
Hearing the Voice of Software Practitioners
on Causes, Effects, and Practices to Deal

with Documentation Debt

Nicolli Rios1, Leonardo Mendes2, Cristina Cerdeiral2, Ana Patrícia F. Magalhães8,
Boris Perez3,4, Darío Correal3, Hernán Astudillo5, Carolyn Seaman6,
Clemente Izurieta7, Gleison Santos2, and Rodrigo Oliveira Spínola8(B)

1 Federal University of Bahia, Salvador, BA, Brazil
nicollirioss@gmail.com

2 Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
{leonardo.cabral,gleison.santos}@uniriotec.br,

cerdeiral@gmail.com
3 University of Los Andes, Bogota, Colombia

{br.perez41,dcorreal}@uniandes.edu.co
4 University Francisco de Paula Santander, Cúcuta, Colombia

5 Univ. Técnica Federico Santa María, Valparaíso, Chile
hernan@inf.utfsm.cl

6 University of Maryland Baltimore County, Baltimore, MD, USA
cseaman@umbc.edu

7 Montana State University, Bozeman, MT, USA
clemente.izurieta@montana.edu
8 Salvador University, Salvador, BA, Brazil

{ana.fontes,rodrigo.spinola}@unifacs.br

Abstract. [Context and Motivation] It is common for teams to take shortcuts
during software development that, in the future, will lead to maintainability issues
and affect productivity and development cost.Different types of technical debtmay
affect software projects, including those associated with software documentation.
Although there are many studies on technical debt, few focus on documenta-
tion debt in an industrial environment. [Question/Problem]We aimed to identify
how software practitioners perceive the occurrence of documentation debt in their
projects. We present a combined analysis of the results from two complemen-
tary studies: a survey (InsighTD) and an interview-based case study. [Principal
Ideas/Results] We provide a list of causes and effects of documentation debt,
along with practices that can be used to deal with it during software develop-
ment projects. [Contribution]We find that documentation debt is strongly related
to requirements issues. Moreover, we propose a theoretical framework, which
provides a comprehensive depiction of the documentation debt phenomenon.

Keywords: Documentation debt · Causes of documentation debt · Effects of
documentation debt · Technical debt · InsighTD

© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 55–70, 2020.
https://doi.org/10.1007/978-3-030-44429-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_4


56 N. Rios et al.

1 Introduction

The technical debt (TD)metaphor describes a daily challenge that software development
teams face in their projects: balancing the costs for properly performing short-term prod-
uct development activities with its long-term quality [1]. When the TD items incurred
in a software project are identified, development teams will be able to understand their
possible benefits or drawbacks to the project [3].

Different types of TD may affect software projects [4]. Some examples include
design, architecture, testing, and documentation debt (DD). The latter is perceived as one
of the fourmost important types in the embedded systems industry [5]. According to Sea-
man and Guo [7], DD refers to problems encountered in software project documentation
looking for missing, inconsistent, outdated, or incomplete documentation.

Despite the growing number of studies in the area [8, 9], and particularly in the
software industry [18, 19], little is still known about the impacts of TD [4]. Analyzing
the TD phenomenon from the perspective of its causes, effects, and control practices
deserves investigation because it is expected that TD prevention could sometimes be
cheaper than TD repayment. Besides, when TD is prevented as much as possible, it also
helps other TD management activities, and setting up TD prevention practices helps
especially in catching inexperienced developers’ not-so-good solutions [11]. Knowing
the causes for TD can support development teams in defining actions that could be taken
to prevent the occurrence of debt items. From the effects perspective, implications of TD
can affect projects in differentways.Having this information could aid in prioritization of
TD items to pay off, by supporting a more precise impact analysis and also the definition
of corrective actions to minimize possible negative consequences for the project [12].

This paper contributes to this discussion from the perspective of DD. Defining,
documenting andmaintaining requirements is an important step in software engineering,
and these critical activities form an integral part of producing high quality software.
Thus, understanding DD will lead to decidedly better software. Although the lack of
direct perceived benefits of a document to its producer is considered a base reason for
many issues in software documentation [20, 21], it is also necessary to investigate other
factors that can influence software documentation.

We investigate the causes, effects, and practices that can be employed to deal (prevent
or pay the debt off) with this type of debt in the software industry. The research strategy
adopted is based on the triangulation of the results of two complementary studies. The
first study, InsighTD, is a globally distributed family of industrial surveys onTD [12]. For
this article, we considered the data sets from Brazil, Chile, Colombia, and the United
States. Although significant analysis has already been conducted over the available
InsighTD data [12–14, 17], much still remains to be studied. The second study is an
interview-based case study with practitioners from a large organization.

We provide a list of the top 10 DD causes (deadline being the most cited) and
effects (low maintainability being the most cited) from InsighTD data. From the case
study we identified 15 practices that can be used to deal with DD during a software
development project, which corroborate with InsightTD participants’ opinion that DD
can be prevented. The case study provided six additional causes and one effect associated
with DD. Results from both studies indicated a strong relationship between this type of
debt and requirements issues in software projects. Moreover, based on the evidence we



Hearing the Voice of Software Practitioners 57

gathered from the data triangulation, we present a theoretical framework that depicts the
DD phenomenon.

This paper is organized as follows: Sect. 2 presents a brief introduction to TD and
the InsighTD project history, Sect. 3 presents the research strategy adopted, Sects. 4 and
5 describe and present our results, Sect. 6 discusses our main findings, Sect. 7 presents
threats to the validity of the study, and finally, Sect. 8 presents our final considerations
and next steps.

2 Background

2.1 Technical Debt

TD contextualizes the problem of pending software development tasks (for example,
inexistent software documentation, tests not performed, non-adoption of good practices)
as a type of debt that brings a short-term benefit to the project (usually in terms of higher
productivity or shorter release times), but that may have to be paid later with interest in
the development process (for example, the evolution of a poorly designed class tends
to be more costly than if it was implemented considering good object-oriented design
principles) [1, 7].

Alves et al. [9] identified that TD can occur in several artifacts throughout the life
cycle of a software product. This paper focuses on the study of DD. The existing knowl-
edge in the technical literature about this type of debt is still scarce, restricting itself to
recognizing its existence and importance [4, 9]. In one of the few studies that specifically
considered this type of debt, Spínola et al. [2] identified that DD cannot be automati-
cally identified by current TD identification strategies based on the use of metrics. This
paper sheds some light on this discussion by analyzing the causes and effects of DD,
and practices that can be employed to prevent or address its existence.

2.2 The InsighTD Project

InsighTD is a globally distributed family of industrial surveys initiated in 2017. Planned
cooperatively among TD researchers from around the world, the project aims to organize
an open and generalizable set of empirical data on the state of practice and industry trends
in the TD area. This data includes the causes that lead to TD occurrence, the effects
of its existence, how these problems manifest themselves in the software development
process, and how software development teams react when they are aware of the presence
of debt items in their projects. Its design establishes the foundations for the survey to be
continuously replicated in different countries. Up to date, researchers from 11 countries
(Brazil, Chile, Colombia,CostaRica, Finland, India, Italy,Norway, SaudiArabia, Serbia,
and the United States) have joined the project. At the moment, we have concluded data
collections of the InsighTD replications inBrazil, Chile,Colombia, and theUnitedStates.

Rios et al. [12] discussed the basic survey design and the preliminary results of the
first round of InsighTD. In that paper, the authors focused on the discussion on the top 10
causes and effects of TD, regardless the type of debt. Rios et al. [13] complemented the
discussion of the previous work, focusing specifically on the causes and effects of TD in



58 N. Rios et al.

agile software projects. Rios et al. [14] proposed the use of cross-company probabilistic
cause-effect diagrams to represent information about the TD causes and effects being
analyzed. More Recently, Freire et al. [17] investigated preventive actions that can be
used to curb the occurrence of TD and the impediments that hamper the use of those
actions.

In this work, we go further into the analysis of InsighTD data by considering the
point of view of the respondents about DD.

3 Research Strategy

3.1 Research Questions

We defined the following main Research Question (RQ) “How do software development
teams perceive the occurrence of DD in their projects?” The goal of this RQ is to gather
information on how practitioners face DD in their daily activities. To investigate it, we
broke down this question into the following sub-questions:

RQ1:What are themain causes that lead development teams to incurDD in their projects?
This question investigates the possible causes that contribute to the insertion of DD in
software projects.
RQ2: What effects does DD have on software projects? This question is aimed at
identifying the main effects felt by development teams due to the presence of DD.
RQ3: How often is the occurrence of DD items seen as preventable in software projects?
Although DD can be incurred by choice –for example, to reduce costs or speed a release,
it still has decidedly negative consequences on a project. In this question we explore
our pre-conception that DD can be prevented, given a choice to do so, regardless of
whether theDD item is intentional or unintentional. Through it, we explore practitioners’
responses and have an indication on how often TD items could be prevented in their
scenarios.
RQ4:What stage of a software development life cycle is most affected by the presence of
DD? The documentation of a software project is a broad area, ranging from requirements
specification to code comments. The purpose of this question is to investigatewhich stage
of a software development life cycle has been more commonly seen as affected by DD.
RQ5: How can development teams react to the presence of DD? This question is aimed
at identifying actions that can be used to deal (prevent or pay the debt off) with DD.

3.2 Method

The method is based on the combined analysis of the results from two complementary
studies: a survey (InsighTD) and an interview-based case study, both with a population
of software practitioners. While InsighTD allowed us to achieve a broad audience and
collect answers to support the answering of RQ1, RQ2, RQ3, and RQ4, the interview
study served to check and complement, through data triangulation, the findings from
InsighTD and, also, to gather more contextual information to answer the RQ5.We chose



Hearing the Voice of Software Practitioners 59

to perform triangulation because it is an important tool for confirming the validity of
conclusions [15].

Sections 4 and 5 describe the data collection and analysis procedures of each study
as well as the obtained results. Then, Sect. 6 combines the results to answer the posed
research questions. The empirical package of the survey and interview study containing
their questions, answers/transcriptions, and codes are available at http://bit.ly/2uHv8x9.

4 Surveying Software Practitioners on Causes and Effects
of Documentation Debt (InsighTD)

4.1 Data Collection

The data were collected in the context of the InsighTD project. The InsighTD ques-
tionnaire consists of 28 questions, previously described in [12]. Table 1 presents the
subset of the survey’s questions related to the context of this work. Q1 to Q8 capture the
characterization questions, Q13 asks participants to provide an example of a TD item
that occurred in their project and Q15 asks participants about the representativeness of
that example. In Q16 to Q18 and Q20, the participants answer questions about causes
and effects, respectively, considering the example provided in Q13. Finally, Q22 asks
participants if the TD item (from Q13) could be prevented.

Table 1. Subset of the InsighTD survey questions considered in this paper.

No. Question (Q) Type

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

What is the size of your company?
In which country you are currently working?
What is the size of the system being developed in that project? (LOC)
What is the total number of people of this project?
What is the age of this system up to now or to when your involvement ended?
To which project role are you assigned in this project?
How do you rate your experience in this role?
Which of the following describes the development process model you follow on this project?

Closed
Closed
Closed
Closed
Closed
Closed
Closed
Closed

Q13
Q15

Give an example of TD that had a significant impact on the project that you have chosen to tell us about:
About this example, how representative it is?

Open
Closed

Q16
Q17
Q18

What was the immediate, or precipitating, cause of the example of TD you just described?
What other cause or factor contributed to the immediate cause you described above?
What other causes contributed either directly or indirectly to the occurrence of the TD example?

Open
Open
Open

Q20 Considering the TD item you described in question 13, what were the impacts felt in the project? Open

Q22 Do you think it would be possible to prevent the type of debt you described in question 13? Closed

The questionnaire was sent to only practitioners, because the objective of InsighTD
is to investigate the state of the practice of TD. Some keywords related to software
development activities and roles were used in LinkedIn to identify the participants. Also,
invitations were sent to industry-affiliated member groups, mailing lists, and industry
partners. The same strategy was applied in Brazil, Chile, Colombia, and the United
States.

http://bit.ly/2uHv8x9


60 N. Rios et al.

4.2 Data Analysis

The survey questionnaire consists of closed and open-ended questions. Therefore, it is
necessary to adopt a series of different procedures to analyze the data. For the answers
to the closed questions, descriptive statistics were used to understand the data, and then
mode andmedian statisticswere used for the central tendency of ordinal and interval data.
For nominal data, the number of participants’ choices about each option was calculated.

Qualitative data analysis techniques [15, 16] were applied to open-ended questions
about causes and effects of TD. As the answers were unrelated to any previous expecta-
tions, an inductive logical approach was adopted. Then, manual coding was applied to
the open questions as follows: initially, two researchers from each country (BR: authors
N.R. and R.S., CH: B.P. and H.A., CO: B.P. and D.C., and US: N.R. and C.S.) indi-
vidually coded the set of all answers for two subsets of related questions (RQ1: Q16 +
Q17 + Q18 and RQ2: Q20). This involves open coding as described in [16] and axial
coding to derive higher level categories. They then discussed possible differences in their
coding until they reached consensus. Thus, the answers were coded and the emerged
concepts (causes/effects) were organized into a hierarchy of categories. This process
was performed until the point where no new code or category was identified.

4.3 Results

Characterization of the Participants. In total, 39 participants from InsighTD replica-
tions in Brazil, Chile, Colombia, and the United States answered questions about DD.
Participants are well distributed among small (28%), medium (41%), and large (31%)
companies. Looking at the data in more detail, we can see that most (mode) partici-
pants work in organizations with more than 2,000 employees (9 participants) and 11–50
employees (9), closely followed by 51–250 companies (7), and 251–500 employees (7).
The average size of organizations is 251 to 500 employees. Therefore, participants tend
to work in larger companies, but there are representatives of companies of all sizes.

Responses to Q3 on the system size, most participants indicated that the systems had
between 10–100 KLOC (36%), followed by smaller systems (<10 KLOC - 26%). The
results also indicated a significant sample of responses for larger systems (1–10 MLOC
- 18%) (>10 MLOC - 5%). Responses to Q4 on the size of development teams that
participants tend to work, most (31%) reported working in teams 5–9 people, followed
by less than five members of staff (26%). There is also a good sample in teams of 10–30
people (20%) and larger development teams with more than 30 professionals (23%).
Responding to Q5 about the age of the system developed in the project, most indicated
age 2 to 5 years (33%). There are also a significant number of systems represented
from 1 to 2 years (26%), closely followed by less than one year (20%). About 18% of
participants indicated working on projects for more than 10 years.

Regarding the role assumed by the participants in their projects (Q6), several types
of project roles were indicated in the results. Most of them work as a developer (46%),
followed by project leader/project manager (18%), architect software (7%), test man-
ager/tester (7%), and requirements analyst (7%). In response to Q7, results show that a
significant portion of the sample is Proficient, Competent or Expert (92% of the total),



Hearing the Voice of Software Practitioners 61

indicating that, in general, the questionnaire was answered by professionals with expe-
rience in their roles. On the other hand, answers from professionals with low experience
level (8%) were also obtained.

Finally, the responses to Q8 indicate that of the 39 respondents, 15 participated in
projects that adopted agile process models (38%) and 15 indicated the use of hybrid
process models (38%). Less common is the use of a traditional process (24%).

Thus, in general, although it is not possible to guarantee that the participants represent
all the professionals in the software industry from Brazil, Chile, Colombia, and the
United States, respondents characterize a broad and diverse audience that spans different
functions and participant experience levels, different sizes of organizations and projects
of different ages, sizes, team sizes, and process models.

What are themain causes that lead development teams to incurDD in their projects
(RQ1)? In total, as informed by the participants in Q16–18, there are 37 causes that lead
development teams to incurDD in their projects. The tenmost commonly cited causes are
displayed in Table 2 (the complete list can be accessed at http://bit.ly/2BtHglx).Deadline
is the most cited cause. This indicates that it is a factor that normally contributes to the
occurrence of DD items. The company does not give importance to documentation and
non-adoption of good practices are other causes cited by at least 13% of the participants.

Table 2. Top 10 documentation debt causes cited.

Rank Documentation debt cause # of citations Confirmed in interview based case
study?

1st Deadline 12 Yes

2nd The company does not give
importance to documentation

6 Yes

3rd Non-adoption of good practices 5 Yes

4th Inaccurate time estimate 4 Yes

5th Inappropriate planning 4 Yes

6th Outdated/incomplete
documentation

4 Yes

7th Team Overload 4 Yes

8th Nonexistent documentation 3 Yes

9th Not effective project management 3 Yes

10th Poor allocation of resources 3 Yes

We can also observe in Table 2 that practitioners also commonly cited other causes
like inaccurate time estimate, inappropriate planning, outdated/incomplete documenta-
tion, and team overload. The results of the data triangulation with the interview-based
case study, partially presented in the fourth column, is discussed in Sect. 5.3.

What effects does DD have on software projects (RQ2)? In total, as informed by
the participants in Q20, there are 24 effects of DD in software projects. Table 3 shows

http://bit.ly/2BtHglx


62 N. Rios et al.

the ten most commonly cited effects (the complete list can be accessed at http://bit.ly/
2BtHglx). Two effects stood out: low maintainability and delivery delay. Low maintain-
ability encompasses problems that occur during software maintenance activities, such
as an increased effort to fix bugs as well as limitations in system evolution. Delivery
delay refers to the non-fulfillment of the deadlines agreed upon with the customer.

We can also observe in Table 3 that, in the point of view of the practitioners, rework,
low external quality and inadequate/nonexistent/outdated documentation are issues that
commonly affect software projects in the presence of DD. Also, there are three effects
related to relations among people: developer dependency and stress with stakeholders.
Thus, practitioners see that the presence of DD can harm the work environment.

How often is the occurrence of DD items seen as preventable in software projects
(RQ3)? Answers to Q22 (yes/no question) of InsighTD indicated that DD could be
prevented for most of the cases (95%). The two participants that reported that their
DD items could not be prevented indicated cost as the main reason: “the development
team does not have the documentation updated because it needs to be more productive
to do not lose the contract” and that “the effort needed to be invested to maintain the
documentation updated is too high.”

Table 3. Top 10 documentation debt effects cited.

Rank Documentation debt effects # of citations Confirmed in interview based case
study?

1st Low maintainability 9 Yes

2nd Delivery delay 8 Yes

3rd Rework 5 Yes

4th Low external quality 4 Yes

5th Inadequate/nonexistent/outdated
documentation

3 Yes

6th Developer Dependency 2 Yes

7th Difficulty conducting tests 2 Yes

8th Increased effort 2 Yes

9th Need of refactoring 2 No

10th Stress with stakeholders 2 Yes

Answers to RQ5 in the interview-based case study, discussed in Sect. 5.3, comple-
ment this result by indicating some practices that can be used to prevent DD.

What stage of a software development life cycle is most affected by the presence
of DD (RQ4)? Results from InsighTD indicate a strong relationship between DD and
requirements issues. By analyzing the answers of participants to Q13, about 53% of
them reported requirements issues in their examples of DD. Some examples are: “Little
clarity and specificity in the definition of requirements,” “Having to create code that

http://bit.ly/2BtHglx


Hearing the Voice of Software Practitioners 63

was not stipulated, since the requirement was not considered in the documentation,”
and “The lack of documentation and understanding of the requirements in the analysis
and design activities caused rework in the construction of the prototypes.” Besides, all
participants reported in Q15 that those instances of debt occur often or very often in
their projects.

Other commonly cited software development areas (in Q13) affected by the presence
of DD are design (10%), code comment (7%), testing (5%), and architecture (2%).
We could not identify the specific area for 23% of the responses because they were
about documentation in general (e.g.: “hard maintenance and future change due to
poor documentation from the development team” and “do not keep the documentation
updated”).

5 Interview-Based Case Study

This study complements the results obtained with InsighTD by (i) identifying new evi-
dence to confirm causes and effects, and (ii) identifying practices that can be employed
to prevent or deal with DD in software projects.

5.1 Data Collection

Data collection was performed through face-to-face interviews considering four open-
ended questions. All interviews were recorded, with previous authorization of the partic-
ipants, and then transcribed. Next, the transcripts were validated by their corresponding
interviewees through peer reviews. The interviewswere performed in Portuguese as well
as their data analysis. Only the results were translated to English. The author L.M. trans-
lated the results (and also the text fragments used in this article), which were reviewed
by the author G.S.

The first three questions address the characterization of the organization’s develop-
ment process: (P1) “Does the organization adopt any project management methodology
(traditional/agile)? If so, which one?”; (P2) “Did the organization define processes for
software development? How are they performed?”; (P3) “How is the documentation pro-
cess carried out in the organization and how are the documents prepared for each phase
of the software life cycle?” Finally, we characterized the issues found in the execution of
processes in the organization: (P4) “Are those involved in the software development pro-
cess aware of the problems that may arise from not adopting adequate documentation?
If so, could you cite possible causes and effects?”

5.2 Data Analysis

The data analysis began with transcription of interviews and approval by participants.
Then, we coded the content of the transcripts [16]. The coding considered excerpts of
the transcriptions containing evidence on causes, effects and practices to deal with DD.
Then, we grouped the identified causes, effects and practices.

The following example illustrates how we performed the coding of causes: “We
need to go fast with the development process, so we went directly to the testing phase.



64 N. Rios et al.

As consequence, the documentation of the project was inappropriate.” The underlined
fragments support the codes: inappropriate documentation and focus on producing more
at the expense of quality.

The coding was done by the author L.M. The author G.S. reviewed all citations
and codes. Participants were also asked to validate the results obtained. In the end, the
codes identified for causes and effects were standardized considering the nomenclature
obtained from the InsighTD results. This standardization was performed by the authors
L.M. and R.S., who were involved in each of the studies.

5.3 Results

Execution. Participants were advised to feel free to talk about work processes and
documentation issues. Participants allowed the interviews to be recorded and signed a
Consent and Participation document. Each participant was interviewed individually, and
the interviews took about 30 min.

The defined questions (P1–4) were performed sequentially. The researcher respon-
sible for conducting the interviews complemented the questions with brief comments to
adapt them to the working reality of the interviewees. During the interviews, new ques-
tions were formulated for gathering more details as needed (e.g.: “Is there any practical
situation that generated a problem with the documentation?”).

Characterization of the Participants. Four software practitioners who have worked
as project manager, systems analyst, developer, and tester for 7, 2, 1 and 14 years,
respectively, participated in the study. The selection of participants was made by conve-
nience.Ourmain selection criterionwas having answers frompractitionerswith different
responsibilities in the development process and with different levels of experience. The
four participants worked on the same development team and reported their experiences
with both traditional and agile methods. All participants also indicated that the existing
development processes are not followed.

The software organization where the study was conducted operates in the public
health area. The study was conducted specifically in one of the software development
areas. We selected the organization by convenience. The second author works in the
organization, but in a different unit from the interviewees. In addition, we chose a public
organization because the staff had little turnover so that we could better observe the
influence of organizational culture on development processes.

The product used as a reference by the participants was an academic management
system of the organization. The organization started the development of the product in
2009 and it has been maintained by the organization since 2014. The system is currently
in production, but some of its modules are being refactored.

What are themain causes that lead development teams to incurDD in their projects
(RQ1)? The participants reported 23 causes that contribute to the occurrence of DD.
Participants reported, for example, the situation of a specific project that had three
consecutive management changes during its implementation. The changes were mainly
characterized by unsuccessful attempts to implement different development methods
(agile and traditional). These consecutive management changes were characterized as



Hearing the Voice of Software Practitioners 65

one possible cause and were coded as changes in management during the project. The
interviewed project manager, systems analyst, and developer stated that the organization
did not have well-defined processes (lack of a well-defined process).Deadline, one of the
causes reported by all participants, is considered responsible for most of the problems
faced by the teams.

Participants were unanimous in stating that all team members were aware of docu-
mentation problems in their projects. The systems analyst said that, while practitioners
are aware of the problems, therewere negligence in not trying to solve them (the company
does not give importance to documentation).

Table 2 presents ten of the causes identified in this study that are among those most
commonly cited by InsighTD participants. The complete list of all identified causes can
be accessed at http://bit.ly/2BtHglx. Seventeen common causes were identified between
the two studies, and six were uniquely identified in the interviews: inappropriate docu-
mentation, unknown legal requirements that affect the existing documentation, delays in
the project, tacit knowledge not documented, changes in management during the project,
and political issues.

What effects does DD have on software projects (RQ2)? Participants reported 15
effects of DD. Nine of them are among those most cited by InsighTD participants as
can be observed in Table 3. Only one of the reported effects had not been previously
identified in InsighTD: communication issues among team members.

Some of the most critical effects reported by participants in this study were: project
does not serve customer, developer dependency, difficulty in project development, lack
of understanding, and increased effort to maintain the product.

How can development teams react to the presence of DD (RQ3 andRQ5)? We iden-
tified 15 practices (Table 4) that have been used by the organization to address software
documentation issues and could be employed to deal with (prevention or payment) DD.

Most of the identified practices refer to preventive actions, as can be seen in the
second column of Table 4. This result complements the indication provided by InsighTD
participants that DD can be prevented. We can also observe that, from the point of view
of the participants, the preventive actions usually have a well-defined documentation
process. We also highlight the need of having the commitment from people responsible
for documenting activities. To improve the commitment, one possible solution would be
to increase the incentives to produce the documentation, and further, developers must
feel how these improvements are a benefit to themselves [20, 21]. From Table 4, we see
that only three practices are focused on debt payment.

What stage of a software development life cycle is most affected by the presence
of DD (RQ4)? The interview-based case study confirmed the results from InsighTD
for this question. Thus, participants also indicated during the interviews that DD is
related to several areas of software development (requirements, design, coding, test,
and maintenance). Particularly, the identified causes (~91% of them), effects (~80%),
and practices (~87%) are almost all related to requirement issues as confirmed by the
participants after we reported the results to them.

http://bit.ly/2BtHglx


66 N. Rios et al.

Table 4. List of practices.

Practices Prevention/payment

Adopt TD payment prioritization criteria Payment

Comment the code Prevention

Create tutorials on how to fill in the documentation Prevention

Define process and good practices for documentation Prevention

Define roles concerning the documentation process Prevention

Document the project since its begin Prevention

Have a documentation repository Prevention

Improve commitment of the team concerning documentation Prevention

Involve several roles in documenting the project Prevention

Keep the documentation updated Payment

Penalties if not follow the documentation process Prevention

Review outdated documentation Payment

Training on the problems by don’t document Prevention

Use of Peer review Prevention

Use of UML to document and share information Prevention

6 Discussion

There is a clear need for research that consolidates data collected from empirical studies
in the software industry. Results from both studies presented in this paper indicate that,
from the point of view of software practitioners, DD can be prevented. Further, although
practitioners are particularly concerned about requirements issues, we also found that
DD can affect other areas of software development projects.

The aforementioned results stimulated us to organize the data (causes, effects, and
practices) collected from both studies into a theoretical framework of DD, which is
presented in the next subsection.

6.1 Theoretical Framework of Documentation Debt

Figure 1 summarizes the theoretical framework developed from this research. The frame-
work aims to provide a comprehensive depiction of the DD phenomenon. It consists of
causes that can lead development teams to incur DD in their projects, effects that can
be felt in its presence, and, also, practices that can be employed to prevent or eliminate
items of debt present in projects. The organization of causes and effects into groups
(e.g.: development issues, methodology, people issues, external quality issues) followed
the categories proposed by Rios et al. [12].

As a conceptual device, the framework can be employed to inform action in response
to perceived DD, and as a comprehensive guide when assessing software development



Hearing the Voice of Software Practitioners 67

Fig. 1. Theoretical framework of documentation debt.

practices. The framework facilitates more effective identification and acknowledgement
of DD by highlighting aspects of software development that impact or is impacted by
the presence of the debt.

By assisting inmaking theDDvisible, as a communication device, the framework can
be used to support development teams to more effectively communicate technical prob-
lems to management, and for managers to make better-informed decisions concerning
DD.

7 Threats to Validity

As in any empirical study, there are threats to validity [6] in this work. We attempted
to remove them when possible and mitigate their effect when removal was not possible.
In this work, the primary threat to conclusion validity arises from the coding process as



68 N. Rios et al.

coding is mainly a creative task. To mitigate this threat, in InsighTD, the coding pro-
cess was performed individually by two researchers and reviewed by one experienced
researcher. In the interview-based case study, the coding process was performed by one
researcher and reviewed by one experienced researcher. The recording/transcription pro-
cess could raise threats too.We reduced them by validating the transcriptions with a peer
review process involving the corresponding interviewees. Lastly, the data triangulation
activities were performed by one researcher from each study, who also discussed their
results until consensus was reached.

Concerning the internal validity, the questionnaire represents the main threat that
could affect InsighTD. As indicated in [12], the questionnaire has direct questions,
avoiding misunderstanding that could lead to meaningless answers. Besides, the ques-
tionnaire has passed through successive validation tasks (three internal and one external)
and a pilot study to detect any inconsistencies or misunderstandings before executing
the survey.

Finally, we reduced the external validity threats by targeting industry profession-
als and seeking to achieve participant diversity among the respondents. In InsighTD,
we approached 39 practitioners from replications of the questionnaire in Brazil, Chile,
Colombia, and the United States. The interview-based case study had the participation of
four practitioners with different roles and levels of experience. Although the population
provides interesting results on DD, we still cannot generalize the results. In search of
more generalizable results, the InsighTD is now being replicated in Finland and Costa
Rica.

8 Final Remarks

Documentation debt is a type of debt that still suffers from a lack of empirical evidence
from software industry. This article approached this gap by triangulating results from two
complementary studies with software practitioners. Results include the indication that
we can prevent DD and that it affects several software development areas but specially
requirements. Moreover, we defined a theoretical framework of DD, which presents the
DD phenomenon in a more complete and comprehensive form.

For the practitioner community, the framework helps to realize the utility of technical
debt as a tool for conceptualization, communication, and management. It can be used as
tool to understand the reasons that lead development teams to incur in debt, which are
the possible effects of its presence, and what actions can be taken to prevent or pay the
debt off.

The next steps of this research include the analyses of InsighTD data collected from
replications in Costa Rica and Finland. We also intend to run a follow up study in one
of our industry partners based on the results reported in this article. Lastly, based on
the conceptual framework presented in Fig. 1, we are also planning to look into relating
causes, effects, and practices more directly to each other.

Acknowledgements. Thisworkwas partially supported by theCoordination for the Improvement
of Higher Education Personnel - Brazil (Capes), under the Capes/IIASA Sandwich Doctoral
Program, process nº 88881.189667/2018-01. This research was also supported in part by funds



Hearing the Voice of Software Practitioners 69

received from the David A. Wilson Award for Excellence in Teaching and Learning, which was
created by the Laureate International Universities network to support research focused on teaching
and learning. For more information on the award or Laureate, please visit www.laureate.net.

References

1. Kruchten, P., Nord, R., Ozkaya, I.: Technical debt: from metaphor to theory and practice.
IEEE Softw. 29(6), 18–21 (2012). https://doi.org/10.1109/MS.2012.167

2. Spínola, R.O., Zazworka, N., Vetro, A., Shull, F., Seaman, C.: Understanding automated and
human-based technical debt identification approaches-a two-phase study. J. Braz. Comput.
Soc. 25 (2019). https://doi.org/10.1186/s13173-019-0087-5

3. Ernst, N.A., Bellomo, S., Ozkaya, I., Nord, R.L., Gorton, I.: Measure it?Manage it? Ignore it?
Software practitioners and technical debt. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pp. 50–60. ACM, New York (2015).
https://doi.org/10.1145/2786805.2786848

4. Rios, N., Mendonça, M.G., Spínola, R.O.: A tertiary study on technical debt: types, manage-
ment strategies, research trends, and base information for practitioners. Inf. Softw. Technol.
102, 117–145 (2018). https://doi.org/10.1016/j.infsof.2018.05.010. ISSN 0950-5849

5. Ampatzoglou, A., et al.: The perception of technical debt in the embedded systems domain:
an industrial case study. In: 8th International Workshop on Managing Technical Debt. IEEE
(2016)

6. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering: An Introduction. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29044-2

7. Seaman, C., Guo, Y.: Measuring and monitoring technical debt. Adv. Comput. 82, 22 (2011)
8. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its

management. J. Syst. Softw. 101, 193–220 (2015)
9. Alves, N.S.R., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Seaman, C.:

Identification and management of technical debt: a systematic mapping study. Inf. Softw.
Technol. 70, 100–121 (2016). https://doi.org/10.1016/j.infsof.2015.10.008

10. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing technical debt in software
engineering (dagstuhl seminar 16162). In: Dagstuhl Reports, vol. 6, no. 4. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2016)

11. Yli-Huumo, J., Maglyas, A., Smolander, K.: How do software development teams manage
technical debt? An empirical study. J. Syst. Soft. 120, 195–218 (2016)

12. Rios, N., Spínola, R.O., Mendonça, M.G., Seaman, C.: The most common causes and effects
of technical debt: first results from a global family of industrial surveys. In: The Proceedings
of the 12th International Symposium on Empirical Software Engineering and Measurement,
Oulu, p. 10. ACM, New York (2018). https://doi.org/10.1145/3239235.3268917. Article no.
39

13. Rios, N., Mendonça, M., Seaman, C., Spínola, R.O.: Causes and effects of the presence
of technical debt in agile software projects. In: The Americas Conference on Information
Systems (AMCIS), Cancun (2019)

14. Rios, N., Spínola, R.O., Mendonça, M.G., Seaman, C.: Supporting analysis of technical debt
causes and effects with cross-company probabilistic cause-effect diagrams. In: Proceedings
of the Second International Conference on Technical Debt (TechDebt 2019), pp. 3–12. IEEE
Press, Piscataway (2019). https://doi.org/10.1109/techdebt.2019.00009

15. Seaman, C.: Qualitative methods in empirical studies of software engineering. IEEE Trans.
Softw. Eng. 25(4), 557–572 (1999). https://doi.org/10.1109/32.799955

http://www.laureate.net
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1186/s13173-019-0087-5
https://doi.org/10.1145/2786805.2786848
https://doi.org/10.1016/j.infsof.2018.05.010
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1145/3239235.3268917
https://doi.org/10.1109/techdebt.2019.00009
https://doi.org/10.1109/32.799955


70 N. Rios et al.

16. Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. Sage Publications, Thousand Oaks (1998)

17. Freire, S., et al.: Actions and impediments for technical debt prevention: results from a
global family of industrial surveys. To appear in the Proceedings of the 35th ACM/SIGAPP
Symposium on Applied Computing

18. Klotins, E., et al.: Exploration of technical debt in start-ups. In: Proceedings of the 40th
International Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP 2018), pp. 75–84. ACM, New York (2018)

19. Nayebi, M., et al.: A longitudinal study of identifying and paying down architecture debt.
In: Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Practice, pp. 171–180. IEEEPress (2019). https://doi.org/10.1109/ICSE-SEIP.
2019.00026

20. Arkley, P., Riddle, S.: Overcoming the traceability benefit problem. In: The Proceedings of the
13th IEEE International Conference on Requirements Engineering (RE 2005), Paris, France
(2005). https://doi.org/10.1109/re.2005.49

21. Berry, D.M., Czarnecki, K., Antkiewicz, M., Abdelrazik, M.: The problem of the lack of
benefit of a document to its producer. In: Proceedings of the IEEE International Conference
on Software Science, Technology and Engineering, Beer-Sheva, Israel (2016). https://doi.org/
10.1109/swste.2016.14

https://doi.org/10.1109/ICSE-SEIP.2019.00026
https://doi.org/10.1109/re.2005.49
https://doi.org/10.1109/swste.2016.14

	Hearing the Voice of Software Practitioners on Causes, Effects, and Practices to Deal with Documentation Debt
	1 Introduction
	2 Background
	2.1 Technical Debt
	2.2 The InsighTD Project

	3 Research Strategy
	3.1 Research Questions
	3.2 Method

	4 Surveying Software Practitioners on Causes and Effects of Documentation Debt (InsighTD)
	4.1 Data Collection
	4.2 Data Analysis
	4.3 Results

	5 Interview-Based Case Study
	5.1 Data Collection
	5.2 Data Analysis
	5.3 Results

	6 Discussion
	6.1 Theoretical Framework of Documentation Debt

	7 Threats to Validity
	8 Final Remarks
	References




