nonresponders after the first chemotherapy cycle 
and halfway through the treatment. Further, fNIRS proved as effective as DCE-MRI 
in predicting tumor responses halfway through treatment [43].

Kesler et  al. suggest that the default mode network, a network of interacting 
brain regions that is distinct from other networks in the brain [44], may be a 
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potential biomarker of chemotherapy-related brain injury. Chronic medical condi-
tions and/or their treatments may interact with aging to alter or even accelerate brain 
senescence. A case in point is adult onset cancer, a disease associated with aging. 
Emerging evidence suggests that diffuse, subtle brain injury may follow cancer che-
motherapy. Currently, the primary model for studying these “chemobrain” effects is 
breast cancer. Treatment is often followed by a range of widespread changes in 
brain structure and function as well as impairment of integrated cognitive skills, 
making it likely that large-scale brain networks, such as the default mode network, 
are involved. The default mode network is vulnerable to aging and sensitive to tox-
icity and disease states. Additionally, increased inflammation and oxidative stress 
are believed to raise toxicity levels in the default mode network during chemother-
apy [45]. Biomarkers of default mode network connectivity, measured by fNIRS in 
combination with other neuroimaging techniques, could help ward off chemotherapy- 
related cognitive decline.

Kiviniemi et al. monitored primary central nervous system lymphoma patients, 
who received chemotherapy aided by opening of the blood-brain barrier (BBB). 
Monitoring BBB opening is of great interest in terms of brain drug delivery. 
Although proper opening of the BBB is crucial for successful treatment, there was 
no method for real-time clinical monitoring. To remedy that, Kiviniemi et al. pre-
sented a combined method based on direct-current electroencephalography 
(DC-EEG) and fNIRS.  Using a source–detector distance of 3  cm, the setup 
employed fNIRS at 660 nm and 830 nm with one channel positioned on the fore-
head of test subjects beneath an electroencephalography (EEG) cap. fNIRS 
detected a remarkable multiphasic response during carotid artery infusions begin-
ning with mannitol- bolus induced dilution of blood and ending in a prolonged 
change in the HbO/HbR ratio [46]. A similar effect was recently confirmed using 
a mouse model, see Fig. 5.1.

The prolonged fall in HbR level is particularly interesting, because it cannot be 
explained merely by hyperemia-induced dilution. More likely, since HbR is not 
being produced, it reflects a temporary cessation of oxygen consumption, which 
may actually be a sign of BBB opening.

An analysis of the results revealed that they were concordant between both 
carotid artery BBB disruptions. However, because a frontal fNIRS cannot monitor 
the vertebral artery territory, less prominent, delayed responses were recorded in the 
vertebral artery after mannitol infusion. Furthermore, the very prolonged cerebro-
vascular responses, caused by carotid artery infusion, were strikingly different com-
pared to the gradually fading DC shifts, which were measured simultaneously. 
Consequently, brain hemodynamics measured by fNIRS reflect BBB opening and 
gradual closing, making the method applicable for monitoring BBB opening during 
brain chemotherapy.
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Chapter 6
Breathomics for Lung Cancer Diagnosis

Yury V. Kistenev, Alexey V. Borisov, and Denis A. Vrazhnov

6.1  Volatile Metabolites for Lung Cancer Diagnosis

Lung cancer(LC) is the second most common cancer in both men and women (not 
counting skin cancer). Lung cancers are about 13% of all new cancers. The American 
Cancer Society estimated that about 228,150 new lung cancer cases (116,440  in 
men and 111,710 in women) and 142,670 lung cancer deaths (76,650 in men and 
66,020 in women) occurred in the USA in 2019 [1].

Cancer survival depends mainly on stage at diagnosis. It is typically silent in its 
early stages as a result of which most of the cases are diagnosed in later stages when 
treatment is ineffective. As an example, for LC patients diagnosed in 2003–2009, 
the 5-year survival rate was 54% for stage 1 disease (localized), 26% for stage 2 and 

Y. V. Kistenev (*) 
Laboratory of Biophotonics, National Research Tomsk State University,  
Tomsk, Russian Federation 

Department of Physics with a Course of Higher Mathematics, Siberian State Medical 
University, Tomsk, Russian Federation
e-mail: yuk@iao.ru 

A. V. Borisov 
Laboratory of Biophotonics, National Research Tomsk State University,  
Tomsk, Russian Federation 

Department of General and Experimental Physics, National Research Tomsk State University, 
Tomsk, Russian Federation
e-mail: borisov@phys.tsu.ru 

D. A. Vrazhnov 
Laboratory of Biophotonics, National Research Tomsk State University, Tomsk, Russian 
Federation 

Laboratory of Molecular Imaging and Photoacoustics, Institute of Strength Physics and 
Materials Science of Siberian Branch Russian Academy of Sciences,  
Tomsk, Russian Federation

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44594-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-44594-2_6#DOI
mailto:yuk@iao.ru
mailto:borisov@phys.tsu.ru


210

3 (regional), and 4% for stage 4 (distant). However, only 15% of cases were diag-
nosed at stage 1, while 22% were diagnosed at stages 2 and 3 and 57% were diag-
nosed at stage 4 [2].

Control of metabolites in exhaled air produced by biochemical reactions in cells 
being called “breathomics” provides the ability to predict disease before the appear-
ance of the clinical features [3].

Screening LC diagnosis based on control of volatile metabolites in breath air is 
very attractive. The potential advantages of this approach are non-invasiveness, ease 
of use, and minimum cost of diagnosis tests, suitability for long-time monitoring. 
The exhaled air has less complex composition compared to blood serum or urine, 
allows to analyze components present in it, without obligatory preliminary prepara-
tion of a sample, in contrast to the analysis of blood. Some exhaled air components 
are closely correlated with their concentrations in blood, which eliminates the need 
for blood sampling for analysis [4].

Exhaled air contains endogenous or exogenous origin compounds at ppbv–pptv 
concentration range, in addition to nitrogen, oxygen, carbon dioxide, water vapor, 
and inert gases. The endogenous compounds include inorganic gases such as NO, 
CO; volatile organic compounds (VOCs) such as ethane, pentane, acetone, isoprene, 
acetaldehyde, methanol, ethanol, and other alcohols and alkanes; 2-propanol, sulfur- 
containing compounds such as dimethyl sulfide, methyl, ethyl, mercaptanes, and 
carbon disulfide; and nitrogen-containing substances such as ammonia and dimethyl/
trimethylamine [5]. Ulanowska et al. [6] measured concentration levels of different 
VOCs (acetaldehyde, ethanol, acetonitrile, butane, furan, propanal, acetone, carbon 
disulfide, 2-Propanol, dimethyl sulfide, 1-Propanol, isoprene, pentane, 
2-Methylfuran, 3-Buten-2-one, 2-Butanone, ethyl acetate, 2-Methylpentane, 3- 
Methylpentane, benzene, hexane, 2-Pentanone, pentanal, 2,5-Dimethylfuran, 
hexanal, toluene, 2-Methylheptane, heptane, p-Xylene, o-Xylene, 4-Methyloctane, 
ethylbenzene) in exhaled air of healthy volunteers, including smokers.

Typical VOCs in breath air for LC patients are presented in Table 6.1. It should 
be pointed out that a number of these VOCs have been registered in the breath of 
smokers and passive smokers, including hydrocarbons, furan, acetonitrile, benzene, 
3-methylfuran, 2,5-dimethylfuran, 2-butanone, octane, and decane [7].

Breath air analysis can be used both for understanding specific biochemical pro-
cesses and as a diagnostic tool. The absolute identification of VOCs is not strictly 
necessary in clinical activity, and probabilistic discrimination of biomarker profiles 
can be used for purposes of diagnosis [16]. As an example of “profiling” approach, 
the analysis of VOCs profile in breath air of LC patients and healthy volunteers was 
carried out [4]. The use of 15 specific identified VOCs was shown to provide sensi-
tivity at the level of 71% (21 markers provide 80% sensitivity) and 100% specificity 
in comparison with healthy volunteers. Potential biomarkers included alcohols, 
aldehydes, ketones, hydrocarbons.

A significant increase in level of 30 VOCs in exhaled air of LC patients (193 
people) in relation to healthy volunteers (211 people) was registered by Altorki 
et al. [17], including isopropyl alcohol, 2,3-hexanedione, camphor, benzophenone, 
derivatives of tetroxane, benzene, anthracene, benzoic acid, furan, esters, and sev-
eral others components. The result was presumably due to the activation of 
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cytochrome P450, which affects the concentrations of these substances in the 
exhaled air. There was no significant difference between smokers and 
non-smokers.

A significant increase in the concentration of butanol-1 and 3-hydroxy-2- 
butanone in the exhaled air of LC patients was found in a comparative analysis of 
the 68 VOCs in the exhaled air from 43 patients with non-small cell lung cancer 
(NSCLC) and 41 healthy volunteers [11]. The increase of these components in the 
exhaled air was more significant in pulmonary adenocarcinoma than in squamous 
cell lung cancer. As these VOCs are the products of butane oxidation, it indicates an 
increase in oxidative processes during cancer development.

Gleeson et  al. [9] reported that 22 selected VOCs allow distinguishing LC 
patients and healthy people with a sensitivity of 100% and specificity of 81%. These 
VOCs included 3-methyloctan, 3-methylnonane, isoprene, cyclohexane, heptanal, 
hexanal, and derivatives of heptane, decane, benzene. The increase of their concen-
tration can be partly associated with oxidative stress. There was no dependence of 
the VOCs content on the stage of disease and smoking.

Poli et al. [13] achieved correct classification for 80% of LC patients using poly-
nomial logistic regression analysis of 13 VOCs in breath air (isoprene, 
2- methylpentane, pentane, ethylbenzene, xylene, trimethylbenzene, toluene, ben-
zene, heptane, decane, styrene, octane, pentamethylheptan). The 2-methylpentane 
level was higher for NSCLC patients in comparison with healthy volunteers and 
patients with chronic obstructive pulmonary disease (COPD). There was a signifi-
cant decrease in isoprene and decane concentrations after surgical treatment.

Ager et al. [18] stated that 21 VOCs provided a sensitivity of 80% and specificity 
of 100% of LC patients diagnosis in comparison with healthy volunteers. It was 
registered a significant decrease in the concentrations of isoprene, acetone, and 
methanol in the LC patients exhaled, while the concentrations of 2-butanone, benz-
aldehyde, 2,3-butanone, 2-butanone, 1-propanone, acetophenone, cyclopentene, 
tetramethylcarbamide, butyl acetate, etc. were significantly increased concerning 
the healthy volunteers.

According to the paper [19], potential biomarkers of LC are pentane, isoprene, 
acetone, benzene.

Recently, 112 potential biomarkers of LC in exhaled air have been registered 
[20]. They included 36 hydrocarbons, 7 alcohols, 8 aldehydes, 2 acids, 12 ketones, 
12 aromatic compounds, 2 heterocycles, 2 nitriles, 5 terpenes, 9 esters, 1 sulfide, 2 
halogenated compounds, and 15 compounds from other chemical classes. The reg-
istered  hydrocarbons included 2-methyl-propane, 5-methyl-tridecane; the regis-
tered alcohols included 1-octene-3-ol. The registered aldehydes included pentanal, 
hexanal, octanal, noanal, examples of ketones are 6-methyl-5-hepten-2-OH, the 
example of aromatic compounds are benzophenone mixture, the example of ter-
penes are trans-caryophyllene.

A systematical review of various sources, including PubMed, EMBASE, 
Cochrane databases, of the current knowledge on exhaled VOCs with respect to 
their potential clinical use for LC and other diseases diagnosis was performed [21]. 
Seventy-three studies were included, counting in total 3952 patients and 2973 

6 Breathomics for Lung Cancer Diagnosis



214

healthy volunteers. Various research groups demonstrated that VOCs profiles could 
accurately distinguish patients with pulmonary disease from healthy control.

6.2  Experimental Equipment for Profiling of VOCs 
Breath Air

6.2.1  Gas Chromatography

Gas chromatography is based on a variety of sample components extraction time in 
the flow of the carrier gas in a column. Thus, each compound exits the column at a 
specific time (known as the retention time). The column is typically coiled and very 
thin (0.25 mm internal diameter) allowing even tens of meters in length to be housed 
within a relatively small temperature-controlled oven. Longer columns (~30 m) are 
used for metabolic studies.

Gas chromatography with mass spectrometry detection (GC-MS) became a 
“gold standard” in VOCs analysis [3] due to its low limit of detection (LOD), from 
100 ppm to 1 ppb or less [22]. GC-MS is especially effective for analysis of organic 
compounds in biological gas samples. For example, the LOD for dichloromethane 
by this method is about 0.1 ppt [23].

The main drawbacks of gas chromatography breathomics are its rather high com-
plexity, high cost of consumables, special skills of the personnel.

6.2.2  Direct Injection Mass Spectrometry

Selected ion flow tube mass spectrometry (SIFT-MS) is based on chemical ioniza-
tion using molecular ions to transfer charge onto the target compound. The chemical 
ionization allows reducing fragmentation of the latter in comparison with many 
other types of ionization. SIFT-MS provides direct analysis without sample pre- 
concentration, is suitable for real-time monitoring, and is slightly influenced by 
humidity. The LOD of the SIFT-MS Voice200Ultra (Syft Technologies Ltd) is better 
than 1 pptv.

Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a chemical ionization 
mass spectrometric technique, which allows measuring trace concentration compo-
nents in gas mixtures, including human breath. PTR-MS provides fast analysis of 
exhaled breath without prior sample preparation [24]. To increase accuracy, the 
duration of the measurement process should be increased, but for breath-to-breath 
resolution, the time window for measurement should be relatively short. The PTR- 
QMS 300 instrument (IONICON Analytik GmbH) provides LOD<300 pptv [25]. A 
disadvantage of PTR-MS is that it is suitable only for molecules with a proton affin-
ity higher than that of water. Additionally, SIFT-MS and PTR-MS do not detect as 
many compounds such as GC-MS [0].
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6.2.3  Ion Mobility Spectrometry

The ion mobility spectrometry (IMS) used to detect substances of very small con-
centrations [26]. In IMS system, a radioactive source ionizes the molecules in a gas 
sample. As a result, molecules drift into an electric field inside the so-called drift 
cell. Each type of molecule has a specific drift velocity in the air and may, therefore, 
be identified. Gas Chromatograph coupled with Ion Mobility Spectrometer 
(GC-IMS) by Gesellschaft für Analytische Sensorsysteme mbH provides a typical 
value of LOD near the low ppbv-range. However, this method has a lack of selectiv-
ity in some cases, because, during an analysis of multicomponent samples, different 
interactions of ion/molecule produce complex, practically non-solvable spectra.

6.2.4  The “Electronic Nose” Equipment

The conception of “electronic nose” devices was evolved in the early 1980 and cor-
responded to the system of chemical sensors, each of which measures the concen-
tration of a particular substance. The term “electronic noses” was introduced by 
Gardner and Bartlett in 1994 [27]. These sensor devices are capable of detecting a 
wide diversity of chemical species and mixtures of compounds present in headspace 
volatiles of sampled air, including VOCs. The example of the “e-nose” is “Cyranose 
320,” consisting of 32 polymer chemiresistors [27]. Conducting polymers (CP) 
have a moderately sensitive detection limit of 0.1–100 ppm for various volatile sub-
stances such as organic acids, alcohols, esters, and alkanes depending on the water 
vapor content [28].

Metal oxide surfaces (MOS) sensors are based on oxidation by gaseous mole-
cules at a high temperature (250–450 °C), which causes electron transfer from the 
molecules to the metal oxide structure. This results in a change in electrical conduc-
tivity. CP-sensors are low power-consuming instruments with very good sensitivity 
and reproducibility at room temperatures, but they have high sensitivity to moisture, 
inactivation by certain strongly polar analytes and relatively low sensor life (com-
pared to MOS sensors) that tend to have a much longer sensor life, but operate at 
higher temperatures and with greater power demand. CP-sensors and some types of 
MOS sensors also sometimes exhibit problems of sensor compatibility and unifor-
mity [29].

The breath VOCs are studied to identify the early stage of lung cancer using 
chemiresistors coated with gold nanoparticles. Metallic nanoparticles are synthe-
sized in a two-phase system which is composed of aqueous and non-aqueous solu-
tions. These solutions are combined with techniques of extraction of ions. The 
metallic mono-layered nanoparticles are then coated with a hydrophobic layer of 
alkanethiols. First, the ions from an aqueous solution are transferred to a toluene 
solution. Then the reduction of gold is done with an aqueous borohydride solution 
which is later capped with thiols. Lastly, the gold nanoparticles are extracted and 
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purified from thiols. This technique is shown to be highly accurate and is relatively 
easy to operate [30].

Sensor technology for electronic olfaction that offers the potential to develop 
miniature sensor chips deploying hundreds of diverse and sensitive sensors based on 
DNA-decorated semiconducting single-walled carbon nanotubes was presented 
[31]. Because the DNA oligomers have tightly bound water molecules associated 
with their phosphate groups and other moieties in the nucleotide backbone, the 
DNA coated nanotube sensors are not responsive to water vapor, which is often a 
problem with other sensor technologies of direct breath analysis. The authors have 
made sensor devices sensitive to some components of human breath (organic acids, 
trimethylamine).

In common, the disadvantages of chemical sensors are a short life time, low 
specificity due to reaction not only on a given chemical compound but sensible to 
nearly all compounds of the same chemical family, such as organic solvents, fatty 
acids, sulfurous gases, etc. [32].

To overcome these drawbacks, new types of sensors and sensor coatings are 
being developed, such as chemical sensors that change their color when certain 
VOCs appear (colorimetric sensors) or change the frequency of quartz resonator, 
etc. [33]. Quartz microbalance (QMB) sensors contain a quartz crystal with piezo-
electric properties. This technique is based on the variation in mechanical oscilla-
tions of the crystal and the resonant frequency of the electric circuit following the 
attachment of VOCs. QMB sensors have very good sensitivity but are not as easily 
effective for the development of “Breathprints” [29].

6.2.5  The Absorption Spectroscopy

Absorption spectroscopy is based on resonant absorption of optical radiation by a 
molecule. LOD of absorption laser spectrometers with absorbing Bougher’s cuvette 
depends on the optical thickness of the studied mixture. Multi-pass cuvettes are 
used for registration of low concentrations of components in breath air.

Cavity ring-down spectroscopy method (CRDS) was proposed by A. O’Keefe 
and D. A.G. Deacon in 1988 for precision measurements of absorption coefficients 
with short laser pulses [34]. It was demonstrated that CRDS sensitivity can achieve 
~10−10  cm−1 for mirrors with reflectivity R ≥  0.9999. A significant drawback of 
CRDS is the technical complexity of wavelength tuning because the high reflectiv-
ity value may be achieved only in a narrow spectral interval [35].

Laser photoacoustic spectroscopy system (LPAS) is one of the most sensitive 
approaches of laser absorption spectroscopy to gas analysis, especially with the use 
of coherent radiation sources and intracavity photoacoustic detection. LPAS has a 
very low detection limit. For example, LPAS gas analyzer with an intracavity acous-
tic cell provides the measurement of ethylene down to 6 pptv [36, 37]. Sample pre- 
concentration for LPAS analysis is not needed, because the photoacoustic signal is 
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proportional to the absorbed volume fraction of laser energy, which can be increased 
by the power of used laser source.

The sensitivity of LPAS is strongly influenced by the photoacoustic cell design 
as it can operate either in a nonresonant mode or as an acoustic resonator. 
Nonresonant operation means that the light modulation frequency is below the low-
est resonance frequency of the cell. In this case, acoustic wave distribution within 
the cell is almost spatially independent and resonant amplification of the photo-
acoustic signal is not used. When the exciting light is modulated at a resonance 
frequency of the cell, the generated photoacoustic signal is amplified by the quality 
factor (Q-factor) of the acoustic resonance. Q-factor can be up to several hundred 
[38]. The most frequently used types of resonant LPAS detectors are based on 
Helmholtz resonators, one-dimensional cylindrical resonators, and cavity resona-
tors [38–40].

Nonlinear effects in optical parametric oscillator (OPO) are one of the most 
widespread ways to generate tunable coherent radiation in the wide spectral range. 
We developed the LaserBreeze gas analyzer based on an LPAS method and OPO 
with the tuning range of 2.5–10.7 μm [41]. The scheme of the LaserBreeze is shown 
in Fig. 6.1. Laser source includes two OPOs. The first one is based on fan-out peri-
odically poled lithium niobate structure (PPLN), which provides wavelength tuning 
in the spectral range 2.5–4.5 μm. The second OPO is based on mercury thiogallate 
crystals HgGa2S4 (HGS) and has wavelength tuning range 4.45 μm–10.7 μm. Both 
OPO were pumped by Nd:YLF laser. The switching between two OPO is realized 
by the motorized translation stage. The linewidth of laser radiation is about 3–4 cm−1. 
Resolution of wavelength scanning is around 7 nm/s. The photoacoustic detector 
(PAD) is based on double channel Helmholtz resonator with Q-factor ~40 and fun-
damental resonance frequency ~1700 Hz. Data from the pyroelectric detector (PD) 
are used to normalize the PAD signal relatively to laser radiation power. The ther-
mostating at the temperature 40 °C ± 0.2 °C was applied to avoid temperature drift 
of the OPO parameters and water vapor condensation on the PAD inner walls.

The necessary volume of studied sample is not more than 50 cm3 and the concen-
tration sensitivity of the LaserBreeze is not worse than 1 × 10−3 ppm. The procedure 
of sensitivity estimation was described in [42]. PAD was preliminarily cleared by 
pumping of N2. The measurements of noise signal value UN were continued for 
3 min. The average value <UN>and standard deviation δUN were calculated. Then, 
PAD was filled by calibration gas mixture including tested gas with known concen-
tration n and N2. The concentration of tested gas was chosen to provide useful signal 
value US over UN in 2–3 times. The measurements procedure was the same as for 
noise level one. The following equation was used to calculate signal/noise 
value (S/N).
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where <Us> is the average value of the useful signal. The sensitivity no was deter-
mined by the formula:

 
n

n

S No = .
 

In order to provide wavelength calibration, we use the reference cell (REF) filled by 
a gas mixture of the compounds having strong absorption lines in known wave-
lengths within the LaserBreeze tuning range. The absorption spectrum of the REF 
gas mixture is shown in Fig. 6.2.

The LaserBreeze allows to detect more than 20 molecular biomarkers which 
have absorption lines in the mentioned spectral range, including acetone (C3H6O), 
acetylene (C2H2), ammonia (NH3), butane (C4H10), carbon dioxide (CO2), 13 isotope 
of carbon dioxide (13CO2), carbon monoxide (CO), ethane (C2H6), ethanol 
(C2H5OH), ethyl acetate (C4H8O2), ethylene (C2H4), formaldehyde (CH2O), meth-
ane (CH4), methanol (CH3OH), nitrogen dioxide (NO2), nitrogen oxide (NO), 
nitrous oxide (N2O), pentane (C5H12), propane (C3H8), sulfur dioxide (SO2). The 
relative error in determining of VOCs concentrations is not more than 30%.

 On the whole, laser photoacoustic spectroscopy looks very attractive for  routine 
clinical breathomics applications due to simplicity and low cost of analysis, no spe-
cial requirements for sample preparation and ability to operate without special 
knowledge.

Fig. 6.1 Experimental 
set-up of LaserBreeze. FI 
Faraday Isolator, Mi 
mirrors, PC Personal 
Computer, λ/2 is half wave 
plate, PD pyroelectric 
detector, PAD 
photoacoustic detector, 
REF reference cell, L1 lens, 
HGS mercury thiogallate 
crystals HgGa2S4 based 
OPO, PPLN periodically 
poled lithium niobate 
based OPO
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6.3  Breath Air Sampling

Equipment for breath air testing varies, but the basic principles keep the same. All 
systems include a source of test gas, a method for measuring inhaled and exhaled 
breath air (spirometers, pneumotachometers near the mouthpiece or a bag-inbox), 
and gas analyzers (single-sample analyzers or continuous high-speed analyz-
ers) [43].

The breath air sampling procedure to identify VOCs is increasingly important. 
There are two main approaches to sampling breath: direct (real-time) and off-line 
analysis. Direct analysis of the exhaled air is carried out without prior concentration 
or storage of samples. Direct methods are of interest for continuous monitoring of 
certain compounds. Physiological parameters such as the exhaled CO2 partial pres-
sure, temperature, flow rate, or the exhaled O2 partial pressure can be used to control 
the sampling process. Typically, these parameters are used for recognition of respi-
ratory phases and should be monitored with a time resolution of at least 200 ms, 
regardless of whether direct sampling (real-time) or controlled (alveolar) sampling 
followed by analysis [44]. Identifying a set of VOCs is time-consuming and cannot 
be done in real-time using direct methods.

At off-line analysis by chromatography methods, the pre-concentration, as a 
rule, is used. The review of pre-concentration breath sample techniques was pre-
sented [45]. Gordin and Amirav developed the “Snifprobe” [46], which consists of 
a small-length capillary or porous-layer open tubular (PLOT) column. Breath was 

Fig. 6.2 Absorption spectrum of the gas mixture in the reference cell in the spectral range 
2500–10,700 nm
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drawn through the Snifprobe for 5 s, after which the entire column segment was 
inserted into the GC injector for thermal desorption. A sorbent material is used to 
sample from a bag or chamber containing a breath sample. The pre-concentration is 
realized based on traditional enrichment methods, such as solid-phase extraction 
followed by thermal desorption of the mixture before analysis. The drawbacks of 
sorbent use are high sample volumes (typically 100–5000 mL), which are necessary 
for reliable and sensitive analysis, as well as potential problems associated with 
high water content. In principle, distributed solid-phase microextraction can over-
come the above problems and meets the requirements of controlled and rapid sam-
pling and reliable pre-concentration [44].

Several devices and techniques have been developed to concentrate VOCs onto 
thermal desorption (TD) tubes and subsequent laboratory analysis. Those optimum 
parameters for TD were the subject of the investigation [47]. The experiments were 
conducted to investigate the fraction of breath sampled (whole breath including 
mouth air versus lower respiratory exhaled breath); breath sample volume (125, 
250, 500 and 1000 mL); and breath sample flow rate (400, 200, 100 and 50 mL min−1). 
The exhaled breath samples were collected using “Respiration Collector for In Vitro 
Analysis” (ReCIVATM) (Owlstone Medical, Cambridge, UK) in combination with 
a dedicated clean air supply “Clean Air Supply Pump for ReCIVA” (CASPER) 
(Owlstone Medical, Cambridge, UK).

The four-piece TD tube assembly was inserted into a clean mask for each study 
participant and then attached to the ReCIVA device ensuring that the TD tube and 
mask assembly were seated correctly within the device (Fig. 6.3).

This study indicated that the increase in sample volume had improved VOCs 
detection. However, the influence of the fraction of exhaled breath and the flow rate 
depends on the target VOCs measured. While the concentration of potential volatile 
biomarkers for esophago-gastric cancer was not significantly different between the 
whole and lower airway exhaled breath, the level of other VOCs was varied. Also, 
the recovery of some VOCs such as phenols and acetone from TD tubes was lower 
when breath sampling performed at a higher flow rate, but the majority of other 
VOCs were not affected.

It has been shown that the flow rates pumping exhaled breathing patterns onto 
TD tubes do not significantly affect the measured concentration of VOCs [47], 
except acetone and phenol, the level of which decreased at higher flow rates. 
According to Doran et al. [47] the midrange flow rate (e.g., 200 mL min−1) would 
be optimum for system performance.

It should be taken into account that in both methods exhaled air includes a por-
tion of dead space air—the air from the nasopharynx, trachea, bronchi, where no 
gaseous exchange takes place between inhaled air and blood, and alveolar air origi-
nating from the lower airways, where this gaseous exchange occurs. Therefore, the 
concentration of the endogenous compounds that are of interest for diagnostics is 
relatively high only in alveolar air. The typical value of the volume of exhalation for 
an adult is approximately 500 mL, of which, 150 mL is the “dead volume” and 
350 mL is the air from the alveoli.
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To select an alveolar part of the breath, it is proposed to use a metal or plastic 
cylinder opened from the distal end, which allows the exhaled air to escape into the 
surrounding space [48]. The breath air collector has a cylindrical shape with a diam-
eter of 2.4 cm and a length of 100 cm, wherein distant from the patient a portion of 
the breath sample in the cylinder is a “dead volume” and the near is the air from 
alveoli of lungs. There is a channel located in the near to the patient part of the cyl-
inder, and only part of the sample corresponding to the air from the alveoli is taken.

In the cylindrical sampler for breathing tests [49], there are two membrane valves 
attached to the base 5, one for the inhaled air and the other for the exhaled air (see 
Fig. 6.4). When inhaling, the first membrane (1) opens, the second one (2) is closed, 
organizing the incoming flow through the holes (3). When exhaling, the first mem-
brane closes, the second opens, forming a separate flow passing through the hole 
(4). The elastic properties of the second membrane are selected so that at the end of 
the exhalation it automatically closes, ending a separate respiratory cycle. Thus, 
there is no “dead volume” in the device.

The device for sampling exhaled air is shown in Fig.  6.5 [50]. The sampling 
container (8) includes a vacuum cell (7) hermetically sealed with a rubber stopper 
(6). The patient exhales air into the sample tube (1), which first inflates the bag (2) 
attached to the other end of the tube. The bag is designed to collect portions of air 
from the oral cavity, nasopharynx, trachea, bronchi (“dead space air”). The filling of 
the bag renders the removal of the uninformative portions of the exhaled air from 
the sample. A small hole in the bag (3) allows the patient to continue the exhalation 
process. The decrease in the exhalation rate allows more precise control of the pro-
cess. After filling the bag, the patient or service personnel shall place the sample 
container in the discharge duct (5). The needle (4) available in the discharge channel 

Fig. 6.3 Collection system 
using ReCIVA device [47]
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pierces a rubber stopper, and a portion of air through the needle enters the cell due 
to vacuum. After disconnecting the container, the hole from the needle in the rubber 
stopper is closed due to the elasticity of the material.

Exhaled air can be sampled in two ways: mixed expiratory sampling and end- 
tidal sampling. Mixed expiratory sampling entails collecting total breath, including 
the air contained in the upper airways which experience no gas exchange with the 
blood. End-tidal sampling involves the collection of only end-tidal air, which con-
tains most of the chemical information on blood composition. End-tidal sampling 
(collecting breath only at the end of exhalation) has proven successful because sam-
ples are less likely to be diluted by mixing with dead space volume (inspired air not 
taking place in gas exchange) and ambient air [51].

The need for standardization in sampling has been growing with the develop-
ment in the field of breath research. Sampling devices for analysis of the exhaled air 
have to meet a number of requirements [52–54].

The following factors are critical for reproducibility of results of NO concentra-
tion measuring:

 1. Exclusion of nasal NO. Closure of the velopharyngeal aperture during exhalation 
is one of the ways to minimize nasal NO leakage. This can be achieved by resis-
tance to exhalation. It has been estimated that resistance to exhalation should be 
at least 5 cm of water column [55]. At the same time, pressures greater than 20 cm 
of the water column can be uncomfortable for the patient and should be avoided.

Fig. 6.4 Device for 
carrying out of respiratory 
tests [49]
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 2. Standardization of exhalation flow rate. Exhaled NO plateau values vary consid-
erably with exhalation flow rate. Low flow rates (<0.1 L/s) amplify the measured 
NO concentrations. The flow rate of 0.05 L/s was found to be a reasonable com-
promise between measurement sensitivity and patient comfort [55].

Performance standards for equipment for single-breath determination of carbon 
monoxide uptake in the lungs were defined in [42]. The volume measurement accu-
racy should be the same as that determined by ATS/ERS for spirometry, that is, 
±3%, regardless of a gas mixture, the direction of gas flow (e.g., inhaled or exhaled), 
or pulsatile flow pattern. Gas analyzer accuracy is important in some circumstances, 
such as measuring CO “back pressure” (the exhaled fraction of CO when no CO has 
been inhaled).

Only the ratio of the alveolar to inhaled CO and tracer gas is needed for calcula-
tion of the diffusing capacity of the lungs for CO (DLCO). Thus, the analyzers must 
primarily be able to produce an output for measured exhaled CO and tracer gas that 
is a linear extrapolation between the inhaled (test gas) concentrations and zero (no 
CO or tracer gas present in the analyzers).

Since the measured DLCO is very sensitive to errors in relative gas concentra-
tion, nonlinearity for the analyzers should not exceed 0.5% of full scale, i.e., once 
the analyzers have been adjusted to zero, with no test gas present and have scaled 
using test gas concentrations.

If CO2 and/or H2O interfere with the gas analyzer performance, this effect can be 
minimized by their removing from the test gases before they pass through the gas 
analyzer. The other remedy for CO2 and/or H2O analyzer interference is to charac-
terize the effect of these gases on analyzer output aside, and then adjust the output 
of the analyzers for the presence of the interfering gas species.

Fig. 6.5 Exhaled air 
sampling device [50]
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Breath air collection for future off-line analysis can be realized by the following 
methods [56]:

 1. Using sampling bags, such as Tedlar® gas sampling bags (PVF), Mylar gas sam-
pling bags, and polyester aluminum (PEA) sampling bags. These sampling bags 
are cheap and chemically stable and can interface with clinical respiratory equip-
ment. However, these bags may have the risk of leakage or VOC sorption (e.g., 
Tedlar® bags may be permeable to formaldehyde) and may suffer from ultravio-
let degradation.

 2. Flow reactor. This method is realized by exhaling air into a glass cylinder, which 
is linked to an analysis system. After each measurement, the cylinder can be 
purged with nitrogen for cleaning. As the sample volumes can be examined pre-
cisely every time, the reproducibility of this method is ensured. The cylinder is 
inert and can avoid water condensation. However, this equipment is expensive, 
and it requires a constant flow of inert gas, such as N2. It is not suitable for 
sample storage.

 3. Bio-VOC™ breath sampler (Fig. 6.6). This method is realized by exhaling into 
a one-way valve that is connected to a Teflon® bulb. After breath collection, the 
internal standard (IS) can be added into the device, and the exhaled VOCs and IS 
can be extracted by Solid-Phase Microextraction (SPME); the SMPE fiber 
should be put into the Bio-VOC™ for a certain period of time, and then ther-
mally desorbed in the GC set-up. Bio-VOC™ is cheap, inert, and user-friendly. 
It can trap the last portion of exhaled air and avoid upper respiratory or oral 
contamination. But it can only collect 150 mL of end-tidal breath, so breath sam-
ples may vary according to patients’ lung volume.

 4. Phillips et al. [54] reported an example of the breath collection apparatus, which 
has a long-length tube as the breath reservoir, and a small-length tube affixed at 
the end as the sorbent trap to capture the VOCs. A flowmeter and a digital timer 
are also incorporated into the apparatus. This apparatus is portable and 
 user- friendly. It can have separate traps and thus can collect different portions of 
the exhaled breath. Although it is portable and user-friendly, the size of this 
apparatus is quite large and the cost might be high.

 5. Gastight syringe (GTS). The GTS is a widely used transfer medium for VOCs 
collection and analysis. The sorptive loss of the highly volatile compounds, such 
as aldehydes, ketones, esters, alcohols, and aromatic hydrocarbons, is signifi-
cantly low. But conversely, it is not suitable for the collection of semi-volatile 
compounds, such as carboxyls and phenols, because there may be a sorptive loss 
due to contact with the inner surfaces of the GTS, and the sorptive losses will 
increase with the increase of molecular weight and boiling point of the VOCs.

Exhaled air is saturated with water vapor that often interferes with the measure-
ment of the analyzed volatile components. The water vapor content can be decreased 
through bonding with chemical absorbers or freezing. The latter way seems to be 
more reasonable as it does not require any expendable materials. Based on the 
above, a system for gas mixture dehumidification and preparation of patient exhaled 
air samples was created [57]. The block diagram of the system air tract is shown in 
Fig. 6.7, the general view, in Fig. 6.8.
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The system includes:

• dehumidification block;
• sampling and flow normalization block;
• differential manometer;
• air pump (as an initiator of air consumption).

The dehumidification block uses Peltier elements. The airflow rate through the 
removable tube significantly influences its final humidity. At a tube diameter of 
6 mm, the output water vapor concentration does not exceed 1.5 g/m3 at an input 
concentration of 15–17 g/m3 and an airflow rate of 0.017–0.07 L/s, which corre-
sponds to the recommended exhalation rates. An increase in the airflow rate results 
in increased humidity.

The block of sampling and normalization of the exhaled airflow is intended for 
separation of a required portion of air, exhaled by a patient, and providing for uni-
form air flowing at a rate required for gas analyzer operation. The spirometer cali-
brating injector, installed vertically, serves as the ballast reservoir. The ballast 
reservoir controls the uniformity of the airflow, entering the gas analyzer, during its 
periodic filling through the patient’s respiration. Air is expelled from the injector to 
the line and further to the gas analyzer under the action of the load, pressing the 
valve. The load choice (0.5 or 1.5 kg) controls the resistance to the patient’s exhala-
tion and its frequency required for maintenance of the stationary measurement mode.

The use of two rotameters provides monitoring and measurement of the airflow 
rate in a range of 0.03–0.8 L/s.

The differential manometer is intended for measurement of the resistance to the 
patient’s exhalation.

Fig. 6.6 The Bio-VOC™ breath sampler with Supelco solid-phase microextraction fiber holder 
57,330 U
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Water vapor condenses on cool surfaces potentially leading to the partial transfer 
of the volatile components from gas to liquid thereby distorting the measurement 
result. Due to recent technological advancements, the exhaled breath analysis has 
moved beyond measuring VOCs in the gas phase only into the measurement of 
semi-volatiles and dissolved compounds in aerosolized droplets in exhaled breath 
condensate (EBC) and in exhaled breath vapor (EBV). Aerosolized droplets in EBC 
can be captured by a variety of methods and analyzed for a wide range of biomark-
ers, such as metabolic end products, proteins, cytokines, and chemokines, with 
expanding possibilities. EBV sampling can detect additional compounds not 

Fig. 6.7 Sampling and flow normalization block: input collector (1); exhaust valve (2); gate of air 
line (3); gate of ballast reservoir (4); ballast reservoir (5); low pass rotameter (6); high pass rota-
meter (7); outlet collector (8). Dehumidification block: input humidity sensor (1); cooled tube (2); 
output humidity sensor (3); thermometers for cooled and heated parts (4 and 5)

Fig. 6.8 General view of the device: air pump (1); differential manometer (2); sampling and flow 
normalization block (3); dehumidification block (4); thermo-hygrometer (5)

Y. V. Kistenev et al.



227

detected in EBC and may provide greater sensitivity as a sampling method, expand-
ing the spectrum of breath sampling [47].

One of the main sources of measured VOCs is exogenous compounds present in 
the exhaled air. To reduce their influence, one should discriminate impacts from 
compounds of exogenous origin and compounds of endogenous origin (i.e., pro-
duced inside the body by physiological or pathological metabolism).

“Clean air supply” is one of such methods when the inspired air has been passed 
through a carbon-based scrubber to minimize the impact of environmental contami-
nation on the exhaled breath sample [45]. This will minimize the effect of environ-
mental contamination from volatile compounds with rapid wash-out rates in the 
body but will not be the case for volatiles with longer retention time and from long 
term environmental exposure.

In other studies, subjects have been required to remain in the sampling environ-
ment for a set time to allow equilibration with the ambient air. Simultaneously, a 
background sample of the ambient air should be collected. A positive alveolar gradi-
ent (the difference between concentration in the breath and concentration in the 
ambient air) suggests that VOCs was produced in vivo, while a negative alveolar 
gradient indicates the source of the VOCs is external to the body [56]. Such proce-
dures make the process more time-consuming for subjects and require a single sam-
pling location for optimal comparisons of multiple subjects [45].

6.4  Methods of Data Analysis

The development of computer-aided diagnostic (CAD) systems has become a hot 
topic in recent years. This fact is due to recent advances in machine learning algo-
rithms, namely Deep learning, Big data processing. Development of deep neural 
networks for image processing and recognition stimulated hardware development, 
including GPU, FPGA, ASICS devices. Open-source machine learning frameworks 
(TensorFlow, Keras, etc.) are available for large community usage and come with a 
lot of tutorials and examples which made them ready to work from a box. Many 
image data sets (CT, X-Ray, etc.) are available for processing by everybody so the 
threshold of entry is low now. One should mention that these methods are primarily 
focused on image processing, while signal processing of spectral data is not so easy 
to deal with. Data analysis of spectral data, for instance, requires special knowledge 
about data preprocessing (fitting and interpolation, noise removal) and feature 
selection along with classification. These pattern-recognition-based techniques pro-
vide probabilistic discrimination of biomarker profiles, which forms the basis for 
assessing diagnostic accuracy [58]. Machine learning allows one to discover func-
tional relationships from examples based on features rather than from manual veri-
fication of entire experiments. Compared to conventional approaches, these methods 
are more efficient in handling multidimensional data analysis such as distinguishing 
phenotypes that are defined by a high number of features [59].

The key challenge to use machine learning for medical diagnosis is the existence 
of latent dependences between measured features set and human state variations 
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due to pathological processes. On the other hand, medical diagnosis requires very 
high sensitivity and specificity of the trained classifier which is difficult to achieve 
because of lack of representativity of training data sets comparing with annotated 
image sets used by Google, Amazon for face and object recognition.

Digital presentation of an experimental data is a base for effective data prepro-
cessing to remove artifacts, to select useful parts of an experimental data and to 
improve greatly the quality of the future analysis.

Typical digital data preprocessing includes denoising, smoothing, feature extrac-
tion, classification, and diagnosis.

Let us emphasize that objects under study are represented by respective mathe-
matical models called feature vectors. Further discussion will briefly cover machine 
learning topic in application to the spectral data. Machine learning methods are of 
two kinds—supervised and unsupervised learning (also known as clusterization). 
Supervised learning implies that there exist mapped data with an expert evaluation 
of the object’s belongings to some given class. Such data set allows developing clas-
sification rule. By applying this rule to newly obtained data, one can classify it to 
one of the aforementioned classes. The state-of-the-art methods to generate classi-
fication rule are Support Vector Machine [60], Naïve Bayes classifier [61], Artificial 
Neural Networks [62], Random forests [63], Boosting [64]. In contrast to classifica-
tion, unsupervised learning assumes you do not have any expert evaluations; instead, 
you have a priori knowledge about a number of classes or their metric properties in 
the feature space. Unsupervised learning allows estimating data layout in the feature 
space that provides the potential possibility of class separability in some metric. 
These methods, for example, include k-means [65], hierarchical, and c-means clus-
tering [66, 67]. Machine learning biomedical tests showed that Support Vector 
Machine with different kernels outperforms other methods [68]. Many researches 
demonstrated high classification precision of artificial neural networks, but there is 
a significant risk of overtraining, so special validation methods should be used to 
control training process in this case, for instance, k-fold validation algorithm [69]. 
As it was shown in [70], quality performance of classification rule can be increased 
by data preprocessing, allowing to remove outliers which make a negative impact to 
classification. It should be noted that there is a known problem of “curse of dimen-
sionality” for high dimension data. It is occurring because of data features dimen-
sion increasing causes exponential grow of the volume of the training set for 
successful classification. That is why feature space dimension reduction often car-
ries out before classification. Thereby, a combination of data preprocessing and 
dimension reduction can boost classifier overall accuracy. Besides the development 
of classification rule, researches often need to know what components of feature 
vector play most valuable role for classification. Special methods which address the 
problem of feature selection are based on random forest like BORUTA package [71] 
or extended data analysis via principal components analysis aggregated with criteria 
of significance scores based on explained variance are performed [72].

Let us discuss the preprocessing stage. Research on spectral data highly depends 
on acquisition device properties and often need aligning (interpolation) along the 
wavelength axis to make data comparable. Gathered data is high-dimensional and 
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has oscillations with different amplitudes. Data noise includes the following sources: 
thermal noise in electronic units (modeled as additive white Gaussian noise), signal 
drift, background extraction noise, interference fridges in optical components, 
atmospheric pressure changes [73, 74]. A common strategy for noise removal is 
baseline correction, interference fridge removal, and high-frequency denoising 
[73]. Interference fridges are noticeable in tunable diode laser absorption spectrom-
eters so these methods are out of our scope, but can be found in papers [75, 76]. 
Baseline correction is usually performed by data smoothing (e.g., Savitzky–Golay 
filter [77]) followed by polynomial fitting methods. The most popular high- 
frequency denoising approaches are rank filtration, wavelet, and Fourier filtering in 
the spectral domain.

Rank filters use a series of neighboring points, which define sliding window size. 
If the size of the window is odd, the filter is known as the median. The median filter 
is robust and has edge-preserving property. The main drawback of the rank filters is 
a difficulty of estimation of proper window size.

Another state-of-the-art method for data preprocessing is based on signal decom-
position. These methods are very effective against noise with high frequencies and 
often include Fourier or wavelet filtration. Fourier transform-based filters are fast 
and effective, but they also remove meaningful information at high frequencies. 
Wavelet transform filters allow keeping specific waves in a signal, which look simi-
lar to mother wavelet. The main advantages of wavelet transformations are as fol-
lows [78].

Unlike the Fourier transform, wavelets can be well localized in time and fre-
quency. Wavelets help to identify and describe some hidden signal characteristics, 
in particular, its symmetry. If it is necessary to analyze different information in the 
signal, wavelets allow one to consider the specified scale conversion levels (filtra-
tion). There is a wide range of mother wavelets with various degree of smoothness. 
The disadvantage of the wavelet signal processing is a relative computational com-
plexity and the difficulty of the correct choice of the mother wavelet.

Another promising group of filtration technique is based on the solution of dif-
ferential equations. For example, original, noisy image is considered as boundary 
conditions of 2D diffusion equation. By solving it numerically one can obtain a 
smoothed image, similar to the result of the application of Gauss filter to initial 
image. The methods of diffusion filtration (MDF) of 1-D and 2-D signals have been 
actively developing during the past two decades and currently offer a set of effective 
algorithms sufficient to extract the content-relevant information from the initial 
array of noisy and distorted data, i.e., allow within certain limits to manage the data 
processing depending on the required conditions. MDFs are of considerable interest 
in the analysis of medical images [79, 80]. The disadvantage of MDF is that it does 
not allow to both clear input signal from the noise and to preserve the content- 
relevant information, since Gaussian filtering simultaneously smooths out not only 
the noise but also informative part of the fast varied signal.

As noted above, the dimensionality reduction is one of the key steps in data pre-
processing. In general, all dimensionality reduction methods can be classified into 
continuous linear, nonlinear, and discrete ones.
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The Principal Component Analysis (PCA) [81] is a well-known and relatively 
simple linear algorithm of dimension reduction. This reduction is provided by a 
selection of a due number of principal components. The number of necessary prin-
cipal components is defined by the level of explained variance of initial data like it 
is shown in Fig. 6.9.

Computation of principal components can be realized either by calculation of 
eigenvectors and eigenvalues of covariation matrix of input data or by singular value 
decomposition of the data. PCA does not always provide effective feature space 
dimension reduction. Straight lines and planes are not always providing a good 
approximation of the spatial distribution of data in a feature space. For instance, 
data can be aligned along some axis, though this line position might be very com-
plex in feature space. To work with such curvilinear principle components, method 
of principal manifolds and another extension of PCA to the nonlinear case have 
been developed.

A number of nonlinear methods of dimension reduction have been developed, 
for example, geometric methods of features selection, the method of nonlinear 
dimensional reduction, the method of local isomaps [82, 83]. The latter allows one 
to reconstruct low-dimensional nonlinear structures in multidimensional data sets, 
but it is possible to lose significant information when the size of the neighborhood 
in the data set is larger than the distance between the elements of the structure.

The nonlinear kernel PCA is based on linear operations under data preliminary 
transformed by a nonlinear kernel. The Maximum Variance Unfolding (MVU) is 
based on the convex optimization of the objective function and is useful for multi-
dimensional data analysis [84, 85].

The method of diffuse mappings is based on using the family of embeddings of 
the data set into a Euclidean space (possibly of minimal dimension), whose coordi-
nates can be calculated with the help of eigenvectors and eigenvalues of the diffu-
sion operator [86]. The Euclidean distance between points in an immersed manifold 
is interpreted as the “diffusion distance” between the probability distributions con-
centrated at these points. By combining the local similarities on different scales, the 
diffusion maps provide the global description of the data set. It should be noted that 
in comparison with other methods, the diffuse mapping algorithm is noise-proof.

Nonlinear methods are able to operate with complex varieties of the real data 
which are nonlinear in the sense that they do not form the linear space but can be 
regarded as a geometric manifold. In particular, this is the case of real data with 
strong nonlinear variety. It should be noted that nonlinear methods demonstrate 
efficiency on artificial data sets, but on the real data, the dimension reduction is less 
convincing since the application of this or another method depends on the nature of 
the analyzed data.

Discrete methods include the so-called filters, i.e., algorithms based on the selec-
tion of a subset of the original set of characteristics (Pearson’s criterion, mutual 
information based on the Shannon information criterion and the Kullback–Leibler 
divergence). Among the discrete methods, there are the filters, the methods of 
“wrappers” (the classifier is considered as a black box with the input of the gener-
ated feature sets and the result of classification is evaluated), and “built-in” methods 
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that optimize the methods of “wrappers” to reduce the number of repeated 
classifications.

As aforementioned, the last step for medical diagnosis is the construction of a 
classification rule. Here, we focus on classifiers, which show the best accuracy for 
spectral data analysis.

Support vector machine (SVM) belongs to supervised learning methods, based 
on two object groups separation by a hyperplane in a feature space. Supervised 
learning is based on using the stage of algorithm training on a part of the initial data. 
The main objective of SVM is a selection of the optimal position of hyperplane 
which allows separating classes with maximal precision. To do it, separating hyper-
plane should be chosen in such way that distance between nearest points located by 
each side of these plane will be maximal. This distance is called gap and points—
support vectors. In other words, separating hyperplane should provide a maximum 
gap for better confident class separation. When this task cannot be solved linearly, 
the “kernel trick” can be used. This implies the use of SVM with special functions 
similar to well-known kernels from theory if integral equations. Kernels allow pro-
jecting original feature space into another one with a higher dimension. The goal of 
this operation to make class linearly separable in a new higher dimension fea-
ture space.

Random forest method is an ensemble classifier (like AdaBoost and other boost-
ing methods) proposed by Leo Breiman in 1999 [87]. Breiman defined Random 
forests as a classifier, which consist of an aggregation of decision trees {h(x, θk), 
k = 1, …}, where {θk} are independent identically distributed random vectors and 
each decision tree classifier votes for a most popular class for input vector x [88]. 
This algorithm is characterized by its simplicity of implementation and good gener-
alization properties. Also, Random forests allow to obtain not only the object’s mark 
of belongings to a given class, but even measure the confidence of classification.

Artificial neural networks (ANNs) reborn in 2010 in the form of convolutional 
neural networks with significant results in image recognition using a huge number 
of images in teaching set (field of deep learning and big data). Benefits of ANNs are 
connected with their property to adapt to input data without specification needs and 
ability to approximate any function with a given precision. ANNs transform data 
nonlinearly that gives us a very flexible tool for complex natural data modeling. 
Besides, ANNs can estimate a posterior probability and can be used for the genera-
tion of statistical classification rules for medical diagnostics. ANNs may consist of 
an arbitrary number of neurons, grouped into single or multiple hidden layers. The 
choice of ANN’s configuration depends on a specific task and may vary from tens 
to thousands in spectra classification tasks [89]. Originally, most popular ANNs 
were based on Kohonen’s self-organizing maps and backpropagation [90].

The main drawback of ANNs is non-availability of guarantee positive training 
result because there is no explicit way of choosing an algorithm’s configuration 
parameters to get a proper result. But, it is compensated by the effectiveness of big 
data classification.

Methodological problems of data analysis and different approaches to their solu-
tion were subjects of several discussions [91]. A summary of these discussions is 
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presented in Table 6.2, where: N is a sample size, S is the specificity, P is the sensi-
tivity, p is the feature vector dimension.

To train the classifier, a part of the data should be used (training set). When clas-
sifiers are trained, there is a danger that the classifier will be too well adjusted for 
the training set, which will lead to the impossibility of correctly classifying new 
(unseen) data. This problem is called “overtraining” or “overfitting” of the classifier. 
Deciding on the quality of the resulting classifier on the basis of a test on the train-
ing set may lead to the fact that retraining (if it exists) may not be detected. A more 
adequate approach is to use a test suite-a set of data classified by class, but not used 
in the training process.

In spite of examples of successful application of machine learning for medical 
diagnosis, there are risks associated with applying these methods as a “black box” 
to perform diagnosis. A flexible learning system in high-dimensional feature space 
can behave unexpectedly and this can be difficult to detect [92]. Thus, an instrumen-
tal or computer-stage reduction of a feature space under controlled conditions to 
understand driven factors for pathological stage data variations is very important.

6.5  Results and Discussion

The results of exhaled breath samples (EBS) analysis using GC-MS and LPAS with 
extra-wide tuning range in combination with machine learning for lung cancer diag-
nosis are presented.

The study has been involved lung cancer (LC) patients (n = 18), patients with 
chronic obstructive pulmonary disease (COPD) (n = 22), patients with pneumonia 
(n = 21), and a control group of healthy nonsmoking volunteers (n = 39). Diagnoses 
have been established by standard clinical methods. Patients with severe comorbidi-
ties or an unconfirmed clinical diagnosis were excluded from the study.

COPD patients were men of the average age 67.8 ± 9.7 years; 10 from 12 are 
smokers with average smoking of 42 ± 13 years. LC patients were men of average 
age 61.5  ±  4.8  years; 8 of 9 patients are smokers with average smoking of 
44.9  ±  8.2  years. The average age of healthy volunteers in a control group was 
21.5 ± 1.6 years. Smokers and individuals with a disease of the bronchopulmonary, 
cardiovascular, digestive, endocrine, reproductive, and urinary system were 
excluded from the control group.

Research Protocol was approved by the Ethics Committee of the Siberian State 
Medical University (Tomsk, Russia).

All measurements were carried out at room temperature (variations were 
20–25 °C) and humidity (50–60%). The sampling was produced before eating or 2 h 
thereafter. Just before sampling, participants rinsed the mouth with pure water with-
out any special cleaning of the oral cavity. The EBS were collected in disposable 
plastic containers (syringe) with a volume of 150  mL and analyzed using the 
LaserBreeze gas analyzer. Additionally, EBS were collected into the Bio-VOC 
breath sampler with Supelco solid-phase microextraction fiber holder 57,330  U 
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Table 6.2 Statistical methods for data analysis [91]

Method Applicability S/P N/p

Statistical 
hypothesis 
testing, t-test

Test of morbidity as a null hypothesis; if multiple 
testing is performed Mann–Whitney U-test method 
is applied

S N depends on 
testing 
conditions
p = 1

Rank tests, 
Spearman’s rank 
correlation, 
Pearson’s 
chi-squared test

Small samples (N < 30) can determine rank data 
scale

− p = 2

Principal 
components 
analysis (PCA)

Multivariate method of feature selection, which 
allows reducing feature vector dimension by 
removing non-informative components

− Usually, 
N/p > 10, but 
can be applied 
when N < p

Linear 
discriminant 
analysis (LDA)

Decision-making method based on a finding of 
linear combinations of feature vectors components 
most suitable for object separation in feature space. 
The method is close to PCA

S(P) Usually N > p, 
but the method 
can be extended 
for cases when 
N < p

Decision trees An intuitively simple prognostic model of disease 
based on binary feature separation. Simplicity is 
achieved by lowering the precision of prediction. 
Algorithms, as a rule, include inner cross-validations 
or training/testing data set for decision-making. 
Method’s main drawback is a high dispersion: 
Relatively small modifications of input data lead to 
great output changes in prediction.

P p > N

Classifiers of 
feature space 
(SVM, RVM, 
etc.)

Applied for decision-making about types of 
diseases. These methods are based on splitting the 
set of feature vectors into classes. Data 
preprocessing can significantly improve prediction 
precision. The method is computationally complex, 
yet it produces better results than decision trees and 
rank methods

P p > N

Canonical 
correlational 
analysis (CCA)

Applied to solve one of the most complex statistical 
problems—Determination of relations between two 
or more set of feature vectors, which describe an 
object and independent detectors. This method 
allows increasing precision and reliability of the 
results, obtained by other means. Application in 
combination with PCA can significantly improve the 
precision and quality of disease prediction results. 
By computing principle components for each set of 
variables and correlations between obtained 
components, one can reveal complex relations 
between these sets

P p > N
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(Fig. 6.10). A participant did some calm breaths through a sterile plastic tube into 
the sample container. The “dead volume” was exhaled outside the container.

The EBS from the Bio-VOC breath sampler were analyzed by gas chromato-
graph Finnigan Trace GC with MS detector Finnigan Trace DSQ. The extraction 
time was 30 min.

Qualitative determination of VOCs in EBS was carried out under the following 
conditions: ionization method was electron impact; Supel-QTM column PLOT 
(manufacturer Thermo Scientific) of 30 m long and 0.32 mm inner diameter was 
used; evaporator temperature −200 °C; interface temperature −200 °C; temperature 
of thermostat −40 °C during 1 min, then temperature was increased to 250 °C with 
speed 10 °C/min; carrier gas was helium; range of masses scan was 50–650 a.e.m.

To validate the suitability of the Bio-VOC breath sampler and plastic containers 
for the sampling of the EBS, we had filled both containers by nitrogen of 99% purity 
and analyzed the content by GC-MS technique. No peaks have been observed on 
chromatograms, which indicates that used samplers do not contribute any additional 
substances.

GC-MS identification of EBS substances was carried out according to their 
retention time by comparison of measured chromatograms with the spectra from the 
NIST MS Search 2.0 library. Standard gas samples were used for calibration. 
Examples of typical chromatograms for EBS for a lung cancer patient, COPD 
patient, and a healthy volunteer are presented in Figs.  6.10, 6.11, and 6.12, 
respectively.

The square of chromatographic peak was considered as a substance concentra-
tion. Mean values of VOCs concentrations in EBS for groups under study are pre-
sented in Fig. 6.13. Concentrations of Benzene are expressed as 10−2.

Fig. 6.10 The chromatogram of exhaled air of a lung cancer patient: 1-methanol; 2-ethanol; 
3-acetonitrile; 4-acetone; 5-methylene chloride; 6-pentane; 7-ethyl acetate; 8-hexane; 9-benzene; 
10-chloropropylene oxide; 11-N-ethylformamide; 12-octane; 13-toluene; 14-butyl acetate; 
15-chlorobenzene; 16-o-xylene; 17-decane
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According to the results, ethanol, chloropropylene oxide, and N-ethylformamide 
are not detected in EBS of pneumonia patients, chloropropylene oxide is not 
detected in EBS of COPD patients; chloropropylene oxide, O-xylene were detected 
only in EBS of LC patients. Methylene chloride, pentane, acetonitrile, toluene are 
inherent for all groups but with various concentrations, therefore, they can be used 
only in a pattern-recognition approach.

The SVM with Gaussian radial basis function (RBF) kernel [60] was used to 
construct a predictive model for the binary classification using EBS analysis by GC- 
MS. The results of the model validation are presented in Table 6.3 [93].

The LPAS analysis of EBS was carried out by the LaserBreeze gas analyzer. The 
machine learning pipeline was realized in three steps. First, the informative feature 
extraction from absorption spectra of EBS have been produced using PCA process-
ing. Second, the binary SVM “One-vs-One” classification [94] has been carried out 
[95]. The “bootstrap aggregation” method was used to improve the quality of the 
model. According to this approach, a random separation of initial data on teaching 
and testing sets have been repeated. Then the results of testing of a set of the predic-
tive models were averaged. The model validation results are shown in Table 6.4.

Finally, “One-vs-One” classifiers have been used to construct the differential 
diagnosis by enumeration of these classifiers for the feature vector of an object 
under study. The diagnostic decision was based on the output which was selected 
two and more times. If this condition was not met, the diagnosis was considered as 
not set (see Table 6.5).

Lung cancer diagnosis accuracy was 95.7% that confirms the high quality of the 
proposed predictive model.

Fig. 6.11 The chromatogram of exhaled air of a COPDpatient: 1-methanol; 2-ethanol; 
3- acetonitrile; 4-acetone; 5-pentane; 6-hexane; 7-benzene; 8-N-ethylformamide; 9- toluene; 
10-butyl acetate; 11-chlorobenzene; 12-o-xylene; 13-decane
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Fig. 6.12 The chromatogram of exhaled air of a healthy volunteer: 1-methylene chloride; 
2-pentane

Fig. 6.13 VOCs concentrations in EBS: 1-Methanol, 2-Ethanol, 3-Acetonitrile, 4-Acetone, 
5-Methylene chloride, 6-Pentane, 7-Ethyl acetate, 8-Hexane, 9-Benzene∗, 10-Chloropropylene 
oxide, 11- N-ethylformamide, 12-Octane, 13-Toluene, 14-Butyl acetate, 15-Chlorobenzene, 
16-O-xylene, 17-Decane
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6.6  Conclusion

EBS content analysis is a promising tool screening diagnosis. Taking into account 
low specificity of typical molecular biomarkers in EBS, VOCs profile analysis using 
pattern-recognition-based methods should be applied. We used IR LPAS and GC- 
MS methods to provide spectral analysis of EBS. According to the typical machine 
learning pipeline, the analysis of measured spectra was based on reduction of the 
dimension of the feature space using principal component analysis; after that, the 
dichotomous classification was carried out using a Support Vector Machine. The 
estimated average sensitivity of exhaled breath sample analysis by the LPAS in 
dichotomous classification was not worse than 90%, the analogous results of analy-
sis by GC-MS were 68%. The accuracy of multiclass classification of patients with 

Table 6.3 The results of validation of the predictive model for binary classification of the groups 
under study [93]

Groups Kernel parameter value
Sensitivity Specificity
Mean Dispersion Mean Dispersion

LC—COPD 3.5803 0.9620 0.0094 0.9900 0.0024
LC—Pneumonia 18.805 0.9143 0.0339 0.9463 0.0156
LC—Healthy volunteers 0.6560 0.9400 0.0116 0.9999 0.0001

Table 6.4 The results of RBF kernel “One-vs-One” SVM models validation [95,  96]

Pairwise classification
Kernel 
parameters

Sensitivity Specificity
Mean 
value Dispersion

Mean 
value Dispersion

COPD-Pneumonia 1.2041 0.95 0.0016 0.95 0.0012
Pneumonia- healthy 
volunteers

0.5641 0.96 0.0009 0.92 0.0019

COPD-healthy volunteers 1.2414 0.86 0.0022 0.83 0.0020
LC- Pneumonia 0.7152 0.96 0.0014 0.93 0.0012
LC- COPD 1.2216 0.98 0.0003 0.94 0.0007
LC-healthy volunteers 0.2698 0.96 0.0011 0.90 0.0013

Table 6.5 Results of differential diagnosis of the representatives from testing set [95]

Group

Diagnosis
Set right Set not right Did not set
Mean Dispersion Mean Dispersion Mean Dispersion

Lung cancer 0.9565 0.0013 0.0341 0.0011 0.0094 0.0013
COPD 0.8112 0.0091 0.0981 0.0082 0.0907 0.0047
Pneumonia 0.8412 0.0048 0.0991 0.0032 0.0597 0.0025
Healthy volunteers 0.8946 0.0038 0.0901 0.0024 0.0153 0.0018
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several pulmonary diseases using a set of binary SVM “One-vs-One” classifiers 
based on EBS IR absorption spectra data is high enough for use in routine practices, 
especially for screening tests.

The future steps in bringing this technology to clinics should include the design 
of cost-effective and informative measurement devices, for example, specialized 
medical LPAS equipment, standardization of the sampling, accumulation spectral 
information about EBS of patients with confirmed a diagnosis and finding and dis-
covery of most specific profiles of biomarkers, development of effective methods of 
data analysis and classification.
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Chapter 7
Diagnostics of Pigmented Skin Tumors 
Based on Light-Induced Autofluorescence 
and Diffuse Reflectance Spectroscopy

Ekaterina G. Borisova and Petranka Troyanova

7.1  Light-Induced Autofluorescence Spectroscopy 
(LIAFS) of Skin

Light-induced autofluorescence spectroscopy (LIAFS) is a sensitive, fast, and non- 
invasive tool for diagnosis of cancerous lesions. It could be applied for in situ detec-
tion of tumors during primary clinical observations or as add-on measurement 
modality for evaluation of therapeutic treatment of neoplastic pathologies, as well 
as in monitoring of lesions’ recurrence in control clinical follow-ups. LIAFS of 
cutaneous tissues is based on the detection of emitted light from the endogenous 
fluorescent compounds, called fluorophores [1–4].

LIAFS is a very attractive tool for early cancer diagnosis because of its high 
sensitivity, easy-to-use measurement methodology, no need for contrast agents to be 
applied to the tissue examined, real-time measurement capabilities, and non- 
invasive detection per tumor [5, 6]. It allows differentiation based on differences in 
biochemical content and metabolic state of the pathology. However, when the lesion 
is highly pigmented, the resulting fluorescence signal is too weak to be used for 
diagnosis. In such cases, exogenous fluorescence markers [7] may be applied or dif-
fuse reflection techniques could be used for obtaining significant signal from highly 
absorbing lesion areas [8].

Despite all the excellent features of the autofluorescence spectroscopy technique, 
to date, no reliable and versatile system for fluorescence detection of skin cancer has 
emerged in the medical market.
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Problems with the development of such a diagnostic skin cancer fluorescence 
detection system are related to the wide variety of benign and malignant skin 
pathologies. For example, basal cell carcinoma (BCC) lesions have more than 15 
subtypes, squamous cell carcinoma (SCC) lesions about 10 different subtypes, all of 
them have a variety of benign, and dysplastic forms with different features, includ-
ing fluorescence properties, at different stages of lesion growth [6].

The major advantage is the fact that one could use LIAFS to evaluate the stage of 
the lesion development, but the limitation is that the evaluation result should be 
compared with a wide variety of other options, such as lesion type, growth stage, 
and even the patient’s general conditions, such as the influence of drugs and nutri-
tion, ages, skin phototype, anatomic place, etc. [9, 10].

A wide variety of studies are being done to determine the optical properties and 
sources of the autofluorescence signal coming from human skin tissues that can be 
used to diagnose skin cancer [5, 11–13]. Endogenous fluorophores with diagnostic 
value are amino acids, structural proteins, coenzymes, lipids, some vitamins, and 
endogenous porphyrins. Aromatic amino acids, phenylalanine, tryptophan, and 
tyrosine, fluoresce when ultraviolet (UV) excitation is applied (in the spectral range 
260–300  nm). Structural proteins, collagen and elastin and their cross-links, are 
responsible for most of the skin’s autofluorescence endogenous signal when excita-
tion applied is in the UV region at 320–400 nm. Using the same excitation region, 
autofluorescence signals of coenzymes such as nicotinamide adenine dinucleotide 
(NADH) and flavins can be obtained, which are indicators of metabolic changes that 
can be observed in the skin pathological tissue. Two major approaches could be 
used in steady-state regime to obtain fluorescence emission from biological tissue 
(1) application of one single excitation wavelength in the short-wavelength region 
(UV-blue), where most of the diagnostically important fluorophores have absorp-
tion bands, or (2) application of different excitation wavelengths in a scanning 
regime. In the second case the so-called excitation–emission matrices (EEMs) are 
developed. EEM measurements are based on the scanning with a specific step of the 
excitation and detection of a set of emission spectra corresponding to each applied 
excitation wavelength. Obtained spectral maps reveal specific fluorescence intensity 
“islands,” which correspond to particular fluorophore with specific excitation and 
emission maximum, allowing addressing of the fluorophore content by type and 
quantity in the investigated tissue. These EEMs allow obtaining complete autofluo-
rescent response from the investigated tissue and if a broad enough excitation range 
is applied the whole set of endogenous fluorophores existing in the sample investi-
gated could be found and addressed. Significant drawback of the EEMs mode of 
fluorescent detection is the time-consuming measurements regime and specific 
requirements and more complicated equipment that allow exciting and detecting the 
fluorescence signal in such broad spectral range. Both steady-state modalities have 
their place in the clinical practice. If preliminary information about searched fluoro-
phores with diagnostic value for a given type of pathology exists, then single wave-
length excitation mode could give high diagnostic accuracy for discrimination of 
this type of lesion from other cutaneous formations. Table 7.1 presents the major 
diagnostically important skin fluorophores and their excitation and emission 
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maxima, whose fluorescence signals are valuable for the cutaneous tumors detec-
tion and monitoring of tumor treatment, according to the existing literature [5, 
6, 12–15].

The autofluorescence technique is applied to diagnose and differentiate non- 
malignant and systematic skin pathologies such as vitiligo and psoriasis [16], as 
well-localized lesions, including benign, dysplastic, and malignant tumors [5, 6, 
13, 17].

Different research groups have reported a variety of results on the applicability 
of autofluorescence to skin tumor detection and differentiation. Some of these 
reports are extremely promising presenting high diagnostic sensitivity and specific-
ity, but others in opposite reported moderate values of the statistical diagnostic 
parameters for lesion discrimination. In steady-state regime of fluorescence detec-
tion the main differences discussed are due to alterations in the emission intensity 
for some of the endogenous fluorophores, which could be used as diagnostic indica-
tors of tissue malignization. However, these differences are strongly dependent on 
the type of tumor compared with normal skin, patients’ phototype, stage of lesions’ 

Table 7.1 Diagnostically important endogenous cutaneous fluorophores used in cancer 
detection studies

Compound Excitation max (nm) Emission max (nm)

Amino acids

Phenylalanine 260 nm 280 nm
Tyrosine 275 nm 300 nm
Tryptophan 280 nm 350 nm
Structural proteins

Collagen 320–350 nm 400–440 nm
Elastin 290–325 nm 340, 400 nm
Collagen cross-links 380–420 nm 440–500 nm
Elastin cross-links 320–360, 400 nm 480–520 nm
Keratin 450–470 nm 500–530 nm
Enzymes and coenzymes

NADH 290, 350–370 nm 440–460 nm
NADPH 340 nm 460 nm
FAD, flavins 450 nm 500–540 nm
Vitamins

Vitamin A 327 nm 510 nm
Vitamin D 390 nm 480 nm
Vitamin K 335 nm 480 nm
Lipids

Phospholipids 435 nm 540, 560 nm
Lipofuscin 340–390 nm 430–460, 540 nm
Ceroid 340–395 nm 430–460, 540 nm
Porphyrins

Porphyrins 400–450, 630 nm 635–690, 704 nm
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growth, used excitation light, giving contradictive results in different measurement 
sets. For example, Sterenborg et al. [18] in 1994 examined the possibility of auto-
fluorescence spectroscopy to detect non-melanoma skin cancer (NMSC) using exci-
tation at 375  nm. Investigators did not observe significant differences in the 
fluorescence spectra shapes or significant differences in fluorescence intensity val-
ues for tumor and normal skin and reported the method as suboptimal for tumor 
detection.

On the contrary, Brancaleon and co-authors [19] found significant differences, 
observing a higher intensity of fluorescence in non-melanoma tumors vs. normal 
skin, using UV excitation for tryptophan residues, which may be a result of thicken-
ing of the epidermis in the lesion area. In contrast, many researchers reported in 
later works that the intensity of fluorescence maxima associated with collagen and 
collagen cross-links are lower by intensity in the tumors in comparison with normal 
skin, due to erosion and degradation of extracellular matrix.

Panjepour et al. [20] found a correlation between the diagnostic accuracy of can-
cer detection and the patient’s skin phototype using 410  nm excitation to detect 
non-melanoma tumors in vivo. With increasing of the cutaneous pigmentation, the 
accuracy of diagnosis for the detection and differentiation of normal skin from 
tumors drops from 93% for phototype I to 78% for phototype III patients with non- 
melanoma malignancies. Na et al. [13] observed a low fluorescence signal in basal 
cell carcinoma tumors, compared to normal skin fluorescence, which was also 
observed by the group of Zeng et al. [21] and our own observations [6, 22, 23]. 
However, the reasons for such fluorescence decrease vary from the extracellular 
matrix structural alterations, to accumulation of absorbing compounds, such as 
melanin and oxidized keratin in the lesions’ area. Objectively, the alterations in the 
observed fluorescence could be due to a combination of several factors influencing 
morphology and biochemical content of the tissue during malignization process 
[24–28].

Therefore, when detecting autofluorescence in vivo, researchers should consider 
the effect of skin absorbers, which distort the spectral shape of the autofluorescence 
signal coming from the tissue due to its re-absorption. The most typical skin absorb-
ers that affect fluorescence in the UV-visible spectral region are melanin, bilirubin, 
oxy- and deoxy-hemoglobin. Melanin is a typical skin pigment with unique absorp-
tion properties, since its absorption decreases exponentially from the UV to the 
near-infrared spectral region, with no specific absorption bands. The hemoglobin in 
its two forms, oxidized and deoxidized, has absorption maxima in the region of 
about 400–420 nm, and two maxima for the oxidized form at 545 and 573 nm and 
one broad maximum at 550–580 nm for the deoxidized form, respectively. Bilirubin, 
a product of red blood cell breakdown, is a pigment commonly seen in the skin 
when some liver pathology have place, such as bilirubinemia in newborns or liver 
infections. This pigment gives the yellow color to human skin and its absorption 
maximum is in the blue spectral region—about 460 nm [29]. Nevertheless that this 
pigment in small concentrations could be found in the skin, it is not typically dis-
cussed in the literature, as an indicator of cancerous alterations of the skin, and its 
diagnostic value for malignancy detection is suboptimal.
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The absorption of hemoglobin is expressed in the fluorescence spectra detected 
in vivo as additional minima of the fluorescence signal corresponding to the absorp-
tion maxima at 420 and 540–580  nm, respectively, for both oxidized and non- 
oxidized forms. The melanin absorption leads to a general decrease of the 
autofluorescence signal, more pronounced in the short-wavelength region [6, 16, 
17, 24].

These two pigments, melanin and hemoglobin, are the most important ones that 
influence absorption properties of the cancerous lesions investigated, when pig-
mented skin neoplasia must be diagnosed using fluorescence or diffuse reflectance 
spectroscopic techniques. When skin pathologies examined are highly pigmented, 
fluorescence signals coming from the tissues could be too weak to be detected or the 
signal-to-noise ratio is so low that it does not allow proper analysis of the spectra 
obtained. In this case, it is better to apply diffuse reflectance spectroscopic tech-
nique [30].

7.2  Diffuse Reflectance Spectroscopy (DRS) of Skin

Diffuse reflectance spectroscopy (DRS) is mainly responsible for the morphological 
information that can be obtained from tissues and for the content and distribution of 
tissue light-absorbing compounds. The backscattering light intensity and the spec-
tral distribution of the detected signal can give information about the size and distri-
bution of the scatterers (cells, nuclei, etc.) inside of the tissue. Since the detected 
diffuse reflectance is a superposition of backward diffuse scattering and absorption 
of tissue pigments in the volume irradiated, the resultant spectrum obtained also 
reveals information about size and distribution of the scatterers, as well of absorbing 
compounds in the biological tissues, such as hemoglobin and melanin in the skin 
and its pathologies [2, 25].

To take full advantage of reflectance spectroscopic technique, the spectral char-
acteristics must be correlated with the morphology and biochemical composition of 
the tissue examined. Diffuse reflectance and backscattering spectroscopy have been 
applied to evaluate skin color and erythema doses [31] to diagnose skin cancer [32, 
33]. The results confirm that tissue reflectance spectroscopy provides valuable 
information on the condition of the tissues.

Anisotropy and phase measurements are also used to quantify the absorption and 
scattering factors induced by biological pigments and structures, respectively [34, 
35]. Spatially resolved diffuse reflectance measurements are used to determine the 
optical scattering and absorption coefficients of biological tissues [36, 37], which 
fully describe the optical properties of the tissue in question and could be used as 
discrimination parameters for evaluation of tissue type and lesion appearance. 
Examination of the reflectance spectra obtained from microscopic tissue volumes 
can provide information on the fine structure, size, and shape of nuclei and other 
cellular organelles. This evaluation is a useful tool for in  vivo diagnosis of 
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precancerous changes—enlarged nuclei are primary indicators of cancer, dysplasia, 
and cell regeneration in most human tissues [38, 39].

At the macroscopic level, reflectance spectroscopy is used to detect skin tissue 
stretching and roughness [40], which is an important problem in plastic surgery. 
Changes in the diffusive reflectivity of the skin due to mechanical deformation can 
be used to assess tension in the wound and tissue expanders and assist surgeons in 
treating wounds by minimizing scar tissue.

Measurement of the skin color by optical reflectance spectroscopy is another 
important part of the study of skin tissue properties. Medical doctors have used skin 
color as an indicator of many pathological conditions for centuries. Such measure-
ments are used for initial diagnosis, therapeutic follow-up instrument, as well for 
drug and cosmetics application effects evaluation and monitoring [41–43].

Diffuse reflectance spectroscopy can provide information not only on tissue mor-
phological information. In many cases, it is used to obtain indirectly the pigment 
content in the biological tissues examined. The absorption of various skin pigments, 
bilirubin [44], blood [45], melanin [46], can provide valuable information about 
pathological conditions, such as high skin bilirubin levels in newborns that could 
cause permanent brain damage [5]. Reflectance spectra correlate to the skin color 
and minimum erythema dose [41] (redness [45] or pigmentation [46] measure-
ments), melanin and hemoglobin indices can be calculated [42, 43] based on such 
measurements. The absorption of these pigments causes significant distortions in 
the spectral shape of the diffusely reflected signals coming from the skin and such 
distortions could have a high diagnostic value. DRS in skin cancer studies is mainly 
applicable to melanin-pigmented skin pathologies detection, including malignant 
melanoma (MM) lesions, as well as in a combination simultaneously with fluores-
cence spectroscopy that allows increased diagnostic accuracy overall for all pathol-
ogies examined.

DRS is one of the optical techniques with a promising future for its application 
in skin lesion research. Reflectance spectroscopy has been used to study pigmented 
skin lesions [46–48], which makes it possible to distinguish between melanoma and 
benign pigmented areas of the skin (e.g., moles, freckles, etc.). Many people have 
pigmented skin spots that can be confused with melanoma; therefore, differential 
diagnosis is very important. For the experienced dermatologist, the distinction 
between melanoma and other lesions is straightforward, but more difficult for mela-
nomas in the early stages of their growth.

Diffuse reflection signals can be applied to the absolute determination of the 
absorption and scattering coefficients of biological tissue and lead to reliable results 
over a wide range of wavelengths. Reflectance spectroscopy of biological tissues 
has many advantages related to the relative simplicity of the technique used, the 
ability to quantify pigments and other chromophores contained in the tissue of inter-
est, and the ability to apply a non-invasive real-time diagnostic method to determine 
the type of tissue pathology.
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The reflection spectra obtained from the tissue examined have a specular and 
diffuse component, see Fig.7.1. Direct reflection from the surface of the skin is 
called specular (or regular) reflection and is associated only with the differences of 
the refractive index between the air and the epidermis layer. In practice, this also 
strongly depends on the exact surface conditions and illumination due to surface 
optical irregularities and roughness [49]. Another component consists of a specular 
reflectance of deeper skin layers, and a backward diffusely scattering light from the 
tissue volume. Tissue scattering is due to discontinuities in the refractive index at 
microscopic level from the cell membrane and organelles, as well as due to colla-
gen, elastin, and keratin fibrils in the extracellular matrix. The resulting reflectance 
spectrum is adjusted with respect to the incident light spectrum, taking into account 
the influence of different skin absorbers. As above mentioned the tissue absorption 
in the visible and infrared spectral regions is due to pigments, such as hemoglobin, 
bilirubin, and melanin. In infrared spectral region, the water absorption is predomi-
nant and determines the tissue optical properties. Nucleic acids, amino acids, uroca-
nic acid, proteins, melanin absorb light in the ultraviolet spectral region [48] and, 
respectively, determine the optical properties in short-wavelength optical region.

When researcher measures in vivo a diffuse reflectance spectrum from a patient’s 
skin using an optical fiber probe, it actually measures the remittance part of the 
spectra. The influence of the geometry of the optical probe of the skin can be enor-
mous [50] and should be taken into account in the analysis of spectral results.

Fig. 7.1 Schematic cross section of human skin—description of light interaction with skin layers. 
Reflection remittance is the total radiation returned from the skin tissue. (Reprinted with permis-
sion from Ref. [49])
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7.3  Optical Biopsy of Skin Tumors—Principles 
and Applications

Optical spectra provide biochemical and morphological information on the tissue 
under study based on its absorption, elastic and non-elastic (Raman) scattering 
properties [1, 2, 17]. Fluorescence, absorption, and diffuse scattering spectroscopy 
have been widely used as probes to obtain information on physical, chemical, or 
physiological processes in tissues, including neoplastic alterations. Optical diffuse 
tomography and optical coherence tomography are used as effective imaging meth-
ods for the detection of tissue structures. It is proposed that these methods be used 
by the medical community to extend the capabilities of standard diagnostic modali-
ties already introduced in clinical practice, such as X-ray, magnetic resonance imag-
ing, and ultrasound imaging.

Relatively new term used in medical practice to describe spectral techniques 
used for the early diagnosis of various tissue pathologies in vivo is the so-called 
optical biopsy. The painless, immediate diagnosis based on spectroscopic evalua-
tion of tissue state will soon become a reality. Such form of optical diagnosis is 
preferable to the removal of several cubic millimeters of tissue needed for histologi-
cal examination of the traditional biopsies—followed by few days delay required 
for tissue samples preparation, microscopy slides development, and histological 
examination. Obviously using scanners, for early diagnosis of the lesions (abnormal 
tissues), before they are visible to the eye, a total optical examination of the area can 
be performed instead of random, hit, and missed sample selections. In general, the 
predictive accuracy of optical biopsy is also better than the prediction based on 
standard biopsy alone [3, 4, 51]. On top of that, the optical biopsy equipment only 
requires a learning curve from a few practice trials, compared to the years of train-
ing required for some more conventional techniques. LIAFS and DRS are two of the 
most promising spectroscopic techniques proposed to be introduced into medical 
diagnostic practice as the main clinical tools for “optical biopsy.” The diagnostically 
important features that could be detected using these two techniques are related to 
the absorption and emission properties of endogenous chromophores (absorbers 
and fluorophores). Figure  7.2 presents the spectral regions for the main tissue 
absorbers and fluorescent compounds, which are reported as diagnostically—rele-
vant, when optical spectroscopy tools are applied for tissue evaluation.

LIAFS can be used to quantify differences between normal and abnormal tissues 
in vivo, providing an appropriate method for detecting pathological lesions in real 
time. DRS also allows the pathological areas to be distinguished from the normal 
tissues. These two techniques provide complementary information to each other. 
LIAFS has revealed very high sensitivity for the diagnosis and differentiation of 
low-pigmented pathologies. LIAFS is suboptimal for diagnosing and differentiation 
of highly pigmented lesions, such as dysplastic nevi, or pigmented malignant mela-
noma due to the low level of fluorescence detected in such lesions. DRS is an indis-
pensable tool for highly pigmented lesions but reveals moderate sensitivity and 
specificity for non-pigmented or low-pigmented skin neoplasia. Therefore, many 
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research groups using only one of these techniques may report controversial com-
ments about their applicability to be used as a clinical tool for early detection and 
differentiation of skin lesions. Their results are highly dependent on the group of 
lesions studied and the technique used. When attempting to monitor and diagnose 
pigmented pathologies and distinguish malignant melanoma lesions from benign 
and dysplastic nevi, for example, using reflectance spectroscopy, such groups report 
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excellent results (greater than 90% sensitivity and specificity) [47, 52]. At the same 
time, if pigmented basal cell carcinoma is detected only by a fluorescence spectro-
scopic approach, the results of the diagnostic analysis will be very moderate and 
will not reveal the diagnostic capacity of this detection technique, which results in 
its poor efficiency and poor clinical relevance [18].

Therefore, in recent years there has been an increasing interest in the combined 
usage of light-induced autofluorescence and diffuse reflectance spectroscopy to dis-
tinguish tumor from normal surrounding tissue. Autofluorescence and diffuse 
reflectance spectroscopy have been applied in several systems for in vivo and in vitro 
studies. A combination of these types of measurements has been used for better 
understanding of the optical properties of normal and abnormal tissues and for 
increasing the sensitivity and specificity of lesion diagnosis from the point of view 
of their clinical feasibility and applicability as add-on or primary diagnostic tool in 
onco-dermatology practice [5, 53, 54].

The obtained sensitivity and specificity values may also strongly depend on the 
spectral characteristics taken into account in differentiation algorithms applied by 
different researchers. The reflection measurements used to determine different pig-
mented skin lesions use specific spectral characteristics obtained from normal skin, 
benign, and malignant lesions, namely the mean value of intensity on a specific 
wavelength (s), the slope of the spectrum in one or more spectral ranges, integral 
value of the reflected signal for a specific wavelength region, etc. Additional dis-
crimination algorithms based on principal component analysis (PCA), support vec-
tor machines (SVM) analysis, neural networks (NN), etc. are also applied to 
differentiate normal from abnormal tissues evaluating spectral data from both 
addresses. Depending on the comparison between different special characteristics 
used by different scientists, the sensitivity (SE) and specificity (SP) of the reflec-
tance spectroscopy technique can vary over a wide range. Thus, the SE:SP values 
reported in various works are 76:87 [48], 80:46 [55], 83.6:90.8 [47], 89:88 [56], 
90.3:77.4 [52], and 91:84 [47]. In our own studies, we observed this peculiarity and 
investigated the influence on the diagnostic values of sensitivity and specificity 
depending on the spectral technique or their combination applied to diagnose a 
given set of lesions [57]. Best results are obtained when the combination of laser- 
induced autofluorescence and diffuse reflectance spectroscopy is commonly applied 
to detect malignant melanoma lesions. The achieved diagnostic accuracy is 90%, 
the sensitivity and specificity values are 100% and 93.3%, respectively, which is an 
excellent result compared to the diagnostic values achieved by other non-invasive 
clinical techniques (about 60%–70% for diagnostic accuracy) [58].

Our own studies dedicated to skin cancer detection and differentiation of cutane-
ous tumors by type and severity are a part of clinical trials for the introduction of a 
spectral diagnostic system for the detection of skin cancer in the general practice of 
dermatological departments of Bulgarian hospitals. Experimental spectroscopic 
studies of ex vivo skin samples, obtained after surgical excisions, with a variety of 
malignancies, including pigmented basal cell carcinoma, compound, dermal, dys-
plastic nevi, and pigmented malignant melanoma lesions are presented and spectral 
sources of the signals detected are discussed. Some of our recent results and 
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observations from the clinical practice in application of LIAFS and DRS techniques 
in vivo on patients used as an “optical biopsy” tool for skin cancer primary diagnos-
tics in clinical environment are also given below.

7.4  Experimental Applications of LIAFS and DRS for Skin 
Cancer Diagnosis

7.4.1  Skin Cancer Samples

The presented results are a part of the laboratorial experiments and pre-clinical trial 
for the introduction of a spectroscopic diagnostic system for optical biopsy of skin 
cancer in the general clinical practice of the dermatological unit of the University 
Hospital “Tsaritsa Yoanna—ISUL.”

Skin tumor samples are two large groups: ex vivo tissue samples consisted of 
tumor and healthy skin areas, obtained during surgical excisions of the lesions in the 
surgical department of the hospital and in vivo patients’ lesions spectroscopic mea-
surements using LIAFS and DRS techniques for detection of spectral features with 
diagnostic value, useful for the development of detection and discrimination algo-
rithms for validation of cutaneous pigmented neoplasia.

In both groups are included pigmented skin lesions as follows: benign ones 
(compound nevi (CN)), dysplastic ones (dysplastic nevi (DN)), and malignant ones 
(pigmented basal cell carcinoma (BCC), pigmented malignant melanoma (MM)). 
From clinical point of view the most important discrimination is by pairs pigmented 
BCC-MM and DN-MM. In the case of differentiation of BCC from MM, different 
treatment for carcinoma and melanoma lesions is a crucial point required precise 
and proper diagnosis. For the second case, when DN has to be differentiated from 
MM, as the dysplastic form (DN) is a precursor of severe malignant lesion (MM), 
than early changes related to malignization process started in this cutaneous 
formation.

Compound nevi are the most common type of pigmented skin lesions, benign 
melanocytic proliferations, which increase in number and size with ages, usually 
with oval or circular form and well-defined borders in the dermal layer of the skin 
[58–60].

Dysplastic nevi are described usually as a continuum between common benign 
nevi and malignant melanoma, as they have intermediate morphological and bio-
logical properties. These melanocytic nevi are characterized by architectural disor-
der and cytologic atypia, similar to dysplastic lesions in other organs and should be 
considered important because of their association with an increased risk for malig-
nization and transformation to melanoma lesions [61].

Basal cell carcinoma is the most common malignant tumor of skin, comprising 
about 70% of cutaneous cancers. Pigmented basal cell carcinoma is a clinical and 
histological variant of basal cell carcinoma that exhibits increased pigmentation and 
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it is a relatively rare variant of BCC lesion with about 6–8% of BCC cases. The 
increased pigmentation make this lesion similar to MM pathology and nevertheless 
that histology examination could relatively easily differentiate it from MM lesion, 
the possibility that observed pigmented lesion could be MM make the diagnostic 
procedure more complicated. According existing clinical practice MM lesions are 
verified by histology as a gold standard technique just before surgical excision pro-
cedure, while BCC could be treated by local chemo- or radio-therapy, with good 
success rate, without need of radical surgical intervention.

Pigmented MM lesions are one of the most severe types of tumors in humans and 
comprising about 10% of cutaneous cancers. MM develops from the pigment- 
containing cells placed on epidermal–dermal junction, known as melanocytes. Fast 
growth, expressed high metastatic activity after just a few months after the appear-
ance of the suspicious pigmented spot, high mortality rate make them lesions with 
a very bad prognosis for the patients. Even standard biopsy procedure is dangerous, 
if a doubt about MM lesion has place, as it could lead to spreading of tumor cells 
through blood vessels. Therefore, the differentiation of MMs from all other types of 
skin malignancies or its dysplastic and benign forms is a primary goal of all onco- 
dermatology techniques developed for non-invasive detection of cutaneous lesion 
type [58–61].

For ex vivo studies, the procedure of obtaining the investigated samples included 
their excision during surgery for removal of cutaneous lesions. After the surgical 
removal lesions were divided into two parts: for histological and for spectral analy-
sis. For spectral measurements, the biological samples were transported in isother-
mal conditions and safe-keeping solution from the hospital to the spectral laboratory, 
where their fluorescence and diffuse reflectance properties were investigated.

For in vivo studies on site in the dermatology clinic prior to each spectroscopic 
measurement, clinical observation and dermatoscopic evaluation of the lesion of 
interest are made by an experienced dermatologist. After initial medical and spec-
troscopic measurements, cytological and/or histological samples were obtained 
from each lesion. In comparison, diagnosis results are used as the “gold standard” 
in comparison to all the data obtained (Table 7.2). All subjects were Caucasian vol-
unteers—patients of the University Hospital “Tsaritsa Yoanna—ISUL” with skin 
phototypes I, II, and III according to Fitzpatrick’s classification. All patients received 
and signed written informed consent and the research was approved by the Ethics 
Committee of University Hospital “Tsaritsa Yoanna-ISUL,” Sofia (#286/24.07.2012).

Table 7.2 Lesions investigated ex vivo and in vivo by tumor type using LIAFS and DRS

Lesion type
Compound 
nevi

Dysplastic 
nevi

Pigmented 
BCC

Malignant 
melanoma

Ex vivo spectral 
measurements

3 6 6 8

In vivo spectral 
measurements

126 41 18 62
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7.4.2  Ex Vivo LIAFS and DRS Skin Cancer Measurements

Spectrofluorimeter Fluorolog 3 (HORIBA Jobin Yvon, France) was used for the 
fluorescence measurements of the surgically removed tissue samples. The excita-
tion light source is a xenon lamp with 300 W output optical power, performance 
range of 200–650  nm. The detector is a photomultiplier tube with performance 
range of 220–850 nm for fluorescence detection. Since our tissue samples ex vivo 
varied by shape and dimensions, their fluorescence properties were investigated 
with additional fiber-optical module F-3000, which allows investigation outside of 
the sample chamber of the spectrofluorimeter. Measurements of the fluorescence 
signals obtained in EEM regime were performed with excitation in 280–440 nm 
spectral range and emission observed between 300 nm and 700 nm. DRS measure-
ments were performed with a broad light source (380–900  nm) halogen lamp 
(HL-2000, OceanOptics Inc., Dunedin, USA) used for irradiation of tissue samples 
and fiber probe 6 + 1 geometry for detection of diffuse reflectance signals from the 
tissue areas investigated. Reflectance measurements were performed with the same 
equipment, as used for in vivo skin cancer studies. After performing both LIAFS 
and DRS spectroscopic measurements for healthy, benign (if any), and cancerous 
areas of the skin samples, they were stored in formalin solution.

7.4.3  In Vivo LIAFS and DRS Skin Cancer Measurements

Initially, the lesions were classified visually by an experienced dermatologist and 
dermatoscopically using the ABCD evaluation criteria. The second stage is the 
detection of a lesion and surrounding normal autofluorescence of the skin, using 
different excitation wavelengths, namely 365, 385, and 405 nm, obtained with sev-
eral narrow-band light diodes used as excitation sources. An optical fiber probe is 
used to deliver light from LEDs (in fluorescent mode) or from halogen lamp (in 
diffuse reflectance mode) and to collect emitted signals from the skin surface. The 
fiber probe consists of 7 fibers in circular geometry. The central fiber is used to 
detect the fluorescence and reflectance signals and is coupled to a microspectromet-
ric system USB4000 (OceanOptics Inc., Dunedin, USA), and the surrounding six 
fibers are used to transmit excitation light from the LEDs for fluorescence and in 
DRS test mode, the broadband halogen lamp is used as a light source replacing 
LEDs. In this way, we obtain skin diffuse reflectance spectra for the region of 
380–900 nm.

Multiple spectra are measured from each suspicious area and for the normal skin 
surface and averaged to reduce the impact of lesion/tissue inhomogeneity. These 
averaged spectra from the healthy skin are used as an indicator of spectral altera-
tions in the pathological areas as well for evaluation of the effects associated with 
inter- and intra-patients’ spectral variations.
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7.5  Light-Induced Autofluorescence Spectroscopy 
of Pigmented Skin Tumors

EEM data of normal skin, benign nevi, dysplastic nevi, and malignant melanoma 
lesions in 2-D spectral map format are presented in Fig.7.3. Two specific “islands” 
are observed I—in the excitation range of 280–320  nm and emission range of 
300–380  nm, and second island consisting from two overlapped areas: 
IIA—340–360 nm excitation and 400–440 nm emission ranges and IIB—360–420 nm 
excitation and 440–520 nm emission.

The changes in the EEM autofluorescence maps of skin samples are a conse-
quence of malignant transformations of cells, leading to differences in the fluores-
cence properties of the skin. Short-wavelength EEM “island” I corresponds to the 
amino acids tryptophan and tyrosine fluorescence emission and it is observably 
higher in malignant tissue versus normal skin. In the case of tumor lesion appear-
ance, the amino acids fluorescent emission rapidly raised, due to increased growth 
of neoplasia itself, required more structural units for its development and due to 
demolition of some part of the structural proteins in the extracellular matrix of the 
cancerous lesion, due to uncontrolled growth of the pathology. This is correlated 
with the alterations foreseen in the emission peaks of collagen and NADH in shorter 
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wavelength region of the “island,” and protein cross-links in longer wavelength part 
of the tissue spectra detected, which revealed significant decrease by intensity (II 
EEM “island”).

Weak signal observed from co-enzyme NADH (region IIA) during ex vivo tissue 
samples study could not be used as diagnostically significant indicator for the tissue 
alterations due to rapid decrease of this metabolic indicator emission after surgical 
excision procedure. It could be done correctly only during in vivo tissue investiga-
tions, or if the period between the surgical excision and spectral measurement itself 
is known and used for corrections of the NADH fluorescence intensity dynamic 
decrease.

The structural protein collagen, one of the most informative fluorophores and a 
main component of extracellular matrix of the skin, plays a crucial role in the deg-
radation and penetration of basal membrane. During transformation from normal to 
malignant tissue, the enzyme metalloproteinase collagenase is responsible for deg-
radation of collagen and changes in the collagen cross-links, which lead to a general 
decrease of the fluorescence signal from this protein and its cross-links. Cross-links 
emission corresponds to the IIB area of the EEM “islands” observed in normal, 
benign, and malignant skin.

Pigmented BCC lesions revealed very similar to MM lesions by spectral shape 
fluorescence signals from coenzymes and collagen cross-links spectral area (see 
Fig.7.4). Significant difference is observed in the ratio between emission of amino 
acids and proteins, as the fluorescent signal detected from BCC lesions in the region 
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of 300–340 nm, corresponding to the tryptophan and tyrosine is higher in compari-
son with the same type of signal from melanoma lesions.

Pigmentation of BCC lesions is addressed to melanin as well in melanoma 
lesions, based on melanocytes malignization. The spectral shape of the fluorescent 
signal is relatively close for both pathologies and emission maxima observed can be 
addressed to the same types of endogenous fluorophores—amino acids tyrosine and 
tryptophan, collagen and its cross-links, NADH and flavins.

That similarity is an indicator for common sources of endogenous emission sig-
nal (same type of fluorophores) in both pathologies. However, the concentration of 
the cutaneous pigment melanin is rather different in both types of lesions, which is 
well pronounced in the emission spectra obtained from pigmented BCC and MM 
lesions. In case of BCC the general fluorescence intensity is higher than from MM 
for whole spectral range, especially pronounced in shorted wavelength range, which 
correspond to the exponential decay of the absorption of melanin from ultraviolet to 
infrared spectral region. At the same time, the autofluorescence spectra of both 
malignancies show a decrease in the concentration of collagen in malignant tissue 
compared to the normal skin, which is well corresponding with the literature data.

EEM data could allow finding all endogenous fluorescent compounds and could 
be used for fundamental experimental studies of skin alteration during lesion devel-
opment. However, some limitations must be taken into account for in vivo measure-
ments. The ultraviolet exposure of the skin up to ~360 nm is not optimal, due to the 
harmful effect of such short-wavelength light irradiation, including increased prob-
ability for erythema, DNA and RNA damages, mutagenic and carcinogenic effects 
of UV radiation. Nevertheless of the diagnostic value of the fluorescent emission of 
amino acids, which could be observed in 300–340 nm region after excitation in the 
280–320 nm region during in vivo investigations this spectral range is not used for 
LIAFS measurements of skin in vivo. The excitation wavelength applied to patients 
in vivo is chosen to be higher than 360 nm, to reduce the possible harmful effects on 
the skin due to spectroscopic observations. DRS technique could be also applied in 
UV region, but the same safety reasons limit the light spectral range that could be 
used for skin cancer diagnosis.

Long measurement time and sophisticated equipment required for EEMs devel-
opment are also suboptimal for application in clinical environment. For example, 
for the development of detailed EEM (Fig. 7.5a) with wide excitation and emission 
ranges and fine step of 10 nm for different applied excitation wavelengths required 
about 20 minutes for measurements, which is not a convenient time period for sin-
gle point measurement for elder or disabled patients. Requirements to compare nor-
mal and abnormal tissue spectra double the measurement time as well. Therefore, 
the number of excitation wavelengths has to be reduced to the few ones, which 
correspond to specific maxima of excitation of diagnostically important fluoro-
phores, namely collagen, elastin, keratin, NADH, collagen cross-links, flavins, and 
endogenous porphyrins. This reduction leads to a usage of 365, 385, and 405 nm 
excitation wavelengths for LIAFS measurements in  vivo, see Fig.  7.5b. Light 
sources could be lasers or light-emitting diodes, as well filtered broad spectrum 
sources, such as high-pressure xenon lamps. LEDs are the most convenient from the 
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list of light sources mentioned, electrically and light-safety sources of narrow-band 
light in broad spectral range from deep UV to mid- and far-infrared region and 
therefore were also chosen in the current in vivo studies for pigmented skin tumors 
evaluation using LIAFS technique.

Each autofluorescence spectrum recorded in vivo is a superposition of the fluo-
rescence spectra of endogenous fluorophores existing in the tissue [16, 17, 51] 
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Fig. 7.5 (a) Excitation–emission matrix of normal skin in vivo for the excitation applied from 280 
to 460 nm with a step of 10 nm and detection range from 290 to 650 nm; (b) normalized with 
respect to maximum fluorescence spectra of normal human skin from the same volunteer at 365, 
385, and 405 nm LEDs used as excitation sources for LIAFS measurements in vivo
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distorted by the re-absorption of the photons by tissue pigments, mainly blood and 
melanin. The normal skin fluorescence spectral shape does not usually represent 
significant differences from patient to patient with the same skin phototype. Changes 
in intensity are more pronounced due to the different phototypes of the skin and 
anatomical areas, as in both cases different levels of pigmentation of melanin can be 
observed. The slight differences in the spectral form are found only in the case of 
fluorescence spectra of the skin of the palms relative to other anatomical sites, in 
which the lack of melanin leads to a deeper penetration of the excitation and, accord-
ingly, of the emission detected. In this case, the effect of the re-absorption of hemo-
globin on the fluorescence from a deeper dermal layer is mostly expressed. This 
effect has been considered in detail in our previous work [6]. The autofluorescence 
spectra of normal human skin using different excitation sources that emit different 
wavelengths also reveal changes in the spectral shape due to different excitation 
efficiencies of tissue fluorophore type that can be excited in a given spectral range. 
This effect results in a set of autofluorescence spectra typical of normal skin tissues 
that have been discussed in the literature and observed in our own studies [62]. In 
comparison of fluorescence spectra obtained from normal skin using different exci-
tation wavelengths is clearly observed appearance of new emission maxima and 
changes in fluorescence intensities, depending on absorption for a given excitation 
wavelength and exact fluorophore compound. Figure 7.4 presents comparison of 
EEM fluorescent data and fluorescence spectra normalized with respect to maxi-
mum, received on three discrete excitation wavelengths applied on normal skin 
in vivo. Normalization in Fig. 7.4b is applied to better detect changes in the spec-
tral shape.

When the excitation wavelength increases, new fluorophores are involved in the 
formation of the fluorescence spectrum. This is associated with a deeper penetration 
of excitation with the wavelength [1, 4], with higher absorption at a given wave-
length for some additional fluorophores and with differences in the influence of 
pigments, especially hemoglobin—the minima observed at 545 and 575 nm.

However, the light-induced autofluorescence spectra of normal skin for a given 
excitation wavelength from different patients with the same phototype and from the 
same anatomical region are very similar [62] and show very good reproducibility in 
spectral form and intensity characteristics.

Similar trends are observed when pathological changes occur, as spectral forms 
and intensity trends are similarly affected for a given type of pathology. For exam-
ple, basal cell carcinoma lesions always show fluorescence intensity lower than the 
surrounding normal skin tissue, whereas squamous cell carcinoma usually has fluo-
rescence brighter than the surrounding skin. This observation can be used to distin-
guish between these two types of non-melanoma malignancies [21, 25, 53].

Malignant melanoma lesions do not have significant spectral shape changes 
associated with the appearance of new fluorophores in their cells, but they always 
have extremely low fluorescence and can be distinguished from dysplastic nevi with 
a relatively good diagnostic accuracy about 70%, which could be improved if reflec-
tance spectral features of the lesions are also evaluated and then can reach 90% [57].
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The appearance of endogenous porphyrins is usually clearly expressed in the 
advanced stage of basal cell carcinoma lesions growth. There is a well-pronounced 
signal of the porphyrin fluorescence that is characteristic for protoporphyrin IX and 
other endogenous porphyrins, with peaks in the region of 635 nm and 700–710 nm 
[22]. This specificity of the autofluorescence signal for the early and advanced 
stages of tumors is useful for treatment planning for patients with multiple lesions, 
which required to be treated sequentially due to significant health issues and reduced 
patient immune response in general. Endogenous porphyrins’ signals were not 
observed in our investigations in the melanin-pigmented compound nevi, dysplastic 
nevi, and malignant melanoma lesions.

7.6  Diffuse Reflectance Spectroscopy of Pigmented 
Skin Tumors

Figure 7.6a shows diffuse reflectance spectra of healthy skin from different skin 
areas of one volunteer. The medial part of the forearm is an area where the skin is 
not exposed to the sunlight and, respectively, less tanned than other skin areas, so 
the level of melanin produced by the skin’s response to sunlight is low. The lateral 
part is the most pigmented part of the human forеarm due to the nearly permanent 
exposure to a sunlight (increased melanin level) and therefore has a lower reflec-
tance intensity than the medial part where the melanin level is much lower. The skin 
of the palm is the part of the hand without melanin pigmentation, but with well- 
pronounced pigmentation coming from the hemoglobin in dermal part of the skin 
tissue. In fact, the reflectance spectra have specific minima at 400–420 nm, 543 nm, 
and 575 nm, related to hemoglobin absorption, which are clearly observed in the 
palm reflectance spectrum. These minima are also present in the forearm reflection 
spectra, but they are overlapped by the absorption of melanin from the epidermal 
layer. The decrease in the reflected signal from the lateral forearm throughout the 
spectral region compared to the medial part of the forearm is caused by the absorp-
tion of melanin.

Figure 7.6a illustrates the strong influence of the location of the measurement 
points on the measured reflectance spectra from normal skin.

The spectra obtained from normal skin in identical anatomical locations of dif-
ferent patients have similar spectral shape characteristics, but differ in the reflection 
intensity at different wavelengths, depending on the specific phototype of the 
patient’s skin. However, the spectra obtained from normal skin regions near the 
examined pigmented lesion vary significantly from patient to patient due to differ-
ent spectral properties of the skin at different anatomical sites (differences in the 
epidermal layers in different anatomic areas, different level of the melanin pigmen-
tation, respectively, absorption of the epidermal layer, or different concentrations of 
oxy- and deoxy-hemoglobin in the dermal blood vessels). Figure 7.6b shows the 
averaged spectra of normal skin near the lesion examined in seven different patients. 
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These individual differences are related to skin phototype, patient age, and specific 
area of measurement on the skin surface and may affect the skin spectra of the 
lesion, especially in the case of not very pigmented moles and spots. Thus, when 
developing a diagnostic algorithm, the normal skin characteristics that are specific 
to each patient and each position of the lesion under study should be included.

The mean values of the averaged reflectance spectra of melanin-pigmented nevi 
and melanoma, as well as comparison between pigmented BCC and MM reflec-
tance spectra are presented in Fig.  7.7. The benign compound nevus reflectance 
spectrum shows a significant decrease in the entire spectral region, best expressed 
in the blue region where melanin has stronger absorption than in the red region. 
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Fig. 7.6 (a) Normal skin reflectance spectra from the medial and lateral parts of the forearm and 
the palm for one healthy volunteer, phototype I; (b) randomly chosen reflectance spectra of normal 
skin for seven different patients, phototypes I–III
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Similar results are observed in the case of dysplastic nevus, but the reflectance sig-
nal intensity is lower. The spectrum of malignant melanoma has the lowest total 
reflectance from all types of lesions. Benign and dysplastic melanin-pigmented nevi 
revealed diffuse reflectance spectra that are significantly different from those of 
melanoma, which allow discriminating easily with high diagnostic accuracy the 
nevi from melanoma lesions. Pigmented BCC lesions also have diffuse reflectance 
spectra shapes significantly different from pigmented melanoma lesions, which 
allow using the reflectance for discrimination between pigmented basal cell carci-
noma and cutaneous melanoma. However, the reflectance of pigmented BCC is 
close to dysplastic nevi by intensity and shape, which lead to some decrease of 
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overall diagnostic accuracy, when pigmented BCC is diagnosed using DRS tech-
nique solely.

One characteristic that the reflection spectra of all pigmented lesions show is a 
gradual decrease in the hemoglobin absorption peaks at 420, 540, and 575 nm as 
they move from normal skin to benign and dysplastic nevus to malignant mela-
noma, in which case lowest values are observed. Also characteristic for melanin- 
pigmented lesions is the change in sign slope in the spectral region 650–900 nm 
from that of normal skin reflection spectra. These spectral characteristics allowed to 
distinguish all types of pigmented skin lesions from normally pigmented surround-
ing skin, as well as to distinguish benign and dysplastic nevi from malignant mela-
noma. However, the differences are not significant enough to allow a clear 
simultaneous differentiation between the three pigment lesions examined. 
Diagnostic parameters achieved when DRS solely is used for MM lesions discrimi-
nation from other pigmented cutaneous lesions are sensitivity—92.4% and specific-
ity—77.6% [63].

We demonstrated a significant improvement of the diagnostic statistical values of 
sensitivity, specificity, and diagnostic accuracy, based on common usage of LIAFS 
and DRS data for pigmented cutaneous lesions diagnosis [57]. Combination of 
LIAFS and DRS used for the development of discrimination algorithm between 
normal skin, benign, and dysplastic nevi and malignant melanoma lesions allow 
achieving sensitivity (SE) of 100%, specificity (SP) of 93.3%, and diagnostic accu-
racy up to 90% for MM lesion proper determination in the frames of a procedure of 
primary clinical observation using “optical biopsy” spectroscopic tool for skin 
investigation. In comparison, diagnosis based on ABCD criteria during dermato-
scopic observations allow to achieve SE: SP values reported in various works vary 
from 68% to 92,9% for sensitivity (SE) and from 32,2% to 99% for specificity (SP) 
for MM lesions diagnosis. These values are in a strong dependence on the experi-
ence of the dermatologist applying the dermatoscopic ABCD-technique for lesion 
evaluation [58–60].

7.7  Conclusions

Melanoma incidence and mortality rates are increasing in many countries. There is 
much evidence in clinical practice that standard biopsy may be the cause of cancer 
cell proliferation and is not recommended when suspicion about possible MM 
lesion occurs during initial diagnosis of new patient. In this context, the develop-
ment of non-invasive, rapid, and reliable methods such as optical biopsy based on 
autofluorescence and diffuse-reflectance measurements of the tissue properties is of 
considerable importance. The clinical applications of optical biopsy in  vivo are 
based on non-invasive extractive information on the tissue absorption, fluorescence, 
and scattering optical properties by highly sensitive measurements of fluorescence 
and/or diffuse reflected light. These spectral properties are related to the morphol-
ogy or biochemical content of the cutaneous tissue investigated. Therefore, 
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spectroscopic techniques based on detecting chemical compounds, such as fluores-
cence, or on detecting of morphological structures, such as diffuse-reflectance, 
could be extremely sensitive and appropriate tools for development of add-on tech-
nique for skin cancer diagnosis. Autofluorescence and diffuse reflectance spectros-
copy of human skin, combined as a common tool for optical biopsy, are very 
prominent for the real-time determination of existing pathological conditions.

Most important for any diagnostic procedure applied in onco-dermatology is its 
ability to differentiate malignant from non-malignant cutaneous lesions. 100% of 
lesions could be predicted if such procedure is absolutely accurate. However, every 
diagnostic test is imperfect in its own way – one procedure could miss many disease 
cases but make a just a few false-positive diagnoses, another one could miss just a 
few lesions, but the number of false positive results could be excessively higher. 
Using autofluorescence detection of benign and malignant pigmented skin lesions, 
we obtain very good diagnostic parameters for distinguishing non-melanoma 
lesions in vivo from other simulating benign and malignant pathologies. Using dif-
fuse reflectance spectroscopy, we obtain an excellent tool for differentiating 
melanin- pigmented pathologies, but it is a tool with moderate sensitivity for the 
detection of non-melanoma lesions. When these two detection techniques are 
applied in the common examination of given lesion and multispectral algorithms for 
diagnosis and differentiation are applied, one could rapidly increase the diagnostic 
accuracy of the combined method, receiving “optical biopsy” tool.

Based on the observed spectral changes, the results of the current pre-clinical 
trial, we could assume that the LIAFS and DRS measurements can provide useful 
information on given lesions that could be transformed into diagnostic algorithms 
for clinical use. The clinical trial is currently underway and with the expansion of 
the spectral database for major skin benign, dysplastic, and malignant pathologies, 
we expect to receive an objective tool to detect and evaluate the skin neoplasia, 
based on its spectral properties.
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Chapter 8
Raman Spectroscopy and Advanced 
Statistics for Cancer Diagnostics

Nicole M. Ralbovsky and Igor K. Lednev

8.1  Introduction

Whether it be indirectly or directly, cancer has a vast impact on the majority of 
society. In 2018 alone, there was approximately 18.1 million newly diagnosed cases 
of cancer and an estimated 9.6 million deaths due to cancer, worldwide [1]. Cancer 
is the second-leading cause of death in the USA, where national expenses for care 
totaled $147.3 billion in 2017 [2].

Diagnosing the various forms of cancer often requires a myriad of methods. The 
main diagnostic approaches involve lab tests for blood, urine, and other body fluid 
samples; imaging tests, such as a CT scan, PET scan, X-ray, ultrasound, or MRI 
scan; and biopsy with either a needle, endoscope, or via surgery [2]. Detailed infor-
mation regarding diagnosing cancers can be found elsewhere [3]—however, it is 
important to note that many cases of cancer can go undiagnosed or are misdiag-
nosed, and in some cases healthy individuals are even falsely diagnosed. Further, 
the time of diagnosis plays a crucial role in the survival rate of the afflicted. Early 
detection and diagnosis of cancer typically improves an individual’s prognosis and 
increases the chances for successful treatment by allowing for care to be adminis-
tered at the earliest opportunity. While early diagnostics and screening methods do 
exist, not all results are definitive or accurate. Even more, certain exams are inva-
sive, expensive, and not accessible to all who require them. Financial burdens, as 
well as geographic and sociocultural barriers, prevent large groups of people from 
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seeking proper diagnostic opportunities. Another pressing issue, which is of further 
interest here, exists—there is no singular universal method that can accurately diag-
nose all forms of cancer early on. As such, there is a crucial unmet need for develop-
ing the first universal method for the non-invasive, inexpensive, and accurate 
diagnosis of all cancers which can be made accessible to all individuals who require 
testing. This chapter will discuss how the combination of Raman spectroscopy (RS) 
and advanced statistical analysis (or, chemometrics) has emerged with a strong 
potential to solve this imposing issue.

RS is advantageous over other techniques used for disease diagnostics due to its 
ability to produce a spectral “fingerprint” which specifically represents the total 
biochemical composition of a sample. As quoted by Mann and Vickers, RS “is 
unusually, if not uniquely, suited to be the process control star of the next century” 
[4]. This is because “the intrinsic selectivity of RS allows for accurate identification 
of organic, inorganic and biological species, an advantage that is lacking in many 
other analytical techniques, such as ultraviolet absorbance and fluorescence spec-
troscopies” [5]. RS provides considerable detail regarding the biochemical compo-
sition of a sample, and is thus able to detect changes that occur in biological samples 
during the onset and progression of a disease. RS has the ability to be non-invasive 
and has the potential for in vivo use, which makes it a much more appealing tech-
nique for diagnosing diseases over other methods, such as biopsies. It is much less 
expensive than imaging tests, and it is objective, making it a better choice than some 
diagnostic methods which require subjective analysis of the results. RS goes beyond 
simply ruling out other possible diagnoses, as it has the potential to definitively 
determine both the presence and the stage of disease progression. What’s more, RS 
is a fast, easy-to-use, and reliable technique that can be easily incorporated into 
clinical settings, making it an exceptionally valuable diagnostic tool.

While RS has a high level of chemical specificity, the changes that occur between 
spectra of different classes of samples can oftentimes be minute and difficult to 
visually observe. Thus, advanced statistical analysis, or chemometrics, is utilized to 
better understand the information found within the obtained data. Chemometrics is 
essentially “the art of extracting chemically relevant information from data pro-
duced in chemical experiments.” [6] Chemometrics is suitable to use with RS 
because the spectral data exists in the form of a data matrix consisting of wavenum-
bers (cm−1) and corresponding intensities for each spectrum. Different algorithms 
can be applied to the spectral data matrix for the purpose of building statistical 
models. These models identify the most useful chemical data and separate it from 
less informative data and insignificant noise, all while learning how to recognize 
patterns and similarities within the data matrix. In this way, the models are able to 
learn to recognize similarities and differences between either labeled or unlabeled 
data, which it can then use to return either a qualitative or quantitative response.

Many chemometric algorithms exist to answer a wide array of questions a 
researcher may have. Notably, the two main categories of statistical models that can 
be built include supervised and unsupervised techniques. Unsupervised algorithms 
do not utilize sample labels or user-defined information when the model is being 
constructed [7]. Examples of unsupervised modeling include principal component 
analysis (PCA) and hierarchical clustering analysis (HCA). These models are 
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exploratory types of analysis and are not used for classification but rather can be 
used to display similarities or differences between groups of data. On the other 
hand, supervised models take into account user-defined labels, known as classes, for 
all samples in order to build prediction models. Supervised models can be further 
split into regression models or classification techniques. A regression model is often 
used for calibration purposes and will give a quantitative answer, while a classifica-
tion model will give a qualitative response, such as the classification of a spectrum. 
A common regression model is multiple linear regression (MLR), while various 
classification techniques include partial least squares discriminant analysis 
(PLS-DA), support vector machine discriminant analysis (SVM-DA), and artificial 
neural networks (ANN).

Because of the significant ability to pick out important information and recog-
nize patterns and similarities within sets of data, chemometric techniques are ideal 
for analyzing Raman spectral data. Specifically, these advanced statistical methods 
are used in this chapter for the purpose of understanding the spatial distribution of 
biochemical components within a sample, identifying potential biomarkers, differ-
entiating healthy biological samples from diseased ones, and for determining the 
stage of a disease, all for the purpose of diagnosing cancer.

This chapter presents research published between 2014 and 2018. Specifically, 
articles that focus on the application of RS combined with chemometrics for diag-
nosing cancer are considered. Modifications of RS will be considered, such as 
incorporating the use of fiber-optic techniques, which have not been well reviewed 
in the past. Studies using all forms of biological materials (cells, tissue, bodily flu-
ids) will be included, and studies will not be limited by the Raman spectral range 
examined (i.e., high wavenumber region versus the fingerprint region). Research 
that does not utilize any advanced statistical techniques will not be considered. It is 
anticipated that in order for the RS methodology to be implemented clinically, an 
automatic data analysis procedure will be required to interpret the Raman spectral 
data and to make a diagnosis. Statistical analysis can be performed using software 
which can lead to automatic and definitive diagnoses in real-time, making diagnos-
ing cancer much more accurate, rapid, and inexpensive. Furthermore, the goal of 
this chapter is to show that spontaneous RS is sufficient enough for cancer diagnos-
tics, and that more complicated or expensive technology is not required to achieve 
highly accurate diagnoses. In this chapter, we aim to support and buttress the claim 
that RS in combination with chemometrics has a strong potential to be implemented 
as a novel universal method for diagnosing all forms of cancer in the near future.

8.2  Discussion

8.2.1  Spontaneous Raman Spectroscopy

Spontaneous Raman spectroscopy utilizes a monochromatic laser beam to radiate 
the sample being studied. Inelastically scattered light which interacts with molecu-
lar vibrations of the sample will be detected by the instrument. The outcome is a 
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very specific spectral fingerprint of the sample. Spontaneous RS is uniquely suitable 
for characterizing microheterogeneous environments; specifically, the collection of 
multiple spectra from a single sample will allow for the detection and spatial distri-
bution of biochemical components within a sample to be determined [8]. RS can be 
used to collect and process spectral information obtained from multiple positions on 
a sample with the purpose of providing statistically significant characterization of a 
sample’s heterogeneity and multicomponent composition. By collecting multiple 
spectra, biomolecules present at high local concentrations can be detected, allowing 
for identification of potential biomarkers, including those present at low average 
concentrations [9]. A great advantage of RS resides in its ability to probe the entire 
biochemical composition of a sample, thus producing a spectroscopic signature for 
different disease states which are based on the simultaneous integration of multiple 
biomarkers. This capability significantly improves the sensitivity and selectivity of 
the diagnostic technique. The following studies have capitalized on the advantages 
of spontaneous Raman spectroscopy for the purpose of diagnosing various cancers 
through analysis of either tissue, cells, or bodily fluids.

8.2.1.1  Tissue

Tissue is frequently analyzed in disease diagnostic studies due to its ability to indi-
cate the presence of cancer in the body. As such, tissue is frequently biopsied and 
thus readily available for in vitro Raman spectroscopic analysis and especially for 
the purpose of diagnosing cancer.

In a study conducted by Kalkanis et al., 95 regions from 40 tissue samples were 
analyzed to distinguish normal brain tissue from glioblastoma multiforme (GBM) 
and necrosis using discriminant function analysis (DFA), achieving 99.6% and 
97.8% accuracy in the training and validation datasets, respectively (Fig. 8.1) [10]. 
On the other hand, an average 87.6% accuracy for diagnosing a tissue sample as 

Fig. 8.1 Plot of 
discriminant function 
analysis scores for training 
data (Reprinted with 
permission from [10])
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originating from a healthy donor or from an individual with a brain tumor was 
achieved through analysis of only 20 tissue samples by a learning vector quantiza-
tion neural network (LVQNN) technique [11]. The apparent role of number of sam-
ples and chemometric technique used for obtaining successful results is already 
well demonstrated.

Several attempts for using RS to diagnose breast cancer have been made in the 
last 4 years. The carbonate intercalation signature in type II microcalcifications in 
tissue, a common diagnostic feature of breast cancer, was used to demonstrate the 
differences between benign and malignant breast lesions. Raman decision algo-
rithms were developed to distinguish between benign and malignant lesions with 
type II microcalcifications. The differences in carbonate intercalation could differ-
entiate benign and malignant lesions; specifically, empirical decision algorithms 
based on carbonate and cytoplasmic protein content achieved 77–83% accuracy for 
discrimination [12]. Raman spectroscopic analysis of 39 breast tissue samples was 
employed to understand the differences between normal, atypical ductal hyperpla-
sia, ductal carcinoma in situ, and invasive ductal carcinoma lesions of the breast. A 
support vector machine (SVM) diagnostic model was built using the radial basis 
function (RBF) with leave-one-out cross-validation (LOO-CV) and achieved an 
overall accuracy of 74.39% for identifying a sample as belonging to one of the four 
classes [13]. Fallahzadeh et al. aimed to diagnose breast cancer by using ant colony 
optimization (ACO) to find the most useful Raman features for discrimination. With 
five spectral features selected by ACO, the algorithm could correctly classify the 11 
tissue samples as normal, benign, or cancerous with 87.7% accuracy [14]. Based on 
the results of these small studies, RS analysis of tissue samples is not suggested as 
the most optimal method for diagnosing breast cancer. Results are greatly improved 
when cells are instead analyzed, as is later discussed.

The mortality rate of cervical cancer can be reduced if the disease is detected in 
the premalignant stage. As such, Rashid et al. utilized Raman spectral mapping to 
elucidate biochemical changes associated with premalignant stages of the cancer. 
When analyzed by K-means cluster analysis (KCA), cervical biopsies classified as 
negative for intraepithelial lesion and malignancy were divided into three different 
layers—stroma, basal/para-basal, and superficial—based on differences in colla-
gen, DNA bases, and glycogen spectral features. For low-grade and high-grade 
squamous intraepithelial lesion (SIL) samples, KCA clustered regions of the basal 
layer together with the superficial layer. When morphological changes were not 
apparent, PCA could identify biochemical changes associated with the cancer, cre-
ating a useful method for detecting premalignant changes in cervical tissue [15]. 
Raman spectral mapping was further used to understand the differences between 
neoplasia and malignancy of cervical tissues. Gradual biochemical changes associ-
ated with cancer progression were identified using PCA and KCA, including 
changes in glycogen, collagen, lipids, protein, carotene, and the nucleus to cyto-
plasm ratio [16]. While both of the previous studies demonstrated the usefulness of 
RS to detect biochemical differences between different samples, Daniel et al. went 
on to improve the usefulness of RS by obtaining quantifiable results through analy-
sis of spectral data by PCA in combination with ANN. The method could classify 

8 Raman Spectroscopy and Advanced Statistics for Cancer Diagnostics



278

tissue as normal, premalignant, or malignant with an overall accuracy of 99%. 
Following this, well differentiated, moderately differentiated, and poorly differenti-
ated squamous cell carcinoma (SCC) samples were investigated using PCA com-
bined with linear discriminant analysis (LDA), achieving 94% diagnostic 
accuracy [17].

Tissue obtained from healthy donors and from colorectal cancer patients was 
investigated by several groups. In one proof-of-concept experiment, different exci-
tation wavelengths were used to study the disease. Near-infrared (NIR) Fourier 
transform-Raman (1064  nm), NIR-visible-Raman (785  nm) and visible-Raman 
(532  nm) excitation wavelengths were used to collect spectra from 14 samples. 
Each of the three sets of spectra was analyzed using PCA, and partial spectral dif-
ferences in each dataset were observed between the normal and diseased samples. 
Interestingly, when the datasets were combined, the clearest separation between the 
two classes was seen [18]. While the previous study was useful for establishing 
biochemical differences between groups, Li et al. obtained quantitative results using 
ACO-SVM.  ACO identified five diagnostically important Raman bands, which 
were then used to build the SVM diagnostic model. Results showed 93.2% accuracy 
for identifying colorectal cancer in 44 patients [19]. Two different chemometric 
systems were used in an additional study to evaluate which could best diagnose 
colorectal cancer based on tissue analysis of 81 patients. PCA-LDA and PLS-DA 
models were built and validated using leave-one-patient-out cross-validation 
(LOPO-CV). PLS-DA performed better, achieving a diagnostic accuracy of 84.3%, 
which was an improvement over the 79.2% accuracy achieved by PCA-LDA [20].

Tissue samples from patients with early-stage (stage 0 or I) esophageal cancer 
were examined ex vivo; Raman bands that showed a statistically significant differ-
ence in band intensity, determined using a t-test, were analyzed using LDA. The 
stage of tissue was correctly predicted with 81.0% sensitivity and 94.0% specificity 
[21]. However, it should be noted that the algorithm was not tested with comparison 
to healthy tissue samples.

Several studies were aimed at identifying gastric cancer. In the first study, which 
used a significant number of samples as well as a robust validation method, Jin et al. 
analyzed 105 tissue samples from cancerous and pre-cancerous lesions and normal 
gastric mucosa (NGM). Raman spectra showed differences between the samples 
related to protein, nucleic acid, and lipid content. Using PCA-LDA with LOO-CV, 
an average sensitivity of 88.9% and specificity of 94.6% were achieved for discrimi-
nating the three classes [22]. Yao et al. achieved 91.7% accuracy for distinguishing 
normal gastric tissue from cancerous tissue using Fisher discriminate analysis 
(FDA); however, only 12 samples were analyzed [23]. Two studies were conducted 
by Hsu and co-workers with a similar goal. In the first, PCA could differentiate the 
four main histological types of gastric adenocarcinoma (AC), including papillary 
adenocarcinoma (PAC), tubular adenocarcinoma (TAC), mucinous adenocarcinoma 
(MAC), and signet ring cell adenocarcinoma (SRC) by analyzing 79 tissue samples. 
PCA distinguished all gastric AC types from NGM in a binary system. SRC and 
MAC were able to be differentiated from TAC and PAC; however, TAC and PAC 
showed no significant differences between each other. Furthermore, LDA scatter 
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plots successfully differentiated all gastric AC types from NGM [24]. In the second 
study, the results improved to show gastrointestinal stromal tumors (GISTs) could 
be differentiated from AC and benign lesions from 119 patients. PCA-LDA was 
employed with CV, achieving an average sensitivity of 99.67%, specificity of 
95.45%, and accuracy of 98.32% for distinguishing GISTs, gastric AC, and NGM; 
this information can be used to help clinicians determine an appropriate treatment 
path [25]. Based on the range of experiments performed, RS is clearly capable of 
detecting gastric cancer within tissue samples.

To diagnose nasopharyngeal carcinoma (NPC), tissue samples were collected 
from 15 individuals with the cancer and from 15 healthy donors. Investigators gen-
erated four models using PCA-LDA to discriminate spectra collected from NPC 
tissue and healthy tissue at various depths of the sample. Each model achieved 
greater than 95% sensitivity and specificity, with the exception of the deepest level 
of tissue [26]. Another group also utilized PCA-LDA with LOO-CV to distinguish 
normal tissue from NPC tissue, achieving a sensitivity of 81% and specificity of 
87%. When the method was coupled with PLS, the sensitivity and specificity 
increased to 85% and 88%, respectively, showing how the chemometric technique 
selected plays a role in performance success [27]. Mian et  al. constructed tissue 
engineered models of normal, dysplastic, and head and neck SCC using correspond-
ing cell lines. PCA was used to analyze the Raman spectral data collected from the 
tissues to determine the maximum variance between the groups. LDA was then used 
to test the discriminatory capacity of the data and classify the tissue samples as 
normal, dysplastic, or cancerous. Predictions showed an average specificity of 70% 
and sensitivity of 100% in a binary model of normal versus cancerous tissue. For 
differentiating dysplastic versus cancerous tissue, 90% sensitivity and 98% sensitiv-
ity were achieved. To further validate the study, predictions were made for 12 
blinded samples, obtaining 75% specificity for predicting normal tissue, 90% sensi-
tivity for dysplastic tissue, and 98% sensitivity for cancer tissue [28].

Pence et al. utilized two different excitation wavelengths (785 and 1064 nm) to 
study a total of 15 healthy, AC, and hepatocellular carcinoma (HCC) liver tissue 
samples for the purpose of diagnosing liver cancer. Spectral data collected using the 
1064  nm excitation wavelength was classified using sparse multinomial logistic 
regression (SMLR); data collected using the 785 nm laser suffered from an intense 
and highly variable fluorescence background that dominated the Raman spectra and 
was thus not analyzed further. Two different models were generated using the data 
collected with 1064 nm excitation. The binary model (healthy versus all tumor tis-
sue) showed 100% sensitivity and 89% specificity and the tertiary model (AC ver-
sus healthy versus HCC tissue) achieved an average accuracy of 75.67% [29]. 
Notably, greater success for diagnosing liver cancer was achieved using Raman 
hyperspectral imaging, as is later discussed.

Wang et al. aimed to understand mutations of the epidermal growth factor recep-
tor (EGFR), its relation to lung AC, and its potential to be used in future diagnostic 
studies through RS analysis of 156 lung AC tissues. Tissue samples of carriers with-
out the mutation showed increased levels of amino acids and DNA, whereas sam-
ples from donors with a specific mutation group, L858R, exhibited increased 
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arginine levels. To predict to which class a sample belonged, PCA-SVM with 
LOO-CV was used. The L858R and E19del mutation groups were differentiated 
from wild-type EGFR tissue with 87.8% accuracy; considering the sample-size and 
the level of accuracy, this study provides significant evidence for a novel lung can-
cer screening method based on RS analysis of EGFR mutations [30].

Oral tumor and healthy tissue (10 samples each) were qualitatively analyzed 
using KCA and PCA; KCA was used to generate Raman maps which correlated to 
the sample’s histopathology. In healthy tissue sections, stratification of epithelial 
layers was observed. Each of the three layers detected within the normal epithelium 
tissue was successfully distinguished from the tumor section using PCA.  In the 
unhealthy tissue samples, inflammatory regions of tumor cells and tumor-stroma 
regions were detected; while not providing quantifiable results, this study shows 
how Raman mapping can provide novel insight for understanding pathological 
states [31]. Continuing in the same manner, Raman maps of normal and cancerous 
oral tissue were obtained by Daniel et al. The maps showed an increase in glycogen, 
lipid, and protein content within the healthy tissue and an increase in nucleic acid 
content in the cancerous tissue. Similarly, PCA and KCA were again used to dem-
onstrate the distribution of biochemical components within the samples. Dissimilarly, 
to improve the usefulness of the results, a discrimination line was computed, result-
ing in 98.9% accuracy for discerning the two groups. Raman spectral data was col-
lected from a blind sample, which was then subjected to histological evaluation. A 
Raman image was generated, and the sample was determined to be dysplastic, 
which was confirmed by H&E staining (Fig. 8.2) [32]. In a third study, Raman spec-
tral data was collected from 24 tissue samples of 14 donors with oral SCC and 
analyzed using multivariate curve resolution (MCR). The spectral maps of the tissue 

Fig. 8.2 Reconstructed Raman mapping (a) and their respective hematoxylin and eosin-stained 
image (b) of blinded sample; the box indicates the site of the Raman image (Reprinted with per-
mission from [32])
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were automatically and objectively compared through spectral matching of the 
MCR decomposed Raman spectra and the Raman spectrum of keratin, a biomarker 
of oral SCC. The oral SCC tissues were correctly identified with 77–92% sensitivity 
and 100% specificity, with the difference in sensitivity level depending on how posi-
tivity was defined [33].

RS was used to understand the pathological changes occurring in ovarian tissue 
for the purpose of distinguishing adenoma and early AC from benign tumors. Using 
PLS-DA and LOO-CV, the discrimination model provided an accuracy of 85.2% for 
diagnosing ovarian cancer [34].

Raman spectra from 25 malignant and benign pheochromocytoma and paragan-
glioma (PPGL) tissue samples were identified using PCA-LDA with a sensitivity of 
80.0% and specificity of 100.0%. PPGLs are tumors that arise from adrenal or extra-
adrenal chromaffin tissues. Notably, the obtained results were higher than those 
obtained using the pheochromocytoma of the adrenal gland scaled score, which is a 
current method for distinguishing between benign and malignant PPGLs [35].

In a thorough study performed by Liu et  al., discriminate analysis (DA) with 
LOO-CV was applied to spectral data collected from tissue of 63 different patients 
to determine if RS could distinguish malignant and benign renal tumors using 
biopsy specimens. Results showed success not only in separating tumor and normal 
tissue samples (82.53% accuracy) but also in distinguishing malignant and benign 
tumors (91.79% sensitivity and 71.15% specificity) and low-grade and high-grade 
tumors (86.98% accuracy). Oncocytoma and angiomyolipoma, two different forms 
of benign tumors, were successfully differentiated from clear cell renal carcinoma 
with 100% and 89.25% accuracy, respectively, and subtypes of cell carcinoma were 
distinguished from each other with an accuracy of 93.48%. Notably, Raman spec-
troscopic analysis further resulted in successful diagnoses for 7 of 11 cases whose 
diagnoses were missed during biopsy, illustrating an improvement of the RS meth-
odology over current diagnostic methods [36].

A selective-sampling method was used to collect Raman spectra of tissue sam-
ples from individuals with basal cell carcinoma (BCC) and healthy volunteers. A 
multinomial logistic regression classifier indicated 100% sensitivity and 92.9% 
specificity for correct classification of an independent set of skin tissue samples 
[37]. In a large study by Zhao et al., wavenumber selection based analysis was used 
to diagnose skin cancer. Multivariate techniques PCA-general discriminant analysis 
(GDA) and PLS with LOO-CV were employed; both were capable of classifying 
645 lesions (including skin cancer, pre-cancer, and benign skin lesions) from 573 
patients with skin cancer [38]. Interestingly, skin cancer is not well studied using 
biological fluids or cell samples, suggesting the greatest success for diagnosing skin 
cancer is through tissue analysis.

Raman spectral data collected from a total of 30 normal thyroid, goiter, and thy-
roid cancer tissue samples were analyzed by PCA and LDA in combination with 
CV and binary logistic regression (BLR). The results of LDA with CV showed 
normal versus cancerous tissues reached a discriminant value of 78.3%; goiter ver-
sus cancerous tissue reached a discriminant value of 75%; and normal versus goiter 
tissue reached a discriminant value of 68% when the spectral region was limited to 
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1200–1400 cm−1. The results of the BLR model showed the same three groups each 
achieved greater than 80% concordance [39]. Senol et al. diagnosed papillary thy-
roid carcinoma (PTC) using an orthogonal PLS algorithm which discriminated 23 
tumor and healthy tissue samples with 100% sensitivity and 81.8% specificity for 
the calibration dataset; the root mean square error of CV was about 47.8%, which is 
considered low [40]. Using 28 samples (18 for the calibration dataset and 10 for the 
test dataset) Palermo et al. was better able to differentiate healthy parathyroid tissue 
and parathyroid adenoma using PLS-DA, achieving 100% accuracy. Further, chief 
cell adenoma and oxyphil cell adenoma were distinguished from each other with 
100% of oxyphil and 99.8% of the chief cell adenoma samples correctly predicted 
during external validation [41]. When observed together, these studies demonstrate 
the interesting effect that different chemometric techniques can have on developing 
successful prediction algorithms.

The Raman spectral data of biopsies from 27 women suspected to have vulval 
lichen sclerosus (LS), a condition associated with an increased risk of developing 
vulval carcinoma, were analyzed using PCA-LDA with LOPO-CV. LS tissue was 
separated from tissue of other inflammatory vulval conditions with 91.0% sensitiv-
ity and 80.0% specificity [42]. It is important to note that a comparison to healthy 
vulval tissue was not taken into consideration.

As these studies clearly show, tissue samples have an immense potential to diag-
nose various forms of cancer when studied by spontaneous RS and chemometrics. 
However, the collection of tissue samples can be invasive and uncomfortable for the 
afflicted patient. On the other hand, RS analysis of tissue samples can be used to 
confirm typical histopathological diagnosis, which can oftentimes be hindered by 
subjective and experience-based analysis, making RS advantageous for incorporat-
ing into diagnostic procedures. Further in vivo analysis is required, and has been 
conducted, to better understand the capacity of RS for diagnosing cancer, as is later 
discussed.

8.2.1.2  Cells

Cytology has been widely used for diagnosing cancer—this is most likely due to the 
fact that cytology specimens are usually easier to obtain while causing less discom-
fort, cost less money, and are less likely to result in complications when compared 
to biopsied tissue samples. In this regard, several recent studies have successfully 
applied spontaneous RS analysis of cells in combination with chemometrics for 
diagnosing cancers.

Kerr et al. conducted four different experiments to evaluate the potential of RS to 
diagnose bladder cancer. In each experiment, various standard clinical procedures 
were used in order to prepare the cell samples for analysis. Spectral data from each 
experiment was analyzed through PCA-LDA with LOO-CV, with each experiment 
achieving greater than 88% sensitivity and specificity. Importantly, it was deter-
mined that none of the standard procedures that was tested significantly impacted 
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the methodology’s ability to diagnose bladder cancer, setting the foundation for RS 
analysis of cells to be used under a wide variety of clinical settings for diagnostic 
purposes [43].

Four brain cancer GBM cell lines were obtained from four different patients who 
each had grade IV astrocytoma. Raman spectra of single cells from each cell line 
were investigated using multivariate analysis. While this study did not focus on 
discriminating healthy and diseased states, the results do show that cell lines were 
similar among all four afflicted patients, thus confirming the reliability of RS analy-
sis of cells for cancer diagnostics and staging for future studies [44].

RS was popularly used to examine cells for the purpose of detecting and diagnos-
ing breast cancer. The results are generally an improvement over those achieved 
when tissue was analyzed and provide additional information regarding the effect of 
drugs, which is generally difficult or impossible to do through analysis of other 
biological samples. Marro et al. utilized RS to study cells undergoing an epithelial- 
to- mesenchymal transition, a process indicative of breast cancer metastasis. MCR 
was used to determine how the transition affected the lipid profiles of the cells; 
specifically, the transition resulted in increased levels of tryptophan and mainte-
nance of a low fatty acid content as compared to highly metastatic cells. PLS-DA 
successfully discriminated cells within various stages of the transition process, 
achieving 94% sensitivity and 100% specificity, providing the ability to identify 
breast cancer in the earliest stages of malignancy [45]. Bi et al. studied the overex-
pression of human epidermal growth factor receptor 2 (HER2), which is associated 
with increased chances of developing breast cancer. Three different cell lines were 
studied—BT474 (HER2 positive breast cancer cell), MCF-10A (HER2 negative 
healthy control cell), and HER2+ MCF-10A (HER2 positive healthy control cell). 
The data was analyzed using lasso and elastic-net generalized linear models with 
CV, which achieved an average 99.8% sensitivity and 99.6% specificity for separat-
ing the three cell lines. Following this, Raman spectra of 104 Lapatinib-treated and 
104 Lapatinib-resistant breast cancer cells were collected. Lapatinib, a tyrosine 
kinase inhibitor, is a common drug used to treat breast cancer patients. Significant 
differences between the spectral signatures of the two cell lines were observed, 
revealing vital biochemical information which could potentially identify cells resis-
tant to important cancer-fighting drugs as well as demonstrating a novel method for 
studying the response of cancer cells to therapeutic interventions [46]. In a different 
study, the effect of pentoxifylline, a drug used to treat muscle pain, on human breast 
cancer cells was examined. Spectral changes suggested a linear relationship between 
alterations in DNA, protein, and lipid content with drug dosage. Further, PC-LDA 
with LOO-CV could separate the control group from cells treated with different 
levels of pentoxifylline, providing an opportunity to monitor changes occurring 
within cell lines as a result of medications [47]. Talari and co-workers published two 
studies on analyzing breast cancer cell lines. In one, a combination of PCA and 
LDA differentiated two different breast cancer cell lines and one normal breast cell 
line with 100% sensitivity and 91% specificity [48]. In a later study, normal prolif-
erating, hypoxic, and necrotic regions of a T-47D human breast cancer spheroid 
model were analyzed by RS to identify chemical changes that occur as the regions 
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progress to necrosis. PCA showed lipid, amide I and III, and nucleic acid content 
differ significantly between the three regions, providing information for understand-
ing the progression of cells to necrosis [49]. Winnard Jr. and researchers studied 
organ-specific isogenic metastatic breast cancer cell lines. PLS-DA with LOO-CV 
was used to classify the different cell lines with 96.8% accuracy; SVM was also 
used and provided similar results [50].

Ramos et al. evaluated the potential of RS to screen for cervical cancer using cell 
samples. Both the cervical intraepithelial neoplasia (CIN) and the SIL terminology 
systems for classifying cervical cancer cells were tested in the process. Biochemical 
fingerprints of normal and abnormal cell samples were used for discrimination by 
PCA. Subsequently, PCA-LDA models with LOO-CV were built for classification 
using either CIN or SIL terminology. The model built using SIL terminology, which 
characterizes lesions into low-grade and high-grade categories, achieved an average 
93.45% sensitivity and 97.55% specificity. The model using CIN terminology gave 
better results—CIN divides classification of cells into three grades where CIN1 cor-
responds to mild dysplasia, CIN2 to moderate dysplasia, and CIN3 to both severe 
dysplasia and carcinoma in situ. The CIN model reached an average sensitivity of 
96.3% and specificity of 98.27% [51]. Notably, the terminology system used plays 
a small but identifiable role in the classification efficiency of the chemometric tech-
nique employed in this study.

Hundreds of live colorectal cancer cells, derived from primary and secondary 
tumor cells of the same patient, were studied by Gala de Pablo et al. Using PCA- 
LDA with CV to analyze the RS data, an accuracy of 98.7% was achieved for clas-
sifying cells as either SW480 or SW620 (Fig. 8.3). These results were better than 
those achieved with SVM and discriminant trees, illustrating the usefulness of cer-
tain chemometric techniques over others. PCA-LDA was also used to classify 
HL60, HT29, HCT116, SW620, and SW480 cells with 92.4% accuracy [52].

Efforts to diagnose non-Hodgkin lymphoma was assessed through examination 
of normal B-cells and non-Hodgkin lymphoma B-cells using asymmetric least 
squares (ALS) baseline correction and PCA. K-nearest neighbor (KNN) was used 

Fig. 8.3 PCA/LDA results. (A) Shape of the PCs 1 to 4 and of the LD (B) 2D plot of the scores 
for the first two PCs. (C) Histogram of the individual cell scores when projecting the cell data onto 
the LD from (A) with a vertical dashed line at the point of best separation. LD = linear discrimi-
nant; LDA = linear discriminant analysis; PC = principal component; PCA = principal component 
analysis (Reprinted with permission from [52])
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to confirm the discriminatory powers of PCA, resulting in 100% accuracy, thus 
providing a potentially novel method for diagnosing the cancer [53]. It was further 
found that the Raman spectral data from peripheral blood mononuclear cells 
(PBMC) could be used to discriminate a significantly pure population of T-cell lym-
phocytes from other PBMC myeloid cells. Several classifiers, including PCA-LDA, 
SVM, and Random Forests (RF), were used for discrimination. SVM built using 
RBF performed the most optimally, achieving 98% sensitivity and 92% specificity. 
This study demonstrates fundamental differences between myeloid cells and lym-
phocytes which can be used to identify different PBMC subtypes for diagnostic 
functions, as well as the importance of testing different chemometric techniques for 
the purpose of optimizing diagnostic capabilities [54].

Carvalho and researchers collected Raman spectra of the nucleoli, nuclei and 
cytoplasm of oral epithelial cancer and pre-cancerous cell lines, as well as from 
normal oral epithelial primary cell cultures. PCA exhibited significant differences 
between the cell lines, and contributions from nucleic acids and proteins of nucleo-
lar and nuclear sites and from lipids of the cytoplasmic area were primarily respon-
sible for discrimination. This study shows the ability of RS analysis of cells to 
uncover incredibly useful information regarding cellular components which cannot 
be achieved through tissue or biological fluid analysis, and that can contribute sig-
nificantly toward diagnosing cancer [55].

Cisplatin-resistant and cisplatin-sensitive ovarian carcinoma cells were discrimi-
nated using PCA-LDA with LOO-CV. Cisplatin, an anti-cancer chemotherapy drug, 
is often used to treat ovarian cancer. Using the classifier, a diagnostic accuracy of 
82% was obtained [56]. These results are similar to those obtained from the previ-
ously described analysis of tissue samples; however, the analysis of cells provides 
the added benefit of monitoring the effect of anti-cancer drugs.

Corsetti et al. analyzed the Raman fingerprints of normal and metastatic hormone- 
resistant prostate cancer cells by PCA-LDA with CV, which reliably distinguished 
the two with 95% sensitivity and 88% specificity [57]. Alternatively, Olmos et al. 
aimed to understand the effect of the pesticide Aldrin on human prostate cancer 
cells. A portion of prostate cancer cells were exposed to Aldrin, which has been 
shown to increase the risk of developing prostate cancer in men exposed to it. To 
assess the differences between the normal and treated prostate cell populations, 
PLS-DA with CV identified biomarkers associated with pollutant stress, and the 
best classifier built achieved 91.3% specificity and 80.0% sensitivity for distin-
guishing the two cell classes [58]. Most recently, deep-ultraviolet Raman spectros-
copy (excitation wavelength of 198 nm) also showed that normal human primary 
prostate epithelial cells and grade IV adenocarcinoma PC-3 prostate cancer cells 
could be successfully differentiated [59]. The results obtained here are comparable 
to those obtained using both high-throughput methods and fiber-optic probes, which 
are further discussed, suggesting the powerful diagnostic capability of spontaneous 
RS analysis of cells.

The combination of RS and chemometrics has the ability to detect chemical sig-
natures of cells in order to quickly and accurately diagnose various types of cancer. 
Cells provide unique information regarding the mixtures of metabolites present at a 
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single point in the lifetime of the cell and can be used to probe cellular components 
which cannot be accessed in other biological samples. Furthermore, cells can be 
manipulated and exposed to different drugs as well as carcinogens in order to better 
understand the pathology of cancer as well as the effect of drugs on cancer, provid-
ing advantageous and unique information which cannot be easily accomplished 
using other biological samples. While the reported results are promising, it should 
be noted that in several of the previously reviewed studies, there is a slight problem 
of the number of samples analyzed—that is, Raman spectra were collected from a 
significant number of cells, but not a significant number of donors. This, however, 
is a straightforward criticism to address in future work; as such, because of the other 
advantages which outweigh this small issue, the potential for RS analysis of cells to 
diagnose cancer should not be disregarded.

8.2.1.3  Body Fluids

In an effort to create a more simple and less-invasive sample collection procedure, 
many studies have focused on studying various body fluids, including blood, urine, 
and saliva, for cancer diagnostics. These body fluids provide biochemical informa-
tion which can be used not only for identifying cancer but also for determining the 
stage of the cancer. Body fluid analysis tends to be less costly and is a much more 
appealing option for reoccurring testing due to the ease of non-invasive collection; 
thus, many researchers have used RS and advanced statistical techniques to analyze 
body fluids for cancer diagnostic purposes.

Blood serum of 35 subjects with meningioma was investigated by RS and com-
pared to blood serum collected from 35 control subjects. Through PCA and PC-LDA 
followed by LOO-CV, healthy and meningioma subjects were correctly classified 
with efficiency levels of 92% and 80%, respectively. Similar results were also 
obtained for identifying different grades of meningioma [60].

Blood serum and urine were both studied in an attempt to diagnose cervical can-
cer. In one study, González-Solís et al. utilized PCA to distinguish serum samples 
from 19 cervical cancer patients, 3 pre-cancer individuals, and 20 healthy controls. 
Differences in Raman spectra indicated a high amount of carotenoids and intense 
protein contribution in the control serum and higher concentrations of glutathione 
and tryptophan in the disease serum (Fig. 8.4). Using a LOPO-CV technique, 100% 
sensitivity and specificity were achieved [61]. Pappu et  al. investigated 27 urine 
samples collected from healthy volunteers and patients with cancer. Using an LDA 
diagnostic algorithm with CV, 100% accuracy was achieved for discrimination [62]. 
Interestingly, these studies suggest that regardless of the body fluid type analyzed, 
markedly successful results are obtained for diagnosing cervical cancer.

The potential to diagnose colon cancer using blood serum was examined in a 
large study with 75 healthy volunteers, 65 colon cancer patients, and 60 post- 
operation colon cancer patients. Differences in Raman spectra were assigned to 
changes due to nucleic acids, amino acids, and chromophores. PCA and KNN 
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analyses were used to discriminate between the three classes, resulting in 91.0% 
accuracy [63].

Khan et al. used RS analysis of blood serum to diagnose NPC. PCA was used to 
highlight spectral differences and SVM with RBF and CV classified the serum as 
belonging to either the pathological class or the healthy class with 93% accuracy. 
Although a smaller dataset was used, these results are generally an improvement 
over those achieved through RS analysis of tissue [64].

Happillon et al. diagnosed chronic lymphocytic leukemia based on Raman spec-
tral analysis of blood smears collected from 27 healthy volunteers and 49 individu-
als with the disease. Two SVM models were built with CV—the first could 
discriminate between the two main subpopulations of leukemia (lymphocytes and 
polymorphonuclears) with sensitivity and specificity levels both over 98.5%. The 
second SVM model discriminated neoplastic and healthy lymphocyte spectra with 
an average sensitivity of 88% and specificity of 91% [65]. These results are rela-
tively comparable to those obtained through the analysis of cells, indicating this 
method should be considered further due to easier sample collection.

Interestingly, blood serum was used in two different studies to successfully diag-
nose lung cancer, suggesting the advantage of blood serum over other body fluids 
for this purpose. Li et al. tested several different modeling techniques to distinguish 
blood serum of 29 healthy donors and of 68 donors with lung cancer. Uncorrelated 

Fig. 8.4 Mean Raman spectra of the control and cervical cancer serum samples (Reprinted with 
permission from [61])
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linear discriminant analysis (ULDA) and LDA in combination with multiple scatter 
correction (MSC) pretreatment could each make the distinction with 100% sensitiv-
ity and specificity each. Interestingly, MSC combined with PLS-DA was unsuccess-
ful in achieving the goal, further demonstrating the significance of chemometric 
technique selection [66]. Wang et al. analyzed 91 blood serum samples from healthy 
individuals and individuals with varying stages of non-small cell lung cancer (stages 
I–IV), and found LDA with CV could distinguish the five different groups with an 
overall accuracy of 92% [67].

Urine samples were obtained from patients with oral cancer and from healthy 
donors; the corresponding Raman spectra were  analyzed using PCA-LDA with 
LOO-CV.  The model achieved 98.6% sensitivity and 87.1% specificity, with an 
overall accuracy of 93.7% for identifying the cancer patients [68]. Pachaiappan 
et al. utilized both blood plasma and saliva to diagnose oral cancer. In one study, the 
blood plasma of 30 healthy individuals, 27 patients with oral sub mucous fibrosis, 
and 34 with oral SCC was analyzed by PCA-LDA. The algorithms could separate 
the normal group from the premalignant group with 96.3% sensitivity and 80.0% 
specificity and the normal group from the malignant group with 91.2% sensitivity 
and 96.7% specificity [69]. Saliva of 83 individuals from the same aforementioned 
groups was also subjected to analysis via PCA-LDA with LOO-CV. The algorithms 
separated normal from premalignant samples with 96.4% sensitivity and 70.2% 
specificity and normal from malignant samples with 93.8% sensitivity and 95.7% 
specificity [70]. These studies show that regardless of body fluid analyzed, high 
levels of performance can be achieved for diagnosing oral cancer.

Body fluid analysis is advantageous over analysis conducted using other biologi-
cal materials for many significant reasons. Collection of body fluids is considerably 
less-invasive, and even non-invasive in certain cases; it is inexpensive and the pro-
cess is quick, which allows for rapid results as well as repeat analyses as necessary, 
and can be conducted during routine exams. Biological fluids provide a great 
amount of biochemical information regarding the composition of the sample and 
have a great potential to diagnose all forms of cancer when analyzed by RS.

8.2.1.4  Spontaneous Raman Spectroscopy with Expanded Raman 
Spectral Range

The majority of the aforementioned studies using spontaneous RS in combination 
with chemometrics have focused on analyzing the “fingerprint” (FP) region of the 
Raman spectral data range. The FP region usually refers to the section of Raman 
spectral bands existing between 400 and 1800 cm−1. It has been discovered that a 
wider Raman spectral range, which includes the high wavenumber (HWN) region, 
provides additional information that can be used for many analytical purposes, 
including disease diagnostics and biomarker detection. The HWN region of spectral 
data usually refers to the spectral range between 2800 and 3600 cm−1 which is found 
to contain important contributions from water, various C–H bond vibrational modes 
of lipids and proteins, as well as other N–H and O–H bond vibrations of 
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biomolecules. Notably, the HWN region does not usually suffer as much from auto-
fluorescence signal as the FP region. Several studies have exhibited the usefulness 
of this region for diagnosing cancers.

Several studies have used the HWN region to successfully investigate oral can-
cer. Barroso et al. aimed to differentiate healthy tissue from oral SCC tumor tissue 
within 14 patients. Various bands attributed to water were used to quantify the water 
content in each sample. Specifically, the bands located between 3350 and 3550 cm−1, 
for O–H-stretching vibrations, and 2910 and 2965 cm−1, for C–H-stretching, were 
used. It was found that the water content values determined for the oral SCC sam-
ples were significantly higher than the healthy tissue values (Fig. 8.5). A receiver 
operating characteristic (ROC) curve determined that, using a water content cutoff 
value of 69%, tumor tissue could be identified with 99% sensitivity and 92% speci-
ficity [71]. In a different study, Pachaiappan et  al. performed PCA-LDA with 
LOPO-CV of the HWN region (here, 2500–3500  cm−1) of Raman spectra from 
blood plasma of 64 individuals. Results showed that oral malignancy could be iden-
tified with 92.2% accuracy for the training dataset and 84.4% accuracy for the CV 
dataset. Analysis of the HWN region allowed researchers to discover additional 
lipid and water spectral contributions useful for distinguishing the two classes [72]. 
Further, the HWN region of spectral data for 197 urine samples collected from 
healthy subjects, oral premalignant, and malignant patients was analyzed using 
PCA-LDA with LOO-CV. Three different models were built—normal and oral pre-
malignant subjects were classified with 94.9% accuracy, normal and oral malignant 
groups with 92.1% accuracy, and all three groups with 91.2% accuracy for CV [73]. 
In a fourth study, Carvalho et al. showed that the HWN region of Raman spectra 
could differentiate the nucleolus, nucleus, and cytoplasmic areas of oral epithelial 
cancer, dysplastic, and normal epithelial primary cell lines. The combination of 
PCA and feature discriminate analysis showed that the cell type could be identified 
with 99.9% sensitivity and 97.4% specificity using the cytoplasm, 100% sensitivity 
and 99.1% specificity using the nucleus, and 100% sensitivity and 95.4% specificity 
using the nucleoli [74]. These studies clearly show the usefulness of the HWN 
region of Raman spectral data for diagnosing oral cancer; interestingly, these results 
are generally either comparable or an improvement over those obtained through 
analysis of other biological samples using only the FP region.

Melanoma and benign melanocytic lesions suspected of melanoma were investi-
gated by Santos et al. Raman bands in the range of 2840–2930 cm−1 displayed sig-
nificant spectral differences between the two groups; PCA-LDA with LOPO-CV of 
this region could distinguish samples which were considered difficult to distinguish 
by trained dermatologists. A ROC curved was used to set an optimal discrimination 
threshold; results showed that melanoma and benign melanocytic lesions often mis-
diagnosed as being melanoma could be discriminated based on the information 
found in the C–H-stretching region of HWN Raman data, thus suggesting the poten-
tial of the method for improving clinical diagnosis of skin malignancies [75].

While the HWN region provides novel useful and unique information, in several 
other recent studies, analysis of both the FP and HWN regions was considered for 
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Fig. 8.5 Examples of HWNR spectra measured in (a.1) H&E stained thin tissue section of SCC, 
(a.2) typical Raman spectrum of SCC, (b.1) H&E stained thin tissue section showing adipose tis-
sue (arrow), (b.2) Raman spectrum of adipose tissue, (c.1) H&E stained thin tissue section show-
ing muscle tissue (arrow) and (c.2) representative Raman spectrum of muscle (Reprinted with 
permission from [71])
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diagnostic purposes. The best results are most consistently seen when the two spec-
tral regions are considered together.

The diagnostic potential of RS for gastric cancer was evaluated through a com-
parison of the FP and HWN regions. Raman spectra were collected from normal 
mucosa and gastric cancer tissue areas. Diagnostic algorithms were generated using 
PLS-DA with LOPO-CV, which yielded 94.59% sensitivity and 86.48% specificity 
for the FP region and 81.08% sensitivity and 71.05% specificity for the HWN 
region. Although both regions provide useful information, here, the FP region was 
better able to diagnose gastric cancer [76].

Huang et al. obtained FP and HWN region spectral data of nasopharyngeal tis-
sue. Non-cancerous tissue was differentiated from cancerous tissue using only FP 
spectral data (800–1800 cm−1), only HWN spectral data (2700–3100 cm−1), and an 
integrated FP/HWN dataset (Fig. 8.6). The results, using PCA-LDA with LOPO-CV, 
showed the samples could be distinguished with 87.8% sensitivity and 86.5% speci-
ficity for the FP region, 85.4% sensitivity and 91.9% specificity for the HWN 
region, and 95.1% sensitivity and 89.2% specificity for the integrated dataset, thus 
demonstrating the potential of both FP and HWN regions to diagnosis NPC [77]. 
Sun et al. performed a study with a similar goal, with spectral data collected from 
biopsy tissue smear samples of 74 patients in the regions of 800–1800 cm−1 and 
2800–3100  cm−1. Using PCA-LDA of the combined FP/HWN regions dataset, 
87.2% sensitivity and 85.7% specificity were achieved for classifying a sample as 

Fig. 8.6 Comparison of the mean intensities of FP/HW Raman spectra from NPC tissue (red line, 
n = 41) versus that of non-cancerous tissue (black line, n = 37) in the FP and HW spectral regions. 
For better visualization, the mean Raman spectra of nasopharyngeal non-cancerous tissue are 
shifted vertically. The shaded areas represent the respective standard deviations of the means. 
((non-cancerous)-cancerous)∗2 was used to represent the corresponding mean difference spectrum 
(blue line), which is also shown at the bottom. The Raman spectral ranging from 1800 cm−1 to 
2800 cm−1 was not shown by using the broken interval (—//—) to indicate which does not contain 
tissue biochemical information (Reprinted with permission from [77])
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belonging to the NPC group or to the non-cancerous group [78]. Clearly, the HWN 
region provides unique additional information useful for diagnosing cancer based 
on RS and chemometrics.

8.2.1.5  Raman Hyperspectral Imaging

Spontaneous RS in combination with chemometrics has shown great potential for 
generating a diagnosis based on the analysis of biological specimens; however, it is 
important to consider the advantages of Raman hyperspectral imaging (HSI). 
Raman HSI utilizes an imaging camera to collect additional information regarding 
the sample being analyzed; as such, the result is the combination of spectral infor-
mation with spatial information. Raman spectral information is collected from each 
pixel of an image. The spectral signature from each pixel, or small volume of the 
sample, depends on the biochemical components present in that small volume—
these components can vary within the sample itself and between different samples 
(i.e., tissue from a healthy donor or tissue from a donor with cancer). In Raman HSI, 
a three-dimensional (x, y, λ) hyperspectral data cube is formed where the x and y 
components are spatial dimensions and the λ component is the spectral signature. 
Together, this information can generate an image which provides information 
regarding the distribution of biochemical components within the sample. In fact, the 
hyperspectral images are useful for depicting the relative concentrations of various 
biomarkers in a biological sample, potentially indicating which areas of the sample, 
if any, are affected by the disease in question. Furthermore, Raman hyperspectral 
images of tissue in particular can be compared to the tissue after it has been stained 
using hematoxylin and eosin (H&E) staining. Thus, Raman HSI is useful for medi-
cal diagnostics as it can confirm the presence of a disease, distinguish between 
normal and diseased samples, and distinguish between disease stages, all through 
objective analysis. The following studies employ Raman HSI for the purpose of 
understanding the distribution of biochemical components within samples in order 
to identify cancer. Additionally, some studies go a step further and utilize advanced 
statistical analysis to build algorithms for quantitative diagnosis of various cancers.

In a study by Kast et al., the concentrations of Raman spectral bands correspond-
ing primarily to lipid and protein content (1004, 1300:1344, and 1660 cm−1) were 
imaged across forty brain tissue sections diagnosed as normal, GBM, necrosis, or 
infiltrating GBM. The goal was to understand the boundaries that exist between 
gray matter, white matter, and diseased tissue in an attempt to develop a novel 
method for rapid and non-destructive imaging of brain tissue for cancer diagnosis. 
The resulting Raman imaging maps corresponded with adjacent H&E-stained sec-
tions and could therefore successfully discriminate between the various regions of 
brain tissue [79].

In the last few years, several manuscripts were published concerning applying 
Raman HSI for breast cancer analysis. These studies were able to pinpoint valuable 
differences in biochemistry between diseased and healthy samples, which can be 
more easily detected with the advantages of HSI.  In one study, tumor regions of 
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breast cancer tissue were discriminated from healthy tissue based on altered con-
centrations of nucleic acids, collagen, and fat as determined by Raman HSI and 
KCA. Furthermore, LDA could diagnose ductal carcinoma in breast tissue samples 
with 95.6% sensitivity and 96.2% specificity. Fresh samples were then subjected to 
Raman imaging using a selective-sampling strategy in order to decrease data acqui-
sition time based on auto fluorescence imaging (AFI); results were in agreement 
with the diagnosis made by conventional histopathology [80]. In a different study, 
live non-malignant, mildly malignant, and malignant breast cancer cells as well as 
breast cancer tissue were analyzed. Results from Raman HSI suggested that lipid 
droplets in the various cell lines differ not only in concentration but also in bio-
chemical composition, suggesting their potential role in breast cancer pathology. 
Differences were observed in the lipid composition within breast epithelial cells as 
well as in breast tissue. Further, PCA displayed identifiable differences in the Raman 
signatures of the cells, suggesting a method for predicting the state of the oncogenic 
pathway [81]. Brozek-Pluska et al. showed that RS and Raman HSI could detect 
relative amounts of acetylated and methylated lysine, which have been previously 
designated as biomarkers for breast cancer. The stretching vibration of the acetyl 
group observed near 2938–2942 cm−1 and of the methyl group around 2970 cm−1 
allowed these molecular changes occurring in human breast tissue cancer cells to be 
monitored. Further, PLS-DA with CV provided 85.3% sensitivity and 91.3% speci-
ficity for detecting cancer [82].

Vanna et al. successfully distinguished the four subtypes of acute myeloid leuke-
mia (AML), which include myeloblasts, promyelocytes, abnormal promyelocytes, 
and erythroblasts. Bone marrow samples of seven patients, each affected with one 
of the four AML subtypes, were collected. For each cell isolated from the bone mar-
row aspirate, 4096 spectra were collected in order to generate Raman images which 
could accurately demonstrate morphological features. When the Raman images 
were analyzed by HCA, automatic discrimination and localization of the nucleus, 
cytoplasm, myeloperoxidase-containing granules, and hemoglobin was achieved. 
The images provide additional biochemical information than what could be obtained 
using only spontaneous RS. Following this, the average Raman fingerprint of each 
cell was analyzed by PCA-LDA with LOO-CV. Myeloblasts, promyelocytes (both 
abnormal and normal), and erythroblasts were differentiated with 100% accuracy. 
Normal and abnormal promyelocytes were correctly classified with 95% accuracy, 
and all four subtypes could be classified with 98% accuracy [83].

Interestingly, when Raman HSI was used to study liver cancer specimens, the 
results were a great improvement and provided useful biochemical information as 
compared to those results obtained through spontaneous RS tissue analysis. Two 
liver cancer cell lines, HepG2—including HepG2 cells in different cellular growth 
phases—and SK-Hep1, were analyzed by Tolstik et al. The collected spectral data 
was used to generate color-coded images which were analyzed by HCA and PCA; 
this provided significant information regarding the biochemical composition of the 
samples. Spectral differences were mainly attributed to higher expression of unsatu-
rated fatty acids in the HCC cells as well as during the proliferation phase of cellular 
growth. Through SVM analysis with CV, previously unknown cells were classified 
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as belonging to one of the two cell lines with 93% accuracy. Predictions of the 
unknown proliferation phase for HepG2 cells showed 100% sensitivity and 98% 
specificity. Raman HSI uniquely provides information regarding cell type and pro-
liferation behavior, which are essential tools in identifying features of malignant 
tumors [84]. In a second study by the same group, Raman imaging of liver tissue 
was used to identify molecular information beneficial for diagnosing liver cancer. 
The most notable difference between HCC and fibrosis regions of tissue was found 
to be due to fatty acids, especially palmitic acid. A RF model with CV classified 
malignant and non-malignant tissue regions with 86% accuracy [85]. More recently, 
Ryabchykov et al. discriminated three different cell lines (HepG2, nondifferentiated 
hepatic stem cell line HepaRG, and differentiated hepatocyte-like HepaRG) using 
Raman HSI. KCA was used to visualize clusters of different cell components within 
the cells. Following this, a three-class LDA with LOO-CV model was constructed 
to achieve cell line classification, reaching 96% accuracy [86].

Raman HSI shows great capabilities for detecting oral cancer, in both paraffin- 
free and paraffin-embedded tissue. Oral SCC and healthy tissue samples were ana-
lyzed to assess the potential of RS to perform discrimination tasks at the histological 
level. 127 Raman images were generated from 25 unstained thin tissue sections; the 
images were comparable to corresponding histological evaluation obtained through 
H&E staining. After imaging, the spectra were labeled as cancerous or as a sur-
rounding healthy tissue structure (squamous epithelium, connective tissue, adipose 
tissue, muscle, gland, or nerve) (Fig. 8.7). LDA models were built to analyze the 
labeled spectra for classification purposes. A total of six binary LDA models were 
built to distinguish oral SCC spectra from each of the surrounding healthy tissue 
structures, achieving an overall average accuracy of 93.17% [87]. In a unique study, 
Meksiarun et al. aimed to first understand if multivariate methods could extract the 
paraffin component of paraffin-embedded oral cancer tissue spectra. Typically, oral 
SCC tissue will be removed from a patient, fixed with formalin, and embedded in 
paraffin to prevent degradation. However, the Raman spectral features of paraffin 
overlap with main Raman spectral tissue bands, including the amide I and III bands. 
Three methods were tested for their ability to remove the paraffin spectral features 
while maintaining the integrity of the rest of the Raman spectrum, including PLS, 
independent component (IC) analysis, and IC-PLS. All methods were successful, 
however, PLS and IC-PLS were the most successful at removing the paraffin spec-
tral component while still maintaining spectral integrity of the cancer tissue. The 
paraffin-removed spectra obtained via IC-PLS were analyzed by PCA to construct 
Raman images. Main Raman markers for discriminating healthy and malignant tis-
sue were found to be collagen, phosphate, and DNA. The produced Raman images 
showed similarity to H&E stained tissue, thus demonstrating the ability of Raman 
HSI to diagnose oral cancer in paraffin-embedded tissue [88].

Human prostatic cells were collected and analyzed using Raman HSI. An empha-
sis was placed on the C–H vibration region (2800–3100 cm−1) of the spectra due to 
its ability to pinpoint the main differences between normal and tumor cell lines. 
PCA was used for image processing and identified protein and lipid fractions which 
were important for differentiation. A self-modeling curve resolution (SMCR) 
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algorithm was also employed and revealed tumor cells experience a 97% increase of 
the lipid fraction with respect to the control cells. Analysis by least squares curve 
fitting gave reproducible results for identifying differences at the molecular level 
between normal and tumor cells [89].

Raman imaging was performed on healthy and neoplastic thyroid tissue to 
improve the diagnosis of PTC (Fig. 8.8). Biochemical features of PTC were charac-
terized by the significant presence of carotenoids in comparison to healthy tissue. 
LDA with LOO-CV was applied to estimate tissue classification. Healthy and PTC 
thyroid tissue were discriminated with 100% accuracy and classical and follicular 
variants of PTC were discriminated with 95% accuracy [90]. The performance of 
this study is generally an improvement over analysis of tissue by spontaneous 
RS alone.

Fig. 8.7 H&E stained sections and corresponding pseudo-color Raman images. H&E-stained tis-
sue sections (a, c, e, and g) and corresponding pseudo-color images (b, d, f, and h). The K-means 
cluster averages were annotated as one of the following tissue structures: OCSCC (central part, 
peripheral part, or n.o.s.), squamous epithelium (superficial layers, suprabasal layers, or basal lay-
ers), CT (dense and collagen-rich, mixed, or inflammation- and capillary-rich), gland (mucinous or 
serous), muscle, adipose tissue, or nerve. CT = connective tissue; n.o.s. = not otherwise specified; 
OCSCC = oral cavity squamous cell carcinoma (Reprinted with permission from [87])
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Raman HSI capitalizes on the advantages of spontaneous Raman spectroscopy 
while providing additional tools that can be used in diagnosing cancer. The images 
produced are comparable to those produced by H&E staining and the information 
provided is useful for understanding presence of a disease as well as the stage of a 
disease. Importantly, Raman HSI is able to identify incredibly valuable biochemical 
differences between healthy and diseased samples, further enabling the identifica-
tion of biochemical changes that occur during pathogenesis as well as potential 
novel biomarkers that have not yet been considered. What’s more, Raman HSI 
opens to the door for in vivo applications where the images can indicate tumor loca-
tion which can be useful for surgical procedures.

Fig. 8.8 Typical example of Raman chemigram map (1156 cm−1 band reference) of a mixed zone 
of thyroid tissue (blue-healthy; red-yellow-green–PTC): (a) dark field optical image, (b) Raman 
map, (c) average reference Raman spectrum corresponding to healthy tissue, (d) average reference 
Raman spectrum corresponding to PTC tissue. The red square on the right side (a) corresponds to 
the investigated tissue area shown on the left (b). The scale bars are expressed in μm (reprinted 
with permission from [90])
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8.2.2  Spontaneous Raman Spectroscopy Combined with Other 
Analytical Techniques

In an attempt to increase the amount of useful information obtained for cancer diag-
nostics, some research efforts have focused on combining RS with other analytical 
techniques. Ideally, these additional methods will provide complimentary informa-
tion to that obtained by Raman spectroscopic analysis and will increase the confi-
dence and statistical significance of the methodology for diagnosing cancer.

RS was used to study 12 healthy and 30 tumor bladder tissue samples. Using 
HCA and differences in peak ratios, the tissue type could be classified with 96.7% 
sensitivity and 66.7% specificity. Major differences between the two classes 
included higher tryptophan, cholesterol, and lipid content levels in healthy tissue, 
and increased levels of nucleic acids, collagen, and carotenoids in bladder tumor 
tissue. High-performance liquid chromatography (HPLC), an analytical technique 
useful for separating, identifying, and quantifying individual components within a 
mixture, was employed to analyze carotenoids extracted from the two tissue types. 
While the Raman spectra reflect contribution due to carotenoids, HPLC was able to 
further narrow down this contribution to a specific biomarker; it was found that 
β-carotene was the major carotenoid present in tumor tissue, marking the first time 
this biomarker has been identified for bladder cancer [91].

RS and Raman HSI were combined with atomic force microscopy (AFM) to 
discriminate brain tumor from normal brain tissue samples. AFM, a type of scan-
ning probe microscopy, was used to obtain nanomechanical properties to form 
images of healthy and cancerous brain tissue, while RS was used to glean informa-
tion regarding the biochemical composition of the tissues. High-grade medulloblas-
toma (grade IV) and non-tumor samples from tissue of the central nervous system 
were compared. After analyzing the Raman spectra and images, it was determined 
that proteins within medulloblastoma tumors exist in the β-sheet conformation at 
enhanced levels and in the α-helix conformation at decreased levels as compared to 
proteins within normal tissue. Upon comparison of Raman peak ratios, it was dis-
covered that in normal brain tissue, the relative amount of lipids compared to pro-
teins is considerably higher. Mechanical indentation by AFM discovered that 
medulloblastoma tissue mechanical properties are strongly heterogeneous. Lastly, 
RS data was analyzed using PLS-DA with CV, indicating 96.3% sensitivity and 
92% specificity for separating the two tissue types. Through combination of Raman 
HSI and AFM, the biochemical and nanomechanical signatures obtained have the 
potential to identify biomarkers associated with the development of brain cancer 
[92]. Although these results are comparable to studies which use only spontaneous 
RS, the added information that is obtained improves the usefulness of the methodol-
ogy for diagnosing brain cancer.
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A novel approach combining spontaneous RS and optical pH sensing was used 
to differentiate healthy and cancerous breast tissue. To better prepare the Raman 
spectroscopic method for in vivo cancer detection, pH sensing can be first used to 
detect areas of tissue with lower pH levels, which is associated with cancer, thus 
ideally increasing the accuracy of the method as opposed to just using RS (Fig. 8.9). 
Fiber-optic-based Raman and pH probes were used to evaluate tissue samples; the 
pH sensing is based upon the pH level’s dependence on the optical transmission 
spectrum. Raman spectra were collected first, followed immediately by collection 
of transmission spectra using the optical pH probe. The Raman spectra were com-
bined with the transmission spectra from the same sample. PC-LDA with LOO-CV 
was employed for classification, first using only Raman spectra and then using the 
combined pH-Raman spectra. When Raman spectra were analyzed alone, the algo-
rithm achieved 100% sensitivity and 91.5% specificity. When the algorithm ana-
lyzed the combined pH-Raman spectra, 100% sensitivity and 98% specificity were 
achieved, indicating the added advantage of pH sensing for diagnosing breast can-
cer using RS [93].

Both Raman and infrared (IR) spectroscopies were used in combination in sev-
eral studies for the purpose of identifying various types of cancer. IR spectroscopy, 
another vibrational spectroscopic technique, is known to provide complimentary 
information to that obtained by RS.  Specifically, IR spectroscopy analyzes the 
interaction of IR light with a molecule, generating an IR spectrum of energy that is 
absorbed or transmitted by the molecule as a function of either frequency or wave-
length of light. The spectral information can then be used to identify and study the 
sample. The vibrational signatures of 164 invasive ductal carcinoma and invasive 
lobular carcinoma breast tissue samples were analyzed by both Raman and IR spec-
troscopies for the purpose of discriminating non-cancerous and cancerous tissue. 
Here, KCA followed by PCA and PLS-DA with CV were used to analyze the 
Raman spectral data. Raman imaging identified differences in spectral regions cor-
responding to vibrations of carotenoids, fatty acids, and proteins between normal 

Fig. 8.9 Experimental setup using the fiber-optic-based pH probe for measuring the transmission 
spectra varying according to the pH level of the normal and cancerous breast tissue samples. The 
intensity of transmission spectra varies due to the absorbance change of the polymeric coating 
layer, which consists of neutral red/poly(acrylic acid) bilayers (Reprinted with permission 
from [93])
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and cancerous tissue, while IR spectra depict differences in proteins and phospho-
lipids. Results of statistical analysis showed 84.7% sensitivity and 71.9% specific-
ity for determining if breast tissue displayed either normal biochemistry or cancer 
pathology [94]. Owens et al. aimed to determine whether attenuated total reflection 
Fourier-transform infrared (ATR-FTIR) spectroscopy or RS could better character-
ize the biomolecular signatures of blood plasma or serum collected from patients 
with ovarian cancer as compared to healthy controls. FTIR is used to simultane-
ously collect data over a wide spectral range; the ATR attachment allows for sur-
face properties of a sample to be measured rather than bulk properties, thus 
decreasing the potential for strong attenuation of the IR signal in samples that are 
highly absorbent. Here, 60 blood samples were analyzed using ATR-FTIR spec-
troscopy, while only 8 samples were studied using RS. All spectra were subjected 
to PCA-LDA, which showed statistically significant differences between healthy 
and cancerous samples using both spectroscopic methods. A SVM classifier suc-
cessfully differentiated Raman spectral data of blood plasma with 74% accuracy; 
notably, the IR spectral data of blood plasma was successfully classified with 
93.3% accuracy. It was further found that blood plasma was better suited for diag-
nostic discrimination than blood serum. Although ATR-FTIR spectroscopy is 
shown here to better diagnose ovarian cancer, one should consider the different 
sample sizes used in each part of the experiment [95]. In another study, Raman and 
ATR-FTIR spectroscopies were used to determine if either could identify the pri-
mary site of a metastatic tumor. Metastases were obtained from primary lung and 
colorectum AC as well as from metastatic melanoma. PCA-LDA determined points 
of dissimilarity between spectra; PCA in combination with a linear discriminate 
classifier (LDC) calculated classification accuracy. In a three-class algorithm built 
using Raman spectral data, 69% accuracy for predicting colorectal AC, 69% for 
lung AC, and 72% for melanoma were achieved. Using ATR-FTIR spectral data, 
60% accuracy for predicting colorectal AC, 59% for lung AC, and 47% for mela-
noma were achieved. Interestingly, combination of the two AC groups improves 
results to 85% accuracy for predicting AC and 75.4% for melanoma using the 
Raman data and to 96% accuracy for AC and 72% for melanoma using the ATR-
FTIR data [96]. In general, IR spectroscopy performs similarly to, if not better than, 
RS in these studies. It should be noted that differences in sample sizes may play a 
role, and that spontaneous RS has already been shown in other studies to success-
fully diagnose these same cancers.

In a unique study by Tatarkoič et al., blood plasma samples from 55 individuals 
were investigated using a combination of electronic circular dichroism (ECD), 
Raman optical activity (ROA), and conventional Raman and FTIR spectroscopies 
for the purpose of diagnosing colon cancer. ECD is a useful technique for analyzing 
stereochemistry; an ECD spectrum is the difference between absorption of left and 
right circularly polarized lights due to electronic transitions in the UV or visible 
regions of the spectrum [97]. Similarly, ROA measures the difference in intensity of 
Raman scattered left and right circularly polarized light which arises because of 
molecular chirality [98]. These techniques help to provide more specific informa-
tion regarding the biochemical composition of a sample in order to better increase 
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the ability to identify cancer with chemometrics. The results of LDA showed that, 
for each of the individual methods, limited discrimination between control group 
subjects and patients with colon cancer was achieved. However, when spectra from 
all methods were combined and again evaluated using LDA with LOO-CV, sensitiv-
ity and specificity reached 93% and 81%, respectively, with an overall accuracy of 
87% for discriminating the two classes of blood plasma samples [99]. Despite the 
combination of so many techniques, the performance of the model is not necessarily 
a significant improvement over those built using spontaneous RS data of various 
biological samples.

Lin et al. also used the combination of several different techniques, this time for 
diagnosing NPC. Here, a 4-modality endoscopy system comprised of white light 
imaging (WLI), AFI, diffuse reflectance spectroscopy (DRS), and RS was used for 
in vivo NPC detection. WLI can locate suspicious lesions, but has low diagnostic 
sensitivity and relies on subjective analysis. AFI, which has a higher diagnostic 
sensitivity, has the ability to monitor biochemical changes that occur in tissue based 
on the fluorescence profile of internal fluorophores which are associated with cancer 
progression. DRS can improve AFI by providing morphological and functional 
quantitative information regarding the tissue samples. RS and DRS data were col-
lected from patients with NPC and from healthy subjects under the assistance of 
AFI and WLI. When the combined DRS/RS dataset was applied to PCA-LDA, the 
algorithm achieved 98.6% sensitivity and 95.1% specificity for separating the two 
groups of tissue samples, showing the usefulness of combining multiple methods to 
improve results [100].

The combination of RS and AFI was used in multiple studies to diagnose skin 
cancer. Zakharov et al. used fluorescence analysis first to quickly scan large areas of 
tissue samples for abnormality detection; when malignancy was suspected, Raman 
spectral analysis of the tissue was performed. Quadratic discriminant analysis 
(QDA) of the data provided a diagnosis of malignant melanoma with 89% sensitiv-
ity and 87% specificity [101]. In a proceeding study, Raman and auto fluorescence 
(AF) spectroscopies were used to identify skin neoplasms as melanoma, BCC, or 
benign tumors. Here, the Raman and AF signals were combined and analyzed via 
PLS-DA with LOO-CV. Results showed 98.3% accuracy for separating malignant 
and benign tumors [102]. Similarly, Bratchenko et al. differentiated skin melanoma 
and BCC tissue samples through the combination of Raman and AF spectra 
(Fig. 8.10). When considered separately, neither set of spectra was able to exceed 
79% accuracy; however, PCA-DA analysis of a combined spectral dataset with six 
selected spectral features provided 97.3% accuracy for malignant skin detection 
[103]. Interestingly, these studies each show how AF can be used to increase the 
reliability of the RS method for diagnosing skin cancer.

While RS is oftentimes suitable for identifying cancer by itself, analysis can 
oftentimes be improved when additional methodologies are combined, as is dis-
played by the previously mentioned studies. However, it is important to note that the 
combination of multiple techniques increases the level of complexity of the meth-
odology as well as potentially increasing the time, cost, and effort required to 
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achieve a diagnosis, indicating the importance of considering the costs and the ben-
efits that accompany a more complex methodology system.

8.2.3  Modifications of Spontaneous Raman Spectroscopy

While conventional spontaneous RS has shown it is capable of diagnosing different 
cancers, some studies have advocated for the implementation of modifications of 
the technique. Variations of spontaneous RS have been proposed as effective meth-
ods to enhance diagnostic efforts. Those methods considered here are simple modi-
fications of conventional RS; inclusion of techniques such as surface-enhanced and 
tip-enhanced RS are beyond the scope of this review chapter.

Fullwood et al. employed immersion Raman spectroscopy (IRS) to investigate 
brain cancer. Because IRS utilizes a specific immersion lens, the lens can have 
direct contact with a specific liquid; in this study, the liquid used was deionized 
water which covered the tissue sample being studied. Immersion of the sample in 
liquid protects the tissue from potential photo-damage and increases the spectral 
quality by reducing contribution of stray light to the spectral background. Both 

Fig. 8.10 Experimental setup: L1, L2, L4, and L5: matching lenses, L3: focusing lens, BPF: band-
pass filter, M1 and M2: mirrors, DM1, DM2, and DM3: dichroic mirrors, and LPF1 and LPF2: long-
pass filters (Reprinted with permission from [103])
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spontaneous RS and IRS data were collected from 48 tissue samples. It was deter-
mined that a lower background contribution was observed in the IRS data as com-
pared to the RS data. A PC-LDA diagnostic algorithm was therefore built using the 
IRS data which could successfully discriminate between normal, GBM, and meta-
static brain tissue spectra. Following this, researchers effectively distinguished dif-
ferent primary sites of cancerous tissue and investigated the biochemical differences 
between primary and metastatic cancer using samples from the same patient [104].

The majority of previously mentioned manuscripts have used dispersive RS; in a 
paper published in 2017, Fourier transformation (FT)-NIR RS was used to diagnose 
oral epithelial dysplasia. FT-NIR RS excites samples using a laser, such as the 
Nd:YAG used in this study, at a wavelength of 1064 nm; excitation in the IR region 
of light helps eliminate fluorescence but provides a weaker Raman signal. To adjust 
for this, an interferometer is used to convert the Raman signal to an interferogram 
which allows the entire Raman spectrum to be collected simultaneously by the 
detector, improving the signal-to-noise ratio. The FT algorithm then converts the 
interferogram to a conventional Raman spectrum. In this study, the goal was to dif-
ferentiate normal oral mucosa, oral SCC, and dysplastic tissue samples. After spec-
tra were collected, a SVM classifier was built and results were verified using 
PCA-LDA. Through SVM, accuracies for distinguishing mild, moderate, and severe 
dysplasia from oral SCC were 100%, 44.44%, and 71.15%, respectively. PCA-LDA 
analysis did not allow for successful discrimination of the stages, either, suggesting 
the need for improvements to the classification system. However, PCA-LDA could 
still identify biochemical discrepancies between normal, oral SCC, and dysplastic 
tissue samples [105]. Interestingly, these results are not necessarily an improvement 
of those performed using spontaneous RS analysis of biological specimens.

Coherent anti-Stokes Raman scattering (CARS) imaging was used in an attempt 
to diagnose both bladder and lung cancer. Similar to spontaneous RS, CARS is 
sensitive to molecular vibrational modes. Dissimilarly, three laser beams will each 
emit photons of particular frequencies to produce a coherent optical signal, at the 
anti-Stokes frequency, with the goal of producing a much stronger signal as com-
pared to normal RS.  Weng et  al. used CARS to collect cellular-level images of 
normal and cancerous lung tissue samples. A deep convolutional neural network 
(DCNN) learning algorithm automatically differentiated normal, small cell carci-
noma, AC, and SCC lung images with 89.2% accuracy [106]. Yosef et al. collected 
both CARS and second harmonic generation (SHG) images. The CARS imaging of 
urine sediments was used to preselect urothelial cancer cells. Next, Raman HSI of 
the cells was performed (Fig. 8.11). Through HCA, it was found that the cancer 
cells displayed a decrease in glycogen and an increase in fatty acid levels as com-
pared to healthy controls. A RF classifier was built which could identify cancerous 
urothelial cancer cells based on the analysis of full cells or cytoplasm with 100% 
accuracy and based on nuclei with 90% accuracy after LOPO-CV [107]. The results 
of using CARS for diagnosing cancer are inconsistent, seeming to depend on the 
type of sample analyzed and the cancer being targeted.

Shifted-excitation Raman difference spectroscopy (SERDS) was employed as a 
label-free and non-invasive method for diagnosing oral SCC.  During SERDS 
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measurements, spectra are first collected when the wavelength is set to a particular 
number (here, 783 nm). Then, the excitation wavelength undergoes a small shift to 
a second number (here, 785 nm), and a second spectral dataset is acquired. The 
dataset collected at each wavelength is averaged and the mean spectrum using the 
first excitation wavelength is subtracted from the mean spectrum collected using the 
second, ideally removing any contribution from fluorescence emission. In this man-
ner, 72 SERDS spectra were collected, one from each of three different physiologi-
cal tissue points and three different pathological lesions from 12 different patients. 
The SERDS spectra of malignant and benign tissues were discriminated using 
PCA-LDA, which achieved 86.1% sensitivity and 94.4% specificity for diagnosing 
oral SCC [108]. Although these results indicate success, it should be noted that 
many other research groups were able to accomplish similarly effective outcomes 
with much more simple RS technology.

Polarized Raman spectroscopy (PRS) was used by Daniel et al. for observing the 
biomolecular structural changes that occur in cervical cancer tissue samples. PRS is 
observed as the result of polarized light interacting with vibrating molecules, where 
the polarization is either parallel or perpendicular to the excitation laser’s intrinsic 
polarization. Here, PRS provided information regarding the differences in orienta-
tion of biomolecules such as tyrosine, collagen, and DNA between normal and 
malignant cervical tissue samples. Depolarization ratios were analyzed by LDA 
with CV, yielding sensitivity, specificity and accuracy levels of 96%, 97.2%, and 
96.7%, respectively. This is an improvement over the 92% sensitivity, 72.2% speci-
ficity, and 80.3% accuracy achieved using only spontaneous RS [109].

Fig. 8.11 Different imaging techniques applied to normal (A–E) and high-grade cancerous (F–J) 
urothelial cells in urine sediments: (A, F) SHG images, (B, G) CARS images, (C, D, H, I) inte-
grated Raman intensity of cells in the (C, H) 2800–3050 cm−1 and (D, I) in 785–805 cm−1 regions, 
and (E, J) H&E-stained images (Reprinted with permission from [107])
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Stimulated Raman scattering (SRS) microscopy was used to reveal the infiltra-
tion of brain tumors in fresh surgical specimens collected from 22 neurosurgical 
patients. The basic mechanism of SRS is similar to spontaneous RS; however, SRS 
can enhance the signal of specific vibrational transitions due to the introduction of 
a second photon, a Stokes photon at a particular frequency, which can stimulate a 
specific molecular transition. By maintaining the pump laser beam at a constant 
frequency and scanning the Stokes laser beam, the spectral fingerprint of the sample 
can be improved. Here, results of SRS were in near-perfect agreement with results 
of H&E light microscopy. The data was interpreted using quasi-likelihood general-
ized additive models. Based on cellularity, axonal density, and protein/lipid ratios 
observed in SRS images, the classifier could successfully detect tumor infiltration 
with a sensitivity of 97.5% and specificity of 98.5%. The classifier was also able to 
distinguish between various categories of tumor infiltration including normal to 
minimal hypercellularity, infiltrating glioma, or dense glioma with high levels of 
accuracy [110]. Stimulated Raman histology (SRH) was used in a complimentary 
study for the intra-operative diagnosis of pediatric-type brain tumors. Based on RF 
analysis, 25 pediatric-type surgical specimens were correctly classified as normal 
versus lesional tissue and low-grade versus high-grade tumors all with 100% accu-
racy [111]. These results are generally better than those obtained through analysis 
of various biological samples by spontaneous RS for brain cancer diagnosis.

High-throughput (HT) RS was used for rapid screening of blood plasma samples 
collected from prostate cancer patients and healthy volunteers. In general, HT 
screening methods have the ability to automatically control and conduct millions of 
tests with a specific goal, saving time and effort for the user. Medipally et al. devel-
oped a HT-RS method which was optimized through testing a series of different 
instrumental and sample preparation parameters (Fig.  8.12). Once adjusted, the 
method was able to automatically record multiple Raman spectra from each of the 
well throughputs in a 94-well plate. To test the method, Raman spectra were 
obtained for blood plasma collected from 10 healthy volunteers and 10 prostate 
cancer patients using both 785 and 532 nm excitation. The best results were seen 
using the 785 nm excitation, with PCA-LDA yielding 96.5% sensitivity and 95% 
specificity after CV, demonstrating the ability of HT screening methods to be suc-
cessfully incorporated with RS methodology [112].

A unique study performed by Stables et al. classified brain tumor spectra using 
spontaneous RS in combination with sound and listening tests. Metastatic brain 
cancer, glioblastoma, and non-cancer tissue samples were analyzed using RS. Three 
different chemometric techniques (SVM, KNN, and LDA) with CV were evaluated 
for their potential to identify brain cancer within the tissue samples using a feature 
extraction approach. Compared to using PCA for spectral dimensionality reduction, 
the feature extraction approach increased classification accuracy of the KNN classi-
fier by 25% to 91.02% and of the SVM classifier by 26.25% to 97.01%. For LDA, 
the classification accuracy decreased from 96.54% to 95.38%. The results suggest 
feature extraction to be a more effective approach as opposed to dimensionality 
reduction for classification efficiency. Sonification was then used on the reduced 
Raman dataset of extracted features. Frequency modulation synthesis was used to 
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generate audio clips for each tissue sample based on the subset of extracted features, 
thus giving each one its own sound timbre, with similar tissue types having similar 
timbres. Listening tests were implemented with 25 participants, and based on the 
sound timbres, a mean classification accuracy of 71.1% was achieved, presenting a 
novel tool which can be used in addition to RS for clinicians to generate a diagnosis 
during endoscopic procedures [113].

Interestingly, not all modifications of spontaneous RS were completely effective 
in improving diagnostic accuracy. It should be observed that, on the other hand, 
there were some studies which did provide improvements. However, with the addi-
tion of more sophisticated methodology comes an increase in difficulty for bringing 
the technology into clinical settings. The more complicated the method, the less 
likely it is to be introduced as a new technology for universal cancer detection. 
While these aforementioned studies provide unique variations of RS, spontaneous 
RS alone has still shown great success in diagnosing cancers, suggesting the previ-
ously summarized alterations of the methodology may not ultimately be necessary 
for bringing the method to clinical settings.

Fig. 8.12 Schematic 
representation of 
HT-Raman spectroscopy 
method. (A) Top view, (B) 
bottom view (these 
schematics are developed 
using Google Sketch up 
software) (Reproduced 
from [112] with permission 
from The Royal Society of 
Chemistry)
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8.2.4  Fiber-Optic Studies

To reach the ultimate goal of in vivo diagnoses, probes have been increasingly 
incorporated into RS studies. Special instrument setups have been created in which 
a fiber-optic probe can analyze tissue in vivo and collect Raman spectral data. Fiber- 
optic probes have the advantage of being less bulky and less expensive than typical 
Raman spectrometers; probes can be used intra-operatively, preventing the need for 
additional biopsy or ex vivo studies. They provide a shorter analysis time than typi-
cal histopathological examinations of biopsied tissue do, while still objectively cap-
turing vital biochemical compositional changes that occur during disease 
progression. Probes can also allow for the identification of tumors, signaling where 
a surgeon should make excisions. When Raman spectral data collected through 
probes is analyzed using advanced statistical methods, research scientists are able to 
greatly reduce false positive biopsy results and increase the ease of and success of 
diagnosing cancers. Recent research which has incorporated probes into Raman 
spectroscopic systems, through either in vivo or ex vivo studies, for the purpose of 
diagnosing cancer are reviewed here. A schematic of a general fiber-optic probe 
setup is seen in Fig. 8.13.

Chen et al. used a low-resolution fiber-optic Raman sensing system to evaluate 
its diagnostic potential for ex vivo identification of different bladder pathologies. 
Spectra of 32 normal bladder tissue and low- and high-grade tumor bladder tissues 
were analyzed using a PCA fed ANN with CV. An overall accuracy of 93.1% was 
obtained for predicting to which class a sample belonged, introducing the possibil-
ity for further experiments to be successfully conducted in vivo [114].

Fig. 8.13 Schematic of the experimental setup showing the 785 nm laser directed into the Raman 
probe via the 10× objective lens. The probe illuminates the tissue sample and collects the scattered 
light. The elastically scattered signal is removed via a long pass filter in the filter/lens assembly 
before the light is transmitted into the Maya Pro 2000 NIR spectrometer for dispersion and storage 
(Reprinted with permission from [153])
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Three different studies show the strength of Raman probe systems for diagnosing 
brain cancer in vivo. A handheld RS probe system was used to collect in vivo spec-
tral data from normal, cancerous, and necrotic brain tissue of ten patients (Fig. 8.14). 
Using PCA and a boosted trees (BT) classification algorithm with LOO-CV, an 
accuracy of 87% for distinguishing necrosis from tumor and normal brain tissue 
was achieved [115]. Jermyn et al. used a handheld contact RS probe to differentiate 
normal brain, dense cancer, and normal brain invaded by cancer cells with 93% 
sensitivity and 91% specificity, using the BT machine learning method with CV. The 
RS probe system was also able to detect previously unidentifiable invasive brain 
cancer cells in patients with grade II through IV gliomas, showing the usefulness of 
fiber-optic probes for detecting cancerous cells which are oftentimes missed during 
normal surgery [116]. In a following study, RS data was collected intra-operatively 
from 17 patients with grades II through IV gliomas. Both BT and ANN were used 
for classifying the spectra. ANN performed better than BT when algorithms for 
distinguishing cancer from normal brain were built including light artifacts but per-
formed the same when they were built excluding light artifacts due to operating 
room sources. Specifically, when light artifacts were excluded from the spectra, 
ANN achieved 92% classification accuracy, an improvement over 90% accuracy 
achieved when light artifacts were not excluded [117].

Li and co-researchers performed several studies using a miniature Raman spec-
trometer equipped with a fiber-optic probe for the purpose of diagnosing breast 
cancer. In the earliest study, 16 breast tissue samples were analyzed and an adaptive 
weight k-local hyperplane (AKWH) algorithm was used for differentiation. Three 

Fig. 8.14 Raman spectroscopy system for intra-operative detection. (A) Photograph of the hand-
held contact probe, with the attached neuronavigation tracking unit. (B) Illustration of the probe 
being used intra-operatively, with the neuronavigation system showing the location of the tip of the 
probe (cross hairs) on the preoperative magnetic resonance images (Reprinted with permission 
from [115])
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different data processing schemes were generated based on varied splitting of the 
Raman spectral dataset; on average, the AWKH algorithm gave a 95.8% accuracy 
for classifying breast tissue as either cancerous or healthy [118]. The same samples 
were then analyzed using an adaptive net analyte signal AWKH pattern recognition 
method. Again, three different data processing mechanisms were generated based 
on different splitting of the Raman spectral dataset; the average accuracy of classi-
fication was 94.83% [119]. In their last study, new normal and malignant breast 
tissue samples were obtained, with the cancerous tissue existing at various stages of 
the disease. An adaptive local hyperplane K-nearest neighbor method was used for 
binary classification, achieving 93.2% accuracy [120]. While these successful 
results are generally comparable to those previously reviewed, they indicate the 
vital diagnostic potential of RS to be used intra-operatively.

A fiber-optic Raman system was used to obtain 68 spectra from benign and low- 
and high-grade SIL of 25 cervical tissue specimens. Multiclass PLS-DA with 
LOPO-CV showed an average sensitivity of 86.6% and specificity of 93.6% for 
classification [121]. Shaikh et al. performed two studies to explore in vivo classifica-
tion of normal and cervix tumor tissue Raman spectra. First, 314 Raman spectra 
were collected from 63 subjects; the data was subjected to PC-LDA with LOO-CV, 
and classification efficiency reached 96.7% and 100% for the normal and cancerous 
conditions, respectively [122]. In the second study, PC-LDA was used to distinguish 
between normal and cancerous tissue as well as tissue collected from the vagina of 
both healthy controls and cancer patients, in an attempt to design an internal control. 
PC-LDA could classify normal and tumor spectra with 97% efficiency. When a 
PC-LDA algorithm was built to discriminate between all controls (normal cervix, 
and vagina of tumor and normal subjects) high misclassification levels were seen, 
suggesting similarities in biochemical composition among the control samples. 
Results of classification between tumor tissue and all controls support the idea of 
using the vagina as an internal control in cervical cancer diagnostics [123].

Wood et al. evaluated biopsy samples collected during colonoscopy using probe- 
based RS. The in vitro study examined 356 colon biopsies, including from normal 
colon mucosa, hyperplastic polyps (HP), adenomatous polyps, AC, and ulcerative 
colitis specimens. PC-LDA with LOO-CV was used to make two-group and three- 
group classification systems. For the binary models, accuracies ranged between 
72.1% and 95.9% with ten-second acquisition times and between 61.5% and 95.1% 
with one-second acquisition times. For the tertiary model, normal tissue, adenomas, 
and AC tissue were identified with an overall accuracy of 74.1% for the ten-second 
acquisition time and 63.5% for the one-second acquisition time [124]. Raman fiber- 
optic measurements of colon biopsy samples, which were categorized as AC, tubu-
lar adenomas (TA), HP, and normal tissue, were analyzed from 151 patients. A 
SVM classifier was trained and validated using a LOPO-CV approach. For classify-
ing AC versus normal tissue, 75% accuracy was achieved. To improve results, three 
different methods for outlier identification were applied: One Class Classification 
with SVM, Local Outlier Factor, and Refinement of Training Data (RoTD). The 
best improvement was seen with RoTD, which increased the accuracy of AC versus 
normal tissue classification to 81%. To classify high-risk (AC and TA) and low-risk 
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(HP and normal tissue) lesions, the SVM model without outlier identification 
reached 71% accuracy; with RoTD, accuracy increased to 77% [125]. Although 
other studies performed using typical spontaneous RS were more successful, it is 
important to note the beginning successes of an in vivo approach toward diagnosing 
colorectal cancer using RS and chemometrics.

A custom-built fiber-optic endoscopic Raman probe was used to analyze 673 
ex vivo esophageal tissue samples from patients with Barrett’s esophagus (BE). BE 
is known to increase the risk of developing esophageal cancer. The tissue was evalu-
ated with PCA-fed LDA with LOPO-CV, which discriminated BE-associated high- 
grade dysplasia (HGD) and AC from low-grade dysplasia, nondysplastic BE, and 
normal squamous esophagus with 86% sensitivity and 88% specificity. AC was dif-
ferentiated from normal squamous esophagus with 94% sensitivity and 91% speci-
ficity. Finally, BE and gastric mucosa were differentiated with 96% sensitivity and 
92% specificity [126]. A beveled fiber-optic confocal Raman probe was evaluated 
for in vivo diagnosis of BE using epithelial tissue from 373 patients, obtained at 
endoscopy. Trichotomous probabilistic PLS-DA was used to discriminate columnar- 
lined epithelium, nondysplastic BE, and HGD BE. For in vivo detection of HGD 
BE, 87.0% sensitivity and 84.7% specificity were attained [127]. In another study, a 
Raman endoscopic probe measured 673 ex vivo benign and esophageal cancer spec-
imens from 62 patients. The results of using a semi-supervised LDA technique, 
where some of the data is labeled and some is left unlabeled, was compared to stan-
dard (supervised) LDA results. Identification of intestinal metaplasia versus dyspla-
sia improved from sensitivity and specificity levels of 73% and 78% with standard 
PCA-LDA to 78% and 84% for the semi-supervised method. Similarly, perfor-
mance for differentiating intestinal metaplasia and low-grade dysplasia increased 
from 44% and 66% using standard PCA-LDA to 63% and 72% sensitivity and spec-
ificity levels, respectively, with semi-supervised LDA [128]. In a different study, 
Maeda et  al. performed ex vivo experiments using a portable Raman system 
equipped with a micro-Raman probe. Spectra collected of normal and early-stage 
(stage 0) cancerous regions within six esophageal samples were analyzed by 
PC-LDA, which predicted the tissue type with 80% accuracy [129]. Interestingly, 
these studies all used either PCA-LDA or PLS-DA, showing that the number of 
samples and the method of sample probing can have a significant impact on the 
results of a study.

A fiber-optic depth-resolved NIR Raman endoscopic technique was integrated 
with diagnostic algorithms for in vivo epithelial diagnosis of gastric cancer with the 
assistance of wide-field imaging techniques. Generated diagnostic models using 
probabilistic PLS-DA with LOPO-CV identified gastric dysplasia with 81.3% sen-
sitivity and 88.3% specificity [130]. Wang et al. compared the performance of two 
different endoscope-based fiber-optic Raman probe methods. Beveled and volume 
Raman probes were used for real-time in vivo detection of gastric dysplasia. The 
beveled probe consists of a central flat fiber used for laser light delivery, surrounded 
by 18 beveled collection fibers positioned in a ring formation; the volume probe also 
consists of a central flat fiber for excitation but is surrounded by 18 flat collection 
fibers positioned in a ring formation. A total of 1050 Raman spectra of normal and 
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dysplastic sites were collected from 66 gastric patients using the beveled Raman 
probe, while 1913 Raman spectra were collected from 98 gastric patients using the 
volume Raman probe. PLS-DA with LOPO-CV yielded diagnostic accuracies of 
93.0% and 88.4% for the beveled and the volume fiber-optic probes, respectively, 
suggesting the beveled probe is better suited for further studies [131].

A miniature fiber-optic probe was used to investigate NPC in patients. Raman 
spectra were collected from nasopharynx tissue of patients with newly diagnosed 
NPC, post-irradiated nasopharynx (received radiotherapy greater than 6 months 
ago), or normal nasopharynx. A posterior probability model using PLS distin-
guished normal nasopharynx and NPC with 91% sensitivity and 95% specificity; 
the same method could distinguish post-irradiated nasopharynx versus NPC tissue 
with 77% sensitivity and 96% specificity [132]. A Raman spectrometer with a 
beam-steered fiber-optic probe was used to detect normal parotid gland and parotid 
gland tumors, including pleomorphic adenoma, Warthin’s tumor, and mucoepider-
moid carcinoma, for the purpose of identifying head and neck cancer. SVM with 
CV was used to distinguish each parotid gland tumor type against normal parotid 
glands, achieving an average accuracy of 99.43%. Three additional binary models 
were then built to distinguish the three tumor types from each other, achieving an 
average accuracy of 97.23% [133]. Here, it is observed that fiber-optic probes are 
successful for detection of head and neck cancers through both in vivo and ex vivo 
studies.

Lung cancer was studied using an endoscopic RS system. Spectra were collected 
in vivo from 280 tissue sites (including 72 HGD/malignant lesions and 208 normal/
benign lesions) of 80 patients. Using stepwise multiple regression PLS with 
LOO-CV, HGD and malignant lesions were detected with 90% sensitivity and 65% 
specificity [134].

Oral cancer has been widely studied using Raman fiber-optic systems. In one 
study, Raman spectra were collected from the oral cavity of 18 human subjects 
in vivo, and premalignant/malignant lesions were correctly distinguished from nor-
mal and benign tissue with 100% sensitivity and 77% specificity using PCA-LDA 

Fig. 8.15 (a) A photograph and (b) a schematic of the portable clinical Raman spectroscopy sys-
tem for in vivo Raman measurements (Reprinted with permission from [136])
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with LOO-CV [135]. Krishna et al. aimed to diagnose malignant and potentially 
malignant lesions of the oral cavity from 28 healthy volunteers and 171 patients. In 
vivo Raman spectra were collected from normal oral mucosa sites as well as histo-
pathological sites including oral SCC, oral sub-mucous fibrosis, and leukoplakia 
using a portable clinical RS system (Fig.  8.15). A maximum representation and 
discrimination feature coupled with SMLR provided an average accuracy of 85.25% 
for classifying all four sites based on LOPO-CV; a binary model resulted in a sensi-
tivity and specificity each of 94% for discriminating normal tissue spectra from all 
abnormal tissue spectra [136]. Research led by Sahu resulted in four studies pub-
lished on diagnosing oral malignancies. In the earliest study, in vivo Raman spectra 
were collected from sera of buccal mucosa, tongue cancer, and healthy subjects 
using a fiber-optic Raman microprobe. Through PC-LDA with LOO-CV, binary 
models showed normal and cancer serum groups could be differentiated with about 
70% classification efficiency and buccal mucosa and tongue cancer groups with 
about 68% efficiency [137]. Raman spectra were collected from oral exfoliated cells 
from healthy volunteers, healthy tobacco users, and subjects with oral cancer (from 
both tumor and healthy sites). PCA and PC-LDA showed distinct differences 
between the two healthy groups and the two cancer groups. Furthermore, PC-LDA 
with LOO-CV showed about 67% efficiency for predicting to which class the sam-
ples belonged, based on spectra-wise classification. Using a patient-wise approach, 
about 69% classification efficiency was achieved [138]. Following this, serum was 
collected from 22 oral cancer patients before and after surgery and analyzed using a 
Raman microprobe. PC-LDA followed by LOO-CV was again employed for dis-
crimination, providing 78% classification efficiency for distinguishing recurrence 
and non-recurrence groups after surgery. The same method could distinguish recur-
rence and non-recurrence groups before surgery with only about 53% efficiency 
[139]. In the last study by Sahu et al., oral exfoliated samples were analyzed from 
healthy volunteers, healthy volunteers with tobacco habits, and patients with oral 
premalignant conditions (OPC) by the Raman microprobe. In the three-group 
model, OPC spectra were classified with 77% and 70% sensitivity for PC-LDA with 
spectra-wise and patient-wise CV methods, respectively. The sensitivity improved 
to 86% (spectra-wise) and 83% (patient-wise) using a binary model [140]. 
Interestingly, each of the studies performed by Sahu et al. show the ability of fiber- 
optic probes to be used for ex vivo studies performed on samples other than tissue. 
Yasser et al. analyzed the Raman spectra from parental oral cancer cell lines and 
from two different developed radio-resistant sublines using a fiber-optic microprobe 
system. Spectral differences were observed between the three different cell lines, 
and PCA showed distinct clustering, depicting the ability of RS to predict radio- 
resistance in cells, which can be used for improved prognosis of oral cancer [141]. 
Notably, the best results for diagnosing oral cancer were achieved using the probe 
systems in vivo rather than ex vivo.

Spectra of fresh and non-processed post-prostatectomy specimens were col-
lected using a macroscopic handheld RS probe. The areas of the tissue were labeled 
with tissue type (extra-prostatic or prostatic), malignant or benign, cancer grade 
(grade groups I–V), and tissue glandular level. Neural networks were used to 
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classify the spectra in binary models. Prostate and extra-prostatic tissue were distin-
guished with 82% sensitivity and 83% specificity, whereas benign and malignant 
tissue were correctly classified with 87% sensitivity and 86% specificity. Benign 
spectra were differentiated from each of the five cancer grade groups in multiple 
binary models, achieving an average sensitivity of 81.8% and specificity of 85.2% 
[142]. Silveira Jr. et al. collected 160 spectra from 16 benign tissue and 16 prostate 
cancer tissue samples. A discrimination model was built using Euclidean distance 
based on the relative concentrations of phosphatidylcholine and water in the tissue 
samples. The two kinds of tissues were discriminated with 74% accuracy [143]. 
While these ex vivo studies are less successful than others previously reviewed, the 
results are still accomplished enough to indicate the potential for the method to be 
used intra-operatively.

A Raman instrument equipped with a fiber-optic probe was used to collect spec-
tra in vivo from 137 lesions in 76 skin cancer patients; biopsies of the lesions were 
classified as malignant melanoma (MM), non-melanoma pigmented lesion (PL), 
BCC, actinic keratosis (AK), and SCC. The collected data was analyzed by PCA, 
and LOO-logistic regression classifiers were built, the results of which were com-
pared to the histopathology of the lesions. The sensitivity and specificity for binary 
classification of MM versus PL were 100% and 100%; of SCC and BCC versus AK 
was 95% and 71%; and of AK, SCC, and BCC versus normal tissue was 90% and 
85%, respectively [144]. Zakharov et al. investigated the potential for diagnosing 
malignant tumors in both skin and lung tissue. 40 ex vivo lung tissue samples and 50 
in vivo skin tumor samples were investigated through a combination of LDA, QDA, 
and SVM. It was discovered that MM could be diagnosed with 88.9% sensitivity 
and 87.8% specificity, lung AC with 100% sensitivity and 81.5% specificity, and 
lung SCC with 90.9% sensitivity and 77.8% specificity [145]. In a different study, 
lesions suspected of being MM, BCC, or SCC were subjected to in vivo Raman 
spectral analysis through a fiber-coupled probe. Non-melanoma skin cancers were 
discriminated from normal skin through PLS-DA with accuracies of 73% (BCC) 
and 85% (SCC). MM and pigmented nevi (moles) were discriminated with 91% 
accuracy [146]. A dispersive spectrometer connected to a Raman probe collected 
data from non-melanoma (BCC and SCC), pre-cancerous (AK), and benign lesions 
and from normal tissue. Using PCA-DA and PLS-DA algorithms, non- melanoma 
and pre-cancerous lesions were differentiated from benign and normal tissue with 
accuracies of 82.8% and 91.9%, respectively [147]. Zhao et al. used PC-GDA and 
PLS, built with selected wavenumber windows, to classify 645 cases of pre-cancer-
ous, benign, and skin cancer lesions. Malignant and benign skin lesions could be 
identified in vivo with high levels of diagnostic accuracy [148]. The success for skin 
cancer detection in vivo through Raman probe systems is clear; these results are 
comparable with those from other studies, and indicate that the method should be 
strongly considered for real-time diagnosis of skin cancer in clinical settings.
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8.2.4.1  Fiber-Optic Studies with Expanded Raman Spectral Range

In several additional papers, the HWN region of spectral data collected using Raman 
probe systems was considered in addition to the FP region for real-time diagnoses 
of cancers. Specifically, a fiber-optic Raman endoscope was used to collect in vivo 
Raman spectra in the FP (800–1800 cm−1) and HWN (2800–3600 cm−1) regions 
from colorectal tissue. Raman measurements were made at five different anatomical 
locations of normal colorectal tissue and PLS-DA with LOPO-CV was used to iden-
tify the different tissue sites. An average sensitivity of 29.27% and specificity of 
83.51% were achieved, indicating low levels of inter-anatomical molecular vari-
ability between normal colorectal tissue areas. For discriminating between normal 
tissue areas and tissue affected by colorectal cancer, PLS-DA with LOPO-CV of the 
FP/HWN dataset was again performed, attaining a diagnostic accuracy of 88.8% 
[149]. In a follow-up study, researchers again simultaneously acquired in vivo FP 
and HWN region Raman spectra from colorectal tissue. Adenoma and HP were dif-
ferentiated with 90.9% sensitivity and 83.3% specificity using PLS-DA with 
LOPO-CV, which is superior to results achieved using only FP or only HWN region 
spectral data [150]. Both studies show the advantages of collecting FP/HWN spec-
tral data via Raman probes for intra-operative diagnoses of colorectal cancer. In vivo 
diagnosis of esophageal SCC at the time of clinical endoscopy was investigated by 
Wang et al. FP and HWN region Raman spectra were collected from 48 patients 
using the developed fiber-optic RS technique. Through PLS-DA with LOPO-CV, a 
sensitivity of 92.7% and specificity of 93.6% for esophageal SCC identification 
were achieved. Again, these results were found to be superior to those obtained 
using only FP or HWN region spectral data [151]. Wang et al. applied their rapid 
fiber-optic RS technique for diagnosing gastric pre-cancer during endoscopic exam-
ination. FP/HWN region Raman spectra from normal, dysplasia, and AC tissue sites 
were collected. PLS-DA with LOPO-CV reached an average sensitivity of 88.67% 
and specificity of 92.53% for detecting each of the three groups. A binary model 
could detect gastric dysplasia with 90.9% sensitivity and 95.9% specificity [152]. 
Further, the discrimination of diseased tissue and adjacent healthy tissue from 
patients who have head and neck cancer was accomplished using a wide Raman 
spectral range of 100–4300 cm−1. PCA showed effective separation between healthy 
controls and malignant tissue samples, which included SCC and tonsil SCC; the 
separation was better observed through analysis of the full spectrum then it was of 
only the FP region [153].

Lin et al. utilized fiber-optic RS to develop a method for in vivo diagnosis of 
NPC at the time of endoscopy using the FP and HWN regions. Spectral data was 
collected from 204 different tissue sites of 95 subjects; PCA-LDA with LOO-CV 
provided a diagnostic accuracy of 93.1% [154]. In another study, Lin et al. acquired 
FP and HWN region spectral data of 101 healthy and diseased tissue sites from 60 
patients with laryngeal cancer undergoing endoscopic examination. Here, PLS-DA 
with LOPO-CV could discriminate the two classes with an accuracy of 91.1% 
[155]. In both of those studies, and in general, the results were improvements over 
those achieved using just FP or HWN region spectral data.
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The combination of Raman spectroscopic analysis with optical probing systems 
provides the first crucial step toward bringing the methodology to the clinical set-
ting. By allowing for collection of spectral data in  vivo, the need for additional 
sample collection which can be time-consuming, expensive, and invasive is elimi-
nated. The spectral data can still be analyzed using a wide variety of chemometric 
techniques, as was shown, in order to develop an automatic diagnostic system which 
can be incorporated into clinical settings for quick and accurate diagnoses. Although 
not every study was an improvement upon those performed without using probes, 
each of the aforementioned projects serves to indicate that the technology is capable 
of use within clinical settings. This is an exciting first step toward introducing RS as 
a universal method for cancer detection that can be used in vivo and provide accu-
rate results in real-time.

8.3  Critical Evaluation

There has been a vast amount of research published on utilizing Raman spectros-
copy and advanced statistical analysis for the purpose of diagnosing cancer. 
Obviously, the methodology has great potential. Regardless of the biological sam-
ple analyzed, the exact variation of RS used, or the statistical technique applied—it 
is impossible to disagree that based on the incredible amount of research conducted 
and published, RS and advanced statistical analysis have a great potential for creat-
ing the first universal method for cancer detection.

While the potential of the method is obvious, it is important to note that some 
results published in the aforementioned studies may overstress their significance, 
and as such there is a need to address the risk associated with overestimating the 
capabilities of the methodology based on the reported results. A small number of 
studies do not report quantitative results, and focus more on the qualitative success 
of the methodology; while these findings are still important for indicating the ability 
of RS to detect biochemical differences between different sample types, it is neces-
sary to remember that quantitative results are necessary for supporting efforts to 
bring the methodology into clinical settings. Several studies suffered from too small 
of a dataset to be considered significant. Some research achieved sensitivity, speci-
ficity, or accuracy levels which are not necessarily an improvement of those achieved 
using current methods for diagnosing cancer. The balance between number of sam-
ples used and performance results is something that needs to be kept in mind when 
evaluating the significance of different experiments with comparison to each other. 
Ideally, the most reliable studies are those which use a statistically significant num-
ber of samples and achieve impressive performance levels. Further, the methods of 
validation for several experiments are considered “internal” validation—this means 
that the model was tested with the same spectral data that was also used to build it. 
This can lead to the potential for the model to “over-fit” itself to the data it sees, 
preventing it from being able to accurately predict spectral data from new unknown 
samples.
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On the other hand, many more studies can be considered reliable—those experi-
ments that utilized external validation are more trustworthy than those that did not. 
External validation utilizes an independent spectral dataset, which the algorithm has 
not yet seen, in order to test the performance of the model. In this regard, there are 
much lower chances of the model becoming over-fit, and the results are abundantly 
more dependable. Furthermore, while a small number of samples is useful to accom-
plish a proof-of-concept study, many more published manuscripts used a statisti-
cally significant number of samples which also obtained impressive levels of 
accuracy. Most importantly, the number of strong research studies heavily outweigh 
those that are less ideal.

Based on the extensive amount of recent evidence which suggests the potential 
for RS to diagnose cancer, not to mention the plethora of significant research pub-
lished greater than 4 years ago, one important question remains: why has this meth-
odology not yet been introduced into clinical settings as a solitary method for 
diagnosing cancer? Although the answer is complicated and multifaceted, the truth 
remains that research has already shown RS is being used intra-operatively. In fact, 
many of the previously reviewed experiments performed using fiber-optic probes 
were conducted in vivo. In 2013, Kallaway et al. summarized the clinical usage of 
Raman spectroscopy for diagnosing colorectal, esophagus, breast, and bladder dis-
eases and cancers [156]. Pence et al. detail the necessary considerations required for 
clinical implementation of RS as well as review large (considered as greater than 50 
samples) in  vivo applications of the method [157]. More recently, Santos et  al. 
greatly covered the translation of RS into clinical settings for detecting cancer, 
reviewing many studies which successfully detected cancer with high levels of 
accuracy under conditions that resemble the intended clinical environment [158].

Although research repeatedly advocates for the potential of the method, as Santos 
importantly points out, there needs to be an increase in communication as well as 
trust between spectroscopists and clinicians in order to bring this methodology 
closer to the goal of true clinical applications. Understanding the methods behind 
the technology as well as understanding the needs of clinicians are important areas 
that are still being developed. However, the stepping stones have been laid, and 
there remains a clear path forward for introducing Raman-based technology to clin-
ical oncology departments for cancer detection purposes.

Lastly, there is an essential need to consolidate the classification techniques used 
in order to unite the automatic analysis and disease detection portion of the method-
ology. A multiclass discrimination technique will need to be developed and fine- 
tuned which considers all cancers, or at least considers many groups of similar 
cancers. Based on typical expectations of the medical field, a major clinical trial 
needs to be conducted with a wide cohort of participants ranging in age, gender, 
race, ethnicity, location of residence, prescribed medications, and comorbidities. 
While research has repeatedly shown success on a smaller scale, a successful large- 
scale clinical trial is needed in order to convince all involved parties of the method’s 
capabilities. Although there is work to still be done, RS has shown every indication 
that it has the potential to be used in clinical settings in the future for universal can-
cer detection.
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8.4  Conclusion

Cancer affects millions of individuals every year and is a leading cause of death 
worldwide. Because of its association with mortality, it is vitally important to diag-
nose cancer as early on in its progression as possible. Early diagnoses provide the 
best chance for the afflicted individual to seek effective treatment options. While 
many methods exist to diagnose cancers individually, there is a strong unmet need 
to accurately, definitively, and with minimal invasiveness diagnose all cancers using 
one universal method. This chapter proposes Raman spectroscopy as a potential 
solution for this task. In countless different ways, the combination of Raman spec-
troscopy with chemometric analysis has proven its usefulness for diagnosing can-
cer. Innumerous studies have been published on over twenty different forms of 
cancer in the last few years alone. Regardless of the sample studied or which varia-
tion of the technique is used, if a probe is used to collect data or a second analytical 
technique is used to provide complimentary information, the obvious capability of 
RS for diagnosing cancers cannot be denied. The abundance of information that is 
obtained through Raman spectral data provides not only helpful material for clas-
sification purposes, but also delivers insight into the biochemical composition of 
samples, revealing both useful information as well as potential biomarkers indica-
tive of different cancers. The plethora of herein reported studies have repeatedly 
shown evidence that RS is sensitive, specific, and overall a reliable technique for 
differentiating healthy samples from diseased samples. The next step for this meth-
odology is to unite researchers to work toward conducting a large-scale clinical trial 
where a combined algorithm can be developed which can diagnose all forms of 
cancer. The results of such a trial would need to be confirmed using already estab-
lished methods for cancer diagnosis; however, if such a trial is successful, it is pos-
sible that Raman spectroscopy with advanced statistical analysis may become the 
first singular universal method for diagnosing cancer.
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Chapter 9
Combination of Spontaneous and Coherent 
Raman Scattering Approaches with Other 
Spectroscopic Modalities for Molecular 
Multi-contrast Cancer Diagnosis

Christoph Krafft and Jürgen Popp

9.1  Introduction

Raman spectroscopy is a widespread method in analytical chemistry. The principle 
is based on inelastic scattering of monochromatic light. Its advantages include that 
it probes inherent molecular vibrations without sample preparation, without extrin-
sic markers, in aqueous environment, in a non-destructive way, and at a diffraction- 
limited resolution in the submicrometer range. The spectrum of molecular vibrations 
provides a specific fingerprint of the analyte. Due to these advantages, Raman spec-
troscopic approaches draw attention as clinical tool for cancer diagnosis and other 
applications in histopathology and cytopathology. Cancer, a synonym for a malig-
nant tumor, is defined as a group of diseases involving abnormal cell growth with 
the potential to invade or spread to other parts of the body. These contrast with 
benign tumors that lack the ability to invade neighboring tissue or metastasize. 
Many types of benign tumors have the potential to become cancerous (malignant) 
through a process known as tumor progression. For this reason and other possible 
negative health effects, some benign tumors are removed by surgery. In general, 
main scope of spectroscopic modalities in the context of cancer is to distinguish 
normal from abnormal tissue and determine the malignancy of abnormal tissue. The 
implementation as imaging technique enables visualization of tumor borders which 
is particularly interesting during surgery to guide resection of cancerous mass 
of cells.
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The keywords “Raman spectroscopy and cancer” return more than 2000 hits in 
the Medline database. Although the earliest paper was published in the year 1974, 
the number of papers per year remained below 10 until 1999 and reached more than 
240 in 2018 (see Fig. 9.1).

The relatively small number of cancer-related Raman papers before the year 
2000 demonstrates that applications of Raman scattering approaches in biomedi-
cine were limited due to three main challenges for which solutions have been devel-
oped since 2000. First, Raman scattering cross sections of most biomolecules such 
as proteins and nucleic acids are weak. Examples with higher Raman cross sections 
are lipids, calcified material such as hydroxyapatite in bone and teeth, and mole-
cules with chromophores such as carotenes or heme groups. Consequently, Raman 
spectroscopy of most tissues and cells has relatively low sensitivity, and applica-
tions suffered from weak band intensities, long exposure times, and low throughput 
for screening cells or extended tissue regions. Progress in lasers, optical filters, 
microscopes, diffraction gratings, and detectors significantly improved the sensitiv-
ity of Raman instruments to a level that enabled groundbreaking research in cancer 
diagnosis. Signal enhancement effects can be utilized to further increase the sensi-
tivity. The most frequently applied signal enhancement techniques are surface 
enhanced Raman scattering (SERS) using plasmonic effects of metal nanoparticles, 
and coherent Raman scattering (CRS) using picosecond, high intensity laser pulses 
for excitation. The latter multiphoton technique enables microscopic imaging with 
megapixel resolution at real-time video frame rates as the integration time for single 
pixels is in the range of microseconds. The second challenge is that the excitation 
light can be partly absorbed by biological specimens followed by fluorescence 

Fig. 9.1 Number of papers per year in the Medline database searching for “Raman spectroscopy 
AND cancer” from 1974 to 2018
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emission. As fluorescence cross sections are several orders of magnitude larger than 
Raman scattering cross sections, the emission of even trace amounts of fluorophores 
can obscure the weaker Raman bands. Another risk is that absorption of intense 
excitation light heats up the sample with possible carbonization. These effects can 
be minimized by Raman excitation with near infrared (NIR) laser wavelengths 
between 700 and 1100 nm and detectors with enhanced collection efficiencies in 
NIR range. The third challenge is that tissues and cells constitute a complex assem-
bly of thousands of different molecules and spectral variations between normal and 
pathological tissues or cells are often weak and distributed over a broad spectral 
range. Therefore, careful sample preparation, instrument calibration, data with suf-
ficiently high signal to noise ratio, and multivariate chemometric data processing 
are required to separate confounding factors, and obtain statistically meaningful and 
robust results.

Details of the instrumentation are not given here. They can be found in other 
chapters and recent reviews [1]. Furthermore, Raman spectroscopy and advanced 
chemometrics for differentiating cancer, intraoperative brain cancer detection, and 
Raman imaging of the skin are covered in other chapters of this book. Instead, each 
modality is briefly introduced and typical examples in the context of cancer are 
described. Finally, complementary optical methods were combined with Raman 
scattering as multi-contrast modalities.

9.2  Spontaneous Raman Spectroscopy

Before Raman spectroscopic applications to cancer cells and tissues are described, 
principles of the instrumentation are briefly introduced. Popular excitation sources 
are continuous-wave lasers with emission between 488 and 1064 nm. Shorter wave-
lengths λ offer better spatial resolution and higher signal intensities as scattering 
scales with λ−4. Laser excitation below 600 nm is only appropriate for non-living, 
fixed cells. For live cell Raman studies, laser excitation below 600 nm is phototoxic 
because cytochrome proteins absorb in this range, give rise to resonance enhanced 
Raman bands for a few seconds, and irreversibly degrade afterwards. Laser excita-
tion above 600 nm is not toxic for living cells, even at long exposure times. Laser 
excitation above 600 nm is also preferred for Raman tissue studies because absorp-
tion is minimum, light penetration is maximum, and autofluorescence overlap is 
usually low. However, the low quantum efficiency of silicon-based CCD detectors 
above 1000  nm is a disadvantage of the frequently used excitation wavelength 
785  nm, in particular for the detection of the high wavenumber range above 
2700 cm−1. Raman spectrometers can be coupled with microscopes. The use of high 
numerical aperture objective lenses enables diffraction-limited spatial resolution 
and high signal collection efficiency. Raman images can be collected by moving the 
laser focus over the sample with scanning mirrors or by moving the sample with a 
motorized stage. Due to the weak Raman cross sections of biological samples, 
imaging speed is relatively slow because acquisition of thousands of spectra at an 
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exposure time in the range of 1 s per spectrum takes hours. This fact motivates to 
combine spontaneous Raman spectroscopy with faster imaging modalities which is 
the content of this chapter. Raman spectrometers can also be coupled to fiber optic 
probes for clinical applications during open surgery or minimal-invasive endoscopy. 
A key requirement for Raman probes is to integrate a bandpass filter onto the excita-
tion fiber and a longpass filter onto the detection fibers which is not trivial for probes 
with diameters below 2 mm.

9.2.1  Raman Spectroscopy of Cancer Cells

Raman spectra of single cells provide a specific fingerprint that can be used to deter-
mine cell types (e.g., normal versus cancer), cell state (e.g., normal versus apop-
totic), or stage of the cell cycle. Typical eukaryotic cells have diameter between 10 
and 20 μm with a 5 μm cell nucleus. Although Raman images can resolve subcel-
lular details that might contribute to the differentiation of cancer versus non-cancer 
cells, single average spectra are often sufficient for cell classification. An average 
spectrum can be calculated as a mean from an image, acquired with an expanded 
laser focus corresponding to the cell size or by moving the laser focus over the cell 
during signal collection. The latter option was called integrated acquisition mode 
and was found to give superior classification results for T lymphocyte Jurkat cells, 
and pancreatic cell lines Capan1 and MiaPaca2 [2].

One promising diagnostic application of Raman spectroscopy is the identifica-
tion of cancer cells that circulate in body fluids (CTCs, circulating tumor cells) such 
as blood and urine. Because these cells are extremely rare (10–100 in 1 mL blood 
containing ca. 5 × 106 leukocytes) model systems were studied that used leukocytes 
from control patients, and leukemia cells (OCI-AML3) and breast tumor cells 
(MCF-7 and BT-20) from cultures. Average spectra from Raman images of dried 
cells and spectra from cells in aqueous buffer that were trapped by the laser twee-
zers effect are shown in Fig. 9.2.

A comprehensive table with assignment of labeled bands was published [3]. 
Briefly, main bands were assigned to the peptide backbone of proteins (1658, 1252, 
960, 934 cm−1), CH2/3 deformation of aliphatic amino acids of proteins (1451, 1341, 
1319 cm−1), aromatic amino acids of proteins (1209, 1032, 1004, 854, 830, 758, 644 
and 623 cm−1), and nucleic acids (1100 and 785 cm−1). Most band positions for 
dried and hydrated cells agree within ±2  cm−1. Variations are due to structural 
changes of biomolecules after dehydration in dried cells, due to different cell 
types—e.g., evident in the band ratios 1341/1319, due to spectral contributions of 
water near 1640 cm−1, and due to different baselines, in particular between1200 and 
700 cm−1. Support vector machines classified dried cells with an accuracy of 99.7% 
[3]. This classification model was subsequently applied to identify single cells from 
an independent mixture of cells based on their Raman spectra. Correct classification 
was confirmed by fluorescence staining of the cells after the Raman measurement. 
In a follow-up study, support vector machines were applied to develop a supervised 
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classification model with spectra of 1210 trapped cells originating from three differ-
ent donors and three independent cultivation batches [4]. Distinguishing tumor cells 
from healthy cells was achieved with a sensitivity of >99.7% and a specificity of 
>99.5%. In addition, the correct cell types were predicted with an accuracy of 
approximately 92%.

Microfluidic chips were developed that combined cell trapping by two 1070 nm 
fiber lasers with Raman spectroscopy. A first version of the chip was made from 
glass wafers for Raman spectroscopy with 514 nm excitation, and an overall clas-
sification accuracy of 95% was achieved [5]. A second version was made from 
quartz wafers for Raman spectroscopy with 785 nm excitation because glass shows 
higher background upon NIR excitation. Classification by linear discriminant anal-
ysis gave sensitivity and specificity of 96 and 99%, respectively, determined by 
iterated tenfold cross validation [6]. However, throughput was low in these 
approaches using 10 s exposure time per cell and control of the microfluidic flow 
including sorting of cancer cells was difficult.

Recently, a high throughput screening Raman platform was introduced that col-
lected more than 100,000 spectra to determine the fractions of lymphocytes, mono-
cytes and neutrophils in a small white blood cell count, and more than 1000 cells to 
determine pancreas cells in leukocytes at mixing ratios 1:1, 1:10, and 1:100. The 

Fig. 9.2 Raman spectra of dried cells (left) and cells in aqueous buffer (right): leukocytes from 
donors (green), leukemia cells OCI-AML (red), breast cancer cells BT-20  (blue) and 
MCF-7 (orange) from cultures. Most band positions agree within ±2 cm−1. Variations are due to 
structural changes of biomolecules after dehydration in dried cells and due to different cell types—
e.g., evident in the band ratios 1341/1319. See text for more details
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principle was that cells from suspensions were pipetted on a substrate and sediment. 
Instead of screening the full slide, cells were located by processing light microscopy 
images, and single Raman spectra were automatically collected from each cell at 
0.5 s exposure time [7].

Raman imaging is able to resolve subcellular details. Cluster analysis can seg-
ment Raman images of cells into nucleus, lipid droplets, and cytoplasm. Two papers 
reported that two liver cancer cell lines Hep-G2 and SK-Hep1 [8] and two isogenic 
cancer cell lines derived from the MDA-MB-435 breast cancer cell line [9] were 
classified more accurately if spectra of cytoplasm were used as input instead of 
average spectra or spectra of the nucleus. It was recently shown that even morpho-
logical normal appearing cells could be used to detect high-grade squamous intraep-
ithelial (HSIL) cells by Raman spectroscopy [10]. The results demonstrated that 
Raman spectra encompass the biochemical signatures of morphologically normal 
appearing cells to discriminate between negative and HSIL cytology.

9.2.2  Raman Spectroscopy of Cancer Tissues

Raman spectroscopy to detect, diagnose, and delineate cancer tissues is a promising 
complementary tool in histopathology [11]. Whereas tissue types can be identified 
from single Raman spectra, Raman imaging is important for three reasons. First, 
Raman imaging and subsequent comparison with the golden standard, usually a 
hematoxylin and eosin (H&E) stained tissue section, is the method of choice to 
develop and validate Raman-based classification models. After validation the model 
can be applied to classify single spectra. Second, Raman images allow accurate 
determination of margins between normal and non-normal tissue, e.g., inflamma-
tion, dysplasia, tumor, or necrosis. Third, Raman images at high pixel resolution 
resolve morphological details without staining which give complementary informa-
tion to the molecular information of the spectra. To avoid long acquisition times to 
image extended regions of interest, the step or pixel size can be increased to 10 μm, 
100  μm, or even more for a coarse overview. However, such an undersampled 
Raman image harbors the risk to miss small biochemical and morphological details.

Figure 9.3 compares Raman images of dried brain tumor tissue sections and non- 
dried brain tumor tissue sections in aqueous buffer. The hyperspectral unmixing 
algorithm vertex component analysis decomposed Raman images at 2 μm step size 
into the most dissimilar spectral signatures and their abundances. Three components 
were identified in Raman images of dried tissue sections and were assigned to pro-
teins with DNA, proteins with lipids and cholesterol that correlated with cell nuclei, 
brain parenchyma, and microcrystals, respectively [12]. Even seven components 
were identified in Raman images of brain tumors and were assigned to proteins with 
DNA, proteins, proteins with carotenoids, cholesterol, cholesterol ester, phospho-
lipids, and buffer [13]. The spectral signatures of proteins with DNA component are 
presented in Fig. 9.3 and the abundance plots resolve the cell nuclei that are not 
visible in unstained tissue sections. The contrast is higher in non-dried tissue section 
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because nucleic acid bands at 1577, 1486, 1422, 1375, 1334, 1091, 829, 785, 749, 
727, 682, and 669 cm−1 are more intense in hydrated cell nuclei. Upon dehydration 
Raman intensities of DNA bands decrease and the conformation denatures which 
causes band shifts from 1091 to 1098 cm−1 and 682 to 667 cm−1. The drying process 
also denatures proteins and induces crystallization of lipids, in particular cholesterol 

Fig. 9.3 Raman spectra and images of brain tumor tissues section after drying (top) and in aque-
ous buffer (bottom). Hyperspectral unmixing algorithms decomposed the data sets into three spec-
tral signatures and their abundances: cell nuclei (blue traces, N), proteins and lipids (red traces, P), 
and cholesterol/cholesterol ester (green traces, C). Distribution of biomolecules, image contrast 
and spectral features differ between components and tissue preparation. See text for more details
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and cholesterol ester as the most hydrophobic ones. Whereas the protein bands were 
already found for single cells in Fig. 9.2, typical lipid bands are due to CH2 vibra-
tions (1439 and 1298 cm−1), C–C vibrations (1126 and 1060 cm−1), phosphate group 
of phospholipids (1085 cm−1) and choline group (877 and 716 cm−1). Cholesterol is 
characterized by numerous bands with the most intense one at 699 cm−1, and a C=O 
band at 1731 cm−1 points to the ester group in cholesterol ester with further charac-
teristic spectral features. Different protein, lipid, and cholesterol distributions are 
evident in the abundance plots. In particular, cholesterol formed clusters of micro-
crystals in dried tissue sections that were absent in hydrated tissue. The decomposed 
spectral signatures that represent DNA, proteins, cholesterol, and lipids were used 
as input to determine the tissue composition in primary brain tumors by a least- 
squares fitting algorithm [14]. It was found that the protein content was independent 
of the tumor grade, whereas the lipid content decreased and the DNA content 
increases with increasing tumor grade. Simultaneous morphological analyses 
revealed that the number of cell nuclei and the cell nuclei to cytoplasm ratios also 
increase with increasing malignancy. The fact that both chemical parameters 
obtained from analysis of Raman spectra and morphological parameters obtained 
from the label-free contrast in Raman images correlate with the tumor grade enables 
the application of coherent Raman scattering for rapid tissue screening. It will be 
presented in Sects. 9.4 and 9.5 that CARS and SRS give superior imaging speed 
compared to spontaneous Raman spectroscopy, but inferior spectral information 
because only few wavenumbers are probed. FTIR imaging is another vibrational 
spectroscopic method that was applied to grade brain tissue sections [15] and the 
results are consistent with the Raman studies mentioned above.

The identification of the primary tumor for brain metastasis by FTIR imaging 
and Raman imaging is an example how important the full spectral signature is. 
Brain metastases of primary tumors outside the brain, e.g., from lung cancer, breast 
cancer, colon cancer, prostate cancer, malignant melanoma and renal cell cancer, are 
more frequent that primary brain tumors. The diagnosis is straightforward if the 
primary tumor is known. However, in significant number of cases the primary tumor 
is not known because it is too small to cause symptoms. Even after extensive screen-
ing by standard tomographic procedures, the primary tumor remains unknown in 
10% of cases. IR and Raman spectra provide a molecular fingerprint to determine 
the primary tumor. Whereas a single classifier was used in early IR studies [16, 17] 
hierarchical classifiers were developed for another set of Raman and IR imaging 
data [18, 19]. The first classification level identified the tumor spectra, whereas the 
second level assigned the tumor spectra to the correct primary tumor. It was found 
that the spectral markers were weak and distributed over a wide spectral range 
which required the acquisition and analysis of full spectra. Glycogen in metastases 
of renal cell carcinoma (RCC) is a prominent example. As its content is extremely 
low in normal brain tissue and other brain metastases, the detection of glycogen 
which is produced by renal cells can be considered as sensitive and specific marker 
of RCC. In a similar way, molecular markers exist also for other primary tumors of 
brain metastases that are less intense, but can still be measured by Raman and IR 
spectroscopy.
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9.3  Surface Enhanced Raman Scattering

Among other factors such as concentration, polarizability, and excitation wave-
length, the Raman intensities depend on the electric field strength that analyte mol-
ecules experience upon laser excitation. Noble metal nanoparticles and 
nanostructured surfaces show plasmonic properties when irradiated with wave-
lengths near plasmonic resonance, and consequently the electric field close to the 
surface is enhanced. If the analyte molecule is adsorbed or covalently bound to the 
nanoparticle surface, Raman signal intensities can be amplified by several orders of 
magnitude. This effect is called surface enhanced Raman scattering (SERS). The 
effect is roughly divided into (1) a direct or label-free procedure and (2) an indirect 
detection procedure. In the first procedure, nanoparticles interact with the sample, 
and the SERS spectra are dominated by cell and tissue components such as proteins, 
metabolites, and nucleic acids. However, the interpretation of these SERS spectra 
might be complicated since a high number of various molecules are competing for 
the free binding sites on nanostructures and contribute to the SERS response. 
Another complication is that the SERS spectra deviate from Raman spectra making 
band assignments difficult. The indirect detection employs SERS-active labels or 
tags, i.e., rational designed metal nanoparticles coated with reporter molecules 
showing a specific SERS spectrum and, if requested, specific recognition units such 
as antigens or aptamers for targeting biomolecules. This SERS principle corre-
sponds to fluorescence labeling with advantages of multiplexing capacity due to the 
much narrower bandwidth and more bands, and higher stability without bleaching. 
SERS procedures can also be distinguished by the substrates or the noble metals. 
Many protocols have been described to prepare nanoparticles or nanostructured sur-
faces made of gold or silver. SERS-active silver nanoparticles show maximum plas-
monic resonance near 400  nm, whereas the maximum plasmonic resonance of 
SERS-active gold nanoparticles is shifted towards 500  nm. After induction of 
nanoparticles aggregation the maxima are broader and extended to the NIR range 
with the advantage of deeper light penetration in cells and tissues. A few examples 
are given here. The reader is referred to a recent review for more details [20].

9.3.1  Labeled, Non-labeled, and Functionalized SERS-Active 
Nanoparticles for Detection of Cancer Cells

A fast and simple protocol to prepare silver nanoparticles for the direct procedure 
was published by Leopold and Lendl [21]. It is based on reduction of silver nitrate 
with hydroxylamine hydrochloride at alkaline pH and at ambient temperature. Their 
aggregation can easily be induced by adding potassium chloride. After lysing cells 
by sonication reproducible SERS spectra were collected due to good interaction 
between biomolecules of cells and these nanoparticles. The SERS spectra of lysed 
cells are dominated by protein contributions as shown in Fig. 9.4 [22]. Bands at 
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2952 and 2923 are assigned to valence vibrations of CH3 groups. The fingerprint 
range in SERS spectra from 1800 to 500 cm−1 strongly deviates from the fingerprint 
range in  spontaneous Raman spectra in Figs.  9.2 and 9.3. Not only the spectra, 
but—even more importantly—also the variations between different cells were 
enhanced which enable to distinguish liver cancer cells Sk-Hep1 and HepG2, breast 
cancer cells MCF-7, and pancreas cancer cells Capan-1. Furthermore, three leuke-
mia cell lines were classified in a lab-on-a-chip approach [23] and the fraction of 
leukemia cells were determined in control monocytes [24]. As spontaneous, passive 
uptake of silver nanoparticles by cells was low for intracellular SERS spectroscopy, 
a method based on electroporation was presented for fast delivery of silver nanopar-
ticles into living cells [25]. An ultrasound-mediated method was developed as 
another approach to accelerate the transfer of silver nanoparticles into living cells 
[26]. Rapid acquisition of reproducible SERS spectra was achieved from living 
human nasopharyngeal carcinoma cell lines (C666 and CNE1) and normal nasopha-
ryngeal cell line (NP69). Tentative assignment of the Raman bands in the measured 
SERS spectra showed cancer cell specific biomolecular differences, including 

Fig. 9.4 Preprocessed 
mean SERS spectra and 
standard deviations of the 
different cell lysates mixed 
with silver nanoparticles 
and KCl. Labeled bands 
are assigned to whole cell 
contents including nuclei 
acids, proteins, and 
carbohydrates. The low 
standard deviation values 
(represented by red 
shadow) emphasize the 
high reproducibility of 
technique (adapted from 
reference [22])
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significantly lower DNA concentrations and higher protein concentrations in can-
cerous nasopharyngeal cells as compared to those of normal cells. Combined with 
PCA–LDA multivariate analysis, ultrasound-mediated cell SERS spectroscopy dif-
ferentiated the cancerous cells from the normal nasopharyngeal cells with high 
diagnostic accuracy (98.7%).

Silver nanoparticles have toxic effects for intracellular spectroscopic investiga-
tions, whereas gold is inert to oxidation and is biocompatible due to less toxicity for 
cells. An early paper reported spontaneous uptake of gold nanoparticles by cells 
[27]. However, the collected SERS spectra showed a high variability at each pixel 
in a SERS image. To target and image specific cancer markers in live cells by SERS, 
gold/silver core-shell nanoparticles were conjugated with monoclonal antibodies 
[28]. Live HEK293 cells expressing PLCγ1 were used as the optical imaging target 
in this report.

The protocol to prepare functionalized gold nanoparticle labels for the indirect 
procedure started with the controlled aggregation of 60 nm gold nanoparticles fol-
lowed by adsorption of a monolayer of a reporter molecule (dye or aromatic sub-
stance) and a protective shell to prevent further aggregation [29]. The SERS 
spectrum using these labels is simplified because only bands of the reporter dye are 
detected, and no bands of cell molecules. Gold cores with hydroxyapatite (HA) 
shells were introduced as another SERS tag [30]. HA acted both as reporter, whose 
Raman bands were enhanced by the SERS effect, and biocompatible coating. SERS 
images demonstrated that this nanocomposite bound to the outer cell membrane.

Further functionalization of nanoparticles included binding of an antibody for 
specific recognition of cell antigens such as EpCAM. The specific binding to MCF7 
breast cancer cells with EpCAM was demonstrated by Raman imaging and dark 
field microscopy, whereas no binding was observed to leukocytes and human fore-
skin fibroblast without EpCAM [29]. Injection of MCF7 cells into a microfluidic 
chip after mixing with these functionalized gold nanoparticles enabled to detect 
them in the presence of leukocytes without bound nanoparticles and polystyrene 
beads with intense Raman signals [31]. The acquisition time was set to 25 ms and 
cancer cells could be enumerated in continuous flow without trapping due to ca. 
1000fold SERS enhancement. The delay due to readout time of the CCD detector 
limited the throughput to 17 spectra per second. As a proof of concept of multiplex 
capability, three biocompatible SERS nanoparticles/nanotags actively targeted three 
intrinsic cancer biomarkers, EGFR, CD44, and TGFβRII, in a breast cancer model 
[32]. Silver-gold nanorods were functionalized with four Raman-active molecules 
and four antibodies specific to breast cancer markers, i.e., EpCAM, IGF-1 receptor 
β, CD44, and keratin 18 [33]. Silica-encapsulated SERS tags were modified with 
three different labels as well as three different antibodies to distinguish human 
breast cancer cell lines based on phenotypic markers expressed on the cell surface 
[34]. In addition, SERS tags were successfully applied for the simultaneous detec-
tion of three surface proteins on malignant B cells [35].
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9.3.2  SERS for Detection of Cancer Tissues

As described in the previous section, Raman spectroscopy amplified by SERS- 
active nanoparticles is a molecular imaging modality with ultra-high sensitivity and 
the unique ability to multiplex readouts from different molecular targets using a 
single wavelength of excitation. This approach holds exciting prospects for a range 
of applications in medicine, including identification and characterization of malig-
nancy during endoscopy and intraoperative image guidance of surgical resection. 
The approach using antibodies as specific recognition units was called immuno- 
SERS microscopy which allows rapid tissue imaging with single nanoparticle sen-
sitivity [36, 37]. Here, small glass-coated clusters were applied as the core of the 
SERS labels showing excellent SERS signals with only 0.03 s of acquisition. The 
authors used prostate tissue samples from healthy donors and SERS labels modified 
with antibodies directed against p63 and PSA. The selective abundance of p63 was 
shown for basal cells of the epithelium as well as of the PSA protein in the epithe-
lium of the prostate gland.

The topical application and quantification of a multiplexed cocktail of receptor- 
targeted SERS nanoparticles enabled rapid quantitative molecular phenotyping of 
the surface of freshly excised tissues to determine the presence of disease [38]. In 
order to mitigate the ambiguity due to nonspecific sources of contrast such as off- 
target binding or uneven delivery, a ratiometric method was employed to quantify 
the specific vs. nonspecific binding of the multiplexed nanoparticles. Validation 
experiments with human tumor cell lines, fresh human tumor xenografts in mice 
shown in Fig. 9.5, and fresh human breast specimens demonstrated that this imag-
ing approach of excised tissues agreed with flow cytometry and immunohistochem-
istry. A potential application is to image excised tissue during tumor resection 
procedures for identification of residual tumor at the margins and guidance of com-
plete tumor removal in breast-conserving surgeries in less than 15 min.

NIR-SERS nanoprobes for in vivo targeting consisted of plasmonic Au/Ag hol-
low shell assemblies on the surface of silica nanospheres and simple aromatic 
Raman labels [39]. Plasmonic extinction of NIR-SERS nanoprobes caused enhanced 
SERS signals in the NIR optical window (700–900 nm), where endogenous tissue 
absorption coefficients are more than two orders of magnitude lower than those for 
ultraviolet and visible light. The signals from NIR-SERS dots were detectable from 
8 mm deep in animal tissues. Three kinds of NIR-SERS nanoprobes, which were 
injected into live animal tissues, were detected without spectral overlap, demon-
strating their potential for in vivo multiplex detection of specific target molecules.

A dedicated small animal Raman imaging instrument was presented that enabled 
rapid, high-spatial resolution, spectroscopic imaging over a wide field of view 
(>6 cm2), with simplified animal handling [40]. Imaging of SERS nanoparticles in 
small animals demonstrated that this small animal Raman imaging system could 
detect multiplexed SERS signals in both superficial and deep tissue locations at 
least an order of magnitude faster than existing systems without compromising 
sensitivity.
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Fig. 9.5 Quantitative molecular phenotyping (QMP) imaging, with 0.5 mm spatial resolution, of 
tumor xenograft specimens stained with a three-flavor NP mixture (EGFR-NPs, HER2-NPs, and 
isotype-NPs). (A) Photograph of resected tumor xenografts and normal tissue. (B) A multiplexed 
QMP image generated by overlaying the ratiometric images of EGFR-NPs/isotype-NPs (plotted 
with a green colormap) and HER2-NPs/isotype-NPs (plotted with a red colormap). Images show-
ing the concentration ratio of (C) EGFR-NPs/isotype-NPs and (D) HER2-NPs/isotype-NPs. The 
bottom plots show the correlation between the QMP ratio of a particular tissue specimen (in C, D) 
and the corresponding fluorescence ratio (targeted NP vs. isotype NP) from flow-cytometry experi-
ments with the cell lines used to generate the various tumor xenografts. R > 0.98. Scale bars repre-
sent 2  mm (reprinted under a Creative Commons Attribution 4.0 International License from 
reference [38])
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A noncontact fiber optic Raman probe was developed to provide real-time, mul-
tiplexed functional information during routine endoscopy [41]. This device was 
designed for insertion through a clinical endoscope and has the potential to detect 
and quantify the presence of a multiplexed panel of tumor-targeting functionalized 
SERS nanoparticles. The Raman instrument was characterized with SERS particles 
on excised human tissue samples. Detecting 326-fM concentrations of SERS 
nanoparticles and unmixing 10 variations of co-localized SERS nanoparticles were 
shown. Another feature was a wide range of working distances from 1 to 10 mm 
which was necessary to accommodate for imperfect centering during endoscopy 
and the non-uniform surface topology of human tissue. Using this endoscope as a 
key part of a multiplexed detection approach could allow endoscopists to distin-
guish between normal and precancerous tissues rapidly and to identify flat lesions 
that are otherwise missed.

9.4  Coherent Anti-Stokes Raman Scattering

In coherent anti-Stokes Raman scattering (CARS), two pulses usually denoted as 
pump (p) and Stokes (S) laser with the frequencies ωp and ωS interact with the 
sample, and coherently drive molecular vibrations in case the energy difference 
between pump and Stokes laser matches a Raman transition. Another pump photon 
ωp can be subsequently scattered inelastically off this ensemble of coherently driven 
molecular vibrations generating an anti-Stokes signal ωaS. The implementation of 
CARS as microscopic contrast modality is achieved by aligning pump and Stokes 
beam collinearly and focusing these two collinear beams with a high numerical 
aperture microscope objective lens onto one spot in the sample [42]. The phase 
matching condition is fulfilled for such tight focusing and the anti-Stokes signal 
itself is generated only over a very short interaction length of the incident lasers 
with the sample giving inherent confocality. By coupling the pulses in a laser scan-
ning microscope, the directional and coherent anti-Stokes signal enables a very effi-
cient detection using a photomultiplier tube at microsecond dwell time and pushing 
the imaging of selective molecular vibrations towards video repetition rates. 
Although CARS relies on high intensity excitation laser pulses, destructive effects 
on biological materials are usually not observed because (1) the duration of laser 
pulses are short (pico- to femtosecond) at MHz repetition rates, (2) photons are just 
scattered and not absorbed, and (3) NIR lasers are used outside of major electronic 
absorption. Additionally, CARS avoids interference with disturbing autofluores-
cence because the signal emerges at the anti-Stokes frequency ωaS that is at shorter 
wavelengths than the excitation lasers. Whereas laboratory CARS instruments use 
complex laser systems that consist of a high power pump laser, a titanium-sapphire 
laser and optic parametric oscillators for frequency tuning, compact fiber lasers 
were developed for excitation that can be installed on a mobile cart for use in a clini-
cal setting [43]. As this system also included other multiphoton modalities it will be 
described in more detail in Sect. 9.6.3.
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While narrowband, single-band CRS increases the imaging speed, the spectral 
information content that is collected during the measurement is reduced compared 
to spontaneous Raman scattering because only the distribution of one specific 
Raman resonance is highlighted. In order to extract more meaningful information 
about the chemical composition of complex specimens, spectrally broadband 
sources for the simultaneous detection of the CRS spectrum called multiplex CRS 
or rapidly tunable narrow band sources for subsequent acquisition of images at dif-
ferent spectral positions called hyperspectral CRS can be used. Detecting multiplex 
CRS spectra severely slows down the imaging process since read out times of sensi-
tive CCD detectors in conventional spectroscopy are rather long. More details about 
laser concepts for multiplex CRS can be found elsewhere [44]. A review summa-
rized progress of biological and clinical applications of CARS and stimulated 
Raman scattering (SRS, see Sect. 9.5) covering applications such as lipid droplet 
research, single cell analysis, tissue imaging and multiphoton histopathology of ath-
erosclerosis, myelin sheaths, skin, hair, pharmaceutics, and cancer and surgical 
margin detection [45]. The history of CRS microscopy, the pros and cons of differ-
ent modalities, and the current challenges and possible future directions of the field 
of clinical diagnostics have recently been reviewed [46].

9.4.1  CARS Microscopy of Cancer Cells

The label-free investigation of intracellular lipid droplet genesis, distribution, and 
motility has been for a long time at the core of CARS microscopy. Intracellular lipid 
accumulations occur in form of esterified fatty acids in lipid droplets. Because fatty 
acids have long hydrocarbon chains and are densely packed in cellular lipid droplets 
the high local concentration is an ideal target for CARS microscopy.

Unsupervised multivariate analysis of CARS data sets was used to visualize sub-
cellular organelles [47]. In addition, a supervised learning algorithm based on the 
“random forest” ensemble learning method as a classifier was trained with CARS 
spectra using immunofluorescence images as a reference. The supervised classifier 
was then used to automatically identify lipid droplets, nucleus, nucleoli, and endo-
plasmic reticulum in data sets that are not used for training. These four subcellular 
components were simultaneously and label-free monitored instead of using several 
fluorescent labels which opens new avenues for investigation of normal and can-
cer cells.

CARS microscopy was employed to examine the lipid content of 100 CTCs iso-
lated from the peripheral blood of eight metastatic prostate cancer patients, and to 
evaluate lipid uptake and mobilization kinetics of a metastatic human prostate can-
cer cell line [48]. On average, CARS signal intensity of prostate CTCs was seven-
fold higher than that of leukocytes (see Fig.  9.6). When incubated with human 
plasma, C4-2 metastatic human prostate cancer cells exhibited rapid lipid uptake 
kinetics and slow lipid mobilization kinetics. It was concluded that intracellular 

9 Combination of Spontaneous and Coherent Raman Scattering Approaches…



340

lipids could serve as a biomarker for prostate CTCs that could be sensitively detected 
with CARS microscopy in a label-free manner.

Multiplex CARS via supercontinuum excitation was used to study ovarian can-
cer cells in response to treatment with lysophosphatidic acid (LPA) [49]. Analysis 
of multiplex CARS images distinguished between molecular components, such as 
lipids and proteins. The CARS analysis shows a distinct decrease in protein and 
increase in lipid composition on the surface of LPA-treated cells.

9.4.2  CARS Microscopy of Cancer Tissues

A broad interest exists in pathological diagnostics to develop image analysis tools. 
To date, the contrast in digital pathology is based on H&E-stained tissue sections 
and digital slide readers. CARS microscopy is a complementary modality to pro-
vide molecular contrast in unstained tissue sections. CARS imaging within the CH 
stretching region enables detection of single cells and cell nuclei which allows for 
histopathological grading of tissue. Relevant information such as nucleus-to- 
cytoplasm ratio, cell density, nucleus size and shape was extracted from CARS 
images by innovative image processing procedures [50]. In this contribution CARS 
image contrast was interpreted by direct comparison with Raman imaging. An 
approach was presented to automatically extract relevant texture features to analyze 
and predict healthy and tumor regions in CARS images [51]. The approach was 
transferred to CARS images from basal cell carcinoma skin samples and 

Fig. 9.6 Detection of lipid-rich prostate circulating tumor cells (CTCs) with CARS microscopy. 
Upper row: Prostate CTC exhibited strong CARS signal arising from intracellular lipid accumula-
tion. Lower row: Leukocytes exhibited weak CARS signal arising mainly from cellular membrane 
(reprinted under a Creative Commons Attribution 4.0 International License from reference [48])
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differentiated cancer tissue from normal tissue using a perceptron algorithm for 
supervised learning of binary classifiers.

To address the lipid content of different brain tumors (glioblastoma, metastases 
of melanoma and breast cancer) which were induced in an orthotopic mouse model, 
cryosections were investigated by CARS imaging tuned to probe CH molecular 
vibrations [52]. All tumors were characterized by a lower CARS signal intensity 
than the normal parenchyma. On this basis, tumor borders and infiltrations could be 
identified with cellular resolution. Quantitative analysis revealed that the tumor- 
related reduction of CARS signal intensity was more pronounced in glioblastoma 
than in metastases. Raman spectroscopy enabled relating the CARS intensity varia-
tion to the decline of total lipid content in tumors.

Development and application of a knowledge-based CARS microscopy system 
were reported for label-free imaging, pattern recognition, and classification of cells 
and tissue structures for differentiating lung cancer from non-neoplastic lung tissues 
and identifying lung cancer subtypes [53]. The knowledge-based CARS system 
using a machine learning approach separated normal, non-neoplastic, and subtypes 
of lung cancer tissues based on extracted quantitative features describing fibrils and 
cell morphology. Lung cancer was distinguished from normal and non-neoplastic 
lung tissue with 91% sensitivity and 92% specificity, and small cell carcinomas 
from non-small cell carcinomas with 100% sensitivity and specificity. CARS imag-
ing was combined with deep learning for automated differential diagnosis of lung 
cancer [54]. Conventional means of analyzing CARS images requires extensive 
image processing, feature engineering, and human intervention. This study demon-
strated how a deep learning algorithm was applied to automatically differentiate 
normal and cancerous lung tissue CARS images. The features learned by pre-trained 
deep neural networks were leveraged and the model was re-trained using CARS 
images as the input. 89.2% accuracy was achieved in classifying normal, small cell 
carcinoma, adenocarcinoma, and squamous cell carcinoma lung images.

9.5  Stimulated Raman Scattering

Besides CARS, coherent Raman signal enhancement can also be achieved by stimu-
lated Raman scattering (SRS). In SRS the vibrational transition is driven coherently 
by two high intensity excitation pulses with a frequency difference that matches a 
vibrational transition of interest. This results in a signal gain on the Stokes beam and 
a signal loss on the pump beam. The signal is detected through the modulation of 
one of the excitation beams and lock-in detection [55, 56]. Either a signal gain on 
the probe beam is measured or a signal loss on the pump beam. Since the laser 
power is in the order of several 10 mW, custom large area photodiodes are used for 
detection instead of PMTs. SRS microscopy overcomes some problems of CARS 
microscopy. On the one hand, the SRS signal is linearly dependent on excitation 
intensity and the concentration, whereas the CARS signal scales quadratic with the 
pump laser intensity and is proportional to the square of the concentration. On the 
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other hand, there is no non-resonant background, which commonly obscures the 
Raman-resonant CARS signals from many vibrations of the Raman fingerprint 
region and limits the contrast. Spectroscopically, the SRS spectrum is identical to 
that of spontaneous Raman, whereas inference between resonant and non-resonant 
background results in spectral distortions such that the CARS spectrum is different 
from a Raman spectrum.

9.5.1  SRS Microscopy of Cells

Zhang et al. showed that it is possible to investigate the low-wavenumber region 
with SRS microscopy, exploiting a much larger number of Raman-active vibrations 
[57]. Single polytene chromosomes were imaged in salivary glands of drosophila 
melanogaster and two mammalian cells, i.e., HEK-293, a human embryonic kid-
ney  cell line, and MCF-7, a breast cancer carcinoma cell line, during their cell 
cycles. By plotting the intensities of the 785 cm−1 and the 1090 cm−1 vibrations, the 
distribution of polytene DNA in the nucleus was shown, also proteins at the 
1655 cm−1 amide I vibration, and lipids at 2845 cm−1 CH2 stretch vibration.

SRS allows the targeted observation of specific molecules such as metabolites, 
lipids, and amino acids in combination with specific tags. These Raman tags offer 
higher multiplexing ability, smaller size, and less photobleaching than fluorescent 
labels that harbors the risk to change the functionality of the target molecules or 
affect the cells. This approach is called bioorthogonal imaging [58]. One of the first 
application was to track alkyne-bearing drugs in mouse tissues and visualize de 
novo synthesis of DNA, RNA, proteins, phospholipids, and triglycerides through 
metabolic incorporation of alkyne-tagged small precursors [59]. A class of polyyne- 
based materials was engineered for optical supermultiplexing. 20 distinct Raman 
frequencies between 2000 and 2300 cm−1, called carbon rainbow (Carbow), were 
achieved through rational engineering of conjugation length, bond-selective isotope 
doping, and end-capping substitution of polyynes [60]. With further probe function-
alization, ten-color organelle imaging was demonstrated in individual living cells 
with high specificity, sensitivity, and photostability combining five organelle tar-
geted Carbow-based Raman probes and five fluorescent reporters. This approach 
did not require any unmixing or color compensation in image processing.

Another panel of Raman tags utilized stable isotope labeling and the addition of 
a single molecular group with a large Raman scattering cross section such as nitrile 
or alkyne groups [61]. Taking advantage of electronic preresonance SRS (epr-SRS) 
enabled to get strong SRS signals with very low background, 1000 higher sensitiv-
ity than conventional SRS approaching sensitivities of confocal fluorescence. In 
epr-SRS excitation, the energy of the pump laser is chosen to be close to but slightly 
lower than that of molecular absorption energy. The resulting epr-SRS microscopy 
has demonstrated detection sensitivity down to nano-molar concentration with 
retained narrowband vibrational contrast for imaging and essentially no electronic 
background and little photobleaching. A palette of triple-bond-conjugated NIR dyes 
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was created that each displays a single peak in the cell-silent Raman spectral win-
dow between 2000 and 2300  cm−1. When combined with available fluorescent 
probes, this palette provides 24 resolvable colors, called Manhattan Raman scatter-
ing (MARS), with the potential for further expansion. These dyes were easily sepa-
rable using epr-SRS microscopy, and they were used for sixteen-color imaging of 
dye-labeled cells. Eight-color imaging was demonstrated in hippocampal neurons 
as well as live cell imaging in mammalian and bacterial cells.

9.5.2  SRS Microscopy of Tissues

Microscopic inspection of H&E-stained tissue sections has been the gold standard 
for histopathological diagnosis of a wide range of diseases. SRS microscopy was 
developed as an alternative, multicolored way to visualize tissue in real-time. 
Multicolor images originating from CH2 stretching vibrations at 2845 cm−1 and CH3 
vibrations at 2940 cm−1 of lipids and proteins, as well as vibrationally off-resonant 
two-photon absorption of hemoglobin, were obtained with subcellular resolution 
from fresh tissue [62]. Figure  9.7 displays SRS images of a live cell and fresh 
ex vivo brain tissue. A pseudo-color scheme could be chosen to mimic the appear-
ance of an H&E-stained micrograph. Such stain-free histopathological images from 
mouse brain tissue regions, various mouse organs and mouse models of glioma and 
metastatic breast cancer showed resolutions similar to those obtained by conven-
tional techniques, but do not require tissue fixation, sectioning or staining of the 
tissue analyzed. High-speed molecular spectral imaging of tissue by 30 frames per 
second SRS with frame by frame wavelength tunability was described [63]. Various 
SRS imaging modalities were presented such as two-dimensional spectral imaging 
of rat liver, two-color three-dimensional imaging of a vessel in rat liver, spectral 
imaging of several sections of intestinal villi in mouse, and in vivo spectral imaging 
of mouse ear skin. Squamous cell carcinoma (SCC) and healthy skin tissues were 
studied ex vivo using SRS microscopy at 2945 cm−1 [64]. The SRS contrast was 
compared with the contrast obtained in reflectance confocal microscopy and stan-
dard histology. The morphological features of SCC tumor seen in the SRS images 
correlated well with the diagnostic features identified by histological examination. 
Additionally, SRS exhibited enhanced cellular contrast in comparison to that seen 
in confocal microscopy.

The in vivo identification of surgical margins has been a long-lasting promise 
from the Raman community. SRS microscopy was shown to rapidly assess tumor 
margins and cell infiltration of human glioblastoma during a brain surgery [65]. The 
results obtained with SRS microscopy correlated well with the gold standard of 
H&E-stained tissue sections for the detection of glioma infiltration. SRS was per-
formed on the CH2 stretching vibration at 2835 cm−1, representing the lipid fraction, 
and the CH3 stretching vibration at 2930 cm−1, representing the protein fraction of 
the sample. The comparison of the bright field images and SRS images of the infil-
trated regions exemplary shows the strength of the label-free approach. A follow-up 
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publication detected human brain tumor infiltration with quantitative SRS micros-
copy [66]. SRS revealed quantifiable alterations in tissue cellularity, axonal density, 
and protein/lipid ratio, and a classifier was trained based on these features in SRS 
images to detect tumor infiltration in 22 neurosurgical patients with 97.5% sensitiv-
ity and 98.5% specificity.

Tumor metabolism supports the abnormal survival and growth of malignant cells 
by providing energy, biomolecular precursors, and reducing equivalents. 

Fig. 9.7 Stain-free histologic imaging with multicolor coherent Raman imaging. (a) Vibrational 
spectra of the major constituents of tissue: lipids, protein, and water. Arrows indicate Raman shifts 
at which imaging is performed. (b–d) stimulated Raman scattering (SRS) images of a live C2C12 
mammalian cell acquired at the CH2-stretching vibration at 2845  cm−1 (b) and CH3-stretching 
vibration at 2940 cm−1 (c). Multicolor image (d) generated from images (b, c) with the green chan-
nel (CH2 image) showing the cell-body and the blue channel (thresholded CH3-CH2 difference 
image) highlighting the nuclear morphology including a bright nucleolus. (e–h) SRS images of 
fresh ex vivo brain tissue acquired at CH2-stretching vibration at 2845 cm−1 (e), CH3-stretching 
vibration at 2940 cm−1 (f), and vibrationally off-resonant showing two-color two-photon absorp-
tion of hemoglobin at a sum frequency of 23,700 cm−1 (g). Multicolor image (h) generated from 
images (e–g) with the green channel (CH2 image) highlighting cytoplasm and myelin sheaths, blue 
channel (thresholded CH3-CH2 difference image) showing the nuclear morphology, and the red 
channel (hemoglobin image) highlighting the red blood cells. (i) Hematoxylin & eosin (H&E)-
stained micrograph from the same region in the brain. (j) Same multicolor image as (h) with a 
different pseudo-color scheme, chosen to mimic the appearance of an H&E-stained micrograph, 
illustrates the similar image content and appearance of stain-free images and H&E-stained sec-
tions. Scale bar, 25 μm (reprinted with permission from reference [62])
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Bioorthogonal chemical imaging, introduced in Sect. 9.5.1, was applied to visualize 
newly synthesized biomolecules in tumors after in vivo delivery of a glucose ana-
logue labeled with a small alkyne moiety into tumor-bearing mice [67]. Cancer cells 
with differing metabolic activities could be distinguished. Heterogeneous uptake 
patterns were observed with clear cell–cell variations in tumor xenograft tissues, 
neuronal culture, and mouse brain tissues.

9.6  Multimodal Approaches with Spontaneous and Coherent 
Raman Scattering

A recent review about multimodal spectroscopic imaging of tissue covered besides 
spontaneous Raman and coherent Raman scattering (CARS, SRS) also optical 
coherence tomography (OCT), fluorescence lifetime imaging (FLIM), photoacous-
tic imaging (PAI), confocal/reflectance laser scanning microscopy (CLSM/RLSM) 
and the multiphoton microscopies two-photon excited fluorescence (TPEF) and sec-
ond harmonic generation (SHG) [68]. Here, we focus on Raman-based spectrosco-
pies to detect cancer cells and tissues. Each modality offers advantages and 
disadvantages with respect to speed, spatial resolution, and penetration depth. 
Furthermore, they probe different properties of cells and tissues. Combination of 
multiple modalities is an effort to improve the performance of optical spectroscopy 
methods for cancer detection in a complementary manner.

9.6.1  Multimodal Approaches Involving Spontaneous 
Raman Spectroscopy

Multimodal instruments combine the biochemical specificity of Raman spectros-
copy with the rapid screening capabilities of other label-free high resolution optical 
imaging like autofluorescence, FLIM, OCT, or multiphoton microscopy. 
Combinations are beneficial for spontaneous Raman spectroscopy to guide point 
measurements or small area scans of suspicious lesions in overview images.

9.6.1.1  Raman and Fluorescence

An integrated optical technique was demonstrated for basal cell carcinoma of skin 
based on autofluorescence imaging and Raman scattering. Automated segmentation 
of autofluorescence images was used to select and prioritize sparse sampling points 
for Raman spectroscopy. Raster scanning Raman microspectroscopy of tissue sec-
tions is slow with typically 10,000 spectra per mm2 which is equivalent to 5 h per 
mm2. The selective sampling approach reduced the number of Raman spectra to 20 
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spectra per mm2 which is equivalent to an acquisition time of 15 min for 25 mm2.
This automated sampling strategy yielded classification models with 100% sensitiv-
ity and 92% specificity, and allowed objective diagnosis faster than frozen section 
histopathology and faster than IR or Raman imaging alone [69]. The approach was 
transferred to the diagnosis of mammary ductal carcinoma [70] and basal cell carci-
noma in skin tissue samples [71]. Typical examples of multimodal spectral histopa-
thology diagnosis of ductal carcinoma in breast tissue samples are shown in Fig. 9.8. 
The number of Raman spectra measured for every sample was included in the seg-
mented autofluorescence images and ranged from 245 to 520.

A fiber optic Raman endoscopy system combined Raman spectroscopy at 785 nm 
excitation under multimodal guidance with white light reflectance imaging, narrow 
band imaging, and autofluorescence imaging [72]. The multimodal approach was 
evaluated for real-time in vivo diagnosis of cancer in the esophagus during clinical 
endoscopic examinations. A similar system combined fluorescence, reflectance, and 
Raman spectroscopy to detect features of vulnerable atherosclerotic plaques and 
breast cancer in vivo and ex vivo [73]. Another group designed and characterized an 
instrument combining Raman, fluorescence, and reflectance spectroscopic modali-
ties for skin cancer applications [74]. Preliminary clinical data indicated the 

Fig. 9.8 Typical examples of multimodal spectral histopathology diagnosis of ductal carcinoma in 
breast tissue samples. The number of Raman spectra measured for every sample is included in the 
segmented autofluorescence (AF) images. Histopathology images for adjacent sections are 
included for comparison (reprinted under a Creative Commons Attribution 4.0 International 
License from reference [70])
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system’s ability to measure physiological quantities such as relative collagen and 
nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume 
fraction, and mean vessel diameter. A study determined whether adding Raman 
spectroscopy to white light bronchoscopy and autofluorescence bronchoscopy has 
the potential to improve the specificity to detect preneoplastic lesions of the bron-
chial tree [75]. For this purpose, a Raman system was developed to collect real- 
time, in vivo lung spectra with a fiber optic catheter passed down the instrument 
channel of a bronchoscope.

Fluorescence lifetime was developed as a complementary technique which 
detects the fluorescence temporal decay. In addition to the respective excitation and 
emission spectra, fluorophores can be characterized by their lifetimes. Fluorescence 
lifetime measurements offer several advantages compared to fluorescence that 
include invariance to intensity variations of the incoming light, no dependence on 
the transmission efficiency of the detection system, independence of the local con-
centration of the fluorophore, insensitivity to moderate levels of photobleaching. 
The most popular variant uses pulsed laser excitation with MHz repetition rates and 
time correlated single photon counting [76]. Another variant uses blue lasers, dielec-
tric filters, delay lines, and micro-channel plate detector for sequential registration 
of four fluorescence lifetimes [77]. As the acquisition speed is fast, fluorescence 
lifetime images (FLIm) can be registered with scanning mirrors in a microscope or 
upon moving a fiber optic probe with a motorized arm. A dual modal fiber optic 
probe was designed for both FLIM and Raman spectroscopy, and its in vivo endo-
scopic application was demonstrated for rat brain tissue under a cranial window 
[78]. In a follow-up paper, dual modal images were simultaneously acquired from 
two human coronary specimens [79]. Raman images identified the components tri-
glycerides and cholesterol, carotenoids, and calcium salts. Three channels in life-
time images were assigned to collagen/elastin, elastin/lipids, and extracellular 
lipids. The results were correlated with the tissue sections along the entire length of 
the specimens that were stained with H&E, CD68, CD45, and elastic trichrome.

9.6.1.2  Raman and OCT

OCT produces images of comparable large areas across the sample in the range of 
several millimeters with real-time speed and micrometer spatial resolution. The lim-
iting factor of OCT is its low biochemical specificity as the images map the differ-
ences in reflectivity of tissue morphology. Raman spectroscopy can provide 
complementary specificity. An instrument was developed to combine Raman spec-
troscopy at 785 nm excitation and 1310 nm OCT system backbone for biochemical 
and morphological characterization of breast cancer [80] and skin cancer [81]. 
Advances were made to further integrate the two modalities by using a common 
detector [82]. This was demonstrated with a different OCT source centered at 
855 nm for dissected calvaria of a mouse ex vivo and on human skin in vivo. A por-
table Raman-OCT was introduced for clinical use with an amendable probe to 
investigate skin cancers [83]. The image acquisition time for OCT was improved 
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from one frame per second to eight frames per second allowing for real-time imag-
ing. These instruments enabled sequential acquisition of co-registered OCT and 
Raman data sets.

Ashok et al. reported an optical approach using Raman spectroscopy and OCT in 
tandem to discriminate between colonic adenocarcinoma and normal colon [84]. 
This study collected exclusively ex vivo data without spatial co-registration. The 
chemical information derived from Raman spectroscopy was combined with texture 
parameters extracted from OCT images. The classifier performed superior in terms 
of sensitivity and specificity (increase to 94%) using information from both modali-
ties in comparison to using information from only one.

Another OCT-Raman instrument improved the depth sensitivity of Raman spec-
troscopy combining a time-domain OCT system with a confocal Raman setup [85]. 
The co-alignment of both modalities is obtained via the sample arm of the OCT 
system. The acquisition rate for OCT with a 1310 nm excitation source was speci-
fied as 125 A-scans per frame at 8 frames/s. Raman spectra at 785 nm excitation in 
tissue were collected at 10 s integration time. Raman spectra of resected goat muco-
sal tissue could be obtained from a depth of 900 μm corresponding well with the 
penetration depth of the OCT subsystem.

9.6.1.3  Raman and Multiphoton Microscopy

Increasing interest in the role of lipids in cancer cell proliferation and resistance to 
drug therapies motivated the need to develop better tools for cellular lipid analysis. 
Quantification of lipids in cells is typically done by destructive chromatography 
protocols that do not provide spatial information on lipid distribution and prevent 
dynamic live cell studies. Raman-based methods allow the analysis of lipid content 
in live cells. Raman spectroscopy on single cellular lipid droplets and least-squares 
fitting of pure fatty acid spectra was used to determine the composition of individual 
lipid droplets in cells after treatment with different ratios of oleic and palmitic acid 
[86]. The results of the Raman spectroscopy-based single lipid droplet analysis 
were validated with results obtained by gas chromatography analysis of millions of 
cells. The approach was found to accurately predict the relative amount of a specific 
fatty acid in the lipid droplet. This approach was expanded to investigate the lipid 
composition in single cellular peroxisomes. Cellular peroxisomes labeled with the 
green fluorescent protein were localized based on TPEF imaging, and successive 
Raman spectroscopy of peroxisomes was performed. In some cases, peroxisomes 
produced a detectable CARS signal, and the peroxisomal Raman spectra exhibited 
an oleic acid-like signature. Combining micro-Raman spectroscopy with CARS 
imaging, the process of hormone-mediated lipogenesis was studied [87]. Lipid pro-
files for breast (T47D, MDA-MB-231) and prostate (LNCaP, PC3) cancer cells 
were generated upon exposure to medroxyprogesterone acetate (MPA) and syn-
thetic androgen R1881. Hormone-treated cancer cells T47D and LNCaP showed an 
increased number and size of intracellular lipid droplets and higher degree of satura-
tion than untreated cells. MDA-MB-231 and PC3 cancer cells showed no significant 
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changes upon treatment. Principal component analysis with linear discriminant 
analysis of the Raman spectra was able to differentiate between cancer cells that 
were treated with MPA, R1881, and untreated. In summary, both studies used 
Raman spectroscopy to analyze lipids on the molecular level (e.g., level of unsatura-
tion), whereas multiphoton microscopic images provided morphological informa-
tion about number, size, and location of lipid droplets.

Towards noninvasive diagnosis of urothelial carcinoma, CARS imaging of urine 
sediments was used for fast preselection of urothelial cells, where high-grade uro-
thelial cancer cells are characterized by a large nucleus-to-cytoplasm ratio [88]. 
Then, Raman spectral images were collected from urothelial cells. A supervised 
classifier was implemented to automatically differentiate normal and cancerous uro-
thelial cells with 100% accuracy. Raman marker bands directly showed decreased 
content of glycogen and increased content of fatty acids in cancer cells as compared 
to controls.

9.6.2  Multimodal SERS Labels

In addition to the multiplexing capabilities of SERS tags achieved by using various 
Raman reporter molecules as shown in Sect. 9.3, multimodal approaches, i.e., 
employing two or more readout modalities gained much attention by researchers for 
cell and tissue imaging.

To combine the advantages of fluorescence and SERS, dual modal nanoprobes 
were created by coating gold nanoparticles with a Raman reporter as well as with a 
fluorescence dye separated by a silica spacer to prevent fluorescence quenching 
[89]. Fluorescence microscopy is a well-known imaging technique that shows spe-
cific protein distributions within cells. However, most currently available fluores-
cent organic dyes have relatively weak emission intensities and are rapidly 
photo-bleached. SERS detection is a powerful technique that allows ultrasensitive 
chemical or biochemical analysis through unlimited multiplexing and single mole-
cule sensitivity. Investigations to target and image the local distribution of specific 
cancer markers (CD24 and CD44) on living breast cancer cells illustrated the poten-
tial of antibody-modified dual tags. A critical point is that the report used both fluo-
rescence and SERS to localize the tags in cells, which gave the same information. 
In order to provide supplementary information or functionality, the research should 
point toward the innovative combination of SERS tags with modalities that are not 
achieved via SERS.

Such a complementary functionality was implemented by employing magnetic 
SERS labels. Here, Fe3O4 cores were modified with SERS-active gold nanoparti-
cles, and the immobilized antibodies on the surface of those hybrid structures 
allowed specific binding to cancer cells [90]. Thus, the magnetic SERS tags could 
be used to capture cells and to separate them from a complex matrix at a very low 
abundance (ca. 10 cells per ml). This assay had the advantages of (1) high sensitivity 
because the SERS technique itself enabled the detection of very low concentration 
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analytes, (2) high specificity because the enhanced SERS signal arose in sandwich 
configuration, which was formed in specific antigen–antibody interaction events, 
and (3) high efficiency because the magnetic SERS tags concentrated the captured 
cells and separated them from the complex detection system without repetitive 
washing steps. Alternatively, circulating tumor cells (CTCs) could be detected by 
using two different labels, magnetic beads to separate or enrich the cells, and SERS 
tags to detect CTCs with high specificity and sensitivity [91]. The specificity was 
achieved by aptamers as recognition elements, and rare target cancer cells could 
efficiently be captured from buffer and whole blood sample with capture efficiency 
of 73% and 55%, respectively. As a novel strategy SERS nanoprobes were fabri-
cated without expensive and potentially toxic organic dyes [92]. Multifunctional 
conducting polymer (CP) materials served as both biocompatible surface coatings 
and NIR-active reporters on the surface of gold nanorods (GNRs). GNR-CPs 
showed extraordinary photothermal transduction efficiency, indicating the potential 
for cancer therapy as theranostic agents. A combined photoacoustic/Raman 
approach was proposed using GNRs as a passively targeted molecular imaging 
agent [93]. Maximum photoacoustic signal was observed within 3 h after injection 
for imaging ovarian cancer cell lines in living mice and increased signal persisted 
for at least two days post-administration. The same molecular imaging agent could 
be used to clearly visualize the margin between tumor and normal tissue and tumor 
debulking via SERS imaging. Plasmonic nanoprobes with five modalities, i.e., 
SERS, magnetic resonance imaging (MRI), computed tomography (CT), two- 
photon luminescence (TPL), and photothermal therapy (PTT) were developed [94]. 
The gold nanostars were modified with the Raman reporter for the SERS readout 
and with Gd3+ as MRI contrast agent. In first experiments using BT549 cancer cells 
for their investigations, the authors demonstrated the potential as platform for pre- 
operative tumor scanning (MRI and CT), intraoperative tumor detection (SERS and 
TPL), and PTT as post-operative treatment.

A dual modal fluorescence-Raman endomicroscopic system (FRES) was devel-
oped which used fluorescence and SERS nanoprobes (F-SERS-dots) [95]. Real- 
time, in vivo, and multiple target detection of a specific cancer was successful, based 
on the fast imaging capability of fluorescence signals and the multiplex capability 
of simultaneously detected SERS signals using an optical fiber bundle for intraop-
erative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and 
epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a 
mouse orthotopic model were detected in a multiplexed way as shown in Fig. 9.9. A 
follow-up paper targeted EGFR and vascular endothelial growth factor with anti-
body-conjugated fluorescence and SERS nanoprobes for cancer diagnosis in an 
orthotopically induced colorectal cancer xenograft model [96].
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Fig. 9.9 Each tumor site (i) was not treated with any antibody, (ii) pre-treated with the anti-HER2 
antibody, (iii) pre-treated with the anti-EGFR antibody, or (iv) pre-treated with both antibodies for 
blocking specific binding. Then, they were treated with the F-SERS dots (anti-HER2-FAF610- 
SERSRITC dots and anti-EGFR-FAF610-SERSFITC dots) for the FRES imaging. (a) A photo-
graph of the tumor-bearing mouse with the receptor expression status as shown besides the image. 
The real-time fluorescence images and Raman spectra were simultaneously obtained with an opti-
cal fiber bundle probe of the FRES (lower box). (b) Fluorescence images were obtained by the 
FRES with real-time (12 frames/s). The bright area in fluorescence images corresponds to the tar-
geted probes. (c) The Raman spectra were obtained by the FRES at a laser power of 2.7 mW and 
acquisition time of 1 s. The observed Raman bands in the Raman spectra correspond to the RITC 
(filled diamond) and FITC (filled star) from the F-SERS dots. (d) The confocal fluorescence laser 
scanning (CLSM) images of the tumor sites. The nuclei of the tumor cells stained with 
4′,6- diamidino-2-phenylindole (DAPI) dye were shown as blue spots, and the targeted F-SERS 
dots containing Alexa Fluor 610 were shown as red spots (reprinted under a Creative Commons 
Attribution 4.0 International License from reference [95])
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9.6.3  Multimodal Multiphoton Imaging Using CRS, 
TPEF and SHG

CRS relies on high intensity excitation picosecond or femtosecond pulses for an 
efficient signal generation. Other multiphoton effects such as second harmonic gen-
eration (SHG) and two-photon excited fluorescence (TPEF) are generated at the 
same time giving complementary information without the need for external markers 
and with the possibility of optical sectioning. All modalities can be detected simul-
taneously using proper filtering and additional detectors for each modality allowing 
for a straightforward integration of either CARS-TPEF-SHG or SRS-TPEF- 
SHG. However, the lock-in detection scheme of SRS does not readily allow integra-
tion with other nonlinear imaging modalities. Multimodal, nonlinear microscopy in 
biomedical sciences and the synergy of multiple contrast mechanisms were 
reviewed [97].

A compact microscope setup for multimodal imaging including CARS-TPEF- 
SHG was designed for clinical imaging with an enlarged field of view (1.2 × 1.2 mm2 
for 20× objective lens), the highest reported NIR transmission of 60% along the 
excitation path, and an alignment free, portable multicolor fiber laser [43]. To mini-
mize the system’s complexity, the laser providing picosecond pulses optimized for 
CARS was operated at a fixed spectral position tuned to the aliphatic CH2-stretching 
vibrations at 2850 cm−1. The microscope was optimized for a simultaneous efficient 
generation of all three signals yielding high quality, high resolution images of mor-
phological and biochemical features of the tissue. Ex vivo imaging of clinically 
relevant entities such as head and neck SCC samples or aorta with atherosclerotic 
plaques demonstrated the potential of such an easy to handle multimodal setup for 
clinical applications.

The underlying principle of TPEF is the excitation of an electronic molecular 
transition by the simultaneous absorption of two photons having twice the excita-
tion wavelength. Due to the nonlinearity, an effective excitation of fluorophores is 
observed only in the proximity of the nominal focus. Thus, the intrinsic confocality 
simplifies the experimental setup and reduces out-of-focus bleaching and further 
allows imaging tissue sections in higher depth and with better axial resolution com-
pared to conventional one-photon fluorescence microscopy. Main tissue autofluoro-
phores are nicotinamide adenine dinucleotide hydrogenase (NADH) and flavin 
adenine dinucleotide (FAD) that monitor the metabolic activity of the sample. 
Furthermore, melanin and structural proteins such as elastin, keratin, and collagen 
that provide information about the extracellular matrix and connective tissue con-
tribute to the autofluorescence.

SHG microscopy is a coherent second-order nonlinear scattering technique. Two 
photons of a wavelength typically lying in the NIR region simultaneously interact 
with the tissue, and a photon with exactly half the excitation wavelength is pro-
duced. Thus, the process is also referred to as frequency doubling. Molecular groups 
with a large hyperpolarizability and bulk non-centrosymmetric structures in the 
focal volume meet the requirements for strong SHG signal generation. As collagen 
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proteins yield intense SHG signals, collagen-rich tissues such as cornea, tendons, 
arteries, skin, collagen organization or its alteration in the microenvironment of 
tumors, during fibrosis, and in muscle, bones, cartilages, myosins, and tubulins 
were investigated by SHG.

A multimodal approach combining CARS, TPEF, and SHG was used to evaluate 
skin samples of 32 individuals [98]. The multiphoton images enabled to distinguish 
the main tissue layers epidermis, dermis, and subcutis and to identify tissue struc-
tures such as hair follicles, sebaceous and sweat glands, and blood vessels. This 
approach was also applied to detect and discriminate non-melanoma skin cancer 
(NMSC), more precisely basal cell carcinoma (BCC) and squamous cell carcinoma 
(SCC), which together account for 97% of all NMSC [99]. Multimodal multiphoton 
microscopy was used to study head and neck squamous cell carcinomas [100]. 
Image analysis using CARS, SHG, and TPEF modalities predicted the diagnosis of 
tissue sections with an overall accuracy of 90% for a 4-class model (cancer, epithe-
lial tissue, other, background). With a time frame below 20 min this approach can 
complement conventional staining protocols to assist frozen section analysis during 
surgical interventions. Colon tissue sections of inflammatory bowel disease (IBD) 
were investigated using the combination CARS, TPEF, and SHG [101]. Various 
geometry and intensity related features were extracted from the multimodal images. 
An optimized feature set was utilized to predict histological index levels. CARS and 
TPEF microscopy data from 55 lesions of the central nervous system were pre-
sented [102]. The generated images demonstrated cytological and architectural fea-
tures that are required for pathological tumor grading. Furthermore, the data 
provided information on the molecular content. The imaging modalities CARS, 
TPEF, and SHG yielded information that could be translated into computational, 
pseudo-H&E- stained images by multivariate statistics [103]. The performance was 
demonstrated for images of mouse colon sections. Figure  9.10 compares multi-
modal acquired and pseudo-H&E generated images with H&E-stained images as 
examples.

To extend the applicability of multimodal multiphoton imaging for in vivo tissue 
screening, a compact fiber optic probe was developed for simultaneous recording of 
CARS, TPEF, and SHG [104]. The probe was based on a gradient index lens design 
and 10,000 coherent light guiding elements preserving the spatial relationship 
between the entrance and the output of the fiber. The scanning procedure was shifted 
from the distal to the proximal end of the probe without moving parts or driving 
current at the probe head. The generated signals were collected in the backward 
(epi) direction and guided with a multimode fiber to a detection setup. A rigid, com-
pact multimodal endoscope was described and its use was demonstrated with sam-
ples of neurosurgical relevance [105]. The endoscope has a diameter of 2.2 mm and 
a length of 187 mm, and offers a spatial resolution of 750 nm over a field of view of 
250 μm making clinical applications during surgical interventions possible.
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9.7  Outlook

This chapter described the wide field of Raman-based approaches for stand-alone 
and multimodal optical diagnostics of cancer ranging from single cells, tissues of 
various organs to small animals and in vivo studies of patients. Special attention has 
to be paid to the development of easy-to-use and robust instrumentation. Moreover, 
algorithms that provide automatically information about the presence of absence of 
disease marker will greatly enhance applicability of spectroscopy and imaging tools 
to the end-user. For a future translation to a clinical environment it is key to design 
and perform large and representative studies to show the benefits of these Raman- 
based concepts. Furthermore, such large, ideally multi-center, studies can take 
advantage of the recent advent of artificial intelligence and machine learning strate-
gies that already demonstrated their power in image analysis and data processing. 

Fig. 9.10 Overview of acquired and generated images of mouse colon sections (3 out of 22 images 
in total): In row A, multimodal images are displayed. In rows B and C the computationally derived 
pseudo-HE-stained images based on the multimodal images and the HE-stained image are dis-
played, respectively. The pseudo-HE images of row B are generated non-invasively allowing for a 
subsequent analysis by other modalities or stains. The scale bar represents 500 μm (reprinted under 
a Creative Commons Attribution 4.0 International License from reference [103])
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This constitutes a great opportunity for a network of researchers and end-users to 
accomplish these goals.
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Chapter 10
Raman Spectroscopy Techniques for Skin 
Cancer Detection and Diagnosis

Ivan A. Bratchenko, Dmitry N. Artemyev, Yulia A. Khristoforova, 
Lyudmila A. Bratchenko, Oleg O. Myakinin, Alexander A. Moryatov, 
Andrey E. Orlov, Sergey V. Kozlov, and Valery P. Zakharov

10.1  Introduction

Skin cancer is one of the most common malignancies. Untimely detection of skin 
pathology may provoke cancer growth and metastases spread in internal organs. 
Today more than half of skin cancer cases are found at advanced stages, which is a 
direct threat to the patient’s life [1]. Among other tumors, malignant melanoma of 
the skin occupies a special position. Due to aggressive behavior, melanomas are 
responsible for more than 85% of total mortality caused by malignant skin tumors. 
Melanoma of the skin is unevenly distributed, the highest incidence rates are typical 
for Australia and New Zealand (up to 40 cases per 100 thousand people), the USA 
(up to 21.1 cases per 100 thousand), some European countries [2]. In 2013 in the 
USA melanoma was diagnosed in 76600 Americans, and 35% of the patients were 
younger than 45 years old. In Russia, more than half a million new patients with 
malignant neoplasms are registered annually, and 14% of these cases are malignant 
skin neoplasms. However, melanoma of the skin in Russia is less common, about 
8500 new cases every year (3.97 new cases per 100 thousand people), but there is a 
high level of annual increase in the incidence (from 4.55 to 6.1%) in the last decade. 
In 2017, Samara region held the first place among Russian regions with the highest 
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skin cancer incidence (18.6% among all cancer localizations) and high incidence 
rates of malignant tumors (446.6 cases per 100 thousand people) [3].

In the case of malignant melanoma, the survival time of patients directly depends 
on the stage of the disease. In excision of melanoma at Stage I, the 5-year survival 
rate of patients is 93–97%, while patients with Stage III melanomas survive the first 
5-year period in only 40–78% of cases [4]. One of the main reasons of this unprom-
ising statistics is the low detection rate of skin cancers in preventive examinations. 
The effectiveness of the skin cancer diagnosis by the general practitioners, as a rule, 
does not exceed 40–50% [5]. Moreover, a large percentage of false skin cancer 
diagnoses leads to excessive psychological stress for patients and overcrowding of 
specialized oncological clinics with patients who have only age skin changes, papil-
lomas, warts, and many other non-cancerous skin diseases [6].

Skin tumors and particularly melanomas are unique tumors, which may be char-
acterized by a variety of clinical features; it is especially difficult to differentiate 
melanoma from other skin neoplasms in the initial stages of the disease. Potentially 
dangerous pigment or pigmented skin neoplasms may be identified during visual 
examination in more than 90% of the population [7]. Long-term observation or 
inadequate treatment resulting in the rapid growth and dissemination of a neoplasm 
with a predictable outcome may be a consequence of the failure in melanoma diag-
nosis. On the contrary, overdiagnosis of melanoma may lead to an unnecessarily 
high volume of surgical intervention and serious cosmetic defects. Despite the sig-
nificant advances in systemic drug therapy for skin melanoma, the results of 5-year 
survival rate depend most of all on timely and effective diagnosis and an adequate 
amount of surgical treatment [8]. Therefore, the development of methods for early 
and clarifying diagnosis of skin melanoma remains relevant.

Traditionally, examination of skin lesions is based on visual inspection that can 
be supplemented with dermatoscopy analysis [9], which improves the quality of 
diagnostics. At a dermoscopic examination, the physician evaluates the alteration of 
the shape and pigmentation of the tumor, which are difficult to detect with the naked 
eye [10]. For example, cross-polarized dermatoscope [11] or immersion dermato-
scope [12] acquires pathologies images which allow to involve additional criteria in 
suspicious skin tissue inspection in comparison with standard ABCD [13] or 7-point 
checklist [14] rules. Dermatoscopic analysis may include monitoring of more spe-
cifically related tumor features like atypical pigmentation and vascular networks as 
well as the so-called blue-whitish veil, which represents a gray-white pattern with 
well perceptible blue tone [15]. However, the application of the complex criteria is 
quite complicated for non-trained person. More precise techniques and complex 
criteria require more trained and qualified practitioners. Thus, the result of the der-
matoscopy analysis directly depends on the qualification of the medical specialist 
conducting visual diagnostics. A detailed analysis of neoplasm morphological 
structures and deviations from the normal skin tissues may be performed only by an 
experienced oncologist with many years of practice [16]. Thus, determining the 
presence or absence of malignancy is an important task for an oncologist, because 
the correct preliminary diagnosis is the basis of the further effective tumor treatment.
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One possible way to increase the accuracy of early diagnosis is the development 
of screening analysis that can help general practitioners to determine the presence 
of malignant skin pathology. There are several skin cancer diagnosis methods and 
techniques currently used in clinical practice [17]:

Photodynamic Diagnosis In order to detect the presence of tumor cells, a photo-
sensitive marker may be introduced into the particular area of the skin to form a 
protoporphyrin IX as a result of chemical reactions. Protoporphyrin IX accumulated 
in the tumor cells, and later after neoplasm illumination the tumor cells emit fluo-
rescence. Thus, the photodynamic diagnosis of skin lesions is based on the fluores-
cent properties of an exogenous and endogenous compound in response to 
illumination. However, injection of exogenous fluorophores in patient’s body is an 
obligatory part of diagnostic procedure, which makes photodynamic method unac-
ceptable for mass screening [18, 19].

Sonography Sonography is based on acoustic waves reflection from density inho-
mogeneities. Usually, this method is used to assess skin lesion depth and margins 
before biopsy as well as to classify adjacent lymph nodes. It has the ability to dif-
ferentiate benign from malignant skin cancer. The accurate measurement of skin 
cancer lesion thickness is one of the main advantages of sonography as it helps to 
identify margins for excision and correctly plan the operation, while the main dis-
advantage is the low specificity of sonographic analysis [20].

Electrical Bioimpedance The local electrical impedance of skin is dominated by 
the high resistance of the stratum corneum and highly depends on stratum corneum 
hydration or structure, especially at low frequencies. Stratum corneum must be 
bypassed to measure the living epidermis and dermis. Therefore, the direct contacts 
of microneedles are used for stratum corneum penetration and measurement of the 
electrical activity underlying the skin. This technique demonstrates the ability of 
melanoma detection; however, overall accuracy in tumor identification remains 
relatively low, making questionable the application of electrical bioimpedance in 
clinical practice [21].

Thermography Infrared imaging can provide a wealth of information on the pro-
cesses responsible for heat generation and thermoregulation of the skin, in particu-
lar the deviation from normal conditions, often caused by disease. For example, 
increased metabolic activity of melanoma can be detected by dynamic thermogra-
phy, which includes preliminary lesion cooling for enhanced temperature differ-
ences between the lesion and the surrounding healthy tissue [22]. Dynamic 
thermography is critical for motion correction, spatial resolution, and temperature 
sensitivity, especially when discerning small lesions. Therefore, the thermography 
effectiveness is not enough for discrimination of tumors on early stages and mostly 
used for tumor staging.

Optical Spectroscopy During multiple scattering in the skin light photons experi-
ence many interactions including absorption, elastic and nonlinear scattering, 
reemission, fluorescence, phosphorescence, and others. Therefore, reflected light 
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flux contains a wealth of information about the biochemical and morphological 
composition of the tissue, including information about the presence and stage of the 
disease [23]. However, the extraction of such biochemical information from spectra 
alterations is a very complicated task. The connection between tissue scattering and 
emission properties and tissue microstructure greatly depends on the way of their 
excitation, collection, and processing. It is well known that the combination of mul-
tiple techniques may enhance the diagnostic quality and accuracy [17]. In this 
regard optical methods open a promising way for the development of noninvasive 
low cost, compact, and portable multimodal device for high sensitive skin cancer 
diagnosis.

In recent decades, a number of optical methods have been used for cancer detec-
tion and imaging, including confocal microscopy [24], optical coherence tomogra-
phy (OCT) [25], multiphoton tomography (MPT), etc. For example, MPT in 
combination with fluorescence lifetime imaging (FLIM) may provide label free 
imaging with subcellular resolution and thereby significantly increase overall accu-
racy of tumor diagnostics [26]. MPT/FLIM can be performed using fast detection 
electronics and complicated equipment, which makes it hard to explore on difficult 
body sites or irregular surfaces [27]. OCT images can be used for analysis of mor-
phological, fractal, and texture features of oncological pathologies [28], but the 
possibility of tumor diagnosis with these features is still under consideration [29] 
as malignant and especially premalignant tumors do not have distinctive pat-
terns [30].

It should be noted the screening system must be sensitive to the changes in the 
skin biochemical composition and able to determine the nature of the neoplasms. 
One of such approaches is optical biopsy [31] using Raman spectroscopy (RS) and/
or autofluorescence (AF) tissue response [32, 33]. RS is based on inelastic scatter-
ing of optical radiation when interacting with molecular bonds of tissue compo-
nents. The recorded Raman signal contains characteristic bands responsible for the 
presence of certain chemical bonds in the tested object, which makes this spectrum 
a unique “fingerprint” of each neoplasm [34]. Thus, RS application makes it possi-
ble to detect changes in tissue chemical composition as compared to healthy skin. It 
is important to note that in addition to the Raman shift, the scattered light contains 
an AF signal obtained after interaction with the tissues. The spectral properties of 
AF signal depend on the presence of endogenous fluorophores in the tissues [35]. In 
general, AF tumor studies show lower accuracy in comparison with RS [36], but AF 
is characterized by much higher intensity, which makes it possible to register sig-
nals within a short period and rapidly scan the tumor area. Therefore, there is a need 
in clinical trials to optimize RS-AF efficiency and validity for cancer diagnostics 
[37]. In first sections of this chapter, we present the results of RS implementation for 
cancer detection, and in this case AF always considered to be a noise signal masking 
the Raman signal. However, the combination of RS and AF is also discussed in the 
last section as application of joint multimodal techniques for achieving higher diag-
nostic accuracy [30].
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The application of RS for skin cancer study is presented in numerous trials [38–
40]. Optical biopsy based on RS and AF application demonstrates a high level of 
accuracy (exceeding 90%) in the diagnosis of skin cancer [40–43]. Many research 
teams [39, 44, 45] have been trying to increase the efficiency of diagnostics by using 
more sensitive (high spectral resolution, deeply cooled detectors, etc.) and, conse-
quently, more expensive equipment. Indeed, the RS and AF methods are based on 
the detection of spectral differences of tumor and normal tissue, and an increase in 
spectral resolution should seemingly lead to an increase in the efficiency of cancer 
type recognition. However, analysis of morphologically different tumors reveals a 
significant biochemical commonality among them, which may be explained by the 
relative homogeneity of the enzymatic set and enzyme activity of tumors, as well as 
the relative similarity of the composition, content, and biochemical activity of spe-
cific chemical components [46]. Thus, there is an utmost (“physiological”) accuracy 
of cancer type recognition associated with limitations due to physiological similar-
ity of the tissues chemical composition. The physiological factors become more 
decisive in the recognition procedure than the spectral resolution of the device. 
Currently, the high potential of RS provides the possibility of tumor types differen-
tiation with the efficiency based on the registered signal quality [47]. The effective-
ness of instrumental diagnostics would depend on detected Raman signal quality, 
and obviously the signal quality would be higher in high-sensitivity spectrometers 
than in simplified systems. However, the application of costly stationary systems is 
not always possible or convenient. Therefore, the effectiveness of Raman signal 
registration by different techniques is still under consideration [30].

This chapter presents results of skin cancer optical biopsy with variety of RS 
techniques and instrumentation that have been used in clinical and preclinical trials 
in recent decades as well as demonstrates application of portable Raman instrumen-
tation in clinical practice.

10.2  Conventional (Spontaneous) Raman Scattering

With the illumination of tissue by monochromatic laser radiation most of the light 
is scattered on the same frequency. In opposite, inelastic Raman scattering leads to 
a frequency shift proportional to the energy difference between the vibrational states 
of the specific molecular bond [48]. An excited molecule can transmit from the 
virtual state to one of the vibrational states. Such transitions are called Stokes or 
anti-Stokes if, respectively, the scattered light has a lower or a higher frequency than 
the incident light. Typically, the molecules are initially in the ground vibrational 
state, so the Stokes component is usually much stronger and therefore more widely 
used in the practical applications. Thus, Raman spectrum reveals vibrational and 
rotational modes of the molecules. The peak positions in the Raman spectrum 
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 characterize the molecular composition of the tissue, and the amplitude of each 
peak depends on the relative concentration of each chemical bond in the molecule.

In spontaneous Raman spectroscopy, as a rule, the Stokes signal is detected 
under continuous illumination of a laser with a high spectral stability. As mentioned 
above, the signal intensity increases for short wavelengths, but the intrinsic fluores-
cence of the tissue also increases, while the depth of light penetration into the tissue 
decreases due to the absorption of chromophores, in particular hemoglobin and 
melanin, so that the signal-to-background ratio decreases. In addition, the absorp-
tion coefficient μa(λ) in the visible range strongly depends on the wavelength and 
tissue type, which prevents the comparison of the intensities of Raman different 
peaks. The choice of wavelength usually involves a compromise between the inten-
sity of the Raman signal and tissue AF and depends on the specific tissue and the 
purpose of the study. The optimal optical windows for RS of skin are between 700 
and 900 nm and near 1064 nm [49].

Due to the simplicity of spontaneous Raman signal detection it was widely used 
in different clinical applications. For example, spontaneous RS was used for evalu-
ation of cosmetology effect of creams on the skin [50], analysis of skin dermatitis 
[51], numerous studies of skin cancers [52–54], and many other applications [49].

Silveria et al. [55] demonstrated the possibility to classify normal skin from non-
melanoma malignant and premalignant lesions by using portable Raman system 
(830 nm excitation wavelength, CCD camera cooled down to −75 °C temperature, 
20  s acquisition time). The results showed the important spectral differences 
between non-tumor lesions and precancerous tissue for lipids (between 1250 cm−1 
and 1300 cm−1 and at 1450 cm−1) and for proteins (between 870 cm−1 and 940 cm−1, 
1240 cm−1 and 1271 cm−1, and at 1000 cm−1 and 1450 cm−1). Figure 10.1 demon-
strates mean Raman spectra of tested skin tissues and difference spectra (between 
tumors and normal skin).

The authors investigated different statistical models (principal component analy-
sis (PCA) or projection on latent structures (PLS) with linear or quadratic discrimi-
nant analysis) and achieved 77.8% accuracy in classification of 53 normal skin, 28 
basal cell carcinomas (BCC), 7 squamous cell carcinomas (SCC), and 11 actinic 
keratosis. The highest accuracy of 91.9% (sensitivity 89.1% and specificity 94.3%) 
was achieved for discrimination of nonmelanoma and premalignant tumor (BCC, 
SCC, and AK) from normal tissue and benign tumors. However, pointed values of 
skin cancer classification accuracy may significantly vary from one study to another, 
so more examples of spontaneous RS application in skin cancer analysis have been 
presented in Sect. 10.8 dedicated to RS clinical applications.

10.3  Confocal Raman Spectroscopy

RS can be implemented in a confocal configuration to provide optical depth separa-
tion by spatially filtering of the collected Raman signal with a pinhole or optical 
fiber to block the signal out of the focus. This approach improves the transverse and 
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axial resolution up to 2 μm [56]. However, the accumulation time of a signal at each 
point is usually more than 5 s and increases with the focal depth in the tissue. A 
raster-scanning confocal RS produces two-dimensional images with a field of view 
typically in the range of 0.01–1 mm2. Confocal Raman probes have so far been used 
mainly for ex vivo and in vitro studies [57, 58].

Confocal RS became popular in studying skin layers properties [59]. Zhang et al. 
[60] investigated stratum corneum hydration and collagen content. The results of 
study [60] and other similar studies may be widely used in wound healing monitor-
ing and also in the determination of skin aging, including clinical and forensic 
applications [59, 61]. Thus, recent confocal RS techniques allow for the determina-
tion of skin layers chemical composition along with measurement of layers thick-
ness [61].

Fig. 10.1 (a) Mean Raman spectra of normal and benign skin (non-tumor, NT), basal cell carci-
noma (BCC), squamous cell carcinoma (SCC), and precancerous (AK) tissues. The gray shadows 
represent the standard deviation for each spectral group; (b) difference spectra of basal cell carci-
noma (BCC), squamous cell carcinoma (SCC), and precancerous (AK) tissues related to non- 
tumor (NT) (reprinted with permission from [55])
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As for skin cancer detection, confocal RS was implemented both for ex vivo and 
in  vivo studies [62]. At the same time confocal RS implementation frequently 
requires rather long accumulation time of the signal that makes difficult in  vivo 
measurements. Lieber et al. [63] investigated nonmelanoma skin cancer from 19 
patients using a handheld Raman microspectroscopy system (only 30 s accumula-
tion time). They classified 21 nonmelanoma cancer (9 BCC, 4 SCC, 8 inflamed scar 
tissues) from 21 normal skin sections with 100% sensitivity and 91% specificity 
(resulting in 95% accuracy). The authors assumed that spectral differences between 
abnormal and normal skin may possibly be due to lipid content that affected the 
807–814, 1069–1073, 1321–1325 cm−1 Raman peaks and change of the tryptophan 
that produces a 1542–1556 cm−1 Raman peak.

10.4  Coherent and Resonance Raman Spectroscopy

Coherent RS uses two light beams (pump wave and Stokes wave) with frequencies 
ωp and ωs, respectively, such that their difference matches to the frequency of the 
vibrational mode Ω = ωp − ωs for the molecular bond of the interest. The coherent 
Raman signal for different molecules increases as compared with spontaneous RS, 
as a rule, up to 105 times [64]. Enhanced coherent Raman signal may be especially 
important for fast image acquisition. The technologies of coherent Raman spectros-
copy include stimulated Raman spectroscopy (SRS) and coherent anti-Stokes 
Raman spectroscopy (CARS) [65]. Both SRS and CARS can be used in strong fluo-
rescent media, which is usually a significant limiting factor for Raman imaging in 
tissues.

Such approaches enable acquisition of high-resolution images in microscopy 
techniques. The increase of resolution in microscopic study results in increase of the 
sensitivity of medical and biological studies [66]. For skin studies, this allows for 
obtaining in vivo histological images of tissues at different depths. Demonstration 
of such technique was performed by Drutis et  al. [67]. The authors investigated 
native skin of the pig and demonstrated that SRS microscopy provides a unique 
view of the chemical organization of the skin, rapidly and noninvasively assessing 
the layers of intact tissue. The pump beam was tuned to 816.0, 810.6, or 781.3 nm 
for skin imaging, corresponding to Raman shifts of 2850, 2950, or 3340  cm−1, 
respectively. The main contributors from skin at these vibrational frequencies can 
be assigned to vibrational modes from lipids, proteins, and water. Figure 10.2 shows 
SRS microscopic images of skin tissues obtained with the proposed technique. The 
transition from the stratum corneum into the viable epidermis is discernible in 
images collected 18 μm below the surface (Fig. 10.2d–f). At this depth, the distinct 
boundaries between the clusters are visible, such as between the arrows in Fig. 10.2e. 
The average canyon width in these images is 21.2 ± 4.4 μm. The signal intensity in 
the protein and lipid images is highest along the canyon walls, as evidenced by the 
bright lines outlining the canyons (Fig. 10.2d and e). Fine lines are visible between 
the canyons, as can be seen the arrows in the lipid (2850 cm−1) image (Fig. 10.2e). 
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These are the edges of stratum corneum corneocytes following the contours of the 
canyon. The water signal is significantly weaker in the canyons than in the cluster 
regions. In the cluster regions, nuclei are visible as dark ovals in the protein and 
lipid images (Fig. 10.2d and e), and as bright ovals in the water image (Fig. 10.2f). 
Around this depth, the distinctive polygonal shape of the cells is revealed as the 
lipid-rich cell wall membranes appear in the lipid (2850 cm−1) image (Fig. 10.2e) 
[67]. However, the acquisition time was 30–60 s for only a single wavelength that 
complicates in vivo application of such technique.

CARS allows for imaging of skin tissues. Wang et al. [68] performed ex vivo and 
in  vivo investigation of mice skin and human melanoma sections with CARS to 
estimate distribution of pheomelanin in cells and tissues. The authors validated 

Fig. 10.2 Changes in chemical distribution are visible by collecting depth stacks at multiple 
wavelengths. SRS images were acquired at 60× magnification from pigskin. The rows correspond 
to focal planes 6 μm (a–c), 18 μm (d–f), and 28 μm (g–i) below the skin surface. The columns from 
left to right represent protein, lipid, and water content, respectively. The dark spots labeled “D” in 
(a) and (c) are due to optical shadows from air pockets between the skin surface and coverslip. The 
arrows in (e) designate one canyon in the image. Fine lines can also be seen within the canyon. The 
arrow in (h) points to one of the visible cell membranes in the cluster. Scale bar = 50 μm (reprinted 
with permission from [67])
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CARS imaging technique and demonstrated (Fig. 10.3) possibility to track tumor- 
specific chromophores that may be used in cancer detection and classification. A 
distinct feature here is a possibility for real-time image acquisition in comparison to 
previously described coherent RS technique. In this way, modern coherent RS tech-
niques open a new dimension of skin tissue analysis and make possible performing 
of in vivo real-time optical biopsy based on optical histological examination of liv-
ing tissue. The limitation of such approaches is the necessity of very sensitive labo-
ratory setups, which may be utilized only in lab research. Thus, the use of SRS and 
CARS is complicated in mass screening applications particularly in skin tumors 
examinations.

Resonance RS is a type of SRS technique in which only one laser source is used 
for tissue investigation, and the incident photon energy is equal or close in energy to 
a molecular electronic transition of specific bond of investigated molecule. The fre-
quency coincidence (or resonance) can lead to greatly enhanced intensity of the RS, 
and thus, help in revealing of molecules that may hardly be detected using a conven-
tional RS [69]. In skin research most efforts of resonance RS implementations were 
associated with the analysis of carotenoids content. Carotenoids in the skin play a 
protective role, mainly photoprotection, protection against erythema, and sunlight 
damage. Carotenoids are known to quench singlet oxygen and other free radical 
species, which are generated in the skin by exposure to ultraviolet radiation and can 
cause skin damage. Several recent studies have examined the potential protective 
effects of carotenoids against premature photoaging of the skin, marked by signs 
such as wrinkling, pigmentation, dryness, and inelasticity [70]. Carotenoids absorb 
the light in the blue-green spectral range and therefore provide resonance absorp-
tion. Ar+ lasers operating at 488 nm and 514.5 nm were recently used for measure-
ments of carotenoids [71]. Despite the vast variety of applications for carotenoids 
monitoring in skin aging and photoaging, application of resonance RS in skin can-
cer is still limited. The main reason for such limitation is a complex composition of 
tumors and high AF in the visible spectral range which masks weak Raman peaks.

However, the application of resonance RS still is in interest, and recently Liu 
et al. [72] tested the application of resonance Raman spectroscopy for ex vivo rapid 
skin cancer diagnosis. The authors measured resonance Raman spectra (30 averages 
of 1 s accumulations) for 43 BCC and 12 normal tissues with excitation of 532 nm 
laser. It was achieved the sensitivity, specificity, and accuracy of 93%, 100%, and 
94.5%, respectively. The authors suggested that Raman spectra of BCC tissues 
change significantly in comparison to the spectra of normal skin tissues due to the 

Fig. 10.3 (continued) obvious sign of melanin. (g) Bright-field trans-illumination image acquired 
from the microscope eyepiece from an unstained slide of the melanoma area, showing slightly 
pigmented granular structures (red circle). (h) CARS image of the same tumor area compared to 
(g), with the same settings as for (e). Saturated bright pheomelanin signals were found (red circle) 
corresponding to the minimally pigmented region shown in (g). (i, j, k) Respectively, H&E, trans-
illumination, and CARS images of the tumor area of slides from a second amelanotic melanoma 
patient. Strong pheomelanin signals were again observed (red circles) (reprinted with permission 
from [68])
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Fig. 10.3 Imaging of human amelanotic melanoma: (a) Clinical photograph of one amelanotic 
melanoma lesion. (b) H&E stain of the patient slide (10× magnification). (c) Perilesional skin 
showing normal architecture of both epidermis and dermis. (d) Bright-field trans-illumination 
image acquired from the microscope eyepiece from the perilesional area. (e) CARS image of the 
same perilesional area compared to (d) (image acquired with pump beam wavelength at 841 nm 
(ωp − ωs = 2275 cm−1) was subtracted from the image acquired with pump beam wavelength at 
855 nm (ωp − ωs = 2081 cm−1) to minimize the nonresonant background from structures other than 
pheomelanin). (f) View of the amelanotic melanoma area showing high density of cells with no 
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changes in the relative concentrations of tryptophan, carotenoids, lipids, and pro-
teins. Figure 10.4 demonstrates the spectra of normal skin and BCC at different 
depths and reveals significant changes in tumor. It was found correlation between 
the depth dependence of resonance Raman spectra and the status change of BCC 
tissue at a molecular level. Only ex vivo tests were performed with the proposed 
technique and future large clinical studies are required to prove the applicability of 
resonant RS in skin cancer detection and classification.

10.5  Surface-Enhanced Raman Spectroscopy

Low signal intensity is undoubtedly the main limitation of RS. An alternative to 
coherent signal amplification is the use of the effects of electromagnetic amplifica-
tion that occur near the metal surface, including metal nanoparticles [73]. This 
approach is called surface-enhanced Raman spectroscopy (SERS). Under the inci-
dent electromagnetic field, metallic nanoparticles generate a localized surface plas-
mon resonance, which enhances the excitation at the pump frequency and the 
Raman signal at the Stokes frequency. The gain decreases rapidly with the distance, 
so that the molecules must be within tens of nanometers of the surface [74]. The 
limitations of SERS for clinical applications are that implementation depends on the 
sensitivity of the biomarkers of diseases and the availability of appropriate target 
fragments, as well as potential toxicity and the need for clinical approval of each 
contrast agent. It should be noted that since the utilization of SERS technology 
allows for individual narrow Raman bands registration, SERS application might be 
an alternative to fluorescence labeling of tissues.

In vivo skin SERS-analysis requires biologically inert nanostructures. 
Nanoparticles of noble metals, such as gold and silver, satisfy these requirements. A 
number of studies showed a possibility of nanoparticles of different type synthesis 
for the application in clinical practice [75, 76]. Kang et al. [77] reported approach 
to develop NIR-sensitive SERS nanoprobes consisting of the plasmonic Au/Ag 
hollow-shells assembled with silica nanospheres and simple aromatic compounds 
for in vivo multiplex detection. However, for the moment in vivo studies of human 
tissues by SERS techniques are not approved. Therefore, the assessment of SERS 
utilization for in vivo skin studied is carried out on animal models.

Stuart et al. [78] showed the first in vivo application of SERS for transcutaneous 
glucose measurement. Further, the description of the biocompatible and nontoxic 
nanoparticles for in  vivo tumor targeting and detection in live animals based on 
pegylated gold nanoparticles was presented by Qian et al. [79]. The authors found 
that single-chain variable fragment antibodies-conjugated gold nanoparticles are 
able to target tumors in vivo in animal models. These particles were 4200 times 
brighter than near-infrared-emitting quantum dots and allowed spectroscopic detec-
tion of even a small tumor (0.03 cm3).

Pinzaru et al. [80] performed an examination of ex vivo mice skin with induced 
melanoma. The authors proposed conventional RS and SERS molecular character-
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Fig. 10.4 A set of typical 
resonance Raman raw 
spectra collected from a 
horizontal section of 
normal human skin 
sample, and a vertically 
sliced BCC skin sample 
measured at different 
depths. (Top) the spectrum 
was from dermis layer of 
normal skin showing nine 
feature peaks; (middle) the 
spectrum was from the 
vertically sliced BCC 
sample at a depth of 
100 μm. There are eight 
characteristic peaks 
including increased peaks 
at 753 cm−1 and 1589 cm−1, 
but intense carotenoids 
peaks at 1161 cm−1 and 
1521 cm−1 disappeared 
compared to the normal 
tissue (top); (bottom) the 
spectrum was from BCC 
sample at a depth of 
1100 μm, substantially 
similar to the depth of 
100 μm, with six Raman 
peaks, but carotenoids 
peaks at 1161 cm−1 and 
1521 cm−1 are present and 
obviously weaker than 
normal tissue sample (top). 
Those peaks of 753 cm−1 
and 1589 cm−1 greatly 
decreased in comparison 
with the depth of 100 μm. 
BCC: basal cell carcinoma 
(reprinted with permission 
from [72])
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ization of melanoma. Raman and SERS spectra of tissues from normal, early stage 
melanoma and advanced melanoma were acquired using two dispersive spectrom-
eters, a DeltaNu Advantage Raman spectrometer equipped with He-Ne laser operat-
ing at 4 mW, 632.8 nm, and a Bruker Senterra dispersive Raman spectrometer using 
the 785 nm excitation diode laser. The same scientific group presented results of 
in vivo and ex vivo reproducible SERS signal collection from mouse skin and uti-
lized it for the differentiation of skin pathologies [81]. In this study, the 785 nm laser 
line at 100 mW was used for tissue sample analysis. The laser was focused on the 
mouse skin using the 20× (NA = 0.4) or the 50× (NA = 0.75) objectives, small dos-
ages of 10 mL Ag nanoparticles were subcutaneously injected in mice.

The acquired data were successfully used for confirming the differentiation 
between the three types of skin pathologies using principal component analysis 
(PCA) and K-means clustering. The authors used PCA in order to highlight the dif-
ferences and similarities between the three groups of SERS spectra (healthy, cancer-
ous, and betulin treated). PCA revealed the most informative bands for tissues 
discrimination: Amide II (1557 cm−1), collagen (1313, 1284 cm−1), DNA (745 cm−1), 
tyrosine (641 cm−1), phenylalanine (1589 cm−1), Amide I (1539 cm−1), and glyco-
gen (482 cm−1). The presented results show that high-quality SERS spectra could be 
acquired both for in vivo and ex vivo examinations of skin tissues. Thus, animal 
model SERS studies may become the basis of future studies of human skin.

10.6  Spatially Offset Raman Spectroscopy

Spatially offset Raman spectroscopy (SORS) is similar to conventions RS, the dif-
ference is that the Raman signal is collected from the deeper layers of the tissue by 
spatially shifting of the collecting and excitation fibers. The registered photons will 
then be repeatedly elastically scattered and will pass some distance from the source 
of illumination. Collecting the Raman signal at various offsets effectively measures 
the different layers of the examined tissue. SORS typically uses a probe with an 
illuminating fiber surrounded by the set of collecting fibers with 1–5 mm offset [82, 
83]; an offset of 16 mm was used to study bone Raman signal [84]. Since SORS 
collects a signal from the depth, the signal-to-noise ratio decreases, which leads to 
an increase in the accumulation time of 30 s [83].

Application of SORS in cancer detection and screening was demonstrated for 
breast tumor margin evaluation [83], bone cancer detection [85], urology, and other 
applications [86]. Keller et al. [83] demonstrated the application of SORS in breast 
tissue discrimination with the sample characterization up to depths of 2 mm, 95% 
sensitivity and 100% specificity were achieved by the authors in the detection of 
breast tumors. However, the application of SORS technique in cancer detection now 
is limited only to cancer margins detection during cancer removal surgery. In addi-
tion, a number of questions about its efficacy still are not studied enough, SORS of 
soft tissues holds considerable promise for biomedical applications [86].
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One of the promising future implementations in skin cancer research is the so- 
called SESORS (combination of SERS and SORS). Yuen et al. [87] demonstrated in 
a rat model possibility of in  vivo transcutaneous measurements of glucose that 
proves that such technique may be a powerful new approach to the challenging 
problem of in vivo metabolite and drug sensing. However, future translation of such 
techniques into clinics needs further trials to prove its efficiency in medical 
diagnosis.

10.7  Comparison of Raman Spectroscopy Techniques

Analysis of the applicability of different RS approaches for clinical studies and skin 
cancer detection (see Table  10.1) demonstrates that each RS technique has its 
advantages and disadvantages.

Signal registration requires a long collection time for confocal RS and 
SORS. Thus, their application is limited in mass screening of skin cancer. SERS 
applications show a high sensitivity and specificity in the detection of specific mol-
ecules or cancer biomarkers, which may significantly increase accuracy of cancer 
detection. However, the implementation of SERS requires specialized substrates or 
nanoparticles, so it requires additional time-consuming sample preparation and 
laboratory setups for tissue analysis. Also, despite recent progress in SERS tech-
niques there is still a great challenge in implementation of in vivo applications, due 
to unclear metal nanoparticles toxicity. Resonance RS may be very useful in the 
analysis of specific bonds or molecules, but in skin cancer analysis this approach is 
limited due to unpredictable and complex molecular composition of tumors. CARS 
and SRS have high spatial resolution, low AF background (or even completely 
absence of AF), and low signal accumulation time, but these techniques are difficult 
to implement from a technical point of view. Moreover, the application of SRS and 
CARS requires expensive optical equipment, which is much more complicated than 
an equipment used for spontaneous Raman signal registration. Joint study of skin 
tissues by a number of proposed techniques also demonstrates very promising 
results, but as in case of coherent RS methods, such approaches are high-cost and 
require wide clinical trials to prove their applicability to skin cancer screening. 
Thus, the most accessible of the above Raman methods for mass skin cancer studies 
is the usual spontaneous RS due to the compromise of simplicity and signal accu-
mulation time in comparison to other RS techniques.

10.8  In Vivo Clinical Applications

One of the largest clinical studies of skin cancer detection with RS was performed 
by Zeng Research Group [88, 89]. For example, Lui et al. [89] studied 518 benign 
and malignant skin lesions of 9 different types, including malignant melanoma 
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Table 10.1 Comparison of RS techniques applied for skin cancer detection

Raman 
technique

Light source and 
visualization

Acquisition 
time

Signal and 
background Notice

Conventional 
RS

Continuous 
monochromatic laser 
light, Raman probe 
sometimes coupled 
with an objective
Wavelength:
500–1100 nm
Mean laser power:
150 mW

>200 ms Signal:
ω = ωp−δ

Background:
Native tissue 
fluorescence 
(autofluorescence—
AF)

–  High AF 
background

–  Low axial 
resolution

– Low cost
– Relatively simple
–  Spot, linear,  

or matrix 
visualization

Confocal/
micro RS

>5 s –  High AF 
background

–  High axial 
resolution

–  Analysis of deep 
tissue layers 
(<500 μm)

–  High collection 
time

SORS >5 s –  High AF 
background

–  Low axial 
resolution

–  Analysis of deep 
tissue layers 
(<1–2 mm)

–  High collection 
time

SERS Typically the same as 
for spontaneous RS, 
but a source 
wavelength is 
dependent on 
nanoparticles 
(nanolayers) size and 
material

>1 s Signal:
ω = ωp−δ

Background:
AF

–  Low AF 
background

–  Necessity of 
nanoparticle

–  Heterogeneous 
signal intensity

–  Necessity of 
hotspot search

–  Low collection 
time

Resonance 
RS

Typically the same as 
for spontaneous RS, 
but a source 
wavelength is close in 
energy to a molecular 
electronic transition 
of specific bond

>0.3 s Signal:
ω = ωp−δ

Background:
AF

–  High AF 
background

–  High intensity of 
specific bonds

–  Low collection 
time

(continued)
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(MM), BCC, SCC, actinic keratoses, atypical nevi, melanocytic nevi, blue nevi, and 
seborrheic keratosis. It has been shown that Raman spectra of the skin are data-rich 
and complex, but there are no distinctive Raman peaks or bands that could be 
uniquely assigned to specific skin cancers. The strongest Raman peak is located 
around 1445 cm−1with other major Raman bands centered at 855, 936, 1002, 1271, 
1302, 1655, and 1745 cm−1. The relatively conservative statistical techniques can be 
used to extract the diagnostic information embedded within Raman signals and it 
must be taken into account that the diagnostically useful information may be con-
tained within certain spectral regions. Specifically, spectral features between 
1055 cm−1 and 1800 cm–1 offered best discrimination between melanomas and non-
melanoma pigmented lesions, whereas for distinguishing skin cancers from benign 
lesions overall, the full spectrum from 500 to 1800 cm–1 region is preferred. For a 
90% sensitivity, specificity rates varied from 63% to 88%. In another study Zhao 
et  al. [90] performed large clinical trial resulted in 88.7% sensitivity and 93.6% 
specificity for discrimination of 645 cancer and benign lesions. The authors note 
that all the wavebands contributed to the final diagnosis to some extent, particularly 
the waveband 1200–1400  cm−1 provides more diagnostic capability than other 
wavebands, but none of them alone could provide diagnostic performance as high 
as the full wavelength band. The authors used in both studies Raman system with 

Table 10.1 (continued)

Raman 
technique

Light source and 
visualization

Acquisition 
time

Signal and 
background Notice

CARS Two impulse lasers or 
one tunable impulse 
laser
Wavelength:
ω1 = ωs (690–900 nm)
ω2 = ωp 
(1150–2300 nm)
Mean laser power:
150 mW
Impulse:
5 ps
Repetition rate:
1–100 MHz

>0.16 μs for 
one pixel
(in 
microscopic 
image)

Signal:
ω = 2ωp − ωs

Background:
Nonresonant

–  Low nonresonant 
background

–  High axial 
resolution

– High-cost
–  Hard to 

implement (light 
delivery, 
miniaturization)

–  Low collection 
time

SRS >40 ms/
frame
(in 
microscopic 
image)

Signal:
ω = ωp − ωs

Background:
Absence of AF

– Absence of AF
–  High axial 

resolution
–  High-cost
–  Hard to 

implement (light 
delivery, 
miniaturization)

–  Low collection 
time

Notes: ω detected signal frequency, ωp pump frequency, ωs Stokes wave frequency, δ Raman shift
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785 nm laser excitation and CCD camera cooled below −120  °C at 1  s integra-
tion time.

Schleusener et  al. [91] used Raman system with 785-nm laser excitation and 
CCD detector cooled to −70 °C (10 s acquisition time) to study skin tumors from 
104 patients. Implementation of conventional RS allowed to achieve 74% sensitiv-
ity and 66% specificity for discriminating BCC (n = 39) from SCC (n = 29), 80% 
sensitivity and 79% specificity in decimating of BCC (n  =  39) from melanoma 
(n = 36), 83% sensitivity and 86% specificity in discriminating of SCC (n = 29) 
from melanoma (n = 36). Moreover, discriminating of melanoma and pigmented 
nevi resulted in a 91% accuracy.

Raman spectroscopy data analysis provides the possibility of differentiating vari-
ous tumor types with efficiency based on registered signal quality [92]. With differ-
ent characteristics of spectroscopic equipment, the effectiveness of instrumental 
diagnostics would depend on the signal-to-noise ratio (SNR). Obviously, the better 
SNR would be achieved with high-sensitivity spectrometers than with simplified 
portable spectral systems. However, the application of costly stationary systems is 
not always possible or convenient. Moreover, as one may see from the presented 
above studies, the resulting tumor detection sensitivity is restricted by the physio-
logical similarity of the tissues chemical composition of different tumor types. 
Therefore, there is some sort of saturation in accuracy dependence from SNR and it 
is only possible to minimize the acquiring time without a significant increase in 
accuracy of cancer detection by implementation of high-sensitivity spectrometers in 
experimental instrumentation.

Previously our group conducted ex  vivo skin cancer study using RS and AF 
methods and highly sensitive laboratory spectroscopy system (with camera cooling 
down to −65 °C). It was achieved 97.3% accuracy of the malignant melanoma diag-
nosis [93]. For realization of mass human skin screening with the possibility of 
effective cancer detection it is necessary to use portable cost-effective spectral appa-
ratus. Thus, it was performed clinical trials with complex in vivo diagnostic unit 
based on portable spectrometer with detector cooling down to −15 °C. It has been 
studied 32 melanoma, 33 pigmented nevus (dysplastic nevus, blue nevus, com-
pound nevus), 18 BCC, 19 benign lesions. The multivariate projection on latent 
structures with discriminant analysis (PLS-DA) method was used to analyze the 
collected spectral data. Several classification models were built to distinguish differ-
ent pathology types. Based on the clinical significance we estimate differentiating 
models of the skin tumors: (I) malignant tumors (MLG) versus benign tumors (BN), 
(II) melanoma versus pigmented BN, (III) melanoma versus BCC, (IV) melanoma 
versus other skin lesions. The variable importance in projection (VIP) scores was 
estimated. The VIP scores show the importance of the variables for the prediction 
ability of the model. The higher VIP score value, the more important is the corre-
sponding variable in the built PLS model. In our work, the VIP scores allow finding 
out informative bands of the neoplasm spectra in regression specification to classify 
different tumor types. The proposed models help to estimate the contribution of RS 
to the final accuracy of skin tumors diagnostics. The effectiveness of “optical diag-
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nosis” was compared with the accuracy of the trained oncologist preliminary diag-
nosis. The registered spectra of neoplasms were preprocessed with baseline removal, 
smoothing by the Savitzky–Golay method, the standard normal variation method, 
and centering. The details of the utilized RS setup, Raman spectra processing, and 
classification models creation may be found elsewhere [30]. This research adhered 
to the tenets set forth in the Declaration of Helsinki. The protocols of in vivo skin 
tissue diagnostics were approved by the ethical committee of Samara State Medical 
University. Informed consent of each subject was obtained. Every tumor study was 
accompanied by histological analysis to make a final diagnosis.

 (I) Malignant Versus Benign Tumors

Raw spectra of the neoplasms are a combination of the Raman and AF signals. It 
was found that AF basically influences detection accuracy in low-frequency spectral 
range 300–1000 cm−1 and the analysis of typical Raman peaks shows that the differ-
ences in the 1200, 1249, 1281, 1315, 1392, 1440, 1529, and 1644 cm−1 bands con-
tribute significantly to classify the MLG and BN spectra. The calculated 
PLS-predictors based on the extracted differences for each Raman spectrum are 
plotted on the box plot diagram (Fig. 10.5). The 100% differentiating accuracy was 
achieved, and ROC AUC equals 1.

High accuracy of MLG and BN pathologies separation is explained by patho-
logical processes in malignant tumors that lead to the specific changes in the 
 structure and composition of various organic compounds. The development of the 
malignant skin disease increases the content of metabolic products in the pathologi-
cal areas of the skin, changing the ratio of protein and lipid concentrations. Proteins 
predominantly contribute to the appearance of bands in the spectral range 
1240–1270, 1340, 1440–1460, and 1665 cm−1, the spectral features arising from the 
contribution of lipids, mainly of triolein, are observed in the 1271–1301, 1440, 

Fig. 10.5 (1) Box-plots and bee swarm plots of PLS-predictors for discriminating malignant and 
benign lesions and (2) corresponding ROC curve is derived from spreading PLS-predictors
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1650–1660 cm−1 bands [94]. One of the significant differences between malignant 
and benign formations is the process of metabolism and destruction of collagen. 
Cells of malignant tumors form fast-growing, low-differentiated structures, and the 
development of such structures is accompanied by the increased activity of collage-
nase [95]. Collagenase destroys the molecular bonds of collagen fibers, and changes 
in Raman spectra of skin tissue may be observed in 1248, 1454, and 1665 cm−1 
bands associated with peaks of collagen [96]. Note that the influence of biochemical 
features of tissue malignization on alteration of the Raman signal also makes it pos-
sible to obtain 100% accuracy of differentiation without taking into account the AF 
spectra. At the same time, as VIP analysis showed, the key diagnostic feature is the 
intensity difference around the 1644 cm−1 band. Contribution to the 1640–1660 cm−1 
band is made by C=O vibration in Amid I of structural proteins, C=C alkyl stretch-
ing of lipids and nucleic acids [95]. The intensity of the Amide I band according to 
previous studies [33, 97] is lower for the spectra of cancerous tumors compared to 
the spectra of benign formations and healthy skin.

 (II) Melanoma Versus Pigmented Benign Tumors

Melanoma arises from melanocytes, pigmented cells that make it similar to the 
pigmented benign tumors especially pigmented nevus. However, many of the pig-
mented lesions are excised without further histological confirmation to be malig-
nant. To avoid missing any potentially dangerous tumors, oncologists may identify 
a pigmented benign tumor as a melanoma one and refer the patient for additional 
examinations in a specialized oncological institution for diagnosis confirmation. 
This leads to a surgical excision of the tumor with a wide (up to 3–5 cm) removal of 
healthy skin. Also, specialized oncological institutions became overcrowded 
because of numerous incorrect diagnosis; this leads to the improper financial and 
time costs, because many other patients at the same time really wait for the treat-
ment. Recent survey showed that the ratio of the total number of excised melano-
cytic lesions to the number of histopathologically confirmed melanoma is varied 
from 20–40  in general dermatology practices to 4–18  in specialized skin cancer 
clinics [98]. Therefore, the meaningful task in the melanoma diagnostics is the 
improving the early detection of melanoma without any omit of potential suspected 
tumor while reducing unnecessary biopsies of the benign pigmented lesions. The 
growing trend to use noninvasive biopsy can be responsible for improving the accu-
rate clinical diagnostics of melanoma.

Spectral bands with important differences between spectra of malignant mela-
noma and pigmented nevus were revealed by VIP analysis. Diagnostic VIP bands 
for melanoma versus pigmented nevus correspond to Raman bands of Amide III 
(1246 cm−1), Amide I (1645 cm−1), and collagens (1745, 1816 cm−1 bands). In dif-
ferent studies it is reported about collagen destruction and reduced intensity of the 
Amide I band because of increased melanin content [40]. The lower intensity in the 
melanoma spectra at the Amide I in comparison to nevus spectra can be associated 
with the major differences at the 1645 cm−1 in the obtained PLS model. Spectral 
changes in Amide III region that related to the proteins structure are also effective 
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diagnostic parameters for this classification. The Amide I and Amide III are widely 
used for different tumors classification.

Based on the spectral differences, PLS-predictors were calculated for each spec-
trum. Figure 10.6 shows the box plot diagram of the PLS-predictors on the basis of 
the extracted differences of the model. Spectral differences between melanoma and 
pigmented nevus allow to achieve 84% sensitivity and 82% specificity. ROC AUC 
was found to be 0.92.

In this differentiating model 5 out of 32 melanoma were incorrectly classified 
with three of them amelanotic melanoma and one weak pigmented melanoma. The 
amelanotic melanoma is a type of melanoma without pigmentation. However, other 
four amelanotic melanoma were correctly classified as melanoma. According to the 
previous studies [99], the melanin has Raman peak near the 1380 and 1580 cm−1 
bands and is not observed in our classification model. For this reason, it is not clear 
whether pigmentation is an important factor to differentiate melanoma from pig-
mented lesions. In contrast to our results, Philipsen et  al. [100] investigated the 
influence of skin pigmentation on spectral Raman intensity. The authors studied 165 
normal skin samples with different pigmentation (Fitzpatrick skin type I–VI), 25 
pigmented and unpigmented BCC, 41 pigmented nevi, and 15 pigmented malignant 
melanoma. The important finding of this study is that the Raman diagnoses are not 
relying on pigmentation. They claimed that increased skin pigmentation results in a 
higher spectral background caused by AF, which could be removed by background 
correction. The authors showed 93.3% sensitivity and 96.4% specificity for 
 melanoma diagnostics, 88% sensitivity and 85.5% specificity for BCC, 87.8% sen-
sitivity and 84.2% specificity for pigmented nevus.

Fig. 10.6 (1) Box-plots and bee swarm plots of PLS-predictors for discriminating melanoma and 
pigmented nevus and (2) corresponding ROC curve is derived from spreading PLS-predictors
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 (III) Melanoma Versus Basal Cell Carcinoma

In the malignant versus benign tumors classification, we combined melanoma 
and BCC spectra as malignant and achieved 100% differentiation accuracy. In mela-
noma versus BCC classification, we achieved only 75% accuracy (90% sensitiv-
ity–67% specificity). ROC AUC of this model equals 0.77 (Fig. 10.7). Therefore, 
we can assume that RS is more sensitive to the similarity features of the  pathological 
growth despite the differences in the structure and principle of melanoma and BCC 
tumor cells development.

The important differences between the spectra of the melanoma and BCC were 
found in 1444, 1535, 1655 cm−1 bands. Gniadecka et al. [101] showed that the spec-
tra of melanoma and BCC have similar tendency to increase the spectral intensity in 
the 1300–1330  cm−1 band of lipids. This feature is in good agreement with our 
results, because VIP score analysis for differentiation of melanoma and BCC did 
not point this spectral band as important for the model. On the other hand, BCC has 
much more motility and invasiveness of tumor cells due to the higher level of actin 
in comparison with melanoma [102, 103]. The bands responsible for the actin con-
tent are 1210, 1342, 1452, and 1613 cm−1. In the melanoma vs BCC model the VIP 
analysis identified the 1207–1217 and 1433–1444 cm−1 regions, representing differ-
ences in actin concentration. In the melanoma spectra there is a decrease in the 
intensity in the Amide I region of 1644–1660 cm−1.

 (IV) Melanoma Versus Other Skin Lesions

To differentiate melanomas from other skin neoplasms, the VIP analysis extracts 
1261, 1330, 1369, 1450, 1510, 1570, 899, 1625, 1730, 1781 cm−1 peaks as informa-
tive bands. From the distribution of the PLS-predictors, 91% sensitivity and 85% 

Fig. 10.7 (1) Box-plots and bee swarm plots of PLS-predictors for discriminating melanoma and 
BCC and (2) corresponding ROC curve is derived from spreading PLS-predictors
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specificity were achieved, ROC AUC equaled 0.94 (Fig. 10.8). 29 out of 32 mela-
noma and 60 out of 71 nonmelanoma were correctly identified. Moreover, 10 out of 
11 incorrectly identified nonmelanoma lesions were pigmented nevus.

Oncologist’s Diagnostics Accuracy To compare the accuracy of RS study with 
the accuracy of clinical diagnosis, we assessed the diagnostic accuracy of the skin 
neoplasm from the primary inspection by an oncologist. 1 out of 19 melanoma was 
defined preliminary as a benign tumor and another 1 melanoma was defined as a 
malignant tumor without type specification. Five out of 19 benign tumors were 
identified as melanoma and another 7 benign tumors—as BCC. The oncologist 
found suspected melanoma for 4 studied BCC.

In other cohorts 2 out of 32 melanoma were identified as pigmented nevus, 2—as 
BCC.  In addition, 8 out of 33 nevus were incorrectly identified by oncologist as 
malignant tumor, namely 5 of them as malignant tumors and 3 as malignant tumor 
without type specification. Accuracy, sensitivity, and specificity of the preliminary 
diagnostics were calculated and presented in Table 10.2.

The results shown in Table 10.2 demonstrate that the proposed method based on 
the application of conventional RS may be an effective and rapid approach for skin 
pathologies classification because of the advantages associated with Raman features 
and possibility to register optical signal by a single portable device. Simultaneous 
analysis of changes in endogenous chromophores by RS is a powerful tool for tissue 
malignancy detection.

Fig. 10.8 (1) Box-plots and bee swarm plots of PLS-predictors for discriminating melanoma and 
other skin lesions and (2) corresponding ROC curve is derived from spreading PLS-predictors
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10.9  Multimodal Raman Optical Techniques

The accuracy of skin tumors diagnosis by spontaneous RS may be improved by a 
number of techniques, including application of other Raman modalities (or other 
excitation wavelengths) or even implementation of other optical approaches. For 
instance, Feng et al. [96] utilized a Raman system (830 nm excitation wavelength, 
CCD camera cooled to −30 °C) to study different skin neoplasm types from 199 
skin lesions. PCA analysis of RS data demonstrated significant differences between 
cancer, precancer, benign and normal lesions. Nonmelanoma skin cancers versus 
precancer lesions model was realized with 95% sensitivity and 21% specificity. The 
better result was achieved for classification of 12 malignant melanoma versus 17 
dysplastic nevus with 95% sensitivity and 100% specificity. This result is very 
meaningful because high accuracy of melanocytic neoplasms differentiation is chal-
lenging due to the similar appearance of melanoma [104]. Cicchi et al. [32] reported 
56% sensitivity and 89% specificity for discriminating 10 malignant melanoma and 
10 melanocytic nevi in ex  vivo studies using 785  nm laser for RS excitation. 
According to the achieved results, the most informative spectroscopic signatures for 
this discriminating model are in the 1260 cm−1 and 1620 cm−1 regions. In this study, 
the combination of visible fluorescence and NIR Raman spectroscopy allowed for 
improving diagnostic capabilities for discriminating melanoma and nonmelanoma 
tumors with 89% sensitivity and 100% specificity.

The combination of several optical methods is a good solution to improve diag-
nostic performance of the cancer detection and classification. Generally, the multi-
modal system unites different optical methods that demonstrated ability to jointly 
analyze biochemical, structural, and physiological tissue characteristics.

Lim et al. [40] suggested multimodal diagnosis of melanoma and nonmelanoma 
skin cancer using reflectance, AF, and RS. The classification of melanoma versus 
pigmented lesions resulted in 100% accuracy based on the alone RS with important 

Table 10.2 Classification accuracy of PLS-DA models and diagnosis by oncologist

Classification model
Number of 
samples

Accuracy (sensitivity–specificity)
PLS-DA model Oncologist

Melanoma versus BCC 19 versus 18 78%
(90%–67%)

85%
(90%–81%)

Melanoma versus nevus 32 versus 33 83%
(81%–85%)

80%
(87%–73%)

Melanoma versus other neoplasms 
(BCC+benign)

32 versus 71 87%
(91%–85%)

79%
(87%–75%)

Malignant (melanoma+BCC) versus 
benign tumors

37 versus 19 100%
(100%–100%)

63%
(90%–37%)
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diagnostic parameters in Amide I, 1300–1340 cm−1 lipids, Amide III, CH2 around 
1450 cm−1, and spectral bands around 800–1000 cm−1. In classification of nonmela-
noma skin cancer versus actinic keratosis the combined approach improved 72% 
sensitivity and 64% specificity using only RS to 95% sensitivity and 71% specificity 
for multimodal approach. The main spectral feature of nonmelanoma skin cancer is 
a lower reflectance intensity because of breakdown of collagen from the progression 
of malignancy.

In our previous studies, Zakharov et al. [105] combined RS, backscattering spec-
troscopy (BS), and optical coherence tomography (OCT) methods to detect BCC 
and melanoma. The combination of RS with either of OCT or backscattering spec-
troscopy improves the sensitivity and specificity of BCC detection by 20% and 10% 
compared with only RS implementation. Conversely, the specificity of melanoma 
diagnosis by combined approach increases by 5% compared with RS, while sensi-
tivity does not change. The results demonstrated that OCT is a highly informative 
tool for BCC diagnosis, while RS is more accurate for melanoma detection. Also, 
BS can be used for rapid scanning of tumor boundaries because of processing rate.

In the study by Bratchenko et al. [93] we demonstrated application of RS with 
AF in visible range (457 nm and 532 nm lasers were used to stimulate AF response). 
Combination of AF analysis with RS study allows for increasing the sensitivity and 
specificity of melanoma detection from 80% to 97% due to involvement in joint 
criteria analysis of the changes in concentration of porphyrins, flavins, and melanin 
along with RS criteria. High level of malignant skin tumors classification accuracy 
is indicative of high clinical potential of the proposed method. This method may be 
used with equal success as for precise tumor type determination as for mass screen-
ing surveys. For example, fast analysis of large tissue areas may be performed on 
the first step only with NIR and visible AF, as the AF signal is much more intense 
than an RS signal and may be collected during a short time. The accuracy of only 
AF skin tissue analysis (both in visible and NIR spectral regions) is about 87% and 
it may be increased by RS analysis of the suspicious areas on the next step. Such 
joint analysis will be characterized by 100% sensitivity with 96% specificity.

In our latest studies [30] we tried to utilize joint RS and AF NIR analysis for the 
classification of benign and malignant skin tumors. Typical spectra of BCC and BN 
formation with VIP for malignant versus benign tumors model are shown in 
Fig. 10.9. According to VIP analysis, the most informative differences between the 
malignant (n = 37) and benign (n = 19) neoplasm spectra are observed in 533, 713, 
877, 946, 1048, 1281, 1439, 1562, and 1644 cm−1 bands. This model considers both 
Raman and AF features of the neoplasms. Spectral differences between the malig-
nant and benign tumors allow achieving 100% accuracy, and ROC AUC equals 1.

Santos et  al. [104] presented a classification model to distinguish melanoma 
from benign melanocytic lesions. A high-wavenumber Raman system with 976 nm 
excitation wavelength was used to register Raman spectra from 24 melanomas and 
47 benign melanocytic lesions. The authors suggested increase in lipid content in 
melanomas in comparison with the other lesions and found the AUC of the ROC 
curve to be 0.77 for such classification.

10 Raman Spectroscopy Techniques for Skin Cancer Detection and Diagnosis



384

Gniadecka et  al. [101] presented the other work studying high-wavenumber 
region. The authors investigated melanoma detection using NIR Fourier transform 
RS with neural network classifier. Neural network analysis allowed for differentia-
tion of 22 melanoma from 41 pigmented nevi, 48 BCC, 23 seborrheic keratosis, 89 
normal skin with 85% sensitivity and 99% specificity. The authors suggested that 
melanoma could be differentiated from pigmented nevi, BCC, seborrheic keratoses, 
and normal skin due to the decrease in the intensity of the Amide I protein band 
around 1660 cm−1. Later Philipsen et al. [100] showed application of NIR Fourier 
transform RS with a 1064  nm excitation source and liquid nitrogen-cooled Ge 
detector at 8 min acquisition time of spectra. The examination was performed from 
different skin sites of 55 healthy persons with different skin pigmentation and 72 
patients with lesions. The important finding of that work is that RS diagnosis does 
not depend on tissue pigmentation. Melanoma was classified from normal skin with 
93.3% sensitivity and 96.4% specificity, BCC with 88% sensitivity and 85.5% 
specificity.

Kong et al. [106] reported about scanning Raman microscopy for BBC diagnos-
tics during surgery. This method allowed obtaining diagnostics maps of BCC 
excised during Mohs micrographic surgery. Moreover, Raman diagnostics maps 
were in excellent agreement with the gold-standard histopathology, but obtained 
faster than standard frozen section histopathology. The authors achieved 100% sen-
sitivity and 92.9% specificity for the diagnosis of 22 BCC samples.

Heuke et al. [107] described the study of nonmelanoma skin (BCC and SCC) 
cancer using the multimodal imaging approach including CARS, second harmonic 
generation (SHG), and two photon excited fluorescence (TPEF). The author reported 
that morphological features of cancer site can be identified using CARS. Figure 10.10 

Fig. 10.9 VIP scores for malignant vs benign tumors classification
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demonstrates multimodal analysis of histopathological BCC section. The authors 
state that both BCC and SCC show a lack of SHG and increased TPEF signal for 
cancerous tissue. Moreover, the distinct appearance of BCC and SCC in CARS is 
reported. While the BCC regions display a relatively weak CARS signal, the SCC 
nests show a strong CARS signal compared to the surrounding tissue. Also it is 
expected to boost in vivo studies of this promising technological approach.

Fig. 10.10 (a) CARS; (b) SHG; (c) TPEF (grayscale); and (d) multimodal image (CARS: red; 
TPEF: green; SHG: gray) as well as (e) H&E stained picture of the BBC section. The red (tumor-
ous) and green (non-tumorous) squares locate the position of the 100  ×  100 pixel sized areas 
selected for statistical analysis. (a) CARS overview image of a BCC. The BCC tissue appears 
darker in CARS. In general BCC tissue shows no SHG signal; (c) corresponding TPEF image. 
BCC tissue appears slightly brighter than the adjacent dermal tissue, but darker than elastin fibers; 
(d) Multimodal large overview image, i.e., the combination of the images 2a–c (reprinted with 
permission from [107])
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10.10  Conclusions and Future Perspectives

For the moment, only conventional RS is widely used for skin cancer biopsy in 
clinical trials. To develop RS methods for cancer diagnostics, various scientific 
groups use highly sensitive equipment with a high degree of detector cooling [55, 
94, 97, 108–110]. As we can see from the considered studies, basically, the cooling 
range from −120 °C to −60 °C has been used. In the study by Khristoforova et al. 
[30] and in the latest clinical trials of our research group described in Sect. 10.8, we 
obtained a comparable result of skin lesions differentiation using multimodal 
approach with combined RS and AF multivariate analysis and portable setup with a 
detector cooled only down to −15 °C. This peculiarity considerably distinguishes 
the proposed equipment in terms of cost and capability of operation in clinical stud-
ies. The use of the proposed portable cost-effective spectrometer is ideally suitable 
for implementing the idea of skin cancer screening. Compactness and easy transpor-
tation can make such systems the most attractive and convenient for mass screening 
surveys. Thus, the use of a portable Raman spectrometer (to acquire conventional 
Raman signal) along with the PCA or PLS is a promising approach that may become 
an indispensable tool to the medical specialists when examining skin lesions for 
malignancy.

However, optical biopsy of skin cancer may be enhanced by implementation of 
numerous Raman techniques in addition to conventional RS.  These techniques 
include both methods of tissue chemical composition analysis and imaging 
 techniques. Such techniques as SERS or resonance RS may provide additional 
information about tissue chemical composition in comparison to conventional RS, 
and thus make diagnosis more accurate. At the same time, the application of SERS 
and resonance RS requires more complicated experimental setup and is character-
ized by complex process of spectra registration. Imaging techniques provide an 
opportunity to study tumor morphology (SORS) and even provide an opportunity to 
perform optical histology of studied tissues (CARS and SRS). Optical histology 
opens a new chance for in vivo examination of tumor tissues, as it helps to find the 
exact tumor type using an analogue of a medical gold standard (histopathological 
study of tissue). CARS and SRS setups are stationary facilities that restrict wide 
implementation of such approaches in mass screening applications. However, 
CARS and SRS may be effectively applied in specialized clinics for exact tumor 
margins detection during surgery operations. A combination of RS and other optical 
techniques is very promising in clinical applications due to the increase of diagnos-
tic accuracy. Such multimodal units may include combinations of RS, AF, backscat-
tering spectroscopy, optical coherence tomography, different fluorescent techniques, 
multiphoton spectroscopy and many others. Limitations of multimodal approaches 
are high-cost and time-consuming procedures of tissue examination. Nevertheless, 
recent progress in optical equipment brings closer the opportunity to use CARS, 
SRS, SERS, and different multimodal approaches in clinical practice.
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Chapter 11
Multimodal Optical Diagnostic 
in Minimally Invasive Surgery

Elena Potapova, Viktor Dremin, Evgeny Zherebtsov, Andrian Mamoshin, 
and Andrey Dunaev

11.1  In Vivo Multimodal Optical Diagnostic 
in Abdominal Surgery

Over the past decades, new supplementary techniques for video endosurgical, trans-
cutaneous, minimally invasive, and endovascular interventions have been success-
fully applied in clinical surgery. In 1987 E.A. Wickham coined the term “minimally 
invasive procedure” [1], which in many aspects had cornerstoned the dynamical 
development of that research area [2]. Minimally invasive surgery techniques (MIS) 
offer ultimate benefits significantly reducing tissue trauma due to minimization and 
even elimination of surgical cuts, as well as shortening patient’s recovery time and 
lowering the overall treatment costs. One of the key technologies for MIS is the use 
of remote handling instruments with channels for optical visualization of the opera-
tion field. Such revolutionary techniques as natural orifice transluminal endoscopic 
surgery (NOTES) and single-incision laparoscopic surgery (SILS) can be imple-
mented [2, 3] with the introduction of the remote handling instruments.

The common approach of feedback for a surgeon during the minimally invasive 
intervention is the use of video image of the operation field [4]. In most cases the 
peculiarities of the image rotation and data transmission hamper visual perception 
and adequate judging of the tissue condition [5, 6]. SILS is carried out through a 
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small incision, allowing surgical instruments to penetrate into the abdominal cavity 
with synchronous imaging of surgical field. NOTES is an emerging technology 
within MIS which gives the surgeon feasibility to access the peritoneal cavity via a 
hollow viscus for diagnostic and therapeutic procedures. Standard laparoscopic and 
endoscopic instruments provide visualization of the operation field by the white 
light illumination with the collection of the reflected light through the lens system 
and capture of the color video frames in real time. White light imaging allows the 
surgeon to distinguish anatomical structures and evaluate its most significant patho-
logical changes. Modern MIS techniques feature the use of new visualization tech-
nologies to establish real-time feedback to help the surgeon with procedure 
optimization [7]. The application of advanced optical methods in MIS can be a truly 
game-changing technology for diagnostics and treatment of many types of patholo-
gies while sometimes not too difficult for immediate implementation becoming 
mainstream research trend.

Detection of subtle lesions at the beginning stage for intraoperative diagnostics 
is usually a task of great difficulty. The detection of flat adenoma in the colon, as 
well as early stages of esophagus cancers, requires increased contrast and resolution 
for the imaging system. Recent advancements in molecular biology and develop-
ment of new light sources, compact spectral imaging systems have opened new 
possibilities for effective instant recognition of malignant tissue during endoscopy 
procedure without conventional biopsy or cytology analysis. The optical biopsy 
methods implemented during an endoscopic procedure allow better contrasting and 
resolution of the image and help to obtain biologically and biochemically related 
information about the mucosa [8, 9]. Leading core technologies in cancer detection 
are fluorescence endoscopy, optical coherence tomography, confocal microendos-
copy, and Raman spectroscopy. Each method has its own advantages and disadvan-
tages but being combined together they can supplement each other. Such multimodal 
approach benefits better sensitivity and specificity rather than each method being 
applied separately.

In recent years a significant number of papers have been dedicated to the studies 
with the multimodal diagnostics during MIS, in particular the clinical diagnosis of 
abdominal cancer. Nevertheless, the tasks of microvascular network mapping as 
well as acquiring information about the molecular characteristics of the tumor are 
still challenging.

In this chapter, we would consider only those MIS instrumental systems that 
have passed at least the preclinical stage of testing in animal tumor models or have 
already been introduced into the clinical practice of abdominal surgery. The use of 
multimodal device for united analysis of white light, bioluminescence, fluorescence 
imaging, narrow-band light reflection, and Raman scattering allows one not only to 
obtain macroscopic images of the region of interest but also to visualize cellular and 
subcellular tissue features with microscopic resolution [10]. In such approach one 
could initially quickly inspect a large area of tissue for detection of abnormal areas 
with high diagnostic sensitivity, and then more scrupulously monitor these suspi-
cious areas using high-resolution imaging technologies to eliminate interfering fac-
tors, improving the overall specificity of cancer detection [11].
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One of the first optical multimodal devices combined methods of fluorescence, 
reflective, and light scattering spectroscopy with standard endoscopic instrument 
for evaluation of dysplasia in patients with Barrett’s esophagus [12]. In this work, it 
was demonstrated how the endoscopic examination could use in clinical conditions 
the combination of fluorescence and reflective spectroscopy for obtaining additional 
information about the biochemical and morphological state of the tissue and the 
corresponding changes that occur during the progression of dysplasia. Fluorescence 
spectroscopy is based on the registration of laser-induced fluorescence from natural 
fluorophores such as FADH, NAD, tryptophan, collagen, and porphyrins and serves 
as a sensitive indicator of the biochemical composition of the tissue. Light reflection 
and scattering spectroscopy provide morphological information about tissue archi-
tecture and nuclei of epithelial cells. The scheme of a multimodal endoscopic instal-
lation for recording the spectral characteristics of esophagus tissues through the 
instrument channel of the endoscope is shown in Fig. 11.1.

The described multimodal approach made it possible to achieve a high level of 
sensitivity and specificity in the classification of nondysplastic, low-grade and high- 
grade dysplastic tissue with Barrett’s esophagus. This is confirmed by clinical stud-
ies, which showed that simultaneous analysis of the results obtained by fluorescence, 
reflective, and light scattering spectroscopy can be used to differentiate high-grade 
dysplasia from low-grade and nondysplastic sites with high levels of sensitivity and 

Fig. 11.1 Experimental scheme. During endoscopy, the probe was inserted into the accessory 
channel of the endoscope and brought into gentle contact with the tissue, thus providing a fixed 
delivery-collection geometry. The reflected and fluorescence light was collected by the probe and 
coupled to a spectrograph and detector. The average of 3 sets of spectra from each site was used 
for analysis. Immediately after the spectral acquisition, the probe was removed, and a slight demar-
cation remained on the tissue for 30–60 s as a result of the probe contact. This endoscopically 
apparent marker was used as a guide for taking a biopsy specimen from the same site at which 
spectra were acquired. The biopsy specimen was interpreted and classified by an experienced 
gastrointestinal pathologist. If a dysplastic lesion was suspected, the specimen was reviewed and 
the diagnosis was confirmed by a second gastrointestinal pathologist, following the standard of 
care (reprinted with permission from [12])
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specificity (100%). Additionally, dysplastic and nondysplastic epithelia can be dis-
tinguished with very high sensitivity and specificity (93% and 100%, respectively).

Bergman with co-researchers [13, 14] demonstrated one of the first high- 
resolution multimodal endoscopic imaging systems integrated into a single device 
for intraoperative diagnostics of abdominal organs, which allows obtaining auto-
fluorescence imaging and narrow-band imaging to detect early neoplasia in patients 
with Barrett’s esophagus. These studies showed that the unification of high- 
resolution endoscopy (HRE), magnifying endoscopy, autofluorescence imaging 
(AFI), and narrow-band imaging (NBI) in a single device can significantly increase 
the sensitivity of the device and reduce false positives. High-resolution endoscopy 
provides clear imaging of small details that can facilitate the detection of early 
tumor lesions. Moreover, autofluorescence imaging may be used for determining 
high-grade intraepithelial neoplasia as areas with reduced autofluorescence have an 
increased tendency to neoplasm [15]. Autofluorescence imaging is used in a browse 
mode to draw attention to potentially tumor areas, which are subsequently exam-
ined more closely by narrow-band imaging. Narrow-band imaging is a term applied 
to a specific commercial imaging technique (Olympus America, Center Valley, 
Pennsylvania) that uses two specific backlight wavelengths. Blue illumination at 
414 nm allows for obtaining images of surface capillaries, and green illumination at 
540 nm allows for visualization of vessels at а greater depth [16]. Figure 11.2 shows 

Fig. 11.2 (A–C) A lesion containing high-grade dysplasia and early carcinoma is depicted at the 
11 o’clock position. (A) A more prominent lesion located at the 5 o’clock position is shown. Both 
lesions were detected with HRE and AFI. NBI showed irregular mucosal and vascular patterns 
suspicious for dysplasia. (D and E) Two lesions with high-grade dysplasia/carcinoma located at the 
2 and the 5 o’clock positions are shown. These lesions were missed during HRE but were subse-
quently detected with AFI (E). NBI (F) showed irregular mucosal and vascular patterns and abnor-
mal blood vessels suspicious for dysplasia (reprinted with permission from [14])
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typical example of application of the described trimodal approach for diagnosis of 
intraepithelial neoplasia in Barrett’s esophagus. It is clearly visible that autofluores-
cence imaging helps to visualize lesions which were missed during high-resolution 
white light endoscopy. At the same time, the narrow-band imaging highlights areas 
of irregular, disturbed mucosal pattern and abundant small abnormal blood vessels.

Later, the effectiveness of the use of the trimodal endoscopy was also shown for 
the diagnosis and contrast imaging of other tumors, in particular, early neoplasia of 
the stomach [17], as well as for the detection and differentiation of colon pol-
yps [18].

The multimodal approach may also enhance the sensitivity of endoscopy neo-
plastic lesions mapping of colorectal cancer (CRC) for subsequent accurate removal. 
Joshi et al. [19] have developed a multimodal video colonoscope for targeted wide- 
field detection of non-polypoid colorectal neoplasia. The multimodal video colono-
scope (CF-Y0012, Olympus) contains two separate channels for collecting white 
light and fluorescence images, as shown in Fig. 11.3.

Fluorescence microscopy provides microscopic images using fluorescent dyes at 
the subcellular level. Diffuse reflection spectroscopy examines the scattering of 
light from the surface of the mucous membrane and is able to differentiate between 
normal and tumor tissues due to increased scattering of light from cells that are less 
organized and have larger nuclei. To obtain fluorescence images, fluorescein 

Fig. 11.3 Multimodal video colonoscope: (A) Schematic of prototype instrument. Separate stan-
dard definition detectors are used to collect either (B) white light (WL) or (C) fluorescence images. 
A filter located in between the fluorescence objective and detector passes light from FITC. (D) 
Reflectance images collected with the same detector are co-registered with fluorescence. (E) 
Summary of optical parameters. White light and fluorescence/reflectance images are collected at 
20 and 10 frames/s, respectively. aw—air/water nozzle (reprinted with permission from [19])
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isothiocyanate is injected locally into the mucosa of the proximal colon in concen-
tration through a nebulization catheter passed through the instrument channel.

Processing co-registered images of fluorescence and reflection allows to deter-
mine the “red flag” region (dashed red line), which may be shown on the screen as 
an overlay on the white light image (Fig. 11.4) to assist the physician in performing 
the biopsy.

Improving the accuracy of endoscopic diagnosis of CRC can be achieved using 
Raman spectroscopy along with fluorescence imaging [20]. For these purposes, 
Jeong et  al. [21] have developed a dual modal fluorescence-Raman endomicro-
scopic system (see Fig.  11.5), which used fluorescence and surface-enhanced 
Raman scattering nanoprobes (F-SERS dots). Fluorescence-Raman endoscopy 

Fig. 11.4 (A) A cap is placed on the distal end of the multimodal video colonoscope to flatten 
mucosal folds for improved visualization. On white light, a non-polypoid lesion (arrow) is seen in 
the proximal colon that could easily be missed. (B) After topical peptide administration, the lesion 
is clearly visualized with fluorescence. Normal colon shows minimal background. (C, D) The 
registered reflectance image was used to produce a ratio-image, shown in pseudo-color, that cor-
rects for distance and geometry. Intensities can be quantified to outline the extent of the lesion 
(dashed red line) and guide resection (reprinted with permission from [19])
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showed high sensitivity in an orthotopic CRC xenograft model using antibody- 
conjugated F-SERS dots (Fig. 11.6). Moreover, fluorescence recording was useful 
for quickly tracking lesions in a large field of view, and Raman signals were used 
for multiple target identification (both tumor cells and tumor microenvironment) 
and quantification.

Miller et  al. [22] have developed a flexible multispectral scanning system for 
fiber-optic endoscopy. The system has demonstrated better characteristics in the 
detection of CRC at early stages (Fig. 11.7).

The suggested methodology integrates the narrow bandwidth visualization, 
chromoendoscopy, and autofluorescence visualization. The use of chromoendos-
copy with nonspecific exogenous dyes allows one to improve the contrast for the 
visualization of the microanatomical malformations in mucosa. The developed 
fiber-optic system for endoscopy employs helical scanning by red, green, and blue 
wavelength (440 nm, 532 nm, 635 nm) and collection of the backscattered radiation 
by a central ring of fibers. The rotation of the scanning tool allows the system to 

Fig. 11.5 Schematic illustration of real-time multiplexed imaging using the fluorescence-Raman 
endoscopic system (FRES). (a) The mode of dual modal detection with fluorescence and Raman 
scattering. The real-time fluorescence imaging tracks the locations of the probe-targeted areas, and 
a concurrent SERS spectral analysis identifies the species of targets. (b) Illustration of the in vivo 
multiplexed molecular imaging procedure: First, access to a suspicious lesion via optical images; 
second, the spray-and-mix multiple F-SERS dots for topical administration; third, a multiplexed 
measurement of the targeted F-SERS dots with FRES (reprinted with permission from [21])
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register 2D maps of the visualized tissue surface. An important part of the technique 
is the use of highly specific dye proteins binding to the sites of CRC dysplasia. 
Together with the described scanning fiber-optic endoscope, the dyeing method has 
shown highly promising results in early detection of tumor with prospects of clini-
cal applications.

For the early CRC cancer screening also a combined use of the endoscopic OCT 
and fluorescence visualization has been reported in a series of publications [23–27].

The combination of the OCT and fluorescence imaging channels simultaneously 
provides information on fine morphological structure of the tissues as well as on its 
molecular characteristics. Mapping of the microvascular structure of the tumor 
in vivo is a quite challenging task. Suggested by Yan Li et al. [27] system with endo-
scopic OCT and near-infrared (NIR) fluorescence imaging for mapping of the 
microvasculature is an example of a diagnostic system (Fig. 11.8), which provides 
a combination of imaging with high frame rate, good spatial resolution and unifor-
mity of the scanning system while using the FDA approved dye.

Fig. 11.6 Evaluation of FRES in a real-time endoscopic system. (a) Orthotopic CRC xenograft 
modeling. One week after injecting 1 × 107 HT29-effluc cells, bioluminescence imaging (left) 
showed moderate-to-high activity in the colorectal area of mice (lateral view; n = 20). The FRES 
imaging method used in a real-time endoscopic system is shown (right). (b) Mice with CRC (two 
weeks after injecting 1 × 107 of HT29-effluc cells) were investigated in a real-time endoscopic 
study of FRES. After spraying 100 μg each of EGFR-F-SERS-A and VEGF-F-SERS-B dots, fluo-
rescence signals were found as well as two corresponding Raman signals [RITC (-A) and FITC 
(-B)]. (c) Tumors were excised, fixed, and sectioned. EGFR and VEGF positivity was identified by 
immunohistochemistry (IHC), and tumor cell infiltration was observed by hematoxylin and eosin 
(H&E) staining. (d) After spraying 100 μg each of EGFR-F-SERS-A and VEGF-F-SERS-B dots 
on normal colons (control), no fluorescence or Raman signals were detected (reprinted with per-
mission from [20])
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An example of the combined OCT and NIR-fluorescence images obtained using 
the described system as well as reference histology slices of the same tissue sample 
is shown in Fig. 11.9.

In OCT image a mucosa bulging can be clearly identified as well as dark areas of 
necrosis absorbing bulk of the probing optical radiation. The fluorescence images of 
the corresponding areas of the wall swelling on the contrary demonstrate increased 

Fig. 11.7 Multispectral scanning fiber endoscope. (A) Optical design. RGB laser excitation (440, 
532, and 635 nm) is delivered into a single-mode optical fiber that is scanned in a spiral pattern by 
a piezo tube actuator and focused on to the tissue (illumination plane) by a lens assembly. 
Fluorescence is collected by a ring of 12 collection fibers mounted around the periphery of the 
scanner housing, protected by an outer sheath. (B) Fluorescence detection. Reflectance from RGB 
laser excitation is removed using a combination of longpass (λLP = 450 nm) and notch (λN1 = 532 nm 
and λN2 = 632.8 nm) filters. Fluorescence is deflected into individual RGB channels using dichroic 
mirrors DM1 (λC = 460 nm) and DM2 (λC = 550 nm) and an additive dichroic filter set (λR, λG, and 
λB) prior to detection with PMTs (reprinted with permission from [22])
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Fig. 11.8 (a) Overall design of endoscopic multimodality OCT and NIR-fluorescence system. (b) 
Multimodality imaging probe. WDM: wavelength division multiplexer. PMT: photomultiplier 
tube. DCF coupler: double clad fiber coupler. OCT: optical coherence tomography. CW: continu-
ous wavelength. GRIN: gradient index (reprinted with permission from [27])

Fig. 11.9 Normal rectum (I) and adenocarcinoma (II): (a) The combined OCT and NIR- 
fluorescence image. (b) Enlarged view of the dashed box in (a). (c) Histology. M: mucosa; SM: 
submucosa; MP: muscularis propria (reprinted with permission from [27])
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intensity of the emission. The results point out that the multimodal approach is able 
to simultaneously visualize multilayer structure and microvascular network of colon 
tissue which is important for the identification and differentiation of healthy tissue, 
hyperplastic polypuses, and adenocarcinomas.

An interesting trimodal method for detection of flat lesions in colitis-associated 
cancer has been implemented by a color-fluorescence-polarization endoscopy sys-
tem [28]. The introduced polarization channel allowed the setup to highlight almost 
non-transparent to the fluorescence excitation radiation areas and significantly 
increase the overall sensitivity of the delivering diagnostics. The schematic diagram 
of the system utilizing the RGB, fluorescent and polarization channels is shown in 
Fig. 11.10.

Fig. 11.10 Trimodal color-fluorescence-polarization endoscopy. (a) Endoscope setup used to per-
form white light, fluorescence, and polarization endoscopy. A telescope coupler with a focus ring 
was used to focus the image onto the image formation plane located at the back of the Karl Storz 
telescope lens. For white light endoscopy, Xenon Nova 175 was used as a light source and a 
charge-coupled device (CCD) camera (FluorVivo) with an RGB Bayer filter was used. In NIR- 
fluorescence mode, a 100-mW 780-nm laser excitation source (inset I) was coupled to the light 
source channel on the endoscope. An 800-nm long-pass emission filter was placed behind the 
telescope, as shown in the figure. A CCD camera with NIR capabilities (FluorVivo) was utilized to 
capture images in NIR-fluorescence mode. In polarization mode, the Xenon broadband light 
source was used along with a custom-made polarization camera, as shown in inset II. The entire 
setup was fixed on a tripod and an x-y translation stage was utilized for finer adjustments to avoid 
causing damage to the walls of the colon. (b) Steps involved in the dye administration method 
utilizing Pluronic F127 gel formulation. (c) Schematic of the light path associated with the endos-
copy setup presented in (a). (d) Polarization sensor consisting of an imaging array arranged in 
blocks of four (two by two) superpixels. Each superpixel consists of four pixels that are composed 
of nanowire polarization filters with the transmission axis oriented at 0°, 45°, 90°, and 135°. These 
nanowires are 70-nm wide, 140-nm tall, and spaced 140 nm from center to center (reprinted with 
permission from [28])
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An example of the visualization of the adenomatous tumor-surrounding unin-
volved boundary using the described system is presented in Fig. 11.11. The intro-
duction of the polarization imaging in the multimodal system provided a much 
higher contrast of depolarization both in adenomatous tumors and flat lesions, 
reflecting the significantly impaired structural integrity of tissues under study. The 
implemented approach made it possible to isolate real-time areas of suspicious 
colon tissue using molecular fluorescence endoscopy and to scrutinize their condi-
tion using polarization imaging, providing high accuracy and specificity of the pro-
posed method of trimodal diagnosis.

The combination of several optical diagnostic methods in a single tool makes it 
possible to visualize and differentiate normal and pathological tissues in the gastro-
intestinal tract supplementing the information obtained from a routine examination 

Fig. 11.11 In vivo and in situ fluorescence and polarization endoscopy of adenomatous tumor- 
surrounding uninvolved boundary. (a) In vivo fluorescence and polarization endoscopy. (i) RGB 
color image of the tumor identified in the distal colon of an AOM-DSS treated mouse. (ii) 
Fluorescence image clearly identifies boundaries of the tumor. (iii) Grayscale image consisting of 
degree of linear polarization (DoLP) and angle of polarization information in the polarization 
mode at 30 fps. Bright spot in image is from the light source. (iv) Thresholded DoLP mask image 
identifies inflamed regions (reported as DoLP value above 10%; red color) and cancerous regions 
(DoLP value under 5%; green color). (b) Ex vivo (i) RGB, (ii) NIR fluorescence, and (iii) polariza-
tion images of tumor identified in (a). Dotted yellow lines in (i) and (ii) indicate the boundary of 
the tumor. Thresholded DoLP mask image identifies cancerous regions (DoLP value under 10%; 
green color). (c) Histological validation of adenomatous tumor identified in (b), along with corre-
sponding NIR-fluorescence intensity. Dotted rectangle identifies the region under investigation in 
(ii and iv). Arrow indicates the direction of molecular probe administration. UT: uninvolved tissue, 
PP: Peyer’s patch, AT: adenomatous tumor (reprinted with permission from [28])
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under white light. The effectiveness of multimodal endoscopes is confirmed by 
clinical studies demonstrating the significant increase in the sensitivity, accuracy, 
and specificity of the tumor diagnosis. It seems interesting to use a multimodal 
approach in laparoscopy for in vivo diagnosis of tumors. Currently there only a few 
investigations in this field. Although there are known publications on fluorescence 
endoscopy [29], speckle contrast laparoscopy [30, 31], laparoscopic optical coher-
ence tomography imaging [32], applications of hyperspectral imaging during lapa-
roscopic interventions [33, 34], laparoscopic narrow band imaging [35, 36]. Almost 
new area for multimodal optical diagnostics is the diagnostic intervention through 
percutaneous drainage channels [37].

In general, the use of combined different optical imaging methods in MIS instru-
ments can improve the diagnosis of tissue lesions, the detection of tumor boundar-
ies, and upgrade the overall success of the surgical intervention.

11.2  Multimodal Fiber-Optic Tool for Interventional Surgery

Interventional radiological procedures, developed in the late 1970s, represent a rev-
olutionary advance in the field of minimally invasive diagnostics and treatment 
methods with the use of images [38]. This is due to minimal traumatic interventions, 
low surgical and postoperative pain, short period of hospitalization. Among the 
advantages of interventional radiological procedures, it should be noted that percu-
taneous access to the area of interest is carried out using thin atraumatic needles 
under the control of imaging techniques to determine the optimal safe route of the 
instrument and to protect large vessels and hollow organs from accidental puncture. 
The drainage channels are formed by the sequential moving of conical plastic dila-
tors through a metal conductor, accompanied by minimal tissue damage and dis-
placement of vital structures. In the long-term presence of drainage catheters, the 
drainage channel represents as an isolated connective tissue fistula that allows 
manipulations, including repeated diagnostic ones, and does not require surgical 
correction [39, 40]. Image-guided minimally invasive interventions are most com-
monly used in the histopathological diagnosis and therapy of tumors.

Percutaneous transhepatic biliary drainage is a therapeutic manipulation per-
formed under the control of imaging techniques and involving bile duct cannulation 
followed by internal/external catheter drainage of bile contents. Percutaneous access 
to the bile ducts is performed using thin atraumatic needles followed by biliary tree 
contrast with percutaneous transhepatic cholangiography. After the formation of the 
drainage channel, a drainage catheter is installed using a sequential moving of coni-
cal plastic dilators through a metal conductor into the biliary tract. Percutaneous 
transhepatic biliary drainage is indicated for decompression of the biliary tract, 
most often in malignant obstruction, and is usually used for cases where retrograde 
endoscopic intervention is not effective or there is a high intrahepatic obstruc-
tion [41].
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Percutaneous drainage channels provide perfect access for further endoscopic or 
instrumental examination. A fiber-optic system with an optical probe which can be 
used for diagnostics during minimally invasive interventions has been developed in 
STC of Biomedical Photonics (Orel, Russia) [37]. The main units of a device were 
designed in cooperation with SPE “LAZMA” Ltd. (Moscow, Russia).

The multimodal approach was implemented by combining fluorescence spec-
troscopy (FS) and laser Doppler flowmetry (LDF) methods in a single fiber-optic 
probe to record the parameters of endogenous fluorescence and blood perfusion 
during minimally invasive interventions. The fiber-optic system (Fig. 11.12a) pro-
vides measurements of all optical parameters from approximately the same diag-
nostic volume of the tissue (1–3 mm3).

A distinctive feature of the system is laparoscopic optical probe (length 30 cm, 
diameter 3 mm), designed for accessing organs under study through standard instru-
ments for minimally invasive manipulations. The probe contains 6 optical fibers 
(Fig. 11.12b). A single-mode laser module with a radiation wavelength of 1064 nm 

Fig. 11.12 Schematic 
presentation of installation 
for experimental studies 
(a) and location of fibers in 
the optical probe (b) [37]
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was used in LDF channel, LED (365 nm) and laser diode (450 nm) were used for 
fluorescence excitation. The excitation wavelengths were agreed with the fluores-
cent properties of the main endogenous fluorophores, such as NADH, FAD, and 
stromal collagen. Namely, reduced NADH has a maximum of emission at approxi-
mately 490 nm under excitation with UV radiation (365 nm). Oxidized FAD fluo-
resces with peak of emission at approximately 520–540  nm under excitation 
radiation with wavelength of 450 nm [42].

The probing fiber of LDF channel has diameter of 6 μm, 2 receiving fibers have 
a diameter of 400 μm. The source-detector distance for LDF channel is 1.5 mm. The 
diameters of the probing and receiving fibers of FS channel are 400 μm. The numer-
ical aperture of the fibers is 0.22. For safety reasons, as well as to minimize photo-
bleaching effect, the radiation power for a wavelength of 365 nm at the fiber probe 
output does not exceed 1.5 mW. The output power for an excitation wavelength of 
450 nm does not exceed 3.5 mW. The distance between the radiation source and 
receiver in FS channel is 1 mm. A spectrometer of 350–820 nm detection range is 
used to record the fluorescence spectra.

The experimental study involved 20 patients aged 67 ± 2 years diagnosed with 
obstructive jaundice caused by malignant tumors of hepatopancreatobiliary organs. 
All percutaneous minimally invasive interventions were performed in a specially 
equipped X-ray operating room. Percutaneous access to the area of interest was car-
ried out under the control of imaging techniques using thin atraumatic puncture 
needles. The manipulation technique was standard. The position of the distal part of 
the needle in the area of interest was controlled by the position of the ultrasound 
mark of the needle tip and the nature of the discharge coming under pressure from 
the needle cannula or with active aspiration, as well as by the introduction of a con-
trast agent under fluoroscopic control. Dilatation of the puncture canal to the 
required diameter was performed using conical plastic dilators. Optical probe for 
the target parameters registration was set through the formed percutaneous canal of 
minimum diameter 8F to the area of interest. A drainage catheter was installed on 
the conductor after the procedure.

In the research process LDF and FS data was received at the area, which was 
blocked by the malignant tumor, and another area located higher than the first one. 
In the analysis of normalized spectra obtained at a wavelength of 365 nm, the results 
were divided into two groups. Half of them referred into the first type (Fig. 11.13a), 
the remaining spectra were considered as the second type (Fig. 11.13b). The first 
type spectra demonstrated higher fluorescence intensity in the non-compressed 
areas. By comparison, the results of the second group showed more intense fluores-
cence in the blocked area. LDF signals (Fig. 11.13c) were registered in the same 
areas during 1 min.

During in vivo studies, it was not possible to definitely determine whether the 
exophytic and intracranial growth of tumor had occurred or not. In a FS study, usu-
ally higher fluorescence intensities excited by UV radiation were observed in the 
intact area, rather than in the tumor [44–48].

Thus, we hypothesized that the spectra of the first type demonstrate tumor growth 
into the walls of the common bile duct. On the other hand, an increase in the 
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fluorescence intensity in the blocked area for the second group may indicate a 
decrease in blood supply caused by tumor obstruction outside the common bile 
duct. In addition, it is possible that the increased presence of collagen in the inter-
cellular matrix of the muscle layer of the common bile duct wall or the presence of 
blood and bile in the studied area could also affect the recorded fluorescence spec-
tra. The obtained LDF data showed a decrease in blood microcirculation in the area 
of tumor foci compared to the intact area. This can also show the reduced blood 
supply of the blocked area caused by tumor obstruction.

The high individual variability of the results is due to the influence of a number 
of factors such as presence of blood and other substances, the state of the pathologi-
cal process and the disadvantages of existing methods of monitoring the location of 
the instrument for MIS.

In general, the obtained data showed promising results of a multimodal approach 
with the joint application of FS and LDF in MIS in oncology of the common 
bile duct.

Fig. 11.13 The normalized averaged spectra at excitation wavelength 365 nm of first (a) and sec-
ond (b) types, the averaged LDF signals (c) of the areas of interest (printed with permission 
from [43])
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11.3  Multimodal Optical Fine-Needle Biopsy

Modern cancer diagnosis requires histological and cytological analysis of tumors. 
Material sampling for such analysis is often performed using fine-needle aspiration 
biopsy (FNAB). FNAB is well established for cancer diagnosis without open sur-
gery [49] and it is carried out not only to confirm the initial diagnosis, but also to 
assess the progression and prognosis of the further course of the disease, as well as 
to correct the therapy [50].

For accurate insertion of the instrument into tumor tissue, FNAB is performed 
using imaging tools such as ultrasound, CT, and MRI. However, during the proce-
dure, due to the physiological movement of organs, manipulations preceding FNAB, 
involuntary movements of the patient, there may be a displacement of tissues from 
the area defined for the material intake. Also, the size of the affected area may be 
small or poorly determined by imaging techniques. False negative results of histo-
pathological and cytological studies associated with the sampling of material from 
an incorrectly defined area of interest as well as the heterogeneity of cancer contrib-
ute uncertainty to the diagnostic result and become important limitations of this 
method. At the same time, the absence of tumor cells in the obtained tissue samples 
does not guarantee the absence of cancer. Even experienced surgeons using imaging 
techniques allow up to 15–25% of non-diagnostic biopsy samples from uninforma-
tive areas [51–53]. This often leads to a second biopsy, which poses an increased 
risk to the patient.

Optical technologies can improve targeting to the right areas by analysis of the 
molecular and morphological structure of biological tissue prior to sampling, pro-
vide real-time information on tissue status, thereby decreasing the number of undi-
agnosed samples, enhancing the sensitivity of FNAB, and reducing the need for 
repeated and open biopsies for diagnosis. The biopsy taken at the time of surgery 
operation demands immediate analysis. Otherwise, it necessitates the repeated sur-
gical intervention which usually leads to a worsening of the prognosis of the dis-
ease. Development of efficient technology for optical biopsy may offer a solution to 
the problem. The ability to recognize the suspect tissue in a short time without 
interruption of the operation is able to increase the effectiveness of the endoscopic 
surgery of the cancerous tumors.

Problems with the accurate detection and characterization of pancreatic tumors 
are associated with the relative inaccessibility of the organ, as well as the nonspe-
cific nature of the symptoms of diseases. Lloyd et  al. [54] conducted an in  vivo 
experimental study to assess the feasibility of multimodal optical spectroscopy in 
the clinical detection of pancreatic adenocarcinoma. A reflectance and fluorescence 
lifetime spectrometer (RFLS) and fiber-optic probe were employed to collect opti-
cal data from human pancreatic tissues in vivo (Fig. 11.14).

The results of the study showed that this technology is a promising method for 
improving the diagnosis of pancreatic cancer in vivo and can improve the effective-
ness of the diagnostic procedure for selecting tissue sites for further histological and 
cytological analysis in suspected pancreatic cancer.
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Transbronchial lung biopsies are performed by pulmonologists to diagnose focal 
and diffuse lung diseases. Harris et  al. [55] proposed to use the capabilities of 
bimodal optical spectroscopic system combining diffuse reflection spectroscopy 
and diffuse fluorescence spectroscopy to enhance differentiation between malignant 
and benign tissues. The first studies were conducted ex vivo; however, the design of 
the probe with a diameter of 1 mm suggests that in the future these studies can be 
carried out in  vivo. It was confirmed that multimodal optical measurements can 
provide detailed information about vascular and biochemical differences in lung 
tissue and reduce the percentage of undiagnosed samples.

Scolaro et al. [56] reported on the development of a molecular imaging needle 
that includes a dual-modality diagnostic system using optical coherence tomogra-
phy and fluorescence imaging of labeled antibodies. To evaluate the effectiveness of 
visualization with the molecular needle there were obtained images of a 15-μm sec-
tion of human liver fluorescently labeled at the GCTM-5 (Fig. 11.15).

The results showed that the dual-modality system is able to visualize tissues with 
a sensitivity comparable to desktop fluorescence microscopes and to obtain images 

Sterilized fiber-optic probe
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sterile field to surgeon in
sterile field. Optical probe

is inserted into tissue using
an angiocatheter.
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Fig. 11.14 Pancreatic tissue optical measurement protocol, designed to mimic fine-needle aspira-
tion procedures by introducing the optical probe via a hollow angiocatheter. (1) In vivo: at this 
stage of surgery, tissue was still perfused with some blood and was near body temperature. The 
sterilized fiber-optic probe (6 m length) extended from the RFLS in the non-sterile field to the 
patient in the sterile field. At each selected site, the surgeon inserted a 14 gauge angiocatheter (B 
Braun Medical) ~1 cm into the tissue, removed the stylet from the angiocatheter, and inserted the 
fiber-optic probe. Data acquisition for each site was <45 s, with each modality acquired in <1 s. (2) 
In vivo and ex vivo measurements were acquired at the same tissue site by marking the site prior to 
resection. (2, right) Each optical measurement was estimated to interrogate ~1  mm3 of tissue. 
Repeatability was tested by collecting two successive optical measurements at each site, with up to 
two tissue sites measured per patient. Tissue sites were biopsied for histopathologic analysis 
(reprinted with permission from [54])
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of deep tissue at the same time. In the future, such a system can also be used to 
improve the efficiency of biopsies of various organs.

The stereotactic brain tumor biopsy is an effective procedure for assessing intra-
cranial lesions. However, the ambiguity in the images or brain shift can make sam-
pling less accurate and sometimes non-diagnostic. The use of the intraoperative 
examination of pathological focus can improve the diagnostic result of this proce-
dure. Haj-Hosseini et al. [57] developed a multimodal fiber-optic probe in order to 
provide optimal guidance for locating the most likely malignant formations. The 
proposed multimodal spectroscopy system has two channels implemented in a sin-
gle probe: fluorescence spectroscopy for the registration of 5-ALA-induced fluores-
cence protoporphyrin IX (PpIX) and laser Doppler flowmetry for studying the 
microvascular blood flow (Fig. 11.16).

This technology has been clinically tested. In vivo studies have shown the pos-
sibility of real-time fluorescence detection during stereotactic biopsy procedures 
simultaneously with microvascular blood flow recording. This approach can help to 
identify the optimal positions for biopsy sampling, determining the malignancy of 
the formation in real time. Also, LDF channel potentially can act as a “vessel 

Fig. 11.15 Side-viewing needle images obtained for a section of normal human liver, showing 
labeled biliary ducts and liver progenitor cells. (a) En face OCT needle image obtained after aver-
aging 4 co-located OCT A-scans at each radial position. (b) Corresponding fluorescence needle 
image. (c) Magnified OCT image of selected region indicated by dashed box in a. (d) Corresponding 
magnified fluorescence needle image of selected region indicated by dashed box in b. (e) OCT + 
fluorescence magnified image of selected region. Inset: Magnified view of region indicated by 
small pink box. (f) Corresponding standard wide-field fluorescence microscopy image for selected 
region. Inset: High magnification (10× objective) image of region indicated by pink box confirm-
ing liver progenitor cells (reprinted with permission from [56])
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tracking” tool to reduce the risk of hemorrhage due to rupture of vessels during 
needle insertion.

The optical needle for in vivo diagnosis of tumor (see Fig. 11.17) and the tech-
nique of its clinical application in the liver examination have recently been pre-
sented by the research group of Dunaev [58, 59]. A fine-needle fiber probe contains 

Fig. 11.16 (a) The system design concept and (b) configuration of the fibers in the probe. The 
system was composed of a fluorescence spectroscopy and a laser Doppler flowmetry system. The 
probe incorporated several optical fibers that were connected to the two systems. Fl: fluorescence, 
LDF: Laser Doppler flowmetry, em: emission, ex: excitation, AF: autofluorescence, TLI: total 
backscattered laser light intensity, PpIX: protoporphyrin IX (reprinted with permission from [57])

Fig. 11.17 (a) The multimodal FS/DRS fine-needle setup; (b) rat tumor experiment; (c) fragment 
of a tumor node up to 2.5 cm in a diameter; histological examination of tumor tissue with hema-
toxylin and eosin staining at (d) 100× and (e) 400× (reprinted with permission from [58])
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emitting and collecting fibers for measurements of fluorescence intensity (with 
excitation at 365 nm and 450 nm) and diffuse reflectance (in the range 400–900 nm).

The optic probe has been developed to be compatible with the 17.5G biopsy 
needle standard and has a diameter of 1 mm. The probe has 10 optical fibers. The 
nine transmitting ones (100 μm each) include three fibers connected to a halogen 
light source, three fibers connected to a laser diode, and three fibers connected to a 
LED. The fibers are located around the central one (200 μm), which delivers the 
collected light to spectrometer. The quantity and orientation of optical fibers inside 
the fiber-optic probe provides uniform and bright illumination of the diagnostic 
volume and high signal-to-noise ratio. The probe has a bevel angle of 20°, which 
ensures reliable contact of the probe with dense tissues.

With the probe, in vivo test measurements of pathologically altered rat tissues 
(low-grade myxofibrosarcoma) were carried out. As one may see in Fig. 11.18a, b 
there are significant differences between fluorescence spectra of intact tissue and 
myxofibrosarcoma. The authors attribute this to changes in NADH, FAD, and col-
lagen content. It was also observed significant differences between the diffuse 
reflectance spectra of normal and tumor tissue, notably in the wavelength range 

Fig. 11.18 Fluorescence spectra at excitation wavelengths (a) 365 nm, (b) 450 nm and (c) diffuse 
reflectance spectra of normal (blue line) and tumor (red line) rat tissue (reprinted with permission 
from [58])

11 Multimodal Optical Diagnostic in Minimally Invasive Surgery



418

400–600  nm (see Fig.  11.18c). Reflectance measurements clearly show the pro-
nounced reflectance peak in region 450–500 nm. There is the absence of peaks of 
oxyhemoglobin absorption on the tumor spectra, which indicates tissue ischemia.

In addition, the proposed methodology has been tested in clinical conditions. The 
methodology assumes the use of the setup during the standard FNAB procedure 
under the ultrasound control. The surgeon inserts a fiber-optic probe through the 
outer 17.5G needle into the tumor using the shortest trajectory (see Fig.  11.19). 
Before the probe reaches the suspicious neoplasm, measurements of fluorescence 
and diffuse reflectance are performed in healthy liver parenchyma. Then, the needle 
probe is introduced in tumor itself and the measurements are repeated. After the 
measurements, the surgeon obtains a tissue sample from the same area for histologi-
cal and cytological analysis. The key point of this approach is comparison of optical 
and traditional biopsies results for more accurate interpretation.

This study involved 5 patients with adenocarcinoma. Figure 11.20 shows a typi-
cal example of fluorescence and diffuse reflectance measurements. The fluorescence 
intensity is higher in liver parenchyma for excitation at 365 nm and in tumor tissue 
for excitation at 450 nm. This may be caused by changes in the metabolic activity 
of cells in the tumor tissue, as well as a lower blood content that absorbs radiation, 
especially in the green region of the spectrum.

Diffuse reflectance spectra show significant changes in the presence of blood and 
oxy- and deoxyhemoglobin. The intensity of diffuse reflectance in tumors is higher 
than in parenchyma, which may indicate the presence of morphological changes in 
the tissue.

Fig. 11.19 The scheme of measurement during standard FNAB procedure (reprinted with permis-
sion from [59])
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11.4  Conclusions

The high prevalence and mortality of cancer lead to a clinical desire for earlier 
detection of the disease. Great efforts are being made to achieve this goal by the 
implementation of optical spectroscopy and imaging techniques into minimally 
invasive technologies. Optical diagnostic techniques can provide additional infor-
mation about the state of biological tissues with accuracy comparable to histologi-
cal data and are structurally compatible with standard tools for MIS. Along with 
traditionally used optical tools such as endoscopes, colposcopes for cancer diagno-
sis and treatment, a new generation of tools is being developed that can acquire not 
only white light image, but also additional signals arising from cancer biomarkers, 
polarization and fluorescence imaging, narrow-band light reflection, and Raman 
scattering. Integration of several diagnostic methods in a single instrument signifi-
cantly increases the effectiveness of determining the presence of pre-cancerous and 
malignant lesions at the early stages of their development.

Multimodal optical technologies can also be very useful for clinicians as a unique 
guide tool for biopsy. Optical spectroscopy and high-resolution imaging can pro-
vide alternative means of evaluating cell morphology in real time. Also, the 

Fig. 11.20 Fluorescence spectra at excitation wavelengths (a) 365 nm, (b) 450 nm and (c) diffuse 
reflectance spectra of normal (blue line) and tumor (red line)
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introduction of optical diagnostic technologies can guide the doctor to select the 
most suitable sites, which helps to reduce the cost and improve the diagnostic effec-
tiveness of biopsies and following histopathology analysis.

Thus, the analysis of the results of multimodal optical diagnostics can provide a 
great amount of potentially useful information during minimally invasive interven-
tions. At the same time, multimodal optical technology has the advantages of sim-
plicity of sample preparation, lack of violation of sample biochemistry, and the 
possibility of real-time diagnostics.
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Multimodal OCT for Malignancy Imaging
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12.1  Introduction

Optical coherence tomography (OCT) is a minimally invasive imaging yielding 
cross-sectional and volumetric subsurface tissue images with spatial resolution of 
several micrometers, to a depth of 1–3 mm [1]. OCT is based on low-coherence 
interferometry in the near IR range of wavelengths (700–1300 nm). Since the first 
successful demonstrations of biological tissue microstructure imaging by OCT [2], 
in the further studies significant attention was focused not only on improvement of 
resolution and increasing the rate of acquiring conventional structural images but 
also on modifications of the very principle of OCT image formation and the devel-
opment of new methods of OCT image processing aimed at visualization of new 
types of tissue parameters. Indeed, simultaneous mapping of several functionally 
different characteristics of biological tissues can significantly increase the informa-
tion content and correspondingly improve the specificity of diagnostics based on 
OCT inspection. Such functionally different types of OCT imaging include 
polarization- sensitive images, elastographic images that characterize mechanical 
properties of tissues (stiffness), and OCT-based mapping of microcirculation of 
blood in the inspected region (i.e., angiographic imaging). Besides these, one can 
also combine structural OCT images with images of tissue fluorescence [3], 
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combining multispectral and spectral-domain OCT microscopy [4], performing 
OCT at significantly different spectral ranges [5–7], and so on.

12.1.1  Cross-Polarization OCT (CP OCT)

Polarization-sensitive methods extend biomedical imaging by increasing the infor-
mation value of the OCT inspection via extraction of qualitatively new information 
about the tissue properties. For example, in conventional OCT the “regular” (spa-
tially homogeneous) birefringence of tissue manifests itself in the form of modula-
tion of the image brightness as a function of the depth (due to the phase delay 
between the normal optical modes propagating in the medium). In the more general 
case, the backscattered radiation acquires a cross-polarization component with the 
polarization orthogonal to that in the incident optical beam. It is known that the 
appearance of the cross-polarization signal can be related to such factors as regular 
birefringence, microscopic anisotropy of the scattering (for scatterers smaller than 
the optical wavelength), the influence of scattering particles shape and the spatial 
structure of the scattering medium [8]. In endoscopic inspection of the soft tissues, 
polarization-sensitive methods can significantly improve reliability of conclusions 
on the state of the tissue based on a qualitative consideration of polarization- 
sensitive images (however, their quantitative interpretation can be significantly 
complicated in view of strong deformability of surface tissue layers in some organs). 
By now, a number of methods for polarization-sensitive OCT imaging have been 
developed, and the corresponding biomedical experimental studies have begun to 
reveal the specificity of new information and estimate its diagnostic utility [9]. In 
most studies, the approach to improve the information value of polarization- sensitive 
imaging is based on the analysis of the relation between the regular birefringence 
and variation in the polarization state of the optical signal backscattered from differ-
ent depths of the inspected tissue region [10–14]. The interferometric selection of 
the depth, from which the signal is backscattered, and measurement of the variation 
in its polarization with respect to the incident-wave polarization allow one to deter-
mine such properties as depolarization, birefringence, dichroism, and orientation of 
polarization axes [15, 16]. Such polarization characteristics provide information on 
the presence of certain ordered structures (e.g., concentration and type of collagen 
fibers, their local orientation in the near-surface layers [15, 17]), as well as on the 
tissue microstructural features [15]. The evolution of polarization as a function of 
the scattering depths is usually characterized using the formalism of Jones and 
Mueller matrices [11–13, 18–21].

Among various polarization-sensitive OCT methods, an important approach is 
when the backscattered radiation is analyzed in two orthogonal polarizations pro-
duced by different means [16]. The radiation with polarization coinciding with that 
of the initial signal is received in the so-called co-channel, whereas the signal with 
the orthogonal polarization is recorded in the cross-channel of the OCT scanner. In 
the cross-channel the backscattered radiation can appear due to the influence of both 
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regular birefringence and scattering from individual heterogeneities in the tissue [6, 
8, 17, 22–24]. The degree of backscattering in the orthogonal polarization depends 
on the size, structure, and anisotropy properties of the optical heterogeneities in the 
medium [8] and can characterize, for example, the state of collagen tissues, which 
is especially important for diagnostics of cancer pathologies [17, 25]. As experi-
ments indicate [8], the effectiveness of cross-polarization scattering is especially 
high for relatively large-scale heterogeneities and is much weaker manifested for 
heterogeneities with sizes smaller than the optical wave length.

Under conditions of weak birefringence, the cross-polarization scattering can 
become the main mechanism of the appearance of signals with orthogonal polariza-
tion. Obtaining and comparing OCT scans visualizing the distribution of backscat-
tering efficiency into the co-polarization component (the same polarization as in the 
initial wave) and into cross-polarization one (with orthogonal polarization) is the 
basis for one of the polarization-sensitive OCT methods, referred to as the cross- 
polarization OCT [6, 8, 17, 22–24]. The first results of application of the CP OCT 
[6, 8] showed that the images obtained via the cross-polarization channel (cross- 
polarization images) significantly differ from those in the co-polarization channel 
and provide new information about the tissue. For cross-polarization images, the 
signal is much weaker from the near-surface layers (where the photons propagate 
without efficient scattering into the cross polarization) than in the co-polarization 
images. This is favorable for reduction of over-illumination of the near-surface lay-
ers and allows for more detailed characterization of structures localized near the 
tissue boundary. Similarly, for deeper structures that were hardly distinguishable in 
the co-polarization images, the cross-polarization scans can yield significantly more 
contrast [6]. Relatively large-scale discrete scattering particles are often better dis-
tinguished in the cross-polarization images, and comparison of the latter with co- 
polarization ones can significantly improve the visualization contrast for certain 
types of structures in biological tissues. Additional detailed studies are required for 
determining the composition and morphology of biological structures that appear 
particularly bright in the CP OCT [6, 8].

Besides, cross-polarization images give very useful complementary structural 
information in comparison with co-polarization scans, which makes it possible to 
detect distortions caused by even a fairly weak regular birefringence. It is known, 
for example, that the level of the backscattered signal can be significantly reduced 
exclusively due to polarization effects, when the optical delay between the normal 
modes in the medium is small and does not exceed half of the wavelength [13, 
15, 26].

It should be noted that an important issue in CP OCT is a rather complex depen-
dence of the received signals on both polarization of the primary probing wave and 
orientation of anisotropy axes in the inspected tissue [9]. For example, if the vector 
of linear polarization of the probing wave occasionally coincides with the axis of the 
medium anisotropy, the presence of birefringence does not manifest itself in the 
obtained OCT image. This phenomenon can be efficiently eliminated by using mod-
ulation of the probing-wave polarization [27–29] or utilizing a pair of coherent [30, 
31] or incoherent [16, 32] waves with orthogonal polarizations. Further, the signal 
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in the cross-polarization channel depends on the polarization state of the primary 
probing wave, in contrast with the reception of only the co-polarized wave which is 
independent of it.

In the design of polarization-sensitive OCT, significant attention is paid to opti-
mization of optical schemes and regimes of their operation in order to obtain the 
maximum information content and ensure feasibility in clinical practice. Presently, 
the best information value is reached in cross-polarization optical schemes of OCT 
based on bulk optical elements [10, 11, 13, 18, 33], as well as for diagnostic optical- 
fiber systems, in which the inspection does not require flexible variation of the opti-
cal paths [34, 35]. In the design of flexible endoscopic OCT systems, the transfer of 
the above-mentioned polarization-sensitive approaches to schemes based on optical 
fibers is challenging.

At a certain stage of the OCT development, an important role was played by 
optical-fiber systems based on anisotropic fibers that were able to maintain the 
interference signal under continuous deformation of the signal arm [6, 36, 37]. Then 
it was proposed to compensate for the influence of the optical-path deformation on 
the signal level by applying not only polarization-maintaining anisotropic fibers but 
also using the so-called common-path optical schemes based on isotropic fibers [30, 
31, 38–41]. The main feature of such schemes is that both probing (sample) and 
reference beams propagate along the same path, because the reference beam is 
reflected back at the distal end of the optical-fiber probe. Due to this, the common- 
path schemes ensure reproducibility of flexible fiber-optic probes [31]. It can be 
noted that in the common-path interferometric optical schemes based on isotropic 
fibers, the probing-wave polarization can be arbitrary, whereas the optical-path dif-
ference between the reference and sample waves exceeds the coherence length. In 
view of this, to single out the interference signal one should use an auxiliary com-
pensating interferometer. Such an optical scheme [39, 42] included a fiber-optic 
variant of the Fizeau interferometer which plays the role of a common optical part 
for the signal and reference waves [43], as well as an autocorrelator based on a 
Michelson interferometer with Faraday mirrors [44]. The first applications of π/4 
Faraday cells for compensation for phase anisotropy in single-mode fibers were 
reported in [45, 46].

The usefulness of polarization-sensitive OCT is evident for inspection of bire-
fringent tissues, such as muscles, cartilage, skin, coronary artery, outer ocular tis-
sues, tissues of retina, and vocal cords. For soft biological tissues with weak 
birefringence (such as mucous and serous linings), polarization effects can also 
manifest themselves in OCT images. The modeling of polarization phenomena 
demonstrated that they can lead to the appearance of false layers in the images 
because of the influence of the above-mentioned modulation of the intensity due to 
the birefringence. Evidently, the appearance of such false layers is not acceptable in 
the interpretation of OCT images of layered structures [47]. Besides, because of the 
complexity of the near-surface structure of biological tissues, relatively simple algo-
rithms that provide information on birefringence and orientation of optical axes can 
be developed only for the upper birefringent layer or for tissues with rather weak 
birefringence: the waves with orthogonal polarization should acquire a phase 
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difference significantly smaller than 90° for all observation depths. Information 
about the direction of optical axes in deeper layers is distorted by birefringence in 
the upper layers, so that retrieving this information requires more complex algo-
rithms based on information above the upper layer [20, 47]. To single out the regions 
of biological tissues with different directions of optical axes, color encoding can be 
used [20].

Evidently, for the complex multifragment structure of soft biological tissues with 
weak birefringence, exact quantitative information on the directions of the optical 
axes and the degree of birefringence in various tissue fragments plays a secondary 
role, especially for medical screening and clinical applications. In this context, it 
looks attractive to apply the capabilities of CP OCT for qualitative differentiation of 
various fragments by their polarization characteristics, and differences between 
OCT images obtained in co- and cross-channels.

The above-mentioned approaches to obtaining polarization-sensitive images can 
be used as a basis for designing improved variants of endoscopic OCT devices with 
faster image acquisition and simultaneous real-time presentation of complementary 
images formed via co- and cross-polarization channels. In particular, the common- 
path fiber-optic scheme ensures stable images in the co-polarization channel with-
out individual tuning of the optical arms in changeable endoscopic probes in the 
course of OCT inspection of tissues. However, sensitivity of the cross-polarization 
OCT in the optical schemes based on single-mode fibers depends on the polariza-
tion of the incident interrogating beam. Elimination of unstable sensitivity of the 
cross-polarization channel should allow for both qualitative and quantitative com-
parison between the co- and cross-polarization images obtained under given condi-
tions. Improvement of the cross-polarization channel in OCT imaging is important 
not only for obtaining complementary polarization-sensitive and conventional 
intensity imaging, but also for extracting information on the directions of optical 
axes. Integrated solution of such problems is important for improving reliability of 
endoscopic OCT-based diagnostics and quality of evaluation of biological tissue 
state in various clinical applications.

12.1.2  OCT-Based Angiography (OCA)

All functioning cells within the human body have to be within 100 microns of a 
viable vessel that carries oxygenated blood, to ensure adequate supply of oxygen. 
As such, blood hemodynamics and the human microvascular tree are an essential 
part of healthy biological tissues. Abnormalities in the vascular supply are associ-
ated with various diseases such as cancer and other pathologies. The process of 
microvascular alteration in tumors whereby new (but often chaotic and unhealthy) 
vessels are created is called neovascular angiogenesis. A variety of emerging cancer 
treatment strategies aim at neovasculature disruption (“anti-angiogenic therapies”) 
rather than the more conventional approaches that target tumor cells directly. For 
these and other reasons, direct three-dimensional (3D) non-invasive in vivo imaging 
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of tissue blood microcirculation is scientifically interesting, clinically important, 
and technologically surprisingly difficult [48].

Most volumetric medical imaging modalities have been adopted to tackle vari-
ous aspects of this problem, including contrast-enhanced CT (computed tomogra-
phy), Doppler ultrasound, and MR (magnetoresonance) angiography. As well, 
various optical approaches, including laser Doppler flowmetry, laser speckle con-
trast imaging, intravital fluorescence microscopy, diffuse correlation spectroscopy, 
photoacoustics, and polarization-based tissue viability imaging, are being devel-
oped to assess various aspects of blood flow in tissues. The literature on the subject 
is vast; an interested reader is referred to several selected key references [49–52].

Suffice it to say that each approach has its own strengths and weaknesses in 
terms of ease of implementation, invasiveness, tomographic (3D) imaging capabil-
ity, sensitivity, penetration, contrast, resolution, contrast agents vs endogenous con-
trast, flow velocity vs microvascular tree mapping, direct microvascular visualization 
vs model-derived parametric maps, and so forth. Over the last 15 years, various 
research groups have also pursued OCT methods to visualize tissue blood flow, 
specifically in smaller blood vessels. Because OCT systems are widely used in oph-
thalmology, its application to blood flow visualization and measurement could 
make clinical use more practical. OCT techniques can be extended beyond their 
“standard” structural imaging capability to provide additional important informa-
tion on tissue blood flow and microvasculature. This no-injection, dye-free contrast 
mechanism is very important in biology and medicine, in that it provides dynamic 
in vivo information on tissue functional status; this is implicated in development of 
various pathologies such as cancer, is often targeted in antivascular therapies, and so 
on. These techniques aim to contrast blood vessels from static tissue by assessing 
the change in the OCT signal caused by flowing blood cells. These intrinsic con-
trasts can be broadly classified as Doppler shift and speckle variance/
decorrelation.

Volumetric angiography was not feasible until development of the two Fourier- 
domain OCT implementations: spectral-domain (SD-OCT) and swept-source. In 
2006, Makita et al. used an 18.7-kHz SD-OCT system to perform volumetric angi-
ography and visualization of retinal and choroidal vasculature [53]. As noted by 
Makita et  al., the standard deviation/variance [54] or power [55] of the Doppler 
signal provided better results than the Doppler shift. Another approach called opti-
cal microangiography (OMAG) incorporated the amplitude of the OCT signal in 
addition to phase. An et al. [56] suggested that OMAG was better able to identify 
the microvasculature than previous methods utilizing only phase information.

With the continued improvement of OCT system speeds due to hardware 
advances, methods for OCA shifted from comparing between adjacent A-scans to 
between sequential cross-sectional B-scans. The increased time separation ensured 
that slower flow in the microvasculature would be detected. In 2009, Fingler et al. 
[57] used a 25-kHz SD-OCT system and a phase variance approach over 10 repeat 
B-scans at the same location to show microvasculature that was analogous to tradi-
tional fluorescein angiography in human eyes. In 2011, Kim et al. [58] used a 125- 
kHz SD-OCT system to image with a larger field of view. They used  montaging/
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stitching of 10 volumes to generate an OCT angiogram with coverage comparable 
to fluorescein angiography.

OCT-based angiography on amplitude or intensity was initially described in 
2005 [59], when Barton et  al. adapted laser speckle analysis for time-domain 
OCT. Speckle arises as a property of the interferometric nature of OCT, and speckle 
variation contains information regarding the motion of scatterers [60]. Specifically, 
the speckle pattern stays relatively constant over time for static objects while the 
pattern changes for objects in motion. Mariampillai et al. [61] extended the tech-
nique and presented speckle variance detection of microvasculature in a dorsal skin-
fold model using a swept-source OCT system in 2008. In their work, speckle 
variance was calculated as the variance of the OCT reflectance amplitude over three 
repeated B-scans at the same location. In optimizing the method, the authors in [62] 
noted that the B-scan rates for repeat scans needed to be fast enough such that bulk 
motion between B-scans was less than the OCT beam waist radius. Although 
“speckle variance” has been historically associated with amplitude-based OCA, 
fundamentally both amplitude and phase-based flow detection are based on varia-
tion in the speckle pattern and therefore provide largely equivalent information [63]. 
In addition to speckle variance, another intensity-based OCA approach was termed 
correlation mapping [64]. In correlation mapping OCA, cross-correlation of a grid 
on adjacent B-scans was performed to identify vasculature (weak correlation) ver-
sus static tissue (strong correlation).

OCA of retinal microvasculature in the human eye using methods based on 
amplitude or intensity was demonstrated in 2012. Motaghiannezam et al. [65] used 
logarithmic intensity variance and differential logarithmic intensity variance to cap-
ture the microvascular network near the fovea.

Because OCA is economical, non-invasive, and does not even require the use of 
bright visible light, it can be used more frequently than traditional angiography, 
which requires intravenous dye injection [66]. As a result, OCT in vivo microvascu-
lar imaging is a “hot topic” both in research and industrial laboratories, and in pre- 
clinical/clinical medical environments. The phase-resolved/Doppler based and 
temporal variance-based OCT techniques provide attractive options for detecting, 
visualizing, quantifying, and monitoring of tissue microcirculation. Significant 
technological challenges imposed by the microvascular detection difficulties are 
steadily met. While many outstanding problems remain to be solved, both on tech-
nological and clinical implementation fronts, the importance of the problem and the 
considerable progress to date bode well for microvascular OCT’s eventual inclusion 
into the arsenal of widely used medical diagnostic technologies.

12.1.3  OCT-Based Elastography (OCE)

Elastographic mapping [67] is another direction in the development of OCT aimed 
at obtaining additional information to complement the conventional intensity (struc-
tural) images. The term “elastography” in OCT (OCE) is introduced by analogy 
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with medical ultrasound and is usually understood as mapping of the spatial distri-
bution of either shear elastic modulus G or the Young modulus E. It is well known 
that for most part of biological tissues (except for bones and cartilage) the shear 
modulus G is much less than the bulk elastic modulus K, so that the Poisson’s ratio 
ν is very close to 0.5, the value typical of liquids (notice that the exact equality 
ν = 1/2 corresponds to zero shear modulus G = 0). As a result, for almost all biologi-
cal tissues, the shear and Young moduli are proportional to each other with the same 
coefficient, since in the isotropic approximation E = 2(1 + ν)G ≈ 3G [68]. In view 
of this, the literature on elastography quite often does not indicate which particular 
modulus (G or E) is mapped, and the term “stiffness” that has no rigorous definition 
is used. For a given value of the bulk modulus, higher values of the shear modulus 
characterize the ability of a soft tissue to maintain its shape. Just by this reason, the 
procedure of conventional palpation gives elastographic information: fingers feel an 
inclusion with a higher shear modulus as a stiffer region surrounded by easier 
deformable soft tissue.

For medical purposes the mapping of stiffness distribution in soft (i.e., other than 
cartilage or bone) tissues is important, because variability of the shear modulus 
(stiffness) is much higher compared with variability of the bulk modulus. Namely, 
the stiffness of the same soft tissue in normal and pathological states may differ 
several times and even orders of magnitude in contrast to rather weak (on the order 
of a few per cent) complementary variations of the bulk modulus. On the other 
hand, it is the bulk modulus which determines the impedance of ultrasound waves, 
and just its weak variations are visualized in conventional ultrasonic medical scan-
ners. Thus, eventual variations in the shear modulus are not directly visualized 
either in conventional ultrasound echography, or in OCT images, because they char-
acterize the scattering properties of the tissue with respect to longitudinal ultrasonic 
waves and transverse optical waves.

Elastography with OCT was proposed and demonstrated in the landmark paper 
published by Schmitt in 1998 [67], in which many of the principles and issues of 
contemporary research were laid out. Schmitt used OCT to image a sample under-
going uniaxial compression and assessed the resulting local displacement field by 
examining the correlation between cross-sectional B-scans of the same location. 
The results were used to produce elastograms, i.e., cross-sectional maps of displace-
ment, from which strain localized to a small region of the sample (i.e., the local rela-
tive change in length per unit length) could be estimated.

In many aspects, such studies have been based on the elastographic approaches 
used in ultrasound. However, unlike the medical ultrasonic scanners, OCT scanners 
capable of elastographic mapping are not yet commercially available. This fact is 
related, in particular, to certain features of OCT images which complicate direct 
transfer of elastographic processing principles from the medical ultrasound to 
OCT. Schmitt’s work emphatically demonstrated that OCT could be used to gain 
information about a soft tissue’s mechanical properties, and highlighted some of the 
opportunities and challenges that remain to this day. Firstly, mechanical image con-
trast is intrinsically different to optical contrast. To see an object in an OCT scan 
requires differences in scattering, produced by refractive index gradients, but 
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mechanical contrast only requires sufficient scattering to obtain an OCT signal, and 
variations in the mechanical properties may be essentially unrelated to the optical 
parameters. Secondly, Schmitt measured displacements and only then inferred local 
strain. Strain is a relative quantity related to an absolute quantity, an elastic modulus 
or Young’s modulus, but, in most practical scenarios, quantification of the elastic 
modulus is a non-trivial task. Thirdly, viscoelasticity implies hysteresis in the 
dynamic mechanical response, which can be a source of information or image con-
trast, or a source of complication in attempting to measure elastic parameters. 
Furthermore, even quasi-statically deformed tissues may exhibit pronouncedly non-
linear stress-strain dependences, including quasi-static hysteresis unrelated to vis-
coelasticity. All these features on the one hand may give additional diagnostic 
information, but on the other hand make interpretation rather non-trivial in compari-
son with simplest representation about the tissue as a linear elastic material.

After a slow start, the maturation of OCT technology in the early to mid-2000s 
has underpinned a recent acceleration in the field. Brett Bouma was the first to use 
the term “optical coherence elastography” in 2004  in [69]. Earlier that year, 
Rogowska et al. [70] had reported, in essence, a repeat of the Schmitt experiments 
on in  vitro aorta samples, successively loaded with weights, instead of using an 
actuator. Later that year, Bouma and colleagues also began to explore the mechani-
cal characterization of atherosclerotic plaque in vivo [69], an optical version of the 
then-emerging elastography based on intravascular ultrasound. They also demon-
strated the first use of OCT to provide reference image data (in place of histology) 
for biomechanical modeling of arteries [71], but this has not become widely used.

Starting from 2003, OCT began the move towards Fourier- or spectral-domain 
[72], employing a static interferometer, with either spectrometer-based detection of 
broadband illumination or time-resolved detection of a swept-frequency optical 
source. These methods provided a gain in sensitivity approximately equal to the 
number of resolvable spectral channels, related to the reduction in shot noise per 
detection bin achieved without a reduction in overall signal [73, 74]. Wang et al. 
were the first to put this to work in OCE, demonstrating milliradian equivalent 
nanoscale displacements (with averaging) in a tissue phantom via comparison of 
A-scans [75] and B-scans [76]. Although no tissue results were presented, this 
direction proved to be key over the next decade.

OCE generally relies on an external or internal stimulation approach to load the 
tissue and an OCT-based detection method to measure the corresponding tissue 
response [77–81]. The early development of OCE features the static mechanical 
contact loading and the cross-correlation-based speckle tracking to capture the dis-
placement [69–71]. The emerging of phase-resolved OCT detection utilizing the 
interferometric phase information from complex OCT signals, which reaches 
nanoscale and sub-nanoscale sensitivity to the tissue displacement [82, 83], enabled 
OCE techniques to assess and extract different parameters of the tissue deformation 
with high accuracy to reconstruct the tissue biomechanical properties [84–86]. Also, 
the development of OCE for different types of applications results in various load-
ing approaches that have been proposed, such as the use of ultrasound for remote 
stimulation [84, 87, 88], the employment of air puff for noncontact excitation 
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[89–91], and applying magnetomotive nanoparticles as the internal transducers for 
vibration [85, 92, 93].

Reinforced from the high spatial resolution of OCT, the imaging or measurement 
resolution of OCE is spreading over the range from several microns to hundreds of 
microns depending on the methods used to reconstruct the biomechanical properties 
[94–98]. Generally, OCE maintains the same or even larger field of view compared 
with OCT at the millimeter level [99, 100].

OCE is characterized by its niche in intermediate spatial resolution (10s–100s μm) 
and degree of depth penetration and, by exploiting optical interferometry, its high 
sensitivity to small mechanical changes—at the microstrain level. Otherwise, it is 
following the evolution of elastography in the other imaging domains. In many 
ways, it forms an ideal bridge between the emerging understanding of the impor-
tance of mechanics in cell biology and the clinical application of this knowledge.

12.2  Description of an Optical Common-Path Scheme with 
Active Maintenance of the Circular Polarization of a 
Probing Wave for the Cross-Polarization Measurements

A custom-built Multimodal Spectral-Domain OCT device is used for presented 
research. The device is based on common-path optical scheme with precompensat-
ing Michelson type interferometer which forms probing and co- or cross- polarized 
reference wave pair. Optical radiation of 1325  nm central wavelength 100  nm 
FWHM spectrum and 10 mW optical power allows ~ 10 μm axial resolution in air. 
Optical system of the probe with ×3 magnification gives ~ 25 μm lateral resolution. 
512-element InGaAs CCD sensor (Sensors Unlimited) provides scanning rate 
20,000 A-scan per second. The device realizes: co- and cross-polarized reception of 
scattered radiation, active maintenance of circular polarization state of probing 
beam, and special lateral scanning regimes for angio- and elasto- mapping in real 
time. The device is compact (35 × 35 × 15 cm), has USB 2 interface to PC, and 
operates under custom built software.

The optical scheme of the system is shown in Fig. 12.1. The common-path opti-
cal scheme [16] with active maintenance of the circular polarization of a probing 
wave consists of five parts: superluminescent source of linearly polarized broad-
band radiation (I), fiber polarizer (P) with an extinction of about 30 dB [101, 102], 
and Lefevre polarization-control device (PC-1) supplies a linearly polarized wave to 
the input of the Michelson interferometer (II). The probing wave and the pre-delayed 
reference wave for the subsequent interference in the Fizeau interferometer are 
formed in the short and long arms of the Michelson interferometer, respectively. 
The long arm contains the electrically controlled Faraday cell (the polarization- 
rotation angle is 45°). When the Faraday cell is switched off (for odd B-scans) the 
polarization state of both reference and probe waves is the same and the system 
registers the so-called co-interference. When the Faraday cell is switched on the 
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polarization state of the reference wave rotates to the orthogonal state and the sys-
tem registers cross-interference. “Cross” means portion of scattered light which 
changed polarization state in an object and has nonzero projection on orthogonal 
(relative to probing) polarization state. Unit (III) maintains the circular polarization 
of the probing wave, whose operation is described below. Probe (IV) with the mea-
suring Fizeau interferometer at the output is the fourth part. In this interferometer, 
the reference wave reflected from the end of the probe fiber interferes with backscat-
tered waves. The lateral scanning is performed by the mechanical transverse motion 
of the fiber end jointly with attached focusing lens. Spectrometer (V), which is lin-
earized with respect to the wave number [103], records the interference spectrum of 
the reference and signal waves.

The method for active control of the polarization state is based on property of 
quarter-wave retarder to change the linear 45° oriented polarization to the circular 
one for forward pass and then to the linear polarization orthogonal to the input one 
on the back way [104–106]. In the considered case, the optical path of the 
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Fig. 12.1 Optical scheme of the multimodal SD-OCT system with automatic control of circular 
polarization of the probing wave. Here: I is the source of the linearly polarized broadband radia-
tion; II is the precompensating Michelson interferometer with Faraday cell (FC) based reference 
wave polarization controller, which rotates the polarization to 45° when switched on; III is the 
system of circular polarization remote control, which is based on active polarization modulator 
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photodiode; O is the oscillator, and PSD 1 and PSD 2 are the phase-sensitive detectors
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polarization-control system including the polarization modulator (III) and the probe 
(IV) should be equivalent to quarter-wave plate.

The polarization controller PC-2 is used to form the linear input polarization 
state at 45° with respect to the axes of the first element of the active polarization 
modulator (APM). The minor part of light reflected back from the fiber end in the 
probe is directed via the 90:10 fiber-optic coupler and polarizer to the photodiode of 
the polarization-control system. The remaining major part of the light is supplied to 
the spectrometer. The control system of the probing-wave polarization mode is pre-
liminary adjusted using the polarization controller (PC-3) to the minimum of the 
light transmission through the polarizer (P), while circular polarization at the probe 
output is maintained manually. In this case, the part of the optical scheme between 
the Michelson interferometer output and the probe output becomes equivalent to the 
part between the probe output and the polarizer from the viewpoint of the phase 
anisotropy and equal to quarter-wave retarder. In the active mode low level alternat-
ing voltage of 5 kHz is supplied from a common oscillator to the active phase modu-
lators PZP1 and PZP2 with the quadrature phase shift by the method described in 
[107]. The error signals in both quadrature channels are formed by the value of the 
first harmonic at the output of the common photodiode, which detects the light, 
transmitted through the polarizer. The principle of operation of this scheme is justi-
fied in detail in the work [108]. The response time of the realized automatic-control 
system is about one-tenth of a second. This is enough to stably maintain the circular 
polarization state of the probing beam for all reasonable manipulations with the 
flexible probe. This allowed one to perform probing using manual positioning of the 
probe during both external and endoscopic studies of biological tissue.

12.3  Cross-Polarization Optical Coherence Tomography 
(CP OCT)

12.3.1  CP OCT in Collagen Assessment

Creation of applicable in vivo technologies for early diagnostics and monitoring of 
the disease progression and cancer invasion based on evaluation of microstructural 
changes has been remaining one of main trends in the development of optical imag-
ing methods including intraoperative ones routine optical imaging [109]. The CP 
OCT method, described in this chapter, is a promising competitive method for 
aforementioned purposes due to the possibility of a separate analysis of anisotropic 
structures (for example, collagen), exhibiting cross-scattering and birefringence 
properties [110] along with the inherent for OCT technology high resolution (10–15 
microns), 3D label-free imaging of tissue in volume of 2–3 mm3 in a short time 
[111]. The possibility of registration of backscattered light in a cross-channel gives 
an opportunity to calculate relative (to co-channel) values of the OCT signal. CP 
OCT study of different pathological conditions of stratified tissues like mucosa 
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mostly was focused on epithelial-connective tissue interactions with evaluation of 
the epithelial thickness and a contrast between two layers [25, 112]. Later, it was 
shown that state of collagen—the main extracellular protein of the connective tissue 
matrix—reflects the diseases which occur not only in the connective tissue itself, 
but also in epithelium layer including cancer cells invasion.

An approach to quantitative, robust, and potentially automated assessment of CP 
OCT images reflecting the state of collagen fibers was developed [113]. Specifically, 
we propose to calculate an integral depolarization factor (IDF) that is a ratio of the 
OCT signal in orthogonal polarization to the analogous value calculated in the ini-
tial polarization, both averaged over the transverse coordinates (B-scan direction). 
It was demonstrated that IDF can be applied to in vivo detection of clinically rele-
vant pathological states in urology [113, 114], and have a potential in cardiovascular 
application [115]. Figure  12.2 demonstrates effectiveness of IDF calculation 
(Fig. 12.2, d) in case of hardly distinguishable forms of cancer like recurrent carci-
noma in the scar area (Fig.  12.2, c) in comparison to postoperative scar tissue 
(Fig. 12.2, b) and normal bladder mucosa (Fig. 12.2, a).

Thanks to ability of the myelinated nerve fibers for cross-scattering and birefrin-
gence like collagen [116], polarization-sensitive OCT can be successfully applied in 
neurosurgery for verity of different tasks. Visualization of fiber tracts [117] and 
brain tumors margins detection [118] are the most demanded (needy) one. In this 
chapter, our recent efforts to increase the accuracy of the tumorous and nontumor-
ous tissues detection using CP OCT as well as identification of white matter loca-
tion are presented.

12.3.2  Optical Coefficients for Improvement of the Contrast 
of OCT Images

Optical coefficients calculation and based on them color-coded maps construction 
is one of the methods for OCT contrast improving between different tissue types 
[119], especially if initial optical contrast is low and visual assessment of the OCT 
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image cause great doubts. It can occur in case of glial tumor margins detection, 
when high infiltrative and uneven nature of tumor growth creates difficulties in find-
ing the true margins with normal brain tissue.

Using normal rat brains, a method for CP OCT image quantification was devel-
oped and tested. It is based on calculating the two optical coefficients (attenuation 
rate and forward cross-scattering (FCS)) and building en-face color-coded maps to 
show their 2D distribution. The details of the coefficients computations can be 
found in [120]. Figure 12.3 demonstrates an example of how optical coefficients can 
increase the contrast of white matter versus gray matter in normal rats brain.

12.3.3  Optical Coefficients That Improve the Contrast of OCT 
Images: A Patient with a Brain Glioma—Detection 
of a Clean Resection Edge

Compared with intensive en face CP OCT images, color-coded maps of glioma, and 
white matter based on different optical coefficients (Fig. 12.4. a3–f3, a4–f4) were 
more representative for visual assessment of the tissue. The color set of each map 
reflected the values of the corresponding optical coefficient; therefore, the areas of 
high attenuation or forward cross-scattering (myelin fibers, necrosis) appeared in 
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Fig. 12.3 Wide-field unprocessed CP OCT images and color-coded maps of the healthy rat brain 
(sagittal section): (a) photo of the brain. Rectangle indicates region of the CP OCT scanning. (b) 
corresponding histology, H&E staining. (c–f) wide-field brain images reconstruction from unpro-
cessed images in co- (c) and cross-polarizations (e) and corresponding color-coded maps (d, f): 
attenuation coefficient (d), forward cross-scattering coefficient in log scale (f). Color-coded maps 
based on optical coefficients calculation provide better contrast for clearly visualization of the dif-
ferent brain structures: cerebral cortex, white matter, hippocampus (1), striatum (2)
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light tones, and the areas of low attenuation or forward cross-scattering (cell clus-
ters) appeared in darker tones.

Thus, on the attenuation map, white matter formed by densely packed myelin 
fibers appeared red and yellow (Fig. 12.4. b4), and tumors formed by cell clusters 
appeared dark or pale blue (Fig. 12.4. d3, e3). On the forward cross-scattering map, 
white matter appeared pale blue to red (Fig. 12.4 b4), whereas tumors appeared dark 
or pale blue (Fig. 12.4. d4, e4). These differences are more evident on color-coded 
maps of the margin between tumors and white matter. The dividing line was more 
clearly visualized by every coefficient (Fig.  12.4. c, d, dark green dotted line). 
Nevertheless, on two separate occasions, the white matter and tumor tissue looked 
similar on OCT images as follows: (1) white matter in the peritumoral area, particu-
larly in high-grade gliomas, could be characterized by a decreased OCT signal 
because of myelin fiber destruction and/or intense edema (Fig. 12.4. c3, c4); in this 
area, tumor cells could likely persist and (2) tumor tissue with necrotic areas (e.g., 
glioblastoma core, tumor tissue after partial bipolar coagulation) had high attenua-
tion and forward cross-scattering (Fig. 12.4. f3, f4).

The cortex comprises neurons and glial cells surrounded by uncompacted myelin 
fibers. For this reason, white matter on attenuation maps was represented by the 
whole color set, but on forward cross-scattering, it was mainly blue, similar to astro-
cytomas (Fig. 12.4. a3, a4). Thus, the identification of a well-marked margin could 
be difficult.
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12.4  CP OCT for Breast Cancer Imaging

CP OCT system was used for assessment of the structural features of breast cancer 
tissue, permitting improvement in the contrast between benign and malignant 
tumorous tissues, based on a detailed evaluation of the degenerative changes of col-
lagen associated with breast cancer invasion [121]. Figure 12.5 demonstrates CP 
OCT images (Fig. 12.5, c, d, i, j), color-coded maps (Fig. 12.5 e, f, k, l), and corre-
sponding histological slice (Fig. 12.5, a, b, g, h) of the benign breast disease and 
malignant breast cancer features. It was shown that the use of optical coefficients 
increases the OCT contrast for breast cancer detection. In comparison to optical 
coefficients maps (Fig.  12.5 e, f), optical contrast based on the signal intensity 
(Fig. 12.5, c, d) difference is insufficient to distinguish breast tissue structures. For 
the purpose of malignant breast cancer identification, forward cross-scattering coef-
ficient is more suitable. In the map of forward cross-scattering coefficient obtained for 
benign breast fibroadenoma (Fig. 12.5, upper box), regions of fibrous collagen fiber 
of stroma look as red areas. By contrast, invasive ductal carcinoma (Fig. 12.5, bot-
tom box) demonstrated a low forward cross-scattering coefficient in the areas of 
tumor cells and appeared on color-coded map as blue areas with a higher coefficient 
from the rare collagen fibers of the tumor stroma (Fig. 12.5 j). Color-coded map of 
attenuation coefficient shows areas of high density of the scatterer’s accumulation 
in large values (Fig. 12.5 k, yellow-red and bright-green colors).

12.5  Automated Segmentation of CP OCT Images

The possibility of the automated segmentation of CP OCT images was demon-
strated on the pre-clinical murine ear model implanted with mouse colon carcinoma 
CT-26 [122]. Every pixel in the OCT cross-sectional image was represented as a set 
of decomposition coefficient of the local reflectivity profile into two orthogonal 
basics. Each basis was constructed from the set of profiles for normal and pathologi-
cal OCT image regions manually segmented by an export using principal compo-
nent analysis (PCA). A set of images manually segmented by comparison with 
histology was used to train the random forest trees classification algorithm. The 
outcome of the classification algorithm was a value in the range 0–1, which was 
interpreted as probability of a given pixel to represent a tumor. The example of the 
classification result is presented in Fig. 12.6 [122].

The algorithm was validated on the separate set of manually segmented images. 
The achieved sensitivity was equal to 0.83 and specificity equal to 0.82. For inde-
pendent technique validation en-face borders of the tumors obtained from 3D volu-
metric classification results were superimposed with fluorescence image of CT-26 
murine colon carcinoma expressed genetically encoded fluorescent protein 
KillerRed. The superimposed tumor boundaries imaged with fluorescence micros-
copy and classified from OCT volume datasets are presented in Fig. 12.7 [122].
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12.6  Optical Coherence Angiography (OCA)

12.6.1  Main Features of the Developed Real-Time 
OCA Realization

Vessels contrasting was made by high frequency filtration along the slow axis in the 
signal-domain [123]. One can expect that regions of the object, experienced motion 
during the scanning will induce higher frequency in the Fourier-domain:
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Fig. 12.6 Cross-sectional OCT images pixel classification process: (a) OCT image of a CT 26 on 
ear mice; (b) prediction of classification algorithm: map of tumor probability; (c) en face projec-
tion of the tumor region [122]

Fig. 12.7 (a) Alignment of fluorescence and angiographic OCT images by superimposing vessels 
meshworks (green—vessels visible in fluorescence, red—vessels obtained by OCT angiography 
processing). In purple en face projection of OCT classification results is presented, tumor visible 
in fluorescence channel is presented in gray. (b) Overlapping of tumor projections visible in fluo-
rescence and obtained by the proposed OCT pixel classification method [122]
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Here first index is a fast axis index, second index—slow axis index, and third is an 
axial index; Bk,j,n is the jth B-scan, Vk,j,n is the jth cross-section of the vasculature 
image, bm are coefficients of high-pass filter impulse response.

Using such filtration one angiography B-scan from every 7 consecutive OCT 
B-scans can be obtained and every following angiography B-scan can be re- 
evaluated during the following B-scan acquisition.

Local phase correction preprocessing was applied to the OCT data to compen-
sate for motion and compression artifacts which may occur during the data 
acquisition:

The corrected phase distribution can be written as:
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where rectM(n−n0,k−k0) is the rectangular window of size M, centered at the loca-
tion (k0,n0).

To additionally contrast the signal from the vessels, amplitude of the OCT data 
was normalized prior to the filtration:
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where Sk,j,n is the value substituted into Eq. (12.1) instead of Bk,j,k, T is a constant set 
to be equal to the mean amplitude in the dataset. The function in the denominator of 
Eq. (12.3) asymptotically approaches function y = x when signal’s amplitude is high 
and constant T, when its amplitude is low.

12.6.2  Tumor Model for Optical Coherence 
Angiography Investigation

Ear tumor model is fairly well controllable model to study PDT vascular reaction. 
The specifics of the ear tumor model have been previously described [123, 124]. 
Typically, normal ear tissue vascularization is similar in different mice (Fig. 12.8 a). 
Visual comparison of OCA images of tumor and normal tissue reveals pronounced 
differences in vascular architecture and vascular density (Fig. 12.8 a, b). It is well 
known and can be seen in OCA images that tumor’s vessels are abnormal with 
strongly increased tortuosity in comparison with normal vessels [125, 126]. Because 
of active neoangiogenesis, the tumor vasculature is significantly denser (Fig. 12.8 
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b). The small tumor depth and the small thickness of ear tissue make the model 
“transparent” for OCA, so that OCA can be used for characterizing the blood ves-
sels [127].

12.6.3  OCA Monitoring of Tumor Response to Photodynamic 
Therapy (PDT)

On ear tumor model CT26, using OCA it was found that not all tumors responded 
to PDT in the same manner [128–130]. The tumors with severe microvascular dam-
age (revealed by histology) displayed total disappearance of blood vessels on OCA 
images within the shorter time interval in 1 day (Fig. 12.9 upper row). Conversely, 
weak microvascular damage manifested itself as partial and reversible blood vessels 
disappearance (Fig. 12.9 middle row). Tumors after light exposure only as well as 
untreated tumors (Fig. 12.9 bottom row) demonstrated well-developed blood ves-
sels network on OCA images throughout this observation time [128–130].

Fig. 12.8 OCA 
visualization of 
microvasculature network 
architecture in normal 
murine ear (a) and in 
murine colon carcinoma 
CT26 transplanted into the 
murine ear (b)
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To conclude, using the results for  murine ear tumor model CT26, the follow-
ing criterion of PDT success has been formulated: complete disappearance of blood 
vessels on OCA images in 24 h post PDT is associated with good clinical outcome.

12.6.4  OCA for Pre-Treatment Pathology Assessment 
and Treatment Monitoring Following PDT of Basal 
Cell Carcinoma Patients

PDT is emerging as a common and efficacious method for basal cell carcinoma 
(BCC) treatment, and new non-invasive imaging technology can further enhance it. 
OCA can accurately differentiate BCC from normal skin, assess BCC-related 
changes in the surrounding skin regions that appear normal (Fig. 12.10). Pre-PDT 

Fig. 12.9 OCA monitoring of tumor blood perfusion alteration dynamic before PDT, immediately 
post-PDT, 5 h and 24 h post-PDT. The upper row is an example of PDT responder; the middle row 
is an example of non-responder tumor; the bottom row is an example of control tumor (untreated). 
Scale bar size is 500 μm
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BCC assessment en-face OCA images show microvascular networks at different 
indicated depths (Fig.  12.10, upper row), with average vessel diameter seen to 
increase with depth (from 150 to 550 μm). The OCA images of the visually normal 
skin around the BCC (Fig.  12.10, middle row) show to increased density of the 
microvascular networks, potentially indicating tissue inflammation around the vis-
ible lesion. OCA of the superficial BCC (Fig. 12.10, bottom row) exhibits a dense 
network of thin branching vessels at a depth of 250–300 μm. The deeper lesion 
vasculature is preserved, denser than much less dense network in normal skin, and 
is poorly visualized at depths exceeding ~500 μm [131].

The additional OCA imaging was used post-PDT to visualize treatment-induced 
microvascular alterations (immediately and 24 h after PDT) and healing dynamics 
(6 months after PDT) of BCC (Fig. 12.11). OCA analysis using vascular density 
demonstrated a complete (Fig. 12.11, upper row) and partial (Fig. 12.11, bottom 
row) vascular reaction at early stages post-PDT treatment of the different subtype 
BCC lesions. Immediately post-PDT, OCA shows a weak vascular reaction to the 
treatment; a small part of the vessels was well visualized in the tumor center. At 24 h 
post-PDT, there is an increase in vascular reaction. Complete disappearance of the 

Fig. 12.10 En-face OCA images of normal skin (top row), compared with visually normal skin 
around the BCC (middle row), and superficial BCC lesion itself (bottom row). En-face OCA 
images are shown at four selected depths; the microvascular patterns are also seen to vary (thicker 
vessels, denser network) from normal skin to near-lesion regions to superficial BCC lesion 
core itself
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tumor vasculature at 24 h post-PDT could be due to direct PDT action. After at 
6 months follow-up post-PDT OCA demonstrates high vascularization in the formed 
scar at its 6-months maturation stage in case of complete response (Fig.  12.11, 
upper row). In case of partial response OCA demonstrates an increased vascular 
density with slightly enlarged diameter blood vessels (Fig.  12.11, bottom row). 
Similar treatment response was observed for nodular BCC with necrosis, demon-
strating partial microvascular damage within 24 h after PDT; preclinically, this cor-
related with long-term tumor recurrence.

Thus the demonstrated ability of OCA for BCC differentiation and subsequent 
PDT treatment response monitoring hold promise for improved managements of 
BCC patients [131].

12.6.5  OCA Mucositis Study During Radiation Therapy

Fifteen patients with stage II–IV squamous cell carcinoma of the oral cavity and 
pharynx were investigated. Patient study was approved by the Research Ethics 
Board of the Nizhny Novgorod State Medical Academy. Irradiation was performed 
using a linear accelerator (Varian Clinac 600) or Co60 system (Terabalt). Mucositis 
degree was scored by Radiation Therapy Oncology Group and European 
Organization for Research and Treatment of Cancer scale.

Fig. 12.11 OCA follow-up with two variants vascular responses to PDT in the different subtypes 
BCC before PDT, immediately and 24 h post-PDT. The demonstrates different clinical outcomes 
with complete (upper row) and partial (bottom row) responses 24 h post-PDT and scar formation 
or recurrence 6 month post-PDT
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OCT imaging was performed three times per week throughout the radiation ther-
apy (RT) course on two symmetric sites on both cheeks (Fig. 12.12 a), along the 
centerline connecting the secretory duct of the salivary gland and the angle of the 
mouth. The probe was positioned on the mucosa with gentle contact [132].

OCA images of the normal buccal mucosa show dense, uniform microvascular 
networks (Fig. 12.12 b). At doses of 4–8 Gy, all patients exhibited an increased ves-
sels density (Fig. 12.12 c). Continued dose accumulation caused an increase in the 

Fig. 12.12 (a) An example of OCA monitoring of buccal mucosa, (b) 3D OCA images before RT, 
(c) 3D OCA images before visual signs of mucositis appear (after 8 Gy), (d) 3D OCA images of 
grade 1 mucositis (10–12 Gy), (e) 3D OCA images of grade 2 mucositis (after 14 Gy), (f) 3D OCA 
images of grade 3 mucositis (after 20  Gy), (g) 3D OCA images after initiation of anti- 
mucositis therapy
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clinical manifestations of RT reaction, as also seen by the 3D OCA vascular density 
(Fig.  12.12 d–g). Statistically significant changes of vasculature microvascular 
parameters (compared to their initial pre-RT values) were detected when grade two 
and grade three mucositis developed (Fig. 12.12 e, f) [132].

The study showed that OCA monitoring in head and neck RT patients can be 
used for objective evaluation of radiation induced microvascular changes in the oral 
mucosa, for “shedding light” on the temporal sequence of early functional radiation 
toxicities, and potentially for design and effectiveness evaluation of anti-mucositis 
treatment and prophylaxis modalities.

Fig. 12.13 (a) OCA images of normal hamster cheek pouch, (b) OCA images of chemical induced 
(7,12-Dimethylbenzanthracene DMBA) cancer on hamster cheek pouch, (c) Histological image of 
normal hamster cheek pouch, (d) Histological image of cancer induced by DMBA. Scale bar size 
is 500 μm
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12.6.6  OCA for Studying Chemically Induced Cancer

Normal hamster cheek pouch is well vascularized. There are blood vessels with 
various diameter from 7 to 40  μm, and single vessels with diameter 100  μm 
(Fig. 12.13 a, c). The architecture of microvascular network contained long, thin 
vessels connected between each other (Fig. 12.13 a). OCA can detect the neovascu-
larization in carcinoma. One of the criteria to distinguish squamous cell carcinoma 
is a large number of the short vessels looks like loops (Fig. 12.13 b) [133].

12.7  Optical Coherence Elastography (OCE)

12.7.1  Realization of Compressional OCE

A variant of compressional OCE described in [134–137] was used to visualize local 
inter-frame strains in the tissue induced by the tissue deformation. For estimating 
strains, local gradients of inter-frame phase-variations were calculated using an 
improved version of the phase-sensitive monitoring of displacements of scatterers 
in the tissue and a robust vector method for estimating phase gradients.

For quantification of tissue stiffness in compressional OCE, a calibration (sili-
cone) layer with preliminary calibrated stiffness was used. The silicone used in the 
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experimental examples described below had a Young’s modulus in the range 
50–100 kPa as the most suitable for studying tissue stiffness variations in the range 
from 20 kPa to 1000 kPa or even greater. A typical experimental configuration is 
shown in Fig. 12.14. In such a way, OCE examinations of both excised tissue sam-
ples and in vivo studies of experimental tumors inoculated on mice’s ears were pos-
sible. The reference silicon layer with a known stiffness (used as stress sensor) was 
placed on the tissue surface, the probe was slightly pressed onto the studied tissue 
(Fig. 12.14 (b)), and the resultant strain distribution in the probe vicinity was recon-
structed. Schematic Fig. 12.14 (c) shows a typical inter-B-scan phase variation in 
the studied tissue overlaid by the reference silicone layer. The latter is clearly seen 
in the structural B-scan OCT image (Fig. 12.14 (d)). Comparison of strain distribu-
tion within the pre-calibrated reference layer and examined tissue allowed for quan-
titative estimation of tissue stiffness.

The elastic Young’s modulus of the tissue is defined as the ratio of strain incre-
ments in silicon and tissue multiplied by silicone stiffness. The stiffness B-scans 
derived from the analysis of inter-frame phase gradients could be represented as 
color-coded maps for the Young’s modulus (kPa), usually in the range from several 
kPa to 1000–2000 kPa (Fig. 12.14 (e)) or can be analyzed in the form of stress-strain 
dependences obtained in a chosen ROI (Fig. 12.14 (f)).

A very important point in quantification of stiffness is that the Young moduli 
were determined for a pre-selected pressure exerted by the reference silicone layer 
onto the studied tissue. Indeed, our preliminary studies of breast cancer samples in 
agreement with previous data [138] indicated that the stress-strain relationship for 
such tissues may exhibit pronounced nonlinearity, so that for apparently very mod-
erate straining (within a few per cent only), the Young modulus may vary several 
times. This fact should be taken into account when comparing different datasets. 
Therefore, to ensure the possibility of meaningful comparison between samples 
from different patients obtained in different days and/or using different calibration 
layers, the Young modulus was estimated for the same pre-selected pressure created 
within the calibration layer.

For feasibility of such measurements, the developed robust vector method [134, 
136] of strain estimation was very important, because it ensured rather reliable esti-
mation of inter-frame strains under aperiodic, approximately monotonic compres-
sion that was manually produced in the described below experiments. On the 
so-obtained stress-strain curves (obtaining of which was discussed in detail in 
[137]), narrow pre-selected ranges of pressure could be readily chosen to standard-
ize the Young modulus quantification even for samples with different uneven thick-
ness, potentially strongly variable stiffness, etc. For the quantitative estimates 
presented below, we used pressure ranges from 3 kPa to 5 kPa centered at 4 kPa. 
Reproducibility of such measurements, including the usage of calibration layers 
with different stiffness, was verified in a special series of experiments.

For quantitative characterization of stiffness in various breast tissue samples, 
ROI windows in OCE images could be chosen. The typical size of ROIs was 
30 × 120 pixels (with pixel size ~ 4 microns in both directions). Examples of such 
windows in the silicone and tissue are shown in Fig. 12.14 (e). Using the averaging 
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over such windows, plotting the strain in the silicone with pre-calibrated stiffness 
against the tissue strain yields stress-strain curves for the tissue [135, 137]. An 
example of such a curve is shown in Fig. 12.14 (f). Then one can find the ratio 
between the stress and strain increments for a standardized pre-selected pressure 
range as was explained above. In such a way different data obtained for different 
tissues in different experiments can be meaningfully compared. Examples of esti-
mates of the Young modulus (stiffness) for several types of different tissues are 
presented in the next section. The results of OCE-based estimations of stiffness can 
be presented either in the form of spatially resolved color-coded maps or in the 
forms of dependences of stiffness on the pressure (stress) exerted onto the tissue.

Analysis of these OCE-based data can be used to develop procedures for differ-
entiation of cancer and non-cancer regions (assessing the negative surgical margin 
of resection), differentiation of various cancer subtypes and monitoring of the tumor 
response to therapies.

12.7.2  OCE Monitoring of Tumor Response to Chemotherapy

The OCE monitoring of the elastic properties of the murine tumor model of breast 
cancer 4T1 (Fig. 12.15 a) made it possible to detect changes in the state of the cel-
lular components of the tumor. The OCE monitoring (Fig. 12.15 b) was performed 
at different stages of tumor development in the control group and in the cytotoxic 
cisplatin multiple exposure group [139]. On day 5, the tumors in the treatment group 
(Fig. 12.15 f) were significantly softer than those in the control group (Fig. 12.15 c). 
This trend continued up to day 12 when the average stiffness of tumors in the thera-
peutic group (Fig. 12.15 g) was softer than those in the control group (Fig. 12.15 d). 
By the end of the observation, the tumors in both groups had low stiffness values, 
which were due to the developed necrosis of tumor cells. Pathological processes 
(irreversible changes in tumor cells and spontaneous or chemotherapy-induced 
necrosis of cells) found on histological examination (Fig.  12.15 e, h) lead to a 
decrease of stiffness on the tissue. The predominance of areas with pathological 
changes of cells over areas with viable cells in the tumors of the treatment group 
was shown both by histological examination and by OCE monitoring.

12.7.3  Optical Coherence Elastography for Diagnosing Breast 
Cancer and Detecting Breast Cancer Margins

Elastic properties of softbiological tissues may reflect their functional state and be a 
sensitive indicator of important pathological processes (including tumor) occurring 
in them [140]. Using compressional optical coherent elastography, significant dif-
ferences were shown not only in the value of the Young modulus, but also in the 
character of elastic responses of nontumorous and tumorous breast tissues in ex vivo 
human tissues [141]. OCE is capable to reveal the difference between elastic 
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properties of nontumorous (normal) tissue (Fig. 12.16 a, b); benign breast disease 
(fibroadenoma) (Fig. 12.16 c, d) and invasive ductal carcinoma (IDC) (Fig. 12.16 e, 
f). OCE shows clear correlation of the histologically revealed structural features 
(stromal and cellular components) of breast tissue with the character of elastic 
response and increase  in stiffness with compression typical of tumor tissue. 
Figure 12.16 g represents the stiffness-strain dependencies for three samples and 
indicates the elastic behavior with rather low deformability of IDC (with stiffness 
ranged from 100 kPa for small deformations <1%, to about 800 kPa with further 
loading) compared to normal breast tissue and benign breast cancer with signifi-
cantly smaller and fairly weakly varying stiffness.

Figure 12.16 f demonstrates that breast cancer is characterized by pronouncedly 
heterogeneous distribution of stiffness. Recently performed OCE examinations of 
several tens of breast cancer samples excised during surgical operations revealed 
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Fig. 12.15 (a) Tumor tissue on the mouse ear; (b) An example of OCE monitoring of mice tumor 
model; OCE images of stiffness distribution in the tumor tissues of mice in the control and thera-
peutic groups: changes in tumor stiffness in the control group as detected on days 5 (c) and 14 (d), 
changes in tumor stiffness in the therapeutic group as detected on days 5 (f) and 14 (g); on the left, 
the stiffness scale expressed in kPa for the Young’s modulus. Panels (e) and (h) show the histologi-
cal slides obtained on day 12 and demonstrating spontaneous and chemotherapy-induced necrosis 
of cells corresponiding to the elastographic images (d) and (g), respectively
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rather clear correlation between morphological tissue component and the corre-
sponding range of its Young modulus. Thus it became possible to assess morpho-
logical composition of the studied tissue region by evaluating percentages of areas 
in OCE images falling into certain specific stiffness ranges. This analysis of the 
elastic modulus ranges in OCE images can be called “elasto-spectroscopy” by anal-
ogy with “mass-spectroscopy.” The morphological structure of the tumor in its turn 
demonstrates pronounced correlation with molecular status of breast cancer. Thus 
obtaining OCE scans and their elasto-spectroscopic analysis opens promising pros-
pects for express assessments of breast cancer subtypes [142].

Another application of OCE is delineation of tumor/non-tumor regions. An 
example of OCE visualization of such a transitional zone is shown in Fig. 12.17, 
where the border between non-tumor (normal) and tumorous breast tissue is clearly 
seen in the OCE image. Comparison between the OCE results (Fig. 12.17 bottom 
image) and histological data (Fig. 12.17 upper image) made it possible not only to 
distinguish between normal tissue and tumor (for determining resection boundary), 
but also to formulate OCE-based criteria allowing for differentiation between non- 
invasive (ductal carcinoma in situ (DCIS)) and invasive tumor (IDC). The OCE 
images very clearly show the cross sections of the ducts filled with tumor cells for 
DCIS as high-contrast zones with strongly increased stiffness, which will agree 
with the histological images. In the case of IDC is clearly seen via ever increasing 
proportion of stiff tumor cells over the scans and disappearance of highly localized 
regions of tumor cells embedded into surrounding much softer stromal tissue [142].

Fig. 12.16 Example of breast tissue samples in three states: nontumorous (normal) tissue (a, b); 
benign breast disease (fibroadenoma) (c, d) and invasive ductal carcinoma (IDC) (e, f). a, c, e —are 
the histological slides stained with H&E; b, d, f—are the corresponding OCE images; g—is the 
plot of the stiffness-strain dependence for the three samples
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12.8  Conclusion

The state-of-the-art multimodal OCT system can be used in multiple research and 
pre-clinical applications due to the various data processing approach applied to the 
data. The resulting multimodality of the device allows investigating tissue of inter-
est from different points of view providing information about its physiological state 
as well as mechanical and optical characteristics. Combining the obtained informa-
tion useful clinical insights about the morphological state of the tissue could be 
gathered. Collecting more data in multiple modalities can potentially give rise to the 
machine learning methods of analyzing such data, enabling faster proliferation of 
OCT technology into everyday clinical practice.
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Chapter 13
Texture Analysis in Skin Cancer Tumor 
Imaging

Oleg O. Myakinin, Alexander G. Khramov, Dmitry S. Raupov, 
Semyon G. Konovalov, Sergey V. Kozlov, and Alexander A. Moryatov

13.1  Introduction

Medical diagnostics (Greek: Diagnostikós—able to recognize) is a process of recog-
nizing a disease and its identification using an approved medical technology. Diagnosis 
is often challenging, because many signs and symptoms are nonspecific. Thus, several 
possible explanations are required for comparison and contrast of different methods. 
This involves the correlation of various pieces of information followed by the recog-
nition and differentiation of patterns. As for computer aided systems in medicine, one 
of the first (probably, even the first ever built) medical expert system MYCIN was 
developed in the early 1970s at Stanford University [1] for reconition of bacteriologi-
cal infections. In addition, the system contained the decisive rules on the appointment 
of antibiotics [2]. The use of computers (hardware nodes) became absolutely neces-
sary after the development of the first diagnostic imaging systems, which were associ-
ated with the emergence of promising optical diagnostic methods and significant 
progress in signal processing and pattern recognition. The first CT scanner for tissue 
visualization was developed in 1972 by Godfrey Hounsfield and Allan Cormac, who 
were awarded the Nobel Prize for this solution [3].
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Since then, technology has gone far ahead, but the two diagnostic basics remain 
the same: “imaging” and “recognition.” As for “imaging,” everything is quite clear: 
a hardware-software complex visualizes a tissue under study, and this is the gold 
standard for diagnosing many diseases of internal organs, but in the case of “recog-
nition,” everything is much more difficult. In Russia (as in many other countries), 
only a physician has the right to make a diagnostic decision, of course, using medi-
cal imaging (MRI, for instance), but the personal medical history, biochemistry 
analysis, and other factors are also taken into account. In this regard, the recognition 
software can be as an assistant only, which helps to make a preliminary diagnosis 
and reduce a rate of over-diagnosis by a general practitioner excluding false positive 
cancer diagnosis for patients with benign tumors, therefore minimizing psychologi-
cal stress for these patients and a costly extra study in a specialized oncological 
hospital.

The problem of cancer diagnostics is the most acute problem facing the twenty- 
first century medicine. The number of annually recorded malignant neoplasms is 
strongly increasing [4]. Over the past 20–25 years, the number of newly detected 
malignant and benign tumors of skin, lung, gastrointestinal tract, and other internal 
organs has increased by almost one order of magnitude [5].

More than 550,000 cancer cases have been registered in Russia. In addition, 
according to statistics, about 13–15% among all fatal cases are associated with 
oncology [6]. Among men, cancer of the digestive system (37.2% of all fatal cases 
of cancer), lung and bronchus (30.2%), and breast cancer (17.1%) for women are 
the most dangerous forms [7]. In addition, malignant melanoma (MM) of skin is 
one of the most dangerous forms of cancer in terms of average survival and overall 
mortality as well. The overall mortality rate among all cancers of skin is more than 
76% and the risk is steadily increasing with age of patients [8]. The situation is 
extremely negative due to late diagnosis: most cases are detected in the third or 
fourth stage that reduces all survival rates. The lacks of effectiveness of medical 
examinations, as well as reliable diagnostic tools for general practitioners, provoke 
an increase of mortality, which is almost twice as high as in the USA or the UK.

The diagnostics efficiency of malignant tumors varies with cancer type, but in 
general remain unsatisfactory due to the complexity of interpreting clinical differ-
ential features at an early stage of disease [9] and, ultimately, increases the risk of 
death. In this regard, the development of instrumental methods of diagnosis (includ-
ing software) seems absolutely necessary. Optical Coherence Tomography (OCT) is 
successfully used to build high-precision spatial images of biological objects in real 
time [10]. Particularly great success has been achieved in ophthalmology [11], 
where accurate multidimensional OCT images provide comprehensive information 
on the morphological features of the tissue under study.

In contrast to such imaging technologies as ultrasound, CT, or MRI, OCT allows 
one studying the structure of a tumor with a spatial resolution of several microns 
[12], highlighting the area and the boundary of the tumor invasion at the cellular 
level. However, the strict differentiation of various tissues and the reliable determi-
nation of a type of pathology during OCT studies are possible only in some cases. 
In particular, OCT is a powerful tool for the diagnosis of Basal Cell Carcinoma 
(BCC) due to its specific spatial localization and topology [13]. Nevertheless, in 
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most cases, OCT provides only detailed information about the morphological fea-
tures of the tumor without the possibility of accurately determining of cancer type. 
As a rule, the sensitivity and specificity of OCT diagnosis does not exceed 75% for 
different types of skin cancer. Moreover, an increase in the sensitivity (up to 85%) 
is accompanied by a decrease in the specificity of the method (60–70%).

The surface localization of a tumor on the skin makes it possible the visual 
inspection of suspicious areas. Dermatoscopy (Greek: Derma—skin and scopeo—
view) is one of the techniques that facilitate the recognition of skin lesions increas-
ing the accuracy of clinical diagnosis [14] by magnified visualizing many details 
and structures, which stay invisible by the naked eye.

Dermatoscopy can be carried out with a conventional digital camera, as well as 
with a specialized device—dermatoscope. Currently, there is a large number of dif-
ferent models of dermotoscopes. In the simplest case, a specialized dermatoscope is 
a magnifier with a 10× zoom equipped with LED backlight (including LEDs with 
different wavelengths for shooting in different spectral ranges). A polarizing derma-
toscope uses polarizing filters to increase contrast, reduce glare, and improve the 
quality of color skin images (multicomponent, multispectral). Another type of the 
dermatoscopy is epiluminescent (or contact) dermatoscopy [15, 16], when the lens 
of the dermatoscope is closely pressed to a neoplasm surface with filling the gap by 
immersion fluid. A design of dermatoscope can be either a self-sufficient medical 
device or an attachment for a camera, such as DermLite Carbon or DermLite Foto 
X (both 3Gen, USA). All devices operate in polarized light. The Foto X can operate 
in four modes at once: contact/contactless/polarized/unpolarized [17].

Multispectral dermatoscopy is another perspective approach, which uses a spec-
trophotometric intracutaneous analysis of skin scattering. The examples of widely 
used multispectral devices are SIAscope (MedX Health Corp, Mississauga, ON) 
and MelaFind (MELA Sciences, Irvington, NY). The idea of SIAscope was pro-
posed by Simon Cotton in 1998 [18]. Implemented complex algorithms return high- 
resolution information regarding total melanin content of the epidermis, collagen, 
and hemoglobin content as well as the presence of melanin in the papillary dermis. 
SIAScope and MelaFind examine consequently in five and ten different spectral 
ranges from blue to infrared capturing up to 2.5 mm depth [19].

These two modalities (dermatoscope and OCT) are an excellent presentation of 
2D and 3D skin imaging technologies, and we are going to discuss the application 
of texture analysis as a main part of a tumor recognition procedure for both of the 
modalities in this chapter.

Texture analysis is widely used in processing of various image types [20–22], 
despite the fact that currently a concept of texture is not well defined. Haralick noted 
[23] that there is no formal approach to texture description and definition, and meth-
ods of texture distinguishing are usually developing for each specific case sepa-
rately. This is due to the fact that the nature of perception by the human visual 
system is unknown. It can be found at least three different approaches for texture 
analysis [23–25]: statistical, structural, and stochastic. We are going to describe all 
these approaches briefly in the following paragraphs.

13 Texture Analysis in Skin Cancer Tumor Imaging
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This chapter does not include the results of neural networks analysis because, in 
our opinion, neural networks (especially convolutional networks) evaluate an aver-
age image of an object class (containing, for example, shape, general characteristic 
features) and lose details, which are not important for the class. A texture is a quasi-
periodic image, usually of a small size (in comparison with the initial image), which 
describes just the details (for example, strokes, lines, and their periodicity). Thus, 
the ideology of the neural networks and the texture analysis complement each other. 
On the other hand, the neural networks can be used not only as a feature extraction 
tool but also as a decision-making one (VGG16/19 is an example of such a classic 
network combining both extractor and decision features [26]). However, in this 
chapter we have focused on texture analysis and have restricted ourselves by classi-
cal approaches, such as Fisher Linear Discriminant Analysis [27] and the Support 
Vector Machine (SVM).

The next sections describe software and hardware technologies for texture analy-
sis of 2D (Dermatoscopy) and 3D (OCT) skin images, as well as the results of 
ex vivo and in vivo studies of different tumor types (classes) and statistical assess-
ment of their separability. The discussion and comparative analysis may be found in 
the last section.

13.2  Quality Metrics

The main classification task is the recognition of cancerous tumor among all studied 
tumors. It is a binary classification problem, which divides all investigated tumors 
in two classes—Malignant class and Benign class. Or, if we take into account that 
malignant melanoma (MM) is the most dangerous skin cancer, the pattern recogni-
tion problem may be defined as MM vs other tumors. The sensitivity and specificity 
are usually used as quality metrics of the binary classification algorithm. The sensi-
tivity (also called Recall Rec, or probability of detection) measures the ability of 
correct detection of Malignant tumor

 
Sens Rec ,= =

+
tp

tp fn  
(13.1)

where tp is the number of true positive and fn is the number of false negative predic-
tions. Specificity measures the proportion of actual negatives that are correctly iden-
tified as such

 
Spec ,=

+
tn

tn fp  
(13.2)

where fp is the number of false positive and tn is the number of true negative.
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However, each malignant or benign classes is compiled from several different 
types of tumor. Actually, the malignant class unites MM, BCC, Squamous Cell 
Carcinoma (SCC). The same for benign class, which unites nevi, keratosis, and 
other benign tumors. As a fact, the most complex classification problem is the rec-
ognition of the concrete tumor type or at least a cancerous type inside the complex 
Malignant class. It is a multi-class problem, when sensitivity/specificity metrics 
lose its meaning and we need to determine other accuracy metrics. In this case pre-
cision and recall may be used as quality metrics. Recall has the same formula as 
sensitivity. Precision (also called Positive Precision Value, PPV) is a fraction of true 
predictions inside all predictions by an algorithm:

 
Prec PPV .= =

+
tp

tp fp  
(13.3)

It is also convenient to use F1-measure (or F-score) [29], which combines precision 
and recall as equal-weighted average:

 
F1

2
=

∗ ∗
+

Prec Rec

Prec Rec
.
 

(13.4)

13.3  Dermatoscopy Imaging for In Vivo Skin 
Cancer Diagnosis

13.3.1  Dermatoscopy Unit

Clinical study was performed using a home-made hand-held dermatoscope with a 
texture analysis software supporting several modes of imaging, including multi-
spectral imaging with polarized light and skin autofluorescence analysis with UV 
excitation. A principle scheme of the device is presented in Fig. 13.1. For skin illu-
mination, it was used four white LEDs FM-5630WDS-460W-R80 (with polariza-
tion coating and without it) and three groups of visible color LEDs (models CREE 
XPCReD-L1-0000-00301, CREE XRCGRN-L1-0000-00N01, CREE XREBLU- 
L1- 0000-00K01) with peak spectral intensity in red (620 nm), green (530 nm), and 
blue (470 nm) ranges, respectively. The autofluorescence was excited by UV LEDs 
LEUVA77V20RV00 with peak intensity in 365 nm.

The digital camera was equipped with a long-pass filter (ThorLabs FGL435) for 
filtering autofluorescence images and a cross polarizer for deeper epidermis struc-
ture visualization. The typical examples of skin images for different imaging modes 
are shown in Fig. 13.2.

13 Texture Analysis in Skin Cancer Tumor Imaging
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13.3.2  Algorithms of Texture Analysis in Tumor Recognition

In this paragraph, we describe tumor recognition algorithms based on an analysis of 
color and texture features evaluated from images acquired in polarized white light. 
This is the closest approach for conventional dermatoscopy.

Traditionally, physicians use some kind of checklist to assess the malignancy of 
a tumor. For example, the simplest and the most known of them, ABCD, is a set of 
Asymmetry, Border irregularity, Color variation, and Diameter [30]. This checklist 
does not require high resolution of images, because all features are integral, and 
images can be taken, for example, from a smartphone camera. Therefore, ABCD 
can be well suited for an automatic analysis of images taken only in macro mode. In 

Fig. 13.1 Principle 
scheme of dermatoscopy 
hand-held unit

Fig. 13.2 Multispectral Images of Nonpigmented Melanoma: (a) White polarized light, (b) White 
non-polarized light, (c) Autofluorescence image, (d) Red light, (e) Green light, (f) Blue light
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other cases, an appropriate alternative is a 7-point checklist (7PCL) including the 
following properties [31]:

 1. Atypical pigment network: hyperpigmented areas and irregular lines/dots 
patterns.

 2. Gray-Blue areas: confluent, irregular gray-blue to whitish-blue diffuse pigmen-
tation associated with pigment network melanophages and midreticular dermis 
melanocytes. Also referred as blue-whitish veil.

 3. Atypical vascular pattern: linear irregular or dotted red structures outside regres-
sion zones and correlated to vascularized amelanotic nests.

 4. Radial or irregular streaks: radially or asymmetrically arranged linear or bulbous 
structures at the edge of a tumor.

 5. Irregular pigmentation: black, brown, or gray pigment areas with irregular shape 
or distribution.

 6. Irregular dots and globules: black, brown, or gray round structures irregularly 
distributed within a lesion.

 7. Regression pattern: white scar-like or blue-gray dots irregularly distributed 
inside a lesion.

On the one hand, it is just an extended ABCD method. However, Argenziano 
et al. [15] have showed that 7-point checklist may be effectively applied for visual-
ization of a number of distinctive features of melanoma extracted from high quality 
epiluminescent microscopy skin images.

An alternative approach is supervised learning model with associated learning 
algorithm that analyzes and classifies images based on color and texture features 
(see Fig. 13.3). The texture-related recognition algorithm consists of the following 
steps [32]:

Fig. 13.3 Algorithm of 
automatic dermatoscopy 
lesion detection
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• initial image pre-processing: color correction, hair removal, and median filtering;
• region of interest (ROI) detection (tumor area, tumor-healthy skin boundary, and 

healthy area);
• calculation of color (histogram) and texture features (Haar, Local Binary 

Patterns–LBP) for tumor and healthy skin areas;
• calculation of comparative (tumor/healthy) features;
• final diagnostic recommendation using support vector machine (SVM) classifier.

Initial image pre-processing consists of noise subtraction and hair removal also as 
histogram and color correction for image contrast increasing and for the highest 
available dynamic range.

Region of Interest (ROI) Detection The aim of this procedure is an image split-
ting on an area related to the lesion and another area that is associated with healthy 
skin (Fig. 13.4). K-means clustering algorithm [33] calculated on pixels brightness 
is applied to the image, which produces 40 (a predefined parameter) classes. 10% of 
classes with the lowest brightness are forcibly labeled as the lesion area, the rest of 
the classes are assigned to surrounding healthy skin. The image is spatially divided 
by 2D square blocks. The size of the block is determined as 1/20 of the smallest 
image dimension. Then, a rate of “lesion” pixels is calculated for each block based 
on the determined classes. If a block rate exceeds 5%, the block is marked as a 
lesion block. One “layer” of blocks (by 4 connections) around the lesion ROI is 
marked as transient and form the tumor boundary.

Color and Texture Features Evaluation Color and texture features are repre-
sented by a multidimensional composite vector, which combines together different 

Fig. 13.4 Normal skin and 
lesion regions
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image properties calculated by several approaches [32, 34]: Haar transform forms 
Hi vector; Local Binary Patterns (LBP) approach forms Li vector; and color analysis 
defines Ci vector. These vectors are combined together in one vector later.

Haar Transform Discrete 3-level Haar transform [35] has been performed for 
each detected ROI block by applying two (high-pass and low-pass) filters using fol-
lowing algorithm:

• The filters have been applied to each row of the initial image resulting in two 
matrixes: one contains approximated part and another matrix contains fine details 
of the initial image.

• Then, this transform has been performed again for each column of these matrixes, 
resulting in four total matrixes, contained an approximated part, horizontal, ver-
tical, and diagonal details of the image.

The result of 3-level Haar transform are 10 sub-images (see Fig. 13.5). The mean 
value and variance of sub-images are calculated and combined in a feature vector 
for every ROI block. Thereby, the number of feature vectors equals to the number of 
ROI blocks for every image. Finally, the histogram Hi has been calculated using the 
K-means clustering algorithm. This histogram represents a distribution of the image 
feature vectors.

Local Binary Patterns (LBP) The main idea of LBP [36] is a p-bit number evalu-
ation for every image pixel by comparing its brightness with the brightness of p 
surrounding pixels using the following algorithm (see Fig. 13.6):

• the brightness of the initial pixel (green) is used as a threshold;
• the surrounding pixels (red) are located on a circle with the radius r;
• if a surrounding pixel brightness value exceeds the threshold, the corresponding 

bit in the “number” is set to 1, and zero otherwise.

The tissue analysis software uses two LBP algorithms with following parame-
ters: p = 16, r = 2 and p = 24, r = 3. The results are combined into a single 40-bit 
number. The resulting histogram is normalized and forms the vector Li.

Color Analysis Color histograms have been used for classification as a part of the 
feature vector. Brightness range of every color channel has been divided on P fixed 
intervals and a pixel brightness distribution has been calculated for every channel in 
RGB, HSV, and LAB color spaces in terms of these intervals. Then, the histograms 
standard deviation and entropy values are calculated and added to the histogram 
data to define the vector Ci.

Comparative Features A comparative analysis has been performed in order to 
improve classification by taken into account the personal characteristics of skin. All 
features are evaluated separately for the lesion and for the surrounding healthy skin. 
Then, the difference metric between these areas is calculated: Euclidean distance d 
and cosine measure θ are defined as

13 Texture Analysis in Skin Cancer Tumor Imaging
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Fig. 13.5 (a) Single-level 
Haar transform and (b) 
3-level Haar transform
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d x y x y, ,( ) = − 

 
(13.5)
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T
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(13.6)

where ‖∎‖ means Euclidean norm, the magnitude of the vector; x y, —feature vec-
tors in the correspondent areas.

Classification Resulting feature vectors from every approach (Hi, Li, and Ci) for 
the lesion area are combined in a single vector for every image. In the case of using 
comparative features (the so-called, personified mode), the final single vector is 
being also supplemented by Euclidean distance d and cosine measure θ. The linear 
SVM method is used for tumor classification [28].

13.3.3  Biological Samples

Three series of experiments were carried out to determine the cancer recognition 
quality of the proposed algorithm of the texture analysis of the dermatoscopy 
images. The first two series (70 images in first experiment and 130 images in second 
experiment) were performed with a manual immersion dermatoscope connected to 
the Canon EOS 1100D Kit camera (10× zoom). The resulting image dataset (JPEG 
RGB, 8 bit/channel image) includes 30% of melanomas and 70% of benign tumors. 
The third experiment was performed with the specialized dermatoscope described 

Fig. 13.6 LBP algorithm: 
an example of surrounding 
pixels (bilinear 
interpolation) selection and 
the central pixel as a 
threshold

13 Texture Analysis in Skin Cancer Tumor Imaging



476

above. The third dataset includes 106 images: 53 Melanomas, 53 other types of 
tumors (22 Pigmented Nevi, 4 Papillomas, 1 Dermatofibroma, 25 Keratomas, and 1 
Bowen’s disease) in TIFF format (RGB, 12 bit/channel). As the software module for 
calculating color texture features supports only 24-bit images, the reduction 12-bit 
down to 8-bit was performed before the following texture analysis. ROI detection 
was switched on to the automatic mode.

The protocol of in vivo tissue diagnostics has been approved by the ethical com-
mittee of Samara State Medical University. All patients were at least 18 years old. 
Informed consents were acquired from all patients before the in vivo study. In all 
experiments images were made by a physician, and the final diagnosis has been 
histologically proven after resection of a suspicious tumor.

13.3.4  Classification Results

For the first two experimental datasets, the classification task has been defined as 
melanoma versus pigmented benign tumors. It was used two modes of ROI detec-
tion: automatic and semi-automatic when additional user correction of the tumor 
boundary was performed. The results of classification are collected in Tables 13.1 
and 13.2. The proposed texture algorithm has been tested for parameters and fea-
tures defined in the tumor area only (universal mode) as well as for the comparative 
features (personified mode), which includes personal features of skin. As it may be 
seen from the results of classification the user-defined correction of ROI detection 
may enhance the sensitivity of MM detection on several percentages only. At the 
same time the personalization of skin properties by comparison of tumor and healthy 
areas gives much more for the classification.

As a result, the third series of experiments was performed only in the personified 
mode. In experiments #3 the cross-validation was carried out according to the fol-
lowing principle: a sample set is divided randomly into two (training and test) sets 
in the ratio of 80/20%, 70/30%, 60/40%, and 50/50%. The qualifier is retrained on 
the new set of training samples and, then, tested on the test one. As a result of cross- 
validation, the average error of test samples for all cases is presented in Table 13.3.

Table 13.1 Classification results for the automatic ROI detection mode

Mode

Experiment #1
70 samples

Experiment #2
130 samples

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

Universal mode 74 62 63 80
Personified mode 94 94 90 90
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13.4  Optical Coherence Tomography for Ex Vivo Skin 
Cancer Detection

13.4.1  OCT Setup Scheme

The OCT system (Fig.  13.7) includes a broadband superluminescent laser diode 
(840 ± 45 nm wavelength range, 20 mW output power) and Michelson interferom-
eter with 50/50 split ratio to the sample and reference arms, and a spectrometer as 
the detector. The spectrometer comprises of a diffraction grating (1200 grooves/
mm) and a CCD line scan camera (4096 pixel resolution, 29.3 kHz line rate). The 
interference signal from the sample and the reference arms of the Michelson inter-
ferometer is detected by the spectrometer and digitized by an image acquisition card 
(NI-IMAQ PCI-1428). A depth profile (A-line) is obtained by converting the inter-
ference signal detected by the IMAQ into linear k-space.

13.4.2  Data Collection of Biological Samples

Altogether, we investigated 1008 OCT images from 33 ex vivo skin tissue samples 
(Caucasian, I and II skin phenotype). These OCT images have been obtained from 
regular patients of Samara Regional Clinical Oncology Dispensary. This set 
includes: basal cell carcinoma (BCC) (272 B-scans (2D), 11 samples (3D)); healthy 
skin (229 B-scans (2D), 8 samples (3D)); MM (254 B-scans (2D), 10 samples 
(3D)); nevus (253 B-scans (2D), 4 samples (3D)). The protocol of ex vivo tissue 
diagnostics has been approved by the ethical committee of Samara State Medical 
University. All patients were at least 18 years old. Informed consents were acquired 
from all patients before the ex vivo study.

Initially, a physician examines a patient for preliminary diagnosis. In the case of 
suspected malignant melanoma or another cancer (excluding BCC), the patient was 
subjected to resect this suspicious tissue. After this resection, the sample was 

Table 13.2 Classification results for the semi-automatic ROI detection mode

Mode

Experiment #1
70 samples

Experiment #2
130 samples

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

Universal mode 77 91 75 83
Personified mode 94 94 86 89

Table 13.3 Classification results for experiment #3 by using the automatic ROI detection mode

Training set Cross-validation
Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

96 89 90 86
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carefully divided into two parts so that each part contains approximately half of the 
neoplasm area. One part was stored in a sterile box at +4 ± 2 °C and, then, delivered 
within 4 h to the laboratory for OCT investigation. The second part was histologi-
cally studied using standard protocols in Samara Regional Clinical Oncology 
Dispensary. The skin resection samples were approximately 2 × 2 × 1 cm. OCT 
scanning was performed as for tumor area as for apparently healthy tissue at the 
maximum possible distance from the outer border of the tumor.

Histopathological sections and OCT images of studied samples of malignant 
(MM and BCC) and benign (Pigmented Nevi) tumors are shown in Fig. 13.8. OCT 
image (B-scan) of healthy skin is presented in Fig. 13.9.

It can be noted that there are topologically and texturally similar structures on the 
histological and corresponding OCT images of tumor samples. One can clearly see 
the painted layers of tumor cells of round or elliptical shape in a histological section 
of BCC (Fig. 13.8c). Basal cell carcinoma cells on the periphery of the tumor layer 
are typically in the form of a lance-like row. This formation of malignant cells 
defines changes in optical density of basal cell carcinoma and normal tissue, so the 
basal cell carcinoma area has a darker color of circle form on the OCT image 
(Fig. 13.8d).

In OCT, normal epidermis (including the stratum corneum) is seen as a bright 
stripe on the tissue surface in malignant melanoma image (Fig. 13.8b). Diffusely 
scattering cells containing melanin complexes and small undifferentiated cells with-
out pigment are located under the epidermis layer. This determines the optical prop-
erties of the tumor. Both OCT (Fig. 13.8b) and histopathology (Fig. 13.8a) reveal 
destruction of specific layered structure of normal skin. Randomly located multi-
form objects of different optical density are visualized on the OCT image instead of 
normal layered structure. Melanoma cells may have an excess amount of pigment or 
may include nonpigmented elements, which appear on the OCT image in form of 
dark and bright areas, respectively.

Normal tissue (Fig. 13.9) and Nevi (Fig. 13.8f) are apparently similar and repre-
sent structures without a clear texture pattern. Histologically, they are distinguish-
able due to the presence of a higher pigment concentration in the Nevi (Fig. 13.8e), 
which local change is not so strong and contrasted as in melanoma. On the OCT 

Fig. 13.7 Spectral domain OCT scheme: 1—broadband superluminescent source, 2—50/50 
beamsplitter, 3—sample arm, 4—reference arm, 5—spectrometer with grating 6 and CCD camera 
7, 8—computer with IMAQ [37]
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Fig. 13.8 Histopathological sections (100× magnification) and OCT images (B-scans) of studied 
skin samples: (a, b) Melanoma; (c, d) Basal Cell Carcinoma; (e, f) Pigmented Nevi [38]. Yellow 
ellipses mark tissues inhomogeneities
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images, one can note the inhomogeneity of the dermis optical properties (Fig. 13.8f), 
notably a different depth of signal attenuation, which indicates differences in mela-
nin distribution along the image spatial coordinate. In the normal tissue, the layer of 
the dermis is visualized uniformly in depth along the horizontal axis (Fig. 13.9).

13.4.3  Feature Extraction Algorithm

13.4.3.1  Denoising and ROI Selection

The interval type II fuzzy anisotropic diffusion filter was applied for all OCT data 
for images denoising [39]. The utilization of this filter effectively removes speckle 
noise and enhances the sharp regions (e.g., tumor boundaries) in OCT images [38]. 
All texture features described below have been calculated inside a ROI, which is 
manually selected by a rectangle covered the image inhomogeneity associated with 
the tumor. In this case, the ROI contains healthy tissue textures, but its volume is 
less than 1% and, as a fact, its influence is quite limited. Additional segmentation for 
tumor border areas inside the ROI rectangle has not been processed to simplify a 
calculation workflow.

13.4.3.2  Features Overview

The informative features of the algorithm of OCT image texture analysis are col-
lected in Table 13.4. It must be mention that these feature categories have strong 
associations with such tumor features as asymmetry, borders irregularity, color, 
diameter, which are used in ABCD and 7-point algorithms in dermato scopy. 
However, they are applied for 3D images and include an information about the 
tumor invasion and its spatial properties. In opposite, dermatoscopy images include 

Fig. 13.9 OCT image 
(B-scan) of normal 
skin tissue
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integrated by depth scattered radiation and, as a result, represent a depth-averaged 
image of the tumor.

13.4.3.3  Haralick Features

Weszka et al. [48] have shown that statistical descriptors are able to evaluate a tex-
ture better than features associated with spatial frequency. The statistical descriptors 
may be defined with the help of the Gray Level Co-Occurrence Matrix (GLCM) 
[23, 40], which characterizes the spatial relationship between the values of a bright-
ness function in a certain local area of an image. The calculation of the matrixes is 
considered in detail elsewhere [23]. The matrixes depend on a distance between a 
pair of neighboring pixels with a specific gray level and an angular direction deter-
mined by those pair. We use the values in two adjacent points for calculation of 
GLCM as in a base method [40]. However, the method may be generalized to a case 
of three neighbors.

Technically, in our case, GLCM P(i, j) is reflected the frequency of occurrence of 
a pixel with gray level value (intensity) i horizontally (vertically, diagonally) 

Table 13.4 Diagnostic features of OCT skin tumors

Group/method Feature/variable name Feature description

Haralick [40] Correlation_0/45/90/135 Haralick correlation in 0/45/90/135 
degrees direction over GLCM matrix

Homogeneity_0/45/90/135 Haralick homogeneity in 0/45/90/135 
degrees direction over GLCM matrix

Contrast_0/45/90/135 Haralick contrast in 0/45/90/135 
degrees direction over GLCM matrix

Energy_0/45/90/135 Haralick energy in 0/45/90/135 
degrees direction over GLCM matrix

Gabor [41] Gabor_0/1/2/…/16 17 Gabor features, evaluated in ROI 0, 
1,…,16

Tamura [42] Fcnt Contrast (Tamura)
Fdir Directionality
Fcrs Coarseness

Fractal dimension D1f 1D-box counting fractal dimension 
[43]

Sdf Standard deviation of 1D-box counting 
fractal dimension

Dps 2D-power spectrum fractal dimension 
[44]

D2f 2D-differential box counting fractal 
dimension [45]

Complex directional 
field (CDF) [46]

CDF_mean/variance,  
WF_mean/variance

Mean/variance of CDF phase and 
weight function (WF)

Markov random field 
(MRF) [47]

MeanR Mean of autocorrelation function
VarR Variance of autocorrelation function

13 Texture Analysis in Skin Cancer Tumor Imaging



482

connected directly to a pixel with value j. For correct mathematical expression, 
P(i, j) additionally has to be normalized and defined as p(i, j). Thus, each element 
p(i, j) in the normalized GLCM specifies a probability that a pixel with value i 
occurred horizontally (vertically, diagonally) adjacent to a pixel with value j.

These normalized matrixes L × L size are used for definition of texture features 
and image classification. We used four Haralick features most correlated (in our 
private opinion) with dermatoscopy features: homogeneity, correlation, contrast, 
and energy. More detailed information about the calculation procedure see, for 
example, in [49]

Second angular moment (squared energy) measures a local uniformity of the 
gray levels. Similar pixels maximize angular second moment.
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Contrast (variance) is a measure of intensity or gray level variations between two 
pixels. Larger contrast reflects larger differences in GLCM
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Correlation of gray levels shows the linear dependency of these values in the GLCM
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where μx, μy, σx, σy are mean values and standard deviations of pixel brightness 

by appropriate probabilities: p i p i jx
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Inverse difference moment (homogeneity) measures how close a distribution of 
elements in a GLCM to the diagonal of the GLCM. Behavior of homogeneity is 
typically opposite to contrast
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The Haralick features (Eqs. (13.7)–(13.10)) are calculated across each of 4 direc-
tions (horizontal—0°, vertical—90°, and two diagonal directions—45° and 135°). 
Totally 16 Haralick features have calculated (Table 13.4). The final values of second 
angular moment, contrast, correlation, and homogeneity are evaluated by averaging 
over the angles of each feature, respectively.
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13.4.3.4  Gabor Features

Gabor filters are a well-known methodology for texture analysis that has been used 
in various applications [41, 50, 51]. The image frequency component is very impor-
tant for texture analysis; however, Fourier transform does not produce any informa-
tion about its spatial distribution. One can use a windowed Fourier transform to 
extract this spatial information. The Gabor transform is obtained by implementation 
of Gaussian functions as windows, which have good spatial-frequency localization.

Gabor coefficients are defined as follow:

 
G n n I u u M u uf f, , , ,ϕ ϕ0 1 0 1 0 1, ,( ) = ( ) ⋅ ( ) FT-1 ∧∧

 
(13.11)
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where Î u u0 1,( )  is a Fourier image of I(n0, n1), λ is an anisotropy coeffi-

cient, f u u= +0
2

1
2  and u u u u u u0 1 0 1 0 1

′ ′( ) = + − +( ), cos sin , sin cosϕ ϕ ϕ ϕ .

To describe an image I(n0, n1) via Gabor functions, a new image has to be created:
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Here n n n n n DI0
0

0 1 0 1= ∈ ∃ ( )∈{ }min | : ,  is a left boundary of set DI, 

n n n n n DI1
0

1 0 0 1= ∈ ∃ ( )∈{ }min | : ,  is a bottom boundary of set DI.

A discrete Fourier transform is applied on this image:
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Next, a resulting image is multiplied on various sampled Gaussian windows of 
the form
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All window centers m k m k0
0

1
0( ) ( )( ),  are determined in advance. The resulting set 

of complex images of the original image spectra has a form
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where a window W m mk 0 1,( )  has a center − ( ) − ( )( )m k m k0
0

1
0, . Each complex image 

allocates a certain frequency range. The spectrum should remain symmetrical and 
match the real image.

The inverse Fourier transform over the images ŷ m m0 1,( )  should produce a set of 
images y(m0, m1), similar to the initial one, but each of them contains only certain 
textures. The average energies of these images may be used as Gabor features in the 
classification task. According to the Parseval theorem, one can obtain these features 
without application of the inverse Fourier transform:
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Finally, we have to determine the number of features, and also select for each of 
them the center of a Gaussian window m k m k0

0
1
0( ) ( )( ),  and standard deviations. For 

example, one can use a frequency domain splitting shown in Fig.  13.10, which 
allows one carefully separate high-frequency textures.

Thus, we have 17 Gabor features gk (Gabor _ k), k = 0, 1, 2, …, 16. The center of 
the k-th Gaussian window is located in the center of the k-th rectangular area shown 

Fig. 13.10 Frequency domain splitting and Gaussian window centers selection
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in the figure, and for each window, except the zero one, there is a paired one, the 
center of which is symmetric with respect to the axis origin.

Standard deviations σ0(k) and σ1(k) for the k-th window are selected based on a 
size of the k-th rectangular area, so the values of the spectrum inside the area are not 
too strongly extinguished by the Gabor filter, and the values outside of the area 

have been significantly reduced. We assume that σ 0

1

2
k w k( ) = ( ) ,σ1

1

2
k h k( ) = ( ) , 

where w(k) and h(k) are the linear dimensions of the k-th region. In this case, the 
value of the window function Wk(m0, m1) in the corner of this region is obviously 
equal to e−1 ≈  0.37, and the largest of the values on the border of the rectangu-

lar region is e
−

≈
1

2 0 61. . Taking into account that Gaussian function decreases much 
quickly, such a case suits us perfectly, and in all practical cases we use these values 
as standard deviations.

13.4.3.5  Tamura Features

Tamura et al. [42] proposed six textural attributes corresponding to the human per-
ception: coarseness, contrast, directionality, line-likeness, regularity, and rough-
ness. It was found that the first three features are the most important, because they 
are most strongly associated with visual perception. Three other features are highly 
correlated with the first ones and do not add much for texture analysis and 
classification.

Coarseness is a feature associated with the distance between noticeable spatial 
variations in gray levels, that is, with the size of primitive elements (textiles) that 
form a texture. As an image contains textures of several sizes, the coarseness aims 
to identify the larger size at which a texture exists. This feature may be calculated 
by the following algorithm. For each image pixel (supplemented with zeros outside 
the domain of definition) the average value I m nk ,( )  is calculated in the six different 
windows with sizes (2k + 1) × (2k + 1) pixels, k = 0, 1,… 5. For each image pixel and 
for each size k, the difference modulus is calculated with the nearest average of a 
non-overlapping window in each of the four directions θ:
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For each point in each direction θ, the window size k is calculated that maximizes the 

difference Ekθ(m, n) and determines the best size S m n k
kE m n

θ

θ

,
argmax ,

( ) =
( )

2 .
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Coarseness is calculated by averaging Sθ(m, n) over the entire image and 
directions θ
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where DI is a set of all image points (i, j) and |DI| is a scalar defining the image 
area value.

Tamura contrast measures how dramatically the brightness varies in the image 
together with the polarization of the distribution of black and white. This feature 
may be calculated as follows:

 
F

rcnt .=
σ
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(13.20)

Here σ2 is variance of the image brightness, α
µ
σ4

4
4

=  is kurtosis or normal-

ized fourth central moment, r = 0.25 is an experimentally selected coefficient.
Directionality  is a feature measured using a histogram of local contour direc-

tions. The feature measures not the orientation itself but the total degree of direc-
tionality in the image. First, the edge strength e(m, n) and angular orientation a(m, n) 
of the contour are measured:
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where the horizontal and the vertical brightness differences between the neighbor-
ing pixels Δx(m, n) and Δy(m, n) can be obtained, for example, by processing the 
original image with the discrete differentiation Prewitt operator computing an 
approximation of gradient of the image intensity function.

The histogram ha(k) of quantized angular directions a(m, n) is constructed by 
counting the edge strength e(m, n) exceeding a certain preselected brightness thresh-
old. This histogram reflects the degree of directionality. In order to measure the 
directionality one needs to calculate the number next and relative positions ap of the 
peaks (local maxima). The final equation of directionality is defined as follows:
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where R denotes a normalizing factor related to quantizing levels of the angles a and 
wp is a range between valleys surrounding the corresponding peak p.
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13.4.3.6  Fractal Analysis

The fractal analysis has been used to examine the structural changes in OCT images 
of biological tissue. The most popular algorithm for computing the fractal dimen-
sion of one-dimensional and two-dimensional data is the box counting method 
originally developed by Voss [43]. It was effectively applied for computing the frac-
tal dimension characterizing arterial tissue [52] and the breast carcinoma [53]. Gao 
et al. [54] have applied the power spectrum method to carry out the fractal analysis 
on the layered retinal tissue for diagnosing the diabetic retinopathy.

In the box counting method, the fractal surface (volume) is covered with a grid 
of n-dimensional boxes (hyper-cubes) with side length ε, and the number of boxes 
that contains a part of the fractal N(ε) are calculated. As for images, the grid consists 
of cubes. In our case, 1D fractal dimensions across A-scans have been calculated 
and, then, averaged. Therefore, the fractal surface is covered with squares of recur-
sively different sizes, and the fractal dimension is defined as follows [55]:
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As for OCT B-scans, we also use differential box counting method [45]. Let us 
consider the OCT scan image of size M × M pixels covered with a grid of a size 
s × s, where s is an integer from the interval [1, M/2]. Let us determine the digital 
intensity unit measure g = r G, where G is the maximum intensity on the OCT 

image and r s
M= . Therefore, each (i, j)th element of the grid may be character-

ized by intensity distribution inside an s × s element measured in digital units g. In 
this case the difference in maximum (gmax) and minimum (gmin) digital intensities 
inside the (i, j)th grid element would determine the local contribution number
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Taking contributions from the whole grids, we have the total number
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Calculating (13.26) for different grid sizes s the fractal dimension D2f may bedefined 

similarly to Eq. (13.24) as the least square linear fit of log N(r) against log
1

r






 .

We also use the power spectrum method for counting fractal dimension [44, 56], 
which relates to the Fast Fourier Transform (FFT) of 2D gray-scale image I(i, j):

 
P k k cfxi yj, ,( ) = −β

 
(13.27)

where c is a constant, f is a spatial frequency f k kxi yj= +2 2 .
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β may be examined by fitting the function in Eq. (13.27) to the calculated 2D 
power spectrum. In the practice, β is calculated as being a slope of the curve 
ln P ×  ln f. The slope could be approximated by using the least square linear fit. 
Then, the 2D Fourier fractal dimension Dps may be easily estimated through the fol-
lowing equation [44]:

 
Dps .=

−8
2
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(13.28)

13.4.3.7  Complex Directional Field

The development of a tumor significantly changes optical parameters of the tissue 
[57, 58], which allows it to distinguish them from healthy tissue in OCT images. 
Thus, pattern analyzing of tumor boundaries (pathological heterogeneities) may be 
helpful for evaluation of the degree of malignancy and a type of the tumor.

One of the ways to describe such complex structures as borders is the direction 
field that in the case of OCT image represents a field of angles φ(x, y) characterizing 
a predominant direction of the boundary of heterogeneity in a local neighborhood 
of the point (x, y). The complex directional field (CDF) is defined as a brightness 
gradient of the image at the point (x, y)

 
∇ ( ) = ( ) ( )( )I x y G w x y i x y, , , ,max · ·exp 2ϕ

 
(13.29)

where Gmax =  max (|∇I(x, y)|), w(x, y) = |∇I(x, y)|/Gmax is the weight function, and a 
phase is determined on the interval [0, π] as follows:
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The CDF method does not require image preparation, border selection or segmenta-
tion, and preliminary manual labeling; it can be applied directly to a gray-scale 
image that allows one to analyze any complex heterogeneous structures in 
OCT images.

Obviously, the weight function w(x, y) must have a maximum value in areas with 
sharp changes of the brightness, and a value close to zero should be observed for 
image areas with almost constant brightness. This determines one of the main dis-
advantages of the directional field method— the high sensitivity to noise level, 
which as a rule characterized by edgy alteration of the brightness. In order to over-
come this drawback, we use the local gradients calculation procedure, which is 
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based on the fact that gradient of a function at any point is perpendicular to a tangent 
to the contour of the brightness level at the given point.

The local gradients counting procedure is based on a calculation of the function 
of brightness gradient ( fx

k l, , fy
k l, ) at various positions of the local mask inside the 

symmetric rectangular external window W of M × N size, that is scanning the image 
[46], where 1 ≤ k ≤ N, 1 ≤ l ≤ M.

The local gradients ( fx
k l, , fy

k l, ) define the local angles:
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Then direction of trace in the center of outer window W may be evaluated by averag-
ing of local angles field:
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and a value of the weight function:
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Equations (13.33) and (13.34) are used as texture descriptors.

13.4.3.8  Markov Random Field

According to the stochastic approach [24], a tumor texture inside an image I(x, y) 
may be formalized through a random process (a random field). In this way, each 
pixel I(xk, yl) has a probability function on all its neighbor pixels. Obviously, this 
neighbor set is limited by a region of the neoplasm texture, and the field parameters 
are being different for different types of tumors, thereby describing stochastic 
parameters of tissue heterogeneity, absorption, and scattering. This approach 
requires preliminary and accurate segmentation of the original OCT images.

This model may be simplified by mandatory reducing the neighbor set, for exam-
ple, down to 3 × 3 pixels square window. Suggesting that this area is much smaller 
than a size of the neoplasm texture, we can conclude that accurate ROI extraction is 
not required in this case, and the image (texture) model may be described through 
Markov Random Field (MRF) [59]. This approach has been already applied for 
texture modeling, texture classification, and texture segmentation in image analy-
sis [60].

To evaluate MRF parameters of the original image (inside the ROI) I(x, y), an 
autocorrelation function [46] R(x, y) over 3 × 3 area is calculated as follows:
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The mean and variance of the autocorrelation function Eq. (13.35) are used as tex-
tural features.

13.4.4  Classification Results

We have performed several classification experiments with biological sample col-
lection described in Sect. 13.4.2. In first experiment, four methods have been used 
for texture feature classification: Haralick, Markov Random Fields and fractal fea-
tures for analysis of OCT B-scans and complex directional field (CDF) for analysis 
of C-scans (see Table 13.4). The dataset included 488 OCT images: 320 C-scans 
(MM—80, BCC—80, nevus—80, healthy skin—80) and 168 B-scans (MM—42, 
BCC—42, nevus—42, healthy skin—42).

Fig. 13.11 shows the scatter plots for selected texture features pairs, illustrating 
interclass separability. A linear classifier has been used as a separator. Table 13.5 
summarizes the results of the linear binary classification for MM vs healthy skin, 
MM vs nevus, MM vs BCC, BCC vs nevus, and nevus vs healthy skin.

The results of these binary classifications from Table 13.5 are highly contradic-
tory and do not allow us to unambiguously choose one or another pair or group of 
texture features as the main one. The highest accuracy was achieved for MRF fea-
tures—more than 92% for sensitivity and 95% for specificity for classification of 
almost all malignant tumors. But MRF fails in a case of nevus vs healthy skin, 
which is characterized by extremely low sensitivity. It may be explained by the fact 
that Nevus is often represents a hyperpigmented area of a skin only without a sig-
nificant change in the pattern. In addition, there are more samples in the case of 
nevus vs healthy skin than, for example, in MM vs BCC. Fractal analysis does not 
show satisfactory results (sensitivity and specificity are always lower than 70%) in 
all cases that may be indirectly justified by instability of fractal dimension. Haralick 
features show slightly better results, except for MM vs nevus case, where specificity 
drops below 60% for all pairs of features. A confident classification with Tamura 
features was achieved only in the case of BCC vs nevus. Apart from this, it may be 
notes, that CDF, unlike all other features, is calculated using C-scans, and this is the 
group that showed excellent results in all considered cases. As for the B-scans anal-
ysis, multicomponent classifiers with multi-texture features have to be compiled.

Therefore, each texture group has advantages in binary classification only of a 
specific tumor type vs healthy skin. However, these results are illustrative only 
because there is absolutely no problem to distinguish melanoma from healthy skin 
for a physician if this is known in advance that both healthy tissue and melanoma 
samples are presented in the dataset. In a case of binary classification containing 
healthy skin, we have the same difficulty for any other tumor types. On the other 
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Fig. 13.11 Scatter plots for the binary classifier MM vs healthy skin by (а) Haralick contrast–cor-
relation, (b) Haralick correlation–homogeneity, (c) MRF variance–MRF mean; MM vs BCC by 
(d) MRF variance–MRF mean; (e) CDF variance–WF variance; and BCC vs nevus by (f) CDF 
variance–WF variance [61]
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Table 13.5 Statistical characteristics of tumor tissues texture binary classification [61]

Feature class Features Sensitivity-specificity Samples Scan type

MM vs healthy skin

Haralick Contrast–Correlation 88%-92.8% 84 (42/42) B
Correlation–Homogeneity 88%-95.2% 84 (42/42) B
Contrast–Energy 79%-14% 492 (239/253) B

MRF MRF variance–MRF mean 92.8%-95.2% 84 (42/42) B
Fractal analysis Sdf − D1f 66%-69% 105(21/63) B

D2f − Dps 20%-99% 492 (239/253) B
Tamura Contrast–Coarseness 93%-8% 492 (239/253) B

Сoarseness–Directionality 97%-7% 492 (239/253) B
MM vs nevus

Haralick Contrast–correlation 78.5%-59.5% 84 (42/42) B
Correlation–homogeneity 83.3%-57.1% 84 (42/42) B
Contrast–energy 78.5%-59.1% 84 (42/42) B
Correlation–energy 81%-50% 84 (42/42) B
Energy–homogeneity 83.3%-50% 84 (42/42) B

MRF MRF variance–MRF mean 97.6%-73.8% 84 (42/42) B
Fractal analysis Sdf − D1f 64.2%-66.7% 84 (42/42) B

D2f − Dps 93.6%-62% 84 (42/42) B
Tamura Contrast–coarseness 90%-68% 490 (239/251) B

Coarseness–directionality 94%-2% 490 (239/251) B
MM vs BCC

Haralick Contrast–energy 87%-100% 42 (21/21) B
Homogeneity–energy 66%-92% 42 (21/21) B
Contrast–correlation 93%-7% 510 (239/271) B
Correlation–Homogeneity 99%-1% 510 (239/271) B

MRF MRF variance–MRF mean 90.4%-83.3% 84 (42/42) B
Fractal Analysis D2f − Dps 85%-6% 510 (239/271) B
Tamura Contrast–coarseness 94%-28% 510 (239/271) B

Coarseness–directionality 94%-4% 510 (239/271) B
CDF WF variance–CDF variance 91.5%-100% 160 (80/80) C

Nevus vs healthy skin

CDF WF variance–CDF variance 97.5%-83.7% 160 (80/80) C
Haralick Contrast–correlation 12%-99% 504 (251/253) B

Correlation–homogeneity 18%-99% 504 (251/253) B
Contrast–energy 28%-72% 504 (251/253) B
Energy–homogeneity 95%-87% 504 (251/253) B

MRF MRF variance–MRF mean 24%-100% 504 (251/253) B
Fractal Analysis D2f − Dps 89%-25% 504 (251/253) B
Tamura Contrast–coarseness 70%-87% 504 (251/253) B

Coarseness–directionality 97%-8% 504 (251/253) B

(continued)
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hand, the good preliminary binary classification results prove principal applicability 
of Haralick and MRF features for melanoma mapping and accurate detection of 
tumor boundaries with a resolution much higher than in the case of dermatoscopy 
[62], Raman tumor mapping [63], and laser-induced breakdown spectroscopy of 
melanoma [64].

The results of binary classification of melanoma versus benign tumors are much 
more interesting. One of the most typical clinical problems is distinguishing of 
malignant melanoma versus pigmented nevus, which have many similar visual 
properties. As one can see from Table 13.5, the accuracy of the texture classification 
is slightly reduced in the case in comparison with healthy skin but it still remains 
quite high for most Haralick features, and extremely high for MRF variance-mean: 
the sensitivity exceeds 97% with specificity of 73.8%. It must be mentioned that 
fractal analysis gives good results for 2D-differential box counting and 2D spectral 
power fractal dimensions only.

For the second experiment, the complete samples collection (see Sect. 13.4.2) 
have been examined using all declared texture features. Decision trees have been 
used for classification (depth = 5).

In contrast to the previous classification approach (Fig. 13.11), where a separa-
tion of classes occurs due to the plane split into two half-planes using a separation 
line, decision tree is a nonlinear method for making decision. First of all, a decision 
tree is a binary one, each node of which is a simple binary condition (classifier) of 
one of the variables (features). The next level contains two nodes for “True” and 
“False” values of the condition necessarily. Such node can be either a leaf describ-
ing a region of space with objects of one class only, or a sub-tree if the node covers 
objects of different classes. The latter is splitting recursively according to the same 
rule. The maximum depth of the tree (in our case depth = 5) is set up as a partition 
parameter. The deepest layer can contain only leaves (even if they cover objects 
from different classes). Thus, the decision tree “cuts” a phase plane (Fig. 13.12) into 
rectangles (leaves), each of which has a certain constant classifier of a class, in other 
words, can recognize one class only. In general, the decision tree, certainly, seeks to 
minimize the classification error.

Table 13.5 (continued)

Feature class Features Sensitivity-specificity Samples Scan type

BCC vs nevus

Haralick Energy–homogeneity 93%-94% 526 (273/253) B
Contrast–correlation 98%-12% 526 (273/253) B
Correlation–homogeneity 95%-10% 526 (273/253) B
Contrast–energy 99%-24% 526 (273/253) B

MRF MRF variance–MRF mean 95%-96% 526 (273/253) B
Fractal Analysis D2f − Dps 21%-99% 526 (273/253) B
Tamura Contrast–coarseness 88%-91% 526 (273/253) B

Coarseness–directionality 96%-2% 526 (273/253) B
CDF WF variance–CDF variance 100%-97.5% 160 (80/80) C
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The results are presented using delayed sampling. The samples set was randomly 
divided for training and test sets in proportion 80%/20%. The k-fold cross- validation 
has been used with a random separation of the all samples into five groups (folds) 
for assessing the quality of the training. In this case, onefold (20%) plays a role of a 
test set and four others (80%) combine a training set each time. The results of clas-
sification are summarized in Table 13.6.

Scattered plots for the binary classifier MM vs nevus are shown in Fig. 13.12 for 
Haralick: energy-homogeneity for B-scans (a) and for CDF: CDF variance—WF 
variance for C-scans (b). As one can see, the classifier is characterized by frag-
mented phase surface for each class as for B-scans as for C-scans and consists of a 
set of detached areas after cross-validation (Fig. 13.12).

This is interesting to note that the best accuracy in identifying melanoma versus 
nevus was achieved with Tamura texture features, but the more stable classification 
results with almost equivalent values of specificity and sensitivity for different 
classes (MM vs nevus, BCC vs nevus) were obtained for Haralick: energy–homo-
geneity. At the same time, the accuracy of BCC versus benign tumor identification 
by Tamura (contrast–coarseness) is 10% less than the accuracy of MM identifica-
tion. At the same time, the exact determination of the malignancy type is very 

Fig. 13.12 Scatter plots 
for binary classifier MM vs 
nevus (a) Haralick: 
energy-homogeneity and 
(b) CDF: CDF variance–
WF variance [65]
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important because a treatment option depends on the type of the detected malignant 
tumor: surgery resection for MM and laser ablation for BCC.

Considering the standard diagnostic workflow, this is usually multi-stage and 
includes sequential determination of a malignant neoplasm (usually by a general 
practitioner) and, after that only, the determination and confirmation of the type of 
the malignancy. Therefore, a “classifier of malignancy” is very popular in medicine, 
its main aim is to distinguish a “malignant” tumor from a “benign” one. This gives 
a physician a “direction” of what to do next to determine a tumor type by another 
way, if it is a malignant neoplasm. But, in the same time, the physician, first of all, 
wants to know whether the detected tumor under study is melanoma due its danger-
ous features, as it is mentioned above. In this case, a classifier MM vs other tumors 
is looking very appropriative. It is well known that several features together may 
reach much better results than each of these features by one. Therefore, the two- 
stage classification was performed using support vector machine (SVM), where the 
vector is defined by all declared texture features. The results of classification are 
presented in Table  13.7: the accuracy of malignancy identification exceeds 90% 
with following possibility of melanoma determination with sensitivity and specific-
ity about 96%.

Table 13.6 Statistical characteristics (after cross-validation) of the tissues separation [65]

Feature 
class Features Tissue 1 Tissue 2

Sensitivity- 
specificity

Class tissue fraction 
(total number)

Haralick Energy–
homogeneity

BCC Nevus 93%-94% 273/253 (526)

Haralick Energy–
homogeneity

MM Nevus 92%-93% 254/253 (507)

Haralick Energy–
homogeneity

Nevus Healthy 
skin

95%-87% 253/229 (482)

СDF WF variance–CDF 
variance

MM Nevus 83%-96% 254/253 (507)

CDF WF variance–CDF 
variance

BCC Nevus 77%-97% 273/229 (502)

MRF MRF variance–
MRF mean

BCC Nevus 95%-96% 273/253 (526)

MRF MRF variance–
MRF mean

MM Nevus 81%-89% 254/253 (507)

Tamura Contrast–coarseness BCC Nevus 88%-91% 273/253 (526)
Tamura Contrast–coarseness MM Nevus 96%-93% 254/253 (507)

Table 13.7 Binary SVM classifiers

Sensitivity (%) Specificity (%) Total number of images

Malignancy vs all 90 89 1011
MM vs tumor 96 96 490
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Then, the SVM kernel was generalized for multi-class classifiers. Tables 13.8 
and 13.9 show these classifiers obtained by using SVM for the considered sets of 
images. In these tables, each row can be interpreted as a binary classifier of the cor-
responding class versus all other examples in the dataset. For instance, there are 
BCC vs MM + nevus in Table  13.8 or BCC vs MM + nevus + healthy skin in 
Table  13.9. Precision, recall, and F1-score (see Sect. 13.2 for details) have been 
calculated for all possible binary cases by using a linear binary SVM and all texture 
features for B-scans.

The results are very promising. Precision does not drop below 88% for normal 
skin, i.e., the classifier initially focuses more towards accurate diagnosis of neo-
plasms, both precision and specificity (Recall) of which do not drop below 89% for 
the four-class and 95% for the three-class classifiers.

13.5  Discussion and Conclusions

We analyzed quite large datasets for various tumors using two different technolo-
gies—dermatoscopy and OCT.  Naturally, the fundamental difference in the col-
lected data lies not in the image resolution only, but in the physical principles of 
acquiring of visual information about the tumor. If in the case of a dermatoscope, 
we integrate the scattered radiation from all the skin layers and get a 2D image of 
the tumor, in the case of OCT, we have a 3D image of higher resolution, which may 
be analyzed layer by layer both in depth direction (B-Scan) and in the layers parallel 
to the skin surface (C-Scan). Therefore, the texture properties of dermatoscopic 2D 
images have averaged optically by depth already. Apparently, C-scans for OCT and 
2D images obtained by dermatoscope should have similar texture features. However, 
a more accurate cancer recognition by OCT is achieved with the texture analysis of 
B-scans. The latter is due to the fact that a malignant neoplasm is characterized by 
invasion of the tumor in depth, which is detected by the analysis of B-scans 

Table 13.8 Three-class SVM classifier (748 images)

Precision (%) Recall (%) F1-score (%) Total number of images

BCC 96 98 97 268
MM 97 95 96 239
Nevus 99 99 99 251

Table 13.9 Four-class SVM classifier (1011 images)

Precision (%) Recall (%) F1-score (%) Total number of images

BCC 91 93 92 268
MM 93 90 91 239
Healthy skin 88 89 88 253
Nevus 99 99 99 251
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implicitly and has more explicit texture features. In this regard, the texture analysis 
of dermatoscopic and OCT images complement each other.

Despite the fact, that the algorithms of analysis for both imaging modalities are 
based on textural features and SVM classification, there are a number of differences 
between them. For OCT, the vector of classifying descriptors is formed by classical 
basic textural features (Haralick, Gabor, Tamura, Markov random field), which are 
commonly used for digital image processing. It may be noted the similarity between 
the Gabor and Haar features. Both features evaluate a texture by its spatial- frequency 
distribution. In terms of algorithm performance, Window Fourier Transform is 
faster than Discrete Wavelet Transform. But linearizing the Haar transformation by 
applying simple linear filters significantly reduces the complexity of calculating 
descriptors, which makes the procedure much more faster.

In dermatoscopy, the features transformation and optimization (Haar Transform, 
LBP, and color histograms) have been used, since the algorithm is intended origi-
nally to be implemented as a software for the dermatoscopic device. Another funda-
mental feature of the dermatoscopic images is the color texture analysis, which 
implicitly includes the distribution of natural skin fluorophores with different 
absorption and fluorescence bands. The intensive growth of a malignant neoplasm 
induces the development of the microvasculature, morphologic, and biochemical 
changes specific for different cancer types that appears in alteration of the color of 
texture compared to the healthy skin. At the same time, a large variability in the 
color characteristics of human skin leads to a large variance of these features and 
requires their correction in texture analysis. It was carried out by calculating com-
parative textural descriptors, which include the personal properties of the healthy 
skin (Personified Mode). All analyzed sets of dermatoscopic images (70, 130, and 
106 images) have showed comparable classification results. At the same time, per-
sonalized diagnostics (evaluation of comparative textural descriptors of tumor and 
surrounding healthy tissue) have given a significant increase (15–20p.p) compared 
with the general mode (only tumor descriptors calculation).

The model is quite stable as evidenced by the results of cross-validation. The 
decrease of sensitivity and specificity was 6p.p. after cross-validation only and 
3p.p., respectively. The obtained results are much better than the classification 
results described in [15, 16, 31, 34]: sensitivity 96% against 93% and specificity 
89% against 80%. This is an application consequence of the complex texture fea-
tures and the personalized mode in the texture analysis algorithm. The method of 
dermatoscopy is well suited for screening when high sensitivity indices are required 
(at the level of 95–97%), that ensures by the proposed algorithm, while the high 
specificity (89%) minimizes the number of false positive cases. In addition, the low 
weight and mobility of the device allow one conducting screening procedures out-
side a hospital without the need for sophisticated laboratory equipment.

Separately, it is possible to highlight studies about the dermatoscopic classifica-
tion by using convolutional neural networks (CNNs), but CNNs are very demanding 
on computing resources, including memory. For example, a quite popular VGG16 
contains up to 144 million parameters [26]. CNN has a problem with on-line train-
ing also, i.e., quick retraining of the classifier/network after adding a new sample. In 
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[74], the authors used Google Inception v.3 CNN, trained on approximately 129,000 
images and 2032 various diseases. This network contains much less parameters, but 
their number still has the order of millions. The authors obtained accuracy of about 
70%, but without total validation by biopsy/histopathology.

A number of disadvantages of the proposed algorithm should be mentioned. All 
medical computer diagnostic methods are extremely dependent on the source data. 
In this case, the dataset of 100–300 samples is not quite enough, and additional 
model training on a large dataset is required for obtaining exact statistical results. At 
the moment, the dependence of the result on the color correction stage has not been 
studied in details. Due to the different sensitivity of chromatic components inside a 
camera matrix, a RAW image looks greenish. Color correction allows us to correct 
the color temperature, making the images more “pleasant” for an operator. However, 
it is more important to make the image more contrast for dermatoscopy analysis, 
emphasizing certain dermatoscopic elements. For example, there are the increase of 
brightness/contrast of the white-blue veil by correction of the blue contribution, or 
enhancement of the contrast of melanin spots and atypical pigment networks by red 
one. The use of the additional color backlighting in the dermatoscope would allow 
us to obtain brighter and more contrast chromatic components on the same camera. 
Combining with the original RGB color image, one could increase the brightness of 
selected chromophores (the choice of chromophores depends on the switched color 
LEDs), simplifying their detection by texture features.

The better classification results were achieved for texture analysis of OCT 
images. It was demonstrated that Precision and Recall exceeds 97% in the multi- 
class recognition procedure due to the implementation of multi-texture analysis 
when used texture features complement each other. It makes possible the recogni-
tion of various tumors (as malignant as benign) with high-score identification of a 
tumor type in real clinical conditions.

Quite few successful applications of texture analysis of OCT images are known. 
For example, Sawyer et  al. [66] have achieved 78% accuracy for ovarian cancer 
detection on a mouse model by using texture features including Haralick ones. The 
mouse model was also used in texture studies of lungs [67] and cervical cancer [68]. 
A study of the human intraretinal cystoid regions may be found in [69], where the 
authors used Gabor texture features, fractal dimension, and a number of various 
features based on intensity and gradient properties of the image. In principle, we use 
the similar approach being that, for instance, Haralick features describe indirectly 
the intensity properties and their distribution on the image. The complex directional 
field method allows us to work with boundaries and brightness differences similarly 
to gradients.

As for skin cancer research, Marvdashti with co-authors [70] have received the 
accuracy 95% in detecting BCC in human skin samples collected from 42 patients 
using polarization sensitive optical coherence tomography. The authors used a more 
sophisticated algorithm for ROI detection and extracted a number of various fea-
tures for A- and B-scans, including intensity and phase retardation statistics (range, 
standard deviation, mean, median), histogram statistics, Haralick texture features, 
and morphological ones. It must be noted that our OCT system is equipped by a 
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shorter wavelength light source (840  nm vs 1325  nm swept-source laser [70]), 
which characterized by higher noise level. But this fact does not greatly affect the 
classification result, same as our ROI selection algorithm, which captures a small 
part of healthy tissue along with tumor. We have obtained slightly lower BCC rec-
ognition result (precision 91% and sensitivity-recall 93%—see Table 13.9), but this 
is for four-class classifier, versus 95% sensitivity for a binary classifier (BCC vs 
healthy skin) in [70]. However, for the 3-class classifier, we have achieved higher 
sensitivity 98% and F1-score 97%. In both cases, we have determined contempora-
neously different types of tumors in comparison with binary classifier in [70].

In another study [71], the authors were able to distinguish BCC and squamous 
cell carcinoma (SCC) from healthy tissue using quadratic and linear SVM with 
accuracy of 87% and 81%, respectively. The authors used Haraliсk texture features 
only and a number of high-order statistical features. According to comparison of 
different texture methods (see Table  13.5), MRF autocorrelation function and 
Tamura Contrast–Coarseness texture features are characterized by higher sensitivity- 
specificity of cancer recognition than Haralick texture analysis. In addition, the dis-
advantage of high-order statistical features usage is their robust dependence on 
noise influence.

Melanoma, as a class of OCT images, is quite rare in studies [72] due to the 
lower prevalence of melanoma compared to BCC and its large absorption. For 
example, Boone et al. [73] used the relative attenuation factor only of A-scan signal 
and have obtained high sensitivity and specificity rates of 93% and 97%, respec-
tively, in differentiation of MM vs non-malignant lesions on 15  MM examples. 
However, the BCC inclusion in that dataset should significantly reduce these rates 
since non-melanoma tumors do not have such a strong dependence on absorption.

It is interesting to estimate the significance of different texture methods for dif-
ferent neoplasm identification and cancer differentiation. Figure 13.13a shows the 
rates of different texture features contribution to the recognition result. Figure 13.13b 
demonstrates the significance of different groups, which combined by the contribu-
tion of the features of the same texture method. Each texture feature in a group has 
been normalized by total fraction of correspondent texture group, thus it make clear 
visible the order of texture features in the recognition procedure.

As one may see from Fig. 13.13a the Top-8 rates include all MRF and Tamura 
features and three from four fractal features. The contribution of this Top-8 features 
in cancer recognition is 69.7%. All other 34 features give 30.3% only. On the other 
hand, each texture method (group) contains different number of features, which 
means an average contribution of each feature, for example, from Haralick group 
(16) is less than from MRF group (2), then, Haralick significance is “blurred” 
between a large number of the same group features. But Haralick Correlation (first 
four features) has an advantage over the rest. Thus, if we compare the contribution 
of different methods (groups), we can see that Haralick group gives 22.1% (see 
Fig. 13.13b), which is more than Tamura or fractal groups and this is comparable to 
the MRF group with the maximum 33.5% contribution to the probability of tumor 
recognition. At the same time, the calculation of 16 Haralick features is quite fast 
procedure due to the fact that all features are processed from GLCM evaluation. 
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Gabor features turned out to be the most uninformative in this study, their total con-
tribution does not exceed 6.3%. This fact confirms the advantage of stochastic as 
well as statistical texture descriptors over frequency ones [48]. The features set may 
be optimized for enhance performance by exclusion of Gabor group with total sig-
nificance of all other groups of 93.6%.

Therefore, the texture analysis of 2D dermatoscopic and 3D OCT images looks 
like a highly promising approach for automated classification and recognition of 
various malignant and benign neoplasms of the skin. It may be used as an interactive 
deep learning kernel interface for novel OCT devices.
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Fig. 13.13 The significance of different texture features (a) and groups (b) in tumor recognition. 
Each texture feature in a group (b) has been normalized by total fraction of correspondent tex-
ture group

O. O. Myakinin et al.



501

Acknowledgments This research was supported by the grant # 19-52-18001 Bolg_a of the 
Russian Foundation of Basic Research. We are very thankful to Dr. Wei Gao from Ningbo 
University of Technology, China for Matlab scripts for denoising and fractal dimension calculat-
ing, as well as not a long but productive work together in Samara National Research University.

References

 1. Shortliffe, E.H., Buchanan, B.G.: A model of inexact reasoning in medicine. Math. Biosci. 23, 
351–379 (1975). https://doi.org/10.1016/0025-5564(75)90047-4

 2. Buchanan, B.G., Shortliffe, E.H.: Rule-Based Expert Systems: the MYCIN Experiments of the 
Stanford Heuristic Programming Project. Addison Wesley, Reading (1984)

 3. Philbin, T.: The 100 Greatest Inventions of All Time: A Ranking Past and Present. Citadel 
Press, New York (2003)

 4. Mathers, C.D., Loncar, D.: Projections of global mortality and burden of disease from 2002 to 
2030. PLoS Med. 3(11), e442 (2006). https://doi.org/10.1371/journal.pmed.0030442

 5. Islami, F., Miller, K.D., Jemal, A.: Cancer burden in the United States – a review. Ann. Cancer 
Epidemiol. 2(1), 39 (2018). https://doi.org/10.21037/ace.2018.08.02

 6. Goss, P.E., Strasser-Weippl, K., Lee-Bychkovsky, B.L., Fan, L., Li, J., Chavarri-Guerra, Y., 
Chen, Z.: Challenges to effective cancer control in China, India, and Russia. Lancet Oncol. 
15(5), 489–538 (2014). https://doi.org/10.1016/S1470-2045(14)70029-4

 7. Davydov, M.I., Aksel, E.M. (eds.): Statistika zlokachestvennykh novoobrazovaniy v Rossii i 
stranakh SNG v 2012 g. (Statistics of Malignant Neoplasms in Russia and the CIS Countries 
in 2012). Izdatelskaya gruppa RONTS, Moscow (2014)

 8. Boyle, P., Levin, B. (eds.): World Cancer Report 2008. IARC Press, Geneva (2008)
 9. Friedman, R.J., Gutkowicz-Krusin, D., Farber, M.J., Warycha, M., Schneider-Kels, L., 

Papastathis, N., Kopf, A.W.: The diagnostic performance of expert dermoscopists vs a 
computer- vision system on small-diameter melanomas. Arch. Dermatol. 144(4), 476–482 
(2008). https://doi.org/10.1001/archderm.144.4.476

 10. Drexler, W., Fujimoto, J.G. (eds.): Optical Coherence Tomography: Technology and 
Applications. Springer, New York (2008)

 11. Drexler, W., Fujimoto, J.G.: State-of-the-art retinal optical coherence tomography. Prog. Retin. 
Eye Res. 27(1), 45–88 (2008). https://doi.org/10.1016/j.preteyeres.2007.07.005

 12. Mogensen, M., Thrane, L., Jørgensen, T.M., Andersen, P.E., Jemec, G.B.: OCT imaging of 
skin cancer and other dermatological diseases. J.  Biophotonics. 2(6-7), 442–451 (2009). 
https://doi.org/10.1002/jbio.200910020

 13. Mogensen, M., Nürnberg, B.M., Forman, J.L., Thomsen, J.B., Thrane, L., Jemec, G.B.E.: 
In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coher-
ence tomography and 20-MHz ultrasound. Br. J. Dermatol. 160(5), 1026–1033 (2009). https://
doi.org/10.1111/j.1365-2133.2008.09003.x

 14. Massone, C., Di Stefani, A., Soyer, H.P.: Dermoscopy for skin cancer detection. Curr. Opin. 
Oncol. 17(2), 147–153 (2005). https://doi.org/10.1097/01.cco.0000152627.36243.26

 15. Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino, M.: 
Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: compari-
son of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. 
Arch. Dermatol. 134(12), 1563–1570 (1998). https://doi.org/10.1001/archderm.134.12.1563

 16. Benvenuto-Andrade, C., Dusza, S.W., Agero, A.L.C., Scope, A., Rajadhyaksha, M., Halpern, 
A.C., Marghoob, A.A.: Differences between polarized light dermoscopy and immersion con-
tact dermoscopy for the evaluation of skin lesions. Arch. Dermatol. 143(3), 329–338 (2007). 
https://doi.org/10.1001/archderm.143.3.329

13 Texture Analysis in Skin Cancer Tumor Imaging

https://doi.org/10.1016/0025-5564(75)90047-4
https://doi.org/10.1371/journal.pmed.0030442
https://doi.org/10.21037/ace.2018.08.02
https://doi.org/10.1016/S1470-2045(14)70029-4
https://doi.org/10.1001/archderm.144.4.476
https://doi.org/10.1016/j.preteyeres.2007.07.005
https://doi.org/10.1002/jbio.200910020
https://doi.org/10.1111/j.1365-2133.2008.09003.x
https://doi.org/10.1111/j.1365-2133.2008.09003.x
https://doi.org/10.1097/01.cco.0000152627.36243.26
https://doi.org/10.1001/archderm.134.12.1563
https://doi.org/10.1001/archderm.143.3.329


502

 17. Kaliyadan, F.: The scope of the dermoscope. Indian Dermatol. Online J. 7, 359–363 (2016). 
https://doi.org/10.4103/2229-5178.190496

 18. Moncrieff, M., Cotto, S., Claridge, E., Hall, P.: Spectrophotometric intracutaneous analysis: a 
new technique for imaging pigmented skin lesions. Br. J. Dermatol. 146(3), 448–457 (2002). 
https://doi.org/10.1046/j.1365-2133.2002.04569.x

 19. Monheit, G., Cognetta, A.B., Ferris, L., Rabinovitz, H., Gross, K., Martini, M., King, R.: The 
performance of MelaFind: a prospective multicenter study. Arch. Dermatol. 147(2), 188–194 
(2011). https://doi.org/10.1001/archdermatol.2010.302

 20. Mirmehdi, M., Xie, X., Suri, J. (eds.): Handbook of Texture Analysis. Imperial College Press, 
London (2008)

 21. Petrou, M.: Image Processing: Dealing with Texture, vol. 1. Wiley, Chichester (2006)
 22. Pietikäinen, M.K. (ed.): Texture Analysis in Machine Vision, pp. 197–206. World Scientific, 

Singapore (2000)
 23. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE. 67(5), 

786–804 (1979)
 24. Dubes, R.C., Jain, A.K.: Random field models in image analysis. J.  Appl. Stat. 20(5-6), 

121–154 (1993). https://doi.org/10.1080/02664769300000062
 25. Ahuja, N., Rosenfeld, A.: Mosaic models for textures. IEEE Trans. Pattern Anal. Mach. Intell. 

1, 1–11 (1981). https://doi.org/10.1109/TPAMI.1981.4767045
 26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-

nition (arXiv, 2014). https://arxiv.org/abs/1409.1556. Accessed 14 June 2019
 27. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics. 7(2), 

179–188 (1936). https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
 28. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other 

Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)
 29. Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, New York (2008)
 30. Abbasi, N.R., Shaw, H.M., Rigel, D.S., Friedman, R.J., McCarthy, W.H., Osman, I., Polsky, 

D.: Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. JAMA. 292(22), 
2771–2776 (2004). https://doi.org/10.1001/jama.292.22.2771

 31. Walter, F.M., Prevost, A.T., Vasconcelos, J., Hall, P.N., Burrows, N.P., Morris, H.C., Emery, 
J.D.: Using the 7-point checklist as a diagnostic aid for pigmented skin lesions in general prac-
tice: a diagnostic validation study. Br. J. Gen. Pract. 63(610), e345–e353 (2013). https://doi.
org/10.3399/bjgp13X667213

 32. Myakinin, O.O., Zakharov, V.P., Bratchenko, I.A., Artemyev, D.N., Neretin, E.Y., Kozlov, 
S.V.: Proc. SPIE. 9599, 95992B (2015). https://doi.org/10.1117/12.2188165

 33. Tou, J.T., Gonzalez, R.C.: Pattern Recognition Principles, 2nd edn. Addison-Wesley Pub. Co., 
Boston (1977)

 34. Wadhawan, T., Situ, N., Rui, H., Lancaster, K., Yuan, X., Zouridakis, G.: 2011 Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society, 
pp. 3180–3183 (2011). https://doi.org/10.1109/IEMBS.2011.6090866

 35. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson, London (2007)
 36. Wang, L., He, D.C.: Texture classification using texture spectrum. Pattern Recogn. 23(8), 

905–910 (1990). https://doi.org/10.1016/0031-3203(90)90135-8
 37. Raupov, D.S., Myakinin, O.O., Bratchenko, I.A., Zakharov, V.P., Khramov, A.G.: Multimodal 

texture analysis of OCT images as a diagnostic application for skin tumors. J. Biomed. Photon. 
Eng. 3(1), 010307 (2017). https://doi.org/10.18287/JBPE17.03.010307

 38. Gao, W., Zakharov, V.P., Myakinin, O.O., Bratchenko, I.A., Artemyev, D.N., Kornilin, D.V.: 
Medical images classification for skin cancer using quantitative image features with opti-
cal coherence tomography. J.  Innovative Opt. Health Sci. 9(2), 1650003 (2016). https://doi.
org/10.1142/S1793545816500036

 39. Puvanathasan, P., Bizheva, K.: Interval type-II fuzzy anisotropic diffusion algorithm for 
speckle noise reduction in optical coherence tomography images. Opt. Express. 17(2), 
733–746 (2009). https://doi.org/10.1364/OE.17.000733

O. O. Myakinin et al.

https://doi.org/10.4103/2229-5178.190496
https://doi.org/10.1046/j.1365-2133.2002.04569.x
https://doi.org/10.1001/archdermatol.2010.302
https://doi.org/10.1080/02664769300000062
https://doi.org/10.1109/TPAMI.1981.4767045
https://arxiv.org/abs/1409.1556
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1001/jama.292.22.2771
https://doi.org/10.3399/bjgp13X667213
https://doi.org/10.3399/bjgp13X667213
https://doi.org/10.1117/12.2188165
https://doi.org/10.1109/IEMBS.2011.6090866
https://doi.org/10.1016/0031-3203(90)90135-8
https://doi.org/10.18287/JBPE17.03.010307
https://doi.org/10.1142/S1793545816500036
https://doi.org/10.1142/S1793545816500036
https://doi.org/10.1364/OE.17.000733


503

 40. Haralick, R.M., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. 
Man Cybern. 3(6), 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

 41. Fogel, I., Sagi, D.: Gabor filters as texture discriminator. Biol. Cybern. 61(2), 103–113 (1989). 
https://doi.org/10.1007/BF00204594

 42. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE 
Trans. Syst. Man Cybern. 8(6), 460–473 (1978). https://doi.org/10.1109/TSMC.1978.4309999

 43. Voss, R.F.: Fundamental algorithms for computer graphics. In: Earnshaw, R.A. (ed.) Random 
Fractal Forgeries, pp. 805–835. Springer, Berlin (1985)

 44. Ahammer, H.: Higuchi dimension of digital images. PLoS One. 6(9), e24796 (2011). https://
doi.org/10.1371/journal.pone.0024796

 45. Sarkar, N., Chaudhuri, B.B.: An efficient differential box-counting approach to compute frac-
tal dimension of image. IEEE Trans. Syst. Man Cybern. 24(1), 115–120 (1994). https://doi.
org/10.1109/21.259692

 46. Ilyasova, N.U., Ustinov, A.V., Khramov, A.G.: Comput. Opt. 18, 150–164 (1998)
 47. Plastinin, A.I., Kupriyanov, A.V.: A model of Markov random field in texture image synthesis 

and analysis. Proc. Samara State Aerosp. Univ. 2, 252–257 (2008)
 48. Weszka, J.S., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for ter-

rain classification. IEEE Trans. Syst. Man Cybern. 4, 269–285 (1976). https://doi.org/10.1109/
TSMC.1976.5408777

 49. Zayed, N., Elnemr, H.A.: Statistical analysis of Haralick texture features to discriminate lung 
abnormalities. J. Biomed. Imaging. 2015, 267807 (2015). https://doi.org/10.1155/2015/267807

 50. Park, M., Jin, J.S., Wilson, L.S.: Fifth IEEE Southwest Symposium on Image Analysis and 
Interpretation, pp. 178–182 (2002). https://doi.org/10.1109/IAI.2002.999914

 51. Palm, C., Keysers, D., Lehmann, T., Spitzer, K.: Gabor filtering of complex hue/saturation 
images for color texture classification. Proc. JCIS. 2000, 45–49 (2000)

 52. Flueraru, C., Popescu, D.P., Mao, Y., Chang, S., Sowa, M.G.: Added soft tissue con-
trast using signal attenuation and the fractal dimension for optical coherence tomogra-
phy images of porcine arterial tissue. Phys. Med. Biol. 55(8), 2317 (2010). https://doi.
org/10.1088/0031-9155/55/8/013

 53. Sullivan, A.C., Hunt, J.P., Oldenburg, A.L.: Fractal analysis for classification of breast car-
cinoma in optical coherence tomography. J. Biomed. Opt. 16(6), 066010 (2011). https://doi.
org/10.1117/1.3590746

 54. Gao, W.. PhD thesis, University of Miami (2012)
 55. Annadhason, A.: Methods of fractal dimension computation. IRACST. 2(1), 166–169 (2012)
 56. Florindo, J.B., Martinez Bruno, O.: Fractal descriptors in the Fourier domain applied to color 

texture analysis. Chaos. 21(4), 043112 (2011). https://doi.org/10.1063/1.3650233
 57. Salomatina, E.V., Jiang, B., Novak, J., Yaroslavsky, A.N.: Optical properties of normal and 

cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt. 11(6), 
064026 (2006). https://doi.org/10.1117/1.2398928

 58. Yamashita, T., Kuwahara, T., Gonzalez, S., Takahashi, M.: Non-invasive visualization of mela-
nin and melanocytes by reflectance-mode confocal microscopy. J. Investig. Dermatol. 124(1), 
235–240 (2005). https://doi.org/10.1111/j.0022-202X.2004.23562.x

 59. Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer, 
New York (1995)

 60. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, New  York (2009). 
https://doi.org/10.1007/978-1-84800-279-1

 61. Raupov, D.S., Myakinin, O.O., Bratchenko, I.A., Zakharov, V.P., Khramov, A.G.: Skin can-
cer texture analysis of OCT images based on Haralick, fractal dimension, Markov random 
field features, and the complex directional field features. Proc. SPIE. 10024, 100244I (2016). 
https://doi.org/10.1117/12.2246446

 62. Celebi, M.E., Wen, Q., Iyatomi, H., Shimizu, K., Zhou, H., Schaefer, G.: A state-of-the-art 
survey on lesion border detection in dermoscopy images. Dermosc. Image Anal. 2015, 97–129 
(2015). https://doi.org/10.1201/b19107-5

13 Texture Analysis in Skin Cancer Tumor Imaging

https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1007/BF00204594
https://doi.org/10.1109/TSMC.1978.4309999
https://doi.org/10.1371/journal.pone.0024796
https://doi.org/10.1371/journal.pone.0024796
https://doi.org/10.1109/21.259692
https://doi.org/10.1109/21.259692
https://doi.org/10.1109/TSMC.1976.5408777
https://doi.org/10.1109/TSMC.1976.5408777
https://doi.org/10.1155/2015/267807
https://doi.org/10.1109/IAI.2002.999914
https://doi.org/10.1088/0031-9155/55/8/013
https://doi.org/10.1088/0031-9155/55/8/013
https://doi.org/10.1117/1.3590746
https://doi.org/10.1117/1.3590746
https://doi.org/10.1063/1.3650233
https://doi.org/10.1117/1.2398928
https://doi.org/10.1111/j.0022-202X.2004.23562.x
https://doi.org/10.1007/978-1-84800-279-1
https://doi.org/10.1117/12.2246446
https://doi.org/10.1201/b19107-5


504

 63. Zakharov, V.P., Bratchenko, I.A., Myakinin, O.O., Artemyev, D.N., Kornilin, D.V., 
Kozlov, S.V., Moryatov, A.A.: Multimodal diagnosis and visualisation of onco-
logic pathologies. Quantum Electron. 44(8), 726–731 (2014). https://doi.org/10.1070/
QE2014v044n08ABEH015545

 64. Moon, Y., Han, J.H., Choi, J.H., Shin, S., Kim, Y.C., Jeong, S.: Mapping of cutaneous mela-
noma by femtosecond laser-induced breakdown spectroscopy. J. Biomed. Opt. 24(3), 031011 
(2018). https://doi.org/10.1117/1.JBO.24.3.031011

 65. Raupov, D.S., Myakinin, O.O., Bratchenko, I.A., Zakharov, V.P., Khramov, A.G.: Analysis of 
3D OCT images for diagnosis of skin tumors. Proc. SPIE. 10716, 1071608 (2018). https://doi.
org/10.1117/12.2305405

 66. Sawyer, T.W., Chandra, S., Rice, P.F., Koevary, J.W., Barton, J.K.: Three-dimensional texture 
analysis of optical coherence tomography images of ovarian tissue. Phys. Med. Biol. 63(23), 
235020 (2018). https://doi.org/10.1088/1361-6560/aaefd2

 67. Gossage, K.W., Tkaczyk, T.S., Rodriguez, J.J., Barton, J.K.: Texture analysis of optical coher-
ence tomography images: feasibility for tissue classification. J. Biomed. Opt. 8(3), 570–576 
(2003). https://doi.org/10.1117/1.1577575

 68. Lindenmaier, A.A., Conroy, L., Farhat, G., DaCosta, R.S., Flueraru, C., Vitkin, I.A.: Texture 
analysis of optical coherence tomography speckle for characterizing biological tissues in vivo. 
Opt. Lett. 38(8), 1280 (2013). https://doi.org/10.1364/ol.38.001280

 69. de Moura, J., Vidal, P.L., Novo, J., Rouco, J., Ortega, M.: Proc. Comput. Sci. 112, 1369–1377 
(2017). https://doi.org/10.1016/j.procs.2017.08.043

 70. Marvdashti, T., Duan, L., Aasi, S.Z., Tang, J.Y., Bowden, A.K.E.: Classification of basal 
cell carcinoma in human skin using machine learning and quantitative features captured by 
polarization sensitive optical coherence tomography. Biomed. Opt. Express. 7(9), 3721–3735 
(2016). https://doi.org/10.1364/BOE.7.003721

 71. Adabi, S., Hosseinzadeh, M., Noei, S., Conforto, S., Daveluy, S., Clayton, A., Nasiriavanaki, 
M.: Universal in vivo textural model for human skin based on optical coherence tomograms. 
Sci. Rep. 7(1), 17912 (2017). https://doi.org/10.1038/s41598-017-17398-8

 72. Xiong, Y.-Q., Mo, Y., Wen, Y.-Q., Cheng, M.-J., Huo, S.-T., Chen, X.-J., Chen, Q.: Optical 
coherence tomography for the diagnosis of malignant skin tumors: a meta-analysis. J. Biomed. 
Opt. 23(2), 020902 (2018). https://doi.org/10.1117/1.JBO.23.2.020902s

 73. Boone, M.A.L.M., Suppa, M., Dhaenens, F., Miyamoto, M., Marneffe, A., Jemec, G.B.E., 
Del Marmol, V., Nebosis, R.: In vivo assessment of optical properties of melanocytic skin 
lesions and differentiation of melanoma from non-malignant lesions by high-definition optical 
coherence tomography. Arch. Dermatol. Res. 308(1), 7–20 (2016). https://doi.org/10.1007/
s00403-015-1608-5

 74. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: 
Dermatologist- level classification of skin cancer with deep neural networks. Nature. 
542(7639), 115–118 (2017). https://doi.org/10.1038/nature21056

O. O. Myakinin et al.

https://doi.org/10.1070/QE2014v044n08ABEH015545
https://doi.org/10.1070/QE2014v044n08ABEH015545
https://doi.org/10.1117/1.JBO.24.3.031011
https://doi.org/10.1117/12.2305405
https://doi.org/10.1117/12.2305405
https://doi.org/10.1088/1361-6560/aaefd2
https://doi.org/10.1117/1.1577575
https://doi.org/10.1364/ol.38.001280
https://doi.org/10.1016/j.procs.2017.08.043
https://doi.org/10.1364/BOE.7.003721
https://doi.org/10.1038/s41598-017-17398-8
https://doi.org/10.1117/1.JBO.23.2.020902s
https://doi.org/10.1007/s00403-015-1608-5
https://doi.org/10.1007/s00403-015-1608-5
https://doi.org/10.1038/nature21056


505© Springer Nature Switzerland AG 2020
V. V. Tuchin et al. (eds.), Multimodal Optical Diagnostics of Cancer, 
https://doi.org/10.1007/978-3-030-44594-2_14

Chapter 14
Application of Acousto-Optical 
Hyperspectral Imaging for Skin Cancer 
Diagnostics

Vitold E. Pozhar, Alexander S. Machikhin, Oleg O. Myakinin, 
and Ivan A. Bratchenko

14.1  Introduction

In recent decades, optical biopsy has been widely used for the investigation of 
almost all types of cancer. These studies include two major objectives: firstly, the 
precise definition of the boundaries and topology of the tumor, and, secondly, the 
exact identification of the type of cancer. Spectroscopic response from key native 
molecules reveals the differences between cancerous and normal skin areas due to 
morphological and molecular changes in the tissue. The key methods in optical 
biopsy are fluorescence, Stokes shift, elastic backscattering reflectance, and time- 
resolved spectroscopy [1]. In majority of applications, the spectroscopic signal is 
captured from a single point in the tissue or averaged over the macroscopic volume 
of the tissue. However, there is an opportunity to collect a signal from the vast tissue 
area, and this approach may be implemented with hyperspectral imaging (HSI) [2].

The hyperspectral image is a three-dimensional array of M × N × K data consist-
ing of a sequence of K images of M × N size, and each of these images corresponds 
to an intensity of optical signal in the spectral band λK ± Δλ at each point of the 
tested object surface. Thus, native spectral anomalies in absorption, reflection, and 
fluorescent signal of different chemical components of tissue pathology may be 
used for contrast imaging of cancer lesion [3]. Thereby different applications of HSI 
systems have been utilized in cancer study.

Spectral imaging based on acousto-optical tunable filters (AOTF) is a promising 
rapidly developing technique for tissue analysis and diagnostics due to their ability 
to obtain the entire spatial information (x-axis and y-axis) of the studying object for 
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a certain wavelength at one time, performing a scanning in the spectral dimension 
(λ-axis). The tunable optical filters exploit ultrasonic acoustic waves for generation 
of the diffraction grating and selection of spectral components. Correspondently, 
acousto-optical (AO) instruments can achieve high spatial resolutions and fast 
acquisition times. Such realization of spectral instruments makes the filter wave-
length tuning easier and more rapid and, thus, the spectral features detection 
becomes more convenient and effective. High spectral resolution allows one to 
study in detail the optical properties of the tissues, and high spatial resolution per-
mits the analysis of samples by combining the spectral and the morphological prop-
erties of the tissue.

In this chapter, the basic principles of AOTF are presented and most important 
results of AOTF-based HSI implementation for skin cancer detection are discussed.

Section 14.1 describes the physical principles that govern AOTF operations and 
analyzes methods and techniques for correcting image distortions. Section 14.2 col-
lects data about AOTF-based spectral imaging devices for different endoscopy, 
microscopy, and remote sensing applications. Section 14.3 discusses the results of 
the AO HSI device testing for skin cancer detection and classification in clini-
cal trials.

14.2  AOTF-Based Spectral Imaging

14.2.1  Operation Principle of Acousto-Optical Hyperspectral 
Imager

For spectral analysis and spectral selection one needs an optical tunable monochro-
mator with following features: relatively narrow bandwidth, wide spectral range, 
minimal tuning time, maximal transmission coefficient, high level of out-of-band 
light suppression, the ability of image spectral filtration without information losses 
or at least without significant image distortion. Such spectral imaging device with 
fast tuning can be developed using acousto-optical (AO) technology based on Bragg 
light diffraction on acoustic waves. Below, the physical base of AO filtration is 
presented.

AOTF [4] is a spectral element, which comprises AO crystal cell and usually a 
pair of polarizers. It allows selecting of narrow bandpass, which localization in the 
spectral axis is determined by supplied ultrasound frequency. In AO cell, the light 
beam diffracts on the Bragg grating, which is induced in the crystal by propagating 
acoustic wave due to the resonance elasto-optic effect. The matching (resonant) 
wavelength λf of selecting spectral component is determined by the grating period d, 
which is inversely proportional to the ultrasound frequency f:

 
λ f

V

f
~ .ac

 
(14.1)
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Here Vac is the speed of acoustic wave. Such dependence determines the method 
of wavelength selection—by choosing the appropriative electric signal frequency of 
radiofrequency (RF) generator, which is transformed by piezotransducer into the 
ultrasonic wave in AO cell. The bandwidth of the spectral optical window Δλ is 
defined by the number Nus of ultrasound diffraction grating periods, which are 
crossed by the light beam [5]:

 
∆λ

λ
≈
Nus  

(14.2)

The bandwidths can be chosen in the wide interval, as usually Nus  ~  102/103. 
Therefore, for visible spectral range typical bandwidth is Δλ ~ 0.5/5 nm. As the 
spectral range of AOTFs usually does not exceed an octave λmax/λmin < 2 (typically, 
0.45/0.8 μm, 0.9/1.7 μm, 2/4 μm, or 0.25/0.4 μm), the total number of resolvable 
spectral channels are approximately equal to the effective period number of ultra-
sound grating NAOTF ~ Nus.

Another notable feature of the resonant interaction is the change in the direction 
of propagation of the diffracted light beam and the alternation of the polarization 
plane. Therefore, the diffracted beam may be filtered either by output polarizer 
(polarization selection, see Fig. 14.1) or by the diaphragm (angular selection).

The maximum value of the diffraction coefficient T(λ) depends on the power 
density of ultrasound signal Pac and the size of the grating in the direction of the 
incident light beam L:

 

T T L
M P

f
f

max sin ,≡ ( ) = ( ) ∝λ
λ

2 2Γ Γ ac

 

(14.3)

Fig. 14.1 Principal 
parameters of Bragg 
diffraction in AO cell: 
1—input polarizer (arrow 
shows the direction of 
polarization); 2, 7, 8—
incident, non-diffracted, 
and diffracted light beams; 
3—acousto-optic crystal 
cell; 4—acoustic wave 
emitter (piezotransducer); 
5—Bragg grating 
generated by propagating 
acoustic wave; 6—output 
polarizer. Beams 
intersection region is 
approximately L × D
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The diffraction coefficient can reach 100% at some level of ultrasound power 
depending on the crystal acousto-optic quality factor M2 ≈ p2n6(Vac)−3/ρ, which in 
turn is defined by the material characteristics: elasto-optic constant p, refractive 
index n, and density ρ. Thus, theoretically all the energy of the selected spectral 
component can be completely transmitted through the filter. The required power is 
Pac ~ 0.1/10 W.

The minimum time interval for switching from one to another wavelength is 
determined by the ultrasound transit time across the light beam:

 
τ =

D

Vac  
(14.4)

As the typical size of light and sound waves interaction region D ~ 1–10 cm, the 
switching time is usually τ ~ 1/10 μs.

For imaging, the very important characteristic is the angular field-of-view (FoV). 
In contrast with ordinary diffraction gratings, which are capable of one-dimensional 
spatial resolution, AOTFs exhibit almost equal FoV in each direction. This value is 
not high as it is determined by the number of ultrasound grating periods ∆θ ≈ Nus  
[5]. Though the angle is rather moderate Δθ ~ 1/3, the total number of resolvable 
points in the image can reach 103 for light divergence λ/D ~ 10−4.

The most important property providing the high quality spectral imaging is the 
ability to transfer images through AOTF without distortion. The diffraction on spa-
tially distributed structure of the complex AO cell with significant number of auxil-
iary elements (polarizers, prisms) forms the impression that it is extremely difficult 
to satisfy this condition. But, since the early days of AO, it was demonstrated imag-
ing capabilities of AOTF with rather high spatial resolution (over 100 pairs of lines 
per millimeter) [6, 7]. However, for a long time it was assumed that AO filter image 
quality is quite moderate and inferior to liquid crystal tunable filters [8]. Later, the 
theoretical studies [9, 10] proved that linear, non-linear, and chromatic aberrations 
(elongations, distortions, drift, etc.) can be nearly vanished, so that the number of 
resolvable spatial points can approximately reach 103.

The situation changed when double AOTF monochromators with compensation 
of image deformation were developed. It was shown experimentally [11] and theo-
retically [12] that the second identical AOTF, being placed inversely, corrects image 
deformations of the primary AOTF. The detail theory of double AOTF image trans-
formation may be found elsewhere [10, 13]. Later on this basis, a software module 
was developed for the Zemax environment [14], which paves the way for optimiz-
ing optical systems comprising both classical optical components (lenses, plates, 
etc.) and AOTFs. Such an approximating AOTF module is the first step towards to 
solving the fundamental problem of precise rays-tracing modeling the heteroge-
neous systems containing two types of components: classical refractive optical ele-
ments and AO diffractive units, i.e. combining elements of geometrical and 
wave optics.

Below, the general theoretical relations of light beam transmission through 
AOTF are presented, different optical schemes for acousto-optical hyperspectral 
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imagers (АО HSI) are compared and the basic types of registered aberrations are 
described [14].

Figure 14.2 represents the arrangement of a classical non-collinear AOTF [15], 
comprising an AO cell and a pair of crossed polarizers. An ordinary (o) polarized 
beam is directed at the Bragg angle to the acoustic beam and, consequently, it dif-
fracts on the acoustic grating, deflecting at a certain angle and changing the polar-
ization into extraordinary (e) mode (diffraction process о → е). Only narrow spectral 
interval of light Δλ near central wavelength λf corresponding to Bragg condition is 
diffracted in that way, while the output polarizer eliminates the rest of radiation. 
Usually, the input AO crystal facet is oriented normally to the direction of input light 
beam ki, while the output facet is cut to compensate the spectral drift of the output 
beam and minimize the axial chromatic shift of the image [16].

AO filter is characterized by high operational speed, reliability, accuracy, and 
stability as it is free from any movable elements (mirrors, prisms, etc.) due to elec-
trical radiofrequency tuning principle.

A very important AO feature is the capability to operate not only in parallel rays 
or in collimated-beam scheme (Fig.  14.3a), but also in confocal or converging 
schemes (Fig.  14.3b, c) [14]. Such schematic variability facilitates the optical 
scheme optimization, improving the image quality and helps to increase the trans-
mission coefficient with simultaneous minimization of device dimensions.

As determined experimentally, the relative image deformations caused by AOTF 
can reach 3–5% [17, 18]. They are inhomogeneous both in spectrum and in field-of- 
view that leads to spectral drift, asymmetric scaling, and non-linear distortions.

Examples of images detected using the AO spectral imager (Fig. 14.4) demon-
strate fairly good image quality at each wavelength, but unsatisfactory overlay 
results. Spectral drift and other deformations cause blur and distort the spectrum in 
each pixel.

Fig. 14.2 Acousto-optical tunable filter: optical scheme (a) and wave vector diagram (b)
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14.2.2  Double Acousto-Optical Monochromatization

Cascade filtration by two AO cells is used for increasing spectral contrast, spectral 
resolution enhancement, and for simultaneous filtration of both polarization compo-
nents of light [19–26]. In hyperspectral imaging, double monochromatization is 
also a technique for correction of spectral-spatial distortions in images caused by a 
single AO cell [11, 27, 28].

The basic principles of cascade diffraction in double AOTF are presented in 
Fig. 14.5. The inspected object 1 is placed in the focus of the input optics 2. The 
collimated beam comes through the double (tandem) monochromator composed of 
two identical AO cells 4, 6 and three polarizers 3, 5, 7. The wavelength to be selected 
by AO monochromator is specified by the computer 10 according to the program. 

Fig. 14.3 Various optical schemes for imaging AOTF-based spectrometer: collimated (a), confo-
cal (b), and converging (c) beam. O object; L1, L2 input and output lenses, AOC AO cell, P1, P2 
input and output crossed polarizers, S spectral image. Optimum angles β and χ are selected in each 
scheme

Fig. 14.4 Spectral images of optical standard pattern: (a) 480 nm; (b) 580 nm; (c) 720 nm; (d) 
their superposition
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Controller 11 contains radiofrequency synthesizer and amplifier, which generate 
driving signal delivered to each AOTF. The light transmitted through the monochro-
mator is focused by the lenses 8 at camera detector 9.

Both AOTFs must be identical to avoid divergence of their transmission windows 
due to mismatch of their spectral tuning characteristics λ(f) as they are controlled by 
the single RF generator. Some technological tricks are used for AOTF pair 
manufacturing.

To eliminate image deformations two AO cells must be oriented as shown in 
Fig. 14.6. The second AO cell should be turned over at 180° to transmit the light 
beam in the opposite direction compared with the first AO cell. In this way, most 
distortions caused by diffraction in the first AO cell are compensated by diffraction 
in the second AO cell. Therefore, this configuration is preferably used for double 
AO monochromators designed for imaging applications [11, 29–32].

To illustrate the idea of distortion compensation let us consider wave vector dia-
grams (Fig. 14.7). For the central ray of the divergent beam the Bragg condition kd 
= ki + q connecting wave vectors of diffracted, incident, and acoustic wave is repre-
sented as closed rectangular. As can be seen the diagrams in the first and second AO 
cells are represented with the same triangular so the distortions in the second AO 
cell compensate those of the first one.

The modeling based on these diagrams and the exact formulas [10] was per-
formed for single and double AOTF monochromators made of the same AO cells 
(Fig. 14.8). The standard test pattern in the form of square grid demonstrates the 
significant compensations of distortions in the double monochromator.

In general, to analyze distortions in real devices one needs to account non- 
identity of AO cells, imperfections of their fabrication, and inaccuracy in orientation 

1 2
3 4 5 6 7
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9

Fig. 14.5 Double AOTF configuration of HIS: 1—object; 2—input optics; 3, 5, 7—polarizers; 4, 
6—AO cells; 8—output optics; 9—photodetector array; 10—computer; 11—control unit
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Fig. 14.6 Aberration-compensated double imaging monochromator. Optical scheme. (Refraction 
at the oblique facets is not depicted. The shape of AO cells is schematic)
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of their AO crystals. In linear approximation the deformations of images caused by 
an AOTF are following: spectral drift in the direction of optical axis, unequal scal-
ing in diffraction and in the orthogonal direction. These deformations can be com-
pensated with classical optical elements. Yet, the effects of higher orders (non-linear 
deformations) cannot be removed in a simple way.

14.3  Acousto-Optical Hyperspectral Imagers

Nowadays, there is a variety of applications, in which AO imaging spectrometers 
and spectral imagers are applied: biomedicine [2, 33, 34], remote sensing [35, 36], 
agriculture [37, 38]. These instruments facilitate and speed up investigations. The 
key characteristic of these devices is image quality.

A series of AOTF-based instruments for spectral endoscopy [31], spectral 
microscopy [15], spectral and hyperspectral imaging [30], stereospectroscopy [39, 
40] were developed and this family is rather plentiful and diverse [41]. Their key 
characteristic is the extent of image deformation, which can prevent the correct 
comparison of images detected at different wavelengths and also prevents direct 
spectral functions determination. One of the solutions to this problem is the instru-
ment calibration [42, 43]. The other approach is an instrumental compensation of 
aberrations. The advance feature of such devices is the capability to reconstruct 
spectral characteristics by means of simple stacking the spectral images.

Below, different AO devices for spectral imaging are described, including АО 
hyperspectral imager based on compensated double AOTF monochromator, which 
was used in clinical neoplasia studies.

Fig. 14.7 Wave vector 
diagrams representing light 
diffraction in AO cells of 
double imaging 
monochromator
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14.3.1  Endoscopic Hyperspectral Imagers

Spectral investigations are more and more often used for diagnostics and therapy of 
tumors, predominantly for cancer [2, 44–46] as well as for the study of hardly acces-
sible technical objects for non-destructive testing of cavities in industrial production 
(engines of rockets and aviation, pipes, steam generators, etc.) with industrial endo-
scopes [47, 48]. That is why the exclusive attention is now devoted to the analytical 
modules attachable to endoscopes [49–54]. Such a spectral attachment can be 
designed in the form of transocular module (Fig. 14.9, outlined) for standard optical 

Fig. 14.8 Image deformations modeling for identical single (left) and double (right) AOTF mono-
chromators. Test object is square-cells grid (black). Calculated images for different wavelengths 
are depicted with corresponding colors: red—0.7  μm, green—0.55  μm, blue—0.38  μm. 
Calculations were performed for extraordinary polarized input radiation for the following diffrac-
tion geometries: (а) TeO2, θ1 = 32.6°, γ1 = −18.9°, θ2 = γ2 = 0, Δθi = 3°; (b) TeO2, θ1 = 73.6°, γ1 = 
−7.1°, θ2 = γ2 = 0, Δθi = 3°. (The distortions are significantly enlarged for visibility)
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endoscope. The type of endoscope, rigid or flexible, does not matter, while the out-
put eyepiece should be standard.

However, it is a big problem to ensure effective optical conjugation of endo-
scopic eyepiece and AOTF due to highly differing optical characteristics. Below, the 
basic problems of endoscopic AO hyperspectral imagers development are 
considered.

The existing AO endoscopic spectrometric devices are used as transocular mod-
ules for rigid and flexible fiber-optic endoscopes are intended for photolumines-
cence study of internal organs and contain single AOTF monochromators [55–58]. 
They really provide spectral imaging, but hardly guarantee the precision measure-
ment of the spectra in every point of the image. It is caused by the spectral- dependent 
deformations of the image, which prevent direct identification of the image points. 
Thus, for the exact spectra determination one needs to apply some additional proce-
dure for deformations correction, which requires the preliminary calibration of the 
system and results in rather complicated, laborious, time-consuming detection 
procedure.

Another problem is the limited “energy” efficiency of direct AOTF coupling with 
endoscopic optics. That is because AO monochromator possesses rather narrow 
FoV 2ϖао <3° while the input pupil is quite large Dао ≈ 10 mm (which is limited by 
the crystal size). The FoV parameter is determined by the effective number of Bragg 
diffraction grating periods 2ϖао ≈ N1/2 so that for typical value of spectral resolving 
force λ/δλ ≈ N ~ 103, the angular interval of synchronism 2ϖао ≈ 2°. Another impor-
tant characteristic is the defection angle between the diffracted and transmitted 
beams. Usually this angle is only 7–15°. For comparison, standard eyepieces for a 
visual device have the following characteristics: D′oc = 2–6 mm, 2ϖ′oc ≈ 20–80°. 
Due to inequality ϖ′oc >> ϖAO, placement of AOTF just after the ocular is not rea-
sonable due to FoV cutting down (Fig.  14.10). Therefore, the problem can be 
resolved only by means of adequate optical conjugation.

The conjugating system was modeled in optical design program Zemax [59] with 
use of specially developed module imitating light beams transmission through 

1

4 9 1086 753

2

Fig. 14.9 AOTF-based hyperspectral imaging module attached to an endoscope: 1—incandescent 
lamp, 2, 5—optical conjugation systems, 3—fiber-optic light guide, 4—object, 6, 8—crossed 
polarizers, 7—AO cell, 9—lens, 10—photodetector array
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AOTF. The designed optical system was implemented in form of adjustable optical 
tube (Fig. 14.11) [60] with the following characteristics: magnification Г = 0.4×, 
output pupil diameter—6 mm, output FoV—4°, total length—100 mm.

The developed conjugating optical system was tested for coupling the double 
AOTF monochromator to visual devices: a rigid lens-type endoscope, a flexible 
fiber-optic endoscope, and a telescope [60]. Despite the fundamental differences 
between their optical schemes and optical characteristics, the conjugated system 
significantly increases FoV and raises the relative brightness of the out-of-center 
points. This system was used in endoscopic add-on module (Fig. 14.12a)

2ωао<<2ω’ок

2ω’ок

1 2 3 4
5

6 7 8 9

Fig. 14.10 Direct coupling of endoscope with an AOTF monochromator: 1—object, 2—eyepiece 
of visual device, 3, 5, 7—polarizers, 4, 6—AO cells, 8—output lens, 9—spectral image

Fig. 14.11 Optical system for conjugation of AOTF with endoscope eyepieces: 1—attachment 
port to ocular, 2—two-lens glued assembly, 4—collective lens, 3—check screw for variable focus-
ing, 5—output lens

Fig. 14.12 Testing of endoscopic HSI module based on the single AOTF: (a) internal view; (b, c) 
standard pattern images detected with a rigid endoscope at 555 nm wavelength
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The developed module was tested with the use of standard patterns (Fig. 14.12b, 
c). At the distance of 25 mm it provides resolution 8–10 lines/mm across the total 
FoV. Due to the use of compensated double monochromator, the spectral shift does 
not exceed 1% in the range 400–700 nm [61–63].

14.3.2  Hyperspectral Imaging Microscopic Module

Detection of spectral images of microscopic objects is one of the main applications 
of AOTFs [8, 64–70]. They are used for contrast visualization, fluorescent and 
Raman spectroscopy, border selection, etc. Often, for this purpose, a specialized or 
even unique installations are assembled which require complex adjustment and are 
not subjected to any transportation. Unfortunately, hyperspectral imagers are not 
adapted to classical microscopes. Therefore, an actual problem is the development 
of HSI module, which would be entirely compatible with modern commercial 
microscopes, would not require any constructive upgrading of them, and would be 
able to provide spectral images simultaneously with classical RGB recording with 
no special readjustment. Some pioneer technical solutions to this problem such as 
add-on module for inverted microscope “Leitz DM-IRBE” are known [55]. 
However, the problems of optical conjugation and ergonomics issues are not 
considered.

As a rule, for spectral imaging, AOTF is located in the camera port of the modern 
trinocular microscope. This is the most convenient location as it does not require 
any modification of the standard microscope and binocular vision function is kept 
unchanged. The standard non-inverted microscope construction permits placement 
of an axially symmetric assembly consisting of AOTF, lenses, and camera. However, 
this solution is not applicable for synchronous two-channel detection of the object: 
(1) in white light with color (RGB) camera and (2) in specified spectral interval with 
a monochrome camera. Then the concept of recording and joint processing of the 
pair images cannot be realized in this approach, as image is caught in the same time 
from the same object location with near identical observation conditions (FoV, 
focus distance).

Another concept was implemented for add-on hyperspectral module (Fig. 14.13), 
which is located between objective lenses and binoculars [71]. In this case, all the 
constituent parts of the microscope system remain unchanged, including RGB cam-
era, and there is enough space for an additional optical system and even for a long- 
size HSI based on double AOTF monochromator.

This module operates in the following way. Wide-band radiation from the source 
1 is focused on the object with Köhler illumination system, comprising lens ele-
ments 2 and 5, field diaphragm 3, and aperture stop 4. After successive transmission 
through the inspected object and the microobjective 6, the light radiation is partly 
reflected in the AO hyperspectral module with the help of beam-splitting cube 12, 
while the rest of light flow propagates directly upward. The last is distributed by the 
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beam splitter element 8 into two channels: first—to the binoculars 9 for visual con-
trol, second—to RGB camera 11 through the optical adapter 10, which provides 
necessary magnification.

The spectral imaging module (Fig. 14.13b) is placed between the basement and 
trinocular head of the microscope. It contains the beam splitter cube 12, conjugating 
optical system 13, AOTF 14, lens 15, and monochrome camera 16. As the beam 
splitter is placed between microobjective lens 6 and tube lens 7, the collimated 
radiation enters AO HSI module and then transmits the conjugating system 13. 
When spectral images are not required, the beam splitter 12 can be simply shifted 
aside to avoid light losses.

A varifocal lens 15 with microobjective lens 6 ensures variability of magnifying 
power. Acousto-optical tunable filter consists of a pair of opposite oriented identical 
wide-angle AO cells made of TeO2 (cut-off angle γ  =  6°) and three polarizers. 
Spectral range covers 450–750 nm, spectral resolution is approximately 1.5 nm (at 
λ = 630 nm), and the number of resolvable elements is 600 × 500. The device is 
controlled via USB2.0 port.

The optical system was modeled in Zemax program [14, 59]. The detailed analy-
sis including account of Bragg diffraction was performed to optimize the conjugat-
ing system for ensuring high quality imaging for microobjectives 4–20×. The 
parameters of calculation and other details are presented elsewhere [71].

For testing, AO HSI module was inserted into a trinocular optical transmission 
microscope, like in Fig. 14.13. In the upper row of Fig. 14.14, the images of a stan-
dard pattern are presented, which were obtained with 10× magnification, while in 

Fig. 14.13 Transmission microscope with AO HSI module: (a) structure, (b) internal view of AO 
imaging module. 1—white light source, 2, 5—condenser, 3—field diaphragm, 4—aperture dia-
phragm, 6, 15—lens, 7—tube lens, 9—eyepiece, 8, 12—beam splitter, 10—optical adapter, 13—
conjugating optical system, 14—AOTF, 11—RGB camera, 16—monochrome camera
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the lower row images of the local area of some biomedical object are shown with 
20× objective lens.

These images demonstrate that the conjugating optical system operates properly 
and expands the field-of-view of monochrome camera to that of RGB one, as well 
as increases brightness of the spectral image to the level comparable to that of 
white-light channel. Thus, double monochromatization and use of the conjugating 
optical system make it possible the cooperative processing of images from two 
channels (spectral and visible to human eye) without additional step for image cor-
rection. The developed spectral imaging module is the unit completed both physi-
cally and functionally. It can be used to diversify functions of standard commercial 
microscopes without their modifications.

14.3.3  Hyperspectral Instrument for Remote Spectral Imaging

Among various applications of hyperspectral imagers, temperature remote detec-
tion is one of the oldest. The structure of AO device for detection of spatial distribu-
tion of spectral features is presented in Fig. 14.15 [72].

From thermal radiation flow illuminated by the heated object 1 the input objec-
tive I forms collimated beam, which is directed at AOTF. The last comprises a pair 
of identical wide-angle AO cells 3, 5 placed in opposite manner and three polariz-
ers: co-directed input 2 and output 6, crossed to the intermediate 4 one. In AO cell 
3, the radiation spectral component with wavelength corresponding to acoustic 
Bragg grating period λ ~ 1/f is diffracted (o → e). The extraordinary polarized dif-
fracted light beam is selected by the polarizer 4. The diffraction process is repeated 

Fig. 14.14 Test objects images: upper row—standard pattern (scale bar), lower row—breast can-
cer tumor; (a) color (RGB) images, (b) direct spectral images obtained with no conjugation, (c) 
spectral images obtained with conjugating optical system (λ = 530 nm). The scale division size is 
100 μm as well as the scale bar length below
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in the next AO cell 5 that results in the additional contrast of the selected spectral 
component. Then with use of the lens IV, the selected radiation with specified wave-
length λ is focused at the camera photodetector V.

With changing acoustic wave frequency f in the range 43–82 MHz by means of 
variation of RF electric signal 8 supplied at the piezotransducers in AO cells 3 and 
5, one can tune the period of the diffraction grating and get the image of the object 
1 at any wavelength λ in the range 650–1110 nm with rather high spectral resolution 
(δλ  =  1.5  nm at λ  =  780 nm) and spatial resolution (500  ×  500 elements). 
Synchronization of camera V and spectral tuning of AO cells 3 and 5 permits to 
obtain a set of spectral images of the object 1 at arbitrary wavelengths in the 
inspected spectral range.

Associated spatial and spectral distortions caused by AO cells constitute a prin-
cipal problem for correct comparison of detected spectral images and spectra recon-
structions in different points of the image. These deformations, are almost completely 

Fig. 14.15 AO hyperspectral temperature imager: principle diagram (a) and internal view at the 
optical table (b) I—microobjective, II—AOTF, III—control unit, IV—intermediate objective, V—
monochrome camera, VI—power supply, VII—computer, 1—object; 2, 4, 6—polarizers; 3, 5—
AO cells, 7—controller, 8—RF generator, 9, 10—RF amplifiers
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compensated with the use of a pair of identical AO cells placed symmetrically, 
configuring for filtration the radiation of different polarization [13]. The developed 
AO HSI has the following characteristics: FoV 2ϖАО = 3°, input opening DAO = 8 mm, 
the number of spatially resolved elements approximately 500 × 500, and, hence, the 
angular resolution ψAO ≈ 20″.

Replaceable microobjective 1 ensures variability of the magnification and the 
working distance can be chosen in correspondence with the task. Varifocal lens IV 
is used for adjusting the image size for any microobjective 1. Video camera Manta 
G-419 NIR with CMOS array of 2048 × 2048 elements of 6.5 × 4.8 mm2 area is 
used for image acquisition. The frame rate is up to 58  Hz for resolution 
1000 × 1000 pixels.

To reach the highest characteristics of HSI, one needs to optimize its elements. 
Light flux maximization and aberration minimization of the device were performed 
in Zemax program [14, 73].

The spectral images of the optical standard pattern detected with the developed 
AO HSI are shown in Fig. 14.16. The device provides high quality images in the 
total operation spectral range with no additional focusing.

The developed AO HSI permits detection of spectral images of high spectral and 
spatial resolution and makes possible advancing techniques of remote and non- 
contact sensing.

In contrast to multi-channel diffraction spectrometers, which instantly detect the 
spectrum with one-dimensional spatial resolution, the developed AO HSI is capable 
of synchronous detection of spectral characteristics of all the image elements and, 
thus, can detect the temperature distribution over space that is necessary in many 
technical and physical problems.

It is highly important that due to aberration minimization the developed AO HSI 
provides correct detection of spectra in every point of the image. This property 
allows the device application for measuring the temperature of heated (~1000 K) 
objects [72].

Fig. 14.16 Comparison of spectral images of the same standard pattern recorded by once adjusted 
AO HSI: (a) 750 nm, (b) 800 nm, (c) 850 nm
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14.3.4  Hyperspectral Instrument for Skin Pathologies 
Assessment

One of the most promising optical techniques for skin pathology study is hyper-
spectral imaging. This technique provides studying both the tumor shape and its 
composite. Therefore, it became implementable in medical technologies and has 
already found some applications [74, 75]. For example, it was shown [76] that the 
sensitivity of HSI in melanoma detection is approximately 90%, while specificity is 
84%. Thus, the development and implementation of HSI instruments and analytical 
techniques is an important task for in vivo diagnostics of malignant neoplasms.

The developed AO HSI apparatus based on compensated double monochromator 
is presented in Fig. 14.17.

The radiation from light-emitting diode (LED) source 2, reflected and scattered 
by the inspected object 1, is transformed with teleobjective 3 into collimated light 
beam and directed at the AO tunable monochromator. The last comprises a pair of 
wide-angle AO cells 5, 7 and 3 polarizers: input 4, intermediate 6, and output 8. The 
direction of polarization for the middle polarizer is orthogonal to that for polarizers 
4 and 8. In AO cell 5, the optical radiation with wavelength λ corresponding to syn-
chronism condition is diffracted at Bragg grating induced by the propagating acous-
tic wave. The diffracted radiation changes the linear polarization (o → e) and is 
selected by the polarizer 6, while the non-diffracted beam is eliminated. The next- 
step diffraction takes place in the second AO cell 7 for higher contrast of selected 
radiation. Then the lens 9 focuses the filtered radiation at the monochrome photode-
tector array 10.

The device operates as follows. Digital commands from the computer 15 are sent 
to the controller 14, which initiates the synthesis of the corresponding RF signal by 
the synthesizer 13. This signal is amplified by the RF amplifiers 11, 12 and then is 
supplied to piezotransducers of AO cells 5, 7. They generate the ultrasonic acoustic 
waves, which due to elasto-optic effect change periodically the refraction indices of 
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Fig. 14.17 AO HSI apparatus for skin lesions study. 1—object (patient), 2—LEDs-based optical 
source, 3—input teleobjective, 5, 7—AO cells, 4, 6, 8—polarizers, 9—output lens, 10—mono-
chrome camera, 11, 12—RF amplifiers, 13—RF synthesizer, 14—controller plate, 15—computer
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the medium resulting in the creation of dynamic Bragg gratings. By tuning the fre-
quency of the acoustic wave, one can specify the wavelength of the diffracted light 
beam. So different spectral components can be selected and recorded by the camera.

The developed device exhibits the following characteristics: spectral range 
440–750 nm, spectral resolution δλ = 2.5 nm at λ = 633 nm, spatial resolution 500 
× 500 elements. The HSI system was constructed in two assumptions: the distance 
to the object is 1 m and the inspected area is 7 × 7 cm2. The aberration and “ener-
getic” optimization were performed in the same manner as it was described above.

The developed HSI device (Fig. 14.18) was used for differentiation of malignant 
tumors implementing data about skin reflection in the visible spectral range. The 
preliminary processing procedure is targeted at the artifacts compensation in bio-
medical images recording in vivo caused by the object movements. Another aim of 
the image processing is an estimation of the object brightness distribution [77].

The analysis of the skin tissues was based on the estimation of skin chromo-
phores. Average concentrations of basic chromophores can be determined with 
account of spectral features of the tested tissue. As a principal diagnostic quantita-
tive factor, the normalized integral index of optical density was used. The local 
changes of optical indexes concentration in comparison with surrounding healthy 
skin indicate the high risk of tissue malignization. The results obtained with the 
developed AO HSI complemented with data extracted with other techniques (der-
matoscopy, Raman scattering, etc.) open the way to effective differentiation of 
benign and malignant skin neoplasms [30, 77, 78]. The next section highlights vari-
ous applications of the developed instrument in skin tumor diagnostics.

14.4  Experimental Study of Skin Using AOTF-Based 
Imagers

The most convenient approach of HSI implementation in cancer screening is the 
examination of superficial tissues, and many studies were conducted for skin and 
oral cancer detection. For example, Johansen et al. [79] demonstrated a number of 

Fig. 14.18 External view of AO HSI and experimental environment
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hyperspectral cameras suitable for skin cancer detection with an analysis of back-
scattered and autofluorescence signals. Different HSI approaches find sensitivities 
and specificities of melanoma detection in wide range from 100% to 23%. However, 
critical remarks made by Johansen et al. point out some limitations of most recent 
HSI skin cancer studies, especially with small datasets, and further investigations 
are required for correct estimation of HSI approach skin cancer detection accuracy. 
In other study, Fei et al. [80] utilized HSI for oral and thyroid cancer margins detec-
tion with backscattered light. The authors demonstrated an average accuracy of 90% 
± 8%, sensitivity of 89% ± 9%, and specificity of 91% ± 6% for oral tissue discrimi-
nation. For tissue specimens from the thyroid, the method achieved an average 
accuracy of 94% ± 6%, sensitivity of 94% ± 6%, and specificity of 95% ± 6%.

For the integral organs malignancy inspection HSI was used for colorectal cancer 
with fluorescence registration [81], for brain cancer [82], prostate cancer [83], and 
backscattered light, and many other applications [1, 2]. For instance, Fabelo et al. 
[82] registered 300,000 spectra of brain tissue images and reached more than 97% 
accuracy in brain cancer detection with backscattered light analysis. Such studies 
clearly prove the applicability of HSI techniques based on backscattered and fluo-
rescent modalities application in cancer screening.

More weak optical signals, such as Raman, also may be used in HSI applications. 
The in vivo applications are complicated due to an extremely low Raman signal, and 
most efforts of HSI implementations are focused on such implementations as coher-
ent anti-Stokes Raman scattering, stimulated Raman scattering, and surface- 
enhanced Raman scattering. In turn, application of nonconventional Raman 
techniques is mainly focused on cell cultures and performed for prior known chemi-
cal components [84–86]. However, the authors clearly demonstrate applicability of 
Raman techniques for future cancer studies.

In addition, promising applications of HSI in oncology include image-guided 
surgeries, including robotic-assisted applications. Bravo et al. [87] demonstrated the 
application of HSI in in vivo case examples from clinical neurosurgeries revealed 
changes to the localization and contrast of protoporphyrin IX maps, making concen-
trations accessible that were not visually apparent. The adoption of these methods 
has the potential to maintain sensitive and accurate visualization of different chemi-
cals contrast over the course of surgery. Besides in vivo studying of cancers, HSI 
was used for the differentiation of tissue histological samples and biopsies. Berisha 
et al. [88] demonstrated the application of Fourier transform infrared spectroscopy 
for the quantitative study of breast tissue histology sections. Kho et al. [89] showed 
the application of near infrared HSI to determine borders of breast cancer with 
84–93% accuracy. Akbari et al. [90] demonstrated HSI study of gastric cancer in 
1000–2500 nm area with more than 90% sensitivity and specificity and ability to 
detect the tumors with a size not exceeding 0.5 mm.

Some other examples of HSI implementation in cancer study can be found in 
recent reviews [91, 92]. Experimental results show that the use of spatial informa-
tion in addition to the spectral information brings significant improvements in the 
cancer classifier performance and allows classification of cellular subtypes. 
However, for the moment showed examples are limited due to the small datasets, 
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and the preliminary results warrant further research across all organ systems to 
determine if HSI has a place in the operating theater or in the clinics [91].

All reviewed examples of HSI implementation in cancer screening use different 
instrumentation and different approaches of optical signal acquisition. Different 
systems are adopted for the registration of a certain optical modality from certain 
tissue type. This makes every HSI system unique and applicable in strict conditions. 
In our recent studies [93, 94] we demonstrated in vivo implementation of the AO 
HSI device in skin cancer detection and differentiation.

14.4.1  Skin Samples

There were two studied cohorts, one included 45 patients with skin neoplasms (19 
basal cell carcinomas (BCC), 10 benign tumors (BN), and 16 malignant melanomas 
(MM)) and the other included 91 patients (19 BCC, 22 MM, and 50 BN neoplasms, 
including 16 nevi, 5 papilomas, 4 hemangiomas, 7 different inflammatory diseases, 
12 keratomas, 1 fibroma, 1 Bowen disease, 4 kerato papillomas). Every hyperspec-
tral tumor study was accompanied by histological analysis to make a final diagno-
sis. The protocols of in  vivo tissue diagnostics were approved by the ethical 
committee of Samara State Medical University. The Institutional Review Board of 
Samara National Research University approved the study protocols. This research 
adhered to the tenets set forth in the Declaration of Helsinki. Informed consent of 
each subject was obtained.

14.4.2  HSI Data Analysis

Generally, to obtain quantitative estimations of various human skin tissues back-
scattered spectra we used data about spectral optical density (OD) of skin tissues. 
The diffuse backscattered reflectance from skin in spatial point (x, y) may be char-
acterized by OD on the selected wavelength λ as:
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where I0(x, y, λ) is the backscatter intensity from the background of light source, I(x, 
y, λ) is the backscattered intensity from the tissue sample. While the exact determi-
nation of tumor type may be performed with OD analysis based on the above spec-
tral bands:
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where hemoglobin-related optical density ODH defined for (λ1 = 530  nm, λ2 = 
570 nm) and melanin-related ODM—for (λ1 = 600 nm, λ2 = 670 nm). Further, we 
calculated mean ODH and ODM values for all studied tumors and healthy skin. 
Allocation of tumor area was performed on the basis of the approach presented in 
our previous studies and was performed based on image segmentation by Otsu 
method [95]. Healthy skin region was chosen near the tumor area with 1.5–2 cm 
indentation from the tumor and included approximately 1 × 1 cm area of healthy 
skin. Typical normalized spectra and tumor image presented in Fig. 14.19. Details 
of hyperspectral image with tumor and healthy skin areas allocation as well as dis-
tribution of ODM coefficient may be found elsewhere [93].

Discrimination of tumors was performed based on two principles. First principle 
took into account only raw values of ODH and ODM coefficients, while second prin-
ciple used data for the normal skin of the same patient for ODN

H and ODN
M coeffi-

cient as follows:
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where ODT
i and ODH

i are ODi coefficients calculated for one patient for tumor 
(index T) and healthy skin (index H) areas, respectively.

Finally, we analyzed integral properties of skin for allocated tumor area and 
healthy skin area with an unbiased dispersion of ODi and ODN

i coefficients inside 
the area of interest:

Fig. 14.19 Tumor image (5 × 5 cm) (a) and normalized spectral diffuse reflection (b) for MM, 
BCC, and normal skin. A—normal skin area, B—tumor area
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where N is the number of pixels in the area of interest, ODn is the OD (or normalized 
OD) in the nth pixel of area of interest, M  is the mean value of ODn inside the area 
of interest.

In skin tissue classification we utilized OD i and ODN
i coefficients. The choice of 

these coefficients was based on coefficients utility. While ODN
i coefficients provide 

information about changes of chromophores content in the tumor in comparison to 
healthy skin of the same person, OD i coefficients provide information about mean 
values of chromophores concentration in the tumor area. Thus, these two approaches 
use different features of chromophores distributions and both may be useful in skin 
tissue classification.

OD i and ODN
i coefficients were used for tissue classification by discriminant 

analysis (DA). DA can separate two or more classes based on different statistical 
parameters of Gaussian distributions. The efficiency of the proposed approach is 
characterized by sensitivity and specificity and ability to select defined classes in 
different areas of phase plane. The analysis of skin tissue data allocation was per-
formed using quadratic DA classifiers [96]. In addition, data were analyzed using 
SPSS software version 23 (SPSS Inc., Chicago, IL) with logistic regression, and a 
P-value of <0.01 was considered to indicate statistically significant differences. 
Then, the plot of sensitivity versus 1-specifity (called receiver operating character-
istic (ROC) curve) is built, and the area under the curve (AUC) was used as an effec-
tive criterion of skin tissue discrimination accuracy. This curve plays a central role 
in evaluating diagnostic ability of tests to discriminate the true state of subjects, 
finding the optimal cut-off values, and comparing alternative diagnostic tasks when 
each task is performed on the same subject [97].

14.4.3  Skin Cancer Differentiation Based on Hyperspectral 
Imager Features

Typical in vivo images are presented in Fig. 14.20 for BCC (top) and MM (bottom). 
Here (a, d) are digital images, (b, e) and (c, f) are distribution of ODH and ODM 
correspondently. Significant pigmentation of all tumor surface characterizes MM, 
unlike BCC sample. It is clearly visible that BCC and MM have great differences in 
distribution of hemoglobin and melanin concentrations (ODH and ODM maps), 
which make possible visual identification of cancer type and define tumor bound-
ary [95].

As can be seen from Fig. 14.21a (corresponding to the first cohort) HSI deter-
mines skin cancer with very high sensitivity and specificity of 84 and 87%, respec-
tively. Almost the same value (86%) characterizes the specificity of MM 
differentiation from other cancer types, but the sensitivity decreases up to 56% (see 
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Fig. 14.21b). MM have higher values of ODH and ODM due to the high concentra-
tion of the melanocytes in epidermal cells of melanoma unlike BCC or BN. Most 
MM samples classified as positive are pigmented melanoma, while three MM sam-
ples of I–II stages classified as negative belong to epithelioid melanoma and atypi-
cal melanoma, containing significantly less melanin. The presence of the negative 
results in both groups can also explained by skin redness in the study area (for MM 
of III–IV stages) and features of skin phenotype.

The results of the second studied cohort analysis are presented in Fig. 14.22 and 
Table 14.1. Application of single OD i or ODN

i coefficient for melanin content leads 
to 60–70% accuracy, and these coefficients for hemoglobin content provide a slightly 
lower accuracy of 55–65%. It is important to note that accounting of normal healthy 
skin helps to improve accuracy for OD H and decreases accuracy for OD M. These 
facts may be caused by inhomogeneity of melanin and hemoglobin distribution in 
skin. While neoplasms have heterogeneous distribution of hemoglobin and capillary 
network, normal skin has more homogeneous one, and, thus, comparison of OD H 
dispersion in neoplasm and normal tissue provides additional information for tissue 
discrimination.

Melanin content of neoplasms frequently may be increased in comparison to 
healthy skin, but as every person have their own skin phenotype and unique level of 
melanin [98] it may be complicated to estimate differences in melanin content of 
neoplasm and healthy skin. That is why most likely in our study application of ODN

M 

Fig. 14.20 In vivo digital images (a, d), ODH (b, e), and ODM (c, f) maps of BCC (top) and MM 
(bottom): image sizes are 3 × 3 cm; 1—pathology area, 2—tumor boundary, 3—healthy skin
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Fig. 14.21 Discriminant 
analysis in ODH − ODM 
plane: (a) skin cancer 
(MM, BCC, and BN; red 
cycles) vs healthy skin 
(green triangles); (b) MM 
(red cycles) vs other cancer 
types (BCC and BN; blue 
squares); (c) MM of I–II 
stage (red cycles) vs MM 
of III–IV stage (blue stars)
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Fig. 14.22 Distribution of skin neoplasms on phase planes with OD i (a) and ODN
i (b) axes

Table 14.1 Accuracy (%) of neoplasm classification

Classes OD H OD M ODN
H ODN

M OD H + OD M ODN
H + ODN

M Physician

MM + BCC vs BN 61 71 65 60 76 78 51
MM vs BCC 54 59 66 59 68 79 56
MM vs BCC + BN 60 69 68 63 75 75 51
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coefficient showed rather low accuracy of skin neoplasm classification in compari-
son to OD M.

Application of coefficients combination (OD H + OD M and ODN
H + ODN

M) helps 
to improve accuracy of tissue classification by 5–15% in comparison with single 
coefficient implementation. ODN

H + ODN
M combination in comparison with OD H + 

OD M pair shows almost the same rates of accuracy for cases of MM vs other 
 neoplasms and malignant neoplasms vs BN classification, but demonstrates 11% 
higher accuracy in case of MM vs BCC classification. That may be explained by 
ODN

H coefficient usage as it shows high rates of tissues classification in comparison 
with unnormalized on healthy skin OD H coefficient. Thus, we may try to combine 
normalized and unnormalized coefficients to achieve the highest performance of 
tissues classification.

In order to do this we performed ROC analysis for combination of proposed 
coefficients. Figure 14.23 demonstrates ROC curves for different pairs of coeffi-
cients. One may see that the best AUC values show a combination of normalized 
and unnormalized coefficients. This fact proves that the best performance of HSI 
skin neoplasms study may be implemented with joint analysis of pathology area and 
healthy skin. Combination of ODN

H + OD M and OD H + OD M coefficients shows 
0.693 and 0.686 AUC values, respectively, while ODN

H + ODN
M coefficients pair 

shows only 0.608 values. As higher AUC value the higher final accuracy of classifi-
cation for unnormalized and combined approaches of neoplasm, hemoglobin and 
melanin dispersion in clinical practice. Moreover, comparison of HSI analysis and 
physician survey accuracy presented in Table 14.1 shows that automatic analysis 
may significantly improve accuracy of skin neoplasm detection. HSI analysis may 

Fig. 14.23 ROC curves of MM vs BCC + BN classification with logistical regression for ODN
H + 

OD M, ODN
H + ODN

M and OD H + OD M coefficients
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be used during the first hand examinations, which suffer from very low specificity 
of malignant tumors detection [99].

Considering alternative optical methods of the proposed approach, one may say 
that the most frequently used method today is multispectral analysis with additional 
spectral ranges or native fluorescence analysis. For example, it was proposed to use 
the spectral region up to 1000 nm and analyze the content of NADH/NAD+ [100, 
101]. The total sensitivity and specificity for separation of MM from nevus and 
BCC were 97% and 96%, respectively. However, this approach requires an addi-
tional light source (either a separate source for the near-IR or a white diode with a 
near-IR coating up to 1000 nm), as well as a camera with a higher sensitivity (in 
comparison with CCD) in the 1000–1100 nm range, which significantly compli-
cates the design of the multispectral camera. In a study by Nagaoka et al. [76] an 
index is proposed that describes the heterogeneity of the tumor, which is the analog 
of the color index in dermatoscopy. The sensitivity of the determination of mela-
noma was 90%, and specificity was 84%. However, it is important to note that the 
above-described results [76, 100, 101] were obtained on a small number of samples 
(only five–ten melanomas were included in the studied cohort).

Evolution of the proposed technique may be based on the approach of spatial 
evaluation of diagnostic dermatoscopic signs, and, for example, may be imple-
mented with convolutional neural networks analysis [102]. The authors [102] 
claimed maximum sensitivity and specificity of melanoma diagnosis at 90% and 
85%, respectively. Therefore, image analysis approaches may be combined with 
proposed technique to improve the overall accuracy in HSI skin cancer imaging.

14.5  Conclusions

The proposed approaches to skin tissue classification showed 68–78% accuracy. 
These values of accuracy are not quite high in comparison to 90% and higher accu-
racies of such optical approaches as Raman or fluorescent spectroscopy [103]. 
However, integral information about skin chromophores may significantly increase 
accuracy of visual inspection by dermatologist, as proposed technique demonstrated 
15–20% higher accuracy in skin tumors classification. Wherein application of both 
ODi and ODNi coefficients and their combination leads to the comparable accuracy 
in tumors classification. This fact proves that choice of the visible range area 
(450–750 nm) for the analysis of the chemical composition of skin may be useful in 
oncodermatological applications.

It should be noted that in the proposed approach the processing of hyperspectral 
data is carried out in real time and does not require operator participation. In gen-
eral, the simplicity of the equipment and the speed of processing results may allow 
for adapting the proposed method for tasks of mass screening of skin tumors. 
Moreover, in future works on the development of the proposed approach, we may 
increase the number of examined skin neoplasms samples and combine the pro-
posed technique with image pattern analysis methods.
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Chapter 15
Multimodal Imaging at Depth Using 
Innovations in Raman Spectroscopy 
and Optical Coherence Tomography

Mingzhou Chen and Kishan Dholakia

15.1  Introduction

The interest and scope for application of optical imaging in early diagnosis of dis-
ease have gained exceptional attention. Optical approaches may offer a highly spe-
cific and sensitive approach potentially coupled with an inexpensive implementation. 
A number of varied optical technologies are at our disposal for use. The choice of 
method is dictated by a number of factors, primarily by the type of information 
required, resolution required, and depth information needed. Microscopy in the 
form of confocal or multiphoton imaging in an epi-geometry can be very useful for 
fluorescent samples. Light sheet microscopy avoids the epi-geometry and instead 
uses orthogonal illumination and detection paths to deliver wide field, rapid imag-
ing of fluorescent samples at high speed, with low photodamage as this particular 
geometry avoids unnecessary irradiation of parts of the sample not under investiga-
tion. Such geometries can be used with non-fluorescent samples, for example, cap-
turing autofluorescence or molecular signatures. In addition other modalities may 
be needed if we wish to capture morphological information on the sample. This 
chapter will focus on combinations of Raman spectroscopy and optical coherence 
tomography for generating label-free three-dimensional images.
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15.2  Basic Principles of Raman Spectroscopy and Optical 
Coherence Tomography

The light–matter interaction is at the heart of understanding Raman spectroscopy. 
This well-known and powerful method dates back to around 1928 with Raman 
receiving the Nobel Prize for his discovery in 1930. The Raman signature refers to 
the inelastic scattering component when monochromatic light is incident upon a 
sample. The scattering of light may occur due to molecular modes primarily associ-
ated with vibration and rotation. Specifically, at a sub-atomic scale, Raman scatter-
ing is based upon the electron cloud from a given sample interacting with the 
external electric field of the incident optical field. This results in an induced dipole 
moment within the molecule that is correlated with its polarizability. In turn this can 
result in a re-emission of light with energy lower or higher than that associated with 
the incident field, as shown in Fig. 15.1. Typically we record the Stokes lines where 
the molecule of interest initially resides in its ground state and is left in an excited 
vibrational state by the scattering process, emitting a photon of lower energy than 
the incident field. This inelastic scattering process is very weak (typically one pho-
ton in a million or less is inelastically scattered). Molecules offer a very small 
Raman cross section (around 10−30  cm2 per molecule). As a consequence, 

Fig. 15.1 The energy transitions for scattering in the light–matter interaction. In Rayleigh scatter-
ing, the molecule can relax back to the ground state and emit a photon with same energy as the 
incident photon. In Stokes Raman scattering, the molecule can relax to a vibrational state and emit 
a photon with lower energy than the incident photon. Alternatively in Anti-Stokes Raman scatter-
ing, a molecule, already in an excited vibrational state, can relax down to the ground state, emitting 
a photon with more energy than the incident photon
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spontaneous Raman scattering requires a long acquisition time, which can be the 
order of minutes or hours especially when considering wide field of view record-
ings. This may be an issue for biomedical applications. Also, it is difficult to obtain 
signals from depth. A large body of Raman studies use the well-known therapeutic 
window for research where work is performed at near infra-red wavelengths: an 
excitation wavelength of 785 nm has proved very popular in this regard [1–4].

As an optical technology based on inelastic light scattering, Raman spectroscopy 
can analyze the molecular composition of tissue. Therefore, it provides a potential 
modality to identify the regions of the tumor in vitro or intraoperatively [5]. For 
example, a handheld probe for contact Raman spectroscopy identified gliomas in 
the brain [6]. Intraoperative use of the probe allowed the team to differentiate nor-
mal brain cells from dense cancer and normal brain invaded by cancer cells, with 
both a sensitivity and a specificity in excess of 90%. This Raman-based approach 
allowed brain cancer cells detection for patients with gliomas graded from 2 to 4. 
Furthermore, the same group progressed to show highly accurate detection of can-
cer in situ can be achieved by Raman spectroscopy combined with intrinsic fluores-
cence spectroscopy and diffuse reflectance spectroscopy [7]. More broadly in the 
cancer area, studies have been performed on cancers in the gastrointestinal tract [8], 
skin cancer [9], breast [10], and lung tissue [11]. In particular some good degrees of 
success in classifying normal versus malignant tissue have been seen using fiber 
probes that can integrate signals over larger areas versus acquisition of Raman sig-
natures from single cells.

Recording high resolution label-free information on the morphology of biomedi-
cal samples is also invaluable to numerous areas of fundamental bioscience and 
early diagnosis of disease. Obviating the need for labeling means we require a 
source of natural contrast that is strong enough to allow us to distinguish boundaries 
between cell layers. Optical coherence tomography has emerged over the last 25 
years as a powerful, rapid tool to address this very goal [12]. It relies on backscat-
tered light from cell layers where the scattering results from subtle but key differ-
ences in refractive index between these layers, leading to intrinsic contrast and thus 
morphological information. By gating the scattered light through interference with 
a reference signal, an image can be acquired to show contrast and image the micro-
structures in the sample.

In the time domain OCT embodies the principle of a Michelson interferometer. 
The motion of a mirror in a reference arm results in interference when the path 
length matches that of the sample arm which is reflected from tissue for the case of 
a very low coherence source (e.g. a superluminescent diode). In this situation excel-
lent discrimination of a given tissue plane is achieved versus the background. By 
translating the reference mirror a three-dimensional image of the tissue can be cap-
tured. Time domain OCT is powerful and useful but is typically very slow.

A more rapid, practical alternative is to move from the time to the frequency 
domain with these physical principles. We have two forms of OCT in the Fourier 
domain. In spectral domain OCT, a broadband light source illuminates a sample and 
we use a grating for dispersion to reflect the whole backscattered signal onto a spec-
trometer. Swept source OCT goes further by using a very fast tunable light source 
and appropriate detector to capture the whole OCT signal [13, 14].
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OCT offers some key advantages which explains its rapid rise to prominence in 
the last few decades. Firstly the optical fluence level for image acquisition is low so 
OCT causes very little photodamage to the issue, making it useful for analyses of 
organs such as the eye [15–17]. Further, OCT may be free space, but an exceptional 
effort has resulted in a suite of fiber-based probes for implementing this imaging 
mode. These have allowed access to organs within the body such as the gastrointes-
tinal (GI) tract [18–20] or arteries near the heart to explore cardiovascular disease 
[21]. OCT can achieve high sensitivity and specificity in distinguishing between 
cancer core and normal white matter in brain tissue based on optical attenuation 
values. In this way, it provides direct visual cues for cancer versus noncancer areas 
for brain cancer detection [22]. Comparable with histopathology, high resolution, 
cross-sectional OCT images of tissue provide information about depth of tumor 
growth and therefore enhance the efficiency and sensitivity of early cancer diagno-
sis [23]. Though OCT in its simplest form can yield morphological images and 
depth-resolved structural images for tissue, more sophisticated implementations can 
deliver more information. This may be in the form of motional information of blood 
flow (e.g., Doppler OCT) [24, 25], more detail on the structural composition of tis-
sue (birefringence OCT) [26, 27], and details of the distribution of specific contrast 
agents (molecular contrast OCT) [28–30].

15.3  Combination of Raman Spectroscopy and OCT 
for Label-Free Multimodal Imaging

Raman spectroscopy is a label-free imaging method that can reveal molecular mark-
ers of disease with high specificity. OCT is also label-free and offers morphological 
data, and can unravel the microstructures of tissue with high sensitivity. A key chal-
lenge is to acquire both this molecular and morphological information simultane-
ously from the specimen under investigation in order to gain complementary 
information and ultimately analyze the sample accurately [31–34]. Previous studies 
have indicated that obtaining information from both Raman spectroscopy and OCT 
in tandem may be used as an effective multimodal tool for an efficient non-invasive 
optical biopsy in disease diagnosis [3, 35].

OCT can penetrate several millimeters deep into the samples while scanning 
over a large transverse area (normally several mm2). However, conventional Raman 
spectroscopy can only deliver superficial information (100 μm) as Raman signals 
from the deeper layers are very weak and photons experience stronger diffusion to 
and from the deeper areas. This discrepancy in penetration depth between OCT and 
Raman spectroscopy prohibits a useful combination of these two modalities to 
obtain both OCT and Raman images at large depths and co-register data from 
images. Spatially offset Raman spectroscopy (SORS) is one possible way to increase 
the Raman penetration depth into a sample by simply shifting the collection point 
away from the excitation point [36–38]. With a careful consideration of the 
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geometry for both OCT and SORS, a combination of these two modalities can be 
fulfilled and ultimately lead to an enhancement of sensitivity and specificity for 
identification [39–41].

15.4  Imaging at Depth with Wavelength Modulated SORS 
and OCT with Co-Registered Information

Here, we describe a combination of wavelength modulated spatially offset Raman 
spectroscopy (WM-SORS) and optical coherence tomography (OCT) that over-
comes some key roadblocks. Then we show how these two modalities can be inte-
grated in one hybrid system. The performance of such a hybrid system is then 
characterized by using a phantom.

15.4.1  Raman at Depth with WM-SORS

In a conventional confocal Raman system, the excitation laser beam is focused into 
the turbid sample and scattered Raman photons will be collected by the same optics. 
Therefore, collection is at the same point of excitation, which maintains highest 
efficiency of laser excitation and collection. However, the main drawback of this 
geometry is the Raman signals from depth decay exponentially due to the scattering 
and attenuation. Therefore, it can only acquire superficial Raman signals a few hun-
dreds micrometers of the surface of sample [42]. In order to recover biological 
Raman signals from depth, the collection point is deliberately shifted away from the 
laser point for a small offset, s, in standard SORS, as shown in Fig. 15.2. Usually 

Fig. 15.2 Principle of wavelength modulated spatially offset Raman spectroscopy. Left shows the 
excitation laser (which can be wavelength-tuned over 1.5 nm range with central wavelength at 
785 nm) along with the turbid sample, the target deep in the sample and the spatially offset collec-
tion point. Right shows the images of laser focal point and spatially offset collection point at the 
slit of spectrometer, and their corresponding wavelength modulated Raman/SORS spectra using a 
grating. Figure was adapted with permission from Chen et al. [43]
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different spatial offsets can be achieved by using movable collection optics, such as 
a piece of fiber or a fiber bundle. However, the relationship between Raman signals 
from the target at different depths d and the spatially offset s needs to be calibrated 
for different samples.

In WM-SORS, there is no need to use any movable optics. The optical setup is 
the same as a standard confocal Raman system [44] except the collection fiber is 
replaced by a telescope in order to image the laser spot and the collection point onto 
the slit of the spectrometer. The light at each point along the slit will be dispersed to 
form a spectrum by the same single grating in the spectrometer. The standard Raman 
spectrum can be acquired from the rows of binned pixels corresponding to the image 
of laser spot, while other rows of binned pixels on the CCD with a spatial offset s0 
away from the image of laser spot form a SOR spectrum. The physical spatial off-
sets on the sample plane can be calculated from the s0 on the slit with the known 
magnification factor (2.78 in our setup) of the imaging system between the sample 
plane and the slit. Ideally, each row of pixels corresponds to a Raman spectrum with 
a spatial offset s. In this way, by simply extracting the spectra from different rows of 
pixels, we can make full use of the two dimensions of the CCD camera to acquire 
both standard Raman spectra and SOR spectra with different offsets, with one single 
exposure. By fully using the rows of CCD pixels, one standard Raman spectrum and 
eight SOR spectra at different offsets (maximum 0.7 mm) can be extracted from one 
single CCD frame.

Similar to our previous wavelength modulated Raman spectroscopy (WMRS) 
work [43–48], five spectra need to be acquired when the laser wavelength is tuning 
over 1 nm with a step of 0.2 nm. These can be reconstructed into one single WMR 
spectrum using principal component analysis (PCA). Therefore, one WMR spec-
trum and eight WM-SORS spectra can be calculated simultaneously from the 
acquired five frames of the CCD camera of the spectrometer using the analyzing 
method described above. We will use the WM-SORS spectra for imaging because 
the background fluorescence can be suppressed [45] while signals from depth are 
more pronounced than for standard SOR spectra.

15.4.2  Morphological Information at Depth: OCT

Optical coherence tomography (OCT) is a powerful way to acquire morphological 
information from sample at millimeter depth levels. Our approach uses the standard 
Fourier domain OCT based on a Michelson interferometer with which it is easy to 
couple a Raman excitation laser onto the sample as the simple geometry used. In 
practice, one can use any other format of OCT with sufficient accessibility for the 
Raman system. Sharing the optical axis is the key factor when one design the mul-
timodal system as images from both modalities need to be co-localized for final 
analysis.
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15.4.3  Multimodal Optical System with WM-SORS and OCT 
Co-Registered at Depth

In order to obtain both morphological and molecular imaging at depth, we integrate 
OCT and WM-SORS into a hybrid system as shown in Fig. 15.3. In the modality of 
WM-SORS, a tunable 785  nm laser source (Spectra-Physics, 1  W, Ti:Sapphire 
3900s) is used as an excitation laser source for WM-SORS with a wavelength tun-
ing range of 1 nm, which is very similar with the one we used for our previous 
WMRS system [44, 46, 48]. The collection path is in free space as described in the 
Sect. 15.4.1. In the modality of OCT, a broadband SLD (Superlum, S850, central 
wavelength 850 nm, ∆λ = 30 nm) is used as an OCT light source and it works based 
on a Michelson interferometer as a Fourier domain OCT. In this setup, a low NA 
objective (Thorlabs, LSM02-BB) and a Galvo mirror are used for both OCT and 
WM-SORS. To avoid any signal loss, a flip mirror (F1) is used to switch between 
OCT mode and WM-SORS mode.

Fig. 15.3 Multimodal optical hybrid system with WM-SORS and OCT. Main parts of these two 
modalities, OCT and WM-SORS, are represented by the blue and red dash-lined rectangles, 
respectively. Both OCT and WM-SORS share the remaining optics, Galvo mirros G1 and objective 
O1 before the sample holder. F1 is a flip mirror to switch between OCT and WM-SORS. A super-
luminescent diode (SLD) laser is used for OCT illumination (Superlum, Cork, Ireland, S850). S1 
is a X-Y-Z stage to hold the sample. SMF2 is a single mode fiber. L1 to L8 are lenses. E1 is an edge 
filter. LF1 is a laser line filter. N1 is a notch filter. GR is the grating. ND1 is a neutral density filter. 
B1 is a 50:50 beam splitter. C1 is a dispersion compensating block. M1 is a reference mirror. A line 
CCD camera (AViiVA EM1) and a spectrometer (Andor SR303i)) are used. Figure was adapted 
with permission from Chen et al. [43]
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Normally the relationship between the spatial offset s and the depth information 
d for different samples must be calibrated due to the unknown optical refractive 
index of the sample. With the common optical path used in our system, WM-SOR 
spectra or Raman images from hidden objects deep in the sample can be acquired 
with the depth information d co-registered using OCT images. In this way, the com-
plicated calibration procedure of s and d can be avoided, although a low NA objec-
tive for WM-SORS may reduce the performance of Raman spectroscopy.

15.4.4  Characterization of Optical System

In order to characterize the WM-SORS, layered samples can be used with the layer 
thickness being measured by OCT. As an example, a block of lard is used as a phan-
tom with a piece of polystyrene sheet (about 1.5  mm thickness) being inserted 
inside diagonally. The excitation laser is focused on the surface of the lard. Due to 
the depth in the lard and the high scattering property of lard, the standard WM 
Raman signals from polystyrene dramatically decrease when the polystyrene sheet 
penetrates deeper into the lard with respect to the laser focus at the surface. This is 
revealed by an exponential decay in the intensity of the typical polystyrene Raman 
peak at 1001.4 cm−1. When a spatial offset is used in WM-SORS, the Raman peak 
intensity ratio between the polystyrene (1001.4  cm−1) and the top layer of lard 
(1430 cm−1) increases more rapidly, indicating that an enhancement of Raman sig-
nal from hidden polystyrene can be achieved. As shown in Fig. 15.4, the enhance-
ment is related to the depth of the polystyrene in the lard and the offset used if the 
properties of the top layer are fixed. Here, a maximum 14-fold enhancement can be 
achieved in this sample. Note that the enhancement is related to the scattering prop-
erty of the sample itself. Therefore, different samples may need to use a different 
optimized offset in order to extract information from a specific depth.

15.5  Multimodal Deep Imaging with WM-SORS and OCT

15.5.1  Imaging Pharmaceutical Particles Deep Through Lard

By discriminating the slightly different refractive index of the targets and surround-
ing medium, OCT can easily locate the position of targets and show the shapes, 
volumes or margins. However, this is not enough to tell the differences between the 
targets or know the compositions of the targets. Then the biochemical information 
acquired from WM-SORS can provide a strong ability to detect the difference in 
these targets. Here we show an example of how this hybrid system can locate and 
identify different pharmaceutical particles hidden deep in the lard block.
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OCT slice images at different depths are shown in Fig. 15.5 (a–d), where one can 
find that there are two triangular particles located around 1 mm deep in the lard 
block. However, it is difficult to discriminate which pharmaceutical particle we are 
observing. With OCT images only, it is impossible to identify which is aspirin and 
which is ibuprofen.

In order to identify these different compounds, one can use several characteristic 
Raman peaks, for example, lines at 840 cm−1 of ibuprofen, 1188 cm−1 of aspirin, and 
1430 cm−1 of lard, which can be used for identifying these three compounds clearly. 
The reconstructed Raman images from these characteristic Raman peaks using dif-
ferent spatial offsets are shown in Fig. 15.5 (e–p). As both OCT and WM-SORS 
share the same optical axis, these 42 × 42-pixel Raman images can be co-registered 
with the OCT images. With non-offset s = 0 μm used, the Raman signals are domi-
nated by the top lard layer except for the big and shallowly-buried aspirin particle 
(Fig. 15.5 (e)) in the lard. However, the Raman signals from the smaller ibuprofen 
particle which is deeper in the lard are completely in the noise level (Fig. 15.5 (i)). 
Stronger Raman signals can be obtained using spatially offsets s, which can be 
revealed in higher image contrast in Fig. 15.5 (f–h). WM-SORS images in Fig. 15.5 
(j–l)) also show the signals from ibuprofen particles. Due to distinct Raman peaks 
for aspirin and ibuprofen used, there is no cross talk in WM-SORS images for both 
compounds. Therefore, these two different compounds can be easily discriminated. 
Furthermore, multi-spectral images can provide plenty of information. As shown in 

Fig. 15.4 Normalized ratios between the polystyrene Raman peak at 1001.4 cm−1 and the lard 
Raman peak at 1430 cm−1 as a function of spatial offset s. The thickness d of lard on top of poly-
styrene is measured from the co-registered OCT images. Standard deviations were obtained from 
six measurements on the samples for each condition. Figure was adapted with permission from 
Chen et al. [43]
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reconstructed lard WM-SORS images in Fig. 15.5 (n–p), the shadows indicate the 
location of aspirin particle as a lack of lard.

15.5.2  Imaging Layered Rat Brain Tissue

In most tumor detection applications, one can do diagnosis based on the changes of 
optical properties between tumor and normal tissue. However, with this one piece of 
information, the sensitivity and specificity of detection will be much lower [3]. 

Fig. 15.5 Imaging through lard for pharmaceutical particles using WM-SORS and OCT. The top 
row (a–d) shows the OCT slices at a different depth of d. Aspirin Raman images (e–h), ibuprofen 
Raman images (i–l), and lard Raman images(m–p), using different spatially offsets s, are recon-
structed by using Raman peaks at 1188 cm−1 of aspirin, 840 cm−1 of ibuprofen, and 1430 cm−1 of 
lard, respectively. Color legends indicate the intensity in dB for OCT images and Raman peak 
intensity in arbitrary units for Raman images. Scale bar indicates 500 μm. Figure was adapted with 
permission from Chen et al. [43]
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Specific Raman signals from a tumor would improve the detection ability, but is 
only suitable for the tumor at the tissue surface. Therefore, WM-SORS and OCT 
may provide a multimodal imaging method to detect the hidden tumor deep in the 
tissue more accurately.

Here we only show the ability of this hybrid system by detecting the white matter 
in the rat brain tissue. The white matter in the rat brain tissue has slightly different 
optical properties comparing with the surrounding tissue and therefore its OCT 
intensity is higher. In Fig. 15.6 (a–d), OCT images can reveal these white tissues 
which are located at different depths. However, there are some artifacts shown in 
Fig. 15.6 (c, d) which may be incorrectly identified as white matter in the analy-
sis step.

The white matter in the rat brain tissue actually have a very distinct Raman peak 
around 1430 cm−1. Using the Raman intensity of this characteristic peak, Raman 
images can be reconstructed as shown in Fig. 15.6 (e–h). As shown in Fig. 15.6 (e), 
without any spatial offset (s = 0 μm), the Raman image is blur due to the mixture of 
contributions from white matter at the surface and the depth. However, in Fig. 15.6 
(f–h), the image contrast is substantially enhanced because Raman signals from 
deep white matter are enhanced due to the spatial offsets used. As the specific bio-
medical information is acquired from the white matter only, the artifacts in the OCT 
images, as shown in Fig. 15.6 (c, d), do not exist in these WM-SORS images. This 
further improve the detection ability of this novel hybrid system.

Fig. 15.6 Brain tissue imaging using WM-SORS and OCT. (a)–(d) show OCT images of brain 
tissue at different depths. Note that OCT images are averaged over 10 slices around the depth in 
order to increase the contrast. (e)–(h) show Raman images (at 1430 cm−1) of the same brain tissue 
at different offsets. Color legends indicate the intensity in dB for OCT images and Raman peak 
intensity in arbitrary units for Raman images. Figure was adapted with permission from Chen 
et al. [43]
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15.6  Conclusion

Multimodal imaging by acquiring both morphological and molecular information in 
deep tissue or through turbid media would greatly advance the diagnosis of early 
stage diseases, such as tumor detection. Our hybrid WM-SORS/OCT system can 
acquire both WMR spectra and WM-SOR spectra at different spatial offsets simul-
taneously on one single CCD camera shot without using any movable optics and 
additionally removes fluorescence. With the co-alignment of optical axis in the 
OCT and WM-SORS, our system can probe 1.2 mm deep into strong scattering 
media (lard) to acquire molecular information from hidden targets. Therefore, it 
provides a deep tissue characterization technique acquiring molecular vibrational 
spectra co-located with microstructure information, with potential increases in sen-
sitivity and specificity for cancer detection. Raman spectroscopy highlights differ-
ences in signals from DNA, proteins, amides, and lipids among other molecules. 
Such features are associated with neoplastic progression with genomic and meta-
bolic changes with the onset of cancer. OCT can highlight morphological differ-
ences in cancer and OCT can provide information on the cell nucleus, i.e. the size 
and shape, the ratio of the nucleus to cytoplasm, and information on the organiza-
tion of structures such as glands. Furthermore, it also offers aspects of functional 
data such as blood flow or tissue birefringence. The combination of Raman and 
OCT, particularly recording co-localized three-dimensional information as we have 
described, could lead to a new form of diagnostic or screening tool for cancer stud-
ies. Indeed such a combination in a fiber implementation may be of relevance to 
guide interventional therapy and record responses in a clinical setting. We contend 
this is an area of great future promise for cancer research.
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Chapter 16
Terahertz Spectroscopy and Imaging 
of Brain Tumors

Kirill I. Zaytsev, Irina N. Dolganova, Valery E. Karasik, Vladimir N. Kurlov, 
Igor V. Reshetov, Valery V. Tuchin, Sheyh-Islyam T. Beshplav, 
and Alexander A. Potapov

16.1  A Problem of Intraoperative Diagnosis of Human 
Brain Tumors

Intraoperative diagnosis of human brain tumors remains an important problem of 
medicine, applied physics, and engineering sciences [1]. Among all tumors of the 
brain, gliomas form the most common class of primary tumors and represent about 
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26% of all primary tumors and about 81% of malignant primary tumors [2]. Modern 
paradigms of their treatment rely on multidisciplinary approaches, merging the 
expertise of neurosurgeons, neurooncologists, radiation oncologists, neuropatholo-
gists, and radiologists and bringing the latest advantages in the area of tissue imag-
ing and exposure to a clinical practice. Malignant gliomas, especially glioblastoma 
(or glioma of grade IV according to the World Health Organization (WHO) classi-
fication [3]) have a poor prognosis and a bad patients’ outcome, even when applying 
an aggressive therapy [4, 5]. Among the prognostic factor of glioma treatment, its 
gross-total resection seems to be a crucial one for reduction of the tumor recurrence 
probability and improvement of the patients’ survival [6]. At the same time, gliomas 
usually possess unclear margins, making achievement of their gross-total resection 
challenging, even for a highly experienced surgeon [7].

Nowadays, novel brain imaging modalities are rapidly developed or have been 
already applied in a clinical practice in order to mitigate the challenging problems 
posed by the intraoperative delineation of tumor margins [8, 9]. Among them, the 
intraoperative magnetic resonance imaging (MRI) [10, 11] demonstrates high effi-
ciency, but remains time-consuming and very expensive, since it required adapta-
tion of the neurosurgical workflow for work with high magnetic fields, including the 
use of non-magnetic materials [12–14]. In turn, fluorescence spectroscopy and 
imaging, relying either on 5-aminolevulinic acid (5-ALA)-induced fluorescence of 
protoporphyrin IX (ppIX) [15–17] or on fluorescein sodium [18], are widely 
employed in intraoperative diagnosis of human brain tumors, being rather conve-
nient and inexpensive. They require administration of exogenous markers into the 
body and provide high sensitivity and specificity for high-grade gliomas, while their 
performance for low-grade gliomas is rather poor. Capabilities of such promising 
techniques, as Raman spectroscopy and imaging [19–22], photoacoustic imaging 
[22, 23], multiphoton microscopy, and optical coherence tomography (OCT) [9, 
24–28], are vigorously explored. However, they are still considered as laboratory 
research tools, and it would take a certain time to transfer them to a neurosurgical 
practice. All the aforementioned justify an importance of further development of 
novel instruments for the intraoperative diagnosis of brain tumors.

16.2  Terahertz Biophotonics

During the past decades, terahertz (THz) spectroscopy and imaging have been abun-
dantly developed with a rapid progress in femtosecond laser technologies and with 
an appearance of novel effective approaches for the THz-wave generation and 
detection [29]. THz spectroscopy exploit electromagnetic waves in the frequency 
range of 0.1–3.0  THz, or in the wavelength range of about 3  mm–100 μm (see 
Fig. 16.1). Since the end of the twentieth century, the THz technology has been 
considered as a promising instrument of medical diagnosis [30], [31], including the 
non- invasive, least-invasive, and intraoperative label-free diagnosis of malignances 
of the skin [32–37], mucosa [38, 39], colon [40–42], liver [43], gastric [44, 45], 
breast [46–48], etc. Most recently, a potential of THz instruments in the 
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intraoperative neurodiagnosis has been highlighted with a strong emphasis to dif-
ferentiation between intact (healthy) tissues and tumors of the brain [49]. Before 
proceeding to the in-depth analysis of modern results in THz diagnosis of human 
brain tumors, in this section, some general peculiarities of THz-wave–tissue interac-
tions, as well as main principles of THz pulsed spectroscopy are briefly discussed.

16.2.1  Terahertz-Wave–Tissue Interaction

As shown in Fig. 16.2, dimensions of the structural elements in tissues (such as 
microfibrils, separate cells and their agglomerates, cell organelles, etc.) are usually 
negligibly small at the scale posed by THz wavelengths. On the one side, such small 

Fig. 16.1 THz range of electromagnetic spectrum. Courtesy of K.I. Zaytsev

Fig. 16.2 A scheme illustrating structural inhomogeneities of tissues at the scale posed by THz 
wavelengths, where the dimensions of the considered tissues components are normalized by the 
THz wavelength of λ0 = 300 μm, for convenience. Here, the λ/2 Abbe diffraction limit of the spatial 
resolution is shown by the vertical red line. Courtesy of K.I. Zaytsev
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elements cannot be resolved using conventional THz imaging modalities, exploiting 
the diffraction-limited optical systems. Thus, THz spectroscopy and imaging usu-
ally allow for studying an effective response of tissues, which is spatially averaged 
within the area of THz beam spot [30]. On the other hand, small dimensions of tis-
sue components lead to the Rayleigh regime of THz-wave scattering. Therefore, an 
assumption of homogeneous character of tissues usually takes place, and the effec-
tive medium theory is applied for describing the THz-wave–tissue interactions [30]. 
In this case, electrodynamic properties of tissues at THz frequencies are described 
completely by an effective complex dielectric permittivity

 ε ε ε= −′ ′′i ,  (16.1)

with its real ε′ and imaginary ε″ parts, or by a complex refractive index
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with its real n ≡ n′ and imaginary n″ parts, where c = ×3 108  m/s stands for the speed 
of light in a free space, υ is an electromagnetic wave frequency in [Hz], and α is an 
amplitude absorption coefficient in [cm−1].

Dielectric response of both healthy and pathological tissues (in vivo or ex vivo 
freshly excised/non-dehydrated specimens) does not possess any sharp resonant 
features in the THz range and is primary determined by the content and state (free 
or bound) of water [30]. Similarly to the THz dielectric permittivity of water, the 
THz response of tissues has a relaxation dynamics and could be described by the 
Debye, Cole–Cole, Davidson-Cole, or Havriliak–Negami models [50–55]. All these 
models describe electro-dipole excitation of matter, for which the real part of a 
complex dielectric permittivity monotonically decays with frequency, while the 
imaginary part features a broad absorption band, centered at the inverse relaxation 
time [50, 51]. The double-Debye model (i.e., the one, comprised of the two Debye 
relaxation terms) is the most widely applied one for describing the THz dielectric 
properties of water, biological tissues and liquids [30, 54, 55]
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where ε∞ stands for the dielectric permittivity at infinitely high frequencies (as com-
pared to the considered spectral range); ∆ε1  and ∆ε2  regulate a contribution of the 
Debye kernels to the resultant dielectric permittivity; τ1  and τ 2  are relaxation times 
in [ps], corresponding to the “fast” and “slow” relaxations [30]. The double-Debye 
model forms a conventional approach for parametrizing the THz response of tissues 
using only 5 independent coefficients—ε∞, ∆ε1 , ∆ε2 , τ1 , τ 2 . At the same time, one 
should notice that this model is not physically rigorous, since it provides a fit of the 
experimental data with two broad absorption band, the maxima of which are cen-
tered beyond (or at the edge of) the considered THz spectral range; they are located 
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at the inverse relaxation times υ τ1 1
1 110= − −~  and υ τ2 2

1 110= − ~  THz. In this case, 
the double-Debye model provides an extrapolation of the experimental data. 
Nevertheless, many papers report parameters of the double-Debye model for vari-
ous tissues, relying the data of THz pulsed spectroscopy; for example, see Refs. 
[54–61].

As an evidence of strong impact of water on the THz response of tissues, one 
could refer to a difference between the THz optical properties of freshly excised 
fibrous corrective tissues and adipose tissues of the breast ex vivo [47]. The connec-
tive tissues possess much higher water content, as compared to that in fat cells; thus, 
their THz refractive index and absorption coefficient are much higher, being closer 
to that of water. High water content in tissues leads to strong THz-wave absorption 
and limits the depth of THz-wave penetration into tissues by hundreds, or even tens 
of microns, depending on the tissue type and the electromagnetic wave frequency. 
Therefore, only the reflection-mode measurements are reliable for the THz spec-
troscopy and imaging of both tissues in vivo and freshly excised tissues ex vivo, and 
only superficial properties of tissues could be probed by THz waves [62].

The label-free contrast between healthy and malignant tissues in the THz range 
reportedly originates from difference in water content and structural variation in 
tissues. As a result of abundant vascularity and edema, malignant tissues can con-
tent more water and possess higher THz refractive index and absorption coefficient 
[49, 63, 64]. Among other factors, microscopic variations of tissue properties (varia-
tional tissue microenvironments [65], deteriorative cellular morphology and necrotic 
debris [66], presence of mutative biomolecule [67]) and large-scale fluctuations of 
the volumetric and surface structure of tissues [36, 68] might either form an addi-
tional source of contrast or alter a quality of the detected THz signals, decreasing 
the data reproducibility.

Knowledge of the complex dielectric permittivity (Eq.  16.1) or the complex 
refractive index (Eq. 16.2) allows for complete description of the THz-wave–tissue 
interactions in the framework of classical electrodynamics; particularly, it yields:

• analytical description of the THz-wave propagation in layered media using 
plane-wave approximation along with the Fresnel formulas and the Bouguer–
Lambert–Beer law; this is of crucial importance for spectroscopic applica-
tions [49];

• numerical simulation of the THz–wave interaction with biological objects of a 
complex shape using methods of computational electrodynamics [54, 69, 70] or 
statistical Monte Carlo approaches [68];

• differentiation between healthy and pathological tissues using either absolute 
values of dielectric constants [36, 49] or parameters of the double-Debye models 
of a complex dielectric permittivity, as it was demonstrated in Ref. [60].

Despite the attractiveness of the effective medium theory in the THz biophoton-
ics, tissues might possess structural inhomogeneities, the dimensions of which are 
comparable to the THz wavelengths [69, 70]. For example, recent results of THz 
imaging of tissues using the sub-wavelength-resolution solid immersion 
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microscopy revealed their mesoscale structural elements, such as separate fat cells 
and their agglomerates embedded into connective fibrous tissues of the breast, lac-
tiferous ducts of the breast, muscle fibers of the tongue, etc. [71, 72, 73]. These 
elements might lead to the Mie scattering of THz waves in the tissues [74]. 
Furthermore, the polarization-sensitive THz imaging provide useful information for 
differentiation of healthy and cancerous tissues [35, 41], which cannot be predicted 
by the effective medium theory. It emphasizes the importance of taking into account 
the dispersion, absorption, and scattering properties of the tissues. The novel mod-
els could be constructed relying on the radiation transfer theory [74], which is 
widely applied in visible and infrared optics [75]. However, this demanding prob-
lem of THz biophotonics is still to be addressed.

16.2.2  Terahertz Pulsed Spectroscopy and Imaging

Majority of THz systems for biomedical applications relies on the principles of THz 
pulsed spectroscopy (TPS) and THz pulsed imaging; the latter implies point-by- 
point scanning of the sample surface with a focused beam of the TPS system, acqui-
sition and processing of 3D data set [29, 62]. One of the main reasons for such an 
extensive use of TPS in biophotonics is associated with an ability for simultaneous 
detection of both frequency-dependent amplitude and phase of the THz waveform 
in a broad spectral range as a result of a single measurement. Furthermore, TPS 
yields analysis of a physical response of matter either in time domain (pulse 
response) or in frequency domain (complex dielectric permittivity or complex 
refractive index). The existing component base of TPS is well developed; it yields 
production of portable, handheld and ergonomic devices, capable for operation not 
only in laboratory conditions, but also in a clinical environment [76, 77]. Modern 
measurement procedures and methods for processing the data and solving the 
inverse ill-posed problems in TPS and related imaging modalities are well devel-
oped and yield accurate characterization of tissues [78–82].

TPS implies probing a sample with THz pulses of sub-picosecond duration, 
which feature a broad spectral operation range, typically spanning the frequencies 
between 0.1 and 4.5 THz [29]. This instrument appeared as a result of Auston’s 
research on optoelectronic switching (photoconductivity) and gating in semicon-
ductors, pumped by ultrashort optical laser pulses [83]. Since then, many approaches 
have been proposed for generation and coherent detection of THz pulsed using 
ultrashort optical excitation [29]; nevertheless, the THz photoconductive antennas 
(PCA) still represent the most prevalent type of THz pulsed emitter and detector in 
TPS systems due to simplicity, flexibility, and reliability of their design and techni-
cal characteristics [84]. Particularly, during the past few years, a dramatic enhance-
ment in PCA performance was demonstrated relying on effects of electromagnetic 
field confinement behind plasmonic and dielectric nanostructures incorporated into 
a photoconductive gap [85, 86].

K. I. Zaytsev et al.



557

A number of TPS schemes are now available; but we would demonstrate its basic 
principle in a context of reflection-mode measurements of a tissue using the scheme 
presented in Fig. 16.3. In this system, the laser beam is divided by the beamsplitter 
in pump and probe beams, which proceed to PCA-emitter and PCA-detector of THz 
waves, respectively, with the difference in optical path, obtained by adding a time- 
delay in the probing path. THz detection is implemented by mixing of THz and laser 
pulses, commonly PCA are used for this purpose. The generated photocurrent in 
PCA, proportional to the THz electric field, provides the detected TDS signal. The 
changing temporal delay results in registered temporal waveform of THz response 
from the sample.

The reflection-mode scheme with an oblique THz-beam incidence angle and a 
reference quartz window, atop of which the object of interest is handled, is demon-
strated in Fig. 16.4a [49]. A sample holder can be equipped with the possibility of 
lateral scanning, in order to record a 2D distribution of sample reflectivity, transmit-
tance or dielectric properties. In this case, TDS becomes a powerful imaging tool, 
with significant capabilities in medical imaging [30]. As shown in Fig. 16.4b and c, 
the received THz waveforms, reflected from a sample, are comprised of a sequence 
of pulses, the interference of which leads to appearance of the Fabry–Perot reso-
nances in the Fourier domain. Extraction of the sample optical properties is not a 
straightforward procedure, since one should perform apodization (window filtering) 
of the time-domain waveforms with considering possible multiple THz pulse reflec-
tions in a reference window, the uncertainties of sample thickness, illumination con-
ditions and noises [30]. The mentioned errors and uncertainties reduce accuracy of 

Fig. 16.3 A typical scheme of TPS based on THz-wave generation and detection in PCAs, where 
DM stands for the near-infrared dielectric mirror, GM stands for the THz gold-coated mirror, 
GOAPM stands for THz gold-coated off-axial parabolic mirror. Courtesy of I.N. Dolganova
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measurements and restrict spectral operation range. For the considered geometry of 
measurements (see Figs. 16.3 and 16.4), the procedure of sample optical properties 
reconstruction is described in details in Ref. [49].

A typical spectral operation range corresponds to 0.1–4.5 THz for a common 
TPS system, while the frequency-domain dynamic range is usually 60 dB near the 
maximum of the TPS spectrum (0.5–1.0  THz). Meanwhile, unique TPS setups 

Fig. 16.4 Experimental characterization of biological tissues ex vivo using reflection-mode TPS 
measurements: (a) a unit for reflection-mode measurements based on a pair of GOAPMs and a 
reference quartz window; (b), (c) reference and sample waveforms, represented in Fourier domain 
and time domains, respectively. Here, the reference waveform corresponds to the THz wave reflec-
tion from the empty quartz window, while the sample waveform corresponds to the THz wave 
reflection from the quartz window with a tissue sample (human brain glioma) handled behind. 
Adapted from Ref. [49], published by SPIE under a Creative Commons (CC BY) license
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produce signal above 10 THz and even up to 200 THz, when extremely short laser 
pulses (less than 10 fs) are used for the THz-wave generation in air plasma; but there 
is still a problem of obtaining smooth and stable spectrum over 10 THz [87–89]. At 
the same time, majority of THz measurements of tissues involving TPS are per-
formed in a low-frequency part of the THz range (below 1.5–2.0 THz), due to high 
signal-to-noise ratio and low impact of water vapors along the THz-beam path on 
the measured data.

16.3  Terahertz Spectroscopy and Imaging of Brain Tumors

An initial study of snap-frozen human brain tissues ex vivo using TPS system in 
conjunction with closed-cycle cryostat was performed in [90], where the authors 
demonstrated significant contrast between healthy and diseased tissues, which 
were neuropatologically classified as containing abnormally high number of protein 
plagues, inherent to the Alzheimer’s disease. The contrast between healthy and 
abnormal tissues was observed for all samples taken from three distinct regions of 
cerebral cortex: superior frontal gyrus, inferior frontal gyrus, and cingulate gyrus. 
Since an impact of water on THz dielectric response of tissues was suppresses by 
their freezing [38] and there were no resonant features in the THz absorption coef-
ficients of tissues, the observed contrast was attributed to a collective response of a 
variety of abnormal proteins, that are accumulated in brain tissues with the 
Alzheimer disease. The described research work was followed by [91], where a 
mouse model of the Alzheimer’s disease was studied using THz spectroscopy [92]. 
Particularly, a transmission-mode TPS was applied to measure the optical properties 
of dried tissue sliced ex  vivo, which allows for confirming the contrast between 
normal and diseased tissues of the brain.

Only in 2014, a considerable attention was paid to studying an ability of THz 
technology use in diagnosis of human brain tumors, started with two papers on THz 
spectroscopy of freshly excised and paraffin-embedded models of gliomas from 
mice and rats [66, 93].

16.3.1  Study of Glioma Model in Mice and Rats

Oh et al. [66] applied TPS equipped with a raster-scan imaging unit in order to study 
an orthotopic glioma model from a rat. For performing this model, the 9L/lacZ rat 
glioma cells were implanted into male 9-week-old rats [94], and the tumors were 
allowed to grow for about 3–4 weeks, until it reached about 1 cm3 in size. Unlike a 
common human brain glioma, this model provides a distinct boundary between 
normal and malignant tissues, which makes it possible to visually determine the 
tumor margins in freshly excised brain tissues. All rat brains were excised and 
divided into equal parts with a knife. Then the THz images of the freshly excised 
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whole brain sample were collected by scanning of their surface with the focused 
THz beam. The observed results of the freshly excised ex vivo brain imaging are 
shown in Fig. 16.5 [66]. Here, the THz images were formed by extracting peak-to- 
peak values from the TPS data at each point of the sample surface [66]. One could 
notice that tumor margins in THz images agree with those in MRI and visible data; 
thus, all these methods yield clear determination of the tumor margins. The results 
of this study indicate that THz spectroscopy and imaging offer reliable diagnostic 
tumor images and have a potential to become useful tools to determine the tumor 
margins during the neurosurgery.

Fig. 16.5 A comparison of (a) magnetic resonance images (MRI), (b) white light images (WLI), 
and (c) THz reflection-mode images (THz-RI) of the freshly excised whole rat brain tissues with 
(rows 1–3) and without (row 4) tumors—i.e. an orthotopic glioma model for a rat with a clear 
tumor margins is used. Adapted from Ref. [66] with the permission of OSA
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In order to study an origin of the observed contrast between healthy and malignant 
tissues of the rat brains, aside from water, Oh et al. [66] investigated the fresh brain 
samples dehydrated using a paraffin-embedding technique. The blocks with dehy-
drated tissues were further examined using both THz imaging and the hematoxylin 
and eosin (H&E)-stained histology. The authors observed the difference between the 
paraffin-embedded healthy and pathological tissues, but this difference was several 
time smaller than that observed in studies of freshly excised tissues (see Fig. 16.5); it 
does not allow for clear detection of the tumor margins. Using H&E- stained histology, 
the authors found that cell density near the tumor boundaries was higher than that in 
the tumor center and in the intact tissues, leading to increased THz reflectivity of 
paraffin-embedded tissues near the tumor boundary. Thus, when the effects of water 
on the THz dielectric response of tissues are eliminated, the observed contrast might 
originate from different densities of cells. Furthermore the necrotic debris in the cen-
tral part of glioma was reported to impact the THz response of tissues [66].

A significant contrast between white matter and gray matter was observed in 
THz images of the whole rat brain ex  vivo, which is due to the high content of 
myelin in a white matter [66]. As myelin is mainly formed by lipids and concen-
trates around axons, the white matter features a visible white color and lower THz 
optical constants, as compared to that of gray matter and tumor. Nevertheless, the 
difference in the THz response of white and gray matter does not affect capabilities 
of THz imaging for delineation of the tumor margins [66]. Here, we should notice 
that significant impact of myelin content in brain tissues on their THz dielectric 
response was further investigated in [95], where a potential of THz technology for 
label-free diagnosis of myelin deficit in paraffin-embedded tissues from mice and 
rhesus monkeys was demonstrated experimentally using reflection-mode 
TPS system.

The contrast between paraffin-embedded intact tissues and gliomas was con-
firmed using glioma models from mice [93]. For this aim, the authors used GL261 
gliomas cells line, implanted into male 6-week-old mice. The mice were maintained 
for 20 days in order to let the tumor growth. Then, the whole mice brains were 
excised and embedded in paraffin blocks. The results of THz dielectric spectros-
copy of the paraffin-embedded tissues demonstrate statistical differences between 
the THz response of healthy tissues and gliomas. It allows for selecting the optimal 
spectral bands and features for differentiation between normal tissues and tumors in 
paraffin blocks.

Finally, a potential of the THz reflectometry and imaging in intraoperative neu-
rodiagnosis have been highlighted in several later papers using TPS, along with 
different measurement conditions and glioma types [96, 97]. Yamaguchi et al. [96] 
applied reflection-mode THz dielectric spectroscopy for investigating of the ex vivo 
freshly excised glioma model, in which C6 gliomas cells line were implanted into 
rats. Ji et al. [97] used reflection-mode for THz imaging of ex vivo freshly excised 
and in vivo glioma model, in which human glioblastoma tumorspheres (transfected 
with the enhanced GFP) were implanted into mice. Nevertheless, a comprehensive 
study of intact tissues and gliomas of the human brain was still required in order to 
objectively uncover strengths and weaknesses of THz technology in intraoperative 
diagnosis of gliomas in humans.
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16.3.2  Study of Gliomas of the Human Brain

In Ref. [97], authors expand their studies to human samples and demonstrate results 
of THz reflectometry of ex vivo human brain gliomas of WHO grades II (6 samples), 
III (4 samples), and IV (4 samples). Unfortunately, the images were performed only 
for single frequency 0.5 THz, however, highlighting the potential of THz reflection 
imaging for human brain tissues. Nevertheless, THz dielectric spectroscopy of gli-
oma samples in a broad spectral range could open new perspectives of THz radia-
tion and further studies.

For instance, in Ref. [98], reflection-mode THz dielectric spectroscopy of two 
ex vivo human brain gliomas of WHO grade IV (glioblastoma) was considered. For 
both gliomas, the statistical differences in the THz spectra were observed, but only 
one of them shown the ALA-5 induced ppIX fluorescence during surgery. The more 
detailed study of human brain spectroscopic features was presented in Ref. [49]. In 
this work, the reflection-mode TPS was used to study a set of human brain glioma 
samples ex vivo. The tissue samples were surgically excised, according to the prelimi-
nary medical diagnosis and guided by the ALA-5-induced ppIX fluorescence imag-
ing. These samples were classified by WHO grade; among them: 2, 9, 4, and 11 
gliomas of grade I, II, III, and IV, respectively. In order to fix tissues for the THz 
measurements, they were placed on a reference substrate and covered with a gelatin 
slab; such gelatin embedding allows for preserving tissues from hydration/dehydra-
tion during transportation and THz measurements and, thus, sustains the THz response 
of tissues unaltered for several hours after the surgery, as compared to that of freshly 
excised tissues [99]. Along with the tumor, the samples contained perifocal regions, 
which were comprised of intact and edematous tissues. After the THz measurements, 
the gelatin slabs were removed, the tissue samples were fixed in a formalin and trans-
ferred back to the medical institution, where routine histopathological analysis, 
including H&E-stained histology, was applied in order to confirm the diagnosis.

The TPS setup with a unit for reflection-mode measurements (see Fig. 16.4a) was 
used for the THz dielectric spectroscopy of brain tissues. The experimental setup was 
covered by the plastic housing and purged by the nitrogen gas, in order to decrease 
humidity along the THz beam path and, thus, suppress an impact of water vapors on 
the measured data. The reference quartz window serves as a part of the housing; 
namely, it is in contact with a nitrogen gas from the bottom side, and with an air (or 
gelatin-embedded tissues) from the top side. Examples of reference and sample THz 
waveforms are presented in Fig. 16.4b and c, along with their Fourier spectra, which 
were detected using the above-mentioned system. The details of THz optical con-
stants reconstruction based on these TPS waveforms are described elsewhere [49].

The THz refractive index and absorption coefficients of human brain gliomas of dif-
ferent WHO grades, as well as representative data of the H&E-stained histology are 
shown in Fig. 16.6 [49]. The THz response of perifocal tissues splits into two distinct 
classes, which correspond to the intact and edematous tissues. Therefore, along with the 
THz optical properties of grade I–IV gliomas, we show the response of intact and edem-
atous tissues. In Fig. 16.6, the error bars represent the ±2σ (or 95%) confidential interval 
of measurements, where σ stands for a standard deviation and accounts for fluctuations 
of the optical properties both within each tissue sample and within each tissue class.
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In complete accordance with the results of preliminary studies involving the use 
of glioma models from rats and mice [66, 93, 96, 97], the statistical difference 
between the THz response of intact tissues and gliomas of the human brain is 
observed (Fig. 16.6) [49]. The refractive index of gliomas of all WHO grades is 
higher than that of healthy tissues, which might lead to the label-free contrast of 
several percent as demonstrated in Ref. [97]. In turn, the results of Fig. 16.6 do not 
allow to discriminate between the edematous tissues and tumors, as well as between 
different grades of gliomas using the THz spectroscopy. Significant dispersion of 
the THz optical properties within each class of tissues observed in Fig. 16.6 is usual 
for most of the label-free modalities of spectroscopy and imaging. Finally, in this 
study, white and gray matter were not differentiated in distinct classes (they form a 
single class of intact tissues); therefore, it might be a reason of high dispersion in the 
response of intact tissues.

Thus, an ability for using the THz spectroscopy and imaging in diagnosis of 
human brain gliomas of different WHO grades has been revealed in Ref. [49]. This 
confirmed a potential of THz technology in the intraoperative diagnosis of human 
brain gliomas.

16.3.3  Study of Meningiomas of the Human Brain

Although most research papers were dedicated to the measurements of glioma mod-
els from mice and rats, or human brain gliomas, the THz technologies might have a 
potential in diagnosis of other types of primary and secondary tumors of the human 
brain. For example, in Ref. [98], an ability for differentiation between human brain 
meningioma of WHO grade I and intact tissues of the brain has been demonstrated. 

Fig. 16.6 Refractive index n, amplitude absorption coefficient α, and H&E-stained histology of 
gelatin-embedded human brain gliomas of different WHO grades ex vivo: (a)–(c) grade I; (d)–(f) 
grade II; (g)–(i) grade III; and (j)–(l) grade IV. The THz dielectric response of gliomas is compared 
to that of intact (healthy) and edematous tissues. The error bars represent the 95% confidential 
interval of measurements. Adapted from Ref. [49], published by SPIE under a Creative Commons 
(CC BY) license
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In Fig. 16.7, we present the THz refractive index, absorption coefficient and H&E- 
stained histology of gelatin-embedded grade I human brain meningioma ex vivo, as 
compared to that of intact tissues. However, an attractiveness of THz technology in 
diagnosis of other types of human brain tumors should be further confirmed, since 
it would take significant amount of research and engineering efforts to collect the 
THz optical properties of tumors, as well as to analyze systematically an ability for 
their intraoperative diagnosis using THz spectroscopy and imaging.

16.3.4  Capabilities of Multimodal Diagnosis of Brain Tumors

Similarly to other instruments of label-free diagnosis of malignancies, a significant 
variability of measured data is inherent to THz spectroscopy and imaging [30], 
which might lead to the low sensitivity and specificity of THz diagnosis. A prospec-
tive way for improving the performance of THz diagnosis, while sustaining its non-
invasive character, might be associated with combination of several modalities of 
label-free tissue imaging. As an example, a synergetic effect polarization- sensitive 
imaging in THz and optical domains has been demonstrated in Ref. [44]. A beauti-
ful illustration of multimodal imaging of glioma models has been demonstrated in 
Fig. 16.8 [97], where the performance of preoperative MRI, WLI, GFP, H&E, OCT, 
THz, and 5-ALA-induced ppIX fluorescence imaging modalities are compared 
using an equal set of samples—the ex vivo freshly excised glioma models, based on 
implantation of human glioblastoma tumor spheres (transfected with the enhanced 
GFP) into mice. By combining different physical effects of electromagnetic wave–
tissues interaction, standing behind the considered imaging modalities, one could 
achieve an improved performance of intraoperative diagnosis of brain tumors. 

Fig. 16.7 THz dielectric spectroscopy of gelatin-embedded human brain meningioma, WHO 
grade I: (a) refractive index n, (b) absorption coefficient α, (c) H&E-stained histology. Courtesy of 
K.I. Zaytsev
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Indeed, such multimodal imaging of tumors represents a prospective direction for 
further research.

16.4  Pilot Terahertz Measurements of Traumatic 
Brain Injuries

Besides application of THz imaging and spectroscopy for investigation and diagno-
sis of brain tumors, the non-neoplastic diseases, caused by traumatic brain injuries 
(TBI) [100] and often accompanied by cerebral edema and pericontusional penum-
bra, also demonstrate specific features in THz range [101, 102].

Recent research with rat models demonstrates possibility of finding injury area 
by means of THz spectroscopy and continuous-wave imaging [101]. In these pilot 
experiments, four cases were considered: normal brain and mild, moderate, and 
severe TBI tissue samples. TBIs were obtained after opening a scalp of previously 
anesthetized and shaved rats, without laceration of the dura, by dropping a 30-g 
stainless steel rod on the dura from a certain height, i.e. 15, 25, 35 cm in cases of 

Fig. 16.8 Differentiation between healthy brain tissues and glioma model from 4 samples of 
whole mouse brain using various imaging modalities: (a) preoperative magnetic resonance imag-
ing (MRI), (b) white light imaging (WLI) of the excised brain; (c) green-fluorescent protein imag-
ing (GFP); (d) hematoxylin and eosin-stained histology (H&E); (e) optical coherence tomography 
(OCT); (f) THz reflection-mode images (THz-RI); (g) 5-ALA-induced protoporphyrin IX fluores-
cence imaging (ppIX). Adapted from Ref. [97], published by Springer Nature under a Creative 
Commons (CC BY) license
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making mild, moderate, and severe TBI, respectively. A continuous-wave THz 
imaging (at the frequency of 2.52 THz) of 40-μm thick brain tissue slices covered 
by oleic acid in order to prevent their dehydration demonstrate significant differ-
ences between averaged transmittance of normal and injured samples (see Fig. 16.9): 
23, 20, 19% for normal, mild, moderate, and severe TBI, respectively. Significantly, 
that these results are in good correlation with increased water content of samples 
from normal to severe TBIs [101]. Thus, water concentration, which is a well-
known label of tissue malignancies, indicates the TBI as well. This should be care-
fully accounted and kept in mind, since traumatic conditions and presence of 
edematous regions of brain tissue could possibly yield interpretation errors in THz 
spectroscopic measurements and imaging of tumor margins.

Fig. 16.9 A data of (a) magnetic resonance imaging (MRI), (b) white light imaging (WLI), and 
(c) THz reflection-mode images of freshly excised brain tissues without (row 1) and with (rows 
2–4) different degrees of TBI  . Adapted from Ref. [101], published by SPIE under a Creative 
Commons (CC BY) license
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Along with water content, structural changes in injured tissues also impact their 
THz response, as it was demonstrated by spectroscopic measurements of dehy-
drated paraffin-embedded brain tissue slices [101]. Increasing in the severity of 
injury possesses the increasing in averaged THz absorption coefficient in a wide 
spectral range. The authors suggested that the possible explanation is the cell den-
sity decreasing with increasing severity, which was approved by H&E-stained 
microscopy of studied samples. Nevertheless, the exact origin of THz spectral dif-
ferences between normal and various types of TBI needs further exploration.

To use THz imaging for distinguish between different degrees of TBI, machine 
learning approach can be applied. Different algorithms of classification were com-
pared: support vector machine, k-nearest neighbor, random forest classifiers, and 
specific feature of transmittance distribution in spatial domain and statistical distri-
bution features in normalized gray histogram [102]. Though random forest provided 
better accuracy in [102], the optimal algorithm remains to be established.

THz imaging of TBI, described in [101], suffers from low spatial resolution, 
which is clear from comparison of MRI and THz imaging of TBI margins. The latter 
approach provides insufficiently larger detected size of injury. The promising tech-
niques, such as THz solid immersion microscopy [72, 74], could probably solve 
such a problem.

16.5  Conclusions

In this chapter, we considered recent research results, highlighting a prospect of 
THz technology in the intraoperative diagnosis of brain tumors in label-free detec-
tion of tumor margins during surgery in order to ensure its gross-total resection. 
Despite the attractiveness of THz technology for solving this demanding and 
socially important problem, there are still a number of factors, which restrain trans-
fer of THz spectroscopy and imaging from laboratory environment to a clinical 
practice. Particularly, significant research and engineering efforts are required for 
development  of rather low-cost, ergonomic, fast and effective THz instruments, 
which might be integrated into the modern neurosurgical workflows and existing 
methods of the intraoperative neurodiagnosis or express-histology of excised tis-
sues. Nevertheless, delineation of brain tumor margins during surgery remains very 
important task, which gives hope that all above-mentioned challenging problems of 
THz diagnosis would be addressed in the nearest future.
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