
Generation of Formal Requirements
from Structured Natural Language

Dimitra Giannakopoulou1(B), Thomas Pressburger1, Anastasia Mavridou2,
and Johann Schumann2

1 NASA Ames Research Center, Moffett Field, CA, USA
{dimitra.giannakopoulou,tom.pressburger}@nasa.gov

2 SGT, NASA Ames Research Center, Moffett Field, CA, USA
{anastasia.mavridou,johann.m.schumann}@nasa.gov

Abstract. [Motivation] The use of structured natural languages to
capture requirements provides a reasonable trade-off between ambiguous
natural language and unintuitive formal notations. [Problem] There are
two major challenges in making structured natural language amenable
to formal analysis: (1) associating requirements with formulas that can
be processed by analysis tools and (2) ensuring that the formulas con-
form to the language semantics. [Results] FRETISH is a structured nat-
ural language that incorporates features from existing research and from
NASA applications. Even though FRETISH is quite expressive, its under-
lying semantics is determined by the types of four fields: scope, condition,
timing , and response. Each combination of field types defines a template
with Real-Time Graphical Interval Logic (RTGIL) semantics. We present
an approach that constructs future and past-time metric temporal logic
formulas for each template compositionally, from its fields. To establish
correctness of our approach we have developed a framework which, for
each template: (1) extensively tests the generated formulas against the
template semantics and (2) proves equivalence between its past-time and
future-time formulas. Our approach has been used to capture and analyze
requirements for a Lockheed Martin Cyber-Physical System challenge.
[Contribution] To the best of our knowledge, this is the first approach
to generate pure past-time and pure future-time formalizations to accom-
modate a variety of analysis tools. The compositional nature of our algo-
rithms facilitates maintenance and extensibility, and our extensive veri-
fication framework establishes trust in the produced formalizations. Our
approach is available through the open-source tool fret.

Keywords: Structured natural languages · Requirements elicitation ·
Compositional formalization · Temporal logics · Verification

1 Introduction

Requirements engineering is a central step in the development of safety-critical
systems. Requirements are typically written in natural language, which is
This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 19–35, 2020.
https://doi.org/10.1007/978-3-030-44429-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_2

20 D. Giannakopoulou et al.

ambiguous and consequently not amenable to formal analysis. On the other hand,
a variety of analysis techniques have been developed for requirements written
in formal, mathematical notations [4,7,10,11,17], e.g. completeness, consistency,
realizability, model checking, or vacuity checking. Despite the ambiguity of unre-
stricted natural language, it is unrealistic to expect developers to write high-level
requirements in mathematical notations.

fretish is a restricted natural language for writing unambiguous require-
ments, supported by our open source tool fret1 (see Fig. 1). fretish incorporates
features from existing approaches (e.g., property patterns [8] and EARS [19]), and
from NASA applications. Even though the fretish grammar is quite expressive,
its underlying semantics is determined by the types of four fields: scope, condi-
tion, timing , and response. Each combination of field types defines a template with
Real-Time Graphical Interval Logic (RTGIL) [21] semantics. There are two chal-
lenges in making fretish amenable to formal analysis: (1) associating fretish
requirements with formulas that can be processed by analysis tools, and (2) ensur-
ing that the formulas conform to the fretish semantics.

We propose an approach that constructs two metric temporal logic formulas
for each fretish template: a pure past-time (denoted pmLTL), and a pure future-
time (denoted fmLTL) formula, interpreted over finite traces.2 We support both
fmLTL and pmLTL so as to interface with a variety of analysis tools. Formula gen-
eration is performed compositionally, based on the types of the template fields. We
establish correctness of the produced formalizations through a fully automated
framework which, for each template: (1) extensively tests the generated formulas
against the template semantics, and (2) proves equivalence between its past-time
and future-time formulas. The fretish grammar, its RTGIL semantics, the for-
mula generation approach and its verification framework are available through the
fret repository. We report on the application of our approach to the Lockheed
Martin Cyber-Physical Systems (LMCPS) challenge [20].

Related Work. Work on gleaning patterns from a body of property specifi-
cations resulted in the Specification Pattern System [8], with later extensions
for real-time properties [16], composite properties [12], and semantic subtleties
[6]. Tools such as Prospec [12], SPIDER [15] and SpeAR [10] were developed to
support users in writing requirements according to supported patterns. SALT
(Structured Assertion Language for Temporal logic) [3] is a general purpose
specification and assertion language designed for readability, which incorporates
property pattern features like scope. We use SALT as an intermediate language.
The Easy Approach to Requirements Syntax (EARS, [19]) proposed five infor-
mal templates that were found to be sufficient to express most high-level require-
ments; recent work has attempted to formalize the templates in LTL [18]. STIM-
ULUS [14] enables the user to build up a formal requirement by dragging and
dropping phrases, and then simulate the system specified by the requirements.
ASSERTTM [7] uses the constrained natural language SADL for formalizing

1 Formal Requirements Elicitation Tool: https://github.com/NASA-SW-VnV/fret.
2 fmLTL with infinite-trace semantics can be produced with a very simple modification

to our generation algorithms.

https://github.com/NASA-SW-VnV/fret

Generation of Formal Requirements from Structured Natural Language 21

domain ontologies, and a requirements language SRL that can express condi-
tions, including temporal conditions, on monitored variables, and constraints on
controlled variables. Tools such as VARED [2] and ARSENAL [13] attempt to
formalize more general natural language.

Contributions. Our approach is related to all these works by pursuing similar
goals and incorporating experience represented by existing requirement tem-
plates and patterns. The main driver for our work is to enable intuitive writing
of requirements during early phases of the software lifecycle. We do not require
users to define the variables used in requirement sentences; variables can be
defined later for analysis, or can be connected to models or code as needed for
verification [20]. We are not aware of other work that supports the generation of
pure past-time, together with finite- and infinite-trace future-time metric tem-
poral logic formulas. We are thus able to connect to analysis tools that may not
support the combination of future and past time operators (e.g., CoCoSim [20]).
Our developed algorithms are open source, and their compositional nature facili-
tates maintenance and extensibility. We currently support 112 templates, which
may increase in the future to accommodate the needs of fret users. Finally,
unlike previous work, we provide an extensive, open source, automated verifica-
tion framework for the correctness of the generated formulas. This is crucial for
using fret in safety-critical contexts.

2 Background

Intermediate Language. SALT [3] serves as an intermediate language in
our formula generation approach. In particular, several SALT features facili-
tate our formalization algorithms: operator qualifiers inclusive/exclusive or
required/optional; scope operators such as before, after, or between; for-
mula simplifications and generation in nuXmv format. Note that we are only
able to use scope operators with fmLTL formulas; unfortunately, scope opera-
tors in the context of past-time SALT expressions result in formulas with mixed
future and past-time operators. Our framework targets pure future-time or pure
past-time formulas, i.e., formulas that utilize exclusively future-time or past-time
operators, respectively.

We use SALT’s propositional operators: not, and, or, implies, and the tem-
poral operators: until, always, eventually, next for future time, and since,
historically, once, previous for past-time. A timed modifier: timed[∼] where
∼ is one of < or ≤ turns temporal operators into timed ones (e.g., once
timed[≤ 3]φ). Modifier timed[=] is also allowed with previous and next. It
is mandatory to specify whether delimiting events are included (inclusive) or
not (exclusive), and whether their occurrence is strictly required or optional.
For example, φ until inclusive required ψ means that φ needs to hold until
and including the point where ψ occurs, and moreover ψ must occur in the
execution.

Temporal Logics. fmLTL formulas use exclusively future-time temporal opera-
tors (X, F, G, U, corresponding to next, eventually, always, until in SALT),

22 D. Giannakopoulou et al.

and look at the portion of an execution that follows the state at which they are
interpreted. pmLTL formulas use exclusively past-time temporal operators (Y,
O, H, S, corresponding to previous, once, historically, since in SALT);
they look at the portion of the execution that has occurred up to the state
where they are interpreted. We interpret formulas over discrete time points. An
fmLTL/pmLTL formula is satisfied by an execution if the formula holds at the
initial/final state of the execution, respectively.

We review the main future and past time operators for LTL by exploring
their dualities. The X (resp. Y) operator refers to the next (resp. previous) time
point, i.e., Xφ (resp. Yφ) is true iff φ holds at the next (resp. previous) time
point.3 The F (resp. O) operator refers to at least one future (resp. past) time
point, i.e., Fφ (resp. Oφ) is true iff φ is true at some future (resp. past) time
point including the present time. Gφ (resp. Hφ) is true iff φ is always true in the
future (resp. past). Finally, φUψ is true iff ψ holds at some point t in the future
and for all time points t′ (such that t′ < t) φ is true. φSψ is true iff ψ holds at
some point t in the past and for all time points t′ (such that t′ > t) φ is true.
Our formalizations often use since inclusive so, in order to reduce formula
complexity, we extend LTL with an operator SI where φ SIψ ≡ φ S (ψ &φ).
This feature is only used when the targeted analysis tools support operator SI.
Timed modifiers restrict the scope of temporal operators to specific intervals.
For example, O[≤ 3] restricts the scope of operator O to the interval including
the point where a formula is interpreted and 3 points in the past.

3 Requirements Language

The fretish language aims at providing a vocabulary natural to the user. As
such, the fretish grammar offers a variety of ways for expressing semanti-
cally equivalent notions; for example, conditions can be introduced using the
synonyms while, when, where, and if. While certain aspects of fretish require-
ments are in natural language, Boolean expressions, familiar to most developers,
are used to concisely capture conditions on state. Internally, each requirement is
mapped to a semantic template, used to construct the requirement’s formaliza-
tion. To illustrate the fretish language, we use requirement [AP-003b] from
the LMCPS challenge (see Sect. 6):

“In roll hold mode RollAP shall immediately satisfy
abs(roll angle) < 6 ⇒ roll hold reference = 0.”

A fretish requirement is automatically parsed into six sequential fields,
with the fret editor dynamically coloring the text corresponding to the fields
as the requirement is entered (Fig. 1). The fields are scope, condition, compo-
nent , shall , timing , and response, three of which are optional: scope, condition,
and timing . The mandatory component field specifies the component that the
requirement applies to (e.g., RollAP, the roll autopilot). The shall keyword states

3 Yp is false at the first time point, for all p.

Generation of Formal Requirements from Structured Natural Language 23

Fig. 1. fret screenshot: editor (left) and semantics (right) for requirement [AP-003b].
Semantics is provided in intuitive textual and diagrammatic forms. The LTL accordions
are not expanded to save space but the formulas are displayed in Table 5.

that the component behavior must conform to the requirement. The response
field currently is of the form satisfy R, where R is a non-temporal Boolean-valued
expression. The three optional fields above specify when the response is, or is
not, to occur, which we now describe.

Component behavior is often mode-dependent. Field scope specifies the inter-
val(s), relative to when a mode holds, within which the requirement must hold
(e.g., “in roll hold mode”). If scope is omitted, the requirement is enforced on
the entire execution, known as global scope. For a mode M , fret provides seven
relationships: before M (the requirement is enforced strictly before the first point
M holds); after M (the requirement is enforced strictly after the last point M
holds4); in M (or the synonym during M ; the requirement is enforced while the
component is in mode M); and not in M . It is sometimes necessary to specify
that a requirement is enforced only in some time frame, meaning that it should
not be satisfied outside of that frame. For this, the scopes only after , only before,
and only in are provided.

Field condition is a Boolean expression that triggers the need for a response
within the specified scope. For example, requirement [AP-004a] (Sect. 6) con-
tains the condition “when steady state & calm air”. Lastly, field timing specifies
when the response is expected (e.g., immediately) relative to each trigger (or
relative to the beginning of the scope, when condition is omitted). There are
seven possibilities for the timing field: immediately , never , eventually , always,
within n time units, for n time units5, and after n time units, the latter meaning:
not within n time units and at the n+1st time unit. When timing is omitted, it
is taken to mean eventually . To specify that the component shall satisfy R at

4 Actually the first occurrence of a last time in the mode; see Sect. 4.
5 The timing field possibilities correspond to the absence, existence and universality

occurrence patterns of [8] and the bounded response and invariance patterns of [16].

24 D. Giannakopoulou et al.

all times where C holds, one can use Boolean implication in combination with
timing always, as done in requirement [AP-001] (Sect. 6).

To summarize, we currently support 8 values for field mode (including global
scope), 2 values for field condition (condition included or omitted), and 7 values
for field timing, for a total of 8×2×7 = 112 semantic templates. Each template
is designated by a template key ; for example, [in, null, always] identifies require-
ments of the form In M mode, the software shall always satisfy R; null means
the optional condition has been omitted (as opposed to regular when a condition
is included). The classic response pattern: always (condition implies eventually
response), is captured by the key [null, regular, eventually]; null means scope is
omitted, which corresponds to global scope.

4 Compositional Formalization

Our approach to formalization is compositional: rather than creating a dedicated
formula for each semantic template, we build formulas by putting together sub-
formulas corresponding to the types of the template fields. For each semantic
template key of fretish, we generate an fmLTL and a pmLTL formula; these
formulas contain variables that get instantiated for each particular requirement.
For example, the template for the key [in, null, immediately] of our example
requirement [AP-003b] is: H($Fin scope mode$ → $post condition$), and gets
instantiated as shown in the last row of Table 5.

Our formalization algorithms produce SALT formulas, and invoke the SALT
tool to convert these formulas into nuXmv format. This paper focuses on finite
traces so we generate future-time formulas that only check up to the last point
of a finite trace, denoted last. Due to limited space, we only present our con-
struction of pmLTL formulas; the structure for fmLTL generation is similar but
simpler, since it can directly incorporate SALT’s support for expressing scope.

Scope. The scope of a requirement characterizes a set of disjoint finite intervals
where the requirement must hold, and as such defines a high-level template for
the generated formulas. Our approach treats a scope interval as an abstract
interval between endpoints left (inclusive) and right (exclusive), with two
semantic options: if left occurs but is never followed by right, then the interval
(1) is not defined (between semantics) or (2) is defined and spans to the end of the
finite trace (after-until semantics). Figure 2(a) illustrates after-until semantics
for scope: “in mode”. It characterizes the types of intervals where requirements
must hold: (1) intervals defined between any point (denoted by the box on the
top line of the diagram) where mode becomes true and the first subsequent point
where mode becomes false; and (2) an interval where mode is true to the end
of the execution. Our pmLTL formulas have the following high-level template:

generalform = (g-a) and (g-b)
g-a = historically (right implies previous baseform to left)

g-b = ((not right) since inclusive required left)

implies baseform to left

baseform to left = (baseform [since inclusive required left]∗)

Generation of Formal Requirements from Structured Natural Language 25

Fig. 2. RTGIL semantics: (a) “in mode”; (b) “when condition cond”; (c) “eventually
P”. Our semantics is compositional: the blue interval of a diagram can be replaced by
another diagram. For example, (d) illustrates the combined result of (b) and (c), i.e.,
“when cond, eventually p”. ee (end of execution) denotes time point last+1. (Color
figure online)

The template is a conjunction of two formulas. In formula g-a, historically
imposes the requirement on all intervals of the target scope; previous is needed
because intervals are open on the right; baseform to left is the formula base-
form that must be checked back to, and including, the left endpoint of each
interval. baseform is defined later in the section, and expresses the require-
ments that must hold within each scope interval; the part within baseform
enclosed in []∗ is omitted in some cases, as discussed later. Formula g-b is appli-
cable only with the after-until option; it similarly imposes baseform to left
on intervals that span to the end of the execution (i.e., right never occurs).

The endpoints left and right in our general template get instantiated
depending on the type of scope. Table 1 defines scope endpoints in terms of abbre-
viations (left), each characterized by a logical formula that tracks changes in the
values of mode variables M (right). We use abbreviations FiM/LiM: first/last
state in mode; FNiM/LNiM: first/last state not in mode; FFiM/FLiM: first
occurrence of FiM/LiM in execution; FTP: first time point in execution; LAST:
last time point in execution. FiM and LiM are used with scope key in; they
are characterized by M becoming true (from false) and vice versa, respectively.
Endpoint formulas may involve checking whether endpoints occur at state FTP
(e.g., when (M and FTP) is true, FiM holds).

26 D. Giannakopoulou et al.

Fig. 3. Example execution including graph-
ical representation of endpoints used in
pmLTL scope semantics

Figure 3 provides an example sys-
tem execution including mode-related
information, and depicting the differ-
ent types of endpoints used in defin-
ing scopes. For scope after, left is
time point 3, and right is time
point 10 (last+1). As mentioned,
our intervals are open to the right:
[left,right); this is because the
right endpoint of scopes can only
be detected one time point later (see
Table 1). For example, in Fig. 3, the

last point in the first mode interval is 2, but LiM is detected at time point 3,
where M is false, but was true at the previous time point. As mentioned in
Sect. 2, qualifier only expects the requirement to not hold outside of the speci-
fied scope. This means two things: (1) scope interval endpoints must be selected
accordingly (Table 1), and (2) the base formula must be negated.

Note that for scopes null, after, and only before, the right endpoint of their
associated intervals is last+1 (see Table 1). Since past-time formulas get evalu-
ated backwards starting at the last point in an execution, we do not need to pro-
vide a formula for last+1. Rather, for these cases, we simplify the general tem-
plate to the following: generalform = (once left) implies baseform to left.

Table 1. (left) Scope endpoints. (right) pmLTL formulas associated with each end-
point. last+1 is not provided because our formulas do not use it.

Scope left right

null FTP last+1

before FTP FFiM

after FLiM last+1

in FiM LiM

notin, onlyin FNiM LNiM

only before FFiM last+1

only after FTP FLiM

Symbol Formula

FFiM FiM and previous (historically (not M))

FLiM LiM and previous (historically (not LiM))

FiM M and (FTP or (previous not M))

LiM not M and previous M

FNiM not M and (FTP or previous M)

LNiM M and previous (not M)

FTP not previous true

Base Formulas. baseform describes the expectations of the requirement
within each scope interval. We remind the reader that all baseform formu-
las appear in the context of generalform and are interpreted starting at the
right of each scope. A base formula is determined by whether a condition exists,
the timing, and the type of response.

Table 2 illustrates the base formulas that correspond to various timings, with-
out, and with conditions. A base formula f enclosed in [f]∗ indicates that the
part in baseform to left similarly enclosed in []∗ must be omitted; for exam-
ple, eventually formulas cannot be checked at each point of the interval. Some

Generation of Formal Requirements from Structured Natural Language 27

Table 2. BASEFORMS without and with conditions. since ir/since er denote since
inclusive/exclusive required, respectively.

Timing baseform baseform with conditions

immediately left implies res trigger implies res

always [res since ir left]∗ nocondition or (res since ir trigger)

never [always(not res)]∗ always(cond, (not res))

eventually [not ((not res) [nocondition or

since ir left)]∗ not ((not res) since ir trigger)]∗

for n (once timed[≤n] left) F1 and F2

implies res F1 ≡ (((not left) since er trigger) and

(once timed[≤n] trigger)) implies res

F2 ≡ (cond and left) implies res

within n ((not res) since ir left) (previous timed[=n]

implies (trigger and not res))

(once timed[<n] left) implies (once timed[<n] (left or res))

after n for(n, not (res)) for(cond, n, not (res)) and

and within(n+1, res) within(cond, n+1, res)

timings are expressed in terms of others (e.g., never); we use a function-like
notation to denote that. Timed cases have special treatment when the remain-
ing interval in scope is too short to cover their duration. Take the trace of Fig. 3,
for example. At time point 8: (1) for 3 time units imposes res to the end of the
execution; (2) within 3 time units is trivially true; (3) after 3 time units imposes
that res not occur until the end of the execution.

There are several options for interpreting conditions: is a requirement trig-
gered by a condition being or becoming true? We currently only support the latter
option, as illustrated in Fig. 2: we check requirements when a condition becomes
true (from false) or is true at the first point where the requirement is in scope, as
expressed by a trigger formula: trigger = (cond and previous not(cond))
or (cond and left). We can easily add support for different options by provid-
ing alternative trigger formulas. When conditions never occur in a scope of inter-
est, then the requirement is true trivially. Base formulas with conditions therefore
typically contain a disjunction with nocondition (Table 2), where nocondition

= (not cond since inclusive required left).
Finally, note that negating base formulas in only scopes does not always

consist of wrapping the formula in a logical not. For this reason, negations of
timings are specified explicitly in our approach (not illustrated for lack of space).

5 Verifying Formalizations

We provide assurance that formulas generated by our approach capture the
intended semantics through a modular and extensible verification framework.
For each template key and its corresponding fmLTL and pmLTL formulas φft

28 D. Giannakopoulou et al.

and φpt, our framework (1) checks that φft and φpt conform to the template key
RTGIL semantics, and (2) verifies for a specified trace length that φft and φpt

are equivalent. Our verification framework consists of the following components:

• trace generator produces traces, i.e., example executions such as the one
illustrated on Fig. 3: mode M holds in intervals {[0..2], [6..9]}, condition cond
holds in the interval {[2..3]}, and response res holds in intervals {[2..2], [7..9]}.

• formula retriever produces the set of all possible verification tuples
〈t, φft, φpt〉, where t is a template key, and φft and φpt are its correspond-
ing fmLTL and pmLTL formulas, respectively. This component establishes
the set of formulas that must be checked by our framework.

• oracle takes a trace and a verification tuple 〈t, φft, φpt〉, and computes the
truth value of t on the trace, in terms of RTGIL semantics. For example, for
template key [in, null, always] and the trace of Fig. 3, the expected value is
false, because when M is active in interval [0..2], res does not hold on the
entire interval.

• semantics evaluator receives a trace, a verification tuple 〈t, φft, φpt〉, and
an expected value e (provided by oracle), and checks whether φft and φpt

evaluate to e on the trace. In other words, it checks if, in the context of
the particular trace, the generated formulas conform to the template key
semantics.

• equivalence checker receives a verification tuple 〈t, φft, φpt〉, and checks
whether φft and φpt are equivalent formulas, thus ensuring consistency
between different formalizations of the same template key.

5.1 Trace Generation

We support two approaches for trace generation: the first targets interesting
relationships between mode, condition, response, and duration (for metric tim-
ing), while the second uses a random approach. Our framework is designed in a
highly modular way, so additional strategies can easily be incorporated.

The first approach uses boundary value analysis and equivalence class strate-
gies similar to [22], with the difference that we generate traces automatically as
opposed to manually, and we additionally deal with durations for metric timing.
We base trace generation on specifying numerical constraints on endpoints for
mode, condition, and response. We then use constraint logic programming6 to
compute all solutions satisfying the constraints. These solutions define concrete
traces used by our framework.

A trace spans between time points 0 and Max. We first select a point x
where a condition trigger is imposed, with 0 ≤ x ≤ Max. We optionally add
another trigger point a fixed distance away. Condition intervals are currently of
length 1 (for example, [5..6]). We then generate a mode interval [x1..x2] where
0 ≤ x1 ≤ x2 ≤ Max around the first trigger point according to boundary value
and equivalence class testing strategies. In particular, we generate constraints on

6 We use clp(fd) in SWI-Prolog: https://www.swi-prolog.org/.

https://www.swi-prolog.org/

Generation of Formal Requirements from Structured Natural Language 29

x1 and x2 where x1 = x, or x1 +1 = x (boundary cases), or x is the midpoint of
x1 and x2 (to represent the equivalence class of interior points between x1 and
x2), or x2 = x (another boundary case).

We also generate traces with a second scope interval [x3..x4] (where x3 >
x2 + 1) based on a selected duration n. There are several cases for time point
x + n: it could lie between x1 and x2, be x2, be between x2 and x3, be x3,
be between x3 and x4, be x4, or be greater than x4. Next, we explore response
intervals that implement each of the Allen interval relationships [1] to each mode
interval, merging pairs of response intervals that are not separated. This process
generates, for example: 1908 traces with Max = 6 and duration= 2; 12562 traces
with Max = 9 and duration = 4 (the example of Fig. 3 is one of those); and 32717
traces with Max = 12 and duration = 4.

Random trace generation constructs a random number, between 0 and 3, of
random, disjoint, non-consecutive intervals between 0 and Max, for each of mode,
condition, and response. It also generates a random duration for metric timings.
We used thus produced 60000 different random traces in the range [0..12].

5.2 Test Oracles

oracle interprets the RTGIL semantics of a template key on a trace generated
as above and produces an expected value of true or false. It performs this in a
compositional fashion, which reflects the way in which the corresponding RTGIL
semantics is defined. More specifically, fields scope and condition determine the
intervals within a trace where the template is relevant, and fields timing and
response determine the corresponding true or false value, as follows.

The first step consists of establishing the scope of the requirement as a set
of intervals where the requirement must be evaluated. This is performed based
on the trace and the type of field scope. Take, for example, the trace illustrated
in Fig. 3, where M holds in intervals {[0..2], [6..9]}. If the scope field is after or
in, then the scope of the requirement is {[3..9]} or {[0..2], [6..9]}, respectively.

If the condition field is regular, then the intervals where the requirement
must be evaluated get modified accordingly, based on the trigger point for the
condition. The trigger point is computed as the first point where a scope interval
intersects some condition interval. This could be the left endpoint of the scope
interval, some other point within the interval, or no point, if the condition never
holds within that interval. For example, in Fig. 3 where cond holds in the interval
{[2..3]}, if the scope is {[0..2], [6..9]}, the condition triggers are time point 2
for [0..2], and none for [6..9]. As a consequence, the requirement must only be
evaluated in interval [2..2]; this is established by truncating interval [0..2] to start
at the condition trigger 2, resulting in interval [2..2].

Timing and response fields determine the true or false value produced
by the oracle through appropriate interval operations for each of the timing
operators. Note that the timing constraints are applied to each interval in the
scope, and the results are combined to establish the returned value. At a high
level, our approach is based on interval operations, which we have implemented
in a generic interval logic class. We discuss a few examples here to provide the
intuition behind this step. For the trace illustrated in Fig. 3 and for a template

30 D. Giannakopoulou et al.

key with scope field in, requirements must be evaluated in intervals {[0..2], [6..9]}.
Let us focus on interval [0..2], where similar steps are applied to the second
interval [6..9].

First, consider the case where the condition is null, i.e., the requirement must
hold unconditionally. For timing always, our algorithm checks whether there
exists some interval in the set of response intervals that includes interval [0..2],
resulting in false (since res holds in intervals {[2..2], [7..9]}). For eventually,
it checks whether there exists some interval in the set of response intervals that
is not disjoint with interval [0..2], resulting in true. For timing field within and
duration 1, we truncate [0..2] to interval [0..1] that has the specified duration,
and within which we expect the response to occur. We then check whether there
exists some interval in the set of response intervals that is not disjoint with the
truncated interval [0..1], resulting in false.

If the condition field is regular, then we need to take the condition trigger
into consideration. If there exists no condition trigger in the scope interval (e.g.,
[6..9]), then the result is vacuously true. For interval [0..2], the trigger is 2. As
mentioned, the scope interval is then truncated to start at the condition trigger,
meaning to [2..2], and timing operators are applied similarly as before, but this
time on interval [2..2]. For timing field always and eventually, our algorithm
returns true; within with duration 1 falls outside the range of the original scope
interval, and hence also returns true (i.e., the remaining interval in scope is too
short to cover duration).

Since requirements are expected to hold in all scope intervals, our oracle
computes the expected result as the conjunction of the results obtained for each
interval. For example, in the case of template key [in, null, always], the result
is false for scope interval [6..9], and false for [0..2], so the expected value is
false.7 Note that only scopes involve negating the body of the requirement,
which our oracle also supports.

5.3 Testing and Verification

Components semantics evaluator and equivalence checker use the
model checker nuXmv. Given a trace and a verification tuple 〈t, φft, φpt〉, seman-
tics evaluator encodes the trace in nuXmv and evaluates the truth value of
formulas φft and φpt on the trace. Our framework subsequently checks if the
truth values of φft and φpt agree with the expected value computed by oracle.

The code listing below is the nuXmv code generated for the trace of Fig. 3.
The intervals for mode, condition and response involved in a trace correspond
in nuXmv to definitions of propositions (see lines 7 through 22 in Listing 1.1).
Following the define clause are future-time and past-time formalizations of each
template key to be checked, represented as φ(arguments) in Listing 1.1. The
future-time formulas are evaluated at the beginning of time (t = 0) at line 24,
and the past-time formulas are evaluated at the end of time (t = 9) at line 26.

7 Had the scope interval [6..9] been [7..9] instead, the result would have been true for
that interval, but still false for the result.

Generation of Formal Requirements from Structured Natural Language 31

Listing 1.1. nuXmv Input for φ(·)
1 MODULE main

2 VAR t : 0 .. 10;

3 ASSIGN init(t):=0;

4 next(t):=(t >= 10)?10:t+1;

5 DEFINE

6 LAST := (t = 9);

7 MODE := case

8 t < 0 : FALSE;

9 t <= 2 : TRUE;

10 t < 6 : FALSE;

11 t <= 9 : TRUE;

12 TRUE : FALSE; esac;

13 COND := case

14 t < 2 : FALSE;

15 t <= 3 : TRUE;

16 TRUE : FALSE; esac;

17 RES := case

18 t < 2 : FALSE;

19 t <= 2 : TRUE;

20 t < 7 : FALSE;

21 t <= 9 : TRUE;

22 TRUE : FALSE; esac;

23 LTLSPEC NAME F0_ft_key :=

24 G((t=0)->φft(LAST ,MODE ,COND ,RES));

25 LTLSPEC NAME F1_pt_key :=

26 G((t=9)->φpt(MODE ,COND ,RES));

Given a verification tuple 〈t, φft, φpt〉, equivalence checker uses nuXmv
to check (G (LAST ⇒ φpt)) ⇔ φft over an unconstrained model of specified
trace length (for example, length 10 in Listing 1.2. Formulas φft and φpt are
instantiated with the unconstrained nuXmv Boolean variables mode, cond, and
response; moreover, a specific duration (say, 3) is chosen for metric timings.

Listing 1.2. Equivalence checking
1 MODULE main
2 VAR t : 0 .. 10;
3 mode , cond , res : boolean;
4 ASSIGN init(t):=0;

5 next(t):=(t >= 10)?10:t+1;
6 DEFINE LAST := (t = 9);
7 LTLSPEC NAME F0_key :=
8 G(LAST -> φpt(mode ,cond ,res))
9 <-> φft(LAST ,mode ,cond ,res);

Despite our high expertise with formal logics, our verification framework was
central for detecting errors in our produced formalizations. The compositional
nature of our algorithms simplifies formalization repairs: changes target partic-
ular fields and automatically affect all templates that include these fields. In
the following, we describe a very subtle problem detected by our framework,
concerning the formalization for conditions with within timing, for which the
baseform formula was originally:

(((not res) and (not left)) since exclusive required ((not res) and
trigger)) implies (once timed[<n] trigger)

In other words, if within the target scope interval, no res occurs since and
including trigger, trigger must occur less than n time points in the past,
otherwise within is violated. The following discrepancy is reported by our veri-
fication framework for the pmLTL formula over a trace interval [0..12]:
Mode: {[0..1][5..10]}; Condition: {[1..2], [4..5]}; Duration: 4; Response: {[0..0], [6..10]}
Discrepancy null, regular, within: expected: false; nuXmv: true.

Scope null signifies that the requirement is evaluated in the entire trace inter-
val. The condition is triggered at points 1 and 4. The trigger at point 1 requires
res to occur within 4 time points, i.e., by, or at, time point 5. Despite the fact
that the response does not occur in that interval, the formula evaluates to true.
The reason is that the above formula states that if res does not hold since trig-
ger, then trigger must occur in less than 4 time units. Unfortunately, since
trigger also holds at time point 4, it satisfies the formula. Indeed, it is not pos-
sible to identify which trigger the formula refers to in order to avoid this prob-
lem. To address it, we used the timed equality operator previous timed[=n].
The formula of Table 2 removes all discrepancies associated with this error.

32 D. Giannakopoulou et al.

6 Lockheed Martin Cyber Physical Systems Challenge

We applied fret to the publicly-available Lockheed Martin Cyber Physical
Systems (LMCPS) challenge [9]. The requirements, given in natural language,
were formulated in fretish. The Simulink models, included with the challenge,
were verified against the formulas generated by fret. The case study aimed
to assess the expressiveness of fretish, the quality of produced formalizations,
and the capability of fret to drive analysis tools. Table 3 provides an overview
of the detailed study [20]: we found that most requirements could be captured
in fretish and fret successfully produced formalizations for analysis tools.

We also studied the conciseness of formulas generated by fret compared to
equivalent8 formulas produced by hand starting from the original natural lan-
guage requirements. We observed that, for elaborate semantic templates, writing
formulas was hard and error-prone; for simple semantic templates, hand-written
formulas could be significantly more concise. Motivated by these findings, we
implemented a rewriting engine that applies Boolean algebra and temporal logic
simplifications to reduce the complexity and size of produced formulas.

Table 3. LMCPS summary. NR: #requirements; NF : #requirements expressed in
fretish; NA: #requirements for which fret produced verification code.

Component NR NF NA

Triplex Signal Monitor (TSM) 6 6 6

Finite State Machine (FSM) 13 13 13

Tustin Integrator (TUI) 4 3 3

Control Loop Regulators (REG) 10 10 10

Nonlinear Guidance (NLG) 7 7 7

Feedforward Neural Network (NN) 4 4 4

Control Allocator Effector Blender (EB) 5 3 3

6DoF Autopilot (AP) 14 13 13

System Safety Monitor (SWIM) 3 3 3

Euler Transformation (EUL) 8 7 7

We discuss three requirements of increasing complexity. These are part of the
“6DoF Autopilot” challenge, which concerns an aircraft autopilot (AP) system
featuring several modes and commands under various conditions. The challenge
includes components Autopilot , and the RollAP unit of the AP. In [AP-001]
(Table 4), signal ap engaged indicates whether the AP is active (engaged) or not;
roll act cmd denotes the numeric output signal to the aircraft control surfaces
for roll. The last row of Table 4 illustrates the significantly more concise formula
produced by the rewriting engine as compared to the original formula above it.

8 Equivalence of formulas was checked with Kind2. [5].

Generation of Formal Requirements from Structured Natural Language 33

Table 4. [AP-001]: natural language, fretish, pmLTL, simplified pmLTL

Requirement [AP-003b] (Table 5, Fig. 1) describes the conditions that must
be satisfied in the roll hold mode of operation and belongs to the [in, null,
immediately] template key. Here, Fin roll hold, Lin roll hold are as described in
Table 1 for M = roll hold. The immediately timing was used to specify that the
response must be satisfied at the time of roll hold mode engagement. For this
template key, the complicated pmLTL formula is equivalent to the formula in the
last row of the table. We could not devise rewriting rules to achieve this result,
so we added a special case in the formula generation algorithms. Finally, [AP-
004a] (Table 6) talks about conditions that must be satisfied when commands

Table 5. [AP-003b]: natural language, fretish, fmLTL, pmLTL, equivalent pmLTL

Table 6. [AP-004a]: natural language, fretish, pmLTL

34 D. Giannakopoulou et al.

are sent in the roll hold mode. The displayed pmLTL formula using operator SI
is over 3x shorter than the corresponding formula using operator S.

7 Conclusions

We presented a compositional approach for generating and verifying formaliza-
tions of structured natural language requirements. Such modularity is key for
maintainability and extensibility. We have also developed an automated verifi-
cation framework for the formulas that we generate. Despite our high degree of
expertise in temporal logics, automated verification has been key for detecting
subtle errors in our algorithms. Our approach may produce more complex for-
mulas than could be custom-written for individual template keys. We implement
several formula simplification steps, which we will further improve in the future;
in particular, we will focus on templates that occur most often in practice.

We plan to extend fretish with responses that involve ordering of actions,
and conditions that persist for some time interval. Moreover, we intend to sup-
port customization of fretish to fit domain-specific styles and towards including
other requirement notations such as tables or finite-state machines. Finally, we
are exploring natural-language processing in order to fit existing requirements
within the templates supported by fret. We are also extending fret towards
providing user-support in correcting requirements.

Acknowledgements. We gratefully acknowledge the NASA ARMD System-Wide
Safety Project for funding this work.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26(11), 832–
843 (1983)

2. Badger, J., Throop, D., Claunch, C.: VARED: verification and analysis of require-
ments and early designs. In: RE 2014, pp. 325–326 (2014)

3. Bauer, A., Leucker, M.: The theory and practice of SALT. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
13–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5 3

4. Bloem, R., Cavada, R., Pill, I., Roveri, M., Tchaltsev, A.: RAT: a tool for the
formal analysis of requirements. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 263–267. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73368-3 30

5. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 29

6. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User guidance for creating precise and
accessible property specifications. In: Proceedings of SIGSOFT 2006/FSE 2014.
ACM (2006)

7. Crapo, A., Moitra, A., McMillan, C., Russell, D.: Requirements capture and anal-
ysis in ASSERT(TM). In: RE 2017, pp. 283–291 (2017)

https://doi.org/10.1007/978-3-642-20398-5_3
https://doi.org/10.1007/978-3-540-73368-3_30
https://doi.org/10.1007/978-3-540-73368-3_30
https://doi.org/10.1007/978-3-319-41540-6_29

Generation of Formal Requirements from Structured Natural Language 35

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of ICSE 1999, pp. 411–420. ACM (1999)

9. Elliott, C.: An example set of cyber-physical V&V challenges for S5. Lockheed
Martin Skunk Works. In: Proceedings of S5 2016. AFRL (2016). http://mys5.org/
Proceedings/2016/Day 2/2016-S5-Day2 0945 Elliott.pdf

10. Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis,
J.A.: SpeAR v2.0: formalized past LTL specification and analysis of requirements.
In: NfM 2017, pp. 420–426 (2017)

11. Gacek, A., Katis, A., Whalen, M.W., Backes, J., Cofer, D.: Towards realizability
checking of contracts using theories. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 173–187. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17524-9 13

12. Gallegos, I., Ochoa, O., Gates, A., Roach, S., Salamah, S., Vela, C.: A property
specification tool for generating formal specifications: Prospec 2.0. In: SEKE 2008,
pp. 273–278 (2008)

13. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSE-
NAL: automatic requirements specification extraction from natural language. In:
Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 41–46.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0 4

14. Jeannet, B., Gaucher, F.: Debugging embedded systems requirements with STIM-
ULUS: an automotive case-study. In: ERTS 2016 (2016)

15. Konrad, S., Cheng, B.H.C.: Facilitating the construction of specification pattern-
based properties. In: Proceedings of RE 2005, pp. 329–338. IEEE (2005)

16. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proceedings of
ICSE 2005, pp. 372–381. ACM (2005)

17. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int.
J. Softw. Tools Technol. Transf. 4(2), 224–233 (2003)

18. Lúcio, L., Iqbal, T.: Formalizing EARS - first impressions. In: 1st International
Workshop on Easy Approach to Requirements Syntax (EARS), pp. 11–13 (2018)

19. Mavin, A.: Listen, then use EARS. IEEE Softw. 29(2), 17–18 (2012)
20. Mavridou, A., Bourbouh, H., Garoche, P.L., Hejase, M.: Evaluation of the FRET

and CoCoSim tools on the ten Lockheed Martin cyber-physical challenge problems.
Technical report, TM-2019-220374, NASA (2019)

21. Moser, L.E., Melliar-Smith, P.M., Ramakrishna, Y.S., Kutty, G., Dillon, L.K.: The
real-time graphical interval logic toolset. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102, pp. 446–449. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-61474-5 99

22. Salamah, S., Gates, A., Roach, S., Mondragon, O.: Verifying pattern-generated
LTL formulas: a case study. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,
pp. 200–220. Springer, Heidelberg (2005). https://doi.org/10.1007/11537328 17

http://mys5.org/Proceedings/2016/Day_2/2016-S5-Day2_0945_Elliott.pdf
http://mys5.org/Proceedings/2016/Day_2/2016-S5-Day2_0945_Elliott.pdf
https://doi.org/10.1007/978-3-319-17524-9_13
https://doi.org/10.1007/978-3-319-17524-9_13
https://doi.org/10.1007/978-3-319-40648-0_4
https://doi.org/10.1007/3-540-61474-5_99
https://doi.org/10.1007/3-540-61474-5_99
https://doi.org/10.1007/11537328_17

	Generation of Formal Requirements from Structured Natural Language
	1 Introduction
	2 Background
	3 Requirements Language
	4 Compositional Formalization
	5 Verifying Formalizations
	5.1 Trace Generation
	5.2 Test Oracles
	5.3 Testing and Verification

	6 Lockheed Martin Cyber Physical Systems Challenge
	7 Conclusions
	References

