l‘)

Check for
updates

Implementing CNNs Using a Linear
Array of Full Mesh CGRAs

Valter Mério!, Jodao D. Lopes2®™) | Mario Véstias®, and José T. de Sousal?

! IObundle Lda/IST, Lisboa, Portugal
2 INESC-ID/IST, Lisboa, Portugal
joao.d.lopes@tecnico.ulisboa.pt, jts@inesc-id.pt
3 INESC-ID/ISEL, Lisboa, Portugal

Abstract. This paper presents an implementation of a Convolutional
Neural Network (CNN) algorithm using a linear array of full mesh dynam-
ically and partially reconfigurable Coarse Grained Reconfigurable Arrays
(CGRAs). Accelerating CNNs using GPUs and FPGAs is more common
and there are few works that address the topic of CNN acceleration using
CGRAs. Using CGRAs can bring size and power advantages compared to
GPUs and FPGAs. The contribution of this paper is to study the perfor-
mance of full mesh dynamically and partially reconfigurable CGRAs for
CNN acceleration. The CGRA used is an improved version of the previ-
ously published Versat CGRA, adding multi CGRA core support and pre-
silicon configurability. The results show that the proposed CGRA is as easy
to program as the original full mesh Versat CGRA, and that its perfor-
mance and power consumption scale linearly with the number of instances.

Keywords: Convolutional Neural Networks - Coarse Grained
Reconfigurable Arrays - Reconfigurable computing + Embedded systems

1 Introduction

During the last few years we have seen extensive developments in Machine Learn-
ing (ML), Artificial Intelligence (AI) and the Internet of Things (IoT). These
advances increased the complexity of algorithms and the need to lower the size
and power consumption of the hardware platforms used to run them. To tackle
computational complexity, it is common practice to use dedicated hardware
to speed up computations. However, using non-programmable hardware offers
poor scalability, prevents updates and upgrades, and increases the cost of design
errors. For these reasons, programmable hardware such as GPUs or FPGAs are
preferred for these functions but their large size and high power consumption
prevents their use in embedded devices powered by batteries.

For embedded applications a more suitable accelerator is the Coarse Grained
Reconfigurable Array (CGRA), which is also programmable and can be made
small and energy efficient. A CGRA is a collection of programmable Functional
Units (FUs) and embedded memories connected by programmable interconnects.

© Springer Nature Switzerland AG 2020
F. Rincén et al. (Eds.): ARC 2020, LNCS 12083, pp. 288-297, 2020.
https://doi.org/10.1007/978-3-030-44534-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_22

Implementing CNNs Using a Linear Array of Full Mesh CGRAs 289

When programmed, specialized hardware datapaths are formed in the CGRA,
able to execute the target tasks orders of magnitude faster than a regular CPU.

In the last 25years, CGRAs have become the subject of several research
papers [5]. CGRA architectures can be homogeneous [6], using only one type of
programmable FUs; or heterogeneous [8], using FUs of different types. As for
the programmable interconnections between FUs, direct neighbour-to-neighbour
connections or 2D-Mesh networks are the most popular choices [13]. CGRAs can
be statically reconfigurable, i.e., they are configured once for an entire applica-
tion [7], or dynamically reconfigurable [10], that is, they are reconfigured at
runtime. Some CGRAs can only be fully reconfigurable [10], whereas others use
partial reconfiguration [4,6,12]. The success of any architecture depends cru-
cially on the available tool support [13]. Different types of compilers have been
proposed [11] for CGRAs but this is still a critical weakness preventing these
architectures from becoming mainstream.

To address the lack of compiler tools, an extreme approach of using a full
mesh CGRA called Versat has been proposed in [9]. Being a full mesh, the com-
pilation complexity, namely the need to place and route the designs is removed,
and the configurations can even be produced on-the-fly by the application itself.
Versat featured self-generated dynamic and partial reconfiguration driven by an
external controller unit. The Versat core was good for applications that require
a small number of FUs. However, ML applications require a massive amount
of parallelism, which was unattainable with the original Versat core. In fact,
its full mesh structure cannot scale spatially, creating routing congestion and
forcing lower operation clock frequencies.

To target ML applications, this work proposes the use of a multi-core Versat
architecture controlled by a simple RISC-V [2] processor. The RISC-V architec-
ture is supported by the GNU toolchain, enabling the development of applica-
tions using the C and C++ languages.

2 The Deep Versat Architecture

The multi-core architecture has been called Deep Versat and is organised as
a ring of Versat cores. This topology is one of the simplest that can utilise
multiple instances, and its ring structure facilitates the reuse of the data left in
the accelerator between different configurations.

Each individual Versat core keeps the full mesh topology of the original pro-
posal, for retaining its programmability, but the size of each core is limited to 10
FU output ports. A large number of cores can be added to the ring, depending
on the needs of the target application, and the limit is only the device size. A
block diagram of this architecture is depicted in Fig. 1.

Figure 1 shows several Versat cores linearly interconnected forming a ring.
Since CGRAs are used to accelerate program loops a linear topology can easily
exploit loop optimisation techniques such as loop unrolling. The ring topology
facilitates the reuse of the data left in any of the Versat cores by the next
configuration applied to the array.

290 V. Mirio et al.

|

Configuration
Module

L

Layer 1

Control Interface

|

Configuration
Module

L

Layer2

Configuration

Module

Data Interface

Config Bus

Layer L

—

Fig. 1. Deep Versat architecture. Fig. 2. Versat symbol and interface.

In each Versat core, the FUs can select as inputs any FU outputs from the
previous core and from itself. Hence, each core can only produce at most 10
output ports so that the number of selection inputs for each FU port does not
exceed 20: 10 from the previous core and 10 from the current core. This way,
the routing complexity of each core is similar to that of the previous Versat core
proposal and independent of the number of cores. The number of Versat cores
is only limited by the device size.

The individual Versat cores have been streamlined and simply comprise the
Data Engine (DE), which is formed by its FUs, and the Configuration Module
(CM), which holds the FU configurations. The interface of each CGRA is repre-
sented in Fig.2 and consists of Control, Data and Flow interfaces. The Control
Interface is used to read and write to the Versat registers. The Data Interface is
used by the processor or DMA core to read and write data from/to the Versat
memories. The Flow Interface consists of the flow_in and flow_out buses, and
it is used to connect two consecutive Versat cores.

3 The RV32 Deep Versat System

To control the Deep Versat core, the picoRV32 open source processor [3] has been
adopted. The picoRV32 processor is a RISC-V architecture which can be pro-
grammed using the well known gcc and g++, C and C++ compilers, respectively.

The picoRV32 processor runs the application code and uses the Deep Versat
core as an accelerator. For many applications the use of a single picoRV32 core
and a Deep Versat core will suffice. Other applications may require a more
powerful processor for running the software, for example, a superscalar RISC-V
or ARM core. The system shown in Fig. 3 is composed of the picoRV32 processor
having as peripherals the Deep Versat core and a UART core.

Implementing CNNs Using a Linear Array of Full Mesh CGRAs 291

- Table 1. Memory map.
IOB-RV32

Mermary Bus Peripheral Base address

E UART module 0 x 10000000
‘ Deep Versat control bus | 0 x 11000000
‘ Deep Versat data bus 0 x 12000000

Control Bus.

Data Flow Bus.

Data Bus

Fig. 3. The RV32 Deep Versat system.

The peripherals are memory mapped as described in Table 1. The picoRV32
system uses a 32-bit address bus where 8 bits are used to choose the peripheral.
Hence, there are 24 bits to address Deep Versat. 15 out of these 24 bits are
used for internally addressing each Versat core. The remaining 9 bits are used to
select the Versat core, so in theory the Deep Versat core may contain as many
as 512 Versat cores for achieving maximum parallelism and acceleration.

4 Pre-silicon Configurability

Pre-silicon configurability consists in the ability to choose the set of FUs for
the Versat core before the circuit is implemented. This powerful feature enables
tailoring and optimizing Versat for different applications. The automatic gener-
ation of the FU array has been implemented using Verilog macros and generate
for statements (e.g. Fig.4).

generate
for (i=0; i < ‘nALU; i=i+4+1) begin : add_array
xalu alu (
.clk (clk),
.rst(run-reg),
// Data 10
.data_bus (data_bus),
.result (data_bus ['DATA_ALUO.B — i*‘DATAW —: ‘DATAW]) ,
// Configuration data
.configdata (config_reg_shadow [CONF_ALUO.B —
i**ALU_CONF_BITS —: ‘ALU_CONF_BITS])
)

;
end
endgenerate

Fig. 4. Pre-silicon configuration of the ALU array.

To configure Versat at pre-silicon time, the user sets the types and numbers
of FUs to be instantiated using the macros in the main header file. This file
can be edited for each specific application. The size of each memory can also be
specified, allowing Versat to have memories of different sizes. An obvious future
improvement is to replace the macros by Verilog generic parameters, which will
allow instantiating multiple and heterogeneous Versat cores.

292 V. Mario et al.

5 The Deep Versat API

As can be seen in Fig. 1, the Deep Versat hierarchy is the following: Deep Versat is
an array of Versat cores, and each Versat is an array of FUs. Modeling hardware
with an object oriented language is convenient as the hardware modules can
be represented by classes whose methods are used to configure and operate the
modules. The Deep Versat API has been written in the C+4 object oriented
programming language.

To represent the Deep Versat hardware an array of CVersat objects is
declared. One may ask why the size of this array must be declared if the number
of layers is already known from the Verilog code. The reason is that the API
makes it possible to work with a virtual Deep Versat core whose size is different
from its physical size. This is useful if the application does not need to use all
cores or would need to use more cores than the ones actually present. This is
called virtual hardware, a feature that is planned but not yet implemented.

After declaring the CVersat object, one needs to populate it with a set of FUs.
At the moment, the available FU types are the following: ALU (of 2 different
types), Barrel Shifter, 1 multiplier type and 1 new multiply-accumulate (MAC)
type. The FU population in each CVersat class has to of course match the FUs in
the actual Versat core, and in the future this can be automated so that both the
hardware and software are created consistently. The FUs in each Versat core can
be operated by the control processor by writing to their configuration registers
in the configuration module. There are registers to configure the FU function
and connections.

6 The CNN Application: Handwritten Digit Recognition

The chosen application is a handwritten digit recognition program that uses
the well known mnist dataset [1] and performs Convolutional Neural Network
(CNN) inference on a previously trained network (Fig.5). Each 28 x 28 image
passes through a series of layers in order to be classified. The layers are of the
following types: convolutional, pooling, fully connected and softmax. The output
represents the most likely classification, from digit 0 to digit 9, and its respective
probabilistic value between 0 and 1.

The convolutional layer performs the multiply-accumulate function of each
element of the filter by the corresponding pixel of the image. 22 matrix filters
of dimension 5 x 5 are used, which produces a 22 x 5 x 5 tensor. The maxpool
layer is responsible for down sampling the largest images, from size 24 x 24 down
to size 12 x 12, while keeping the relevant information. The process used in this
layer is simple: it goes through the 24 x 24 image and takes the greatest value in
each 2 x 2 region. Hence, the output of the pooling layer is 22 x 12 x 12 tensor.
The (fully) connected layer takes the 22 x 12 x 12 tensor produced and again
uses a convolutional process to turn it into a 10-element vector, where each
position contains the votes for the respective digit. The last layer of the CNN is
the softmax layer. It finds the digit with most votes and classifies it as the most
likely handwritten digit represented in the image.

Implementing CNNs Using a Linear Array of Full Mesh CGRAs 293

Table 2. Execution time per layer when
running on the ARM processor.

Layer Execution | %
time (us)
Convolutional | 32839 88.41%
. . . . Maxpool 1300 3.50%
Fig.5. CNN architecture with a single
convolutional layer. Connected 2998 8.07%
Softmax 5 0.01%
Total 37142 100%

The application is divided in four parts corresponding to the four CNN layers.
The time profile of the application is presented in Table?2 for a 667 Mhz ARM
Cortex-A9 processor. The table shows that the layer that takes most of the
execution time is the convolutional layer, which has been chosen for acceleration.
The software code that implements this layer is divided in two parts: (1) the
preparation of the images for convolution with the filter, which is basically a
replication of the data in the memory, and (2) the convolution itself, which is
done by the General Matrix Multiply (GeMM) algorithm.

As there are 22 filters of 5 x 5 coefficients, a matrix B of size 22 x 25 is created.
The input image is prepared, that is, it is transformed into a 576 x 25 matrix A,
where the number of rows is 24 x 24 and the number of columns is 5 x 5. It can
be shown that the convolution is equivalent to computing matrix C' = ABT. The
preparation of matrix A, being just a replication of the image data, is not very
interesting from the point of view of acceleration. The part that takes most of the
execution time and is candidate for acceleration is the GeMM algorithm.

Each Versat core can execute 2 nested loops. Thus, a single Versat core with
the new multiply-accumulate FU (MULADD) could be used to run the GeMM
algorithm. However, to scale the performance, multiple Versat cores are used by
distributing the workload among them using the loop unrolling technique. The
inner-most loop of the GeMM, which in this case goes from 0 to 24 is distributed
over 5 cores, resulting in a 5-core Deep Versat architecture. Note that this is possi-
ble because there are no data dependencies between iterations. The first core com-
putes elements 0 to 4, the second core computes elements 5 to 9 adding its result
to the result coming from the first core and so on up to the fifth core. This creates
a pipeline structure with 5-cycle latency and a throughput of one result per cycle.
Therefore, the execution time of the GeMM is reduced roughly 5 times, which is
the expected acceleration for 5 cores running in parallel compared to a single core.
For simplicity, only 2 out of the 5 cores are shown in Fig. 6.

As can be seen in Fig. 6, each Deep Versat core uses 1 MULLADD FU and
4 AGU blocks from 4 memory units (shown in blue). Two of the AGUs are
used for addressing the MULADD operands, another is used for controlling the
MULADD and the last is used for addressing the result from the previous core,
which had been stored in a memory of the current core. For a single MULADD,

294 V. Mario et al.

% MULADD
Mem
ALU B

Fig. 6. Two convolutional layers.

2 data memories would be enough but in fact 5 memories per core have been
used, because this is the number required by the fully connected layer, which was
accelerated in a similar way. Each of the 5 memories can hold up to 8192 data
words. If needed 2 MULADDs per core could be used to double the parallelism.

Given the chosen memory sizes, the 14400-word matrix A needs to be stored
in 2 different memories. Half the matrix is stored in memory 0 and the other half
is stored in memory 1, as shown in Fig. 6. The same happens to the output matrix
C, which has 576 * 22 words divided between memories 2 and 3. The Deep Versat
API code used to configure layers 1 and 2 of the designed datapath is presented
in Fig.7 to illustrate the process. The setConf method, whose details are not
explained here due to lack of space, is used to create full configuration of an FU,
and the writeConf method is used to write the configuration to the configuration
registers. The setStart method is used to set only one configuration register, the
start address of a memory port. Partial reconfiguration is clearly illustrated here:
setConf configures just one FU and setStart configures just one configuration
register of an FU. The versatRun function runs Deep Versat after waiting for
the previous run to finish.

7 Experimental Results

The described system has been run on a Xilinx XCKU040 FPGA of the Kintex
UltraScale product family, and compared with 2 other systems running the same
application: a RISC-V + single Versat system, and an ARM Cortex-A9 processor
+ 4 General Matrix Multiply (GeMM) IPs.

Table 3 compares the FPGA resources used and the execution performance
in each system. RAM stands for 36kbit RAM blocks, Frequency is the clock
frequency, WNS stands for Worst Negative Slack, Time is the execution time
and Speedup is the ratio of the execution time on the ARM system over the
execution time on each system. Note that the ARM core runs independently at
667 MHz.

The RISC-V + Deep Versat system is around five times larger than the RISC-
V + Versat system, which is expected since Deep Versat integrates 5 single Versat
cores. It is not possible to make direct size comparisons to the ARM + 4 GeMM

Implementing CNNs Using a Linear Array of Full Mesh CGRAs 295

void gemmBT (CVersat vl, CVersat v2) {
int rowsA = 24%24, colsA = 25, rowsB = 22;
int i;

//Config MEM2A to read filter weigths (0—110)
v1l.memPort [m2A].setConf(0, 22, 1, 0, 5, 5, 0, 0, 0);
v1.memPort [m2A]. writeConf ();
v2.memPort [m2A] . setConf (0, 22, 1, 1, 5, 5, 0, 0, 0);
v2.memPort [m2A] . writeConf ();

// Config MEMIB to control MULADDs

v1l.memPort [m1B].setConf (0, 22, 1, 1, 5, 5, sADDR, —5, 0);
v1l.memPort [m1B]. writeConf ();

v2.memPort [m1B].setConf (0, 22, 1, 2, 5, 5, sADDR, —5, 0);
v2.memPort [mIB]. writeConf ();

// Config MEMOA to read 1st half of matriz A (0—7199)

v1.memPort [mOA].setConf (0, 22, 1, 0, 5, 5, 0, —5, 0);
v1.memPort [mOA]. writeConf ();
v2.memPort [mOA] . setConf (5, 22, 1, 1, 5, 5, 0, —5, 0);

v2.memPort [mOA]. writeConf ();

// Config MULADD

v1l.muladd [0].setConf (sMEMA[2], sMEMB[1], sMEMA[O] , MULADD) ;
vl.muladd [0]. writeConf ();

v2.muladd [0].setConf(sMEMA[2], sMEMB[1], sMEMA[0], MULADD);
v2.muladd [0]. writeConf ();

// Pipeline layer 1 — 2
v2.memPort [m3B].setConf (0, 22, 0, 8, 5, 1, sMULADD.p[0]);
v2.memPort [m3B] . writeConf ();

/) AluLite layer2
v2.alulite [0].setConf(sMEMB[3], sMULADD[0] , ALULITE_ADD);
v2.alulite [0]. writeConf ();

//Save 1st part of the result (6336) in vi.MEM2 (1856 —8191)
v1.memPort [m2B]. setConf (1856, 22, 1, 20, 5, 1, sALULITE.p[0]);
v1.memPort [m2B]. writeConf ();

//Running layers 1 and 2

for (i=0; i<rowsA/2; i++) {
v1.memPort [mOA]. setStart (i*colsA+0);
v2.memPort [mOA]. setStart (i*xcolsA+5);

//We get 22 results in each run
v1l.memPort [m2B]. setStart (1856+rowsBx*i);

versatRun ();

}
}
Fig. 7. Code to configure the datapath presented in Fig. 6.
Table 3. FPGA implementation and execution results.
LUTs|FFs |RAM | DSPs|Frequency |[WNS (ns) | Time (us)|Speedup
(MHz)
RISC-V + Versat 7081 |3460 |62 8 100 0.521 9780 3.36
RISC-V + DeepVersat 4047814631196 |20 100 0.292 1689 19.44
ARM + 4 GeMM 167061771516 16 100 NA 3961 8.25
ARM NA NA NA |NA |[667 NA 32839 1

system, since the ARM processor is a hard macro. However, it should be clear
that the ARM + 4 GeMM system is much larger if implemented in a ASIC
compared to both the RISC-V + Versat or the RISC-V + DeepVersat systems.
This means that combining RISC-V and Versat cores can be very competitive
compared to combining standard processors and custom hardware.

As for the execution results, Deep Versat can effectively accelerate this appli-
cation, and this is true for many other ML algorithms. Even the RISC-V + single

296 V. Mario et al.

Versat system has a speedup of 3.36x compared to the standalone ARM system.
The RISC-V + Deep Versat system is almost 20x faster than the ARM system,
and it is faster than the ARM + 4 GeMM IP system by 2.3x. As expected,
the RISC-V + Deep Versat is more than 5x faster than the RISC-V + Versat
system due to the almost perfect parallelism of the inner loop and some code
optimizations that have been done for RISC-V + Deep Versat after the results
for the RISC-V + Versat system had been obtained.

8 Conclusions

This paper presents an implementation of a Convolution Neural Network (CNN)
using a linear array of full mesh dynamically and partially reconfigurable
Coarse Grained Reconfigurable Arrays (CGRAs) called Deep Versat. This design
extends the previous single core Versat design by adding spatial scalability: per-
formance scales linearly with the number of Versat cores without impacting the
frequency of operation.

The Versat core has been enhanced with the capability of being configured
at pre-silicon time. It can be configured with the types and quantities of FUs
required. A new Multiply-Accumulate unit (MAC) has been developed, which is
useful for the CNN application and others. Additionally, picoVersat, the previous
Versat controller, which was only Assembly programmable, has been removed
from the architecture which now relies on an external processor for control. A
RISC-V open source core called picoRV32 has been adopted for controlling Deep
Versat.

The new Deep Versat core is a ring of several new Versat cores created using
Verilog generate statements. With the RISC-V processor used for control, which
is programmable using the GNU toolchain, a C++ software API for reconfig-
uring and running Deep Versat has been developed. In essence, Deep Versat
retains the programmability of the previous Versat core but can be pre-silicon
configured to optimise the size and power consumption of the target application.
Like the previous Versat architecture, the new Deep Versat architecture is also
dynamically and partially reconfigurable to take advantage of the space and time
locality of hardware configurations.

In the CNN algorithm, the neurons are organized in layers and it is important
to have as many of them as possible working in parallel. The layers only differ in
the activation functions of the neurons, the way they are interconnected or the
way they access data from the memories. The chosen application contains the
fundamentals of modern AI algorithms for image recognition, and is a perfect
fit for CGRA implementation. In this paper, a 5-core Deep Versat instance has
been used to accelerate a CNN handwritten digit recognition algorithm. The
implementation runs 19x faster compared to an ARM Cortex-A9 processor hard
macro in a Xilinx FPGA. If the ARM system is accelerated using 4 GeMM IP
cores, the RISC-V + Deep Versat system is still more than 2 times faster.

It is concluded that by using a multi-core CGRA architecture, the system
size grows proportionally with the workload and the clock frequency does not

Implementing CNNs Using a Linear Array of Full Mesh CGRAs 297

degrade with size. Given the preliminary nature of this work, the considered
CNN network is not too complex, but the results clearly show that the same
methodology can be applied to larger CNNs, serving as a good alternative to
FPGAs and GPUs.

Acknowledgments. This work was supported by national funds through Fundagao
para a Ciéncia e a Tecnologia (FCT) under projects PTDC/EEI-HAC/30848/2017 and
UIDB/50021/2020.

References

L e

10.

11.

12.

13.

The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
RISC-V: The Free and Open RISC Instruction Set Architecture. https://riscv.org/
PicoRV32 - a RISC-V CPU. https://github.com/cliffordwolf/picorv32 (2019)
Baumgarte, V., Ehlers, G., May, F., Nickel, A., Vorbach, M., Weinhardt, M.:
PACT XPP - a self-reconfigurable data processing architecture. J. Supercomput.
26(2), 167-184 (2003). https://doi.org/10.1023/A:1024499601571

De Sutter, B., Raghavan, P., Lambrechts, A.: Coarse-grained reconfigurable array
architectures. In: Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J.
(eds.) Handbook of Signal Processing Systems, pp. 449-484. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-6345-1_17

Ebeling, C., Cronquist, D.C., Franklin, P.: RaPiD — reconfigurable pipelined dat-
apath. In: Hartenstein, R.W., Glesner, M. (eds.) FPL 1996. LNCS, vol. 1142, pp.
126-135. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61730-2_13
Hartenstein, R., Herz, M., Hoffmann, T., Nageldinger, U.: Mapping applications
onto reconfigurable kressarrays. In: Lysaght, P., Irvine, J., Hartenstein, R. (eds.)
FPL 1999. LNCS, vol. 1673, pp. 385-390. Springer, Heidelberg (1999). https://doi.
org/10.1007/978-3-540-48302-1_42

Heysters, P.M., Smit, G.J.M.: Mapping of DSP algorithms on the MONTIUM
architecture. In: Proceedings of the International Parallel and Distributed Pro-
cessing Symposium, p. 6, April 2003

Lopes, J.D., de Sousa, J.T.: Versat, a minimal coarse-grain reconfigurable array. In:
Dutra, I., Camacho, R., Barbosa, J., Marques, O. (eds.) VECPAR 2016. LNCS,
vol. 10150, pp. 174-187. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61982-8_17

Mei, B., Lambrechts, A., Mignolet, J.-Y., Verkest, D., Lauwereins, R.: Architecture
exploration for a reconfigurable architecture template. Des. Test Comput. 22(2),
90-101 (2005)

Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.: DRESC: a retar-
getable compiler for coarse-grained reconfigurable architectures (2002)

Hemani, A., Shami, M.A.: Partially reconfigurable interconnection network for
dynamically reprogrammable resource array (2009)

Wijtvliet, M., Waeijen, L., Corporaal, H.: Coarse grained reconfigurable architec-
tures in the past 25 years: overview and classification (2016)

http://yann.lecun.com/exdb/mnist/
https://riscv.org/
https://github.com/cliffordwolf/picorv32
https://doi.org/10.1023/A:1024499601571
https://doi.org/10.1007/978-1-4419-6345-1_17
https://doi.org/10.1007/3-540-61730-2_13
https://doi.org/10.1007/978-3-540-48302-1_42
https://doi.org/10.1007/978-3-540-48302-1_42
https://doi.org/10.1007/978-3-319-61982-8_17
https://doi.org/10.1007/978-3-319-61982-8_17

	Implementing CNNs Using a Linear Array of Full Mesh CGRAs
	1 Introduction
	2 The Deep Versat Architecture
	3 The RV32 Deep Versat System
	4 Pre-silicon Configurability
	5 The Deep Versat API
	6 The CNN Application: Handwritten Digit Recognition
	7 Experimental Results
	8 Conclusions
	References

