
Disambiguating Requirements Through
Syntax-Driven Semantic Analysis

of Information Types

Mitra Bokaei Hosseini1(B), Rocky Slavin2, Travis Breaux3, Xiaoyin Wang2,
and Jianwei Niu2

1 St. Mary’s University, San Antonio, TX, USA
mbokaeihossein@stmarytx.edu

2 University of Texas at San Antonio, San Antonio, TX, USA
{rocky.slavin,xiaoyin.wang,jianwei.niu}@utsa.edu

3 Carnegie Mellon University, Pittsburgh, PA, USA
tdbreaux@andrew.cmu.edu

Abstract. [Context and motivation] Several state laws and app mar-
kets, such as Google Play, require the disclosure of app data practices
to users. These data practices constitute critical privacy requirements
statements, since they underpin the app’s functionality while describ-
ing how various personal information types are collected, used, and with
whom they are shared. [Question/Problem] When such statements con-
tain abstract terminology referring to information types (e.g., “we collect
your device information”), the statements can become ambiguous and
thus reduce shared understanding among app developers, policy writers
and users. [Principle Ideas/Results] To overcome this obstacle, we pro-
pose a syntax-driven method to infer semantic relations from a given
information type. We use the inferred relations from a set of informa-
tion types (i.e. lexicon) to populate a partial ontology. The ontology is a
knowledge graph that can be used to guide requirements authors in the
selection of the most appropriate information type terms. [Contributions]
Our method employs a shallow typology to categorize individual words
in an information type, which are then used to discharge production rules
in a context-free grammar (CFG). The CFG is augmented with seman-
tic attachments that are used to generate the semantic relations. This
method is evaluated on 1,853 unique information types from 30 privacy
policies to yield 0.99 precision and 0.91 recall when compared to human
interpretation of the same information types.

Keywords: Privacy policy · Abstraction · Ontology

1 Introduction

Mobile and web application (app) companies manage data practice requirements
concerning information collection, use, and sharing. These requirements are com-
municated to users through privacy policies [1,18]. When describing data prac-
tices, privacy policies often use vague, high-level terms with unclear conditions
c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 97–115, 2020.
https://doi.org/10.1007/978-3-030-44429-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_7

98 M. Bokaei Hosseini et al.

to generalize a wide range of information types [29]. To be comprehensive, the
language used in these policies tends to be ambiguous, which consequently leads
to multiple, unwanted interpretations [25]. Ambiguity can also reduce the shared
understanding among app developers, policy writers, and regulators who need
to support privacy compliance and data transparency [7]. Such misunderstand-
ing has consequences, such as the recent $5 billion settlement of Federal Trade
Commission with Facebook [16]. This penalty arose from poor data practices
resulting in leaking the personal information of 87 million users to third parties.

To ensure data transparency and compliance, methods have been proposed
to analyze data practices in privacy policies. For example, Breaux et al. formal-
ized data practice requirements from privacy policies using Description Logic [6],
to automatically detect conflicting requirements across interacting services [8].
Tracing privacy requirements across policies can enhance developers’ under-
standing of third-parties’ data practices and comply with legal requirements,
such as General Data Protection Regulation (GDPR), Articles 13.1 and 14.12.
Other researchers have proposed techniques to trace requirements from privacy
policies to app code using lookup tables, platform permissions, and information
flow analysis [28,33]. These methods were based on a manually-compiled lexicon
(i.e. set of information types), wherein information types were grouped into cat-
egories tagged by keywords, such as “location”, “contact”, or “identifier” [33].
Coarse categorization can lead to inaccuracies, e.g., the phrase “WiFi SSID”
can be construed to be a type of location information [33], perhaps because the
corresponding technology can be used to infer device locations; however, this
type does not constitute a location.

Hypernymy occurs when a more abstract or general information type is used
instead of a more specific information type (e.g., the broader term “device infor-
mation” used in place of “mobile device identifier”) [3]. Hypernymy permits
multiple interpretations of words and phrases, which leads to ambiguity and
inconsistency in traceability.

Fig. 1. Ontology example

Consider the following snippet from EA Games’ privacy policy1 stating, “We
collect other information automatically [. . .], including: [. . .]; Mobile and other
1 https://www.ea.com/legal/privacy-policy.

https://www.ea.com/legal/privacy-policy

Disambiguiating Requirements 99

hardware or device identifiers; Browser information, including your browser type
and the language you prefer; [. . .]; Information about your device, hardware and
software, such as your hardware settings and components [. . .]”. In this example,
an analyst may make several inferences: (1) that “mobile identifiers”, “hardware
identifiers”, and “device identifiers” are all kinds of “identifiers” that EA collects;
(2) that “browser type” and “browser language” are both kinds of “browser
information”; (3) “hardware information” and “software information” can be
inferred as specific kinds of “device information”; and (4) that “hardware settings
and components” are a specific kind of “hardware information”. The analyst
can infer such hypernymy relationships between information types intuitively by
applying their domain knowledge and experience. An analyst who documents
these inferences could create a reusable ontology, shown in Fig. 1, to illustrate
each term and it’s semantic relationships to other terms via hypernymy.

Ontologies are useful in dealing with requirements that are presented in
potentially abstract human language. Without an ontology, analysts may be
inconsistent in their interpretations by inconsistently applying heuristics in an ad
hoc manner. In contrast, ontologies enable precise, reusable and semi-automated
analysis of requirements [8,9,31,32].

Prior work on ontology construction has relied on manual comparison of
information types [31], which is tedious and still susceptible to human error due
to fatigue and gaps in analyst domain knowledge. Furthermore, the language use
evolves, requiring ontology reconstruction. Two recent studies employed regular
expressions that were hand-crafted from individual policy statements to extract
hypernymy [12,21]. These approaches require a new analysis for each new policy,
which does not generalize well.

To summarize, the research has shown the significance of utilizing ontologies
in disambiguating vague and abstract requirements [8,9,31,32]. However, the
current ontology construction methods rely on manual analysis, lack scalability
or validation on information types from various domains (e.g., app categories
and data practices). To address these issues and enable easier, more consistent
ontology construction, we propose a syntax-driven semantic analysis method
to construct an ontology. This method is evaluated on information types from
six domains of mobile and web-based privacy requirements considering various
data practices. The contributions of this paper are two-fold: (1) a syntax-driven
method to infer semantic relations from a given information type. This method
is based on the principle of compositionality, which states the meaning of each
phrase can be derived from the meaning of its constituents [15,23]. Using this
principle, we developed a context-free grammar (CFG) augmented with semantic
attachments [2] over typed constituents of an information type to infer seman-
tic relations between the information type and its constituents. (2) an empiri-
cal evaluation of our syntax-driven semantic analysis method on sample set of
1,138 information types from 30 mobile and web-based apps’ requirements in six
domains, including shopping, telecommunication, social networks, employment,
health, and news.

100 M. Bokaei Hosseini et al.

This paper is organized as follows. In Sects. 2 and 3, we discuss important
terminology and related work. In Sect. 4 we introduce our method. In Sect. 5, we
present the evaluation and results, followed by threats to validity and concluding
remarks in Sects. 6 and 7.

2 Background

In this section, we introduce terminology, datasets, and research method used
throughout this paper.

Hypernymy : a relationship between two noun phrases where the meaning of one
(hypernym) is more generic than the other (hyponym), e.g., “device information”
is a hypernym of “device ID”.

Meronymy : a part-whole relationship between two noun phrases, e.g., “device
ID” is a part of “device”.

Synonymy : a relationship between two noun phrases with a similar meaning or
abbreviation, e.g., “IP” is synonym of “Internet protocol”.

Lexicon: a collection or list of noun phrases that are information type names.

Ontology : an arrangement of concept names in a graph in which terms are con-
nected via edges corresponding to semantic relations, such as hypernymy and
synonymy, among others [24]. In this paper, we only consider information type
names.

Morphological Variant : a concept name that is a variant of a common lexeme,
e.g., “device ID” is a morphological variant of “device”.

In the definitions above, we assume that noun phrases expressed in text
have a corresponding concept and that the text describes one name for the
concept. This relationship between the phrase and concept is also arbitrary,
as noted by Saussure in his theory of the signifier, which is the symbol that
represents a meaning, and the signified, which is the concept or meaning denoted
by the symbol [11]. Peirce defines a similar relationship between sign-vehicles and
objects, respectively [20].

Context-free Grammar : a set of production rules, expressing the way that sym-
bols of a language can be grouped and ordered together [24].

Semantic Attachment : each production rule in a grammar is mapped to its
semantic counterpart, called semantic attachment [2].

Lexicon L1: a previously published lexicon containing 351 platform-related infor-
mation types (e.g., “IP address”) defined as “any information that the app or
another party accesses through the mobile platform that is not unique to the
app.” The information types were extracted from collection data practices of 50
mobile app privacy policies [21,31].

Lexicon L2: a previously published lexicon containing 1,853 information types
related to any data collection, use, retention, and sharing practices, extracted

Disambiguiating Requirements 101

from 30 mobile and web app privacy policies across six domains (shopping,
telecommunication, social networks, employment, health, and news) [12].

Grounded Theory : a qualitative inquiry approach that involves applying codes
to data through coding cycles to develop a theory grounded in the data [30].
We describe three applications [10] in this paper: (1) codes applied to phrases in
Lexicon L1 to construct a context-free grammar; (2) memo-writing to capture
results from applying the grammar and its semantic attachments to infer rela-
tions from L1; and (3) theoretical sampling to test the proposed method on a
sample set of information types in lexicon L2.

3 Related Work

Lexicons play an important role in reducing ambiguity and improving the qual-
ity of specifications [17]. Boyd et al. proposed to reduce ambiguity in controlled
natural languages by optimally constraining lexicons using term replaceability
[5]. Our proposed method improves lexicon development through automation to
account for discovering new, previously unseen terms. By incorporating seman-
tic relationships between terms, a lexicon can be expanded into an ontology.
Breitman and do Prado Leite describe how ontologies can be used to analyze
web application requirements [9]. Breaux et al. use an ontology to identify con-
flicting requirements across vendors in a multi-stakeholder data supply chain [8].
Their proposed ontology was formalized for three apps (i.e., Facebook, Zynga,
and AOL) and contains hierarchies for actors roles, information types, and pur-
poses. Their work motivates the use of ontologies in requirements analysis, yet
relies on a small set of policies and has not been applied at scale.

Oltramari et al. propose using a formal ontology to specify privacy-related
data practices [27]. The ontology is manually populated with practice categories,
wherein each practice has properties, including information type. While the
ontology formalizes natural language privacy requirements, there are no seman-
tic relations formalized among information types, thus the ontology does not
encode hypernymy.

Zimmeck et al. proposed an approach to identify the misalignments between
data practices expressed in privacy requirements and mobile app code [33]. The
approach uses a bag-of-words for three information types: “device ID”, “loca-
tion”, and “contact information”. For example, “IP address” is contained in
the bag-of-words associated with device ID. Without an ontology, this approach
cannot distinguish between persistent and non-persistent types, which afford
different degrees of privacy risk to users.

Slavin et al. identify app code that is inconsistent with privacy policies using
a manually constructed ontology [22,31]. The approach overcomes the limitation
of Zimmeck et al. [33] and exemplifies the efficacy of ontologies for requirements
traceability. However, it is costly and lacks scalability due to: (1) the time spent
by analysts to compare information types, and (2) errors generated by analysts
during comparison [22].

102 M. Bokaei Hosseini et al.

Hosseini et al. [21] proposed 26 regular expression patterns to parse the infor-
mation types in lexicon L1 (see Sect. 2) and to infer semantic relations based on
their syntax. The discovered patterns fail to cover all the information types in
lexicon L1 and the approach requires extending the pattern set for new policies.
To address this problem, we propose a context-free grammar to formally infer
all the information types in L1 with regard to pre-defined inference heuristics
that are policy-independent.

Lexical ontologies, such as WordNet, can be used in requirements analysis.
WordNet contains English words grouped into nouns, verbs, adjectives, adverbs,
and function words [13,26]. Within each category, the words are organized by
their semantic relations, including hypernymy, meronymy, and synonymy [13].
However, only 14% of information types from a privacy policy lexicon [22] are
found in WordNet, mainly because the lexicon is populated with multi-word,
domain-specific phrases. Therefore, finding an information type can be a chal-
lenging task for requirement analysts. We aim to address this limitation and
facilitate automated analysis of data requirements.

4 Ontology Construction Method

Figure 2 presents our method overview given a privacy policy lexicon. This figure
is summarized as follows: in step 1, information types in a lexicon are pre-
processed and reduced; in step 2, an analyst manually assigns semantic roles
to the words in each reduced information type, a step that is linear in effort
in the size of the lexicon; in step 3, a context-free grammar (CFG) and its
semantic attachments are used to automatically infer morphological variants
and candidate ontological relations.

Fig. 2. Ontology construction method overview

The production rules that comprise the CFG and that are introduced in
this paper are used to formalize and analyze the syntax of a given information
type. To infer semantic relations, we implement the rule-to-rule hypothesis [2] by
mapping each production rule in the CFG to its semantic counterpart, presented
using λ-calculus.

Disambiguiating Requirements 103

4.1 Lexicon Reduction

In step 1, the information types from the input lexicon are reduced as follows:
(1) plural nouns are changed to singular nouns, e.g., “peripherals” is reduced to
“peripheral”; (2) possessives are changed to non-possessive form, e.g., “device’s
information” is reduced to “device information”; and (3) suffixes “-related”,
“-based”, and “-specific” are removed, e.g., “device-related” is reduced to
“device”;

4.2 Semantic Role Tags

Given the reduced lexicon as input, step 2 consists of tagging each word in a
phrase with one of five semantic roles: modifier (m), which describe the quality
of a head word, such as “mobile” and “personal”; thing (t), which is a concept
that has logical boundaries and can be composed of other things; event (e),
which describe action performances, such as “usage”, “viewing”, and “clicks”;
agent (a), which describe actors who perform actions or possess things; property
(p), which describe the functional feature of an agent, place or thing such as
“date”, “name”, “height”; and (x) which is an abstract tag indicating any general
category of information, including “information”, “data”, and “details,” among
others. In an ontology, the concept that corresponds to x (e.g., “information”) is
the most general, inclusive concept in the hierarchy [21]. The roles are the result
of grounded analysis on lexicon L1 conducted by Hosseini et al. [21].

Part-of-speech (POS) is commonly used to tag natural language phrases and
sentences [24]. event (e) words, for example, often correspond to noun-forms of
verbs with special English suffixes (e.g., “usage” is the noun form of “use” with
the suffix “-age”), and things (t) and actors (a) are frequently nouns. However,
the analysis of lexicon L1 shows that only 22% of tagged sequences can be
identified using POS and English suffixes [21]. Therefore, we rely on manual
tagging of words using five semantic roles by two analysts. The effort required
for this task is linear in the size of lexicon.

The information type tagging is expressed as a continuous series of letters
that correspond to the semantic roles. Figure 3 shows an example informa-
tion type, “mobile device identifier” that is decomposed into the atomic words:
“mobile”, “device”, and “identifier”, and presented with tag sequence mtp. The
intuition behind step 2 in the overall approach is based on the observation that
information types are frequently variants of a common lexeme.

Fig. 3. Example of lexicon phrase, tokenized and tagged

104 M. Bokaei Hosseini et al.

4.3 Syntactic Analysis of Information Types Using Context-Free
Grammar

A context-free grammar (CFG) is a quadruple G = 〈N,V,R, S〉, where N , V ,
and R are the sets of non-terminals, terminals, productions, respectively and
S ∈ N is the designated start symbol.

Step 3 (Fig. 2) begins by processing the tagged information types from the
reduced lexicon using the CFG in Table 1. The CFG represents the antecedent
and subsequent tags used to infer morphological variants from a given informa-
tion type. The grammar is yielded by applying grounded analysis to the tag
sequences of all information types in lexicon L1. Notably, the grammar distin-
guishes between four kinds of tag sub-sequences: (1) a type that is modified
by a modifier, called Modified1 ; (2) a type that is modified by an agent (e.g.,
“user” or “company”) or event (e.g., “click” or “crash”), called Modified2 ; (3)
a Final type that describes the last sequence in a typed string, which can end
in a part, an information suffix, or an empty string; (4) for any parts of a whole
(Part), these may be optionally described by modifiers, other parts, or things;
and (5) Info, including those things that are described by information (e.g.,
“device information”).

Table 1. Context-free grammar for syntax analysis

<S>→<Modified1> | <Modified2> | <Final> | x

<Modified1>→ m<Modified1> | m <Modified2> | m <Final> | mx

<Modified2>→ a <Final> | e <Final> | a <Info>

<Final>→ t <Part> | t <Info> | e <Info> | p

<Part>→<Modified1> | <Modified2> | <Final>

<Info>→ x|ε

Figure 4 shows the parse tree for the phrase “mobile device identifier” with
type sequence mtp. Next, we discuss how these productions are extended with
semantic attachments to infer ontological relationships.

4.4 Inferring Morphological Variants and Semantic Relations

Based on the compositionality principle, the meaning of a sentence can be con-
structed from the meaning of its constituents [15,23]. We adapt this principle to
infer semantics between an information type and its constituent morphological
variants by extending the CFG production rules with semantic attachments.

Each production r ∈ R, r : α → β1...βn is associated with a semantic rule
α.sem : {f(β1.sem, ..., βn.sem)}. The semantic attachment α.sem states: the
representation assigned to production r contains a semantic function f that
maps semantic attachments βi.sem to α.sem, where each βi, 1 ≤ i ≤ n is a

Disambiguiating Requirements 105

Fig. 4. Parse tree for “mobile device identifier” with tag sequence “mtp”

constituent (terminal or non-terminal symbol) in production r. The semantic
attachments for each production rule is shown in curly braces {. . .} to the right of
the production’s syntactic constituents. Due to space limitations, we only present
the semantic attachments of four production rules used in Fig. 4 in Table 2. The
full table is published online2. We first introduce λ-calculus functions used in
Table 2, before presenting an example where semantic attachments are applied
to the tagged information type “mobile device identifier-mtp”.

In λ-calculus, functions are represented by symbolic notations called λ-
expressions. Variables and constants are atomic constituents of λ-expressions.
Complex λ-expressions can be built from variables based on their application
and abstraction [19].

Unary function WordOf(y) maps a non-terminal to its tagged phrase
sequence. For example, WordOf(Final) returns “device identifier-tp” in Fig. 4.
In this example, Final refers to the left-side non-terminal of Modifier1.

Concat(y, z) is a binary function used to concatenate two tagged phrase
sequences, for example Concat(mobile-m, information-x) produces “mobile
information-mx”.

SubV ariant(y) is a higher-order function accepting other functions like
Concat as an argument. It returns a list of variants that can be constructed using
the input argument, e.g., SubV ariant(mobile device identifier-mtp) returns the
following list of variants: [mobile device identifier-mtp, device identifier-mtp,
identifier-p].

IsInfo(y) is a unary function on a tagged phrase sequence, returning
an empty list if the input sequence matches “information-x” and Eqv(y,
information-x), otherwise. For example, IsInfo(data-x) returns Eqv(data-x,
information-x), since “data-x” and “information-x” do not match.

2 http://galadriel.cs.utsa.edu/∼rslavin/ontology-grammar/.

http://galadriel.cs.utsa.edu/~rslavin/ontology-grammar/

106 M. Bokaei Hosseini et al.

KindOf(y, z), PartOf(y, z), and Eqv(y, z) are higher-order functions that
map two tagged phrases to a single-element list containing a candidate hyper-
nymy, meronymy, and synonymy axioms, respectively.

Map(y, z) is a binary higher-order function that distributes the application
of a function over a list of tagged phrases. More precisely, it can be shown as:

Map(f, [E1, ..., En]) = [(f)E1, ..., (f)En]

Table 2. Rules and semantic attachments for “mobile device identifier-mtp”

Production Semantic attachments Line

p1 <Modified1>→m<Final> {λy.λm.Final.sem(Concat(y, m)); 1

λm.KindOf(WordOf(Modified1), Concat(m, information-x)); 2

KindOf(WordOf(Modified1), WordOf(Final))} 3

p2 <Final>→t <Part> {λy.λt. Part.Sem(Concat(y, t)); 1

KindOf(WordOf(Final), WordOf(Part)); 2

Map(λz.PartOf(Concat(z, WordOf(Part)),z))λy.λt

SubVariant(Concat(y, t))}
3

p3 <Part>→<Final> {λy.Final.sem(y)} 1

p4 <Final>→p {(Map(λp.λz.PartOf(p, z)))λy.SubVariant(y); 1

λy.λp.PartOf(Concat(y,p),y)} 2

We now describe step 3 (Fig. 2) using the tagged information type “mobile
device identifier-mtp”. The tagged information type is first parsed using the
grammar in Table 1. Its semantics are computed by visiting the nodes of the
parse tree in Fig. 4 and applying the corresponding semantic attachments from
Table 2 during a single-pass, top-down parse. Following this order, the semantics
of production rule p1 is mapped to the following λ-expressions, where l in p1.l
refers to line l in Table 2:

p1.1 represents an abstraction with two lambda variables, where y refers to the
inherited tagged phrase from the right and top of the parse tree and m refers
to the tagged phrase “mobile-m” read through the lexical analyzer. In this case,
variable y refers to an empty string, since no tagged phrase precedes “mobile-m”.
Therefore, the first λ-expression can be reduced to Final.sem(“mobile-m”). In
this λ-expression, “mobile-m” is inherited by non-terminal Final in the parse
tree. Based on the principle of compositionality, the semantics of a phrase
depends on the order and grouping of the words in a phrase [23]. An unambiguous
grammar like the CFG cannot infer all possible variants, such as “mobile device”
and “device identifier”, by syntax analysis alone, because the input phrase
“mobile device identifier” would require both left- and right-associativity to be
decomposed into these two variants. We overcome this limitation by introducing

Disambiguiating Requirements 107

an unambiguous right-associative grammar and utilize λ-calculus to ensure that
each non-terminal node inherits the sequence of words from the node’s parents
and siblings.

p1.2 represents an abstraction which reduces to a list containing a seman-
tic relation: [KindOf(“mobile device identifier-mtp”, “mobile information-mx”)]
through reading variable m from the lexical analyzer. One might raise a point
that “mobile information” is not a valid phrase. We acknowledge this fact, how-
ever, applying this rule to phrases such as “unique device identifier”, “anonymous
device information”, and “anonymous demographic information” will results in
creation of “unique information”, “anonymous information”, and “demographic
information”, which are meaningful phrases. We emphasize that the variants and
relations generated through our method are only candidates and might not be
semantically sound.

p1.3 represents a λ-expression which is the application of KindOf on two
operands, which reduces to a single element list [KindOf(“mobile device
identifier-mtp”, “device identifier-tp”)]. In the next step, we analyze the seman-
tics of production rule p2 that are presented using three λ-expressions:

p2.1 represents a λ-expression to concatenate tagged phrases associated with the
inherited variable y and variable t and passes the concatenation result (“mobile
device-mt”) to direct descendants of this node.

p2.2 represents the application of KindOf function on “device identifier-tp”
and “identifier-p”, resulting a hypernymy relation in a single element list.

p2.3 is an application that maps a λ-expression to a list of variants.
This list is constructed using a λ-abstraction that can be reduced to Sub-
Variant(“mobile device-mt”), producing [mobile device-tp, device-t]. Finally,
Map applies PartOf function on all the elements of this list resulting in
[PartOf(“mobile device identifier-mtp”, “mobile device-mt”), PartOf(“device
identifier-tp”, “device-t”)].

Without inheriting “mobile-m” from the ancestors, we would not be able
to infer the meronymy relationships between “mobile device identifier-mtp” and
“mobile device-mt”. Moreover, variant “mobile device-mt” is generated using
syntax analysis of the tagged phrase sequence and semantics attached to the
syntax. In contrast, other tagged phrases like “device identifier-tp” are solely
generated through syntax analysis of “mobile device identifier-mtp”. By aug-
menting syntax analysis with semantic attachments, we capture the ambiguity
of natural language as follows. If we show the grouping using parenthesis, we
can present the phrase associated with “mobile device identifier-mtp” as (mobile
(device identifier)) which means mobile is modifying device identifier, e.g., an
IP address as a kind of device identifier that changes based on location which
makes it mobile. Another possible grouping is ((mobile device) identifier) which is
interpreted as an identifier associated with a mobile device, e.g., a MAC address
associated with a mobile phone, tablet or laptop. Therefore, grouping of words
in “mobile device identifier-mtp” helps us consider all the possible semantics
associated with an ambiguous phrase.

108 M. Bokaei Hosseini et al.

p3.1 is used to pass the inherited tagged phrase “mobile device-mt” to Final as
the right-hand side, non-terminal. The semantics of production rule p4 as the
last node visited in the parse tree is mapped to the following attachments:

p4.1 is the application of Map to a variant list constructed from a λ-abstraction.
This abstraction is reduced to SubVariant(“mobile device-mt”), returning the
following variant list: [“mobile device-mt”, “device-t”]. Finally, Map applies
PartOf function on all the elements of this list resulting in [PartOf(“identifier-
p”, “mobile device-mt”), PartOf(“identifier-p”, “device-t”)].

p4.2 represents an abstraction that reduces to [PartOf(“mobile device identifier-
mtp”, “mobile device-mt”)].

All the above production rules and semantic attachments yield a collection
of candidate relations contained in multiple lists. As the final procedure in step
3, we merge the lists and add the relations to the output ontology.

5 Evaluation and Results

We answer the following research questions as part of our evaluation:

RQ1: How much, and to what extent, does the grammar generate the rela-
tionships between information type pairs in Lexicon L1?
RQ2: Which semantic relations are missed by the method in comparison with
the ground truth ontology?
RQ3: What level of effort is required to maintain the method for each new
lexicon addition, considering the type of apps and data practices the lexicon
is constructed from?
RQ4: How reliable is the method with respect to a new lexicon addition?

Research questions RQ1 and RQ2 evaluate the ontology construction method
using lexicon L1, discussed in Sect. 5.1. Research questions RQ3 and RQ4 eval-
uate the generalization and coverage of our method using lexicon L2, discussed
in Sect. 5.2.

5.1 Evaluation Using Lexicon L1

We evaluate ontology construction method using lexicon L1 to answer RQ1 and
RQ2. L1 contains 351 information types which are used to develop the context-
free grammar (CFG) in Sect. 4.3. We acquired the reduced and tagged informa-
tion types in L1 online3. Given 335 reduced tagged information types, the CFG
and semantic attachments yield 4,593 relations between phrases that share at
least one word, which we published here (See Footnote 2).

We require a ground truth (GT) ontology containing the relations between
information types in lexicon L1 to evaluate the accuracy of the inferred relations
3 http://gaius.isri.cmu.edu/dataset/plat17/study-platform-lexicon-typedPhrases-

reduced.csv.

http://gaius.isri.cmu.edu/dataset/plat17/study-platform-lexicon-typedPhrases-reduced.csv
http://gaius.isri.cmu.edu/dataset/plat17/study-platform-lexicon-typedPhrases-reduced.csv

Disambiguiating Requirements 109

to answer RQ1. We acquired the results of a study published by Hosseini et al.
[21]4 and followed their approach to construct the GT. This study contains 2,253
information type pairs which is the result of pairing all the information types
that share at least one word in the reduced version of lexicon L1 (based on step
1). Further, the study contains the relations assigned to each pair by 30 human
subjects (called participant preferences). The participants were recruited from
Amazon Mechanical Turk, had completed over 5,000 HITs, had an approval
rating of at least 97%, and were located within the US [21].

Due to the diversity of participant experiences, which allows participants
to perceive different phrase senses, participants can assign different semantic
relations to the same pair, e.g., “mac” can refer to both a MAC address for
Ethernet-based routing, and a kind of computer sold Apple. In another exam-
ple, “email” can refer to three different senses: a service or program for sending
messages; a message to be sent via the SMTP protocol; or to a person’s email
address, which is the recipient address of an email message. Therefore, partic-
ipants may conclude “email address” is a part of “email”, or is equivalent to
“email” which are both valid interpretations. To avoid excluding valid interpre-
tations, we follow Hosseini et al.’s approach to build a multi-viewpoint GT that
accepts multiple, competing interpretations [21]. Valid interpretations for a pair
are the ones that the observed number of responses per category exceeds the
expected number of responses in a Chi-square test, where p< 0.05. This thresh-
old means that there is at least a 95% chance that the elicited response counts
are different than the expected counts [21]. The expected response counts for a
relation are based on how frequently participants chose that relation across all
participant comparisons. Finally, we constructed a multi-viewpoint GT as fol-
lows: for each surveyed pair, we add an axiom to the GT for a relation category,
if the number of participant responses is greater than or equal to the expected
Chi-square frequency; except, if the number of unrelated responses exceeds the
expected Chi-square frequency, then we do not add any axioms.

We compared the inferred relations with the relations in the GT. An inferred
relation is a true positive (TP), if it is logically entailed by GT, otherwise,
that relation is a false positive (FP). Overall, 980 inferred relations are logically
entailed in the GT. We use logical entailment to identify TPs, because subsump-
tion is transitive and whether a concept is a hypernym of another concept may
rely on the transitive closure of that concept’s class relationships in the GT. We
only found two inferred relations as FPs. An unrelated information type pair in
the GT is considered as true negative (TN), if we cannot match any inferred
relation with it. We found 805 pairs as TNs. For all information type pairs with
valid interpretations (i.e., hypernymy, meronymy, and synonymy) in GT that do
not match an inferred semantic relation, we count these as false negatives (FN).
We found 466 of the related pairs in the GT that cannot be logically entailed in
the ontology fragments inferred through our method.

We computed Precision(Prec.) = TP/(TP + FP) and Recall(Rec.) =
TP/(TP + FN) for the ontology construction method using CFG and semantic

4 http://gaius.isri.cmu.edu/dataset/plat17/preferences.csv.

http://gaius.isri.cmu.edu/dataset/plat17/preferences.csv

110 M. Bokaei Hosseini et al.

attachments, presented in Table 3. We also compare the results of our method to
the previously proposed ontology construction method using 26 regular expres-
sion patterns by Hosseini et al. [21]. Our model outperforms the 26 regular
expression patterns, by decreasing the number of FNs and improving the recall.

Table 3. Performance Measures for Lexicon L1

Method Prec Rec

26 regular expression patterns 0.99 0.56

CFG and semantic attachments 0.99 0.67

RQ2 concerns the type of relations that cannot be inferred using our syntax-
driven method. To answer this question, we open coded the 466 FNs and iden-
tified four codes that explain the reasons that our method could not infer the
relations:

(1) Tacit Knowledge: The relation requires tacit knowledge to be inferred and
may not be inferred using syntax analysis of phrases, alone. For example, the
hypernymy relation between “crash events” and “device event information”
requires knowing that a crash is a software or hardware failure on a device,
which is tacit knowledge that our method lacks. We identified 404/466 of
the FNs that fall into this category.

(2) Parse Ambiguity: Our method analyzes phrases by grouping words from the
right and left using the CFG and inherited variants in semantic attachments,
respectively. However, we have observed 17/466 of FNs that disregard this
grouping and therefore, cannot be inferred by our method. For example, an
equivalence relation between “device unique identifier” and “unique device
identifier” would be inferred as two kinds of “device identifier”, but not as
equivalent concepts.

(3) Modifier Suppression: Participants may ignore modifier roles in a phrase and
thus prefer an equivalent relation between a pair of phrases. For example,
“actual location” and “approximate location” are identified equivalent in the
GT ontology. This phenomenon was also reported by Hosseini et al. [21]. We
identified 34/466 phrase pairs and their relations that fall into this category.

(4) Unjustifiable: We identified 11/466 phrase pairs in the GT that we cannot
justify despite the participant preference for these relations. For example,
individuals identified “general demographic information” as a kind of “gen-
eral geographic information”. In another example, “mobile device type” is
identified as a kind of “mobile device unique identifier” by the individuals.

5.2 Evaluation Using Lexicon L2

RQ3 and RQ4 ask about the level of effort to maintain the method, and the
method’s reliability. We pre-processed 1,853 information types in lexicon L2

Disambiguiating Requirements 111

using the strategies mentioned in Sect. 4.1, yielding 1,693 information types. In
the four steps presented in Fig. 2, only step 2 involves manual effort for semantic
tagging. During this step, two analysts individually assigned tags to information
types in L2. We calculated the inter-rater agreement for the assigned tags using
Fleiss’ Kappa co-efficient, which is a chance-corrected measure of agreement
between two or more raters on a nominal scale [14]. The comparison resulted in
518 disagreements with Kappa = 0.704. After reconciling the disagreements, we
increased Kappa to 0.917 and randomly selected tag assignments from one of
the analysts.

To address RQ4 on method reliability, we require a ground truth for relations
in L2. For this reason, we selected information type pairs that share at least one
word, yielding 1,466,328 pairs. Due to this large number, we sampled the pairs
by creating strata that represent comparisons between tag sequences as follows:

Phase A: Each information type pair is mapped to their respective tag sequence
pair, e.g., pair (mobile device, device name) is mapped to (mt, tp), yielding 974
unique tag sequence pairs, which we call the strata.

Phase B: Proportional stratified sampling is used to draw at least 2,000 sam-
ples from all strata with layer size range 1–490. The wide range in layer sizes
implies unbalanced strata; e.g., strata that contain 1–3 pairs when divided by
the total number of information type pairs yields zero. Therefore, we select all
the pairs from strata with size one to ensure strata coverage. For strata of size
two and three, one random information type pair is selected. For the remaining
strata with sizes greater than three, sample sizes are proportional to the strata
size, yielding one or more pairs per stratum. For each stratum, the first sample
is drawn randomly. To draw the remaining samples, we compute a similarity
distance between the already selected pairs and remaining pairs in each stra-
tum: First, we create a bag-of-lemmas by obtaining word lemmas in the already
selected pairs. Next, in each stratum, the pairs with the least common lemmas
with the bag-of-lemmas are selected. We update the bag-of-lemmas after each
selection by adding the lemmas of the selected pairs. This strategy ensures the
selection of pairs with lower similarity measure, resulting in a broader variety of
words in the sampled set.

Further, we ensure that each tag sequence is represented by at least one
sampled item, and that sequences with a larger number of examples are propor-
tionally represented by a larger portion of the sample. Using the initial sample
size of 2,000, we captured 2,283 samples from 1,466,328 phrase pairs. Our sam-
ples contain 1,138 unique information types from Lexicon L2. Using the pairs,
we published a survey that asks subjects to choose a relation for pair (A,B)
from one of the following six options [21]:

s: A is a kind of B, e.g., “mobile device” is a kind of “device.”
S: A is a general form of B, e.g., “device” is a general form of “mobile device.”
P: A is a part of B, e.g., “device identifier” is a part of “device.”
W: A is a whole of B, e.g., “device’ is a whole of “device identifier.”
E: A is equivalent to B, e.g.,“IP” is equivalent to “Internet protocol.”
U: A is unrelated to B, e.g., “device identifier” is unrelated to “location”.

112 M. Bokaei Hosseini et al.

We recruited 30 qualified Amazon Mechanical Turk participants following the
criteria mentioned in Sect. 5.1. We constructed a multi-viewpoint ground truth
(GT) containing 2,283 semantic relations (See Footnote 2). Application of the
CFG and semantic attachments on sampled information types from L2 results in
21,745 inferred relations (See Footnote 2). To compute Precision and Recall, we
compare the inferred relations with the multi-view GT. Overall, the method cor-
rectly identifies 1,686/2,283 of relations in the GT. We also compare the inferred
relations using 26 regular expression patterns [21] with the GT. The performance
measures in Table 4, suggest that our proposed CFG and semantic attachments
reduce the number of false negatives (FNs). FNs are the semantic relations
between information type pairs in the GT that do not match inferred semantic
relations. By reducing the number of FNs, our proposed method improves the
recall compared to the 26 patterns.

Table 4. Performance measures for lexicon L2

Method Precision Recall

26 regular expression patterns 0.99 0.62

CFG and semantic attachments 0.99 0.90

6 Threats to Validity

Internal Validity - Evaluating semantic relations depends on reliable tagging
of information types by analysts. Changes in tags affect the performance of the
method when compared to the ground truth (GT). In Sect. 5.1, we identified
four categories reflecting the relations that cannot be inferred when compared
with ground truth (GT) for lexicon L1. During second-cycle coding of Tacit
Knowledge category, we observed a potential explanation for why individuals
prefer a relation that differs from our results. The terms in “application software”
were tagged tt, which is used to entail that “software” is part of an “application”.
However, we believe that participants recognize that “application software” is a
single entity or thing. We also believe this explanation applies to 20 phrases and
69 semantic relations in the GT. We revised the tag sequences for these phrases
and inferred relations based on this revision. Applying our method on the set of
revised tagged types results in an additional 74 FNs compared to the original
tagged information types. For example, the method cannot infer the relations
between the following pairs: (“application software”, “software information”),
(“page view order”, “web page”). Therefore, semantic ambiguity in tokenization
and tagging can result in changes to the inferred relations, which is a shortcoming
of the method.

For lexicon L2, two analysts individually assigned tags to information types
with an initial Kappa = 0.70. The analysts reconciled their differences to reach
a Kappa = 0.92.

Disambiguiating Requirements 113

External Validity - The CFG is constructed on lexicon L1 containing 351
platform-related information types defined as “any information that the app or
another party accesses through the mobile platform that is not unique to the
app.” The information types were extracted from collection data practices of 50
mobile app privacy policies [21,31]. To study generalizability beyond lexicon L1,
we utilize lexicon L2 for evaluation. Lexicon L2 contains 1,853 information types
related to collection, usage, retention, and transfer data practices, extracted from
30 mobile and web app privacy policies [12]. Further study is needed to determine
how well the method extends beyond these datasets.

7 Conclusion and Future Work

Privacy policies are expressed in natural language and thus subject to ambi-
guity and abstraction. To address this problem, we propose a method to infer
semantic relations between information types in privacy policies and their mor-
phological variants based on a context-free grammar and semantic attachments.
This method is constructed based on grounded analysis of information types
in 50 privacy policies and tested on information types from 30 policies. Our
method shows an improvement in reducing the number of false negatives, the
time, and effort required to infer semantic relations, compared to previously pro-
posed methods by formally representing the information types. Evidence from
Bhatia et al. shows that between 23–71% of information types in any new pol-
icy will be previously unseen [4], which further motivates the need for a high-
precision, semi-automated method to infer ontological relationships.

In future work, we plan to augment our method with a neural network clas-
sification model to infer semantic relations that are independent of syntax and
purely rely on tacit knowledge, such as hypernymy relation between “phone”
and “mobile device”.

Acknowledgment. This research was supported by NSF #1736209 and #1748109.

References

1. Anton, A.I., Earp, J.B.: A requirements taxonomy for reducing web site privacy
vulnerabilities. Requir. Eng. 9(3), 169–185 (2004)

2. Bach, E.: An extension of classical transformational grammar (1976)
3. Bhatia, J., Breaux, T.D.: Towards an information type lexicon for privacy policies.

In: RELAW, pp. 19–24. IEEE (2015)
4. Bhatia, J., Breaux, T.D., Schaub, F.: Mining privacy goals from privacy policies

using hybridized task recomposition. TOSEM 25(3), 22 (2016)
5. Boyd, S., Zowghi, D., Gervasi, V.: Optimal-constraint lexicons for requirements

specifications. In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS,
vol. 4542, pp. 203–217. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73031-6 15

6. Breaux, T.D., Antón, A.I., Spafford, E.H.: A distributed requirements management
framework for legal compliance and accountability. Comput. Secur. 28(1–2), 8–17
(2009)

https://doi.org/10.1007/978-3-540-73031-6_15
https://doi.org/10.1007/978-3-540-73031-6_15

114 M. Bokaei Hosseini et al.

7. Breaux, T.D., Baumer, D.L.: Legally “reasonable” security requirements: a 10-year
FTC retrospective. Comput. Secur. 30(4), 178–193 (2011)

8. Breaux, T.D., Hibshi, H., Rao, A.: Eddy, a formal language for specifying and
analyzing data flow specifications for conflicting privacy requirements. Requir. Eng.
19(3), 281–307 (2013). https://doi.org/10.1007/s00766-013-0190-7

9. Breitman, K.K., do Prado Leite, J.C.S.: Ontology as a requirements engineering
product. In: Proceedings. In: 11th IEEE International Requirements Engineering
Conference, pp. 309–319. IEEE (2003)

10. Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. Sage Publications (2014)

11. De Saussure, F., Harris, R.: Course in General Linguistics. (Open Court Classics).
Open Court, Chicago and La Salle (1998)

12. Evans, M.C., Bhatia, J., Wadkar, S., Breaux, T.D.: An evaluation of constituency-
based hyponymy extraction from privacy policies. In: RE, pp. 312–321. IEEE
(2017)

13. Fensel, D., McGuiness, D., Schulten, E., Ng, W.K., Lim, G.P., Yan, G.: Ontologies
and electronic commerce. IEEE Intell. Syst. 16(1), 8–14 (2001)

14. Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull.
76(5), 378 (1971)

15. Frege, G.: Über begriff und gegenstand (1892)
16. FTC: FTC’s $5 billion Facebook settlement: record-breaking and history-making

(2019)
17. Gervasi, V., Zowghi, D.: On the role of ambiguity in RE. In: Wieringa, R., Persson,

A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 248–254. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14192-8 22

18. Harris, K.D.: Privacy on the go: recommendations for the mobile ecosystem (2013)
19. Henk, B.: The lambda calculus: its syntax and semantics. Stud. Logic Found. Math.

(1984)
20. Hookway, C.: Peirce-Arg Philosophers. Routledge, Abingdon (2010)
21. Bokaei Hosseini, M., Breaux, T.D., Niu, J.: Inferring ontology fragments from

semantic role typing of lexical variants. In: Kamsties, E., Horkoff, J., Dalpiaz, F.
(eds.) REFSQ 2018. LNCS, vol. 10753, pp. 39–56. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77243-1 3

22. Hosseini, M.B., Wadkar, S., Breaux, T.D., Niu, J.: Lexical similarity of informa-
tion type hypernyms, meronyms and synonyms in privacy policies. In: AAAI Fall
Symposium (2016)

23. Janssen, T.M., Partee, B.H.: Compositionality. In: Handbook of Logic and Lan-
guage, pp. 417–473. Elsevier (1997)

24. Jurafsky, D., Martin, J.H.: Speech and Language Processing, vol. 3. Pearson, Lon-
don (2014)

25. Massey, A.K., Rutledge, R.L., Antón, A.I., Swire, P.P.: Identifying and classifying
ambiguity for regulatory requirements. In: RE, pp. 83–92. IEEE (2014)

26. Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38(11),
39–41 (1995)

27. Oltramari, A., et al.: PrivOnto: a semantic framework for the analysis of privacy
policies. Semant. Web 9(2), 185–203 (2018)

28. Petronella, G.: Analyzing privacy of android applications (2014)
29. Reidenberg, J.R., Bhatia, J., Breaux, T.D., Norton, T.B.: Ambiguity in privacy

policies and the impact of regulation. J. Leg. Stud. 45(S2), S163–S190 (2016)
30. Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage, Thousand Oaks

(2015)

https://doi.org/10.1007/s00766-013-0190-7
https://doi.org/10.1007/978-3-642-14192-8_22
https://doi.org/10.1007/978-3-319-77243-1_3
https://doi.org/10.1007/978-3-319-77243-1_3

Disambiguiating Requirements 115

31. Slavin, R., et al.: Toward a framework for detecting privacy policy violations in
android application code. In: ICSE (2016)

32. Wang, X., Qin, X., Hosseini, M.B., Slavin, R., Breaux, T.D., Niu, J.: GUILeak:
identifying privacy practices on GUI-based data (2018)

33. Zimmeck, S., et al.: Automated analysis of privacy requirements for mobile apps.
In: NDSS (2017)

	Disambiguating Requirements Through Syntax-Driven Semantic Analysis of Information Types
	1 Introduction
	2 Background
	3 Related Work
	4 Ontology Construction Method
	4.1 Lexicon Reduction
	4.2 Semantic Role Tags
	4.3 Syntactic Analysis of Information Types Using Context-Free Grammar
	4.4 Inferring Morphological Variants and Semantic Relations

	5 Evaluation and Results
	5.1 Evaluation Using Lexicon L1
	5.2 Evaluation Using Lexicon L2

	6 Threats to Validity
	7 Conclusion and Future Work
	References

