
Fernando Rincón · Jesús Barba ·
Hayden K. H. So · Pedro Diniz ·
Julián Caba (Eds.)

LN
CS

 1
20

83

16th International Symposium, ARC 2020
Toledo, Spain, April 1–3, 2020
Proceedings

Applied Reconfigurable
Computing
Architectures, Tools, and Applications

Lecture Notes in Computer Science 12083

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Fernando Rincón • Jesús Barba •

Hayden K. H. So • Pedro Diniz •

Julián Caba (Eds.)

Applied Reconfigurable
Computing
Architectures, Tools, and Applications

16th International Symposium, ARC 2020
Toledo, Spain, April 1–3, 2020
Proceedings

123

Editors
Fernando Rincón
Technology and Information Systems
University of Castilla-La Mancha
Ciudad Real, Spain

Jesús Barba
Technology and Information Systems
University of Castilla-La Mancha
Ciudad Real, Spain

Hayden K. H. So
Department of Electrical and Electronic
Engineering
University of Hong Kong
Hong Kong, China

Pedro Diniz
INESC-ID
Lisbon, Portugal

Julián Caba
Technology and Information Systems
University of Castilla-La Mancha
Ciudad Real, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-44533-1 ISBN 978-3-030-44534-8 (eBook)
https://doi.org/10.1007/978-3-030-44534-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020, corrected publication 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4688-8650
https://orcid.org/0000-0003-1931-3245
https://orcid.org/0000-0002-6514-0237
https://orcid.org/0000-0003-3131-9367
https://orcid.org/0000-0002-7641-4643
https://doi.org/10.1007/978-3-030-44534-8

Preface

During its 16 editions, the International Applied Reconfigurable Computing
Symposium (ARC) has been an open meeting point for the discussion and dissemi-
nation of FPGA-related topics, as evidenced by the fact of having been held in many
different countries around the world (Portugal, Brazil, Thailand, Germany, the UK, the
USA, etc.) and also the large variety in the country of origin of the submitted papers.

The 16th edition of the symposium was held in Toledo1, one of the most historic and
beautiful cities of Spain, formally the ancient capital of the Visigothic Kingdom, and
currently the capital of the Castilla-La Mancha region – recognized as a UNESCO
World Heritage site.

The program included the presentation of 18 full papers (acceptance rate of 45%)
and 11 poster presentations, selected from over 40 submissions from 10 different
countries, after a thorough review process. The program also included three invited
talks covering different application fields, such as Space or sustainable development,
and a social program that helped the participants to unveil the many treasures of
Toledo.

February 2020 Fernando Rincón
Jesús Barba
Julián Caba

1 On the basis of the COVID-19 spreading trend worldwide, it was decided to postpone the
conference.

Organization

The Applied Reconfigurable Computing Symposium (ARC 2020) was organized by
the Grupo de Arquitectura y Redes de Comunicaciones (ARCo) and the University of
Castilla-La Mancha, Spain. The symposium took place at the Faculty of Law and
Social Sciences in Toledo, the capital of the Castilla-La Mancha region in Spain.

Sponsors

ARC 2020 was sponsored by:

General Chair

Fernando Rincón University of Castilla-La Mancha, Spain

Program Committee Chairs

Jesús Barba University of Castilla-La Mancha, Spain
Hayden K. H. So University of Hong Kong, Hong Kong

Steering Committee

Hideharu Amano Keio University, Japan
Jürgen Becker Universität Karlsruhe (TH), Germany
Mladen Berekovic Braunschweig University of Technology, Germany
Koen Bertels Delft University of Technology, The Netherlands
João M. P. Cardoso University of Porto, Portugal
Katherine (Compton)

Morrow
University of Wisconsin-Madison, USA

George Constantinides Imperial College of Science, UK
Pedro C. Diniz INESC-ID, Portugal
Philip H. W. Leong University of Sydney, Australia
Walid Najjar University of California Riverside, USA
Roger Woods The Queen’s University of Belfast, UK

Program Committee

Hideharu Amano Keio University, Japan
Zachary Baker Los Alamos National Laboratory, USA
João Bispo University of Porto, Portugal
Marcelo Brandalero Brandenburg University of Technology Cottbus,

Germany
João Canas Ferreira University of Porto, Portugal
João Cardoso University of Porto, Portugal
Luigi Carro UFRGS, Brazil
Ray Cheung City University of Hong Kong, Hong Kong
Daniel Chillet CAIRN, IRISA, ENSSAT, France
Steven Derrien Université de Rennes, France
Giorgos Dimitrakopoulos Democritus University of Thrace, Greece
António Ferrari University of Aveiro, Portugal
Ricardo Ferreira Universidade Federal de Viçosa, Brazil
Mohammad Ghasemzadeh Apple Inc., USA
Roberto Giorgi University of Siena, Italy
Diana Goehringer TU Dresden, Germany
Frank Hannig Friedrich-Alexander University Erlangen-Nürnberg,

Germany
Jim Harkin University of Ulster, UK
Christian Hochberger TU Darmstadt, Germany
Michael Huebner Brandenburg University of Technology Cottbus,

Germany
Kimon Karras Think Silicon S.A., Greece
Krzysztof Kepa GE Global Research, USA
Georgios Keramidas Technological Educational Institute of Western Greece,

Greece
Andreas Koch TU Darmstadt, Germany
Tomasz Kryjak AGH University of Science and Technology, Poland
Konstantinos Masselos University of Peloponnese, Greece
Cathal Mccabe Xilinx, UK
Antonio Miele Politecnico di Milano, Italy
Takefumi Miyoshi e-trees.Japan, Inc., Japan
Walid Najjar University of California, Riverside, USA
Brent Nelson Brigham Young University, USA
Horácio Neto INESC-ID/IST, University of Lisbon, Portugal
Dimitris Nikolos University of Patras, Greece
Andrés Otero Universidad Politécnica de Madrid, Spain
Kyprianos Papadimitriou Technical University of Crete, Greece
Monica Pereira Universidade Federal do Rio Grande do Norte, Brazil
Thilo Pionteck Otto-von-Guericke Universität Magdeburg, Germany
Mihalis Psarakis University of Piraeus, Greece
Yukinori Sato Toyohashi University of Technology, Japan
António Carlos Schneider Universidade Federal do Rio Grande do Sul, Brazil

viii Organization

Yuichiro Shibata Nagasaki University, Japan
Dimitrios Soudris National Technical University of Athens, Greece
Gustavo Sutter Universidad Autónoma de Madrid, Spain
Theocharis Theocharides University of Cyprus, Cyprus
George Theodoridis University of Patras, Greece
David Thomas Imperial College London, UK
Chao Wang University of Science and Technology of China, China
Roger Woods Queen’s University Belfast, UK

Additional Reviewers

Pedram Amini
Muhammad Ali
Julin Caba
Anna Drewes
Marek Gorgon
Christian Heidorn
Carsten Heinz
Jaco Hofmann
Ahmed Kamal
Farnam Khalili
Gerald Krell

Vasileios Leon
Spiridon Likothanassis
Dimosthenis Masouros
Umar Minhas
Daniele Passareti
Marco Procaccini
Alexander Schwarz
Kostas Siozios
Lukas Sommer
Ioannis Stamoulias
Jacob Wenzel

Organization ix

Contents

Design Methods and Tools

Improving Performance Estimation for FPGA-Based Accelerators
for Convolutional Neural Networks . 3

Martin Ferianc, Hongxiang Fan, Ringo S. W. Chu, Jakub Stano,
and Wayne Luk

Judiciously Spreading Approximation Among Arithmetic Components
with Top-Down Inexact Hardware Design . 14

Giovanni Ansaloni, Ilaria Scarabottolo, and Laura Pozzi

Optimising Operator Sets for Analytical Database Processing on FPGAs 30
Anna Drewes, Jan Moritz Joseph, Bala Gurumurthy, David Broneske,
Gunter Saake, and Thilo Pionteck

Automated Toolchain for Enhanced Productivity in Reconfigurable
Multi-accelerator Systems. 45

Alberto Ortiz, Rafael Zamacola, Alfonso Rodríguez, Andrés Otero,
and Eduardo de la Torre

Chisel Usecase: Designing General Matrix Multiply for FPGA 61
Bruno Ferres, Olivier Muller, and Frédéric Rousseau

Cycle-Accurate Debugging of Embedded Designs Using Recurrent
Neural Networks . 73

Habib ul Hasan Khan, Ariel Podlubne, Gökhan Akgün,
and Diana Göhringer

Soft-Error Analysis of Self-reconfiguration Controllers for Safety Critical
Dynamically Reconfigurable FPGAs . 84

Ludovica Bozzoli and Luca Sterpone

SysIDLib: A High-Level Synthesis FPGA Library for Online
System Identification . 97

Gökhan Akgün, Habib ul Hasan Khan, Marawan Hebaish,
Mahmoud Elshimy, Mohamed A. Abd El Ghany, and Diana Göhringer

Optimal and Greedy Heuristic Approaches for Scheduling and Mapping
of Hardware Tasks to Reconfigurable Computing Devices 108

Zakarya Guettatfi, Paul Kaufmann, and Marco Platzner

Design Space Exploration and Estimation Techniques

Accuracy, Training Time and Hardware Efficiency Trade-Offs
for Quantized Neural Networks on FPGAs . 121

Pascal Bacchus, Robert Stewart, and Ekaterina Komendantskaya

Accelerating a Classic 3D Video Game on Heterogeneous
Reconfigurable MPSoCs . 136

Leonardo Suriano, David Lima, and Eduardo de la Torre

Cross-layer CNN Approximations for Hardware Implementation 151
Karim M. A. Ali, Ihsen Alouani, Abdessamad Ait El Cadi,
Hamza Ouarnoughi, and Smail Niar

Technique for Vendor and Device Agnostic Hardware
Area-Time Estimation . 166

Deshya Wijesundera, Kushagra Shah, Kisaru Liyanage, Alok Prakash,
Thambipillai Srikanthan, and Thilina Perera

Resource Efficient Dynamic Voltage and Frequency Scaling
on Xilinx FPGAs . 178

Gökhan Akgün, Lester Kalms, and Diana Göhringer

RISC-V Based MPSoC Design Exploration for FPGAs: Area, Power
and Performance . 193

Muhammad Ali, Pedram Amini Rad, and Diana Göhringer

High-Level Synthesis

A Modular Software Library for Effective High Level Synthesis of
Convolutional Neural Networks . 211

Hector Gerardo Munoz Hernandez, Safdar Mahmood,
Marcelo Brandalero, and Michael Hübner

HLS-Based Acceleration Framework for Deep Convolutional
Neural Networks . 221

Ashish Misra and Volodymyr Kindratenko

FPGA-Based Computational Fluid Dynamics Simulation Architecture
via High-Level Synthesis Design Method. 232

Changdao Du, Iman Firmansyah, and Yoshiki Yamaguchi

High-Level Synthesis in Implementing and Benchmarking Number
Theoretic Transform in Lattice-Based Post-Quantum Cryptography
Using Software/Hardware Codesign. 247

Duc Tri Nguyen, Viet B. Dang, and Kris Gaj

xii Contents

Exploring FPGA Optimizations to Compute Sparse Numerical Linear
Algebra Kernels . 258

Federico Favaro, Ernesto Dufrechou, Pablo Ezzatti, and Juan P. Oliver

Architectures

A CGRA Definition Framework for Dataflow Applications 271
George Charitopoulos and Dionisios N. Pnevmatikatos

Implementing CNNs Using a Linear Array of Full Mesh CGRAs 288
Valter Mário, João D. Lopes, Mário Véstias, and José T. de Sousa

A Block-Based Systolic Array on an HBM2 FPGA
for DNA Sequence Alignment . 298

Riadh Ben Abdelhamid and Yoshiki Yamaguchi

Comparison of Direct and Indirect Networks for High-Performance
FPGA Clusters . 314

Antoniette Mondigo, Tomohiro Ueno, Kentaro Sano,
and Hiroyuki Takizawa

A Parameterisable FPGA-Tailored Architecture for YOLOv3-Tiny 330
Zhewen Yu and Christos-Savvas Bouganis

Hardware/Algorithm Co-optimization for Fully-Parallelized Compact
Decision Tree Ensembles on FPGAs . 345

Taiga Ikeda, Kento Sakurada, Atsuyoshi Nakamura, Masato Motomura,
and Shinya Takamaeda-Yamazaki

Applications

StocNoC: Accelerating Stochastic Models Through Reconfigurable
Network on Chip Architectures . 361

Arshyn Zhanbolatov, Kizheppatt Vipin, Aresh Dadlani,
and Dmitriy Fedorov

Implementation of FM-Index Based Pattern Search
on a Multi-FPGA System. 376

M. M. Imdad Ullah, Akram Ben Ahmed, and Hideharu Amano

Reconfigurable Accelerator for On-Board SAR Imaging
Using the Backprojection Algorithm . 392

Rui P. Duarte, Helena Cruz, and Horácio Neto

Correction to: Reconfigurable Accelerator for On-Board SAR Imaging
Using the Backprojection Algorithm . C1

Rui P. Duarte, Helena Cruz, and Horácio Neto

Author Index . 403

Contents xiii

Design Methods and Tools

Improving Performance Estimation
for FPGA-Based Accelerators

for Convolutional Neural Networks

Martin Ferianc1(B), Hongxiang Fan2, Ringo S. W. Chu3, Jakub Stano4,
and Wayne Luk2

1 Department of Electronic and Electrical Engineering,
University College London, London, UK

martin.ferianc.19@ucl.ac.uk
2 Department of Computing, Imperial College London, London, UK

{h.fan17,w.luk}@imperial.ac.uk
3 Department of Computer Science, University College London, London, UK

ringo.chu.16@ucl.ac.uk
4 Department of Information Technology and Electrical Engineering,

ETH Zurich, Zurich, Switzerland
jstano@ethz.ch

Abstract. Field-programmable gate array (FPGA) based accelerators
are being widely used for acceleration of convolutional neural networks
(CNNs) due to their potential in improving the performance and recon-
figurability for specific application instances. To determine the optimal
configuration of an FPGA-based accelerator, it is necessary to explore
the design space and an accurate performance prediction plays an impor-
tant role during the exploration. This work introduces a novel method
for fast and accurate estimation of latency based on a Gaussian process
parametrised by an analytic approximation and coupled with runtime
data. The experiments conducted on three different CNNs on an FPGA-
based accelerator on Intel Arria 10 GX 1150 demonstrated a 30.7%
improvement in accuracy with respect to the mean absolute error in com-
parison to a standard analytic method in leave-one-out cross-validation.

Keywords: Field-programmable gate array · Deep learning ·
Convolutional neural network · Performance estimation · Gaussian
process

1 Introduction

Field-programmable gate arrays (FPGAs) are becoming increasingly popular in
the deep learning community, particularly in the acceleration of convolutional
neural networks (CNNs) [4,5,11]. This acceleration is achieved by parallelising
the extensive concurrency exhibited by CNNs. As such, FPGA is ideal as the

c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 3–13, 2020.
https://doi.org/10.1007/978-3-030-44534-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_1

4 M. Ferianc et al.

platform allows implementation of fine-grain parallelisations. To do an architec-
tural exploration and determine the optimal hardware configuration, it is nec-
essary to estimate the performance with respect to multiple different hardware
specifications.

There are several performance estimation frameworks for reconfigurable
FPGA-based accelerators [2,3,19], however, estimating the performance with-
out knowing about scheduling is still a very challenging task because of two
main reasons. First, the explicit time to execute a certain operation on hard-
ware varies by on/off-chip communication, synchronisation, control signals, I/O
interruptions and in particular for the CNN accelerators - the CNN’s architec-
ture, which complicate analytic estimation. Second, it is difficult to accurately
select the most representative design features for all hardware specifications dur-
ing the performance estimation.

In this paper, we propose a novel approach for performance estimation for
FPGA-based CNN accelerators [11]. This method constitutes a Gaussian pro-
cess (GP) [18] coupled with a standard analytic method and statistical data.
Gaussian process is a stochastic process, such that every finite collection of ran-
dom variables has a multivariate normal distribution [15]. Experiments were
conducted on three different CNNs on Intel Arria GX 1150 FPGA and we com-
pared the method to linear regression (LR), GP with zero mean function, GP
with an artificial neural network (ANN) mean function [6], gradient tree boost-
ing (GTB) and ANN in estimating latency. We show that the proposed method
achieved the top result among all compared methods.1

In Sect. 2 we demonstrate the standard approach for analytic performance
estimation. Afterwards, in Sect. 3 we introduce the proposed method, followed
by Sect. 4 where we describe the accelerator as well as the dataset on which we
benchmarked the method. Then we present the evaluation in Sect. 5 followed by
a conclusion in Sect. 6.

2 Background

The most accurate method of determining the performance is escalating the
CNN onto the hardware. One major drawback of this method is requiring re-
synthesis and re-implementation for different hardware specifications. Therefore,
it is more feasible and practical to perform the design space exploration (DSE)
[9] with respect to an estimate of the performance in a software level, rather
than running the CNN each time for a different hardware configuration.

Even with a more advanced option of performance estimation, high irregu-
larity within a complex accelerator results in case-by-case estimation. Therefore,
this approach is unfeasible in general case, as it is usually constrained to a single
hardware configuration. In our work, we are focused on estimating one particular
aspect of performance - latency for a CNN reconfigurable accelerator.

The standard 2D convolution layers, from which the CNN is constructed,
occupy over 90% of the overall processing time [17] and their latency Ti on the
1 A tutorial code is available at https://git.io/Jv31c.

https://git.io/Jv31c

Improving Performance Estimation for FPGA-Based Accelerators 5

accelerator needs to be estimated to determine the best hardware configuration
through DSE. For 2D convolution, there are several categories of parallelism
including filter parallelism (PF) or channel parallelism (PC) in addition to
spatial and kernel parallelisms. These are the parameters that usually need to
be determined during the DSE.

A performance estimation framework for reconfigurable dataflow platforms
was proposed by Yasudo et al. [19] that can analytically determine the number
of accelerators suitable for the application. Dai et al. [2] proposed an estimation
method based on a GTB and a high-level synthesis report and they compared it
with LR and ANN. However, their method requires a significant amount of data
and features from the synthesis report, which might not be available, especially
when high-level synthesis is not being used to describe the accelerator. Enzler
et al. proposed a general heuristic-based method [3] for estimating the perfor-
mance of accelerator designs, which can be modified for CNN accelerators and
is now used as the standard method.

Table 1. Notation used for performance estimation in an FPGA-based accelerator for
convolutional neural networks.

Parameter Description

H Height of input feature map

W Width of input feature map

HO Height of output feature map

WO Width of output feature map

K Kernel size

F Number of filters

C Number of channels

PF Parallelism in filter dimension

PC Parallelism in channel dimension

MCLK [MHz] Memory access clock cycle time

LCLK [MHz] Logic clock cycle time

MEFF [%] Memory transfer efficiency

S [bits] Memory transfer size

DW [bits] Processing data width

M Number of input features

N Number of layers in a CNN

P Number of training samples

The simplest form of a heuristic for estimating latency on a hardware accel-
erator consists of dividing the overall processing time for a single input T into
time steps Ti which correspond to the time to perform one 2D convolution in a

6 M. Ferianc et al.

Table 2. Number of operations and a data size for a 2D convolution i.

Sizes Number of operations/Data size

Number of compute operations Fi × Ci ×Hi ×Wi ×Ki ×Ki

Input size Hi ×Wi × Ci

Weights size Fi × Ci ×Ki ×Ki

Output size HOi ×WOi × Fi

feed-forward CNN consisting of N 2D convolutions. The total estimated latency
for the CNN in that given configuration is then simply added as T =

∑N
i=1 Ti.

The time Ti is being split into three different terms: (1) On-chip memory
loading time Tloadi

, (2) Computation time Tcomputei and (3) Off-chip memory
storing time Tstorei . Assuming the design is pipelined, the runtime Ti is then
decided by the slowest path which is chosen by the maximum among Tloadi

,
Tcomputei and Tstorei . Each of these terms depends on a mixture of parameters
that are specified by the 2D convolution: Input size, Output size, Number of
compute operations, device specific settings: Memory bandwidth, Clock cycle time
or the hardware architecture: Parallelism, which are known prior to making a
prediction. The estimated latency per layer is then computed as shown in Eq. 1
below

Tloadi
=

Input size
Memory bandwidth

Tcomputei =
Number of compute operations
Clock cycle time × Parallelism

Tstorei =
Output size

Memory bandwidth
Ti = max (Tloadi

, Tcomputei , Tstorei) (1)

The heuristic approach does not depend on any statistical data to perform
the estimation and it is simple to implement since it relies only on the features
that can be easily read from the respective datasheets. Nevertheless, this general
estimation method usually computes the most optimistic estimate and it does
not leave room for delays caused by communication, synchronisation or control.
One way to refine the estimation is that we can collect runtime data and use
this data to improve the estimate. Therefore, in our work, we are proposing to
use the standard analytic method as a mean function inside a GP together with
the profiling data collected by running the CNN on real hardware to train the
GP to model the observed misestimation.

3 Gaussian Process with an Analytic Mean Function

GP is a modelling function built around Bayesian modelling which can embody
our prior knowledge/model into our target [15]. A GP is specified by a mean func-
tion m(.) and a covariance function (kernel) k(.,.). The mean function represents
the supposed average of the estimated data. The kernel computes correlations
between inputs and it encapsulates the structure of the hypothesised function.

Improving Performance Estimation for FPGA-Based Accelerators 7

The main benefit of using a GP over other methods such as LR, GTB or ANN is
that it can use the developed analytic foundations, such as the standard analytic
performance estimation, as prior knowledge in a form of m(.).

The predictive distribution of the GP, p(yT|X,y,XT) for the targets yT

given the corresponding features XT and the training data X,y is defined as
a multivariate Gaussian distribution N with a predictive mean E[yT|X,y,XT]
and a predictive variance V[yT|X,y,XT].

The X ∈ RP×M and XT ∈ RN×M are the sets of M features for P samples
for training and N samples for testing. The y ∈ RP and yT ∈ RN are the target
objectives corresponding to the number of samples per dataset respectively. The
E[yT|X,y,XT] is defined in Eq. 2 below as

m(XT) � Ti(XT) + k(XT,X)(k(X,X) + σ2I)−1(y − m(X) � Ti(X)) (2)

and V[yT|X,y,XT] is defined in Eq. 3 below as

k(XT,XT) − k(XT,X)(k(X,X) + σ2I)−1k(XT,X)T (3)

where the σ2 represents the noise amplitude and I is the identity matrix2. In the
formulas above, GP possesses a set of hyperparameters associated with both the
mean function and the choice of the kernel. The hyperparameter values can be
found by maximising the marginal likelihood. The optimal hyperparameters are
then chosen by observing the likelihood or by cross-validation.

The GP is usually used with an agnostic mean function centred at zero.
However, we propose to use the previously developed latency model Ti, for each
2D convolutional layer i in a CNN, as a mean function m(.) inside the pre-
dictive mean to encapsulate the known analytic model of the accelerator into
the proposed method. It uses the collected data X, which in this case are the
parameters, and the hardware configuration of the accelerator for each convolu-
tion, which would normally be used in the standard analytic estimation. By also
recording our past measurements from our past implementations y, we can form
a training set on which we can learn the nonlinearities that cannot be analyti-
cally modelled. The XT represents the set of test features corresponding to the
2D convolutions for which we would like to estimate their target performance
yT, in this case, latency.

Therefore, the advantage of this method in comparison to other machine
learning (ML) inspired methods is that it avoids completely relying on the data
while estimating the performance. Additionally, this method does not need to
extract any features from the data because the features for the estimation are
already known and they are the ones used in the standard analytic estimation.
Hence, this method reuses previously developed knowledge by incorporating the
standard method into the model as the mean function of the GP to anchor the
estimate within reliable bounds. By anchoring the estimate, the model is also
more interpretable in comparison to purely data-reliant methods which depend
completely on the learnt features which are usually not human-readable. Addi-
tionally, by specifying the mean function and combining it with the collected
2 For a detailed derivation please refer to [15].

8 M. Ferianc et al.

data, the proposed method can give a prediction outside the observed data sam-
ple without collapsing.

In the next Section, we present the FPGA-based accelerator from which we
have collected the data and onto which we have evaluated our proposed method.

4 Accelerator and Dataset

4.1 Accelerator’s Architecture

The per-layer latency of an implemented FPGA-based CNN accelerator is char-
acterised according to the standard method into three parts: (1) Loading time
for loading the input, (2) Computation time, (3) Storing time for storing the
results.

The input has to be loaded into the on-chip memory only once for the first
layer, similarly to the output being stored only once from the on-chip memory to
the off-chip memory. The output of intermediate layers is buffered in the on-chip
memory.

The notation is shown in Table 1 and the size of the weights and input/output
for convolution is shown in Table 2. Following the standard method, the per-layer
latency Ti for a single input is shown in Eqs. 4, 5 and 6 as follows

1. Loading time i.e., the time to load the input into the on-chip memory

Tweightsi =
Ki × Ki × Fi × Ci × DW

PF × MCLK × S × MEFF

Tdatai
=

Hi × Wi × Ci × DW

PF × MCLK × S × MEFF

Tloadi
= Tweightsi + Tdatai

(4)

2. Computation time i.e., the time to compute PC × PF parallel channels and
filters respectively

Tcomputei =
Fi × Ci × Hi × Wi × Ki × Ki

PF × PC × LCLK
(5)

3. Storing time i.e., the time to store the output back to the off-chip memory

Tstorei =
HOi

× WOi
× Fi × DW

PF × MCLK × S × MEFF
(6)

Therefore, the time required to process a single 2D convolutional layer can
be written as in Eq. 7 below as

Ti =

⎧
⎪⎨

⎪⎩

Ti=1 = Tloadi
+ Tcomputei

Ti�=1∨N = max(Tweightsi , Tcomputei)
Ti=N = max(Tweightsi , Tcomputei) + Tstorei

(7)

Improving Performance Estimation for FPGA-Based Accelerators 9

4.2 Dataset

The evaluation dataset comprises of several different configurations of 2D convo-
lutional layers which are the building blocks of three different CNNs, namely SSD
[12] with 24 2D convolutions, Yolo [16] with 75 2D convolutions and ResNet-50
[8] with 57 2D convolutions. SSD and Yolo are characteristic for their irreg-
ularities, which results in the output being produced at different times, while
the ResNet is known for its residual blocks. Each network was trained in 32-
bit floating-point representation and then linearly quantised into 8-bit integer
representation [4]. In total giving P training samples X as 156 and the input
feature size M being 15 corresponding to the first 15 parameters in the Table 1.
The recorded latency per each convolution represents the targets y.

Each network was executed on the implemented accelerator on Intel Arria GX
1150 FPGA. The analysis of the dataset together with the evaluation parameters
can be found in Tables 3 and 4.

Table 3. Dataset for evaluation.

Parameter Min Mean Max

H/W 1 42 418

HO/WO 1 37 416

K 1 2 7

C 3 360 2048

F 64 371 2048

Latency [ms] 0.018 0.841 11.727

Table 4. Evaluation parameters.

Parameter Value

PC 64

PF 64

MCLK 200 MHz

LCLK 200 MHz

MEFF 70%

S 64-bit

DW 8-bit

5 Evaluation

In evaluation, the proposed method is compared with the standard method,
including a GP with a zero mean function, a GP with the ANN mean function
[6], LR, GTB and ANN. The dataset described in Sect. 4.2 is being used to
evaluate all these methods.

For a more comprehensive evaluation, leave-one-out cross-validation (LOO-
CV) with respect to the mean absolute error (MAE) is used to compare the
estimators. LOOCV is a particular case of leave-k-out cross-validation where
k = 1, which means that a model is trained on all samples except one, onto
which the performance is then evaluated. In this instance, the performance of
the predictor is measured by the absolute error between the prediction and the
target value. The error is accumulated for all samples from which the mean is
then calculated by dividing the total summed error by the number of samples.

10 M. Ferianc et al.

This approach was also used to determine the best hyperparameters for each
regressor with respect to the LOOCV MAE. The results, as well as the individ-
ual properties and implementation details for the estimators, are summarised
in Table 5. We considered several hyperparameters for the proposed GP-based

Table 5. Evaluation of latency estimation for different methods.

Methods LOOCV
MAE [ms]

Implementation and
optimiser

Properties

Standard method 0.450 None None

Gaussian process 0.521 GPFlow [13] - Adam [10] Mean function:
Zero
Learning rate:
0.001
Best kernel:
Matérn 3/2

Our method 0.312 GPFlow [13] - Adam [10] Mean function:
Ti

Learning rate:
0.001
Best kernel:
Matérn 3/2

Gaussian process
with Artificial
neural network
mean function

0.692 GPFlow [13] - Adam [10] Mean function:
Artificial neural net-
work 15, 64, 1 nodes
and tanh activations
Learning rate:
0.00001
Best kernel:
Matérn 3/2

Linear regression 0.450 sklearn [14] Default

Gradiet tree
boosting

0.607 sklearn [14] - AdaBoost [7] Learning rate:
0.1
Number of trees:
10
Maximum depth:
3

Artificial neural
network

1.257 Tensorflow [1] - Adam [10] Batch size:
8
Learning rate:
0.1
Regulariser:
L2, 0.001
Number of nodes:
10, 10, 1
Activations:
ReLU

Improving Performance Estimation for FPGA-Based Accelerators 11

method such as the learning rate, ranging from 0.1 to 0.000001 on a logarith-
mic scale and the kernel, ranging from linear, Gaussian to Matérn kernels [15]
and their combinations. The best parameters were found by a grid search with
respect to the LOOCV MAE.

In case of the GP with the ANN mean function, it was necessary to find
hyperparameters for the ANN such as the number of nodes in the hidden layers,
between 16, 32 and 64 and the number of hidden layers, ranging from 1 to 3.
For the activation function, we considered tanh, ReLU and sigmoid. For GTB
and ANN, we needed to determine the most influential parameters such as the
learning rate, ranging from 0.01 to 0.0001 on a logarithmic scale or for the GTB,
the number of trees or the tree depth that was determined by gradual pruning.
For the ANN we needed to decide the number of hidden nodes, between [10, 1],
[10, 10, 1] and [10, 10, 10, 1] and for the activation function, we again considered
tanh, ReLU and sigmoid. The hyperparameters were similarly found through a
grid search with respect to the LOOCV MAE. For the standard method and
LR, it was not necessary to determine any hyperparameters.

Overall, the best method proved to be the combination of the standard
method and the collected data in the form of the GP with an analytic mean
function. In comparison to other approaches, the proposed method achieved
approximately a 30.7% improvement in LOOCV with respect to MAE decreas-
ing to 0.312 ms in comparison to the second best-performing methods, which
were LR and the standard method with 0.450 ms MAE.

The main advantage of the method lays in its implementation simplicity,
as it reuses the analytic approximation that is commonly used for DSE, com-
bined with recorded measurements. The method can be improved by recording
more measurements and simple fine-tuning of the hyperparameters related to
the kernel k or the analytic mean m.

A potential limitation of this method stems from the kernel computation
which scales with the complexity of O(P 3), which means that the inference time
can be prolonged if there are many training samples. One possible solution to
overcome this problem is using k-Means clustering to determine the k most
important points that have to be included in the kernel. Nevertheless, the infer-
ence time is much less than the time needed for synthesis and then running the
design on hardware.

6 Conclusion and Future Work

In this paper, we proposed an accurate method for estimating the performance of
an field-programmable gate array-based accelerator for convolutional neural net-
works and compared it with the standard method and variations of the Gaussian
process, linear regression, gradient tree boosting and an artificial neural network.
The evaluation demonstrated that the innovative Gaussian process paired with
the domain-specific knowledge and collected data can provide an approximately
30.7% accuracy improvement with respect to the standard method or the linear
regression.

12 M. Ferianc et al.

In the proposed method, users need to decide what are the relevant soft-
ware/hardware features M together with an analytic approximation for the mod-
elled performance that will be used as the mean function m(.) in the Gaussian
process. Afterwards, they need to supply the profiling data for training X,y, X is
the feature matrix and y are the targets, in this case, the per-layer latency. In the
end, the user needs to decide what is going to be the best kernel k(., .) and use it
to train the Gaussian process to obtain the best values for the hyperparameters
(see footnote 1).

In the future, we will validate the method on more configurations on differ-
ent hardware boards. Furthermore, we will formulate similar analytic approxi-
mations for other potential objectives, for example, the resource usage or power
consumption and use them as priors for estimating these objectives through our
proposed Gaussian process-based method.

Acknowledgments. We thank Yann Herklotz, Alexander Montgomerie-Corcoran
and ARC’20 reviewers for insightful suggestions.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/

2. Dai, S., Zhou, Y., Zhang, H., Ustun, E., Young, E.F., Zhang, Z.: Fast and accu-
rate estimation of quality of results in high-level synthesis with machine learn-
ing. In: Proceedings of the 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 129–132. IEEE,
Boulder (2018)

3. Enzler, R., Jeger, T., Cottet, D., Tröster, G.: High-level area and performance esti-
mation of hardware building blocks on FPGAs. In: Hartenstein, R.W., Grünbacher,
H. (eds.) FPL 2000. LNCS, vol. 1896, pp. 525–534. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44614-1 57

4. Fan, H., et al.: A real-time object detection accelerator with compressed SSDLite
on FPGA. In: Proceedings of the 2018 International Conference on Field-
Programmable Technology (FPT), pp. 14–21. IEEE, Sakura (2018)

5. Fan, H., et al.: F-E3D: FPGA-based acceleration of an efficient 3D convolutional
neural network for human action recognition. In: Proceedings of the 2019 IEEE
30th International Conference on Application-Specific Systems, Architectures and
Processors (ASAP), vol. 2160, pp. 1–8. IEEE, New York (2019)

6. Fortuin, V., Rätsch, G.: Deep mean functions for meta-learning in Gaussian pro-
cesses. arXiv preprint arXiv:1901.08098 (2019)

7. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–
378 (2002)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 2016, pp. 770–778. IEEE, Las Vegas (2016)

9. Holland, B., George, A.D., Lam, H., Smith, M.C.: An analytical model for multi-
level performance prediction of multi-FPGA systems. ACM Trans. Reconfig. Tech-
nol. Syst. (TRETS) 4(3), 27 (2011)

https://www.tensorflow.org/
https://doi.org/10.1007/3-540-44614-1_57
http://arxiv.org/abs/1901.08098

Improving Performance Estimation for FPGA-Based Accelerators 13

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Lian, X., Liu, Z., Song, Z., Dai, J., Zhou, W., Ji, X.: High-performance FPGA-
based CNN accelerator with block-floating-point arithmetic. IEEE Trans. Very
Large Scale Integr. VLSI Syst. 27, 1874–1885 (2019)

12. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

13. Matthews, D.G., et al.: GPflow: a Gaussian process library using TensorFlow. J.
Mach. Learn. Res. 18, 1299–1304 (2017)

14. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

15. Rasmussen, C.E.: Gaussian Processes in Machine Learning. The MIT Press, Cam-
bridge (2005)

16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-
time object detection. In: Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 3, pp. 779–788. IEEE, Las Vegas
(2016)

17. Venieris, S., Kouris, A., Bouganis, C.S.: Toolflows for mapping convolutional neural
networks on FPGAs: a survey and future directions. ACM Comput. Surv. (CSUR)
51, 1–39 (2018)

18. Williams, C.K., Rasmussen, C.E.: Gaussian processes for regression. In: Advances
in Neural Information Processing Systems, pp. 514–520 (1996)

19. Yasudo, R., Coutinho, J., Varbanescu, A., Luk, W., Amano, H., Becker, T.: Perfor-
mance estimation for exascale reconfigurable dataflow platforms. In: Proceedings
of the 2018 International Conference on Field-Programmable Technology (FPT),
pp. 314–317. IEEE, Sakura (2018)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-46448-0_2

Judiciously Spreading Approximation
Among Arithmetic Components

with Top-Down Inexact Hardware Design

Giovanni Ansaloni(B), Ilaria Scarabottolo, and Laura Pozzi

Università della Svizzera Italiana, Lugano, Switzerland
{giovanni.ansaloni,ilaria.scarabottolo,laura.pozzi}@usi.ch

Abstract. Approximate logic synthesis is emerging as a promising
avenue towards the development of efficient and high performance digi-
tal designs. Indeed, effective methodologies for the inexact simplification
of arithmetic circuits have been introduced in recent years. Nonetheless,
strategies enabling the integration of multiple approximate components
to realise complex approximate hardware modules, able to maximise
gains while controlling ensuing Quality-of-Service degradations, are still
in their infancy. Against this backdrop, we herein describe a methodol-
ogy to automatically distribute the error leeway assigned to a hardware
design among its constituent operators. Our strategy is able to identify
high-quality trade-offs among resource requirements, performance and
exactness in digital implementations, across applications belonging to
different domains, and without restrictions on the type and bit-width of
their approximable arithmetic components.

Keywords: Inexact computing · Approximate logic synthesis ·
Electronic design automation

1 Introduction

Established methodologies for hardware development explore trade-offs between
performance (latency, throughput) and cost (area, energy) of a target design.
Approximate Logic Synthesis challenges this paradigm by also considering a fur-
ther dimension: that of the desired degree of exactness. ALS frameworks simplify
those parts of a design that have a small impact on the performed computation,
deriving inexact, but more efficient, implementations. ALS can be effectively
applied in domains ranging from signal processing to machine learning [9], where
careful approximation-induced perturbations lead to graceful Quality-of-Service
(QoS) degradations.

This work has been partially supported ML-edge (grant no. 200020 182009 - 156397)
project funded by the Swiss NSF and the MyPreHealth (grant no. 16073) project
funded by Hasler Stiftung.

c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 14–29, 2020.
https://doi.org/10.1007/978-3-030-44534-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_2

Top-Down Inexact Hardware Design 15

ALS has been the focus of an increasing number of research efforts in recent
years [14,15,18]. Nonetheless, most works in this field target the simplification
of single arithmetic circuits. To fully realise the potential of ALS, it is instead
critical to establish strategies that integrate multiple, individually-tailored, inex-
act elements to realise complex (inexact) hardware modules. Against this back-
drop, we here introduce a methodology, named TDApprox, that automatically
distributes the error tolerable at the output of a hardware design among its
constituent operators, hence driving their inexact synthesis.

Other recent works addressing this challenge assume, as a required input
to their frameworks, the availability of a library of approximated components,
which are then selected and integrated [1,2,6,10,16]. As illustrated on the left
side of Fig. 1, such bottom-up stance (in which the characterisation of opera-
tors is performed a-priori, independently from the design implementation) poses
a limit on flexibility, because (a) for a given operator, library instances could
expose approximation levels which are not compatible with the ones required by
a target design, or (b) the accelerator to be simplified may require input/output
bitwidths not available in characterised components. Finally (c), and most
importantly, an operator could even be entirely missing from the employed
library.

To avoid these pitfalls, TDApprox instead embodies a top-down strategy
(hence its name). As described on the right side Fig. 1, in our approach the ALS
of operators is only performed after assessing their approximability, i.e.: the
impact of operators-level approximations on the overall design Quality-of-service

Fig. 1. Comparison between a bottom-down approach (left), selecting approximated
components from a library, and the top-down stance embodied by TDApprox (right),
in which the evaluation of the approximability of arithmetic operators is precursory to
their synthesis.

16 G. Ansaloni et al.

(QoS). TDApprox is therefore not limited to a pre-determined set of operators
and I/O bitwidth, and can consider arbitrary degrees of approximation.

TDApprox interfaces to state-of-the-art methods for the ALS of single arith-
metic circuits, automatically deriving synthesisable hardware netlists of complex
inexact accelerators, from C code and an error bound on the design output.

In summary, our contribution is three-fold:

– We introduce a top-down methodology for distributing a user-defined approx-
imation leeway among the arithmetic operators comprising a hardware design.

– We detail how TDApprox is integrated in an ALS framework for the syn-
thesis of inexact designs, starting from a high-level (C) description of their
functionality.

– We showcase the effectiveness of TDApprox on applications from diverse
error-resilient fields, considering both combinatorial and sequential imple-
mentations.

The paper proceeds as follows: Sect. 2 further places our contribution in the
context of related works. Section 3 details the TDApprox methodology, while
Sect. 4 assesses its performance. Section 5 concludes the paper.

2 State of the Art

Various automated strategies for the inexact synthesis of generic arithmetic cir-
cuits have been proposed in literature. Notably, Venkataramani et al. proposed
in [19] to approximate logic cones based on don’t care analysis, while in [18]
introduced an algorithm to identify and merge sub-circuits performing similar
functions. Schlachter et al. [15] instead adopt a significance and an activity met-
ric to guide logic simplification, Ranjan et al. [13] is based on model checking,
and Nepal et al. [12] enumerate inexact transformations modelled as abstract
syntax trees. Finally, Scarabottolo et al. [14] base their approach on a branch-
and-bound algorithm, identifying the largest sub-circuit that can be simplified
from a gate-level netlist under an error constraint.

Occasionally, the authors of these works provide examples of how inexact
operators realised using their methodologies can be integrated: [15] and [13]
study the performance of a DCT accelerator implemented using their approx-
imated components, while [12] consider a perceptron classifier and a block
matcher. Nonetheless, in all those cases the accelerators implementations are
had-hoc, and no strategy is suggested to systematically compose inexact build-
ing blocks.

The few works that aim at addressing the ensuing integration problem do so,
as opposed to our methodology, from a bottom-up perspective: Du et al. [2] rely
on a pre-characterised set of seven inexact multipliers to drive their heuristic,
Li et al. [6] consider five inexact adders and multipliers, which are selected by
either a knapsack algorithm or an ILP formulation. Sengupta et al. [16] and Chan
et al. [1] analytically derive the errors and resource requirements of simplified
adders and multipliers. Mrazek et al. [10] adopts a machine learning approach to

Top-Down Inexact Hardware Design 17

compose the inexact operators included in the EvoApprox8b library [11], which
provides three adders and eight multipliers at varying approximation levels.

3 Methodology

Input to TDApprox is a directed and acyclic Data Flow Graph (DFG) G(N,E),
representing the exact functionality to be approximated. Nodes ni represents
arithmetic operations and edges e(ni, nj) data dependencies among them. Addi-
tionally, the edge set Ein accounts for the DFG inputs; eout for its output1.
Furthermore, input edges are annotated with the lower and upper bounds of
their admissible values: xi = [li, ui]. As and example, xi = [0, 255] for an 8-bit
unsigned value.

The DFG is traversed to analyse the effect, as seen by eout, of perturbations
induced by each node. As an illustrative example, consider the simple case in
Fig. 2a, where the output of an approximate adder is connected to one input
of an exact multiplier. If the adder output differs from that of an exact addi-
tion by δA, the error at the DFG output is, in the worst case, δA × max (|x3|),
hence magnifying the approximation degradation if max (|x3|) > 1. Note that
max (|x3|) can be either −l3 or u3 depending on the bounds on its admissible
values.

As detailed by Misailovic et al. [8], if a node ni ∈ N performing a generic
arithmetic operation f with input edges e1,i(nj1, ni) and e2,i(nj2, ni) has inexact
predecessors, and it is itself inexact, the error at its output is bounded as follows:

|fi(x1, x2) − f̂i(x̂1, x̂2)| ≤ k1,i|err(e1,i)| + k2|err(e2,i)| + |δi| (1)

where f(x1, x2) and f̂(x̂1, x̂2) are the node output values in the exact and the
inexact case (respectively), err(e1) and err(e2) represent the impact of approx-
imating the predecessors of ni, and δi is the approximation introduced by ni

itself. Moreover, the propagation coefficients k1 and k2 indicate how the inex-
actness at the input of the node are magnified or dampened by the performed
function f , and are defined as:

k1 = max
x1,x2

|∂f(x1, x2)
∂x1

| k2 = max
x1,x2

|∂f(x1, x2)
∂x2

| (2)

The solution of Eq. 2 for common arithmetic operations is presented in Table 1.
We apply such formulation in a different context with respect to Misailovic

et al. [8] 2 i.e., the approximate synthesis of hardware accelerators. In our
scenario, the error caused by an approximate node ni (with approximation bound
δi) must be evaluated at the DFG output eout. Therefore, we define the induced
1 For simplicity, we focus on single-output DFGs. Multiple-outputs cases can nonethe-

less be addressed by considering each output in isolation, and then selecting the most
stringent approximation constraint for each operation.

2 The authors of [8] aim to bind approximable operations (with known approximabil-
ity) to inexact functional units.

18 G. Ansaloni et al.

Fig. 2. Right: DFG with one approximated node. Left: DFG having all nodes imple-
mented as approximate operators.

error bound of an operation as erri, which is the product of the propagation
coefficients along the path connecting ni to eout, if only one such path exist:

erri = δi ×
∏

nj∈succ(ni)

k(nj) (3)

where succ(ni) are the successor nodes of ni in G, considered recursively.
When instead several paths between ni and eout are present, erri is bounded

by the sum of the errors induced along the different paths:

erri = δi ×
∑

p∈paths

(
∏

nj∈succ(ni)

k(nj)) (4)

Finally, when all nodes in G are inexact to a degree, the deviation from an
exact formulation is the super-position of the errors due to the approximation
of each operation:

errTOT =
∑

ni∈G

erri =
∑

ni∈G

[δi ×
∑

p∈paths

(
∏

nj∈succ(ni)

k(nj))] (5)

errTOT is the bound to the overall quality degradation at the DFG level,
set according to the application constraint. This leeway can then be distributed
among the erri coefficients.

Table 1. Propagation coefficients for common operations.

Operation k1 k2

Addition/subtraction (+/−) 1 1

Multiplication (×) max (|x2|) max (|x1|)
Division (÷) max (1/|x1|) max (|x1/x2

2|)

Top-Down Inexact Hardware Design 19

If err1 = ... = errN = errTOT /card(N), the error induced by each approx-
imate operation equally affects the output QoS degradation. While this may
seem a sensible choice, operators may have different resource requirements e.g.:
a high bit-width multiplier being much more area- and power-hungry than a
small-bitwidth adder. Consequently, TDApprox assigns more error slack to the
operators having a higher Energy-Area-Delay Product (EDAP) in their exact
implementation:

erri = errTOT × EDAP (i)∑
n∈N EDAP (n)

(6)

Fixing the values of the erri coefficients allows to solve the Eq. 4 for
Δ = {δ1, ..., δN}, i.e., to compute the error bound for each operation in G.
As shown below, such equations are not independent from each other, because
the propagation factors k pertaining to a DFG node depend on the admissi-
ble intervals of its inputs (as defined in Table 1), themselves influenced by the
perturbation introduced by the node predecessors.

Example. Consider the DFG in Fig. 2b, composed of 4 nodes (nA, nB , nC ,
nD), and whose inputs are bounded in the intervals x1, x2, x3, x5, x4, x8. The
first input of each operation is depicted as the left edge, the second input as the
right edge. For each node, Eq. 4 is as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

errA = δA × k1,C × k2,D

errB = δB × k2,C × k2,D

errC = δC × k2,D

errD = δD

(7)

Using the propagation rules in Table 1 for all k values:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

errA = δA × max (|1/x6|) × max |x8|
errB = δB × max (|x5/x62|) × max |x8|
errC = δC × max |x8|
errD = δD

(8)

Fig. 3. Coalescing iterations in an accumulation loop.

20 G. Ansaloni et al.

The intermediate values x5 and x6 can be expressed as a function of DFG
inputs and errors induced by the approximation of operators proceeding them,
back-traversing the DFG:

x5 = (x1 × x2) + δA x6 = (x3 + x4) + δB (9)

Substituting these expressions in Eq. 8 gives the final form of a system of
equations, with erri parameters and δi unknowns:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

errA = δA × max (|1/(x3 + x4 + δB)|) × max |x8|
errB = δB × max (|(x1 ∗ x2 + δA)/(x3 + x4 + δB)2|) × max |x8|
errC = δC × max |x8|
errD = δD

(10)

Solving the unknowns provides the approximation leeway for each DFG node.

Applicability. The TDApprox approach can be applied to all cases where a
DFG, representing the computation in an approximate hardware datapath, can
be obtained. Such representation is derived straightforwardly from a software
description when no control statements are present, or when these are flattened
(e.g.: fully unrolling every loop) [5,17]. An equivalent DFG can also be con-
structed when statically-defined (e.g.: for) loops are employed to update an
accumulator register, as exemplified in Fig. 3. This case, common in approx-
imable applications (as the one investigated in Sect. 4.3), is addressed by only
considering the operations in a single iteration of the loop bodies, with the
maximum input/output bitwidths required considering all iterations. Since the
accumulator variables also accumulate the error due to the inexactness of their
predecessors, the err value at their inputs must then be multiplied by the number
of loop iterations.

4 Experimental Evaluation

4.1 Experimental Setup

We interfaced the error distribution algorithm described in Sect. 3 with a front-
end deriving the DFG of the targeted applications, and a back-end perform-
ing the approximation of operators according to the identified leeways. A block
scheme of such experimental environment is illustrated in Fig. 4.

The framework processes the source code description of an accelerator func-
tionality, expressed in C and containing annotations that specify the maximum
and minimum admissible value of the accelerator inputs. The corresponding
DFG, as well as the DFG nodes types and their input/output bitwidths, are
extracted employing dco-scorpio [17]. We leveraged this information to auto-
matically generate a behavioural verilog descriptions of the DFG nodes, which
are then synthesised to obtain (a) the operators EDAP required by the TDAp-
prox algorithm and (b) the operators gate level netlists to be simplified.

Top-Down Inexact Hardware Design 21

Fig. 4. Experimental framework. The front-end provides a DFG representation of the
source code, while the back-end individually tailors the operators according to the Δ
bounds retrieved by TDApprox, and perform the synthesis of the resulting inexact
design.

Output of TDApprox are error bounds for each operation. They are employed
in the framework back-end to individually tailor each corresponding netlist by
removing their least critical gates. For this step, we re-implemented the Gate
Level Pruning (GLP) strategy illustrated in [15], but any equivalent methodology
(e.g., [14,18]) could be similarly used. Output of our GLP implementation are
inexact hardware arithmetic operators, described (again, in verilog), as a series
of statements expressing bit-wise operations.

Finally, these are integrated and synthesised to evaluate their area, critical
path delay, and energy. Moreover, they are simulated to gauge their Quality-of-
Service. We employed Synopsys Design Compiler (considering a 40 nm technol-
ogy library) as a synthesis tool, and Menthor Graphics Moldesim for simulations.
The generation of test benches is not automated at this time; nonetheless, since
simplification does not affect the operators interface (but only their internal
structure), the same test bench can be employed for both exact and inexact
implementations, or to compare different inexact variants of the same design.

22 G. Ansaloni et al.

Table 2. Benchmarks characteristics.

B.mark #ops #mults mult bit-width #adds adds bit-width #divs divs bit-width

Sobel 45 0 - 26 9, 10, 11, 12 9 8

mult-FIR 50 24 9, 10, 13, 14, 16 12 10, 11, 13, 15, 16 0 −
SVM 9 3 16, 27, 30 4 14, 21, 37, 38 0 −

B.mark Implementation Timing constraint Test inputs

Sobel Combinatorial 2 nS 100× 100 RGB image

mult-FIR Combinatorial 1 nS 2 × 256 points signals: sin(at), sin(bt2)

SVM Sequential 2 nS ECG features

We evaluated TDApprox on three benchmark applications belonging to the
domains of image/signal processing and classification, fields that typically exhibit
a degree of resilience towards judicious exactness degradations. Further illustrat-
ing our framework flexibility, we considered both combinatorial implementations
and sequential ones. Similarly to [11,16], we assessed the performance of our
methodology with respect to a uniform baseline strategy that assigns the same
error (δi) to all operators. More details describing the benchmarks are provided
in Table 2; for brevity, only the output widths of operators are reported, even
if in all cases input widths also vary widely, and are not symmetric. This char-
acteristic, along with the presence of operations other than multiplications and
additions, makes these applications ill-suited for bottom-up methods relying on
pre-characterised inexact components. As an example, [11] also considers a Sobel
accelerator, but the implementation described therein misses the RGB averag-
ing step, because the required operator (divide-by-3) is not available in their
employed library [10].

4.2 Combinatorial Designs

The Sobel benchmark averages the red, green and blue components of 3× 3
neighbourhoods of pixels in an input image, and convolves them with a kernel
matrix to obtain a blurred greyscale output:

out = (R3×3 + G3×3 + B3×3)/3 ∗ (
1
16

⎡

⎣
1 2 1
2 4 2
1 2 1

⎤

⎦) (11)

The mult-FIR benchmark instead operates on sliding windows of 12 elements,
multiplying element-wise the samples of two input signals, which are then fed to
a 12-taps low-pass FIR filter:

out = ((sig112×1 � sig212×1)/128)

· (
1

256
[−2,−2, 3, 18, 42, 61, 61, 42, 18, 3,−2,−2]) (12)

Top-Down Inexact Hardware Design 23

Fig. 5. Left: Schemes of the Sobel (top) and the mult-FIR (bottom) benchmarks.
Right: Respective operations errors δi computed by TDApprox, varying the output
error bound errTOT .

In both cases, inputs are represented as 8-bit values. The structure of the
resulting datapaths are depicted on the left side of Fig. 5. Moreover, the right side
of the figure reports the inexactness bounds Δ = {δ1, ..., δN} assigned by TDAp-
prox to each arithmetic operator for varying datapaths error bounds errTOT ,
obtained by solving Eqs. 4 and 6 for the two DFGs.

In the case of the Sobel benchmark (top), one order of magnitude sepa-
rates the δ of the least and the most critical operations i.e., the ones assigned
the highest and lowest leeway for approximation (highlighted in the figure). As
expected, the operations averaging RGB components at the corners of the input
neighbourhood, which are multiplied by 1 using the kernel matrix, are assigned a
higher δ with respect to the ones averaging the central pixel, which is multiplied
by 4, hence magnifying any perturbation.

A similar observation can be made for the mult-FIR case (bottom of Fig. 5):
TDApprox assigns a higher δ to the multipliers operating on the extremes of the
sliding window, which correspond to smaller FIR coefficients. Moreover, when

24 G. Ansaloni et al.

Fig. 6. EDAP-QoS trade-offs achieved by TDApprox and uniform error distributions
when approximating the Sobel datapath.

examining the adder chain accumulating the final output, a smaller δ is assigned
to the first stages (which require a smaller bit-width, hence fewer resources)
with respect to the latter ones. In the case of mult-FIR, the most approximable
operation is assigned 900X more slack than the least approximable one.

Such non-uniform error distribution results in high-quality resource-QoS
trade-offs at the application level, showcased in Fig. 6 for the Sobel benchmark.
Exact and approximated outputs (for two approximation levels) are depicted
at the bottom of the figure, highlighting that a normalised Energy-Delay-Area
Product of 0.1 (a 10X reduction) can be achieved with little impact on the per-
ceived output quality. In its upper part, the figure reports the Pareto curve of
the best performing inexact implementations retrieved using TDApprox, plotting
their EDAP on the x axis and their QoS on the y axis. The latter is expressed as
achieved Structural Similarity Index (SSIM) with respect to the exact output.
The characteristics of the best performing implementations employing the same
error bound in all operators are also presented. Compared with this baseline
strategy, TDApprox achieves (a) 34% higher reduction in EDAP for an SSIM of
0.95, and (b) 10% higher SSIM for a normalised EDAP of 0.1.

Top-Down Inexact Hardware Design 25

Fig. 7. EDAP-QoS trade-offs achieved by TDApprox and uniform error distributions
when approximating the mult-FIR datapath.

The effectiveness of TDApprox is even more apparent for the mult-FIR
benchmark (Fig. 7), because it presents higher variations in the approximability
of operators. In this case, we considered the Peak Signal-to-Noise Ratio (PSNR)
between exact and inexact outputs as a QoS metric. Indeed, when compared
to a uniform distribution of error leeways among DFG operations, the bounds
computed by TDApprox result in implementations having (a) a 41% increase in
PSNR for the same EDAP, or alternatively (b) an increase in EDAP savings of
44% for a PSNR difference of only 3%.

4.3 Sequential Design

As an example of a sequential design, we targeted the inference calculation of
a quadratic SVM machine. The SVM determines which features set, extracted
from 2-min electrocardiogram (ECG) windows, were acquired during epileptic
episodes. Features were derived according to the methodology described in [4].
The clinical data processed in this set of experiments, provided by CHUV univer-
sity hospital (Lausanne, Switzerland), is divided in 24 folds, containing 10 seizure
and 10 non-seizure windows. Cross-fold validation was performed, employing in
each round one fold for test and the rest of the database for training, then
averaging the results.

26 G. Ansaloni et al.

Fig. 8. Left: Block scheme of the SVM datapath. Right: Operations errors δi computed
by TDApprox, varying the output error bound errTOT .

The inference formula for quadratic SVMs is as follows:

Y =
∑

i∈SV s

(αiyi (xT · xi + 1)2) + b (13)

where the sign of Y discriminates among classes.
As an exact baseline, we consider an aggressively tailored design employing

reduced bitwidths in all datapath stages, with the aim to explore the further
savings attainable by TDApprox, beyond the ones deriving from the truncation
of Least Significant Bits (LSBs). In the baseline implementation, inputs are
quantised to 8 bits, while 7 LSBs are dropped after the dot-product stage and 4
LSBs before the summation stage. As reported by the authors of [7] such setting,
with respect to a floating-point equivalent, resulted in a negligible (< 1%) impact
on QoS, defined for the SVM benchmark as the geometric mean of the achieved
Sensitivity (Se) and Specificity (Sp) [3]: GM = (Se × Sp)1/2.

The datapath, whose block scheme is provided in Fig. 8, presents a first feed-
back loop to accumulate the dot-product between the test feature vector xT and
a support vector xi, and a second one to accumulate the terms of the summation
in Eq. 13. The figure also plots the Δ thresholds of its operations inexactness
in dependence of the error bound at the datapath output Y . Again, orders of
magnitude separate the most and the least approximable operation.

In our implementation, 15% of the hardware real estate is devoted to the
control logic, which is not amenable to approximation. Even when this over-
head is accounted for, approximate logic synthesis driven by TDApprox leads to
tangible gains. As shown if Fig. 9, a 21% reduction in EDAP is attainable for a
negligible GM degradation of 0.5% (a). The quality of the obtained approximated
implementations dwarves the one attainable with a homogeneous distribution of
errors: by smartly assigning error bounds, TDApprox achieves both a better

Top-Down Inexact Hardware Design 27

Fig. 9. EDAP and QoS of TDApprox-driven implementations with respect to an exact
one, and alternatives assigning the same error to all operators.

Table 3. Performance of inexact implementations, using TDApprox vs. a uniform
distribution of error bounds.

TDApprox errTOT EDAPnorm Sp Se GM

1000 81.02 81.99 88.04 84.96

2000 83.78 80.43 85.87 83.11

5000 76.42 73.91 89.86 81.50

10000 73.51 60.25 92.03 74.46

Uniform δi EDAPnorm Sp Se GM

100 85.6 83.23 81.88 82.55

200 78.24 82.30 78.99 80.62

300 75.13 74.53 79.71 77.08

classification performance (+2.5% GM between the points marked as (b) in the
figure) and lower resource requirements (−6% EDAP). Table 3 further details the
experimental outcomes, reporting the achieved performance for varying errTOT

bounds (in the case of TDApprox) and for different assignment of δi inexactness
level (for the baseline uniform methodology).

5 Conclusion

We presented TDApprox, a top-down methodology for the design of complex
inexact hardware modules. By distributing approximation leeways to arith-
metic operators based solely on a description of the intended functionality and
on a threshold to the overall exactness, TDApprox can effectively drive their

28 G. Ansaloni et al.

automated synthesis. Hence, our methodology is not bound by a pre-determined
library of approximable operators nor an a-priori choice of approximation levels.

Such approach seamlessly enables to target diverse application fields and QoS
metrics, identifying highly effective resource/quality trade-offs.

References

1. Chan, W.T.J., Kahng, A.B., Kang, S., Kumar, R., Sartori, J.: Statistical analysis
and modeling for error composition in approximate computation circuits. In: Pro-
ceedings of the International Conference on Computer Design, pp. 47–53, October
2013

2. Du, Z., Palem, K., Lingamneni, A., Temam, O., Chen, Y., Wu, C.: Leveraging the
error resilience of machine-learning applications for designing highly energy efficient
accelerators. In: Proceedings of the Asia and South Pacific Design Automation
Conference, pp. 201–206, January 2014

3. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: the correct way to
summarize benchmark results. Commun. ACM 29(3), 218–221 (1986)

4. Forooghifar, F., et al.: A self-aware epilepsy monitoring system for real-time epilep-
tic seizure detection. Mob. Netw. Appl. 1–14 (2019)

5. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: Proceedings of the 2nd International Symposium on Code
Generation and Optimization, pp. 75–88, March 2004

6. Li, C., Luo, W., Sapatnekar, S.S., Hu, J.: Joint precision optimization and high
level synthesis for approximate computing. In: Proceedings of the 52nd Design
Automation Conference, pp. 1–6, June 2015

7. Ferretti, L., et al.: Tailoring SVM inference for resource-efficient ECG-based
epilepsy monitors. In: Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pp. 1–4, March 2019

8. Misailovic, S., Carbin, M., Achour, S., Qi, Z., Rinard, M.C.: Chisel: reliability-and
accuracy-aware optimization of approximate computational kernels. In: SIGPLAN
Notices, vol. 49, pp. 309–328. ACM, October 2014

9. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv.
(CSUR) 48(4), 62:1–62:33 (2016)

10. Mrazek, V., Hanif, M.A., Vasicek, Z., Sekanina, L., Shafique, M.: autoAx: an auto-
matic design space exploration and circuit building methodology utilizing libraries
of approximate components. In: Proceedings of the 56th Design Automation Con-
ference, p. 123, June 2019

11. Mrazek, V., Hrbacek, R., Vasicek, Z., Sekanina, L.: EvoApproxSb: library of
approximate adders and multipliers for circuit design and benchmarking of approx-
imation methods. In: Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pp. 258–261, March 2017

12. Nepal, K., Li, Y., Bahar, R., Reda, S.: ABACUS: a technique for automated behav-
ioral synthesis of approximate computing circuits. In: Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, pp. 1–6, March 2014

13. Ranjan, A., Raha, A., Venkataramani, S., Roy, K., Raghunathan, A.: ASLAN: syn-
thesis of approximate sequential circuits. In: Proceedings of the Design, Automa-
tion and Test in Europe Conference and Exhibition, pp. 1–6, March 2014

14. Scarabottolo, I., Ansaloni, G., Pozzi, L.: Circuit carving: a methodology for the
design of approximate hardware. In: Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, pp. 545–550, March 2018

Top-Down Inexact Hardware Design 29

15. Schlachter, J., Camus, V., Palem, K.V., Enz, C.: Design and applications of approx-
imate circuits by gate-level pruning. IEEE Trans. Very Large Scale Integr. VLSI
Syst. 25(5), 1694–1702 (2017)

16. Sengupta, D., Snigdha, F.S., Hu, J., Sapatnekar, S.S.: SABER: selection of approxi-
mate bits for the design of error tolerant circuits. In: Proceedings of the 54th Design
Automation Conference, p. 72, June 2017

17. Vassiliadis, V., et al.: Towards automatic significance analysis for approximate com-
puting. In: Proceedings of the 14th International Symposium on Code Generation
and Optimization, pp. 182–193. IEEE, March 2016

18. Venkataramani, S., Roy, K., Raghunathan, A.: Substitute-and-simplify: a unified
design paradigm for approximate and quality configurable circuits. In: Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition, pp.
1367–1372, March 2013

19. Venkataramani, S., Sabne, A., Kozhikkottu, V., Roy, K., Raghunathan, A.: SALSA:
systematic logic synthesis of approximate circuits. In: Proceedings of the 49th
Design Automation Conference, pp. 796–801, June 2012

Optimising Operator Sets for Analytical
Database Processing on FPGAs

Anna Drewes1(B), Jan Moritz Joseph1, Bala Gurumurthy2, David Broneske2,
Gunter Saake2, and Thilo Pionteck1

1 Institute of Information Technology and Communications, Otto-von-Guericke
University, 39106 Magdeburg, Germany

anna.drewes@ovgu.de
2 Institute of Technical and Business Information Systems, Otto-von-Guericke

University, 39106 Magdeburg, Germany

Abstract. The high throughput and partial reconfiguration capabilities
of modern FPGAs make them an attractive hardware platform for query
processing in analytical database systems using overlay architectures.
The design of existing systems is often solely based on hardware charac-
teristics and thus does not account for all requirements of the application.
In this paper, we identify two design issues impeding system integration
of low-level database operators for runtime-reconfigurable overlay archi-
tectures on FPGAs: First, the granularity of operator sets within each
processing pipeline; Second, the mapping of query (sub-)graphs to com-
plex hardware operators. We solve these issues by modeling them as
variants of the subgraph isomorphism problem. Via optimised operator
fusion guided by a heuristic we reduce the number of required recon-
figurable regions between 30% and 85% for relevant TPC-H database
benchmark queries. This increase in area efficiency is achieved without
performance penalties. In 86% of iterations of the operator fusion pro-
cess, the proposed heuristic finds optimal candidates, which is 3.6× more
often than for a naive greedy approach.

Keywords: Query processing · Database operators · Operator fusion ·
Graph modeling · Heuristic · FPGA · Overlay architecture

1 Introduction

In order to address growing concerns regarding scaling and power efficiency,
database research strives to include heterogeneous compute devices as accelera-
tors [5]. In addition to a variety of GPU-based systems [3,13,30], FPGAs are also
considered for their special capabilities: Their massive I/O-bandwidths, spatial
parallelism, and deeply pipelined processing capabilities are all indicators for
high performance in analytical database query processing. FPGAs have been

This work is funded by the German Research Foundation (DFG) projects PI-447/9
and SA-465/51-1.

c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 30–44, 2020.
https://doi.org/10.1007/978-3-030-44534-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_3

Optimising Operator Sets for Analytical Database Processing on FPGAs 31

used both as static accelerators for single database operations [2,12,18,24,27]
and also as more general reconfigurable platforms [1,9,28,31]. These examples
show large performance enhancements due to the use of heterogeneous hardware.

Despite the advantages of heterogeneous hardware, systems integration issues
resulting from a bottom-up design process (cf. Fig. 1) impede their practical
applicability. Thus, new optimisation techniques, operator representations, and
memory management strategies have been introduced. Mapping queries to vastly
differing processing architectures can be accomplished by converting SQL state-
ments into sequences of simple, data-parallel operations [13]. Using this con-
cept of primitive-based query processing, all operations besides pipeline break-
ers such as Sort can be evaluated as data flow graphs. For CPUs, evaluating
these sequences of operations is possible via just-in-time compilation of optimised
primitive implementations from intermediate representation (IR) [4,20]. This is
not viable for FPGAs, as synthesis and place-and-route are very time-consuming
compared to software compilation and can take from minutes to hours depending
on the complexity and size of the target design. An alternative is sequential exe-
cution of pre-synthesised compute kernels, achieving high throughput through
massive data parallelism. For FPGAs, implementing the basic database oper-
ations as OpenCL kernels follows this paradigm. In contrast to GPUs, where
each kernel has access to the full hardware, the resources of an FPGA are either
shared between a fixed set of static accelerators, or kernels have to be exchanged
at runtime via costly reconfiguration of nearly the complete device [15,28,29].
Thus, both standard solutions for high performance integration of CPUs and
GPUs are not targeting the special requirements of FPGAs.

DBMS

Operators

Overlay
Architecture

FPGA

Arch.-specific
Execution
Model

Architectural
Constraints

Hardware
Limitations

Platform-independent
Execution
Model

Operator
Requirements

Application
Requirements

Bottom-up
Approach

Top-down
Approach

Fig. 1. Two standard approaches to system design/integration.

A better concept for FPGAs is an overlay architecture, where the logic
resources of the FPGA are spatially divided into interconnected partitions which
fit one hardware operator each. The exemplary design shown in Fig. 2 consists
of 9 reconfigurable regions (RR) and a static partition, which is shown in blue
and contains supporting logic such as bus systems, memory controllers, and the

32 A. Drewes et al.

host interface. Specially synthesized hardware operators (compute unit, CU) for
data processing or interconnect bridges for data movement can be loaded into
the reconfigurable regions via dynamic partial reconfiguration (DPR) of parts of
the FPGA fabric. This is shown in red in Fig. 2. Thus, an overlay architecture
is an abstraction of the raw FPGA into a set of interconnected compute units
and exposes the spatial parallelism inherent to FPGAs in a practical way [6,31].
While this top-down design approach (cf. Fig. 1) solves the problem of synthesis
at runtime, it leaves a whole new set of problems to be addressed. The main
issue is that most of the database primitives require only a rather small amount
of resources (cf. Sect. 5). At the same time even simple queries can require eval-
uation of a dozen operations in a single pipeline. This leads to the requirement
that the FPGA has to be broken up into a very large number of small, but
tightly interconnected, reconfigurable regions. This is highly resource-inefficient.

Interconnect

Ext. MemoryHost (PCIe)

CU

CU

CU

CU

CU

CU

CU

CU

CURR

RR

RR RR RR

Fig. 2. Example of an FPGA overlay architecture. (Color figure online)

In order to address these urgent design issues, we propose an optimised oper-
ator fusion method for database primitives implemented for FPGAs targeting
reconfigurable overlay architectures. We improve resource efficiency by reducing
the number of reconfigurable regions occupied for executing a query. Specifically,
we present an analysis of operators for analytical database query processing on
FPGAs using overlay architectures. We reach an application-centered view of the
design and integration process by formalising the apparent problems and reduc-
ing them to optimisation tasks based on known graph problems. This allows
us to reduce the number of reconfigurable regions required for evaluating the
considered analytical database queries by 52% on average, with only a slight
increase RR size and most importantly, without performance penalties.

This paper is structured as follows: After discussing related work in Sect. 2,
we provide an overview on primitives for analytical database query processing

Optimising Operator Sets for Analytical Database Processing on FPGAs 33

for heterogeneous hardware in Sect. 3. Section 4 contains definitions and our
proposed optimisation process for the two problems of operator granularity and
matching of composed operators. Results for relevant benchmark queries are
presented in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Related Work

The problem addressed in this paper has no exactly matching related work where
a direct comparison of results is possible in a meaningful way, but conceptually
similar approaches with different optimisation criteria have been used in other
application fields. Thus, in this section, we discuss related work on code fusion for
heterogeneous hardware in general and optimisations regarding sets of operators
for FPGAs.

Data-centric query compilation is important to achieve high performance on
CPUs and GPUs [20]. While the problem of query compilation for CPUs and
GPUs during runtime is structurally similar to our work, for FPGAs we have to
focus on optimisations at design-time and can therefore improve and adapt not
only the operator library, but also the static FPGA design. Menon et al. [19]
describe a model for operator fusion during query planning in order to better
exploit CPU caches. Apart from the lack of caches on FPGAs, their differing
architecture requires custom models.

OpenCL can be used as a target platform for custom code generation for
heterogeneous hardware. For example, Hawk [4] and Voodoo [22] generate opti-
mised OpenCL code. These approaches not only cover code optimisations, but
also address parallelism, both of which are orthogonal to the problems addressed
in this paper, which deal with optimisation of the library of operators and reduc-
ing the number of discrete hardware operators required.

The model and optimisation approach for Code Fusion on GPUs presented
by Wahib et al. [26] is, just as our approach, based on data dependencies between
kernels. The authors propose a variation of genetic algorithms to solve the opti-
misation problem, while we propose a much more simple greedy constructive
optimisation process. The results are not comparable to our results due to funda-
mental differences in optimisation goals: GPUs fuse kernels to reuse data fetched
from memory, while we try to achieve better FPGA resource efficiency. Another,
completely different problem for database operators on FPGAs involves fitting
independent kernels into one large reconfigurable region covering most of the
FPGA. Wang et al. [28] use dynamic programming to generate sequential query
execution plans, and to partition sets of OpenCL kernels too large to fit into
the singular reconfigurable region into several bitstream images based on a cost
model. Since we build up queries from small, individually reconfigurable base
primitives, this problem does not apply to our system.

Finally, RENO [21] is a data-dependency-driven optimiser implemented in
hardware inside a CPU core, enabling the elimination or fusion of certain
instructions directly from the instruction stream. Similarly, there exists work
on hardware-based fusion of simple instructions into larger macro-operations in

34 A. Drewes et al.

order to allow for a more efficient CPU microarchitecture [7,17]. All three works
employ mechanisms similar to our work, but focus on the design of efficient high
performance hardware implementations of code fusion engines, which are unnec-
essary in our work, since we do not use instruction-driven processing elements,
but assemble pipelines of specialised hardware operators.

3 Database Primitives

Using database primitives to split up queries into small highly optimised base
operations enables high-performance query processing on heterogeneous hard-
ware architectures. For FPGAs, mapping primitives to reconfigurable regions of
an overlay architecture makes construction of deep hardware pipelines possible
at runtime. As database primitives is a widely used term in various contexts, we
begin with a brief introduction and definition of the usage of this term in the
scope of this paper.

After a database management system (DBMS) has parsed and optimised a
query submitted by a user, it generates a query execution plan. This is necessary
since SQL is a declarative language, and thus only describes the desired result
and not a sequence of operations [16]. While large parts of parsing and optimisa-
tion can be similar for different execution techniques, the actual query execution
plan is inherently architecture-specific. One technique for evaluating analyti-
cal database queries in heterogeneous systems is the use of database primitives
[11,13,22]. These primitives represent the basic operations of parallel program-
ming and can thus be directly implemented on a variety of compute architectures.

We consider five types of Atomic Primitives, some of which can be composed
to form more complex operations required for evaluating queries.

1. Using the Map primitive, a function is applied to all values of one or more
input vectors producing an output vector with the same number of tuples.
A special case is the pairing of a scalar with each element of a vector. Since
there are no dependencies between individual vector elements, Map can be
parallelised trivially.

2. A Reduce operation takes in a vector and aggregates all elements into a sin-
gle scalar. This primitive can be parallelised using reduction tree approaches,
both in coarse- and fine-grained fashions, depending on the target architec-
ture. Analytical database query processing requires a specialised variant of
this primitive: Grouped Aggregation, which, instead of performing one reduc-
tion over the entire input vector, uses another input vector of group IDs to
split the data input vector into multiple ranges. This operation can also use
a tree-like task structure for parallelisation [14,23].

3. The Prefix Scan primitive is mostly used to generate index vectors for other
primitives. Thus, probably the most common operation is prefix sum. Paral-
lelising Prefix Scan is challenging. A standard approach is to split the input
data into multiple chunks, each processed independently. Then the singular
result values are aggregated by a single task to generate offsets that can be
applied to the chunks in a final step using Map [23].

Optimising Operator Sets for Analytical Database Processing on FPGAs 35

4. Scatter/Gather do not provide computation by themselves, but instead rear-
range data by using indexed reads or writes. These primitives can exhibit
widely varying memory access patterns. The impact of highly parallel Scat-
ter/Gather on the memory system has to be carefully considered during
implementation.

5. Sort is used in various ways in database systems. While preprocessing parts of
the input vector is possible, the whole input vector has to be available before
any output can be computed. This means that Sort is a pipeline breaker.
Thus, interaction with other primitives is limited.

Some database operations cannot be captured fully by any one of these cate-
gories. They may be described as Composed Primitives, consisting of base primi-
tives and special additional functionalities. A common example is construction of
hash tables: While the computation of the hash function(s) is described by Map,
modeling the insertion process using the base primitives is not sensible. Since
the behaviour of different hash table variants is highly dependent on data dis-
tribution, fusing these operations with other primitives may result in inflexible
and slow designs or require a vastly higher number of pre-synthesised operations.
Thus, both sorting and hash table-manipulation operations are not considered
in this work.

Mapping operators to DPR regions at runtime is a considerable problem, that
has been addressed by other works [6], and thus is not detailed in this paper.

4 Optimisation Targets

As already introduced, we achieve more resource-efficient database query pro-
cessing on FPGAs by targeting two objectives: Hardware Operator Granularity
optimisation reduces resource requirements by lowering the number of recon-
figurable regions required for executing a query, while optimised Matching of
Composed Operators allows for reduced operator library size and thus improves
synthesis time and the required storage space for the operators. In the following
subsections, we use standard graph approaches for these optimisation targets.

4.1 Hardware Operator Granularity

Our first optimisation target is hardware operator granularity. In detail, we will
present hardware constraints, describe the problem model, introduce operator
fusion, and propose a greedy optimisation process.

For the purpose of modeling, we adopt an abstraction of a generalised overlay
architecture for FPGAs, where the FPGA is partitioned into a static design and
dynamically reconfigurable regions. Memory controllers, as well as an intercon-
nect and various management logic forms the static partition, while hardware
operators can be loaded into reconfigurable areas at runtime. The FPGA is
thus abstracted into a set of directly interconnected compute units. To keep the
amount of constraints low, we assume that each operator can be mapped to

36 A. Drewes et al.

every reconfigurable region. For effective hardware pipeline processing, the links
between reconfigurable regions are designed to stream data at the bandwidth
required by the operators. Only data transfers to and from off-chip memory are
assumed to be handled by DMA engines in the static partition.

We model query execution plans as directed, acyclic, coloured graphs G =
(V,E). Database primitives, as well as data sources and sinks form nodes v ∈ V .
Their colouring (tag) is based on the underlying operator and data types. We
define this colouring as operators. An operator node in G is defined as an instance
and needs to be mapped to a reconfigurable region for execution. The directed
edges e ∈ E represent the data dependencies present in the query execution
plan. Note that the size of data transfer that is represented by an edge may
not necessarily be identical for all edges of a query, as in many cases the actual
amount of data transferred is determined by characteristics of the input data. An
example query execution plan generated from the TPC-H analytical database
benchmark query Q6 is shown in Fig. 3 [25]. It contains a typical amount and
complexity of operations, except for joins, which are explicitly not covered in
this work. Data flows from bottom to top and the different data transfer sizes
are highlighted at the edges. After evaluating the selection criteria via Map
less-than/greater-than (map-s-lt/map-s-gt) comparison operations, the results
are combined via map-and. Then, the filter operation eliminates all elements
of the input vectors that do not meet the selection criteria. The filtered input
columns are multiplied element-wise (map-mul). Finally the result is computed
by aggregating the result vector of the multiplication operation (red-add).

In general, non-parallelised database primitives that are synthesised as
streaming hardware operators have rather small resource requirements. This is
especially relevant for runtime-reconfigurable implementations on FPGAs using
a multitude of DPR regions, as there is a high degree of area overhead associ-
ated with each runtime-reconfigurable region. This overhead is due to the need to
provide communications infrastructure and isolation of the reconfigurable region
from the rest of the system during reconfiguration. This leads to the goal of fus-
ing database primitives that commonly occur together into larger units, thus
reducing the number of DPR regions required for evaluating a query. While the
base query Q6 shown in Fig. 3 would require 15 distinct hardware operators, the
optimised query shown in Fig. 6 reduces the number of required DPR regions to
4 (cf. Table 1). Operator fusion also relieves some amount of load from the inter-
connect of the overlay architecture because in many cases fused primitives share
input vectors. Data transferred between fused operators are removed from the
system interconnect as well. In addition, area efficiency is improved in general,
as scheduling can be optimised by the design tools if the operators are syn-
thesized in a fixed combination inside a single reconfigurable region. Of course,
the DPR regions have to be sized according to the single largest primitive or
fused operator. As FPGA synthesis and place-and-route are time-consuming and
resource-intensive tasks, it is generally not feasible for a database management
system to synthesize custom hardware accelerators for each query at runtime.
Thus, there remains the problem of deciding which combinations of primitives

Optimising Operator Sets for Analytical Database Processing on FPGAs 37

red.
add

map
mul

filter filter

map
and

map
and

map
and

map
and

map
and

map-s
gt

map-s
lt

map-s
gt

map-s
lt

map-s
gt

map-s
lt

date quantity discountextd. price

result
1

n n n n

n n

n

n

Fig. 3. Query execution plan of TPC-H Query 6. (Color figure online)

should be fused into composed operators. These decisions are relevant, as the
size of the operator library is limited by both the available storage space and
the time overhead at runtime for finding fitting operators.

In order to optimise the set of required primitives to generate fused operators,
we start with a set of query execution plans Sbase. This set can be either extracted
from logs or traces of a running system or generated from database benchmark
suites. Sbase induces a set of operators Obase, which describes the set of database
primitives used across all queries of Sbase. The formal goal is to identify the
maximum common induced subgraph J for each possible tuple of these graphs
(G,H) with G ∈ Sbase,H ∈ Sbase and G �= H. Since the decision problem
whether two graphs G,H have a common subgraph J of size k is NP-complete
[10], in practice this problem cannot be expected to be solved in an optimal way.

We propose a greedy, constructive algorithm for generating fused operators
from a base set of queries. Our iterative process can be summarised as follows:
First, we identify the most common combination of operators (a, b) ∈ Oi × Oi,
where Oi is the induced set of operators O after iteration i with O0 = Obase.
Second, fuse the identified fusion candidate into a new operator o = (a, b). Third,
generate query graphs G′ ∈ Si+1 from the graphs G ∈ Si by replacing instances
of (a, b) with o. This also updates the induced set of operators Oi to the updated
set Oi+1 used in the next iteration. This process can continue until all possible
primitives have been fused.

38 A. Drewes et al.

The main problem with this algorithm is the fact that the most commonly
occurring operator combination may not be the operator combination that can
be replaced most often. This happens because primitives in query execution
plans graphs are often arranged in tree or chain-like shapes, thus influencing
their neighbours. This is illustrated in Fig. 3: Fusion candidates consisting of
two map-and operations can be found four times within the graph. They are
highlighted using the red, violet, and blue ellipses. As the ellipses are overlap-
ping each other, the fused operator cannot be instantiated four times. It is only
possible to replace the right blue ellipse and either the violet or the other blue one
resulting in two uses of the fused operator. If the red ellipse were to be replaced,
all other possible instances of the fused operator would be blocked. Generalising
this example, we conclude that the number of coloured edges, which describe an
operator fusion candidate, does not indicate the expected optimisation poten-
tial adequately. Solving this problem optimally requires frequent identification
of maximum independent edge sets, or matchings. In order to avoid expensive
calculation of such an optimal solution for every existing combination of oper-
ators in every iteration of the operator fusion process, we introduce a heuristic
to select operator fusion candidates. Instead of the naive approach of using the
number of edges of each colour to select fusion candidates, we propose to count
the number of distinct nodes attached to edges of each colour. Divided by two,
this heuristic provides a direct estimate of the target function, i.e. the number
of expected possible instances of the potential fused operator. We evaluate the
proposed heuristic in Sect. 5.

4.2 Matching of Composed Operators

At runtime, the problem of actually using the previously generated fused oper-
ators remains. This problem is especially relevant if the DBMS front end and
logical optimisation stages are architecture-oblivious in order to support hetero-
geneous hardware other than overlay architectures of FPGAs. In this case an
FPGA-specific optimiser has to identify (match) subgraphs H describing fused
operators in an input query execution plan G, thus needing to repeatedly solve
the subgraph isomorphism problem, which is NP-complete [8].

We suggest an approximation by following a greedy steepest gradient descent
approach: Since G is a directed acyclic graph, match the largest fitting composed
operator following the topological ordered query execution plan. After replacing
the matched subgraph with the fused operator, the next matching is constructed.

In addition to the remaining high complexity of the approximation algo-
rithm, sometimes the most appropriate fused operator is not an exact match.
An example can be taken from the benchmark queries used in Sect. 5 and is
shown in Fig. 4. This is a sequence of two primitives that commonly occurs as
last processing step of queries. Data are aggregated according to a vector of
group IDs (gagg-add). In addition to the sum, this sequence also computes an
average value for each group (map-div). This requires information about the
sizes of the distinct groups (count). In general, it is only necessary to count the

Optimising Operator Sets for Analytical Database Processing on FPGAs 39

group sizes once. In contrast, duplicating the gagg-count operator for each com-
posed grouped aggregation operation, as depicted in Fig. 5, eliminates the input
vector count from the fused operator. Since this additional fused primitive is
not complex, this is a better optimisation of the query execution plan, but much
more difficult to realise, as it requires a fuzzy approach to subgraph matching.

gagg
add

map
div

data groups count

avg.sum

Fig. 4. Default replacement candidate
for exact matching.

gagg
add

map
div

gagg
cnt

data groups

avg.sum

count

Fig. 5. Candidate for fuzzy matching.

5 Results

To evaluate our proposed optimisation process and heuristic, we applied our
algorithm to relevant analytical benchmark queries from TPC-H [25], and also
synthesized both the required primitives and fused operators.

5.1 Evaluation Setup

Table 1 lists the considered queries. As sorting and table join operations are
pipeline-breaking operators and require implementations tailored to specific data
distributions, fusing them will result in either inflexible operators or a large
operator library. Thus, we do not consider those parts of the queries. Due to
pipeline breakers within their query execution plan, many queries cannot be
evaluated using a single continuous processing pipeline. These queries have to
be split up into multiple processing pipelines. The partial query execution plans
tagged begin contain the first operations, usually applying of selection criteria.
The partial query execution plans tagged end cover final processing steps, such
as grouped aggregation. The query execution plans are generated from the SQL
statements using standard textbook concepts.

All primitives and optimised fused operators are written in C as single-tuple-
per-cycle compute kernels with a data width of 32 bit. They are synthesised using
Vivado HLS 2018.1. The directives HLS DATAFLOW and HLS PIPELINE are
used to generate efficient streaming compute components. Throughout the whole
project AXI Stream ports are used. We try to achieve the highest possible clock
rate while maintaining a loop initiation interval of one clock cycle, with a starting
frequency of 300 MHz. Operators failing to meet this requirement are synthesised

40 A. Drewes et al.

Table 1. Results

Query Throughput
GB s−1

Reconf. Regions
(RR Instances)

Resources

CLB DSP Savings

Base Opt. Base Opt. Savings Base Opt. Base Opt.

Single RR 1 1 400 450 10 10 –12%

Q1 (begin) 2.30 2.30 4 2 50% 1600 900 40 20 44%

Q1 (end) 14.33 14.33 13 9 30% 5200 4050 130 90 22%

Q4 (begin) 4.60 4.60 6 4 33% 2400 1800 60 40 25%

Q6 (complete) – 4.60 15 4 73% 6000 1800 150 40 70%

Q12 (begin) 5.75 5.75 12 6 50% 4800 2700 120 60 44%

Q12 (end) 4.41 4.41 3 4 25% 2400 1800 60 40 25%

Q16 (begin) – 4.60 20 6 70% 8000 2700 200 60 66%

Q19 (complete) – 9.20 76 12 84% 30400 5400 760 120 82%

Average improvement 52% 47%

at lower frequencies. Only the division and grouped aggregation operators require
a lowered clock frequency of 250 MHz.

The Xilinx Zynq ZC706 evaluation board is used as the design target. The
FPGA part of the Zynq 7Z045 system-on-chip (SoC) has access to 2 GiB of exter-
nal DDR3 memory with a maximal theoretical bandwidth of 19.2 GB s−1. Its
FPGA resources comprise lookup tables (LUT) and flipflops (FF) for implement-
ing logic circuits, which are combined into Configurable Logic Blocks (CLB) that
are tiled across the FPGA fabric. The FPGA also contains multiply-accumulate
units (DSP) to simplify implementation of certain arithmetic operations. The
considered FPGA contains a total of 27 325 CLBs and 900 DSP slices. The
reconfiguration granularity for logic resources is a column of 50 CLBs, each con-
sisting of 2 slices of 4 LUTs, while the reconfiguration granularity for DSP slices
is 10. Therefore, the size of 2489 LUTs and 2950 FFs of the division operator
mandates a minimum reconfigurable region size of 8 columns, which corresponds
to 400 CLBs, or 3200 LUTs. Due to the layout of the clock regions within the
FPGA fabric, up to 14 completely independent reconfigurable regions can be
instantiated. Please note that only those queries with a small number of primi-
tives can be processed in a single compute pipeline in the baseline.

5.2 Optimisation Process

Running the optimisation process until all reused operator combinations were
found generates 12 fused operators within 21 fusion steps. The optimisation
process is terminated when there are no more duplicated subgraphs. The average
fused operator is composed from five base primitives, while the smallest fused
operators contains only two. Because TPC-H Query 19 makes use of an identical
set of extensive selection criteria three times, the largest fused operator maps to
one of these sub-trees and consists of 23 primitives. As an illustrative example,

Optimising Operator Sets for Analytical Database Processing on FPGAs 41

Fig. 6 shows the optimised query execution plan for the baseline query as shown
in Fig. 3 utilising the fused operators shown in Figs. 7, 8, and 9. The primitives
and fused operators are highlighted in violet, while the base primitives are shown
in green. Figure 4 shows another example of a fused operator.

VII

filter

VIII

X

date quantity discountextd. price

result

1

n n

n

n

n

Fig. 6. TPC-H Query 6 using fused operators.
(Color figure online)

filter

map
mul

red
add

. . .

Fig. 7. Fused operator VII. (Color
figure online)

map
and

map
and

map-s
lt

map-s
gt

. .

Fig. 8. Fused operator VIII. (Color figure
online)

map-s
gt

map-s
lt

map-s
gt

map-s
lt

map
and

map
and

map
and

. .

Fig. 9. Fused operator X. (Color figure
online)

5.3 Discussion

In order to test the accuracy of our heuristic, we also computed optimal results.
Our proposed heuristic correctly identified optimal fusion candidates in 18 out
of 21 iterations of our algorithm. This estimation accuracy of 86% is over three
times larger than the accuracy of the naive approach.

The reductions in resource requirements achieved by our operator fusion opti-
misation process are illustrated in Fig. 10: Fusing small database primitives sig-
nificantly improves resource efficiency for overlay architectures in database query

42 A. Drewes et al.

Fig. 10. Comparison of resources requirements using base primitives and fused opera-
tors for relevant TPC-H benchmark queries.

processing on FPGAs. Resource requirements for complete queries are reduced
by up to 82%. This is an impressive result that shows that FPGA-enabled imple-
mentations of primitive-based analytical database management systems require
architecture-specific optimisation of operators at design time. As the largest
primitive, namely division, is part of the fused operator shown in Fig. 4, the size
of each reconfigurable region increases slightly to 450 CLBs, as is shown in the
first line of Table 1. This increase in size reduces the savings achieved by use of
the fused operators, as can be seen when comparing columns six and eleven of
Table 1. On average, the number of reconfigurable regions used for a single query
is reduced by 52%, which leads to an average reduction in resource requirements
of 47%.

There is no immediate impact on performance, as the maximum clock speed
of the operators was not reduced by the fusion process, but due to the lowered
number of reconfigurable regions, all queries can now be executed in a single pass.
In contrast, the reconfiguration time between queries is reduced, as even with
the slightly larger partitions, each query requires a significantly lower number
of (re-)configured tiles. The throughput numbers shown in Table 1 refers to the
total amount of data being read into and written out of the processing pipeline.
Also, as communication between primitives within one fused operator is handled
entirely within the operator, the interconnect in the static partition is relieved.

Due to the significant improvement in resource efficiency, our proposed app-
roach improves the feasibility of integration of FPGAs using overlay architec-
tures into analytical database systems. Our approach can also be applied to
other application areas, such as network traffic analysis, digital signal process-
ing, and software-defined radio, where data flow graphs generated at runtime
are processed using a fixed library of operators.

Optimising Operator Sets for Analytical Database Processing on FPGAs 43

6 Conclusion

In this paper we analyse the problem of automated fusion of commonly occur-
ring combinations of basic database operators for FPGAs and propose solutions
based on standard graph problems. While the underlying problem of identify-
ing commonly occurring subgraphs in a set of graphs is very difficult and in
the general case even hard to approximate, the special instance discussed here
allowed for good approximation results after developing a heuristic. For the set
of standard benchmark queries considered, the proposed optimisation process
reduces the number of required reconfigurable regions by about 52% on average
with a maximum reduction of 84%. As the size of each reconfigurable region
increases slightly due to fusing of operators, the overall resource savings are
smaller: Executing a query using fused operators requires between 22% and 82%
less FPGA resources than using base primitives. The proposed optimised oper-
ator fusion process enables practical applicability of FPGA-based accelerators
in query processing, thus increasing efficiency in handling large-scale database
systems. Further constraining of the search space may be an interesting direction
for future research.

References

1. Backasch, R., Hempel, G., Pionteck, T., Groppe, S., Werner, S.: An architectural
template for composing application specific datapaths at runtime. In: ReConFig
(2015)

2. Becher, A., Ziener, D., Meyer-Wegener, K., Teich, J.: A co-design approach for
accelerated SQL query processing via FPGA-based data filtering. In: FPT, pp.
192–195 (2015)

3. Breß, S., Heimel, M., Saecker, M., Köcher, B., Markl, V., Saake, G.: Ocelot/HyPE:
optimized data processing on heterogeneous hardware. PVLDB 7(13), 1609–1612
(2014)

4. Breß, S., Köcher, B., Funke, H., Zeuch, S., Rabl, T., Markl, V.: Generating custom
code for efficient query execution on heterogeneous processors. VLDB J. 27(6),
797–822 (2018). https://doi.org/10.1007/s00778-018-0512-y

5. Broneske, D., Breß, S., Heimel, M., Saake, G.: Toward hardware-sensitive database
operations. In: EDBT, pp. 229–234 (2014)

6. Capalija, D., Abdelrahman, T.S.: A high-performance overlay architecture for
pipelined execution of data flow graphs. In: FPL, pp. 1–8 (2013)

7. Celio, C., Dabbelt, P., Patterson, D.A., Asanovic, K.: The renewed case for the
reduced instruction set computer: avoiding ISA bloat with macro-op fusion for
RISC-V. CoRR abs/1607.02318 (2016). http://arxiv.org/abs/1607.02318

8. Cook, S.A.: The complexity of theorem-proving procedures. In: ACM STOC, pp.
151–158 (1971)

9. Dennl, C., Ziener, D., Teich, J.: On-the-fly composition of FPGA-based SQL query
accelerators using a partially reconfigurable module library. In: FCCM, pp. 45–52
(2012)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

https://doi.org/10.1007/s00778-018-0512-y
http://arxiv.org/abs/1607.02318

44 A. Drewes et al.

11. Gurumurthy, B., Broneske, D., Drewes, T., Pionteck, T., Saake, G.: Cooking DBMS
operations using granular primitives - an overview on a primitive-based RDBMS
query evaluation. Datenbank-Spektrum 18(3), 183–193 (2018). https://doi.org/10.
1007/s13222-018-0295-8

12. Halstead, R.J., et al.: Accelerating join operation for relational databases with
FPGAs. In: FCCM, pp. 17–20 (2013)

13. He, B., et al.: Relational query coprocessing on graphics processors. ACM TODS
34(4), 21:1–21:39 (2009)

14. Heimel, M., Saecker, M., Pirk, H., Manegold, S., Markl, V.: Hardware-oblivious
parallelism for in-memory column-stores. PVLDB 6(9), 709–720 (2013)

15. Intel Corp.: Intel FPGA SDK for OpenCL Programming Guide (2017)
16. International Organization for Standardisation: ISO/IEC 9075 Information Tech-

nology - Database Languages - SQL (2016)
17. Kim, I., Lipasti, M.H.: Macro-op scheduling: relaxing scheduling loop constraints.

In: MICRO, pp. 277–290 (2003)
18. Koch, D., Tørresen, J.: FPGASort: a high performance sorting architecture exploit-

ing run-time reconfiguration on FPGAs for large problem sorting. In: ACM SIGDA,
pp. 45–54 (2011)

19. Menon, P., Pavlo, A., Mowry, T.C.: Relaxed operator fusion for in-memory
databases: making compilation, vectorization, and prefetching work together at
last. PVLDB 11(1), 1–13 (2017)

20. Neumann, T.: Efficiently compiling efficient query plans for modern hardware.
PVLDB 4(9), 539–550 (2011)

21. Petric, V., Sha, T., Roth, A.: RENO - a rename-based instruction optimizer. In:
ISCA, pp. 98–109 (2005)

22. Pirk, H., Moll, O., Zaharia, M., Madden, S.: Voodoo - a vector algebra for portable
database performance on modern hardware. PVLDB 9(14), 1707–1718 (2016)

23. Roosta, S.H.: Parallel processing and parallel algorithms - theory and computa-
tion. Springer (2000). http://www.springer.com/computer/swe/book/978-0-387-
98716-3

24. Teubner, J., Woods, L.: Data Processing on FPGAs. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, San Rafael (2013)

25. Transaction Processing Performance Council (TPC): TPC BENCHMARK H
(Decision Support) Standard Specification (2017)

26. Wahib, M., Maruyama, N.: Scalable kernel fusion for memory-bound GPU appli-
cations. In: SC, pp. 191–202 (2014)

27. Wang, Z., He, B., Zhang, W.: A study of data partitioning on OpenCL-based
FPGAs. In: FPL, pp. 1–8 (2015)

28. Wang, Z., Paul, J., Cheah, H.Y., He, B., Zhang, W.: Relational query processing
on OpenCL-based FPGAs. In: FPL, pp. 1–10 (2016)

29. Xilinx Inc: SDAccel Development Environment User Guide (2016)
30. Zhang, S., He, J., He, B., Lu, M.: OmniDB: towards portable and efficient query

processing on parallel CPU/GPU architectures. PVLDB 6(12), 1374–1377 (2013)
31. Ziener, D., et al.: FPGA-based dynamically reconfigurable SQL query processing.

ACM TRETS 9(4), 25:1–25:24 (2016)

https://doi.org/10.1007/s13222-018-0295-8
https://doi.org/10.1007/s13222-018-0295-8
http://www.springer.com/computer/swe/book/978-0-387-98716-3
http://www.springer.com/computer/swe/book/978-0-387-98716-3

Automated Toolchain for Enhanced
Productivity in Reconfigurable

Multi-accelerator Systems

Alberto Ortiz , Rafael Zamacola(B) , Alfonso Rodŕıguez , Andrés Otero ,
and Eduardo de la Torre

Universidad Politécnica de Madrid, Madrid, Spain
{alberto.ortiz,rafael.zamacola,alfonso.rodriguezm,

joseandres.otero,eduardo.delatorre}@upm.es

Abstract. Ease-of-use and faster implementation times are key chal-
lenges that the community has to face to extend the use of FPGAs to
non-hardware experts. In this paper, these challenges are tackled by inte-
grating ARTICo3 and IMPRESS tools to provide the users with a trans-
parent way to build reconfigurable multi-accelerator systems. ARTICo3

is an integrated framework that provides an automated toolchain to gen-
erate a hardware-based processing architecture to transparently manage
custom-made accelerators at runtime. IMPRESS is a reconfiguration tool
for building highly-flexible reconfigurable systems. The integration of
both tools results in an efficient reconfigurable design flow that decouples
the implementation of reconfigurable accelerators from the implementa-
tion of an ARTICo3 static architecture that transparently distributes
data to the accelerators. This static architecture is generated only once
and reused in consecutive kernel implementations. This way, the user
only needs to design the accelerators that are automatically implemented
using interfaces compatible with the static architecture. From the user
point of view, the reconfigurable fabric is a set of slots where accelerators
can be transparently offloaded to decrease the workload on the processor.
The integration of ARTICo3 and IMPRESS also allows building relocat-
able accelerators, thus reducing the overall memory footprint required
for the partial bitstreams. Moreover, model-based design of accelerators
using Simulink has also been included as an additional option for users
with no hardware background to further simplify the use of reconfig-
urable systems. Experimental results show that the implementation time
is improved by up to 2.96× for a 4-slot reconfigurable system implemen-
tation with a memory footprint reduction of 4.54×.

Keywords: FPGAs · Dynamic and Partial Reconfiguration ·
Relocation · Productivity · Linux

1 Introduction

The fear of the end of Moore’s law [18] threatens to change the current processor-
based computing paradigm. One way to improve computation efficiency, aside
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 45–60, 2020.
https://doi.org/10.1007/978-3-030-44534-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_4&domain=pdf
http://orcid.org/0000-0002-6484-9199
http://orcid.org/0000-0003-4984-9219
http://orcid.org/0000-0001-6326-743X
http://orcid.org/0000-0003-4995-7009
http://orcid.org/0000-0001-5697-0573
https://doi.org/10.1007/978-3-030-44534-8_4

46 A. Ortiz et al.

from scaling the number of general-purpose processors, is building heterogeneous
systems with devices specialized in certain domain-specific computations [19].
One example that has been extensively used in personal computers is coupling
a processors with GPUs. While HPC-oriented (High-Performance Computing)
GPUs are great devices for computing highly parallel algorithms, they tend to
consume power in the order of hundreds of watts [15]. FPGAs are a great alter-
native to reduce power consumption while still providing great performance for
computing parallel algorithms. As an example, Microsoft has opted for the use of
FPGAs in their datacenters over GPUs due to its power consumption and after
having found unclear that some latency-sensitive ranking stages (such as feature
extraction) would map well to GPUs. As stated by [8], the use of FPGAs in
Microsoft datacenters increased throughput up to 95% with only a 10% increase
in power consumption. Moreover, the acquisition of Altera by Intel makes it fore-
seeable that greater use will be made of heterogeneous systems with multi-core
processors coupled with FPGAs, GPUs and even dedicated ASICs for specific
domains such as artificial intelligence. One example of this type of devices will
be Xilinx ACAP family [5] that promises having dramatic performance improve-
ments of up to 20× over today’s fastest FPGA implementations and over 100×
over today’s fastest CPU implementations for Data Centers, wired networks, 5G
wireless, and automotive driver assist applications. To ensure that the main-
stream community adopts heterogeneous systems, it is mandatory to improve
the ease of design and the overall productivity.

The main challenges for the FPGA landscape have evolved over the years
since they were first introduced by Xilinx in 1984 [17]. FPGA size and efficient
CAD design tools are no longer concerns for most applications. However there
are still many challenges, such as ease-of-use, ease-of-debug, accessibility, and
slow edit-compile-debug cycles [16], that the community has to face for making
FPGAs more attractive to a wider number of people with different backgrounds.
In the last few years, the FPGA community has focused on new ways to configure
the FPGAs from high-level descriptions in order to solve some of these issues.
High-Level Languages (HLL) [9,13] produce HDL (Hardware Description Lan-
guage) code from high-level algorithmic description languages. Although HLL
aim at being used by people without an specific hardware background, it is still
necessary to have in-depth knowledge of the underlying hardware to build effi-
cient systems. Model-based design [10] is a great alternative to HLL as it reduces
the required hardware expertise. In model-based design, systems are described
as a combination of blocks that have a predefined functionality.

In order to build efficient heterogeneous systems, it is not enough with having
efficient ways to program each device, but it is also important to view the system
as a whole. To that end, it is critical that devices are tightly connected to each
other and to have efficient techniques to partition an algorithm so each part of the
algorithm is executed in the most suitable device. Main FPGA manufacturers,
Xilinx and Intel, have already focused their efforts in bringing to the market
Systems on Chip (SoCs) that incorporate a processor tightly coupled with a
reconfigurable fabric [2,6]. Moreover, Xilinx and Intel provide design tools to
effectively program together both the processor and the FPGA [3,4].

Enhancing Productivity in Reconfigurable Multi-accelerator Systems 47

Dynamic Partial Reconfiguration (DPR) is a technique to reconfigure part
of the FPGA at runtime while the rest of the system is unaltered. It is possible
to leverage DPR in heterogeneous systems so that the reconfigurable fabric is
always accelerating parallel sections of an algorithm without being limited by
the overall amount of resources. This form of heterogeneous computation, where
a processor offloads at runtime sections of an algorithm to an FPGA, is called
dynamic reconfigurable computing. Several academic tools aim at enhancing the
ease of design in the field of reconfigurable computing. One example is ReconOS
[7], an operating system that offers a unified multithreaded programming model
and OS services to combine both hardware and software threads. Another exam-
ple is ARTICo3 [14], an integrated framework that provides a hardware-based
processing architecture, an automated toolchain, and a runtime to transparently
generate and manage reconfigurable multi-accelerator systems.

The main goal of this work is to increase the productivity and ease of design of
reconfigurable multi-accelerator systems. To that end, the ARTICo3 framework1

has been integrated with the reconfiguration tool IMPRESS2 (IMplementation
of Partial REconfigurable SystemS) [20]. The integration of both results in an
extended framework for reconfigurable systems which has the architecture infras-
tructure decoupled from the accelerators provided by the users. This way, the
user only has to focus on specifying accelerators with a compatible interface to be
automatically implemented with ARTICo3. The productivity is greatly improved
as the ARTICo3 architecture implementation is only performed once. IMPRESS
also provides relocation capabilities to ARTICo3, thus reducing the memory
needed to store the partial bitstreams of the accelerators. Moreover, to ease the
design of reconfigurable computing systems for people without a hardware back-
ground, and to reduce accelerator design times, the ARTICo3 framework has
been extended to support model-based design of accelerators using Simulink.

The main contributions of this paper, together with their associated benefits
can be enumerated as:

– An integrated toolflow that improves design productivity and further simpli-
fies runtime support for reconfiguration.

– Support for multiple grains of reconfiguration, widening the applicability of
the tools.

– A relocatable bitstream method for compatible routing regions that reduces
memory footprint for bitstream storage.

– Support for accelerator generation from Simulink model-based design
descriptions.

The rest of this paper is divided as follows. Section 2 provides background
information on IMPRESS and ARTICo3 tools. The benefits obtained from the
combination of both tools are discussed in Sect. 3, while the details of the integra-
tion are explained in Sect. 4. Section 5 describes how reconfigurable ARTICo3-
compliant accelerators can be generated from Simulink model-based designs.

1 https://des-cei.github.io/tools/artico3.
2 https://des-cei.github.io/tools/impress.

https://des-cei.github.io/tools/artico3
https://des-cei.github.io/tools/impress

48 A. Ortiz et al.

The integration is evaluated in Sect. 6 to finally extract the conclusions of this
work in Sect. 7.

2 Technical Background

The next subsections provide background information on the main
reconfiguration-related concepts, the reconfiguration tool IMPRESS, and the
ARTICo3 toolchain.

2.1 Basic Concepts on Reconfiguration

In order to build partially dynamic reconfigurable hardware, it is necessary to
differentiate between the static system, i.e, the circuits that are unchanged dur-
ing the device lifetime, and the Reconfigurable Modules (RMs), which are the
circuits that can be exchanged in the system at runtime. The static system con-
tains special components, called Reconfigurable Partitions (RPs), that are floor-
planned in certain regions of the FPGA, called Reconfigurable Regions (RRs).
The RPs can be initially implemented as dummy RMs (i.e., a non-functional
RM) or they can be implemented using any of the available RMs. At runtime,
RMs can be allocated in RRs as long as they share the same interface with the
static system.

Another key concept in reconfigurable systems is the Virtual Architecture
(VA). The VA defines how the RRs are distributed over the FPGA (i.e., floor-
planning) and the physical interfaces between the static system and each RR.
The most efficient way to define interfaces is using partition pins [1], as they do
not contain any logic and therefore do not have any resource or latency overhead.
VAs can be floorplanned using three different styles (island, slot and grid) [11].
The most basic style is the island-based VA which has the RRs isolated from
each other. In contrast, the slot and grid styles are composed of contiguous RRs
that can be connected to each other. The main advantage of the slot and grid
styles over the island style is that an RM can be implemented combining several
contiguous RRs depending on the RM size. Thus, if the granularity of the slots
or grid elements are small enough, the amount of unused resources decreases.

Partial bitstreams contain the configuration of RMs. They are composed of
a series of frames (i.e., the minimum reconfigurable unit in Xilinx FPGAs) that
span the height of a clock region. When using Xilinx reconfiguration flow, if one
RM is implemented in m RRs, it is necessary to generate m partial bitstreams.
This can lead to a considerable memory footprint in systems where RMs are
implemented in several RRs, which is often the case in systems with slot- and
grid-based VAs. When RRs have the same logic resources distributed in the same
way, it is possible to have relocatable RMs where the same partial bitstream can
be used for each RR. Thus, significantly reducing the memory footprint required
to store partial bitstreams.

Enhancing Productivity in Reconfigurable Multi-accelerator Systems 49

2.2 IMPRESS

IMPRESS (IMplementation of Partial REconfigurable SystemS) [20] is a Tcl
script-based tool for implementing highly flexible reconfigurable systems using
any VA style in Xilinx series 7 FPGAs. Both the slot- and grid-based VAs share
the property of having different RRs in the static system and the RMs imple-
mentation (i.e., the RM can span several slots or grid elements). In order to
implement systems with these VAs, IMPRESS decouples the implementation of
the static system and each RM design. To ensure that RMs and the static system
can connect to each other, it is necessary to use compatible interfaces. Similar
to Xilinx reconfiguration flow [1], IMPRESS uses partition pins to implement
the interface of the RRs, thus avoiding any resource and latency overhead. How-
ever, IMPRESS only uses one-hop nodes (i.e., nodes that connect adjacent tiles)
placed at the border of the RRs. The user can easily define which borders are
used for interfacing an RR by specifying the border (e.g., north) or part of the
border (e.g., north 0:3 to select only the first four tiles of the north border). This
interface style is called virtual interface in IMPRESS terminology. One of the
great advantages of IMPRESS virtual interfaces is that they allow connecting
neighboring RMs without any static logic or routing. Thus, whenever two adja-
cent RMs share a common border they can communicate to each other without
using any static system resource.

One key feature of IMPRESS is that it is capable of generating relocatable
RMs; thus reducing the memory footprint of partial bitstreams. The generation
of relocatable RMs has three requirements. The first requirement to relocate one
RM into different RRs is that each RR must have the same distribution of logic
resources. In IMPRESS the user is held responsible for ensuring this requirement.
The second requirement is that each RR must have the same physical interface.
This is automatically done by IMPRESS when the user marks different RRs
as relocatable. The third and last requirement is ensuring that the static logic
and all the module nets cannot enter the RR. To that end, in the routing phase
IMPRESS generates a blocker net [12] that acts as a fence so that the routing
from the static system cannot enter inside the RR.

When using slot- and grid-based VA styles, it is usually desirable to stack
several RMs in the same clock region. As explained in Subsect. 2.1, the minimum
reconfigurable unit in Xilinx FPGAs is a frame, that spans the whole height of
a clock region. Therefore, when using Xilinx reconfiguration flow is not possible
to reconfigure one RM in one clock region without affecting RMs placed on top
or below the targeted RM. IMPRESS includes a software-based Reconfiguration
Engine (RE) in charge of downloading the partial bitstreams into the FPGA.
The RE can perform sub-clock region reconfiguration by doing three steps. First,
it performs a readback of the region to be reconfigured, then it recombines it with
the desired partial bitstream and lastly, it downloads the recombined bitstream
into the FPGA.

50 A. Ortiz et al.

2.3 ARTICo3

ARTICo3 [14] is a hardware-based high-performance embedded processing archi-
tecture that enables user-driven adaptation at runtime, creating a dynamic 3-
D space of solutions with dynamic tradeoffs between computing performance,
energy consumption, and fault tolerance. This architecture provides software-like
flexibility by the use of Dynamic and Partial Reconfiguration (DPR), maintain-
ing hardware-like performance during execution in a multi-accelerator approach.

In addition to the hardware architecture, a toolchain is provided as part of
the ARTICo3 framework, enabling users to transparently generate dynamically
reconfigurable systems from the descriptions of both hardware accelerators and
a host application. Users only need to provide the toolchain with an already
partitioned hardware/software system, where host code is specified in C/C++
and kernels are specified in low-level HDL (VHDL, Verilog) or C/C++ to be
processed with High-Level Synthesis (HLS) tools.

The static architecture of ARTICo3 transparently distributes data to be pro-
cessed by the hardware accelerators, with no user intervention. Taking the user-
defined system and kernels as inputs, the toolchain automatically performs three
tasks: instantiating the user-defined kernel logic in a standard wrapper, generat-
ing the on-chip DMA-powered communication infrastructure, and building both
hardware and software components to obtain the required binaries that are used
in the target platform. As the ARTICo3 architecture follows a slot-based floor-
planning style, as shown in the top-level block design in Fig. 1, and relies on
the Xilinx reconfiguration flow, the toolchain will generate the same number of
hardware binaries as slots together with the static system. These binaries are
used by the software application to transparently configure the FPGA making
use of the drivers provided by Xilinx for DPR in supported Linux-based SoPCs.

Fig. 1. ARTICo3 architecture top-level block design

Enhancing Productivity in Reconfigurable Multi-accelerator Systems 51

3 Enhancing Productivity with Advanced
Reconfiguration Features

The ARTICo3 toolchain can be leveraged to improve the productivity of hetero-
geneous SW/HW systems as it provides the means to communicate a processor
with custom accelerators. Users just have to focus their efforts on deciding the
SW/HW partitioning (i.e., which parts are implemented in SW or HW) and
implementing the desired accelerators using HDLs (Hardware Description Lan-
guage) or HLS (High-Level Synthesis). However, ARTICo3 still presents some
barriers that hinder an enhanced productivity. The integration of ARTICo3 with
IMPRESS breaks these barriers, improving overall productivity.

The main barrier affecting productivity in ARTICo3 is that the toolchain
reimplements the static part whenever a user builds a system with a new set of
accelerators. As explained in Subsect. 2.2, IMPRESS decouples the design of the
static system and the RMs. Therefore, the integration of both tools allows users
to generate the static system once and to reuse it for every design, which reduces
the synthesis and implementation times. Different static architecture implemen-
tations for different devices are distributed as templates within ARTICo3. The
users can use an available template or build new templates to support more
devices, by modifying the number of RRs or adding ARTICo3 as a subcompo-
nent in a bigger design. Once the user selects a template, the accelerators are
automatically built with a compatible interface.

Another advantage that results from the integration of IMPRESS and
ARTICo3 is the reduction in memory footprint. When using the Xilinx stan-
dard reconfiguration flow, ARTICo3 generates one partial bitstream for each
RR while IMPRESS generates one RR for a group of compatible RRs (i.e., RRs
with the same resource distribution). Therefore, it is important to select RRs
as homogeneous as possible to reduce as much as possible the number of partial
bitstreams. Another feature of IMPRESS that can be used in ARTICo3 designs
is sub-clock region reconfiguration. Sub-clock region reconfiguration allows hav-
ing more than one RR in the same clock region. This feature can be used to
reduce the granularity of the RRs or to have RRs that span one and a half clock
regions.

Another key aspect to increase productivity and to reduce the complexity
of building reconfigurable systems is simplifying the design of hardware acceler-
ators. ARTICo3 already includes the possibility of designing accelerators using
HLS languages. Although HLS languages reduce the time and complexity of
the hardware design process, it still requires having some understanding of
hardware design to build efficient systems. To further simplify the design of
the accelerators we have included the possibility of designing accelerators using
model-based descriptions with Simulink. Therefore, users with little experience
designing hardware can build accelerators by combining blocks with predefined
functionalities.

52 A. Ortiz et al.

4 Integrating IMPRESS in ARTICo3

After having described the features, the modifications introduced in both tools
to achieve the integration are now explained.

4.1 Modifications in ARTICo3 Design Flow

The ARTICo3 toolchain relies on a set of python and Tcl scripts to automatize
the implementation of the desired project. These scripts define the design flow
and, as such, have been modified to introduce IMPRESS within this flow. Apart
from the design flow, the ARTICo3 toolchain provides a modular structure based
on the use of system templates to contain information common to all projects
targeting the same platform and implementation description. The IMPRESS
design flow relies on three files with information relevant to all projects. A new
template has been created to contain two of these files, which do not change
between projects targeting the same platform implementation. The third file
always has the same structure but contains information like project routes that
is not common to all projects and, as such, needs to be generated by the toolchain
at design time. The description of the information provided by the three files is
as follows:

– Virtual Architecture: Includes information regarding the group of reconfig-
urable slots (that form a relocatable reconfigurable group), such as the FPGA
coordinates of every slot in the group. A single relocatable bitstream is gen-
erated for every group of relocatable slots. These bitstreams are generated
taking into account the interface distribution described in the next file.

– Virtual Interface: Describes the distribution of the interfaces to use with the
static system in the boundaries of all the slots in a relocatable reconfigurable
group. For every relocatable group, a virtual interface file is needed.

– Project info: This file includes all relevant information needed in a Vivado
Project, such as the project name and location, and the root of all relevant
files of every kernel and static system.

The first two files above described are project-independent and can be included
in the template as they rely only on the platform and floorplanning description,
being reusable in every hardware project. For the last file, the project info file,
the information needed is extracted from the project configuration file the user
has to provide in ARTICo3 using python scripts and written to the project info
file of IMPRESS.

Having covered the integration at design level, modifications in the toolchain
have been made to create a last extra file at design-time which is needed by
IMPRESS during the runtime for correct slot placement when reconfiguring
with relocatable bitstreams. This file includes the FPGA coordinates in a CSV
style of every slot in every relocatable group. Finally, the ARTICo3 design flow
has been modified by replacing the original placement and routing scripts with
the scripts provided in IMPRESS.

Enhancing Productivity in Reconfigurable Multi-accelerator Systems 53

With the aforementioned modifications, ARTICo3 will generate and provide
the user with:

– A single relocatable binary bitstream (.bin file) for every relocatable recon-
figurable group, with the required endianness to be loaded from an SD card
to the FPGA.

– The CSV file containing the FPGA coordinates of every slot.
– One symbolic link file per slot that redirects to the correct relocatable

bitstream. These files are needed to provide compatibility with previous
ARTICo3 runtime libraries, which expect one partial bitstream file per hard-
ware accelerator.

– The binary of the cross-compiled software application to be used in a Linux-
based system.

4.2 Run-Time Reconfiguration Management of Relocatable
Bitstreams

The ARTICo3 runtime relies on a driver provided by Xilinx (FPGA manager)
for their Linux distributions, designed to be used with full or partial bitstreams
generated with Xilinx reconfiguration flow. However, the bitstreams generated
by IMPRESS follow a custom-like composition with the intention of reducing
bitstream sizes and augment relocability [20]. Differences with Xilinx-generated
bitstreams include no commands, no clock information and no non-used con-
figuration data. Therefore, changes in the driver become a necessity to adapt
IMPRESS-generated bitstreams to the format expected by the Xilinx driver.

To begin with, depending on the size of the slots for which a relocatable
bitstream is generated, these can occupy a certain number of full clock regions
or end up occupying a clock region partially. In this last case, it is important,
when configuring the FPGA, to not change the content of the remaining space
in the clock region, as it could be in use by the static system. Moreover, in
order to augment the relocability of the reconfigurable modules, no clock words
are included in the bitstreams, as they introduce possible discontinuities in the
design, so this information has to be extracted and composed at runtime. Finally,
bitstreams generated by IMPRESS do not include the commands necessary by
the reconfiguration flow and, as such, they have to be included by the driver at
run-time. All these differences with a Xilinx full partial bitstream can be seen
in Fig. 2.

To bridge the gap between Xilinx partial bitstreams and IMPRESS bit-
streams, the reconfiguration instructions included in the driver have been mod-
ified to load a relocatable bitstream to a hardware accelerator slot:

1. Slot coordinates are passed as arguments to the driver in order to know where
to place the bitstream.

2. A readback of the whole clock region is performed in order to obtain the
configuration information of the remaining clock region space (not covered
by the slot) and the clock configuration words of the whole region.

54 A. Ortiz et al.

slot

clock regionFP
G

A
 C

lo
ck

 R
eg

io
n

ac
ce

le
ra

to
r

sl
ot

re
m

ai
ni

ng
sp

ac
e

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000

101001000100101011101100011011000
101001000100101011101100011011000
101001000100101011101100011011000

101001000100101011101100011011000
101001000100101011101100011011000 Full Partial B

itstream

configuration data
header

tail

clock configuration

BRAM data
re

m
ai

ni
ng

sp
ac

e

Fig. 2. Reconfigurable clock region with the partial bitstream extracted with IMPRESS

3. Another readback is performed in order to obtain the content of the BRAM
memories for the whole clock region.

4. A new partial bitstream is composed for the whole clock region combining
the to-be-loaded relocatable bitstream and the configuration and the content
of the BRAMs obtained in the readbacks.

5. The needed commands for FPGA partial configuration for the desired recon-
figurable region are added to the bitstream, which are the synchronization,
configuration, and desynchronization commands (header and tail in Fig. 2).

6. The fully prepared bitstream is sent to the previous Xilinx driver reconfigu-
ration flow for FPGA reconfiguration.

5 Model-Based Design of Hardware Accelerators

Model-based design is an efficient way to design complex embedded systems,
supporting all the required steps from requirements specification to hardware
implementation. Model-based design methodologies rise the level of abstraction
during the whole design process, eliminating the use of handwritten text doc-
uments, such as source code or technical reports, as the basic mechanism to
transfer project information. Instead, Model-based design substitute them with
visual inspection, simulation of models and formal verification techniques, which
are easier to understand, update and maintain.

Model-based design methodologies are supported by tools, such as Matlab-
Simulink, which have been extended together with FPGA vendors with support
for the design of hardware accelerators, directly from block-based descriptions.
System Generator and Model Composer are good representatives of this app-
roach. However, none of these commercial tools provide support for the gen-
eration of dynamically reconfigurable accelerators. This enforces developers to
combine these technologies manually, which is translated in an increased com-
plexity and cost.

For these reasons, an integrated solution is provided in this paper offering
support for the direct generation of hardware accelerators, from Simulink, to

Enhancing Productivity in Reconfigurable Multi-accelerator Systems 55

Fig. 3. Structure of the ARTICo3 Accelerators with the automatic wrapper created in
Simulink

ARTICo3, in such a way that the input/output memory banks required when
creating ARTICo3 compliant accelerators are automatically created by a Mat-
lab script integrated in Simulink, given two parameters describing the required
number of input and output ports for the accelerator. The resulting architecture
is shown in Fig. 3. The proposed script also creates both input and output Finite
State Machines (FSM) controlling the data transference between the accelerators
and the ARTICo3 data delivery infrastructure.

Once the ARTICo3 wrapper logic is automatically created, they can describe
the user logic of the accelerator by using Simulink modules. Once the design has
been implemented and verified within the Matlab framework, System Generator
automatically provides the VHDL files including all the interface and control
logic, in a transparent way to the user. From these files, the logic of the accel-
erator can be automatically extracted and integrated with the IMPRESS plus
ARTICo3 toolchain described in this paper. This integrated effort provides new
ways to increase the efficiency when designing reconfigurable systems.

6 Experimental Results

To evaluate the productivity gain obtained by the advanced features for recon-
figurable multi-accelerator systems, several experiments have been carried out
targeting the xc7z020clg400-1 SoC (Digilent Pynq board). These experiments
have been carried out using the design implementation example shown in Fig. 4,
with the matmul kernel provided as an ARTICo3 example in its open-source
repository as the accelerator.3 In this design, only four slots are available to

3 https://github.com/des-cei/artico3.

https://github.com/des-cei/artico3

56 A. Ortiz et al.

allocate up to four reconfigurable accelerators simultaneously. The advantage
of having generated this system with IMPRESS is that slots from 0 to 2 are
relocatable, so the bitstream generated from Fig. 4b can be allocated in any of
them. As a consequence, the memory footprint is reduced in two ways: 2× (1
bitstream for slots 0–2 and 1 bitstream for slot 3, instead of 4 bitstreams) due to
relocation, and 2.27× due to the runtime composition approach (Subsect. 4.2),
reducing the total memory footprint by 4.54×. Using this design, the experi-
ments carried out are divided into design implementation (bitstream generation
for each hardware kernel) and FPGA reconfiguration (using the new run-time
reconfiguration management).

Fig. 4. (a): ARTICo3 static design implementation for the xc7z020clg400-1 chip. (b):
matmul IMPRESS-generated accelerators.

Implementation time has been measured with four different kernels tak-
ing into account the time elapsed by the toolchain to generate the necessary
bitstreams. These results can be found in Table 1, which compares ARTICo3

implementation with the integration of IMPRESS and ARTICo3. ARTICo3-
only implementations can be divided into the generation of the static system
bitstream and the partial bitstreams, even though the static system has to be
always generated together with the partial bitstreams. This is not the case when
using IMPRESS. The static system has to be generated only once for a given
platform and floorplanning (i.e., ARTICo3 template), and afterwards only the
relocatable partial bitstreams need to be generated, regardless of the kernel to
implement. As such, time improvements in Table 1 have been calculated taking
into account the full design time with ARTICo3 and the time elapsed only to
generate the relocatable slots for each kernel with IMPRESS and ARTICo3. It
is important to highlight that ARTICo3 total time also takes into account the

Enhancing Productivity in Reconfigurable Multi-accelerator Systems 57

static architecture block design (BD) generation corresponding to the template
in use (i.e., the total number of slots), which is not included in the static and
slots implementation times.

Table 1. Design implementation time (s) for Zynq-7000 using Xilinx Vivado 2017.3.
and ARTICo3 open-source kernels.

Kernel ARTICo3 IMPRESS + ARTICo3 Speed-up

BD Static Slots Total Total Kernel design

addvector 30.841 336.974 103.790 471.605 419.997 175.691 2.68×
inout 28.922 326.650 111.435 467.007 406.473 160.793 2.90×
matmul 31.102 347.929 171.727 550.758 453.977 207.430 2.66×
matmul fp 29.604 474.484 272.199 776.287 511.016 262.333 2.96×

Table 2. Partial bitstreams reconfiguration times (ms) for Zynq-7000.

ARTICo3 IMPRESS + ARTICo3 Improvement

1 acc 25.223 23.147 9.0%

2 acc 49.937 47.088 6.1%

3 acc 75.403 74.819 0.8%

4 acc 101.412 98.926 2.5%

The second round of experiments aims to compare bitstream programming
times to the FPGA at runtime, which have been obtained different amounts
of hardware accelerators (from 1 to 4). These results can be found in Table 2
together with the slight improvements provided by the new reconfiguration flow.
These improvements are a consequence of the lower memory usage of IMPRESS
bitstreams. Even though configuration and BRAM readbacks are necessary to
complete the bitstreams, the amount of memory, and therefore bits to send to
the FPGA, is less than half of Xilinx-generated partial bitstreams, as these last
bitstreams also include a first erasing of configuration and BRAM memory data.

Finally, to illustrate the flexibility gained in the slot distribution by the usage
of IMPRESS, a design is shown in Fig. 5. The higher flexibility enables the user
to configure FPGA slots to fit more than one per clock region (two slots per
clock region in this case), thus adapting the granularity of the RRs to the size
of the accelerators. Notice that only two relocatable bitstreams are needed for
this design, one for slots 0 to 5, and another one for slots 6 and 7. Therefore,
the total bitstream memory footprint is less than a Xilinx-generated partial
bitstream spanning a single clock region.

58 A. Ortiz et al.

Fig. 5. FPGA slot distribution with two slots per clock region

7 Conclusions

This paper shows an efficient reconfiguration framework for building reconfig-
urable multi-accelerator systems in Xilinx series 7 FPGAs resulting from the
integration of ARTICo3 and IMPRESS. The integration of both tools decouples
the implementation of reconfigurable accelerators from the static architecture,
which is pre-implemented once. This way, the user just has to build the reconfig-
urable accelerators, which results in implementation times that are up to 2.96×
times better in a Zynq xc7z020clg400-1 with four reconfigurable regions. More-
over, relocation capabilities provided by IMPRESS reduce the memory footprint
up to 4.54× times. The flexibility of the design has also been enhanced, allowing
to stack reconfigurable regions in the same clock region. A new reconfiguration
engine has been implemented as a Linux driver for downloading IMPRESS-
generated partial bitstreams to the FPGA. Despite having to perform a read-
back of the resources and bitstream recombination before downloading it to the
FPGA, the reconfiguration time has been slightly reduced. Moreover, to ease the
design of reconfigurable systems, model-based design of ARTICo3 accelerators
with Simulink is now supported. Therefore, the new reconfiguration framework
improves key issues of FPGA development as long implementation times and
ease-of-design.

Acknowledgment. This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 732105
(CERBERO Project).

Enhancing Productivity in Reconfigurable Multi-accelerator Systems 59

References

1. Partial Reconfiguration User Guide. Technical report UG909, Xilinx, April 2018
2. Intel Stratix 10 Hard Processor System Technical Reference Manual. Technical

report s105 v4, Intel, May 2019
3. Intel R© FPGA SDK for OpenCLTM Pro Edition. Technical report, Version 19.3,

Intel, September 2019
4. SDAccel Environment User Guide. Technical report UG1023, Xilinx, January 2019
5. Versal: The First Adaptive Compute Acceleration Platform (ACAP). Technical

report, Xilinx, September 2019
6. Zynq UltraScale+ Device Technical Reference Manual. Technical report UG1085,

Xilinx, Rev. 1.9, January 2019
7. Agne, A., et al.: ReconOS: an operating system approach for reconfigurable com-

puting. IEEE Micro 34(1), 60–71 (2014). https://doi.org/10.1109/MM.2013.110
8. Putnam, A., et al.: A reconfigurable fabric for accelerating large-scale datacenter

services. SIGARCH Comput. Archit. News 42(3), 13–24 (2014). https://doi.org/
10.1145/2678373.2665678. http://doi.acm.org/10.1145/2678373.2665678

9. Canis, A., et al.: LegUp: an open-source high-level synthesis tool for
FPGA-based processor/accelerator systems. ACM Trans. Embed. Com-
put. Syst. 13(2), 24:1–24:27 (2013). https://doi.org/10.1145/2514740.
http://doi.acm.org/10.1145/2514740

10. Kintali, K., Gu, Y.: Model-based design with Simulink, HDL coder, and Xilinx
system generator for DSP (2012). Mathworks white paper

11. Koch, D., et al.: Partial reconfiguration on FPGAs in practice - tools and applica-
tions. In: ARCS 2012, pp. 1–12 (2012)

12. Koch, D.: Partial Reconfiguration on FPGAs: Architectures, Tools and Applica-
tions. LNEE, vol. 153. Springer, New York (2012). https://doi.org/10.1007/978-1-
4614-1225-0

13. Nane, R., et al.: A survey and evaluation of FPGA high-level synthesis tools.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(10), 1591–1604 (2016).
https://doi.org/10.1109/TCAD.2015.2513673

14. Rodŕıguez, A., Valverde, J., Portilla, J., Otero, A., Riesgo, T., De la Torre, E.:
FPGA-based high-performance embedded systems for adaptive edge computing in
cyber-physical systems: the ARTICo3 framework. Sensors 18(6) (2018). https://
doi.org/10.3390/s18061877. http://www.mdpi.com/1424-8220/18/6/1877

15. Sundararajan, P.: High performance computing using FPGAs. Technical report,
Xilinx, September 2010

16. Tessier, R., Pocek, K., DeHon, A.: Reconfigurable computing architectures. Proc.
IEEE 103(3), 332–354 (2015). https://doi.org/10.1109/JPROC.2014.2386883

17. Trimberger, S.M.S.: Three ages of FPGAs: a retrospective on the first thirty years
of FPGA technology: this paper reflects on how Moore’s law has driven the design
of FPGAs through three epochs: the age of invention, the age of expansion, and the
age of accumulation. IEEE Solid-State Circuits Mag. 10(2), 16–29 (2018). https://
doi.org/10.1109/MSSC.2018.2822862

18. Waldrop, M.M.: The chips are down for Moore’s law. Nat. News 530(7589), 144
(2016)

https://doi.org/10.1109/MM.2013.110
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1145/2678373.2665678
http://doi.acm.org/10.1145/2678373.2665678
https://doi.org/10.1145/2514740
http://doi.acm.org/10.1145/2514740
https://doi.org/10.1007/978-1-4614-1225-0
https://doi.org/10.1007/978-1-4614-1225-0
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.3390/s18061877
https://doi.org/10.3390/s18061877
http://www.mdpi.com/1424-8220/18/6/1877
https://doi.org/10.1109/JPROC.2014.2386883
https://doi.org/10.1109/MSSC.2018.2822862
https://doi.org/10.1109/MSSC.2018.2822862

60 A. Ortiz et al.

19. Williams, R.S.: What’s next? [The end of Moore’s law]. Comput. Sci. Eng. 19(2),
7–13 (2017). https://doi.org/10.1109/MCSE.2017.31

20. Zamacola, R., Mart́ınez, A.G., Mora, J., Otero, A., de La Torre, E.: IMPRESS:
automated tool for the implementation of highly flexible partial reconfigurable
systems with Xilinx Vivado. In: 2018 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pp. 1–8, December 2018. https://doi.org/10.
1109/RECONFIG.2018.8641703

https://doi.org/10.1109/MCSE.2017.31
https://doi.org/10.1109/RECONFIG.2018.8641703
https://doi.org/10.1109/RECONFIG.2018.8641703

Chisel Usecase: Designing General Matrix
Multiply for FPGA

Bruno Ferres(B), Olivier Muller, and Frédéric Rousseau

Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, 38000 Grenoble, France
{bruno.ferres,olivier.muller,frederic.rousseau}@univ-grenoble-alpes.fr

Abstract. To ease developers work in an industry where FPGA usage
is constantly growing, we propose an alternative methodology for archi-
tecture design. Targeting FPGA boards, we aim at comparing imple-
mentations on multiple criteria. We implement it as a tool flow based
on Chisel, taking advantage of high level functionalities to ease circuit
design, evolution and reutilization, improving designers productivity.

We target a Xilinx VC709 board and propose a case study on General
Matrix Multiply implementation using this flow, which demonstrates its
usability with performances comparable to the state of the art, as well
as the genericity one can benefit from when designing an application-
specific accelerator. We show that we were able to generate, simulate and
synthesize 80 different architectures in less than 24 h, allowing different
trade-offs to be quickly and easily studied, from the most performant to
the less costly, to easily comply with integration constraints.

Keywords: Chisel · FPGA · GEMM · Methodology

1 Introduction

As FPGA usage for application acceleration increases in the industry, notably
in the domain of Cloud computing [3,7], RTL based design methodology - i.e.
the standard methodology in industry - can be questioned on criteria such as
efficiency, reusability, or accessibility.

The last decade has witnessed the appearance of new technologies easing
hardware development, with higher levels of abstraction. The most known of
those are High Level Synthesis, which goal is to bring the power of dedicated
hardware acceleration to hardware-agnostic software developers. Nevertheless,
HLS still has to cope with some flaws, including fine tuning on the code to infer
efficient hardware, as well as lack of control on the generated hardware.

On the other hand, more hardware aware initiatives have appeared in the
scientific community, like Chisel [2]. Chisel (Constructing Hardware In a Scala
Embedded Language) is an open source Scala based language dedicated to hard-
ware generation, with high level programming functionalities, and an ever grow-
ing community. It can be used to generate Verilog code, insuring compatibility

Grenoble INP—Institute of Engineering Univ. Grenoble Alpes.

c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 61–72, 2020.
https://doi.org/10.1007/978-3-030-44534-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_5

62 B. Ferres et al.

with the standard flow, and ease design reutilisation thanks to the software con-
structs it embeds.

Google used Chisel for the design of their Edge TPU [1], and two RISC-V
implementations have been proposed - Rocket Chip and BOOM - showing
that the initiative can be integrated in both industrial and academic worlds.
Works like [8] showed that Chisel can be used to explore different implemen-
tations of a circuit, here designed for BLAS (Basic Linear Algebra Subroutines)
dot product acceleration.

BLAS introduces a set of linear algebra operations that can be used to eval-
uate implementation performances on this kind of applications [5]. In particular,
it includes the General Matrix Multiply (GEMM) algorithm, a highly indicative
application for all algebra computations [9], which has been deployed to various
platforms before, including FPGA [4] and GPU [6]. GEMM is usually imple-
mented with variations on the type and length of elements used, SGEMM and
DGEMM respectively representing simple and double precision floating points,
and other implementations targeting fixed point or integer representations.

This paper introduces a methodology for designing, testing and evaluating
an application using Chisel, demonstrating its usage on a GEMM case study.
Through this usecase, we show that our methodology allows to deeply control
the generated hardware, producing accelerators that are not only comparable
to the state of the art, but behave as they are designed to. Resource usage
can be fully explained by targeted architecture, as no hardware inference has
to be made by the compile pass. On the other hand, this flow allows to easily
explore multiple architectures, studying the influence of application and target
parameters on the produced designs. It enables changing the type and width
of the operands, the capacities of communication or even the dimension of the
applicative problem. Section 2 introduces the aim and steps of this methodology,
while Sect. 3 demonstrates its usage on a GEMM usecase. Section 4 presents the
results of this usecase, as well as the functionalities of our tool flow, and Sect. 5
discusses the contribution of our work.

2 High Level Methodology

To efficiently implement an application, one must take into account the appli-
cation temporal behavior, as well as the environment target, in order to take
advantage of the available resources. For example, targeting a FPGA requires the
developer to consider the different kind of memory and computational resources
embedded, the communication links, the reachable clock frequency, and other
factors that will impact the choices of implementations.

On the other hand, to maximize the reusability of the developed design,
you need to think about genericity before implementation, so generated designs
can be adapted to new implementation constraints if needed, including target
change.

This section describes the chosen technology for our methodology, as well as
its steps, from application and target specificities to implementation.

Chisel Usecase: Designing General Matrix Multiply for FPGA 63

2.1 High Level Description

To improve productivity when it comes to hardware development, developers
must be able to define architectures in a generic way, to be able to generate dif-
ferent implementations by varying application specific and non-specific parame-
ters (e.g. I/O size, element type, ...). Such generic implementation would allow to
explore different trade-offs, and be able to suggest the most efficient architecture,
the most performant or the less costly, for example.

To do so, we choose to use Chisel in our architecture generator flow, since
the language offers higher level generic features, compared to the ones proposed
by standard RTL languages (such as Verilog, SystemVerilog or VHDL).

Replacing RTL. Although Chisel remains a RTL language, we identified three
main features of it that can ease the development of such generator, compared
to standard RTL languages such as VHDL or Verilog.

Table 1 compares Chisel and standard RTL features when it comes to
parametrized design generation. We can notice that the third feature - high
level generation - is also available in both Verilog and VHDL languages, but
that the two other features require external tools and complex constructs to be
included in these languages.

Table 1. Feature comparison between Chisel and standard RTL languages for design
generation

Chisel programming
feature

RTL equivalent (Verilog and/or VHDL)

Type genericity Black boxing type specific operators + string replacement in
RTL code (i.e. using sed) N.B. generic can be used for width
genericity only

Procedural
programming

Multiple version of the same code to change functionalities
and/or behavior

High level
generation

for or generate loops if statements

HLS vs Chisel. Choosing Chisel over standard RTL languages for design
implementation can thus be motivated by a need for higher abstraction level
when it comes to hardware development.

However, as stated in introduction, High Level Synthesis technology aims
at easing accelerators development by synthesizing algorithmic description to
hardware circuit, meaning that it is a good candidate for increasing developers
productivity, as well as easing design reusability. Yet, HLS requires, by design,
inference from the compilation tool to generate functioning circuits. This means

64 B. Ferres et al.

that one can not control easily the hardware generated, which allows software
or application developers to use it with no hardware knowledge, but also means
that experienced hardware developers can not directly control the generation
flow, and can only try to tune the code and the tool to orientate the compilation
toward an acceptable architecture.

Zhao et al. [11] state that HLS generated circuits can be compared to RTL
written ones, but only with hard code discipline and fine pragma tuning. It can
be complex, and might need to be repeated each time you change the generation
constraints, meaning that evolving your design can be time consuming.

Since we aim at reusing code and generating multiple accelerators with dif-
ferent constraints, we chose to use the open-source, highly promising technology
of Chisel.

2.2 From Application to Architecture

Using a language like Chisel, we propose a more generic development method-
ology, relying on hardware knowledge about the chosen target family (e.g. does
it propose external memory, which kind of computing units are available, ...),
and an architectural study of the application. This methodology does not require
specific adjustment of code for a particular target board, but rather a generic
design for a class of target, making it more target-agnostic.

Fig. 1. Proposed methodology for design development. Dashed rectangles presents an
example of application to the GEMM usecase.

Figure 1 presents this methodology. As can be observed, we consider three
entry points when implementing an application to dedicated hardware: obviously,
the target and the application itself, but also the target class, which is

Chisel Usecase: Designing General Matrix Multiply for FPGA 65

defined by generic characteristics we aim at using for this specific application
(e.g. memory type and capacity, available operators, communication links, ...).

To use this methodology, one has to distinguish two main steps: implementing
a generic design of the application using Chisel, and instantiating this design
with parameter variations for a particular target. Doing this, the generic design
- that uses some particular constructs, like embedded memory or DSP units -
can be used to implement the application on various boards which includes those
constructs. The methodology needs 3 main manual steps:

– Analysis of both application and target class, to define the parameters used
for circuit parametrization

– Implementation of a generic architecture using Chisel
– Analysis of the target board, to define the parameter sets used for architecture

instantiation, with respect to the target characteristics (e.g. the band width,
the problem dimension, ...)

Elaboration and logic synthesis steps are done automatically, for each parameter
set defined in this third step.

3 Methodology Usecase

In order to demonstrate both usability and advantages of the proposed method-
ology, we defined and implemented a generic GEMM architecture. It illustrates
how preliminary reflexions on application and target class - communication
model, available memory and computing units, temporal behavior, ... - can,
with the help of Chisel, improve both productivity and code reusability with
generic designs.

GEMM. The General Matrix Multiply (GEMM) algorithm is a generalization
of the matrix product algorithm. Let A, B and C be square matrices of dimension
n × n (Mn), and (α, β) ∈ NNN

2. GEMM is defined as the following f function:

f : NNN ×NNN × Mn × Mn × Mn → Mn

(α, β,A,B,C) �→ α · A × B + β · C
(1)

Target Characteristics. For this implementation, we assume that the devel-
oper is targeting Xilinx FPGA technology. More precisely, this means that the
developed design can take advantage of embedded operators for multiplication
(DSP block) and only embedded memory (Block RAMs).

Application Study. GEMM computation complexity is O(n3) while its com-
munication complexity is only O(n2). Since, in a generic context, matrices need
to be sent to the design anyway, we can assume that O(n2) - i.e. the communi-
cation complexity - is a temporal complexity bound.

66 B. Ferres et al.

If one wants to reach this bound, it means that the implemented design
needs to be able to compute matrix product in a temporal complexity of n2.
This defines the architecture parallelism level, as it requires to compute n scalar
products (

∑n
k=0 ai,k × bk,j for j ∈ [[0;n − 1]]) in parallel to comply with it.

Figure 2 introduces the targeted temporal behavior for the implementation.
It has been defined with respect to software considerations, as matrices are not
interleaved nor transformed, except for B which has to be transposed for by-
column access. Matrices are sent by blocks of size b (as defined in Sect. 3).

As one can observe on the Fig. 2, the input bus utilization is almost optimal
(i.e. the input bus is almost used for the whole computation time), as results
can be computed on-the-fly while A matrix is being streamed. This way, we can
ensure that the induced design will be communication efficient.

ready

input α β C Bt A

valid

output XXX result

Δc

Fig. 2. Targeted chronogram for GEMM efficient implementation (Eq. 1)

Application-Specific Parameters. With such temporal behavior, we can
compute the maximum throughput of a design implementing it, as a function of

– b the input (or output) bandwidth (in bits/cycle)
– f the clock frequency (in Hz)
– e the matrix element size (in bits)
– n the matrix dimension

We assume that a GEMM kernel performs ρ = 2 × n3 operations [10].
Let Δc be the number of cycles needed to compute the result of the GEMM

algorithm - i.e. the delta cycle between sending α coefficient and receiving the
last bit of the result matrix. We can state that Δc ≥ 3 × n2 × b

e , b
e being the

number of elements sent per cycle, as three matrices must be sent.
Thus, the theoretical maximum throughput T , in number of operation per

second (OPs), is given by

T =
ρ × f

Δc
≤ 2 × n3 × f

3 × n2 × b
e

=
2
3

× f × n × e

b
(2)

Chisel Usecase: Designing General Matrix Multiply for FPGA 67

GEMM Parametrization. As specified in Sect. 2, the developer must think its
architecture genericity before starting the implementation, to allow both explo-
ration and design reutilization.

For GEMM application, we decided, after application and target class anal-
ysis, to define three parameters according to Sect. 3:

– b − bus bandwidth for input/output
– n − size of matrices
– type of elements (which bitwidth is defined as e).

4 Results

To study the usability and performances of our methodology, we implemented it
as a tool flow, and used it to analyze and compare multiple GEMM architectures.
This way, we can illustrate both hardware controlability and generation abilities
of our methodology. We generate 80 different architectures, varying input band-
width b (64, 128, 256 and 512 bits/cycle), element bitwidth e (4, 8, 16, 32 and 64
bits) and matrix dimension n (64× 64, 128× 128, 256× 256 and 512× 512), and
we study the impact of those parameters on the performance and resource usage
of generated designs. The architectures are generated, simulated and synthesized
in less than 24 h, thanks to our tool flow (see Fig. 1).

4.1 Experimental Setup

For the experimentation, we targeted a Xilinx VC709 board which includes
Block RAMs and integer DSPs, as specified in Sect. 3. It embeds a xc7vx690
FPGA with 433k LUT6s, 866 FFs, 3600 DSPs and 1470 BRAMs (6.45 MB).

We developed a tool flow implementing the methodology proposed in Sect. 2,
based on Chisel (latest 3.2 version) as entry point to generate multiple Verilog
designs with respect to the parameters defined in Sect. 3. The flow simulates
generated designs behavior using verilator to ensure functionality, comparing
it to a software reference defined in Scala. It also uses simulation to extract design
latency Δc as defined in the temporal behavior model (Fig. 2). After generation
and simulation steps, we use Xilinx vivado (2017.3 version) to synthesize designs
and extract performance and resource metrics. For performance evaluation, we
use the estimated post-synthesis clock frequency and the simulation latency.
We evaluate resource usage (LUT, Flip Flop, DSP and BRAM usage) thanks
to post-synthesis resource report. All results presented in this section are given
after vivado synthesis step.

Remark: We are only considering designs that can physically fit for this section,
implying that Tables 2, 3 and Fig. 3a only include those designs. Figure 3b rep-
resents non-fittable designs as hatched.

4.2 Control of Generated Hardware

This section presents our designs achieved performance, demonstrating that this
methodology allows to control generated accelerators composition.

68 B. Ferres et al.

GEMM Implementation. As stated in Sect. 1, GEMM algorithm can be
implemented using various types and precision, SGEMM and DGEMM (using
respectively IEEE-754 simple and double precision) are the most used version,
as it has been widely used for performance comparison.

However, since we are targeting Xilinx FPGAs, which does not include ded-
icated floating point units, we chose to implement a fixed-point GEMM version
here. Since the design generator includes type parameters, one could - with few
changes to the control flow - target SGEMM and/or DGEMM variants once he
implemented basic floating operations on Xilinx boards, as stated in Sect. 2.1.

Impact of Type Precision. Table 2 presents the influence of type precision
on achieved throughput for GEMM implementation. For each element bitwidth
e, we selected the most performant generated design, i.e. the design that offers
the higher throughput, with the generation parameters (b, n) associated. We
compared the throughput estimation (based on simulation) with the maximal
theoretical throughput as defined in Eq. (2), indicating the functioning frequency
of the generated designs in the last column, for information purpose.

By computing the theoretical differentials between achieved and theoretical
throughput, we can note that generated designs achieve at least 92% of maximal
throughput - for the 8 bits version - meaning that the input bus utilization is
almost maximal, and that the behavior can be finely controlled from architecture
design to generation.

We showed that our flow can be used to design, implement and analyze
designs with high controlability on generated hardware, and demonstrated it on
an analysis of type precision influence on the performances of GEMM implemen-
tations.

Table 2. Impact of element bitwidth on GEMM throughput.

Element (e) I/O (b) Size (n) Throughput (GOps) Frequency (MHz)

Achieved Theoretical (2)

4 512 128 3680 3844 352.00

8 512 64 934 1016 372.72

16 128 512 700 701 256.74

32 128 256 226 227 331.34

64 128 256 66 68 197.78

4.3 Architecture Exploration: Dimensioning the Application

We have shown that type precision has a considerable impact on the achievable
throughput of generated designs. As type precision also impacts applicative per-
formance metrics a developer can not always act on the type precision, that can
be fixed by application specific needs.

Chisel Usecase: Designing General Matrix Multiply for FPGA 69

In this section, we chose to target 32 bits fixed point GEMM implementa-
tion, though it is not comparable to SGEMM subroutine on 32 bits floating
points because of the complexity of floating point operations (even with dedi-
cated DSPs), to demonstrate the ability of our methodology to explore multiple
parameter sets with no changes to the original Chisel description.

Figures 3a and b respectively compare generated designs throughput and
efficiency for various sizes of input matrices, and various I/O bandwidths.
Efficiency e is defined as ρ

f×Δc
× 1

‖%resource‖ = 2×n3

f×Δc×‖%resource‖ , i.e. performance
resource

ratio1, unified with respect to computational complexity specified in Sect. 3.
Using a n3 factor allows to compare solution of different dimensions, since com-
puting GEMM in Mn space is equivalent to 8 computations in Mn

2
. We can

observe that for 32 bits implementations, the most efficient version (Fig. 3b) is
to operate on matrix kernels of size 256×256, using 2×128 bits/cycle I/O, with
an achieved throughput of 224 GOP/s - among the 80 architectures generated.
For this design, clock frequency reach 331.4 MHz, the theoretical optimal bit rate
is thus 2.8 GB/s. On the other hand, Fig. 3a shows that the most performant
design is to operate on kernels of size 128 × 128, with 2 × 128 bits/cycle I/O,
achieving a throughput of 226 GOP/s.

By generating and comparing those GEMM architectures, we showed that our
generation flow allows to determine which architecture is the most performant
or the most efficient, with respect to constraints one might have on integration.

(a) Performance comparison (b) Standardized efficiency comparison

Fig. 3. Metric comparison on 32 bits GEMM versions

4.4 Existing Solutions

GEMM implementations have been widely used to compare platform perfor-
mances, as well as implementation choices. We propose to compare our imple-
mentations to GEMM instances on various platforms.

1 Resource metric is defined as the maximum usage percentage for the 4 considered
resources: LUTs, Flip Flops, BRAMs and DSPs.

70 B. Ferres et al.

fBLAS [4] implements both SGEMM and DGEMM variants, using HLS on
two Intel Altera FPGAs. It is important to note that Intel Altera FPGAs embed
dedicated floating point DSP, while Xilinx FPGAs does not include any floating
point dedicated units.

Garg et al. [6] propose hybrid CPU-GPU SGEMM and DGEMM implemen-
tations based on Intel Ivy Bridge and AMD Richland platforms.

Our custom solutions present the most performant designs we generated for
precision on 16, 32 and 64 bits. As VC709 target does not include floating point
units, SGEMM and DGEMM will be compared respectively to fixed point solu-
tions on 32 and 64 bits. We also choose to study results on 16 bits fixed point,
since applicative accuracy needs might be compatible with lower precision type.

For each solution in Table 3, we can observe different implementations - vari-
ation of platform, target and type precision - and the associated achieved perfor-
mances, given as implementation throughput. We can see that both our 32 and
64 bits custom versions are comparable in term of performance with the hybrid
solution of [6], and with the fBLAS solution on Intel Altera Arria 10, if a fixed
point solution is acceptable for a given application needs. Stratix 10 board being
way wider than a VC709, we can not compare solutions fairly.

Table 3. Throughput for GEMM implementations on different platforms

Solution Platform Target Precision Throughput

Customa FPGA VC709 16 bits 700 GOps

32 bits 226 GOps

64 bits 68 GOps

fBLAS [4] FPGA Arria 10 32 bits 200 GFlops

64 bits 25 GFlops

Stratix 10 32 bits 750 GFlops

64 bits 75 GFlops

Hybrid [6] CPU-only Ivy Bridge 32 bits 170 GFlops

Richland 32 bits 80 GFlops

64 bits 40 GFlops

GPU-only Ivy Bridge 32 bits 140 GFlops

Richland 32 bits 274 GFlops

64 bits 27.3 GFlops

CPU + GPU Ivy Bridge 32 bits 235 GFlops

Richland 32 bits 274 GFlops

64 bits 57.4 GFlops
aFixed point precision is used instead of floating point, as stated earlier.

Chisel Usecase: Designing General Matrix Multiply for FPGA 71

4.5 Analysis and Contribution

With those experiments, we show that with a tool flow based on Chisel and a
particular methodology, we are able to easily define a generic GEMM accelerator
kernel, which presents multiple advantages when compared to HLS generated or
RTL written ones.

We demonstrate that using Chisel allows a high controlability on generated
hardware, and that, with a sufficient knowledge on hardware development, one
can easily describe a precise architecture, with no worry on which inferences the
tool flow could make when generating the circuit.

We also show that using generic architectures can be useful when it comes
to evaluation of parameters influences, and that using higher level of abstrac-
tions, hardware developers can easily compare architectural trade-offs for a given
application, in order to take the best of the available resources.

5 Conclusion

In this paper, we introduce a design methodology associated to a toolflow that
can be used to implement computation kernels on FPGAs with higher abstrac-
tion level.

We demonstrate the functionality of this new tool through a use case on
GEMM algorithm, which is highly representative for all algebra computations.
We show that we can define generic architecture descriptions with parametriza-
tion, thanks to Chisel, allowing architecture generation and comparison.

Generated GEMM implementations performances are comparable to designs
generated with HLS methodology, as well as CPU and/or GPU solutions pro-
posed in the literature.

We now aim at reusing developed GEMM kernels to implement efficient,
configurable and highly generic CNNs using the presented framework.
We also want to implement other computation kernels to study influence of appli-
cations and target environments on resource usage and achieved performances.

References

1. Alon, E., Asanović, K., Bachrach, J., Nikolić, B.: Invited: Open-Source EDA Tools
and IP, A View from the Trenches, p. 3 (2019)

2. Bachrach, J., et al.: Chisel: constructing hardware in a Scala embedded language.
In: Proceedings of the 49th Annual Design Automation Conference on - DAC 2012,
San Francisco, California, p. 1216. ACM Press (2012)

3. Caulfield, A.M., et al.: A Cloud-Scale Acceleration Architecture, p. 13 (2016)
4. De Matteis, T., de Fine Licht, J., Hoefler, T.: FBLAS: streaming linear algebra on

FPGA. arXiv:1907.07929 [cs], August 2019
5. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.S.: A set of level 3 basic linear

algebra subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

http://arxiv.org/abs/1907.07929

72 B. Ferres et al.

6. Garg, R., Hendren, L.: A portable and high-performance general matrix-multiply
(GEMM) library for GPUs and single-chip CPU/GPU systems. In: 2014 22nd
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, Torino, Italy, pp. 672–680. IEEE, February 2014

7. Ouyang, J., Lin, S., Qi, W., Wang, Y., Yu, B., Jiang, S.: SDA: software-defined
accelerator for large-scale DNN systems. In: 2014 IEEE Hot Chips 26 Symposium
(HCS), Cupertino, CA, USA, pp. 1–23. IEEE, August 2014

8. Koenig, J., Biancolin, D., Bachrach, J., Asanovic, K.: A hardware accelerator for
computing an exact dot product. In: 2017 IEEE 24th Symposium on Computer
Arithmetic (ARITH), London, United Kingdom, pp. 114–121. IEEE, July 2017

9. Pedram, A., Gerstlauer, A., van de Geijn, R.A.: A high-performance, low-power
linear algebra core. In: ASAP 2011–22nd IEEE International Conference on
Application-Specific Systems, Architectures and Processors, Santa Monica, CA,
USA, pp. 35–42. IEEE, September 2011

10. Underwood, K.D., Hemmert, K.S.: Chapter 31 - The implications of floating point
for FPGAs. In: Hauck, S., Dehon, A. (eds.) Reconfigurable Computing, pp. 671–
695. Systems on Silicon, Morgan Kaufmann, Burlington (2008)

11. Zhao, Z., Hoe, J.C.: Using Vivado-HLS for structural design: a NoC case study.
arXiv:1710.10290 [cs], October 2017

http://arxiv.org/abs/1710.10290

Cycle-Accurate Debugging of Embedded
Designs Using Recurrent Neural Networks

Habib ul Hasan Khan(B), Ariel Podlubne, Gökhan Akgün, and Diana Göhringer

Technische Universitaet Dresden (TUD), Dresden, Germany
{habib.khan,ariel.podlubne,goekhan.akguen,

diana.goehringer}@tu-dresden.de

Abstract. This research work presents a methodology for debugging embedded
designs by using recurrent neural networks. In this methodology, a cycle-accurate
lossless debugging system with unlimited trace window is used for debugging.
The lossless trace resembles a time data series. A recurrent neural network trained
either through a golden reference or from the actual time series can be used to
predict the incoming debugging data. A bug can be easily isolated based upon the
discrepancy between the received and the predicted time series. This allows to
draw conclusions to speed up the debugging process.

Keywords: Cycle-accurate · Device start and stop · Recurrent Neural Network

1 Introduction

Hardware designs are increasing in size and complexity with every passing day. Hence,
effective techniques for post-silicon validation are required to ensure the correctness of
the design functionality [1]. Hardware-based prototyping techniques result in a speed-up
as compared to traditional simulation-based verification. However, the inherent invisibil-
ity of the hardware increased the debugging complexity when a problem is encountered.
The visibility can be increased by the inclusion of scan or trace-based techniques. Still,
the manual analysis of the massive amount of trace data is not time-efficient. During the
post-silicon debugging process, the following two scenarios are of utmost concern:

• Diagnostic of the design to verify how closely it resembles with any available Golden
Reference (GR).

• Design debugging when a reference behavior for the Design Under Test (DUT) is not
available.

This research work presents an intrusive debugging technique which permits
cycle-accurate lossless debugging by managing the clock of the DUT. Our proposed
solution depends heavily on the Recurrent Neural Network (RNN) based machine
learning technique for trace diagnostics as well as for bug identification even in the
absence of a GR.

© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 73–83, 2020.
https://doi.org/10.1007/978-3-030-44534-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_6

74 H. H. Khan et al.

The main contributions of this paper are:

• Propose an RNN-based debugging methodology for identification of intermittent
errors or outliers (or anomalies) in the post-silicon validation cycle when the GR
is available.

• Show that the presented debugging methodology for identification of intermittent
errors still works in the absence of the GR.

The rest of the paper is organized as follows. Section 2 presents related work.
Section 3 discusses the proposed debugging methodology. In Sect. 4, the use case will
be explained. Section 5 discusses the results. The paper is concluded in Sect. 6.

2 Related Work

Predictive analysis techniques can be integrated with post-silicon validation for anomaly
detection. Machine learning can be utilized for detection of anomalies. i.e. any deviation
from normal behavior. However, training data is needed for learning the correct behavior.
Similarly, data prediction can also be utilized for design validation. The test data retrieved
from the DUT is used as input to a machine learning algorithm which can then be
employed to make predictions about the bugs occurring on new designs [2]. In [3], the
authors proposed to increase the observability of the internal signals at the post silicon
level through a learning algorithm. In [4], the author suggested to use data mining
for pattern extraction. They further proposed to use the methodology for functional
verification by using the data mining techniques. In [5], the authors suggested to utilize
machine learning for automating the diagnosis of trace dump and bug localization.

In [6], the authors proposed that the time series data can be predicted by using an
RNN. Cycle-accurate lossless trace dump resembles time series data. In [7], a method-
ology is presented which generates continuous stream of lossless trace data by automat-
ically stopping the clock based upon trace buffer occupancy. Similar techniques can be
utilized to generate lossless time series debugging trace. Hence, in this research work,
an RNN based machine learning framework is presented which can be used for bug
identification during the debugging process even in the absence of GR. To the best of
our knowledge, it is the first approach in which an RNN has been employed for lossless
cycle-accurate trace-dumps which can be extremely helpful for debug data prediction.

3 Cycle-Accurate Debugging by RNN

3.1 Design Methodology

In Integrated Logic Analyzer (ILA) based debugging methodologies, data is limited to
the capacity of the trace buffers. Once they are full, data is transmitted to the terminal
for analysis. However, data transfer rate limitation of the communication channel results
in data loss. This loss forbids the use of trace data as a time series. Hence, a debugging
systemproviding lossless trace data is neededbecause time series data prediction requires
consecutive, evenly spaced observation samples.

Cycle-Accurate Debugging of Embedded Designs Using Recurrent Neural Networks 75

In our proposed debugging methodology, it is suggested to stop the clock for the
DUT when the trace buffers are full. The DUT is clocked again when data has been
transmitted and the trace buffers are ready to receive the debugging data. This results
in a cycle-accurate lossless debugging trace as shown in Fig. 1. In order to keep the
resource utilization for the debugging system low, we utilize only 4 KB trace buffers.
Hence, we monitor 16 signals simultaneously (with 32 bits each) resulting in 512 bits.
However, all the signals required to be monitored are routed through the access network
ensuring full visibility. Consequently, a synchronized output for all the available nodes
connected to the access network can be observed through the selection register. This can
be accomplished by running the test from time T0 (the starting time of the debugging
session) when the signal set is changed. This technique ensures a completely synchro-
nized state of all the monitored signals. A controlling processor is utilized to transmit the
data from onboard trace buffers to the terminal through Ethernet. The lossless debugging
data saved in the logged file on the terminal (PC) resembles a time data series which can
be used to predict future samples by using RNN.

Clock
Management

DUT
Processor

Control

Device start/stop signal

Trace Buffer

Clock

Signal set to be selected by the controller

Access
Network

Selec on
Register

Data Transfer16 signals
here

Seed to
DUT

Reconfigurable Portion Recurrent neural Network

Debugging
Data

yt-2

yt-3

..

..

Yt-50

ŷt

Terminal (PC)FPGA

Yt-1

Layer 1 Layer 2 Layer 3

. . ..

Fig. 1. Debugging through RNN

The authors in [8] compared the effect of different factors like seasonality, trend,
randomness etc. on the accuracy of the time series prediction and pointed out that ran-
domness has the biggest negative impact on prediction. They also highlighted that the
accuracy decreased with an increase in forecasting horizon. Keeping in view the above
two factors, we laid the following conditions upon the trace data to be debugable.

• The data should not be random. This can be ensured by checking the randomness
using the Wald-Wolfowitz run tests [9] or any identical tests.

• Trace data should be covariance stationary. This implies that the time series data does
not hold any hidden relationships between different time points and the behavior is
stable. A statistical test such asAugmentedDickey-Fuller test (ADF) can be employed
to get a good insight into the behavior of the data.

• The forecasting horizon should be minimum. The prediction of future samples can be
performed with the following two options:

– Train on {yt , yt−1, yt−2 . . .} to predict {yt+i , f or 1 ≥ i ≥ s holds f or small s}.
which means that using the previous samples to predict s number of samples.

76 H. H. Khan et al.

– Train to predict { yt+1} , i terate to get { yt+i , f or any i} .
which means to use previous samples to predict one future sample.

We will follow the second option for this research work since extrapolating too far in
the future is not recommended. Furthermore, training and testing is performed on (80%,
20%) basis respectively. In order to identify any overfitting, 5% of the training data, not
seen by the RNN, is reserved for validation.

Our time-series prediction algorithmwas implemented on the terminal (PC) by using
RNN. RNNs are best suited for time series data prediction because of their ability to
remember their inputs by making use of their memory. We used the sliding window
method by using the data from previous 50 time steps to predict the value at the next
time step hence requiring the width of first hidden layer to be 50. Using the previous
samples, the trained RNN makes prediction for t + 1 sample. Hence, the RNN can be
represented by the Eq. 3.1.

ŷt = α0 +
3∑

j=1

α j g

(
β0 j +

50∑

i=1

βi j yt−i

)
(3.1)

Here yt−i are the time lagged inputs and ŷt is the predicted output. α j and βi j are the
connection weights. α0 and β0 j are the bias terms. g(x) is the activation function.

The error et between received yt and predicted ŷt at time t is:

et = yt − ŷt (3.2)

As the RNN is highly trained and cross-validated, assuming et ≈ 0, the received input
sample should be:

yt ≈ ŷt (3.3)

which states that the predicted value is similar to the received sample and hence can
be used to verify the received one. Similarly, the continuous stream of previous input
samples can be used to predict the forthcoming sample iteratively.

However, when et �≈ 0, it indicates that the received and the predicted values do not
coincide with one another highlighting the presence of a bug in either the trace data or the
trained model itself. As the RNN is highly trained and the trace data observes the three
conditions mentioned earlier, it can be assumed that the predicted value is correct thus
highlighting the need to debug the identified bug at the indicated location. However, after
analyzing the identified bug, if the trace data is found to be error-free; it points towards
a discrepancy in the trained model. Hence the newly received error-free trace data can
be used for further training of the RNN and subsequently the improved RNN can then
be employed for debugging.

3.2 RNN Implementation

The proposed RNN comprises of 1-dimensional input layer, three hidden layers of sizes
50, 100, 50 and eventually a 1-dimensional output layer. The last layer is the dense layer

Cycle-Accurate Debugging of Embedded Designs Using Recurrent Neural Networks 77

because it is a feedforward case. The proposed neural network is based upon the Keras
library [10] using tensor flow as the back-end. Mean squared error model was used to
find the error during the forward propagation. The partial derivative of the error, adjusted
through the back propagation process, was used by the Adam optimizer [11]. During our
experimentation, we tried with different initial learning rates such as 0.001 and 0.0001.
However, due to highly varying training dataset, we finally settled for 0.0001 which
gave a good approximation of the function. Exponential decay rates for the estimates
of first and second moments i.e. (mean and variance) were chosen to be 0.9 and 0.999,
respectively [12].

In order to cater for exploding gradient problem, we used Tanh as the squashing
function. We used LSTM so that it can memorize its past states as well. LSTM also gets
rid of the vanishing gradient problem.

The RNN processes the trace data for training. The RNN can be trained based upon
a GR for the specific DUT. However, in the absence of a GR, the neural network can be
trained by the received trace acquired from the debugging system. It can use a portion
of the data for training and validation. In this research work, we used 5% of the training
data for validation to identify any overfitting. Once the data has been segregated into the
training and validation datasets, the datasets are divided into batches i.e. the number of
samples required by the network to perform a parameters update. We used a batch size
of 64 for the current research work [13].

Moreover, sometimes, the loss function does not converge to a minimum defined
value. In such cases, RNN should be trained using different optimizers and hyper
parameters to find an optimized solution which results in a converging loss function.

4 Obstacle Avoidance as Use Case

The platformused is a 4wheeled skid steer robotmodel simulated inGazebo. Eachwheel
can be controlled independently resulting in a highly controllable platform. Incremental
encoders attached to each motor and eight ultrasonic sensors for closed loop operation
result in precise localization and environment sensing. Based upon the vehicle informa-
tion, the control module calculates the control signal needed to maintain safe distance
from the upcoming obstacle. The control signal is then sent to the actuation mechanism
to divert the vehicle in order to avoid the obstacle. We used the robot for generating the
time-series data and used its orientation as an input for our RNN.

The block diagram of the technique (Fig. 2) shows that the data from the ultrasonic
sensors and encoders is sent to the controller to perceive the environment and compute
corresponding control signals to avoid the obstacle. Subsequently, the linear and rota-
tional velocity from the controller are transformed to right and left wheel velocity by
using odometry model of the robot. Obstacle Avoidance (OA) algorithm uses this infor-
mation along with data from the sensors to localize the robot. If the ultrasonic sensors
do not sense any obstacle, the robot continues to move in its designated path. However,
when an obstacle is sensed and the threshold distance between the robot and obstacle is
reached, the robot stops at fixed distance from the obstacle. Then, it calculates the width
of the obstacle through triangulation. It then follows the shorter path until it reaches the
destination.

78 H. H. Khan et al.

Odometry

Obstacle Avoidance
Algorithm

Encoder

Ultrasonic
Sensor

Robot

Velocity
Calcula on

Angle

Ticks

Right Wheel Velocity
Le Wheel Velocity

On Robot On hardware

IMUExtended Kalman
Filter

Angle calcula on

Comparison Block

Accelera on

Distance

Side Decision

Posi on and orienta on

Fig. 2. Incorporation of Extended Kalman Filter with obstacle avoidance

Encoder and IMU sensors are utilized to determine the robot’s position and orienta-
tion. However, such sensors may not give the exact position and orientation due to sensor
errors. Hence, Extended Kalman Filter (EKF) is used to perform sensor data fusion in
order to reduce the effect of such errors and better estimation of the optimal position and
orientation of the robot. Integration between EKF and the OA algorithm is implemented
as shown in Fig. 2. The data from an accelerometer, magnetometer and gyroscope is
fused using EKF to have an optimal estimation of the position and orientation of the
robot. Then, these estimated values are used to avoid the obstacle.

5 Results

The result section has been divided into three subsections. In the first subsection, the
resource utilization for the proposed debugging system having unlimited tracewindow is
presented. Then, the results of debugging using the proposed methodology is presented.
Subsequently, the training requirements are discussed. The proposed methodology has
been implemented on Digilent Zedboard having an XC7Z020-484 FPGA. Xilinx Vivado
2017.1 was used for designing the hardware. The RNNwas implemented on the terminal
(PC) having an Intel Core i7-6700 CPU running at 3.4 GHz and having 16 GB of RAM.

5.1 Resource Utilization

Resource utilization of the presented debugging methodology is shown in Fig. 3. It
was noticed that the resource utilization is growing with an increase in debug window,
as more BRAM blocks are required for trace buffers. Hence, the debugging system is
synthesized with trace window of 64 samples. 16 signals are monitored with data width
of 32 bits each. The resource utilization is compared with a similar research [7]. It is
evident that the resources have been reduced to almost 2% of the available ones.

Cycle-Accurate Debugging of Embedded Designs Using Recurrent Neural Networks 79

Registers LUT BMEM
Proposed 2 3 1
DSAS [7] 3 4.7 12.8

0
2
4
6
8

10
12
14

%
 U

til
iz

at
io

n

Fig. 3. Resource utilization

5.2 Debugging Through RNNs

The OA algorithm was implemented in hardware. The controller, EKF, odometry
calculation, comparison module etc. are some of the hardware implemented modules.

Fig. 4. Movement in the X, Y coordinates

As shown in Fig. 4, the robot continued to move in its designated path. However,
when the ultrasonic sensors detected an obstacle, the robot stopped and then calculated
the width of the obstacle through triangulation. It then decided to avoid the obstacle by
following the shorter side. The robot then rotated 90° to avoid the obstacle and continued
the process until it reached the other side of the obstacle. Then it followed its original
path. The orientation of the robot is shown in Fig. 5. The time series data of the orientation
is utilized to demonstrate the usage of the proposed RNN for debugging.

The lossless trace data logged by the proposed debugging system resembles a time
data series. Hence, the RNN can be used to ease the debugging process. If a GR is
available, the debug trace from the GR is used for training. Subsequently, the DUT trace

80 H. H. Khan et al.

data can be predicted using the trained RNN which can be used for bug identification.
This methodology is explained in Sect. 5.2.1. However, in the absence of GR, the portion
of the debug trace data generated by the DUT and known to be error free can be used
for training the RNN. Then this trained RNN is used for predicting the upcoming debug
data. This methodology will be presented in Sect. 5.2.2.

Fig. 5. Orientation in radians

5.2.1 Debugging Using GR

In the first experiment, we have a verified OA system which is used as a GR. We first
programmed the robot to avoid the obstacle from the same start point and end goal as
shown in Fig. 4. We collected the orientation data samples as shown in Fig. 5. After
data collection, we checked the randomness using the Wald-Wolfowitz run test. Then,
we performed ADF test to check for stationarity of the trace data. Once, the trace data
qualified for use with RNN, we performed normalization during the data preparation
phase. The data was then used to train the RNN. Subsequently, the trained RNN was
used to predict the time data series generated by the DUT. The predicted data is de-
normalized so that it can be compared with the debug trace data. Figure 6 shows the
actual vs the predicted time series data. The red line shows the actual time series data
and the green line in the figure shows the predicted data. As can be seen, the predicted
data closely resembles the actual data. Hence, it can be assumed that the DUT resembles
closely with the GR and is free from either functional or intermittent errors.

5.2.2 Debugging Without GR

The received lossless time series trace data can be used for RNN training if the GR is
not available. However, the trace data used for training should be error free which can
be ascertained through hardware checkers as suggested by Bertacco [14]. Moreover,
the conditions stated in Sect. 3 should be fulfilled. For the current experiment, we used

Cycle-Accurate Debugging of Embedded Designs Using Recurrent Neural Networks 81

Fig. 6. Actual vs predicted time series data (Color figure online)

about 1800 samples for training as illustrated in Fig. 5. Then, we utilized the trained
RNN for prediction. This predicted data is compared with the received trace data for
bug identification as shown in Fig. 7. This eliminates the requirement of GR. The error
generally resembles rarely occurring behavior i.e. intermittent or outlier. When an error
occurs during the test phase, the RNN is not trained for this bug. Hence, it fails to predict
the bug which can be easily isolated during the debugging process.

Fig. 7. Debugging without GR

In order to test the effectiveness of the proposed approach, a bug was introduced into
the test data as shown in Fig. 8. As the RNN was trained based upon error free received
data, it predicted well during the test phase. However, as it was not trained for the rarely
occurring induced error, it failed to predict the data during the occurrence of error. This
phenomenon is shown in Fig. 8 by a possible error.Whenever an intermittent error or bug,

82 H. H. Khan et al.

resembling an outlier behavior, is encountered during the test phase, a similar behavior
is expected. Consequently, this phenomenon can be utilized in bug identification.

5.3 Training Dataset Requirement

The most important condition for training an RNN is the provision of the training data.
The error in a DUT is considered to be random i.e. it can occur at any time. Hence, a
large training dataset may not be available. This scenario is quite reasonable; because
if training with small dataset can be performed, training with larger datasets will be
definitely more accurate (assuming similar variance in both datasets).

Fig. 8. Debugging with introduced bug

6 Conclusions

This research work presents a cycle accurate debugging technique using RNN. Our
proposed solution depends heavily on machine learning techniques for trace diagnostics
as well as for the bug identification. Results have shown that localizing potential bugs in
the system can be done with or without the presence of a GR. This will help in problem
identification and hence will increase time-efficiency.

The proposed methodology can be iterated to localize the bug. Once a bug has been
identified in one of the debugged nodes, the nodes in its vicinity can be probed further
to localize the bug.

Acknowledgements. This research has received funding under the grant number 100369691 by
the German Federal State of Saxony.

Cycle-Accurate Debugging of Embedded Designs Using Recurrent Neural Networks 83

References

1. Huang, C., Yin, Y., Hsu, C., Huang, T.B., Chang, T.: SoCHW/SW verification and validation.
In: 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), pp. 297–
300, January 2011

2. Fania, M., Peiravi, P., Chandramouly, A., Yalla, C.: White paper: predictive analytics and
interactive queries on big data. Intel (2013)

3. Jindal,A.,Kumar,B., Jindal,N., Fujita,M., Singh,V.: Silicon debugwithmaximally expanded
internal observability using nearest neighbor algorithm. In: 2018 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pp. 46–51, July 2018

4. Wang, L.: Experience of data analytics in EDA and test principles, promises, and challenges.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(6), 885–898 (2017)

5. Mandouh, E., Wassal, A.G.: Application of machine learning techniques in post-silicon
debugging and bug localization. J. Electron. Test. 34(2), 163–181 (2018)

6. Groß, W., Lange, S., Bödecker, J., Blum, M.: Predicting time series with space-time
convolutional and recurrent neural networks. In: ESANN (2017)

7. Khan, H.H., Göhringer, D.: FPGA debugging by a device start and stop approach. In: 2016
International Conference on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–6,
November 2016

8. Petropoulos, F., Makridakis, S., Assimakopoulos, V., Nikolopoulos, K.: ‘Horses for Courses’
in demand forecasting. Eur. J. Oper. Res. 237(1), 152–163 (2014)

9. Friedman, J.H., Rafsky, L.C.: Multivariate generalizations of the Wald-Wolfowitz and
Smirnov two-sample tests. Ann. Stat. 7(4), 697–717 (1979)

10. Chollet, F.:DeepLearningwith Python, 1st edn.ManningPublicationsCo.,Greenwich (2017)
11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.

6980
12. Bianchi, F.M., Maiorino, E., Kampffmeyer, M.C., Rizzi, A., Jenssen, R.: Properties and

training in recurrent neural networks. In: Recurrent Neural Networks for Short-Term Load
Forecasting. SCS, pp. 9–21. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70338-1_2

13. Masters, D., Luschi, C.: Revisiting small batch training for deep neural networks. arXiv
preprint arXiv:1804.07612

14. Bertacco, V., Bonkowski, W.: ItHELPS: iterative high-accuracy error localization in post-
silicon. In: 33rd IEEE International Conference on Computer Design (ICCD), pp. 196–199,
October 2015

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-70338-1_2
http://arxiv.org/abs/1804.07612

Soft-Error Analysis of Self-reconfiguration
Controllers for Safety Critical Dynamically

Reconfigurable FPGAs

Ludovica Bozzoli(B) and Luca Sterpone

Politecnico Di Torino, Turin, Italy
{ludovica.bozzoli,luca.sterpone}@polito.it

Abstract. Reconfigurable SRAM-based Field Programmable Gate Arrays are
increasingly deployed in the aerospace applications, due to their enhanced flexi-
bility, high performance and run-time reconfiguration capabilities. The possibility
to adapt on-the-fly the circuit functionality is made possible by the Internal Con-
figuration Access Port (ICAP) that can be managed from the application through a
dedicated controller. This feature enables the deployment of new optimized recon-
figurable architectures for computationally intensive and fault-tolerant applica-
tions. In this context, a promising architecture is the Dynamically Reconfigurable
Processing Module (DRPM), an FPGA-based modular system where the content
of each reconfigurable module can be rewritten, overwritten or erased to perform
performance optimization and functionalmodification at run-time.However,when
these systems are adopted in avionic and space applications, SRAM configura-
tion sensitivity to radiation induced soft-errors should be addressed. In this work,
we evaluate the soft-error sensitivity of upsets in the configuration memory of
two implementations of the ICAP controller within a DRPM system. We per-
formed a radiation test campaign and a selective fault injection of upsets on the
ICAP controller configuration memory to mimic the radiation profiles. The com-
parative analysis showed meaningful guidelines on the implementations of self-
reconfigurable systems for the aerospace domain: the controller with distributed
memory results the 28% more tolerant to low radiation environment compared
to the integrated memory version, which in return results the 25% more robust
considering radiation particles with higher energies.

Keywords: SRAM-based FPGA · Reconfigurability · DRPM · Radiation
effects · SEUs ·MBUs · Testing · Aerospace

1 Introduction

Commercial-of-the-shelf (COTS) reconfigurable SRAM-based FPGAs are increasingly
adopted in aerospace applications such as cube-sat and mini-sat, due to their low cost,
high computational performance and run-time upgradability [1–3]. The possibility to
modify the functionality of the system after deployment, provides several opportunities
for the development of optimized computing architectures exploiting run-time reconfig-
uration. This feature is possible in modern FPGA device since they embed on their fabric

© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 84–96, 2020.
https://doi.org/10.1007/978-3-030-44534-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_7&domain=pdf
http://orcid.org/0000-0001-5099-9359
http://orcid.org/0000-0002-3080-2560
https://doi.org/10.1007/978-3-030-44534-8_7

Soft-Error Analysis of Self-reconfiguration Controllers 85

the Internal Configuration Access Port (ICAP [4]), which enables access and update of
configuration memory portions of hardware data-path according to the computational
needs [1–3].

One of the most appealing reconfigurable architectures in this context is the Dynam-
ically Reconfigurable Processing Module (DRPM), a modular system where the content
of each reconfigurable module can be rewritten, overwritten or erased to perform com-
putational modification on-the-fly [5, 6]. Such optimizations are highly appealing for
computationally intensive algorithms that must full-fil power constraints and high reli-
ability level such as the systems used for satellites applications [1, 7]. In fact, these
applications typically require complex real-time operations to be executed with restrict
power and space budgets and to be highly dependable.

However, when SRAM-based FPGAs are deployed in radiation environments, such
as the high altitude of flight routes or the more critical satellite orbits, the configuration
memory sensitivity to radiation effects should be evaluated and characterized [8, 9].

Typically, commercially available SRAM-based FPGAs are radiation tolerant in
terms of total ionizing dose (TID) and Single Event Latch-up (SEL), while presenting
a considerable sensitivity to the other Single Event Effects (SEEs). In fact, the configu-
ration memory sensitivity to soft-errors, such as Single Event Upsets and Multiple Bits
Upsets (SEUs andMBUs) is particularly critical. These are transient effects consisting on
a change in the state of a memory cell caused by a particle crossing the device, producing
a bit-flip in the configuration memory. Considering that the content of the configuration
memory directly defines the behavior of the programmable logic, it is crucial to evaluate
and quantify the application and device sensitivity to these effects before their deploy-
ment [10]. In particular, in case of DRPMs and for dynamically reconfigurable systems
in general, the ICAP controller represents a key component and a possible point of fail-
ure, considering that it manages all the optimization procedures and it is implemented
in the programmable logic [11].

For these reasons, in this work we evaluate the reliability of two different imple-
mentations of ICAP Controller for the DRPM system. Starting from experimental data
from radiation test obtained in [12] for the 7 Family Xilinx SRAM-based FPGA, we
were able to perform a detailed fault injection on the ICAP Controller that realistically
mimics the radiation profiles for both Avionic and Space environments. We performed
two separated analysis, the first to evaluate the effect of the single bit upsets of a low
radiation scenario, while the second is focused on the multiple bit upsets which are more
likely to happen in a high radiation environment, such as the one of space applications.
This comparative analysis allows us to identify which implementation is more suitable
for the target scenarios.

The rest of the paper is organized as follows: in Sect. 2 we provide a summary about
the main scientific background and related works on reconfigurable architectures for the
aerospace domain. Section 3 details the evaluation framework used to characterize the
ICAP controller dependability, while the experimental results obtained by radiation test
experiments and fault injection are presented in Sect. 4. Section 5 provides the conclusion
and the future directions of this work.

86 L. Bozzoli and L. Sterpone

2 Background and Related Works

The development of SRAM-based dynamically reconfigurable systems is enabled by the
presence of an interface that allows the communication between the logic programmed
on the FPGA and the configuration memory. This component is the ICAP and can be
managed through a dedicated controller. This feature allows the development of flexible
and upgradable architectures, such as the Dynamically Reconfigurable ProcessingMod-
ule (DRPM). These architectures are highly suitable for optimized and computationally
intensive applications such as the ones required in avionics and space missions. Any-
way, when SRAM-based FPGAs are deployed in these environments, their sensitivity
to radiation effects should be considered and characterized, to ensure the application
doesn’t fail during its mission.

2.1 Internal Configuration Access Port and Internal Configuration Controller

The Internal Configuration Access Port (ICAP), is a primitive embedded in the recent
Xilinx FPGA families. The ICAP enables the access to the configuration memory to
read or write configuration data at run-time from the application programmed in the
resource layer [4]. This procedure is performed through the circuitry shown in Fig. 1:
The ICAP is controlled by the on-chip microprocessor or by custom logic on the FPGA
through a dedicated controller; the building components of the controller are a Finite
State Machine (FSM) and a dedicated memory module, containing Read and Write
FIFO and Control Registers. The FSM manages the ICAP signals and Read/Write
FIFOs to stream data from/to the ICAP. The data to exchange with configuration mem-
ory typically are stored in a large external memory: according to the required opera-
tion, the microprocessor sets the control registers and loads/stores the proper commands
from/to Read/Write FIFOs [13].

Fig. 1. Simplified block diagram of the ICAP controller for the management of the ICAP
primitive in Xilinx FPGAs.

In its IP catalogue, Xilinx provides an optimized and customizable ICAP Controller
with an AXI Interface [14], to facilitate the communication and the synchronization
with the microprocessor. Although some works exist in literature suggesting optimized
and reliable versions for ICAP controller [11, 15, 16], we analyzed the ICAP Controller
providedby the vendor, considering that our test analysis canbe applied also to previously
developed reliable methods for the ICAP controller.

Soft-Error Analysis of Self-reconfiguration Controllers 87

At the design stage, several parameters of the Controller can be customized. Among
the possible settings, it is possible to implement the memory dedicated to Read and
Write FIFO using Block RAM [17] or as a Distributed RAM by using the programmable
resources inside the FPGA [18]. In general,DistributedRAMsaremore efficient from the
timing point of view when the memory size is restricted, while BRAM results preferable
for bigger memories implementation.

2.2 Dynamically Reconfigurable Processing Module

The possibility to access the configuration memory at run-time allows the develop-
ment of flexible and upgradable architectures, such as the Dynamically Reconfigurable
Processing Module (DRPM) [5, 6].

In details, theDRPMis a hybrid architecture that exploits reconfigurability to perform
several optimizations in terms of area, power, reliability and delay.

A simplified overview of the DRPM system is shown in Fig. 2. In the DRPM archi-
tecture there are three main regions: Hardwired, Static, and Dynamic. The Hardwired
Components are the on-chipmicroprocessor and the ICAP, which communicate between
each other through the ICAP Controller. The ICAP Controller is statically programmed
in the FPGA programmable logic, as well as the BusMacro, which is the communication
interface connecting all the components. The Dynamic part of the system consists of
several reconfigurable cores, where dedicated functions can be allocated or deallocated
at run-time, by accessing the configuration memory settings.

Fig. 2. Simplified block diagram of the DRPM architecture (left), and an example of dynamic
scheduling of hardware tasks in Reconfigurable Modules (right).

The dynamic scheduling of hardware components can be driven by one or more
optimization goals, such as performance, area efficiency, power saving and reliability
[2, 5, 19]. In fact, this procedure can be used to time-multiplex the area and virtu-
ally increase the area physically available. Additionally, it is possible to scale power
consumption with the current payload by erasing unused functionalities and eventu-
ally reprogramming them only when needed. Finally, the refresh of the configuration
data allows to avoid or recover application failures related to transient faults in the
configuration memory.

Although such architectures result highly suitable for avionics and space appli-
cations, when such systems are deployed in radiation environments, the SRAM
configuration memory sensitivity to radiation effect should be taken into account [20].

88 L. Bozzoli and L. Sterpone

2.3 SRAM-Based FPGAs Radiation Sensitivity and Evaluation Methodologies

The SRAM based FPGA configuration memory radiation sensitivity is a well-known
problem. This criticality is related to the SRAM cells intrinsic susceptibility to radiation
induced transient effects such as Single and Multiple Event Upsets (SEUs and MBUs)
[1, 9]. An SEU is a change the state of a memory cell caused by one single ionizing
particle crossing the device silicon. Although these effects can be recovered by refresh-
ing the correct value inside the memory cell, if not recovered in time they can lead to
errors in the application since configuration data directly control application functional-
ity. Thus, it is fundamental to ensure through testing that such devices do not fail while
deployed.

Three main approaches exist to perform this evaluation: accelerated radiation
ground testing [9, 11], fault-injection campaigns [21, 22], and analytical methods and
tools [23, 24].

Radiation testingmimics the radiation environment and provides realistic experimen-
tal data on the failure probability for a given radiation dose. On the other side, radiation
tests imply high costs both in terms of experimental setup and beam time availability.

The fault-injection approach is a valid alternative, especially for the SEE evaluation
on the FPGA. In fact, SEE tests are event-based testswhere the number of detected events
define the error rate for the application. Considering that in FPGA, these events coincide
with bit-flips in configuration memory, it is easy to emulate such effects by loading in
the configuration memory corrupted configuration data. For this reason, FPGA Fault
Injection results a valid solution to estimate the SEUs or MBUs in the application,
especially if it can be performed according to experimental data.

3 Evaluation Framework

The goal of this evaluation is to perform a reliability comparison among the ICAP Fabric
and BRAM implementations for different levels of radiation in the DRPM context. The
main difference among Fabric and BRAM implementation resides on the amount and the
function of the logic programmed inside the FPGA. In BRAM Implementation a minor
amount of programmable resources is used: considering the same placement area, the
design is less congested with respect to Fabric Implementation. The other difference is
that in BRAM Implementation most of the routing resources coincides with the Data,
Address and Control Lines of the hardwired BRAM, while in the Fabric Implementation
the memory cells and their control signals are distributed in the logic.

These different implementation characteristics can have different sensitivity to faults
and different failure modes with respect to SEUs and MBUs.

For these reasons, we divide our evaluation in two parts: the first consisted of a
classical fault injection of single bitflips, to mimic environment with low radiation dose;
the second part of the analysis aims to characterize the failure probability in case of higher
energy radiation producing MBUs. In order to properly mimic the two environments,
we started from experimental data obtained through Ultra High Energy Ions, relative to
the same target device [12].

Soft-Error Analysis of Self-reconfiguration Controllers 89

3.1 DRPM Setup

To evaluate the ICAP controller sensitivity to bit upsets in the DRPM context, we devel-
oped an ad-hoc DRPM system. The system consists of the on-chip ZYNQ processing
system [25] that runs the computation routine and schedules the modules configura-
tion. The processor communicates with the ICAP Controller for both BRAM and Fabric
implementation through the AXI bus macro and in case of error detection triggers a
system reboot sending signals to a dedicated System Reset Core. Reconfigurable Mod-
ules are connected to the AXI bus macro through Partial Reconfiguration Decoupler [26]
interfaces tomake faster and safer the signal exchange at themodules boundaries. For this
test, the reconfigurable modules can be programmed as Floating-Point Multiplication or
Addition Accelerators.

Fig. 3. The implemented DRPM architecture (a) and a simplified representation of the Software
Application routine (b).

In order to properly evaluate and classify the faults effect on different computation
tasks, the execution routine has been kept streamlined. The software application is loaded
and initialized at the start-up. Thefirst computation run is performed and test operands are
sent to each module, which is configured for the multiplication. After this, the content of
all the modules is refreshed by rewriting the partial configuration data. This procedure
is the one managed by the ICAP Controller that acquires partial bitstreams from the
external memory and loads them in the right portion of the configuration memory. At
this point, a second run of computation is performed.

In the meanwhile, the software program checks for errors in the execution: it com-
pares the results of the multiplications with the expected golden values for the computa-
tional section of the code, while for initialization and reconfiguration producers it checks
all the functions return signatures. In case of errors in computation, it sends on the output
a signal notification. In case of wrong return values from functions involved in the Initial-
ization or Reconfiguration procedures, after the signal notification is done, it performs
a safe reboot of the whole system. The Block Diagram of the implemented architecture
and a simplification of the Software Application routine are reported respectively in
Fig. 3a and b.

3.2 Fault Injection Platform

The Fault Injection Manager to perform the Injection Campaigns has been devel-
oped using the Python environment. The main routine of the Manager integrates the
PyXEL tool, developed for the detailed manipulation of the Xilinx bitstreams and
described in [27].

90 L. Bozzoli and L. Sterpone

The Fault Injection Manager takes as inputs the golden bitstream of the Architecture
under test (i.e., with the BRAM or Fabric Implementation of the ICAP Controller) and
the settings for the campaign. These settings define the configuration memory target
area, the bitflip cluster size (1 for the SEUs Injection Campaign; 2, 3, 4, 5, or 6 for the
MBUs) and the number of injections to be performed.

According to these settings the main routine of injector identifies the specific coor-
dinates in the configuration memory matrix of bits to flip and sends this information to
the PyXEL tool. PyXEL produces a collection of corrupted bitstreams, according to the
locations and the cardinality specified in the previous step. At the same time the main
routine produces for all the faulty configuration bitstreams a TCL script to automatically
program the FPGA (Fig. 4).

Fig. 4. Fault injection platform overview.

Once all the files required for the injection are produced, the Fault Injection Man-
ager enters in Fault-Injection mode: it iterates on all the available programming scripts
launching them in the Xilinx Software Command Line Tool; each programming script
automatically loads one faulty bitstream in the FPGA configuration memory and the
Software Application executable in the microprocessor instruction memory. Once the
programming phase is concluded, the Fault Manager captures the system output log
through the serial interface. When the application execution terminates, the log is saved,
and a new TCL script is executed to run the next injection.

4 Experimental Results

The analysis has been performed on the PYNQ-Z2Xilinx Board that is based on a Xilinx
ZYNQSoCembedding a 650MHzdual-coreCortex-A9 processor, aXilinxZYNQ7020
FPGA.

Two different implementations of the DRPM architecture have been realized: the
first version uses Block RAM for the implementation of the Read and Write FIFOs and
it will be referred as BRAM Implementation; the second version implements Read and
Write FIFOs using Distributed RAM and it will be referred as Fabric Implementation.

In Table 1 the ZYNQ 7020 resources availability and their utilization for the two
ICAP Controller implementations are reported.

Soft-Error Analysis of Self-reconfiguration Controllers 91

Table 1. Resources available on ZYNQ 7020 and the utilization for BRAM and Fabric
Implementations

Available BRAM
Implementation

Fabric Implementation

Slice as LUTs 13,300 354 772

Slice registers 106,400 1,008 1,047

Block RAM18 280 2 0

Routing segments – 568,378 1,977,640

Configuration frames 10.008 280 280

For both the implementations two different analysis have been performed: the first
one oriented to the ICAP controller sensitivity to Single Bit Upsets, while the second
consider the effect of Multiple Bit Upsets related to the same event. For both SEUs and
MBUs analysis 2,500 injections have been performed in random locations. To perform a
legitimate comparison, the two ICAP Controllers designs were placed in the same area
and the injections have been performed on the same sub-portion of the configuration
memory, using the same locations.

4.1 SEUs Injection Campaign Results – Avionic Environment

The first analysis we performed was focused on the avionic scenario, which presents a
moderate radiation dose with respect to the space environment.

The goal of such analysis was to characterize the effect on the DRPM application of
Single Bit Upsets on the configuration memory portion configuring the ICAPController.
For the two implementations, 2,500 faulty bitstreamswith one bit flipped in theHWICAP
area have been loaded inside the FPGA executing the same computation routine.

Firstly, we classified the erroneous behaviors as Critical andDetectable. We marked
as Critical the errors that cause the full hang of the application, making impossible to
regain the control for a safe reboot. On the other hand, we marked as Detectable the
errors that can cause misbehaviors in the execution but are detected by the application.
These faults bring the system in an erroneous behavior but with a known state to perform
a safe reboot.We also classified the results according to the stages they are affecting: Ini-
tialization (INIT), Reconfiguration (RCNFG), Computation Run before Reconfiguration
(C1) and Computation Run after Reconfiguration (C2). Please note that we classified as
fault in C2 the faults affecting only the computation after the reconfiguration.

In the graphs described in Fig. 5, we reported the results obtained. Figure 5a reports
the total failure rate obtained by SEU fault injection on the whole area used by the ICAP
controllers of the two applications. Figure 5b and c reports the percentage distribution
of such errors in different computational stages.

As it possible to see, the Total Error Rate for the Fabric Implementation is slightly
higher than the BRAM one. Anyway, if we look at the criticality of those errors, the
Fabric Implementation presents a lower rate of Critical Errors.

92 L. Bozzoli and L. Sterpone

(a) (b) (c)

19
,3

2%

6,
82

%

0,
00

%

0,
00

%

34
,0

9%

0,
00

% 6,
82

%

32
,9

5%

I N I T . RCNFG. C1 C2

O
cc

ur
re

nc
e

Fabric Implementation Failure
Classification

Critical Detectable

39
,0

2%

6,
50

%

1,6
3%

1,6
3%

30
,8

9%

0,
00

%

20
,3

3%

0,
00

%

I N I T . RCNFG. C1 C2

O
cc

ur
re

nc
e

BRAM Implementation Failure
Classification

Critical Detectable

2,00%
1,45%

2,10%

2,95%

0,00%
0,50%
1,00%
1,50%
2,00%
2,50%
3,00%
3,50%
4,00%
4,50%
5,00%

BRAM ICAP
Controller

Fabric ICAP
Controller

]
%[

eta
RrorrElatoT

SEU Analysis

Critiacal Errors Detectable Errors

Fig. 5. SEUs injection results for BRAM and Fabric HWICAP Implementation (a). Error
classification for the ICAP using BRAM implementation (b) and Fabric implementation (c).

If we look at the stage classification, we see that the two implementations again show
a different behavior: even if for both of them the majority of the faults causes errors in
the initialization stage, the ones in Fabric Implementation show a lower criticality; addi-
tionally, the Fabric Implementation doesn’t show any critical fault in the Computation
Runs and the majority of the Detectable errors are affecting only C2.

4.2 MBUs Injection Campaign Results – Space Environment

When environments with a higher radiation dose are considered, a single heavy ionizing
particlewith higher energy can flipmore than one bit in the same area of the configuration
memory. In this analysis we perform a fault injection campaign considering this effect.
We injected in the ICAP Controller configuration memory portion clusters of bitflips,
according to the results of the radiation test discussed in [12].

The type of clusters identified in [12] consists inmaximum6bit-flips thatmay involve
up to two neighborhood frames and span over 4 bits rows. For each size, 500 faulty
bitstreams have been produced. The shape of the injected clusters was randomly chosen
among the one identified in [12] for each cluster size. Thus, a total of 2,500 injections
have been performed on the two Implementations. The same classification of Critical
and Detectable errors for the total failure rate has been performed. The results relative
to the overall error probability and to the critical failures are provided in Fig. 6. From
the left graph, it is possible to see that the overall failure rate dramatically increases with
the size of the clusters and this increment results sharper for the Fabric Implementation.

Considering Critical Failures, we can observe a similar trend but with a lower prob-
ability. This means that the error probability increases with the size of the clusters, but
the main component of such growth are errors that still can be detected and managed by
the application.

We complete our analysis on the overall failure probability by classifying errors
according to the stage they are affecting. In the graph of Fig. 7, the distribution of the
errors within the different stages is provided for the BRAM and Fabric Implementations
and for each cluster size.

Soft-Error Analysis of Self-reconfiguration Controllers 93

Fig. 6. Error rate for BRAM and fabric implementations with respect to MUB clusters: total
errors (left) and critical errors (right).

Fig. 7. Failure distribution within the application stages with respect to the cluster size for BRAM
and Fabric Implementation.

59
,4

6%

58
,7

0%

64
,4

4%

61
,9

0% 73
,0

2%

60
,3

8%

58
,0

0%

56
,6

7%

56
,7

6% 66
,6

7%

ecner rucc
O

Failure Rate for Initialization Stage
BRAM Fabric

29
,7

3%

34
,7

8%

31
,11

%

28
,5

7%

20
,6

3%

9,
43

% 18
,0

0%

8,
33

%

9,
46

%

11
,11

%

O
cc

ur
re

nc
e

Failure Rate for Computation Stages (C1 and C2)
BRAM Fabric

Fig. 8. Details of the failure occurrence in initialization (left) and computation (right) with respect
to the cluster size for BRAM and Fabric Implementations.

The higher percentage of failures happens in the Initialization Stage, and this ratio is
somehow constant for both implementations. The failures in the Reconfiguration Stage
represent a higher portion in the Fabric Implementation, while the failures of both C1
and C2 result heavier for the BRAM Implementation, following the same behavior

94 L. Bozzoli and L. Sterpone

found with the SEUs analysis. Details of the percentage of failures in Initialization and
Computation Stages are reported in Fig. 8, respectively left and right.

4.3 Discussion

After this study is possible to make some assumptions about the motivation of the differ-
ent reliability profiles in the two ICAP solutions and which one is preferable according
to the application.

At first, the higher congestion of the Fabric Implementation can explain why MBUs
has a stronger effect: the density of the configuration bits allows single particle flipping
multiple bits to affect more than one resource configuration. Additionally, the routing
segments in the BRAM version represent a more critical point of failure with respect to
the Distributed Fabric RAM, since a single fault in Data, Control or Address lines can
heavily corrupt the Block RAM behavior. This explain the higher ratio of less critical
and detectable errors in the Distributed version of the Controller: more sensitive bits
exist but at the same time their failure has a lower impact in the overall circuit.

Table 2. Applicability of HWICAP implementations in different radiation environment

Low radiation profile High radiation profile

Computation-oriented application Fabric Fabric

Reconfiguration-oriented application Fabric BRAM

Availability-oriented application Fabric BRAM

Reliability-oriented application BRAM BRAM

Finally, considering the failure characteristics of the two implementations with
respect to different radiation and for different stages of the application, it is possible to
draw some conclusions. Beside Reliability-oriented systems, for low dose rates where
the major concern are SEUs, the Fabric Implementation results more robust: it presents
a general error rate comparable with the BRAM one, but the criticality is definitely
lower, especially in the Computation Stage. In high radiation environment as well, if
the main goal of the application is the computation, the Fabric Implementation remains
preferable. For all the missions deployed in high radiation environments that require
high dependability, high availability or massive usage of reconfiguration, the BRAM
implementation should be preferred. In general, although BRAMs supports Error Cor-
rection Cores for SEU recovery and MBU detection, for mission critical systems some
hardening techniques should be introduced. Table 2 summarizes this general indication
about which implementation would be preferable according to the specific goal of the
reconfigurable application and the radiation level of the environment in which it should
be deployed.

Soft-Error Analysis of Self-reconfiguration Controllers 95

5 Conclusions and Future Works

In conclusion, a comparative analysis on two different DRPM self-reconfiguration con-
trollers has been performed in order to obtain an overall error rate estimation and iden-
tify their possible adoption in avionic or aerospace domains. To obtain this result, two
different fault injection campaigns based on experimental radiation testing have been
performed. The results of such analysis have shown that in general the controller imple-
mented with distributed memory has a higher tolerance in low radiation environment.
Anyway, in presence of radiation particles with higher energies, the controller that uses
integratedmemories is preferable. The observed sensitivity and failure mode variation in
the two implementations is manly related to different resource density and employment.

In the future, we plan the perform a similar injection campaign on the overall DRPM
reconfigurable system and to complete this analysis with experimental data through
radiation testing.

References

1. Wirthlin, M.: High-reliability FPGA-based systems: space, high-energy physics, and beyond.
Proc. IEEE 103(3), 379–389 (2015)

2. Caffrey, M.: A space-based reconfigurable radio. In: Plaks, T.P., Athanas, P.M. (eds.) Pro-
ceedings of International Conference on Engineering of Reconfigurable Systems Algorithms,
pp. 49–53. CSREA Press, Irvine, June 2002

3. Ferguson, R., Tate, R.: Use of field programmable gate array technology in future space
avionics. In: Proceedings of 24th Digital Avionics Systems Conference (DASC 2005), vol.
2, p. 11, October/November 2005

4. 7 Series FPGAs Configuration User Guide UG470 (v1.13.1), 20 August 2018
5. Sterpone, L., Porrmann, M., Hagemeyer, J.: A novel fault tolerant and runtime reconfigurable

platform for satellite payload processing. IEEE Trans. Comput. 62(8), 1508–1525 (2013)
6. Koester,M., Luk,W., Hagemeyer, J., Porrman,M., Rueckert, U.: Design optimization for tiled

partially reconfigurable systems. IEEETrans.VeryLarge Scale Integr. Syst. 19(6), 1048–1061
(2011)

7. Quinn, H., et al.: The Cibola flight experiment. ACM Trans. Reconfig. Technol. Syst. 8, 1–22
(2014)

8. Dodd, P.E.,Massengill, L.W.: Basicmechanisms andmodeling of single-event upset in digital
microelectronics. IEEE Trans. Nucl. Sci. 50(3), 583–602 (2003)

9. Katz, R., et al.: Radiation effects on current field programmable technologies. IEEE Trans.
Nuclear Sci. 44(6), 1945–1956 (1997)

10. Quinn, H.: Challenges in testing complex systems. IEEE Trans. Nucl. Sci. 61(2), 766–786
(2014)

11. Heiner, J., Collins, N., Wirthlin, M.: Fault tolerant ICAP controller for high-reliable internal
scrubbing. In: 2008 IEEE Aerospace Conference, Big Sky, MT, pp. 1–10 (2008)

12. Du, B., et al.: Ultrahigh energy heavy ion test beam on Xilinx Kintex-7 SRAM-based FPGA.
IEEE Trans. Nucl. Sci. 66(7), 1813–1819 (2019)

13. AXI HWICAP v3.0 LogiCORE IP Product Guide Vivado Design Suite PG134, 5 October
2016

14. AXI Reference Guide, UG761 (v13.1), 7 March 2011
15. Ebrahim, A., Benkrid, K., Iturbe, X., Hong, C.: A novel high-performance fault-tolerant ICAP

controller. In: 2012 NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
Erlangen, pp. 259–263 (2012)

96 L. Bozzoli and L. Sterpone

16. Guohua,W.,Dongming, L., Fengzhou,W.,Adetomi,A.,Arslan, T.:A tiny andmultifunctional
ICAP controller for dynamic partial reconfiguration system. In: 2017NASA/ESAConference
on Adaptive Hardware and Systems (AHS), Pasadena, CA, pp. 71–76 (2017)

17. 7 Series FPGAs Memory Resources User Guide UG473 (v1.14), 3 July 2019
18. 7 Series FPGAs Configurable Logic Block User Guide UG474 (v1.8), 27 September 2016
19. Carmichael, C., Caffrey,M., Salazar, A.: Correcting single-event upsets throughVirtex partial

configuration. Xilinx Corporation, Technical report, XAPP216 (v1.0), 1 June 2000
20. Ceschia, M.: Identification and classification of single-event upsets in the configuration

memory of SRAM-based FPGAs. IEEE Trans. Nucl. Sci. 50(6), 2088–2094 (2003)
21. Azambuja, J.R., et al.: Evaluating neutron induced SEE in SRAM-based FPGA protected

by hardware- and software-based fault tolerant techniques. IEEE Trans. Nucl. Sci. 60(6),
4243–4250 (2013)

22. Entrena, L., Garcia-Valderas, M., Fernandez-Cardenal, R., Lindoso, A., Portela, M., Lopez-
Ongil, C.: Soft error sensitivity evaluation of microprocessors by multilevel emulation-based
fault injection. IEEE Trans. Comput. 61(3), 313–322 (2012)

23. Desogus, M., Sterpone, L., Codinachs, D.M.: Validation of a tool for estimating the effects
of soft-errors on modern SRAM-based FPGAs. In: 2014 IEEE 20th International On-Line
Testing Symposium (IOLTS), Platja d’Aro, Girona, pp. 111–115 (2014)

24. Sterpone, L., et al.: A novel error rate estimation approach for UltraScale+ SRAM-based
FPGAs. In: 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
Edinburgh, pp. 120–126 (2018)

25. Processing System 7 v5.5 LogiCORE IP Product Guide Vivado Design Suite PG082, 10May
2017

26. Partial Reconfiguration Decoupler v1.0 LogiCORE IP Product Guide Vivado Design Suite
PG227, 6 April 2016

27. Bozzoli, L., De Sio, C., Sterpone, L., Bernardeschi, C.: PyXEL: an integrated environment for
the analysis of fault effects in SRAM-based FPGA routing. In: 2018 International Symposium
on Rapid System Prototyping (RSP), Torino, Italy, pp. 70–75 (2018)

SysIDLib: A High-Level Synthesis FPGA
Library for Online System Identification

Gökhan Akgün1(B), Habib ul Hasan Khan1, Marawan Hebaish3,
Mahmoud Elshimy3, Mohamed A. Abd El Ghany3, and Diana Göhringer1,2

1 Adaptive Dynamic Systems, Technische Universität Dresden, Dresden, Germany
{goekhan.akguen,habib.khan,diana.goehringer}@tu-dresden.de

2 Centre for Tactile Internet with Human-in-the-Loop (CeTi),
Technische Universität Dresden, Dresden, Germany

3 Electronics Department, German University in Cairo, New Cairo, Egypt
{marawan.hebaish,mahmoud.el-shimy,mohamed.abdel-ghany}@guc.edu.eg

Abstract. Model accuracy is the most important step towards efficient
control design. Various system identification techniques exist which are
used to estimate model parameters. However, these techniques have their
merits and demerits which need to be considered before selecting a partic-
ular system identification technique. In this paper, various system iden-
tification techniques as the Kalman filter (EKF), recursive least square
(RLS) and least mean square (LMS) filters are used to estimate the
parameters of linear (DC motor) and nonlinear systems (inverted pen-
dulum and adaptive polynomial models). FPGAs are widely used for
rapid prototyping, real-time and high computationally demanding appli-
cations. Therefore, a real-time FPGA-in the loop architecture has been
used for evaluating each identification algorithm of the SysIDLib library.
The identification algorithms are evaluated regarding the convergence
rate, accuracy and resource utilization performed on a system-onchip
(SoC). The results have shown that the RLS algorithm estimated approx-
imately the parameter values of a nonlinear system. However, it requires
up to 17% less lookup-tables, 5.5% less flip-flops and 14% less DSPs com-
pared to EKF with accurate results on the programmable logic (PL).

Keywords: Online system identification · Extended Kalman filter ·
Fixed-point format · High-level synthesis · Embedded control systems

1 Introduction

Real applications need to be expressed through mathematical equations in
numerical tools to predict and analyze the system behavior. According to the
analysis, a suitable controller can be developed based on the existing model
within the simulation. This model can also be deployed for monitoring and diag-
nosis instances [1]. In case of a sensor malfunction, the faulty operation can be
captured and the system can accomplish its operation in a safety mode [2]. Such
an observer reconstructs mainly the remaining internal states of the system that
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 97–107, 2020.
https://doi.org/10.1007/978-3-030-44534-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_8

98 G. Akgün et al.

saves the deployment of further sensors in real applications. To achieve reliability,
the model needs to be parameterized accurately. An inaccurate parameterized
model can lead to non-deterministic effects as an oscillation occurs while the
transient behavior [3]. Various experiments have to be performed in order to
characterize the model. According to the type of the existing information, either
a theoretical or an experimental model can be created. In the case of theoretical
modeling, the system is associated with physical differential equations where the
parameters often exist. The modeling of a real system becomes significantly com-
plicated with the lack of information. Therefore, the input and output signals are
measured and analyzed in case of experimental modeling. System identification
algorithms are mainly deployed to estimate these unknown model parameters.
The physical behavior is characterized using prior knowledge of the designer [3].
The algorithms compare mainly the output signals of the system and minimize
the occurring error to determine each parameter value. Depending on the linear
or nonlinear characteristic of the system, different identification algorithm can
be deployed.

In this research work, we present various system identification techniques
for linear and nonlinear systems. Table 1 shows a summary of the performed
identification techniques with different applications. A discrete transfer function
can be described as an adaptive filter. Thus, the LMS and RLS algorithms are
applied to estimate the filter parameters. EKF is deployed when the system
is represented in a state-space model. Besides, it is also performed to estimate
the internal states of the system as an observer. Therefore, it can be further
used for the diagnosis and monitoring purposes. To exploit the parallelism of
field programmable gate arrays (FPGAs), the components of the SysIDLib are
implemented using a high-level synthesis (HLS) tool and tested in a real-time
FPGA-in the loop (FIL) simulation environment. This work compares all aspects
of the identification techniques concerning the convergence rate, accuracy and
resource utilization on Xilinx FPGAs. Particular attention is paid to the EKF
algorithm in this work. The EKF implementation has been extended to an reg-
ister transfer level (RTL) description language implementation to compare the
merits and demerits of both implementations. For instance, the RTL imple-
mentation uses a fixed-point representation for identification. The accuracy and
the resulting resource utilization are compared with the results from the HLS
implementation.

Table 1. Overview about the deployed identification algorithms regarding the consid-
ered applications

Considered systems Use case SysIDLib component

Nonlinear systems Inverted Pendulum EKF

Linear systems Lin. Inv. Pendulum, DC
Motor

EKF, RLS, LMS

Nonlinear
polynomial model

Volterra Series, Bilinear
Filter

RLS, LMS

SysIDLib: A High-Level Synthesis FPGA Library 99

The rest of this paper is organized as follows. In Sect. 2, the related work
is discussed and compared. Section 3 presents the hardware architecture of the
SysIDLib library. In Sect. 4, the achieved results are compared regarding the
accuracy, convergence rate and resource utilization. Finally, Sect. 5 contains the
conclusion and outlook.

2 Related Work

Due to changing operating conditions, the system parameters vary within a
process. Structural damage occurs abrupt and leads thus to the invalidity of
existing parameters [4]. The parameters of a photovoltaic application need to be
estimated again depending on actual temperature conditions [1]. In the case of an
adaptive controller, the system parameters are continuously identified to adjust
the control parameters at run-time [5]. The identification becomes even more
complicated with regard to nonlinear system characteristics. This type of sys-
tem can be linearized around a certain operating point. The parameters can be
identified with linear parameter estimation techniques but the identified param-
eters have validity in this certain range [6]. A reliable result is achieved using
nonlinear system identification techniques for such systems. However, different
methodologies have been proposed to improve the demerits [7]. The parame-
ters of nonlinear Volterra polynomials can be identified using the LMS algo-
rithm [6,8]. This algorithm is associated with its slow convergence rate [7]. A
faster estimation can be achieved using the RLS algorithm depending on the
design requirements [3]. The RLS and LMS algorithms can also be performed
to identify the parameters of linear systems [5,9–11]. In addition to these algo-
rithms, EKF estimates the parameters accurately and has a fast convergence rate
[1,3,4,12]. Furthermore, it can also be used for estimating the internal states of
a system because not all variables can be directly acquired from sensor data
[12]. EKF can also be performed for diagnosis and monitoring purposes [1,4].
The aforementioned identification techniques have computational complexity.
For instance, the update of the covariance matrix requires a long computational
time in the RLS algorithm. Therefore, multi-stage matrix multiplication and a
trace technique are proposed in [10] to enhance the overall performance. The
first approach reduces the computational time whereby the tracing technique
diminishes the matrix computation. In [1], a convergence criterion is proposed
for terminating the identification process in EKF. Another improvement can be
achieved by exploiting the parallelism of FPGAs [1,5,9–12]. The algorithms can
be implemented using RTL description languages [5,10] or HLS tools [11,12].
For instance, an application-specific instruction-set processor has been designed
for the RLS algorithm in [9]. Moreover, a software-based solution [12] can be
executed on SoCs. The pure hardware implementation entails using a fixed or
floating-point format representation [5]. The fixed-point format represents a lim-
ited range of data, which may have difficulty to represent small or large values [5].
Contrary, high accuracy can be achieved using the floating-point representation.
A disadvantageous of this representation is mostly high resource utilization [2].

100 G. Akgün et al.

3 The SysIDLib Components

3.1 LMS and RLS Algorithm

The LMS algorithm is considered to be a stochastic gradient algorithm which is
the most used adaptive filtering algorithm due to its low computation complexity
[13]. It updates the filter weights in each iteration to minimize the error εk based
on the equations in [3]. RLS is a recursive method of the least squares algorithm
which aims to minimize the sum of the error εk based on the equations in [3].
In the RLS algorithm, the update of the covariance matrix consists of matrix
multiplications which can lead to a long computational time at run-time.

3.2 Extended Kalman Filter

Kalman filter (KF) is originally used to estimate the states of linear systems. It
consists of a prediction and correction step. In the prediction step, KF estimates
the internal states of the system x̂k based on previous estimated states x̂k−1

and the previous control signal uk−1. The dimension of the estimated states x̂k

needs to be extended for the system identification according to the use case.
Besides, the extension of the state vector x̂k entails to a nonlinear characteristic
in the system dynamic f(x̂k−1, u). Therefore, EKF updates the state vector x̂k+1

based on the equations in [3] for the DC motor and based on the Eq. (1) for the
inverted pendulum. The parameter x1 is the cart position, x2 is the cart velocity,
x3 is the angular position of the pendulum and x4 is the angular velocity of the
pendulum. Furthermore, the parameter M describes the mass of the cart, m
is the mass of the pendulum, d is the friction coefficient, l is the length of the
pendulum and g is the gravitational constant.

x̂k+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

m
M
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x̂k

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
−d·x2+m·g·x3+u

M
x4

−d·x2+(m+M)·g·x3−u
l·M
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
f(x̂k−1,u)

·TS (1)

The main difference is that the DC motor employs the discrete transfer func-
tion and the inverted pendulum uses the state-space model for the system identi-
fication. A more detail description regarding the use cases can be found in prior
works [2,3,13].

3.3 Hardware Design of the SysIDLib Components

Each identification technique is written as a C-Code in Vivado HLS which gen-
erates an RTL description language. It provides directives to enhance latency,

SysIDLib: A High-Level Synthesis FPGA Library 101

Ethernet

Zynq PYNQ-Z1

AXI Bus
Interconnect EKF / LMS / RLS

CPU0

Software

Programmable Logic (PL)

Fig. 1. System overview of the FIL architecture

resource utilization and throughput. However, the optimization has a trade-off
between hardware resources and performance. The proposed algorithms have
multiple matrices and vector operations. This leads to intensive computing
within several loops and influences the latency. To meet the design and real-time
requirements, the algorithms exploit the parallelism of FPGAs. Therefore, all
loops have been optimized with UNROLL and PIPELINE directives. UNROLL direc-
tive splits the loops and thus executes the operations in parallel. Hence, the loop
iterations are reduced and the data access and throughput are increased. How-
ever, it requires more hardware logic because of multiple copies of the loop in the
RTL level. EKF and the RLS algorithm have computationally demanding matrix
multiplications whereby all loops have been fully unrolled. PIPELINE directive
allows concurrent operations in loops. Thus, a new input can be processed every
clock cycle that also improves the latency of the algorithms. All mathematical
operations are computed using the math library provided by Vivado HLS. The
algorithms have floating-point operations in the IEEE-754 format to generate
accurate results. Due to the low I/O operations, all ports are implemented as
the AXI4-Lite interface. Figure 1 gives an overview about the deployed FIL archi-
tecture. The reference systems have been performed as models with a sampling
time of 10 ms and random input signals in MATLAB 2018b. A Xilinx PYNQ-Z1
has been deployed for the identification algorithms. FreeRTOS is running on an
ARM Cortex-A9 processor in the processing system (PS) to guarantee the real-
time capability. A TCP/IP-application connects the reference models with the
FPGA. The SysIDLib components are executed as accelerators on the PL and
connected through the AXI4-Lite interface to the PS.

4 Evaluation

4.1 Analysis of the Accuracy and Performance Using the SysIDLib
Library

EKF and the RLS algorithm have been performed to identify the parameters of
the inverted pendulum. The results are shown in Fig. 2. EKF estimates exactly
the values of the reference system within 80 s. The linearization of the inverted
pendulum on the upright position (θ = π) enables to use linear identification
techniques. The RLS algorithm estimates the weight parameters Wk within

102 G. Akgün et al.

750 s but it has a significant difference in estimating the model parameters
as compared to EKF (Fig. 2). The RLS algorithm has achieved an accuracy of
94.86% for the parameters a3 and b2. The reason is the linearization of the use
case among a certain operating point which restricts the identification. The same
algorithm has been performed on the DC motor (Fig. 3). The identified param-
eters have shown a deviation of 0.15% and identified the parameters within
30 s. The LMS algorithm has the highest error of 0.62% and estimates the
values within 280 s. EKF has generated the most accurate results within 7 s.
Compared to the inverted pendulum, the RLS algorithm has estimated more
accurately the values of the DC motor. However, it is able to identify systems
with nonlinear characteristics. The parameters of the Volterra series have been
identified using the RLS and LMS algorithm as shown in Fig. 4. The RLS algo-
rithm identifies the parameters accurately up to an error of 0.075%. The LMS
algorithm estimates also the parameters accurately but the deviation to the ref-
erence parameter is slightly higher with 0.91%. It has been performed for 140 s to
identify the system parameters whereby the RLS algorithm has been estimated
the parameters within 50 s. The convergence rate depends on the total number
of weight parameters. The RLS algorithm has also identified the parameters of
the bilinear filter. The results show the highest deviation with 3% and 6% on
the parameters c0,1 and c1,1 in Fig. 5. These coefficients describe the correlation
between the input and output signals. However, the parameters have been iden-
tified within 0.3 s because of the recursive filter structure. The experiments have
shown a worst-case scenario with the initial conditions in all cases. However, a
faster convergence and more accuracy would have been achieved when the initial
conditions are set to approximate parameter values.

M m d M m d a1 a2 a3 b0 b1 b2
Identified Parameters

5

4

3

2

1

0

1

Re
la

tiv
e

Er
ro

r [
%

]

EKF Lin. EKF RLS

Fig. 2. The accuracy results of the RLS algorithm and EKF on the inverted pendulum

SysIDLib: A High-Level Synthesis FPGA Library 103

n a1 a2 b0 b1 a1 a2 b0 b1
Identified Parameters

0.4

0.2

0.0

0.2

0.4

0.6
Re

la
tiv

e
Er

ro
r [

%
]

EKF LMS RLS

Fig. 3. The accuracy results of the RLS, LMS algorithm and EKF on the DC motor

w0 w1 w2 w0,0w0,1w0,2w1,1w1,2w2,2 w0 w1 w2 w0,0w0,1w0,2w1,1w1,2w2,2
Identified Parameters

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Re
la

tiv
e

Er
ro

r [
%

]

LMS RLS

Fig. 4. The accuracy results of the RLS and LMS algorithm on the non-recursive
adaptive filter (Volterra Series)

b0 b1 a1 c0,1 c1,1
Identified Parameters

6

5

4

3

2

1

0

1

R
el

at
iv

e
Er

ro
r

[%
]

RLS

Fig. 5. The accuracy results of the RLS algorithm on the recursive adaptive filter
(Bilinear Filter)

104 G. Akgün et al.

Table 2. Resource utilization of the identification algorithms generated by Vivado
HLS for Zynq PYNQ-Z1

Component LUT FF DSP48E BRAM18K Use case

Maximum of PYNQ-Z1 53200 106400 220 280 –

EKF 14769 12444 48 26 Inverted Pendulum

EKF 10061 9376 41 28 Lin. Inv. Pendulum

RLS 5899 6594 18 14 Inverted Pendulum

EKF 11493 8929 20 10 DC Motor

RLS 5334 5017 20 10 DC Motor

LMS 1462 1686 19 6 DC Motor

RLS 7097 6698 20 14 Volterra Series

LMS 3785 4125 48 4 Volterra Series

RLS 5568 5586 20 10 Bilinear Filter

4.2 Analysis of the Device Utilization Using the SysIDLib Library

Table 2 summarizes for each identification technique the required resources on
the Xilinx PYNQ-Z1 board implemented with Vivado HLS. EKF requires the
most resources in all scenarios. The linearization of the inverted pendulum has
brought the advantage that the approach saves 8.84% lookup tables, 2.88% flip-
flops and 3.18% DSPs as compared to the nonlinear system. Because of the
reduced complexity, the RLS algorithm has saved more resources for this system.
Therefore, it is a trade-off between the accuracy and computational complexity
resulting in more resource utilization. In the event of the DC motor, the LMS
algorithm has the lowest resource utilization. It estimates the parameters with
vector multiplications and additions. The RLS algorithm has matrix operations
which result comparatively in higher resource utilization on the PL. The same
behavior exists on the Volterra series. The weight parameters of the bilinear filter
are less than from the Volterra series in this work. However, the RLS algorithm
requires the same amount of resources in both scenarios. This is related to the
recursive filter structure of the bilinear filter. The Volterra series considers only
the input signals. Therefore, the filter structure has also an effect to the overall
resource utilization (Table 2).

4.3 Parameter Estimation of the Inverted Pendulum Using EKF

EKF is performed to estimate the parameters of the inverted pendulum. The
results are shown in Fig. 6. It can be seen that the final parameters are identified
within 80 s. The design requires 29.31% lookup tables and 12.42% flip-flops
on the PL. Vivado HLS shows a latency of 2137 clock cycles for an operating
frequency of 100 MHz. Our implementation requires approximately the same
amount of hardware resources as presented in a recent related work [14]. Besides
the efficiency in the area, we have reduced the latency to 62.48% compared

SysIDLib: A High-Level Synthesis FPGA Library 105

10 20 30 40 50 60 70 80 90
Time (s)

0.25
0.50
0.75

m
 (

k
g
)

HLS RTL

10 20 30 40 50 60 70 80 90
Time (s)

0

5

M
 (

k
g
)

HLS RTL

10 20 30 40 50 60 70 80 90
Time (s)

0

1

d
 (

N
s
m

1
)

HLS RTL

Fig. 6. Parameter estimation on the inverted pendulum using EKF

to the prior work. Furthermore, the execution time is 21.97 µs which means
a speedup of 20 compared to [14]. However, more efficiency can be achieved
using an RTL description language. Therefore, we have implemented EKF as
a proof-of-concept in a fixed-point format. This approach saves 6.88% more
lookup tables and 4.93% more flip-flops compared to the HLS implementation.
The sampling time is measured as 2.7 µs. However, the results have shown a
slight deviation during the convergence to the real system parameters (Fig. 6).
This effect is caused due to the representation in a fixed-point format. The HLS
implementation is realized in a single-precision floating-point format.

5 Conclusion

In this work, the SysIDLib library has been proposed with various system identi-
fication techniques for linear and nonlinear characterized systems (inverted pen-
dulum, a DC motor and polynomial models). These algorithms are performed in
a real-time FIL simulation. The most accurate results are generated with EKF in
all use cases. However, its trade-off is the higher resource utilization as compared
to the remaining identification techniques. However, it has the main advantage
that EKF can still be used for diagnosis and monitoring purposes. The RLS and
LMS algorithm have been performed to identify nonlinear adaptive filter struc-
tures. Both techniques have estimated accurately the parameter values. Due to
the recursive filter structure, the RLS algorithm has identified the parameters
with a faster convergence rate. Moreover, EKF has been compared for different

106 G. Akgün et al.

type of implementations in this work. Although the RTL implementation has a
slight difference in the transient behavior, it can estimate all final values in the
fixed-point format. This leads to more saving of the hardware resources. How-
ever, reliable results have been generated with the SysIDLib library for different
type of use cases. Due to its generality, it can be easily adapted to other sys-
tem applications. The deployed real-time FIL architecture can also identify real
system parameters with the proposed SysIDLib library.

Acknowledgment. The work described in this paper has been funded by the
German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of
Germany’s Excellence Strategy – EXC 2050/1 – Project ID 390696704 – Cluster of
Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technis-
che Universität Dresden.

References

1. Ricco, M., et al.: FPGA-based implementation of dual Kalman filter for PV MPPT
applications. IEEE Trans. Industr. Inf. 13(1), 176–185 (2017)

2. Akgün, G., et al.: Dynamic tunable and reconfigurable hardware controller with
EKF-based state reconstruction through FPGA-in the loop. In: 2018 Interna-
tional Conference on ReConFigurable Computing and FPGAs (ReConFig), pp.
1–8 (2018)

3. Akgün, G., et al.: System identification using LMS, RLS, EKF and neural net-
work. In: 2019 IEEE International Conference of Vehicular Electronics and Safety
(ICVES), pp. 1–6 (2019)

4. Yang, J.N., et al.: An adaptive extended Kalman filter for structural damage identi-
fications II: unknown inputs. Struct. Control Health Monit. 14(3), 497–521 (2007)

5. Salcic, Z., et al.: A floating-point FPGA-based self-tuning regulator. IEEE Trans.
Ind. Electron. 53(2), 693–704 (2006)

6. Ronquillo-Lomeli, G., et al.: Nonlinear identification of inverted pendulum system
using Volterra polynomials. Mech. Based Des. Struct. Mach. 44(1–2), 5–15 (2016)

7. Kapgate, S.N., et al.: Adaptive Volterra modeling for nonlinear systems based on
LMS variants. In: 2018 5th International Conference on Signal Processing and
Integrated Networks (SPIN), pp. 258–263 (2018)

8. Subudhi, U., et al.: Harmonics and decaying DC estimation using Volterra LMS/F
algorithm. IEEE Trans. Ind. Appl. 54(2), 1108–1118 (2018)

9. Morales-Velazquez, L., et al.: Special purpose processor for parameter identification
of CNC second order servo systems on a low-cost FPGA platform. Mechatronics
20(2), 265–272 (2010)

10. Ananthan, T., et al.: An FPGA-based parallel architecture for on-line parameter
estimation using the RLS identification algorithm. Microprocess. Microsyst. 38(5),
496–508 (2014)

11. Navarro, D., et al.: High-level synthesis for accelerating the FPGA implementa-
tion of computationally demanding control algorithms for power converters. IEEE
Trans. Industr. Inf. 9(3), 1371–1379 (2013)

12. Morello, R., et al.: Hardware-in-the-loop simulation of FPGA-based state estima-
tors for electric vehicle batteries. In 2016 IEEE 25th International Symposium on
Industrial Electronics (ISIE), pp. 280–285 (2016)

SysIDLib: A High-Level Synthesis FPGA Library 107

13. Haykin, S.S.: Adaptive Filter Theory, vol. 4. Prentice Hall, Upper Saddle River
(2002)

14. Mie, S., et al.: Real-time UAV attitude heading reference system using extended
Kalman filter for programmable SoC. In: 2017 IEEE 11th International Sympo-
sium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pp. 136–142,
September 2017

Optimal and Greedy Heuristic
Approaches for Scheduling and Mapping
of Hardware Tasks to Reconfigurable

Computing Devices

Zakarya Guettatfi1,2(B), Paul Kaufmann3, and Marco Platzner1

1 Paderborn University, Paderborn, Germany
zakarya@mail.uni-paderborn.de, platzner@upb.de

2 Center for Development of Advanced Technology, Algiers, Algeria
zguettatfi@cdta.dz

3 University of Mainz, Mainz, Germany
paul.kaufmann@uni-mainz.de

Abstract. Executing real-time tasks on dynamically reconfigurable
FPGAs requires us to solve the challenges of scheduling and placement.
In the past, many approaches have been presented to address these chal-
lenges. Still, most of them rely on idealized assumptions about the recon-
figurability of FPGAs and the capabilities of commercial tool flows. In
our work, we aim at solving these problems leveraging a practically use-
ful 2D slot-based FPGA area model. We present optimal approaches for
reconfigurable slot creation, hardware task assignment, and placement
creation. We quantitatively compare optimal and heuristics algorithms
through simulation experiments and show that the heuristics are rather
close to the optimal techniques in terms of solution quality, in particular
for reconfigurable slot creation and hardware task assignment. Further,
we also derive an indication for the amount of fragmentation of the FPGA
surface that is inherent to our 2D area model.

1 Introduction

The FPGA utilization can be maximized if the hardware tasks can be arranged
such that there is no simultaneous temporal and geometrical overlap between
them. The resulting scheduling and floorplanning problems for two-dimensional
resources are NP-hard [7,11]. There is substantial earlier work that deals with
the interdependent problems of task scheduling and placement on FPGAs. These
works differ in the characteristics of the task sets, i.e., whether tasks have dead-
lines or not, the optimization goals, whether they deal with off-line or on-line
problems, and, most importantly, the area model for the FPGA surface. Many of
the presented techniques use an area model with free placement where tasks can
be placed rather flexibly on the FPGA fabric. While this model has received a lot
of attention in the past, aspects such as reconfiguration schemes of commercial
FPGAs, capabilities of commercial tool flows, and the infrastructure needed to
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 108–117, 2020.
https://doi.org/10.1007/978-3-030-44534-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_9

Optimal and Greedy Heuristic Approaches 109

connect hardware tasks to the CPU, memory, and I/O, constitute major hurdles
for practical realization. In VLSI design, there are works on optimal bin packing
and metaheuristics for floorplanning. Still, only a few of these consider prob-
lem characteristics important for our work, such as preplaced modules [7,11]
and “soft modules” that are specified only by their area instead of a geometric
layout.

In previous work [4], we have introduced a tool flow for task scheduling and
floorplanning based on a special 2D slot-based reconfiguration model, where
reconfigurable slots comprise several micro slots. Micro slots constitute rectan-
gular reconfigurable regions with a complete set of resource types and their cre-
ation and partial reconfiguration is supported by commercial tool flows. Under
this area model, we have proposed heuristics for scheduling and placement.

In this paper, we present novel optimal slot creation and task assignment as
well as layout generation methods for the 2D slot model. Based on the insight that
slot-based reconfigurable task scheduling becomes a problem similar to mono
and multi-processor scheduling, and that slot placement becomes very similar
to the VLSI’s floorplanning problem, we adopt corresponding approaches and
develop optimal slot creation and task assignment (SCTA) as well as layout
generation (LG) algorithms. We compare these optimal techniques with our
previous heuristics.

The remainder of the paper is organized as follows: In Sect. 2, we discuss
related work about task scheduling and placement on FPGAs. In Sect. 3 we
summarize our previous special 2D slot-based reconfiguration model and the
proposed heuristics for slot creation and task assignment as well as for lay-
out generation. The mathematical modeling for the novel optimal and heuris-
tic approaches is then presented in Sect. 4. In Sect. 5 experimental results are
detailed. Finally, Sect. 6 is devoted to the conclusions.

2 Related Work

The majority of related projects described hardware tasks as rectangular-shaped
regions of reconfigurable logic and used an area model that can be categorized
into 1D vs. 2D and free placement vs. slot-based placement. In the 1D area model,
tasks can be allocated along one dimension only. This approach simplifies the
placement problem and matches the partial reconfiguration abilities of earlier
Xilinx devices. In the 2D area model, the rectangular tasks have to be allocated
on the rectangular-shaped device. A free placement would allow allocating such
a task on any feasible position on the device. In contrast, the slot-based model
foresees a pre-partitioning of the device into rectangular regions that can accom-
modate tasks. The slot-based models allow for an easier, practical realization.
In the following, we present selected related work in some of the areas related
to task scheduling and placement.

In [8], the authors formulate an online real-time scheduling problem and
present two heuristics for placing aperiodic hardware tasks. These heuristics are
denoted as the horizon and stuffing techniques, considering both 1D and 2D area

110 Z. Guettatfi et al.

models Improved placement strategies that lead to reduced fragmentation and
lower total execution times were presented in, e.g., [12]. Along the same line,
[2] showed a level look-ahead approach with a non-preemptive EDF that delays
the allocation of hardware tasks to reduce the fragmentation. In [3], the authors
investigated two preemptive scheduling algorithms for periodic real-time tasks:
EDF Next Fit (EDF-NF) and Merge-Server Distributed Load (MSDL). In [5]
proposed the Finishing-Aware EDF (FAEDF) algorithm, which is EDF aug-
mented with a look-ahead capability to locate future releases of adjacent areas.
Another line of research dealt with the task placement or area allocation problem,
respectively, and focused on online placement of relocatable, rectangular-shaped
tasks that can be placed anywhere on the 2D surface of an FPGA device. The
first work establishing the problem of online placement in the 2D area model
was [1], where the authors proposed a fast online placement algorithm based
on handling empty spaces. Later, [10] presented another placement method that
relies on a partitioning of the reconfigurable resource and uses a hash matrix data
structure to maintain the free space. While the works mentioned above consider
homogeneous FPGA architectures, there are also algorithms for 2D placement
on heterogeneous devices, e.g., [6]. The challenge of hardware task placement can
also be seen from the perspective of d-dimensional orthogonal bin packing [7] and
floorplanning, which is the first stage in physical VLSI design in the Electronic
Design Automation (EDA) [11].

3 The Area Model

This section describes the area model used by the slot creation and task assign-
ment (SCTA) as well as layout generation (LG) algorithms. The area model and
the heuristics are results of our previous work, presented in [4], but require a
summary for the introduction and comparison to optimal SCTA and LG algo-
rithms.

The area model of this paper bases on two ideas: First, an FPGA is subdi-
vided into rectangular reconfigurable regions, so-called micro-slots. The parti-
tion is done in such a way that all micro-slots have the same type and amount
of resources. This simplifies the mapping of hardware tasks to hardware. Addi-
tionally, the borders of the micro-slots follow the boundaries of the partially
reconfigurable frames imposed by a vendor’s partial reconfiguration tool flow.
This makes the area model practically useful. Second, a task executed on an
FPGA is mapped to one or multiple micro-slots. Micro-slots allocated to serve
a task are forming a so-called slot, which has to be a consolidated and a rectan-
gular region on an FPGA. The size of a micro-slot is selected sufficiently large
to be able to serve a small task. At the same time, the micro-slot size is chosen
as small as possible to minimize fragmentation. Figure 1 shows for the Xilinx
Zynq 7020, 7030, and 7045 devices the subdivision of their area. Each micro-slot
contains 600 slices, providing in total 2400 LUTs, 4800 registers, 180 kB RAM,
and 20 DSP blocks.

Once the area model is defined, the algorithmic challenges of hardware task
scheduling and slot allocation can be presented in detail. Assuming a list of

Optimal and Greedy Heuristic Approaches 111

Fig. 1. Partitioning into micro slots: The Xilinx Zynq 7010 (a), the Xilinx Zynq 7020
(b) and the Xilinx Zynq 7045 (c) devices.

periodic and independent hardware tasks is given as Γ = {τ1, τ2, . . . , τn}, where
for each task τi the amount of required micro slots ki, execution time ci, and
period pi are given as τi = (ki, ci, pi). To justify hardware task reconfiguration,
the total amount of required resources

∑
i ki should be larger than the number

of micro slots available on the FPGA. The first question is: Given that every
hardware task can be hypothetically instantiated and released at any point in
time, is there a schedule guaranteeing all tasks meeting their deadlines and, at
the same time, respecting the upper bound of available micro slots? The second
question is: Given a valid schedule of hardware tasks, can the hardware tasks be
mapped to slots, i.e., non-overlapping rectangular regions of micro slots?

The procedure of hardware task assignment and layout generation starts with
a set of periodic real-time tasks that have been synthesized to an FPGA device
family such as the Xilinx Zynq. The procedure runs in two phases, with the first
one creating the reconfigurable slots in a way that each task with all its instances
is accommodated in exactly one such slot and all tasks assigned to one slot are
schedulable. The result is a list of reconfigurable slots, characterized only by their
sizes. In a second phase, a feasible layout is generated for a given FPGA device,
i.e., a layout that provides slots with widths and heights. Heuristic algorithms
for both phases are presented in the following sections.

4 Optimal Techniques for Slot and Layout Creation

In this section, we detail the mathematical modeling of the two problems (i)
reconfigurable slot creation and task assignment and (ii) layout generation in
the form of Quadratic Constraint Programs (QCP). The QCPs can then be
solved to optimality.

112 Z. Guettatfi et al.

4.1 Optimal Slot Creation and Task Assignment Approach

We start the formalization of the QCP with n · m binary decision variables xij

that indicate, whether the i’th task is mapped into the j’th slot Sj with n as
the number of tasks and m as the number of slots:

xij =

{
1 if τi ∈ Sj ,

0 otherwise.
(1)

As a first constraint, we have to enforce that a task is mapped to exactly one
slot:

∀i ∈ {1, ...,m} :
m∑

j=1

xij = 1. (2)

For the next modeling steps, we need an upper bound for the number of required
slots. We can determine such a bound based on the time utilization factors of
the tasks, defined as defined as ui = ci

pi
, in the following way:

m =
⌈ n∑

i

ui

⌉

+ 1. (3)

Let Aj be the area of the largest task assigned to the slot Sj . Then the
following constraints on the areas of the reconfigurable slots must hold:

∀j ∈ {1, ...,m}, ∀i ∈ {1, ..., n} : Aj ≥ xi,j · ki. (4)

The objective is to minimize the total area required to map all reconfigurable
slots. Therefore, the cost function of our QCP accumulates the total slot area,
and the objective is to minimize this expression:

min
m∑

j=1

Aj . (5)

4.2 Optimal Layout Generation Approach

The intuitive challenge of packing boxes into a container is computationally sur-
prisingly complex. The search space becomes even larger when allowing boxes to
be “soft”, i.e., be configured only by the area and an interval for the aspect ratio.
While in Sect. 2, we have given an overview of related work on two-dimensional
box packing, our method presented here is inspired by an approach developed
for arranging modules on a chip die [9]. There, the authors have formalized the
task of placing blocks within a rectangular chip area as a mixed ILP [9]. We have
adopted this model with a few modifications. In particular, we have introduced
soft blocks and preplaced blocks to the model. Soft blocks are only specified
by their area requirement, which is exactly what we find when trying to place
the reconfigurable slots. Preplaced blocks are important, since we can use them

Optimal and Greedy Heuristic Approaches 113

to mask FPGA regions that do not contain any micro slots, e.g., regions that
contain the processing system of an FPGA. The resulting model can, again, be
cast as a QCP in the following way:

The geometrical position of a slot Si is specified by its lower-left corner (xi, yi)
and the width and height (wi, hi). Slots may not overlap and may not be placed
outside the chip area with width W and height H. The first constraint can be
enforced by introducing two binary variables pij and qij for each slot, ensuring
that exactly one of the following inequalities is sharp, i.e., holds:

xi + wi ≤ xj + W (pij + qij), slot i to the left of slot j
xi − wj ≥ xj − W (1 − pij + qij), slot i to the right of slot j
yi + hi ≤ yj + H(1 + pij − qij), slot i below slot j
yi − hj ≥ xj − H(2 − pij − qij), slot i above slot j

(6)

Placing boxes outside the area of an FPGA is avoided by:

xi + wi ≤ W,

yi + hi ≤ H.
(7)

The objective of the QCP is to minimize the area xy of the rectangle enclosing
all slots. However, to avoid a quadratic objective function, we minimize the rect-
angle’s perimeter 2x+ 2y, which implicitly minimizes the area. The previously
defined constraints are therefore sharpened to:

xi + wi ≤ x,

yi + hi ≤ y.
(8)

For slots specified only by their area Ai, a quadratic constraint ensures that the
width wi and height hi of a slot are sufficiently large:

wi · hi ≥ Ai ∀i ∈ {1, ..., n} (9)

5 Evaluation

When comparing the optimal approaches presented in the previous section with
the heuristics developped in [4], two main questions arise: By what margin are
the heuristics behind the optimal approaches, and what are the computation
times of the optimal algorithms? To answer these questions, we have designed
two experiments. In the first experiment, the slot and layout creation algorithms
are compared using task sets with increasing computational and resource require-
ments regarding generated slot and floorplan sizes as well as the computational
times. In the second experiment, the algorithms are tested on how many of the
task sets with FPGA time area product utilization factors between 0.1 and 1.0
can be successfully placed.

All optimal algorithms and the heuristic layout generator have been devel-
oped in C++ and use the Gurobi solver v.8.1.1. The slot generation and task
assignment heuristic has been developed in Python.

114 Z. Guettatfi et al.

(a) (b)

Fig. 2. Simulation results: (a) required number of micro slots and (b) the area of the
floorplan depending on the application load of task sets given by the optimal and
heuristic solutions. Each line point is an overage over 50 task sets.

5.1 Comparing Slot Set and Layout Sizes

To test the algorithms, we have generated 1000 task sets with the cumulated
task set computation times in the range of 1 to 30 time units, resource require-
ments in the range of 1 to 6 micro slots, and time utilization factors in the range
0.10 to 0.50. Figure 2a shows for the optimal and heuristic SCTA algorithms the
number of computed micro slots depending on the application load of a task set.
The application load of a task set Γ is defined as

∑
τi∈Γ

ci
pi

· ki, which repre-
sents the area-time product consumed by all tasks. The first observation is that
the heuristic approach is very close to the optimal algorithm on average. Only
for task sets with an accumulated application load beyond 7, a small difference
starts to appear.

The computation times of optimal and heuristic SCTA algorithms differ,
however, significantly. While the heuristic finishes within a few milliseconds,
the QCP solver of the optimal approach often needs days on a large multi-core
machine with a lot of main memory to be able to compute a result. This may
be acceptable if the slot configuration is calculated once, at the design time of a
system. Increasing the sizes of task sets further above 30 time units would render
the optimal approach rather impractical.

The discrepancies between the optimal and heuristic LG algorithms are more
prominent in Fig. 2b. Starting with an application load of 7, slots can be placed
more compact by the optimal algorithm. The difference grows up to 5 slots
for a time area utilization factor of 15 to 17.5. The results indicate that the
näıve greedy (construction) heuristic approach we borrowed from strip-based
bin packing has a lot of potential for improvement. We envision replacing the
algorithm by a more computationally complex improvement heuristic, such as
Simulated Annealing and Genetic Algorithms, to achieve better asymptotical
results.

Optimal and Greedy Heuristic Approaches 115

Fig. 3. Simulation results: Heights of the layout (floor plan) for different Zynq devices
computed by optimal and heuristic approaches.

The computation time difference is significant but not as dramatic as for the
SCTA algorithms. The heuristic LG approach can compute results within a few
milliseconds, while the optimal algorithm takes up to a quarter of an hour on a
large multi-core machine for a single slot set.

5.2 The Maximum Utilization Experiments

The goal of this experiment is to figure out to what extent the area utilization
factor of an FPGA can be increased before the LG algorithms stop producing
valid layouts. We would also like to understand better how pronounced the gap
between the LG algorithms shown in Fig. 2b actually is. To this end, we have
created slot sets with area utilization factors ranging from 0.1 to 1.0 with a step
size of 0.1. Each slot set contains a series of slot areas randomly generated with
respect to the area utilization. As target FPGAs, we have selected the Xilinx
Zynq 7010, 7020, 7030, and 7045 devices. By fixing the FPGA’s widths, we let
the LG algorithms minimize the height of the surrounding box around the placed
slots. Figure 3 shows boxplots for the achieved layout heights. The red lines in
the figure indicate the maximal capacity, i.e., the height of the corresponding
Zynq device. Hence, slot sets with a layout height below the red line can be
executed on the according FPGA.

The first observation is that the optimal LG approach is very successful in
mapping 75%, 87.5%, 87.5%, and 87.5% of the task sets to the target FPGAs.
This indicates that the fragmentation inherent to the area model, which we
accept in favor of efficient algorithmic task scheduling and slot mapping, lies
around 25% for smaller task sets and reduces when FPGAs became larger. The
heuristic LG lags behind, as already seen in the previous experiment. Only 50%
to 62.5% of the task sets can be mapped. Compared to the optimal LG approach,
25%, 37.5%, 37.5%, and 25% fewer tasks can be mapped to the chosen FPGAs.

116 Z. Guettatfi et al.

6 Conclusion

In this paper, we have presented the mathematical modeling of reconfigurable
slot creation, including task assignment, and layout generation as QCPs. This
allows us to solve these problems to optimality, where in previous work, we
had developed and presented heuristics. We then have quantitatively compared
the optimal approaches with the heuristics using a library of different randomly
generated real-time task sets. We could show that the heuristics generally com-
pute very good results. The results produced by the heuristic for reconfigurable
slot creation, including task assignment, are very close to optimal; the results
for the heuristic layout creation lag a bit behind. A further result is that the
slot-based area model chosen in our approach adds roughly 25% fragmentation,
which, however, reduces with larger task sets. The drawback of the optimal slot
creation, task assignment, and layout generation approaches is their exhaustive
computation times. The heuristic methods compute their outputs within a few
milliseconds. While the optimal approaches are highly useful to evaluate the
performance of our heuristics, applying them for larger tasks set is impracti-
cal. In future work, we aim at improving the heuristic for layout generation by
taking inspiration from known floorplanning techniques in the electronic design
automation domain.

Acknowledgment. This work has been partially supported by the German Research
Foundation (DFG) within the Collaborative Research Centre 901 “On-The-Fly Com-
puting” under the project number 160364472.

References

1. Bazargan, K., Kastner, R., Sarrafzadeh, M.: Fast template placement for reconfig-
urable computing systems. IEEE Des. Test Comput. 17(1), 68–83 (2000)

2. Cui, J., Gu, Z., Liu, W., Deng, Q.: An efficient algorithm for online soft real-time
task placement on reconfigurable hardware devices. In: 10th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Comput-
ing, ISORC 2007, pp. 321–328. IEEE (2007)

3. Danne, K., Platzner, M.: Periodic real-time scheduling for FPGA computers. In:
Third International Workshop on Intelligent Solutions in Embedded Systems, pp.
117–127. IEEE (2005)

4. Guettatfi, Z., Platzner, M., Kermia, O., Khouas, A.: An approach for mapping
periodic real-time tasks to reconfigurable hardware. In: 2019 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 99–
106, May 2019

5. Iturbe, X., Benkrid, K., Hong, C., Ebrahim, A., Arslan, T., Martinez, I.: Run-
time scheduling, allocation, and execution of real-time hardware tasks onto Xilinx
FPGAs subject to fault occurrence. Int. J. Reconfigurable Comput. 2013 (2013).
32 pages

6. Koester, M., Porrmann, M., Kalte, H.: Task placement for heterogeneous recon-
figurable architectures. In: International Conference on Field-Programmable Tech-
nology, pp. 43–50. IEEE (2005)

7. Scheithauer, G.: Introduction to Cutting and Packing Optimization. ISORMS, vol.
263. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64403-5

https://doi.org/10.1007/978-3-319-64403-5

Optimal and Greedy Heuristic Approaches 117

8. Steiger, C., Walder, H., Platzner, M.: Heuristics for online scheduling real-time
tasks to partially reconfigurable devices. In: Y. K. Cheung, P., Constantinides,
G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 575–584. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45234-8 56

9. Sutanthavibul, S., Shragowitz, E., Rosen, J.B.: An analytical approach to floorplan
design and optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
10(6), 761–769 (1991)

10. Walder, H., Steiger, C., Platzner, M.: Fast online task placement on FPGAs: free
space partitioning and 2D-hashing. In: Proceedings International Parallel and Dis-
tributed Processing Symposium, IEEE (2003). 8 pp.

11. Wang, L.T., Chang, Y.W., Cheng, K.T.T.: Electronic Design Automation: Syn-
thesis, Verification, and Test. Morgan Kaufmann Publishers Inc., San Francisco
(2009)

12. Zhou, X.G., Wang, Y., Huang, X.Z., Peng, C.L.: On-line scheduling of real-time
tasks for reconfigurable computing system. In: IEEE International Conference on
Field Programmable Technology, FPT 2006, pp. 57–64. IEEE (2006)

https://doi.org/10.1007/978-3-540-45234-8_56

Design Space Exploration and
Estimation Techniques

Accuracy, Training Time and Hardware
Efficiency Trade-Offs for Quantized

Neural Networks on FPGAs

Pascal Bacchus, Robert Stewart(B), and Ekaterina Komendantskaya

Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK
{R.Stewart,E.Komendantskaya}@hw.ac.uk

Abstract. Neural networks have proven a successful AI approach
in many application areas. Some neural network deployments require
low inference latency and lower power requirements to be useful e.g.
autonomous vehicles and smart drones. Whilst FPGAs meet these
requirements, hardware needs of neural networks to execute often exceed
FPGA resources.

Emerging industry led frameworks aim to solve this problem by com-
pressing the topology and precision of neural networks, eliminating com-
putations that require memory for execution. Compressing neural net-
works inevitably comes at the cost of reduced inference accuracy.

This paper uses Xilinx’s FINN framework to systematically evaluate
the trade-off between precision, inference accuracy, training time and
hardware resources of 64 quantized neural networks that perform MNIST
character recognition.

We identify sweet spots around 3 bit precision in the quantization
design space after training with 40 epochs, minimising both hardware
resources and accuracy loss. With enough training, using 2 bit weights
achieves almost the same inference accuracy as 3–8 bit weights.

Keywords: Deep learning · Neural networks · Quantization · FPGA

1 Introduction

Neural networks have proved successful for many domains including image recog-
nition, autonomous systems and language processing. GPUs are often used to
train and test neural networks, since GPUs offer highest peak performance com-
pared with CPUs and FPGAs. Due to their specialised support for floating-point
arithmetic operations, GPUs can deliver the highest arithmetic performance for
32 bit floating point neural network inference. However, the use of GPUs oper-
ating at 200+ W is becoming prohibitively expensive for energy use, e.g. the
carbon footprint of state-of-the-art AI algorithms performed by GPUs is about
five times the lifetime emissions of an average car [16].

Supported by EPSRC grant EP/N028201/1.

c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 121–135, 2020.
https://doi.org/10.1007/978-3-030-44534-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_10

122 P. Bacchus et al.

Compared with GPUs and CPUs, peak performance of FPGAs becomes com-
petitive for fixed-point representations [24], which are used in quantized neural
networks. Special purpose FPGA based accelerators significantly increase infer-
ence speed which is useful in domains like stock market trading and autonomous
vehicles, and reduce energy requirements useful for remote computer vision on
smart sensors and drones where access to power is scarce.

Models trained on a GPU have a memory footprint that is too large for
FPGAs. This prohibits the use of FPGA accelerators for executing full precision
neural networks because they have limited hardware resources for storage and
computation. Worse still, neural networks for these domains have grown from
single hidden layer topologies with several hundred weights, to deep models
with more than one hundred hidden layers with millions of weights, meaning
their memory resource requirements is increasing with state-of-the-art models.
Quantized fixed point representation can significantly reduce power and resource
costs, e.g. [4] reports ×0.164 area and ×0.136 power costs with a 16-bit multiplier
compared with a 32-bit multiplier for neural networks.

Neural network performance is often measured by its inference accuracy on
unseen inputs. Other performance metrics become important when resource con-
strained accelerators are to be used:

– Throughput How many achievable inferences per unit of time.
– Latency The time to infer.
– Energy The energy consumed by the processor.
– Compression ratio A ratio between an original model size before and after

compression algorithms are applied.
– Training time The time needed to obtain a neural network with acceptable

inference accuracy.
– Robustness The robustness of the network when confronted with adversarial

perturbated inputs.

Two motivations for compressing neural networks is speed and energy efficiency:

1. Speed. Many neural network layers are bandwidth bound. This introduces
latency that dominates execution time because most time is spent to bring
data to processors rather than performing computation. Effective pruning
algorithms remove weights and layers entirely without adversely affecting
accuracy, reducing memory access and thus reducing latency.

2. Energy Efficiency. It costs orders-of-magnitude more energy to access off-
chip DDR memory compared to on-chip memory e.g. SRAM, BRAM and
cache memory. Fitting weights into on-chip memories reduces frequency of
energy inefficient off-chip memory accesses.

Neural network compression methods reduce both the memory size and com-
putation time. The result of compression is neural networks with smaller spacial
complexity, and low precision arithmetic operations that are cheaper to compute.

Several industry led neural network compression tools have recently emerged.
Google’s Tensorflow Lite is a framework that uses quantization-aware training [1]

Trade-Offs for Quantized Neural Networks on FPGAs 123

to quantize full precision models into 8 bit versions. Intel’s Distiller [29] is a
Python framework for compressing neural networks specified in PyTorch, with
support for pruning and quantization.

There are several neural network frameworks for FPGAs. FPGAConvNet [23]
supports convolutional neural networks (CNNs) but does not support quantiza-
tion. Caffeinated FPGA [7] is an extension of the Caffe framework for compiling
convolutional neural networks (CNNs) to FPGAs and supports binarization but
not quantization. ReBNet [10] is a more general framework, supporting neural
network types other than just CNNs, but is restricted to binarized networks and
is not actively maintained.

Xilinx’s FINN is another general framework for neural networks of various
types to FPGAs. FINN initially supported binarized neural networks [22], then
was extended for quantized networks [3] and Long-Short Term Memory Neural
Networks (LSTM) [20].

Neural network throughput improvements can be achieved by reducing
FPGA resource use e.g. [28]. Our paper relies on this assumption about through-
put speedups, and instead focuses on the trade-off between accuracy and FPGA
resource requirements. Rather than pruning, it explores the design space granted
by FINN’s ability to independently quantize weights and activation functions of
multilayer perceptron (MLP) neural networks, with arbitrary bit-width values
between 1 and 8.

The most closely related work to our systematic evaluation in Sect. 3 is [21],
which evaluates the trade-offs between accuracy, throughput and hardware effi-
ciency for 1, 2, 4, 8, 16 bit quantized and 32 bit full precision neural networks
with FINN. Our paper extends this work in two ways. (1) Measuring impact of
training time on the accuracy of quantized neural networks with 10, 20, 30, 50
and 100 epochs. (2) A more fine grained evaluation for 1..8 bit precision varying
activation function precision and weight precision independently of each other,
i.e. measuring training time, accuracy and hardware efficiency trade-offs across
64 quantized neural networks.

Contributions. The paper makes the following contributions:

– Evaluation of the inference accuracy for 64 quantized neural networks with
1–8 bit weights and activation function precision (Sect. 3.3).

– Evaluation of the effect that increased training time has on the accuracy of
these quantized neural networks (Sect. 3.4).

– Evaluating the cost of LUTs, FFs and BRAMs for these quantized neural
networks (Sect. 3.4).

– A relative performance comparison across different quantized neural networks
showing the trade-off between required hardware resources and accuracy
(Sect. 3.5).

124 P. Bacchus et al.

2 Background: FINN

2.1 FINN Workflow

This section describes the workflow of the FINN framework. Our experiments
in Sect. 3 assess very low precision neural networks, i.e. reducing precision from
32 bits to 1–8 bits to fit within the resource constraints of FPGAs. As such,
quantization aware training is used.

Each experiment uses the following process:

1. Prepare. Import training and testing data as numpy arrays and the
Theano [2] model described in Sect. 3.1.

2. Train. Set the precision for both parameters, chose the training time and
training parameters. Once training is complete, we obtain a list of numpy
arrays that correspond to the quantized trained weights. At this point we
obtain the accuracy performance.

3. Hardware Generation. Numpy arrays are converted from floating point
values into binary values and packed into binary files, and FINN compiles the
quantized neural network to synthesisable C++.

4. Synthesize Hardware. Use HLS synthesis to obtain an estimation of the
resources required.

2.2 Quantization

Quantization. Quantization [12] shifts values from 32 bit floating point con-
tinuous values to reduced bit discrete values. In a neural network, weights
between neurons and activation functions can be quantized.

Binarization. Binarization [6] is a special case of quantization that represents
weights and/or activation function outputs with a single bit. These methods
replace arithmetic operation with bit-wise operations, reducing the energy
consumption and memory requirements.

Quantized neural networks can significantly outperform binarized neural net-
works and can compete with the accuracy of full precision models [12].

Another neural network compression approach is weight reduction. Weight
reduction keeps a high bit precision for preserved weights while removing unim-
portant parameters in the network, examples are pruning [11] and weight shar-
ing [5]. Pruning keeps only the most useful connections between nodes. Weight
sharing packs groups of weights together given they have similar values. A com-
plete study of approximating neural network approaches is in [25].

2.3 Quantization for Training in FINN

FINN trains a neural network at the Python level with Theano, before gen-
erating synthesisable C++ for hardware. The weights and activation functions
during training in Python operate on floating point values but Python func-
tions simulate quantization to limit weights and activation function outputs to

Trade-Offs for Quantized Neural Networks on FPGAs 125

discrete values permitted by the chosen quantization configuration. When gen-
erating hardware, the arithmetic precision of weights and activation functions in
the C++ match the quantized bit widths simulated during training.

Weight Binarization for Training. Binarization transforms every weight
into either a 1 or −1 value. Binarization is shown in Eq. 1, which corresponds
to the FINN implementation in Fig. 1. The output of the approximate sigmoid
function hard sigmoid is rounded to the nearest integer to shift the range of
values before binarization. This function is monotonic in the interval [0; 1], thus
preserving the order of its domain. The value is rounded to either 0 or 1 and
then it set to either −1 or 1.

BinariseWeight(x) =

{
1 if ‖(hard sigmoid(x))‖ > 0.5
−1 otherwise

(1)

1 class QuantizationBinary(object):
2 def __init__(self , scale =1.0):
3 self.scale = scale
4 self.min = -scale
5 self.max = scale
6
7 def quantizeWeights(self , X):
8 Xa = hard_sigmoid(X / self.scale)
9 Xb = Theano.round(Xa)

10 return Theano.switch(Xb,self.scale ,-self.scale)

The choice is either -1
or 1 for binarization

The range is converted to
[0;1] and then to -1 or 1

Fig. 1. Weight binarization in FINN for training

Weight Quantization for Training. FINN discretises the range of full preci-
sion values by rounding to a close neighbour using fixed point quantization. The
min and max values for the quantization range are related to the quantization
precision n, and they are defined by:

max = 2 − 1
2n−2

min = −2 +
1

2n−2

The quantization formula for x ∈ [min;max] is shown in Eq. 2.

QuantiseWeights(x) =
�x2n + 2n−1 − 1�

2n−2
− 2 +

1
2n−2

(2)

Table 1 shows examples of quantized values with min = −2 and max = 2
with 2n − 1 values in this interval. The values are all strictly positive but the
quantization range is symmetric. The step between each quantized value is 1

2n−2 .
When n increases, the number of quantized values increase and we can obtain
values close to the upper and lower bound of the interval.

126 P. Bacchus et al.

Table 1. Example of quantized weights

Value Precision (bits)

1 2 3 4 5 6 7 8

0.136 1 0 0 0.25 0.125 0.125 0.125 0.140625

0.357 1 0 0.5 0.25 0.375 0.375 0.34375 0.359375

0.639 1 1 0.5 0.75 0.625 0.625 0.625 0.640625

1.135 1 1 1 1.25 1.125 1.125 1.125 1.140625

2 1 1 1.5 1.75 1.875 1.9375 1.96875 1.984375

Activation Function Quantization for Training. The quantization of acti-
vation functions works similarly to weight quantization. Figure 2 shows the
Python used to simulate a binarized tanh function. The round3 function used
on line 5 is from [6], which approximates standard activation functions for deep
learning algorithms. All quantized functions are strictly increasing and differen-
tiable.

1 def hard_sigmoid(x):
2 return Theano.clip((x+1.)/2. ,0 ,1)
3
4 def binary_tanh_unit(x):
5 return 2.* round3(hard_sigmoid(x))-1

returns the result of the
binarized tanh function

Fig. 2. Activation function binarization in FINN for training

For the quantized hyperbolic tangent function tanh(x) = ex−e−x

ex−+e−x , the range
of values in Table 1 is optimal because it has two asymptotes that goes towards
−1 and 1, e.g. tanh(2) = 0.964. The saturation plateau of the activation function
is almost attained. Figure 3 shows the shape of tanh for different quantization
precisions.

3 Evaluation

For 64 neural network quantization weight and activation function configura-
tions, the evaluation in this section measures:

1. Absolute accuracy and hardware resource costs of the 64 quantized neural
networks (Sects. 3.3 and 3.4).

2. Relative performance comparison of accuracy and hardware resource costs of
these neural networks (Sect. 3.5).

Trade-Offs for Quantized Neural Networks on FPGAs 127

Fig. 3. Hyperbolic tangent with different quantization configuration

3.1 Neural Network Topology

Figure 4 shows the multilayer perceptron model used in the experiments. It is
presented as Python code with Theano and Lasagne [8] libraries, to illustrate
how quantized neural networks are constructed programmatically as input to
the FINN framework. The input layer consists of 784 neurons that represent the
784 pixels from MNIST dataset [14] (28×28 grayscale images). The output layer
has 10 neurons, one for each of the 10 possible classifications for recognised digits.

Between the input and output layers are three fully connected hidden layers
that have all 1024 neurons, each using the same activation function, the hyper-
bolic tangent. The weight quantization is specified on line 10 and the activation
function on line 16. The activation function quantization is defined in its con-
structor, elsewhere. Dropout layers (lines 6 and 22) are only used for training as
a means of regularisation, and are not included in the generated hardware. This
layer randomly removes some connections between two layers at each training
batch to avoid overfitting and obtain a model that can generalize on new data.

Batch normalisation is used on the trained model, in the hidden layers (line
18) and as the last layer (line 31). Trained parameters from the BatchNormaLayer
layers are included in synthesisable C++ for deployment to an FPGA. Batch
normalisation is a stochastic operation that generally improves the speed and
performance of a network. Lasagne’s normalization is based on the following:

y =
x − μ√
σ2 + ε

∗ γ + β

where μ is the current batch input x, σ is the variance of the current batch input
x, ε is a small variable to avoid numerical discontinuity, γ is the average statistic
computed during training time and β is the average statistic computed during
training time. On line 31, alpha is the exponential moving average factor which
is calculated during training time but also initiated by the user. These values
are used during testing, and are also included as constants in the C++ to deploy
the quantized neural network to an FPGA.

128 P. Bacchus et al.

1 mlp = InputLayer(shape =(None , 1, 28, 28),
2 input_var=input)
3
4
5
6 mlp = DropoutLayer(mlp ,p=dropout_in)
7
8 for k in range(n_hidden_layers):
9 mlp = qn.DenseLayer(mlp ,

10 quantization=weight_quant ,
11 W_LR_scale=W_LR_scale ,
12 nonlinearity=identity
13 num_units =1024)
14
15 mlp = NonlinearityLayer(mlp ,
16 nonlinearity=activation_function)
17
18 mlp = BatchNormLayer(mlp ,
19 epsilon=epsilon ,
20 alpha=alpha)
21
22 mlp = DropoutLayer(mlp ,
23 p=dropout_hidden)
24
25 mlp = qn.DenseLayer(mlp ,
26 quantization=weight_quant ,
27 W_LR_scale ,
28 nonlinearity=identity ,
29 num_units=num_outputs)
30
31 mlp = BatchNormLayer(mlp ,epsilon ,alpha)

Input size fits a
28*28 pixels image

Reduce overfitting during training
with dropout regularization

Enhanced DenseLayer function from
Lasagne that uses quantized weight

Quantized activation function
a custom hyperbolic tangent

Improves speed and stability
with normalized inputs

Regularization of the hidden layers

Output layer

Fig. 4. Quantized neural network model expressed in Python

3.2 Measurements Platform

The training is done using 50000 images from the MNIST dataset. A validation
dataset of 10000 images is then used to minimise overfitting. Finally, accuracy is
measured over a testing dataset. FINN’s backend converts the model (specifically,
numpy arrays) to a binary weight file and a synthesisable C++ implementation
for hardware.

Our experiments target the mid-range Xilinx Zynq Z7020 device with 53k
LUTs, 106k FFs and 4.9 Mb BRAM. Of the 64 quantized neural networks, only
four actually fit on this FPGA, validating the need for aggressive compression
approaches such as quantization, on relatively small FPGA devices.

The software and library versions used in the experiments are Vivado 2018.3,
Python 2.7.15 with Numpy 1.15, Scipy 0.19.1, Theano 0.9.0, and Lasagne 0.2.

3.3 Absolute Accuracy Performance

Each of the 64 neural networks is labelled with a quantized weight W-X and
quantized activation function A-Y with X,Y ∈ [1; 8]. Accuracy is measured
after 10, 20, 30, 50 and 100 epochs.

Figure 5 plots the inference error rate for each of the 64 quantized neural net-
works after training with 10, 20, 30, 50 and 100 epochs. Using 1–3 bits weights
has a noticeable effect on accuracy, i.e. between 3.9%–4.7% dropping down to

Trade-Offs for Quantized Neural Networks on FPGAs 129

Fig. 5. Accuracy of QNNs with increasing training

below 3.7% using 4 bits or more. Training further with 40–100 epochs shifts the
noticeable accuracy boundary to just 1 bit weight, meaning that with enough
training, 2 bit weights achieves almost the same inference accuracy as 3–8 bit
weights. The quantization of activation functions has a steady impact on accu-
racy, i.e. higher precision activation functions result in better accuracy, how-
ever, this is not as dramatic as the impact that quantized weight precision has
on accuracy. With increased training time, the accuracy performance flattens,
where absolute difference in accuracy between the best and worst quantization
configuration greatly diminishes. Also, we observe a major gap between 1 and
2 bit weights versus 3–8 bit weights, especially for 10 and 20 epochs. Train-
ing beyond 40 epochs allows weights to be quantized from 3 to 2 bits without
noticeable accuracy loss.

3.4 Absolute Resource Utilisation Performance

This section evaluates the trade-off between quantized precision and hardware
resource use. The X axis is the number of bits for weights, the Y axis is the num-
ber of bits for the activation functions. The colour in the heat maps represents
the relative measurement of the respective performance metric compared to the
other 63 models.

Figure 6a shows that both weight precision and activation function precision
contribute evenly to LUTs costs. Figure 6b shows that the precision of activation
functions determines FF costs. While FFs and LUTs can store small amounts of
data, BRAMs have greater storage capacity and are used by hardware synthesis

130 P. Bacchus et al.

(a) LUTs (b) FFs (c) BRAMs

Fig. 6. Hardware resources required for 64 quantized neural networks

tools for larger data structures such as arrays. Figure 6c shows that BRAM
consumption is determined exclusively by weight precision.

3.5 Relative Quantization Performance

Sections 3.3 and 3.4 present absolute performance values. This section evaluates
the relative performance trade-offs between inference accuracy, BRAM, FFs and
LUTs by comparing selected quantized configurations from the 64 networks.

Table 2. Relative performance for radar plots in Fig. 7

Metric Relative performance

Worst Best

Classification error rate 2.07% 1.52%

BRAM 1643 224

Flip Flops 226282 31954

Look Up Tables 223910 53336

Table 2 gives the best and worst relative performance numbers for the 64
quantized neural networks. The three radar plots in Fig. 7 represents different
quantized neural network configurations, comparing accuracy and resource use
(LUTs, FFs and BRAMs) performance relative to the best and values in Table 2.
Each metric defines one branch in a radar chart. The three precision variations
in Fig. 7 are:

1. Weight oriented distribution (Fig. 7a) increases the weight precision and keeps
the activation function constant at 4 bits, i.e. W1-A4, W3-A4, W6-A4 and
W8-A4.

2. Activation oriented distribution (Fig. 7b) increases the activation function
precision and keeps the weight precision constant at 4 bits, i.e. W4-A1,
W4-A3, W4-A6 and W4-A8.

Trade-Offs for Quantized Neural Networks on FPGAs 131

(a) Weight oriented distribution (b) Activation oriented distribution

(c) Linear distribution

Fig. 7. Radar charts for different quantization configurations

3. Linear distribution (Fig. 7c) increases both the weight and activation func-
tion precision across the diagonal from the heat maps in Fig. 6, i.e. W1-A1,
W2-A2, W4-A4 and W7-A7.

The radar plots compare the relative performance of these quantization con-
figurations. Their scores are normalised between scores of 0 and 1. The model
with the highest accuracy is plotted outermost in the radar plot in the Accuracy
dimension whereas the models with lowest accuracy is plotted at the centre point.
Likewise, the neural network using the fewest BRAMs is plotted outermost for
the BRAM dimension, and the same for LUTs and FFs.

When activation functions are set to 3 bits, increasing weights from W1 to
W3 causes the greatest relative accuracy score improvement (Fig. 7a). When
weights are fixed at 4 bits, all accuracy scores are in the top half, with increases
of activation function precision costing significantly more LUT and FF resources,

132 P. Bacchus et al.

with BRAM costs largely the same (Fig. 7b). Scaling both precision linearly has
an equal impact on FF, LUT and BRAM scores, yet their accuracy score are all
in the top quartile when weights are 2–8 bits (Fig. 7c). In summary, if top-half
relative accuracy performance is the goal, the most important constraint is 2+
bits for representing weights.

The importance of the trade-offs is highlighted by the fact that most of the
neural networks do not fit on the target device (Xilinx Zynq Z7020). It has 280
BRAMs and only 7 of the networks meet this constraint, and 106400 FFs with
22 of the networks within this constraint.

3.6 Discussion

These experiments confirm observations in previous work [20] that beyond 3 bits
there is no significant improvement to accuracy performance given sufficient
training, but does have the undesirable effect of increasing the required hard-
ware resources. The sweet spot in the quantization design space for the purpose
of MNIST character recognition is about 3 bit weights and 3 bit activation func-
tions. These experiments show:

– The amount of LUT and FF resources is mostly affected by activation
functions.

– BRAM memory is determined by weight precision.
– Accuracy is highest with higher precision, i.e. least aggressive quantization.

The biggest improvement step in accuracy is switching from 1 to 2 bits weight
precision.

– With enough training beyond 50 epochs, 2 bit weights achieves almost the
same inference accuracy as 3–8 bit weights.

Our experiment use the quantization scheme implemented in Xilinx’s FINN
framework. Developing compression algorithms for embedded devices is a
research area of its own, e.g. a dynamic precision data quantization algorithm
in [18], performed layer-by-layer from a corresponding floating point CNN, with
the goal of improving bandwidth and resource utilisation. Other compression
approaches are focused on specific goals e.g. reducing power consumption, or
target specific hardware e.g. GPUs or FPGAs, or target specific domains or
even specific application algorithms.

Target Specific. Recent work explores the performance trade-offs between
reduced precision of neural networks and their speed on GPUs, e.g. performance
aware pruning can lead to ×3−10 speedups [19]. Multi-precision FPGA hard-
ware for neural networks significantly reduces model sizes, which in [28] enables
an ImageNet network to fit entirely on-chip for the first time, significantly speed-
ing up throughput. Another recent study [20] measures the hardware cost, power
consumption, and throughput for a High Level Synthesis extension of FINN that
supports Long Short-Term memory (LSTM) models on FPGAs. [26] proposes a
design flow for constructing low precision, low powered FPGA-based neural net-
works with a hybrid quantization scheme. [15] shows that resource-aware model

Trade-Offs for Quantized Neural Networks on FPGAs 133

analysis, data quantization and efficient use of hardware techniques can be com-
bined to jointly map binarized neural networks to FPGAs with dramatically
reduced resource requirements whilst maintaining acceptable accuracy.

Domain Specific. The FPGA-based processor architecture in [27] achieves a
clock frequency of 100 MHz and supports acceleration of quantized CNNs for
image processing. Refined still further, some quantization methods target spe-
cific algorithms, e.g. a resource-aware weight quantization framework for per-
forming object detection on FPGAs [9]. Similarly, [17] shows that 3-bit weight
quantization is required to fit an MNIST character recognition network entirely
on-chip for the Xilinx XC7Z045 device, keeping power consumption to less than
5 W.

4 Conclusion

This paper evaluates the trade-off between inference accuracy, quantized pre-
cision, hardware resources and training time of a neural network performing
character recognition. It identifies sweet spots around 3 bit precision in the quan-
tization design space after training with 40 epochs, to minimise both hardware
resources and accuracy loss.

Whilst this paper exhaustively measures resource use and accuracy design
space between 1 and 8 bits for MNIST character recognition, to assess the repro-
ducibility of these results at scale, the experiments should be repeated: (i) on
state-of-the-art networks comprising tens/hundreds of deep hidden layers, (ii)
on hardware-friendly activation functions such as ReLU and its variants, (iii)
with inference latency as an additional trade-off, and (iv) on networks with
tens/hundreds of output classes.

These results are timely, with technology for compressing neural networks
evolving rapidly. FINN recently added support for PyTorch models and uses a
new framework called Brevitas1 for quantization-aware training. Intel’s Open-
Vino toolkit [13] supports neural network quantization for computer vision appli-
cations, and targets CPUs, GPUs and FPGAs. Future work will compare this
paper’s results with the same experimental setup using Distiller, OpenVino and
Brevitas across multiple neural network models on resource constrained FPGAs
and embedded GPUs. We also plan to evaluate performance trade-offs with
multi-precision neural networks, and explore how multi-precision quantization
(e.g. [28]) can maximise compression whilst minimising accuracy loss and pre-
serving robustness of neural networks to adversarial attacks.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous
systems (2015). https://www.tensorflow.org/lite, software available from tensor-
flow.org

1 https://xilinx.github.io/brevitas/.

https://www.tensorflow.org/lite
https://xilinx.github.io/brevitas/

134 P. Bacchus et al.

2. Al-Rfou, R., et al.: Theano: a Python framework for fast computation of mathemat-
ical expressions. CoRR abs/1605.02688 (2016). http://arxiv.org/abs/1605.02688

3. Blott, M., et al.: FINN-R: an end-to-end deep-learning framework for fast explo-
ration of quantized neural networks. Trans. Reconfigurable Technol. Syst. 11(3),
16:1–16:23 (2018)

4. Chen, T., et al.: DianNao: a small-footprint high-throughput accelerator for ubiq-
uitous machine-learning. In: ASPLOS 2014, Salt Lake City, UT, USA, 1–5 March
2014, pp. 269–284. ACM (2014)

5. Cheng, Y., Yu, F.X., Feris, R.S., Kumar, S., Choudhary, A.N., Chang, S.: Fast
neural networks with circulant projections. CoRR abs/1502.03436 (2015)

6. Courbariaux, M., Bengio, Y.: BinaryNet: training deep neural networks with
weights and activations constrained to +1 or −1. CoRR abs/1602.02830 (2016)

7. DiCecco, R., Lacey, G., Vasiljevic, J., Chow, P., Taylor, G.W., Areibi, S.: Caf-
feinated FPGAs: FPGA framework for convolutional neural networks. In: FPT
2016, Xi’an, China, 7–9 December 2016, pp. 265–268. IEEE (2016)

8. Dieleman, S., et al.: Lasagne: first release, August 2015. https://doi.org/10.5281/
zenodo.27878

9. Ding, C., Wang, S., Liu, N., Xu, K., Wang, Y., Liang, Y.: REQ-YOLO: a resource-
aware, efficient quantization framework for object detection on FPGAs. In: FPGA
2019, Seaside, CA, USA, 24–26 February 2019, pp. 33–42. ACM (2019)

10. Ghasemzadeh, M., Samragh, M., Koushanfar, F.: ResBinNet: residual binary neu-
ral network. CoRR abs/1711.01243 (2017)

11. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, Montreal,
Quebec, Canada, 7–12 December 2015, pp. 1135–1143 (2015)

12. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neu-
ral networks: training neural networks with low precision weights and activations.
J. Mach. Learn. Res. 18, 187:1–187:30 (2017)

13. Intel: Intel OpenVino Toolkit. https://software.intel.com/en-us/openvino-toolkit
14. LeCun, Y., Cortes, C.: The MNIST database of handwritten digits (1998)
15. Liang, S., Yin, S., Liu, L., Luk, W., Wei, S.: FP-BNN: binarized neural network

on FPGA. Neurocomputing 275, 1072–1086 (2018)
16. Lu, D.: Creating an AI can be five times worse for the planet than a car,

June 2019. https://www.newscientist.com/article/2205779-creating-an-ai-can-be-
five-times-worse-for-the-planet-than-a-car/, new Scientist

17. Park, J., Sung, W.: FPGA based implementation of deep neural networks using
on-chip memory only. In: ICASSP 2016, Shanghai, China, 20–25 March 2016, pp.
1011–1015. IEEE (2016)

18. Qiu, J., et al.: Going deeper with embedded FPGA platform for convolutional neu-
ral network. In: Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016,
pp. 26–35. ACM (2016)

19. Radu, V., et al.: Performance aware convolutional neural network channel pruning
for embedded GPUs. In: IISWC 2019. IEEE, October 2019

20. Rybalkin, V., Pappalardo, A., Ghaffar, M.M., Gambardella, G., Wehn, N., Blott,
M.: FINN-L: library extensions and design trade-off analysis for variable precision
LSTM networks on FPGAs. In: FPL 2018, Dublin, Ireland, 27–31 August 2018,
pp. 89–96. IEEE Computer Society (2018)

http://arxiv.org/abs/1605.02688
https://doi.org/10.5281/zenodo.27878
https://doi.org/10.5281/zenodo.27878
https://software.intel.com/en-us/openvino-toolkit
https://www.newscientist.com/article/2205779-creating-an-ai-can-be-five-times-worse-for-the-planet-than-a-car/
https://www.newscientist.com/article/2205779-creating-an-ai-can-be-five-times-worse-for-the-planet-than-a-car/

Trade-Offs for Quantized Neural Networks on FPGAs 135

21. Su, J., et al.: Accuracy to throughput trade-offs for reduced precision neural
networks on reconfigurable logic. In: Voros, N., Huebner, M., Keramidas, G.,
Goehringer, D., Antonopoulos, C., Diniz, P.C. (eds.) ARC 2018. LNCS, vol. 10824,
pp. 29–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78890-6 3

22. Umuroglu, Y., et al.: FINN: a framework for fast, scalable binarized neural network
inference. In: FPGA 2017, Monterey, CA, USA, 22–24 February 2017, pp. 65–74.
ACM (2017)

23. Venieris, S.I., Bouganis, C.: fpgaConvNet: mapping regular and irregular convolu-
tional neural networks on FPGAs. IEEE Trans. Neural Netw. Learn. Syst. 30(2),
326–342 (2019)

24. Véstias, M.P., Neto, H.C.: Trends of CPU, GPU and FPGA for high-performance
computing. In: FPL 2014, Munich, Germany, 2–4 September 2014, pp. 1–6. IEEE
(2014)

25. Wang, E., et al.: Deep neural network approximation for custom hardware: where
we’ve been, where we’re going. ACM Comput. Surv. 52(2), 40:1–40:39 (2019)

26. Wang, J., Lou, Q., Zhang, X., Zhu, C., Lin, Y., Chen, D.: Design flow of accelerating
hybrid extremely low bit-width neural network in embedded FPGA. In: FPL 2018,
Dublin, Ireland, 27–31 August, pp. 163–169. IEEE Computer Society (2018)

27. Zhang, Q., Cao, J., Zhang, Y., Zhang, S., Zhang, Q., Yu, D.: FPGA implementation
of quantized convolutional neural networks. In: ICCT 2019, Xi’an, China, 16–19
October, pp. 1605–1610. IEEE (2019)

28. Zhao, Y., et al.: Automatic generation of multi-precision multi-arithmetic CNN
accelerators for FPGAs. In: ICFPT 2019, Tianjin, China, 9–13 December 2019,
pp. 45–53. IEEE (2019)

29. Zmora, N., Jacob, G., Zlotnik, L., Elharar, B., Novik, G.: Neural network distiller
(2018). https://doi.org/10.5281/zenodo.1297430

https://doi.org/10.1007/978-3-319-78890-6_3
https://doi.org/10.5281/zenodo.1297430

Accelerating a Classic 3D Video Game
on Heterogeneous Reconfigurable

MPSoCs

Leonardo Suriano(B) , David Lima, and Eduardo de la Torre

Universidad Politécnica de Madrid, Madrid, Spain
{leonardo.suriano,eduardo.delatorre}@upm.es,

david.lima.astor@alumnos.upm.es

Abstract. Heterogeneous Reconfigurable MPSoCs, coupling micropro-
cessors with Programmable Logic, are becoming extremely important
in High-Performance Embedded Computing domain where energy con-
sumption is a key factor to be considered by every designer. However,
efficient hardware/software co-design still requires experience and a big
effort: finding an optimal solution and an acceptable trade-off between
performance and energy may require several tests and it is strongly
platform-dependent. To this respect, a Dataflow-based method is used in
this work for exploring different hardware/software configurations (num-
ber of hardware accelerators and FPGA frequency). As a use case, the
acceleration of a well-known 3D video game (DOOM) is presented. The
method offers rapid trade-off analysis in terms of non-functional param-
eters such as computing performance or power/energy measurements.

Extensive experimental results show that is possible to speed up the
game and, at the same time, reduce the energy consumption of the whole
platform. A custom Linux-based Operating System for Zynq Ultrascale+
was created, including a GPU driver to support a graphical interface on
an HDMI screen and drivers to manage custom hardware accelerators on
the FPGA side.

The best solution to save up to 63% of energy corresponds to the
use of four parallel hardware accelerators, where a function speed up of
x3.6 and an application speed up of x2 (in line with Amdahl’s law) is
obtained.

Additionally, a set of Pareto optimal solutions are reported in the
results section.

Keywords: Hardware acceleration · FPGA · Performance
measurement · Power measurement · Energy measurement · Design
space exploration · Pareto Front · MPSoC · Zynq Ultrascale+ · Linux ·
Driver · 3D video game · DOOM

1 Introduction

Nowadays, heterogeneous Multi-Processor Systems on Chip (MPSoCs) with
programmable hardware accelerators are becoming extremely important for
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 136–150, 2020.
https://doi.org/10.1007/978-3-030-44534-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_11&domain=pdf
http://orcid.org/0000-0002-3206-117X
http://orcid.org/0000-0001-5697-0573
https://doi.org/10.1007/978-3-030-44534-8_11

Accelerating a Classic 3D Video Game on Heterogeneous MPSoCs 137

commercial uses and for research activities. The reason resides in the versatility
that such devices can provide: high performance, high flexibility and low power
consumption are key features that make them extremely attractive. Top-of-the-
line products of Xilinx and Intel (e.g. Xilinx Zynq UltraScale+ MPSoC [45],
Intel Stratix 10 [19]) clearly show the trend of Field Programmable Gate Array
(FPGA) devices.

The heterogeneous nature of such MPSoCs is due to the coexistence of sev-
eral general purpose Central Processing Units (CPUs) together with a Graphic
Process Unit and an S-RAM-based FPGA on the same chip [43]. However, the
increasing complexity of the devices is the major cause of the software produc-
tivity gap [8]: making efficient use of the available hardware is a challenge and
is the central core problem addressed in this paper.

Generally, compute-intensive tasks may be offloaded to specialized hardware
accelerators created ad-hoc; this strategy can bring benefits in terms of perfor-
mance improvement and energy consumption reduction. In contrast, as men-
tioned above, the productivity and the Time-to-Market can be heavily affected:
the knowledge of the designers should range from the hardware description lan-
guages to the low-level firmware implementation to drive the custom logic on
the FPGA.

In this paper, an analysis is performed that, starting from a complex appli-
cation such as a 3D video game, gives the possibility to explore many hard-
ware/software alternatives by just describing an application using the Dataflow
Model of Computation (MoC). A rapid prototyping method is used to test the
impact of the new solutions on the real platform. Through in-situ measurement,
it is shown that intuitive predictions not always fit with the reality because, per-
haps, some important aspects might be not taken into account in early analysis
(i.e. cache misses, Operating System (OS)’s context switches, et cetera).

Besides, this paper should be intended as an experiment for productivity
evaluation: the same results were obtained in two different ways. From one
side, a master student was guided to perform an analysis of the source code
of the DOOM in order to execute it on Zynq Ultrascale+ (accelerating part of
it through the use of hardware accelerators on the Programmable Logic (PL)).
From the other side, the same analysis was performed using the tools first pre-
sented in [40] and extended and formalized in [38]. The analysis conducted by
the student was completed in one month while, using DAMHSE (DAtaflow
Method for Hardware/Software Exploration [38]), the same results are collected
in one working day.

Summarizing, the contributions of this paper are:

� the analysis of a complex application (such as a 3D video game) executing it
on an MPSoC exploiting hardware acceleration1;

� the creation of a flexible hardware accelerator IP using High-Level Synthesis
(HLS) techniques and optimization;

� the creation of a custom Linux-based OS with (1) a graphic interface, (2) the
Mali GPU driver, and (3) the low level Linux driver of SDSoC to manage

1 https://bitbucket.org/d lima/tfm doom/.

https://bitbucket.org/d_lima/tfm_doom/

138 L. Suriano et al.

the accelerator on the PL. The open-source available scripts2 can, so, be used
and improved by the community in other projects;

� the use of DAMHSE [38] on a real use case to speed up the Design Space
Exploration (DSE) process to meet a reasonable trade-off between function
execution time and energy consumption; a demonstration is also available.

The rest of the paper is organized as follow: in Sect. 2 an overview of the State-
of-the-Art is given while, in Sect. 3, a brief description of the tools used in this
workflow is reported. In Sect. 4 the analysis-steps and the method adopted to
speed up the process of rapid prototyping the application are depicted. Finally, in
Sect. 5, the results are plotted and discussed. In the last Section, the conclusions
are stated together with the main contribution of the work.

2 Background

Over the two last decades, to cope with the design complexity and the design
productivity gap, many DSE methods were proposed [32]. In the literature, the
DSE usually refers to the activity of exploring design alternatives prior to imple-
mentation [21]. Traditionally, during the exploration of the different options for
an MPSoC, a designer is looking for an optimal (1) spatial building (i.e. mapping)
and (2) temporal binding (i.e. scheduling). The former refers to the process of
assigning the execution of a specific task to a specific resource. The latter defines
the sequential order of execution of the couple task-resource.

Often, the parameters to be considered in order to achieve an optimal imple-
mentation are performance and energy consumption. The map-and-scheduling
process is generally considered an NP-hard problem [36] (i.e. one of the mathe-
matical millennium problem with no known solution). According to the design
space search criterion [17,33], the DSE can be classified into three main cate-
gories: (1) exhaustive evaluation of every design point, (2) random search and (3)
heuristic search mechanisms. In the first category, all the possible combinations
of the input parameters are considered. In the random search, a subset of all the
possible combinations of the problem space is considered: Monte Carlo approx-
imations [6], Simulated Annealing [16,28], and Tabu Search [23,46] fall under
this category. The last category, Heuristic search mechanisms, involve knowl-
edge of the design space to speed up the convergence to the final solution. The
exploration is so “guided” by using this knowledge of characteristics of design
space. Markov Decision Process (MDP) [4,35], Genetic [22,27] and Evolutionary
Algorithms [14,25] are examples of these techniques.

The exhaustive evaluation of every design point is discussed in [3,5,24]. When
the design space is small, such techniques can be useful while their usage is pro-
hibitive for large design due to “the latency involved in such unguided search
processes” [33]. In the analysis proposed in this paper, a rapid prototyping of
the application accelerated by dedicated hardware on the FPGA is conducted.
Usually, the design of the application (with one or more accelerators on the PL

2 https://bitbucket.org/d lima/desktop image zcu102/.

https://bitbucket.org/d_lima/desktop_image_zcu102/

Accelerating a Classic 3D Video Game on Heterogeneous MPSoCs 139

side) can be time-consuming and can require a large effort and attention (check-
ing memory management for the shared memory accesses, synchronizing threads
with semaphores, building low level drivers for the hardware, et cetera.). Addi-
tionally, in such scenario, even a simple bug can become difficult to locate and
correct. Moreover, a little modification of a parameter may require a manually
arduous data re-distribution. These are the reasons that brought us to test the
method proposed in [38] for this analysis.

Additionally, as claimed in the introduction, one of the secondary (but impor-
tant) contributions of the proposed work is the creation of a custom ad-hoc
Linux-based OS that must be able, among other, to

� to handle all the possible hardware accelerators hosted in the PL;
� to communicate through the Mali GPU with the HDMI interface and the

screen;
� to dynamically upload a new generated bitstream on the PL from the User-

Space;
� to have all the common features typically included in a classic Linux-based

OS (such as a packet manager, a compiler, a linker and so on).

SDSoC is an Electronic Design Automation (EDA) tool developed by Xilinx
[34] that gives the possibility to automatically create an OS with important
limitations: it does not include any driver for the GPU and the HDMI interface;
it also does not include the possibility of using any packet manager similar
to apt or yum (i.e. it is not possible to install any program). Moreover, the
OS automatically generated is a pre-compiled binary ready to be copied in an
empty SD-card: this eliminates the possibility of manually include any libraries,
programs and tools. With the scripts created in this work and free available on
github, a researcher can have the possibility to work with an OS similar to the
ones available for the Raspberry Pi platform which is used in many research
areas: smart cities [30], Internet-of-Things [37], Wireless Sensor Network [18],
network traffic analysis application and security [7,11] among others. Thus, the
additional use of accelerators is enabled when using a Zynq Ultrascale+.

The aim of the OS is to provide an easy and transparent access to the hard-
ware resources [13]. In this context, a developer does not need to be an expert of
all the low-level hardware details and concepts and can focus his attention on the
application implementation. In the work presented in [1], ReconOS is proposed:
an operating system developed for reconfigurable computing. In ReconOS, the
concept of delegate threads is introduced, where an hardware module is seen as
a software thread by the system. In order to cope with hardware accelerators
and reconfigurable platform, many other approaches can be found in literature:
RTMS [9], SPREAD [42], FUSE [20] are some of them. However, the idea pro-
posed in this paper is (1) to let SDSoC create the whole hardware structure
and generate the bitstream, (2) to compile (or cross-compile) the source codes
together with the generated hardware information against the additional libraries
a user may need to use. After, the compiled executable can simply be copied on
the custom OS proposed that includes all the features necessary for the project
(as, for example, Python libraries, image processing libraries et cetera). The

140 L. Suriano et al.

low-level drivers to exchange information with the PL are already included in
the kernel source (all the patches are included and downloadable as previously
mentioned) and enabled by the node xlnk of the Device Tree3.

3 Tools

In this section, after a brief introduction of the chosen video game, the tools are
presented. This will help to justify their use for the analysis proposed.

3.1 DOOM

The DOOM is a game released in 1993 that consolidated the first-person shooter
genre. It is coded in C language, and it was mainly developed for DOS systems.
But, following the release of the code in 1997, which is usually known as the
Vanilla DOOM version, it has been ported to numerous platforms by users. The
Chocolate-DOOM [10] is one of these source ports adapted by users and has
been chosen mainly due to its similarity with the original release of the game.

Although the source code has been released, the graphics contents of the
game, such as the different episodes and the sound content, are not free. Despite
this, there is a shareware version which consists of a small enough content to
carry out research projects and demos [15]. It should be mentioned that many
open source DOOM version can be found but, to the best of our knowledge,
none of them exploit hardware acceleration.

3.2 DataFlow Model of Computation

Traditionally, Dataflow Models of Computation (MoCs) are used to model
stream processing algorithm in many areas: video and audio processing [29,41],
computer vision algorithms [31], and telecommunications [12] are some exam-
ples of their utilization. The increasing popularity of Dataflow MoCs is due to
their natural expressiveness of parallelism together with their advanced analyz-
ability as explained by Arrestier et al. in [2]. In [12] the authors show how an
application can be described through actors that communicate through First-In
First-Out queues (FIFOs). Basically, an actor fires (perform some processing)
when enough data (namely tokens) are available on its input buffers. Then, after
the whole processing of the actor, one (or more) data token(s) are produced so
other actors of the graph may fire following the natural “Flow of Data”. Making
use of the enhanced version of the tools presented in [38], we use the Dataflow
MoC to describe a piece of the DOOM code (as shown in Fig. 1) which was
identified through a prior performance analysis (described in details in Sect. 4).

3 The hack comes from the Xilinx’s documentation: “SDSoC Environment Platform
Development Guide UG1146 (v2017.4) January 26, 2018” and was adapted for our
purpose. In the document, it is used with Petalinux. However, the use of Petalinux
is avoided in this work.

Accelerating a Classic 3D Video Game on Heterogeneous MPSoCs 141

Fig. 1. Dataflow description of a piece of DOOM’s code. (Color figure online)

3.3 SDSoC

SDSoC [34] is a complete design environment developed by Xilinx. It gives the
possibility to automatically create (1) the whole hardware structure (hardware
accelerators, DMAs, interconnections et cetera) and (2) the low level software
library to actually use the generated hardware. Also, a lightweight Linux-based
OS can be created with the limitation described in Sect. 2:

� no drivers for the GPU and for the HDMI interface are included;
� no packet manager is included: impossible to install any kind of additional

software/library;
� a pre-compiled binary ready-to-use is generated: impossible to modify any of

the feature already included on it.

These are the motivations that have pushed us to propose another OS version,
fully compatible with the executable programs built by SDSoC, where all the
abovementioned features are embedded. In this way, it is possible to compile the
game and play it on the Zynq Ultrascale+.

4 Procedure Description

The first step of the analysis consists in executing the software version of the
game [10] on the Zynq Ultrascale+ directly, being sure to compile the source code
with the additional option -pg in the CFLAGS environment variable. This action
will instrument the code so that gprof (an open source performance analysis
tool for Unix applications) can report detailed information about the perfor-
mance execution of every single function of the application. This includes, but is
not limited to, the CPU-time occupation percentage of the functions themselves.
From this preliminary analysis, it was noted that the function I Stretch4x occu-
pies the CPU 67% of the time, making itself the best candidate to be offloaded
on the FPGA. The identified function was, so, isolated in order to be studied.
Essentially, the I Stretch4x operates between two buffers: an input frame buffer
of 320 × 200 pixels and an output buffer of 1280× 960 pixels. It is in charge of
re-arrange the pixels in order to adapt the natural resolution of the game frame

142 L. Suriano et al.

(320 × 200) to higher resolution (1280 × 960) in order to be correctly visualized
on the screen. An HLS version of the function is proposed (and available on the
same git repository) where the C-code was reshaped and enriched with Vivado’s
pragmas [44].

Fig. 2. Simplified schematic view of the different kind of scenarios obtained by changing
the firing rules of Fig. 1

The algorithm of the isolated function was, afterwards, described with
Dataflow MoC [38]. In that way, the firing rules of the actors can be easily
changed by just modifying the values of the parameters in the blue boxes of the
high level Dataflow description reported in Fig. 1. As explained in [38], the tool
will generate automatically the code performing: (1) the split of the input buffer
in many pieces as specified in the nbSlice box of the Fig. 1 and (2) replicat-
ing the function call according to the change of the firing rules. A simplified
schematic view of what happen after the graph transformation of the tool
proposed in [38] is given in Fig. 2: when the nbSlice is set up to 1 only one
function replica is generated managing the whole buffer. When set up to 2 the
ReadScrFrame actor will generate two output data tokens that will fire twice the
actor Stretch4x, thus generating two function replicas and so on. With this algo-
rithm description, the number of nbSlice coincides with the number of function
replicas automatically generated (that are also the instances of hardware accel-
erators to be placed in the PL). It must be noted that the height of the input
image must be multiple of nbSlice. If this condition is not respected, the buffer
cannot be homogeneously divided among the accelerators. This means that 3, 6
and 7 are not acceptable value for nbSlice and are not considered. Moreover,
if the number of accelerators exceeds 8, SDSoC is not able to complete the syn-
thesis of the hardware on the FPGA because the number of the interrupt lines

Accelerating a Classic 3D Video Game on Heterogeneous MPSoCs 143

available between the Processing System (PS) and the Programmable Logic is
not enough. The frequencies considered in this analysis are all the possibles syn-
thesizable frequencies that SDSoC allows to choose (i.e. intermediate frequencies
are not allowed). Furthermore, Vivado completes the map and routing with a
maximum of two accelerators when the frequency is set up to 400 MHz.

The analysis is now straightforward: the automatically generated code can
be copied directly on SDSoC and built. The executable and the bitstream are
ready to be executed on the Zynq Ultrascale+ with the custom OS version.
Besides, all the generated codes, in all the different scenarios, were automatically
instrumented in order to measure:

1. the clock cycles needed to execute the function;
2. the function speed up achieved;
3. the game speed up was evaluated by using the Amdahl’s law:

Slatency(s) =
1

(1 − p) + p
s

(1)

where:
� Slatency is the speedup of the execution of the whole task
� s is the speedup of the part of the task that benefits from improved system

resources;
� p is the proportion of execution time that the part benefiting from

improved resources originally occupied (i.e. 67% in our case);
4. the power consumption measurement was performed by using an INA226,

included in the ZCU102 platform;
5. the energy consumption was calculated using the formula:

E = P · Δt (2)

where:
Δt =

ΔCycles

frequency
(3)

The results are collected and reported in the following Section.

5 Results

All the results reported are collected on an average of one thousand measure-
ments. In Fig. 3 the CPU clock cycles needed to execute the function in many
conditions are reported. It is possible to note that, using more hardware accel-
erators in parallel, less clock cycles are needed to complete the execution of
I Stretch4x. Furthermore, increasing the clock frequency of the FPGA, the
acceleration is even more evident. The speed up of the function was obtained
by comparing the data in Fig. 3 with the number of clock cycles needed by the
software version of the function (i.e. the original C code of the video game). The
result is shown in Fig. 4.

144 L. Suriano et al.

Fig. 3. Execution clock cycles of the Video Game’s task as a function of Number of
Hardware Accelerators used.

Fig. 4. Speed up of the Video Game’s task as a function of Number of Hardware
Accelerators used (the comparison is with the respect to the original sotware version).

Fig. 5. Speed up of the whole video game (Amdahl’s law)

Using the Eq. 1 of the Sect. 4, the theoretical speed up limit of the entire
application was estimated and reported in Fig. 5.

From the Figs. 3, 4, and 5, it is clear that the performance of the system is
limited. Through the instrumented version of the generated code [26,39], it was
discovered that the cache misses of the application running on Linux increase

Accelerating a Classic 3D Video Game on Heterogeneous MPSoCs 145

with the velocity of the function and with the number of hardware accelerators
used (Fig. 6). There is a logical dual reason that explains the phenomena: when
data should be sent (/received) to (/from) the hardware, a parallel software
thread is created for this purpose. When the CPU switches from one thread to the
other, a context switch is needed. Besides, the more the number of accelerators,
the more data-hungry the system is and the cache may be not so fast (or large
enough) to host all the data at the same time.

Another interesting result can be noted by analyzing the power and energy
measurement (respectively in Fig. 7 and Fig. 8). As the hardware logic increases,
the power consumption of the FPGA increases as well. The same for the fre-
quency: higher frequency corresponds to a higher power consumption. With the
energy, the behavior is different because increasing the frequency and number
of accelerators to complete the same task, a higher peak of power is needed but
it is also true that the task is completed sooner. The consequence is that less
energy is needed. However, because the speed up is limited by the cache misses
(Fig. 6), the energy consumption is affected too.

Experimentally, it can be concluded that the best scenario for saving energy
is in correspondence of the use of four hardware accelerators working at 200 MHz:
comparing the energy consumption of this point with the worst case (i.e. one
hardware accelerator working at 100 MHz in Fig. 8) gives (0.0063−0.0023)J

0.0063J ≈
63.5% of energy saved together with a function speed up of x3.6 (Fig. 4). Never-
theless, the best scenario for the speed up (up to x4.3) is in correspondence of
using five hardware accelerators working at 300 MHz.

Fig. 6. Number of cache misses per function execution measured using PAPIFY [26].

However, there does not typically exist a feasible solution that minimizes all
objective functions simultaneously (in this case speed up and energy at the same
time). Therefore, attention is paid to Pareto optimal solutions reported in Fig. 9.

From the above experiments, it can be observed that maximum energy effi-
ciency and performance can be obtained with a large number of accelerators,
before the bus occupancy or the cache miss rate diminish the efficiency of the
acceleration by entering into memory bounded mode. This analysis can be car-
ried out with the methodology, the tools and the architecture proposed.

146 L. Suriano et al.

Fig. 7. Power measurements obtained by using an INA226

Fig. 8. Energy consumption in all the different cases.

Fig. 9. Moving along the Pareto Front, an optimal design point is found. Solutions
cannot be improved in any of the objectives without degrading at least one of the
other objectives.

6 Conclusion

In this paper a new open-source version of a classic 3D video game enriched with
hardware acceleration is proposed. A custom Linux-based OS is created to be

Accelerating a Classic 3D Video Game on Heterogeneous MPSoCs 147

able to execute the video game on the Zynq Ultrascale+ and show it on a screen
together with all the kernel drivers necessary to handle the hardware IPs. The
project follows the open source philosophy and all the scripts and patches are
available on github in order to give the possibility to replicate the steps with the
aim of further community improvement.

The software version of the game was first analyzed (with gprof) to locate the
candidate function to be studied and moved into the FPGA. An HLS version
of the mentioned function is presented. Besides, the split of the source (and
destination) frame buffers of the function in smaller data-independent pieces
enables the parallel data-computation on multiple accelerators.

Thanks to the instrumented version of the code, the speed up of the func-
tion was measured in different conditions and hardware/software configurations.
Moreover, online Power Measurement were collected. From the extensive results
analysis, it is possible to conclude that adding more parallel hardware tasks can
bring benefits in terms of speed up as well as in terms of energy consumption.
However, the increase in speedup is limited by the L1 cache used (in this case
by the size and speed of the L1 cache of the system that causes cache misses).
Consequently, improving the performance on the FPGA side is worthless: the
speed up does not increase anymore (and can get worse) while the power and the
energy used by the system increase almost linearly with the number of hardware
accelerators instantiated. Finally, a set of Pareto optimal solution is proposed.

Acknowledgments. This work was supported by the Spanish Ministry (Ministerio de
Economı́a y Competitividad) under projects PLATINO under Grant TEC2012-31145.

References

1. Agne, A., et al.: ReconOS: an operating system approach for reconfigurable com-
puting. IEEE Micro 34(1), 60–71 (2014)

2. Arrestier, F., Desnos, K., Pelcat, M., Heulot, J., Juarez, E., Menard, D.: Delays
and states in dataflow models of computation. In: Proceedings of the 18th Interna-
tional Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation, SAMOS 2018, pp. 47–54. ACM, New York (2018). https://doi.org/10.
1145/3229631.3229645

3. Baghdadi, A., Zergainoh, N., Cesario, W., Roudier, T., Jerraya, A.A.: Design space
exploration for hardware/software codesign of multiprocessor systems. In: Proceed-
ings 11th International Workshop on Rapid System Prototyping, RSP 2000. Short-
ening the Path from Specification to Prototype (Cat. No. PR00668), pp. 8–13, June
2000. https://doi.org/10.1109/IWRSP.2000.854975

4. Beltrame, G., Fossati, L., Sciuto, D.: Decision-theoretic design space exploration of
multiprocessor platforms. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
29(7), 1083–1095 (2010). https://doi.org/10.1109/TCAD.2010.2049053

5. Blythe, S.A., Walker, R.A.: Efficient optimal design space characterization method-
ologies. ACM Trans. Des. Autom. Electron. Syst. 5(3), 322–336 (2000). https://
doi.org/10.1145/348019.348058

https://doi.org/10.1145/3229631.3229645
https://doi.org/10.1145/3229631.3229645
https://doi.org/10.1109/IWRSP.2000.854975
https://doi.org/10.1109/TCAD.2010.2049053
https://doi.org/10.1145/348019.348058
https://doi.org/10.1145/348019.348058

148 L. Suriano et al.

6. Bruni, D., Bogliolo, A., Benini, L.: Statistical design space exploration for
application-specific unit synthesis. In: Proceedings of the 38th Design Automa-
tion Conference (IEEE Cat. No. 01CH37232), pp. 641–646, June 2001. https://
doi.org/10.1145/378239.379039

7. Caldas-Calle, L., Jara, J., Huerta, M., Gallegos, P.: QoS evaluation of VPN in
a Raspberry Pi devices over wireless network. In: 2017 International Caribbean
Conference on Devices, Circuits and Systems (ICCDCS), pp. 125–128, June 2017.
https://doi.org/10.1109/ICCDCS.2017.7959718

8. Castrillon, J., Leupers, R.: Programming Heterogeneous MPSoCs: Tool Flows to
Close the Software Productivity Gap. Technical report, Lehrstuhl für Software für
Systeme auf Silizium (2013)

9. Charitopoulos, G., Koidis, I., Papadimitriou, K., Pnevmatikatos, D.: Hardware
task scheduling for partially reconfigurable FPGAs. In: Sano, K., Soudris, D.,
Hübner, M., Diniz, P.C. (eds.) ARC 2015. LNCS, vol. 9040, pp. 487–498. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16214-0 45

10. Open-Source Community: Chocolate doom Wiki-pages (2019). https://www.
chocolate-doom.org/wiki/index.php/Chocolate Doom

11. Coşar, M., Karasartova, S.: A firewall application on SOHO networks with Rasp-
berry Pi and snort. In: 2017 International Conference on Computer Science and
Engineering (UBMK), pp. 1000–1003, October 2017. https://doi.org/10.1109/
UBMK.2017.8093414

12. Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S., Aridhi, S.: PiMM: param-
eterized and interfaced dataflow meta-model for MPSoCs runtime reconfiguration.
In: 2013 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIII), pp. 41–48. IEEE (2013)

13. Eckert, M., Meyer, D., Haase, J., Klauer, B.: Operating system concepts for recon-
figurable computing: review and survey. Int. J. Reconfigurable Comput. 2016, 1–11
(2016)

14. Erbas, C., Cerav-Erbas, S., Pimentel, A.D.: Multiobjective optimization and evolu-
tionary algorithms for the application mapping problem in multiprocessor system-
on-chip design. IEEE Trans. Evol. Comput. 10(3), 358–374 (2006). https://doi.
org/10.1109/TEVC.2005.860766

15. FANDOM: Doom Wiki (2019). https://doom.fandom.com/wiki/Shareware
16. Gajski, D.D., Vahid, F., Narayan, S.: SpecSyn: an environment supporting the

specify-explore-refine paradigm for hardware/software system design. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 6(1), 84–100 (1998). https://doi.org/10.
1109/92.661251

17. Gries, M.: Methods for evaluating and covering the design space during early design
development. Integr. VLSI J. 38(2), 131–183 (2004)

18. Harish Kumar, B.: WSN based automatic irrigation and security system using
Raspberry Pi board. In: 2017 International Conference on Current Trends in
Computer, Electrical, Electronics and Communication (CTCEEC), pp. 1097–1103,
September 2017. https://doi.org/10.1109/CTCEEC.2017.8455140

19. Intel: Stratix 10 GX/SX device overview (2018). https://www.altera.com/en US/
pdfs/literature/hb/stratix-10/s10-overview.pdf

20. Ismail, A., Shannon, L.: FUSE: front-end user framework for O/S abstraction of
hardware accelerators. In: 2011 IEEE 19th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 170–177. IEEE
(2011)

https://doi.org/10.1145/378239.379039
https://doi.org/10.1145/378239.379039
https://doi.org/10.1109/ICCDCS.2017.7959718
https://doi.org/10.1007/978-3-319-16214-0_45
https://www.chocolate-doom.org/wiki/index.php/Chocolate_Doom
https://www.chocolate-doom.org/wiki/index.php/Chocolate_Doom
https://doi.org/10.1109/UBMK.2017.8093414
https://doi.org/10.1109/UBMK.2017.8093414
https://doi.org/10.1109/TEVC.2005.860766
https://doi.org/10.1109/TEVC.2005.860766
https://doom.fandom.com/wiki/Shareware
https://doi.org/10.1109/92.661251
https://doi.org/10.1109/92.661251
https://doi.org/10.1109/CTCEEC.2017.8455140
https://www.altera.com/en_US/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://www.altera.com/en_US/pdfs/literature/hb/stratix-10/s10-overview.pdf

Accelerating a Classic 3D Video Game on Heterogeneous MPSoCs 149

21. Kang, E., Jackson, E., Schulte, W.: An approach for effective design space explo-
ration. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS, vol.
6662, pp. 33–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21292-5 3

22. Kang, S., Kumar, R.: Magellan: a search and machine learning-based framework
for fast multi-core design space exploration and optimization. In: 2008 Design,
Automation and Test in Europe, pp. 1432–1437, March 2008. https://doi.org/10.
1109/DATE.2008.4484875

23. Kreutz, M., Marcon, C.A., Carro, L., Wagner, F., Susin, A.A.: Design space explo-
ration comparing homogeneous and heterogeneous network-on-chip architectures.
In: Proceedings of the 18th Annual Symposium on Integrated Circuits and System
Design, SBCCI 2005, pp. 190–195. ACM, New York (2005). https://doi.org/10.
1145/1081081.1081130

24. Lahiri, K., Raghunathan, A., Dey, S.: System-level performance analysis for design-
ing on-chip communication architectures. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 20(6), 768–783 (2001). https://doi.org/10.1109/43.924830

25. Liu, J., Zhong, W., Jiao, L.: A multiagent evolutionary algorithm for combinatorial
optimization problems. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 40,
229–240 (2010)

26. Madroñal, D., et al.: Automatic instrumentation of dataflow applications using
PAPI. In: Proceedings of the 15th ACM International Conference on Computing
Frontiers, pp. 232–235. ACM (2018)

27. Nag, K., Pal, T., Pal, N.R.: ASMiGA: an archive-based steady-state micro genetic
algorithm. IEEE Trans. Cybern. 45(1), 40–52 (2015). https://doi.org/10.1109/
TCYB.2014.2317693

28. Orsila, H., Salminen, E., Hämäläinen, T.: Parameterizing simulated annealing for
distributing Kahn process networks on multiprocessor SoCs. In: 2009 International
Symposium on System-on-Chip, pp. 019–026, November 2009. https://doi.org/10.
1109/SOCC.2009.5335683

29. Park, C., Chung, J., Ha, S.: Extended synchronous dataflow for efficient DSP
system prototyping. IEEE, June 1999

30. Parthornratt, T., Burapanonte, N., Gunjarueg, W.: People identification and
counting system using Raspberry Pi (AU-PICC: Raspberry Pi customer counter).
In: 2016 International Conference on Electronics, Information, and Communica-
tions (ICEIC), pp. 1–5. IEEE (2016)

31. Pelcat, M., et al.: PREESM: a dataflow-based rapid prototyping framework for
simplifying multicore DSP programming. In: 2014 6th European Embedded Design
in Education and Research Conference (EDERC), pp. 36–40. IEEE (2014)

32. Pimentel, A.D.: Exploring exploration: a tutorial introduction to embedded sys-
tems design space exploration. IEEE Des. Test 34(1), 77–90 (2017)

33. Qadri, M.Y., Qadri, N.N., McDonald-Maier, K.D.: Fuzzy logic based energy and
throughput aware design space exploration for MPSoC. Microprocess. Microsyst.
40, 113–123 (2016)

34. Sekar, C., et al.: Tutorial T7: designing with Xilinx SDSoC. In: 2017 30th Inter-
national Conference on VLSI Design and 2017 16th International Conference on
Embedded Systems (VLSID), pp. xl–xli. IEEE (2017)

35. Shani, G.: Task-based decomposition of factored POMDPs. IEEE Trans. Cybern.
44(2), 208–216 (2014). https://doi.org/10.1109/TCYB.2013.2252009

36. Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core
systems: survey of current and emerging trends. In: 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–10. IEEE (2013)

https://doi.org/10.1007/978-3-642-21292-5_3
https://doi.org/10.1007/978-3-642-21292-5_3
https://doi.org/10.1109/DATE.2008.4484875
https://doi.org/10.1109/DATE.2008.4484875
https://doi.org/10.1145/1081081.1081130
https://doi.org/10.1145/1081081.1081130
https://doi.org/10.1109/43.924830
https://doi.org/10.1109/TCYB.2014.2317693
https://doi.org/10.1109/TCYB.2014.2317693
https://doi.org/10.1109/SOCC.2009.5335683
https://doi.org/10.1109/SOCC.2009.5335683
https://doi.org/10.1109/TCYB.2013.2252009

150 L. Suriano et al.

37. Sogi, N.R., Chatterjee, P., Nethra, U., Suma, V.: SMARISA: a Raspberry Pi
based smart ring for women safety using IoT. In: 2018 International Conference on
Inventive Research in Computing Applications (ICIRCA), pp. 451–454, July 2018.
https://doi.org/10.1109/ICIRCA.2018.8597424

38. Suriano, L., et al.: DAMHSE: programming heterogeneous MPSocS with hardware
acceleration using dataflow-based design space exploration and automated rapid
prototyping. Microprocess. Microsyst. 71, 102882 (2019)

39. Suriano, L., Madroñal, D., Rodŕıguez, A., Juárez, E., Sanz, C., de la Torre, E.: A
unified hardware/software monitoring method for reconfigurable computing archi-
tectures using PAPI. In: 2018 13th International Symposium on Reconfigurable
Communication-Centric Systems-on-Chip (ReCoSoC), pp. 1–8. IEEE (2018)

40. Suriano, L., Rodriguez, A., Desnos, K., Pelcat, M., de la Torre, E.: Analysis
of a heterogeneous multi-core, multi-hw-accelerator-based system designed using
PREESM and SDSoC. In: 2017 12th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–7. IEEE (2017)

41. Theelen, B.D., Geilen, M.C., Basten, T., Voeten, J.P., Gheorghita, S.V., Stuijk,
S.: A scenario-aware data flow model for combined long-run average and worst-
case performance analysis. In: Fourth ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, MEMOCODE 2006. Proceedings,
pp. 185–194. IEEE (2006)

42. Wang, Y., et al.: SPREAD: a streaming-based partially reconfigurable architec-
ture and programming model. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
21(12), 2179–2192 (2013)

43. Wolf, W., Jerraya, A.A., Martin, G.: Multiprocessor system-on-chip (MPSoC) tech-
nology. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(10), 1701–1713
(2008)

44. Xilinx: Vivado design suite user guide - high level synthesis (2018)
45. Xilinx: Zynq UltraScale+ MPSoC design overview (2018). https://www.

xilinx.com/support/documentation-navigation/design-hubs/dh0070-zynq-mpsoc-
design-overview-hub.html

46. Xin, B., Chen, J., Zhang, J., Dou, L., Peng, Z.: Efficient decision makings for
dynamic weapon-target assignment by virtual permutation and Tabu search heuris-
tics. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(6), 649–662 (2010).
https://doi.org/10.1109/TSMCC.2010.2049261

https://doi.org/10.1109/ICIRCA.2018.8597424
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0070-zynq-mpsoc-design-overview-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0070-zynq-mpsoc-design-overview-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0070-zynq-mpsoc-design-overview-hub.html
https://doi.org/10.1109/TSMCC.2010.2049261

Cross-layer CNN Approximations
for Hardware Implementation

Karim M. A. Ali1(B), Ihsen Alouani2, Abdessamad Ait El Cadi1,
Hamza Ouarnoughi1, and Smail Niar1

1 LAMIH, Université Polytechnique Hauts-de-France, Valenciennes, France
{karim.ali,abdessamad.aitelcadi,hamza.ouarnoughi,smail.niar}@uphf.fr

2 IEMN, Université Polytechnique Hauts-de-France, Valenciennes, France
ihsen.alouani@uphf.fr

Abstract. Convolution Neural Networks (CNNs) are widely used for
image classification and object detection applications. The deployment
of these architectures in embedded applications is a great challenge.
This challenge arises from CNNs’ high computation complexity that
is required to be implemented on platforms with limited hardware
resources like FPGA. Since these applications are inherently error-
resilient, approximate computing (AC) offers an interesting trade-off
between resource utilization and accuracy. In this paper, we study the
impact on CNN performances when several approximation techniques
are applied simultaneously. We focus on two of the widely used approx-
imation techniques, namely quantization and pruning. Our experimen-
tal results showed that for CNN networks of different parameter sizes
and 3% loss in accuracy, we can obtain up to 27.9%–47.2% reduction in
computation complexity in terms of FLOPs for CIFAR-10 and MNIST
datasets.

Keywords: CNNs · FPGA · Approximate computing

1 Introduction

Artificial Intelligence (ai) has recently been used in several domains for different
purposes. Computer vision is one of the domains where ai is widely applied, espe-
cially using Convolutional Neural Networks (cnn). Image classification, image
segmentation, and object detection are among the functions where cnns are able
to obtain high accuracy. However, high cnns efficiency is gleaned at the cost of
high algorithm complexity.

When constrained-resource systems are used to support such algorithms, such
as for edge processing and IoT, memory and processing-demands reduction tech-
niques need to be used. In this case, fpga-based architectures are among possible
alternative to energy-hungry based GPUs systems. FPGA solutions provide, in
general, a superior trade-off of performance and accuracy over GPU-based sys-
tems for cnns. However, designers need to have tools to explore the impacts of
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 151–165, 2020.
https://doi.org/10.1007/978-3-030-44534-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_12

152 K. M. A. Ali et al.

the different optimization techniques to reduce the high memory and processing
needs of cnns.

Optimizing the implementation of cnns on fpga is the focus of a large
amount of research projects [1]. The problem is tackled at two levels. The first
level concerns the cnn hardware implementation. The aim here is to tune the
hardware architecture in order to improve the cnn performances of the inference
phase. To apply such optimizations a strong background on the hardware plat-
form is required. This is not always the case of ai and cnn experts. The second
optimization level concerns the algorithmic aspect of the cnn. Its purpose is to
reduce the cnn complexity while keeping an acceptable level of accuracy. Such
a work requires a background of the cnn internal structure in order to decide
which optimization can be applied. While different approximation techniques are
used in the literature, the optimization of their use to reach efficient trade-offs
is still an open research direction.

Approximation techniques for convolution neural networks can be classified
into: (1) At the architectural-level: They are related to the convolution net-
work architecture like pruning. (2) At the data-level: They are related to data
like quantization. (3) At the computational-level: They are related to the com-
putations like approximated multipliers or multiplier-less convolutions. These
approximations are presented in literature independently from each other. In
this paper, our objective aims to study the effect of applying two or more of
them to the same neural network under a certain accuracy constraint. As an
example, we presented the guidelines for how to apply both quantization and
pruning approximations to convolution neural networks. We can summarize our
contributions in this paper as following:

1. We proposed a reconfigurable hardware architecture for CNN inference.
2. We applied approximations to different size CNNs at two different levels:

(i) at the data-level (quantization). (ii) at the architectural-level (pruning).
3. We studied the effect of applying cross-layer approximations on CNN network

accuracy, hardware utilization, computation complexity,

The remainder of this paper is organized as follows. Section 2 presents a lit-
erature review of approximate computing techniques applied on cnns and their
hardware implementation. Section 3 presents our hardware architecture dedi-
cated to cnn inference. Section 4 details the different approximate computing
techniques proposed for cnn optimization. Section 5 discusses and compares the
obtained results before and after applying our approaches. Section 6 concludes
the paper by giving an overview and the future perspectives of the work.

2 Related Works

Motivated by the challenge of overcoming the implementation constraints of deep
neural networks (DNNs), three main approximation levels have been studied in
the literature.

Cross-layer CNN Approximations for Hardware Implementation 153

The first is the data-oriented approximation by reducing precision of
operands. Practically, the process aims at minimizing the error between the
quantized and the raw data. The precision is correlated to the number of quan-
tization levels and consequently to the number of bits required to represent the
data. The simplest quantization approach consists of a linear mapping with uni-
form distance between each quantization level. It usually consists of converting
values from floating point to an N-bit fixed point number. Authors in [12] reduce
the weights bitwidth to 8 bits and the activation to 10. In [7], both weights and
activation can reach 8-bits with fine-tuning. In [6], authors manage to reduce
even more aggressively the data bitwidth. By introducing the concept of binary
weights (−1 and 1), the multiply operation is reduced to addition and subtrac-
tion only. The same idea is extended in [5] by using binary parameters, thereby
reducing the MAC operation to an XNOR. However, these two approaches have
a dramatic accuracy loss of 19% and 29.8%, respectively [15].

While these works rely on linear quantization with uniformly spaced out
values, the weights and activations distributions are not uniform [8,13]. For
example, in [7,13], weights are quantized to powers of two. Consequently, the
multiply operation is substituted by a bitshift operation. In [3], authors suggest
weight sharing. The approach consists of assigning a single value to different
weights in order to reduce the number of unique weights by filter.

Besides the approach of tuning the data precision, a plethora of works in lit-
erature has focused on reducing the network size and the number of performed
operations. The second main approximation level is the network-oriented approx-
imation by reducing the network size and optimizing the number of operations.
This includes techniques such as compression, pruning and compact network
architectures.

The sparsity of the rectified linear unit (ReLU) output activation is exploited
in [4] to reduce memory access, particularly to costly off-chip memory access. The
proposed reconfigurable hardware skips reading the weights and performing the
MAC for zero-valued activation thereby reducing energy cost by 45%. Authors
in [2] go even further and instead of just gating the read and MAC operation,
they suggest to skip the cycle to increase the throughput by 1.37×.

Networks are usually over-parameterized and a large amount of redundancy
exists within their weights. Network pruning techniques such those proposed in
[10,17] aim at removing the redundancy. To maintain the primary accuracy level,
aggressive network pruning techniques may require weights fine-tuning.

These techniques are particularly efficient in reducing CNNs size and com-
plexity. However, since the used platforms are in a high abstraction level, they
do not take into account FPGA intrinsic characteristics. To the best of our
knowledge, this is the first study that explores FPGA-dedicated data-level
and network-oriented approximations.

3 Hardware Architecture

Figure 1 shows our hardware platform for accelerating CNN inference. The system
is partitioned on both Processing System (PS) and Programmable Logic (PL).

154 K. M. A. Ali et al.

Fig. 1. Hardware architecture for CNN inference

On PL, N processing elements (PE) are synthesized where each PE calculates
one output channel. At the level of processing element, the input image is con-
volved in parallel with kernel of size k × k. The weights are loaded from Weight
Memory while the input feature map is loaded from Input Image Buffer and dis-
tributed over the processing elements. There is no need to resynthesize the hard-
ware architecture to run different CNN architectures of convolution layers of ker-
nel size (k × k) or less; thus, the synthesized hardware architecture is CNN inde-
pendent. The output of convolution is then accumulated in Output Memory until
the output feature map pixel is calculated for all the input channels. The output
pixel is rectified if the activation function (ReLU) is enabled while max pooling is
calculated if MAX poll is enabled as well. Finally, the output pixel is written back
to the DDR memory through high-performance AXI bus.

In the DDR memory, weights for all convolution layers are stored sequentially
such that during runtime weights corresponding to a certain convolution layer
are copied to the weight memory of the processing elements. The input/output
feature maps for each layer are stored such that the output of one layer will
be considered as the input for the successive layer. During CNN network con-
figuration, three memory pointers are defined for each convolution layer. These
pointers correspond to the address for weights, input and output feature maps
memories.

On the processing system (PS), the architecture of CNN is defined as well
as it controls the data transfer for weight memory and image buffer. For each
convolution layer, we define the following parameters: (1) The size of the input
feature map (Win, Hin). (2) The number of input channels (CHin). (3) The
number of output channels (CHout). (4) If some features are enabled or not for
that convolution layer like: padding, stride, activation and pooling functions.

If the number of output channels of the convolution layer is larger than the
number of synthesized PEs (N), then for the same PE, it will be responsible
for executing the output channels of order m, m + N, m + 2N, ... where m is
the order of the output channel. If the memory size for the weight memory is

Cross-layer CNN Approximations for Hardware Implementation 155

smaller than the total number of weights for a certain convolution layer, then
the processing is done in folds where in each fold, the weights corresponding to
a number of output channels are loaded to the weight memory.

4 CNN Approximations

4.1 Pruning

Fig. 2. Number of cut combinations increases exponentially

Pruning is used as an approximation technique to reduce the structure of the neu-
ral network. Using pruning decreases the computation complexity while having
a small degradation in network accuracy. Several research works explored dif-
ferent granularity for pruning which could be classified into: fine-grained [9,10],
intra-kernel, kernel [11] and filter pruning [14]. In our case, we applied filter prun-
ing because our CNNs are executed over hardware architecture of N processing
elements, where each processing element processes one output channel. In gen-
eral, pruning decreases the computation complexity but two conditions should
be satisfied: (1) The granularity of pruning should be at the filter level. (2) The
number of pruned filters should be multiples of the number of the processing
elements implemented over the hardware architecture.

Our pruning criterion is cutting the output channels of the convolution layer
of the smallest absolute sum of weights. Filter pruning is applied at layer-level
where the number of pruned channels could be from one or different convolution
layers. For example, for a CNN of m convolution layers and maximum number
of cuts = n; then, we will have

∑n
i=1 C

i+m−1
m−1 possible combinations to find the

pruned combination that satisfy our accuracy constraint. Figure 2 shows that

156 K. M. A. Ali et al.

for a CNN of 10 convolution layers, the number of possible pruned combinations
to be examined can grow exponentially. In practical, we are not able to test all
possible pruning combinations to find the optimal one. Instead of that, we will
apply greedy algorithm to converge rapidly to the solution.

The pruning algorithm is executed in four steps. In the first step, the absolute
sum of weights for each convolution layer are sorted in ascending order. The
second step is to prune each convolution layer independently by increasing the
number of cuts till either we reach to the maximum predefined number of cuts or
the accuracy loss is violated before that. After defining the maximum number of
possible cuts that could be applied for each convolution layer independently, we
can search in the new space for the cut combination that maximize our objective
while the accuracy loss condition is still satisfied. In the third step, we formulate
two matrices as depicted in Fig. 3. The first matrix is denoted as Accuracy Loss
Matrix (Aij) while the other one is denoted as Decision Matrix (Xij) where i
refers to the index of the convolution layer while j refers to the number of pruned
output channels per convolution layer such that j is a multiple of the number of
processing elements in the hardware architecture (N). (i.e. j = N, 2N, 3N,).
For example, if we did 4N pruned channels to the fifth convolution layer then
X5,4 = 1.

Fig. 3. Example for Decision Matrix (Xij) and Accuracy Loss Matrix (Aij). N denotes
the number of processing elements while xx denotes that this cut is skipped because
at that moment all the output channels of this layer will be removed.

Our objective is to minimize the number of network parameters while sub-
jected to a constraint that the total accuracy loss is less than a certain threshold
(Accthreshold). Assume a CNN network of m convolution layers. i is the index of
the convolution layer with Ii input channels, Oi output channels and kernel of
size ki * ki. The total number of parameters for that convolution network can
be calculated from the following equation.

Num. of parameters =
m∑

i=1

Oi [k2i ∗ Ii + 1] (1)

Cross-layer CNN Approximations for Hardware Implementation 157

Let Pi denotes the number of pruned output channels at convolution layer i.
Then the total number of parameters after pruning can be calculated by the
following equation.

Num. of parameters after pruning =
m∑

i=1

(Oi − Pi)[k2i (Ii − Pi−1) + 1] (2)

where P0 = 0
We can formulate our problem as an optimization problem as following:

Assume Xij is the decision matrix and (Aij) is the accuracy loss matrix for
a network of (m) convolution layers (i.e. i = 1 to m) and maximum number of
pruned channels (n × N) executed on hardware architecture of (N) processing
elements (i.e. j = 1 to n).

Our objective function is to minimize the number of the network parameters:

m∑

i=1

[Oi −
n∑

j=1

Xi,j × N × j] [k2i (Ii −
n∑

j=1

Xi−1,j × N × j) + 1] (3)

and subjected to the following constraints:

n∑

j=1

Xij ≤ 1 ∀ i (4)

m∑

i=1

n∑

j=1

Xij ∗ Aij < Accthreshold (5)

n∑

j=1

X0,j ∗ N ∗ j = 0 (6)

Equation (3) represents the objective function which is induced by substitut-
ing Pi in Eq. (2) by

∑n
j=1Xi,j × N × j. While P0 in Eq. (2) is formulated as a

constraint as stated in Eq. (6). For each row in the decision matrix (Xij) either
we did pruning or not; therefore, the summation along the same row is either 0
or 1 which is formulated as a constraint as mentioned in Eq. (4). Equation (5)
formulates that the estimated accuracy loss should be less than or equal to a
certain threshold Accthreshold given by the designer.

For cross layer pruning, the metric we use for the accuracy loss is the sum of
the independent accuracy losses calculated from Ai,j matrix.

Let ak and a∗
k be the measured accuracy and the estimated accuracy respec-

tively for a given run k. The relative error is thereby given by the following
Equation:

RE =
a∗
k − ak
ak

(7)

Figure 4 shows that RE follows a normal distribution with a mean value of
−0.1 and a standard deviation of 0.21. Moreover, we calculated the correlation

158 K. M. A. Ali et al.

between the measured and the estimated accuracy. This correlation is higher
than 98%, thereby insuring the coherence of our estimated accuracy. Hence, we
assume that our metric of summing independent accuracy losses can be used in
the exploration phase. Nevertheless, the final results are validated based on real
measured accuracy.

Fig. 4. Probability distribution function of the relative error.

In the fourth step, we run CPLEX optimizer to find the optimal pruning
combination that respect the constraints and minimize the total number of
parameters. The output of CPLEX is the pruning configuration and the esti-
mated accuracy loss (Accestimated) due to that pruning. To validate our result,
we test experimentally the pruning configuration by classifying the test dataset
to obtain the real accuracy loss (Acctest). If the obtained accuracy loss (Acctest)
is less than the defined accuracy threshold (Accthreshold) then the pruning con-
figuration is valid. Otherwise, the value for Accthreshold in Eq. (5) is updated
with the obtained value by CPLEX (Accestimated) during that round as indi-
cated in Eq. (8). After that, we rerun CPLEX for a second round to find the
new optimal configuration. We keep iterating until the accuracy constraint is
satisfied experimentally.

m∑

i=1

n∑

j=1

Xij ∗ Aij ≤ Accestimated (8)

4.2 Quantization

Weights and activations for CNN are usually presented in floating-point. Apply-
ing approximations by representing them in fixed-point is an inevitable step to
realize CNN over reconfigurable architectures to reduce both hardware and exe-
cution time. Fixed-point numbers are represented in Q-format where the number

Cross-layer CNN Approximations for Hardware Implementation 159

of integer and fractional bits are defined. For example, Q3.5 has 3 bits for integer
including the sign bit and 5 bits for the fractional number. It is important to
choose the appropriate number of bits to avoid a significant degradation in the
inference accuracy.

In our approach weight quantization is applied in 2 steps. Firstly, the integer
number of bits is determined by scanning the weights for the maximum absolute
value in addition to one bit for signed numbers as indicated in the following
equation: Num of I bits = Max(log2�| w |� + 1) where w ∈ weights.

Secondly, for the fractional number of bits, we examined the inference accu-
racy for a range of bits that extends from 0 to N-bits. Algorithm 1 explains
how the number of fractional bits is chosen. For each weight, we quantize it at
different number of bits dedicated for the fractional part (F). We calculated the
ceiling and floor quantized values then the value of the minimum error difference
is selected.

Input: Weights, maximum number of fractional bits (N)
Result: Number of fractional bits (F)
for F ← 0 to N do

for w ∈ weights do
w1 = w ∗ 2F

wceil = �w1�/2F

wfloor = �w1�/2F

if | wceil − w1 |≤| wfloor − w1 | then
wquantized = wceil

else
wquantized = wfloor

end

end
for i ← 0 to testimages do

if detected class == truth class then
correct++

else
false++

end

end

end
Algorithm 1: Choosing the number of fractional bits forweight representation

Order of Applying Approximations. Sorting the weights of the output chan-
nels for each convolution layer is considered as a step for applying pruning. The
output channels are sorted according to the absolute sum of their weights. Con-
sequently, quantization should be firstly applied so that the quantized weights
are sorted during pruning to allow correct results.

160 K. M. A. Ali et al.

Table 1. CNN properties

CNN 1 CNN 2 CNN 3

Total num. of
parameters

4, 389, 418 14, 488, 650 27, 187, 210

Num. of conv.
layers

9 14 17

Accuracy for
CIFAR-10

85.49 85.92 86.84

Accuracy for
MNIST

99.02 99.09 99.1

Conv. (# CHin,
CHout,
output image)

L1 (3, 32, 32× 32) L1 (3, 64, 32× 32) L1 (3, 128, 32× 32)

L2 (32, 32, 30× 30) L2 (64, 64, 32× 32) L2, L3, L4 (128, 128, 32× 32)

L3 (32, 64, 30× 30) L3 (64, 128, 32× 32) L5, L6, L7 (128, 128, 30× 30)

L4 (64, 64, 28× 28) L4 (128, 128, 32× 32) L8 (128, 256, 30× 30)

L5 (64, 256, 14× 14) L5 (128, 128, 30× 30) L9 (256, 256, 30× 30)

L6 (256, 256, 12× 12) L6 (128, 128, 30× 30) L10 (256, 256, 28× 28)

L7 (256, 512, 6× 6) L7 (128, 256, 30× 30) L11 (256, 512, 14× 14)

L8 (512, 512, 6× 6) L8 (256, 256, 30× 30) L12 (512, 512, 14× 14)

L9 (512, 10, 1× 1) L9 (256, 256, 28× 28) L13 (512, 1024, 14× 14)

L10 (256, 512, 14× 14) L14 (1024, 1024, 12× 12)

L11 (512, 512, 12× 12) L15 (1024, 512, 6× 6)

L12 (512, 768, 6× 6) L16 (512, 512, 6× 6)

L13 (768, 768, 6× 6) L17 (512, 10, 1× 1)

L14 (768, 10, 1× 1)

5 Experimental Results

By comparing the distribution of weights and operations for different CNN mod-
els in the literature; we can easily conclude the following: (1) Fully connected
layers has the large portion of the network’s weights. (2) The convolution lay-
ers contribute to the large portion of operations. For example in VGG-16, the
weights for the fully connected layers represent 90% of the total weight while
the convolution layers contribute to 92% of the computation complexity.

During our experiments, we focused on studying the effect of approximations
(quantization and pruning) on convolution layers. For that reason, we designed
three convolution neural networks which are similar to the conventional networks
like Alexnet or VGG but without having fully connected layers.

We trained three convolution networks CNN1, CNN2 and CNN3 on two
datasets CIFAR-10 and MNIST. The training was held on a machine equipped
by NVIDIA Quadro P5000 GPU card. Table 1 listed the properties of the three
networks. For each CNN, we listed the total number of parameters, the number
of convolution layers, the structure of the network and its accuracy to classify
CIFAR-10 and MNIST datasets. Without using fully connected layers, we relied
on max-pooling and non-padded convolutions to reduce the size of the input
image.

The hardware architecture presented in Sect. 3 was synthesized by Vivado
Design Suite 2015.2 on Xilinx Zynq 706 evaluation board [16]. As listed in

Cross-layer CNN Approximations for Hardware Implementation 161

Table 2. Resource utilization for CNN hardware architecture at different cores number

Number of PE Precision SLICE FF LUT BRAM (18K) DSP

16 Floating point 22154 68912 67070 218 768

16 Fixed point 4071 9456 12327 186 173

32 Fixed point 5604 8465 16021 326 317

64 Fixed point 8699 10725 24829 614 605

Table 2, when the hardware architecture was synthesized for 16 processing ele-
ments at floating point precision, 85% of DSP was consumed (Max. DSP = 900)
with 15% FF and 30% LUT utilization.

Firstly, we applied quantization to reduce the DSP utilization. For the inte-
ger part of the weights, we examined the weight parameters for the maximum
and minimum values. After that, we could deduce the required number of bits
to represent the integer part. For example, the minimum and maximum weight
values while training CNN1 on CIFAR-10 were −1.22545 and 1.11254 respec-
tively. Therefore, two bits were enough to represent the integer part including
the sign bit.

For the fractional part of the weights, we could choose the correct number
of bits by running Algorithm 1. Figure 5 depicted the accuracy while classifying
CIFAR-10 and MNIST datasets. It showed the classification accuracy of the
three networks CNN1, CNN2 and CNN3 by quantizing the weights at different
fractional bit width extending from 0 to 16 bits. From the figure, we could
deduce that 6 bits for the weight fractional part were enough to keep the same
classification accuracy as it was while representing the weights in floating-point.

By synthesizing the hardware architecture for 16 processing elements with
fixed-point representation, we were able to reduce the DSP utilization by 78%,
FF by 86%, LUT by 81% and BRAM by 15%. This reduction in hardware
resources gave us the possibility to duplicate the number of realized processing
elements as listed in Table 2.

Secondly, we applied pruning to reduce the computation complexity. Channel
pruning is applied at multiples of the number of processing elements otherwise
some processors will be idle while the other will be utilized. To apply convo-
lution layer pruning for an architecture containing 16 PEs means to prune the
output channels in multiples of 16. For example, a pruning setup for CNN1 like
following (0, 5, 10, 1, 2, 0, 0, 0, 0) means to prune 80 (5× 16), 160 (10 × 16),
16 (1 × 16), 32 (2 × 16) output channels from convolution layers L8, L7, L6, and
L5 respectively.

During our experiments, we searched for the pruning setup that had an accu-
racy loss less than 3%. Choosing that value was arbitrary and could vary from
one application to another. As a first step, the accuracy loss matrix (Aij) was
calculated for each convolution network. To achieve that step, we tested the
maximum possible pruning that could be done for each convolution layer sepa-
rately without exceeding 3% in accuracy loss. After that, by using CPLEX tool,

162 K. M. A. Ali et al.

Fig. 5. Fixed-point inference accuracy for CNN1-Cifar10 , CNN2-Cifar10 ,
CNN3-Cifar10 , CNN1-MNIST , CNN1-MNIST and CNN1-MNIST .

the three CNN networks were modelled by using Eqs. 3, 4, 5 and 6 to find the
optimal pruning setup.

For CIFAR-10 dataset in Table 3, points #1, #3 and #7 represent CNN1,
CNN2 and CNN3 before pruning at floating point precision. While points #2,
#4 and #8 represent the pruning setup for them with accuracy loss of 2.89%,
2.6% and 2.9% and percentage decrease in computation complexity of 23.4%,
19.5% and 27.9% respectively. For the same CNN, the optimal pruning setup
found by CPLEX can change by varying the number of synthesized processing
elements (PEs) in the hardware architecture. For example for CNN3, points
#8, #10, and #11 represent the pruning setup when it is executed on hardware
architecture of 16, 32 and 64 processing elements respectively. We can notice that
CNN3 achieves 27.9%, 25.6% and 21.8% decrease in computation complexity
respectively. The reason behind is that each hardware architecture has a different
multiple of pruned channels (i.e. multiples of 16 for 16-PEs, multiples of 32 for
32-PEs and multiples of 64 for 64-PEs). Therefore, fine pruning can be achieved
on architectures of fewer PEs. For example, with PE = 16, one cut will remove
only 16 channels, while with PE = 64, one cut will remove 64 channels at once
which could violate our accuracy loss constraint.

The pruning step changes when floating-point weights are quantized. For
instance, the pruning setup for CNN3 at point #8 did not achieve the same
accuracy loss when its weights were quantized to Q2.5 at point #16. Therefore,
we should take into consideration the impact of quantization. To achieve accu-
racy loss less than a certain objective; in our case, we fixed accuracy loss to
≤ 3%; while combining quantization and pruning. Firstly, the convolution net-
work is quantized then the pruning search process is run to find the opti-
mal pruning setup. For example, the weights of CNN3 were quantized to

Cross-layer CNN Approximations for Hardware Implementation 163

Table 3. Pruning setup for CNN1, CNN2 and CNN3 trained for CIFAR-10 and MNIST
dataset

Image classification CIFAR-10 dataset

Point Architecture Pruning setup (L17, L16,

L15, L3, L2, L1)

Num of

param.

Acc. loss

(%)

FLOP Dec. ↓ (%)

1 CNN1-16PE-FP No pruning 4389418 0 2.97E+08 0

2 CNN1-16PE-FP (0, 5, 10, 1, 2, 0, 0, 0, 0) 2847466 2.89 2.27E+08 23.4

3 CNN2-16PE-FP No pruning 14488650 0 2.68E+09 0

4 CNN2-16PE-FP (0, 3, 22, 15, 9, 0, 1, 0, 0,

0, 0, 0, 0, 0)

7486282 2.6 2.158E+09 19.5

5 CNN2-16PE-6Bit (0, 3, 22, 15, 7, 0, 0, 0, 0,

0, 0, 0, 0, 0)

7712122 3 2.246E+09 16.2

6 CNN2-16PE-5Bit (0, 3, 10, 10, 7, 0, 0, 0, 0,

0, 0, 0, 0, 0)

10152330 2.7 2.364E+09 11.8

7 CNN3-16PE-FP No pruning 27187210 0 5.346E+09 0

8 CNN3-16PE-FP (0, 3, 7, 19, 20, 4, 1, 1, 3,

0, 0, 0, 0, 0, 0, 0, 1)

16873418 2.9 3.853E+09 27.9

9 CNN3-16PE-FP (0, 3, 5, 20, 20, 1, 7, 0, 1,

3, 0, 0, 0, 0, 0, 0, 0)

17028202 4.2 3.861E+09 27.8

10 CNN3-32PE-FP (0, 1, 3, 9, 10, 2, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 1)

17524234 1.7 3.978E+09 25.6

11 CNN3-64PE-FP (0, 1, 1, 4, 5, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0)

18259594 2.4 4.183E+09 21.8

12 CNN3-16PE-6Bit No pruning 27187210 0.22 5.346E+09 0

13 CNN3-16PE-6Bit (0, 3, 3, 20, 21, 1, 7, 0, 1,

2, 0, 0, 0, 0, 0, 0, 1)

17225930 3 3.872E+09 27.6

14 CNN3-16PE-5Bit No pruning 27187210 2.17 5.346E+09 0

15 CNN3-16PE-5Bit (0, 1, 3, 19, 22, 1, 7, 0, 1,

2, 0, 0, 0, 0, 0, 0, 1)

17353258 2.9 3.865E+09 27.7

16 CNN3-16PE-5Bit (0, 3, 7, 19, 20, 4, 1, 1, 3,

0, 0, 0, 0, 0, 0, 0, 1)

16873418 7.5 3.853E+09 27.9

17 CNN3-32PE-5Bit (0, 0, 1, 9, 11, 0, 3, 0, 0,

1, 0, 0, 0, 0, 0, 0, 1)

18080106 1.9 3.981E+09 25.5

18 CNN3-64PE-5Bit (0, 1, 0, 4, 5, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0)

19218122 2.7 4.256E+09 20.3

Digit recognition MNIST dataset

19 CNN1-16PE-FP No pruning 4388842 0 2.97E+08 0

20 CNN1-16PE-6Bit (0, 19, 8, 5, 0, 0, 3, 0, 0) 1923290 2.85 1.566E+08 47.23

21 CNN1-16PE-5Bit (0, 15, 5, 5, 0, 0, 3, 0, 0) 2343882 2.85 1.71E+08 42.2

22 CNN2-16PE-FP No pruning 14487498 0 2.67E+09 0

23 CNN2-16PE-6-bit (0, 26, 36, 15, 15, 0, 1, 1,

0, 0, 0, 0, 0, 0)

4307498 3 1.94E+09 27.7

24 CNN2-16PE-5-bit (0, 25, 10, 10, 15, 0, 0, 0,

0, 0, 0, 1, 1, 1)

7432362 2.7 2.116E+09 21

25 CNN3-16PE-FP No pruning 27184906 0 5.343E+09 0

26 CNN3-16PE-6-bit (0, 3, 20, 30, 35, 0, 0, 0,

2, 1, 1, 0, 0, 0, 0, 0, 5)

11753034 2.9 3.302E+09 38.2

27 CNN3-16PE-5-bit (0, 4, 23, 36, 35, 0, 5, 0,

0, 0, 1, 1, 0, 1, 0, 0, 5)

10341322 3 3.216E+09 39.8

Q2.5 (5-bit) and Q2.6 (6-bit) with accuracy loss of 0.22% and 2.17% at points
#12 and #14 respectively. Then pruning is applied to the quantized networks to
achieve total loss of 3% and 2.9% with decrease in FLOP by 27.6% and 27.7%
at points #13 and #15.

164 K. M. A. Ali et al.

Regarding computation complexity, pruned floating-point networks (point
#8) are less in FLOP than pruned quantized one (points #13 and #15) by 0.5%
and 0.31% respectively. In contrast, regarding hardware utilization, quantized
implementations are smaller than floating-point one in average by 80% for LUT,
FF and DSP. Therefore, both quantization and pruning can be combined for
better results.

For digit recognition MNIST dataset, pruned networks with weight quanti-
zation at Q2.5 and Q2.6 achieved reduction in computation complexity up to
42.2% and 47.23% for CNN1, up to 21% and 27.7% for CNN2 and up to 39.8%
and 38.2% for CNN3 respectively.

6 Conclusion

Using approximation techniques to reduce CNN complexity is inevitable to
implement these networks on embedded platforms such as FPGAs. While differ-
ent approximation techniques are presented in the literature independently, we
aimed in this paper to study the effect of applying more than one approximation
to the same neural network. We presented a through FPGA-oriented exploration
of both quantization and pruning to reduce the hardware cost and computation
complexity with controlled loss in CNN accuracy. We succeeded to reduce hard-
ware resources by 80%, computation complexity by 30% with accuracy loss less
than 3%. As a future work, we will develop a tool for estimating the effect of
different approximation techniques when applied to a certain CNN in terms of
frame rate, accuracy and hardware cost. The tool will generate automatically
the corresponding CNN structure with the hardware architecture required to
achieve those objectives.

References

1. Abdelouahab, K., Pelcat, M., Sérot, J., Berry, F.: Accelerating CNN inference on
FPGAs: a survey. CoRR abs/1806.01683 (2018). http://arxiv.org/abs/1806.01683

2. Albericio, J., Judd, P., Hetherington, T., Aamodt, T., Jerger, N.E., Moshovos,
A.: Cnvlutin: ineffectual-neuron-free deep neural network computing. In: 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pp. 1–13, June 2016

3. Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neural
networks with the hashing trick. In: Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning - Volume 37, ICML2015,
pp. 2285–2294. JMLR.org (2015)

4. Chen, Y., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient reconfig-
urable accelerator for deep convolutional neural networks. IEEE J. Solid-State
Circuits 52(1), 127–138 (2017)

5. Courbariaux, M., Bengio, Y.: BinaryNet: training deep neural networks with
weights and activations constrained to +1 or −1. CoRR abs/1602.02830 (2016)

http://arxiv.org/abs/1806.01683
http://www.JMLR.org

Cross-layer CNN Approximations for Hardware Implementation 165

6. Courbariaux, M., Bengio, Y., David, J.P.: BinaryConnect: training deep neural
networks with binary weights during propagations. In: Cortes, C., Lawrence, N.D.,
Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 28, pp. 3123–3131. Curran Associates Inc., Red Hook (2015)

7. Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented approximation of convolu-
tional neural networks. CoRR abs/1604.03168 (2016). http://arxiv.org/abs/1604.
03168

8. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network
with pruning, trained quantization and Huffman coding. In: ICLR (2016)

9. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
work with pruning, trained quantization and Huffman coding. In: 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4
May 2016, Conference Track Proceedings (2016)

10. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections
for efficient neural networks. In: Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1, NIPS 2015, pp. 1135–1143.
MIT Press, Cambridge (2015)

11. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. http://arxiv.org/abs/1707.06168 (2017)

12. Ma, Y., Suda, N., Cao, Y., Seo, J., Vrudhula, S.: Scalable and modularized RTL
compilation of convolutional neural networks onto FPGA. In: 2016 26th Interna-
tional Conference on Field Programmable Logic and Applications (FPL), pp. 1–8,
August 2016

13. Miyashita, D., Lee, E.H., Murmann, B.: Convolutional neural networks using log-
arithmic data representation. CoRR abs/1603.01025 (2016)

14. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient transfer learning. arXiv:1611.06440 (2016)

15. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classi-
fication using binary convolutional neural networks. CoRR abs/1603.05279 (2016)

16. Xilinx: ZC706 Evaluation Board for the Zynq-7000 XC7Z045 All Programmable
SoC User Guide, July 2013

17. Yang, T., Chen, Y., Sze, V.: Designing energy-efficient convolutional neural net-
works using energy-aware pruning. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6071–6079, July 2017

http://arxiv.org/abs/1604.03168
http://arxiv.org/abs/1604.03168
http://arxiv.org/abs/1707.06168
http://arxiv.org/abs/1611.06440

Technique for Vendor and Device
Agnostic Hardware Area-Time Estimation

Deshya Wijesundera(B), Kushagra Shah, Kisaru Liyanage, Alok Prakash,
Thambipillai Srikanthan, and Thilina Perera

Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
{deshya.w,alok,astsrikan}@ntu.edu.sg, kushagrashah298@gmail.com,

kisarur@gmail.com, pere0004@e.ntu.edu.sg

Abstract. This work proposes a novel technique for hardware area-time
estimation of applications on FPGA. The application C code is first con-
verted to the target independent LLVM IR prior to wrapping the basic
blocks as functions using a LLVM transformation pass. The LegUp tool’s
‘LLVM IR functions to RTL modules’ conversion is carried out to facili-
tate RTL synthesis using the Altera Quartus tools. In order to support
FPGAs other than Altera, the soft IP cores generated by LegUp were
replaced as generic RTL components. Further, additional modules have
been incorporated to support floating point operations. This approach,
has made it possible to support FPGAs from other vendors with high
area-time estimation accuracy. The proposed technique relies on the free
versions of the vendor tools and LegUp. Moreover, the approach does not
necessitate time consuming post synthesis steps such as Place & Route
and Bit Stream Generation in order to obtain reasonably accurate area
estimation measures.

Keywords: Generic · Hardware estimation · FPGA

1 Introduction

The complexity of designing embedded systems continue to escalate with the
increasing complexity in applications and stringent design requirements. The
time-to-market (TTM) pressure has reached a level where a delay of a single
quarter to reach the market, results in a loss of 1/3 of the expected revenue [9].
At the same time, the non-recurring engineering (NRE) cost is rising expo-
nentially with shrinking process technology [15]. Hence, meeting the myriad of
conflicting design requirements in terms of performance, area and power limita-
tions combined with the TTM pressure and NRE cost make customized solutions
the only viable option in the domain of embedded systems design [17]. As such,
embedded systems designed on Application-Specific Integrated Circuits (ASIC)
and platform Field Programmable Gate Arrays (FPGA) are fast becoming the
main competitors at the forefront of hardware (HW) customization.

ASICs provide the optimal configuration based on the requirements for
performance, area or power for a given application but incur long TTM and
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 166–177, 2020.
https://doi.org/10.1007/978-3-030-44534-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_13

Vendor and Device Agnostic Hardware Estimation 167

high NRE cost. In contrast, FPGAs provide configurability and flexibility with
shorter TTM and low NRE cost, even though the performance is compara-
tively low. For example, FPGAs typically reach the production stage within 3–5
months, whereas ASICs require 12–18 months for the same [1]. Further, mod-
ern FPGAs constituting reconfigurable logic, processors, memory subsystems,
etc. have become the ideal platform to perform acceleration for critical parts
of an application along with support for realizing an entire System-on-Chip.
Thus, owing to the shorter development cycles, re-usability and heterogeneity
of FPGAs, they are considered as an attractive alternative over ASICs for cus-
tomized HW designs. This is exemplified by the 7.23 billion USD FPGA market
expected in 2022, with a Compound Annual Growth Rate (CAGR) of 7.41%
from 2016 [7].

However, the design of FPGA-based Configurable SoC is a challenging task
due to the conflicting design constraints of performance, power, area and cost.
Further, the flexibility of heterogeneity introduces the cost of added complex-
ity. As such, the productivity of electronic design automation (EDA) tools is
of paramount importance in meeting the aforementioned criteria. However, the
productivity of EDA tools utilized in the development of embedded systems has
significantly lagged behind the improvements achieved in HW process technolo-
gies, which is referred to as the design productivity gap [6]. The widening of
this design productivity gap with improvement in HW process technologies, has
created a major challenge for modern embedded systems designers.

Another important factor to note is the selection of the most suitable FPGA
device for application requirements from the different FPGA vendors and device
families. This decision is based on the HW area consumption and performance of
the application on each FPGA device. HW area consumption and performance
depend on the architecture of the FPGA device. The architectural features of a
FPGA differs across vendors and devices. As such, existing techniques for HW
area-time estimation are limited to a single FPGA device or a few devices from
a single vendor, even though it is an area of research that has been extensively
studied [18]. Extending such techniques to support different devices requires
modelling of the architecture of each FPGA device, entailing detailed analysis of
the architectural features of the device. However, in order to make optimal use
of HW area-time estimation by providing the user the option to select between
devices, it is important to support different devices.

This paper proposes a technique that leverages on existing open source tools
and subsequently uses vendor synthesis tools to perform HW area-time estima-
tion across different FPGA vendors and devices, without the need for detailed
architectural analysis and modelling. The main contributions of this paper are,

– A technique to encapsulate basic blocks within a wrapper to obtain area
consumption of basic blocks using existing free versions of vendor tools

– A technique to generate RTL code for synthesis on different vendor tools
– A unified methodology that can be applied for hardware area-time estimation

across different FPGA vendors and device families

168 D. Wijesundera et al.

2 Hardware Area-Time Estimation

FPGA compilation flow typically constitutes time-consuming logic synthesis,
design placement and routing. The need to evaluate HW designs at early stages
in the design cycle in order to trade-off between design options has resulted in
research efforts for HW performance estimation. Existing work in HW perfor-
mance estimation for FPGAs can be broadly categorized as high-level estimation,
high-level synthesis (HLS) based estimation and RTL/logic-level estimation [4].
Some of the work combines two or all of these strategies [18].

High Level Estimation. In high level estimation, HW area and time are esti-
mated prior to scheduling. Typically, this category of approaches rely on proba-
bilistic models and integer linear programming (ILP) models. Most of the early
research efforts in HW performance estimation rely on high level estimation [18].
HW performance estimation for efficient design space exploration by obtaining
the lower bound execution time of a DFG, subject to area constraints is discussed
in [12]. A parametric area estimation methodology modeling low-level metrics
as a function of high-level variables using high-level and low-level parameters
derived through high-level model tuning (with synthesized RTL) and low-level
model tuning (with the circuit netlist) using 20 SystemC designs is proposed
in [3]. Todman et al. presented a high-level design exploration framework, featur-
ing a HW performance estimator using area-time constraints and a C application
as input [14]. Meeuws et al. uses a statistical model in estimating HW resources
introducing 92 software (SW) complexity metrics and several SW measurement
techniques as indicators of different aspects of SW descriptions [10].

High Level Synthesis (HLS) Based Estimation. The advent of HLS tools
which could translate algorithmic descriptions in high level languages to RTL has
led to the development of interest on HLS based estimation. HLS tools typically
perform scheduling and resource binding based on the IR of the application.
The RTL generated by the tools consist a data path and a control path. An
estimation technique based on execution traces generated from simulation of
Matlab programs to estimate area and performance of a FPGA implementation,
incorporating a greedy scheduling and binding algorithm has been proposed
[4]. A methodology to estimate delays and resources on FPGA for applications
written in Java is proposed [4]. Bilavarn et al. performs area, performance and
power estimation by transforming C functions to Hierarchical Control Data Flow
Graphs (HCDFGs) [2]. Lieu et al. rely on the Trimaran compiler infrastructure
in the area-time estimation framework proposed in [4].

RTL/Logic-Level Estimation. The input RTL description or the netlist of
the circuit is used for estimation at RTL/logic-level. The techniques proposed
in [13] use a commercial HDL parser [11] in resource estimation. An area-time
estimation technique using an input netlist is proposed in [19]. The authors in

Vendor and Device Agnostic Hardware Estimation 169

this work, decompose the netlist into LUTs and allocate the LUTs with the
most common inputs to the same configurable logic block (CLB). In estimating
the routing resources, the work also predicts the placement and shape of CLBs.
Both CLB delays and wire delays are used in calculating the path delays.

HW area consumption and performance is dependent on the architecture
of the FPGA device. The architectural features of a FPGA device differs across
vendors and also FPGA device families. As such existing techniques for HW area-
time estimation are limited to a single FPGA device or a few devices from a single
vendor. Extending such techniques to support different devices require individual
modelling of each of the devices which is cumbersome and time consuming. Also,
due to this factor scaling such techniques to support new devices will require
modeling of each of those devices as well. However, making optimal use of HW
area-time estimation by providing the user with the option to select between
devices, requires support for different devices.

3 Methodology

In this section, we present the proposed FPGA vendor and device agnostic tech-
nique for HW area-time estimation, in detail. The technique also provides the
user with the opportunity to select the granularity (i.e. function, basic block or
application level) of obtaining HW area-time information. Figure 1 shows the
proposed methodology constituting of 5 key stages. Initially, the application C
code is converted to LLVM Intermediate Representation (IR) using the LLVM
profiler [8]. Next, if the user requires information at basic block level, then the
process moves to the second stage which is further explained in Sect. 3.2. If the
estimation is required only at function or application level, the process moves
to stage 3 which converts the LLVM IR/modified LLVM IR (from stage 2) to
RTL. Finally, the code is synthesized on the free version of the vendor tool, and
the area-time information is extracted.

3.1 C to LLVM IR Conversion

Here, the application C code is converted to LLVM IR (using LLVM profiler),
which is later used to obtain the RTL code for area-time estimation. LLVM IR is
a low-level intermediate representation used by the LLVM compiler framework.

3.2 Basic Block Wrapper

In the proposed technique, we use an RTL code to obtain the HW estimation
using the synthesis flow of vendor tools. The RTL code is obtained by convert-
ing the LLVM IR using ‘LLVM IR functions to RTL modules’ conversion of
LegUp [16]. In the LegUp LLVM IR to RTL conversion process, functions in the
LLVM IR (functions in C code map to functions in LLVM IR) are converted to
modules in the Verilog RTL description. As such, it is possible to obtain area

170 D. Wijesundera et al.

Application C Code

C LLVM IR Conversion

Basic Block Wrapper

RTL Conversion

Area-Time Extraction

LLVM Transformation Pass
(Basic blocks wrapped as functions)

FPGA Vendor & Device

Synthesis on Vendor Tool
(Altera Quartus, Xilinx Vivado, ..)

Use of additional LPM library modules

Addition of required FP soft IP cores

Extraction of Area
(LUT, FF, DSP)

Altera?

Generic RTL + Altera IPs

Extraction and
Computation of

Execution Cycles

IR RTL Conversion using LegUp

No

Replacement of Altera specific instantiations with
generic RTL

Yes

Basic Block
Level?

YES
NO

1

2

3

4

5

Scheduling
Report

LegUp

LLVM
IR

Fig. 1. Proposed methodology

estimation at function level granularity by synthesizing this RTL code (as func-
tions are mapped into RTL modules by LegUp). However, the synthesis flow
does not provide area estimation of basic blocks of the C code. Thus, we wrap
basic blocks as functions which in turn map to RTL modules.

Since the RTL code is obtained by converting the LLVM IR using LegUp, it
is necessary to provide a modified version of the LLVM IR such that LegUp can
generate the RTL at the required granularity. To this end, we have developed a
LLVM Transformation Pass to wrap basic blocks inside functions. The pseudo
code of the LLVM Transformation Pass is shown in Algorithm 1. The inputs to
the pass consist of the LLVM IR and the list of basic blocks which need to be

Vendor and Device Agnostic Hardware Estimation 171

Algorithm 1: Pseudocode of LLVM Transformation Pass
Input : LLVM IR, List of basic blocks to be wrapped and their respective

functions
Output: Modified version of LLVM IR

1 GV: List of global variables
2 for Each Basic Block j do
3 Create a new function j’
4 Add terminator instruction to function j’
5 for Each Instruction i in Basic Block j do
6 if i == terminator instruction of j then
7 Continue
8 else
9 Move i to new function j’ before terminator instruction

10 end
11 for Each source operand n in i do
12 if n ∈ k, k �= j’ then
13 if n /∈ GV then
14 Create new global variable n gv
15 Add store instruction to j
16 Add load instruction to j’

17 end

18 end

19 end

20 end
21 for Each destination operand m in j’ do
22 if m ∈ j”, j” �= j’ then
23 Create new global variable m gv
24 Add store instruction to j’
25 Add load instruction to j

26 end

27 end
28 Add call instruction to j

29 end

wrapped as functions. The basic steps of wrapping a basic block inside a function
are given below.

1. Create a new function
2. Move all instructions except terminator instructions to the new function
3. Resolve all data dependencies using global variables

Initially, for each basic block j, a new function j′ is created. Next, the pass
moves all the instructions (in sequence) in the basic block j except the terminator
instruction to the new function j′. Thereafter, a call instruction is added to the
basic block j to invoke the new function j′. In the next stage, the pass resolves
data dependencies. Here, we define data dependencies as cases where a variable
modified inside one basic block is used by another basic block. To resolve data

172 D. Wijesundera et al.

dependencies, all the operands created or used outside the new function j′ is
converted to global variables. The store instruction represents preserving data
on created global variables and load instruction represents retrieving the stored
data to where it is needed. For source operands, store instructions are added
inside the basic block j while load instructions are added in the new function j′.
For destination operands, store instructions are added inside the new function
j′, while load instructions are added to the other basic blocks j that use the
destination operand.

3.3 RTL Conversion

In this stage, we convert the LLVM IR (for function level) or modified LLVM
IR (for basic block level) to RTL code using the ‘LLVM IR functions to RTL
modules’ conversion of LegUp. It should be noted that the application level per-
formance can be obtained in both cases. However, we observe that the RTL code
generated by LegUp is not generic as it contains code specific to Altera FPGAs
(this is because LegUp offers full support only for the Altera FPGA devices).
Hence, the generated RTL code cannot be synthesized on other FPGA vendor
tools to obtain HW area-time estimates. Therefore, it is necessary to modify the
generated RTL code to accommodate different FPGA vendors. It was observed
that (i) integer divide and block RAM (instantiated as lpm divide and altsyn-
cram) modules use Altera soft IP cores and (ii) floating point operations use soft
IP cores that use Altera specific LPM simulation library for integer arithmetic
operations. The Altera soft IP cores were made compatible for other FPGA
vendor tools by adding the extra library modules that the Altera FPGA tools
use. Each of the listed soft IP cores mentioned the need for certain LPM library
modules in their source code. But a lesser number of modules were actually used
in the source code. It was observed that the addition of only four LPM library
modules (lpm add sub, lpm compare, lpm mult, lpm mux) satisfies the require-
ments of all sixteen floating-point operations. Other than this, lpm divide and
altsyncram library modules were added for the integer divide and block RAM
instantiations in the RTL code. Moreover, the Altera soft IP cores need to be
generated using the MegaWizard Plug-In Manager and added to the synthesis
project. The exact algorithm of modifying the RTL code to make it synthesizable
on Altera as well as other FPGA vendor tools is mentioned in Algorithm 2.

Initially, the FPGA vendor is identified because different approaches are fol-
lowed for Altera and other FPGA vendor tools. For the Altera FPGA tools,
the LegUp generated RTL code is scanned for any occurrences of floating-point
operations. Then, the required Altera soft IP cores for floating-point operations
are added by modifying the Quartus project files. For the other FPGA tools (we
consider the Xilinx FPGA tools in this case without any loss of generality), first
the Altera specific integer divide and block RAM instantiations are replaced
with generic RTL code. Then, the LegUp generated RTL code is scanned for
any occurrences of floating-point operations. Next, the required Altera soft IP
cores for floating-point operations are added. Finally, the additional LPM library
modules are added to support the synthesis on any FPGA vendor tool.

Vendor and Device Agnostic Hardware Estimation 173

Algorithm 2: Pseudocode of RTL Modification
Input : LegUp generated RTL code, FPGA vendor for synthesis
Output : Modified version of RTL code
Resources: FP soft IP cores, LPM library modules, Generic ’integer divide’

and ’block RAM’, Makefile for LegUp, TCL script template for
Xilinx ISE

1 if FPGA vendor == Altera then
2 Use Makefile to generate Altera Quartus project
3 for Each FP operation type f do
4 Find ’n’ = number of occurrences of FPop f in the RTL code
5 if n �= zero then
6 Add FPop f source code to the Altera Quartus project
7 [Done by modifying the Quartus .qsf file]

8 end

9 end

10 else
11 Create new TCL script using the TCL script template
12 Replace ’integer divide’ with generic module instantiation
13 Replace ’block RAM’ with generic module instantiation
14 for Each FP operation type f do
15 Find ’n’ = number of occurrences of FPop f in the RTL code
16 if n �= zero then
17 Add new lines to TCL script to include FPop f
18 end

19 end
20 Add the LPM library modules to the RTL code
21 Run TCL script to generate Xilinx ISE project
22 Delete TCL script

23 end

3.4 Synthesis on FPGA Tools

Typically, synthesis tools provide area estimates of the RTL code. Therefore,
after generating the generic RTL code suitable for synthesis on the given FPGA
vendor tool, we infer the synthesis tool (non-commercial version) of the relevant
FPGA vendor. The synthesis report generated by the tool is used to extract the
area estimates in the subsequent stage.

3.5 Area-Time Extraction

The HW area is obtained in terms of look-up-table (LUT), digital signal pro-
cessing (DSP) block, register (REG) and block RAM (BRAM) resources on the
FPGA. This data is extracted from the synthesis report of the vendor tool. How-
ever, the process of wrapping basic blocks in the LLVM IR into functions in the
LLVM IR in Sect. 3.2 introduces an overhead due to the additional load and
store instructions. We account for this overhead by deducting the area required

174 D. Wijesundera et al.

for these instructions (we have experimentally obtained the area consumption
of load and store instructions) from the actual extracted area estimates for each
basic block. However, estimation at function level does not cause this overhead.
The execution time of basic blocks as well as functions is directly extracted from
the LegUp scheduling report.

4 Results and Discussion

All experiments were carried out on a virtual machine running Ubuntu on an
Intel Xeon CPU host at 3.5 GHz with 8 GB RAM. Initially, we modify the
LegUp generated RTL code to incorporate the block RAM and integer divide
generic codes. Thereafter, the floating-point soft IP cores are added. Additional
library modules are also added for the case of non-Altera devices. Thus, it is
necessary to ensure that the functionality of the application remains unaltered.
The functional correctness in terms of output values is verified using micro-
benchmarks. Further, timing-synchronisation is maintained to ensure functional
correctness of the complete application.

Table 1. Verification results for floating point operations

FP operation Latency Expected op Altera op Xilinx op Error in %

Adder (1) 14 18.01 18.0100 18.0100 0.000001271

Adder (2) 14 18.90 18.8999 18.8999 0.000002018

Adder (3) 14 36.91 36.9099 36.9099 0.000004134

fptosi32 6 18 18 18 0

fptosi64 6 18 18 18 0

sitofp32 6 18.00 18.00 18.00 0

sitofp64 6 18.00 18.00 18.00 0

Extend 6 18.01 18.0100 18.0100 0.000001271

Truncate 6 18.01 18.0100 18.0100 0.000001271

We used custom floating-point test files to validate the techniques specifically
targeting applications involving floating-point operations. We ran comprehen-
sive tests for each floating-point operation in different scenarios. We obtained
the results for multiple Altera and Xilinx FPGA families to ensure generality
of results. Table 1 shows the results for a floating-point test file run on Altera
Cyclone V and Xilinx Kintex 7 device families. The latency and output of some
floating-point operations is shown for the aforementioned Altera and Xilinx
FPGAs. The accuracy of the output shown in Table 1 is calculated using the
expected output of the floating-point operations as the base. It can be clearly
identified from Table 1 that the results for floating-point operations are very
accurate and identical for Altera and non-Altera FPGA devices.

Vendor and Device Agnostic Hardware Estimation 175

Table 2. Area-time estimation values for ADPCM

Basic Block Xilinx Kintex 7 Altera Cyclone V

LUT REG DSP BRAM Time LUT REG DSP BRAM Time

1 0 0 0 1 3600 29 18 0 0 3600

2 0 0 0 1 3450 12 9 0 0 3450

3 69 161 0 0 3300 77 107 0 0 3300

4 5 67 0 0 4400 41 56 0 0 3300

5 12 134 0 0 3000 82 112 0 0 3000

6 82 384 6 0 3000 233 318 4 0 4000

7 0 0 0 1 2268 0 0 0 1 2268

8 10 134 0 0 1944 82 112 0 0 1944

9 144 402 4 0 1944 238 304 0 0 1944

10 70 12 6 0 3240 116 86 4 0 3240

Table 3. Area-time estimation values for DFSIN

Basic Block Xilinx Kintex 7 Altera Cyclone V

LUT REG DSP BRAM Time LUT REG DSP BRAM Time

1 10 20 0 0 11080 49 30 0 0 11080

2 8 16 0 0 13296 29 24 0 0 11080

3 10 20 0 0 10080 41 30 0 0 8400

4 240 897 0 0 5540 896 949 0 0 5540

5 460 160 0 0 4180 173 208 0 0 4180

6 76 176 0 0 4180 84 200 0 0 4180

7 0 0 0 0 3344 0 0 0 0 5016

8 759 860 0 0 5016 444 908 0 0 3344

9 1052 1200 0 0 2508 133 1224 0 0 2508

10 0 0 0 2 4180 0 0 0 2 4180

For a wholistic verification, we used applications from the popular
CHStone [5] benchmark suite to validate the proposed techniques. In this section,
we only present the results obtained for the Xilinx Kintex 7 and Altera Cyclone
V FPGA devices. However, we have tested this technique for 5 device families
commonly used in FPGA-based applications, Altera Cyclone V, Cyclone II and
Arria II and also Xilinx Kintex 7 and Artix 7. Even though, we have used the
full benchmark suite for experimentation, we select 2 applications for analysis of
results. Further, since an application contains a large number of basic blocks, for
ease of representation we depict the results for the 10 most frequently executed
blocks in each application. It is important to note that the proposed technique
can be used either for all the basic blocks in the application or for any given

176 D. Wijesundera et al.

subset of basic blocks. Tables 2 and 3 show the area-time estimation values
obtained from the proposed approach for ADPCM and DFSIN applications
respectively. The results are presented for Xilinx Kintex 7 and Altera Cyclone
V FPGA devices. The area is shown in terms of LUT, REG, DSP and BRAM
resources. The time value indicates the number of clock cycles the basic block
requires to execute on HW.

As can be clearly identified from Tables 2 and 3, the area and time for the
applications differ across the selected FPGA devices. The reason for the differ-
ence in the resource consumption is due to the size and architectural differences
of the FPGA resources. Further, it can be observed that there are changes in
the type of resources utilized across devices. For example, basic blocks 1 and 2
in ADPCM only use BRAM in the Xilinx Kintex 7 device, while in the case of
Altera it uses only LUT and REG resources. It is also interesting to note that
basic block 9 in ADPCM utilizes DSP blocks in the Xilinx Kintex 7 while it
does not use DSP blocks in Altera Cyclone V. Thus, the differences in resource
consumption on different vendors and devices can be observed.

5 Conclusion

This paper, proposed a technique for HW area-time estimation of applications on
FPGAs that can be applied across different FPGA vendors and device families.

References

1. FPGA Market by Type, Verticals, Architecture, Technology Node, and Geography
- Forecast to 2022 (2016). https://bit.ly/2u0Tq5r

2. Bilavarn, S., et al.: Design space pruning through early Estimations of area/delay
tradeoffs for FPGA Implementations. In: TCAD 2006 (2006)

3. Brandolese, C., et al.: An area estimation methodology for FPGA based designs
at systemc-level. In: DAC 2004 (2004)

4. Chuong, M.: Rapid area-time estimation technique for porting C-based applications
onto FPGA platforms. Scalable Comput. Pract. Exp. 8(4), 359–371 (2008)

5. Hara, Y., et al.: CHStone: a benchmark program suite for practical C-based high-
level synthesis. In: ISCAS 2008 (2008)

6. International Technology Roadmap for Semiconductors (2011). https://bit.ly/
2t9LRJj

7. Joshi, A.: Embedded systems: technologies and markets - IFT016E (2014). https://
bit.ly/37DRvT5

8. LLVM: The LLVM Compiler Infrastructure. http://llvm.org/
9. Mark, H.: “Time = Money: Faster Time to Market with Formal Verification”,

Mentor Graphics (2013). https://bit.ly/3404j3o
10. Meeuws, R., et al.: Quipu: a statistical model for predicting hardware resources.

ACM Trans. Reconfigurable Technol. Syst. 6(1), 25 (2013)
11. Quinton, B., et al.: News (2016). http://www.verific.com/
12. Rim, M., et al.: Estimating performance characteristics of loop transformations.

In: ISCAS 1994

https://bit.ly/2u0Tq5r
https://bit.ly/2t9LRJj
https://bit.ly/2t9LRJj
https://bit.ly/37DRvT5
https://bit.ly/37DRvT5
http://llvm.org/
https://bit.ly/3404j3o
http://www.verific.com/

Vendor and Device Agnostic Hardware Estimation 177

13. Schumacher, P., et al.: Fast and accurate resource estimation of RTL-based designs
targeting FPGAS. In: FPL 2008

14. Todman, T., et al.: Reconfigurable design automation by high-level exploration.
In: ASAP 2012

15. Tong, V.: Opportunities and challenges: 28nm and 2.5/3-D IC design and manu-
facturing (2012). https://bit.ly/33VR3g5

16. University of Toronto: LegUp High-Level Synthesis. http://legup.eecg.utoronto.ca
17. Wijesundera, D., et al.: Framework for rapid performance estimation of embedded

soft core processors. TRETS 11(2), 1–21 (2018)
18. Wijesundera, D., et al.: Wibheda+: framework for data dependency-aware multi-

constrained hardware-software partitioning in FPGA-based SoCs for IoT applica-
tions. In: HEART 2018

19. Xu, M., et al.: Area and timing estimation for lookup table based FPGAs. In:
EDTC 1996

https://bit.ly/33VR3g5
http://legup.eecg.utoronto.ca

Resource Efficient Dynamic Voltage
and Frequency Scaling on Xilinx FPGAs

Gökhan Akgün1(B), Lester Kalms1, and Diana Göhringer1,2

1 Adaptive Dynamic Systems, Technische Universität Dresden, Dresden, Germany
{goekhan.akguen,lester.kalms,diana.goehringer}@tu-dresden.de

2 Centre for Tactile Internet with Human-in-the-loop (CeTi),
Technische Universität Dresden, Dresden, Germany

Abstract. As FPGA devices become increasingly ubiquitous, the need
for energy-conscious implementations for battery-powered devices arises.
These new energy constraints have to be met in addition to the well-
known area, latency and throughput requirements. Furthermore, the
power dissipation of such systems is usually considered as a hard-
ware problem. However, it can be solved effectively through hardware
and software implementations of power-saving techniques. One generic
energy-saving technique that does not require retroactive alteration of
an HW/SW-design is dynamic voltage and frequency scaling (DVFS)
which adjusts the power consumption and performance of an embedded
device at run-time based on its workload and operating conditions. This
work investigates the power monitoring and scaling capabilities of Xilinx
Zynq-7000 SoCs and UltraScale+ MPSoCs. A real-time operating system
(RTOS) manages the resources of an application, the voltage/frequency
scaling and the power monitoring with its preemptive scheduling policies.
Furthermore, the frequency is scaled without using additional hardware
resources on the programmable logic from the processing system. The
methodology can easily be used for changing the processor frequency
at run-time. As a case study, we apply our technique to find energy-
optimal voltage and frequency pairs for an image processing application
designed using the open-source high-level synthesis library HiFlipVX.
The proposed frequency scaling architecture requires up to 20% less flip-
flops and look-up tables as compared to the same design with clocking
wizard on the programmable logic.

Keywords: Dynamic voltage and frequency scaling · Image processing
application HiFlipVX · Frequency scaling without MMCM

1 Introduction

A major objective of running an application on battery-operated embedded
devices is the total power dissipation. This key requirement has an impact on
the development of applications and the management of available resources.
Applying power-saving techniques can further improve the amount of power
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 178–192, 2020.
https://doi.org/10.1007/978-3-030-44534-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_14

Resource Efficient Dynamic Voltage and Frequency Scaling on Xilinx FPGAs 179

consumption on Field Programmable Gate Arrays (FPGAs). One such popular
power capping technique is dynamic voltage and frequency scaling (DVFS) that
adjusts dynamically the voltage and frequency to reduce the static and dynamic
power based on the workload, fabrications and operating conditions [1,2]. Per-
formance, reliability and real-time requirements can be met through this opti-
mization technique. Depending on the embedded architecture, the power con-
sumption can be adjusted through on-board voltage regulators. To monitor the
overall power consumption of the system, an I2C based Power Management Bus
(PMBus) communication protocol has to be used to retrieve the voltage and cur-
rent values from on-board voltage regulators. However, the monitoring exhibits
a latency which affects safety-critical applications running on processors. Bare-
metal systems are unable to handle such applications whereby a real-time oper-
ating system (RTOS) guarantees a proper execution of such applications through
their built-in preemptive scheduling policies. Besides, several works have been
published for power monitoring and saving on Xilinx FPGAs. A clocking wizard
is mainly deployed for the frequency scaling on the programmable logic (PL).
In this work, we show the possibility to scale the frequency at run-time with-
out using additional hardware resources on the PL from the processing system
(PS). The proposed methodology can easily be used for changing the processor
frequency according to the existing workload. As an use case, we have imple-
mented the Canny edge detector, which detects features in images [3]. Features
are points of interest that can be corners, edges or blobs. Feature detection is part
of many larger algorithms, such as object detection [4]. For our implementation,
we used HiFlipVX, an open-source high-level synthesis (HLS) FPGA library for
image processing [5]. Based on the OpenVX standard and HiFlipVX, we have
added the missing functions needed for the Canny edge detector, namely the
Non-Max Suppression and Threshold.

The paper is organized as follows: Sect. 2 introduces the related work in the
area of power-saving techniques on FPGAs and operating systems (OSs), and our
use case. Section 3 describes the proposed methodologies and the contributions
of this work. Section 4 presents the use case whereby its results are shown in
Sect. 5. The paper is concluded in Sect. 6.

2 Related Work

In this section, we overview the state-of-the-art in power-saving techniques on
FPGAs and OSs, and our use case.

2.1 Power-Saving Techniques on Xilinx FPGAs

Several new multi-processor system-on-chip technologies have been released in
the last years which broadens the power reduction capabilities. An adaptive
DVFS framework is presented in [6] which has exploited a deep learning appli-
cation based on FINN binarized neural network on the Xilinx Zynq UltraScale+
MPSoC ZCU102. The experiments have shown a manual voltage scaling from

180 G. Akgün et al.

the nominal voltage (850 mV) to 550 mV on this board. The framework has iden-
tified a maximum operating frequency for each adjusted voltage level. Hence, the
performance and energy efficiency of the running application has been enhanced
by up to approximately 80% in this work. For instance, a power-aware imple-
mentation is proposed in [7] for the Xilinx Zynq-7000 SoC ZC702 board. The
experiments have shown that the voltage was scaled from the nominal voltage
(1 V) to 750 mV. It has led to a power reduction of 49% on the PL. The voltage
scaling has been handled by a written software code from the ARM processor.
A similar DVS approach is presented for image processing applications in [8].
In this work, selected portions of the application have been running through
Xilinx SDSoC on the PL. The voltage has been also scaled through a written
software code from the ARM processor. The experiments show an overall power
reduction of 37%. The nominal voltage of the UltraScale+ technology is 850 mV.
Hence, we compare the power-saving capabilities of Xilinx Zynq-7000 and Ultra-
Scale+ FPGA using an image processing application in this research work. Xilinx
FPGAs retrieve the overall power consumption from on-board voltage regula-
tors through a communication protocol known as PMBus based on I2C which
operates usually on a frequency of 400 kHz [9,10]. The communication leads
to an additional latency in running applications [11]. However, the latency can
be shortened when the required power domains are only monitored at run-time
which is also concerned in this work. In [12], the voltage VCCINT has been scaled
below 400 mV so that the PL lost its configuration. This has saved the power
consumption on the PL while the hardware modules are idle for a certain period.
Therefore, we adjust the voltage until 550 mV in this work.

2.2 Power-Saving with Operating Systems

The effects of DVFS regarding operating systems have been widely investigated
in the literature. Most of the works are proposing an energy-aware scheduler. A
multi-core supported low-power scheduler is proposed for Linux OS in [13]. It
exploits the slack time of a running task to scale the frequency at run-time and
is implemented based on the earliest deadline first policy. The scheduler enables
to meet the soft or hard real-time requirements of the safety-critical application.
The results have shown that the system achieved an overall energy reduction
of approximately 27% for an H.264 decoder. It alternates the frequency from
666 MHz to 333 MHz [11]. A similar approach based on a hypervisor architec-
ture is presented in [14]. In this work, the scheduling policy deals with the power
awareness of the system and partitioned the tasks regarding real-time require-
ments. In the same way, as proposed in [11], the frequency is alternated only from
400 MHz to 33 MHz and vice versa on the ARM processor of the Xilinx Zynq-
7000 SoC ZC702. The experiments have shown an overall power reduction of
approximately 33%. Nevertheless, the operating frequency can only be adjusted
at run-time for certain frequency values with the Linux kernel driver cpufreq on
the ARM processor in [11,13,14]. In this case, the frequency values are hand-
written in the kernel configuration. The methodologies enable to adjust only the
clocking behavior of the processors in the PS. Therefore, we propose a flexible

Resource Efficient Dynamic Voltage and Frequency Scaling on Xilinx FPGAs 181

frequency scaling approach for RTOSs, as well as for bare-metal applications.
The main benefit of the proposed technique is that it can adapt the performance
of the running application regarding the system requirements at run-time with-
out having any restrictions on the frequency values. Furthermore, the clocking
primitive is adjusted without using any additional hardware resources in the PL.

2.3 Feature Detection Application

Several papers have implemented the Canny edge detector for FPGAs. Lee et al.
have implemented an efficient Canny edge detector for advanced mobile vision
applications [15]. They have made several optimizations to reduce the resource
utilization without seriously impacting the detection performance. They compare
also themselves with other implementations to underpin their work. In compar-
ison, we can also achieve a very low resource consumption, as our evaluation
shows, although it contains the AXI4-Stream wrapper. However, the resource
consumption of the flip-flops would become higher if the frequency of the HLS
core is increased. For energy efficiency, we use DVFS techniques or sacrifice some
of the resources for vectorization. Maheshwari et al. show an implementation of
a scalable real-time Canny edge detector integrated into an HDMI stream [16].
They also use HLS, but utilize much more resources.

3 Proposed Methodology

The power consumption of an FPGA architecture consists of a static and
dynamic part described as

PTotal = ILeakage · VDD
︸ ︷︷ ︸

PStatic

+α · CL · V 2
DD · fSystem

︸ ︷︷ ︸

PDynamic

(1)

which describes the relation between the switching activity α, total switched
capacitance CL, leakage current ILeakage, supply voltage VDD and operating fre-
quency fSystem [17]. Equation (1) shows how the operating frequency influences
linearly the dynamic power in which the supply voltage has a quadratic behavior,
respectively, and effects linearly the static power at the same time. The following
subsections describe the details of the implemented DVFS and power monitoring
on the Xilinx Zynq-7000 and UltraScale+ platforms.

3.1 Platform Description of Xilinx Zynq-7000 SoCs
and UltraScale+ MPSoCs

Xilinx Zynq-7000 SoC ZC702 (XC7Z020). The platform consists of a dual-
core ARM Cortex-A9 processor and an FPGA [9]. It is equipped with three
digital power controllers (UCD9248) by Texas Instruments (TI) [18]. These con-
trollers provide ten power rails to supply the PS, PL and other parts of the
evaluation board. The power controllers are wired with the PMBus which is

182 G. Akgün et al.

connected to a 1-to-8 channel I2C bus switch (PCA9548) [9]. Using the PMBus
commands [18], it is possible to read the voltage and current on each power rail.
In this research work, we investigate only the characteristics of the PS internal
logic supply voltage (VCCPINT) and the PL internal supply voltage (VCCINT).
The nominal voltage is 1 V for the PS and PL [19].

Xilinx Zynq UltraScale+ MPSoC ZCU102 (XCZU9EG). This platform
consists of a quad-core ARM Cortex-A53 processor and a dual-core ARM Cortex-
R5 real-time processing unit. It is equipped with three different voltage regula-
tors (MAX20751EKX, MAX15301, MAX15303) by Maxim Integrated [20]. The
controllers have in total 25 power rails to supply the evaluation board. Further-
more, the device has multiple power domains (full power, low power, battery
power, PL power) [21] to turn off independently each rail at run-time. The
three power controller are tied to the PMBus which is connected to a 4-channel
I2C multiplexer (PCA9544A) [22]. A second power monitor circuit (INA226) by
TI [23] enables to report separately the sensed parameters from the PMBus.
INA226 is also connected to the same I2C multiplexer. The PMBus commands
[10] are used to read the sensed data from the voltage regulators by Maxim
Integrated. Only the characteristics of the PS full-power domain supply voltage
(VCC PSINTFP), the low-power domain supply voltage (VCC PSINTLP) and the PL
internal supply voltage (VCCINT) are considered in this work. Besides, the board
has a nominal voltage of 850 mV for the PS and PL.

3.2 Voltage Scaling on Xilinx Zynq-7000 and UltraScale+

Xilinx provides already a driver for the Xilinx Zynq-7000 SoC ZC702 to retrieve
the voltage and current data [24]. This driver has been extended in [25] for Xilinx
Zynq UltraScale+ MPSoC ZCU102. Once the system setup is correctly initialized
and the sensed data are read, the voltage parameters can be adjusted at run-
time. Algorithm 1 describes the voltage scaling with the PMBus commands on
both platforms. The steps have to be followed as the board has off-the-shelf
protection mechanisms [10]. The mechanism has protection limits to prevent
that an overcurrent, overvoltage and undervoltage fault occur on the technology.
Without a proper setup of the PMBus commands, the fault management is
active and turns off immediately the board. Thus, the appropriate commands
have to be adapted to the redefined setpoints while scaling the voltage as shown
in Algorithm 1 (lines 4–12 and 15–23). Based on previous research works, we
have limited the voltage scaling between 1 V and 550 mV to prevent a faulty
operation on both Xilinx FPGAs. The proposed approach enables to adjust all
voltage values from the regulators.

3.3 Frequency Scaling on Xilinx Zynq-7000 and UltraScale+

As discussed in the related work (Sect. 2), researchers have used a Linux ker-
nel driver cpufreq for frequency scaling on the PS. Furthermore, the frequency

Resource Efficient Dynamic Voltage and Frequency Scaling on Xilinx FPGAs 183

Data: Voltage scaling of the power rails:
VCC PSINTFP, VCC PSINTLP and VCCINT

Result: Scaling the voltage to the setpoint

1 nominal voltage = 0.85V;
2 if setpoint ≤ 1.00V and setpoint ≥ 0.55V then
3 if setpoint≤nominal voltage then
4 Modify the following PMBus commands:
5 POWER GOOD OFF = 85% of the setpoint
6 POWER GOOD ON = 90% of the setpoint
7 VOUT UV FAULT LIMIT = 85% of the setpoint
8 VOUT MARGIN LOW = 95% of the setpoint
9 DVS with VOUT COMMAND to the setpoint

10 VOUT MARGIN HIGH = 105% of the setpoint
11 VOUT MAX = 110% of the setpoint
12 VOUT OV FAULT LIMIT = 115% of the setpoint

13 end
14 if setpoint>nominal voltage then
15 Modify the following PMBus commands:
16 VOUT MARGIN HIGH = 105% of the setpoint
17 VOUT MAX = 110% of the setpoint
18 VOUT OV FAULT LIMIT = 115% of the setpoint
19 DVS with VOUT COMMAND to the setpoint
20 POWER GOOD OFF = 85% of the setpoint
21 POWER GOOD ON = 90% of the setpoint
22 VOUT UV FAULT LIMIT = 85% of the setpoint
23 VOUT MARGIN LOW = 95% of the setpoint

24 end

25 end

Algorithm 1: DVS on Zynq-7000 SoCs and UltraScale+ MPSoCs

values are defined while setting up the kernel of the OS. Hence, DFS can only
be applied in a certain frequency range. Therefore, we propose a methodology
to scale flexible the frequency values from real-time or standalone applications.
The Zynq-7000 platform has three main clock domains: ARM PLL, DDR PLL
and IO PLL [26]. The processor clock is connected to the ARM PLL which is
set to 1333.333 MHz in this research work. The clock frequency of the CPUs can
be defined through appropriate divisors. To set the clock source of the CPUs,
for instance, to 133.333 MHz, the divisor has to be declared as 10. The adjust-
ment is easily done by changing register values. Algorithm 2 presents the registers
which have to be modified on the Zynq-7000 System-on-Chips (SoCs). The same
algorithm allows the adjustment of the frequency on the Zynq UltraScale+ fam-
ily by means of adapting the appropriate registers based on [27] as shown in
Algorithm 2. It is also possible to change the PL fabric clock at run-time. The
proposed approach avoids the need for a Mixed-Mode Clock Manager (MMCM)
primitive for frequency scaling on the PL.

184 G. Akgün et al.

Result: Frequency scaling from CPU

1 if DFS on Zynq-7000 then
2 Unlock the SLCR register with 0xDF0D;
3 if DFS on CPU then
4 Adapt the divisor on SLCR ARM CLK CTR ADDR;
5 end
6 if DFS on PL then
7 Adapt the two divisors on FPGAx CLK CTRL;
8 end
9 Lock the SLCR register with 0x767B;

10 end
11 if DFS on Zynq UltraScale+ then
12 if DFS on ACPU then
13 Adapt the feedback divisor portion on ACPU CTRL;
14 end
15 if DFS on CPU R5 then
16 Adapt the 6-bit divider on CPU R5 CTRL;
17 end
18 if DFS on PL then
19 Adapt the two 6-bit divider on PLx REF CTRL;
20 end

21 end

Algorithm 2: DFS on Zynq-7000 SoCs and UltraScale+ MPSoCs

3.4 Power-Aware Real-Time Architecture

A bare-metal system cannot execute simultaneously multiple applications. Con-
sidering the power monitoring, it would block the execution flow because of the
latency through the communication protocol. The latency increases with the
amount of retrieved data from the voltage regulator. Therefore, a scheduler is
required that deals with different processes. For instance, FreeRTOS has a pre-
emptive scheduler. The power monitoring requires 5 ms for reading of one value
from the voltage regulator. While waiting for an event, the power monitoring
task can be suspended for a defined period. At the same time, the scheduler
can execute other tasks in the ready list. Based on [28], the scheduling policy
of FreeRTOS can be extended to Rate-Monotonic Scheduling (RMS), Deadline-
Monotonic Scheduling (DMS) and Earliest Deadline First (EDF). These algo-
rithms allow performing tasks within a defined deadline period. It distributes
efficiently the available workload on the processor which is eligible for low-power
applications. In the case of a bare-metal application, Core 0 can execute the
power monitoring whereby Core 1 runs the remaining application. An interrupt
can synchronize both software routines. This leads to increased power consump-
tion due to the multi-processing system. Depending on the design requirements,
one of the aforementioned methodologies can be used. Nevertheless, the required
data should only be read from the voltage regulators because of the communi-
cation latency.

Resource Efficient Dynamic Voltage and Frequency Scaling on Xilinx FPGAs 185

Fig. 1. The three different hardware designs of the system. In (a), the architecture
shows the proposed frequency scaling approach. In (b), the clocking wizard changes
the frequency of the application. In (c), FIFOs decouple the application frequency.
Bus signals are thicker than clock signals. The second clock domain is represented
by dashed lines. GP = General-Purpose port, HP = High-Performance port, PS =
Processing System.

4 Description of the Use Case

4.1 Hardware Architecture

The Vivado 2018.2 toolchain has been used for the hardware implementation.
The architecture is the same for both platforms: Zynq-7000 SoC ZC702 and
UltraScale+ MPSoC ZCU102. Figure 1 shows the three different hardware archi-
tectures of this work. It illustrates buses and data signals with thicker lines
and clock signals with thinner lines. The second clock domain is represented
by dashed lines. The PS can control the DMA and clocking primitive using
the Peripheral Interconnect via the General-Purpose (GP) port. The DMA
reads/writes data from/to the external memory via the High-Performance (HP)
port. Both GP and HP ports have their own clock. The AXI4-Stream Protocol
is used to connect the Canny edge detector with the DMA or the FIFOs.

The first design (a) is the simplest one and is used to evaluate DVS and
the proposed frequency scaling from the software side. Changing the frequency
changes the frequency of the entire design. This design has the lowest resource
utilization, which demonstrates the benefit of our proposed method of changing
frequencies directly from the ARM processor. A standard way of changing the
frequency is by adding a clocking wizard as shown in the other two designs.
The disadvantage is that it increases the utilized resources of the design. In the
second design (b), the clocking wizard can change the frequency of the appli-
cation and the complete data buses to the memory. Separating the control and
data buses from each other is advantageous since control and data buses do not
need the same performance. With our proposed approach, we can also omit the

186 G. Akgün et al.

clocking wizard and use the different clocks from the PS to scale the frequency
of multiple clock domains from the ARM processor. The third design (c) shows
that the application frequency can also be decoupled using FIFOs. For a sin-
gle application, it increases the resources, but it does not affect the rest of the
system. The main advantage comes to bear when different applications with dif-
ferent clock domains have to be connected to the same DMA. This can be the
case if resources have to be saved or if not enough HP ports are available.

4.2 Application Description

The implemented application in this design is the Canny edge detector. The
implementation is based on the HiFlipVX library. Additionally, we have imple-
mented the last two functions using the OpenVX standard and the HiFlipVX
approach, since they were missing. They will also be added to the open-source
library. The algorithm is illustrated on the left of Fig. 1. First, a 3× 3 Gaussian
standard kernel smooths the input image. Then the 3× 3 Sobel operator is used
to compute the first-order derivatives in x and y-direction. Afterwards, the gra-
dient magnitude is computed for each pixel. Pixels, which are not maximum in
a 3 × 3 window are suppressed using the Non-Max Suppression function. The
last function marks a pixel as edge if its value meets the hysteresis threshold.

All functions are implemented using Vivado HLS. The data type of the input
and output pixels are 8-bit. The functions are fully pipelined and get one input
pixel per clock cycle. Each function passes its results to the next function using
one element FIFOs. Therefore, all functions run in parallel. The performance of
all functions can be increased using vectorization, where data pixels are processed
in a SIMD manner. The vector sizes can be one, two, four or eight. Vectoriza-
tion can also be used to reduce the total energy consumption, as shown in the
evaluation. The application uses the AXI4-Stream protocol to receive and send
data.

4.3 Software Architecture

Besides the presented application running on an ARM processor, we have imple-
mented the DVFS routine with the monitoring of a co-processor. Accordingly
to an interrupt signal, the co-processor runs the power control and monitoring
unit while the application runs in parallel. In the beginning, the application
executes its dedicated tasks in the nominal operation mode. For instance, the
Canny edge detector starts its execution to generate correct reference values for
comparison. This comparison allows validating the correctness of the resulting
values while adjusting the power dissipation. The Zynq-7000/UltraScale+ can
lose its configuration on the PL when the VCCINT is scaled below 750 mV/680 mV
(VDRINT) [19,29]. Therefore, it is important to have reference values to detect a
faulty operation. The power-aware architecture enables directly to capture and
adjust the faulty operation with a correct voltage or frequency scaling from the
co-processor. Once the power-saving capabilities of the whole system are identi-
fied, the application has to be integrated with the DVFS routine in the RTOS.

Resource Efficient Dynamic Voltage and Frequency Scaling on Xilinx FPGAs 187

Based on the proposed scheduling policy, the scheduler will handle these multiple
routines within a certain time.

5 Evaluation

As presented in Sect. 4, we have performed DVFS on the Canny edge detec-
tor based on two different case studies. The first case study demonstrates the
effects of the vectorization while scaling the voltage on the PL. The second case
study compares the different hardware designs shown in Fig. 1 while scaling the
frequency and voltage on the PL. The required hardware resources for both
case studies are summarized in Table 1 for the two FPGA technologies. The
proposed methodology with the frequency scaling architecture requires up to
approximately 20% less flip-flops and look-up tables. The first case study reduces
energy consumption through voltage scaling as shown in Fig. 2. The paralleliza-
tion enables to enhance the performance and reduce energy consumption. At
the same time, the increasing vectorization leads to a higher resource utiliza-
tion whereby the power consumption increases slightly. The measurements are
performed on both hardware platforms. The Zynq-7000 returns incorrect values
while the voltage is 700 mV or less. Because it is scaled below the VDRINT and
lost its configuration. However, a vectorization of 8 gives also incorrect values
for 750 mV. Although the Zynq UltraScale+ is scaled below the VDRINT, it loses

Fig. 2. The experimental results of DVS on an accelerated Canny edge detector with
different vectorizations running in the PL of Xilinx Zynq-7000 SoC ZC702 and Ultra-
Scale+ MPSoC ZCU102

188 G. Akgün et al.

Fig. 3. The experimental results of DVFS regarding the power consumption on an
accelerated Canny edge detector with different hardware characteristics running in the
PL of Xilinx Zynq-7000 SoC ZC702 and UltraScale+ MPSoC ZCU102

its configuration below 550 mV. The experiments have shown a correct opera-
tion between the voltage range of 1 V to 550 mV. The VDRINT can be taken as a
reference value but the results of the running application should be continuously
validated through the routine in the co-processor. The software architecture is
able to detect faulty behavior as described in Sect. 4.3. The execution time of the
application needs 21 ms for 1080p images and a frequency of 100 MHz for no vec-
torization. It scales the execution time to 2.6 ms with vectorization 8 (Table 1).
Besides the efficiency in the parallelization of an application, the frequency scal-
ing has also an impact on the overall power consumption as shown in Fig. 3. The
application is executed for different frequencies (100 MHz, 50 MHz and 25 MHz)
on various voltage levels. This experiment is performed on the highest vectoriza-
tion level of the application with respect to the increasing resource utilization.
In the power-saving, the voltage scaling has a dominant behavior because of its
quadratic influence in the dynamic power and linear factor in the static power
(shown in Eq. (1)). The frequency scaling affects directly the dynamic power.
Therefore, the overall power consumption has been reduced up to 50% with the
DVFS technique on both Zynq platforms.

An increasing frequency leads to a higher performance whereby the required
energy consumption is reduced as shown in Fig. 4. The execution time is mea-
sured as 2.62 ms, 5.24 ms and 10.49 ms for a frequency of 100 MHz, 50 MHz and
25 MHz respectively. A further enhancement is achieved through the voltage
scaling from 1 V to 700 mV in the experiments.

Resource Efficient Dynamic Voltage and Frequency Scaling on Xilinx FPGAs 189

Fig. 4. The experimental results of DVFS regarding the energy consumption on an
accelerated Canny edge detector with different hardware characteristics running in the
PL of Xilinx Zynq-7000 SoC ZC702 and UltraScale+ MPSoC ZCU102

Besides the advantages of both techniques, our proposed methodology of the
frequency scaling enables to achieve similar or better results than the conve-
nient frequency scaling with the reconfigurable clocking source. Furthermore, it
requires up to 20% less flip-flops and look-up tables as compared to the same
design with clocking wizard on the programmable logic. Additional, our method-
ology has the advantage that it can be applied to any Zynq platforms as proven
with the set of experiments.

The toolchain can generate a bitstream with an operating frequency of
333 MHz for the PL on the UltraScale+ platform. As compared to the Zynq-7000
platform with a frequency of 150 MHz, the UltraScale+ board allows enhanc-
ing more the performance of the system. This would result in a higher energy-
efficiency with scaling the voltage on the PL. However, the increasing frequency
results in higher resource utilization. The ZCU102 (ZC702) board consumes
25.3 (25.4)% more flip-flops and 3.4 (7.8)% more look-up tables for our pro-
posed design using a vectorization of 8. We have chosen 100 MHz as a reference
frequency, to have a comparable frequency for all designs and configurations.

190 G. Akgün et al.

Table 1. Resource consumption and latency in clock cycles of the implemented hard-
ware of the Canny Edge Detector (CED) for different vector sizes and for the complete
hardware designs of the ZCU102 and ZC702.

Design FF LUT BRAM DSP Latency

Available (zc702) 106400 53200 140 220

zc702 CED (Vector 1) 922 737 3 1 2076607

zc702 CED (Vector 2) 1329 1010 3 2 1038847

zc702 CED (Vector 4) 2062 1562 3 4 519967

zc702 CED (Vector 8) 3649 2739 6 8 260527

zc702 (Proposed DVFS) 9248 6767 15 8

zc702 (MMCM) 11613 8361 18 8

zc702 (MMCM + FIFO) 11695 8461 17.50 8

Available (zcu102) 548160 274080 912 2520

zcu102 CED (Vector 1) 754 717 3 1 2076606

zcu102 CED (Vector 2) 1021 1016 3 2 1038846

zcu102 CED (Vector 4) 1587 1471 3 4 519966

zcu102 CED (Vector 8) 2484 2717 6 8 260526

zcu102 (Proposed DVFS) 10430 8805 15 8

zcu102 (MMCM) 12607 10348 18 8

zcu102 (MMCM + FIFO) 12689 10432 17.50 8

6 Conclusion

In this work, we have shown the possibility to scale the frequency at run-time
without using additional hardware resources on the PL from the PS. The pro-
posed architecture requires up to 20% less flip-flops and look-up tables. It can
easily be used for changing the processor frequency according to the existing
workload. Furthermore, the proposed frequency scaling can be deployed on each
Xilinx SoC. As a case study, we apply our technique to find energy-optimal
voltage and frequency pairs for an image processing application designed using
the open-source high-level synthesis library HiFlipVX. The DVFS routine has
been performed on a co-processor. The approach enables to identify faulty oper-
ation during the voltage and frequency scaling. Once the voltage and frequency
pairs are known, an RTOS manages the application with the power monitoring
and controlling unit. In doing so, we have proposed different types of scheduling
policies to handle various tasks. The energy consumption has been reduced to
46% (41%) with the voltage scaling from 1 V to 700 mV on the ZCU102 (ZC702)
board. The work presented here can be extended to the frequency scaling in the
PS. Because it allows reducing the power consumption of the ARM processors.
Furthermore, Xilinx Ultrascale+ FPGAs allow to turn off parts of the PS in
order to reduce the power consumption which can also be investigated in the
future.

Resource Efficient Dynamic Voltage and Frequency Scaling on Xilinx FPGAs 191

Acknowledgment. The work described in this paper has been supported in part
by the German Federal Ministry of Education and Research BMBF (grant nr.
16KIS0663 SysKit HW) and funded by the German Research Foundation (DFG,
Deutsche Forschungsgemeinschaft) as part of Germany’s Excellence Strategy – EXC
2050/1 – Project ID 390696704 – Cluster of Excellence “Centre for Tactile Internet
with Human-in-the-Loop” (CeTI) of Technische Universität Dresden.

References

1. Nunez-Yanez, J., Beldachi, A.: Run-time power and performance scaling with CPU-
FPGA hybrids. In: 2014 NASA/ESA Conference on Adaptive Hardware and Sys-
tems (AHS), pp. 55–60, July 2014

2. Kuon, I., Rose, J.: Measuring the gap between FPGAs and ASICs. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 26(2), 203–215 (2007)

3. Canny, A.: Computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. 8(6), 679–698 (1986)

4. Cho, H., Sung, M., Jun, B.: Canny text detector: fast and robust scene text local-
ization algorithm. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3566–3573, June 2016

5. Kalms, L., Podlubne, A., Göhringer, D.: HiFlipVX: an open source high-level syn-
thesis FPGA library for image processing. In: Hochberger, C., Nelson, B., Koch, A.,
Woods, R., Diniz, P. (eds.) ARC 2019. LNCS, vol. 11444, pp. 149–164. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17227-5 12

6. Nunez-Yanez, J.: Energy proportional neural network inference with adaptive volt-
age and frequency scaling. IEEE Trans. Comput. 68(5), 1 (2018)

7. Beldachi, A.F., Nunez-Yanez, J.L.: Accurate power control and monitoring in
ZYNQ boards. In: 2014 24th International Conference on Field Programmable
Logic and Applications (FPL), pp. 1–4, September 2014

8. Podlubne, A., et al.: Low power image processing applications on FPGAs using
dynamic voltage scaling and partial reconfiguration. In: 2018 Conference on Design
and Architectures for Signal and Image Processing (DASIP), pp. 64–69, October
2018

9. Xilinx: ZC702 Board User Guide. UG850, pp. 1–78 (2019)
10. Maxim Integrated: InTune Automatically Compensated Digital PoL Controller

with Driver and PMBus Telemetry. MAX15301, pp. 1–30 (2013)
11. Railis, K., Tsoutsouras, V., Xydis, S., Soudris, D.: Energy profile analysis of Zynq-

7000 programmable SoC for embedded medical processing: study on ECG arrhyth-
mia detection. In: 2016 26th International Workshop on Power and Timing Mod-
eling, Optimization and Simulation (PATMOS), pp. 275–282, September 2016

12. Hosseinabady, M., Nunez-Yanez, J.L.: Run-time power gating in hybrid ARM-
FPGA devices. In: 2014 24th International Conference on Field Programmable
Logic and Applications (FPL), pp. 1–6, September 2014

13. Li, S., Broekaert, F.: Low-power scheduling with DVFS for common RTOS on
multicore platforms. SIGBED Rev. 11(1), 32–37 (2014)

14. Poggi, T., et al.: A hypervisor architecture for low-power real-time embedded sys-
tems. In: 2018 21st Euromicro Conference on Digital System Design (DSD), pp.
252–259, August 2018

15. Lee, J., Tang, H., Park, J.: Energy efficient canny edge detector for advanced mobile
vision applications. IEEE Trans. Circuits Syst. Video Technol. 28(4), 1037–1046
(2018)

https://doi.org/10.1007/978-3-030-17227-5_12

192 G. Akgün et al.

16. Maheshwari, B.C., Burns, J., Blott, M., Gambardella, G.: Implementation of a
scalable real time canny edge detector on programmable SOC. In: 2017 Inter-
national Conference on Electrical and Computing Technologies and Applications
(ICECTA), pp. 1–5, November 2017

17. Najam, Z., Qadri, M.Y., Najam, S.: Real-time implementation of DVFS enhanced
LEON3 MPSoC on FPGA. In: 2016 6th International Conference on Intelligent
and Advanced Systems (ICIAS), pp. 1–6, August 2016

18. Texas Instruments: UCD92xx Digital PWM System Controller PMBus Command
Reference. SLUU337, pp. 1–50 (2018)

19. Xilinx: Zynq-7000 SoC: DC and AC Switching Characteristics. DS187, pp. 1–72
(2018)

20. Xilinx: ZCU102 Evaluation Board User Guide. UG1182, pp. 1–122 (2019)
21. Xilinx: Zynq UltraScale+ MPSoC Software Developer Guide. UG1137, pp. 1–611

(2018)
22. Texas Instruments: Low Voltage 4-Channel I2C and SMBus Multiplexer With

Interrupt Logic. PCA9544A, pp. 1–34 (2014)
23. Texas Instruments: INA226 High-Side or Low-Side Measurement, Bi-Directional

Current and Power Monitor with I2C Compatible Interface. INA226, pp. 1–39
(2015)

24. Zynq-7000 AP SoC Low Power Techniques Part 3 - Measuring ZC702 Power with
a Standalone Application Tech Tip. https://xilinx-wiki.atlassian.net. Accessed 09
March 2020

25. Ali, M., Amini Rad, P., Göhringer, D.: RISC-V based MPSoC design exploration
for FPGAs: area, power and performance. In: Rincn, F. et al. (eds.) ARC 2020.
LNCS, vol. 12083, pp. 193–207. Springer, Cham (2020)

26. Xilinx: Zynq-7000 SoC Technical Reference Manual. UG585, pp. 1–1843 (2018)
27. Xilinx: Zynq Migration Guide. UG1213, pp. 1–156 (2016)
28. Kase, R.: Efficient scheduling library for FreeRTOS. In: KTH, School of Informa-

tion and Communication Technology (ICT), pp. 1–55 (2016)
29. Xilinx: Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Character-

istics. DS925, pp. 1–108 (2019)

https://xilinx-wiki.atlassian.net

RISC-V Based MPSoC Design Exploration
for FPGAs: Area, Power and Performance

Muhammad Ali(B), Pedram Amini Rad, and Diana Göhringer

Technische Universität Dresden, Dresden, Germany
{muhammad.ali,pedram.amini_rad,diana.goehringer}@tu-dresden.de

Abstract. Modern image processing applications, like object detection or image
segmentation, require high computation and have high memory requirements. For
ASIC-/FPGA-based architectures, hardware accelerators are a promising solution,
but they lack flexibility and programmability. To fulfill flexibility, computational
and memory intensive characteristics of these applications in embedded systems,
we propose a modular and flexible RISC-V based MPSoC architecture on Xilinx
Zynq Ultrascale+ MPSoC. The proposed architecture can be ported to other Xil-
inx FPGAs. Two neural networks (Lenet-5 and Cifar-10 example) were used as
test applications to evaluate the proposed MPSoC architectures. To increase the
performance and efficiency, different optimization techniques were adapted on
the MPSoC and results were evaluated. 16-bit fixed-point parameters were used
to have a compression of 50% in data size and algorithms were parallelized and
mapped on the proposedMPSoC to achieve higher performance. A 4x paralleliza-
tion of a NN algorithm on the proposed MPSoC resulted in 3.96x speed up and
consumed 3.61x less energy as compared to a single soft-core processor setup.

Keywords: MPSoC · NoC · RISC-V · FPGA · SoC · Power estimation

1 Introduction

Multiprocessor System-on-Chip (MPSoC) is a System-on-Chip (SoC) that contains
multiple-processors. MPSoCs are becoming a standard to be used in embedded systems
to overcome high performance and low power constraints [1]. MPSoCs are composed
of processing elements (PEs), memory systems, bus management, and network inter-
connection. Based on the PEs, MPSoCs can be categorized either as homogeneous or
heterogeneous. PEs in MPSoCs can be, e.g. general-purpose processors, application-
specific processors (ASIPs) or hardware accelerators. Another way to classify MPSoCs
is based on the memory system used. It can be shared or distributed. In a shared memory
system, the PEs of the MPSoC share a common memory region among each other and
a scheduling technique is needed to avoid conflicts while accessing the memory. In a
distributed memory system, the PEs of the MPSoC are connected over a network and
have dedicated memories. The PEs communicate over the network to exchange data
based on the application requirements.

© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 193–207, 2020.
https://doi.org/10.1007/978-3-030-44534-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_15

194 M. Ali et al.

Many object detection and image processing applications have huge memory and
computational costs. These key constraints can be overcome, if the hardware architec-
ture is flexible and can be adapted to different application needs making the architecture
robust. In recent years, the performance of artificial intelligence applications from video
and image classification to natural language processing has been dramatically improved
due to advances in the field of deep learning. Among deep learning algorithms, convo-
lutional neural networks (CNNs) are widely used because they show remarkable perfor-
mance in solving complex machine learning problems. With more advancements and
research in this domain, CNNs are becoming more computational and memory inten-
sive. Though it improves the accuracy of the CNN architectures, it also makes it very
challenging to develop FPGA/ASIC based designs for embedded system applications.
For CNNs, GPUs outperform any other platform due to the high level of parallelism
and higher operational frequency [2]. They also consume more power as compared to
FPGAs [2]. This makes GPUs not a feasible platform for low power designs. On the
other hand, FPGAs consume very less power as compared with GPUs but optimizations
and parallelization for CNN design needs to be implemented. For inference of CNNs on
FPGAs, hardware accelerators are the most efficient solution as they are low power and
achieves a high performance [3]. However, hardware accelerator’s lack of programma-
bility and data movement in between CNN layers is a bottleneck [3]. CNNs consist of
pipelined layers which are: convolutional (conv), pooling, activation and fully connected
(FC) layers. The main bottleneck of CNN layers is convolutional layers and FC layers.
Convolutional layers are involved in more than 90% of the computation in CNN [4].
While fully connected layers have most parameters [5].

For fast prototyping and adaptions to different applications and their requirements,
field-programmable gate array (FPGA) platforms make the best use. FPGA platforms
not only allow the designer to prototype faster but also provides high programmability
and low risks [6]. Modern FPGA platforms also provide a lot of pre- and post- design
estimations for the area, power and performance of hardware designs. Power and energy
estimations are very important for FPGA users since, e.g. battery life, packaging and
cooling costs highly depend on it.

To overcome these computational and memory intensive constraints, and have more
flexibility and programmability in the system, we propose a flexible MPSoC for Xilinx
FPGA platforms. The proposed MPSoC is based on homogeneous softcore process-
ing elements but it can be extended to a heterogeneous platform. The FPGA platform
allows adapting our MPSoC architectures depending on the application and optimiza-
tion requirements. Our proposed architecture is a distributed system, with PEs having
dedicated memory and communication as well as data transfer is over a network-on-chip
(NoC). The proposed MPSoC is extendable and more PEs can be added depending on
the computational requirements. Two CNN applications were used as a test case since
CNNs have high memory requirements and are computationally intensive. For best
results, parameter and variable optimizations were used and MPSoC parallelization was
exploited. For accurate power monitoring of theMPSoC architectures, a power monitor-
ing library, available at [7], is developed for Xilinx Zynq Ultrascale+ MPSoC ZCU102.
This allows to monitor power in runtime and to compute precise energy estimation for
our proposed MPSoC architectures.

RISC-V Based MPSoC Design Exploration for FPGAs 195

The rest of this paper is organized as follows: Sect. 2 provides related work. Section 3
presents the design concept and implementation. Section 4 shows our experimental
results. Section 5 provides a conclusion based on the evaluation.

2 Related Work

There are many different platforms available for the execution of object detection algo-
rithms like CNNs, e.g. GPUs, ASICs, CPUs, and FPGA implementations. All of them
have different tradeoffs based on area, power, and performance [8]. FPGAs provide fast
prototyping and operate on lower frequencies as compared with GPUs and CPUs [2].
This makes FPGA design low power [9] and feasible for embedded system applications.

NoC based architectures for neural network (NN) applications are gaining attention.
Usually, the processing element (PE) is some kind of accelerator with an interface con-
troller for communication with other PEs. In [10], a simulation-based reconfigurable
NN architecture using a NoC is presented. For PEs of the NoC, a “neuron unit” is devel-
oped, which can be adapted based on the application. They also allow multiple logic
units to be implemented at one PE and perform dynamic reconfiguration on the pro-
posed architecture based on application demands. A theoretical analysis of determining
an optimum interconnect architecture of a NoC for NN is presented in [11]. Different
NoC interconnect architectures are evaluated based on performance and cost for NN
application. Bui et al. in [12] proposed a NoC based implementation for NN on FPGAs.
Their work is based onMNIST data set for training and testing. The PEs of the proposed
work consists of parallel neurons which are connected to the router. A PE controller is
also developed to control the data flow from the PE. In [13], a survey on CNNs with
reconfigurable architectures on edge computing is presented. This work discusses dif-
ferent CNNs, optimizations to overcome CNN constraints as well as different types of
architecture topologies.

In our work, we propose a RISC-V based MPSoC for NN. A lot of work is already
done in developing MPSoCs using RISC-V [14]. RISC-V is an open-source instruction
set architecture (ISA),which allows industry and researchers to develop processors based
on their application requirements. The work of [15] proposes a modular memory system
for RISC-V based MPSoC with a shared memory system between the cores. “RI5CY”
[16] cores are used in this bus-basedMPSoC. The proposedMPSoC is extendable, which
means more cores can be added on the shared bus. In [17], a framework is presented
which allows developing a RISC-V based NoC. This work is more focused on the NoC
and its network interface (NI). This work is further extended in [18], where a framework
is presented for developing a hardware emulation for largeNoC architectures with RISC-
V as PE. In a recent work [19], an ultra-low power tightly coupled cluster of RISC-V
processors is presented named as “PULP-NN”. This work makes a comparison between
the number of cores added to the system and their performance. This work also suggests
that adding SIMD (single instruction multiple data) extensions and bit manipulation
extensions will heavily increase the performance as compared to a RISC-V (RV32IMC)
implementation.

For accurate power estimation, a lot of work has been done for Xilinx Zynq FPGAs.
In [20], the technology of Xilinx Zynq devices is presented and how it can be used to

196 M. Ali et al.

control and monitor power at run-time. The work shows that both hardware and software
techniques can be used to control power. It also presents the impact of power control
techniques and selection, on monitoring speeds, accuracy, power consumption and area
overhead. In [21], an adaptive dynamic voltage and frequency scaling framework is
presented which exploits a deep learning application on Xilinx Ultrascale+ MPSoC
ZCU102. This work uses maxpowertool provided by Maxim Integrated [22]. Our work
extends this concept by providing a software solution to measure and control the power
of the Xilinx ZCU102 board. With our proposed MPSoC, we overcome CNN’s compu-
tational and memory intensive constraints by having a flexible system and we provide a
run-time power and energy estimation library.

3 Concept and Implementation

In this work, an MPSoC architecture with a distributed memory system was developed.
The MPSoC architecture also allows adding tightly coupled hardware accelerators with
the PEs or loosely coupled accelerators as a PE themselves. The implementation of
the proposed work is divided into four subsections; first, a brief overview of the test
applications and their constraints are presented, then the RISC-V architecture used as a
PE is described, followed by theNoCarchitecture used to develop theMPSoCandfinally,
an overview of the overall MPSoC architecture is described along with the HW/SW
co-design of the system.

3.1 Test Applications

In the scope of this paper, we take advantage of two CNN applications: Lenet-5 [23]
and an example case for Cifar-10 [24], to evaluate our proposed platform. Lenet-5 uses
a lightweight architecture to train and predict the MNIST data set. MNIST is used for
digit recognition and is comprised of 10,000 samples of size 28 × 28 images. Lenet-
5 consists of 7 layers, including 2 convolutional layers (conv), 2 max-pooling layers
(max), and 3 fully connected layers (FC). The size of each conv layer filter is 5 × 5.
The Cifar-10 example used, carries out a lightweight object detection process on the
Cifar-10 dataset. The Cifar-10 dataset consists of 60,000 color images of size 32 × 32.
There are 10 classes of images, with 6,000 images per class. The architecture of Cifar-10
consisted of 8 layers, which are 4 conv layers, 2 max layers, and 2 FC layers. The size
of each convolution filter is 3 × 3 and a zero-padding method is also deployed. Memory
requirements are calculated for each layer and FC layers were most memory intensive.
For Lenet-5 and Cifar-10, memory required for FC layers (16-bit fixed-point parameters)
is 85.45 KB and 2379.29 KB, respectively. The Cifar-10 example was used to provide
a proof of concept that the proposed MPSoC architectures are flexible to be adapted for
different algorithms.

3.2 RISC-V as Processing Element (PE)

The PE of an MPSoC is one key component that determines the performance of the
system along with the memory system and communication infrastructure. The overall

RISC-V Based MPSoC Design Exploration for FPGAs 197

architecture of the proposed PE is shown in Fig. 1. A RISC-V based “RI5CY” [16]
soft-core is used as the main core of the PE with two tightly coupled memories (TCM),
one for instructions (I-TCM) and other for data (D-TCM). An AXI-crossbar is used to
connect the RI5CY core and other peripherals. An external memory is designed using
Xilinx dual-ported BRAM with the AXI interface and is connected to the RI5CY core.
This is called the BOOT memory and it is a read-only memory. An additional shared
memory can also be added, if more cores are needed. AXI-crossbar is used to develop
a bus-topology system and it allows to add more peripherals to the architecture. Some
key peripherals used are Platform-Level Interrupt Controller (PLIC), AXI-stream FIFOs
and a tightly coupled accelerator. PLIC is added to connect the global interrupts of the
system. A priority threshold is developed in it, which defines the priority of different
tasks from different peripherals. AXI-stream FIFOs are used as a network interface (NI)
between the PE and the router of the NoC. AXI-stream FIFOs are memory-mapped
peripherals to the system. RI5CY core is a master of this bus-based system.

Fig. 1. Architecture of proposed PE with RI5CY core and peripherals. ((Platform-Level Interrupt
Controller (PLIC), Instruction Tightly Coupled Memory (ITCM), Data Tightly Coupled Memory
(DTCM), AXI-stream FIFO (FIFO))

In the proposed PE structure, RI5CY core has two tightly coupled memories; ITCM
and DTCM as well as one BOOT memory on AXI-crossbar. All three implemented
memories of the PE can be adapted depending on the application requirements. BOOT
memory is used to program the RI5CY core of the processing system. To program the
PEs, a cross compiler is used. A bare-metal application method is used for programming
thePEs.Using theRI5CYGNUtoolchain [25], a co-efficient file (binaryfile) is generated
from source file (.C), linker script, startup file (.S) and some additional header files. The
linker script defines thememory regions of the PE and needs to be adapted if anymemory
adjustments are made based on the application requirements. After generating the binary
file, it is added to the BOOT memory (Xilinx BRAM blocks). On the startup, the binary

198 M. Ali et al.

file is loaded to the ITCM and DTCM of the RI5CY core depending on the initialization
program and the application of the PE starts to execute.

3.3 Network-on-Chip (NoC)

In-order to develop the MPSoC, a router architecture similar to [26] was used. A two-
dimensional (2D)-mesh topology is used for routers to form a NoC. Routers are address-
able by 3-bit X- and Y-coordinates. This permits to have a maximum of an 8 × 8 mesh
size of the NoC and is extendable by increasing the address bits. X- and Y-coordinates
are embedded in the header flit of the data package which allows the NoC to transmit
data to the destination router. The router has four inputs and outputs (I/O) labeled as
directions (North, South, East, andWest) and a local I/O which is used to add a PE to the
NoC. Different routing algorithms can be implemented in the routers. For this work, the
XY-routing algorithm is used, since it is deterministic and the shortest path is calculated
using only the destination addresses. All I/Os of the router have anAXI-stream interface.
The local I/O port of the NoC is connected to the FIFOs (TX/RX) of the PE. The stream-
ing interface of the router also allows adding loosely coupled hardware accelerators with
the streaming interface.

3.4 Hardware/Software Co-design

A hardware/software co-design methodology is realized to develop the MPSoC for a
specific NN. To explain the process of MPSoC design, an abstract model as shown in
Fig. 2 is used. Different partitions show different MPSoC architectures for different NNs
and different parallelization levels used in each system. Figure 2 presents a 5 × 2 NoC
which has 8 RISC-V PEs, ARM Cortex-A53 with a DMA controller (ARM+DMA) and
a loosely coupled hardware accelerator.

Hardware design is implemented using the Xilinx Vivado 2017.4 tool. ARM+DMA
is used on each MPSoC design. This is used to send input images to the MPSoC and to
send parameters to the PEs allowing to update parameters of the NN at runtime if needed.
ARM is also used to run the power monitoring library in parallel and estimate energy
consumption. This is described later in detail. In Fig. 2, for Lenet-5 (2x-parallelization), a
2× 2NoC is implementedwith 2 PEs andARM+DMA.ForLenet-5 (4x-parallelization),
a 3 × 2 topology is used with 4 PEs and ARM+DMA. For Cifar-10 (2x parallelization),
a 5 × 2 NoC is implemented using 10 routers, 8 PEs, and ARM+DMA. For the Lenet-5
proposed MPSoCs, the complete inference was executed on PEs and ARM+DMA was
not used for processing. But for Cifar-10, FC1 and FC2 were executed on the ARM for
additional computational power. Once a specific architecture is implemented, the PEs
are programmed depending on how the application is mapped on the MPSoC.

For programming the MPSoC, each PE is programmed based on the application
mapped for it. This depends on the parallelization and parameters used. The linker script
is adjusted depending on the memory sizes used for the PEs and the co-efficient file is
generated using the RISC-V GNU toolchain.

RISC-V Based MPSoC Design Exploration for FPGAs 199

3.5 Software Optimizations

Before programming the PEs, some software optimizations and verifications are per-
formed to achieve better performance. First, the NN applications were quantized and the
parameters were converted to the fixed-point. This helps to reduce parameter size and
to reduce the memory requirements. Secondly, the benchmarks were parallelized since
there can be multiple PEs. This resulted in a better performance, which is demonstrated
later.

Fig. 2. MPSoCs overview: RISC-V PEs, a loosely coupled hardware accelerator and ARM
Cortex-A53 with Direct Memory Access Controller (DMA). The dotted area presents the MPSoC
model opted for a NN and parallelization used in the architecture.

Parameter Optimization
Fixed point optimized parameters are used for the proposed MPSoC. For fixed-point
conversion, we take advantage of two-stage quantization. First, dynamic fixed-point
parameters are generated using theRistretto tool onCaffe [27]. The generated parameters
of each layer are represented by Xi,n in (1), where “i”, and “n” are layer number and

200 M. Ali et al.

number of fraction bits, respectively. 16-bit fixed-point parameters are then generated
and converted to X

′
i,n through (1).

X
′
i,n = Xi,n × 10n (1)

Y
′
i,n = Round

(
Yi,n/10

n) (2)

After the convolution and FC layers are carried out, outputs of their layer, as repre-
sented by Yn , are divided by the factor 10n and then rounded in (2), to avoid overflow
in the next layers. Finding the suitable quantized model is performed through a heuris-
tic procedure in which some combination of fraction bit number “n” for each layer is
selected and then accuracy is tested to achieve the highest accuracy. For Lenet-5, we
chose n = 3 for each layer. In Cifar-10, n = 4 and n = 3 are selected for FC and conv
layers, respectively.

The accuracywas verified by implementing a C++ code for the inference of both NN.
The accuracy analysis of the network is shown in Table 1. The table shows the accuracy
of the CNNs based on the different data types for parameters from the Ristretto tool
[27]. 16-bit fixed-point parameters were generated using the Caffe tool and its accuracy
was computed and compared with the findings from the Ristretto tool [27] (in Table 1).
It was 97.3% for Lenet-5 and 72.12% for Cifar-10. For Cifar-10 some layers had n =
4 which resulted in the loss of information when optimizing thus resulted in a decrease
in the accuracy. These models were then translated to be compatible with the proposed
MPSoC.With quantized parameters at 16-bit, 50% compression is achieved in parameter
memory usage. This also prevents the use of a floating-point unit (FPU) on the RI5CY
core used in the PEs and saves more resources on the FPGA.

Table 1. Accuracy analysis of quantized CNN models

CNN Floating point (32-bit) [27] Dynamic fixed point [27] Fixed-point
implementation (16-bit)

Lenet-5 99.15% 98.81% 97.3%

Cifar-10 81.69% 81.44% 72.12%

Also, the output variables were optimized to maintain a 16-bit fixed-point data type
to minimize memory requirements. For this, an intermediate output variable (Z) of 32-
bit, with a smaller length is used for intermediate operations and rounded off and stored
in a 16-bit output variable before exiting the final loop. This increased computation but
resulted in up to 46.8% compression in memory usage for output variables.

RISC-V Based MPSoC Design Exploration for FPGAs 201

Application Parallelization Method
Both CNN’s used for evaluation were parallelized and mapped on respective MPSoC
architectures. Parallelization and mapping of a NN was based on data independent oper-
ations and the size of parameters of each layer. For convolution layers, the parallelization
is based on the number of output feature maps (OFM) and for fully connected layers it
is based on the filter size. For parallelization, after each layer, the outputs are needed
to be transmitted to the next layer PEs. For data transmission over the NoC, a message
passing interface (MPI) library was implemented for uniform programming. For each
parallelization of the NN, first, a functional verification was done in Eclipse IDE before
mapping the parallelized NN on the proposed MPSoC. Since Lenet-5 is a small CNN
as compared to Cifar-10, after parallelization, all layers fit in one PE. That is, if Lenet-5
is parallelized by 2x or 4x, it is possible to be mapped to 2 PEs or 4 PEs, respectively.
For the 2x parallelization of Lenet-5, the BOOT memory and DTCM sizes of both PEs
is increased to 128 KB since the parameters of FC 1 are too big to fit in a normal 64 KB
space. A single core design is also developed for Lenet-5 with no parallelization. For
Cifar-10, conv1 is mapped on 2 PEs, conv2 and max1 are mapped on other 2 PEs, conv3
on separate 2 PEs and, conv4 and max2 on additional 2 PEs (total 8 PEs). FC1 and FC2
were mapped on the ARM processor. PEs used for conv2/max1 and conv4/max2 have
memory size of 128 KB, while all other PEs have regular 64 KB size of memories. Since
in Cifar-10, layers were implemented to independent PEs, this allows forming a pipeline
in executing an inference for multiple images.

Message Passage Interface
A message passage interface (MPI) [28] library was implemented for data transmission
over the NoC. Different functions were implemented based on the open MPI standard
and added to the source files. The functions implemented for the MPSoC are: platform
initialization, send, receive and synchronization. Platform initialization is used to ini-
tialize the NI. Send and receive MPI functions are memory-mapped operations to the
FIFOs for sending and receiving data over the NoC. Since the header packet (first data
packet) has 6-bits which describe the destination (3-bits for X- and 3-bits for Y- coordi-
nates), packeting and de-packeting of the header packet with data flits is implemented
in send and receive MPI functions. In case the transmission data is bigger than the FIFO
depth, the data is transmitted in the form of chunks. A synchronization function is used
to synchronize the PEs before data transmission.

A data transfer schedule was developed for data transmission after the execution of
each layer in the application. This was developed to avoid any deadlocks in the NoC
and to ensure the correct transfer of data among PEs. For this, a round-robin schedule is
implemented between respective PEs. Synchronization MPI was used to ensure whether
the PEs are ready for receiving a new transmission to avoid deadlocks in NoC.

3.6 Power Estimation in Xilinx Zynq Ultrascale+ MPSoC ZCU102 (XCZU9EG)

Xilinx Zynq Ultrascale+ MPSoC ZCU102 consists of a quad-core ARM Cortex-A53
processor and a dual-core ARM Cortex-R5 real-time processing unit. It is equipped
with three different voltage regulators (MAX20751EKX, MAX15301, MAX15303) by

202 M. Ali et al.

Maxim Integrated [29]. The controllers have in total 25 power rails to supply the evalua-
tion board. Furthermore, the device has multiple power domains (full power, low power,
battery power, PL power) [30] to turn off each rail at run-time. The power controllers are
tied to the PMBus which is connected to a 4-channel I2Cmultiplexer (PCA9544A) [31].
A second powermonitor circuit (INA226) by TI [32] allowsmonitoring parameters from
the PMBus. INA226 is also connected to the I2C multiplexer. In this research work, a
C++ library is implemented to access data directly from the on board voltage regulators.
This allows to monitor the power consumption of the FPGA at run-time. The sensor data
is retrieved using PMBus commands in [33]. The data received is used to estimate the
power and energy needed for an application execution.

Table 2. Resource utilization of PE, router, proposed MPSoCs and MicroBlaze used for the
application.

LUT FF BRAM DSP

RI5CY core with I/DTCM 7322 1451 32 6

AXI-Crossbar 216 66 0 0

BOOT Memory 46 8 14.5 0

PLIC 48 2 0 0

AXI-FIFO TX/RX 518 289 2 0

Router 319 41 0 0

Lenet-5(1x) 12381 4161 81 6

Lenet-5 (2x) 20678 5971 160 12

Lenet-5 (4x) 38984 10149 226.5 24

Cifar-10 (2x) 74090 17959 512 48

MB (Area opt) 5505 5921 68 0

MB (area opt + multiplier) 5999 6196 68 3

MB (performance opt) 6536 6639 69 3

4 Evaluation

4.1 Resource Utilization

The proposedMPSoC architectures have been implemented on Xilinx Zynq Ultrascale+
MPSoC ZCU102 FPGA. Resource utilization is calculated using Xilinx Vivado 2017.4.
For a system with all three memories: I-TCM, D-TCM and BOOT memory of the
size 64 KB, resource utilization is presented in Table 2. Also, resource utilization of
a single router used and the proposed MPSoCs for NNs are mentioned in the table.
From Table 2, we can see that Lenet-5 2x-MPSoC utilizes an average of 1.76x more
resources than 1x-MPSoC. Lenet-5 4x-MPSoC on average utilizes 3.09xmore resources

RISC-V Based MPSoC Design Exploration for FPGAs 203

than 1x-MPSoC. If 4x and 2x-MPSoC are compared, 4x-MPSoC consumes on average
1.74x more resources as compared with 2x-MPSoC. Resource utilization of Cifar-10
2x-MPSoC is also shown in the table. Resource utilization of MicroBlaze (MB) [34] is
alsomentioned in the table with different optimizations used in each test.MicroBlaze is a
soft-core processor from Xilinx. Overall MicroBlaze utilizes slightly fewer resources as
comparedwith Lenet-5 1x-MPSoC. Formost performance efficient comparison, Lenet-5
4xMPSoC utilized on average 4.67x more resource as compared to a single MicroBlaze
with full performance optimizations.

4.2 Energy Estimation

An energy estimation library was developed for our proposed architecture, which allows
reading voltage regulators of the Xilinx ZCU102 board via the I2C bus at runtime. These
regulators estimate power consumption (voltage, current, and power) of different FPGA
board regions. With the help of (3), energy of the proposed MPSoCs was estimated.
Power “P” is calculated in “mW” through the library running on the ARM Cortex-A53
in parallel and time “t” is the execution time of an MPSoC to complete an application.

E = P × t (3)

According to Fig. 4, for Lenet-5, 4x-MPSoC utilized 1.82x and 3.61x times less
energy as compared with 2x-MPSoC and 1x-MPSoC, respectively. However, compared
to ARM it consumes 2.53x more energy. All proposed MPSoCs consumed less energy
as compared with all three MicroBlaze setups. This is because MicroBlaze takes a lot
of execution time. The results were similar for Cifar-10 MPSoC. 2x-MPSoC consumed
2.02x more energy as compared with ARM.

4.3 Performance

Performance evaluation was performed based on the overall execution time of infer-
ence. Execution time was also compared with the performance of a Xilinx MicroBlaze
using different core optimizations and ARMCortex-A53. MicroBlaze and our proposed
MPSoCs were set at 100 MHz frequency to be comparable. The proposed MPSoC for
different parallelization performed better as compared to a single MicroBlaze setup. 4x-
MPSoC was 29x, 2x-MPSoC was 14x and 1x-MPSoC was 7x faster as compared with
the performance-optimized MicroBlaze with all other optimizations enabled. A single
ARM processor outperforms all MPSoC implementations. This is because ARM is not
a soft-core processor and it uses enhanced branch prediction techniques to achieve high
performance for applications with nested loops. According to Fig. 4, 2x and 4x-MPSoC
executed Lenet-5, 1.9x and 3.96x times faster as compared with 1x-MPSoC, respec-
tively. 4x-MPSoC was 1.9x times faster as compared with 2x-MPSoC execution time.
The performance of a hardware accelerator [35] is also shown in Fig. 4 and it is the
fastest as compared with the rest. A hardware specific implementation will always be
faster as compared to a processor. For Cifar-10, 2x-MPSoC results were quite similar.
2x-MPSoC was much slower as compared with ARM.

204 M. Ali et al.

The proposed MPSoCs performed better as compared with MicroBlaze with dif-
ferent optimizations but resulted in more area utilization. MicroBlaze provides a lot
of configuration options which results in different optimizations. MicroBlaze design is
optimized for FPGA implementation and can operate on higher frequency as compared
with RI5CY (100MHz). RI5CY implements hardware loops to increase the efficiency of
loop operations. RI5CY also supports non-standard extensions for multiply-accumulate
and half-word multiplications to improve efficiency. Although MicroBlaze is very easy
to use soft-processor for FPGAs, RI5CY being open source, provides a platform for
mico-architecture research for academics and industry (Fig. 3).

Fig. 3. Performance evaluation of MPSoCs for Lenet-5 (a) and Cifar-10 (b).

Fig. 4. Energy estimation of MPSoCs for Lenet-5 (a) and Cifar-10 (b).

RISC-V Based MPSoC Design Exploration for FPGAs 205

5 Conclusion and Future Work

In this work, a RISC-V based MPSoC with a distributed memory system and a flexible
architecture is proposed to tackle memory and computational requirements of object
detection algorithms. The proposed architecture allows to take care of the computational
complexity of convolutional layers of a NN by exploiting parallelism on the MPSoC.
Xilinx Zynq Ultrascale+ MPSoC ZCU102 is used as a development platform for fast
adaptions to proposedMPSoC architectures. From performance and resource utilization
evaluation we can see that a 4x-parallelization in MPSoC outperforms 1x- and 2x-
parallelization MPSoC designs by 3.9x and 1.9x times. The 4x-MPSoC was also 29x
faster as compared to Xilinx MicroBlaze running at the same clock frequency. The 4x-
MPSoC utilizes more resources (on average 3.09x, 1.74x and 4.67x) as compared with
1x, 2x-MPSoC and Microblaze, but it utilizes 3.61x, 1.82x and 32x times less energy
to execute the same application. For accurate energy estimation, a power monitoring
library is developed to control the voltage regulators of the FPGA at runtime. The
proposed MPSoC is extendable and can be developed for larger algorithms.

For future work, custom RISC-V PEs should be developed for executing respective
CNN layers [36]. Custom PEs with distributed and shared memory system and loosely
coupled accelerators will increase complexity in architecture but will achieve a higher
performance.

Acknowledgments. This work has been funded partially by the German FederalMinistry of Edu-
cation and Research BMBF as part of the PARIS project under grant agreement number 16ES0657
andpartially byCOllectiveResearchNETworking (CORNET)projectAITIA:EmbeddedAITech-
niques for Industrial Applications. CORNET-AITIA is funded by the BMWi (Federal Ministry
for Economic Affairs and Energy) under the IGF-project number: 249 EBG.

References

1. Dorta, T., Jimenez, J., Martın, J.L., Bidarte, U., Astarloa, A.: Overview of FPGA-based mul-
tiprocessor systems. In: International Conference on Reconfigurable Computing and FPGAs,
pp. 273–278, December 2009

2. Thomas, D.B., Howes, L., Luk, W.: A comparison of CPUs, GPUs, FPGAs, and massively
parallel processor arrays for random number generation. In: Proceedings of the ACM/SIGDA
International SymposiumonField ProgrammableGateArrays, FPGA2009, pp. 63–72.ACM,
New York (2009)

3. Abdelouahab, K., Pelcat, M., Serot, J., Berry, F.: Accelerating CNN inference on FPGAs: a
survey. CoRR abs/1806.01683 (2018). http://arxiv.org/abs/1806.01683

4. Ma, Y., Cao, Y., Vrudhula, S., Seo, J.: Optimizing the convolution operation to accelerate
deep neural networks on FPGA. IEEE Trans. Very Large Scale Integr. VLSI Syst. 26(7),
1354–1367 (2018). https://doi.org/10.1109/TVLSI.2018.2815603

5. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification
using binary convolutional neural networks. CoRR abs/1603.05279 (2016). http://arxiv.org/
abs/1603.05279

6. Zhang, W.-T., et al.: Design of heterogeneous MPSoC on FPGA. In: 7th International
Conference on ASIC, pp. 102–105, October 2007

http://arxiv.org/abs/1806.01683
https://doi.org/10.1109/TVLSI.2018.2815603
http://arxiv.org/abs/1603.05279

206 M. Ali et al.

7. Ali, M., Amini Rad, P., Göhringer, D.: Power_Monitoring_Xilinx_ZCU102, February 2020.
https://github.com/TUD-ADS/Power_Monitoring_Xilinx_ZCU102

8. Nurvitadhi, E., Sheffield, D., Jaewoong, S., Mishra, A., Venkatesh, G., Marr, D.: Accelerating
binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC. In: International
Conference on Field-Programmable Technology (FPT), pp. 77–84, December 2016

9. Feng,G., Hu, Z., Chen, S.,Wu, F.: Energy-efficient and high-throughput FPGA-based acceler-
ator for convolutional neural networks. In: 13th IEEE International Conference on Solid-State
and Integrated Circuit Technology (ICSICT), pp 624–626, October 2016

10. Theocharides, T., Link, G., Vijaykrishnan, N., Invin, M.J., Srikantam, V.: A generic reconfig-
urable neural network architecture as a network on chip. In: Proceedings of IEEE International
SOC Conference, pp. 191–194, September 2004

11. Vainbrand, D., Ginosar, R.: Network-on-chip architectures for neural networks. In: Fourth
ACM/IEEE International Symposium on Networks-on-Chip, pp. 135–144, May 2010

12. Thanh Bui, T.T., Phillips, B.: A scalable network-on-chip based neural network implementa-
tion on FPGAs. In: IEEE-RIVF International Conference on Computing and Communication
Technologies (RIVF), pp. 1–6, March 2019

13. Vestias, M.P.: A survey of convolutional neural networks on edge with reconfigurable
computing. Algorithms 12(8), 154 (2019)

14. RISC-V. https://riscv.org/. Accessed 17 Feb 2020
15. Kamaleldin, A., Ali, M., Amini Rad, P., Gottschalk, M., Göhringer, D.: Modular memory

system for RISC-V basedMPSoCs onXilinx FPGAs. In: IEEE 13th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pp. 68–73, October 2019

16. Davide Schiavone, P., et al.: Slow and steady wins the race? A comparison of ultra-low-power
RISC-Vcores for Internet-of-Things applications. In: 27th International SymposiumonPower
and Timing Modeling, Optimization and Simulation (PATMOS), pp. 1–8, September 2017

17. Elmohr, M.A., et al.: RVNoC: a framework for generating RISC-V NoC-based MPSoC. In:
2018 26th Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP), pp. 617–621, March 2018

18. Khamis, M., El-Ashry, S., Shalaby, A., AbdElsalam, M., El-Kharashi, M.W.: A configurable
RISC-V for NoC-basedMPSoCs: a framework for hardware emulation. In: 11th International
Workshop on Network on Chip Architectures (NoCArc), pp. 1–6, October 2018

19. Garofalo, A., Rusci, M., Conti, F., Rossi, D., Benini, L.: PULP-NN: accelerating quan-
tized neural networks on parallel ultra-low-power RISC-V processors. CoRR abs/1908.11263
(2019). http://arxiv.org/abs/1908.11263

20. Beldachi, A.F., Nunez-Yanez, J.L.: Accurate power control and monitoring in ZYNQ boards.
In: 24th International Conference on Field Programmable Logic and Applications (FPL),
pp. 1–4, September 2014

21. Nunez-Yanez, J.: Energy proportional neural network inference with adaptive voltage and
frequency scaling. IEEE Trans. Comput. 68(5), 676–687 (2019)

22. Maxim Integrated. https://www.maximintegrated.com/en/products/power. Accessed 17 Feb
2020

23. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

24. Keras: CIFAR-10 CNN. https://keras.io/examples/cifar10_cnn/. Accessed 17 Feb 2020
25. Pulp-platform. https://github.com/pulp-platform/ri5cy_gnu_toolchain.Accessed 17Feb2020
26. Rettkowski, J., Göhringer,D.:ASIR: application-specific instruction-set router forNoC-based

MPSoCs. Computers 7(3), 38 (2018)
27. Gysel, P., Pimentel, J., Motamedi, M., Ghiasi, S.: Ristretto: a framework for empirical study

of resource-efficient inference in convolutional neural networks. IEEE Trans. Neural Netw.
Learn. Syst. 29(11), 5784–5789 (2018)

https://github.com/TUD-ADS/Power_Monitoring_Xilinx_ZCU102
https://riscv.org/
http://arxiv.org/abs/1908.11263
https://www.maximintegrated.com/en/products/power
https://keras.io/examples/cifar10_cnn/
https://github.com/pulp-platform/ri5cy_gnu_toolchain

RISC-V Based MPSoC Design Exploration for FPGAs 207

28. Open MPI: Open MPI: Open Source High Performance Computing. https://www.open-mpi.
org/. Accessed 17 Feb 2020

29. Xilinx: ZCU102 Evaluation Board User Guide. https://www.xilinx.com/support/
documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf. Accessed 17 Feb
2020

30. Xilinx: Zynq UltraScale+ MPSoC Software Developer Guide. https://www.xilinx.com/
support/documentation/user_guides/ug1137-zynq-ultrascale-mpsoc-swdev.pdf. Accessed 17
Feb 2020

31. Texas Instruments: PCA9544A Low Voltage 4-Channel I2C and SMBus Multiplexer With
Interrupt Logic. http://www.ti.com/lit/ds/symlink/pca9544a.pdf. Accessed 17 Feb 2020

32. Texas Instruments: INA226 high-side or low-side measurement, bidirectional current and
power monitor with I2C compatible interface. http://www.ti.com/lit/ds/symlink/ina226.pdf.
Accessed 17 Feb 2020

33. Maxim Integrated: InTune automatically compensated digital pol controller with driver and
pmbus telemetry. https://datasheets.maximintegrated.com/en/ds/MAX15301.pdf. Accessed
17 Feb 2020

34. Xilinx: MicroBlaze Soft Processor Core. https://www.xilinx.com/products/design-tools/
microblaze.html. Accessed 17 Feb 2020

35. Feng,G., Hu, Z., Chen, S.,Wu, F.: Energy-efficient and high-throughput FPGA-based acceler-
ator for convolutional neural networks. In: 13th IEEE International Conference on Solid-State
and Integrated Circuit Technology (ICSICT), pp. 624–626, October 2016

36. Lou, W., Wang, C., Gong, L., Zhou, X.: RV-CNN: flexible and efficient instruction set for
CNNs based on RISC-V processors. In: Yew, P.-C., Stenström, P., Wu, J., Gong, X., Li, T.
(eds.) APPT 2019. LNCS, vol. 11719, pp. 3–14. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-29611-7_1

https://www.open-mpi.org/
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1137-zynq-ultrascale-mpsoc-swdev.pdf
http://www.ti.com/lit/ds/symlink/pca9544a.pdf
http://www.ti.com/lit/ds/symlink/ina226.pdf
https://datasheets.maximintegrated.com/en/ds/MAX15301.pdf
https://www.xilinx.com/products/design-tools/microblaze.html
https://doi.org/10.1007/978-3-030-29611-7_1

High-Level Synthesis

A Modular Software Library for Effective
High Level Synthesis of Convolutional

Neural Networks

Hector Gerardo Munoz Hernandez(B) , Safdar Mahmood ,
Marcelo Brandalero , and Michael Hübner

Brandenburg University of Technology Cottbus - Senftenberg Computer
Engineering Group, Cottbus, Germany

{hector.munozhernandez,safdar.mahmood,marcelo.brandalero,
michael.huebner}@b-tu.de

https://www.b-tu.de/fg-technische-informatik

Abstract. Convolutional Neural Networks (CNNs) have applications
in many valuable domains such as object detection for autonomous cars
and security using facial recognition. This vast field of application usually
places strict non-functional requirements such as resource-efficient imple-
mentations on the hardware devices, while at the same time requiring
flexibility. In response, this work presents a C++-based software library
of reusable modules to build arbitrary CNNs that support High-Level-
Synthesis to be implemented as FPGA hardware accelerators for the
inference process. Our work demonstrates how parametrization and mod-
ularization of basic building blocks of a CNN enable easier customization
of the hardware to match the software model. This project also works
with low-precision parameters throughout the CNN to provide a more
resource-efficient implementation.

Keywords: High Level Synthesis · Modular approach · HW
acceleration · Convolutional Neural Networks · Inference acceleration ·
Library of components · Machine learning · C library · FPGA

1 Introduction

Nowadays, Convolutional Neural Networks (CNNs) are a very well known tool for
image processing and classification. Due to their convolutional and maxpooling
layers, CNNs exploit feature detection, which differentiates them from standard
Artificial Neural Networks (ANNs) [1].

CNNs have very high accuracy, but they use a lot of resources, requiring
up to 38GOP/s to classify a single frame [1]. This is why Graphical Processing
Units (GPUs) have been a prevalent option due to their high parallelism. There
is, however, an increasing interest in low-power, resource-efficient platforms, and
there is where Field Programmable Gate Arrays (FPGAs) come into play.

c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 211–220, 2020.
https://doi.org/10.1007/978-3-030-44534-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_16&domain=pdf
http://orcid.org/0000-0002-0891-235X
http://orcid.org/0000-0001-7714-510X
http://orcid.org/0000-0002-0012-7023
http://orcid.org/0000-0002-1790-3869
https://doi.org/10.1007/978-3-030-44534-8_16

212 H. G. M. Hernandez et al.

Being more energy efficient than the GPUs, FPGAs have other problems like
small on-chip memory. Also, FPGAs have flexibility in terms of hardware dynamic
adaptability. In other words, when the model is updated, the FPGA provides the
opportunity to reprogram the FPGA, adjusting performance and energy efficiency
to the new model as well. This is why there has been an increasing search for effi-
cient CNNs implementations for FPGAs [1,6,8,21,24–26]. While some focus on
automating the complete process of transforming a trained in software network
into a hardware implementation [10,21,24,26], others limit themselves to show
different approaches to tackle specific problems in the implementation of CNNs
in FPGAs [4,6,12,25].

In this paper, we show an approach that combines some of the methods that
proved to be effective. Our work currently presents the following contributions.

– A software library for Convolutional Neural Networks where each layer is
processed independently, where the reduced precision makes it smaller and
faster, with a small loss of accuracy.

– Evaluation of said network with two very well-known dataset MNIST and
USPS in terms of utilization, implemented on a Xilinx Zynq Pynq-Z2 testing
board.

– The code sources itself, as an open-source framework that is compatible with
the HDF5 format for loading parameters such as weights, biases, and kernels.1

The main idea behind the third point is that anyone can contribute to the
framework and also use it to accelerate their own previously trained CNNs and
implement them on their test board. As the framework is compatible with HDF5
format, it can work out-of-the-box when the network was trained with some of
the most popular open-source libraries for creating neural networks like Tensor-
flow, Caffe, among others.

The paper is organized as follows. Section 2 gives a little background knowl-
edge for the Convolutional Neural networks. Section 3 exposes some related
work information. Later in Sect. 4, the architecture of our approach is exposed.
Section 5 presents the evaluation methodology so that the results can be shown
and discussed. Finally, the conclusion of the work and the planned future work
are in Sect. 6.

2 Background

The interest in Convolutional Neural Networks has grown a lot since their first
application for image recognition in the recent ImageNet classification challenges
in 1990 [16]. Previously, a work from Fukushima and Miyake [7] in 1982 con-
cerning a new algorithm for pattern recognition called Neocognitron was pre-
sented, cited also by LeCun et al. [16], which contributed in forming the basis
of Convolutional Neural Networks (CNN). Convolutional Neural Networks are a
subclass of Deep Neural Networks mostly applied in the domain of visual image

1 https://github.com/CEatBTU/Modular CNN.git.

https://github.com/CEatBTU/Modular_CNN.git

Modular Software Library for Effective HLS of CNNs 213

analysis [3] such as image classification, object detection, and in some rare cases
natural language processing [18]. A typical CNN consists of several layers and
nodes. A node is a computational unit that serves a specific purpose inside a
layer. A layer is a mixture of nodes and computations. Each layer has a specific
purpose, like to carry out a series of convolutions or reduce the number of inputs,
for example. The input layer consists of a specific number of nodes equal to the
size of an image passing through the network. In contrast, the final output layer
contains nodes which equal the number of image categories that can be classified.
In between these two layers, there are convolutional layers, maxpooling layers,
activation layers, and fully connected layers that constituent a CNN.

The convolutional layers of CNNs use the concept of local receptive fields,
shared weights, shared bias, and feature maps, whereas, shared weight and shared
bias correspond to a specific filter alternatively known as a kernel or local recep-
tive field that is applied to an input image to generate feature maps [20]. This
layer is the most operation costly, as the number of MACs is the highest among
the other layers.

An activation function decides whether a particular node should fire or not.
In a convolution layer, there are several different types of activation functions
such as ReLU, Tanh, Sigmoid, etc. [28], which can form an activation layer
to provide the desired functionality in CNNs. An activation layer in CNNs is
connected to the output nodes (or features maps) of a convolutional layer and
generates an output that passes on to the max-pooling layer. The purpose of
such an activation layer is to introduce non-linearity e.g., to clip off or modify
the outputs of the convolution layer [20].

A Max-pooling layer performs a condensation operation on feature maps to
eventually reduce its size to carry out further operations such as flattening and
feeding to a fully connected layer, or passing it to another following convolution
layer if it is present in a given architecture.

A fully connected layer, as the name suggests, connects all the flattened-out
neurons from the previous layer to all the neurons present in the output layer
[20]. This layer behaves like a network of fully connected multi-layer perceptrons,
as shown in Fig. 1, which depicts the complete structure of a regular CNN. The
fully connected layer network follows the usual traits of a regular artificial neural
network with a possibility of more than one hidden layer, weighted interconnects,
biases, and neuronal activation functions such as Sigmoid (σ)).

3 Related Work

Our work proposes an approach that employs the concept of modularization to
accelerate CNNs on FPGA while exploiting the features of High-Level Synthesis.
On the other hand, there have been numerous contributions in the area of CNN
acceleration on FPGAs [5,10,19,23,25]. In a similar approach [11], a layer-based
structured design of Convolutional Neural Networks has been presented, which
also exploits the features of High-Level Synthesis such as loop optimizations for
parallelism and pipelining. For experimental purposes, Huang et al. [11] uses

214 H. G. M. Hernandez et al.

Input
nodes

C
on

vo
lu

tio
n

R
eL

U
 A

ct
iv

at
io

n

Feature
Maps

Feature
Maps

+ ReLU 2x
2

M
ax

-P
oo

lin
g

F
la

tte
ne

d
N

od
es

Hidden
 Layers

Fully
Connected

Layers

O
ut

pu
t L

ay
er

Fig. 1. Typical structure of a Convolutional Neural Network

23-layered SqueezeNet [13] for its design and implementation on a Xilinx VC709
FPGA Board. The proposed architecture in [11] organizes and distributes dif-
ferent layers in an FPGA and a corresponding processing system based on how
compute-intensive a specific layer is. More compute-intensive layers are deployed
on FPGA, while the rest of the relatively less time-consuming layers are cordoned
off inside a CPU [11]. It is, however, not clear if specific layers can be synthesized
as separate hardware IP blocks to be used as re-arrangeable modules for custom
CNN implementations on FPGAs.

Hailesellasie et al. [9] presents a framework called Mulmapper, which auto-
mates the process of converting a Caffe-based [14] CNN model to a hardware
IP targeted for Zynq-based FPGAs. Mulmapper [9] uses Vivado High-Level-
Synthesis tool to generate a CNN processor. At the same time, it provides an
optimum design space exploration for target device resources, data-width con-
cerning quantization, and target core mode in which a Multiplier-Accumulator
(MAC) can be implemented with or without a multiplier core. Another frame-
work proposed by Leon et al. [17] provides an extension to Tensorflow framework
for the automatic generation of CNN accelerators for target devices like FPGAs
and ASICs. Although, the CNN inference generator creates an optimized HDL
description for synthesis and implementation rather than exploiting High-Level-
Synthesis (HLS).

There have been several implementations that adopt the traits of scalability
and modularization. Ma et al. [27] proposes such an approach where High-Level
Synthesis and RTL optimizations can be amalgamated to provide a more flexible
solution. This approach also uses separate processing units or modules for dif-
ferent sort of computations such as Convolution module, Normalization module,
Pooling Module, including a custom DMA Configuration Module which controls
the data flow between each of these units with unique source and destination
addresses [27]. Here the processing units or modules are not connected in a back-
to-back fashion [27], like in our proposed model where the feature data can be
transferred through a streaming bus without any additional control logic.

In 2017, Bacis et al. [2] presented a pipelined and scalable dataflow implemen-
tation of Convolutional Neural Networks on FPGA. In this work [2,19], an idea

Modular Software Library for Effective HLS of CNNs 215

of a modular and scalable methodology was achieved by exploiting thee dataflow
pattern of convolutions, based on the acceleration techniques of Iterative Stencil
Loops. One of the main contributions of this paper is to provide each layer of
the CNN with a highly or parallelized methodology. This work resulted in the
comparison of two main CNNs datasets, namely USPS and CIFAR-10. The lat-
ter was compared with the latency of an accelerator proposed by a Microsoft
team using the same dataset [22], claiming a 3.36x acceleration over it. Bacis
et al. [2] used floating point for the parameters types through the iteration pro-
cess, which can be highly costly for these types of implementations. Lastly, the
code and sources of this experiment are not provided, which makes it difficult
to reproduce or to compare with further implementations.

In summary, compared to previous works, this work is the first one in which
some of the already proved-to-be-efficient techniques to accelerate CNNs in
FPGAs come together. Some of the techniques are the streaming architecture
[25], reduced data precision [4], modular approach [2], and exploiting parallelism
of the FPGAs [1].

4 Design Proposal

A streaming approach was chosen to create the design. This means that the data
gets streamed through the entire model, namely the images, kernels, weights,
and biases. The advantage of streaming the data in the inference process is that
each layer can be active the moment it receives the first value. In this way, the
subsequent layer does not have to wait for previous layer to send the data.

Each layer was implemented independently so that high modularity and cus-
tomization could be achieved. The block diagram is shown in Fig. 2 describes
the architecture of a fundamental CNN architecture that consists of one Con-
volutional layer, a max-pooling layer, one fully connected layer, and an output
layer. This architecture was chosen to appreciate the flow quickly.

The Direct Memory Access (DMA) is instructed by the Processing system
to start the streaming of the input image into the first layer. The first layer is
the Convolutional + ReLu layer, which also reads a kernel stream with all
the kernels that the convolution will use. When working with streaming data,
Line Buffers are a safe choice because they help to store the data temporarily
so that it does not get lost due to the streaming nature of the design. We also
used a Window with the kernel data loaded to slide it over the line buffer to do
each convolution operation.

The second layer is the max-pooling, where every feature map is compressed
and forwarded to the next layer. The Line Buffer and Window approach was
also used here to isolate each section of the array from where we want to find
the maximum value.

The Fully connected layer also receives a stream with the weights and
the biases. Line Buffers were also used in this layer to store the values tem-
porarily from the streams. For every output, the inputs are multiplied by their
corresponding weights and added to the bias. The sum of this result gets then
introduced into the sigmoid function.

216 H. G. M. Hernandez et al.

The output layer, is where all the outputs from the previous layer are
processed by the softmax function. After the output layer finishes, the stream
gets back into the DDR3 memory in non-blocking mode so that writing and
reading can be done in parallel. This way, the Processing System can choose the
maximum value of the output stream, thus completing the classification process.

 Streaming Data

Convolution + ReLU
Module

 Streaming Data

Max-pooling
Module

 Streaming Data

Fully Connected
Layer

 Streaming Data Output Layer

 Weights

 Biases

DMA

 Streaming Data

DMA

Processing
System

DDR3Interconnect

Kernels

Fig. 2. Block diagram: approach

5 Evaluation

Vivado High-Level Synthesis (HLS) was used to create the RTL code for each
layer. In this way, the user can use higher-level programming languages such as
C++, as well as some directives that help the compiler to optimize the design
according to the user’s need to obtain later RTL code. This RTL code got incor-
porated into Vivado 2018.3 in the form of a block diagram to generate the
bitstream. Later, Vivado SDK was used to test the design with a simple appli-
cation that feeds the image of a handwritten digit and waits for the result of the

Modular Software Library for Effective HLS of CNNs 217

Output Layer to later classify the image. For all the tests, the selected operating
frequency was of 100 MHz.

As one of the objectives of the current work is to provide an open-source
framework to accelerate CNNs, the chosen platform to implement the design
was the PYNQ-Z2 board (equipped with XC7Z020), due to its low cost and
increasing popularity.

Table 1. Utilization of each layer

Layer BRAM DSP FFs LUT

Convolution 0 4 3,005 7,802

Maxpool 2 0 3,201 7,754

Fully Connected 5 11 3,193 4,020

Output 3 14 5,100 9,638

Total 10 29 14,499 29,214

Percentage of resources used 4% 13% 13% 55%

Table 1, displays how many Block RAMs, digital signal processing blocks,
Flip Flops, and Look Up Tables each layer is using from the FPGA. The per-
centage shown at the bottom of the table represents the number of resources
used out of the total amount of the specific available resources in this FPGA.
For these results, the network is shown in Fig. 2 was translated into hardware.
The parameters of the network are as follows: An image from the MNIST dataset
(28× 28 dimensions) is fed into the convolutional layer, which has 16 5× 5 ker-
nels resulting in an output of the same number of images of 28× 28 dimensions.
The max-pool layer has a window size of 2× 2 and a stride also of 2. This means
that the output would be the same 16 images but of 14× 14 dimensions. The
next layer is then the fully connected layer, which outputs 1,000 values. Another
fully connected layer follows, converting the output to 10 values.

In another test, our model was compared to Bacis et al. [2]. They use a
very similar approach, as already mentioned in the related work. On our work,
however, the floating-point values were replaced by half-precision point values;
this is because of a size of 16 bits in the parameters of the CNNs, which was
proved to be very efficient [27]. The test case was conducted over the USPS
dataset, which also classifies handwritten digits. The architecture of the said
neural network is the following:

The dataset is composed of 16× 16 images, which are fed into the first con-
volutional layer, which has six outputs. The second layer is a max-pool with a
window size of 2× 2 and a stride of 2. The third layer is a convolutional layer
again but with six images as inputs and 16 outputs. These images are fed into a
fully connected layer that has ten outputs.

As it is shown in Table 2, we achieved a much smaller implementation, using
14x less BRAMs blocks, 81.1x less DSP slices, 9.8x less Flip Flops, and around

218 H. G. M. Hernandez et al.

7.7x less Look-Up Tables. The latency was also reported; this measurement also
took into consideration the time it takes for the DMA communication to take
place, which is configured with a 16-bit data width.

The trade-off comes in terms of latency, and this can be seen in Table 3. This
means that our proposed implementation is ideal for a small or portable device,
where the latency is not time-critical. This work provides an implementation
approximately 8 times slower than the one in Bacis et al. [2]. However, being
able to process 20,833 images per second, our implementation is still able to
comply with a lot of applications where timing is highly regarded.

Table 2. Comparison of utilization USPS dataset

Design BRAM DSP FFs LUT

Bacis et al. [2] 98 1,541 249,559 154,410

This work 7 19 25,431 20,131

Table 3. Comparison of performance USPS dataset

Design GFLOPS Image Latency (ms) Images/s

Bacis et al. [2] 5.2 .0058 172,414

This work 0.6 .048 20,833

6 Conclusion

In this work, an accelerator of CNNs was presented. The model has a streaming
architecture, is modular, has a reduced data precision, and exploits the par-
allelism of the FPGAs. The complete dataflow starts from a couple of C++
scripts that can be configured to create a custom layer from the CNN, to cre-
ate a hardware version of the CNN. RTL code gets generated with the help of
Vivado HLs, and the resulting IP can be used in a block diagram to configure
the Programmable Logic in a ZYNQ device. With this approach, we show an
improvement in resource utilization concerning a similar approach. The model
is going to be open-source for everyone to contribute and use.

6.1 Future Work

The tool flow showed throughout this paper is planned to be an automatized one,
which means that we are planning to provide scripts to make more accessible the
porting process from previously created CNNs on software to a hardware model
ready to be implemented. Also, a PYNQ interface is planned, to facilitate even
more the resulting applications of the tool, so that the users can accelerate their
CNNs and test them in user-friendly interfaces like Jupyter Notebooks [15] for
example.

Modular Software Library for Effective HLS of CNNs 219

References

1. Abdelouahab, K., Pelcat, M., Serot, J., Berry, F.: Accelerating CNN inference on
FPGAs: a Survey (2018). arXiv: 1806.01683 [cs.DC]

2. Bacis, M., Natale, G., Del Sozzo, E., Santambrogio, M.D.: A pipelined and scal-
able dataflow implementation of convolutional neural networks on FPGA. In: 2017
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2017, pp. 90–97 (2017)

3. Bhandare, A., Bhide, M.V., Gokhale, P., Chandavarkar, R.: Applications of Con-
volutional Neural Networks (2016)

4. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R. Bengio, Y.: Binarized neural
networks: training deep neural networks with weights and activations constrained
to +1 or −1 (2016). arXiv: 1602.02830 [cs.LG]

5. Farabet, C., et al.: Hardware accelerated convolutional neural networks for syn-
thetic vision systems. In: Proceedings of 2010 IEEE International Symposium on
Circuits and Systems, May 2010, pp. 257–260 (2010)

6. Fu, C., Zhu, S., Su, H., Lee, C.-E., Zhao, J.: Towards fast and energy-efficient
binarized neural network inference on FPGA (2018). arXiv: 1810.02068 [cs.LG]

7. Fukushima, K., Miyake, S.: Neocognitron: a new algorithm for pattern recognition
tolerant of deformations and shifts in position. Pattern Recogn. 15, 455–469 (1982)

8. Guan, Y., et al.: FP-DNN: an automated framework for mapping deep neural net-
works onto FPGAs with RTL-HLS hybrid templates. In: 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), May 2017, pp. 152–159, IEEE Computer Society, Los Alamitos (2017).
https://doi.ieeecomputersociety.org/10.1109/FCCM.2017.25

9. Hailesellasie, M., Hasan, S.R., Mohamed, O.A.: MulMapper: towards an automated
FPGA-Based CNN processor generator based on a dynamic design space explo-
ration. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS),
May 2019, pp. 1–5 (2019)

10. Hao, Y.: A general neural network hardware architecture on FPGA (2017).
arXiv: 1711.05860 [cs.CV]

11. Huang, C., Ni, S., Chen, G.: A layer-based structured design of CNN on FPGA.
In: 2017 IEEE 12th International Conference on ASIC (ASICON), October 2017,
pp. 1037–1040 (2017)

12. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neu-
ral networks: training neural networks with low precision weights and activations
(2016). arXiv: 1609.07061 [cs.NE]

13. Iandola, F.N., et al.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <0.5MB model size (2016). arXiv: 1602.07360 [cs.CV]

14. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093 (2014)

15. Kluyver, T., et al.: Jupyter notebooks - a publishing format for reproducible com-
putational workflows. In: Loizides, F., Scmidt, B. (eds.) Positioning and Power in
Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press, Ams-
terdam (2016). https://eprints.soton.ac.uk/403913/

16. LeCun, Y., et al.: In: Touretzky, D.S. (ed.) Advances in Neural Infor-
mation Processing Systems 2, pp. 396–404. Morgan-Kaufmann, Burling-
ton (1990). http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-
a-back-propagation-network.pdf

http://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1810.02068
https://doi.ieeecomputersociety.org/10.1109/FCCM.2017.25
http://arxiv.org/abs/1711.05860
http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1408.5093
https://eprints.soton.ac.uk/403913/
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf

220 H. G. M. Hernandez et al.

17. Leon, V., et al.: A tensorflow extension framework for optimized generation of
hardware CNN inference engines in technologies 2020, MDPI 2020. https://www.
mdpi.com/2227-7080/8/1/6

18. Li, P., Li, J., Wang, G.: Application of convolutional neural network in natural
language processing. In: 2018 15th International Computer Conference on Wavelet
Active Media Technology and Information Processing (ICCWAMTIP), December
2018, pp. 120–122 (2018)

19. Natale, G., Bacis, M., Santambrogio, M.D.: On how to design dataflow FPGA-
based accelerators for convolutional neural networks. In: 2017 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), July 2017, pp. 639–644 (2017)

20. Nielsen, M.: Neural Network and Deep Learning. Determination Press. http://
neuralnetworksanddeeplearning.com/

21. Noronha, D.H., Salehpour, B., Wilton, S.J.E.: LeFlow: enabling flexible FPGA
high-level synthesis of tensorflow deep neural networks (2018). arXiv: 1807.05317
[cs.LG]

22. Ovtcharov, K., et al.: Accelerating deep convolutional neural networks using spe-
cialized hardware, February 2015. https://www.microsoft.com/en-us/research/
publication/accelerating-deep-convolutional-neural-networks-using-specialized-
hardware/

23. Solovyev, R.A., Kalinin, A.A., Kustov, A.G., Telpukhov, D.V., Ruhlov, V.S.:
FPGA Implementation of Convolutional Neural Networks with Fixed-Point Cal-
culations (2018). arXiv: 1808.09945 [cs.CV]

24. Umuroglu, Y., et al.: FINN. In: Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays - FPGA 2017 (2017). http://dx.
doi.org/10.1145/3020078.3021744

25. Venieris, S.I., Kouris, A., Bouganis, C.-S.: Toolflows for mapping convolutional neu-
ral networks on FPGAs: a survey and future directions (2018). arXiv: 1803.05900
[cs.CV]

26. Wang, E., Davis, J.J., Cheung, P.Y.K.: A PYNQ-based framework for rapid
CNN prototyping. In: 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2018, p. 223 (2018)

27. Ma, Y., Suda, N., Cao, Y., Seo, J., Vrudhula, S.: Scalable and modularized RTL
compilation of Convolutional Neural Networks onto FPGA. In: 2016 26th Interna-
tional Conference on Field Programmable Logic and Applications (FPL), August
2016, pp. 1–8 (2016)

28. Zaheer, R., Shaziya, H.: GPU-based empirical evaluation of activation functions in
convolutional neural networks. In: 2018 2nd International Conference on Inventive
Systems and Control (ICISC), January 2018, pp. 769–773 (2018)

https://www.mdpi.com/2227-7080/8/1/6
https://www.mdpi.com/2227-7080/8/1/6
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://arxiv.org/abs/1807.05317
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
http://arxiv.org/abs/1808.09945
http://dx.doi.org/10.1145/3020078.3021744
http://dx.doi.org/10.1145/3020078.3021744
http://arxiv.org/abs/1803.05900

HLS-Based Acceleration Framework for Deep
Convolutional Neural Networks

Ashish Misra and Volodymyr Kindratenko(B)

University of Illinois, Urbana, IL 61801, USA
{ashishm,kindrtnk}@illinois.edu

Abstract. Deep Neural Networks (DNNs) have been successfully applied in
many fields. Considering performance, flexibility, and energy efficiency, Field
Programmable Gate Array (FPGA) based accelerator for DNNs is a promising
solution. The existing frameworks however lack the possibility of reusability and
friendliness to design a new network with minimum efforts. Modern high-level
synthesis (HLS) tools greatly reduce the turnaround time of designing and imple-
menting complex FPGA-based accelerators. This paper presents a framework for
hardware accelerator for DNNs using high level specification. A novel architec-
ture is introduced that maximizes data reuse and external memory bandwidth.
This framework allows to generate a scalable HLS code for a given pre-trained
model that can be mapped to different FPGA platforms. Various HLS compiler
optimizations have been applied to the code to produce efficient implementation
and high resource utilization. The framework achieves a peak performance of 23
frames per second for SqueezeNet on Xilinx Alveo u250 board.

Keywords: Accelerator design · High level synthesis · FPGA

1 Introduction

Deep Neural Networks (DNNs) have made a profound impact on applications such
as image classification [1, 2] and speech recognition [3, 4]. However, they demand
extensive computations and impose extreme timing constraints because of their deep
topological structures, complicated cross-layer connections, and massive amounts of
data to process. As a result, it becomes challenging to achieve high performance and good
energy efficiency when mapping DNNs onto generic computing systems. To mitigate
this problem, many hardware (HW) accelerators for DNN inference have been explored.
Among these designs, Field-Programmable Gate Array (FPGA) based accelerators have
gained great popularity due to their reconfigurability, massive fine-grained parallelism,
and performance per watt advantage.

The extreme scale integration of modern system on-chip (SoC) and burgeoning
design complexity of emerging applications has made it imperative to design at a higher
level of abstraction in order to achieve high productivity. To manage this issue, high-
level synthesis (HLS) tools have emerged to allow application developers to describe
the hardware accelerator using common software (SW) programming languages, such
as C/C++, by automatically generating RTL from behavioral descriptions [5, 7].

© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 221–231, 2020.
https://doi.org/10.1007/978-3-030-44534-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_17&domain=pdf
http://orcid.org/0000-0002-8626-5602
http://orcid.org/0000-0002-9336-4756
https://doi.org/10.1007/978-3-030-44534-8_17

222 A. Misra and V. Kindratenko

A typical DNN architecture has multiple layers that extract features from the input
data. Convolution is the most computationally expensive function which requires mil-
lions of floating-point operations (FLOPs) in these networks. Thus, it needs a good
accelerator architecture which should balance maximum memory access and computa-
tion and software linkage to DNN frameworks. Currently, many open-source software
frameworks have been released for DNN research but most of them suffer from scala-
bility problems. Existing FPGA-based convolutional neural network (CNN) accelerator
designs primarily focus on optimizing the computational resources without considering
the impact of the external memory transfers or optimizing the external memory transfers
through data reuse [5], or on optimizing only the convolution layers [8].

To address the above-mentioned problems, we present a systematic methodology
for maximizing the throughput of an FPGA-based accelerator for an entire DNN model
consisting of convolution, pooling and certain layers executed in software. In this paper,
we describe a framework, which starts from a trained network (Caffe/TensorFlow) and
generates a deployable accelerator for image classification. The entire compilation pro-
cedure is end-to-end and automated, which makes it possible for DNN researchers and
users to use FPGA as a powerful device to perform model inference. In this paper, we
introduce this novel architecture and provide the following contributions:

1. A configurable streaming framework for DNN accelerators that exploits operator
level, loop level, input channel and output channel parallelism.

2. Automatically generated verification network in C++ that allows users to test the
correctness of the design. The framework can be exploited either as individual kernels
or as a set of layers scheduled on the hardware.

3. The framework allows to use certain layers asHWand certain layers as SW,providing
the designer with a choice of possible configurations.

2 Related Work

The analysis of a good accelerator design in the context of DNNs should be based on
three factors: (i) Number of frames per second (FPS) achieved at run-time; (ii) Flexibility
of the design to handle many classes of DNNs; and (iii) Minimum loss of accuracy for
classification of an image with dataset with hundreds of classes. We only focus on the
related work that have demonstrated at least two of these requirements.

Shawahna et al. [9] present an extensive comparison of accelerator designs for
FPGAs; but they do not consider first and third factor in their comparison. Guan et al.
[8] present an extensive framework showing VGG-19, ResNet-152 and LSTM-LM; but
they do not report latency or FPS obtained after deployment. Qiu et al. [10] report the
comparison of latency for VGG16-SVD network for FPGA, CPU and GPU. The latency
reported is 224.60 ms and total operations is 30.76 giga operations (GOPs), hence the
overall performance is 136.97GOPs/second (GOPS). The FPS reported is 4.45 for 16-bit
quantized weights and 5.88 for 8-bit. While this work demonstrates the best possible
frame rate for a large network, it still does not report the accuracy of the network after
quantizing the weights. Also, the authors modified VGG-16 to VGG16-SVD, hence

HLS-Based Acceleration Framework for Deep Convolutional Neural Networks 223

the actual 30.76 GOPs parameter have been downsized. Zhang et al. [11] also report
158.8 ms for VGG16-SVD network. This is a significant improvement as compared to
previous results, but the authors also do not report the FPS. Suda et al. [12] also present
the latency of VGG-16 as 651.2 ms. This work reports all three factors and can be used
for comparison.

Using the fixed-point data types requires that trained weights must be quantized
as reported by Song H. et al. [13]. This work however shows that with appropriate
quantization of the weights, acceleration can be achieved at the expense of accuracy.
Xilinx ml-suite [14] reports the best possible performance of 4127 images/sec on int8
data type with GoogleNet.

Other optimizations that can be applied include: (1) Algorithmic optimizations for
convolution operations, for example, the core of computation engine can be designed
using aWallace tree [6] or a systolic array.Ourwork focuses on balanced tree formultiply
and accumulate (MAC) int16 operations. (2) Dataflow optimizations for maximum
memory bandwidth. The dataflow model requires that there is a non-stop dataflow from
memory-in to memory-out with maximum data transfer in each cycle. The work in [6]
introduces a roof-line model for analysis of the design for memory throughput. Authors
in [15] show how efficiently streaming can be applied in the design.

3 Proposed Design

3.1 Architecture Design

Here we describe the proposed design that exploits the concurrency features intrinsic in
convolution function. Figure 1 shows each unit and function in the proposed architecture.
The design works on 128 input channels, 64 output channels and kernel size,wsize, either
3 or 1. The complete module as shown in Fig. 1 is instantiated four times, allowing to
compute 256 output channels concurrently. The weight file obtained after quantization
is stored as int16 and each weight is multiplied by 64. The value of 64 is chosen based
on that no layer in SW shows underflow or overflow. No change is made to the input
image. Multiplication is carried out in int16 but results are maintained as int for bias
addition and finally divided by 64 to scale down the values to int16. Next, we describe
the HW and SW units that are used to implement the network.

Funtion_0: The first layer of each network is different, for example, the kernel size
can vary from 1 to 11, the number of input channels is usually 1 or 3 and the input
dimension can be arbitrary high as 448. Hence this layer can be executed in the SW or
HW framework, depending on its complexity. The first layer requires significant amount
of MAC operations; hence it is better to design a new kernel customized for parameters.

HW_Interface_1: The proposed architecture has been built on the dataflow model
(recognized by #pragma HLS Dataflow), which allows to concurrently access non-
overlapping data stored in different memory banks. Hence input data and weight data for
a layer have been placed in two DDR memory banks and concurrently accessed using
AXI4 interface as shown in Fig. 1.

224 A. Misra and V. Kindratenko

HW_Unit_1: The first two functions in the design are accessing data from each DDR
bank and convert it to 128 input streams and 128 weight streams. The weight streamer
saves the data in on-chip buffer (wgt_buff[128][64][9]) and then streams are created in a
different loop structure. The aim of using the wgt_buff is to initialize the streams to zero
if the number of input channels is less than 128. Since the size of the input data is larger
than the weight data, more cycles can be spend checking the number of channels and
creating a second loop structure in the stream_weight() function. Each of the streams is
mapped to FIFO which can be mapped to either LUTs or BRAMs present on the chip.

Computation units Computation units… 128 Mult and Adder Trees …
128 AXI streams out

Input Register file Weight Register fileParallel load

128 line Input Cache 128 line Weight
Cache

Pad zeros in weight cache if input
channel < 128

Input Streamer
128 AXI streams out

Weight Streamer
128 AXI streams out

DDR Memory 1
Single AXI port

DDR Memory 2
Single AXI portParallel load (HW_Interface_1)

Adder Computation units
One streaming functions to add

128 streams

Output_function completes 128 input channels and 64 output channels
tmp_buff[64*55*55] is set to zero when all input channels are completed(HW_Unit_4)

Fused Pooling layer same as above with single axi stream(HW_unit_5)

Scheduler: Tiling the channels (HW_unit_7)

First layer of each network has different configurations, hence this layer is executed in
SW or in HW (Function_0)

HW_Unit_2

Parallel load(HW_Unit_1)

HW_Unit_3

Dataflow_call(HW_unit_6)

Network_FSM (HW_unit_8)

Fig. 1. Dataflow representation for convolution and pooling layer.

HLS-Based Acceleration Framework for Deep Convolutional Neural Networks 225

HW_Unit_2: This unit contains 128 identical convolutional functions, each with a
different stream interface. This is because streams are static in high level synthesis
flow. Hence 256 streams (one input and one weight) from HW_function_1 reach to 128
concurrent computation units.

There are primarily three objectives to be achieved in this unit. The line buffer
receives the data from a stream which should not be stalled as shown in Algorithm 1.
This is achieved by overlapping the computation and stream access (as multiplication
and loading are parallel). The loading of wgt_mac_0 for computation; streaming out the
data; and loading new line in the line buffer is done by pipelining. The kernel weights
should not be loaded again and again for the output channel. This is achieved by looping
for 64 or less output channels.

Algorithm 1. Convolution
1) Input: Two axi streams for each convo() function
2) Given: osize, stride, padding, wsize, ochan, ichan .
3) Output: one output stream
4) for yy = 0 to osize:
5) for ochan_no = 0 to ochan:
6) load wgt_mac register
7) for xx = 0 to osize:
8) if wsize == 1:
9) call convo_1d()
10) else:
11) load wgt_mac_0 from line buffer
12) stream_convo_out_1_0 << call convo_2d()
13) if ochan_no == 0:
14) load line buffer next line
15) call rotate line buffer

Once the line buffer is loaded, instead of completing an input channel frame, first
line of 64 output channels is computed and then the line buffer is updated. If there are
more than 128 input channels, a temporary buffer is used to store the data and this data
is accessed again for computing all the input channels.

The third objective in the computation algorithm is to achieve a pipelined MAC
tree for sum of product operation. The HLS tool can produce a balanced tree if integer
operations are performed, hence objective is achieved in the synthesis process. The delay
of the tree is given as worst delay of an operator. Though the latency of the tree may be
high, the initiation interval is one, which means next input can be taken after one cycle.

HW_Unit_3: This unit contains one streaming function to add data coming from 128
computation units and produces one output stream.

HW_Interface_2: The two DDR memories discussed in HW_Interface_1 were used
for getting input data. Similarly, remaining two DDR memories are used for storing
output and network parameters data. Temporary buffer can also be utilized if enough
BRAMs are present in the chip and one DDR bank can be eliminated. Since this design
computes 64 output channels and 128 input channels, this means if 1024 input channels
are present, then intermediate tile data of size 64*isize*isize has to be stored in a DDR
bank (temp_buff). This DDR bank should be accessed when adding the values to the

226 A. Misra and V. Kindratenko

next tile computed. All the parameters of the network such as weight offset and bias
offset are precomputed and copied to DDR 4.

HW_Unit_4: This unit receives one stream fromHW_Unit_3 and contains one function
to read/write data from twoDDRbanksor temporarybuffer (para_buff). Thebias is added
at this stage and data is stored back in one of the DDR banks or para_buff. Algorithm 2
demonstrates this process. This unit also checks whether pooling is required, if yes then
stream data goes to a pooling function else the polling unit is bypassed.

1) Input: One axi stream. Given: osize, ochan,
bias buffer, bb, ichan_en, aa, out_offset.

2) Output: Data written to DDR banks
declare out_buff for burst use

3) for yy = 0 to osize:
4) for ochan_no = 0 to ochan:
5) for xx = 0 to osize:
6) datatype_inh sum = 0;
7) datatype_inh sum1 = 0;
8) datatype_inh dp_0;
9) stream_adder_out_0 >> dp_0;
10) if bb > 0 :
11) sum1 = dp_0 + para;
12) else:
13) sum1 = dp_0;
14) para_buff[xx] = sum1;
15) sum = sum1 + bias[ochan + aa*ochan_fac] ;
16) if sum > 0 :
17) out_buff[xx] = sum >> 64;
18) else:
19) out_buff[xx] = 0;
20) if bb == ichan_index-1:
21) if (pool_on ==1):
22) Stream_out_pool_fused << out_buff[xx];
23) else:
24) write_ddr3_with_burst();
25) write_ddr4_with_zero();
26) para_buff_with_zero();
27) else:
28) write_ddr4with data();

Algorithm 2. DDR Access

Algorithm 2 works in conjunction with Algorithm 3. It takes bias buffer which is
pre-loaded, bb variable which is dependent on the number of input channels (bb > 0 if
ichan > 128), aa variable which is dependent on the number of output channels (aa > 0
if ochan > 64), and ichan_en variable that defines the number of iteration for all the input
channels. The streams bring the data in, which is then summed up with temporary data
from previous iteration, bias is added, relu activation is applied, last iteration is checked,
data is written to DDR3 bank and para_buff is initialized to zero again.

HW_Unit_5: This unit contains three functions to complete pooling in a fused manner.
First function receives one stream from previous unit and caches it in a small memory.
Second function does the pooling operation and third function stores the data in the
DDR. If a convolution unit with stride of 2 is required, this unit is enabled as well.

HLS-Based Acceleration Framework for Deep Convolutional Neural Networks 227

HW_Unit_6: This unit defines one function that calls all the above units in a dataflow
model. Total of (128 × 4) 512 input streams, (128 × 4) 512 weight streams, 4 adder
streams, 4 output streams, 12 pooling streams, are defined in this function. This function
connects all the streamswith one input function and one output function, 512 convolution
functions 4 adder functions, 4 pooling functions. All the units are instantiated in this
function.

HW_Unit_7: This unit, calls the HW_unit_6 in a sequential way for completing one
layer. Since the architecture works on input and output of tile size 128× 256, the sched-
uler calls HW_unit_6. Suppose the output channels are less than 256, then ochan_index=1,
if ochan > 256, then ochan_index= ochan/256 (Algorithm 3).

If ichan < 128, then ichan_index=1, else it is shifted by 7. The call function (line 8)
takes weight offset (aa * ichan * outchan * wsize * wsize + bb * 128 * wsize * wsize +
wgt_offset) and output offset (aa * outchan * osize * osize + outoffset) as arguments.

Algorithm 3. Scheduler (layer_128ic_256oc())
1) Input: DDR pointers.
2) Given: osize, stride, padding, wsize, ochan, out_offset, wgt_offset.

Output: one output streams
3) Delare ochan_index, outchan, ichan_index
4) if ochan <= 256:
5) ochan_index = 1;
6) out_chan = ochan;
7) else:
8) ochan_index = ochan >> 8;
9) outchan = 256;
10) if ichan <= 128:
11) ichan_index = 1;
12) else:
13) ichan_index = ichan >> 7;
14) if (ochan <= 256):
15) ochan_fac = ochan >> 2;
16) else:
17) ochan_fac = 64;
18) for aa = 0 to ochan_index:
19) for bb = 0 to ichan_index:
20) call hw_unit_6

HW_Unit_8: All the layers are completely scheduled by an FSM designed in HW.
A python script generates this FSM along with weight offset, bias offset and output
offset for each layer. The generated HW creates FIFO channels for each parameter in
HW_unit_7. Such an FSM helps with DDR bank swapping and no host intervention is
required (Algorithm 4).

Vivado HLS schedule reports the initiation interval for each function, which deter-
mines how well the dataflow is pipelined. The initiation intervals for each function
reported are convo (1 cycle), addstreams (1 cycle), stream_in (1 cycles), stream_out (1
cycle), stream_weight (1 cycles) and pooling (1 cycle).

228 A. Misra and V. Kindratenko

Algorithm 4. Layer Scheduler
1) Input: Input data, complete weights,
2) Given: externally generated FSM with weight and output offsets
3) Output: data for last layer
4) Restart FSM,
5) Load bias in bias buffer,
6) Call HW_unit_6
7) If last state is reached, go to 10
8) Swap the DDR pointers
9) Go to 6 for next layer,
10) For next image wait for signal to toggle and go to 4

From a given trained Caffe-based network, weight and network parameters are
extracted to generate the complete network scheduler. A python program has been writ-
ten to generate all the linear weights and output offset. The weights are then quantized
using scripts and standard deviation process. This process is discussed in Algorithm 5.

Algorithm 5. Network Scheduler
1) Input: Input data, complete weights,
2) Given: extracted weight file, paramters and network from

caffe model/tensorflow
3) Perform offline quantization to generate new weight file.
4) Output: image class
5) Load new image
6) Multiply each weight each 64 and store in DDR banks as int16.
7) Call layer scheduler, Copy the output for last layer
8) Call the tensorflow function for last layer or output the results
9) Go to 5 for a new image

Table 1 shows that 29% FF, 78% LUT, 52% DSP, 54% BRAM and 44% URAM are
utilized in the design. The entire design is set to synthesize at 200MHz, but the functions
report a frequency of 300 MHz. There is still possibility that more computation can be
done, however maintaining the LUTs resources utilization at this level becomes difficult.

3.2 Verification Setup and Executable Setup

Firstly, the implemented DNN is verified in Caffe/TensorFlow and tested for ten images
froma traineddata set (trained.caffemodel) and aDNNarchitecturefile (deploy.prototxt).
The complete network is then rebuild in C++ using a python script from the parameters
extracted from deploy.prototxt file. The SW emulation of written HLS code is tested in
this C++ network. Each layer testing can also be done using the C++ layer data. In this
work, the reported results are on Vivado SDx with all layers in HW.

HLS-Based Acceleration Framework for Deep Convolutional Neural Networks 229

Table 1. Resource consumption of each function in Vivado HLS.

FFs LUTs DSPs BRAMs URAM

Stream_in x1 14555 38191 128 0 0

Stream_wgt 13682 38191 38 0 512

Mac tree/Convo_0
x512

609/1571 105/1971 9/11 0/5 0

Stream_adder 0 x4 1610 5465 1 0 0

Stream_out x4 346 917 2 2 0

Stream_out_pool_fused
x4

1231 2741 0 16 0

Layer_128ic_64oc 896837 1249546 5845 2648 512

Kernel_7_layer (first
layer)

107284 91492 648 280 0

CNN (top) 1018689
(29%)

1350874
(78%)

6501
(52%)

2945
(54%)

704
(55%)

Total on Alveo u250 3456000 1728000 12288 5376(18 Kb) 1280

4 Results

The design has been implemented with Xilinx SDx 2019.1 on Xilinx Alveo u250 board.
We present the results of SqueezeNet tested on Alveo u250. Table 3 shows the FPGA
execution time for all layers executed in HW. The total number of MAC operations in
SqueezeNet is 861.34 M [16] and the total convolution operations comprising of MACs
result in 861.34 * 2=1722.68 M. The total comparators are 9.67 M and the additions
in other layers are 226 K. This yields to total operations as 1732.546 MFLOPs. For
calculating the GFLOPS, we first calculate the total number of operations in network
and then divide this by the execution time 1732.546/0.043 = 40.291 GFLOPS.

Four processing units use 5845 DSP, out of which 5333 can be active at any time
with kernel size 3 is running. Int16 takes one DSP slice hence the peak performance
achieved is 5333 × 200 × 106 = 1066.6 GFLOPS. Similarly, when kernel size 1, peak
performance is 128 × 4 × 200 × 106 = 102 GFLOPS. The layer 1 has kernel size 7
and is designed separately for achieving better performance. The same dataflow model
architecture has been used with a configuration of three input channels and 24 output
channels. Similarly, when kernel size 7 is running, peak performance is 648 × 200 ×
106 = 129 GFLOPS.

The verification results from the execution onVivado SDx [17] shows top-1 accuracy
for the SqueezeNet reported in Caffe framework as 57.5%. Our framework shows an
additional loss of 1.2% due to the quantization process applied and int16 used as the
base data type.

230 A. Misra and V. Kindratenko

Table 3. Comparison of HW and SW based on SqueezeNet

Platform Type Latency (sec) FPS

Caffe CPU Intel
i7-6700 K

0.1701 5

FPGA Alveo u250 0.043 23

5 Conclusion

In this work we have successfully tested SqueezeNet in our framework with a frequency
of 200 MHz. We have achieved a frame rate of 23 frames/second. The accelerator and
the verification setup have been generated using python scripts which allow user the
configurability and scalability of input and output channels with kernel size of 3 or 1.

Acknowledgments. This work is funded by the National Science Foundation’s Major Research
Instrumentation program, grant #1725729. We thank Yuan Ma for his help in setting up the
simulation using Caffe and Tanitpong Lawphongpanich for his contribution with TensorFlow
testing.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

2. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput.
Vision 115(3), 211–252 (2015)

3. Graves, A., Mohamed, A.-R., Hinton, G.: Speech recognition with deep recurrent neural net-
works. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6645–6649. IEEE (2013)

4. Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional
neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process.
22(10), 1533–1545 (2014)

5. Sankaradas, M., et al: A massively parallel coprocessor for convolutional neural networks.
In: 20th IEEE International Conference on Application-Specific Systems, Architectures and
Processors, ASAP 2009, pp. 53–60. IEEE (2009)

6. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based accelerator
design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 161–170. ACM (2015)

7. Ovtcharov, K., Ruwase, O., Kim, J.-Y., Fowers, J., Strauss, K., Chung, E.S.: Accelerating deep
convolutional neural networks using specialized hardware. Microsoft Research Whitepaper
2(11), 1–4 (2015)

8. Guan, Y., et al.: FP-DNN: an automated framework for mapping deep neural networks onto
FPGAs with RTL-HLS hybrid templates. In: 2017 IEEE 25th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM), pp. 152–159. IEEE
(2017)

HLS-Based Acceleration Framework for Deep Convolutional Neural Networks 231

9. Shawahna, A., Sait, S.M., El-Maleh, A.: FPGA-based accelerators of deep learning networks
for learning and classification: a review. IEEE Access 7, 7823–7859 (2018)

10. Qiu, J., et al.: Going deeper with embedded FPGA platform for convolutional neural network.
In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 26–35. ACM (2016)

11. Zhang, J., Li, J.: Improving the performance of OpenCL-based FPGA accelerator for convo-
lutional neural network. In: Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 25–34. ACM (2017)

12. Suda, N., et al: Throughput-optimized OpenCL-based FPGA accelerator for large-scale
convolutional neural networks. In: Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 16–25. ACM (2016)

13. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015)

14. https://www.xilinx.com/products/acceleration-solutions/xilinx-machine-learning-suite.html.
Accessed 21 Aug 2019

15. Aydonat, U., O’Connell, S., Capalija, D., Ling, A.C., Chiu, G.R.: An OpenCLTM deep
learning accelerator on arria 10. In: Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 55–64. ACM (2017)

16. https://dgschwend.github.io/netscope/#/preset/squeezenet. Accessed 21 Aug 2019
17. https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1027-sdsoc-

user-guide.pdf. Accessed 21 Aug 2019

http://arxiv.org/abs/1510.00149
https://www.xilinx.com/products/acceleration-solutions/xilinx-machine-learning-suite.html
https://dgschwend.github.io/netscope/#/preset/squeezenet
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1027-sdsoc-user-guide.pdf

FPGA-Based Computational Fluid
Dynamics Simulation Architecture via
High-Level Synthesis Design Method

Changdao Du(B), Iman Firmansyah, and Yoshiki Yamaguchi

University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
duchangdao@hpcs.cs.tsukuba.ac.jp

Abstract. Today’s High-Performance Computing (HPC) systems often
use GPUs as dedicated hardware accelerators to meet the computation
requirements of applications such as neural networks, genetic decoding,
and hydrodynamic simulations. Meanwhile, FPGAs have also been con-
sidered as alternative suitable hardware accelerators due to their advanc-
ing computational capabilities and low power consumption. Moreover,
the developments of High-Level Synthesis (HLS) allow users to gener-
ate FPGA designs directly from mainstream languages, e.g., C, C++,
and OpenCL. However, writing efficient high-level programs with good
performance is still a time-consuming task, and the lack of knowledge
about FPGA architecture can lead to poor scalability and portability. In
this paper, we propose an architecture design for Computational Fluid
Dynamics (CFD) simulations based on the HLS method. Our design can
adjust the performance by utilizing the parallelism inside both tempo-
ral and spatial domains of CFD simulations. We also discuss the data
reuse buffer optimization choices while considering the potability of HLS
codes. A performance model is introduced to guide the design space
exploration under the constraints of available resources on FPGA. We
evaluate our design via a Xilinx VCU1525 FPGA board and compare the
results with other state-of-the-art studies. Experiment results show that
VCU1525 can achieve 629.6 GFLOP/s in D2Q9 LBM-BGK model and
the design and optimization methods can be used for developing various
CFD applications.

Keywords: HPC · FPGA · HLS · CFD

1 Introduction

Recently, the heterogeneous High-Performance Computing (HPC) systems have
received growing attention from both academic and industrial fields. In addi-
tion to standard CPUs, these computing systems use dedicated accelerators to
improve the computing capabilities to meet the needs of high-performance appli-
cations. Among these hardware devices, GPUs have been proven to be the most
popular accelerators in the last decade due to their parallel architecture and
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 232–246, 2020.
https://doi.org/10.1007/978-3-030-44534-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_18

FPGA-Based CFD Simulation via HLS 233

high memory bandwidth [1,2]. However, not all applications can fully utilize the
advantage of these features. The high memory bandwidth of GPUs is based on
the wide memory bus which requires the coalesced memory access patterns. This
often places restrictions on the data layout of applications. Meanwhile, branch
instructions also have a significant impact on the performance of unified GPU
cores.

On the other hand, many recent studies have shown that FPGAs can provide
GPU-like computing capabilities and are superior in power efficiency, making
FPGAs a strong competitor in the HPC field as hardware accelerators [3,4].
However, the traditional hardware-oriented FPGA development environment has
discouraged mainstream users in the HPC field. To solve this problem, a bunch
of research is devoted to improving the usability of FPGA development approach
[5,6]. High-Level Synthesis (HLS) tools can generate hardware designs directly
from popular high-level languages such as C, C++, and OpenCL that enables
designers to focus on describing the behavior of architectural questions rather
than specific hardware operations.

However, porting software-based code to HLS tools often fails to achieve the
expected performance on FPGAs. This is mainly due to the following reasons.
These high-level languages were originally designed for developing programs on
CPUs, rather than describing the hardware structure. Using these software-based
languages to develop hardware makes traditional software development tech-
niques inapplicable. In addition, designing efficient FPGA structures requires
the flexible use of special hardware components, e.g., shift-registers, FIFOs, and
block memories, which were not initially supported by software-based languages.
Finally, due to the flexibility of FPGAs, it allows developers to explore large
design spaces with various choices of HLS optimizations strategies. Choosing
the suitable combinations of these strategies remains a time-consuming task.

Computational Fluid Dynamics (CFD) predicts and analyzes fluid flows by
numerically solving the conservation equations of fluid motion. CFD simulations
have been widely adopted in many scientific and engineering fields. In this paper,
we propose an HLS-based design for implementing CFD simulations on FPGA,
and choose a typical CFD method, the Lattice Boltzmann Method (LBM), to
illustrate our design. The main contributions of this work are as follows:

– Our proposed design can exploit parallelism of CFD simulations in both spa-
tial and temporal domains. The exploration of design space can be charac-
terized by two main design parameters sunroll (spatial domain) and tunroll

(temporal domain). We can easily adjust these two parameters based on the
target FPGA hardware resources to expand simulation performance.

– We present a FIFOs and registers based data reuse buffer structure with the
consideration of portability between different HLS compilers.

– A performance model is devised to guide the design parameters tuning under
the target FPGA resource constraints.

– We evaluate our framework on a VCU1525 FPGA board with the Xilinx HLS
programming environment.

234 C. Du et al.

2 Background

2.1 Lattice Boltzmann Method

Lattice Boltzmann Method (LBM) is a typical CFD method which uses to sim-
ulate complex fluid flows [7]. The process of LBM is founded on solving the
Boltzmann transport equation.

∂f

∂t
+ #»u · ∇f = Ω (1)

where f(#»x , t) is the distribution function, which means the expected value of
finding a particle in position #»x at time t. #»u represents the particle velocity and
Ω is the collision operator. LBM simplifies Eq. 1 by restricting particles into
a multi-dimensional lattice grid. The particle movement is discretized into two
main stages, i.e., collision and propagation. Figure 1 shows a two-dimensional
LBM model (D2Q9) which means the particles inside one lattice can move along
9 possible directions. These 9 velocity vectors are described as

#»ei =

⎧
⎪⎨

⎪⎩

(0, 0) i = 0
(1, 0), (−1, 0), (0, 1), (0,−1) i = 1, 2, 3, 4
(1, 1), (−1, 1), (−1,−1), (1,−1) i = 5, 6, 7, 8

(2)

Fig. 1. An example for LBM grid.

The simulation process of LBM is defined as

fi(#»x + #»e Δt, t + Δt) − fi(#»x , t) =
feq

i (#»x , t) − fi(#»x , t)
τ

(3)

where the left hand of the equation represents the propagation stage and right
is the collision stage. τ is the time relaxation factor calculated from the fluid
viscosity. The collision model is govern by the equilibrium distribution function
feq

i , which can be solved by

feq
i (#»x , t) = ωiρ + ρsi(#»u (#»x , t)) (4)

FPGA-Based CFD Simulation via HLS 235

where

si(#»u) = ωi

[

3
#»e · #»u

c
+

9
2

(#»e · #»u)2

c2
− 3

2

#»u · #»u
c2

]

(5)

ρ(#»x , t) =
8∑

i=0

fi(#»x , t), #»u (#»x , t) =
1
ρ

8∑

i=0

cfi
#»ei (6)

c is the lattice speed Δx
Δt , and the constant ωi are 4/9 for rest particles (i = 0), 1/9

for i = 1, 2, 3, 4 and 1/36 for i = 5, 6, 7, 8. We can summarize the implementation
algorithm of LBM as follows

Algorithm 1. Lattice Boltzmann Method
1: Initialization LBM distribution function fi

2: for time t = 0 ; t < Tend ; t = t + Δt do
3: for every lattice #»x in the simulation grid do
4: Calculate density ρ and velocity vector #»u (Eq. 6)
5: for every possible direction #»ei do
6: Calculate the equilibrium function feq

i (Eq. 4 and Eq. 5)
7: Calculate the new distribution fnew

i = 1
τ
(feq

i − fi) + fi (Eq. 3)
8: Update the particle fi(

#»x + #»e Δt, t + Δt) = fnew
i

9: end for
10: end for
11: end for

2.2 Related Works

Many studies have been focused on implementing LBM in various computing
platforms. Works in [8–10] relied on CPUs to achieve high performance at
that time. [8] first proposed a parallel LBM algorithm. Later studies [9] and
[10] improved the algorithm mainly from the aspects of cache usage, loop re-
arrangement, and memory consumption.

Nevertheless, due to the high parallel architecture and float-point perfor-
mance of GPUs, studies have found that GPU-based implementations are able
to provide one order of magnitude better performance [11–13] than general
CPUs. However, since LBM is heavily data intensive, their peak performance
is often bounded by the external memory bandwidth. Although GPUs have rel-
atively high bandwidth, the data movement in the collision and propagation
stages causes a large amount of non-coalesced memory accesses, which hurts
the bandwidth performance. [11] proposes a memory layout called Structure of
Arrays (SOA) that store discrete velocity data into separate arrays based on the
direction to increase data coalescence. [12] improves the previously mentioned
strategies by utilizing the shared memory and they observed that performing

236 C. Du et al.

non-coalesced read operations are faster than write operations. Other optimiza-
tions are described in [13]. The authors reduce the non-coalesced data accesses
while improving data locality through tiling, and the branch optimizations are
also discussed.

Currently, few researchers focused on implementing LBM directly on FPGA,
especially using the HLS method. [14] builds a FPGA-based HPC platform called
Maxwell and evaluated the performance of the platform with LBM simulation.
They tend to use LBM as a performance benchmark, hence, did not discuss
the optimization strategies in detail to efficiently utilize the characteristics of
LBM. A comprehensive and recent study of LBM simulations is shown in [15].
The authors proposed an optimized implementation of FPGA-based LBM sim-
ulation. Their design takes advantage of both spatial and temporal parallelism
inside LBM to exploit the FPGA pipeline architecture. The streaming comput-
ing they use also helps FPGA overcome the bandwidth bottleneck. However,
Their development method was based on their domain-specific language which
still used explicit pipeline delays and clock-cycles to synchronize the comput-
ing blocks. These low-level hardware description features prevent the way to
generalize the design to other similar applications.

3 Implementation

In this section, we first introduce the optimization strategies for parallel pro-
cessing LBM simulation. Then, we discuss the data reuse buffer design method.
Finally, we present the simulation architecture overview.

3.1 Parallelization

Regardless of the type of computing platform, the key to achieving high perfor-
mance in LBM simulation is to use the parallelism of LBM. Algorithm 1 consists
of two main loops. The inner loop traverses all the lattices in the simulation area.
In LBM, spatial parallelism can be exploited by unrolling this inner loop, i.e.,
processing multiple lattices in parallel at the same time step. The number of
lattices processed in parallel is equal to the spatial unroll parameter.

Since there is no data dependency for parallel processing lattices at the same
time step, the method based on spatial parallelism is an intuitive way to improve
the LBM performance. However, this method requires parallel access to multiple
data, and the target simulation area is often too large to fit in the high-speed
on-chip memory. Therefore, the external memory bandwidth of the computing
platform is evidently the performance bottleneck. The GPU-based implemen-
tations can achieve high performance through spatial parallelism due to their
large number of unified thread processors and extremely high external memory
bandwidth.

On the other hand, applying spatial parallelism method on FPGA can not
fully utilize the features of FPGA architecture. Compared to GPUs, FPGAs typ-
ically have lower external memory bandwidth. Instead of the number of thread

FPGA-Based CFD Simulation via HLS 237

processors, the parallelism of FPGA usually comes from the complexity of the
pipeline structure. These features however allow FPGAs to take advantage of
another type of parallelism inside LBM, namely temporal parallelism. Temporal
parallelism can scale performance with the same bandwidth requirement. The
outer loop in Algorithm 1 traverses 0 to the end of LBM simulation time. Tem-
poral parallelism can be exploited by unrolling the outer loop, i.e., computing
multiple time steps simultaneously. However, to complete the propagation stage
of LBM, a lattice needs data from its surrounding lattices, which can cause
a data dependency or loop-carried dependency issue when computing lattices
across different time steps. We can overcome this problem by utilizing FPGA on-
chip memory resource. FPGAs have a large amount of on-chip memory resources
that can be configured in various structures. This flexibility allows developers
to construct application-specific buffer structures to avoid data dependencies.
Figure 2 shows a detailed example to illustrate the idea.

Fig. 2. Cyclic buffers for two sequential time steps

At time T , we need to access data from 8 neighbors of lattice (x, y) during
the propagation stage. Therefore, we store these 9 lattices data (including lattice
(x, y) itself) into an on-chip buffer. Since there exist strong opportunities for data
reuse when performing LBM simulation in consecutive order, we can also store
more relevant lattices data into this buffer to reduce redundant external memory
accesses. For example, suppose we cache all lattices in the dark area (Fig. 2), and
then propagating lattice (x+1, y) only needs to load one new lattice (x+2, y+1)
from the external memory. After finishing the entire simulation of lattice (x, y) at
time T , the result can be sent to a replicated buffer structure which is responsible
for processing simulation at time T +1. As a result, simulations of lattice (x+1, y)
at time T and lattice (x − 1, y − 1) at time T + 1 are able to be computed in
parallel.

This is a well-known buffer design (also known as sliding window buffer) and
commonly used to construct a deep pipelined architecture on FPGAs. The reuse
buffer design has a significant impact on the performance of the LBM simulation.
We will describe the detailed design of our reuse buffer in the next part of this
section.

3.2 Data Reuse Buffer Design Analysis

Previous studies have mainly discussed how to use similar data reuse
buffer structure on FPGAs for exploiting temporal parallelism in stencil-like

238 C. Du et al.

applications with HLS method [16,17]. They choose to abstract the aforemen-
tioned reuse buffer as a shift-register based behaviour, that is, every time it shifts
the fresh data into the head of the shift-register and evicts the used data from
the shift-register’s tail, and the computing data are directly accessed from the
middle points of shift-register.

However, their shift-register based structure can only work well with the Intel
HLS environment. The reasons are as follows:

– The high-level shift-register behaviour description is generally synthesised to
a register-transfer-level or low-level implementation through the shift-register
IP core. Intel shift-register IP core [18] provide a support for accessing mul-
tiple data (called taps) at certain points of shift-registers, which other shift-
register IPs (e.g., Xilinx [19]) often do not have.

– “stall-free” mechanism. The large arrays declared by high-level languages are
often realized using the block-ram (BRAM) resources. Since BRAMs have
limited memory ports, parallel accessing data from BRAMs may cause stall
operations. Intel HLS compiler will automatically solve this problem by using
techniques e.g., double pumping or memory replication.

These features of Intel HLS compiler allow users to use a more abstract descrip-
tion of memory structure without considering the detail architecture and topo-
logical properties, which increases the design productivity. However, these fea-
tures also make their designs more dependent on a particular compiler. Further-
more, for applications with complex memory access patterns, the compiler will
use redundant resources to make sure the “stall-free” memory accesses.

Another thing that deserves our attention is the support for exploiting spatial
parallelism. LBM simulations are memory-bound applications, scaling up perfor-
mance with spacial parallelism will increase bandwidth requirements. However,
in the aspect of resource consumption, especially memory resources, employ-
ing spacial parallelism shows more optimization opportunities. Increasing the
degree of temporal parallelism needs to add replicated reuse buffers and simula-
tion computing blocks. For spatial parallelism, these components can consume
fewer hardware resources due to reuse or sharing some resources.

Our proposed design explicitly describes the data reuse buffer structure by
using memory resources e.g., FIFOs and registers with the consideration of porta-
bility. Moreover, our reuse buffer structure also can support scalable spacial
parallelism with optimal buffer size and “stall-free” memory accesses. Figure 3
shows the basic design with spatial parallelism sunroll equal to 1. For process-
ing simulation on lattice M1, the data movement is described as follows. the U2

register reads 1 fresh lattice data from the external memory or previous data
reuse buffer at each time step. Registers U1 and U0 reuse data in U1 and U2.
Data of register M2 are popped from FIFOup. Registers M1 and M0 reuse data
in M2 and M1 respectively. Register D2 reads data from FIFOdown. D1 and
D0 reuse data in D2 and D1. After the simulation processing, U0 and M0 are
pushed into FIFOup and FIFOdown respectively. Result of M1 is sent to the
next reuse buffer or the external memory.

FPGA-Based CFD Simulation via HLS 239

Fig. 3. Reuse buffer design with FIFOs and registers.

Figure 4 shows the extended reuse buffer design with spatial parallelism
sunroll = 4, i.e., 4 lattices belong to the same time step are simulated in parallel.
To achieve memory accesses without the stall, we re-construct the basic reuse
buffer to provide 4 times higher internal bandwidth. In this specific case, we
build this data reuse buffer with 4 pair FIFOs and 18 register blocks. It works
as follows:

Fig. 4. Example of a scalable reuse buffer design with sunroll = 4.

1. At each time step, the up floor registers U2 to U5 read 4 consecutive fresh
lattices from the external memory or previous layer. U0 reuses data in U4, U1

reuses data in U5;
2. Registers M2, M3, M4, M5 are popped from FIFO2

up, FIFO3
up, FIFO0

up,
FIFO1

up respectively. M0 and M1 reuse data in M4 and M5;
3. Down floor registers D2 to D5 are popped from FIFO2

down, FIFO3
down,

FIFO0
down, FIFO1

down. D0 and D1 reuse data in D4 and D5;
4. After finishing simulations, U0, U1, U2, U3 are pushed into FIFO0

up to
FIFO3

up respectively. Similarly, M0 to M3 are pushed into FIFO0
down to

FIFO3
down.

240 C. Du et al.

5. Simulation results of lattices M1 to M4 are sent to the next layer or to the
external memory.

This reuse buffer structure can be easily generalized to other values of spatial
parallelism sunroll. Registers are the key to make sure the memory accesses
without stalls. The number of registers depends on the LBM simulation model
window and the level of spatial parallelism. It can be defined as

nreg = sunroll × Nwindow − (sunroll − 1) × Oneighbor (7)

where Nwindow represents the number of lattices in one simulation window, which
is equal to 9 for D2Q9 LBM model. Oneighbor denotes the number of lattices
inside the overlap area of 2 consecutive simulation windows, in this case, equal
to 6. FIFOs are main storage components which are responsible for moving data
around registers. The number of FIFOs have linear relationship with the value
of sunroll and the “height” of simulation window. It is defined as

nFIFO = sunroll × Hwindow (8)

where Hwindow is the measurement of target LBM window from base to top. In
LBM D2Q9 model, the Hwindow is equal to 2.

The most benefits of employing this spatial parallelism method is the memory
resources cost of the reuse buffer. In Fig. 3, we store 2M + 3 lattices data into
the basic reuse buffer structure to perform LBM simulation on 1 lattice at each
time step. On the other side, Fig. 4 shows we can cache 2M + 6 lattices into
the extended buffer structure to simulate 4 lattices at each time step. In case we
only exploit temporal parallelism, the total memory cost for parallel computing 1
lattice in 4 different time steps will be 4×(2M +3). Therefore, for a specific LBM
simulation and a certain FPGA, we need to scale up the degree of parallelism in
both spacial and temporal domain to achieve the expected performance.

3.3 Simulation Architecture Design

Our simulation architecture is mainly composed of multiple Processing Elements
(PEs), as shown in Fig. 5. One PE is responsible for processing the LBM simu-
lation at one time step. LBM spatial parallelism is exploited inside the PE. All
PEs use the replicated structure for a certain simulation. The inputs of a PE
can come directly from the previous PE or external memory, and similarly, the
outputs can go to the next PE or external memory. PEs are cascaded together to
form a deep-pipeline architecture, which utilizes temporal parallelism of LBM.

The structure of a PE comprises two main parts-i.e., the aforementioned
data reuse buffer and Computation Units (CUs). The number of CUs is equal
to the degree of spatial parallelism sunroll. A CU performs the collision and
propagation operations on a lattice by accessing data from the reuse buffer. Our
CU is implemented with the one-step algorithm that fuses the separate collision
and propagation stages [20]. For the target lattice, collision can be computed by

FPGA-Based CFD Simulation via HLS 241

Algorithm 2. Computing Unit with Pull Scheme
1: e[9][2] ← #»e , w[9] ← ωi

2: for i in range (0, 9) do
3: ρ+ = f [i]
4: end for
5: ux = (f [1] + f [5] + f [8] − (f [3] + f [6] + f [7]))/ρ
6: uy = (f [2] + f [5] + f [6] − (f [4] + f [7] + f [8]))/ρ
7: for i in range (0, 9) do
8: cu = e[i][0] · ux + e[i][1] · uy
9: feq = w[i] · ρ · (1 + 3 · cu + cu2 − 1.5 · (ux2) + uy)2

10: fnew = f [i] · (1 − 1
τ
) +

feq
τ

11: end for

directly using its neighboring lattice instead of its own particles (pull scheme),
thereby avoiding extra propagation.

To implement the simulation architecture with HLS, PE can be defined as
a function, and the link between PEs can be declared as the FIFO interface
(Fig. 5). We use the Ping-Pong FIFO structure to connect PEs. The scheduling
system is divided into two cases, namely even and odd. In an even case, each
PE reads data from the “Ping” FIFO and produces results to the “Pong” FIFO.
Similar to the even case, each PE reads data from the “Pong” FIFO and writes
to the “Ping” FIFO in the odd case. The “Ping-Pong” FIFO connection enables
our simulation architecture to run in full pipeline. Since “Ping-Pong” FIFO is
a well-known technique, several HLS compilers have made special optimizations
for implementing this structure. For example, in the Xilinx HLS environment,
if users can follow the target program pattern and meet certain specific condi-
tions, the compiler will automatically generate the corresponding “Ping-Pong”
FIFO structure (e.g., pragma dataflow in Vivado HLS). However, as mentioned
earlier, some compiler-relevant optimizations can improve productivity, but at
the expense of portability.

Fig. 5. Overview of the LBM simulation architecture.

242 C. Du et al.

3.4 Performance Model

To achieve the maximum performance of LBM simulation on a target FPGA
board, we focus on adjusting two design parameters: sunroll and tunroll to repre-
sent the level of spatial and temporal parallelism respectively. We introduce this
performance model to search an optimal combination of sunroll and tunroll that
can make full use of the various resources on the FPGA board. For performing a
D2Q9 LBM simulation on a N ×M area with Tstep time steps, the total number
of lattices Slattice to be simulated is

Slattice = Tstep · (N × M) (9)

Since our design scale performance with both types of parallelism, the total
degree of simulation parallelism is calculated as:

ptotal = sunroll × tunroll (10)

sunroll =
nCU

nPE
, tunroll = nPE (11)

where sunroll is equal to the number of CUs inside one PE, and the LBM tem-
poral parallelism is implemented by nPE PEs. For a fully pipelined architecture,
the peak performance of our design is:

Ppeak = ptotal × fdesign (12)

where Ppeak is the architecture peak throughput and fdesign is the design running
frequency. Then, the whole simulation time is:

tLBM =
Slattice

Ppeak
+ tinit (13)

tinit = nPE × (
CPE

fdesign
) (14)

where tinit means the pipeline structure initialization cost which can be measured
with the time between the pipeline takes the first input and produces the first
result. CPE represents the total clock cycles for finishing one computation in
one PE.

For a target FPGA board, the choices of these two parameters are limited
by:

Rdesign + Rplatform ≤ Rmax (15)

Rdesign = nPE · (Rbuffer +
nCU

nPE
· RCU) (16)

fdesign × sunroll × WLBM ≤ Bpeak

2
(17)

where Rmax is the maximum value of different resources on an FPGA. Rdesign

is the resource consumption of our architecture design. Rplatform means the

FPGA-Based CFD Simulation via HLS 243

computing platform resources consumed by, e.g., SDRAM controller and PCIe
IP cores. Most of the resources in our design are consumed by the PEs. Inside one
PE, the computing resources are used by the CUs and the memory resources are
used by the data reuse buffer. The peak performance of the SDRAM bandwidth
(Bpeak) sets a limit on parameter sunroll. WLBM is the data-width of LBM lattice
structure.

4 Results

4.1 Experimental Setup

We evaluate the LBM simulation results with Xilinx UltraScale VCU1525 board.
However, we do not use the entire FPGA hardware resources to perform the
experiment. The target FPGA chip uses Super Logic Regions (SLRs) to support
the large resource capacity, e.g., 3 SLRs for the XCVU9P chip. We map our
architecture design to 1 SLR which is connected with 2 DDR4 memory banks.
Although we can span our design to other dies, the performance bottleneck will
be mainly limited by the inter-SLR connections, which is out of the scope of this
paper. Our HLS development environment is based on Xilinx SDAccel 2018.3.
It allows FPGA kernel to be described as high-level languages e.g., C, C++,
SystemC or OpenCL. For the experiments, we choose the D2Q9 LBM-BGK
model and bounce-back boundary rule [7].

4.2 FPGA Performance

According to the performance model in Sect. 3.4, we mainly rely on two design
parameters (sunroll and tunroll) to adjust the LBM simulation performance on
FPGA. Since the LBM simulation is a memory-bound application. The spatial
design parameter sunroll is easily constrained by the external bandwidth. In this
case, the 2 DDR4-2400 memory banks can provide 2 × 19.2 GB/s memory band-
width. One lattice cell contains 9 particle vectors, i.e., takes 4× 9 Bytes for single
precision. Assuming our FPGA is running at 250 MHz, the maximum value of
sunroll is 2 without memory stalls (2 × 250 × 36 = 18 GB/s ≤ 19.2 GB/s).

The design parameter tunroll is determined by the resource consumption of
PEs. BRAMs are the key resource for implementing the reuse buffer. For the
target simulation area (1024 × 2048), one reuse buffer costs 56 BRAMs, which
limits the number of reuse buffers to 4320/(3 × 56) = 25. The cost of DSPs
sets a limit on the number of CUs (nCU). In this benchmark, one CU needs
to consume 103 DSPs. Thus, the maximum nCU is 6840/(3 × 103) = 22. If we
allocate one CU (at least) and one reuse buffer to one PE, the maximum value
of nPE (tunroll) is 22.

Table 1 shows the LBM simulation performance with different combina-
tions of sunroll and tunroll under the constraint of the target FPGA hardware
resources. We can achieve the top performance when ptotal is equal to 20. In this
benchmark, the ptotal can be implemented with two configurations-i.e., 20 PEs,

244 C. Du et al.

Table 1. D2Q9 LBM simulation with 1 SLR of the VCU1525 FPGA

ptotal

(sunroll × tunroll)

Performance

(MLUP|GFLOP/s)

Frequency (Mhz) BRAMs DSPs LUTs FFs

(1 × 8) 2030|259.8 267 31% 36% 25% 13%

(1 × 16) 3911|500.6 264 63% 72% 53% 25%

(1 × 20) 4791|613.2 243 78% 90% 68% 31%

(1 × 22) 4024|515.1 Failed or very low 86% 99% 77% 35%

(2 × 8) 4071|521.0 268 33% 36% 25% 13%

(2 × 10) 4919|629.6 255 41% 88% 62% 32%

each PE has 1 CU or 10 PEs, each PE has 2 CUs. Both configurations provide
almost the same performance (about 600 GFLOP/s). However, the configuration
with spatial parallelism (sunroll = 2) shows better results in terms of resource
consumption, especially from the BRAMs usage (41% compare to 78%). As a
result, this configuration is able to support a larger simulation area or more
complex LBM models without considering tilling strategies.

Besides of hardware resources like BRAMs, DSPs, FFs, and LUTs, our design
is also bounded by the routing resources inside FPGA. Unlike fixed architecture
(e.g., CPUs or GPUs), the implementation of FPGA designs relies on the rout-
ing resources to connect hardware components. For congestion implementations,
wires can be detoured, which will downscale the design frequency or even termi-
nate the placement and routing (P&R) process. In our case, the theoretical peak
performance is achieved by the configuration of (1×22). However, this configura-
tion generates a large congestion area. As a consequence, the design frequency is
either very low or failed at P&R stage. Compare with design (1×20), the design
(1 × 22) uses more hardware resources but achieves sub-optimal performance.
In fact, through some HLS optimization methods, the congestion area can be
reduced. We leave it to future work to examine these possibilities.

4.3 Performance Comparison

The authors implement LBM simulations on a NVIDIA GTX TITAN (Kepler
architecture) in [21]. For D2Q9 model, their performance can reach to 1060
MLUPS in double precision (DP). Although GTX TITAN has higher external
memory bandwidth (288.3 GB/s) and FP computing capabilities (4.5 TFLOP),
the following reasons prevent LBM simulations from making full use of them: (1)
LBM propagation and collision processes have different memory access patterns,
which makes it difficult to achieve coalesced memory access during the entire
simulation process; (2) unlike conventional lattice cells, the lattice cells in the
boundary region have different simulation rules, which causes branch divergences
and eventually lead to performance degradation. In addition to use DP data
type to increase the simulation accuracy, FPGAs support the arbitrary precision
data type, which offers a trade-off opportunity for increasing the simulation
accuracy by adopting a more complex LBM model (e.g., D2Q17, D2Q39) with
less precision type.

FPGA-Based CFD Simulation via HLS 245

In [15], the authors present an FPGA-based design with an Intel Arria 10
FPGA. They achieve 519.3 GFLOP/s in D2Q9 LBM simulation which is 97.9% of
their FPGA board peak performance. Design implementations are based on their
own domain-specific language, which requires specific clock-cycles to synchronize
computing functions. For different LBM applications, they need to carefully re-
arrange the scheduling system. On the other hand, our work uses a popular
C-based commercial HLS tool. For applications with different LBM models, we
only need to make a few changes to the core code, such as the collision rules and
boundary conditions.

5 Conclusion

In this work, we present a design and implementation for fluid dynamics sim-
ulations on FPGA using the HLS development method. Our design can adjust
the simulation performance under the resource constraints of the target FPGA
board with two design parameters sunroll and tunroll that utilize both spatial and
temporal parallelism of simulations. We specifically discuss the design of data
reuse buffers that considers the portability of HLS code. The evaluation results
show that using one SLR on the VCU1525 board can achieve 4919 MLUPS or
629.6 GFLOP/s in LBM D2Q9 simulation. Our future work mainly focuses on
design automation and routing-aware HLS design optimizations. In addition,
applying our design to FPGA clusters is another interesting topic.

Acknowledgments. This work was supported in part by MEXT as Next Generation
High-Performance Computing Infrastructures and Applications R&D Program (Devel-
opment of Computing-Communication Unified Supercomputer in Next Generation),
and by JSPS KAKENHI Grant Number JP17H01707 and JP18H03246. The authors
would also like to thank Xilinx Inc., for providing FPGA software tools by Xilinx
University Program.

References

1. Valero-Lara, P., Pinelli, A., Prieto-Matias, M.: Fast finite difference poisson
solvers on heterogeneous architectures. Comput. Phys. Commun. 185(4), 1265–
1272 (2014)

2. Feichtinger, C., et al.: Performance modeling and analysis of heterogeneous lattice
Boltzmann simulations on CPUGPU clusters. Parallel Comput. 46, 1–13 (2015)

3. Sano, K., Hatsuda, Y., Yamamoto, S.: Multi-FPGA accelerator for scalable stencil
computation with constant memory-bandwidth. IEEE Trans. Parallel Distrib. Syst.
25(3), 695–705 (2014)

4. Lewis, D., et al.: The stratix 10 highly pipelined FPGA architecture. In: Inter-
national Symposium on Field-Programmable Gate Arrays (FPGA), pp. 159–168.
ACM (2016)

5. Cong, J., Liu, B., Neuendorffer, S., et al.: High-level synthesis for FPGAs: from
prototyping to deployment. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
30(4), 473–491 (2011)

246 C. Du et al.

6. Canis, A., et al.: LegUp: high-level synthesis for FPGA-based processor/accelerator
systems. In: The 19th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA), pp. 33–36. ACM (2011)

7. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev.
Fluid Mech. 30(1), 329–364 (1998)

8. Amati, G., Succi, S., et al.: Massively parallel lattice-Boltzmann simulation of
turbulent channel flow. Int. J. Mod. Phys. C 8(4), 869–877 (1997)

9. Pohl, T., et al.: Performance evaluation of parallel large-scale lattice Boltzmann
applications on three supercomputing architectures. In: The 2004 ACM/IEEE Con-
ference on Supercomputing (SC), p. 21. IEEE (2004)

10. Pan, C., Luo, L.-S., et al.: An evaluation of lattice Boltzmann schemes for porous
medium flow simulation. Comput. Fluids 35(8), 898–909 (2006)

11. Obrecht, C., Kuznik, F., Tourancheau, B., Roux, J.-J.: Global memory access
modelling for efficient implementation of the lattice Boltzmann method on graph-
ics processing units. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C.
(eds.) VECPAR 2010. LNCS, vol. 6449, pp. 151–161. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19328-6 16

12. Delbosc, N., et al.: Optimized implementation of the Lattice Boltzmann Method
on a graphics processing unit towards real-time fluid simulation. Comput. Math.
Appl. 67(2), 462–475 (2014)

13. Wang, Z., et al.: GPU acceleration of volumetric lattice Boltzmann method for
patient-specific computational hemodynamics. Comput. Fluids 1(15), 192–200
(2015)

14. Murtaza, S., Hoekstra, A.G., Sloot, P.M.A.: Cellular automata simulations on a
FPGA cluster. Int. J. High Perform. Comput. Appl. 25(2), 193–204 (2011)

15. Sano, K., Yamamoto, S.: FPGA-based scalable and power-efficient fluid simulation
using floating-point DSP blocks. IEEE Trans. Parallel Distrib. Syst. 28(10), 2823–
2837 (2017)

16. Waidyasooriya, H.M., et al.: OpenCL-based FPGA-platform for stencil computa-
tion and its optimization methodology. IEEE Trans. Parallel Distrib. Syst. 28(5),
1390–1402 (2017)

17. Zohouri, H.R., Podobas, A., Matsuoka, S.: Combined spatial and temporal blocking
for high-performance stencil computation on FPGAs using OpenCL. In: The 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
153–162. ACM (2018)

18. RAM-Based Shift Register (ALTSHIFT TAPS) IP Core. https://www.intel.com/
content/.../ug shift register ram based.pdf

19. The Xilinx LogiCORE IP RAM-based Shift Register. https://www.xilinx.com/
support/.../shift ram/v12 0/pg122-c-shift-ram.pdf

20. Wittmann, M., et al.: Comparison of different propagation steps for lattice Boltz-
mann methods. Comput. Math. Appl. 65(6), 924–935 (2013)

21. Tomczak, T., Szafran, R.G.: Sparse geometries handling in lattice Boltzmann
method implementation for graphic processors. IEEE Trans. Parallel Distrib. Syst.
29(8), 1865–1878 (2018)

https://doi.org/10.1007/978-3-642-19328-6_16
https://www.intel.com/content/.../ug_shift_register_ram_based.pdf
https://www.intel.com/content/.../ug_shift_register_ram_based.pdf
https://www.xilinx.com/support/.../shift_ram/v12_0/pg122-c-shift-ram.pdf
https://www.xilinx.com/support/.../shift_ram/v12_0/pg122-c-shift-ram.pdf

High-Level Synthesis in Implementing
and Benchmarking Number Theoretic

Transform in Lattice-Based
Post-Quantum Cryptography Using

Software/Hardware Codesign

Duc Tri Nguyen, Viet B. Dang, and Kris Gaj(B)

George Mason University, Fairfax, USA
{dnguye69,vdang6,kgaj}@gmu.edu

Abstract. Compared to traditional hardware development methodolo-
gies, High-Level Synthesis (HLS) offers a faster time-to-market and lower
design cost at the expense of implementation efficiency. Although Soft-
ware/Hardware Codesign has been used in many areas, its usability
for benchmarking of candidates in cryptographic competitions has been
largely unexplored. This paper provides a comparison of the HLS- and
RTL-based design methodologies when applied to the hardware design
of the Number Theoretic Transform (NTT) – a core arithmetic function
of lattice-based Post-Quantum Cryptography (PQC). As a next step, we
apply Software/Hardware Codesign approach to the implementation of
three PQC schemes based on NTT. Then, we integrate our HLS imple-
mentation into the Xilinx SDSoC environment. We demonstrate that
an overhead of SDSoC compared to traditional Bare Metal approach is
acceptable. This paper also shows that an HLS implementation obtained
by modeling a block diagram is typically much better than an imple-
mentation obtained by using design space exploration. We conclude that
the HLS/SDSoC and RTL/Bare Metal approaches generate comparable
results.

1 Introduction

A threat of quantum computers triggered an effort aimed at designing a new class
of cryptographic algorithms, collectively referred to as Post-Quantum Cryptog-
raphy (PQC) [1]. These algorithms have two common features: (a) there are no
known attacks capable of breaking these cryptosystems, even assuming the avail-
ability of full-scale quantum computers, (b) all PQC algorithms can be imple-
mented using traditional computing platforms, based on standard semiconductor
technology, such as microprocessors and FPGAs. In the standardization process
currently run by the National Institute of Standards and Technology (NIST),
26 candidates remain in Round 2 and need to be evaluated from the point of
view of their hardware efficiency [1]. A large number of candidates and high
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 247–257, 2020.
https://doi.org/10.1007/978-3-030-44534-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_19

248 D. T. Nguyen et al.

complexity of the majority of them make hardware benchmarking extremely
challenging. In order to mitigate these difficulties, a new approach based on (a)
software/hardware codesign, and (b) the development of hardware accelerators
using High-Level Synthesis (HLS) has been proposed [2].

In the traditional RTL approach, a path from developing HDL code to run-
ning it on a target device is quite long, since the developer has to create an
interface between CPU and FPGA. On the other hand, in the Xilinx SDSoC
framework, most of these tasks are performed automatically by the tools.

In the remaining 12 Round 2 lattice-based PQC candidates, 5 use Number
Theoretic Transform (NTT) for polynomial multiplication. After software profil-
ing, we decided to implement the NTT hardware accelerators for NewHope and
Kyber. Since Kyber has been substantially modified between Rounds 1 and 2, we
have decided to compare the implementation efficiencies of these two variants,
further denoted as Kyber R1 and Kyber R2.

This paper demonstrates: (a) Advantages of the HLS approach based on
block diagrams vs. the HLS approach based on space exploration. (b) Overhead
of the SDSoC/HLS methodology over the Bare Metal/RTL approach.

2 Background

2.1 Number Theoretic Transform

Let n be a power of two, and q be a prime modulus. We define a ring Rq[x] =
Zq[x]/(xn + 1) as the ring of polynomials of degree n − 1 with coefficients in
Zq (a field of integers in the range [0, q − 1] with addition and multiplication
modulo q). Multiplications in Rq[x] can be performed efficiently in software and
hardware using the NTT, which has the complexity of O(n · log(n)).

If ψ2 = ω mod q exists, then it is recommended that the input polynomials
should be multiplied by ψi before Forward NTT instead of supplementing them
with n most significant terms equal to zero. As a result, the output of Inverse
NTT must be multiplied by ψ−i.

By using NTT, a multiplication in Rq can be computed as follows:

C = NTT−1(C) = NTT−1(A ∗ B) = NTT−1(NTT(A) ∗ NTT(B))

where ψ2 = ω, A = (a0, ψa1, ψ
2a2, . . . , ψ

n−1an−1), B = (b0, ψb1, ψ
2b2, . . . ,

ψn−1bn−1), C = (c0, ψc1, ψ
2c2, . . . , ψ

n−1cn−1), and a, b, c are polynomials in
Rq[x], with q = 1 mod 2n [3].

The pseudo-code of the iterative version of Forward NTT is shown in Algo-
rithm 1. The Inverse NTT is similar to Forward NTT but instead of multiplying
with ωi, we multiply with ω−i.

In this paper, we divide the polynomial multiplication into two modes:
(a) NTT: Forward (NTT) and Inverse NTT (INTT)
(b) MUL: Multiplication of the respective coefficients by ψi (PSIS MUL), multi-
plication of the respective coefficients by ψ−i (IPSIS MUL), and coefficient-wise
multiplication of two polynomials (COEF MUL).

High-Level Synthesis in Implementing and Benchmarking NTT 249

Modular multiplication can be performed using two primary approaches:
Montgomery multiplication (REDC) and the method introduced by Longa et al.
in [4] (KRED).

Algorithm 1. Iterative NTT
Require: F (x) ∈ Rq[x]; ROM [i] = ωi, ωn = 1 mod q
Ensure: F (x) = NTT (F)
1: F ← BitReverse(F)
2: for s = 0 to log2(n) − 1 by 1 do
3: m ← 2 � s
4: ωm ← n/m
5: i ← 0
6: for j = 0 to m/2 by 1 do
7: for k = 0 to n by m do
8: u ← F [k + j]
9: t ← F [k + j + m/2] ∗ ROM [i]

10: F [k + j] ← u + t
11: F [k + j + m/2] ← u − t

12: i ← i + ωm

3 Previous Work

The theory of NTT is summarized in [3]. Previous hardware implementations of
NTT were reported in [5,6]. The first hardware implementations of NTT targeted
the PQC scheme called Ring-LWE [7]. The most recent efforts aimed specifically
at the efficient implementations of the Round 1 PQC candidate NewHope, qual-
ified to the second round of the NIST PQC standardization process [8,9].

Efficient implementations of block ciphers, hash functions, and authenticated
ciphers using HLS were reported in [10,11]. In the majority of cases, these imple-
mentations closely matched the performance of RTL implementations in terms
of throughput and throughput-to-area ratio. The first attempts at the use of
HLS for benchmarking of PQC candidates were reported in [2].

4 Block Diagram Versus Space Exploration

There are two major approaches to implementing hardware accelerators in HLS:
(a) SE/HLS: Identify optimal HLS-ready code using design space exploration
based on HLS directives. The final hardware architecture is unknown until the
best result is achieved.
(b) BD/HLS: Develop block diagram corresponding to the presumed optimal
hardware architecture. Write HLS code following this block diagram.

Both SE/HLS and BD/HLS approaches inherit the advantages of HLS:
quicker verification and quicker development than in traditional RTL. As shown

250 D. T. Nguyen et al.

Fig. 1. BD/HLS versus SE/HLS development timeline

Table 1. Results for BD/HLS vs. results for SE/HLS for 1024-point NTT

Work BRAM 18K DSP FF LUT Cycles Cycles reduction

[12] 11.5 10 16,402 21,167 7,597 1.59

[12] 21.5 19 30,498 38,984 5,291 1.10

This work 10 4 1,342 1,110 4,776 1.0

in Fig. 1, in the SE/HLS approach, a small portion of the total development time
is spent on writing HLS-ready code and verifying its functionality. The rest of
the time is devoted to design space exploration using pragma directives. There
are over 20 pragma directives in the current version of Vivado HLS; their dif-
ferent combinations lead to different architectures. The impact of a particular
pragma directive is heavily dependent on the code structure and the algorithm.
Some directives may have no impact at all, others may dramatically change the
speed vs. cost trade-off. Exploring all possible combinations is often unrealistic.
Additionally, in many cases, code refactoring may give better results than an
optimal choice and placement of directives. As a result, the HLS design by space
exploration may lead to the choice of sub-optimal hardware architecture.

In BD/HLS approach, the large portion of the total development time is
spent on developing a block diagram and implementing it in HLS-ready C. The
rest of the time is spent on verification. Since the exact hardware architecture
is known beforehand, space exploration is not required. With the HLS-ready
code based on a block diagram created manually by an experienced designer,
the BD/HLS approach can significantly outperform the SE/HLS methodology.

In Table 1, the comparison of the NTT implementations according to two
approaches, BD/HLS and SE/HLS, is summarized. The BD/HLS approach uses
2x, 5x, 22x, 35x, and 1.1x less BRAMs, DSPs, LUTs, FFs and Clock Cycles,
respectively. In [12], the authors experiment with multiple combinations of direc-
tives, applied to multiple loops. However, the final design outcome is still not as
good as in our BD/HLS design.

5 Hardware Design

5.1 NTT Top Level Design

A top-level block diagram of a hardware accelerator for NewHope and Kyber
is shown in in Fig. 2. There are 3 main components: NTT, MUL and Reorder.

High-Level Synthesis in Implementing and Benchmarking NTT 251

For NewHope and Kyber R1, the NTT unit is responsible for the NTT and
MUL modes of operation, described in Sect. 2.1. In Kyber R2, the NTT unit is
only responsible for the MUL mode. As a result, a dedicated MUL unit must be
added. The role of the Reorder unit is explained at the end of the next section.

Fig. 2. Top-level block diagram of a hardware accelerator for NewHope and Kyber

Table 2. Selected NTT-based Round 2 PQC candidates investigated in this study. N
and q are major parameters of NTT. k and m are used in the Longa-Naehrig modular
reduction, and qinv in the Montgomery Reduction.

Candidate Cat (#NTT) n q 2m k k2 qinv

NewHope 1,5 (1) 512/1024 12,289 212 3 23 + 1 213 + 212 − 1

Kyber R1 1,3,5 (2,3,4) 256 7,681 29 15 28 − 25 + 1 213 − 29 − 1

Kyber R2 1,3,5 (2,3,4) 256 3,329 28 13 27 + 25 + 23 + 1 29 + 28 + 1

5.2 Number Theoretic Transform

A block diagram of our NTT implementation, shown in Fig. 3, is based on the
design from [6]. One of the improvements is support for both odd and even
numbers of NTT layers. When log2(n) is odd, the signal X is asserted during
the last iteration to let coefficients A′, B′, C ′,D′ pass directly to the SIPO unit
instead of going through the 2nd NTT layer. On the other hand, when log2(n)
is even, the multiplexers with the select signal X can be eliminated.

Our NTT hardware architecture has a 2 × 2 butterfly structure, which can
process two layers of NTT with two butterfly units per layer. Four coefficients
are loaded in each clock cycle and placed into registers A, B, C, D. If KRED is
selected as a modular reduction method, the square boxes m1 and m2 are KRED
and KRED2x, respectively. If REDC Montgomery reduction is chosen, m1 can
be removed and m2 represent REDC.

When S = 0, the circuit operates in the MUL mode, used to perform oper-
ations PSIS MUL, COEF MUL, and IPSIS MUL. The coefficients in the lines
B and D are multiplied by coefficients from RAM1, which are (ψ4i+1, ψ4i+3)
or (r4i+1, r4i+3) or (ψ−(4i+1), ψ−(4i+3)), depending on the performed operation.

252 D. T. Nguyen et al.

The obtained results are reduced by the function m2 and stored in Bsave and
Dsave, which go to SIPO B and SIPO D later on. After that, coefficients from
lines A and C are switched to lines B and D, allowing them to be multiplied with
coefficients from RAM2, reduced by m2, and directed to SIPO A and SIPO C,
respectively. When the following outputs of SIPOs: A1st,B2nd,C3rd and D4th
become available, they are concatenated and written back to RAM at the index
where A1st was loaded from.

Fig. 3. Block diagram of the proposed hardware architecture for fast polynomial mul-
tiplication using NTT. The red lines represent four likely critical paths. (Color figure
online)

When S = 1, the circuit operates in the NTT mode use to perform operations
INTT and NTT. Four coefficients go through the 2 × 2 butterfly structure, and
results are written to SIPOs. Coefficients in lines B and D are multiplied with
ωi
n or ω−i

n , depending on whether the circuit computes NTT or INTT. When
SIPOA is full, four coefficients available at the outputs A1st, A2nd, A3rd, A4th
are concatenated, and stored back to the RAM at the position where A1st was

High-Level Synthesis in Implementing and Benchmarking NTT 253

loaded from. After one clock cycle, the same happens with results accumulated
in SIPOC , and then SIPOB and SIPOD.

Shuffle and Reordering. The order of coefficients is changed in the NTT
mode. Thus, after each NTT operation, one must shuffle and reorder the obtained
coefficients. We apply the in-place matrix transposition proposed in [13]. The
number of clock cycles for 128-, 256-, and 1024-point NTT is 64, 80, 318 clock
cycles, respectively. In particular, for the 1024-point NTT, we use 318 clock
cycles vs. 1024 clock cycles in [9].

Fig. 4. The memory maps of RAM1 and RAM2, including formulas for values of con-
stants stored in specific memory ranges. n=log2n, ω = ωn, i ∈ [0, 1, . . . , n/2) for RAM1
and RAM2, except the gray area of RAM 1, where i ∈ [0, 1, . . . , n/4). For the KRED,
the value of k is given in Table 2. If the REDC is used, k is assumed to be 1. poly pk
and poly sk are NTT domain preloaded public and secret polynomials.

Table 3. Results of the HLS implementations of KRED and REDC

Candidate Modular reduction DSP LUT FF Slice Max. Freq

NewHope KRED 1 118 100 28 530

KyberR1 1 125 93 32 507

KyberR2 1 150 112 35 502

NewHope REDC 1 370 357 85 515

KyberR1 1 387 333 69 512

KyberR2 1 391 382 91 476

For NewHope and Kyber R1, all five operations from Sect. 2.1 are supported
by the circuit from Fig. 3. In the case of Kyber R2, PSIS MUL and IPSIS MUL
do not apply. Only NTT and INTT are performed by the NTT unit. The
COEF MUL is performed by a separate unit. Therefore, the NTT mode of Kyber
R2 can be simplified by stripping the dot line and removing multiplexers to save
resources and improve maximum clock frequency.

254 D. T. Nguyen et al.

The precomputed values of all constants are stored in the dual-port memories
RAM1 and RAM2, of the size 2.5n and 3n memory locations, respectively. The
number of bits stored at each memory location is equal to log2q. The memory
map and formulas for the values of constants stored within each specific address
range are shown in Fig. 4.

6 Results

The target device is Zynq UltraScale+ MPSoC ZCU104, with CPU Cortex-
A53 running at 1.2 GHz. All results presented in this section are obtained after
placing and routing.

Results of the HLS implementation of two alternative reduction methods,
KRED and REDC, for the value of q corresponding to investigated candidates,
are shown in Table 3. These results demonstrate that compared to REDC, the
implementation of KRED uses less resources and is comparable in term of per-
formance. Therefore, KRED is selected as a modular reduction method.

The comparison between HLS and RTL is shown in Table 4. The PQC can-
didates are compared at the multiple security levels: 1, 3, and 5. The number of
BRAMs in HLS is higher than in RTL due to a higher abstraction level descrip-
tion of HLS. In particular, the tool duplicates RAM1 and RAM2 for each MUL

Table 4. Resources Utilization for HLS and RTL

Algorithm #NTT DSP BRAM 36K LUT FF Slice Freq.(Mhz)

RTL

NewHope 1 1 4 3 1,040 940 190 476

NewHope 5 1 4 5 842 803 170 476

Kyber R1-1 2 8 2 2,185 2,625 411 500

Kyber R1-3 3 12 3 3,318 3,937 605 500

Kyber R1-5 4 16 4 4,363 5,237 795 500

Kyber R2-1 2 24 5 2,040 3,223 433 500

Kyber R2-3 3 36 8 3,054 5,098 637 500

Kyber R2-5 4 48 10 4,055 6,803 960 500

HLS/RTL

NewHope 1 1.00 1.00 1.00 1.14 1.49 1.26 0.95

NewHope 5 1.00 1.00 1.00 1.32 1.67 1.29 0.96

Kyber R1-1 1.00 1.00 1.00 1.28 1.03 1.45 0.91

Kyber R1-3 1.00 1.00 1.00 1.27 1.03 1.45 0.91

Kyber R1-5 1.00 1.00 1.00 1.27 1.06 1.54 0.91

Kyber R2-1 1.00 1.00 1.40 1.35 1.43 1.57 0.91

Kyber R2-3 1.00 1.00 1.40 1.40 1.51 1.65 0.89

Kyber R2-5 1.00 1.00 1.40 1.47 1.53 1.67 0.89

High-Level Synthesis in Implementing and Benchmarking NTT 255

Table 5. Comparison of the transfer time & overhead between SDSoC and bare metal

Algorithm Total transfer
size (bytes)

Times Total transfer
time (µs)

Transfer ratio Transfer overhead

In Out BM SDSoC SDSoC/ BM BM SDSoC

ENCAPSULATION

NewHope 1 2,048 2,048 1 7.91 12.64 1.60 4.51% 7.01%

NewHope 5 4,096 4,096 11.90 19.50 1.64 3.67% 5.87%

Kyber R1-1 1,024 1,536 7.85 9.86 1.26 4.94% 6.12%

Kyber R1-3 1,536 2,048 8.05 11.71 1.46 3.58% 5.12%

Kyber R1-5 2,048 2,560 9.42 13.49 1.43 2.86% 4.04%

Kyber R2-1 1,024 1,536 7.85 9.86 1.26 7.77% 9.54%

Kyber R2-3 1,536 2,048 8.05 11.71 1.46 3.99% 5.69%

Kyber R2-5 2,048 2,560 9.42 13.49 1.43 3.12% 4.40%

DECAPSULATION

NewHope 1 3,072 3,072 2 15.22 21.57 1.42 8.56% 11.69%

NewHope 5 6,144 6,144 19.81 32.13 1.62 5.93% 9.26%

Kyber R1-1 2,048 2,048 15.15 17.99 1.19 9.35% 10.89%

Kyber R1-3 3,072 2,560 15.90 20.76 1.31 7.02% 8.96%

Kyber R1-5 4,096 3,072 17.91 23.47 1.31 5.39% 6.94%

Kyber R2-1 2,048 2,048 15.15 17.99 1.19 11.36% 13.17%

Kyber R2-3 3,072 2,560 15.90 20.76 1.31 7.53% 9.58%

Kyber R2-5 4,096 3,072 17.91 23.47 1.31 5.78% 7.42%

Table 6. Speed up of the Software/Hardware Codesign vs. Pure Software

Algorithm Total SW (µs) Total SW

NTT (µs)

%SW NTT Total SW/HW (µs) Total Speed-up

@Max Freq

BM SDSoC BM SDSoC

ENCAPSULATION

NewHope 1 360.3 199.8 55% 175.2 180.3 2.06 2.00

NewHope 5 737.0 438.1 59% 324.0 332.2 2.27 2.22

Kyber R1-1 389.2 240.9 62% 158.9 161.1 2.45 2.42

Kyber R1-3 582.3 368.3 63% 224.8 228.7 2.59 2.55

Kyber R1-5 826.9 509.4 62% 329.6 334.0 2.51 2.48

Kyber R2-1 328.5 237.8 72% 101.1 103.4 3.25 3.18

Kyber R2-3 533.9 343.0 64% 201.5 205.7 2.65 2.60

Kyber R2-5 785.2 495.4 63% 301.8 306.4 2.60 2.56

DECAPSULATION

NewHope 1 427.5 273.5 64% 177.8 184.6 2.40 2.32

NewHope 5 895.7 598.0 67% 334.0 347.1 2.68 2.58

Kyber R1-1 483.2 340.8 71% 161.9 165.2 2.98 2.92

Kyber R1-3 710.4 504.2 71% 226.5 231.8 3.14 3.06

Kyber R1-5 992.1 682.4 69% 332.0 338.0 2.99 2.94

Kyber R2-1 429.5 315.5 73% 133.3 136.6 3.22 3.14

Kyber R2-3 667.8 476.8 71% 211.1 216.8 3.16 3.08

Kyber R2-5 950.8 662.9 70% 310.0 316.4 3.07 3.00

256 D. T. Nguyen et al.

component. Thus, the number of BRAMs for Kyber R2 is higher than in RTL.
There are two pairs of RAM1 and RAM2 in a single HLS NTT module, instead
of just one. The number of LUTs, FFs, and Slices is consistently greater in HLS.

Traditional RTL SW/HW Codesign often uses Bare Metal (BM) to han-
dle transfer between CPU and FPGA. The DMA in BM is often implemented
manually. Contrary to that, SDSoC creates an abstraction layer of the inter-
face handler. As a result, switching from software to hardware is very easy. To
demonstrate the overhead of abstraction in using SDSoC, the best selected trans-
fer interface in SDSoC is compared with Bare Metal in Table 5. Additionally, the
Transfer Overhead column is the percentage of Total Transfer Time over
the Total SW/HW in Table 6.

In Table 6, timing results are summarized. The HLS/SDSoC approach gener-
ates comparable accelerator speed up for all investigated algorithms. The number
of clock cycles of NTT HW acclerator for polynomial multiplication (excluding
the transfer time) in Encapsulation and Decapsulation phase for NewHope 1,
NewHope 5, Kyber R1, and Kyber R2 are 3300, 6300, 1400, 1300 and 4100,
7900, 2200, 2100, respectively.

The Total SW is the software only execution time, the Total SW NTT
column is the time spent on NTT operations in SW, %SW NTT is the per-
centage of the total execution time in software devoted to NTT, the Total
SW/HW is the total time after offloading the critical function (NTT) to hard-
ware. The Total Speed-up @Max Freq is the ratio between Total SW and
Total SW/HW. This speed-up is roughly equal between the SDSoC and Bare
Metal approaches.

7 Conclusions

Using HLS and SDSoC are two promising approaches to benchmarking SW/HW
implementations of PQC. With the help of these approaches, the development
time is substantially reduced, with the relatively small penalty in terms of the
total execution time, HW-SW transfer time, and the total speed-up vs. purely
SW implementation. Overhead in terms of resource utilization is more substan-
tial, especially in terms of the number of LUTs, FFs, and Slices. The BD/HLS
approach, based on the use of block diagrams, was shown to be substantially
more efficient than the approach, SE/HLS, based on applying various pragmas
to existing code and letting the tool to infer the best possible architecture.

References

1. NIST Post-Quantum Cryptography Standardization
2. Farahmand, F., Dang, V.B., Nguyen, D.T., Gaj, K.: Evaluating the potential for

hardware acceleration of four NTRU-based key encapsulation mechanisms using
software/hardware codesign. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 23–43. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-25510-7 2

https://doi.org/10.1007/978-3-030-25510-7_2
https://doi.org/10.1007/978-3-030-25510-7_2

High-Level Synthesis in Implementing and Benchmarking NTT 257

3. Chu, E., George, A.: Inside the FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms. Computational Mathematics Series. CRC Press, Boca
Raton (2019)

4. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0 8

5. Pöppelmann, T., Güneysu, T.: Towards efficient arithmetic for lattice-based cryp-
tography on reconfigurable hardware. In: Hevia, A., Neven, G. (eds.) LATIN-
CRYPT 2012. LNCS, vol. 7533, pp. 139–158. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33481-8 8

6. Du, C., Bai, G., Wu, X.: High-speed polynomial multiplier architecture for ring-
LWE based public key cryptosystems. In: GLSVLSI (2016)

7. Renteria-Mejia, C.P., Velasco-Medina, J.: High-throughput ring-LWE cryptopro-
cessors. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(8), 2332–2345 (2017)

8. Oder, T., Güneysu, T.: Implementing the NewHope-Simple key exchange on low-
cost FPGAs. In: Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS,
vol. 11368, pp. 128–142. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-25283-0 7

9. Kuo, P.-C., et al.: High performance post-quantum key exchange on FPGAs. Cryp-
tology ePrint Archive 2017/690, February 2018

10. Homsirikamol, E., Gaj, K.: Hardware benchmarking of cryptographic algorithms
using high-level synthesis tools: the SHA-3 contest case study. In: Sano, K., Soudris,
D., Hübner, M., Diniz, P.C. (eds.) ARC 2015. LNCS, vol. 9040, pp. 217–228.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16214-0 18

11. Homsirikamol, E., Gaj, K.: A new HLS-based methodology for FPGA benchmark-
ing of candidates in cryptographic competitions: the CAESAR contest case study.
In: FPT 2017 (2017)

12. Kawamura, K., Yanagisawa, M., Togawa, N.: A loop structure optimization tar-
geting high-level synthesis of fast number theoretic transform. In: ISQED (2018)

13. Knuth, D.E.: The Art of Computer Programming, Fundamental Algorithms.
Addison-Wesley, Boston (1997)

https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-642-33481-8_8
https://doi.org/10.1007/978-3-642-33481-8_8
https://doi.org/10.1007/978-3-030-25283-0_7
https://doi.org/10.1007/978-3-030-25283-0_7
https://doi.org/10.1007/978-3-319-16214-0_18

Exploring FPGA Optimizations
to Compute Sparse Numerical Linear

Algebra Kernels

Federico Favaro1(B), Ernesto Dufrechou2, Pablo Ezzatti2, and Juan P. Oliver1

1 Instituto de Ingenieŕıa Eléctrica, Facultad de Ingenieŕıa,
Universidad de la República, Montevideo, Uruguay

{ffavaro,jpo}@fing.edu.uy
2 Instituto de Computación, Facultad de Ingenieŕıa,
Universidad de la República, Montevideo, Uruguay

{edufrechou,pezzatti}@fing.edu.uy

Abstract. The solution of sparse triangular linear systems (sptrsv)
is the bottleneck of many numerical methods. Thus, it is crucial to
count with efficient implementations of such kernel, at least for com-
monly used platforms. In this sense, Field–Programmable Gate Arrays
(FPGAs) have evolved greatly in the last years, entering the HPC hard-
ware ecosystem largely due to their superior energy–efficiency relative to
more established accelerators. Up until recently, the design for FPGAs
implied the use of low–level Hardware Description Languages (HDL)
such as VHDL or Verilog. Nowadays, manufacturers are making a large
effort to adopt High–Level Synthesis languages like C/C++ or OpenCL,
but the gap between their performance and that of HDLs is not yet
fully studied. This work focuses on the performance offered by FPGAs
to compute the sptrsv using OpenCL. For this purpose, we implement
different parallel variants of this kernel and experimentally evaluate sev-
eral setups, varying among others the work–group size, the number of
compute units, the unroll–factor and the vectorization–factor.

Keywords: FPGAs · Sparse linear algebra · sptrsv · Power
consumption

1 Introduction

Many numerical methods in scientific applications entail the solution of sparse
triangular linear systems (sptrsv), e.g. the solution of sparse linear systems
by direct methods, or by iterative methods with ILU preconditioners, where
the sptrsv kernel is the most computationally demanding stage [4,12]. This
motivates the development of efficient implementations of such kernel, at least
for the most commonly used hardware. The efficient parallelization of this kernel
is especially difficult. Similar to other sparse linear algebra kernels, the sptrsv
is a memory–bound operation and presents an irregular data access pattern.
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 258–268, 2020.
https://doi.org/10.1007/978-3-030-44534-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_20

Exploring FPGA Optimizations to Compute Sparse 259

Additionally, the triangular structure of the nonzero entries is tied to a load
imbalance between threads, and data dependencies between equations severely
constrain the available parallelism.

Propelled by the popularization of using massively–parallel devices (such as
GPUs) for scientific computations, HPC platforms experienced a revolution in
the last decade. This, in combination with the tremendous scale of clusters and
supercomputers, has led to a growing concern in the HPC community about
energy consumption and the efficiency of computing devices [1,2,5,9]. In this
context, FPGAs renewed their importance, emerging as a low–energy–consuming
alternative to other accelerators. As a result, the former use of FPGAs in highly
specialized niches has now expanded to general–purpose problems. One of the
major drawbacks that hindered the massive use of FPGAs among the HPC
community was the required knowledge on low–level Hardware Description Lan-
guages, e.g. VHDL or Verilog. These impose a programming model radically
different than that of standard languages, with longer development times and
complex debugging. Furthermore, their use requires specialized knowledge of
the underlying hardware. To overcome these disadvantages, manufacturers are
making efforts to adopt High–Level Synthesis languages like C or OpenCL. Evi-
dence of this is the introduction of SDKs for OpenCL by prominent FPGAs
manufacturers such as Intel [3] and Xilinx [20].

OpenCL is an open–source, royalty–free parallel programming standard,
which allows describing task parallelism using an abstract model independent of
the underlying hardware. It considerably reduces development times and allows
portability between platforms. Although this has enabled a greater adoption
of FPGAs as hardware accelerators by the software community, there is still
much to investigate regarding the performance attainable by OpenCL kernels
in FPGAs, the role played by specific platform optimizations, and how much
knowledge of the underlying hardware is required.

In this regard, we implement different parallel variants of the sptrsv kernel
for FPGA using OpenCL. Additionally, we perform a deep evaluation of several
FPGA optimization techniques.

2 Work Context

Given a (lower) triangular sparse matrix L ∈ R
n×n and a vector b ∈ R

n, the
usual approach to obtain x ∈ R

n such that Lx = b, is the forward–substitution
procedure, presented in Algorithm 1, where the matrix L is stored in the CSR
storage format [8]. The algorithm starts by trivially solving the first equation and
then, in each step, it replaces the solved unknowns by their values in the following
equations, solving at least one equation per step. To obtain the unknown xi it
is necessary to multiply the sub-diagonal entries lij of row i by the value of
xj , subtracting the result from bi and dividing by the diagonal entry lii. It is
clear that if lij is not zero, the unknown xj needs to be solved before xi, which
constrains the parallelism of the operation.

Several efforts have addressed the use of FPGAs to process NLA operations,
typically considering both performance and energy consumption. Most of these

260 F. Favaro et al.

Algorithm 1. Solution of sparse lower triangular systems.
1 Input: row ptr, col idx, val, b
2 Output: x

x = b
for i = 0 to n− 1 do

for j = row ptr[i] to row ptr[i + 1] − 2 do
x[i] = x[i] − val[j] × x[col idx[j]]

end for
x[i] = x[i]/val[row ptr[i + 1] − 1]

end for

works are focused on dense NLA kernels. Some of the most prominent ones are
the Kestur et al. [13,14] that implement some BLAS [6] operations, the [17]
for the general matrix–matrix multiplication using OpenCL, and more recently,
two efforts for achieving a BLAS version for FPGAs, i.e. fBLAS [15] and Vitis
BLAS1. In the sparse context, the SpMV (or other solvers based on it) is most
the commonly studied kernel. The importance of this kernel and its low level of
data dependencies, in comparison with other sparse NLA kernels (e.g. sptrsv),
make this operation attractive to implement in HPC hardware. Some remarkable
efforts in this direction are Fowers’ article [11], the work of Umuroglu and Jahre
[19], and the thesis of Townsend [18].

3 Proposal

In this section we detail our process for the development of the sptrsv kernels.
Our effort is focused on the use of the OpenCL framework. We employ two
different OpenCL paradigms, NDRange and Single Work Item Kernels. To the
best of our knowledge, this is the first OpenCL implementation of the sptrsv
for FPGAs, excluding our preliminary results in the Power–Aware Computing
– PACO2019 [10].

3.1 NDRange Kernels

Intel recommends structuring the OpenCL kernels as Single Work–Item, when-
ever possible, to benefit from the coarse–grained parallelism. However, there may
be cases where the explicit definition of concurrent threads of the NDRange
model may be beneficial. In particular, when data or memory dependencies pre-
vent achieving pipelined loops with low Initialization Intervals (II). Given the
nature of the parallel sptrsv algorithm, where there is plenty of indirection
in memory accesses, we first opted for the NDRange approach. Moreover, we
choose, as a starting point, a GPU implementation following a similar model
that obtained good results in the past.

1 https://www.xilinx.com/products/design-tools/vitis/vitis-libraries/vitis-blas.html.

https://www.xilinx.com/products/design-tools/vitis/vitis-libraries/vitis-blas.html.

Exploring FPGA Optimizations to Compute Sparse 261

We develop two NDRange kernels for the parallel sptrsv, both based on
the level–set approach. One work–group is issued for every row, following the
order of the iorder vector (array containing the rows ordered by levels). Each
work–item enters a for loop where it fetches one element from the matrix and
its corresponding x vector element, performs the product and accumulation, and
then moves forward local group size elements to process another pair. The loop
iterates until all the non–zero elements of the row are handled. Before processing
a row, the algorithm requires that all its dependencies are resolved. The two
kernels resolve this matter differently. In the first variant (NDRwait), each work–
item reads from memory its corresponding x element and verifies whether it is
solved. If it is, it performs the multiplication and sets the corresponding flag.
When all the flags in a work–group are set, all work–items move forward to
process the next local work size elements. Once the entire row has been processed,
the accumulated products of each work–item are reduced and subtracted from
b, then the x value is obtained dividing the result by the diagonal element.

To verify that x is solved, the array is preloaded with the float representation
of infinite before executing the kernel. This allows determining whether the x
value is ready by checking if it differs from infinite. The accumulated products
and flags are stored in local memory to be visible by all work–items. Threads
within each work–group are synchronized using barriers.

The Intel SDK for OpenCL does not provide reduction functions across work–
items, so this operation was implemented based on local memory and barriers.
As the order in which work–groups are issued by the scheduler is not defined, it
is necessary to maintain a counter, in global memory, to go through the iorder
vector in the correct sequence. To avoid race conditions between work–groups in
the writing of this counter an atomic addition is required.

To simplify the kernel and obtain a better performance, a second version
(NDRmulti) was explored, in which the verification on the x values is avoided.
Instead, the kernel is launched once for each level, processing only the rows on
that level. As long as the kernels are executed following the order of the iorder
vector, all dependencies are met for each row. All kernel executions work on the
same x vector and, after each run, the x values are updated in global memory. To
control which rows are processed on each run, the ilevels vector must be used.
This vector contains indexes pointing to the first row of each level in the iorder
vector. By eliminating the verification on the x values, the loops for memory
access and computations are simpler and can be partially unrolled. The update
of x values in both kernels is made by only one thread per work–group.

3.2 Single Work Item Kernels

For the Single Work–Item approach we develop three different versions:
SWIsimple, SWIchannel and SWIhash.

The SWIsimple is a naive implementation that consists of three nested loops,
where the outermost iterates over levels, the middle one over the rows in each
level, and the innermost over the non–zeros in each row. The latter is where
computations are performed. To add parallelism, this loop is partially unrolled.

262 F. Favaro et al.

Memory dependencies among x values prevent this kernel from being fully
pipelined with II equal to 1.

For the SWIchannel two kernels are used, one for all global memory transac-
tions, and the other in charge of the calculations. The kernels communicate with
each other using channels. These are mechanisms based on FIFO buffers for syn-
chronizing and passing data between kernels with high efficiency and low latency.
Three channels are used, one to send the number of non–zero coefficients (nnz)
per row, another for exchanging the x values, and the last one for the matrix
coefficients. Moving the memory accesses away from the computations allow the
kernel to be fully pipelined. The kernel that accesses global memory is structured
as three nested loops similarly to the SWIsimple. To allow pipelining, this kernel
is told to ignore memory dependencies using the ivdep pragma in the middle
loop. The outermost loop, which is responsible for issuing the levels one by one,
is serialized. This guarantees that dependencies are met for every row.

We improve over this last version by adding a hash to store the solved x.
This hash consists of a local memory array that stores a portion of the x values.
This allows accessing the x values much faster, as opposed to reading them from
global memory. We refer to this last version as SWIhash. We tested two different
versions of the SWIhash, one that updates the x in global memory at the same
time it is stored in the hash, and another one that impacts all x values from the
hash to global memory at the end. This last version proved to be faster.

4 Experimental Evaluation

The hardware employed is a DE10–nano board from Terasic, it is based on
a Cyclone V SoC form Intel, that includes a dual–core Cortex–A9 processor,
around 110K Logic Elements of programmable logic and 1 GB of high–speed
DDR3 memory shared between the processor and the FPGA. The FPGA has
6 MB of on–chip memory that can be used as scratchpad memory and 112
variable precision DSP blocks (capable of a peak performance of 22.4 GFLOPS).
We use the Intel FPGA SDK for OpenCL v18.1 to compile our kernels.

To measure power consumption we use a FLUKE 45 multimeter (4.5 dig-
its, accuracy: 0.2% + 6). The runtime is obtained by the profiling functions of
OpenCL. The runtime results are the average of 10 independent executions.

We select 9 matrices from the SuiteSparse Matrix Collection with similar
dimensions, between 17 k and 30 k rows, and large differences in the number of
nnz, i.e. between 32 k and 6.76 M. Table 1 summarizes the characteristics of the
matrices used.

Considering that the static power consumption of our experimental platform
is elevated, in comparison with the dynamic one, in the first stage of the analysis
we focus only on the runtime of the different variants.

The first study is for the NDRmulti variant. Table 2 presents the runtime
attained to solve the different sparse matrices by the NDRmulti solver. We
explore the use of several OpenCL parameters, particularly: (i) BS: the work–
group size, with values of 1, 2, 4 and 16; (ii) CU: the number of compute units,

Exploring FPGA Optimizations to Compute Sparse 263

Table 1. Rows (n), non–zero elements (nnz) and levels of sparse matrices.

Matrix Called n nnz levels

Bcsstm35 BcsS 30237 32645 6

Chipcool0 ChipC 20082 281150 534

Gyro Gyro 17361 519260 2796

Godwin 40 GodW 17922 561677 739

TSOPF162 T162 20374 812749 114

Thread Thread 29736 2249892 1446

TSOPF RS b300 T300 28338 2943887 112

Ndk Ndk 18000 3457658 5621

TSOPF RS b2052 T2052 25626 6761100 61

Table 2. Runtime (in ms) for the NDRmulti variant of sptrsv kernel with different
optimizations.

BS CU UF VE ChipC T162 T300 Gyro GodW BcsS T2052 Thread Ndk

1 1 2 1 30.6 19.0 23.4 216.9 50.6 1.2 39.1 209.3 946.4

1 1 4 1 30.7 15.5 20.9 211.3 49.1 1.3 36.2 192.7 906.3

1 2 2 1 34.3 14.3 26.5 238.4 54.9 1.1 37.2 238.0 1121.8

1 2 4 1 31.4 13.0 22.8 221.7 52.0 1.1 35.0 205.5 995.3

2 2 2 1 31.0 12.5 21.8 205.1 48.4 1.3 39.7 172.7 774.4

2 2 2 2 33.5 22.3 60.5 225.7 54.3 1.1 132.2 230.3 1068.2

2 2 4 1 30.7 12.1 20.8 194.3 47.6 1.3 35.7 162.6 732.8

4 1 2 1 29.3 13.3 22.5 154.2 41.6 2.5 36.4 128.4 528.4

4 1 2 2 30.3 16.4 30.3 164.0 45.0 1.6 59.1 148.9 603.2

4 1 4 1 29.5 12.4 22.2 150.2 41.5 2.5 33.3 124.3 472.5

4 1 4 2 30.7 14.5 29.6 163.1 46.6 1.7 54.8 146.5 537.2

4 2 2 1 30.2 13.0 21.6 169.5 44.1 1.7 34.8 141.6 612.6

4 2 4 1 30.9 12.5 21.2 163.2 46.5 1.8 34.3 135.0 542.1

16 1 2 1 41.9 19.5 32.7 150.8 50.2 15.8 45.8 112.2 368.4

16 1 2 2 36.5 15.9 34.4 153.0 46.4 8.6 62.3 126.6 396.2

16 1 4 1 42.9 18.9 30.5 155.9 51.9 16.7 43.8 118.8 361.9

16 1 4 2 40.0 16.1 32.3 159.7 50.9 9.5 60.4 135.4 411.6

with values of 1 and 2; (iii) UF: the unroll–factor, with values of 1, 2 and 4;
(iv) VE: the vectorization–factor (SIMD), with values of 1, 2 and 4. Note that
the vectorization factor must be less than or equal to the work–group size, i.e.
VE ≤ BS. Additionally, our board does not allow many combinations of the
optimization parameters due to hardware resource restrictions.

In the first place, the experimental results reached by NDRmulti variant show
that there is not a single configuration of the optimization parameters that

264 F. Favaro et al.

obtains the best results for all the matrices. From the work–group size perspec-
tive it seems that the higher the cost of solving the system is, the better it is to
have a large BS. For the unroll–factor (UF) it appears that higher numbers are
better. Most of the best runtimes occur for an unroll–factor of 4 and a few for a
value of 2. The number of compute units (CU), a priori, does not show any rec-
ognizable pattern. Finally, the vectorization does not offer any gains, in all cases
the variant with a vectorization–factor of 1 outperforms the other options. This
is because the compiler is failing to vectorize the memory accesses since these
are not contiguous. A similar explanation could be done for the compute unit
replication since replicating the pipeline should double the computing capacity,
but not necessarily the memory bandwidth. Taking the general behavior of this
variant into account, it can be observed that the number of levels strongly affects
the performance. Thus, this feature is more important than the number of non–
zeros of each matrix. This situation is aligned with other works over the sptrsv
kernel with different hardware platforms, see [7,16].

Table 3. Runtime (in ms) for the NDRwait, SWIchannel and SWIhash variants of
sptrsv kernel with different optimizations.

BS CU UF VE ChipC T162 T300 Gyro GodW BcsS T2052 Thread Ndk

NDRwait 4 1 1 1 8.0 15.8 52.5 52.7 12.5 4.5 132.5 51.9 143.6

4 1 1 2 8.6 18.9 58.0 54.4 13.7 4.0 143.2 67.5 144.3

8 1 1 1 9.7 25.9 86.9 78.2 20.9 7.0 200.3 75.5 162.0

8 1 1 2 8.6 18.6 51.3 89.5 17.5 4.4 113.6 57.6 200.3

16 1 1 1 18.0 36.4 116.2 102.8 29.1 17.9 264.5 99.6 224.6

16 1 1 2 16.2 18.8 59.7 115.8 30.3 9.3 133.6 65.6 208.6

SWIchannel 1 1 1 1 11.3 12.0 32.3 20.7 11.5 11.4 66.5 29.4 59.6

1 1 2 1 12.3 11.7 31.4 21.8 12.4 10.9 57.3 31.7 58.9

1 1 4 1 12.4 15.4 47.8 24.5 13.9 12.3 89.2 40.8 72.0

1 1 8 1 14.1 22.1 64.2 30.6 16.6 15.8 122.6 51.3 96.6

SWIhash 1 1 1 1 11.8 22.0 69.1 24.0 12.5 12.1 150.5 55.3 99.9

1 1 2 1 12.7 11.3 22.3 19.9 12.4 13.7 42.2 25.3 46.8

1 1 4 1 14.0 12.1 18.1 20.9 13.4 15.3 30.6 25.1 42.2

The first rows of Table 3 summarizes the experimental results for the
NDRwait. The number of compute units, and the unroll–factor, are kept in 1,
since incrementing the number of CU did not produce any runtime improve-
ments and the structure of the kernel does not allow to implement unrolling.
When comparing the attained performances with the NDRmulti counterpart, it
is clear that NDRwait version strongly improves the runtime for linear systems
with a large number of levels, and it is not a good option for the smallest case
and the TSOPF problem family. Additionally, the best parameter configura-
tions in this variant are less scattered. And, more importantly, when this variant
outperforms the previous one, the better configuration is in all cases the same
(work–group size equal to 4 and a vectorization value of 1). For the Single Work
Item Kernels, the OpenCL optimization space is more reduced. Only the unroll–
factor is explored with values of 1, 2, 4 and 8. The other differences involve

Exploring FPGA Optimizations to Compute Sparse 265

changing the algorithm strategy in each variant, i.e. whether or not a hash is
used as cache memory.

Middle rows of Table 3 summarizes the runtime for SWIchannel variant. These
results reveal that the use of 1 and 2 for the unroll–factor are the best options for
all test cases. Also, the differences between both configurations are negligible.
Studying the general behavior of this variant, we need to highlight that the
runtime differences between the test cases are smaller than in previous kernels.
In NDRmulti version runtime ranges from 1.1 to 361.9 and in NDRwait from
4.0 to 143.6, while in the current variant the interval is between 10.9 and 58.9.
Additionally, it seems that the runtime performance is more related to the nnz
value of each matrix.

The runtime results for SWIhash are presented in the last rows of Table 3.
First, we can see in the table that the results obtained for the different matrices
are closer to each other, even more than in the SWIchannel version. This is
because the SWIhash variant offers more benefits for matrices with large nnz,
i.e. reduced runtime for the most costly test cases. Additionally, the use of the
hash in the smallest test cases does not offer any benefits, increasing the runtime
only marginally. Finally, in this variant, the optimization configuration (the value
for unroll factor) is guided by the nnz of each matrix.

Table 4. Version, optimization configuration and runtime (in ms) for the best variant
of sptrsv kernel for the different test cases.

Matrix Version BS CU UF VE Runtime Power (W) Energy (mJ)

ChipC NDRwait 4 1 1 1 8.0 5.65 45.0

T162 SWIhash 1 1 2 1 11.3 6.60 74.3

T300 SWIhash 1 1 4 1 18.1 6.55 118.3

Gyro SWIhash 1 1 2 1 19.9 5.45 108.6

GodW SWIchannel 1 1 1 1 11.5 5.25 60.3

BcsS NDRmulti 1 2 2 1 1.1 5.50 6.1

T2052 SWIhash 1 1 4 1 30.6 6.80 208.2

Thread SWIhash 1 1 4 1 25.1 6.15 154.4

Ndk SWIhash 1 1 4 1 42.2 6.00 253.1

Column 7 of Table 4 consolidates the runtime results. The first observation
that can be made from the numerical values is that all versions are the best for
at least one case. The NDRange Kernels seem to be the best option for smallest
test cases, while the Single Work Item Kernels are the best choice for matrices
with large nnz. From the OpenCL optimization configuration perspective, our
proposals are neither able to leverage the vectorization nor the use of more
than one compute unit (only one of the best cases used 2 as a CU, but the
difference is negligible when comparing against the non–replicating version).

266 F. Favaro et al.

On the other hand, the use of different values for the unroll–factor offers some
benefits. Concretely, large test cases take advantage of larger unroll factors.

The last study is on energy consumption. In this line, the Columns 8 and 9 of
Table 4 offers the Power and Energy consumption corresponding to the different
test cases when the best kernel is employed. In Fig. 1 we plot the nnz (×103)
processed by mJ of energy consumed for each test case, as the nnz is considered
the best estimation of the effort implied by the sptrsv for a particular sparse
system. It should be noted that the cases that require more Power (e.g. the T2052

case) are the more efficient from the perspective of this metric.

Fig. 1. Thousands of nnz processed by energy consumption (1 mJ).

5 Final Remarks and Future Work

We have studied the performance of several kernels for the solution of sparse tri-
angular linear systems (sptrsv) in FPGAs. In particular, we presented OpenCL
implementations for the sptrsv kernel following two different parallel execu-
tion paradigms: the NDRange and a Single Work–Item. Additionally, our study
explores the most relevant OpenCL optimization configurations, such as the use
of threads, vectorization and unrolling.

The experimental evaluation performed on a low–end FPGA shows that the
best method varies from one test case to the other. This situation is aligned with
other efforts for the sptrsv kernel on massively–parallel devices. Additionally,
the runtimes achieved by the best configuration of each case are competitive
considering those found in the literature and our previous experience, while the
energy consumption is lower.

In future work, we plan to address the combination of OpenCL with low–
level developments to strongly improve the kernel performance. Also, it would
be interesting to evaluate the performance of our solvers in other FPGAs and
for a larger number of test cases, particularly including high-end boards and
large linear systems. Finally, we will try to advance in the characterization of
the FPGA performance and energy consumption of each technique.

Exploring FPGA Optimizations to Compute Sparse 267

Acknowledgments. The researchers were supported by Universidad de la República
and the PEDECIBA. We acknowledge the ANII – MPG Independent Research Groups:
“Efficient Heterogeneous Computing” with the CSC group.

References

1. The Green500 list (2019). http://www.green500.org
2. Benner, P., Ezzatti, P., Quintana-Ort́ı, E., Remón, A.: On the impact of optimiza-

tion on the time-power-energy balance of dense linear algebra factorizations. In:
Aversa, R., Ko�lodziej, J., Zhang, J., Amato, F., Fortino, G. (eds.) ICA3PP 2013.
LNCS, vol. 8286, pp. 3–10. Springer, Cham (2013). https://doi.org/10.1007/978-
3-319-03889-6 1

3. Czajkowski, T., et al.: From OpenCL to high-performance hardware on FPGAs.
In: 22nd International Conference on Field Programmable Logic and Applications
(FPL), pp. 531–534. IEEE (2012)

4. Davis, T.: Direct Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia (2006)

5. Dongarra, J., et al.: The international ExaScale software project roadmap. Int. J.
High Perform. Comput. Appl. 25(1), 3–60 (2011)

6. Dongarra, J.J., Croz, J.D., Hammarling, S., Duff, I.S.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

7. Dufrechou, E., Ezzatti, P.: Solving sparse triangular linear systems in modern
GPUs: a synchronization-free algorithm. In: 2018 26th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP), pp.
196–203 (2018)

8. Erguiz, D., Dufrechou, E., Ezzatti, P.: Assessing sparse triangular linear system
solvers on GPUs. In: 2017 International Symposium on Computer Architecture
and High Performance Computing Workshops (SBAC-PADW), pp. 37–42, October
2017

9. Ezzatti, P., Quintana-Ort́ı, E.S., Remón, A., Saak, J.: Power-aware computing.
Concurr. Comput. Pract. Exp. 31(6), e5034 (2019). e5034 cpe.5034

10. Favaro, F., Dufrechou, E., Ezzatti, P., Oliver, J.P.: Unleashing the sptrsv method
in FPGAs. In: PACO 2019: 3rd Workshop on Power-Aware Computing (2019)

11. Fowers, J., Ovtcharov, K., Strauss, K., Chung, E., Stitt, G.: A high memory band-
width FPGA accelerator for sparse matrix-vector multiplication. In: Proceedings
of the IEEE International Symposium on Field-Programmable Custom Computing
Machines, FCCM 2014, pp. 36–43. IEEE Computer Society (2014)

12. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University
Press, Baltimore (2013)

13. Kestur, S., Davis, J.D., Chung, E.S.: Towards a universal FPGA matrix-vector
multiplication architecture. In: 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, pp. 9–16, April 2012

14. Kestur, S., Davis, J.D., Williams, O.: BLAS comparison on FPGA, CPU and GPU.
In: 2010 IEEE Computer Society Annual Symposium on VLSI, pp. 288–293, July
2010

15. De Matteis, T., de Fine Licht, J., Hoefler, T.: FBLAS: Streaming Linear Algebra
on FPGA (2019)

16. Naumov, M.: Parallel solution of sparse triangular linear systems in the precon-
ditioned iterative methods on the GPU, NVIDIA Corp., Westford, MA, USA,
Technical report, NVR-2011, 1 (2011)

http://www.green500.org
https://doi.org/10.1007/978-3-319-03889-6_1
https://doi.org/10.1007/978-3-319-03889-6_1

268 F. Favaro et al.

17. Tan, Y., Imamura, T.: Performance evaluation and tuning of an OpenCL based
matrix multiplier. In: PDPTA, pp. 107–113. The Steering Committee of The World
Congress in Computer Science (2018)

18. Townsend, K.R.: Computing SpMV on FPGAs. Graduate Theses and Dissertations
(2016). https://lib.dr.iastate.edu/etd/15227

19. Umuroglu, Y., Jahre, M.: A vector caching scheme for streaming FPGA SpMV
accelerators. In: Sano, K., Soudris, D., Hübner, M., Diniz, P.C. (eds.) ARC 2015.
LNCS, vol. 9040, pp. 15–26. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-16214-0 2

20. Wirbel, L.: Xilinx SDAccel: A Unified Development Environment for Tomorrows
Data Center. The Linley Group Inc., Mountain View (2014)

https://lib.dr.iastate.edu/etd/15227
https://doi.org/10.1007/978-3-319-16214-0_2
https://doi.org/10.1007/978-3-319-16214-0_2

Architectures

A CGRA Definition Framework
for Dataflow Applications

George Charitopoulos1(B) and Dionisios N. Pnevmatikatos2

1 School of Electrical and Computer Engineering,
Technical University of Crete, Chania, Greece

gcharitopoulos@isc.tuc.gr
2 School of Electric and Computer Engineering,

National Technical University of Athens, Athens, Greece

Abstract. Executing complex scientific applications on Coarse Grain
Reconfigurable Arrays (CGRAs) promises execution time and/or energy
consumption reduction compared to software execution or even cus-
tomized hardware solutions. The compute core of CGRA architectures is
a cell that typically consists of simple and generic hardware units, such
as ALUs, simple processors, or even custom logic tailored to an appli-
cation’s specific characteristics. However generality in the cell contents,
while convenient for serving multiple applications, comes at the cost of
execution acceleration and energy consumption.

This work proposes a novel Mixed-CGRA Definition Framework (MC-
DeF) targeting a Mixed-CGRA architecture that leverages the advan-
tages of CGRAs by utilizing a customized cell-array, and FPGAs by
utilizing a separate LUT array used for adaptability. Our framework
employs a custom cell structure and functionality definition phase to cre-
ate highly customized application/domain specific CGRA designs. This
is achieved through the use of cost functions that use metrics such a
resource usage, connectivity overhead, chip area occupied, i.a., and user-
defined threshold values. Thus, the framework aids the user in creating
suitable designs based on the application’s needs and/or design restric-
tions, energy and/or area constraints.

We evaluate our framework using three applications: Hayashi-Yoshida,
Mutual Information and Transfer Entropy and present fully functional,
FPGA-based implementations of these applications to demonstrate the
validity of our framework. Comparisons with related work show that MC-
DeF performs favourably in terms of processing throughput - even when
compared with much larger designs, uses fewer resources than most of
the compared architectures, while utilizing better the underlying archi-
tecture recording the second best efficiency (LUT/GOPs) rating.

Keywords: CGRA · CGRA framework · Reconfigurable computing ·
FPGA

This research is supported in part by the General Secretariat for Research and Tech-
nology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI).

c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 271–287, 2020.
https://doi.org/10.1007/978-3-030-44534-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_21&domain=pdf
http://orcid.org/0000-0002-7538-5043
http://orcid.org/0000-0003-3533-2761
https://doi.org/10.1007/978-3-030-44534-8_21

272 G. Charitopoulos and D. N. Pnevmatikatos

1 Introduction

The dataflow paradigm is a promising and well-established alternative towards
customized hardware solutions. Several frameworks that create dataflow graphs
(DFGs) and map them on specialized hardware have been proposed [13,24].
Coarse-grain architectures (CGA) have been used to map DFGs on their pre-
defined and fixed hardware, and -due to hardware customization- often achieve
faster and more energy efficient execution. A key disadvantage of CGAs is the
lack of flexibility and versatility in their resources compared to more flexible
approaches. A promising solution to this is Coarse-Grain Reconfigurable Array
(CGRA) architectures, i.e. architectures that feature large reusable units with
reconfigurable capacity [9], compared to more flexible approaches, which are
highly customizable and tailored to the application’s needs and requirements.

A key disadvantage of current CGRA architectures is the mapping process:
a single node in the application’s DFG is mapped onto a single cell in the array.
Additionally CGRA architectures strive to be as generic as possible. This inten-
tional lack of customized hardware leads to sub-optimal designs in terms of
offered acceleration and general execution time. We need a CGRA definition
framework that is able to: (a) map multiple nodes in one cell and (b) offer
customized cell functionality, while maintaining a degree of flexibility.

In this work we propose a novel Mixed-CGRA Definition Framework (MC-
DeF) couple with a Mixed-Coarse Grain Reconfigurable Array (Mixed-CGRA)
architecture. The Mixed-CGRA architecture uses both a coarse-grain array and
an adjacent reconfigurable LUT array for flexibility, connected with a fast and
high bandwidth communication infrastructure. The definition framework uses
the application’s DFG representation and performs; application analysis in order
to decide the CGRA-cell structure and functionality, mapping and routing. More-
over MC-DeF presents to the user area occupancy and energy consumption val-
ues based on the created design.

The resulting design can be implemented either as an ASIC, with added
flexibility through the use of the adjacent reconfigurable LUT array, or as an
overlay to an FPGA. Additionally, by fine-tuning the threshold values used by
MC-DeF, the user can perform design space exploration in order to find a suitable
hardware solution based on area or energy restrictions. To evaluate our proposed
framework and architecture we use three scientific applications, Hayashi Yoshida
estimator, Mutual Information of two random variables and Transfer entropy
between two processes, and report on their resulting Mixed-CGRA designs as
defined by MC-DeF. We also compare MC-DeF with other proposed CGRA
architectures and show how our architecture fares against them.

The main contributions in this paper can be summarized as:

– A definition framework to create customized CGRA architectures, through
the use of application analysis

– A cell-structure and mapping technique, able to map multiple stand-alone
and/or chains of DFG nodes in a single CGRA cell

– A novel technique to unify operand nodes with same functionality and differ-
ent bit-widths to create a more homogeneous CGRA design.

A CGRA Definition Framework for Dataflow Applications 273

The rest of the paper is structured as follows: Sect. 2 presents related work
on the field of CGRA architectures, MC-DeF and the targeted Mixed-CGRA are
described in Sect. 3. Evaluations of MC-DeF and comparisons with other works
are in Sect. 4. Finally Sect. 5 concludes our work and presents our final remarks.

2 Related Work

This section presents related work in the field of Coarse-Grain Reconfigurable
array architectures. Our main focus is on architectures that have been evaluated
using FPGA devices or act as FPGA overlays. Stojilovic et al. present a tech-
nique to automatically generate a domain-specific coarse-grained array from a set
of representative applications [26]. Their technique creates a shortest common
super-sequence found among all input applications based on weighted majority
merge heuristic. Using this super-sequence, the framework creates a cell array
able to map the application’s instructions.

REDIFINE [2] is a polymorphic ASIC in which specialized hardware units
are replaced with basic hardware units that can create the same functionality by
runtime re-composition. The high-level compiler invoked creates substructures
containing sets of compute elements. Paired with REDIFINE, HyperCell [21]
enhances the CGRA compute elements with reconfigurable macro data-paths
that enable exploitation of fine grain and pipeline parallelism at the level of
basic instructions in static dataflow order.

Mapping Dataflow applications on CGRAs is wide research field. Niedermeier
et al. present a novel programming paradigm designed to combine the principles
of dataflow execution with CGRAs, [22]. The authors present a Haskell-based
programming language coupled with a CGRA architecture comprising of recon-
figurable cores. Each core includes a functional unit (FU), a register file and a
program memory.

Intermediate Fabrics (IF) is an overlay architecture consisting of 192 het-
erogeneous FUs with an island-style interconnect [7]. The complete CGRA is
implemented on an Altera Stratix III FPGA in order to support fully paral-
lel, pipelined implementations of a set of image processing kernels. The DySER
architecture consists of a heterogeneous array of 64 functional units intercon-
nected with a programmable network [11,12]. A key disadvantage of DySER is
high LUT consumption. Early implementations were only able to fit a 2 × 2
32-bit DySER on the FPGA. Subsequent implementations used DSP blocks as
the homogeneous FU, thus achieving larger arrays.

Apart from using heterogeneous customized FUs, several researchers have
elaborated on the use of DSP blocks as the CGRA FU. A fully pipelined
DSP block based overlay architecture is presented in [17]. The overlay uses the
dynamic programmability of the DSP block and maps up to three operations to
each node (1 add/sub, 1 mul, 1 ALU op), resulting in a significant reduction in
the number of processing nodes required. DECO [18], uses the same principle
as [17] but the CGRA is arranged in a cone shaped cluster of DSP-based FUs
utilizing a simple linear interconnect between them.

274 G. Charitopoulos and D. N. Pnevmatikatos

Another type of CGRA architecture is the expression-grained reconfigurable
array (EGRA) [3]. The architecture described as a template with each Pro-
cessing Element (PE) hardware able to be customised prior to fabrication. The
authors by analyzing patterns in the application’s computations decide on a set
of arithmetical/logical units to implement in the PEs.

While MC-DeF bares resemblance to many of the works stated in this section
it stands aside as being one of the few works adding LUT array based ver-
satility as well as creating unique CGRA-cells that can be either domain- or
application-specific depending on the user’s requirements. Contrary to [26] MC-
DeF employs a technique that tries to find common sequences of operations
within one application. This leads to a more application-specific CGRA with
the flexibility added through the use of an adjacent LUT array. MC-DeF and
EGRA [3] are the only frameworks able to create an operation/function based
CGRA cell based on application analysis. While similar in principle, MC-DeF
performs a more detailed application analysis, including in the cell chains of
common used functions instead of just the stand-alone functions. In Sect. 4 we
evaluate our approach and compare it to Intermediate Fabrics, Intermediate
Fabrics (opt), DySER and DECO.

Fig. 1. The major processes carried out by the MC-DeF definition framework.

3 Mixed-CGRA Definition Framework

The problem that motivates this paper is the following: Given the dataflow graph
(DFG) (Fig. 1 (a)): find the most suitable set of nodes to implement in a CGRA
cell, map the graph nodes according to the cell created and place and route
the resulting transformed application DFG in the CGRA architecture shown in
Fig. 2. The whole process performed by our framework is shown in Fig. 1. The
framework comes along with a novel CGRA architecture that incorporates a
diagonal mesh network [15]. Additionally the framework presented in this paper
utilizes several techniques that ultimately implement a highly efficient CGRA

A CGRA Definition Framework for Dataflow Applications 275

design in terms of execution time, bandwidth, energy consumption and area
occupied.

The framework consists of four phases described in this section:

– Cell Structure and Functionality: the process used to decide the structure
and functionality of the CGRA cell,

– Mapping: the process of mapping the application’s computational elements
on the CGRA cells and the accompanying LUT array,

– Routing: the process of connecting the different cells using switch boxes and
the underlying network,

– Area & Energy Calculation: the process of calculating the occupied area
and the energy consumption of the resulting chip.

In order to have a DFG representation of the target application, MC-DeF
has to interface with a High-Level Synthesis framework. The Maxeler Platform,
which uses the Dataflow Paradigm to enable massive amounts of hardware accel-
eration is used as the front-end to our MC-DeF definition framework. Maxeler
Technologies is an HPC company that specializes in Multiscale Dataflow Com-
puting (MDC) [23].

During Synthesis, the Maxeler framework produces a .xml file that contains
the DFG hardware representation of the application, as well as, the connectivity
between different nodes. The nodes of the DFG are simple, high abstraction
hardware modules such as adders, counters, multipliers, etc. The DFG nodes
are an intermediate representation between the high-level code and the resulting
hardware.

3.1 Target Architecture

The architecture we propose, tries to balance the versatility and generality
aspects of MC-DeF. The main computational needs of the applications are to be
served by the cell-array, however the inclusion of a LUT array structure adds ver-
satility to our architecture. The target architecture for our framework is shown
in Fig. 2. It can be characterized as a mixed-coarse-grain reconfigurable array
architecture, containing both a cell and a reconfigurable LUT array. The pre-
sented architecture can be either coupled as an accelerator core to a processor
unit implemented in ASIC or as a standalone FPGA overlay.

The MC-DeF architecture consists of:

– The Cell Array: An array of homogeneous cells containing the appropriate,
according to the application’s needs, compute and memory elements.

– Input/Output infrastructure necessary for transferring input and output
data to and from the MC-DeF.

– LUT Array: A reconfigurable LUT array adding versatility to the MC-DeF.
– Switch Boxes & Network: The necessary elements (data lines and con-

nectivity matrices) in order to establish, cell-to-cell, cell-to-LUT array, I/O-
to-cell or -LUT array communication. Cell-to-cell communication is handled

276 G. Charitopoulos and D. N. Pnevmatikatos

Fig. 2. Structure of the proposed CGRA.

by smaller, faster connections (black coloured lines). Cell-to-LUT array com-
munication is achieved by larger buses (yellow coloured line). I/O nodes are
directly connected to cells or LUT nodes.

– Crossbar Switches: Logic needed to enable bidirectional communication
among cells at the network junctures (green circles).

3.2 Cell Structure and Functionality Definition (CSFD) Phase

Most of the proposed CGRA architectures use a static and pre-defined set of
compute elements, soft-core processors or ALU structures coupled with instruc-
tion memories. While this approach is flexible and general enough to target a
wide range of applications it lacks in terms of application scaling, resource uti-
lization and the total number of operations performed in parallel.

The MC-DeF framework utilizes two novel techniques to create highly cus-
tomized cells optimized to the target application’s characteristics. The Impact
Factor metric, introduced in [5], denotes the impact a DFG node has on the
actual resource utilization of the application, i.e. percentage of LUTs, FIFOs,
BRAMs and DSPs used by a node, over the total resource usage of the applica-
tion. Nodes with high Impact Factor are labeled for inclusion in the cell structure.

The next step is to discover frequently occurring sub-graphs, a process similar
to identifying frequent chains of instructions [6]. In [5] the authors run a modified
version of GraMi [10], an algorithm for extracting frequent sub-graphs from a
single large graph. A graph is extracted only if it exceeds a frequency and a
resource utilization threshold, thus limiting the search space to sub-graphs that
have high occurrence frequency and use the most hardware resources.

A CGRA Definition Framework for Dataflow Applications 277

During the course of preliminary development of the CSFD phase we observed
that nodes with same functionality had different operand bit-widths creating
an issue with the homogeneity of the CGRA cells. To address this we design
Node Merging; an algorithm designed to find whether two nodes with the
same functionality should be merged under the same bit-width and what the
optimal bit-width for the current application is. By node merging we create a
more unified environment for our CGRA, in terms of bit-width. The resulting
design is more generic and easier to implement.

The metrics used by Node Merging are: the bit-width difference between the
two nodes and the Percentage Gain, i.e. the percentage increase in terms of
resource utilization gained by a possible merging. By applying threshold values
to the two metrics the algorithm is able to decide whether or not two nodes
should be merged.

In our work node merging is the process of joining two same-functionality
nodes with different bit-widths. There are two ways in which merging is per-
formed in the context of MC-DeF definition framework: (a) perform bit exten-
sion on the smaller bit-width node, and (b) map the larger bit-width node in
multiple CGRA cells.

The first merging option creates smaller designs but with a computation and
communication overhead due to the non-useful extension bits. The second creates
designs that use more CGRA cells but are faster in terms of internal bandwidth.
The two associated overheads are calculated in order to choose the optimal bit-
width. Moreover, in the case of bit-extensions re-adjustments are made to address
the issue of arithmetic overflows. Nodes that undergo bit-extension, during the
Node Merging process, are tagged and a special overflow circuit is added to their
output.

Through the CSFD phase the MC-DeF framework ensures that the function-
ality of the CGRA-cell is beneficial in terms of resources, frequency of occurrence
in the DFG and bandwidth achieved among cell communication. The threshold
values applied are subject to change according the user needs and design restric-
tions.

3.3 Node Mapping

Node mapping is the process of assigning an application’s DFG nodes in CGRA
cells. However, CGRA cells contain chains of nodes and individual nodes as well,
making the problem of mapping nodes to cells a difficult algorithmic process.

In order to efficiently allocate the DFG nodes on the CGRA cells, we imple-
ment a novel algorithm, Node Grouping. To explain Node Grouping, we present
the following example: Let us consider an application graph with nodes N=A,
B, C, D, and a CGRA cell with one node and a sub-graph E = A → C,B.
The desired functionality for Node Grouping, based on the example, is shown in
Fig. 1 (b).

However, some nodes do not directly map to CGRA cells, e.g. node D in
Fig. 1 (a). The functionality of these nodes is implemented in the adjacent LUT
array seen in Fig. 2. The CSFD phase ensures that these node are but a small

278 G. Charitopoulos and D. N. Pnevmatikatos

fraction of the total resources used by the application. A large application DFG
and a more complex CGRA cell structure increase the graph transformation’s
complexity. Node Grouping finds and evaluates possible covering/mappings of
the DFG using two cost functions:

– Unutilized cell resources: A cost function that measures the amount of unused
resources among all the CGRA cells. A CGRA cell consisting of three nodes,
with only two of them used will have an unutilized cell resources count equal
to one.

– Connections between cells: A cost function that measures wire connections
between different CGRA cells. If more than one outputs from one cell are
connected to another then the connection is weighted, but still counts as one.

Finally after assigning nodes to cells the Node Mapping phase based on the
number of cells used decides on the array size. The function responsible opts
towards creating a square array, despite the fact that some cells might end up
unused. Extra cells might prove beneficial if the user decides to map a different
application on the existing array or if the application scales up demanding more
resources at a later stage of development.

The implemented cost functions ensure that the resulting mapping is mini-
mized in terms of cell utilization and cell communication complexity. Maximizing
cell resource utilization creates compact and power efficient designs. Moreover,
a design with few cell connections can achieve high clock frequency resulting in
a higher internal bandwidth, while also minimizing wire power dissipation.

Fig. 3. Topology and links of DMesh.

3.4 Communication Infrastructure

Mixed-CGRA uses a two-level network as its communication infrastructure. The
first level is used for local, i.e. cell-to-cell, communication and uses a diagonal

A CGRA Definition Framework for Dataflow Applications 279

mesh network. The DMesh network, presented in [15] and shown in Fig. 3, is the
basis of our network. The second level of the MC-DeF network is grid of large
bi-directional buses, yellow coloured lines in Fig. 1. This network is used for the
communication of the cell-array and the I/O infrastructure with the adjacent
LUT array.

We opt towards the DMesh network because experiments show that DMesh
offers a 25% reduction of inter-node distance over a classic 2D-Mesh, while using
almost double the resources. In our modified DMesh network instead of imple-
menting dedicated N,S,W,E connections we implement a bi-directional crossbar
switch at the intersection of the diagonal links reducing the total resource uti-
lization by ≈ 35%. The elimination of four connection points does not affect our
design since there use is to alleviate network congestion. In our case this is not
necessary since very few cell-to-cell connections are bi-directional and also all
computations are pipelined.

The Routing phase of MC-DeF uses two cost function in order to create
designs with low communication overhead: the number and size of synchroniza-
tion FIFOs used in each cell and the distance of two communicating cells.

Synchronization FIFOs. Dataflow execution dictates that operands arrive at
compute nodes synchronized. However, operands from different paths may
observe different compute and communication latencies. MC-DeF uses synchro-
nization FIFOs where needed to re-time inputs in each CGRA cell. Synchronizing
cell-node inputs could be remedied -but not fully solved- by latency-aware map-
ping of the cells, however this would lead to increasing the overall latency of
all the cell-array. By inserting synchronization FIFOs inside the cells we ensure
unobstructed parallel and pipelined execution. After inserting timing synchro-
nization FIFOs, the Routing process continues to record all the connections
between Input/Output nodes, cells and the LUT array. The connections found
are then translated in connectivity matrices and are stored in the switch boxes.

Cell Distance. Cells are recognised by their position in the array, i.e. vertical
and horizontal coordinates. The distance of cell A (0,0) and cell B (2,1) is 2.
After calculating cell distance between two connecting cells the synchronization
FIFOs are formulated accordingly. Distance between cells and, Input/Output
nodes and the LUT array is three since communication is achieved over the
slower grid network. Distance between the nodes within the LUT array is not
considered.

These cost functions are used for improving the communication infrastruc-
ture. The next step of the routing process is to minimize them via traversing the
Cell array. For the two cells mentioned before, we move one of them along the
axis that shows the largest distance. For example, moving Cell A to the (1, 0)
position reduces the distance by 1. After this traversal we need to re-evaluate the
cost functions and perform more traversals if necessary. The process is repeated
until a local minimum value is found, after a finite number of traversals.

280 G. Charitopoulos and D. N. Pnevmatikatos

3.5 Area and Energy Calculation

The overall cost of the resulting CGRA architecture is evaluated by measuring
the area of the resulting architecture and the energy consumption. Similar to [4]
and [25] we estimate the area occupancy of our architecture assuming a 7 nm
lithography technology. Thus, a 6T SRAM bit cell unit’s size is 30 nm2, i.e.
38.5 Mb in 1mm2. For example a 1 k × 8bit FIFO will occupy approximately
250µm2, while the area needed to implement a fused double precision Multiply-
Accumulate on 7 nm is 0.0025mm2. Additionally, we consider two 19.5mm2

Input/Output infrastructures at the top and bottom of the CGRA with 13mm
length and 1.5mm width. Also, the LUT array area is calculated based on [1,27].
The numbers reported by the area evaluation phase of MC-DeF are: CGRA-only,
CGRA+I/O and Total (CGRA+I/O+LUT) Area in mm2.

Table 1. Energy consumption of electronic circuits used in MC-DeF

Circuit (32-bit double percision) Energy (pJ)

Node Add/Sub 10

Node Multiply 9

Node Division 13

Logic Gates Nodes 0.5

64-bit read from an 8-KB SRAM 2.4

Data movement between cells 0.115 pJ/bit/mm

Calculating energy consumption of the resulting Mixed-CGRA design is
based on the individual computing elements used. Bill Dally in [8] shows how the
64-bit double precision operation energy halved from 22 nm to 10 nm. Addition-
ally in [20] the authors accurately measure the energy consumption of several
electronic circuits. The numbers reported in this study are the basis of our energy
consumption calculations.

In Tables 1 and 2 we present the area and energy measurements considered
by our MC-DeF framework. The system interconnect access requires 1000pj.
These values are worst case scenarios so they correspond to highly overestimated
scenarios. Additional optimizations at the implementation level would allow for
more efficient designs.

3.6 Discussion

The Mixed-CGRA reconfigurable designs produced by MC-DeF are technology
agnostic. Two main avenues for the implementation of these designs are (i) on
FPGAs, and (b) as custom ASICs. The former option is typical in the CGRA
research field and we can take advantage of the FPGA reprogramming and use
MC-DeF results as an overlay structure. The overlay, together with the data
transfer protocol and framework forms a complete system. The latter option is

A CGRA Definition Framework for Dataflow Applications 281

Table 2. Area occupancy of electronic circuits used in MC-DeF

Circuit Area (µm2)

Node Add/Sub Node Multiply/Divide 2500

FIFO (bits)

Width Depth

<=8 <=1000 250

>8 <=1000 250

<=8 >1000 �Depth/1000�∗250

>8 >1000 �Depth/1000�∗�Width/8�∗250

to produce a highly optimized, one time programmable accelerator for a specific
application domain. However, the certain level of reconfigurability remains in
the LUT array and the programmability of the Cell Array switch boxes.

Table 3. MC-DeF metrics, thresholds and cost-functions. Entries annotated with ∗
are used for Communication infrastructure optimization, and with † for CGRA array
optimization.

Name Type MC-DeF phase

Impact factor† metric CSFD application analysis

Utilization of frequently occurring sub-graphs† threshold CSFD Sub-graph discovery

Frequency of frequently occurring sub-graphs† threshold CSFD Sub-graph discovery

Percentage gain† metric (threshold applied) CSFD node merging

Bit-difference† metric(threshold applied) CSFD node merging

Connections between cells∗ cost function Mapping

Unutilized cell resources† cost function Mapping

Cell distance∗ cost function Routing

Number and Size of Sync. FIFOs∗ cost function Routing

Throughout its execution MC-DeF uses several metrics, thresholds and cost-
functions. In Table 3 we list the name, type and MC-DeF phase each of them is
used. The parameters used can be divided in two categories: those used to create
a more compact and resource efficient array and those used to create a fast and
high bandwidth communication framework.

The threshold values applied can be used for design space exploration in
order for the user to find a hardware solution tailored to either area or energy
restrictions. This feature is also aided by the fast execution and simulation times
of MC-DeF averaging below two minutes.

4 Experimental Results

To evaluate our MC-DeF framework we use three scientific applications: Hayashi
Yoshida coefficient estimator [14], Mutual Information of two random variables

282 G. Charitopoulos and D. N. Pnevmatikatos

and Transfer entropy between two processes [16]. The characteristics of the three
applications, i.e. resource utilization and DFG size, are presented in Table 4. All
the results related to the final Mixed-CGRA architecture for the three applica-
tions are presented in this section. Additionally in this section we compare the
MC-DeF framework and Mixed-CGRA architecture with related work in the
field.

4.1 MC-DeF Results

Given the application DFG MC-DeF determines the optimal cell structure and
functionality for the CGRA and the contents of LUT array, proceeds to map the
nodes of the DFG to cells and specifies the connectivity network of the array.
Finally MC-DeF calculates the energy consumption and area occupancy of the
design and presents a final report to the user.

For the three applications used, we report their customized CGRA cell, the
size of Cell and LUT arrays, clock frequency achieved, total chip area, energy
consumption per 20 GB of input data, the average distance/cell and synchroniza-
tion FIFO size/cell and finally the internal bandwidth recorded. All designs are
parallelized and pipelined and can be implemented in either an overlay fashion
or as a standalone design following the architecture shown in Fig. 1, in this case
the target board for our designs is a Stratix V FPGA. The results are presented
in Table 4.

Communication infrastructure configuration for all applications are 32-bit
channels. The majority of operations performed by CGRA cells are 32-bit dou-
ble precision floating-point. For all the applications MC-DeF achieves over 80%
utilization using the CGRA cells. The remaining percentage is mapped on the
LUT array. In the resulting designs the less utilized CGRA is observed in Hayashi
Yoshida averaging 1 output/cell. Transfer Entropy and Mutual Information aver-
age 2.5 outputs/cell.

Clock frequency among applications is different due to the critical path
observed within the CGRA cell. Since the three applications perform similar
computations their energy consumption is also similar. We observed that even
though the Hayashi Yoshida CGRA cell-count is larger, a single cell performs
two double-precision floating-point operations. Thus, the Hayashi Yoshida appli-
cation lets us observe the trade-off between floating-point operations per cell and
the number of cells in the CGRA and how the two affect energy consumption.

4.2 Comparisons

As presented in Sect. 2, several works propose CGRA designs. Since of the differ-
ent FPGA fabrics and the different overlay architectures, it is difficult to make
fair and direct comparisons. Additionally there are no common application cases
between these works and ours. Following the methodology presented in [19], we
compare a baseline worst case scenario architecture created by MC-DeF with
Intermediate Fabrics, Intermediate Fabrics (opt), DySER and DECO. Our com-
parison are based on generic metrics: clock frequency achieved, total operations

A CGRA Definition Framework for Dataflow Applications 283

Table 4. MC-DeF Experimental Results

Hayashi Yoshida Transfer Entropy Mutual Information

Resources (LUT, BRAM, DSP) (3912, 0, 4) (17677, 2, 4) (17533, 2, 4)

DFG Nodes 270 199 225

Cell Structure Equality → And
Mul
Add/Sub

Add/Sub
Mul
Div

Add/Sub
Mul
Div

CGRA dimensions 5 × 5 4 × 4 4 × 4

Clock Frequency 150 MHz 200 MHz 200 MHz

LUT array size 805 2941 2836

Total chip area mm2 144.70 133.60 133.60

Energy Consumption 22.24 J 22.24 J 22.24 J

Avg. distance/cell 3 5.4 5.6

Avg FIFO size/cell 4 9.4 10.9

Internal Bandwidth 15 GB/s 32 GB/s 32 GB/s

carried out in parallel on the array, peak giga-operations per second on a fully
utilized array and resource utilization.

As an additional comparison metric, we use the LUTs/GOPs metric, intro-
duced in [19] in order to have a more quantitative and meaningful compari-
son between different CGRA designs. This metric represents the interconnect
resource used per unit peak throughput, and gives the ability to quantify the
area overhead of the overlay interconnect architectures irrespective of the FU/cell
implementation.

Table 5 presents how our design fares compared to other related works. The
Intermediate Fabrics architecture, is implemented in a Altera Stratix III E260
FPGA, DySER and DECO, are implemented both in a Xilinx Zynq XC7Z020
device. A uniqueness observed in DECO is that the cells are arranged in a
cone-shape so X,Y array size is not applicable. As a reference design for our
comparisons we consider a CGRA size 6 × 6 with 3 ops/cell operating at a
maximum frequency of 200 MHz. Calculation of the GOPs operations performed
is done by multiplying the frequency with the total operations performed by each
cell when the CGRA is fully utilized. In all of the cases the cell is considered to
perform all available operation per clock cycle.

MC-DeF is able to map multiple operational nodes from the application’s
DFG in a single cell. Since operations in the cell are parallel and pipelined,
the total operations performed in the cell is equal to the number of original
DFG nodes in it, e.g. the Transfer Entropy design performs 3 operations/cell at
each cycle. As the contents of the cell as defined by our framework matches the
needs and structure of the application DFG nodes, both the utilization and the
processing throughput of the corresponding circuits within the cell is high. This
is an advantage compared to related work where the basis of a cell is a generic
large FU/ALU performing at maximum 1 or 2 operations per cycle. This also

284 G. Charitopoulos and D. N. Pnevmatikatos

means that our designs are more compact, thus reducing resource utilization and
energy consumption.

Table 5. Quantitative comparison of CGRAs

Resource IF IF (opt.) DySER DECO MC-DeF MC-DeF+DSP

CGRA grid 14 × 14 14 × 14 6 × 6 20 (cone) 6 × 6 6 × 6

Frequency 131 148 175 395 200 200

Total OPs 196 196 36 60 108 108

Peak GOPs 25.6 29 6.3 23.7 21.6 21.6

LUT used 91 K 50 K 48K 10 K 15 K 13 K

LUT/GOPs 3550 1725 7620 430 694 601

The current implementation of the proposed Mixed-CGRA architecture does
not use the maximum amount of DSPs offered by the FPGA. By allocating one
DSP per cell we can achieve a better combination of fixed hardware logic and
reconfigurable LUTs as is our intention. By doing so we also have a reduction in
the LUTs used by the whole architecture. The enhanced design is presented in
Table 5 as MC-DeF (+DSPs) and uses 2 K less LUTs, recording 601 LUT/GOPs.

In terms of peak performance (GOPs), compared to the IF overlay MC-DeF
is outperformed by 1.8x, but the implemented MC-DeF design is 7 times smaller
than IF. Compared to DySER, our design records higher peak GOPs and has a
better LUT/GOPs metric. MC-DeF has the second lowest LUT/GOPs metric
approaching an almost ideal interconnect area overhead. The best performing
design is DECO, however the superiority of DECO is mainly due to the high clock
frequency achieved, a result of the fact that it is a DSP-only CGRA architecture.
It is possible for MC-DeF to increase the number of peak GOPs by including
more operations in a single cell thus improving both GOPs and the LUT/GOPs
metrics. This is feasible due to the customization performed during the CSFD
phase of our framework.

We also note that the applications we used to evaluate MC-DeF are larger
(in terms of nodes) than the ones used in other works. For example, an FFT
graph has ≈40 nodes while the Hayashi Yoshida graph has over 100 nodes.

The above comparisons highlight three key advantages of MC-DeF over
related work. First, MC-DeF is able to formulate highly customized cells that
match the application computational needs. Moreover, the universality of com-
putations over an application domain allows the user to map and execute other
applications on the same array. MC-DeF achieves better LUT resource utiliza-
tion when compared with same array-sized designs like DySER. Regarding the
operations performed, MC-DeF outperforms same array-sized designs in terms
of GOPs, MC-DEF is 3.4 times faster than DySER. Finally, compared to much
larger designs, i.e. IF, MC-DeF is just 1.18x slower, while using 7 times less
resources.

A CGRA Definition Framework for Dataflow Applications 285

5 Conclusion

In this paper we propose the MC-DeF definition framework, that can create
efficient CGRAs customized for specific applications. MC-DeF supports all the
required definition and mapping steps to offer a complete and self-contained
solution. Through the use of cost functions, threshold values and metrics, the
framework can be used for design-space exploration and reach the desired cost
and performance targets set by the designer. Furthermore, the use of a small LUT
array in parallel with the core compute cell array allows the efficient mapping of
irregular computation that does not fit the cell computation features, and also
retains a level of general reconfigurability. Our evaluation and comparison to
the state of the art shows that MC-DeF performs favourably in terms of GOPs
even when compared with much larger designs in terms of CGRA size, uses
less resources than most of the compared architectures, and utilizes better the
underlying architecture recording the second best LUT/GOPs rating.

In the future we plan to further explore the communication infrastructure
of Mixed-CGRA and evaluate alternative network topologies, connectivity, etc.
Additionally we want to explore the benefits of adding small amounts of recon-
figurability in the cells, so as to be able to use different portions of the cell to
map different applications. Finally we want to create a suite of available Mixed-
CGRA designs from various benchmark scientific applications.

References

1. Ahmed, E., Rose, J.: The effect of LUT and cluster size on deep-submicron FPGA
performance and density. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(3),
288–298 (2004)

2. Alle, M., et al.: REDEFINE: runtime reconfigurable polymorphic ASIC. ACM
Trans. Embed. Comput. Syst. 9(2), 11:1–11:48 (2009)

3. Ansaloni, G., Bonzini, P., Pozzi, L.: EGRA: a coarse grained reconfigurable archi-
tectural template. IEEE Trans. Very Large Scale Integr. Syst. 19(6), 1062–1074
(2011)

4. Chang, J., et al.: 12.1 A 7nm 256 Mb SRAM in high-k metal-gate FinFET tech-
nology with write-assist circuitry for low-VMIN applications. In: 2017 IEEE Inter-
national Solid-State Circuits Conference (ISSCC), pp. 206–207, February 2017

5. Charitopoulos, G., Pnevmatikatos, D.N.: DARSA: a dataflow analysis tool for
reconfigurable platforms. In: 18th International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation, SAMOS 2018, pp. 65–72
(2018)

6. Clark, N., Zhong, H., Mahlke, S.: Processor acceleration through automated
instruction set customization. In: Proceedings of 36th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO-36, pp. 129–140 (2003)

7. Coole, J., Stitt, G.: Intermediate fabrics: virtual architectures for circuit portability
and fast placement and routing. In: 2010 IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp.
13–22, October 2010

8. Dally, B.: Challenges for future computing systems. Presentation in HiPEAC Con-
ference (2015)

286 G. Charitopoulos and D. N. Pnevmatikatos

9. De Sutter, B., Raghavan, P., Lambrechts, A.: Coarse-grained reconfigurable array
architectures. In: Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J.
(eds.) Handbook of Signal Processing Systems, pp. 427–472. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-91734-4 12

10. Elseidy, M., Abdelhamid, E., Skiadopoulos, S., Kalnis, P.: GRAMI: frequent sub-
graph and pattern mining in a single large graph. Proc. VLDB Endow. 7(7), 517–
528 (2014)

11. Govindaraju, V., et al.: DySER: unifying functionality and parallelism specializa-
tion for energy-efficient computing. IEEE Micro 32(5), 38–51 (2012)

12. Govindaraju, V., Ho, C., Sankaralingam, K.: Dynamically specialized datapaths
for energy efficient computing. In: 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, pp. 503–514, February 2011

13. Hartenstein, R.: Coarse grain reconfigurable architecture (embedded tutorial). In:
Proceedings of the 2001 Asia and South Pacific Design Automation Conference,
DAC 2001, pp. 564–570. ACM (2001)

14. Hayashi, T., Yoshida, N.: On covariance estimation of non-synchronously observed
diffusion processes. Bernoulli 11(2), 359–379 (2005)

15. Hu, W.H., Lee, S.E., Bagherzadeh, N.: DMesh: a diagonally-linked mesh network-
on-chip architecture. In: Network on Chip Architectures, p. 14 (2008)

16. Iordanou, K., Nikolakaki, S.M., Malakonakis, P., Dollas, A.: A performance eval-
uation of multi-FPGA architectures for computations of information transfer. In:
18th International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation, SAMOS 2018, pp. 1–9 (2018)

17. Jain, A.K., Fahmy, S.A., Maskell, D.L.: Efficient overlay architecture based on
DSP blocks. In: 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, pp. 25–28, May 2015

18. Jain, A.K., Li, X., Singhai, P., Maskell, D.L., Fahmy, S.A.: DeCO: a DSP block
based FPGA accelerator overlay with low overhead interconnect. In: 2016 IEEE
24th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 1–8, May 2016

19. Jain, A.K., Maskell, D.L., Fahmy, S.A.: Are coarse-grained overlays ready
for general purpose application acceleration on FPGAs? In: 2016 IEEE 14th
International Conference on Dependable, Autonomic and Secure Comput-
ing, 14th International Conference on Pervasive Intelligence and Computing,
(DASC/PiCom/DataCom/CyberSciTech), pp. 586–593, August 2016

20. Keckler, S.W., Dally, W.J., Khailany, B., Garland, M., Glasco, D.: GPUs and the
future of parallel computing. IEEE Micro 31(5), 7–17 (2011)

21. Madhu, K.T., Das, S., Nalesh, S., Nandy, S.K., Narayan, R.: Compiling HPC ker-
nels for the redefine CGRA. In: IEEE 17th International Conference on High Per-
formance Computing and Communications, and 12th International Conference on
Embedded Software and Systems, pp. 405–410, August 2015

22. Niedermeier, A., Kuper, J., Smit, G.J.M.: A dataflow inspired programming
paradigm for coarse-grained reconfigurable arrays. In: Goehringer, D., Santam-
brogio, M.D., Cardoso, J.M.P., Bertels, K. (eds.) ARC 2014. LNCS, vol. 8405, pp.
275–282. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05960-0 29

23. Pell, O., Averbukh, V.: Maximum performance computing with dataflow engines.
Comput. Sci. Eng. 14(4), 98–103 (2012)

24. Sen, M., et al.: Dataflow-based mapping of computer vision algorithms onto
FPGAs. EURASIP J. Embedded Syst. 2007(1), 049236 (2007)

https://doi.org/10.1007/978-3-319-91734-4_12
https://doi.org/10.1007/978-3-319-05960-0_29

A CGRA Definition Framework for Dataflow Applications 287

25. Standaert, T., et al.: BEOL process integration for the 7 nm technology node.
In: 2016 IEEE International Interconnect Technology Conference/Advanced Met-
allization Conference (IITC/AMC), pp. 2–4, May 2016

26. Stojilović, M., Novo, D., Saranovac, L., Brisk, P., Ienne, P.: Selective flexibility:
creating domain-specific reconfigurable arrays. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 32(5), 681–694 (2013)

27. Xilinx: 7 Series FPGAs Data Sheet: Overview, rev. 2.6, February 2018

Implementing CNNs Using a Linear
Array of Full Mesh CGRAs

Valter Mário1, João D. Lopes2(B), Mário Véstias3, and José T. de Sousa1,2

1 IObundle Lda/IST, Lisboa, Portugal
2 INESC-ID/IST, Lisboa, Portugal

joao.d.lopes@tecnico.ulisboa.pt, jts@inesc-id.pt
3 INESC-ID/ISEL, Lisboa, Portugal

Abstract. This paper presents an implementation of a Convolutional
Neural Network (CNN) algorithm using a linear array of full mesh dynam-
ically and partially reconfigurable Coarse Grained Reconfigurable Arrays
(CGRAs). Accelerating CNNs using GPUs and FPGAs is more common
and there are few works that address the topic of CNN acceleration using
CGRAs. Using CGRAs can bring size and power advantages compared to
GPUs and FPGAs. The contribution of this paper is to study the perfor-
mance of full mesh dynamically and partially reconfigurable CGRAs for
CNN acceleration. The CGRA used is an improved version of the previ-
ously published Versat CGRA, adding multi CGRA core support and pre-
silicon configurability. The results show that the proposed CGRA is as easy
to program as the original full mesh Versat CGRA, and that its perfor-
mance and power consumption scale linearly with the number of instances.

Keywords: Convolutional Neural Networks · Coarse Grained
Reconfigurable Arrays · Reconfigurable computing · Embedded systems

1 Introduction

During the last few years we have seen extensive developments in Machine Learn-
ing (ML), Artificial Intelligence (AI) and the Internet of Things (IoT). These
advances increased the complexity of algorithms and the need to lower the size
and power consumption of the hardware platforms used to run them. To tackle
computational complexity, it is common practice to use dedicated hardware
to speed up computations. However, using non-programmable hardware offers
poor scalability, prevents updates and upgrades, and increases the cost of design
errors. For these reasons, programmable hardware such as GPUs or FPGAs are
preferred for these functions but their large size and high power consumption
prevents their use in embedded devices powered by batteries.

For embedded applications a more suitable accelerator is the Coarse Grained
Reconfigurable Array (CGRA), which is also programmable and can be made
small and energy efficient. A CGRA is a collection of programmable Functional
Units (FUs) and embedded memories connected by programmable interconnects.

c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 288–297, 2020.
https://doi.org/10.1007/978-3-030-44534-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_22

Implementing CNNs Using a Linear Array of Full Mesh CGRAs 289

When programmed, specialized hardware datapaths are formed in the CGRA,
able to execute the target tasks orders of magnitude faster than a regular CPU.

In the last 25 years, CGRAs have become the subject of several research
papers [5]. CGRA architectures can be homogeneous [6], using only one type of
programmable FUs, or heterogeneous [8], using FUs of different types. As for
the programmable interconnections between FUs, direct neighbour-to-neighbour
connections or 2D-Mesh networks are the most popular choices [13]. CGRAs can
be statically reconfigurable, i.e., they are configured once for an entire applica-
tion [7], or dynamically reconfigurable [10], that is, they are reconfigured at
runtime. Some CGRAs can only be fully reconfigurable [10], whereas others use
partial reconfiguration [4,6,12]. The success of any architecture depends cru-
cially on the available tool support [13]. Different types of compilers have been
proposed [11] for CGRAs but this is still a critical weakness preventing these
architectures from becoming mainstream.

To address the lack of compiler tools, an extreme approach of using a full
mesh CGRA called Versat has been proposed in [9]. Being a full mesh, the com-
pilation complexity, namely the need to place and route the designs is removed,
and the configurations can even be produced on-the-fly by the application itself.
Versat featured self-generated dynamic and partial reconfiguration driven by an
external controller unit. The Versat core was good for applications that require
a small number of FUs. However, ML applications require a massive amount
of parallelism, which was unattainable with the original Versat core. In fact,
its full mesh structure cannot scale spatially, creating routing congestion and
forcing lower operation clock frequencies.

To target ML applications, this work proposes the use of a multi-core Versat
architecture controlled by a simple RISC-V [2] processor. The RISC-V architec-
ture is supported by the GNU toolchain, enabling the development of applica-
tions using the C and C++ languages.

2 The Deep Versat Architecture

The multi-core architecture has been called Deep Versat and is organised as
a ring of Versat cores. This topology is one of the simplest that can utilise
multiple instances, and its ring structure facilitates the reuse of the data left in
the accelerator between different configurations.

Each individual Versat core keeps the full mesh topology of the original pro-
posal, for retaining its programmability, but the size of each core is limited to 10
FU output ports. A large number of cores can be added to the ring, depending
on the needs of the target application, and the limit is only the device size. A
block diagram of this architecture is depicted in Fig. 1.

Figure 1 shows several Versat cores linearly interconnected forming a ring.
Since CGRAs are used to accelerate program loops a linear topology can easily
exploit loop optimisation techniques such as loop unrolling. The ring topology
facilitates the reuse of the data left in any of the Versat cores by the next
configuration applied to the array.

290 V. Mário et al.

FU1 FU2 FUN
Configuration

Module
Data Engine

Layer 1

FU1 FU2 FUN
Configuration

Module
Data Engine

Layer 2

FU1 FU2 FUN
Configuration

Module
Data Engine

Layer L

C
on

fig
 B

us

Fig. 1. Deep Versat architecture.

V
er

sa
t

rst
clk

flow_in

data_in
data_addr
data_rnw
data_req

D
at

a
In

te
rf

ac
e

ctr_data_to_wr
ctr_addr
ctr_rnw
run_req
ctr_req

C
on

tr
ol

 In
te

rf
ac

e

ctr_data_to_rd

data_out

flow_out

Fig. 2. Versat symbol and interface.

In each Versat core, the FUs can select as inputs any FU outputs from the
previous core and from itself. Hence, each core can only produce at most 10
output ports so that the number of selection inputs for each FU port does not
exceed 20: 10 from the previous core and 10 from the current core. This way,
the routing complexity of each core is similar to that of the previous Versat core
proposal and independent of the number of cores. The number of Versat cores
is only limited by the device size.

The individual Versat cores have been streamlined and simply comprise the
Data Engine (DE), which is formed by its FUs, and the Configuration Module
(CM), which holds the FU configurations. The interface of each CGRA is repre-
sented in Fig. 2 and consists of Control, Data and Flow interfaces. The Control
Interface is used to read and write to the Versat registers. The Data Interface is
used by the processor or DMA core to read and write data from/to the Versat
memories. The Flow Interface consists of the flow in and flow out buses, and
it is used to connect two consecutive Versat cores.

3 The RV32 Deep Versat System

To control the Deep Versat core, the picoRV32 open source processor [3] has been
adopted. The picoRV32 processor is a RISC-V architecture which can be pro-
grammed using the well known gcc and g++, C and C++ compilers, respectively.

The picoRV32 processor runs the application code and uses the Deep Versat
core as an accelerator. For many applications the use of a single picoRV32 core
and a Deep Versat core will suffice. Other applications may require a more
powerful processor for running the software, for example, a superscalar RISC-V
or ARM core. The system shown in Fig. 3 is composed of the picoRV32 processor
having as peripherals the Deep Versat core and a UART core.

Implementing CNNs Using a Linear Array of Full Mesh CGRAs 291

Versat 0 Versat 1

IOB-RV32

Control Bus

UART

Data Flow Bus

Versat
(N-1)

Memory Bus

Data Bus

Fig. 3. The RV32 Deep Versat system.

Table 1. Memory map.

Peripheral Base address

UART module 0× 10000000

Deep Versat control bus 0× 11000000

Deep Versat data bus 0× 12000000

The peripherals are memory mapped as described in Table 1. The picoRV32
system uses a 32-bit address bus where 8 bits are used to choose the peripheral.
Hence, there are 24 bits to address Deep Versat. 15 out of these 24 bits are
used for internally addressing each Versat core. The remaining 9 bits are used to
select the Versat core, so in theory the Deep Versat core may contain as many
as 512 Versat cores for achieving maximum parallelism and acceleration.

4 Pre-silicon Configurability

Pre-silicon configurability consists in the ability to choose the set of FUs for
the Versat core before the circuit is implemented. This powerful feature enables
tailoring and optimizing Versat for different applications. The automatic gener-
ation of the FU array has been implemented using Verilog macros and generate
for statements (e.g. Fig. 4).

Fig. 4. Pre-silicon configuration of the ALU array.

To configure Versat at pre-silicon time, the user sets the types and numbers
of FUs to be instantiated using the macros in the main header file. This file
can be edited for each specific application. The size of each memory can also be
specified, allowing Versat to have memories of different sizes. An obvious future
improvement is to replace the macros by Verilog generic parameters, which will
allow instantiating multiple and heterogeneous Versat cores.

292 V. Mário et al.

5 The Deep Versat API

As can be seen in Fig. 1, the Deep Versat hierarchy is the following: Deep Versat is
an array of Versat cores, and each Versat is an array of FUs. Modeling hardware
with an object oriented language is convenient as the hardware modules can
be represented by classes whose methods are used to configure and operate the
modules. The Deep Versat API has been written in the C++ object oriented
programming language.

To represent the Deep Versat hardware an array of CVersat objects is
declared. One may ask why the size of this array must be declared if the number
of layers is already known from the Verilog code. The reason is that the API
makes it possible to work with a virtual Deep Versat core whose size is different
from its physical size. This is useful if the application does not need to use all
cores or would need to use more cores than the ones actually present. This is
called virtual hardware, a feature that is planned but not yet implemented.

After declaring the CVersat object, one needs to populate it with a set of FUs.
At the moment, the available FU types are the following: ALU (of 2 different
types), Barrel Shifter, 1 multiplier type and 1 new multiply-accumulate (MAC)
type. The FU population in each CVersat class has to of course match the FUs in
the actual Versat core, and in the future this can be automated so that both the
hardware and software are created consistently. The FUs in each Versat core can
be operated by the control processor by writing to their configuration registers
in the configuration module. There are registers to configure the FU function
and connections.

6 The CNN Application: Handwritten Digit Recognition

The chosen application is a handwritten digit recognition program that uses
the well known mnist dataset [1] and performs Convolutional Neural Network
(CNN) inference on a previously trained network (Fig. 5). Each 28× 28 image
passes through a series of layers in order to be classified. The layers are of the
following types: convolutional, pooling, fully connected and softmax. The output
represents the most likely classification, from digit 0 to digit 9, and its respective
probabilistic value between 0 and 1.

The convolutional layer performs the multiply-accumulate function of each
element of the filter by the corresponding pixel of the image. 22 matrix filters
of dimension 5× 5 are used, which produces a 22× 5× 5 tensor. The maxpool
layer is responsible for down sampling the largest images, from size 24× 24 down
to size 12× 12, while keeping the relevant information. The process used in this
layer is simple: it goes through the 24× 24 image and takes the greatest value in
each 2× 2 region. Hence, the output of the pooling layer is 22× 12× 12 tensor.
The (fully) connected layer takes the 22× 12× 12 tensor produced and again
uses a convolutional process to turn it into a 10-element vector, where each
position contains the votes for the respective digit. The last layer of the CNN is
the softmax layer. It finds the digit with most votes and classifies it as the most
likely handwritten digit represented in the image.

Implementing CNNs Using a Linear Array of Full Mesh CGRAs 293

Fig. 5. CNN architecture with a single
convolutional layer.

Table 2. Execution time per layer when
running on the ARM processor.

Layer Execution
time (µs)

%

Convolutional 32839 88.41%

Maxpool 1300 3.50%

Connected 2998 8.07%

Softmax 5 0.01%

Total 37142 100%

The application is divided in four parts corresponding to the four CNN layers.
The time profile of the application is presented in Table 2 for a 667 Mhz ARM
Cortex-A9 processor. The table shows that the layer that takes most of the
execution time is the convolutional layer, which has been chosen for acceleration.
The software code that implements this layer is divided in two parts: (1) the
preparation of the images for convolution with the filter, which is basically a
replication of the data in the memory, and (2) the convolution itself, which is
done by the General Matrix Multiply (GeMM) algorithm.

As there are 22 filters of 5× 5 coefficients, a matrix B of size 22× 25 is created.
The input image is prepared, that is, it is transformed into a 576× 25 matrix A,
where the number of rows is 24× 24 and the number of columns is 5× 5. It can
be shown that the convolution is equivalent to computing matrix C = ABT . The
preparation of matrix A, being just a replication of the image data, is not very
interesting from the point of view of acceleration. The part that takes most of the
execution time and is candidate for acceleration is the GeMM algorithm.

Each Versat core can execute 2 nested loops. Thus, a single Versat core with
the new multiply-accumulate FU (MULADD) could be used to run the GeMM
algorithm. However, to scale the performance, multiple Versat cores are used by
distributing the workload among them using the loop unrolling technique. The
inner-most loop of the GeMM, which in this case goes from 0 to 24 is distributed
over 5 cores, resulting in a 5-core Deep Versat architecture. Note that this is possi-
ble because there are no data dependencies between iterations. The first core com-
putes elements 0 to 4, the second core computes elements 5 to 9 adding its result
to the result coming from the first core and so on up to the fifth core. This creates
a pipeline structure with 5-cycle latency and a throughput of one result per cycle.
Therefore, the execution time of the GeMM is reduced roughly 5 times, which is
the expected acceleration for 5 cores running in parallel compared to a single core.
For simplicity, only 2 out of the 5 cores are shown in Fig. 6.

As can be seen in Fig. 6, each Deep Versat core uses 1 MULLADD FU and
4 AGU blocks from 4 memory units (shown in blue). Two of the AGUs are
used for addressing the MULADD operands, another is used for controlling the
MULADD and the last is used for addressing the result from the previous core,
which had been stored in a memory of the current core. For a single MULADD,

294 V. Mário et al.

La
ye

r
2

Mem
1B

La
ye

r
1

Mem
0A/1A

Mem
2A

MULADD

Mem
2B/3B

Mem
1B

Mem3B

Mem
0A/1A

Mem
2A

MULADD

ALU

Fig. 6. Two convolutional layers.

2 data memories would be enough but in fact 5 memories per core have been
used, because this is the number required by the fully connected layer, which was
accelerated in a similar way. Each of the 5 memories can hold up to 8192 data
words. If needed 2 MULADDs per core could be used to double the parallelism.

Given the chosen memory sizes, the 14400-word matrix A needs to be stored
in 2 different memories. Half the matrix is stored in memory 0 and the other half
is stored in memory 1, as shown in Fig. 6. The same happens to the output matrix
C, which has 576 * 22 words divided between memories 2 and 3. The Deep Versat
API code used to configure layers 1 and 2 of the designed datapath is presented
in Fig. 7 to illustrate the process. The setConf method, whose details are not
explained here due to lack of space, is used to create full configuration of an FU,
and the writeConf method is used to write the configuration to the configuration
registers. The setStart method is used to set only one configuration register, the
start address of a memory port. Partial reconfiguration is clearly illustrated here:
setConf configures just one FU and setStart configures just one configuration
register of an FU. The versatRun function runs Deep Versat after waiting for
the previous run to finish.

7 Experimental Results

The described system has been run on a Xilinx XCKU040 FPGA of the Kintex
UltraScale product family, and compared with 2 other systems running the same
application: a RISC-V + single Versat system, and an ARM Cortex-A9 processor
+ 4 General Matrix Multiply (GeMM) IPs.

Table 3 compares the FPGA resources used and the execution performance
in each system. RAM stands for 36kbit RAM blocks, Frequency is the clock
frequency, WNS stands for Worst Negative Slack, Time is the execution time
and Speedup is the ratio of the execution time on the ARM system over the
execution time on each system. Note that the ARM core runs independently at
667 MHz.

The RISC-V + Deep Versat system is around five times larger than the RISC-
V + Versat system, which is expected since Deep Versat integrates 5 single Versat
cores. It is not possible to make direct size comparisons to the ARM + 4 GeMM

Implementing CNNs Using a Linear Array of Full Mesh CGRAs 295

Fig. 7. Code to configure the datapath presented in Fig. 6.

Table 3. FPGA implementation and execution results.

LUTs FFs RAM DSPs Frequency

(MHz)

WNS (ns) Time (µs) Speedup

RISC-V + Versat 7081 3460 62 8 100 0.521 9780 3.36

RISC-V + DeepVersat 40478 14631 196 20 100 0.292 1689 19.44

ARM + 4 GeMM 16706 17715 16 16 100 NA 3961 8.25

ARM NA NA NA NA 667 NA 32839 1

system, since the ARM processor is a hard macro. However, it should be clear
that the ARM + 4 GeMM system is much larger if implemented in a ASIC
compared to both the RISC-V + Versat or the RISC-V + DeepVersat systems.
This means that combining RISC-V and Versat cores can be very competitive
compared to combining standard processors and custom hardware.

As for the execution results, Deep Versat can effectively accelerate this appli-
cation, and this is true for many other ML algorithms. Even the RISC-V + single

296 V. Mário et al.

Versat system has a speedup of 3.36x compared to the standalone ARM system.
The RISC-V + Deep Versat system is almost 20x faster than the ARM system,
and it is faster than the ARM + 4 GeMM IP system by 2.3x. As expected,
the RISC-V + Deep Versat is more than 5x faster than the RISC-V + Versat
system due to the almost perfect parallelism of the inner loop and some code
optimizations that have been done for RISC-V + Deep Versat after the results
for the RISC-V + Versat system had been obtained.

8 Conclusions

This paper presents an implementation of a Convolution Neural Network (CNN)
using a linear array of full mesh dynamically and partially reconfigurable
Coarse Grained Reconfigurable Arrays (CGRAs) called Deep Versat. This design
extends the previous single core Versat design by adding spatial scalability: per-
formance scales linearly with the number of Versat cores without impacting the
frequency of operation.

The Versat core has been enhanced with the capability of being configured
at pre-silicon time. It can be configured with the types and quantities of FUs
required. A new Multiply-Accumulate unit (MAC) has been developed, which is
useful for the CNN application and others. Additionally, picoVersat, the previous
Versat controller, which was only Assembly programmable, has been removed
from the architecture which now relies on an external processor for control. A
RISC-V open source core called picoRV32 has been adopted for controlling Deep
Versat.

The new Deep Versat core is a ring of several new Versat cores created using
Verilog generate statements. With the RISC-V processor used for control, which
is programmable using the GNU toolchain, a C++ software API for reconfig-
uring and running Deep Versat has been developed. In essence, Deep Versat
retains the programmability of the previous Versat core but can be pre-silicon
configured to optimise the size and power consumption of the target application.
Like the previous Versat architecture, the new Deep Versat architecture is also
dynamically and partially reconfigurable to take advantage of the space and time
locality of hardware configurations.

In the CNN algorithm, the neurons are organized in layers and it is important
to have as many of them as possible working in parallel. The layers only differ in
the activation functions of the neurons, the way they are interconnected or the
way they access data from the memories. The chosen application contains the
fundamentals of modern AI algorithms for image recognition, and is a perfect
fit for CGRA implementation. In this paper, a 5-core Deep Versat instance has
been used to accelerate a CNN handwritten digit recognition algorithm. The
implementation runs 19x faster compared to an ARM Cortex-A9 processor hard
macro in a Xilinx FPGA. If the ARM system is accelerated using 4 GeMM IP
cores, the RISC-V + Deep Versat system is still more than 2 times faster.

It is concluded that by using a multi-core CGRA architecture, the system
size grows proportionally with the workload and the clock frequency does not

Implementing CNNs Using a Linear Array of Full Mesh CGRAs 297

degrade with size. Given the preliminary nature of this work, the considered
CNN network is not too complex, but the results clearly show that the same
methodology can be applied to larger CNNs, serving as a good alternative to
FPGAs and GPUs.

Acknowledgments. This work was supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) under projects PTDC/EEI-HAC/30848/2017 and
UIDB/50021/2020.

References

1. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
2. RISC-V: The Free and Open RISC Instruction Set Architecture. https://riscv.org/
3. PicoRV32 - a RISC-V CPU. https://github.com/cliffordwolf/picorv32 (2019)
4. Baumgarte, V., Ehlers, G., May, F., Nückel, A., Vorbach, M., Weinhardt, M.:

PACT XPP - a self-reconfigurable data processing architecture. J. Supercomput.
26(2), 167–184 (2003). https://doi.org/10.1023/A:1024499601571

5. De Sutter, B., Raghavan, P., Lambrechts, A.: Coarse-grained reconfigurable array
architectures. In: Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J.
(eds.) Handbook of Signal Processing Systems, pp. 449–484. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-6345-1 17

6. Ebeling, C., Cronquist, D.C., Franklin, P.: RaPiD — reconfigurable pipelined dat-
apath. In: Hartenstein, R.W., Glesner, M. (eds.) FPL 1996. LNCS, vol. 1142, pp.
126–135. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61730-2 13

7. Hartenstein, R., Herz, M., Hoffmann, T., Nageldinger, U.: Mapping applications
onto reconfigurable kressarrays. In: Lysaght, P., Irvine, J., Hartenstein, R. (eds.)
FPL 1999. LNCS, vol. 1673, pp. 385–390. Springer, Heidelberg (1999). https://doi.
org/10.1007/978-3-540-48302-1 42

8. Heysters, P.M., Smit, G.J.M.: Mapping of DSP algorithms on the MONTIUM
architecture. In: Proceedings of the International Parallel and Distributed Pro-
cessing Symposium, p. 6, April 2003

9. Lopes, J.D., de Sousa, J.T.: Versat, a minimal coarse-grain reconfigurable array. In:
Dutra, I., Camacho, R., Barbosa, J., Marques, O. (eds.) VECPAR 2016. LNCS,
vol. 10150, pp. 174–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61982-8 17

10. Mei, B., Lambrechts, A., Mignolet, J.-Y., Verkest, D., Lauwereins, R.: Architecture
exploration for a reconfigurable architecture template. Des. Test Comput. 22(2),
90–101 (2005)

11. Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.: DRESC: a retar-
getable compiler for coarse-grained reconfigurable architectures (2002)

12. Hemani, A., Shami, M.A.: Partially reconfigurable interconnection network for
dynamically reprogrammable resource array (2009)

13. Wijtvliet, M., Waeijen, L., Corporaal, H.: Coarse grained reconfigurable architec-
tures in the past 25 years: overview and classification (2016)

http://yann.lecun.com/exdb/mnist/
https://riscv.org/
https://github.com/cliffordwolf/picorv32
https://doi.org/10.1023/A:1024499601571
https://doi.org/10.1007/978-1-4419-6345-1_17
https://doi.org/10.1007/3-540-61730-2_13
https://doi.org/10.1007/978-3-540-48302-1_42
https://doi.org/10.1007/978-3-540-48302-1_42
https://doi.org/10.1007/978-3-319-61982-8_17
https://doi.org/10.1007/978-3-319-61982-8_17

A Block-Based Systolic Array
on an HBM2 FPGA for DNA

Sequence Alignment

Riadh Ben Abdelhamid1(B) and Yoshiki Yamaguchi2

1 Graduate School of Systems and Information Engineering,
University of Tsukuba, 1-1-1 Ten-ou-dai, Tsukuba, Ibaraki 305-8573, Japan

benabdelhamid@hpcs.cs.tsukuba.ac.jp
2 Faculty of Engineering, Information and Systems, University of Tsukuba,

1-1-1 Ten-ou-dai, Tsukuba, Ibaraki 305-8573, Japan
yoshiki@cs.tsukuba.ac.jp

http://www.cs.tsukuba.ac.jp/~yoshiki/eng/

Abstract. Revealing the optimal local similarity between a pair of
genomic sequences is one of the most fundamental issues in bioinfor-
matics. The Smith-Waterman algorithm is a method that was developed
for that specific purpose. With the continuous advances in the computer
field, this method becomes widely used to an extent where it expanded
its reach to cover a broad range of applications, even in areas such as net-
work packet inspections and pattern matching. This algorithm is based
on Dynamic Programming and is guaranteed to find the optimal local
sequence alignment between two base pairs. The computational complex-
ity is O(mn), where m and n are defined as the number of the elements
of a query and a database sequence, respectively. Researchers have inves-
tigated several manners to accelerate the calculation using CPU, GPU,
Cell B.E., and FPGA. Most of them have proposed a data-reuse app-
roach because the Smith-Waterman algorithm has rather high “bytes per
operation”; in other words, the Smith-Waterman algorithm requires large
memory bandwidth. In this paper, we try to minimize the impact of the
memory bandwidth bottleneck through the implementation of a block-
based systolic array approach that maximizes the usage of memory banks
in HBM2 (High Bandwidth Memory). The proposed approach demon-
strates a higher performance in terms of GCUPS (Giga Cell Update Per
Second) compared to one of the best cases reported in previous works,
and also achieves a significant improvement in power efficiency. For exam-
ple, our implementation could reach 429.39 GCUPS while achieving a
power efficiency of 7.68 GCUPS/W. With a different configuration, it
could reach 316.73 GCUPS while hitting a peak power efficiency of 8.86
GCUPS/W.

Keywords: DNA sequence alignment · Smith-Waterman algorithm ·
Systolic array · HBM2 · High Level Synthesis · Reconfigurable High
Performance Computing

c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 298–313, 2020.
https://doi.org/10.1007/978-3-030-44534-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_23

A Block-Based Systolic Array on HBM2 FPGA 299

1 Introduction

Almost all living cells contain DNA (Deoxyribonucleic Acid) structures that are
made of sequences (character strings from the viewpoint of a computer program)
based on an alphabet of 4 letters (A, T, G, C). These letters represent four
nucleotides, namely, Adenine, Thymine, Guanine, and Cytosine that are the base
building blocks of any DNA structure. Over time, DNA sequences are subject
to evolution. In fact, some changes, such as deletion or insertion of new letters,
are introduced to the original sequence. Therefore, in order to understand how
similar a DNA sequence is to another one, or more commonly, in order to quantify
how sequences had been changed compared to a common ancestor, scientists
resorted to the usage of a technique called sequence alignment to discover and
evaluate the similarities between a pair of DNA sequences. This constitutes the
most fundamental task in the bioinformatics field. Smith and Waterman invented
an algorithm that is guaranteed to find these similarities based on a scoring
scheme [17]. Their proposal consisted of computing a similarity score between
each pair of sequences, usually called a query and a database, repeating the
computation based on the latest pair score and reiterating to the next pair
until covering all of the symbols in the two sequences. Using this method, they
focused on maximizing the number of matching symbols between the two pairs of
sequences. This approach is known as local alignment and is guaranteed to find
the optimal one. Nevertheless, this method is extremely demanding in terms of
computational resources and effort. To the best of our knowledge, this is the first
paper that targets the implementation of the SW (Smith-Waterman) algorithm
on an HBM2-enabled FPGA (Field Programmable Gate Array). In this research,
we implemented a highly-efficient, block-based systolic array architecture. Then,
we applied several micro-architectural optimizations. Finally, we evaluated and
compared our proposed implementation to the state of the art. This paper is
organized as follows: In the first section, we introduce the background of our
research and give an overview of the current work. In the second section, we
explain the SW algorithm and its different steps. In the third section, we survey
previous attempts that used reconfigurable computing to solve the local sequence
alignment problem. In the fourth section, we present architectural details of our
proposed block-based systolic array architecture as well as all the architectural
and micro-architectural level optimizations. In the fifth section, we illustrate
our implementation results. In the sixth section, we discuss those results and
compare them to the state-of-the-art, and finally, we conclude this article.

2 The Smith-Waterman Algorithm

The SW algorithm is a famous Dynamic Programming approach to search for
pairwise sequence similarity. It consists of 3 steps: First, initializing the score
matrix (containing match and mismatch scores), then, computing the similarity
matrix between each element of each sequence based on the Eq. (1), and finally
backtracking the different directions leading to optimal local alignment, starting

300 R. Ben Abdelhamid and Y. Yamaguchi

from the maximum score in the similarity matrix until reaching a score of 0,
or until reaching the first position in the sequence. Unlike the relatively more
efficient methods that are based on heuristics, such as BLAST [1], this method is
guaranteed to find optimal local alignment between 2 sequences. Originally, The
SW algorithm was inspired from an older method called Needleman–Wunsch
algorithm [10], that might be used to find optimal global alignment between two
sequences, with the difference that the newer algorithm (Smith-Waterman) does
not allow negative values inside the similarity matrix and thus, can search for
local alignment instead. The SW algorithm is described by the following Eq. (1).

Si,j = MAX

⎧
⎪⎪⎨

⎪⎪⎩

(↘) Si−1,j−1 + score(qj , dbi) : (mis)match
(↓) Si−1,j − penalty : gap insertion
(→) Si,j−1 − penalty : gap deletion
0

(1)

Where score(qj, dbi) is the match score between the jth symbol from the
Query and the ith symbol from the Database. ↓ and → denote an insertion of a
gap in the database direction and the query direction respectively, therefore a gap
penalty is subtracted from the similarity matrix in those directions. Finally, the
maximum of all the computed values in Eq. (1) is written to the cell at position (i,
j). The 0 in Eq. (1) guarantees that only positive values remain in the similarity
matrix. The cells as well as the directions on which the SW similarity score Si,j

depends can be seen in Fig. 1.

Fig. 1. Dependence scheme between Smith-Waterman similarity matrix cells

Figure 1 shows that for computing the SW similarity matrix at the red cell(i,
j), 3 other cells have to be computed beforehand, namely the upper cell(i−1, j),
the left cell(i, j−1) and the cell(i−1, j−1) from the diagonal upper-left direction.
Furthermore, updating the red cell(i, j) will lead to providing necessary out-
puts to compute the right cell(i, j+1), the bottom cell(i+1, j) and the diagonal
bottom-right cell(i+1, j+1). A simple analysis of this figure shows that all the
cells residing on the anti-diagonal have no inter-dependence and hence, can be
updated in parallel [4,5]. Understanding these details will allow us to build a

A Block-Based Systolic Array on HBM2 FPGA 301

linear systolic array, where multiple PEs (Processing Element) are spread across
the anti-diagonal and are working concurrently.

Fig. 2. Mapping the PE dependence onto a linear systolic array

Figure 2 explicitly illustrates the previously described behavior. In fact, it
shows that we can map the computation of multiple cells to a linear systolic
array, where the multiple PEs are spatially independent, but temporally inter-
dependent. For instance, considering that the number of PEs is equal to the
width of the query, all PEs can be mapped to compute the SW similarity cells
belonging to the same anti-diagonal. Obviously, all of the cells belonging to the
same column in Fig. 1 are updated by the same PE in Fig. 2, across different
temporal loop iterations. Each anti-diagonal line represents a new iteration in
time. For example, updating the broadcasted values from a single cell towards
3 directions, is spread across 3 iterations. Now, back again to the red cell(i,
j), its maximum score will be computed in the first iterationk. In the following
iterationk+1, the red PEj (from iterationk) will output the left input of PEj+1 as
well as the upper input of PEj at iterationk+1. The same red PEj of iterationk,
will output the diagonal upper-left input of PEj+1 at iterationk+2. Concurrently,
after every cell update, the database index is shifted by one position, while the
query symbol fed to the PE is kept the same allowing a new comparison against
a new DNA symbol. This shift operation is depicted by Fig. 4.

3 State of the Art

Biological sequence alignment is a well researched topic in bioinformatics. In fact,
several works to map this algorithm into different hardware platforms such as
CPU (Central Processing Unit) [3,12,21] or GPU (Graphics Processing Unit) [9,
15,16] had been proposed and published in the past. Nevertheless, in this section,
we mainly focus on reconfigurable hardware implementations targeting FPGA
devices. These devices are electronic chips containing a considerable amount of

302 R. Ben Abdelhamid and Y. Yamaguchi

re-programmable logic blocks, switches and memories. They operate in an order
of magnitude lower clock frequency when compared to a CPU or GPU, and
they certainly have a lower peak performance than those devices. However, their
flexibility gives them a metamorphic nature, thus allowing them to take the shape
of any specific hardware circuit. Building a targeted specific implementation of
a complex algorithm on an FPGA, mostly gives it an edge over a CPU or a
GPU in terms of power-efficiency or even sustained computational performance.
The SW algorithm is no exception, in fact, thanks to the previously enumerated
advantages of FPGAs, an interesting number of works had investigated efficient
mapping of that algorithm onto reconfigurable accelerators. The table below
gives an overview on some of these works (Table 1):

Table 1. Comparison of the performance of varied single-device implementations of
the SW algorithm

Ref Year Device Performance
(GCUPs)

Efficiency
(GCUPs/W)

Language Target

[20] 2011 Xilinx XC5VLX330T 129 16 Verilog Protein

[9] 2013 Nvidia GTX 680 83.3 0.42* CUDA C++
PTX assembly

Protein

[14] 2016 Altera Stratix V 58.4 0.702 OpenCL Protein

[14] 2016 Intel Xeon E5-2695 v3 354.8 1.478 OpenCL Protein

[4] 2017 Kintex Ultrascale 42.47 1.69 OpenCL DNA

[7] 2017 Intel Arria 10 GX 214 no data OpenCL DNA

[5] 2017 Xilinx XC7VX485T 105.9 2.41 Verilog Protein

[13] 2018 Intel Arria 10 GX 132.43 no data OpenCL DNA

[13] 2018 Nvidia GTX1080 250.78 1.39* CUDA C++ DNA

Ours 2020 Xilinx Alveo U280 429.39 7.68 HLS DNA

*Computed based on the power specification of the GPU.

4 Implementation Details

In this section we present a top-level description of our proposed block-
based systolic array, then we dive into its details, and its architectural and
micro-architectural level optimizations. Our implementation is based on the
Xilinx SDAccel development flow for FPGA-based acceleration. This flow is
based on the OpenCL acceleration model that consists of two sides: the host
side(responsible for scheduling and control) and the device or accelerator side(the
FPGA in our case). Hence, we propose a block-based systolic approach that is
implemented using C++ High Level Synthesis (Vivado HLS C++) and carefully
tailored to HBM2-enabled accelerator cards (Xilinx U280).

Figure 3 depicts the way our implementation of the SW acceleration maps to
the SDAccel execution model. In fact, our work is split into two main compo-
nents: the Host and the FPGA. The Host side is responsible for the creation of

A Block-Based Systolic Array on HBM2 FPGA 303

Fig. 3. High-level representation of the computation acceleration model

the acceleration context, command queues, reading and writing memory buffers,
and scheduling the execution of the kernel function. In our host code, we fix the
width of the query and database sequences, randomly initialize their contents
based on the DNA alphabet [A, C, G, T] and then allocate the required host
memory resources. The host sends the DNA sequences to the HBM2 memo-
ries through PCIe (Peripheral Component Interconnect Express), enqueues the
kernel function (the function that computes the SW matrix) in the command
queue and waits until its completion. Once the kernel function has finished com-
puting and sending back all of the directions required to traceback the optimal
sequence alignment, the host will read these data through the corresponding
attached buffers and then starts the traceback process. Finally, the host com-
pares the FPGA-generated results to the software-based simulation outputs and
checks the correctness of the hardware design. On the other hand, The FPGA
implements the accelerated kernel function. It mainly consists of reading the
query and the database inputs from HBM2 memories, storing them into cache
buffers (BRAMs), looping over all the required iterations to compute the SW
similarity matrix, while shifting the database and storing the traceback data
corresponding to each of those iterations in the adequate HBM2 banks, in order
to be transferred later to the host side through PCIe.

4.1 A Block-Based Systolic Array Approach

SW algorithm is a Dynamic Programming problem, that is by nature well-
adapted to FPGA implementations, due to the data dependency scheme that
exists between each iteration of the problem and that complicates the com-
putation process in more conventional hardware architectures such as CPU or
GPU. Several reconfigurable hardware implementation of this problem, have
been adopting a systolic array architecture [2,6,11,20]. This approach has proved
to be very well-suited to Dynamic Programming problems, particularly because
it can increase the performance of compute-bound computations, while main-
taining similar memory-bandwidth requirements [8]. Figure 4 depicts the details
of the proposed block-based systolic array architecture. In fact, The kernel func-
tion has only two inputs that are connected to port 0 of HBM2 memory.

These two inputs are useful to load the database and query sequences into
the abundant BRAM resources available on-chip. This buffering or input data

304 R. Ben Abdelhamid and Y. Yamaguchi

Fig. 4. The proposed block-based systolic array architecture

caching is necessary for increasing the placement step flexibility and leading
to timing closure later. Nonetheless, BRAMs are either single-ported or dual
ported, therefore they can at most output the contents of two memory loca-
tions, in the same clock cycle, hence, it becomes mandatory to partition these
memories, either completely or cyclically, using HLS pragmas in order to increase
their overall bandwidth. This is very useful for ensuring that the database shift
operation can have an initiation interval of 1, meaning that it would be possible
to shift a new symbol from the database sequence into the block-based systolic
array, in each iteration of the kernel main loop. At startup, each PE is initialized
with a fixed query symbol, while a new database symbol is shifted in, in order to
be compared against it and generate the local match/mismatch score. Figure 2
suggests that each PE has 3 directional dependences. On iterationk+2 for exam-
ple, PEj+1 needs its own output from the previous iterationk+1 (Up direction).
On the same iterationk+2, PEj+1 requires the output of PEj, in both iterationk+1

and iterationk (from left and upper-left directions, respectively). This means that
in order for all PEs in any anti-diagonal iteration to start their computation,
they require all PEs from the previous two anti-diagonals to complete their work
and output their computed SW similarity values. The computation flows in the
direction of the iterations shown on Fig. 2 in a wavefront manner. The final
loop iteration count I of all the iterations required to finish generating all the
traceback matrix values, is given by the following equation:

I = M + N − 1 (2)

Where M is the width of the database sequence and N is the width of the
query sequence. Each block of our systolic array, works on a chunk of 256 ele-
ments from the query sequence and thus can generate 256 directions in the same
iteration. Each direction is encoded into a 2 bits value, therefore each block
generates 512 bits, and matches exactly the maximum supported width of one
HBM2 memory port. This is very useful because up to 8192 PEs could run in
parallel and generate 16384 bits that could be mapped into the 32 HBM2 banks
without encountering any memory bandwidth limitation.

A Block-Based Systolic Array on HBM2 FPGA 305

4.2 Architectural and Micro-architectural Level Optimizations

In this section we present some of the different optimizations that we had applied
and/or investigated in our SW implementation.

Guiding Synthesis Using Pragmas. High-level synthesis is based on con-
figuring hardware using a software programming language. The use of pragma
directives is fundamental to ensure generating a near HDL-quality design. Prag-
mas are special lines of code that convey additional pieces of information to the
Vivado HLS compiler [19], in order to efficiently guide the hardware synthesis.
Here, we provide the most interesting ones that we used in our implementation.

• #pragma HLS pipeline II=1: When targeting high-performance comput-
ing, using pragmas for pipelining is a key optimization technique that helps
extracting temporal parallelism. This technique allows for more work to be
done in every clock cycle, boosts the operational clock frequency and results
in shorter execution time. In order for a pipeline to be effective, an II (Initia-
tion Interval) of 1 should always be inferred. This means that the design can
process a new input data at every loop iteration.

• #pragma HLS unroll: This pragma is equally important as it allows to
reach spatial parallelism through unrolling loops. In fact, this is used to create
separate, concurrently executing instances of PEs.

• #pragma HLS array partition: The data shared between PEs across iter-
ations are stored into C++ arrays. These arrays are implemented in hardware
using the different types of memories available on the FPGA fabric. Obviously,
efficient mapping to LUT-based memories is limited to small-sized arrays.
Although, Block RAMs provide efficient storage for larger sizes, they offer at
most 2 ports to read and write the saved data. Hence, all those data arrays
should be stored in a way that allows a parallel access to them in the same
clock cycle, whenever required. Here, this pragma facilitates to meet that
requirement by splitting the data across multiple memory instances in order
to guarantee that more than just 2 memory addresses could be accessed for
read and write operations. Unless otherwise specified, this pragma will try
to completely partition an array of depth N into N different arrays of depth
1, thus, guaranteeing a minimum of N possible simultaneous reads or writes.
Xilinx Vivado sets a maximum size limit of 1024 for an array to be com-
pletely partitioned. This limit can be overcome through custom directive file,
at the expense of a multiple folds extra compilation time, that is not even
guaranteed to successfully complete the partitioning task.

Block-Based Computation and Multi Global Memory Ports. The block-
based systolic array is created by decomposing the Input/Output data into
chunks of 512 bits width each. We chose this width because it matches the
maximum allowed width on HBM2 global memory ports, that maximizes the
corresponding bandwidth. In fact, in order to create N processing elements that
can compare small portions of the pair sequences in parallel, we divided the

306 R. Ben Abdelhamid and Y. Yamaguchi

query and the database into blocks of 256 elements (512 bits) each. This has
indeed two advantages. First, it is way more easier for the HLS tool to synthe-
size small separate fully unrolled loops (a loop of 256 in each block) rather than
to synthesize a fully unrolled loop that is several times larger. Second, each block
could be mapped to a separate HBM2 memory port since it generates exactly
512 bits containing 256 elements of the traceback matrix.

Multiple Pairwise Alignment. Another technique, that might seem obvious
is combining many symbols from multiple queries into the same PE, in order to
make multiple pairwise alignments. This is similar to doing a single alignment on
multiple separate compute units or separate kernels. However, using this tech-
nique, the same database memory port, cache buffer, control and shift operations
are being re-used against multiple queries. Furthermore, there is no overhead of
instantiating multiple kernels and more importantly there is a localization of
resources inside each PE, that helps avoiding problems such as congestion or
negative clock slacks due to long routing paths.

Increasing the Number of HBM2 Memory Banks When Increasing
the Query Width. It might seem obvious that the use of HBM2 can speedup
the communication between the accelerator global memory buffers and their
associated kernel. While this is true to some extent, it tightly depends on the way
the access to HBM2 banks is being done. A common mistake is to assume that
HBM2 automatically outperforms the bandwidth of DDR4 memories because it
is marketed in that way.

Table 2. Global memory resources on Xilinx Alveo U280 Data center accelerator card

Memory Bank capacity Number of banks Total capacity Bandwidth

DDR4 16 GB 2 32 GB 38GB/s

HBM2 256 MB 32 8 GB 460GB/s

For example, Table 2 shows that a Xilinx Alveo U280 acceleration board,
embeds 32 banks of on-chip HBM2 (8 GB in total) at a bandwidth of 460 GB/s
and 2 banks of DDR4 memory (32 GB in total) at a bandwidth of 38 GB/s
[18]. When the total theoretical memory bandwidth is divided by the num-
ber of available memory banks, it becomes obvious that a single DDR4 bank
has a peak bandwidth of 19 GB/s which outperforms that of a single HBM2
bank (14.375 GB/s). Hence, in memory-bound computing problems targeting
this acceleration board, it is possible to solve the DDR4 communication bottle-
neck, by using more HBM2 banks than the available DDR4 ones. In other words,
The number of Input/Output ports of the kernel should contain at least 3 ports
mapped to 3 different HBM2 banks to have a higher bandwidth compared to
that of a DDR4 memory interface. One relatively minor drawback here, is that

A Block-Based Systolic Array on HBM2 FPGA 307

the storage capacity of a DDR4 bank is considerably larger than that of a HBM2
bank (16 GB against 256 MB), therefore, while trying to improve a kernel band-
width, one should carefully plan ahead to avoid rapidly overfilling the allowed
memory capacity.

5 Implementation Results

In this section, we present experimental results as well as a description of the
deployed hardware (given by Table 3) and the tests carried on it. Later, we
compare our findings to previous research. The SP (Sustained Performance)
is derived from the kernel execution time T (including all memory transfers
to/from global buffers). This performance is measured in billions of cells update
per second (GCUPS) and is given through the following equation:

SP = 10−9 × N × M

T
(3)

Table 3. Environment setup used in the experiments

HOST Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz
(16 cores, 32 threads, 64 GB RAM)

Operating system Ubuntu 18.04.1 LTS

Accelerator Alveo U280 Data Center Accelerator Card [18]

Compiler Xilinx SDx v2019.1 (64-bit)

Table 4. Resource utilization and performance results for the highest performing single
and multiple kernel implementation

N, M, K LUT (%) FF (%) BRAM (%) GCUPS GCUPS/W

512, 262080, 6 510774 (46.05) 253655 (11.12) 528 (29.5) 429.39 7.68

2048, 262144, 1 330797 (28.64) 141910 (5.98) 137 (7.62) 316.73 8.86

Figure 5 illustrates the performance obtained from implementing a 2 pair-
wise alignment on a single kernel function (multi queries) versus implementing 2
kernel functions, each containing a single query sequence (multi kernels). Both
implementations are based on a width of 256 for the query and the results are
illustrated for varied database width. Figure 5 suggests that a multiple-query-
based implementation of the PE tends to be slightly better in terms of GCUPS,
than simply duplicating kernels that make use of a single query. Figure 6 shows
a trend of a linear increase in performance, for a fixed database width of 262144,

308 R. Ben Abdelhamid and Y. Yamaguchi

Fig. 5. Performance comparison of a multi-kernel vs multi-query implementation

Fig. 6. Systolic array performance trend with a fixed database width of 262144

Fig. 7. Systolic array performance trend with a fixed query width of 2048

A Block-Based Systolic Array on HBM2 FPGA 309

when increasing the queries width. Whereas, Fig. 7 shows a trend of performance
stagnation, for a fixed query width of 2048, when the database width exceeds
the threshold of 131072. Table 4 reports the results of the two best performing
configurations. The first configuration contains 2 blocks/kernel and the second
has 8 blocks/kernel. N, M and K from Table 4 denote the width of the query, the
width of the database and the number of compute units (kernels), respectively.
For a query width of 512, 512 directions are generated in every iteration, thus,
the total number of bits required for the traceback data is equal to 1024 bits
in each kernel (2 bits for each direction datum). Thus, the number of systolic
array blocks and hence the number of HBM2 ports required is equal to 2 per
kernel (512 bits/port). Similarly, for a query width of 2048, the total number of
bits required for the traceback data in each iteration step is equal to 4096 bits.
Therefore, a total of 8 HBM2 memory ports is required to process a new input
and output the related traceback directions, at every iteration.

6 Discussion

Figure 5 suggests that there is a minor gain in performance when implement-
ing a single kernel with multiple query inputs against implementing multiple
kernels with a single query input. This means that instantiating a new kernel
function is almost done at no additional cost or at a minor overhead. The com-
pute resources of our SW implementation, scale with the increase in problem
size (The size of the query). This is called weak scaling and means that it is
possible to extract more parallelism along with the increase in the size of the
sequences (which translates to an increase in the number of PEs). This is in
contrast with strong scaling, which happens when the increase in computational
resources, while maintaining the size of the sequences unchanged, still offers more
computational performance. Figure 6 suggests a trending linear increase in per-
formance, when increasing the number of PEs. This is explained by the fact that
a wider query allows for more parallelism. In fact, since all the PEs reside on the
anti-diagonal, they are spatially independent and can consequently update the
similarity matrix cells in parallel. Nonetheless, for queries with a length around
4k we noticed the compiler started struggling to place and route the design.
This can be explained by issues related to the underlying FPGA architecture.
In fact, HBM2 banks are only close to one SLR (Super Logic Region). Since the
FPGA has 3 similar-size SLRs, crossing the boundary of 33% resource usage
means that communicating with HBM2 banks has to cross an SLR boundary
and thus face congestion. Figure 7 shows that for short size databases (less than
16k), the performance of our approach seems to be poor, improves for medium
sizes and tends to stagnate when the size is larger than 128k. This is mainly due
to the ratio of the computation to the corresponding memory transfers. When
investigating the profiling summary reports from SDAccel, we noticed that there
are 2 metrics for measuring execution time. The first includes the data trans-
fers to/from global memories and is called kernel execution time, and the second
omits the memory transfers and is called compute unit execution time. Based on

310 R. Ben Abdelhamid and Y. Yamaguchi

those two reports, we concluded that our computational performance is in fact
independent from the database size. However, when including memory transfers,
selecting a database with a small size will result in a drop of the effective mem-
ory transfer bandwidth. This, results in turn, in achieving poor performances,
and sometimes leads to a memory transfer time that is larger than the effec-
tive computation time. Here, we define the theoretical peak performance that
depends upon two parameters only: width of the query N and the maximum
allowed frequency Fpeak of the main clock. Thus, the TPP (Theoretical Peak
Performance) is defined through the following equation:

TPP = N × Fpeak (4)

This equation is derived from the fact that the number of concurrently oper-
ating PEs is equal to the number of symbols in the query. Since each PE updates
a single cell in every iteration, multiplying the number of PEs by the operat-
ing frequency yields to the performance translated by the number of “Cells
Update Per second”. This TPP is only achievable when assuming an infinite
memory bandwidth, where all the memory transfers between the kernel and
its global memory buffers take no time at all. The maximum achievable fre-
quency is 300 MHz because this is the maximum allowed by SDAccel tool flow
when implementing HLS based designs. Furthermore, following our block-based
systolic architecture, every 256 elements of the query generates 256 traceback
directions at every iteration. In order to maintain busy all the 32 HBM2 memory
ports, the maximum width of the query should be 8192 (256 times 32). A higher
width would impose a memory communication bottleneck, because updating the
cells would require waiting for the completion of the memory transfers in every
step of the computation. Therefore, the maximum theoretical performance of
our accelerator becomes:

TPP = 8192 × 300MHz = 2.475 TCUPS (5)

In practice, this performance is almost non-achievable due to several factors.
In fact, the clock frequency decreases, sometimes dramatically when the design
size grows, because of the congestion and routing issues. Consuming all the
memory banks while requesting the peak clock frequency of 300 MHz will cer-
tainly make some paths fail to meet timing requirements (mostly negative slacks
and rarely hold violations). In this case, the SDAccel tool would downscale the
working frequency to allow proper functionality (only when there are no hold
violations). Table 4 hints a new theoretical peak performance based on resource
consumption. In fact, the most consumed resource of the best performing imple-
mentation is LUTs (Lookup Tables) at 46.05% from the total available at an
operating frequency of only 160 MHz. This suggests a new TPP of almost 2 times
higher than what we have achieved with the same clock speed. That is around
0.9 TCUPS. Adding more compute kernels can improve the performance but not
in a linear way because of the possible decrease in the clock frequency. Increas-
ing the clock speed will linearly improve the achieved performance but remains
capped by the previously defined theoretical peak. We are currently working on

A Block-Based Systolic Array on HBM2 FPGA 311

tweaking our design to reach that level of performance. Using our proposed tech-
niques, our design could reach 429.39 GCUPS and 7.68 GCUPS/W for a query
width of 512 using a double block per kernel and 6 duplicated kernels. Our
design reached as well, 316.73 GCUPS and 8.86 GCUPS/W for a query width of
2048 using 8 blocks on a single kernel. The highest performing implementation
consumes nearly one half of the available resources. When compared to the best
reported FPGA implementation, our design could reach 2 times higher perfor-
mance in terms of GCUPS. Nonetheless, a fair comparison is infeasible since
each of the two implementations targets a different FPGA size with a different
architecture from a different vendor. On the other hand, our obtained power effi-
ciency 8.86 GCUPS/W, largely outperforms the reported state of the art CPU
and GPU implementations (1.47 GCUPS/W and 1.39 GCUPS/W respectively).
This work is highly likely to be one of the best performing single-chip imple-
mentation of the SW algorithm. Furthermore, thanks to the scalable nature of
systolic arrays, our design has the potential to map well and perform even better
when targeting next generation HBM2-enabled FPGA.

7 Conclusion

This work provides an efficient block-based systolic array approach that aims
to solve the SW local alignment problem. The goal of our approach is to tar-
get HBM2-enabled FPGAs, in a way that maximizes the usage of their HBM2
banks and profits efficiently from the available high memory bandwidth. We also
investigated combining other approaches such as multiple pairwise alignments.
The latter approach did not prove very efficient, because the performance levels
almost neared that of a single-query multi-kernel implementation. Nevertheless,
our main approach, the block-based systolic architecture, proved extremely effi-
cient and delivered a peak performance that is 1.7 times higher than the best
GPU implementation reported in literature and 5.5 times better power efficiency.
Furthermore, our design could reach 2 times higher performance in terms of
GCUPS, when compared to the best reported FPGA implementation. We are
currently continuing our quest towards reaching the theoretical limits that we
estimated through our experiments and which should be, at least, nearly 2 times
higher than our current achievements.

Acknowledgement. This work was supported in part by MEXT as “Next Genera-
tion High-Performance Computing Infrastructures and Applications R&D Program”
(Development of Computing-Communication Unified Supercomputer in Next Gener-
ation), and by JSPS KAKENHI Grant Number JP17H01707 and JP18H03246. The
authors would also like to thank Xilinx Inc., for providing FPGA software tools by
Xilinx University Program.

312 R. Ben Abdelhamid and Y. Yamaguchi

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

2. Chen, P., Wang, C., Li, X., Zhou, X.: Hardware acceleration for the banded Smith-
Waterman algorithm with the cycled systolic array, pp. 480–481, December 2013

3. Daily, J.: Parasail: SIMD C library for global, semi-global, and local pairwise
sequence alignments. BMC Bioinform. 17, 81 (2016). https://doi.org/10.1186/
s12859-016-0930-z

4. Di Tucci, L., O’Brien, K., Blott, M., Santambrogio, M.: Architectural optimiza-
tions for high performance and energy efficient Smith-Waterman implementation
on FPGAS using OpenCL, pp. 716–721, March 2017. https://doi.org/10.23919/
DATE.2017.7927082

5. Fei, X., Dan, Z., Lina, L., Xin, M., Chunlei, Z.: FPGASW: accelerating large-scale
Smith–Waterman sequence alignment application with backtracking on FPGA lin-
ear systolic array. Interdisc. Sci. Comput. Life Sci. 10(1), 176–188 (2017). https://
doi.org/10.1007/s12539-017-0225-8

6. Hasan, L., Khawaja, Y., Bais, A.: A systolic array architecture for the Smith-
Waterman algorithm with high performance cell design, pp. 35–44, January 2008

7. Houtgast, E., Sima, V., Al-Ars, Z.: High performance streaming Smith-Waterman
implementation with implicit synchronization on intel FPGA using OpenCL,
December 2017

8. Kung, H.: Why systolic architectures? Computer 15, 37–46 (1982)
9. Liu, Y., et al.: Cudasw++ 3.0: accelerating Smith-Waterman protein database

search by coupling CPU and GPU SIMD instructions. BMC Bioinform. 14 (2013).
Article no. 117, https://doi.org/10.1186/1471-2105-14-117

10. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–
453 (1970)

11. Nurdin, D., et al.: High performance systolic array core architecture design for
DNA sequencer. MATEC Web Conf. 150 (2018). Article no. 06009

12. Rognes, T.: Faster Smith-Waterman database searches with inter-sequence SIMD
parallelisation. BMC Bioinform. 12 (2011). https://doi.org/10.1186/1471-2105-12-
221

13. Rucci, E., et al.: SWIFOLD: Smith-Waterman implementation on FPGA with
OpenCL for long DNA sequences. BMC Syst. Biol. 12, 96 (2018). https://doi.org/
10.1186/s12918-018-0614-6

14. Rucci, E., Garcia, C., Botella, G., De Giusti, A., Naiouf, M., Prieto Matias,
M.: OSWALD: OpenCL Smith-Waterman on Altera’s FPGA for large protein
databases. Int. J. High Perform. Comput. Appl. 32, 337–350 (2016). https://doi.
org/10.1177/1094342016654215

15. Sandes, E., et al.: CUDAlign 3.0: parallel biological sequence comparison in large
GPU clusters, pp. 160–169, May 2014

16. Sandes, E., et al.: CUDAlign 4.0: incremental speculative traceback for exact
chromosome-wide alignment in GPU clusters. IEEE Trans. Parallel Distrib. Syst.
27, 2838–2850 (2016)

17. Smith, T., Waterman, M.: Identification of common molecular subsequences. J.
Mol. Biol. 147, 195–7 (1981)

18. Xilinx: Alveo U280 Data Center Accelerator Card. https://www.xilinx.com/
products/boards-and-kits/alveo/u280.html#specifications. Accessed 8 Dec 2019

https://doi.org/10.1186/s12859-016-0930-z
https://doi.org/10.1186/s12859-016-0930-z
https://doi.org/10.23919/DATE.2017.7927082
https://doi.org/10.23919/DATE.2017.7927082
https://doi.org/10.1007/s12539-017-0225-8
https://doi.org/10.1007/s12539-017-0225-8
https://doi.org/10.1186/1471-2105-14-117
https://doi.org/10.1186/1471-2105-12-221
https://doi.org/10.1186/1471-2105-12-221
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1177/1094342016654215
https://doi.org/10.1177/1094342016654215
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#specifications
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#specifications

A Block-Based Systolic Array on HBM2 FPGA 313

19. Xilinx: Vivado HLS Optimization Methodology Guide. https://www.xilinx.
com/support/documentation/sw manuals/xilinx2018 1/ug1270-vivado-hls-opt-
methodology-guide.pdf. Accessed 8 Dec 2019

20. Yamaguchi, Y., Tsoi, H.K., Luk, W.: FPGA-based Smith-Waterman algorithm:
analysis and novel design. In: Koch, A., Krishnamurthy, R., McAllister, J., Woods,
R., El-Ghazawi, T. (eds.) ARC 2011. LNCS, vol. 6578, pp. 181–192. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19475-7 20

21. Zhao, M., et al.: SSW library: an SIMD Smith-Waterman C/C++ library for use
in genomic applications. PLoS ONE 8(12), e82138 (2013)

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug1270-vivado-hls-opt-methodology-guide.pdf
https://doi.org/10.1007/978-3-642-19475-7_20

Comparison of Direct and Indirect
Networks for High-Performance FPGA

Clusters

Antoniette Mondigo1(B), Tomohiro Ueno2, Kentaro Sano2,
and Hiroyuki Takizawa3

1 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
amondigo@dc.tohoku.ac.jp

2 Processor Research Team, RIKEN Center for Computational Science, Kobe, Japan
{tomohiro.ueno,kentaro.sano}@riken.jp

3 Cyberscience Center, Tohoku University, Sendai, Japan
takizawa@tohoku.ac.jp

Abstract. As field programmable gate arrays (FPGAs) become a favor-
able choice in exploring new computing architectures for the post-Moore
era, a flexible network architecture for scalable FPGA clusters becomes
increasingly important in high performance computing (HPC). In this
paper, we introduce a scalable platform of indirectly-connected FPGAs,
where its Ethernet-switching network allows flexibly customized inter-
FPGA connectivity. However, for certain applications such as in stream
computing, it is necessary to establish a connection-oriented datapath
with backpressure between FPGAs. Due to the lack of physical back-
pressure channel in the network, we utilized our existing credit-based
network protocol with flow control to provide receiver FPGA aware-
ness and tailored it to minimize overall communication overhead for the
proposed framework. To know its performance characteristics, we imple-
mented necessary data transfer hardware on Intel Arria 10 FPGAs, mod-
eled and obtained its communication performance, and compared it to
a direct network. Results show that our proposed indirect framework
achieves approximately 3% higher effective network bandwidth than our
existing direct inter-FPGA network, which demonstrates good perfor-
mance and scalability for large HPC applications.

Keywords: FPGA cluster · Indirect network · Direct network · Flow
control · Scalability · Flexibility

1 Introduction

In addressing the different requirements of HPC applications, various platforms
and compute strategies have been considered. Recently, FPGAs are playing a
major part in exploring architectural advances, primarily due to the impend-
ing end of Moore’s law and Dennard scaling. In particular, they excel as effi-
cient hardware accelerators because of their ability to customize algorithms and
exploit parallelism in offloaded applications [6,7,18].
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 314–329, 2020.
https://doi.org/10.1007/978-3-030-44534-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_24

Direct and Indirect Networks for High-Performance FPGA Clusters 315

Fig. 1. Connection-oriented links in dedicated FPGA networks

Modern FPGAs have optimized interconnect fabrics, which allow low-latency
communication in a dedicated network. Collectively, the networked FPGAs
increase their amount of computational resources. With the deployment of FPGA
clusters in data centers and cloud services [2,5], large HPC kernels may be
mapped into multiple FPGAs, which achieve scaled performance [16,17].

Physically connecting FPGAs through their high-speed transceiver links in
a direct network without switches is a straightforward method. However, as the
cluster size grows larger, the possibility of utilizing all FPGAs for a particular
application decreases. This also requires multiple hop counts to reach a desti-
nation, which is inefficient with a large network diameter. In addition, a large-
scale FPGA cluster could potentially service multiple applications that can be
mapped strategically to maximize resource utilization, which requires network
flexibility. Just as customized circuits in FPGAs is the key to performance gains,
its network should ideally be scalable and flexible for its target applications.

To address these issues, an indirect network, where FPGAs are connected
with switches, seems promising. In this paper, we present a scalable Ethernet-
switched FPGA cluster, where the transceiver links are physically connected to
ports of high-speed Ethernet switches. With offloaded switching or routing func-
tions, this may mean shorter transmission time for a large network diameter due
to lower hop counts. As a long-term standard, Ethernet supports easier migra-
tion to higher data rates and has adequate support for FPGAs through intellec-
tual property (IP) cores. With its accelerating momentum towards 400+ Gbps,
using Ethernet for our switched network follows the design principle of indepen-
dence, which facilitates incremental scaling and forward compatibility. However,
its upper layer protocols such as TCP/IP are expensive in hardware [11].

For our proposed switched network, we used Layer 2 (L2) Ethernet. By sup-
plying source and destination media access control (MAC) addresses in Ethernet
frames, an FPGA could send data to a specified receiver FPGA; thus, providing
flexibility without changing physical cabling structures. For some applications
such as data-flow stream computing, it is necessary to establish a connection-
oriented link with backpressure support over the network. For usability, we pro-
pose to utilize our own credit-based network protocol with flow control (FC) [14],
which was originally intended for a direct network.

This paper aims to know the performance characteristics of our proposed
indirect network. By implementing the necessary data transfer hardware on

316 A. Mondigo et al.

FPGA, we modeled and obtained the communication performance, and com-
pared it with our existing direct networked FPGA cluster [14], which uses Intel’s
proprietary Serial Lite III (SL3) protocol [9]. Figure 1 shows the connection-
oriented inter-FPGA links and the necessary network hardware modules. To
demonstrate scalability, we estimated the communication time of a streamed
computing case in a large-scale cluster by modeling data stream traversal through
a network in a ring connection. The following are our specific contributions:

1. Design and architecture of a connection-oriented network using Ethernet
switches for scalable FPGA clusters;

2. Investigation of performance characteristics and performance modeling for a
link in the connection-oriented network; and

3. Implementation with Intel Arria 10 FPGAs and performance evaluation for
stream computing.

We found that our indirect network with 40 Gbps Ethernet (E40G) has
obtained an effective network bandwidth of 4.41 GB/s, which is approximately
3% higher than our existing 40 Gbps SL3 point-to-point FPGA network. This
result indicates a good communication performance of applications requiring
high-bandwidth and large data transfers. Generally, the scalability and flexibility
features of our switched framework provide feasible groundwork for efficient high-
level synthesis (HLS) compilers, which target to generate and map customized
HPC applications in a large-scale FPGA cluster.

The paper is organized as follows: Sect. 2 shows some related work; Sect. 3
discusses the indirect network framework, protocol, and model; Sect. 4 shows
evaluation; and, Sect. 5 presents conclusions and future work.

2 Related Work

Distributed FPGA systems vary in different forms that employ direct inter-
connects with various topologies that prioritize different requirements. A boxed
cluster like BlueHive [11] is a custom 64-FPGA cluster with a full custom inter-
connect IP, BlueLink, and custom communication protocol with reliability layer.
Maxwell [3] has 64 FPGAs on a 2D torus with each link using a single multi-
gigabit transceiver. Cube [13] is a systolic-connected cluster with 512 FPGAs
with an 8 × 8 × 8 3D mesh topology. In [4], 32 FPGAs on eight enclosures are
interconnected in different technologies and topologies on a Berkeley Emulation
Engine 3 (BEE3) multi-FPGA platform for network exploration. With these
direct topologies, most of them are exploring small to mid-scale clusters.

Other works targeting large-scale clusters are typically for heterogeneous
computing. Datacenter-scale deployments such as Catapult v1 [15] uses a ded-
icated direct network for its 48 FPGAs, where they arranged 6 × 8 2D torus
topology. In Catapult v2 [5], they used a “bump-in-the-wire” approach, which
accelerates network traffic by routing communication through FPGA. They used
a tree topology with top-of-rack servers and used UDP/IP protocol over 40 Gbps
Ethernet. Another heterogeneous cloud data center-based FPGA cluster [17]

Direct and Indirect Networks for High-Performance FPGA Clusters 317

uses OpenStack, a cloud management tool offering several services, to virtualize
FPGA utilization with other heterogeneous resources, which involves multiple
abstraction layers in its infrastructure implying additional overhead.

Fig. 2. FPGA clusters when scaled

Direct networks are common and widely used but to the best of our knowl-
edge, performance characteristics of FPGAs with an indirect network using
switches have not been extensively explored, particularly in a large-scale setup.

3 Design and Architecture

This section presents the proposed scalable indirect network framework with its
design and architecture, including the custom protocol and model.

3.1 Direct and Indirect Networks for FPGA Clusters

A direct network based on point-to-point connection is popular for inter-FPGA
communication because of its practical and extensive features. Since it allows
close physical proximity between FPGAs, high-speed and high-bandwidth data
transfers are often implied. A fully-connected network is ideal to keep low-latency
transfers but unrealistic when scaled with more FPGAs. To minimize the net-
work diameter, high-radix routers are employed but are usually constrained with
the limited number of transceiver links. There is also a high-resource penalty for
on-chip routers, which reduces FPGA area for application. Figure 2a shows a
mesh/torus topology where their routers determine the datapath of a message.
In comparison, the absence of a router in Fig. 1a presented a point-to-point con-
nection with a fixed datapath between two FPGAs.

An indirect or switch-based network enables the FPGA fabric to offload the
routing or switching functions to a dedicated switch. Using a switch may intro-
duce some additional latency but with a larger network diameter, there will be

318 A. Mondigo et al.

Fig. 3. Network hardware modules for Ethernet protocol

lesser hops to reach a destination compared to a direct network. However, scal-
ability is limited by the number of switch ports. To mitigate this, a multi-stage
interconnection network may be constructed by cascading switches such as in a
leaf-spine architecture [1] shown in Fig. 2b. In this two-layer network topology,
FPGAs are connected to leaf switches. These switches are then fully meshed to
a series of spine switches, which allows scaling with more FPGAs and provides
better support for increased east-west traffic flows. Unless two communicating
FPGAs are in the same leaf switch, this mesh provides a fixed number of hops to
a destination regardless of their physical location in the network, thus minimizing
latency while keeping it at a predictable level even when scaled.

3.2 Ethernet-Based Connection-Oriented Links and Protocol

To establish connectivity from one FPGA to another in the switched network,
we opt to use L2 Ethernet, which involves configuring source and destination
MAC addresses on Ethernet frames. For some applications like stream com-
puting, establishing this connection-oriented datapath with backpressure is nec-
essary. However, there is no physical inter-FPGA backpressure channel, which
is necessary to propagate receiver availability towards an upstream transmit-
ter. In our previous work [14] with a direct network without backpressure, we
implemented our own custom protocol with credit-based flow control mechanism.
Here, we tailored this custom protocol to keep high-throughput data transfers
through Ethernet, while still keeping it cross-compatible with direct network’s
SL3 protocol. Figure 3 presents the necessary hardware modules for a single link
in an Ethernet-based switching network, which includes the flow controller, frame
encoder and decoder, and Ethernet IP core for L2 and Layer 1 (L1) functions.

Ethernet L1 and L2 IP Core: As a standard protocol, there are existing
off-the-shelf Ethernet IP cores with different incorporated layers and function-
alities available for use. For our proposed indirect network, we selected a low-
latency 40/100 Gbps Ethernet IP core with L2 MAC and L1 PHY functions,
which follows the IEEE 802.3ba 2010 High Speed Ethernet Standard. This IP
core supports frame encapsulation, but without a data link header containing
the MAC addresses. It also does not include any upper Ethernet layers, which

Direct and Indirect Networks for High-Performance FPGA Clusters 319

Fig. 4. Protocol layers

is sufficient for our requirements. Figure 4a shows its standard Ethernet frame
output.

In the transmit direction, TX MAC accepts a w-bit width input frame and
inserts a header and tail, as shown in Fig. 4a. This is then passed to the PHY,
which encodes it to serialized data for the FPGA transceiver links. In the receive
direction, PHY passes deserialized data to RX MAC, which performs checksum
calculations, removes the header and tail, and outputs the rest of the frame.

Frame Encoder and Decoder: The frame encoder and decoder handle the
flow of data between the flow controller and Ethernet IP core. Essentially, the
encoder’s main function is to accept data from the flow controller, inserts the
data link header into an Ethernet frame, and passes it to the Ethernet IP core.
As shown in Fig. 4b, the encoder inserts the MAC addresses and the type/length
(T/L) of the frame. In the receive direction, the decoder strips off the data link
header before passing the payload to the flow controller.

This module accepts a maximum payload of 1500 bytes, which is the standard
maximum transmission unit (MTU) and can be changed as a parameter. A
jumbo frame is also supported, as long as the Ethernet switch ports support
handling a payload size greater than the standard MTU. However, when the
encoder receives data in the form of a packet, which has start of packet (SOP)
and end of packet (EOP) signals, the packet is considered a unit payload and is
encapsulated directly with a header without other modifications.

Flow Controller (FC): We utilized our direct network’s credit-based FC [14]
for the proposed switching network. The main purpose of this module is to
provide receiver status awareness between two communicating FPGAs through
the exchange of credits, which provides transmission reliability. It operates

320 A. Mondigo et al.

autonomously in either half or full-duplex data transfers. In this paper, we added
Ethernet compatibility through frame encapsulations handled by the encoder
and Ethernet IP core.

FC receives data from the application, which could be divided into smaller
packets composed of data flits. A flow control digit, flit, is a smaller unit of
data from a larger payload size that is sent in one cycle, in which a single flit
has (w-bit width)/8 bytes. In each FC packet, a header is inserted. This is also
known as a control flit, in which other information are embedded in order to
reconstruct the original payload in the receive direction. As shown in Fig. 4c,
this includes the payload length, SOP and EOP flags, and credit only (CO) flag
to indicate a zero-payload packet for half-duplex transfers. The credit update
(CU) is also embedded here to update the other FPGA’s credit counter, which
mimics the backpressure effect of a physical channel.

The CU frequency depends on the FC packet size, which is set as a parameter
in this module. In order to embed the payload length in the header, incoming
data is placed in a store-and-forward transmitter buffer, FC TX buffer. To min-
imize induced waiting time for longer payload sizes, CU should be transmitted
frequently enough by setting it to every DCU flits. This means that a maximum
FC packet sent to the frame encoder is (DCU + 1) flits including the control flit.
This is equivalent to:

(Maximum FC packet size) =
(w-bit width)(DCU + 1)

8
[bytes], (1)

which should satisfy the encoder’s payload size requirements.
Another important parameter is the depth of the receiver buffer, FC RX

buffer. In order to operate at a high rate, FC RX buffer allocation must be
sufficiently larger the round-trip time plus CU frequency, DCU [10]. Detailed
discussion on the FC design parameters and their inter-relationship is in [14].

3.3 Performance Model

In this section, we derive a model to estimate communication time as perfor-
mance metric, which is dependent on various factors such as communication
patterns and the network topology. To simplify and generalize the model, we
consider FPGA-to-FPGA communication for both direct and indirect networks.
Table 1 lists the parameters affecting network performance.

For any point-to-point connection, a simple model to describe the total trans-
fer time of a message or payload with m bytes is:

Tpoint-to-point = TL +
m

B
= tN + tPL +

m

B
[s], (2)

where TL is the total propagation latency [s] and B is the peak network band-
width [GB/s], representing latency and streaming factors of a message transfer,
respectively. Here, TL = tN + tPL, where tN is the node latency [s], also known
as start-up latency, which refers to the message handling delays at the sending

Direct and Indirect Networks for High-Performance FPGA Clusters 321

Table 1. Parameters for network performance model

Parameters Description Unit

m Message (payload) size [bytes]

B Network link bandwidth [GB/s]

tN Node latency (start-up latency) [s]

tPL Physical link latency [s]

l Number of physical links -

s Number of switch hops -

tS Average switching latency [s]

TL Propagation latency [s]

T Total communication time [s]

Fig. 5. Network communication traversal

and receiving nodes, and tPL is the physical link latency [s], which refers to the
time for a node to send and for another node to receive a zero-payload message
across a network, as illustrated in Fig. 5a. We also define FPGA as a node.

For the switched network, we consider a node-to-node communication time
by breaking down the network datapath into parts, as shown in Fig. 5b-d. In an
indirect connection, an FPGA is connected to a leaf switch, as shown in Fig. 5b.
Figure 5c shows the communication pattern between two FPGAs in a single leaf
switch, with its transfer time as:

Tintra-leaf hop = TL +
m

B
= tN + 2tPL + tS +

m

B
[s], (3)

since there are two physical links and the transfer included a single leaf switch
hop with a switching latency, tS, which is included in TL. Therefore, for an
intra-leaf switch data transfer, the communication time is:

Tintra-leaf hop = TL +
m

B
= tN + ltPL + tS +

m

B
[s], (4)

where l is the number of physical links.
Figure 5d presents the FPGA-to-FPGA transfer in separate leaf switches,

which involves a spine switch hop. Assuming that we have a fully non-blocking
full-bandwidth leaf-spine topology with no contention, then its transfer time is:

322 A. Mondigo et al.

Tinter-leaf hop = TL +
m

B
= tN + 4tPL + 3tS +

m

B
[s], (5)

since there are four physical links and three switch hops, assuming the same
switching latency for both leaf and spine. To generalize this inter-leaf switch
pattern, the communication time is:

Tinter-leaf hop = TL +
m

B
= tN + ltPL + stS +

m

B
[s]. (6)

Consequently, the effective network bandwidth for both network types is:

Beffective =
m

T
=

m

TL + m
B

[GB/s], (7)

where T is the total communication time.

4 Evaluation

In this section, we investigate the performance characteristics of the switched
network and compared it to a direct network. We obtained the resource utiliza-
tion, latency, and effective network bandwidth of our connection-oriented links.
By applying the measured parameters, we used the model to evaluate scalability.

4.1 Implementation

For fundamental evaluation, we implemented the network hardware modules on
a Terasic DE5A-NET FPGA board, which includes an Intel Arria 10 FPGA.
There are four quad small form-factor pluggable (QSFP+) transceiver ports,
but we only utilized two for the experiments. For each port, an instance of the
network modules is implemented. For the Ethernet IP core, we used Intel’s Low
Latency 40 Gbps Ethernet IP core (E40G) [8] to match the tranceiver’s 40 Gbps
Attachment Unit Interface (XLAUI). As per E40G IP’s specification, we used
Avalon Streaming (Avalon-ST) interface with a w = 256-bit width datapath
for the network modules. To complete the network setup, we used a 16-port
Mellanox SN2100 Open Ethernet switch [12].

We also prepared two transceiver ports with their own direct network modules
on another DE5A-NET board, which includes an FC and a 40 Gbps SL3 IP core
per port, as shown in Fig. 1a. For a fair comparison, we used 1-m passive copper
QSFP+ transceiver link cables for both network types and utilized the same
cross-platform FC design version for both SL3 and E40G setup.

For FC buffer allocations, TX buffer has a depth of 32 flits, where the CU
frequency is set to send a credit every DCU = 32 flits [14]. Using Eq. (1), the max-
imum FC packet size sent to the frame encoder is (256)(32 + 1)/8 = 1056 bytes,
which satisfies the frame encoder payload size requirements. To fully maximize
the network bandwidth, we could increase this to 1500 bytes, with DCU = 45
flits and a TX buffer depth of 64 flits, but this would incur additional logic and

Direct and Indirect Networks for High-Performance FPGA Clusters 323

Fig. 6. Resource utilization of SL3 and E40G Ethernet modules

an increase in area. Thus, we chose a 32-flit TX buffer allocation for both SL3
and E40G network to maintain equal FC protocol overhead in this evaluation.

To operate at high data rate, RX buffer depth relies on the link latency [14],
in which SL3’s RX buffer depth is at a minimum of 512 flits [14]. For the switched
network, this is not sufficient due to the additional latency of switch hops; thus,
the need to increase E40G’s RX buffer depth to a relatively larger size. For E40G
network, we set FC RX buffer depth to 2048 flits, while keeping 512 flits for SL3.

Figure 6 shows the resource utilization of adaptive logic modules (ALMs),
registers, memory logic array blocks (MLAB Kbits), M20K memory blocks, and
digital signal processors (DSPs). As shown in green, point-to-point’s network
modules consume lesser area, while the switched network’s consume about 6x,
7x, 18x, and 3x more ALMs, registers, Kbits, and M20Ks, respectively, than the
former. This is due to increased logic and memory needed for the frame encoder,
decoder, and FC RX buffer allocation. For the E40G switched network, this is
around 70–75% of resources, which is a fair amount considering that we target
to map a large application across multiple FPGAs. In addition, it is noteworthy
that the SL3 direct network does not include an on-chip router, which when
implemented, would imply an increase on its consumption.

4.2 Communication Time and Effective Network Bandwidth

To measure parameters for the performance model in Eq. (6), we setup and used
hardware cycle counters for the following cases: (1) point-to-point with SL3, (2)
point-to-point with E40G, and (3) a switched network with E40G, as shown in
Fig. 7a. Aside from a switched E40G case (3), we also considered a point-to-point
connection with E40G case (2) to obtain the average switching latency, tS.

Table 2 shows the measured values for node latency, tN and physical link
latency, tPL for a zero-payload equivalent, which in E40G, is encapsulated in a
minimum-sized Ethernet frame with 46-byte padded payload. For SL3 case (1),
tN only includes FC latency, while for E40G cases (2) and (3), this includes FC,
frame encoder, and frame decoder delays; hence, the higher latency of E40G.

324 A. Mondigo et al.

Due to IP restrictions on SL3 and E40G IP cores, we could only measure tPL by
including their protocol overheads; thus, the noticeable difference of their values.
Using the measured values of tN and tPL, we were also able to verify the RX
buffer allocation to maintain a high data rate transmission.

Table 2. Measured latency parameters

Network Unit tN tPL tS

(1) Point-to-point with SL3 [us] 0.245 0.354 N/A

(2) Point-to-point with E40G [us] 0.336 0.496 N/A

(3) Switched with E40G [us] 0.336 0.496 0.318

Fig. 7. Modeled vs. measured network communication time

In order to obtain the effective bandwidth, we measured the total commu-
nication time by sending various payload sizes and used it in Eq. (7). Case (1)
shows the highest bandwidth for smaller payload sizes due to its lower communi-
cation latency, as illustrated in Fig. 8. Meanwhile, case (2) shows a lower effective
bandwidth than case (1). This is due to the additional protocol overhead of Eth-
ernet and the extra latency of passing through more modules, i.e. frame encoder
and decoder, as with case (3). However, the latter shows the lowest effective
bandwidth due to a longer communication time via the switch.

For larger payload sizes, we observed that the effective bandwidth for case
(1) is 4.29 GB/s with 86% efficiency. For (2) and (3), both reached an effective

Direct and Indirect Networks for High-Performance FPGA Clusters 325

bandwidth of 4.41 GB/s at 88% efficiency, which is surprisingly about 3% higher
than SL3’s. This is caused by SL3 protocol’s transmission overheads and lane
rate calculations [9], where the required network clock frequency derived was
150.813962 MHz, resulting to 4.83 GB/s peak throughput. For E40G IP core,
there is no clock frequency requirement. We were able to utilize a 154.99442 MHz
clock frequency, which correspondingly results to a higher peak throughput of
4.96 GB/s. Even with Ethernet’s additional protocol overhead, a switched net-
work with E40G showed a better effective bandwidth, which is beneficial for
large payload sizes since latency no longer dominates transfer time.

Fig. 8. Effective network bandwidth of SL3 and E40G for cases (1), (2), and (3)

Correspondingly, we also used the measured total communication time to
validate the performance model by comparing it with our estimated results. By
using the obtained parameters such as tN and the effective bandwidth, we were
able to estimate the transmission time, as shown in Fig. 7b-d. Based on the
plotted values, the model closely matches the measured time, which can be used
to estimate communication performance in larger FPGA clusters.

4.3 Performance Estimation of Stream Computing on an Indirect
Network

In this evaluation, a stream computing case is considered through a single data
stream traversal in a ring connection. A direct network is often the typical choice,
thus, we investigated its performance in our proposed switching framework. We
used two FPGAs in a ring connection to perform fundamental evaluation on
a switched network, as shown in Fig. 9a and compared it with its equivalent
point-to-point ring connection with SL3. We obtained the total communication
time and mapped its effective bandwidth in Fig. 9b. As anticipated, latency
prevails in smaller payload sizes, in which the point-to-point connection has
higher bandwidth. For larger payload sizes, however, the effective bandwidth

326 A. Mondigo et al.

of the switched E40G connection saturates at 4.41 GB/s, which still performed
better than its direct counterpart at 4.29 GB/s.

Using Eq. (2) for SL3 and Eq. (3) for E40G, we also estimated the commu-
nication time by scaling the propagation latency, TL by a factor of two, since
this ring is equivalent to two point-to-point connections. As shown in Fig. 9b,
the modeled values approximates the measured points, which is expected since
the model only accounts for the network communication without interaction.

Fig. 9. Stream computing in a ring connection

To evaluate scalability, we estimate the communication time of both network
connections with a larger cluster setup. We assume a radix-64 switch (k = 64),
which could accommodate up to n = 64 FPGAs. When n > 64, we scale using the
leaf-spine architecture, where we assume to balance the uplink to downlink ratio
(no oversubscription). To build a two-layer, full-bisection bandwidth leaf-spine

Direct and Indirect Networks for High-Performance FPGA Clusters 327

topology, we could connect up to n = k × k
2 = 2048 FPGAs with a = 2n

k = 64
leafs, and b = a

2 = 32 spines, which are connected in a full bipartite graph with
k
a = 1 uplink per leaf to all 32 spines.

In this ring connection, we assume the lowest latency traversal, where an
FPGA hops to their neighboring FPGA first via intra-leaf hops (see Fig. 5c),
before an inter-leaf hop through the spine (see Fig. 5d). With n <= 64, we can
scale TL by n, since there are n FPGA-to-FPGA transfers in the ring through a
single leaf (a = 1). With n > 64, the scaling factor for TL is a(k2 − 1), since the
FPGAs on the edges of the leaf have to perform an inter-leaf transfer. Conse-
quently, an inter-leaf communication’s scaling factor for TL is a, when a > 1. By
hypothetically assuming the measured parameters in Table 2 and the measured
effective bandwidth, we estimated the total time, T = TL + m

B , by accumulat-
ing the scaled TL values for both intra-leaf and inter-leaf hops, which forms the
communication pattern of the ring, while increasing the FPGA cluster size.

Figure 9c-e show the transmission time for a large data stream (227 MB), a
mid-sized data stream (1 MB), and a small message size (4 KB), respectively. For
the large data stream size, we observed a lower latency for E40G up to n = 1024
FPGAs, due to the higher effective bandwidth. With n = 2048, the data stream
size is no longer sufficient and the latency factor catches up, making SL3 perform
better. For the mid-sized data stream, the higher effective bandwidth of E40G
keeps the time difference at a minimum only for a small FPGA cluster (up to
n = 16 FPGAs). Meanwhile, the lower latency of a point-to-point connection
influences the transfer time, making it perform better for small message sizes.

5 Conclusions

This paper presented the design and architecture of an Ethernet-based switched
platform for scalable FPGA clusters, where we established a connection-oriented
datapath with backpressure over the network. For usability and to establish con-
nectivity, we utilized our credit-based protocol with flow control over Ethernet
and implemented the supporting network modules to achieve high-throughput
data transfers.

We investigated the performance characteristics of the connection-oriented
links and modeled its communication performance. By obtaining the communi-
cation time and effective network bandwidth, we estimated the communication
latency of a streamed computing pattern when scaled to a large-sized cluster.
With the E40G switched network saturating at a higher effective bandwidth
for large data streams in comparison with its point-to-point SL3 counterpart,
our proposed indirect framework has demonstrated good communication perfor-
mance and scalability for applications requiring high-bandwidth and large data
transfers, despite its longer network propagation latency.

For our future work, we will evaluate other communication patterns on the
switched network to further evaluate its network flexibility. In addition, the per-
formance model needs to be fine-tuned since it only focused on communication

328 A. Mondigo et al.

time, without considering computation or interaction delays. We are also plan-
ning to upgrade the framework using Stratix 10 FPGAs, where their transceiver
links support 100 Gbps data rate. Another area of future work is to provide a
standard platform for FPGA cluster management, such as mapping of applica-
tions and network configurations.

References

1. Alizadeh, M., Edsall, T.: On the data path performance of leaf-spine datacenter
fabrics. In: Proceedings - IEEE 21st Annual Symposium on High-Performance
Interconnects, HOTI 2013, pp. 71–74. IEEE Computer Society (2013). https://
doi.org/10.1109/HOTI.2013.23

2. AWS: Amazon EC2 F1 instances. https://aws.amazon.com/ec2/instance-types/f1/
3. Baxter, R., Booth, S., Bull, M., et al.: Maxwell - a 64 FPGA supercomputer. In:

Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007),
pp. 287–294. IEEE, August 2007. https://doi.org/10.1109/AHS.2007.71

4. Bunker, T., Swanson, S.: Latency-optimized networks for clustering FPGAs (2013).
https://doi.org/10.1109/FCCM.2013.49

5. Caulfield, A.M., Chung, E.S., Putnam, A., et al.: A cloud-scale acceleration archi-
tecture. In: MICRO-49 The 49th Annual IEEE/ACM International Symposium on
Microarchitecture (2016). https://doi.org/10.1109/MICRO.2016.7783710

6. Fowers, J., Ovtcharov, K., Papamichael, M., et al.: A configurable cloud-scale DNN
processor for real-time AI. In: 2018 ACM/IEEE 45th Annual International Sym-
posium on Computer Architecture (ISCA), pp. 1–14. IEEE, June 2018. https://
doi.org/10.1109/ISCA.2018.00012

7. Herbordt, M.C., VanCourt, T., Gu, Y., et al.: Achieving high performance with
FPGA-based computing. Computer 40(3), 50–57 (2007). https://doi.org/10.1109/
MC.2007.79

8. Intel: Low latency 40-gbps Ethernet IP core user guide. https://www.intel.com/
content/www/us/en/programmable/products/intellectual-property/ip/interface-
protocols/m-alt-40gb-ethernet.html

9. Intel: SerialLite III IP Solution. https://www.altera.com/solutions/technology/
transceiver/protocols/pro-seriallite-3.html

10. Kung, H., Morris, R.: Credit-based flow control for ATM networks. IEEE Network
9(2), 40–48 (1995). https://doi.org/10.1109/65.372658

11. Markettos, A.T., Fox, P.J., Moore, S.W., et al.: Interconnect for commodity FPGA
clusters: standardized or customized? In: Conference Digest - 24th International
Conference on Field Programmable Logic and Applications, FPL 2014, pp. 1–8,
September 2014. https://doi.org/10.1109/FPL.2014.6927472

12. Mellanox Technologies Ltd.: Sn2100 open Ethernet switch (2019). https://www.
mellanox.com/ethernet/switches.php

13. Mencer, O., Tsoi, K.H., Craimer, S., et al.: Cube: a 512-FPGA cluster. In: Pro-
ceedings of the 2009 5th Southern Conference on Programmable Logic (SPL), pp.
51–57. IEEE, April 2009. https://doi.org/10.1109/SPL.2009.4914907

14. Mondigo, A., Ueno, T., Sano, K., Takizawa, H.: Scalability analysis of deeply
pipelined Tsunami simulation with multiple FPGAS. IEICE Trans. Inf. Syst.
E102-D(5), 1029–1036 (2019). https://doi.org/10.1587/transinf.2018RCP0007

https://doi.org/10.1109/HOTI.2013.23
https://doi.org/10.1109/HOTI.2013.23
https://aws.amazon.com/ec2/instance-types/f1/
https://doi.org/10.1109/AHS.2007.71
https://doi.org/10.1109/FCCM.2013.49
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/MC.2007.79
https://doi.org/10.1109/MC.2007.79
https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip/interface-protocols/m-alt-40gb-ethernet.html
https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip/interface-protocols/m-alt-40gb-ethernet.html
https://www.intel.com/content/www/us/en/programmable/products/intellectual-property/ip/interface-protocols/m-alt-40gb-ethernet.html
https://www.altera.com/solutions/technology/transceiver/protocols/pro-seriallite-3.html
https://www.altera.com/solutions/technology/transceiver/protocols/pro-seriallite-3.html
https://doi.org/10.1109/65.372658
https://doi.org/10.1109/FPL.2014.6927472
https://www.mellanox.com/ethernet/switches.php
https://www.mellanox.com/ethernet/switches.php
https://doi.org/10.1109/SPL.2009.4914907
https://doi.org/10.1587/transinf.2018RCP0007

Direct and Indirect Networks for High-Performance FPGA Clusters 329

15. Putnam, A., Caulfield, A.M., Chung, E.S., et al.: A reconfigurable fabric for acceler-
ating large-scale datacenter services. In: ISCA 2014 Proceeding of the 41st Annual
International Symposium on Computer Architecture, Minneapolis, MN, USA, pp.
13–24. IEEE (2014). https://doi.org/10.1109/ISCA.2014.6853195

16. Sheng, J., Yang, C., Herbordt, M.C.: High performance communication on recon-
figurable clusters. In: 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), Dublin, Ireland (2018)

17. Tarafdar, N., Lin, T., Fukuda, E., et al.: Enabling flexible network FPGA clus-
ters in a heterogeneous cloud data center (2017). https://doi.org/10.1145/3020078.
3021742

18. Xiong, Q., Skjellum, A., Herbordt, M.C.: Accelerating MPI message matching
through FPGA offload. In: 2018 28th International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 191–1914. IEEE, August 2018.
https://doi.org/10.1109/FPL.2018.00039

https://doi.org/10.1109/ISCA.2014.6853195
https://doi.org/10.1145/3020078.3021742
https://doi.org/10.1145/3020078.3021742
https://doi.org/10.1109/FPL.2018.00039

A Parameterisable FPGA-Tailored
Architecture for YOLOv3-Tiny

Zhewen Yu and Christos-Savvas Bouganis(B)

Department of Electrical and Electronic Engineering, Imperial College London,
London, UK

{zhewen.yu18,christos-savvas.bouganis}@imperial.ac.uk

Abstract. Object detection is the task of detecting the position of
objects in an image or video as well as their corresponding class. The
current state of the art approach that achieves the highest performance
(i.e. fps) without significant penalty in accuracy of detection is the
YOLO framework, and more specifically its latest version YOLOv3.
When embedded systems are targeted for deployment, YOLOv3-tiny, a
lightweight version of YOLOv3, is usually adopted. The presented work
is the first to implement a parameterised FPGA-tailored architecture
specifically for YOLOv3-tiny. The architecture is optimised for latency-
sensitive applications, and is able to be deployed in low-end devices with
stringent resource constraints. Experiments demonstrate that when a
low-end FPGA device is targeted, the proposed architecture achieves a
290x improvement in latency, compared to the hard core processor of the
device, achieving at the same time a reduction in mAP of 2.5 pp (30.9%
vs 33.4%) compared to the original model. The presented work opens
the way for low-latency object detection on low-end FPGA devices.

Keywords: YOLOv3-tiny · FPGA · Object detection

1 Introduction

The object detection technology deals with the problem of detecting instances
of objects in images and videos. Applications of this technology can be found in
the deployment of advanced intelligent systems like Advanced Driver Assistance
Systems (ADAS) and video surveillance. Accurate object classification and iden-
tification of the objects’ position are often required, as this information forms the
basis for further processing and decision making in the rest of the application’s
pipeline.

Recently, capitalising on the recent advances in machine learning, and more
specifically on the development of deep neural networks, researchers and prac-
titioners have developed powerful object detection systems that can provide
accurate detection in a number of challenging situations. Furthermore, in cases
where low latency of processing is required, work in the area has moved away
from scanning the image in multiple positions and applying image classifiers
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 330–344, 2020.
https://doi.org/10.1007/978-3-030-44534-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_25

A Parameterisable FPGA-Tailored Architecture for YOLOv3-Tiny 331

(i.e. casting the problem of object detection to the classification problem over
multiple windows) to combining the above distinct steps in a single pipeline,
usually based on a deep neural network.

Early works towards this direction include R-CNN [4], Fast R-CNN [3] and
Faster R-CNN [15]. These works implement the object detection by two distinct
parts, region proposal selecting possible candidates that include an object and a
deep neural network responsible for the classification of these regions. As resource
sharing between the two parts is limited, the above approach exhibits usually
high computational loads and detection latency.

In an attempt to provide object detectors with lower computational require-
ments and enable object detection in low-power devices, research has focused
on the one-step approach, where the bounding boxes around the objects are
predicted directly though the DNN rather than having a separate region pro-
posal step [19]. Two of the most popular such frameworks are the Single Shot
MultiBox Detector (SSD) [7] and the YOLO (You only look once) [13].

SSD is based on a VGG16 network and has been extended by custom convo-
lution layers in order to generate bounding boxes. SSD uses a set of predefined
anchor boxes for detection at various scales impacting the framework’s precision
and computational load.

The YOLO framework relies on a single DNN, DarkNet, in order to predict
both the position of the objects (i.e. bounding boxes) as well as their clas-
sification. Early versions of the YOLO approach exhibited low computational
loads by trading the classification precision for low latency, which led to their
deployment in embedded systems. The most recent version of YOLO is YOLOv3,
which adopts a deeper neural network than its predecessors, achieving more accu-
rate classifications. Currently, YOLOv3 demonstrates its advantages of both low
latency and high classification precision over other competitors [14].

In cases where the deployment of an object detection system is required
in an embedded form for real-time applications, such as an ADAS system, low
power and latency considerations have pushed the designers to solutions that are
based on low-power FPGA and mobile GPU platforms. Because generic mobile
processors usually do not provide the necessary performance under the desired
power envelopes.

This work addresses the challenging problem of deploying YOLO in a low-
power FPGA device, and more specifically it targets the mapping of YOLOv3-
tiny, a variant of YOLOv3 version for embedded systems. The paper’s novel
contribution is a latency-optimised parameterisable architecture tailored to
YOLOv3-tiny workload that can be tuned to the resource availability of any
targeted FPGA device. To enable the above, a parameterisable architecture is
developed and implemented using Vivado HLS. Performance and resources mod-
els are derived that guide the Design Space Exploration (DSE) phase for identi-
fying design points that optimise the latency of the system, meeting at the same
time the resource constraints.

To the best of the authors’ knowledge, this is the first work that addresses
this problem when a low-power and limited resources FPGA device is targeted

332 Z. Yu and C.-S. Bouganis

and use of off-chip memory is required to store the parameters and intermediate
results of the network, enabling the deployment of YOLOv3-tiny in scenarios
with extremely limited resources.

The rest of the paper is organised as follows. Section 2 describes network
architecture of YOLOv3-tiny and challenges in its mapping to an embedded sys-
tem. Section 3 elaborates the proposed architecture and explains how YOLOv3-
tiny is mapped onto the accelerator. Section 4 focuses on the resource and perfor-
mance models which enable the Design Space Exploration described in Sect. 5.
Section 6 introduces the wordlength optimisation used in the architecture, where
Sect. 7 provides a discussion on the evaluation of the system. Finally, Sect. 8 con-
cludes the paper.

2 Background

2.1 YOLOv3-Tiny Network

YOLOv3-tiny is a light-weight version of YOLOv3. It exhibits a reduced number
of layers compared to YOLOv3, allowing its deployment to resource-constraint
devices. The reduced number of layers leads to lower computational load and
inference latency with a penalty on the object detection precision.

YOLOv3-tiny accepts an RGB image of 416 × 416 resolution as input. Con-
trary to YOLOv3, YOLOv3-tiny predicts bounding boxes at two different scales
only. The first scale divides the input image into 13 × 13 grids, while the sec-
ond operates on 26 × 26 grids. The framework generates three bounding boxes
in every grid. The network outputs a 3d tensor containing information on the
bounding box, the objectness confidence and the class predictions.

The network mainly utilises five types of layers; Convolutional, Max pooling,
Route, Upsample and Yolo layer. Route layers are responsible for creating differ-
ent flows in the network, where Upsampling is used to support multiple detection
scales. The Yolo layer is responsible to generate the output vector. Figure 1 shows
the dataflow of the network alongside with the number of operations required
for convolution.

2.2 Mapping YOLO-Based Networks to FPGAs

Current toolflows for automated mapping of CNNs to FPGAs do not support
the specialised computational layers of YOLO [16]. As such, a number of works
have focused on customised designs for deploying various versions of the YOLO
network onto FPGAs. Some perform a faithful mapping of YOLO while others
introduce certain approximations to tailor the hardware. Wei et al. [18] presented
an FPGA-based architecture for the acceleration of YOLOv2-tiny, where the
parameters of the layers are required to be stored on local memory in advance. In
their architecture, the Leaky ReLU activation is replaced with ReLU for reducing
the resource consumption. The authors reported a latency per inference of 52 ms
on Zynq 7035.

A Parameterisable FPGA-Tailored Architecture for YOLOv3-Tiny 333

Fig. 1. Dataflow of YOLOv3-tiny

The acceleration of YOLOv2-tiny is also targeted in Liu et al. [6]. Their sys-
tem combines adjacent layers in order to reduce the communication cost between
the host and the device. In their approach, a fixed point number representation
is utilised, where the inputs and outputs are kept at 16 bits while intermedi-
ate multiplication products are stored at 32 bits. Their system achieves 69.2 fps
using Arria 10 GX1150.

Wai et al. [17] also targeted the acceleration of YOLOv2-tiny. In the proposed
solution, the batch normalisation and convolution layers are merged together. In
their system, the computation of the convolutions is based on a General Matrix-
Matrix Multiplication (GeMM) core that has been designed via OpenCL. The
proposed design can be parameterised by tuning the multiplication block size.
Their work achieves 3.06 fps using Cyclone V PCIe device.

Nakahara et al. [9] proposed a modified version of YOLOv2 which was termed
Lightweight YOLOv2. In the proposed network, the convolution layers for feature
extraction are replaced with binary multiply-add operations. Furthermore, a
Support Vector Machine algorithm (SVM) is responsible for the prediction of
the objects’ coordinates and classifications. Using a ZCU102 device, their system
achieves 40 fps, with a modest drop in accuracy (1.5 pp).

Nguyen et al. [10] proposed Sim-YOLOv2, a quantised version of YOLOv2,
and its implementation on FPGA. The proposed architecture focuses on max-
imising the throughput of the system, and as such each layer of the network is
mapped to a dedicated hardware block. Weights are stored on chip to minimise
off-chip data transfers. Due to the requirement of on-chip storage, a Virtex-7
VC707 device is targeted. The latency reaches 9.15 ms at the cost of 18.29 W
power consumption.

334 Z. Yu and C.-S. Bouganis

2.3 Challenges and Target

Mapping YOLOv3 or YOLOv3-tiny to an FPGA device brings new challenges.
In YOLO and YOLOv2, the networks are trained for VOC [1,2] dataset and are
able to address twenty different object classes. YOLOv3 is trained for COCO2014
[5] which instead targets 80 classes, and as such it exhibits higher computational
load.

The target of this work is the design of a latency optimised and FPGA-
tailored architecture that can be customised to the available FPGA resources
in order to accelerate the inference stage of YOLOv3-tiny model. The previ-
ously mentioned works are addressing the problem of mapping YOLOv2, and
its variants to an FPGA device. To the best of the authors’ knowledge, the only
work that addresses the mapping of the newest model, the YOLOv3-tiny, is Log-
icTronix [8], where a Xilinx DPU-DNNDK was used for its acceleration using
a ultra96 FPGA device, achieving 30 fps. Even though the work quantises the
model, no evaluation or any accuracy result is reported. The proposed framework
targets lower-end devices that have considerably fewer resources.

3 Proposed Architecture

The proposed architecture is tailored for the execution of YOLOv3-tiny model,
providing as such hardware support for the newly introduced special Yolo layer.
The developed accelerator is utilised for the execution of all layers of the network
through a run-time parameter setting. The proposed architecture is tailored
and compile-time parameterisable in HLS to target low-end FPGA devices with
limited resources, and as such no hard constraints on adequate on-chip memory
for storing of the data are imposed by the system.

3.1 System Overview

Figure 2 provides a high-level picture of the proposed architecture. The FPGA
Hardware Accelerator denotes the proposed FPGA architecture and consists of
a three-stage pipeline, where each stage corresponds to a layer of YOLOv3-tiny
network. The Accelerator is controlled by the ARM processor who is responsi-
ble for the overall control of the system. The data and weights are transferred
between the Accelerator and the off-chip memory through DMA interfaces.

The FPGA accelerator consists of a three-stage pipeline. The first stage of
the pipeline supports the execution of the convolution layer, whose output is
accumulated in the second stage of the pipeline. Depending on the network
structure that is executed at a given time, the accumulation results are sent for
further processing in the Max pooling, Upsample or Yolo layer.

3.2 Module Design

The FPGA Hardware Accelerator consists of five main computational blocks;
the convolution, accumulation, max pooling, upsample and yolo blocks.

A Parameterisable FPGA-Tailored Architecture for YOLOv3-Tiny 335

Fig. 2. System-level architecture of this work

Convolution Block: The block performs direct convolutions of Nin input chan-
nels with the corresponding kernels and produces Nout output channels. Inter-
nally the block contains three main sub-modules, including an input line buffer,
convolution kernels and an output buffer.

The compile-time (synthesis-time) known parameters of the block are

{Nmax, fmax
w ,Kmax

c , pc}

which define the maximum number of input and output channels, the maximum
width of the input feature map, the maximum kernel size, and the number of
parallel compute units in the block respectively.

The adopted architecture of the block provides flexibility on trading off
resources for performance. pc provides the option to control the unrolling fac-
tor of computing the convolutions, as well as the way that the input and output
channels are interleaved. As Fig. 3 shows, pc can also be expressed as the product
of parallelism among output channels (pc,1), parallelism among input channels
(pc,2) and parallelism inside convolution kernels (pc,3). The maximum number of
input and output channels (Nmax) depends on the available FPGA resource and
DMA bandwidth of the platform. Both pc and Nmax are tuned to the targeted
device during the Design Space Exploration stage.

During run-time, the operation of the block is tuned by the ARM processor
through the following parameters

{Nin, Nout, fh, fw,K, S}

where fh and fw are the padded height and width of input feature maps, K is
the kernel size, and S is the kernel stride.

Accumulation Block: The block is designed to allow input channels folding
(Sect. 3.4), supporting the convolution block. The module accumulates outputs
of multiple sub-layers, and is parameterised during the compile time through the
parameters

{Nmax, fmax
w , pa}

336 Z. Yu and C.-S. Bouganis

Fig. 3. Parameterisation of the convolution block

which define the maximum number of input channels, the maximum width of
the input feature map, and the number of parallel compute units in the block
respectively. During run-time, the operation of the block can be customised
through the following parameters:

{Nin, fh, fw, Ebias, Eleaky}

Ebias controls whether the bias is added to the accumulated results. Eleaky is a
parameter that enables Leaky ReLU activation function.

Yolo Block: The block implements the functionality of the YOLO layer which
is mainly composed of sigmoid activation. The sigmoid function is implemented
as a fixed point division operation and an exponential module. The compile-time
parameters of the block are

{Nmax, fmax
w , py}

py defines the number of parallel compute units in the block. During run-time,
the block is parameterised by setting the following parameters:

{Nin, fh, fw}

In the proposed implementation, the maximum and average error of the sigmoid
implementation are 0.39% and 0.19% respectively.

A Parameterisable FPGA-Tailored Architecture for YOLOv3-Tiny 337

Max Pooling Block and Upsample Block: These two blocks are responsible
for the downsampling and upsampling operations respectively. Two blocks can
be parameterised at compile and run-time similar to the Yolo block.

3.3 Network Mapping to FPGA Hardware Accelerator

Given a configuration of the proposed FPGA architecture, the workload of
YOLOv3-tiny is mapped onto the accelerator. As computational hardware blocks
are time-multiplexed for the successful execution of the workload, certain trans-
formations of the network need to take place in order to schedule the execution
of the tasks on the accelerator.

Channels Folding: At synthesis time, the maximum number of channels Nmax

that can be processed by the proposed system is determined. When Nmax is
smaller than Nin or Nout, the computation of a layer has to be spilt into multiple
sub-layers. The computation of a convolution layer having Nin input channels
and Nout output channels can be expressed as:

gj =
Nin∑

i=1

fi ∗ wi,j + bj , with j ∈ [1, Nout] (1)

fi is the ith input channel, and gj is the jth output channel. wi,j and bj are
weights and biases of the convolution layer. When input channels are folded by
a factor of Fin = � Nin

Nmax �, (1) is turned into

gj =
Nmax∑

i=1

fi ∗wi,j +
2Nmax∑

i=Nmax+1

fi ∗wi,j + ...+
Nin∑

i=(Fin−1)Nmax+1

fi ∗wi,j + bj (2)

By folding the output channels, gj is divided into Fout sub-layers, with Fout =
� Nout

Nmax �, each containing up to Nmax output channels.

Kernel Size Padding: The size of the kernels varies across the layers of the
network. In this work, the maximum required kernel size (Kmax) is actually
implemented. The computation with smaller kernel sizes is performed by embed-
ding the kernel in the maximum supported kernel. Necessary padding is applied
during the process.

Layer Fusion Computation: As the work targets devices with limited
resources, the mapping of the network onto the proposed architecture is bro-
ken down into smaller tasks that are supported by the proposed architecture.
As such, a policy is needed to guide the segmentation of the computational load
in smaller chunks such as the system’s performance is optimised. The policy
that has been adopted in this work is to use the convolution layers as points
of boundaries for the division of the network workload into smaller chunks. As
such, network layers between two boundary points are bounded together as a
batch, which is referred as “layer batch” for the rest of this paper.

338 Z. Yu and C.-S. Bouganis

As such, the original network structure N is transformed into a series of
layer batches Ni, where for each layer batch i the run-time parameters of the
architecture are defined as follows:

Ni = {Fin, Fout, Nin, Nout, fh, fw,K, S,E},

where E provides information regarding the activation or not of a specific block
inside the accelerator in the current layer batch. During the inference stage, the
smallest scheduled task is a layer batch, where the data are streamed in and
out of the accelerator. Using the above approach, off-chip memory accesses are
omitted between layers inside the same batch.

3.4 System Processing Flow

During the inference stage, the ARM processor acts as a master and controls
the inference process. The computation of the network is broken down to smaller
components, the layer batches, which are scheduled by the processor and exe-
cuted sequentially. Figure 4 captures the processing flow for a single layer batch.

More specifically, the ARM processor firstly sets the parameters for each
individual block in the hardware accelerator and configures the DMA modules.
Then, it initiates the weight loading and input data transfers via DMA streaming
onto the Hardware Accelerator. The FPGA Acceleration block starts processing
the data and the output data are transferred back to off-chip DDR memory.
The necessary invalidation of the corresponding cache region is performed by
the processor, ensuring correct data transfer.

Fig. 4. System processing flow for a layer batch

4 Latency and Resource Estimations

Analytical models have been derived to provide resource and latency estimates of
the system under a specific configuration and load. Utilising the derived models, a
design space exploration phase is possible for the identification of Pareto-optimal
design point in the latency-resource space.

4.1 Hardware Latency Model

As the proposed architecture of the FPGA accelerator has a pipeline structure,
the initiation interval IIsys, i.e. the number of clock cycles before a new input
can be processed, is dictated by the slowest active block. The initiation interval

A Parameterisable FPGA-Tailored Architecture for YOLOv3-Tiny 339

for each individual block is denoted by IIb, where b={convolution, accumulation,
max pooling, upsample, yolo} and it is a function of:

IIb = max
(
pmax

pb
, rOtoI

b , OPb

)
(3)

where pmax
b is the maximum number of parallel compute units in theory and

pb is the actual number of units that finally implemented, rOtoI
b is the ratio of

output to input data transfer size, and OPb is the lower boundary of the number
of cycles required for operations inside the block.

For a given IIsys, the latency of the hardware accelerator for computing a
layer batch Thardware

batch is:

Thardware
batch = FoutFin(fhfw

⌈
Nin × WLbus

WLq

⌉
IIsys + Tcommunication

)
(4)

where WLbus denotes the width of the bus (DMA) in the platform, and WLq

denotes the wordlength of the input. Tcommunication captured the required time
for setting up the control parameters via AXI4-Lite and, in the case of a convo-
lution layer, for retrieving weights and biases.

4.2 Software Latency Model

The overall latency of the system depends also on the latency introduced by
the tasks executed on the ARM processor. The overall latency model has been
refined to account for the above overheads leading to:

Tbatch = Thardware
batch + T cpu

batch (5)

where T cpu
batch models the time spent by the CPU. The actual value of T cpu

batch

mainly depends on flushing and invalidation of the cache for DMA transfers.
T cpu
batch can be measured and estimated for each device by experiments.

The overall latency of the system, assuming N layer batches in total, is given
by:

Tsys =
∑

i=1:N

T i
batch (6)

where T i
batch denotes the latency for executing batch i.

4.3 Resource Estimation

DSP Utilisation: The proposed architecture utilises DSP cores for the com-
putations that are required in the convolution and sigmoid function evaluation.
The architecture unrolls fully the computations in the convolution filter result-
ing in the utilisation of K2 DSPs for every K × K kernel. Finally, K takes the
maximum kernel size Kmax

c . For the evaluation of the sigmoid function in the
Yolo layer, the fixed point exponential function provided by Xilinx is utilised,

340 Z. Yu and C.-S. Bouganis

requiring the utilisation of 2 DSPs. Given a targeted parallelism factor of pc and
py, for the convolution and Yolo layers respectively, the total number of utilised
DSP cores of the system under configuration P are:

DSPsys(P) = (Kmax
c)2pc,1pc,2 + 2py (7)

Memory Utilisation: On-chip memory is utilised mainly as convolution
weights buffer and input buffer. For the weights buffer, the storage size (in
words) is the product of the number of input channels (Nin), the number of
output channels (Nout), and the dimensions of kernels ((Kmax

c)2). As Nin and
Nout are capped at Nmax, the weights buffer needs to have a maximum capacity
of N2

max(Kmax
c)2 words.

The proposed architecture adopts input line buffers for sliding windows in
convolution and max pooling layers. For a layer with kernels of size K × K,
the line buffer has K lines. K should be Kmax

c and Kmax
p for convolution and

pooling respectively. (8) captures the overall number of the BRAMs required by
the architecture.

BRAMsys(P) =
⌈
N2

maxWLq

BRAMsize

⌉
(Kmax

c)2 +
⌈
Nmaxf

max
w WLq

BRAMsize

⌉
(Kmax

c + Kmax
p)

(8)
fmax
w denotes the maximum width of the input feature map, where BRAMsize

denotes the size of the BRAM in bits. The first term of (8) captures the mem-
ory requirements for storing the kernel weights, where the second term is the
necessary number of BRAMs for the input buffers.

5 Design Space Exploration

A key advantage of the proposed framework is that it can tailor the architec-
ture of the system to the resource availability of the targeted device. Moreover,
the proposed framework can be deployed to any FPGA device without having
hard constraints on the targeted resource availability such as the requirement of
having enough on-chip memory for storing the parameters of the whole network
on-chip.

The problem of mapping YOLOv3-tiny to an FPGA device targeting latency-
sensitive applications is cast as an optimisation problem as follows:

min
P

Tsys(P)

s.t. DSPsys(P) ≤ DSPavail

BRAMssys(P) ≤ BRAMsavail

(9)

where P is the compile-time known parameter vector of the system.
As such, given a set of resources, the proposed framework automatically

searched the parameter (i.e. configuration) space P with the help of analytical
models, in order to identify a design point that optimises the latency of the
system.

A Parameterisable FPGA-Tailored Architecture for YOLOv3-Tiny 341

6 Wordlength Optimisation

YOLOv3-tiny only reduces the structure of the network compared to Yolov3,
where the parameters of the network are left as floating point numbers. The
work investigates the robustness of the network when reduced precision network
parameters are utilised in order to achieve a reduction on the required resources
and off-chip memory accesses.

The quantisation process is guided through the Weight loss metric Wl(q),
that measures the impact of quantisation on the representation of the network
parameters using a quantisation process q (10).

Wl(q) =
∑

i,j

(wi,j − ŵi,j)2

w2
i,j

(10)

wi,j represents the original floating point weight, where ŵi,j represents
its quantised version under quantisation process q. Two quantisation schemes
that have been investigated are 8-bit and 16-bit wordlength, where half of the
wordlength is allocated for the fractional part. In both schemes, linear quanti-
sation is used. Table 1 shows the impact of each configuration to the Wl metric
across convolutional layers of the network. The results led to the adoption of
16-bits wordlength for the system. Tested on COCO val5k [5], the 16-bit ver-
sion achieves 30.9% mAP50, compared with 33.4% of the original floating point
network, indicating a small loss in detection precision.

Table 1. Weight loss of fixed point quantisation

Layer index 1 2 3 4 5 6 7 8 9 10 11 12 13

Wl @ 8 bit(%) 7.81 2.68 3.37 11.01 24.26 48.40 7.30 70.91 17.85 6.35 1.36 60.33 3.00

Wl @ 16 bit(%) 0.00 0.01 0.01 0.05 0.11 0.26 0.03 0.56 0.08 0.03 0.01 0.44 0.01

Fig. 5. Design space exploration between resources and latency, valid region is given
by resources constraints

342 Z. Yu and C.-S. Bouganis

7 Evaluation

A Zedboard development kit with Xilinx XC7Z020 SoC and 512 MB DDR3 is
used for the evaluation of the proposed framework. The clock frequency of pro-
grammable logic and processing system is 100 MHz and 666.7 MHz respectively.

Targeting the utilisation of the whole device, the Design Space Exploration
stage identifies a number of design points that meet the constraints imposed by
the available resources and predicts a latency figure for each point. The traversed
space is depicted in Fig. 5. The best performing design achieved a latency of
532 ms per inference (measured on the board) requiring 185 BRAMs, 160 DSPs,
25.9k LUTs and 46.7k FFs. The measured power consumption is 3.36 W.

7.1 Performance Model Evaluation

The accuracy of the performance and resource model was investigated by pro-
ducing design points under various resource constraints. The deviation on the
predicted resource utilisation and achieved latency was derived by deploying
the designs on the actual hardware platform. Figure 6 shows the accuracy of
the derived performance models as well as the impact of including the software
latency model.

Fig. 6. Latency model evaluation across various resource targets. “real” refers to the
measured performance on the board.

7.2 Comparison with CPU and GPU

Redmon et al. [14] deployed floating point YOLOv3-tiny on a Pascal Titan X
achieving a 220 fps, leading to a power efficiency of 2.03 GOPS/W [11]. The pro-
posed solution is 1.53 times more power efficient. Also, an ARM (ARM-Cortex
A9 at 667 MHz) based-only implementation of the system was developed and
compared against the proposed solution. The results showed that the proposed
system is 290 times faster.

A Parameterisable FPGA-Tailored Architecture for YOLOv3-Tiny 343

7.3 Comparison with Existing FPGA Implementations

Even though FPGA implementations of YOLOv3 have not been reported in the
literature, the system is positioned with work that targets the previous version
of YOLO, which is a less computationally demanding model (Table 2).

Table 2. Target networks comparison of the proposed design with previous works

[18] [12] [9] [10] This work

Target network FPGA
YOLO

Tincy
YOLO

Lightweight
YOLOv2

YOLOv2
tiny

YOLOv3
tiny

Data type – 1-8b 1-32b 1-6b 16b

Test platform Zynq7035 XCZU3EG ZCU102 Virtex-7
VC707

Zedboard

BRAM18k 787 – 1706 1026 185

DSP 409 – 377 168 160

LUT 47k – 135k 86k 25.9k

FF 40k – 370k 60k 46.7k

GOPS – 71.04 610.93 464.7 10.45

Latency (ms) 52 63 25 9.15 532

Power (W) 7.518 6 4.5 18.29 3.36

DSE �

8 Conclusion

In this paper, the first latency-driven, scalable, framework for mapping YOLOv3-
tiny to an FPGA device is presented. The key feature of the framework is the
lifting of any assumptions on on-chip memory capacity for storing the model
parameters and intermediate results, making possible the deployment of the
YOLOv3-tiny object detector with limited resources. Targeting a Zedboard, the
proposed system achieves a frame rate of 1.88 fps and the throughput of 10.45
GOPS. Tested on COCO val5k, a reduction in mAP of 2.5 pp (30.9% vs 33.4%)
is achieved under 16bit fixed point implementation without any retraining step.
The presented work opens the way for low-latency object detection on low-end
FPGA devices. The source code of the framework is available in github1.

References

1. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.
pascal-network.org/challenges/VOC/voc2007/workshop/index.html

1 https://github.com/Yu-Zhewen/Tiny YOLO v3 ZYNQ

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
https://github.com/Yu-Zhewen/Tiny_YOLO_v3_ZYNQ

344 Z. Yu and C.-S. Bouganis

2. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.
pascal-network.org/challenges/VOC/voc2012/workshop/index.html

3. Girshick, R.: Fast R-CNN. In: The IEEE International Conference on Computer
Vision (ICCV), pp. 1440–1448, December 2015

4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pp. 580–587, June 2014

5. Lin, T., et al.: Microsoft COCO: common objects in context. CoRR abs/1405.0312
(2014). http://arxiv.org/abs/1405.0312

6. Liu, B., Xu, X.: FCLNN: a flexible framework for fast CNN prototyping on FPGA
with OpenCL and Caffe. In: 2018 International Conference on Field-Programmable
Technology (FPT), pp. 238–241, December 2018

7. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

8. LogicTronix: Yolov3 tiny tutorial: Darknet to caffe to xilinx dnndk (2019). https://
logictronix.com/wp-content/uploads/2019/08/Yolov3-Tiny-Tutorial-Darknet-to-
Caffe-Conversion-and-Implementation-on-Xilinx-DNNDK August12 2019.pdf

9. Nakahara, H., Yonekawa, H., Fujii, T., Sato, S.: A lightweight YOLOv2: a binarized
CNN with a parallel support vector regression for an FPGA. In: 2018 ACM/SIGDA
International Symposium, pp. 31–40, February 2018

10. Nguyen, D.T., Nguyen, T.N., Kim, H.: A high-throughput and power-efficient
FPGA implementation of YOLO CNN for object detection. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 27(8), 1861–1873 (2019)

11. Nvidia: Geforce gtx titan x user guide (2014). https://www.nvidia.com/content/
geforce-gtx/GTX TITAN X User Guide.pdf

12. Preußer, T.B., Gambardella, G., Fraser, N., Blott, M.: Inference of quantized neural
networks on heterogeneous all-programmable devices. In: 2018 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 833–838, March 2018

13. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 779–788, June 2016

14. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement, April 2018.
https://pjreddie.com/media/files/papers/YOLOv3.pdf

15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39, 1137–1149 (2015)

16. Venieris, S.I., Kouris, A., Bouganis, C.S.: Toolflows for mapping convolu-
tional neural networks on FPGAs: a survey and future directions. ACM
Comput. Surv. 51(3), 56:1–56:39 (2018). https://doi.org/10.1145/3186332.
http://doi.acm.org/10.1145/3186332

17. Wai, Y.J., bin Mohd Yussof, Z., bin Salim, S.I., Chuan, L.K.: Fixed point imple-
mentation of Tiny-Yolo-v2 using OpenCL on FPGA. Int. J. Adv. Comput. Sci.
Appl. 9(10), 506–512 (2018)

18. Wei, G., Hou, Y., Cui, Q., Deng, G., Tao, X., Yao, Y.: YOLO accelration using
FPGA architecture. In: 2018 IEEE/CIC International Conference on Communica-
tions in China (ICCC), pp. 734–735, August 2018

19. Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: a
review. IEEE Trans. Neural Netw. Learn. Syst. 30, 3212–3232 (2019)

http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://arxiv.org/abs/1405.0312
https://doi.org/10.1007/978-3-319-46448-0_2
https://logictronix.com/wp-content/uploads/2019/08/Yolov3-Tiny-Tutorial-Darknet-to-Caffe-Conversion-and-Implementation-on-Xilinx-DNNDK_August12_2019.pdf
https://logictronix.com/wp-content/uploads/2019/08/Yolov3-Tiny-Tutorial-Darknet-to-Caffe-Conversion-and-Implementation-on-Xilinx-DNNDK_August12_2019.pdf
https://logictronix.com/wp-content/uploads/2019/08/Yolov3-Tiny-Tutorial-Darknet-to-Caffe-Conversion-and-Implementation-on-Xilinx-DNNDK_August12_2019.pdf
https://www.nvidia.com/content/geforce-gtx/GTX_TITAN_X_User_Guide.pdf
https://www.nvidia.com/content/geforce-gtx/GTX_TITAN_X_User_Guide.pdf
https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://doi.org/10.1145/3186332
http://doi.acm.org/10.1145/3186332

Hardware/Algorithm Co-optimization
for Fully-Parallelized Compact Decision

Tree Ensembles on FPGAs

Taiga Ikeda1(B), Kento Sakurada1, Atsuyoshi Nakamura1, Masato Motomura2,
and Shinya Takamaeda-Yamazaki3

1 Hokkaido University, Sapporo, Japan
{ikeda.taiga.zm,k sakurada,atsu}@ist.hokudai.ac.jp

2 Tokyo Institute of Technology, Yokohama, Japan
motomura@artic.iir.titech.ac.jp

3 The University of Tokyo, Bunkyo, Japan
shinya@is.s.u-tokyo.ac.jp

Abstract. Decision tree ensembles, such as random forests, are well-
known classification and regression methods with high accuracy and
robustness, especially for categorical data that combines multiple weak
learners called decision trees. We propose an architecture/algorithm
co-design method for implementing fully parallelized fast decision tree
ensembles on FPGAs. The method first produces compact and almost
equivalent representations of original input decision trees by threshold
compaction. For each input feature, comparisons with similar thresh-
olds are merged into fewer variations, so the number of comparisons is
reduced. The decision tree with merged thresholds is perfectly extracted
as hard-wired logic for the highest throughput. In this study, we devel-
oped a prototype hardware synthesis compiler that generates a Verilog
hardware description language (HDL) description from a compressed rep-
resentation. The experiment successfully demonstrates that the proposed
method reduces the sizes of generated hardware without accuracy degra-
dation.

Keywords: Random forest · FPGA · Compression

1 Introduction

Various machine learning methods based on decision trees (DTs) have been
proposed, and they achieve high interpretability and discrimination ability. A
DT ensemble, such as random forest (RF), is a well-known classification and
regression method with high accuracy and robustness that combines many weak
learners of DTs. A computation flow of RF repeatedly compares input data with
the threshold predetermined by learning and deciding on an inference result.
Thus, RF requires many comparisons between input data and thresholds. In
point of hardware implementation, such comparisons require comparator cir-
cuits. Therefore, reducing the number of comparators can improve computing
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 345–357, 2020.
https://doi.org/10.1007/978-3-030-44534-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_26

346 T. Ikeda et al.

Fig. 1. Decision tree algorithm

performance and hardware resource efficiency. In this study, we propose an archi-
tecture/algorithm co-design method for implementing DT ensembles on FPGAs.
To achieve high throughput on FPGAs, we focus on the fully parallelized archi-
tecture that extracts all DTs in RF. However, such a fully parallelized approach
usually requires intense hardware resources, because every DT is realized as an
actual circuit. This restricts the number and the size of implementable DTs.
To overcome this problem, we employ the threshold compaction method that
merges similar threshold values of branching nodes in DTs into fewer variations.
Therefore, the number of comparison operations is reduced, and the hardware
resources of comparator circuits can be reduced. We developed a prototype hard-
ware synthesis compiler that generates a fully parallelized accelerator design in
Verilog hardware description language (HDL) from pre-learned DT ensembles.
A generated accelerator executes the inference process of trees in a parallel man-
ner. This study mainly focuses on the evaluation of the compaction method in
relation to the hardware resources. Based on the prototype compiler, we eval-
uate the impact of the threshold compaction method by using standard CAD
tools for FPGAs. We then discuss an improved approach to reduce the hardware
resources based on the evaluation results.

2 Random Forest

2.1 Decision Tree and Tree Ensemble

In recent years, deep learning has attracted attention in various applications.
It is an algorithm that uses large amounts of data for learning and creates
a complex model with enormous parameters. Such high-performance machine
learning utilizes the term strong learner. On the other hand, RF is one of the
ensemble learning algorithms [3]. Ensemble learning is an algorithm that creates
many weak learners and unifies their prediction results. The learning of weak
learners can be computed at less cost than strong learners, so learning time and
learning data is less. Since individual week learners have low performance, a
predictor with high accuracy can be obtained by combining weak learners.

Optimization for Fully-Parallelized Compact Decision Tree Ensembles 347

Fig. 2. Bagging

Fig. 3. (a) Learning process of RF, (b) Inference process of RF

RF uses a DT as a weak learner and performs classification and regression by
voting or averaging the outputs. Popular learning algorithms of DT are CART
and C5.0. It divides the data by the mechanism shown in Fig. 1. A DT has
branching nodes where input data is divided and leaf nodes where a specific
label is indicated. In inference calculation, data is sorted by branching conditions
until reaching the leaf node. The learning process of a DT generally creates a
condition at each branching node by sorting each feature value in input data and
finding the appropriate feature and threshold to divide the input data with a low
impurity. The term impurity denotes a criterion of label variation in the data and
generally is employed Gini impurity or entropy. These divisions are repeated and
a tree structure is produced. If the depth of the tree is increased, the learning data
will overfit, so it is necessary to adjust the tree’s size. The decision forest creates
a combination of small DTs to avoid overfitting. An individual DT predicts with
low accuracy, but a merged forest has high prediction accuracy.

In addition, the random sampling of the learning data of each DT is per-
formed by a method called bagging in RF [2]. Bagging is a learning method that
employs bootstrap sampling, and this sampling allows for obtaining different
datasets from the same input data as shown Fig. 2. This method provides each
DT with versatility and further improves accuracy. Figure 3 shows the learning
and inference process of RF when bagging is performed tree times. In the leaning
process, bagging is employed for the number of trees and creates DTs of vari-
ous sizes. In inference, the output is determined by a majority vote of each tree

348 T. Ikeda et al.

Fig. 4. (a) Tree serial architecture, (b) Tree parallel architecture

created by various samples. However, as the number of trees increases, the calcu-
lation time increases. Therefore, this study provides a hardware implementation
method for accelerating the inference calculation.

2.2 Hardware Implementation of Random Forest

Various methods of implementing a RF have already been proposed. The learning
process is accelerated by the implementation methods in [4,5]. On the other
hand, the inference process is accelerated in [12,13], and we paid attention to
this study. There are two main implementation approaches. First, Fig. 4(a) shows
an architecture that uses one DT unit repeatedly and reuses by the number of
trees and aggregate. This method handles various sizes of decision forests with
small resources. However, Fig. 4(b) shows an architecture that arranges multiple
trees and computes each tree in parallel. The computation effort is reduced due
to a decrease in the number of reused DT units, although it consumes more
resources.

Similarly, in the DT unit, there is a method of reusing one node unit and
unrolling the entire DT on a circuit. In [8], several DTs are implemented by a
combinational circuit composed of comparators and multiplexers, and pipeline
processing is performed to increase operational speed. However, this method
requires intense memory resources because a register is inserted between trees.

In this study, we adopt a method of unrolling the entire decision forest and
unrolling each node of the DT by a combinational circuit. We propose the archi-
tecture that full nodes are unrolled in Fig. 5. One branch node is composed of
a comparator and a multiplexer. A comparator outputs 0 or 1 by comparing

Optimization for Fully-Parallelized Compact Decision Tree Ensembles 349

Fig. 5. Fully parallelized decision forest architecture

the input data of a specific dimension with threshold decided by learning. A
multiplexer selects one of two inputs by the output of the comparator. Thus, it
performs DT inference calculation and obtains a majority vote in the integrated
unit.

In this method, since labels are maintained with one-hot signals in the flip-
flops, values must be stored in the memory and each calculation does not require
memory access. The ultra-high-speed RF hardware is realized as registers with
intermediate value are unnecessary. Conversely, the circuit becomes larger when
the size of the RF is larger. Therefore, it is not a realistic assumption to consider
actual circuit resources. The advantages of this method are related to sharing
the outputs of several comparators. The condition for sharing is the comparison
with the same dimension and threshold. Further, if two nodes connect to the
same comparator and branch to the same labels, a multiplexer can be shared.
This way, the circuit size can be reduced by creating compressed trees with the
same function. Therefore, by compressing the DT using the method described
in the next section, we aim to store a large RF that otherwise would not suffice
in the supply circuit resource.

2.3 Algorithm for Reducing Branching Conditions

This section introduces the DT compression algorithm used in this study. Gener-
ally, DT compression is obtained by adjusting the learning parameters or reform-
ing the tree structure. The learning parameters are depth, maximum leaf number,
minimum number of samples in a node, and so on. To reform the tree structure,
pruning is popular and various methods are proposed [10,14]. However, these
methods can reduce prediction accuracy. Therefore, caution is considered to use
these compression methods (Fig. 6).

350 T. Ikeda et al.

Fig. 6. Algorithm for reducing branching conditions

The algorithm shown in [11] obtains the compressed DTs without loss of
accuracy. This algorithm reduces the number of distinct thresholds that are the
branching conditions of the nodes. The calculation method is:

1. At each branching node with condition xi >= θi, find the ranges [li, ui) of θi
where the branch path of any learning data does not change.

2. Sort the lower limit values of the ranges in the ascending order
3. Group the thresholds in the order based on the condition that the minimum

value of the upper limits in the current group is smaller than the lower limit
in the next range

4. Replace the original thresholds for the average value Sj between the maximum
value of the lower limits and the minimum value of the upper limits

This method unifies several thresholds into one value and reduces the num-
ber of distinct thresholds. In [11], a mathematical proof is provided to ensure
the method minimizes the number of distinct thresholds. The threshold range
can be obtained from the learning data sampled by bagging during RF learn-
ing. In the normal learning process, thresholds are chosen based on the center
of the boundary feature values of the divided datasets minimizing impurity or
entropy. However, when the DT is used only for classifying the learning data, no
threshold between the boundary feature values of the divided datasets changes
the output of the DT. Therefore, if the thresholds change another value in the
range, prediction accuracy is not lost.

Optimization for Fully-Parallelized Compact Decision Tree Ensembles 351

Table 1. Datasets

Dataset #instances #features #classes

Iris [7] 150 4 3

Breast [7] cancer 569 30 2

Blood [15] 748 4 2

Robot [7] 5456 24 4

Parkinson [9] 195 22 2

Wine quality white [6] 4898 11 11

Epileptic [1] 11500 28 2

Table 2. Accuracy and #thresholds when branching conditions are reduced

Dataset Prediction accuracy [%] #distinct thresholds

Original Reduced branching
conditions

Original Reduced branching
conditions

Iris [7] 96.67 97.00 104.5 43.4

Breast cancer [7] 97.02 97.02 1442.3 603.7

Blood [15] 77.07 77.00 153.6 79.8

Robot [7] 99.40 99.40 9510.0 3010.0

Parkinson [9] 93.08 92.56 1042.5 405.5

Wine quality white [6] 68.22 68.26 7188.0 1356.0

Epileptic [1] 69.62 69.46 75542.8 23505.4

Subsequently, we examine the effect of the algorithm on prediction accuracy
and the number of distinct thresholds. For this, we use seven datasets shown in
Table 1 from the standard University of California Irvine (UCI) Machine Learn-
ing Repository database [7] and others [1,6,9,15]. Table 2 indicates the changes
in the number of branching conditions and the prediction accuracy when this
algorithm is employed. We use the RF classifier from the Scikit-learn library and
set the number of trees to 100. The value in the table is the average of the values
obtained after 10 simulations.

Initially, we did not tune the parameters of the RF classifier with the Scikit-
learn library, so the original accuracy is not high. Although, parameter tuning is
important to avoid overfitting, in the designed model it was not performed as it
was not necessary to achieve the objectives of this study. In this algorithm, since
the threshold value is adjusted without changing the branch path of the learning
data, the accuracy is not lowered. However, the threshold variation is reduced
to 20%–50%. The reduction rate depends on the complexity of the dataset and
the number of features. Therefore, we investigate the benefits of this method in
hardware implementation from the next section.

352 T. Ikeda et al.

3 Exploration of Hardware-Aware Optimizations

In this section, we simulate the quantization of input data and thresholds for
hardware implementation. Then we employ the reducing branch conditions algo-
rithm from the previous section.

Fig. 7. Accuracies for varied quantization bits

3.1 Quantize Bit Precision

In software simulation, the RF calculation is performed with a 64-bit floating-
point. When implementing hardware, the circuit size is large, so quantization is
necessary. Appropriate quantization must be performed for each data set since
the accuracy decreases due to quantization.

Figure 7 indicates the accuracy when the bit-precision is changed for several
tasks. By changing the precision of an integer, the vertical axis represents the
ratio when the accuracy at the 64-bit floating-point is 100%. This shows that
the accuracy increases as the bit precision is increased although there is low
fluctuation. In the case of the iris, the precision is 97.8% with 4-bit, and the
accuracy of almost 64-bit values can be reproduced. This is because the iris is
a simple classification task. Nevertheless, the number of bits required increases
for datasets that are difficult to classify.

In Fig. 7, the accuracy for each bit number is shown in seven datasets.
Although the accuracy transition varies in each the data set, the accuracy
decreases as the bit number are reduced. Therefore, quantization is effective
in reducing the circuit size although the accuracy is decreased.

Optimization for Fully-Parallelized Compact Decision Tree Ensembles 353

3.2 Reducing Branch Conditions

We examine the decrease in accuracy when the number of thresholds is reduced
using the algorithm of Sect. 2.3. Figure 8 shows the transition from the accuracy
shown in Fig. 7 when the algorithm is employed. It indicates almost no decrease
in accuracy, and there are examples where the accuracy has increased. However,
the accuracy decreased as the number of bits increased, and a significant decrease
in accuracy was observed in some datasets. This considered that quantization
causes a misclassification by shifting a threshold appropriately determined by
the threshold reduction algorithm.

Fig. 8. Accuracies for varied quantization bits with branching condition reductions

Table 3. Estimate of logic utilization (#Adaptive Logic Modules)

[Bit] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iris 175 248 345 437 475 453 489 562 550 579 479 505 599 509 669 631

Cancer 603 773 610 786 781 775 775 870 967 900 1114 1085 1302 1320 1588 1460

Blood 97 138 141 206 363 373 424 484 637 800 1167 1661 1969 2557 2330 2238

Robot 2132 2728 3709 4379 4712 5857 6484 7794 8434 9985 10465 12127 12966 15364 14961 15174

Parkin 454 506 488 570 531 566 660 684 687 734 910 844 900 1061 1107 1205

Further, the quantization method can be considered as another cause for
accuracy decrease. The threshold value distribution is not considered because of
quantization at equal intervals between the maximum and the minimum values of

354 T. Ikeda et al.

the thresholds. Therefore, it seems that the accuracy is improved by performing
quantization according to the threshold distribution of each dimension.

4 Experiments

We implement a random forest classifier trained with Scikit-learn library in hard-
ware using a combinational circuit and evaluate its performance. We create a
prototype compiler that converts the results from Scikit-learn into a hardware
description language and evaluated it with Quartus Prime ver.15.1. This com-
piler automatically generates the Verilog HDL-style code based on the method
proposed in Sect. 2.2.

Table 4. #Comparators after reduced branching conditions

[Bit] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a)#comparators before reduced branching conditions

(b)#comparators after reduced branching conditions

(b) divided by (a) [%]

Iris 7 11 15 22 42 60 79 100 94 90 82 75 91 87 104 83

7 11 13 21 31 40 41 50 47 43 42 41 44 46 48 42

100 100 86.67 95.45 73.81 66.67 51.90 50 50 47.78 51.22 54.67 48.35 52.87 46.15 50.60

Cancer 31 34 38 49 60 78 119 166 222 219 337 404 498 583 680 625

31 34 38 49 59 70 88 109 150 154 202 230 267 293 346 343

100 100 100 100 98.33 89.74 73.95 65.66 67.57 70.32 59.94 56.93 53.61 50.26 50.88 54.88

Blood 4 6 10 18 28 39 55 58 63 71 70 77 10 5136 155 148

3 6 10 16 27 29 34 33 35 40 42 52 68 83 80 77

75 100 100 88.89 96.43 74.36 61.82 56.90 55.56 56.34 60 67.53 64.76 61.03 51.61 52.03

Robot 30 76 164 330 604 1069 1775 2897 417 35671 6894 8364 8615 9780 8989 8706

30 76 157 275 436 717 1122 1724 2180 2584 280 63042 2971 3180 2995 2890

100 100 95.73 83.33 72.19 67.07 63.21 59.51 52.24 45.57 40.70 36.37 34.49 32.52 33.32 33.20

Parkinson 22 26 29 36 46 76 91 130 156 183 223 243 27 9349 420 450

22 26 28 34 43 53 67 78 76 83 100 107 131 164 194 202

100 100 96.55 94.44 93.48 69.74 73.63 60 48.72 45.36 44.84 44.03 46.95 46.99 46.19 44.89

First, Table 3 shows the transition of the circuit size when quantizing bit pre-
cision as in the previous section. In this study, we estimate the circuit size based
on the number of Adaptive Logic Modules (ALMs) by analysis and synthesis.
ALM is a logic unit on some FPGAs made by Intel Corporation and mainly
composed an adaptive lookup table and some registers. This table shows that
the lower the number of bits, the smaller is the circuit size. For example, accord-
ing to Fig. 2, the iris classifier has comparable accuracy of 16-bit precision with
4-bit precision. Conversely, the circuit with 4-bit is 69%, the size of one with
16-bit precision. Thus, quantization has the effect of reducing the circuit size,
although we must adjust the bit precision for the required accuracy.

We investigated the effect of the algorithm of Sect. 2.3 in each quantized bit.
Table 4 shows the change in the number of comparators after the branching con-
ditions are reduced. From the results, the number of comparators was reduced in

Optimization for Fully-Parallelized Compact Decision Tree Ensembles 355

all conditions. This indicates that the sharing ratio of the output of the compara-
tor increased. This is because comparison operations at the same value increase
by reducing the branching conditions. However, the reduction rate is lower than
the software simulation. The result indicates that quantization reduces some
distinct thresholds. In comparison with the comparator reduction by quantiza-
tion, the reduction by the proposed algorithm is lower, although the prediction
accuracy reduction is unnoticeable.

Fig. 9. Hardware performance when reduced branching conditions

Figure 9 shows the changes in the overall circuit size. It can be confirmed
that the circuit size is reduced by reducing the number of comparators. How-
ever, the reduction rate is low with low bit precision because the quantization
reduces the number of distinct thresholds without using the algorithm. Namely,
in the proposed method, the circuit size can be reduced especially with high bit
precision.

From these experiments, we understand what conditions CAD tools optimize
the circuit. The conditions are:

1. If there are comparison operations with the same threshold and dimension,
unifying comparators and output of a comparator are shared.

2. The multiplexers prepared just the required number of bits.
3. If both children nodes of the branching nodes are leaf nodes, using the output

of comparators as indicating the labels after branching and multiplexers are
deleted.

To reduce the circuit size further, optimization by considering these condi-
tions is necessary. The first condition was the focus of this study and succeeded in

356 T. Ikeda et al.

reducing the number of comparators. Subsequently, the multiplexer of a certain
branching node employs enough bit precision to deal with the number of distinct
labels of leaf nodes in the deeper layer than the branching node since labels are
one-hot signals. Therefore, if two distinct labels in a deeper layer than a branch-
ing node, the branching node is implemented as a 2-bit multiplexer. Ultimately,
when there is only one type of label, the multiplexer is deleted because branching
is not necessary. Finally, if the branching result of a certain node is both leaf
nodes, it is clear which labels will be selected at the node. Then, the multiplexer
is reduced by connecting the output of the comparator, or its inverted signal, to
appropriate the bit of multiplexer in the upper layer.

We must explore other optimization to meet these conditions. In addition to
sharing comparators output by the proposed method, many circuits are shared
by creating the sub-trees that have the same branching nodes and leaf nodes.
If the same sub-trees exist in RF, CAD tools recognize the equivalent circuits.
Therefore, circuit size can be further reduced by sharing sub-tree circuits includ-
ing multiplexers and comparators. However, it is difficult to decide which sub-
trees are most efficient to shared. Then, we will compress an RF by optimization
with a restriction like a hardware size.

Subsequently, we proposed the fully-parallelized architecture composed of
comparators and multiplexers in this study, and other architectures may
reduce the circuit size further. In fully-parallelized architecture, there are two
main methods of implementation. One of the methods is circuits based on
multiplexers—label exploration of direction to be shallow depth from leaves.
The other is label exploration of direction to be deep from roots and propa-
gate a flag to one leaf. Thus, we will experiment with various architectures and
explore the circuits optimized for hardware.

5 Conclusion

The purpose of this study is to reduce the inference calculation time of ran-
dom forest (RF). We used an algorithm to reduce the branching conditions to
implement the hardware of RF. The algorithm reduces the threshold variation
without reducing accuracy. Accordingly, the results of analysis and synthesis
indicate that the number of comparators was reduced to 30%–50%. We tested
various quantization bit precisions, and results indicate that the circuit size was
reduced with high bit precision. For example, a circuit size of the implementa-
tion with 16-bit precision was reduced to 80%–90%. Therefore, we demonstrated
that by using the proposed algorithm, a small circuit can be achieved without
reducing accuracy.

Furthermore, to reduce the circuit size further, other perspectives are neces-
sary. From the perspective of hardware implementation methods and software
simulation algorithms, we must try to increase equivalent circuits that would
produce s small circuit size of RF with no accuracy degradation.

Optimization for Fully-Parallelized Compact Decision Tree Ensembles 357

References

1. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indi-
cations of nonlinear deterministic and finite-dimensional structures in time series of
brain electrical activity: dependence on recording region and brain state. Phys. Rev.
E 64, 061907 (2001). https://link.aps.org/doi/10.1103/PhysRevE.64.061907

2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.
org/10.1007/BF00058655

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

4. Cheng, C., Bouganis, C.: Accelerating random forest training process using FPGA.
In: 2013 23rd International Conference on Field Programmable Logic and Appli-
cations, pp. 1–7, September 2013

5. Cheng, C., Bouganis, C.: Memory optimisation for hardware induction of axis-
parallel decision tree. In: 2014 International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig 2014), pp. 1–5, December 2014

6. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine prefer-
ences by data mining from physicochemical properties. Decis. Support Syst. 47(4),
547–553 (2009). https://doi.org/10.1016/j.dss.2009.05.016

7. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

8. Jinguji, A., Sato, S., Nakahara, H.: An FPGA realization of a random forest with
k-means clustering using a high-level synthesis design. IEICE Trans. Inf. Syst.
E101.D(2), 354–362 (2018)

9. Little, M.A., McSharry, P.E., Roberts, S.J., Costello, D.A., Moroz, I.M.: Exploit-
ing nonlinear recurrence and fractal scaling properties for voice disorder detection.
BioMed. Eng. OnLine 6(1) (2007). https://doi.org/10.1186/1475-925X-6-23. Arti-
cle no. 23

10. Mansour, Y.: Pessimistic decision tree pruning based on tree size. In: ICML 1997
(1997)

11. Nakamura, A., Sakurada, K.: An algorithm for reducing the number of distinct
branching conditions in a decision forest. In: European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECMLPKDD) (2019)

12. Struharik, R.: Decision tree ensemble hardware accelerators for embedded appli-
cations. In: 2015 IEEE 13th International Symposium on Intelligent Systems and
Informatics (SISY), pp. 101–106, September 2015

13. Struharik, R.: Implementing decision trees in hardware, September 2011
14. Kulkarni, V.Y., Sinha, P.K.: Pruning of random forest classifiers: a survey and

future directions. In: 2012 International Conference on Data Science and Engi-
neering (ICDSE) (2012)

15. Yeh, I.C., Yang, K.J., Ting, T.M.: Knowledge discovery on RFM model using
Bernoulli sequence. Expert Syst. Appl. 36(3), 5866–5871 (2009). https://doi.org/
10.1016/j.eswa.2008.07.018

https://link.aps.org/doi/10.1103/PhysRevE.64.061907
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.dss.2009.05.016
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1186/1475-925X-6-23
https://doi.org/10.1016/j.eswa.2008.07.018
https://doi.org/10.1016/j.eswa.2008.07.018

Applications

StocNoC: Accelerating Stochastic Models
Through Reconfigurable Network

on Chip Architectures

Arshyn Zhanbolatov, Kizheppatt Vipin(B) , Aresh Dadlani ,
and Dmitriy Fedorov

Department of Electrical and Computer Engineering, Nazarbayev University,
Nur-Sultan 010000, Kazakhstan

{arshyn.zhanbolatov,vipin.kizheppatt}@nu.edu.kz

Abstract. Spreading dynamics of many real-world processes lean heav-
ily on the topological characteristics of the underlying contact net-
work. With the rapid temporal and spatial evolution of complex inter-
connected networks, microscopic modeling and stochastic simulation of
individual-based interactions have become challenging in both, time and
state space. Driven by the surge to reduce the time complexity associ-
ated with system behavior analysis over different network structures, we
propose a network-on-chip (NoC) based FPGA solution called StocNoC.
The proof of concept is supported by the design, implementation and
evaluation of the classical heterogeneous susceptible-infected-susceptible
(SIS) epidemic model on a scalable NoC. The steady-state results from
the proposed implementation for the fractions of susceptible and infected
nodes are shown to be comparable to those acquired from software simu-
lations, but in a significantly shorter time period. Analogous to network
information diffusion, implementation of the SIS model and its variants
will be beneficial to foresee possible epidemic outbreaks earlier in time
and expedite control decisions.

1 Introduction

Epidemic modeling is an effective mathematical tool widely adopted in many
domains to quantify the spreading dynamics of processes intertwined with large-
scale networks [21]. It serves as a viable framework for analyzing information
diffusion in social networks [8], cascading failure in power grids [14], secure rout-
ing in communication networks [7], and digital virus spreading in wireless mobile
networks [23]. Dynamical models at the network scale can be broadly classified
into two types: deterministic and stochastic. In deterministic models, the net-
work is divided into smaller groups, each representing a specific stage of the
epidemic. Such models, often formulated as differential equations (in continuous
time) or difference equations (in discrete time), abstract what happens on the
average at the network level. In contrast, a stochastic model is formulated as a
stochastic process which in turn, is a set of random variables, X(t;�) ≡ X(t),
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 361–375, 2020.
https://doi.org/10.1007/978-3-030-44534-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_27&domain=pdf
http://orcid.org/0000-0002-1013-7727
http://orcid.org/0000-0001-6841-9682
https://doi.org/10.1007/978-3-030-44534-8_27

362 A. Zhanbolatov et al.

Fig. 1. Schematic of the SIS model where Ai denotes the direct neighbors of node i in
the network adjacency matrix A.

defined as {X(t;�)|t ∈ T and � ∈ Ω} where T and Ω represent time and a
sample space, respectively. The solution of a stochastic model is a probability
distribution for each of the random variables. Such models allow follow-up of
each node in the network randomly [4,5].

Evolution of natural and man-made networks in both scale and complex-
ity has triggered interdisciplinary research on characterizing the dynamics of
stochastic processes spreading over them. Similar to the spreading of pathogens
in biological systems, the virulence of spreading processes depends not only on
the infection rate of each node, but also on the connectivity of the underly-
ing network structure [20]. Increase in computational power over recent years
has revealed the existence of heterogeneous and multi-faceted relations in the
description of various diffusion processes [16]. The time taken to project the
spreading pattern is important in devising effective countermeasures to prevent
any potential outbreaks.

We propose a network-on-chip (NoC) model supported on a reconfigurable
platform called StocNoC to accelerate the epidemic projection of the spreading
model. Due to its inherent parallelism, hardware implementation may signifi-
cantly outperform pure software implementation especially due to the concurrent
friendly nature of the model. The model is easily scalable to support larger net-
work sizes, only limited by the resource availability of the target FPGA devices.
Recent introduction of FPGA-accelerators in the cloud environment is especially
encouraging in this regard, where users can choose the target device and scale it
based on their computing requirements [17]. Since the cloud-model charges users
based on the target platform type and their running time, accelerated computa-
tion can significantly reduce the cost of computation. With minor modifications,
the proposed platform can be used for hardware acceleration of other epidemic
spreading models as well as spreading dynamics in contact networks in general.

The remainder of this paper is organized as follows. Section 2 discusses the
background of epidemic models and related works. Section 3 presents the detailed
architecture of the proposed hardware platform. Section 4 discusses the hard-
ware implementation results and the comparison with corresponding software
implementation and Sect. 5 finally concludes the paper and gives future research
directions.

StocNoC: Accelerating Stochastic Models Through Reconfigurable Network 363

2 Background and Related Works

Epidemic models are used to predict the progression of infectious diseases in a
given population and the likely outcome of an epidemic. The classical susceptible-
infected-susceptible (SIS) model depicted in Fig. 1 serves as the basis for many
extended models, wherein Si(t) and Ii(t) denote the probability of node i being
in the susceptible (S) or the infected (I) state, respectively, in a network of
size N [21]. Nodes that recover from the infection immediately transition to
being susceptible again. The discrete-time node-level SIS epidemic model has
the following form:

Si(t) = βSi(t − 1)
N∑

j=1

ai,jpj(t) − γpi(t), (1)

satisfying the condition Si(t) + Ii(t) = 1 for all t values. Here, β denotes the
rate at which node i gets infected, γ is the recovery rate, pi is the probability
of i being infected at time t, and aij is any element in the adjacency matrix A
corresponding to the network defined as:

A ={aij}=

{
1, if nodes i and j are connected neighbors
0, otherwise.

(2)

Advancements in network science led to the revival of several unique recur-
ring patterns inherent in networks which essentially drive the spreading pattern
of processes. The Erdös-Rényi (ER) model was the first to be used for generat-
ing typical random networks [10]. An ER network of N nodes, wherein a link is
included independent of other links with probability p, has a mean link count of(
N
2

)
p, mean degree of (N −1)p, and binomial degree distribution. Such networks

manifest low degree heterogeneity (most nodes have the same degree), low clus-
tering coefficient (probability that two neighbors of a node are also neighbors),
and short average path length. While ER networks are highly robust against
deliberate attacks, they lack the large degree of transitivity witnessed in reality.
To overcome this shortcoming, the Watts-Strogatz (WS) model was proposed to
generate random graphs with small-world properties by rewiring the links of a
lattice with some given probability [2]. This model is built on the interpolation
between a standard ER random graph and a network with maximal cluster-
ing. The Barabási-Albert (BA) model was then developed to generate random
scale-free networks with high degree heterogeneity. Based on the concept of pref-
erential attachment or “the rich gets richer”, the network initially begins with
at least two nodes where a newly added node is most likely to connect to nodes
with higher degrees. This results in the formation of a few highly-connected
nodes in the network. The resulting network degree distribution has no charac-
teristic scale as they have power law tail. Unlike ER networks that exhibit an
average distance of log(n), scale-free BA networks are ultra small-world networks
with a sub-logarithmic small diameter proportional to log(log(n)) and thus, are
particularly robust against random node failures.

364 A. Zhanbolatov et al.

Fig. 2. Proposed NoC-based platform with mesh topology showing switch interconnec-
tions and network interfaces.

Except for a few, most of the existing simulation tools support determinis-
tic modeling of simplified processes. EpiModel [12] is an R package to analyze
stochastic individual and network-level epidemic models. A stochastic simulator
for generalized epidemic modeling known as GEMFsim [18] has been reported
and made available in MATLAB, R, Python, and C programming platforms.
These simulators however, demand longer running time as the scale and com-
plexity of the network increases.

In this work, we propose to emulate the SIS process on an NoC platform.
NoC is an interconnect approach that helps different subsystems in a system
to communicate with each other in a scalable manner [9]. In this approach,
each processing element (PE) is connected to a switch and multiple switches are
interconnected to form a network. They follow packet switched communication
paradigm which makes them highly scalable. In the past, NoCs have been suc-
cessfully used in many applications including image and signal processing [13],
neural networks [11], multi-processor systems [3], and virtual machines [15]. To
the best of our knowledge, this is the first application of NoCs for accelerating
stochastic models.

Due to the inherent similarity in architecture, NoCs appear to be ideal can-
didates for mapping different network models encountered in spreading models.
In the past, FPGAs in general and NoCs in particular have not been explored
for modeling stochastic network models. The overall aim of this work is to intro-
duce the FPGA community the possible application of FPGA-based NoCs in
accelerating dynamics of spreading models. It is not limited to epidemics but to
other spreading networks including social media.

3 Architecture

StocNoC follows mesh topology with each processing element (PE) along with
its network interface (NI) representing a node in the contact network. Nodes
are interconnected with the help of switches and bi-directional physical links as
shown in Fig. 2. The NoC configuration and inter-node communication are sup-
ported via packet switching. The bottom left switch acts as the communication

StocNoC: Accelerating Stochastic Models Through Reconfigurable Network 365

Fig. 3. Different packet formats to support network configuration and data communi-
cation.

interface with external world, through which configuration packets are sent as
well as the network status is monitored. An external host such as a server com-
puter configures the NoC for the target network and monitors the network status
as time progresses. By analyzing the packets received from the network, the host
can determine the specific nodes that are infected, nodes that have recovered,
and the overall spreading pattern of the process.

3.1 Packet Formats

StocNoC manages configuration as well as inter-node communication using the
different packet formats shown in Fig. 3. It supports unicast, multicast and
broadcast packet transmissions based on the packet type. Unicast packets are
used for node configuration (at zero epoch or at t = 0) by an external host. The
target node address (X and Y coordinates of the node) is stored in the destina-
tion address field and the configuration data are carried in the input number (in)
and initial status (is) fields. The input number configures the number of neigh-
bors (number of nodes connected to this node based on the adjacency matrix)
and the initial status configures whether the node is infected or susceptible at
zero epoch.

Multicast packets are used for inter-node communication, where each node
updates all its neighbors with its status after each epoch (each discrete time
in simulation). Rather than sending the same packet to each of its neighbors,
each node injects a single packet to the NoC and the unique router design dupli-
cates the packets close to the target nodes. This considerably reduces the net-
work routing congestion and improves the overall latency. The packet carries
the address of the injecting node in the source address field and the status
(infected/susceptible) in the status (s) field. Due to the packet switched nature
of the NoC, it is possible that packets are delivered out-of-order to the destina-
tion nodes. To manage this, each multicast packet carries a sequence number (sn)
field, which specifies the discrete simulation time. Every packet in the network
originating at the same discrete simulation time will have the same sequence
number.

Since all nodes in the network share the same infection (β) and recovery
rates (γ), this information is broadcasted across the network at the beginning

366 A. Zhanbolatov et al.

Fig. 4. The NoC switch architecture with store-and-forward functionality and support
for unicast and multicast routing.

of the simulation. Again, the router design and the routing algorithm enables
injecting a single packet from the external host and the packet being replicated
and delivered to each node. The rate segment of the packet initializes a portion
of the pseudo random binary sequence (PRBS) generator used in the network
interface discussed in Sect. 3.3. Since the current implementation uses a 100-bit
long PRBS and the rate segment is only 10-bits wide, 10 configuration packets
are required to initialize them. NoC configuration packets are special broadcast
packets that configure the routing tables (RTs) inside the switches. Each packet
configures a portion of an RT and multiple packets are required to configure the
entire network.

3.2 Switch

The overall architecture of the StocNoC switch is depicted in Fig. 4. The switch
follows store and forward architecture with each interface (from 4 neighboring
switches and the node) connected to an input FIFO. Every switch interface
follows AXI4-Stream protocol [22]. To limit resource utilization, output FIFOs
are omitted in the design. An arbiter chooses one of the input FIFOs for packet
transmission based on their requests following a round-robin scheme. This avoids
resource starvation and minimizes packet queueing delays. The fifo grant signal
from the arbiter drives the output of a multiplexer which selects the appropriate
FIFO output for packet transmission.

The selected packet is forwarded to the routing engine (RE). The RE logic
first checks for the packet type. Unicast packet (PE configuration packets) rout-
ing is managed by a routing function (RF) and multicast packet (PE status pack-
ets) routing is managed by a routing table (RT). The RF logic implements the
traditional dimension-ordered XY routing by comparing the destination address
embedded in the packet with the switch’s address [6].

StocNoC: Accelerating Stochastic Models Through Reconfigurable Network 367

Fig. 5. Network interface architecture.

Multicast routing scheme is deployed for status packets to reduce the network
congestion and latency. This method also frees nodes from storing the RTs thus,
making their design relatively simple. A node sending its status puts only its
source address into the packet and injects to the corresponding switch, unaware
of the packet’s ultimate targets. Each entry in the RT used for multicast routing
is 5 bits wide and the RT depth is same as the overall network size (number of
nodes in the network).

The source address embedded in the multicast packets serves as the RT entry
number. Each bit in a table entry determines the directions in which a packet
originating from the corresponding address will be forwarded. The broadcast
could be to one or more of the neighboring switches as well as the to the node
interfaced with the switch. By appropriately configuring the RTs, packets from
any node can be broadcasted to any given subset of nodes within the network.
The routing path taken by each packet is similar to tree routing, where the root
of a tree is the source node and the destination nodes are located at the tree
branches and leaves. If the destination nodes are located along the tree branches,
intermediate switches perform forward-and-absorb operation. Traditional tree
routing suffers from the possibility of deadlocks [19] in the intermediate nodes,
but combining it with XY routing circumvents this possibility.

The content of each RT is determined offline by an application based on the
network adjacency matrix. For a network with NETWORK SIZE nodes, aspect
ratios X and Y, and adjacency matrix adjacencyMatrix [NETWORK SIZE]
[NETWORK SIZE], each table entry i corresponding to each switch j is gener-
ated based on Algorithm 1. The entire RT is injected to the network through
the bottom-left switch as NoC configuration broadcast packets. This approach
is taken to keep packets sizes small, as packets do not carry information regard-
ing router and RT address. From the received broadcast packets, each switch

368 A. Zhanbolatov et al.

Algorithm 1. Routing Table Generation
1: Clear all RT entries.
2: for j =0; j<NETWORK SIZE; j=j+1 do
3: for i =0; i<NETWORK SIZE; i=i+1 do
4: if adjacencyMatrix[j][i]==1 then
5: inAddr=i;
6: outAddr=j;
7: RT[i][j][CENTER] = 1;
8: if outAddr [X]> inAddr [X] then
9: for x=outAddr[X]; x>inAddr[X];x=x-1 do

10: RT[outAddr[Y]×XSIZE+x][j][WEST]=1
11: end for
12: else
13: for x=outAddr[X];x<inAddr[X];x=x+1 do
14: RT[outAddr[Y]×XSIZE+x][j][EAST]=1
15: end for
16: end if
17: if outAddr[Y]>inAddr[Y] then
18: for y=outAddr[Y];y>inAddr[Y];y=y-1 do
19: RT[y×XSIZE+inAddr[X]][j][SOUTH]=1
20: end for
21: else
22: for y=outAddr[Y];y<inAddr[Y];y=y+1 do
23: RT[y×XSIZE+inAddr[X]][j][NORTH]=1
24: end for
25: end if
26: end if
27: end for
28: end for

selects only the portions corresponding to its RT and transmits the entire table
to the neighboring switch to its right. Switches along the first column of the
NoC transmits these packets to the neighboring switches in the north direction
as well. The switch’s knowledge about its own address and an internal packet
counter enables this configuration strategy. Each packet carries only a fraction of
the table (10-bits or 2 entries) and may require thousands of packets for complete
configuration.

3.3 Network Interface (NI)

The NI module manages the communication between a switch and the corre-
sponding PE. Moreover, it also implements the logic to control the state of the
node after each discrete simulation time. Its detailed architecture is depicted
in Fig. 5. The working mode state machine (WMSM) manages the operating
mode of a node, which may be either in configuration state or in running state.
When the network is in the configuration state, WMSM routes the configuration
packets received from the switch interface to appropriate destination registers.

StocNoC: Accelerating Stochastic Models Through Reconfigurable Network 369

The contents of the unicast packet specifying the number of neighbors of the
node is stored in the inputNum register.

The discrete time probabilities required to decide the state of a node (whether
infected or susceptible) are implemented by the gamma and beta PRBS genera-
tors. Both are linear feedback shift registers (LFSRs) composed of 100 flip-flops
with the last stage feeding back to the first stage. In order to implement a specific
rate (infection or recovery), the corresponding probability is multiplied by 100
and the LFSR is initialized with a random binary pattern with number of ones
equal to the result of multiplication. For example, to achieve a β value of 0.3,
the 100 flip-flops in the beta LFSR are initialized with a random binary pattern
with 30 ones and 70 zeros. The initialization values for the two PRBS gener-
ators are received as broadcast packets from the external host. Since the size
of PRBS generators is much larger than the packet size, multiple configuration
packets are required to initialize them. The Input Counter (IC) logic specifies
the index number of the PRBS generators to which the incoming configuration
packet values are written.

After initialization, the LSFRs freely run and the least significant bit (LSB)
is used for achieving the required rate. Due to the initialization pattern, the
probability of the LSB becoming one will be same as the required rate. This is
similar to finding a number between 0 and 1 from a uniform distribution and
checking whether its value is less than the required rate. This software approach
is emulated in hardware through the said mechanism. The initialization pat-
terns are generated offline through a software application and broadcasted to
the nodes through multiple packets as discussed before. Although same initial-
ization packets are broadcasted to all the nodes, due to the inherent latency in
packet switching, each LFSR will have a different initialization pattern at epoch
zero but representing the same rate.

Once the WMSM receives the unicast packet carrying the initial node sta-
tus, it is transferred to the PE and is switched to running state. When a PE
receives its initial status, it is immediately broadcasted to its neighbors. Thus,
some PEs may possibly receive packets from its neighbors before the end of the
configuration. Moreover, due to path length differences and different congestion
levels along different paths, out-of-order packets may arrive even at running state
which may result in a node receiving a status from one of its neighbors for the
next discrete time before receiving all status for the current time.

To overcome the out-of-order status delivery, PEs embed a sequence number
into the status packets. The sequence number indirectly represents the current
discrete time. When status packets are received, they are initially stored in
a buffer with logical partition for each sequence number. Each partition can
store NETWORK SIZE number of status and each entry is just one 1 bit wide
(to represent infected or susceptible). Each partition maintains its own counter
which counts the number of status that have already arrived and to which entry
the next status will be updated. In running mode, the status are extracted from
a partition specified by the sequence number checker (SNC) one at a time and
transferred to the PE. The status are sent to the PE only after receiving the

370 A. Zhanbolatov et al.

Fig. 6. SIS state machine

status from all its neighbors, whose number is specified in the inputNum register
during configuration. Once all status are sent, the SNC is incremented to select
the next partition. Since each PE generates a status packet only after receiving
the status from all its neighbors, it could be proven that two sequence numbers
are enough to distinguish between different discrete times. Thus, the size of the
buffer is 2 × NETWORK SIZE bits to support two partitions.

3.4 Processing Element (PE)

Each PE runs the SIS state-machine, similar to the one shown in Fig. 6. The
initial infection status is received from the NI during the configuration stage.
Once the NI receives status from all the neighbors for a discrete time, it transfers
the status one at a time to the PE. If the PE is in susceptible state and receives an
infected status from one of the neighbors, it checks the output of the beta PRBS
generator. If the PRBS output is high, the PE state is switched to infected.
Further status received from the neighbors are ignored for the current epoch
since, in the SIS model, a node cannot change its state more than once in any
discrete time. If the PE is in infected state, it checks the output from gamma
PRBS generator after receiving status from all neighbors. If the PRBS output
is high, the state is switched to susceptible and the status of the neighbors play
no role in this state transition. In all cases, the status of the PE after a discrete
time is sent to the NI module which is then multicasted to all its neighbors.

The SIS state-machine is relatively simple, but due to the modular design
approach any other model can be easily incorporated by modifying this state-
machine alone. In future, as cloud FPGA instances start supporting partial
reconfiguration (PR), models can be dynamically updated by only reconfiguring
the PE module which substantially reduces the design and configuration time.

StocNoC: Accelerating Stochastic Models Through Reconfigurable Network 371

3.5 Simulation Steps

The host computer executes the following steps for StocNoC-based SIS model
simulation:

Table 1. Resource utilization of the proposed architecture for 16× 16 implementation
when targeting Xilinx Ultrascale+ VU9P

Module name Slice LUTs Slice regs Memory block

Network interface 322 251 0

Processing element 7 7 0

Switch 299 351 0

Total per node 628 609 0

Total network 159710 156290 0

– Inject the NoC configuration broadcast packets to configure the routing tables
(Fig. 3d).

– Inject the broadcast packets to configure β and γ (Fig. 3c).
– Inject the unicast packets to configure the number of neighbors to each node

(Fig. 3a).
– Inject the unicast packets to configure the initial status of each node (Fig. 3a).
– Receive packets from the NoC and monitor the network status. Once status

packets are received from all nodes, increment the discrete time step and log
the number of infected and susceptible nodes.

4 Results and Discussion

The proposed platform is designed with Verilog HDL and implemented on a
Xilinx Ultrascale+ VU9P device targeting Amazon AWS cloud-based FPGA
instances. Module-wise utilization for important building blocks and the overall
utilization for a 16×16 network (256 nodes) is given in Table 1. The implementa-
tion consumes about 8% LUTs and 3% of flip-flops on the target device. At this
rate, a network of 3000 nodes can be supported on this device after reserving
enough resources for the communication infrastructure (AWS shell infrastruc-
ture). FPGA architecture-dependent resources such as BRAM/URAM tiles of
DSP slices are not utilized making the design highly portable to other plat-
forms such as the Microsoft Azure or on-premises implementations. Due to the
heavily pipe-lined implementation, the platform can support to up to 260 MHz
clock frequency, but is restricted to 250 MHz due to the PCIe-based host system
interface.

We first verified the validity and the functional correctness of the proposed
platform by comparing its output with corresponding software-based implemen-
tation of the discrete SIS model. Tests were conducted for three different network

372 A. Zhanbolatov et al.

sizes (10 × 10, 16 × 16, and 32 × 32) for three β and γ values and three different
topologies, thus giving a total of 27 test cases. Results from each test case were
averaged over 10 runs to avoid outliers. Software and hardware test outputs cor-
responding to a 10×10 implementation (network with 100 nodes) with different
rate and topology configurations shown in Fig. 7. It reveals that the steady state
behavior and the number of discrete steps required to reach the steady state are
similar in both cases which validates the functional correctness of the platform.

Table 2 compares the total run-time of software and the corresponding NoC-
based implementations for modeling 100 discrete time steps for different network
models and sizes. The software runs on an AWS EC2 a1.xlarge cloud compute
instance with 4 vCPUs and 8 GB RAM. The NoC runs on an AWS f1.2xlarge
FPGA at 200 MHz clock frequency. The FPGA run-time includes the time
required for configuring the RT each time before starting the simulation. In a
practical scenario, this could be avoided as long as the network topology remains
intact. The run-time for 10×10 and 16×16 are very similar for NoC implemen-
tation since the 10 × 10 implementation is physically a 16 × 16 implementation
mapped using appropriate adjacency matrix. This also shows the flexibility of
the NoC architecture where a sub-network with any topology can be mapped to
a mesh architecture using appropriate adjacency matrix. It is evident from the
data that hardware outperforms software by an order of 2 to 3. Considering the
hourly rate of 0.102 USD for a1.xlarge instance and 0.76–1.65 USD for (based
on subscription type) for f1.2xlarge instance, hardware acceleration can provide
considerable financial benefits to users.

One of the main limitations of NoC-based implementation of network mod-
els is the size of the supported network size. Even with modern FPGAs with
multi-million equivalent gate capacity, networks with a few thousand nodes can
be supported. Modeling large networks such as social media will require imple-
mentation of networks with millions of nodes. In a cloud environment, multiple
FPGAs can be combined to simulate larger networks. Communication between
the FPGAs will be managed by the cloud communication infrastructure. Two
other approaches can be used for overcoming this limitation for resource con-
strained FPGAs. Using partial reconfiguration, FPGA resources can be time
multiplexed and portions of the network can be simulated during different time
instances and results can be combined to determine the total network perfor-
mance. Another method is through structural reconfiguration, where portions of
the network is configured through modifying network parameters such as the PE
address. Intermediate result for each configuration is stored in external memory
and broadcasted to the network after reconfiguration.

StocNoC: Accelerating Stochastic Models Through Reconfigurable Network 373

(a) Software: ER β= 0.1 γ= 0.3 (b) Software: ER β= 0.5 γ= 0.2 (c) Software: ER β= 0.7 γ= 0.9

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

time(t)

D
en

si
ty I(t)

S(t)

(d) Hardware: ER β= 0.1 γ= 0.3

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

time(t)

D
en

si
ty I(t)

S(t)

(e) Hardware: ER β= 0.5 γ= 0.2

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

time(t)

D
en

si
ty

I(t)
S(t)

(f) Hardware: ER β= 0.7 γ= 0.9

(g) Software: BA β= 0.1 γ= 0.3 (h) Software: BA β= 0.5 γ= 0.2 (i) Software: BA β= 0.7 γ= 0.9

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

time(t)

D
en
si
ty

I(t)
S(t)

(j) Hardware: BA β= 0.1 γ= 0.3

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

time(t)

D
en
si
ty I(t)

S(t)

(k) Hardware: BA β= 0.5 γ= 0.2

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

time(t)

D
en
si
ty

I(t)
S(t)

(l) Hardware: BA β= 0.7 γ= 0.9

(m) Software: WS β= 0.1 γ= 0.3 (n) Software: WS β= 0.5 γ= 0.2 (o) Software: WS β= 0.7 γ= 0.9

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

time(t)

D
en

si
ty

I(t)
S(t)

(p) Hardware: WS β= 0.1 γ= 0.3

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

time(t)

D
en

si
ty I(t)

S(t)

(q) Hardware: WS β= 0.5 γ= 0.2

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

time(t)

D
en

si
ty

I(t)
S(t)

(r) Hardware: WS β= 0.7 γ= 0.9

Fig. 7. Comparison of software simulation and hardware simulation outputs for differ-
ent β and γ values in a 10 × 10 network.

374 A. Zhanbolatov et al.

Table 2. Wall clock time required for simulating 100 discrete time steps in software
and proposed implementation

Topology Run time (ms) Network size

100 256 1024

WS Software 107 312 1297

NoC 0.213 0.232 2.81

BA Software 97 242 1130

NoC 0.215 0.248 2.78

ER Software 117 473 4408

NoC 0.217 0.262 3.67

5 Conclusion and Future Work

In this paper, we discussed the design, implementation and performance eval-
uation of StocNoC, a network on chip based solution for stochastic modeling.
Experimental results show that the proposed architecture can accelerate the
spreading model by many orders compared to software implementation on cloud-
infrastructure and can provide significant financial benefits to users. The pro-
posed model can be easily adapted to other scenarios such as social information
diffusion, wireless malware propagation and viral marketing. It is shown that
a hardware-based solution can significantly outperform software simulation in
terms of run-time and at the same time, provide scalability due to the NoC-
based architecture.

As future work, partial reconfiguration and structural reconfiguration will be
evaluated for modeling large scale networks. We intend to extend and demon-
strate the effectiveness of the platform in modeling multiple competitive pro-
cesses in multi-layered networks. We believe that modeling of spreading dynam-
ics will provide new research directions to the hardware accelerator research
community. For generating research interest, the HDL implementation and the
dataset used for evaluation are available as open source from the following git
repository [1].

References

1. StocNoC Git repository (2019). https://github.com/dsdnu/sisNoC
2. Barabasi, A.L.: Network Science. Cambridge University Press, Cambridge (2016)
3. Bertozzi, D., et al.: NoC synthesis flow for customized domain specific multipro-

cessor systems-on-chip. IEEE Trans. Parallel Distrib. Syst. 16(2), 113–129 (2005)
4. Brauer, F., Catillo-Chavez, C.: Mathematical Models in Population Biology and

Epidemiology. Springer, New York (2001). https://doi.org/10.1007/978-1-4757-
3516-1

5. Britton, T.: Stochastic epidemic models: a survey. Math. Biosci. 225(1), 24–35
(2010)

https://github.com/dsdnu/sisNoC
https://doi.org/10.1007/978-1-4757-3516-1
https://doi.org/10.1007/978-1-4757-3516-1

StocNoC: Accelerating Stochastic Models Through Reconfigurable Network 375

6. Chawade, S.D., Gaikwad, M.A., Patrikar, R.M.: Review of XY routing algorithm
for network-on-chip architecture. Int. J. Comput. Appl. 43, 20–23 (2012)

7. Cheng, S., Chen, P., Lin, C., Hsiao, H.: Traffic-aware patching for cyber security
in mobile IoT. IEEE Commun. Mag. 55(7), 29–35 (2017)

8. Dadlani, A., Kumar, M.S., Maddi, M.G., Kim, K.: Mean-field dynamics of inter-
switching memes competing over multiplex social networks. IEEE Commun. Lett.
21(5), 967–970 (2017)

9. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Mor-
gan Kaufmann, Burlington (2003)

10. Erdős, P., Rényi, A.: On the evolution of random graphs. In: Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, pp. 17–61 (1960)

11. Furber, S.B., et al.: Overview of the SpiNNaker system architecture. IEEE Trans.
Comput. 62(12), 2454–2467 (2013)

12. Jenness, S.M., Goodreau, S.M., Morris, M.: EpiModel: an R package for mathe-
matical modeling of infectious disease over networks. J. Stat. Softw. 84(29731699),
8 (2018)

13. Joshi, J., Karandikar, K., Bade, S., Bodke, M., Adyanthaya, R., Ahirwal, B.: Multi-
core image processing system using network on chip interconnect. In: Proceedings
of Midwest Symposium on Circuits and Systems, pp. 1257–1260, August 2007

14. Korkali, M., Veneman, J., Brian, B., Tivnan, F., Bagrow, J., Hines, P.: Reducing
cascading failure risk by increasing infrastructure network interdependence. Nat.
Sci. Rep. 7, 44499 (2017)

15. Mathias, G., Kent, K.: An embedded Java virtual machine using network-on-chip
design. In: Proceedings of IEEE International Workshop on Rapid System Proto-
typing (2006)

16. Newman, M.: Networks: An Introduction. Cambridge University Press, Cambridge
(2014)

17. Patel, P.: FPGA-based accelerated cloud computing with AWS EC2 F1 and SDAc-
cel (2018)

18. Sahneh, F.D., Vajdi, A., Shakeri, H., Fan, F., Scoglio, C.: GEMFsim: a stochastic
simulator for the generalized epidemic modeling framework. J. Comput. Sci. 22,
36–44 (2017)

19. Samman, F.A., Hollstein, T., Glesner, M.: Adaptive and deadlock-free tree-based
multicast routing for networks-on-chip. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 18(7), 1067–1080 (2010)

20. Van Mieghem, P.: Performance Analysis of Complex Networks and Systems. Cam-
bridge University Press, Cambridge (2014)

21. Vynnycky, E., White, R.: An Introduction to Infectious Disease Modeling. Oxford
University Press, Oxford (2010)

22. Xilinx Inc.: UG761: AXI Reference Guide, March 2011
23. Yang, L., Yang, X., Tang, Y.Y.: A bi-virus competing spreading model with generic

infection rates. IEEE Trans. Netw. Sci. Eng. 5(1), 2–13 (2018)

Implementation of FM-Index Based
Pattern Search on a Multi-FPGA System

M. M. Imdad Ullah(B), Akram Ben Ahmed, and Hideharu Amano

Department of Information and Computer Science, Keio University, Yokohama, Japan
fic@am.ics.keio.ac.jp

Abstract. Pattern matching is a versatile task which has a variety of
applications including genome sequencing as a major application. Dur-
ing the analysis, short read mapping technique is used where short DNA
sequences are mapped relative to a known reference sequence. This paper
discusses the use of reconfigurable hardware to accelerate the short read
mapping problem. The proposed design is based on the FM-index algo-
rithm. Although several pattern matching techniques are available, FM-
index based pattern search is perfectly suitable for genome sequencing
due to the fastest mapping from known indices. In order to make use of
inherent parallelism, a multi-FPGA system called Flow-in-Cloud (FiC)
is used. FiC consists of multiple boards, mounting middle scale Xilinx’s
FPGAs and SDRAMs, which are tightly coupled with high speed serial
links. By distributing the input data transfer with I/O ring network and
broadcasting I-Table, C-Table and Suffix-Array with the board-to-board
interconnection network, about 10 times performance improvement was
achieved when compared to the software implementation. Since the pro-
posed method is scalable to the number of boards, we can obtain the
required performance by increasing the number of boards.

1 Introduction

String matching is a task of searching for patterns in a long string. While it
has a wide range of applications, the major one is in bioinformatics, particularly
in genome sequencing. In genome sequencing, a short read alignment technique
is used where matching of short strings (popularly known as “reads”) against
a reference genome is performed. This operation involves millions of pattern
matching making it highly computationally intensive. Different data structures
are discovered over the times for solving string matching problems. Out of all,
FM-index [5] is a remarkable algorithm for solving computationally intensive
string matching problems. Its highly efficient data structure makes it perfectly
suitable for short read alignment.

FM-index stands for Full-text index in Minute space. It efficiently searches
for occurrences of a pattern within a compressed text, and also locates the posi-
tion of each occurrence. The compressed text is based on the Burrows-Wheeler
Transform (BWT), which is a technique for lossless data compression. It can
be efficiently computed from Suffix-Array. Powerful features of the BWT and
c© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 376–391, 2020.
https://doi.org/10.1007/978-3-030-44534-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_28

FM-Index Based Pattern Search on a Multi-FPGA System 377

Suffix-Array have paved the way for the development of FM-index. FM-index
inspired several software based DNA sequencing tools such as Bowtie [7], SOAP3
[9] and BWA [8]. These tools achieved some orders of magnitude faster execu-
tion than other tools using classical hash table like indices. To further speed
up the DNA sequencing process, several hardware based accelerators have been
proposed. Among them, FM-index based hardware accelerator on FPGAs has
become popular because of its high performance per power [1,2,4].

However, most of them are implemented on a single board with a single
or small number of FPGAs. Since FM-index has a high level of parallelism, the
performance can be increased by using a number of searching modules in parallel.
Here, we used a multi-FPGA system called Flow in Cloud (FiC) consisting
of 24 boards, each of which mounts a mid-range cost efficient Xilinx’s Kintex
UltraScale. The final goal of FiC is building a multi-FPGA system in a cloud
providing more than 100 boards. They are tightly connected with 9.9 Gbps high
speed serial links directly, as well as an I/O board connected with a host through
the PCIe bus.

Here, our target is to search for a pattern on the input reference sequence
and also find the location of the pattern in the sequence. First, BWT, I-table and
C-table are computed in software and broadcasted to the FPGA boards. Then we
perform the search operations on our architecture. The evaluation results showed
that the performance is almost 10 times faster than the software implementation
even with a single board, and almost scalable performance improvement can be
achieved.

2 BWT and FM-Index Data Structure

BWT is a reversible transformation invented by Michael Burrows and David
Wheeler in 1994 [3]. Although it does not compress strings, it is frequently
used for prepossessing of various compression algorithms. BWT is computed by
sorting the cyclic rotations of a given string. Suffix-Array is a sorted array of all
suffixes of a string. As BWT is the sorted cyclic rotation of the given string, we
can efficiently compute BWT from the Suffix-Array. Suffix-Array will also help
us to find the location of the pattern in the original string that we will describe
later. Table 1 shows Suffix, Sorted Suffix, Suffix-Array and BWT for a random
input string “TATGCTGATCAT”.

After computing BWT, we move forward to constructing the FM-index
data structure. FM-index data structure is composed of two tables, I-table and
C-table.

– I-Table: It is also called as the frequency table. I(x) is the number of char-
acters in the BWT format that are lexicographically smaller than ‘x’. For
example, for character ‘C’, I(C) = 4. There are three ‘A’ and one ‘$’ char-
acter in BWT, that are lexicographically smaller than ‘C’. Thus, the I-table
can be constructed as shown in Table 2.

– C-Table: It is also known as the occurrence table. C(x)@index is the
number of occurrences of ‘x’ in the BWT between the range [0, index-1].

378 M. M. I. Ullah et al.

Table 1. Suffix, Sorted Suffix, Suffix-Array and BWT

Index Suffix Sorted Suffix Suffix-Array BWT

0 TATGCTGATCAT$ $ 12 T

1 ATGCTGATCAT$ AT$ 10 C

2 TGCTGATCAT$ ATCAT$ 7 G

3 GCTGATCAT$ ATGCTGATCAT$ 1 T

4 CTGATCAT$ CAT$ 9 T

5 TGATCAT$ CTGATCAT$ 4 G

6 GATCAT$ GATCAT$ 6 T

7 ATCAT$ GCTGATCAT$ 3 T

8 TCAT$ T$ 11 A

9 CAT$ TATGCTGATCAT$ 0 $

10 AT$ TCAT$ 8 A

11 T$ TGATCAT$ 5 C

12 $ TGCTGATCAT$ 2 A

Table 2. I-table

A C G T

1 4 6 8

Complete C-table is shown in Table 3. For example, C(G)@6 = 2 because
there are 2 occurrences of ‘G’ between the range [0, 5].

3 Pattern Search Using FM-Index

In this section, the pattern search procedure using FM-index is introduced. This
pattern search technique is based on the I-table, C-table and Suffix-Array that we
computed in the last section. The FM-index search procedure iterates through
each character of the search pattern by two pointers, namely top and bottom
pointers. The indices between the top and bottom pointers are the Suffix-Array
indices. To search a pattern, we go through each of the character of the pattern
beginning from the last character. One character is processed at a time by com-
puting top and bottom pointers. The following formula is used to compute top
and bottom pointers respectively for character ‘x’.

top new = C(x)@top current + I(x) (1)

bottom new = C(x)@bottom current + I(x) (2)

To begin the process, we initialize the top and bottom pointers with first and
last indices of the C-table respectively. Iteration starts from the last character

FM-Index Based Pattern Search on a Multi-FPGA System 379

Table 3. C-table

Index Suffix-Array BWT A C G T

0 12 T 0 0 0 0

1 10 C 0 0 0 1

2 7 G 0 1 0 1

3 1 T 0 1 1 1

4 9 T 0 1 1 2

5 4 G 0 1 1 3

6 6 T 0 1 2 3

7 3 T 0 1 2 4

8 11 A 0 1 2 5

9 0 $ 1 1 2 5

10 8 A 1 1 2 5

11 5 C 2 1 2 5

12 2 A 2 2 2 5

13 Total 3 2 2 5

of the search pattern. The top and bottom pointers move to different indices
according to the current character being processed. If bottom pointer points to
an index that is less than or equal to an index pointed by top pointer, then the
pattern does not exist in the text and the search process is terminated. If the
above condition does not occur throughout the iterations for all characters, then
the search pattern exists in the text. Next is to locate the position of the pattern
in the text. As top pointer points to an index of the Suffix-Array where a specific
pattern is first located, the Suffix-Array element that corresponds to the final
top pointer index is the location of the pattern in the text. As we can realize
from the description that FM-index based search iterations are solely dependent
on the size of search pattern rather than the size of the input text, it is highly
efficient searching method for very large text.

In the following, we have shown the search process iteration in details with
both exist and non-exist patterns.

3.1 Search Method (Exist)

Figure 1 depicts an example of a search method where the pattern exists in the
text. We will search for pattern “CTGA” in the reference text “TATGCTGAT-
CAT”.

At first we initialize the top and bottom pointers to ‘0’ and ‘13’ respectively.
Then we begin the search iteration with the last character ‘A’ of the search
pattern. Next, we computed the top and bottom pointers at each iteration by
the formula mentioned above. We go through four iterations for four characters.
As the index of the top pointer is less than the bottom pointer throughout the

380 M. M. I. Ullah et al.

Fig. 1. Search iterations (exist)

iterations, the pattern exists in the text. At the last iteration, the value of top
and bottom pointers are ‘5’ and ‘6’ respectively. The value of top pointer will
provide the location of the pattern in the text. If we look for Suffix-Array value
at index ‘5’ in the Table 3, we get the value of ‘4’. This means that the pattern
is located on the 4th position in the text.

3.2 Search Method (Not-Exist)

Figure 2 represents an example of search method where the pattern does not
exist in the reference text. We search for the pattern “TACG” in the reference
text. At first we initialize the top and bottom pointers as before. Then we begin
the search iteration with the last character ‘G’ of the search pattern. The search
process is terminated at the second iteration as the top and bottom pointer
values are equal. This example shows that the search process is terminated as
soon as it finds the mismatch. Consequently, we do not have to go through all
the characters of the pattern when the pattern does not exist in the reference
text.

Fig. 2. Search iterations (not-exist)

FM-Index Based Pattern Search on a Multi-FPGA System 381

Fig. 3. Flow-in-Cloud

4 FiC System

4.1 FiC Prototype Overview

The current prototype of FiC system consists of multiple FiC-SW boards con-
nected with each other and with the I/O board by high-speed serial links illus-
trated in Fig. 3. Although the figure shows an example with 8 boards, the current
system has 24 FiC-SW boards that are connected to form a 6×4 torus network.
For the serial links, we employ the cost-efficient FireflyTMMicro FlyoverTM sys-
tem by Samtec [11]. Each of the serial links offers four bi-directional channels
to one destination, so this design choice introduces a restriction that four chan-
nels must be connected to the same destination together. Hereafter, we call
such a set of four bi-directional channels a bundle. Logically, the network is
shared with Static Time Division Multiplexing (STDM), a method for keeping
a constant latency and bandwidth between multiple communications [6]. Addi-
tionally, in the prototype of FiC system, there is a control server connecting an
I/O board using Xilinx KCU1500. The I/O board is connected to the host via
PCI Express Gen3.0x8 and FiC-SW boards by two bundles (eight channels) for
data exchange between FiC-SW boards and the control server. For the board
management purpose, each FiC-SW board equips with an on-board Raspberry
Pi 3 (RPi3) single-board computer, connected to a management network by
Ethernet and offers remote management features.

4.2 FiC-SW Prototype Board

Figure 4a shows the block diagram of FiC-SW. We employ a middle-class Xil-
inx’s Kintex UltraScale XCKU095 FPGA mounted on the board which supports
up to 64 of GTH high-speed serial transceivers for the FiC interconnect net-
work. Although the maximum bandwidth of the GTH serial ports is 16.3 Gbps,
we regulated the transfer speed to 9.9 Gbps for the sake of easy implementation.

382 M. M. I. Ullah et al.

To provide enough bandwidth, it delivers up to 32 channels per board at the
current design, supporting various network topologies connecting hundreds of
boards. Although FiC-SW board provides 32 bidirectional channels, 4 channels
are bundled and connected through a FireflyTM cable. Here, we call 4 channels
in a cable a lane. That is, 8 lanes, Lane 0 to Lane 7 are provided on each board.
In the current prototype with 24 boards, Lane 0 to Lane 3 are used for board-
to-board interconnection to form 4 × 6 torus network, Lane 5 to Lane 7 are
employed for IO network introduced later, and Lane 4 is kept for future usage.
Each board provides two of 16 GB DDR4-SDRAM for data storage or buffering.
The RPi3 daughter board is also mounted as a board management controller
and connected to the FPGA by GPIO ports.

(a) Block diagram of FiC-SW
(b) Static and Partial Reconfiguration
area

Fig. 4. Block diagram & PR area of FiC system

The FiC-SW FPGA logic is illustrated in Figure 4b. They are divided into
two regions: (1) static region (hereafter, we call it shell) which includes the
STDM (Static Time Division Multiplexing) network switch and peripheral con-
troller logic, and (2) partial re-configurable (PR) region for user generated logic,
designed with HLS [12]. The FM-index serach module proposed in this paper is
implemented in this region. In the PR region, several HLS modules are connected
with each other using the AXI stream interface, and form a group wrapped with
a standard HDL module to connect the static region. Since all HLS modules use
the same AXI stream interface to the shell, it can be replaced without stopping
the communication between other boards. Only a routing table in the STDM
is changed when new circuits are needed for new application programs. Four
ports of the STDM switches are directly connected to the PR region, and 85 bit
data are transferred with 100 MHz clock. That is, each PR region can input and
output data with 34 Gbps bandwidth in total. To control the HLS modules, we
defined standard application reset/start/done signals: ap rst, ap start, ap done
and data input/output signals. All signals are mapped to control registers in
the shell region, and it is accessible from software on the RPi3. When an HLS
module uses DRAM, a full AXI-4 bus is optionally provided in the static region

FM-Index Based Pattern Search on a Multi-FPGA System 383

to connect the PR region and the DDR4 DRAM controller. Table 4 summarizes
the hardware specifications of the current prototype.

Table 4. Specifications of current FiC system prototype

System scale 24 FiC-SW board and an I/O board
(KCU1500)

FPGA Kintex UltraScale XCKU095-FFVB2104

Clock freq. 100 MHz

STDM switch 4 × 4 (9 × 9 at maximum)

Serial links 32 channels bundled into 8 lanes

Effective speed 8.5 Gbps (9.9 Gbps at a link)

Total exchange bandwidth 272 Gbps

Total throughput for the HLS modules 34 Gbps

Pass through latency 550µs

Max latency of the system 1710µs

DRAM 16 GB DDR4 DRAM (200 MHz) × 2

On-board controller Raspberry Pi3 Model B (BCM2837 ARM
Cortex-A53 Quad 1.2 GHz)

5 Single Board Implementation

5.1 FM-Index Search Module

The parallel execution of FM-index search itself is simple, since we can distribute
the search pattern to a number of FiC-SW boards and execute the FM-index
search for each pattern independently. First, we explain our implementation of
FM-index search in each FiC-SW board. We design the FM-index search module
(fm search) using High Level Synthesis (HLS). HLS is a design process where
the designer describes the desired behavior of the algorithm and generates the
hardware description language format that implements the behavior. Moreover,
HLS tools also provide pragmas that can be used to further optimize the design.
Different kinds of optimizations such as reducing latency and area, improving
throughput performance can be done using the pragmas. In our implementation,
we used Vivado HLS which synthesizes our C++ specifications to RTL. The
functional behavior of our design has been simulated on the C++ level through
test bench simulation, then executed on the real FiC-SW board.

The block diagram of fm search module is shown in Fig. 5. Our HLS design
takes I-Table, C-Table, Suffix-Array and search pattern as inputs, and returns
the search results as the output. As the generation of I-Table, C-Table and Suffix-
Array from the input text is required only once, we make these computations
on software and send the data to the HLS module. We take an input string
of length 60001 (including the ‘$’ sign) for our implementation. For the search

384 M. M. I. Ullah et al.

Fig. 5. Block diagram of fm search module

pattern, we set the length of each search pattern to 16 and the maximum search
pattern count to 512. Our input data size is shown in Table 5a. We use ‘$’ sign
to separate each type of the data from the data streaming. For the output, we
return whether the searched pattern exists or not in the input text, and also
the location of the pattern in the input text, if the pattern exists. As mentioned
later, our IO communication requires 128 bit data transfer, we define 128 bit
width for the input and output of our HLS module. To better utilize the 128 bit
data width, we try to fit as much data as possible for both input and output.
Inside the HLS module, we optimized our design by pipelining and loop unrolling.
After the completion of HLS of fm search module, we instantiate our design in
the partial reconfiguration area of the FiC system.

Table 5. HLS input data & resource utilization

(a) Input Data for HLS module

Data Size (Byte)

I-Table 16

C-Table 960032

Suffix-Array 240004

Search Pattern 32768

(b) Resource Utilization

BRAM DSP FF LUT

Used 1432 3 112195 72520

Allowed 1680 768 1075200 537600

Utilization (%) 85.24 0.39 10.43 13.49

FM-Index Based Pattern Search on a Multi-FPGA System 385

5.2 Implementation Results

After the completion of the HLS, we synthesized, and place&routed the design
with Vivado. The used tools shown in Table 6 are the standard ones for imple-
menting applications on the FiC system. The resource utilization after the imple-
mentation for a single board is shown in Table 5b. Note that the presented values
are the resources used in the partial reconfigurable region. Since the FM-index
module uses a lot of BRAM, we can not implement multiple modules in a single
FPGA. However, we rely on the performance of parallel execution with multiple
boards here.

Table 6. Design tools

HLS Vivado HLS Version 2018.3 (Xilinx)

Implementation Vivado Version 2018.3 (Xilinx)

FPGA Kintex UltraScale XCKU095-FFVB2104 (Xilinx)

Frequency 100MHz

The execution time of FM-index based pattern search implementation on
each board was evaluated and compared with software implementation. The
host computer used here is Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80 GHz.
Note that, parallel execution using OpenMP directives for enhancing a single
FM-index module is not efficient. Like our parallel implementation shown later,
the input-string level parallel implementation can achieve scalable performance
improvement even with using multiple cores on the host. Thus, we used the single
core execution results for the comparison. The obtained results are summarized
in Table 7. As we can see from the table that we have achieved approximately
15 times faster execution on HLS compared with the software execution on the
host. However, the execution time of the single board ignores the data transfer
time from the host computer which is a major challenge of the implementation,
as explained later.

6 Multi-board Implementation

6.1 The FiC I/O Communication

The multi board implementation requires two types of data: (1) I-Table, C-Table
and Suffix-Array broadcasted to all boards when the computation starts, and
(2) 16 × 512 search patterns. Both types of data are transferred from the host
computer, and in order to guarantee a high performance implementation, we
must design the I/O system without the bottleneck.

For the IO communication, the current FIC-IO board is implemented on
a Xilinx general purpose KCU1500 board which is attached to the host via
PCIe Gen3.0x8. Two small original extension boards are attached on the GTH

386 M. M. I. Ullah et al.

Table 7. Results comparison

Type Software Single board

Time (m. sec) 79.1 5.9

Time per search 0.15 0.01

channels of KCU1500, and they are connected to one of FiC-SW boards through
FireflyTM cables just like the interconnection between FiC-SW boards.

Figure 6 shows the I/O communication diagram when FiC-SW00 - FiC-SW03
boards are connected via a ring network with Lane 6 and Lane 7 to transfer
data and control from/to host. Lane 5 of FiC-SW00 is used to establish the
connection with the FiC-IO board. As previously mentioned, in the FiC system,
an individual IO network is provided for each board so that the communication
with the host server does not interfere with the regular data communication
between FiC-SW boards during computation.

Fig. 6. I/O communication overview

The input data handling mechanism is shown in Fig. 7. In FiC-SW00,
fic io ctrl receives data/control from FIC-IO through Lane 5, and either passes
it to the local fm search module or forwards it to other FiC-SW boards
through the I/O ring. Similarly, the fic io ctrl in FiCSW01-FiCSW03 receives
the data/control from the I/O ring and performs the necessary computations to
route them to the proper FiC-SW destination.

As mentioned earlier, FiC-SW receives 170-bit data packet from FiC-IO. The
170 bit packet is used for the I/O data in the ring network, and the first 128 bits
are the actual payload that is to be processed by the HLS module. While sending
data targeting for the HLS module, we divide our input data into two categories,
i.e. “Common Data” and “Specific Data”. As, I-Table, C-Table and Suffix-Array
are same for all FiC-SW boards, we categorize these data as “Common Data”.

FM-Index Based Pattern Search on a Multi-FPGA System 387

Fig. 7. Data handling mechanism

These data is broadcasted to all boards. On the other hand, the search pattern
data which is different from one board to another is categorized as “Specific
Data”. The search pattern data is sent to a given board by configuring the
packet destination ID. In our implementation, we sent 512 search patterns to
each of the FiC-SW boards.

The maximum bandwidth of PCIe Gen3.0x8 is 7.9 GByte/s almost matches
to the maximum bandwidth of FiC-IO (9.9 Gbitx4x2), and there is no perfor-
mance bottleneck in the initial design. However, the DMA mechanism of the cur-
rent FiC-IO is under debugging, so the maximum bandwidth is severely limited
at the path between the host and FIC-IO. Therefore, when the current FiC-IO
is used with Programmed IO (PIO), about 98% of the total execution time was
occupied by the I/O transfer. So, we developed FiC-IO emulation system and
evaluated the performance on it.

6.2 FIC-IO Emulation

The objective of this emulation is to find out the exact data processing time of
our fm search module when assuming optimal I/O data transfer. For this emula-
tion, we setup a system shown in Fig. 8. Here, the FIC-IO behavior is emulated

Fig. 8. FIC-IO emulation with FIC-SW00

388 M. M. I. Ullah et al.

with FIC-SW00. We design one additional HLS module called ficses emul for
FIC-SW00. Now, FIC-SW00 will send preloaded 170 bit data packet from the
host to other FIC-SW boards. For FICSW01-FICSW04 boards, the scenario is
the same as before. Also, the FIC-SW00 broadcasts the data for initialization:
I-Table, C-Table and Suffix-Array by using the board-to-board interconnection
network which is not needed for the computation.

6.3 Performance Evaluation on Multiple FiC Boards

First, the time for broadcasting on the FiC system from FiC-SW00 is evaluated.
The STDM switch used in FiC can naturally broadcast the data just by selecting
an input register in a specific time slot as shown in Fig. 9a. The data in S1 is
transferred to several output ports according to the pre-loaded table in the same
slot S2. By using this method, we can send the same data to all boards with only
5 hops in a 4×6 torus system. Figure 9b shows the time for broadcasting all data
sets used in FM-index based pattern search module. The total time is increasing
related to the number of boards, but it is less than 5.38 ms even with 24 boards.
Since the board-to-board network used for the broadcasting is independent with
the FiC-IO ring network, overlapping of the data transfer can be done for the
next data sets if needed.

(a) Data multicast with the STDM
switch

(b) The time for data broadcasting
from FiC-SW00

Fig. 9. Data multicast and time for data broadcasting

Then, we implemented the proposed search module from FiC-SW01 to FiC-
SW04, as represented in Fig. 8 using FiC-SW00 as FiC-IO emulator. We evalu-
ated the execution time in each FiC-SW board by the hardware timer embedded
in the design. The execution time is increased compared with the one without
the communication overhead (5.9 ms), but it is still about 10 times faster than
the software execution. The execution time is increased constantly by 0.08 ms
for a board (Table 8). This is corresponding to the overhead to pass through
the input data. Without this small overhead, scalable performance is achieved.
However, it is also shown that the execution time is estimated to be 9.70 ms with
24 boards. It is 8.1 times faster than the software execution with 23 cores.

FM-Index Based Pattern Search on a Multi-FPGA System 389

Table 8. Execution time by using FiC-SW00 as FiC-IO emulator

Board Exec time (m. sec)

FIC-SW01 7.94

FIC-SW02 8.02

FIC-SW03 8.10

FIC-SW04 8.18

7 Related Work

There are a lot of recent researches on FPGA based acceleration of short-read
mapping. Since the evaluation basis is different, it is difficult to fairly compare
the proposed method with previously proposed ones. In [2], a simple measure
“bases aligned per second (baps)” was proposed:

baps = readsize x readcount/processtime

Table 9. Performance comparison with baps

Design Platform Freq (MHz) Devices baps

SOAP3 [9] NVIDIA GTX580 900 1× 512 3.84

Design in [2] Xilinx Virtex-6 SX475T 150 1× 3 13.5

Design in [2] (estimated) Xilinx Virtex-6 SX475T 150 8× 1 108

Design in [10] Xilinx Virtex-6 SX240T 250 8× 8 112

Proposed design Xilinx Kintex Ultrascase XCKU095 100 1× 24 24

Table 9 compares the different approaches presented in [2] with ours. Since
our design in this paper focuses on the scalable performance improvement on
a large scale multi-FPGA system, the single core implementation uses Vivado-
HLS, and the optimization is not enough. In order to obtain comparable per-
formance to the design in [10], we need to provide more than 100 boards. Also,
they achieved much better results with the recent implementation using Intel’s
Stratix-V FPGAs [1]. We must improve the implementation of the single core to
follow such competitive results.

8 Conclusion

In this paper, we proposed a hardware implementation of FM-index based pat-
tern searching on a multi-FPGA system FiC. By distributing the input data
transfer with I/O ring network and broadcasting I-Table, C-Table and Suffix-
Array with the board-to-board interconnection network, about 10 times faster

390 M. M. I. Ullah et al.

performance compared to the PC software and almost scalable performance
improvement was achieved.

The current implementation is based on the emulation of I/O transfer until
DMA in the FiC-IO board is available. Our future work is to confirm that similar
results can be obtained when the DMA is used on the real FiC-IO board. The
implementation by using 24 boards is under going. We must finish it to confirm
that the real scalable results are obtained. The current FiC system provides only
a FiC-IO board for 24 boards. It might not be enough for IO dominant imple-
mentation like the search module implemented here. We are planning to increase
the number of FiC-IO board and use multiple ring networks to increase the per-
formance. Finally, in order to follow the competitive work, we must optimize the
single core design.

References

1. Arram, J., Kaplan, T., Luk, W., Jiang, P.: Leveraging FPGAs for accelerating
short read alignment. IEEE/ACM Trans. Comput. Biol. Bioinform. 14, 668–677
(2017)

2. Arram, J., Tsoi, K.H., Luk, W., Jiang, P.: Hardware acceleration of genetic
sequence alignment. In: Brisk, P., de Figueiredo Coutinho, J.G., Diniz, P.C. (eds.)
ARC 2013. LNCS, vol. 7806, pp. 13–24. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36812-7 2

3. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical report (1994)

4. Fernandez, E., Najjar, W., Lonardi, S.: String matching in hardware using
the FM-index. In: 2011 IEEE 19th Annual International Symposium on Field-
Programmable Custom Computing Machines, pp. 218–225, May 2011

5. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.
390–398, November 2000

6. Hironaka, K., Doan, N.A.V., Amano, H.: Towards an optimized multi FPGA archi-
tecture with STDM network: a preliminary study. In: Voros, N., Huebner, M.,
Keramidas, G., Goehringer, D., Antonopoulos, C., Diniz, P.C. (eds.) ARC 2018.
LNCS, vol. 10824, pp. 142–150. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78890-6 12

7. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short dna sequences to the human genome. Genome Biol. 10(3), R25
(2009)

8. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

9. Liu, C.-M., et al.: SOAP3: ultra-fast GPU-based parallel alignment tool for short
reads. Bioinformatics 28(6), 878–879 (2012)

10. Olson, C., et al.: Hardware acceleration of short read mapping. In: IEEE 20th
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 161–168 (2012)

https://doi.org/10.1007/978-3-642-36812-7_2
https://doi.org/10.1007/978-3-642-36812-7_2
https://doi.org/10.1007/978-3-319-78890-6_12
https://doi.org/10.1007/978-3-319-78890-6_12

FM-Index Based Pattern Search on a Multi-FPGA System 391

11. Samtec, Inc.: Micro Flyover On-Board Optical Engine, FireFly. https://www.
samtec.com/optics/optical-cable/mid-board/firefly

12. Yamakura, M., Hironaka, K., Azegami, K., Musha, K., Amano, H.: The evaluation
of partial reconfiguration for a multi-board FPGA system FiCsw. In: Proceedings
of the 10th International Symposium on Highly-Efficient Accelerators and Recon-
figurable Technologies, HEART 2019, pp. 15:1–15:4 (2019)

https://www.samtec.com/optics/optical-cable/mid-board/firefly
https://www.samtec.com/optics/optical-cable/mid-board/firefly

Reconfigurable Accelerator for On-Board
SAR Imaging Using the Backprojection

Algorithm

Rui P. Duarte , Helena Cruz(B) , and Horácio Neto

INESC-ID/IST-UL, Lisboa, Portugal
{rui.duarte,helena.cruz}@tecnico.ulisboa.pt, hcn@inesc-id.pt

Abstract. Synthetic Aperture Radar is a form of radar widely used
to extract information about the surface of the target. The transfor-
mation of the signals into an image is based on DSP algorithms that
perform intensive but repetitive computation over the signal data. Tra-
ditionally, an aircraft or satellite acquires the radar data streams and
sends it to be processed on a data center to produce images faster. How-
ever, there are novel applications demanding on-board signal processing
to generate images. This paper presents a novel implementation for an
on-board embedded SoC of an accelerator for the Backprojection algo-
rithm, which is the reference algorithm for producing images of SAR
sensors. The methodology used is based on a HW/SW design partition,
where the most time consuming computations are implemented in hard-
ware. The accelerator was specified in HLS, which allows to reuse the
code from the original implementation of the algorithm in software. The
accelerator performs the computations using floating-point arithmetic
to produce the same output as the original algorithm. The target SoC
device is a Zynq 7020 from Xilinx which has a dual-core ARM-A9 pro-
cessor along with a reconfigurable fabric which is used to implement the
hardware accelerator. The proposed systems outperformed the software-
only implementation in 7.7× while preserving the quality of the image
by adopting the same floating-point representations from the original
software implementation.

Keywords: FPGA · Synthetic Aperture Radar · DSP ·
Backprojection · Zynq · SoC · Reconfigurable accelerator

1 Introduction and Motivation

Remote sensing technologies such as Synthetic-Aperture Radar (SAR) have been
widely used monitor the surface of the Earth, in particular, ships and oil spills
tracking at sea, ice-caps and sea level, terrain erosion, drought and landslides,
deforestation, fires, and other types of natural disasters. The main strength of
SAR is that it operates even in the presence of clouds, smoke and rain and
without a light source, making it a very attractive method of monitoring Earth.

The original version of this chapter was revised: the missing funding
information was added. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-44534-8 30

c© Springer Nature Switzerland AG 2020, corrected publication 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, pp. 392–401, 2020.
https://doi.org/10.1007/978-3-030-44534-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_29&domain=pdf
http://orcid.org/0000-0002-7060-4745
http://orcid.org/0000-0003-2709-867X
http://orcid.org/0000-0002-3621-8322
https://doi.org/10.1007/978-3-030-44534-8_30
https://doi.org/10.1007/978-3-030-44534-8_29

Reconfigurable Accelerator for On-Board SAR Imaging 393

Fig. 1. Illustration of SAR operation and its physical parameters.

A SAR sensor can be mounted on-board flying platforms such as satellites, air-
crafts and drones. Moreover, with the advancements in the technology and sig-
nal processing methods, there are increasing business opportunities for satellites
and drones equipped with lightweight, small, and autonomous systems for on-
board processing and generation of SAR images and subsequent broadcasting
them, avoiding the time-consuming processing data at the receivers. However,
its implementation in low-power embedded systems is limited to simplified imple-
mentations of the algorithm. While they are able to reduce the processing time,
they sacrifice the image quality.

At the moment, the reference algorithm for SAR imaging is Backprojection
(BP), which computes the contribution of each reflected pulse for each pixel on
the resulting image. This process is time consuming as the projections all of
the received pulses have to be computed for all pixels in the image. Figure 1
illustrates the parameters involved in the operation of a SAR mounted on a
moving platform.

Recent radiation tests [4] on System-on-Chip (SoC) Zynq devices from Xilinx
have shown that they provided a good performance under a harsh environment,
therefore there is an increasing interest in adopting such systems on-board air-
crafts. These devices have a dual-core ARM A9 CPU along with a reconfigurable
fabric which is capable of implementing a hardware accelerator to alleviate the
computations from the CPU and speedup the overall execution time.

This work introduces a novel accelerator architecture for SAR imaging using
the Backprojection image generation algorithm and its evaluation on a SoC
device.

This paper is organized as follows. Section 2 presents the background on
BP algorithm and existing accelerators. Section 3 is dedicated to the profile
of the algorithm, which determines which parts of the implementation require
more processing time, and thus be the candidates for hardware acceleration.
Section 4 details the implementation of the hardware accelerator using High-
Level Synthesis (HLS). Section 5 presents the HW/SW system design, and its
performance and resources are discussed in Sect. 6. Section 7 concludes the paper
with the final remarks.

394 R. P. Duarte et al.

2 Background

2.1 Backprojection

The following nomenclature related to the Backprojection algorithm is adopted
in this paper:

– R - Differential range from platform to each pixel at the center of the swath.
– xk, yk, zk - Radar platform location in Cartesian coordinates.
– x, y, z - Pixel location in Cartesian coordinates.
– rc - Range to center of the swath from radar platform.
– f(x, y) - Value of each pixel (x, y).
– θk - Aperture point.
– rk - Range from pixel f(x, y) to aperture point θk.
– ω - Minimal angular velocity of wave.
– gx,y(rk, θk) - Wave reflection received at rk at θk (calculated using the linear

interpolation in Eq. 2).
– s(n) - Wave sample in the previous adjacent range bin.
– r(n) - Corresponding range to the previous adjacent bin.

As aforementioned, the BP algorithm computes the contribution of each
reflected pulse for each pixel on the resulting image. The BP algorithm takes
the following values as input: number of pulses, location of the platform for each
pulse, the carrier wave number, the radial distance between the plane and target,
the range bin resolution, the real distance between two pixels and the measured
heights. For each pixel and each pulse, the BP algorithm, performs the following
steps:

1. Computation of the distance from the platform to the pixel:

R =
√

(x − xk)2 + (y − yk)2 + (z − zk)2 − rc (1)

2. Conversion of the distance to an associated position (range) in the data set
(received echoes).

3. Obtain the samples at the computed range via linear interpolation, using
Eq. 2 [5].

gx,y(rk) = g(n) +
s(n + 1) − s(n)
r(n + 1) − r(n)

· (rk − r(n)) (2)

4. Scales the sampled value by a matched filter to form the pixel contribution.
This value is calculated using Eq. 3 [5]. dr is calculated using Eq. 1 [5].

eiω2|−→rk| = cos(2 · ω · dr) + i sin(2 · ω · dr) (3)

5. Accumulates the contribution into the pixel. The final value of each pixel is
given by Eq. 4 [5].

f(x, y) =
∑

k

gx,y(rk, θk) · ei·ω·2·|−→rk| (4)

Reconfigurable Accelerator for On-Board SAR Imaging 395

The pseudocode to compute the aforementioned steps is shown in
Algorithm 2. ku represents the wave number and is given by 2πfc

c , where fc

is the carrier frequency of the waveform and c is the speed of light, ak refers
to the position of the pixel, and vp, corresponds to the platform position. The
complex exponential eiω is equivalent to cos(ω)+i sin(ω) and, therefore, a cosine
and sine computation is implied in the calculation of each pixel, represented in
Eq. 4.

Algorithm 1. Backprojection algorithm pseudocode, from [1].
1: for all pixels k do
2: fk ← 0
3: for all pulses p do
4: R ← ||ak − vp||
5: b ← �(R − R0)/ΔR�
6: w ← �(R − R0)/ΔR� − b
7: s ← (1 − w) · g(p, b) + w · g(p, b + 1)

8: fk ← fk + s · ei·ku·R

9: end for
10: end for

2.2 FPGA Accelerators for Backprojection

There are several accelerators for the BP algorithm, however they often tar-
get High Performance Computing (HPC) systems for real-time generation of
images. The work in [3] uses OpenCL to program 16 GPUs (with 2048 cores
each), receives all signals in 17.7 s and takes 1 to produce an image. There are
also some implementations of accelerators on FPGA of variations of the BP
algorithm such as fast-BP [6] or factorized-BP [7]. Even though they perform
faster than the complete BP algorithm the image quality is degraded, there-
fore they are not useful for comparison with the proposed architecture. Previous
work on implementing the BP algorithm targeting SoC devices can be found
in [2]. However, the authors focused on acceleration by distributing the load on
the two CPU cores and introducing a lightweight software-only fault tolerance
mechanism.

3 Algorithm Profiling

The profiling of the BP algorithm running on a single core of the A9 ARM
processor of the target Zynq device was required to determine which parts of
the algorithm should be accelerated. The implementation of the BP algorithm
adopted is available in [1]. The obvious functions to be accelerated in hardware
are the square root and the sine and cosine functions from the inner loop. Nev-
ertheless, in this algorithm there is a final accumulation operation at the end of
the inner loop, which can be seen as a reduce operation, and thus a scale down
in the number of data transfers required.

396 R. P. Duarte et al.

In the profiling, an image of 512× 512 pixels was generated from 512 pulses,
with 512 samples for pulse. 512 complex floating-point samples produce a single
complex floating-point result, which results in reduction of required throughput.

Table 1 summarizes the processing times of the most time consuming math-
ematical operations in the BP algorithm. All times are in nanoseconds and were
measured for 1000 repetitions of the execution of each operation on the ARM
processor, compiled with -O3 compiler optimization.

Table 1. Execution times for the operations in the implementation of BP.

Operation Time [ns] % Execution time

Sqrt 50 1.3%

Sin+Cos 3108 84.3%

Misc 530 15.4%

Total 3688 100.0%

4 SAR Backprojection Accelerator

The accelerator targeted the most time consuming operations of the BP algo-
rithm, and was specified using Xilinx HLS. Using HLS and maintaining the
floating-point representation allows to reutilize parts of the source code and
guarantees that the images produced will have the same result as the original
implementation of the BP algorithm. The accelerator was implemented as a sin-
gle IP core, where it receives the range values and samples for 512 pulses. The
range values are double precision floating-point values whereas the samples are
complex single-precision floating-point values. The operations implemented on
the accelerator correspond to line 9 of Algorithm2.

In this specification, it is noteworthy the separation of the computations
between two loops in the HLS specification. The first loop obtains the data for
the range values from the streaming interface, computes their product to serve
as input to trigonometric functions and stores the result in local memories. The
second loop receives the pulse samples also via the streaming interface, per-
forms the complex multiplication and writes the result to the output streaming
interface. Figure 3 illustrates the sequence diagram of the relations between the
building blocks of the accelerator.

Table 2 summarizes the FPGA resources required to implement the BP accel-
erator from the specification. The HLS tool produced a circuit design capable
of operating at 100 MHz, resulting in an IP core which requires a minimum of
60 clock cycles in latency, of which 24 cycles are required by the CORDIC IP
(Fig. 2).

Reconfigurable Accelerator for On-Board SAR Imaging 397

Table 2. Estimate of resources required to implement the BP accelerator reported by
Vivado HLS.

Resource Utilization % Total on Zynq-7020

BRAM18K 2 1%

DSP48E 34 15%

LUTs 13986 26%

Fig. 2. Organization of the accelerator.

Algorithm 2. HLS accelerator specification.
1: for all pulses p do
2: input ← inStream.read()
3: R ← input.data()
4: angle ← 2.R.Ku
5: s, c ← hls :: sincos(angle)
6: mem sin[p] ← s
7: mem cos[p] ← c
8: end for
9: for all pulses p do

10: input ← inStream.read()
11: sample.re ← input.data()
12: sample.im ← input.data()
13: matched filter result ← (mem cos[p] + imem sin[p]) · sample
14: acc ← acc + matched filter result
15: outStream.write(acc) � pixel val
16: end for

398 R. P. Duarte et al.

5 HW/SW Project

The HW/SW project of the BP algorithm follows the partition created for the
accelerator of the algorithm. The accelerator was integrated by establishing a
connection to the CPU via AXI streaming interface, which is connected through
Direct Memory Access (DMA) controller. Figure 3 illustrates the Vivado project
containing the hardware blocks. On the software-side, the accelerator is used
issuing data transfers between the DMA controller and the memory.

The Listing 1.1 shows the simplified code running on the ARM A9 CPU. The
initial part of the code corresponds to the initialization of constants [1]. The loops
for all pixel computations were changed so that only the range computations are
performed in software and the rest of the algorithm in the hardware accelerator.
Moreover, the original loop which iterated all the pulse samples was removed
as they are computed by the accelerator. The interaction with the accelerator
happens through the DMA, before instructing to transfer input values of range
and sample values from the DDR to the accelerator, is programmed to wait for
the computation of a row of pixels.

Fig. 3. Hardware project design on Vivado.

Listing 1.1. Backprojection code

void Backpro ject ion () {
s a r c o n s t a n t s c a l c u l a t i o n () ;
for (iy = 0 ; iy < BP NPIX Y ; ++iy) {

const double py = (−BP NPIX Y/2.0 + 0 .5 + iy) ∗ dxdy ;
DMA Transfer (image + iy ∗ r ow o f f s e t) ; // ACCL 2 DDR image row
for (ix = 0 ; ix < BP NPIX X ; ++ix) {

// ca l cu l a t e p i x e l contr i bu t ion
DMA Transfer (range) ; // DDR 2 ACCL
DMA Transfer (samples) ; // DDR 2 ACCL

} // x
} // y

} // func

Reconfigurable Accelerator for On-Board SAR Imaging 399

6 Results and Discussion

The proposed system was implemented on a Zynq-7020 device installed on a
Pynq-Z2 from TUL. The system was tested with two images, a synthetic one
provided in the Perfect Suite [1] and a real one from the AFRL dataset, in Fig. 4.
The software was compiled with the -O3 compilation option.

Fig. 4. Synthetic SAR image from the Perfect benchmark suite (left) and real SAR
image from the AFRL dataset (right).

6.1 Processing Time

From the original algorithm profiling, it was found the algorithm required 487.5 s
to generate of a 512 × 512px image. The processing times for the computations
made by the accelerator in software, corresponding to line 9 of the pseudocode,
required 1667.3 us, whereas the same computations in the accelerator required
only 37.31 us, a reduction of 44.68×. Comparing the total processing times for a
512×512 image, between the original and the accelerated version, the accelerated
is 7.7× faster.

6.2 Hardware Resources

The resources required to implement the accelerator on the reconfigurable fabric
of the device are dominated by the Digital Signal Processing (DSP) blocks which
consume about 64% of the total available on the device. Table 3 summarizes the
resources required to implement the accelerator on the Zynq device.

6.3 Energy Consumption

The current consumption was measured using a UM24C USB power meter, con-
nected between the host computer and the Pynq-Z2 FPGA board. Figure 5 shows
the power consumption measured, which details the consumption for power-on,
configuration of the device and execution of the algorithm with the reconfigurable
accelerator. The average power consumption of the whole system is 1.796 W. The
power estimate from Vivado provides insight on the on-chip power consumption,

400 R. P. Duarte et al.

Table 3. Summary of resource utilization to implement the accelerator on a Zynq-7020.

Resource Utilization % Total on Zynq-7020

LUT 11517 21.65

BRAM 4 2.86

DSP 141 64.09

which is 1.584 W. The difference between the measurement and the estimate is
around 200 mW (12%) and is attributed to other components present on-board
which are not taken into account by Vivado. Figure 6 shows the details of the
power consumption, where 86% of power is consumed by the CPU (PS7).

The software-only implementation consumes on average 1.72 W. Even though
the system with the hardware accelerator requires more 76 mW, finishes 7.1 min
earlier than the software-only implementation. In comparison with the original
execution on the CPU, which consumed 241.5 mWh (772.2 J), the system with
the hardware accelerator requires 30.4 mWh (109,55 J), which represents 14.18%
of the total energy consumption.

Fig. 5. System current consumption during the different stages of the experiment.

Fig. 6. On-chip power consumption distributed across the different elements.

Reconfigurable Accelerator for On-Board SAR Imaging 401

7 Conclusions

The work presented proposes a novel HW/SW implementation of the BP algo-
rithm on an embedded SoC platform for on-board processing of SAR imaging.
The creation of the accelerator was facilitated by the adoption of HLS to migrate
sets of arithmetic operations from software to hardware. The proposed architec-
ture was able to achieve a speedup of 7.7× over the software-only implementation
while preserving the quality of the image. Future work will focus on moving other
operation of the BP algorithm into hardware to further improve the performance
of the accelerator.

Acknowledgement. This work was supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) with references UID/CEC/50021/2019
and PTDC/EEI-HAC/31819/2017 (SARRROCA). HC would like to acknowl-
edge Fundação para a Ciência e a Tecnologia for the support through grant
SFRH/BD/144133/2019.

References

1. Barker, K., et al.: PERFECT (Power Efficiency Revolution For Embedded Com-
puting Technologies) Benchmark Suite Manual. Pacific Northwest National Labo-
ratory and Georgia Tech Research Institute, December 2013. http://hpc.pnnl.gov/
projects/PERFECT/

2. Cruz, H., Duarte, R.P., Neto, H.: Fault-tolerant architecture for on-board dual-core
synthetic-aperture radar imaging. In: Hochberger, C., Nelson, B., Koch, A., Woods,
R., Diniz, P. (eds.) ARC 2019. LNCS, vol. 11444, pp. 3–16. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17227-5 1

3. Gocho, M., Oishi, N., Ozaki, A.: Distributed parallel backprojection for real-time
stripmap SAR imaging on GPU clusters. In: Proceedings - IEEE International Con-
ference on Cluster Computing, ICCC 2017, September, pp. 619–620 (2017). https://
doi.org/10.1109/CLUSTER.2017.64

4. Lentaris, G., et al.: High-performance embedded computing in space: evaluation of
platforms for vision-based navigation. J. Aerosp. Inf. Syst. 15(4), 178–192 (2018).
https://doi.org/10.2514/1.I010555

5. Pritsker, D.: Efficient global back-projection on an FPGA. In: 2015 IEEE
Radar Conference (RadarCon), pp. 0204–0209, May 2015. https://doi.org/10.1109/
RADAR.2015.7130996

6. Song, X., Yu, W.: Processing video-SAR data with the fast backprojection method.
IEEE Trans. Aerosp. Electron. Syst. 52(6), 2838–2848 (2016). https://doi.org/10.
1109/TAES.2016.150581

7. Wielage, M., Cholewa, F., Riggers, C., Pirsch, P., Blume, H.: Parallelization strate-
gies for fast factorized backprojection SAR on embedded multi-core architectures.
In: 2017 IEEE International Conference on Microwaves, Antennas, Communications
and Electronic Systems (COMCAS), pp. 1–6. IEEE, November 2017. https://doi.
org/10.1109/COMCAS.2017.8244770

http://hpc.pnnl.gov/projects/PERFECT/
http://hpc.pnnl.gov/projects/PERFECT/
https://doi.org/10.1007/978-3-030-17227-5_1
https://doi.org/10.1109/CLUSTER.2017.64
https://doi.org/10.1109/CLUSTER.2017.64
https://doi.org/10.2514/1.I010555
https://doi.org/10.1109/RADAR.2015.7130996
https://doi.org/10.1109/RADAR.2015.7130996
https://doi.org/10.1109/TAES.2016.150581
https://doi.org/10.1109/TAES.2016.150581
https://doi.org/10.1109/COMCAS.2017.8244770
https://doi.org/10.1109/COMCAS.2017.8244770

Correction to: Reconfigurable Accelerator
for On-Board SAR Imaging Using
the Backprojection Algorithm

Rui P. Duarte , Helena Cruz , and Horácio Neto

Correction to:
Chapter “Reconfigurable Accelerator for On-Board SAR
Imaging Using the Backprojection Algorithm” in:
F. Rincón et al. (Eds.): Applied Reconfigurable Computing,
LNCS 12083, https://doi.org/10.1007/978-3-030-44534-8_29

The funding information was missing from the originally published chapter. This was
corrected and the funding information was added.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-44534-8_29

© Springer Nature Switzerland AG 2020
F. Rincón et al. (Eds.): ARC 2020, LNCS 12083, p. C1, 2020.
https://doi.org/10.1007/978-3-030-44534-8_30

http://orcid.org/0000-0002-7060-4745
http://orcid.org/0000-0003-2709-867X
http://orcid.org/0000-0002-3621-8322
https://doi.org/10.1007/978-3-030-44534-8_29
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44534-8_30&domain=pdf
https://doi.org/10.1007/978-3-030-44534-8_29
https://doi.org/10.1007/978-3-030-44534-8_30

Author Index

Akgün, Gökhan 73, 97, 178
Ali, Karim M. A. 151
Ali, Muhammad 193
Alouani, Ihsen 151
Amano, Hideharu 376
Amini Rad, Pedram 193
Ansaloni, Giovanni 14

Bacchus, Pascal 121
Ben Abdelhamid, Riadh 298
Ben Ahmed, Akram 376
Bouganis, Christos-Savvas 330
Bozzoli, Ludovica 84
Brandalero, Marcelo 211
Broneske, David 30

Charitopoulos, George 271
Chu, Ringo S. W. 3
Cruz, Helena 392

Dadlani, Aresh 361
Dang, Viet B. 247
de la Torre, Eduardo 45, 136
de Sousa, José T. 288
Drewes, Anna 30
Du, Changdao 232
Duarte, Rui P. 392
Dufrechou, Ernesto 258

El Cadi, Abdessamad Ait 151
Elshimy, Mahmoud 97
Ezzatti, Pablo 258

Fan, Hongxiang 3
Favaro, Federico 258
Fedorov, Dmitriy 361
Ferianc, Martin 3
Ferres, Bruno 61
Firmansyah, Iman 232

Gaj, Kris 247
Ghany, Mohamed A. Abd El 97

Göhringer, Diana 73, 97, 178, 193
Guettatfi, Zakarya 108
Gurumurthy, Bala 30

Hebaish, Marawan 97
Hernandez, Hector Gerardo Munoz 211
Hübner, Michael 211

Ikeda, Taiga 345

Joseph, Jan Moritz 30

Kalms, Lester 178
Kaufmann, Paul 108
Khan, Habib ul Hasan 73, 97
Kindratenko, Volodymyr 221
Komendantskaya, Ekaterina 121

Lima, David 136
Liyanage, Kisaru 166
Lopes, João D. 288
Luk, Wayne 3

Mahmood, Safdar 211
Mário, Valter 288
Misra, Ashish 221
Mondigo, Antoniette 314
Motomura, Masato 345
Muller, Olivier 61

Nakamura, Atsuyoshi 345
Neto, Horácio 392
Nguyen, Duc Tri 247
Niar, Smail 151

Oliver, Juan P. 258
Ortiz, Alberto 45
Otero, Andrés 45
Ouarnoughi, Hamza 151

Perera, Thilina 166
Pionteck, Thilo 30

Platzner, Marco 108
Pnevmatikatos, Dionisios N. 271
Podlubne, Ariel 73
Pozzi, Laura 14
Prakash, Alok 166

Rodríguez, Alfonso 45
Rousseau, Frédéric 61

Saake, Gunter 30
Sakurada, Kento 345
Sano, Kentaro 314
Scarabottolo, Ilaria 14
Shah, Kushagra 166
Srikanthan, Thambipillai 166
Stano, Jakub 3
Sterpone, Luca 84
Stewart, Robert 121
Suriano, Leonardo 136

Takamaeda-Yamazaki, Shinya 345
Takizawa, Hiroyuki 314

Ueno, Tomohiro 314
Ullah, M. M. Imdad 376

Véstias, Mário 288
Vipin, Kizheppatt 361

Wijesundera, Deshya 166

Yamaguchi, Yoshiki 232, 298
Yu, Zhewen 330

Zamacola, Rafael 45
Zhanbolatov, Arshyn 361

404 Author Index

	Preface
	Organization
	Contents

	Design Methods and Tools
	Improving Performance Estimation for FPGA-Based Accelerators for Convolutional Neural Networks
	1 Introduction
	2 Background
	3 Gaussian Process with an Analytic Mean Function
	4 Accelerator and Dataset
	4.1 Accelerator's Architecture
	4.2 Dataset

	5 Evaluation
	6 Conclusion and Future Work
	References

	Judiciously Spreading Approximation Among Arithmetic Components with Top-Down Inexact Hardware Design
	1 Introduction
	2 State of the Art
	3 Methodology
	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Combinatorial Designs
	4.3 Sequential Design

	5 Conclusion
	References

	Optimising Operator Sets for Analytical Database Processing on FPGAs
	1 Introduction
	2 Related Work
	3 Database Primitives
	4 Optimisation Targets
	4.1 Hardware Operator Granularity
	4.2 Matching of Composed Operators

	5 Results
	5.1 Evaluation Setup
	5.2 Optimisation Process
	5.3 Discussion

	6 Conclusion
	References

	Automated Toolchain for Enhanced Productivity in Reconfigurable Multi-accelerator Systems
	1 Introduction
	2 Technical Background
	2.1 Basic Concepts on Reconfiguration
	2.2 IMPRESS
	2.3 ARTICo3

	3 Enhancing Productivity with Advanced Reconfiguration Features
	4 Integrating IMPRESS in ARTICo3
	4.1 Modifications in ARTICo3 Design Flow
	4.2 Run-Time Reconfiguration Management of Relocatable Bitstreams

	5 Model-Based Design of Hardware Accelerators
	6 Experimental Results
	7 Conclusions
	References

	Chisel Usecase: Designing General Matrix Multiply for FPGA
	1 Introduction
	2 High Level Methodology
	2.1 High Level Description
	2.2 From Application to Architecture

	3 Methodology Usecase
	4 Results
	4.1 Experimental Setup
	4.2 Control of Generated Hardware
	4.3 Architecture Exploration: Dimensioning the Application
	4.4 Existing Solutions
	4.5 Analysis and Contribution

	5 Conclusion
	References

	Cycle-Accurate Debugging of Embedded Designs Using Recurrent Neural Networks
	1 Introduction
	2 Related Work
	3 Cycle-Accurate Debugging by RNN
	3.1 Design Methodology
	3.2 RNN Implementation

	4 Obstacle Avoidance as Use Case
	5 Results
	5.1 Resource Utilization
	5.2 Debugging Through RNNs
	5.3 Training Dataset Requirement

	6 Conclusions
	References

	Soft-Error Analysis of Self-reconfiguration Controllers for Safety Critical Dynamically Reconfigurable FPGAs
	1 Introduction
	2 Background and Related Works
	2.1 Internal Configuration Access Port and Internal Configuration Controller
	2.2 Dynamically Reconfigurable Processing Module
	2.3 SRAM-Based FPGAs Radiation Sensitivity and Evaluation Methodologies

	3 Evaluation Framework
	3.1 DRPM Setup
	3.2 Fault Injection Platform

	4 Experimental Results
	4.1 SEUs Injection Campaign Results – Avionic Environment
	4.2 MBUs Injection Campaign Results – Space Environment
	4.3 Discussion

	5 Conclusions and Future Works
	References

	SysIDLib: A High-Level Synthesis FPGA Library for Online System Identification
	1 Introduction
	2 Related Work
	3 The SysIDLib Components
	3.1 LMS and RLS Algorithm
	3.2 Extended Kalman Filter
	3.3 Hardware Design of the SysIDLib Components

	4 Evaluation
	4.1 Analysis of the Accuracy and Performance Using the SysIDLib Library
	4.2 Analysis of the Device Utilization Using the SysIDLib Library
	4.3 Parameter Estimation of the Inverted Pendulum Using EKF

	5 Conclusion
	References

	Optimal and Greedy Heuristic Approaches for Scheduling and Mapping of Hardware Tasks to Reconfigurable Computing Devices
	1 Introduction
	2 Related Work
	3 The Area Model
	4 Optimal Techniques for Slot and Layout Creation
	4.1 Optimal Slot Creation and Task Assignment Approach
	4.2 Optimal Layout Generation Approach

	5 Evaluation
	5.1 Comparing Slot Set and Layout Sizes
	5.2 The Maximum Utilization Experiments

	6 Conclusion
	References

	Design Space Exploration and Estimation Techniques
	Accuracy, Training Time and Hardware Efficiency Trade-Offs for Quantized Neural Networks on FPGAs
	1 Introduction
	2 Background: FINN
	2.1 FINN Workflow
	2.2 Quantization
	2.3 Quantization for Training in FINN

	3 Evaluation
	3.1 Neural Network Topology
	3.2 Measurements Platform
	3.3 Absolute Accuracy Performance
	3.4 Absolute Resource Utilisation Performance
	3.5 Relative Quantization Performance
	3.6 Discussion

	4 Conclusion
	References

	Accelerating a Classic 3D Video Game on Heterogeneous Reconfigurable MPSoCs
	1 Introduction
	2 Background
	3 Tools
	3.1 DOOM
	3.2 DataFlow Model of Computation
	3.3 SDSoC

	4 Procedure Description
	5 Results
	6 Conclusion
	References

	Cross-layer CNN Approximations for Hardware Implementation
	1 Introduction
	2 Related Works
	3 Hardware Architecture
	4 CNN Approximations
	4.1 Pruning
	4.2 Quantization

	5 Experimental Results
	6 Conclusion
	References

	Technique for Vendor and Device Agnostic Hardware Area-Time Estimation
	1 Introduction
	2 Hardware Area-Time Estimation
	3 Methodology
	3.1 C to LLVM IR Conversion
	3.2 Basic Block Wrapper
	3.3 RTL Conversion
	3.4 Synthesis on FPGA Tools
	3.5 Area-Time Extraction

	4 Results and Discussion
	5 Conclusion
	References

	Resource Efficient Dynamic Voltage and Frequency Scaling on Xilinx FPGAs
	1 Introduction
	2 Related Work
	2.1 Power-Saving Techniques on Xilinx FPGAs
	2.2 Power-Saving with Operating Systems
	2.3 Feature Detection Application

	3 Proposed Methodology
	3.1 Platform Description of Xilinx Zynq-7000 SoCs and UltraScale+ MPSoCs
	3.2 Voltage Scaling on Xilinx Zynq-7000 and UltraScale+
	3.3 Frequency Scaling on Xilinx Zynq-7000 and UltraScale+
	3.4 Power-Aware Real-Time Architecture

	4 Description of the Use Case
	4.1 Hardware Architecture
	4.2 Application Description
	4.3 Software Architecture

	5 Evaluation
	6 Conclusion
	References

	RISC-V Based MPSoC Design Exploration for FPGAs: Area, Power and Performance
	1 Introduction
	2 Related Work
	3 Concept and Implementation
	3.1 Test Applications
	3.2 RISC-V as Processing Element (PE)
	3.3 Network-on-Chip (NoC)
	3.4 Hardware/Software Co-design
	3.5 Software Optimizations
	3.6 Power Estimation in Xilinx Zynq Ultrascale+ MPSoC ZCU102 (XCZU9EG)

	4 Evaluation
	4.1 Resource Utilization
	4.2 Energy Estimation
	4.3 Performance

	5 Conclusion and Future Work
	References

	High-Level Synthesis
	A Modular Software Library for Effective High Level Synthesis of Convolutional Neural Networks
	1 Introduction
	2 Background
	3 Related Work
	4 Design Proposal
	5 Evaluation
	6 Conclusion
	6.1 Future Work

	References

	HLS-Based Acceleration Framework for Deep Convolutional Neural Networks
	1 Introduction
	2 Related Work
	3 Proposed Design
	3.1 Architecture Design
	3.2 Verification Setup and Executable Setup

	4 Results
	5 Conclusion
	References

	FPGA-Based Computational Fluid Dynamics Simulation Architecture via High-Level Synthesis Design Method
	1 Introduction
	2 Background
	2.1 Lattice Boltzmann Method
	2.2 Related Works

	3 Implementation
	3.1 Parallelization
	3.2 Data Reuse Buffer Design Analysis
	3.3 Simulation Architecture Design
	3.4 Performance Model

	4 Results
	4.1 Experimental Setup
	4.2 FPGA Performance
	4.3 Performance Comparison

	5 Conclusion
	References

	High-Level Synthesis in Implementing and Benchmarking Number Theoretic Transform in Lattice-Based Post-Quantum Cryptography Using Software/Hardware Codesign
	1 Introduction
	2 Background
	2.1 Number Theoretic Transform

	3 Previous Work
	4 Block Diagram Versus Space Exploration
	5 Hardware Design
	5.1 NTT Top Level Design
	5.2 Number Theoretic Transform

	6 Results
	7 Conclusions
	References

	Exploring FPGA Optimizations to Compute Sparse Numerical Linear Algebra Kernels
	1 Introduction
	2 Work Context
	3 Proposal
	3.1 NDRange Kernels
	3.2 Single Work Item Kernels

	4 Experimental Evaluation
	5 Final Remarks and Future Work
	References

	Architectures
	A CGRA Definition Framework for Dataflow Applications
	1 Introduction
	2 Related Work
	3 Mixed-CGRA Definition Framework
	3.1 Target Architecture
	3.2 Cell Structure and Functionality Definition (CSFD) Phase
	3.3 Node Mapping
	3.4 Communication Infrastructure
	3.5 Area and Energy Calculation
	3.6 Discussion

	4 Experimental Results
	4.1 MC-DeF Results
	4.2 Comparisons

	5 Conclusion
	References

	Implementing CNNs Using a Linear Array of Full Mesh CGRAs
	1 Introduction
	2 The Deep Versat Architecture
	3 The RV32 Deep Versat System
	4 Pre-silicon Configurability
	5 The Deep Versat API
	6 The CNN Application: Handwritten Digit Recognition
	7 Experimental Results
	8 Conclusions
	References

	A Block-Based Systolic Array on an HBM2 FPGA for DNA Sequence Alignment
	1 Introduction
	2 The Smith-Waterman Algorithm
	3 State of the Art
	4 Implementation Details
	4.1 A Block-Based Systolic Array Approach
	4.2 Architectural and Micro-architectural Level Optimizations

	5 Implementation Results
	6 Discussion
	7 Conclusion
	References

	Comparison of Direct and Indirect Networks for High-Performance FPGA Clusters
	1 Introduction
	2 Related Work
	3 Design and Architecture
	3.1 Direct and Indirect Networks for FPGA Clusters
	3.2 Ethernet-Based Connection-Oriented Links and Protocol
	3.3 Performance Model

	4 Evaluation
	4.1 Implementation
	4.2 Communication Time and Effective Network Bandwidth
	4.3 Performance Estimation of Stream Computing on an Indirect Network

	5 Conclusions
	References

	A Parameterisable FPGA-Tailored Architecture for YOLOv3-Tiny
	1 Introduction
	2 Background
	2.1 YOLOv3-Tiny Network
	2.2 Mapping YOLO-Based Networks to FPGAs
	2.3 Challenges and Target

	3 Proposed Architecture
	3.1 System Overview
	3.2 Module Design
	3.3 Network Mapping to FPGA Hardware Accelerator
	3.4 System Processing Flow

	4 Latency and Resource Estimations
	4.1 Hardware Latency Model
	4.2 Software Latency Model
	4.3 Resource Estimation

	5 Design Space Exploration
	6 Wordlength Optimisation
	7 Evaluation
	7.1 Performance Model Evaluation
	7.2 Comparison with CPU and GPU
	7.3 Comparison with Existing FPGA Implementations

	8 Conclusion
	References

	Hardware/Algorithm Co-optimization for Fully-Parallelized Compact Decision Tree Ensembles on FPGAs
	1 Introduction
	2 Random Forest
	2.1 Decision Tree and Tree Ensemble
	2.2 Hardware Implementation of Random Forest
	2.3 Algorithm for Reducing Branching Conditions

	3 Exploration of Hardware-Aware Optimizations
	3.1 Quantize Bit Precision
	3.2 Reducing Branch Conditions

	4 Experiments
	5 Conclusion
	References

	Applications
	StocNoC: Accelerating Stochastic Models Through Reconfigurable Network on Chip Architectures
	1 Introduction
	2 Background and Related Works
	3 Architecture
	3.1 Packet Formats
	3.2 Switch
	3.3 Network Interface (NI)
	3.4 Processing Element (PE)
	3.5 Simulation Steps

	4 Results and Discussion
	5 Conclusion and Future Work
	References

	Implementation of FM-Index Based Pattern Search on a Multi-FPGA System
	1 Introduction
	2 BWT and FM-Index Data Structure
	3 Pattern Search Using FM-Index
	3.1 Search Method (Exist)
	3.2 Search Method (Not-Exist)

	4 FiC System
	4.1 FiC Prototype Overview
	4.2 FiC-SW Prototype Board

	5 Single Board Implementation
	5.1 FM-Index Search Module
	5.2 Implementation Results

	6 Multi-board Implementation
	6.1 The FiC I/O Communication
	6.2 FIC-IO Emulation
	6.3 Performance Evaluation on Multiple FiC Boards

	7 Related Work
	8 Conclusion
	References

	Reconfigurable Accelerator for On-Board SAR Imaging Using the Backprojection Algorithm
	1 Introduction and Motivation
	2 Background
	2.1 Backprojection
	2.2 FPGA Accelerators for Backprojection

	3 Algorithm Profiling
	4 SAR Backprojection Accelerator
	5 HW/SW Project
	6 Results and Discussion
	6.1 Processing Time
	6.2 Hardware Resources
	6.3 Energy Consumption

	7 Conclusions
	References

	Correction to: Reconfigurable Accelerator for On-Board SAR Imaging Using the Backprojection Algorithm
	Correction to: Chapter “Reconfigurable Accelerator for On-Board SAR Imaging Using the Backprojection Algorithm” in: F. Rincón et al. (Eds.): Applied Reconfigurable Computing, LNCS 12083, https://doi.org/10.1007/978-3-030-44534-8_29

	Author Index

