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Abstract. To ease developers work in an industry where FPGA usage
is constantly growing, we propose an alternative methodology for archi-
tecture design. Targeting FPGA boards, we aim at comparing imple-
mentations on multiple criteria. We implement it as a tool flow based
on Chisel, taking advantage of high level functionalities to ease circuit
design, evolution and reutilization, improving designers productivity.

We target a Xilinx VC709 board and propose a case study on General
Matrix Multiply implementation using this flow, which demonstrates its
usability with performances comparable to the state of the art, as well
as the genericity one can benefit from when designing an application-
specific accelerator. We show that we were able to generate, simulate and
synthesize 80 different architectures in less than 24 h, allowing different
trade-offs to be quickly and easily studied, from the most performant to
the less costly, to easily comply with integration constraints.

Keywords: Chisel · FPGA · GEMM · Methodology

1 Introduction

As FPGA usage for application acceleration increases in the industry, notably
in the domain of Cloud computing [3,7], RTL based design methodology - i.e.
the standard methodology in industry - can be questioned on criteria such as
efficiency, reusability, or accessibility.

The last decade has witnessed the appearance of new technologies easing
hardware development, with higher levels of abstraction. The most known of
those are High Level Synthesis, which goal is to bring the power of dedicated
hardware acceleration to hardware-agnostic software developers. Nevertheless,
HLS still has to cope with some flaws, including fine tuning on the code to infer
efficient hardware, as well as lack of control on the generated hardware.

On the other hand, more hardware aware initiatives have appeared in the
scientific community, like Chisel [2]. Chisel (Constructing Hardware In a Scala
Embedded Language) is an open source Scala based language dedicated to hard-
ware generation, with high level programming functionalities, and an ever grow-
ing community. It can be used to generate Verilog code, insuring compatibility
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with the standard flow, and ease design reutilisation thanks to the software con-
structs it embeds.

Google used Chisel for the design of their Edge TPU [1], and two RISC-V
implementations have been proposed - Rocket Chip and BOOM - showing
that the initiative can be integrated in both industrial and academic worlds.
Works like [8] showed that Chisel can be used to explore different implemen-
tations of a circuit, here designed for BLAS (Basic Linear Algebra Subroutines)
dot product acceleration.

BLAS introduces a set of linear algebra operations that can be used to eval-
uate implementation performances on this kind of applications [5]. In particular,
it includes the General Matrix Multiply (GEMM) algorithm, a highly indicative
application for all algebra computations [9], which has been deployed to various
platforms before, including FPGA [4] and GPU [6]. GEMM is usually imple-
mented with variations on the type and length of elements used, SGEMM and
DGEMM respectively representing simple and double precision floating points,
and other implementations targeting fixed point or integer representations.

This paper introduces a methodology for designing, testing and evaluating
an application using Chisel, demonstrating its usage on a GEMM case study.
Through this usecase, we show that our methodology allows to deeply control
the generated hardware, producing accelerators that are not only comparable
to the state of the art, but behave as they are designed to. Resource usage
can be fully explained by targeted architecture, as no hardware inference has
to be made by the compile pass. On the other hand, this flow allows to easily
explore multiple architectures, studying the influence of application and target
parameters on the produced designs. It enables changing the type and width
of the operands, the capacities of communication or even the dimension of the
applicative problem. Section 2 introduces the aim and steps of this methodology,
while Sect. 3 demonstrates its usage on a GEMM usecase. Section 4 presents the
results of this usecase, as well as the functionalities of our tool flow, and Sect. 5
discusses the contribution of our work.

2 High Level Methodology

To efficiently implement an application, one must take into account the appli-
cation temporal behavior, as well as the environment target, in order to take
advantage of the available resources. For example, targeting a FPGA requires the
developer to consider the different kind of memory and computational resources
embedded, the communication links, the reachable clock frequency, and other
factors that will impact the choices of implementations.

On the other hand, to maximize the reusability of the developed design,
you need to think about genericity before implementation, so generated designs
can be adapted to new implementation constraints if needed, including target
change.

This section describes the chosen technology for our methodology, as well as
its steps, from application and target specificities to implementation.
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2.1 High Level Description

To improve productivity when it comes to hardware development, developers
must be able to define architectures in a generic way, to be able to generate dif-
ferent implementations by varying application specific and non-specific parame-
ters (e.g. I/O size, element type, ...). Such generic implementation would allow to
explore different trade-offs, and be able to suggest the most efficient architecture,
the most performant or the less costly, for example.

To do so, we choose to use Chisel in our architecture generator flow, since
the language offers higher level generic features, compared to the ones proposed
by standard RTL languages (such as Verilog, SystemVerilog or VHDL).

Replacing RTL. Although Chisel remains a RTL language, we identified three
main features of it that can ease the development of such generator, compared
to standard RTL languages such as VHDL or Verilog.

Table 1 compares Chisel and standard RTL features when it comes to
parametrized design generation. We can notice that the third feature - high
level generation - is also available in both Verilog and VHDL languages, but
that the two other features require external tools and complex constructs to be
included in these languages.

Table 1. Feature comparison between Chisel and standard RTL languages for design
generation

Chisel programming
feature

RTL equivalent (Verilog and/or VHDL)

Type genericity Black boxing type specific operators + string replacement in
RTL code (i.e. using sed) N.B. generic can be used for width
genericity only

Procedural
programming

Multiple version of the same code to change functionalities
and/or behavior

High level
generation

for or generate loops if statements

HLS vs Chisel. Choosing Chisel over standard RTL languages for design
implementation can thus be motivated by a need for higher abstraction level
when it comes to hardware development.

However, as stated in introduction, High Level Synthesis technology aims
at easing accelerators development by synthesizing algorithmic description to
hardware circuit, meaning that it is a good candidate for increasing developers
productivity, as well as easing design reusability. Yet, HLS requires, by design,
inference from the compilation tool to generate functioning circuits. This means
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that one can not control easily the hardware generated, which allows software
or application developers to use it with no hardware knowledge, but also means
that experienced hardware developers can not directly control the generation
flow, and can only try to tune the code and the tool to orientate the compilation
toward an acceptable architecture.

Zhao et al. [11] state that HLS generated circuits can be compared to RTL
written ones, but only with hard code discipline and fine pragma tuning. It can
be complex, and might need to be repeated each time you change the generation
constraints, meaning that evolving your design can be time consuming.

Since we aim at reusing code and generating multiple accelerators with dif-
ferent constraints, we chose to use the open-source, highly promising technology
of Chisel.

2.2 From Application to Architecture

Using a language like Chisel, we propose a more generic development method-
ology, relying on hardware knowledge about the chosen target family (e.g. does
it propose external memory, which kind of computing units are available, ...),
and an architectural study of the application. This methodology does not require
specific adjustment of code for a particular target board, but rather a generic
design for a class of target, making it more target-agnostic.

Fig. 1. Proposed methodology for design development. Dashed rectangles presents an
example of application to the GEMM usecase.

Figure 1 presents this methodology. As can be observed, we consider three
entry points when implementing an application to dedicated hardware: obviously,
the target and the application itself, but also the target class, which is
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defined by generic characteristics we aim at using for this specific application
(e.g. memory type and capacity, available operators, communication links, ...).

To use this methodology, one has to distinguish two main steps: implementing
a generic design of the application using Chisel, and instantiating this design
with parameter variations for a particular target. Doing this, the generic design
- that uses some particular constructs, like embedded memory or DSP units -
can be used to implement the application on various boards which includes those
constructs. The methodology needs 3 main manual steps:

– Analysis of both application and target class, to define the parameters used
for circuit parametrization

– Implementation of a generic architecture using Chisel
– Analysis of the target board, to define the parameter sets used for architecture

instantiation, with respect to the target characteristics (e.g. the band width,
the problem dimension, ...)

Elaboration and logic synthesis steps are done automatically, for each parameter
set defined in this third step.

3 Methodology Usecase

In order to demonstrate both usability and advantages of the proposed method-
ology, we defined and implemented a generic GEMM architecture. It illustrates
how preliminary reflexions on application and target class - communication
model, available memory and computing units, temporal behavior, ... - can,
with the help of Chisel, improve both productivity and code reusability with
generic designs.

GEMM. The General Matrix Multiply (GEMM) algorithm is a generalization
of the matrix product algorithm. Let A, B and C be square matrices of dimension
n × n (Mn), and (α, β) ∈ NNN

2. GEMM is defined as the following f function:

f : NNN ×NNN × Mn × Mn × Mn → Mn

(α, β,A,B,C) �→ α · A × B + β · C
(1)

Target Characteristics. For this implementation, we assume that the devel-
oper is targeting Xilinx FPGA technology. More precisely, this means that the
developed design can take advantage of embedded operators for multiplication
(DSP block) and only embedded memory (Block RAMs).

Application Study. GEMM computation complexity is O(n3) while its com-
munication complexity is only O(n2). Since, in a generic context, matrices need
to be sent to the design anyway, we can assume that O(n2) - i.e. the communi-
cation complexity - is a temporal complexity bound.
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If one wants to reach this bound, it means that the implemented design
needs to be able to compute matrix product in a temporal complexity of n2.
This defines the architecture parallelism level, as it requires to compute n scalar
products (

∑n
k=0 ai,k × bk,j for j ∈ [[0;n − 1]]) in parallel to comply with it.

Figure 2 introduces the targeted temporal behavior for the implementation.
It has been defined with respect to software considerations, as matrices are not
interleaved nor transformed, except for B which has to be transposed for by-
column access. Matrices are sent by blocks of size b (as defined in Sect. 3).

As one can observe on the Fig. 2, the input bus utilization is almost optimal
(i.e. the input bus is almost used for the whole computation time), as results
can be computed on-the-fly while A matrix is being streamed. This way, we can
ensure that the induced design will be communication efficient.

ready

input α β C Bt A

valid

output XXX result

Δc

Fig. 2. Targeted chronogram for GEMM efficient implementation (Eq. 1)

Application-Specific Parameters. With such temporal behavior, we can
compute the maximum throughput of a design implementing it, as a function of

– b the input (or output) bandwidth (in bits/cycle)
– f the clock frequency (in Hz)
– e the matrix element size (in bits)
– n the matrix dimension

We assume that a GEMM kernel performs ρ = 2 × n3 operations [10].
Let Δc be the number of cycles needed to compute the result of the GEMM

algorithm - i.e. the delta cycle between sending α coefficient and receiving the
last bit of the result matrix. We can state that Δc ≥ 3 × n2 × b

e , b
e being the

number of elements sent per cycle, as three matrices must be sent.
Thus, the theoretical maximum throughput T , in number of operation per

second (OPs), is given by

T =
ρ × f

Δc
≤ 2 × n3 × f

3 × n2 × b
e

=
2
3

× f × n × e

b
(2)
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GEMM Parametrization. As specified in Sect. 2, the developer must think its
architecture genericity before starting the implementation, to allow both explo-
ration and design reutilization.

For GEMM application, we decided, after application and target class anal-
ysis, to define three parameters according to Sect. 3:

– b − bus bandwidth for input/output
– n − size of matrices
– type of elements (which bitwidth is defined as e).

4 Results

To study the usability and performances of our methodology, we implemented it
as a tool flow, and used it to analyze and compare multiple GEMM architectures.
This way, we can illustrate both hardware controlability and generation abilities
of our methodology. We generate 80 different architectures, varying input band-
width b (64, 128, 256 and 512 bits/cycle), element bitwidth e (4, 8, 16, 32 and 64
bits) and matrix dimension n (64× 64, 128× 128, 256× 256 and 512× 512), and
we study the impact of those parameters on the performance and resource usage
of generated designs. The architectures are generated, simulated and synthesized
in less than 24 h, thanks to our tool flow (see Fig. 1).

4.1 Experimental Setup

For the experimentation, we targeted a Xilinx VC709 board which includes
Block RAMs and integer DSPs, as specified in Sect. 3. It embeds a xc7vx690
FPGA with 433k LUT6s, 866 FFs, 3600 DSPs and 1470 BRAMs (6.45 MB).

We developed a tool flow implementing the methodology proposed in Sect. 2,
based on Chisel (latest 3.2 version) as entry point to generate multiple Verilog
designs with respect to the parameters defined in Sect. 3. The flow simulates
generated designs behavior using verilator to ensure functionality, comparing
it to a software reference defined in Scala. It also uses simulation to extract design
latency Δc as defined in the temporal behavior model (Fig. 2). After generation
and simulation steps, we use Xilinx vivado (2017.3 version) to synthesize designs
and extract performance and resource metrics. For performance evaluation, we
use the estimated post-synthesis clock frequency and the simulation latency.
We evaluate resource usage (LUT, Flip Flop, DSP and BRAM usage) thanks
to post-synthesis resource report. All results presented in this section are given
after vivado synthesis step.

Remark: We are only considering designs that can physically fit for this section,
implying that Tables 2, 3 and Fig. 3a only include those designs. Figure 3b rep-
resents non-fittable designs as hatched.

4.2 Control of Generated Hardware

This section presents our designs achieved performance, demonstrating that this
methodology allows to control generated accelerators composition.
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GEMM Implementation. As stated in Sect. 1, GEMM algorithm can be
implemented using various types and precision, SGEMM and DGEMM (using
respectively IEEE-754 simple and double precision) are the most used version,
as it has been widely used for performance comparison.

However, since we are targeting Xilinx FPGAs, which does not include ded-
icated floating point units, we chose to implement a fixed-point GEMM version
here. Since the design generator includes type parameters, one could - with few
changes to the control flow - target SGEMM and/or DGEMM variants once he
implemented basic floating operations on Xilinx boards, as stated in Sect. 2.1.

Impact of Type Precision. Table 2 presents the influence of type precision
on achieved throughput for GEMM implementation. For each element bitwidth
e, we selected the most performant generated design, i.e. the design that offers
the higher throughput, with the generation parameters (b, n) associated. We
compared the throughput estimation (based on simulation) with the maximal
theoretical throughput as defined in Eq. (2), indicating the functioning frequency
of the generated designs in the last column, for information purpose.

By computing the theoretical differentials between achieved and theoretical
throughput, we can note that generated designs achieve at least 92% of maximal
throughput - for the 8 bits version - meaning that the input bus utilization is
almost maximal, and that the behavior can be finely controlled from architecture
design to generation.

We showed that our flow can be used to design, implement and analyze
designs with high controlability on generated hardware, and demonstrated it on
an analysis of type precision influence on the performances of GEMM implemen-
tations.

Table 2. Impact of element bitwidth on GEMM throughput.

Element (e) I/O (b) Size (n) Throughput (GOps) Frequency (MHz)

Achieved Theoretical (2)

4 512 128 3680 3844 352.00

8 512 64 934 1016 372.72

16 128 512 700 701 256.74

32 128 256 226 227 331.34

64 128 256 66 68 197.78

4.3 Architecture Exploration: Dimensioning the Application

We have shown that type precision has a considerable impact on the achievable
throughput of generated designs. As type precision also impacts applicative per-
formance metrics a developer can not always act on the type precision, that can
be fixed by application specific needs.
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In this section, we chose to target 32 bits fixed point GEMM implementa-
tion, though it is not comparable to SGEMM subroutine on 32 bits floating
points because of the complexity of floating point operations (even with dedi-
cated DSPs), to demonstrate the ability of our methodology to explore multiple
parameter sets with no changes to the original Chisel description.

Figures 3a and b respectively compare generated designs throughput and
efficiency for various sizes of input matrices, and various I/O bandwidths.
Efficiency e is defined as ρ

f×Δc
× 1

‖%resource‖ = 2×n3

f×Δc×‖%resource‖ , i.e. performance
resource

ratio1, unified with respect to computational complexity specified in Sect. 3.
Using a n3 factor allows to compare solution of different dimensions, since com-
puting GEMM in Mn space is equivalent to 8 computations in Mn

2
. We can

observe that for 32 bits implementations, the most efficient version (Fig. 3b) is
to operate on matrix kernels of size 256×256, using 2×128 bits/cycle I/O, with
an achieved throughput of 224 GOP/s - among the 80 architectures generated.
For this design, clock frequency reach 331.4 MHz, the theoretical optimal bit rate
is thus 2.8 GB/s. On the other hand, Fig. 3a shows that the most performant
design is to operate on kernels of size 128 × 128, with 2 × 128 bits/cycle I/O,
achieving a throughput of 226 GOP/s.

By generating and comparing those GEMM architectures, we showed that our
generation flow allows to determine which architecture is the most performant
or the most efficient, with respect to constraints one might have on integration.

(a) Performance comparison (b) Standardized efficiency comparison

Fig. 3. Metric comparison on 32 bits GEMM versions

4.4 Existing Solutions

GEMM implementations have been widely used to compare platform perfor-
mances, as well as implementation choices. We propose to compare our imple-
mentations to GEMM instances on various platforms.

1 Resource metric is defined as the maximum usage percentage for the 4 considered
resources: LUTs, Flip Flops, BRAMs and DSPs.
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fBLAS [4] implements both SGEMM and DGEMM variants, using HLS on
two Intel Altera FPGAs. It is important to note that Intel Altera FPGAs embed
dedicated floating point DSP, while Xilinx FPGAs does not include any floating
point dedicated units.

Garg et al. [6] propose hybrid CPU-GPU SGEMM and DGEMM implemen-
tations based on Intel Ivy Bridge and AMD Richland platforms.

Our custom solutions present the most performant designs we generated for
precision on 16, 32 and 64 bits. As VC709 target does not include floating point
units, SGEMM and DGEMM will be compared respectively to fixed point solu-
tions on 32 and 64 bits. We also choose to study results on 16 bits fixed point,
since applicative accuracy needs might be compatible with lower precision type.

For each solution in Table 3, we can observe different implementations - vari-
ation of platform, target and type precision - and the associated achieved perfor-
mances, given as implementation throughput. We can see that both our 32 and
64 bits custom versions are comparable in term of performance with the hybrid
solution of [6], and with the fBLAS solution on Intel Altera Arria 10, if a fixed
point solution is acceptable for a given application needs. Stratix 10 board being
way wider than a VC709, we can not compare solutions fairly.

Table 3. Throughput for GEMM implementations on different platforms

Solution Platform Target Precision Throughput

Customa FPGA VC709 16 bits 700 GOps

32 bits 226 GOps

64 bits 68 GOps

fBLAS [4] FPGA Arria 10 32 bits 200 GFlops

64 bits 25 GFlops

Stratix 10 32 bits 750 GFlops

64 bits 75 GFlops

Hybrid [6] CPU-only Ivy Bridge 32 bits 170 GFlops

Richland 32 bits 80 GFlops

64 bits 40 GFlops

GPU-only Ivy Bridge 32 bits 140 GFlops

Richland 32 bits 274 GFlops

64 bits 27.3 GFlops

CPU + GPU Ivy Bridge 32 bits 235 GFlops

Richland 32 bits 274 GFlops

64 bits 57.4 GFlops
aFixed point precision is used instead of floating point, as stated earlier.



Chisel Usecase: Designing General Matrix Multiply for FPGA 71

4.5 Analysis and Contribution

With those experiments, we show that with a tool flow based on Chisel and a
particular methodology, we are able to easily define a generic GEMM accelerator
kernel, which presents multiple advantages when compared to HLS generated or
RTL written ones.

We demonstrate that using Chisel allows a high controlability on generated
hardware, and that, with a sufficient knowledge on hardware development, one
can easily describe a precise architecture, with no worry on which inferences the
tool flow could make when generating the circuit.

We also show that using generic architectures can be useful when it comes
to evaluation of parameters influences, and that using higher level of abstrac-
tions, hardware developers can easily compare architectural trade-offs for a given
application, in order to take the best of the available resources.

5 Conclusion

In this paper, we introduce a design methodology associated to a toolflow that
can be used to implement computation kernels on FPGAs with higher abstrac-
tion level.

We demonstrate the functionality of this new tool through a use case on
GEMM algorithm, which is highly representative for all algebra computations.
We show that we can define generic architecture descriptions with parametriza-
tion, thanks to Chisel, allowing architecture generation and comparison.

Generated GEMM implementations performances are comparable to designs
generated with HLS methodology, as well as CPU and/or GPU solutions pro-
posed in the literature.

We now aim at reusing developed GEMM kernels to implement efficient,
configurable and highly generic CNNs using the presented framework.
We also want to implement other computation kernels to study influence of appli-
cations and target environments on resource usage and achieved performances.
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