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Abstract. Executing real-time tasks on dynamically reconfigurable
FPGAs requires us to solve the challenges of scheduling and placement.
In the past, many approaches have been presented to address these chal-
lenges. Still, most of them rely on idealized assumptions about the recon-
figurability of FPGAs and the capabilities of commercial tool flows. In
our work, we aim at solving these problems leveraging a practically use-
ful 2D slot-based FPGA area model. We present optimal approaches for
reconfigurable slot creation, hardware task assignment, and placement
creation. We quantitatively compare optimal and heuristics algorithms
through simulation experiments and show that the heuristics are rather
close to the optimal techniques in terms of solution quality, in particular
for reconfigurable slot creation and hardware task assignment. Further,
we also derive an indication for the amount of fragmentation of the FPGA
surface that is inherent to our 2D area model.

1 Introduction

The FPGA utilization can be maximized if the hardware tasks can be arranged
such that there is no simultaneous temporal and geometrical overlap between
them. The resulting scheduling and floorplanning problems for two-dimensional
resources are NP-hard [7,11]. There is substantial earlier work that deals with
the interdependent problems of task scheduling and placement on FPGAs. These
works differ in the characteristics of the task sets, i.e., whether tasks have dead-
lines or not, the optimization goals, whether they deal with off-line or on-line
problems, and, most importantly, the area model for the FPGA surface. Many of
the presented techniques use an area model with free placement where tasks can
be placed rather flexibly on the FPGA fabric. While this model has received a lot
of attention in the past, aspects such as reconfiguration schemes of commercial
FPGAs, capabilities of commercial tool flows, and the infrastructure needed to
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connect hardware tasks to the CPU, memory, and I/O, constitute major hurdles
for practical realization. In VLSI design, there are works on optimal bin packing
and metaheuristics for floorplanning. Still, only a few of these consider prob-
lem characteristics important for our work, such as preplaced modules [7,11]
and “soft modules” that are specified only by their area instead of a geometric
layout.

In previous work [4], we have introduced a tool flow for task scheduling and
floorplanning based on a special 2D slot-based reconfiguration model, where
reconfigurable slots comprise several micro slots. Micro slots constitute rectan-
gular reconfigurable regions with a complete set of resource types and their cre-
ation and partial reconfiguration is supported by commercial tool flows. Under
this area model, we have proposed heuristics for scheduling and placement.

In this paper, we present novel optimal slot creation and task assignment as
well as layout generation methods for the 2D slot model. Based on the insight that
slot-based reconfigurable task scheduling becomes a problem similar to mono
and multi-processor scheduling, and that slot placement becomes very similar
to the VLSI’s floorplanning problem, we adopt corresponding approaches and
develop optimal slot creation and task assignment (SCTA) as well as layout
generation (LG) algorithms. We compare these optimal techniques with our
previous heuristics.

The remainder of the paper is organized as follows: In Sect. 2, we discuss
related work about task scheduling and placement on FPGAs. In Sect. 3 we
summarize our previous special 2D slot-based reconfiguration model and the
proposed heuristics for slot creation and task assignment as well as for lay-
out generation. The mathematical modeling for the novel optimal and heuris-
tic approaches is then presented in Sect. 4. In Sect. 5 experimental results are
detailed. Finally, Sect. 6 is devoted to the conclusions.

2 Related Work

The majority of related projects described hardware tasks as rectangular-shaped
regions of reconfigurable logic and used an area model that can be categorized
into 1D vs. 2D and free placement vs. slot-based placement. In the 1D area model,
tasks can be allocated along one dimension only. This approach simplifies the
placement problem and matches the partial reconfiguration abilities of earlier
Xilinx devices. In the 2D area model, the rectangular tasks have to be allocated
on the rectangular-shaped device. A free placement would allow allocating such
a task on any feasible position on the device. In contrast, the slot-based model
foresees a pre-partitioning of the device into rectangular regions that can accom-
modate tasks. The slot-based models allow for an easier, practical realization.
In the following, we present selected related work in some of the areas related
to task scheduling and placement.

In [8], the authors formulate an online real-time scheduling problem and
present two heuristics for placing aperiodic hardware tasks. These heuristics are
denoted as the horizon and stuffing techniques, considering both 1D and 2D area
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models Improved placement strategies that lead to reduced fragmentation and
lower total execution times were presented in, e.g., [12]. Along the same line,
[2] showed a level look-ahead approach with a non-preemptive EDF that delays
the allocation of hardware tasks to reduce the fragmentation. In [3], the authors
investigated two preemptive scheduling algorithms for periodic real-time tasks:
EDF Next Fit (EDF-NF) and Merge-Server Distributed Load (MSDL). In [5]
proposed the Finishing-Aware EDF (FAEDF) algorithm, which is EDF aug-
mented with a look-ahead capability to locate future releases of adjacent areas.
Another line of research dealt with the task placement or area allocation problem,
respectively, and focused on online placement of relocatable, rectangular-shaped
tasks that can be placed anywhere on the 2D surface of an FPGA device. The
first work establishing the problem of online placement in the 2D area model
was [1], where the authors proposed a fast online placement algorithm based
on handling empty spaces. Later, [10] presented another placement method that
relies on a partitioning of the reconfigurable resource and uses a hash matrix data
structure to maintain the free space. While the works mentioned above consider
homogeneous FPGA architectures, there are also algorithms for 2D placement
on heterogeneous devices, e.g., [6]. The challenge of hardware task placement can
also be seen from the perspective of d-dimensional orthogonal bin packing [7] and
floorplanning, which is the first stage in physical VLSI design in the Electronic
Design Automation (EDA) [11].

3 The Area Model

This section describes the area model used by the slot creation and task assign-
ment (SCTA) as well as layout generation (LG) algorithms. The area model and
the heuristics are results of our previous work, presented in [4], but require a
summary for the introduction and comparison to optimal SCTA and LG algo-
rithms.

The area model of this paper bases on two ideas: First, an FPGA is subdi-
vided into rectangular reconfigurable regions, so-called micro-slots. The parti-
tion is done in such a way that all micro-slots have the same type and amount
of resources. This simplifies the mapping of hardware tasks to hardware. Addi-
tionally, the borders of the micro-slots follow the boundaries of the partially
reconfigurable frames imposed by a vendor’s partial reconfiguration tool flow.
This makes the area model practically useful. Second, a task executed on an
FPGA is mapped to one or multiple micro-slots. Micro-slots allocated to serve
a task are forming a so-called slot, which has to be a consolidated and a rectan-
gular region on an FPGA. The size of a micro-slot is selected sufficiently large
to be able to serve a small task. At the same time, the micro-slot size is chosen
as small as possible to minimize fragmentation. Figure 1 shows for the Xilinx
Zynq 7020, 7030, and 7045 devices the subdivision of their area. Each micro-slot
contains 600 slices, providing in total 2400 LUTs, 4800 registers, 180 kB RAM,
and 20 DSP blocks.

Once the area model is defined, the algorithmic challenges of hardware task
scheduling and slot allocation can be presented in detail. Assuming a list of
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Fig. 1. Partitioning into micro slots: The Xilinx Zynq 7010 (a), the Xilinx Zynq 7020
(b) and the Xilinx Zynq 7045 (c) devices.

periodic and independent hardware tasks is given as Γ = {τ1, τ2, . . . , τn}, where
for each task τi the amount of required micro slots ki, execution time ci, and
period pi are given as τi = (ki, ci, pi). To justify hardware task reconfiguration,
the total amount of required resources

∑
i ki should be larger than the number

of micro slots available on the FPGA. The first question is: Given that every
hardware task can be hypothetically instantiated and released at any point in
time, is there a schedule guaranteeing all tasks meeting their deadlines and, at
the same time, respecting the upper bound of available micro slots? The second
question is: Given a valid schedule of hardware tasks, can the hardware tasks be
mapped to slots, i.e., non-overlapping rectangular regions of micro slots?

The procedure of hardware task assignment and layout generation starts with
a set of periodic real-time tasks that have been synthesized to an FPGA device
family such as the Xilinx Zynq. The procedure runs in two phases, with the first
one creating the reconfigurable slots in a way that each task with all its instances
is accommodated in exactly one such slot and all tasks assigned to one slot are
schedulable. The result is a list of reconfigurable slots, characterized only by their
sizes. In a second phase, a feasible layout is generated for a given FPGA device,
i.e., a layout that provides slots with widths and heights. Heuristic algorithms
for both phases are presented in the following sections.

4 Optimal Techniques for Slot and Layout Creation

In this section, we detail the mathematical modeling of the two problems (i)
reconfigurable slot creation and task assignment and (ii) layout generation in
the form of Quadratic Constraint Programs (QCP). The QCPs can then be
solved to optimality.
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4.1 Optimal Slot Creation and Task Assignment Approach

We start the formalization of the QCP with n · m binary decision variables xij

that indicate, whether the i’th task is mapped into the j’th slot Sj with n as
the number of tasks and m as the number of slots:

xij =

{
1 if τi ∈ Sj ,

0 otherwise.
(1)

As a first constraint, we have to enforce that a task is mapped to exactly one
slot:

∀i ∈ {1, ...,m} :
m∑

j=1

xij = 1. (2)

For the next modeling steps, we need an upper bound for the number of required
slots. We can determine such a bound based on the time utilization factors of
the tasks, defined as defined as ui = ci

pi
, in the following way:

m =
⌈ n∑

i

ui

⌉

+ 1. (3)

Let Aj be the area of the largest task assigned to the slot Sj . Then the
following constraints on the areas of the reconfigurable slots must hold:

∀j ∈ {1, ...,m}, ∀i ∈ {1, ..., n} : Aj ≥ xi,j · ki. (4)

The objective is to minimize the total area required to map all reconfigurable
slots. Therefore, the cost function of our QCP accumulates the total slot area,
and the objective is to minimize this expression:

min
m∑

j=1

Aj . (5)

4.2 Optimal Layout Generation Approach

The intuitive challenge of packing boxes into a container is computationally sur-
prisingly complex. The search space becomes even larger when allowing boxes to
be “soft”, i.e., be configured only by the area and an interval for the aspect ratio.
While in Sect. 2, we have given an overview of related work on two-dimensional
box packing, our method presented here is inspired by an approach developed
for arranging modules on a chip die [9]. There, the authors have formalized the
task of placing blocks within a rectangular chip area as a mixed ILP [9]. We have
adopted this model with a few modifications. In particular, we have introduced
soft blocks and preplaced blocks to the model. Soft blocks are only specified
by their area requirement, which is exactly what we find when trying to place
the reconfigurable slots. Preplaced blocks are important, since we can use them
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to mask FPGA regions that do not contain any micro slots, e.g., regions that
contain the processing system of an FPGA. The resulting model can, again, be
cast as a QCP in the following way:

The geometrical position of a slot Si is specified by its lower-left corner (xi, yi)
and the width and height (wi, hi). Slots may not overlap and may not be placed
outside the chip area with width W and height H. The first constraint can be
enforced by introducing two binary variables pij and qij for each slot, ensuring
that exactly one of the following inequalities is sharp, i.e., holds:

xi + wi ≤ xj + W (pij + qij), slot i to the left of slot j
xi − wj ≥ xj − W (1 − pij + qij), slot i to the right of slot j
yi + hi ≤ yj + H(1 + pij − qij), slot i below slot j
yi − hj ≥ xj − H(2 − pij − qij), slot i above slot j

(6)

Placing boxes outside the area of an FPGA is avoided by:

xi + wi ≤ W,

yi + hi ≤ H.
(7)

The objective of the QCP is to minimize the area xy of the rectangle enclosing
all slots. However, to avoid a quadratic objective function, we minimize the rect-
angle’s perimeter 2x+ 2y, which implicitly minimizes the area. The previously
defined constraints are therefore sharpened to:

xi + wi ≤ x,

yi + hi ≤ y.
(8)

For slots specified only by their area Ai, a quadratic constraint ensures that the
width wi and height hi of a slot are sufficiently large:

wi · hi ≥ Ai ∀i ∈ {1, ..., n} (9)

5 Evaluation

When comparing the optimal approaches presented in the previous section with
the heuristics developped in [4], two main questions arise: By what margin are
the heuristics behind the optimal approaches, and what are the computation
times of the optimal algorithms? To answer these questions, we have designed
two experiments. In the first experiment, the slot and layout creation algorithms
are compared using task sets with increasing computational and resource require-
ments regarding generated slot and floorplan sizes as well as the computational
times. In the second experiment, the algorithms are tested on how many of the
task sets with FPGA time area product utilization factors between 0.1 and 1.0
can be successfully placed.

All optimal algorithms and the heuristic layout generator have been devel-
oped in C++ and use the Gurobi solver v.8.1.1. The slot generation and task
assignment heuristic has been developed in Python.
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(a) (b)

Fig. 2. Simulation results: (a) required number of micro slots and (b) the area of the
floorplan depending on the application load of task sets given by the optimal and
heuristic solutions. Each line point is an overage over 50 task sets.

5.1 Comparing Slot Set and Layout Sizes

To test the algorithms, we have generated 1000 task sets with the cumulated
task set computation times in the range of 1 to 30 time units, resource require-
ments in the range of 1 to 6 micro slots, and time utilization factors in the range
0.10 to 0.50. Figure 2a shows for the optimal and heuristic SCTA algorithms the
number of computed micro slots depending on the application load of a task set.
The application load of a task set Γ is defined as

∑
τi∈Γ

ci
pi

· ki, which repre-
sents the area-time product consumed by all tasks. The first observation is that
the heuristic approach is very close to the optimal algorithm on average. Only
for task sets with an accumulated application load beyond 7, a small difference
starts to appear.

The computation times of optimal and heuristic SCTA algorithms differ,
however, significantly. While the heuristic finishes within a few milliseconds,
the QCP solver of the optimal approach often needs days on a large multi-core
machine with a lot of main memory to be able to compute a result. This may
be acceptable if the slot configuration is calculated once, at the design time of a
system. Increasing the sizes of task sets further above 30 time units would render
the optimal approach rather impractical.

The discrepancies between the optimal and heuristic LG algorithms are more
prominent in Fig. 2b. Starting with an application load of 7, slots can be placed
more compact by the optimal algorithm. The difference grows up to 5 slots
for a time area utilization factor of 15 to 17.5. The results indicate that the
näıve greedy (construction) heuristic approach we borrowed from strip-based
bin packing has a lot of potential for improvement. We envision replacing the
algorithm by a more computationally complex improvement heuristic, such as
Simulated Annealing and Genetic Algorithms, to achieve better asymptotical
results.
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Fig. 3. Simulation results: Heights of the layout (floor plan) for different Zynq devices
computed by optimal and heuristic approaches.

The computation time difference is significant but not as dramatic as for the
SCTA algorithms. The heuristic LG approach can compute results within a few
milliseconds, while the optimal algorithm takes up to a quarter of an hour on a
large multi-core machine for a single slot set.

5.2 The Maximum Utilization Experiments

The goal of this experiment is to figure out to what extent the area utilization
factor of an FPGA can be increased before the LG algorithms stop producing
valid layouts. We would also like to understand better how pronounced the gap
between the LG algorithms shown in Fig. 2b actually is. To this end, we have
created slot sets with area utilization factors ranging from 0.1 to 1.0 with a step
size of 0.1. Each slot set contains a series of slot areas randomly generated with
respect to the area utilization. As target FPGAs, we have selected the Xilinx
Zynq 7010, 7020, 7030, and 7045 devices. By fixing the FPGA’s widths, we let
the LG algorithms minimize the height of the surrounding box around the placed
slots. Figure 3 shows boxplots for the achieved layout heights. The red lines in
the figure indicate the maximal capacity, i.e., the height of the corresponding
Zynq device. Hence, slot sets with a layout height below the red line can be
executed on the according FPGA.

The first observation is that the optimal LG approach is very successful in
mapping 75%, 87.5%, 87.5%, and 87.5% of the task sets to the target FPGAs.
This indicates that the fragmentation inherent to the area model, which we
accept in favor of efficient algorithmic task scheduling and slot mapping, lies
around 25% for smaller task sets and reduces when FPGAs became larger. The
heuristic LG lags behind, as already seen in the previous experiment. Only 50%
to 62.5% of the task sets can be mapped. Compared to the optimal LG approach,
25%, 37.5%, 37.5%, and 25% fewer tasks can be mapped to the chosen FPGAs.
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6 Conclusion

In this paper, we have presented the mathematical modeling of reconfigurable
slot creation, including task assignment, and layout generation as QCPs. This
allows us to solve these problems to optimality, where in previous work, we
had developed and presented heuristics. We then have quantitatively compared
the optimal approaches with the heuristics using a library of different randomly
generated real-time task sets. We could show that the heuristics generally com-
pute very good results. The results produced by the heuristic for reconfigurable
slot creation, including task assignment, are very close to optimal; the results
for the heuristic layout creation lag a bit behind. A further result is that the
slot-based area model chosen in our approach adds roughly 25% fragmentation,
which, however, reduces with larger task sets. The drawback of the optimal slot
creation, task assignment, and layout generation approaches is their exhaustive
computation times. The heuristic methods compute their outputs within a few
milliseconds. While the optimal approaches are highly useful to evaluate the
performance of our heuristics, applying them for larger tasks set is impracti-
cal. In future work, we aim at improving the heuristic for layout generation by
taking inspiration from known floorplanning techniques in the electronic design
automation domain.
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