
Optimising Operator Sets for Analytical
Database Processing on FPGAs

Anna Drewes1(B), Jan Moritz Joseph1, Bala Gurumurthy2, David Broneske2,
Gunter Saake2, and Thilo Pionteck1

1 Institute of Information Technology and Communications, Otto-von-Guericke
University, 39106 Magdeburg, Germany

anna.drewes@ovgu.de
2 Institute of Technical and Business Information Systems, Otto-von-Guericke

University, 39106 Magdeburg, Germany

Abstract. The high throughput and partial reconfiguration capabilities
of modern FPGAs make them an attractive hardware platform for query
processing in analytical database systems using overlay architectures.
The design of existing systems is often solely based on hardware charac-
teristics and thus does not account for all requirements of the application.
In this paper, we identify two design issues impeding system integration
of low-level database operators for runtime-reconfigurable overlay archi-
tectures on FPGAs: First, the granularity of operator sets within each
processing pipeline; Second, the mapping of query (sub-)graphs to com-
plex hardware operators. We solve these issues by modeling them as
variants of the subgraph isomorphism problem. Via optimised operator
fusion guided by a heuristic we reduce the number of required recon-
figurable regions between 30% and 85% for relevant TPC-H database
benchmark queries. This increase in area efficiency is achieved without
performance penalties. In 86% of iterations of the operator fusion pro-
cess, the proposed heuristic finds optimal candidates, which is 3.6× more
often than for a naive greedy approach.

Keywords: Query processing · Database operators · Operator fusion ·
Graph modeling · Heuristic · FPGA · Overlay architecture

1 Introduction

In order to address growing concerns regarding scaling and power efficiency,
database research strives to include heterogeneous compute devices as accelera-
tors [5]. In addition to a variety of GPU-based systems [3,13,30], FPGAs are also
considered for their special capabilities: Their massive I/O-bandwidths, spatial
parallelism, and deeply pipelined processing capabilities are all indicators for
high performance in analytical database query processing. FPGAs have been

This work is funded by the German Research Foundation (DFG) projects PI-447/9
and SA-465/51-1.

c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 30–44, 2020.
https://doi.org/10.1007/978-3-030-44534-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_3


Optimising Operator Sets for Analytical Database Processing on FPGAs 31

used both as static accelerators for single database operations [2,12,18,24,27]
and also as more general reconfigurable platforms [1,9,28,31]. These examples
show large performance enhancements due to the use of heterogeneous hardware.

Despite the advantages of heterogeneous hardware, systems integration issues
resulting from a bottom-up design process (cf. Fig. 1) impede their practical
applicability. Thus, new optimisation techniques, operator representations, and
memory management strategies have been introduced. Mapping queries to vastly
differing processing architectures can be accomplished by converting SQL state-
ments into sequences of simple, data-parallel operations [13]. Using this con-
cept of primitive-based query processing, all operations besides pipeline break-
ers such as Sort can be evaluated as data flow graphs. For CPUs, evaluating
these sequences of operations is possible via just-in-time compilation of optimised
primitive implementations from intermediate representation (IR) [4,20]. This is
not viable for FPGAs, as synthesis and place-and-route are very time-consuming
compared to software compilation and can take from minutes to hours depending
on the complexity and size of the target design. An alternative is sequential exe-
cution of pre-synthesised compute kernels, achieving high throughput through
massive data parallelism. For FPGAs, implementing the basic database oper-
ations as OpenCL kernels follows this paradigm. In contrast to GPUs, where
each kernel has access to the full hardware, the resources of an FPGA are either
shared between a fixed set of static accelerators, or kernels have to be exchanged
at runtime via costly reconfiguration of nearly the complete device [15,28,29].
Thus, both standard solutions for high performance integration of CPUs and
GPUs are not targeting the special requirements of FPGAs.

DBMS

Operators

Overlay
Architecture

FPGA

Arch.-specific
Execution
Model

Architectural
Constraints

Hardware
Limitations

Platform-independent
Execution
Model

Operator
Requirements

Application
Requirements

Bottom-up
Approach

Top-down
Approach

Fig. 1. Two standard approaches to system design/integration.

A better concept for FPGAs is an overlay architecture, where the logic
resources of the FPGA are spatially divided into interconnected partitions which
fit one hardware operator each. The exemplary design shown in Fig. 2 consists
of 9 reconfigurable regions (RR) and a static partition, which is shown in blue
and contains supporting logic such as bus systems, memory controllers, and the



32 A. Drewes et al.

host interface. Specially synthesized hardware operators (compute unit, CU) for
data processing or interconnect bridges for data movement can be loaded into
the reconfigurable regions via dynamic partial reconfiguration (DPR) of parts of
the FPGA fabric. This is shown in red in Fig. 2. Thus, an overlay architecture
is an abstraction of the raw FPGA into a set of interconnected compute units
and exposes the spatial parallelism inherent to FPGAs in a practical way [6,31].
While this top-down design approach (cf. Fig. 1) solves the problem of synthesis
at runtime, it leaves a whole new set of problems to be addressed. The main
issue is that most of the database primitives require only a rather small amount
of resources (cf. Sect. 5). At the same time even simple queries can require eval-
uation of a dozen operations in a single pipeline. This leads to the requirement
that the FPGA has to be broken up into a very large number of small, but
tightly interconnected, reconfigurable regions. This is highly resource-inefficient.

Interconnect

Ext. MemoryHost (PCIe)

CU

CU

CU

CU

CU

CU

CU

CU

CURR

RR

RR RR RR

Fig. 2. Example of an FPGA overlay architecture. (Color figure online)

In order to address these urgent design issues, we propose an optimised oper-
ator fusion method for database primitives implemented for FPGAs targeting
reconfigurable overlay architectures. We improve resource efficiency by reducing
the number of reconfigurable regions occupied for executing a query. Specifically,
we present an analysis of operators for analytical database query processing on
FPGAs using overlay architectures. We reach an application-centered view of the
design and integration process by formalising the apparent problems and reduc-
ing them to optimisation tasks based on known graph problems. This allows
us to reduce the number of reconfigurable regions required for evaluating the
considered analytical database queries by 52% on average, with only a slight
increase RR size and most importantly, without performance penalties.

This paper is structured as follows: After discussing related work in Sect. 2,
we provide an overview on primitives for analytical database query processing



Optimising Operator Sets for Analytical Database Processing on FPGAs 33

for heterogeneous hardware in Sect. 3. Section 4 contains definitions and our
proposed optimisation process for the two problems of operator granularity and
matching of composed operators. Results for relevant benchmark queries are
presented in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Related Work

The problem addressed in this paper has no exactly matching related work where
a direct comparison of results is possible in a meaningful way, but conceptually
similar approaches with different optimisation criteria have been used in other
application fields. Thus, in this section, we discuss related work on code fusion for
heterogeneous hardware in general and optimisations regarding sets of operators
for FPGAs.

Data-centric query compilation is important to achieve high performance on
CPUs and GPUs [20]. While the problem of query compilation for CPUs and
GPUs during runtime is structurally similar to our work, for FPGAs we have to
focus on optimisations at design-time and can therefore improve and adapt not
only the operator library, but also the static FPGA design. Menon et al. [19]
describe a model for operator fusion during query planning in order to better
exploit CPU caches. Apart from the lack of caches on FPGAs, their differing
architecture requires custom models.

OpenCL can be used as a target platform for custom code generation for
heterogeneous hardware. For example, Hawk [4] and Voodoo [22] generate opti-
mised OpenCL code. These approaches not only cover code optimisations, but
also address parallelism, both of which are orthogonal to the problems addressed
in this paper, which deal with optimisation of the library of operators and reduc-
ing the number of discrete hardware operators required.

The model and optimisation approach for Code Fusion on GPUs presented
by Wahib et al. [26] is, just as our approach, based on data dependencies between
kernels. The authors propose a variation of genetic algorithms to solve the opti-
misation problem, while we propose a much more simple greedy constructive
optimisation process. The results are not comparable to our results due to funda-
mental differences in optimisation goals: GPUs fuse kernels to reuse data fetched
from memory, while we try to achieve better FPGA resource efficiency. Another,
completely different problem for database operators on FPGAs involves fitting
independent kernels into one large reconfigurable region covering most of the
FPGA. Wang et al. [28] use dynamic programming to generate sequential query
execution plans, and to partition sets of OpenCL kernels too large to fit into
the singular reconfigurable region into several bitstream images based on a cost
model. Since we build up queries from small, individually reconfigurable base
primitives, this problem does not apply to our system.

Finally, RENO [21] is a data-dependency-driven optimiser implemented in
hardware inside a CPU core, enabling the elimination or fusion of certain
instructions directly from the instruction stream. Similarly, there exists work
on hardware-based fusion of simple instructions into larger macro-operations in



34 A. Drewes et al.

order to allow for a more efficient CPU microarchitecture [7,17]. All three works
employ mechanisms similar to our work, but focus on the design of efficient high
performance hardware implementations of code fusion engines, which are unnec-
essary in our work, since we do not use instruction-driven processing elements,
but assemble pipelines of specialised hardware operators.

3 Database Primitives

Using database primitives to split up queries into small highly optimised base
operations enables high-performance query processing on heterogeneous hard-
ware architectures. For FPGAs, mapping primitives to reconfigurable regions of
an overlay architecture makes construction of deep hardware pipelines possible
at runtime. As database primitives is a widely used term in various contexts, we
begin with a brief introduction and definition of the usage of this term in the
scope of this paper.

After a database management system (DBMS) has parsed and optimised a
query submitted by a user, it generates a query execution plan. This is necessary
since SQL is a declarative language, and thus only describes the desired result
and not a sequence of operations [16]. While large parts of parsing and optimisa-
tion can be similar for different execution techniques, the actual query execution
plan is inherently architecture-specific. One technique for evaluating analyti-
cal database queries in heterogeneous systems is the use of database primitives
[11,13,22]. These primitives represent the basic operations of parallel program-
ming and can thus be directly implemented on a variety of compute architectures.

We consider five types of Atomic Primitives, some of which can be composed
to form more complex operations required for evaluating queries.

1. Using the Map primitive, a function is applied to all values of one or more
input vectors producing an output vector with the same number of tuples.
A special case is the pairing of a scalar with each element of a vector. Since
there are no dependencies between individual vector elements, Map can be
parallelised trivially.

2. A Reduce operation takes in a vector and aggregates all elements into a sin-
gle scalar. This primitive can be parallelised using reduction tree approaches,
both in coarse- and fine-grained fashions, depending on the target architec-
ture. Analytical database query processing requires a specialised variant of
this primitive: Grouped Aggregation, which, instead of performing one reduc-
tion over the entire input vector, uses another input vector of group IDs to
split the data input vector into multiple ranges. This operation can also use
a tree-like task structure for parallelisation [14,23].

3. The Prefix Scan primitive is mostly used to generate index vectors for other
primitives. Thus, probably the most common operation is prefix sum. Paral-
lelising Prefix Scan is challenging. A standard approach is to split the input
data into multiple chunks, each processed independently. Then the singular
result values are aggregated by a single task to generate offsets that can be
applied to the chunks in a final step using Map [23].



Optimising Operator Sets for Analytical Database Processing on FPGAs 35

4. Scatter/Gather do not provide computation by themselves, but instead rear-
range data by using indexed reads or writes. These primitives can exhibit
widely varying memory access patterns. The impact of highly parallel Scat-
ter/Gather on the memory system has to be carefully considered during
implementation.

5. Sort is used in various ways in database systems. While preprocessing parts of
the input vector is possible, the whole input vector has to be available before
any output can be computed. This means that Sort is a pipeline breaker.
Thus, interaction with other primitives is limited.

Some database operations cannot be captured fully by any one of these cate-
gories. They may be described as Composed Primitives, consisting of base primi-
tives and special additional functionalities. A common example is construction of
hash tables: While the computation of the hash function(s) is described by Map,
modeling the insertion process using the base primitives is not sensible. Since
the behaviour of different hash table variants is highly dependent on data dis-
tribution, fusing these operations with other primitives may result in inflexible
and slow designs or require a vastly higher number of pre-synthesised operations.
Thus, both sorting and hash table-manipulation operations are not considered
in this work.

Mapping operators to DPR regions at runtime is a considerable problem, that
has been addressed by other works [6], and thus is not detailed in this paper.

4 Optimisation Targets

As already introduced, we achieve more resource-efficient database query pro-
cessing on FPGAs by targeting two objectives: Hardware Operator Granularity
optimisation reduces resource requirements by lowering the number of recon-
figurable regions required for executing a query, while optimised Matching of
Composed Operators allows for reduced operator library size and thus improves
synthesis time and the required storage space for the operators. In the following
subsections, we use standard graph approaches for these optimisation targets.

4.1 Hardware Operator Granularity

Our first optimisation target is hardware operator granularity. In detail, we will
present hardware constraints, describe the problem model, introduce operator
fusion, and propose a greedy optimisation process.

For the purpose of modeling, we adopt an abstraction of a generalised overlay
architecture for FPGAs, where the FPGA is partitioned into a static design and
dynamically reconfigurable regions. Memory controllers, as well as an intercon-
nect and various management logic forms the static partition, while hardware
operators can be loaded into reconfigurable areas at runtime. The FPGA is
thus abstracted into a set of directly interconnected compute units. To keep the
amount of constraints low, we assume that each operator can be mapped to



36 A. Drewes et al.

every reconfigurable region. For effective hardware pipeline processing, the links
between reconfigurable regions are designed to stream data at the bandwidth
required by the operators. Only data transfers to and from off-chip memory are
assumed to be handled by DMA engines in the static partition.

We model query execution plans as directed, acyclic, coloured graphs G =
(V,E). Database primitives, as well as data sources and sinks form nodes v ∈ V .
Their colouring (tag) is based on the underlying operator and data types. We
define this colouring as operators. An operator node in G is defined as an instance
and needs to be mapped to a reconfigurable region for execution. The directed
edges e ∈ E represent the data dependencies present in the query execution
plan. Note that the size of data transfer that is represented by an edge may
not necessarily be identical for all edges of a query, as in many cases the actual
amount of data transferred is determined by characteristics of the input data. An
example query execution plan generated from the TPC-H analytical database
benchmark query Q6 is shown in Fig. 3 [25]. It contains a typical amount and
complexity of operations, except for joins, which are explicitly not covered in
this work. Data flows from bottom to top and the different data transfer sizes
are highlighted at the edges. After evaluating the selection criteria via Map
less-than/greater-than (map-s-lt/map-s-gt) comparison operations, the results
are combined via map-and. Then, the filter operation eliminates all elements
of the input vectors that do not meet the selection criteria. The filtered input
columns are multiplied element-wise (map-mul). Finally the result is computed
by aggregating the result vector of the multiplication operation (red-add).

In general, non-parallelised database primitives that are synthesised as
streaming hardware operators have rather small resource requirements. This is
especially relevant for runtime-reconfigurable implementations on FPGAs using
a multitude of DPR regions, as there is a high degree of area overhead associ-
ated with each runtime-reconfigurable region. This overhead is due to the need to
provide communications infrastructure and isolation of the reconfigurable region
from the rest of the system during reconfiguration. This leads to the goal of fus-
ing database primitives that commonly occur together into larger units, thus
reducing the number of DPR regions required for evaluating a query. While the
base query Q6 shown in Fig. 3 would require 15 distinct hardware operators, the
optimised query shown in Fig. 6 reduces the number of required DPR regions to
4 (cf. Table 1). Operator fusion also relieves some amount of load from the inter-
connect of the overlay architecture because in many cases fused primitives share
input vectors. Data transferred between fused operators are removed from the
system interconnect as well. In addition, area efficiency is improved in general,
as scheduling can be optimised by the design tools if the operators are syn-
thesized in a fixed combination inside a single reconfigurable region. Of course,
the DPR regions have to be sized according to the single largest primitive or
fused operator. As FPGA synthesis and place-and-route are time-consuming and
resource-intensive tasks, it is generally not feasible for a database management
system to synthesize custom hardware accelerators for each query at runtime.
Thus, there remains the problem of deciding which combinations of primitives



Optimising Operator Sets for Analytical Database Processing on FPGAs 37

red.
add

map
mul

filter filter

map
and

map
and

map
and

map
and

map
and

map-s
gt

map-s
lt

map-s
gt

map-s
lt

map-s
gt

map-s
lt

date quantity discountextd. price

result
1

n n n n

n n

n

n

Fig. 3. Query execution plan of TPC-H Query 6. (Color figure online)

should be fused into composed operators. These decisions are relevant, as the
size of the operator library is limited by both the available storage space and
the time overhead at runtime for finding fitting operators.

In order to optimise the set of required primitives to generate fused operators,
we start with a set of query execution plans Sbase. This set can be either extracted
from logs or traces of a running system or generated from database benchmark
suites. Sbase induces a set of operators Obase, which describes the set of database
primitives used across all queries of Sbase. The formal goal is to identify the
maximum common induced subgraph J for each possible tuple of these graphs
(G,H) with G ∈ Sbase,H ∈ Sbase and G �= H. Since the decision problem
whether two graphs G,H have a common subgraph J of size k is NP-complete
[10], in practice this problem cannot be expected to be solved in an optimal way.

We propose a greedy, constructive algorithm for generating fused operators
from a base set of queries. Our iterative process can be summarised as follows:
First, we identify the most common combination of operators (a, b) ∈ Oi × Oi,
where Oi is the induced set of operators O after iteration i with O0 = Obase.
Second, fuse the identified fusion candidate into a new operator o = (a, b). Third,
generate query graphs G′ ∈ Si+1 from the graphs G ∈ Si by replacing instances
of (a, b) with o. This also updates the induced set of operators Oi to the updated
set Oi+1 used in the next iteration. This process can continue until all possible
primitives have been fused.



38 A. Drewes et al.

The main problem with this algorithm is the fact that the most commonly
occurring operator combination may not be the operator combination that can
be replaced most often. This happens because primitives in query execution
plans graphs are often arranged in tree or chain-like shapes, thus influencing
their neighbours. This is illustrated in Fig. 3: Fusion candidates consisting of
two map-and operations can be found four times within the graph. They are
highlighted using the red, violet, and blue ellipses. As the ellipses are overlap-
ping each other, the fused operator cannot be instantiated four times. It is only
possible to replace the right blue ellipse and either the violet or the other blue one
resulting in two uses of the fused operator. If the red ellipse were to be replaced,
all other possible instances of the fused operator would be blocked. Generalising
this example, we conclude that the number of coloured edges, which describe an
operator fusion candidate, does not indicate the expected optimisation poten-
tial adequately. Solving this problem optimally requires frequent identification
of maximum independent edge sets, or matchings. In order to avoid expensive
calculation of such an optimal solution for every existing combination of oper-
ators in every iteration of the operator fusion process, we introduce a heuristic
to select operator fusion candidates. Instead of the naive approach of using the
number of edges of each colour to select fusion candidates, we propose to count
the number of distinct nodes attached to edges of each colour. Divided by two,
this heuristic provides a direct estimate of the target function, i.e. the number
of expected possible instances of the potential fused operator. We evaluate the
proposed heuristic in Sect. 5.

4.2 Matching of Composed Operators

At runtime, the problem of actually using the previously generated fused oper-
ators remains. This problem is especially relevant if the DBMS front end and
logical optimisation stages are architecture-oblivious in order to support hetero-
geneous hardware other than overlay architectures of FPGAs. In this case an
FPGA-specific optimiser has to identify (match) subgraphs H describing fused
operators in an input query execution plan G, thus needing to repeatedly solve
the subgraph isomorphism problem, which is NP-complete [8].

We suggest an approximation by following a greedy steepest gradient descent
approach: Since G is a directed acyclic graph, match the largest fitting composed
operator following the topological ordered query execution plan. After replacing
the matched subgraph with the fused operator, the next matching is constructed.

In addition to the remaining high complexity of the approximation algo-
rithm, sometimes the most appropriate fused operator is not an exact match.
An example can be taken from the benchmark queries used in Sect. 5 and is
shown in Fig. 4. This is a sequence of two primitives that commonly occurs as
last processing step of queries. Data are aggregated according to a vector of
group IDs (gagg-add). In addition to the sum, this sequence also computes an
average value for each group (map-div). This requires information about the
sizes of the distinct groups (count). In general, it is only necessary to count the



Optimising Operator Sets for Analytical Database Processing on FPGAs 39

group sizes once. In contrast, duplicating the gagg-count operator for each com-
posed grouped aggregation operation, as depicted in Fig. 5, eliminates the input
vector count from the fused operator. Since this additional fused primitive is
not complex, this is a better optimisation of the query execution plan, but much
more difficult to realise, as it requires a fuzzy approach to subgraph matching.

gagg
add

map
div

data groups count

avg.sum

Fig. 4. Default replacement candidate
for exact matching.

gagg
add

map
div

gagg
cnt

data groups

avg.sum

count

Fig. 5. Candidate for fuzzy matching.

5 Results

To evaluate our proposed optimisation process and heuristic, we applied our
algorithm to relevant analytical benchmark queries from TPC-H [25], and also
synthesized both the required primitives and fused operators.

5.1 Evaluation Setup

Table 1 lists the considered queries. As sorting and table join operations are
pipeline-breaking operators and require implementations tailored to specific data
distributions, fusing them will result in either inflexible operators or a large
operator library. Thus, we do not consider those parts of the queries. Due to
pipeline breakers within their query execution plan, many queries cannot be
evaluated using a single continuous processing pipeline. These queries have to
be split up into multiple processing pipelines. The partial query execution plans
tagged begin contain the first operations, usually applying of selection criteria.
The partial query execution plans tagged end cover final processing steps, such
as grouped aggregation. The query execution plans are generated from the SQL
statements using standard textbook concepts.

All primitives and optimised fused operators are written in C as single-tuple-
per-cycle compute kernels with a data width of 32 bit. They are synthesised using
Vivado HLS 2018.1. The directives HLS DATAFLOW and HLS PIPELINE are
used to generate efficient streaming compute components. Throughout the whole
project AXI Stream ports are used. We try to achieve the highest possible clock
rate while maintaining a loop initiation interval of one clock cycle, with a starting
frequency of 300 MHz. Operators failing to meet this requirement are synthesised



40 A. Drewes et al.

Table 1. Results

Query Throughput
GB s−1

Reconf. Regions
(RR Instances)

Resources

CLB DSP Savings

Base Opt. Base Opt. Savings Base Opt. Base Opt.

Single RR 1 1 400 450 10 10 –12%

Q1 (begin) 2.30 2.30 4 2 50% 1600 900 40 20 44%

Q1 (end) 14.33 14.33 13 9 30% 5200 4050 130 90 22%

Q4 (begin) 4.60 4.60 6 4 33% 2400 1800 60 40 25%

Q6 (complete) – 4.60 15 4 73% 6000 1800 150 40 70%

Q12 (begin) 5.75 5.75 12 6 50% 4800 2700 120 60 44%

Q12 (end) 4.41 4.41 3 4 25% 2400 1800 60 40 25%

Q16 (begin) – 4.60 20 6 70% 8000 2700 200 60 66%

Q19 (complete) – 9.20 76 12 84% 30400 5400 760 120 82%

Average improvement 52% 47%

at lower frequencies. Only the division and grouped aggregation operators require
a lowered clock frequency of 250 MHz.

The Xilinx Zynq ZC706 evaluation board is used as the design target. The
FPGA part of the Zynq 7Z045 system-on-chip (SoC) has access to 2 GiB of exter-
nal DDR3 memory with a maximal theoretical bandwidth of 19.2 GB s−1. Its
FPGA resources comprise lookup tables (LUT) and flipflops (FF) for implement-
ing logic circuits, which are combined into Configurable Logic Blocks (CLB) that
are tiled across the FPGA fabric. The FPGA also contains multiply-accumulate
units (DSP) to simplify implementation of certain arithmetic operations. The
considered FPGA contains a total of 27 325 CLBs and 900 DSP slices. The
reconfiguration granularity for logic resources is a column of 50 CLBs, each con-
sisting of 2 slices of 4 LUTs, while the reconfiguration granularity for DSP slices
is 10. Therefore, the size of 2489 LUTs and 2950 FFs of the division operator
mandates a minimum reconfigurable region size of 8 columns, which corresponds
to 400 CLBs, or 3200 LUTs. Due to the layout of the clock regions within the
FPGA fabric, up to 14 completely independent reconfigurable regions can be
instantiated. Please note that only those queries with a small number of primi-
tives can be processed in a single compute pipeline in the baseline.

5.2 Optimisation Process

Running the optimisation process until all reused operator combinations were
found generates 12 fused operators within 21 fusion steps. The optimisation
process is terminated when there are no more duplicated subgraphs. The average
fused operator is composed from five base primitives, while the smallest fused
operators contains only two. Because TPC-H Query 19 makes use of an identical
set of extensive selection criteria three times, the largest fused operator maps to
one of these sub-trees and consists of 23 primitives. As an illustrative example,



Optimising Operator Sets for Analytical Database Processing on FPGAs 41

Fig. 6 shows the optimised query execution plan for the baseline query as shown
in Fig. 3 utilising the fused operators shown in Figs. 7, 8, and 9. The primitives
and fused operators are highlighted in violet, while the base primitives are shown
in green. Figure 4 shows another example of a fused operator.

VII

filter

VIII

X

date quantity discountextd. price

result

1

n n

n

n

n

Fig. 6. TPC-H Query 6 using fused operators.
(Color figure online)

filter

map
mul

red
add

. . .

Fig. 7. Fused operator VII. (Color
figure online)

map
and

map
and

map-s
lt

map-s
gt

. .

Fig. 8. Fused operator VIII. (Color figure
online)

map-s
gt

map-s
lt

map-s
gt

map-s
lt

map
and

map
and

map
and

. .

Fig. 9. Fused operator X. (Color figure
online)

5.3 Discussion

In order to test the accuracy of our heuristic, we also computed optimal results.
Our proposed heuristic correctly identified optimal fusion candidates in 18 out
of 21 iterations of our algorithm. This estimation accuracy of 86% is over three
times larger than the accuracy of the naive approach.

The reductions in resource requirements achieved by our operator fusion opti-
misation process are illustrated in Fig. 10: Fusing small database primitives sig-
nificantly improves resource efficiency for overlay architectures in database query



42 A. Drewes et al.

Fig. 10. Comparison of resources requirements using base primitives and fused opera-
tors for relevant TPC-H benchmark queries.

processing on FPGAs. Resource requirements for complete queries are reduced
by up to 82%. This is an impressive result that shows that FPGA-enabled imple-
mentations of primitive-based analytical database management systems require
architecture-specific optimisation of operators at design time. As the largest
primitive, namely division, is part of the fused operator shown in Fig. 4, the size
of each reconfigurable region increases slightly to 450 CLBs, as is shown in the
first line of Table 1. This increase in size reduces the savings achieved by use of
the fused operators, as can be seen when comparing columns six and eleven of
Table 1. On average, the number of reconfigurable regions used for a single query
is reduced by 52%, which leads to an average reduction in resource requirements
of 47%.

There is no immediate impact on performance, as the maximum clock speed
of the operators was not reduced by the fusion process, but due to the lowered
number of reconfigurable regions, all queries can now be executed in a single pass.
In contrast, the reconfiguration time between queries is reduced, as even with
the slightly larger partitions, each query requires a significantly lower number
of (re-)configured tiles. The throughput numbers shown in Table 1 refers to the
total amount of data being read into and written out of the processing pipeline.
Also, as communication between primitives within one fused operator is handled
entirely within the operator, the interconnect in the static partition is relieved.

Due to the significant improvement in resource efficiency, our proposed app-
roach improves the feasibility of integration of FPGAs using overlay architec-
tures into analytical database systems. Our approach can also be applied to
other application areas, such as network traffic analysis, digital signal process-
ing, and software-defined radio, where data flow graphs generated at runtime
are processed using a fixed library of operators.



Optimising Operator Sets for Analytical Database Processing on FPGAs 43

6 Conclusion

In this paper we analyse the problem of automated fusion of commonly occur-
ring combinations of basic database operators for FPGAs and propose solutions
based on standard graph problems. While the underlying problem of identify-
ing commonly occurring subgraphs in a set of graphs is very difficult and in
the general case even hard to approximate, the special instance discussed here
allowed for good approximation results after developing a heuristic. For the set
of standard benchmark queries considered, the proposed optimisation process
reduces the number of required reconfigurable regions by about 52% on average
with a maximum reduction of 84%. As the size of each reconfigurable region
increases slightly due to fusing of operators, the overall resource savings are
smaller: Executing a query using fused operators requires between 22% and 82%
less FPGA resources than using base primitives. The proposed optimised oper-
ator fusion process enables practical applicability of FPGA-based accelerators
in query processing, thus increasing efficiency in handling large-scale database
systems. Further constraining of the search space may be an interesting direction
for future research.

References

1. Backasch, R., Hempel, G., Pionteck, T., Groppe, S., Werner, S.: An architectural
template for composing application specific datapaths at runtime. In: ReConFig
(2015)

2. Becher, A., Ziener, D., Meyer-Wegener, K., Teich, J.: A co-design approach for
accelerated SQL query processing via FPGA-based data filtering. In: FPT, pp.
192–195 (2015)

3. Breß, S., Heimel, M., Saecker, M., Köcher, B., Markl, V., Saake, G.: Ocelot/HyPE:
optimized data processing on heterogeneous hardware. PVLDB 7(13), 1609–1612
(2014)

4. Breß, S., Köcher, B., Funke, H., Zeuch, S., Rabl, T., Markl, V.: Generating custom
code for efficient query execution on heterogeneous processors. VLDB J. 27(6),
797–822 (2018). https://doi.org/10.1007/s00778-018-0512-y

5. Broneske, D., Breß, S., Heimel, M., Saake, G.: Toward hardware-sensitive database
operations. In: EDBT, pp. 229–234 (2014)

6. Capalija, D., Abdelrahman, T.S.: A high-performance overlay architecture for
pipelined execution of data flow graphs. In: FPL, pp. 1–8 (2013)

7. Celio, C., Dabbelt, P., Patterson, D.A., Asanovic, K.: The renewed case for the
reduced instruction set computer: avoiding ISA bloat with macro-op fusion for
RISC-V. CoRR abs/1607.02318 (2016). http://arxiv.org/abs/1607.02318

8. Cook, S.A.: The complexity of theorem-proving procedures. In: ACM STOC, pp.
151–158 (1971)

9. Dennl, C., Ziener, D., Teich, J.: On-the-fly composition of FPGA-based SQL query
accelerators using a partially reconfigurable module library. In: FCCM, pp. 45–52
(2012)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

https://doi.org/10.1007/s00778-018-0512-y
http://arxiv.org/abs/1607.02318


44 A. Drewes et al.

11. Gurumurthy, B., Broneske, D., Drewes, T., Pionteck, T., Saake, G.: Cooking DBMS
operations using granular primitives - an overview on a primitive-based RDBMS
query evaluation. Datenbank-Spektrum 18(3), 183–193 (2018). https://doi.org/10.
1007/s13222-018-0295-8

12. Halstead, R.J., et al.: Accelerating join operation for relational databases with
FPGAs. In: FCCM, pp. 17–20 (2013)

13. He, B., et al.: Relational query coprocessing on graphics processors. ACM TODS
34(4), 21:1–21:39 (2009)

14. Heimel, M., Saecker, M., Pirk, H., Manegold, S., Markl, V.: Hardware-oblivious
parallelism for in-memory column-stores. PVLDB 6(9), 709–720 (2013)

15. Intel Corp.: Intel FPGA SDK for OpenCL Programming Guide (2017)
16. International Organization for Standardisation: ISO/IEC 9075 Information Tech-

nology - Database Languages - SQL (2016)
17. Kim, I., Lipasti, M.H.: Macro-op scheduling: relaxing scheduling loop constraints.

In: MICRO, pp. 277–290 (2003)
18. Koch, D., Tørresen, J.: FPGASort: a high performance sorting architecture exploit-

ing run-time reconfiguration on FPGAs for large problem sorting. In: ACM SIGDA,
pp. 45–54 (2011)

19. Menon, P., Pavlo, A., Mowry, T.C.: Relaxed operator fusion for in-memory
databases: making compilation, vectorization, and prefetching work together at
last. PVLDB 11(1), 1–13 (2017)

20. Neumann, T.: Efficiently compiling efficient query plans for modern hardware.
PVLDB 4(9), 539–550 (2011)

21. Petric, V., Sha, T., Roth, A.: RENO - a rename-based instruction optimizer. In:
ISCA, pp. 98–109 (2005)

22. Pirk, H., Moll, O., Zaharia, M., Madden, S.: Voodoo - a vector algebra for portable
database performance on modern hardware. PVLDB 9(14), 1707–1718 (2016)

23. Roosta, S.H.: Parallel processing and parallel algorithms - theory and computa-
tion. Springer (2000). http://www.springer.com/computer/swe/book/978-0-387-
98716-3

24. Teubner, J., Woods, L.: Data Processing on FPGAs. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, San Rafael (2013)

25. Transaction Processing Performance Council (TPC): TPC BENCHMARK H
(Decision Support) Standard Specification (2017)

26. Wahib, M., Maruyama, N.: Scalable kernel fusion for memory-bound GPU appli-
cations. In: SC, pp. 191–202 (2014)

27. Wang, Z., He, B., Zhang, W.: A study of data partitioning on OpenCL-based
FPGAs. In: FPL, pp. 1–8 (2015)

28. Wang, Z., Paul, J., Cheah, H.Y., He, B., Zhang, W.: Relational query processing
on OpenCL-based FPGAs. In: FPL, pp. 1–10 (2016)

29. Xilinx Inc: SDAccel Development Environment User Guide (2016)
30. Zhang, S., He, J., He, B., Lu, M.: OmniDB: towards portable and efficient query

processing on parallel CPU/GPU architectures. PVLDB 6(12), 1374–1377 (2013)
31. Ziener, D., et al.: FPGA-based dynamically reconfigurable SQL query processing.

ACM TRETS 9(4), 25:1–25:24 (2016)

https://doi.org/10.1007/s13222-018-0295-8
https://doi.org/10.1007/s13222-018-0295-8
http://www.springer.com/computer/swe/book/978-0-387-98716-3
http://www.springer.com/computer/swe/book/978-0-387-98716-3

	Optimising Operator Sets for Analytical Database Processing on FPGAs
	1 Introduction
	2 Related Work
	3 Database Primitives
	4 Optimisation Targets
	4.1 Hardware Operator Granularity
	4.2 Matching of Composed Operators

	5 Results
	5.1 Evaluation Setup
	5.2 Optimisation Process
	5.3 Discussion

	6 Conclusion
	References




