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Abstract. [Context and Motivation] Requirements glossary defines
specialized and technical terms used in a requirements document.
A requirements glossary helps in improving the quality and under-
standability of requirements documents. [Question/Problem] Man-
ual extraction of glossary terms from a large body of requirements is
an expensive and time-consuming task. This paper proposes a funda-
mentally new approach for automated extraction of glossary terms from
large-sized requirements documents. [Principal Ideas/Result] Firstly,
our technique extracts the candidate glossary terms by applying text
chunking. Next, we apply a novel word embeddings based semantic filter
for reducing the number of candidate glossary terms. Since word embed-
dings are very effective in identifying terms that are semantically very
similar, this filter ensures that only domain-specific terms are present
in the final set of glossary terms. We create a domain-specific reference
corpus for home automation by Wikipedia crawling and use it for com-
puting the semantic similarity scores of candidate glossary terms. We
apply our technique to a large-sized requirements document, i.e., a Crow-
dRE dataset with around 3000 crowd-generated requirements for smart
home applications. Semantic filtering reduces the number of glossary
terms by 92.7%. To evaluate the quality of our extracted glossary terms
we manually create the ground truth data from CrowdRE dataset and
use it for computing precision and recall. Additionally, we also compute
the requirements coverage of these extracted glossary terms. [Contri-
butions] Our detailed experiments show that word embeddings based
semantic filtering can be very useful for extracting glossary terms from
a large body of requirements.

Keywords: Requirements engineering · Natural language processing ·
Word embeddings · Term extraction · Semantic filter

1 Introduction

Requirements are the basis for every project, defining what the stakeholders in
a potential new system need from it, and also what the system must do in order
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to satisfy that need [8,19]. All subsequent steps in software development are
influenced by the requirements. Hence, improving the quality of requirements
means improving the overall quality of the software product. A major cause
of poor quality requirements is that the stakeholders involved in the develop-
ment process have different interpretations of technical terms. In order to avoid
these issues and to improve the understandability of requirements, it is necessary
that all stakeholders of the development process share the same understanding
of the terminology used. Specialized terms used in the requirements document
should therefore be defined in a glossary. A glossary defines specialized or tech-
nical terms and abbreviations which are specific to an application domain. For
example, if the system is concerned with health care, it would include terms like
“hospitalization”, “prescription drugs”, “physician”, “hospital outpatient care”,
“durable medical equipment”, “emergency services”, etc. Additionally, require-
ments glossaries are also useful for text summarization and term-based indexing.

In order to develop a glossary, the terms to be defined and added need to
be first extracted from the requirements document. Glossary term extraction
for the requirements document is an expensive and time-consuming task. This
problem becomes even more challenging for large-sized requirements document,
e.g., [16,17].

This paper focuses on automatic extraction of glossary terms from large-sized
requirements documents. A first step in this direction is to extract the candidate
glossary terms from a requirements document by applying text chunking. Text
chunking consists of dividing a text in syntactically correlated parts of words.
Since 99% of all the relevant terms are noun phrases [2,9], we only focus on
extracting the noun phrases from a requirements document. Next, we apply a
novel word embeddings based semantic filter to remove the noun phrases that are
not domain-specific from the set of candidate glossary terms. Word embeddings
are capable of capturing the context of a word and compute its semantic similar-
ity relation with other words used in a document. It represents individual words
as real-valued vectors in a predefined vector space. Each word is mapped to one
vector and the vector values are learnt based on the usage of words. Words that
are used in similar ways tend to have similar representations. This means that
distance between two words which are semantically very similar is going to be
smaller. More formally, the cosine of the angle between such vectors should be
close to 1. To compute the similarity scores, we create a domain-specific reference
corpus by crawling the home automation (HA) category on Wikipedia. The key
idea is to use this corpus to check if the candidate glossary terms extracted by
text chunking from a CrowdRE document are domain-specific or not. In other
words, if a term in CrowdRE document has been used in a context which is dif-
ferent from the context in which it has been used in the domain-specific corpus
for home automation then it needs to be removed from the final set of glossary
terms.

We have applied our approach to the CrowdRE dataset [16,17], which con-
tains about 3, 000 crowd-generated requirements for smart home applications.
Our detailed experiments show that advantages of this new approach for glossary
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extraction go in two directions. Firstly, our filter reduces the number of glossary
terms significantly. Note that this reduction is crucial for large-sized requirements
documents. Secondly, the semantic nature of our filter ensures that only terms
that are domain or application-specific are present in the final set of glossary
terms. Note that in the case of statistical filtering such terms would be removed
from the final set of glossary terms if they have low frequency of occurrence. To
the best of our knowledge, this is the first time that a word embeddings based
semantic filter has been proposed for automatic glossary term extraction from
large-sized requirements documents.

1.1 Contributions

We propose an automated solution for extracting glossary terms from large-sized
requirements documents. Our solution uses state-of-the art neural word embed-
dings technique for detecting domain-specific technical terms. More specifically,
our main contributions are as follows:

– We extract candidate glossary terms by applying text chunking. Next, we
propose a semantic filtering technique based on word embeddings to ensure
that only terms that are truly domain-specific are present in the final set of
glossary terms. This semantic filter is based on the principle that words that
are used in similar ways tend to have similar representations.

– We apply our technique to the CrowdRE dataset, which is a large-sized
dataset with around 3000 crowd-generated requirements for smart home
applications. Our semantic filter reduces the number of glossary terms signifi-
cantly. More specifically, we reduce the number of glossary terms in CrowdRE
dataset by 92.7%.

– To measure the effectiveness of our technique we manually extract the glossary
terms from a subset of 100 CrowdRE requirements and use this ground truth
data for computing the precision and recall. We obtain a recall of 73.2% and a
precision of 83.94%. Additionally, we also compute the requirements coverage
of these extracted glossary terms.

– Finally, we discuss the benefits and limitations of word embeddings based
semantic filtering technique for glossary extraction.

The remainder of the paper is structured as follows. Section 2 discusses the
related work. Section 3 provides the required background. Section 4 explains our
approach. We present the results and findings in Sect. 5. Finally, Sect. 6 concludes
the paper and provides pointers for future research.

2 Related Work

Word Embeddings for RE. In [4], an approach based on word embeddings and
Wikipedia crawling has been proposed to detect domain specific ambiguities in
natural language text. More specifically, in this paper authors investigate the
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ambiguity potential of typical computer science words using a Word2vec algo-
rithm and perform some preliminary experiments. In [5], authors estimate the
variation of meaning of dominant shared terms in different domains by compar-
ing the list of most similar words in each domain specific model. This method was
applied to some pilot scenarios which involved different products and stakehold-
ers from different domains. Recently, in [15], we have measured the ambiguity
potential of most frequently used computer science (CS) words when they are
used in other application areas or subdomains of engineering, e.g., aerospace,
civil, petroleum, biomedical and environmental, etc. For every ambiguous com-
puter science word in an engineering subdomain, we have reported its most simi-
lar words and also provided some example sentences from the corpus highlighting
its domain specific interpretation. All these applications of word embeddings to
requirements engineering are very recent and only focus on detecting ambiguity
in requirements documents.

Glossary Extraction for RE. In [1,7], authors have developed tools, e.g. find-
phrases and AbstFinder for finding repeated phrases in natural language require-
ments. These repeated phrases have been termed as abstractions. These tools
can be used as the basis for an environment to help organize the sentences and
phrases of a natural language problem description to aid the requirements analyst
in the extraction of requirements. In [18], authors have described an approach for
automatic domain specific glossary extraction from large document collections
using text analysis. A tool named GlossEx has been used to build glossaries for
applications in the automotive engineering and computer help desk domains. In
[10], authors described a case study on application of natural language process-
ing for extracting terms from the text written by domain experts, and build
a domain ontology using them. In [21], a term extraction technique has been
proposed using parsing and parse relations. In this paper, authors have built a
prototype dowsing tool, called Dowser which is capable of achieving high preci-
sion and recall when detecting domain-specific terms in a UNIX manual page.
A text mining technique using term ranking and term weighing measures for
the automatic extraction of the most relevant terms used in Empirical Software
Engineering (ESE) documents has been proposed in [22]. In [23], authors have
developed a procedure for automatic extraction of single and double-word noun
phrases from existing document collections. Dwarakanath et al. [3] presented
a method for automatic extraction of glossary terms from unconstrained nat-
ural language requirements using linguistic and statistical techniques. Menard
et al. [12] retrieved domain concepts from business documents using a text min-
ing process. Their approach has been tested on French text corpora from public
organizations and shown to be 2.7 times better than a statistical baseline for
relevant concept discovery. Recently, Arora et al. [2] have proposed a solution
for automatic extraction and clustering of candidate glossary terms from nat-
ural language requirements. This technique has been evaluated on three-small
sized industrial case studies. Note that in [2] syntactic, e.g., Jaccard, Leven-
stein, Euclidean and knowledge-based similarity measures, e.g., WUP, LCH,
PATH have been used for clustering of glossary terms. More recently, a hybrid
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approach which uses both linguistic processing and statistical filtering for
extracting glossary terms has been proposed in [6]. This technique has been
applied to the same CrowdRE dataset which we have used in our paper for
experiments.

All the above mentioned approaches can be broadly classified into linguistic,
statistical or hybrid approaches. Linguistic approaches detect glossary terms
using syntactic properties. In contrast, statistical approaches select terms based
on the frequency of their occurrence. A hybrid approach combines both linguistic
and statistical approaches, e.g., [6].

Our work proposes a new approach for selecting glossary terms based on the
use of state-of-the art neural word embeddings technique. We use word embed-
dings and similarity scores to create a semantic filter which selects only those
candidate terms that are truly domain-specific. We believe that this paper is
a first step forward in the direction of developing advanced semantic filters for
glossary term extraction from large-sized requirements documents.

3 Preliminaries

This section introduces some preliminaries that are needed for the understanding
of the rest of this paper.

3.1 Word Embeddings

Word embeddings are a powerful approach for analyzing language and have
been widely used in information retrieval and text mining. They provide a dense
representation of words in the form of numeric vectors which capture the nat-
ural semantic relationship of their meaning. Word embeddings are considered
to be an improvement over the traditional bag-of-words model which results in
very large and sparse word vectors. Out of various word embedding models, the
model “Word2vec” developed by the researchers at Google [13] has been used
in our work to learn and generate word embeddings from a natural language
text corpus. We focus on the model named skip gram negative sampling (SGNS)
implementation of Word2vec [14]. SGNS predicts a collection of words w ∈ VW

and their contexts c ∈ VC , where VW and VC are the vocabularies of input words
and context words respectively. Context words of a word wi is a set of words
wi−wind, . . ., wi−1, wi+1, . . ., wi+wind for some fixed window size wind. Let D
be a multi-set of all word-context pairs observed in the corpus. Let #»w, #»c ∈ R

d

be the d-dimensional word embeddings of a word w and context c. These vectors
(both word and context) are created by the Word2vec model from a corpus and
are analyzed to check the semantic similarity between them. The main objective
of negative sampling (NS) is to learn high-quality word vector representations
on a corpus. A logistic loss function is used in NS for minimizing the negative
log-likelihood of words in the training set. For more details, we refer the inter-
ested reader to [11,13,14]. As the input corpus changes, word embeddings are
also updated reflecting the semantic similarity between words w.r.t. new corpus.
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Word Similarity Computation. The Word2vec model uses the cosine similarity
to compute the semantic relationship of two different words in vector space.
Let us assume two word embedding vectors

#  »

w
′

and
#   »

w
′′
, where

#  »

w
′

is a word
vector generated for CrowdRE and

#   »

w
′′

is a word vector for home automation.
The cosine angle between these two word embedding vectors is calculated using
Eq. (1).
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The range of similarity score is between 0 to 1. A score closer to 1 means that
the words are semantically more similar and used in almost the same context.
On the other hand, a score closer to 0 means that the words are less related to
each other.

3.2 Crowd-Generated Requirements

The CrowdRE dataset was created by acquiring requirements from members
of the public, i.e., crowd [17]. This dataset contains about 3000 requirements
for smart home applications. A study on Amazon Mechanical Turk was con-
ducted with 600 workers. This study measured the personality traits and creative
potential for all the workers. A two-phase sequential process was used to create
requirements. In the first phase, user stories for smart home applications were
collected from 300 workers. In the second phase, an additional 300 workers rated
these requirements in terms of clarity and creativity and produced additional
requirements.

Each entry in this dataset has 6 attributes, i.e., role, feature, benefit, domain,
tags and date-time of creation. Since we are interested in extracting domain-
specific terms from this dataset, we only focus on feature and benefit attributes
of this dataset. An example requirement obtained from this dataset after merging
feature and benefit attributes is as follows: “my smart home to be able to order
delivery food by simple voice command, i can prepare dinner easily after a long
day at work”. For further details, we refer the interested reader to [16,17].

4 Approach

This section discusses the approach used to extract glossary terms from large-
sized requirements documents. Figure 1 shows an overview of our approach. The
first step includes the process of data gathering. In the second step we perform
data preprocessing. The third step focuses on extracting the candidate glossary
terms from preprocessed data. In the final step, semantic filtering of candidate
glossary terms provides us the final set of domain-specific terms. The rest of this
section elaborates each of these steps.
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4.1 Data Gathering

CrowdRE. For each user story in the CrowdRE dataset, we merge the feature
and benefit attributes to obtain a single textual requirement. This is done by
using a comma (,) between the text present in two attributes and a full stop (.)
to terminate the requirement. Let CCRE denotes the CrowdRE corpus obtained
after applying the above mentioned transformations.

Requirements-Specific Reference Corpus. We use some standard web scraping
packages available in python1 to crawl and build the corpus of home automation
domain. Let CHA denotes the home automation corpus obtained by Wikipedia
crawling. CHA has been built by retrieving the web pages from “Wikipedia home
automation” (HA) category2, which has a tree structure. Wikipedia categories
group together pages on similar subjects. Categories are found at the bottom
of an article page. They support auto linking and multi-directional navigation.
For our case, the maximum depth used for subcategory traversal is 2. This
is primarily because increasing the depth results in extraction of less relevant
pages from Wikipedia. For the sake of completeness, we have crosschecked all
the results (data extraction for the home automation Wikipedia category) with
the help of a widely used Wikipedia category data extraction tool known as
PetScan3. PetScan (previously CatScan) is an external tool which can be used
to find all the pages that belong to a Wikipedia category for some specified
criteria.

4.2 Data Preprocessing

This step involves transforming raw natural language text into an understand-
able format. All the steps of data preprocessing have been implemented using the
Natural Language Toolkit (NLTK)4 in Python. The NLP pipeline used in data
preprocessing is shown in Fig. 2. The textual data (sentences) of each corpus are
broken into tokens of words (tokenization) followed by the cleaning of all special
symbols, i.e., alpha-numeric words. Note that tokenization preserves the syntac-
tic structure of sentences. Next, we convert all the words to lowercase (lowering
of words) followed by the removal of noisy words defined for the English lan-
guage5 (stop word removal). The tokens of each sentence are tagged according
to their syntactical position in the text. The tagged tokens are encoded as 2-
tuples, i.e., (PoS, word), where PoS denotes the part of speech. We have used the
NLTK (pos tag)6 Tagger, which is a perceptron tagger for extracting PoS tags.
A perceptron part-of-speech tagger implements part-of-speech tagging using the
averaged, structured perceptron algorithm. It uses a pre-trained pickled model
1 https://selenium-python.readthedocs.io/.
2 https://en.wikipedia.org/wiki/Home automation.
3 https://petscan.wmflabs.org/.
4 https://www.nltk.org/.
5 https://www.ranks.nl/stopwords.
6 https://www.nltk.org/ modules/nltk/tag.html.

https://selenium-python.readthedocs.io/
https://en.wikipedia.org/wiki/Home_automation
https://petscan.wmflabs.org/
https://www.nltk.org/
https://www.ranks.nl/stopwords
https://www.nltk.org/_modules/nltk/tag.html
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Fig. 1. Semantic approach for glossary
term extraction.

Fig. 2. NLP pipeline.

by calling the default constructor of the PerceptronTagger class7. This tagger
has been trained and tested on the Wall Street Journal corpus. After extracting
the tags, we apply text chunking which consists of dividing a text in syntac-
tically correlated parts of words. Finally, we lemmatize8 the generated chunks
(lemmatization) which removes the inflectional endings and returns the base or
dictionary form of a word, i.e., lemma. For example, after the lemmatization
step books becomes book and cooking becomes cook. Let C ′

CRE and C ′
HA be the

new corpora obtained after applying these steps. Lemmatization is important
because it allows for the aggregation of different forms of the same word to a
common glossary term.

4.3 Extracting Candidate Glossary Terms

Since we are interested only in noun phrases (NPs), let GT be the set of all
lemmatized NPs obtained from C ′

CRE . Similarly, NPs have been extracted from
the Wikipedia corpus, i.e., C ′

HA. Let TW be the set of all lemmatized NPs
obtained from C ′

HA. Finally, we compute the set of NPs on which the semantic

7 https://www.nltk.org/ modules/nltk/tag/perceptron.html#PerceptronTagger.
8 https://www.nltk.org/ modules/nltk/stem/wordnet.html.

https://www.nltk.org/_modules/nltk/tag/perceptron.html#PerceptronTagger
https://www.nltk.org/_modules/nltk/stem/wordnet.html
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filtering needs to be applied. In other words, we identify those NPs which are
common to both GT and TW . Let CGT = GT ∩ TW .

4.4 Semantic Filtering of Candidate Glossary Terms

After computing the set CGT , C ′
CRE is transformed into a novel corpus C ′′

CRE by
replacing each occurrence of a NP that appears in the set CGT with a modified
version of the NP. This modified version is obtained by prefixing and suffixing
the NP by an underscore character. For example, the word system is replaced by
system . This transformation helps us in distinguishing the context of a given

noun phrase. Continuing the previous example, the word system denotes that
it is being used in the context of home automation, and system denotes that
it is being used in the context of CrowdRE.

Next, we use the Word2vec model to produce word embeddings and for com-
puting semantic similarity scores of NPs present in CGT . The goal of this step is
to check if each noun phrase of CGT has been used in a similar context in both
C ′′

CRE and C ′
HA or not. Learning of word embeddings is facilitated by joining the

two corpora, i.e, C ′′
CRE ∪C ′

HA which is given as an input to the Word2vec model.
We set the dimension (d = 100), the window size (wind = 10), and the minimum
count (c = 1) for all the experiments. Note that several rounds of experiments
have been performed to identify the most suitable Word2vec parameters for this
case study. As mentioned earlier, the Word2vec model uses cosine similarity to
compute the semantic relationship of two words in vector space. The final set
of glossary terms includes only those candidate terms which have a similarity
score greater than or equal to 0.5. This value has been selected based on our
experiments with the corpora.

Table 1. Descriptive statistics of the corpora.

Data Type Total size Total sentences Total chunks (NPs)

CCRE Corpus 2,966 (R) 2,966 4,156

CHA Corpus 1,196 (P ) 64,25,708 64,480

5 Results and Discussions

This section presents the results of our detailed experiments. The semantic app-
roach for glossary term extraction has been implemented in Python 3.7 and
executed on Windows 10 machine with Intel Core-i5-7500 CPU, 4 GB DDR3
primary memory and a processor frequency of 3.40 GHz. The first row of Table 1
reports the number of CrowdRE requirements used in our experiments and total
number of unique chunks (NPs) extracted from these requirements. Here, R
denotes the textual requirements. The second row of this table reports the num-
ber of Wikipedia pages crawled for (HA) category to build the domain-specific
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reference corpus and total number of unique chunks extracted from this corpus.
Here, P denotes the Wikipedia pages. The detailed report of our experiments
including modified CrowdRE dataset, ground truth, final set of extracted glos-
sary terms and similarity scores can be found in this repository9.

Table 2. Some examples of manually extracted glossary terms.

Req Id Textual requirements Glossary terms

R1 My smart home to be able to order
delivery food by simple voice
command, i can prepare dinner easily
after a long day at work

Smart home, order delivery food,
simple voice command, voice
command, dinner, day at work

R2 My smart home to turn on certain
lights at dusk, i can come home to a
well-lit house

Smart home, home, certain
lights, light, dusk, house

R3 My smart home to sync with my
biorhythm app and turn on some
music that might suit my mood when
i arrive home from work, i can be
relaxed

Smart home, biorhythm app,
some music, music, mood, home,
work

R4 My smart home to to ring when my
favorite shows are about to start, i will
never miss a minute of my favorite
shows

Smart home, favorite show

5.1 Ground Truth Generation

Ground truth is used for checking the results of machine learning for accuracy
against the real world. For glossary term extraction, ground truth generation
involves manual creation of correct glossary terms by domain experts or by a
team of experienced requirements engineers. Since CrowdRE dataset does not
contain a reference list of correct glossary terms and it is not possible to create
the correct glossary terms manually for a large body of requirements, i.e., 3000
requirements, we have manually created the ground truth for a subset of 100
requirements. This ground truth allows us to assess the performance of our
approach by computing precision and recall. A total of 250 glossary terms have
been manually extracted from a subset of 100 CrowdRE requirements. Note that
this ground truth also includes the glossary terms (except role descriptions which
do not appear in our subset of 100 requirements) that were manually selected
by the authors in [6]. Some examples of manually extracted glossary terms have
been shown in Table 2.

9 https://github.com/SibaMishra/Automatic-Glossary-Terms-Extraction-Using-
Word-Embeddings.

https://github.com/SibaMishra/Automatic-Glossary-Terms-Extraction-Using-Word-Embeddings
https://github.com/SibaMishra/Automatic-Glossary-Terms-Extraction-Using-Word-Embeddings
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5.2 Precision and Recall

To evaluate the quality of our term extraction technique we compute precision
and recall on this subset of 100 CrowdRE requirements. Precision gives us the
fraction of relevant instances among the retrieved instances. On the other hand,
recall gives us the fraction of relevant instances that have been retrieved over
the total amount of relevant instances. As mentioned earlier, to compute the
precision and recall we have manually extracted glossary terms from the subset
of 100 requirements. We consider this set of manually extracted terms as ground
truth. On applying our linguistic processing steps to these 100 requirements we
extract 269 candidate glossary terms. Using our word embeddings based semantic
filter, we reduce the number of glossary terms from 269 to 218. This set of final
extracted glossary terms has 183 true positive terms. Note that we also count
short terms that are included as parts of longer terms of the other set. These true
positive terms lead to a recall of 183

250 = 73.2% and a precision of 183
218 = 83.94%.

These results indicate that our approach manages to strike a balance between
the number of extracted glossary terms and recall rate.

5.3 Automated Glossary Term Extraction

Without applying our word embeddings based semantic filtering, the text chunk-
ing algorithm returns a total of 4156 candidate glossary terms when applied to
the entire CrowdRE dataset, i.e., 2966 requirements. Since the number of glos-
sary terms obtained is very large, we apply our semantic filter to reduce it by
removing terms that are not domain-specific. Using our semantic filter we reduce
the number of glossary terms significantly, i.e., from 4156 to 304. This means
that the number of glossary terms gets reduced by 92.7%. Table 3 presents some

Table 3. Examples of final extracted glossary terms and their similarity scores.

Glossary terms Similarity score

Automatic door 0.9161

Audio system 0.8517

Air conditioner 0.8042

Blood pressure monitor 0.8091

Comfortable temperature 0.9418

Entertainment system 0.8553

Electric blanket 0.9722

ipad 0.6262

Personal computer 0.6067

Smart light 0.9081

Smart alarm clock 0.9534

Smart card 0.5502
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examples of glossary terms extracted by applying word embeddings based seman-
tic filter. The second column of this table shows the similarity score, i.e., score
obtained by computing the cosine similarity with the same word from the home
automation Wikipedia corpus.

5.4 Coverage

In [6], requirements coverage has been advocated as another metric for a glos-
sary’s quality. Roughly speaking, the definition of coverage is the extent to which
something is addressed, covered or included. In the context of glossary term
extraction for software requirements, coverage gives us the percentage of require-
ments that are covered by the terms present in the glossary. It is important to
note that high coverage rate does not necessarily means high quality glossary.
For example, it is possible to achieve a very high coverage rate by including com-
mon words or terms that appear frequently in a requirements document even if
they are not domain or application-specific terms. For CrowdRE dataset, with-
out semantic filtering we obtain a total of 4156 glossary terms with a coverage
rate of 99%, i.e., 2937 of 2966 requirements are covered by these glossary terms.
On applying the semantic filter number of glossary terms reduces to 304 and
the corresponding coverage rate is 51.88%, i.e., 1539 of 2966 requirements are
covered by this new set of glossary terms. This reduction in coverage rate can be
attributed to the following two reasons. Firstly, common nouns or noun phrases
and terms which are not domain-specific but do appear frequently in require-
ments document would not be part of the final set of glossary terms obtained
after applying semantic filter. Secondly, unlike [6] we do not include the content
of role descriptions attribute of CrowdRE dataset as part of every requirement.
Since the same role description can be part of many user stories it ensures a
high coverage regardless of the specific content of the requirements. Some exam-
ple role descriptions from CrowdRE dataset are as follows: student, cook, driver,
parent, mother, wife, manager, adult, pet owner, nanny and husband. From these
examples it is easy to see that role description does not give any useful informa-
tion about the actual contents of a requirement. Semantic filtering reduces the
number of glossary terms by 92.7% while coverage rate is reduced by 47.6%. In
other words, the number of glossary terms gets reduced roughly by less than a
factor of 14 whereas the coverage rate is reduced by less than a factor of 2. Since
for a large-sized requirements document the glossary is required to be restricted
to a manageable size, we believe that our approach is very effective in achieving
a huge reduction in glossary size with a much smaller impact on coverage rate.

Some statistics related to coverage have been reported in Table 4. First row
of this table presents the number of glossary terms that appear only once in the
CrowdRE dataset. Similarly, ith row of this table indicates the number of glossary
terms that are present in i unique requirements from the CrowdRE dataset. As
expected when i increases the number of glossary terms starts decreasing. The
only exception to these findings is the 2nd row of this table where the number
of glossary terms increases.
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Table 4. Number of requirements covered by the extracted glossary terms.

Number of requirements Glossary terms

1 48

2 98

3 46

4 23

5 18

6 10

7 8

8 5

9 6

10 4

To highlight the fact that our approach does not remove infrequent domain
or application-specific terms, we have compiled a set of some example techni-
cal terms which have been extracted by our semantic filter (see Table 5). First
column of this table reports some examples of extracted glossary terms that
appear only once in the CrowdRE dataset. Similarly, second column of this table
includes some examples of extracted glossary terms which appear only twice in
the dataset.

Table 5. Examples of extracted glossary terms that appear only once or twice in
CrowdRE.

Glossary terms (1) Glossary terms (2)

Smart sensor Motion sensor

Fingerprint scanner Smart fridge

Smart tag Smart tv

Amazon Ideal temperature

Wireless speaker Room thermostat

Rfid chip Facial recognition

Carbon monoxide detector iphone

5.5 Advantages of Our Approach

A major advantage of our approach is that only those technical terms are added
to the final set of glossary terms which are truly domain-specific. This is primarily
because we use word embeddings and similarity scores for detecting domain-
specific terms. For example, terms that occur very frequently in the requirements
document but are not domain or application-specific will not be part of the
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final set of glossary terms. In contrast, term extraction approaches which only
use statistical filtering would include these terms in the final set of glossary
terms. Additionally, our filtering technique can be used to significantly reduce
the number of glossary terms for large-sized requirements documents.

Another advantage of this approach is that if the number of glossary terms
needs to be reduced further, this can be done easily by selecting a higher similar-
ity threshold used for labeling a term as relevant/domain-specific. Our semantic
filtering technique can also be combined with other filtering techniques, e.g., sta-
tistical and hybrid. Finally, this technique can be used to detect multiple terms
(NPs) with the same meaning, i.e., synonyms. This is helpful as we do not need
to define synonyms as separate glossary terms in the requirements document.
Similarly, terms having the same spelling but different meanings, i.e., homonyms
can be detected. This would allow us to define these terms as separate candidate
glossary terms.

5.6 Limitations of Our Approach

A major limitation of our approach is that for every application domain it
requires a corresponding domain-specific reference corpus which is used by
Word2vec model to filter the candidate glossary terms. This could be an issue
for new application domains where a reference corpus cannot be built due to
the unavailability of large-sized domain-specific documents. Moreover, even for
application domains where it is possible to create a reference corpus, there are
no specific guidelines for selecting the source from where the corpus should be
generated. For example, it is possible that for a particular application domain
multiple sources of relevant data are available, e.g., Wikipedia, existing require-
ments documents, product brochures, handbooks, etc. In this case, it is not clear
which of these documents need to be mined or crawled to generate the reference
corpus which gives us the most accurate results. For home automation domain,
reference corpus created by Wikipedia crawling gives us good results but this
may not be true for other application domains.

Another issue with semantic filters is that for very large-sized documents,
generation of word embeddings and computation of similarity scores for thou-
sands of NPs may take a long time to complete. For home automation domain,
we were able to run the experiments on a laptop but this may not be true for
other application domains.

6 Conclusions and Future Work

This paper proposes an automatic approach for glossary term extraction from
large-sized requirements documents. The first step of our solution extracts can-
didate glossary terms by applying text chunking. In the second step, we use
a semantic filter based on word embeddings to reduce the number of glossary
terms. This semantic filter ensures that domain-specific terms are not removed
from the set of candidate glossary terms. We apply our technique to a large-sized
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requirements documents with around 3000 crowd-generated requirements. Our
experiments show that word embeddings based semantic filtering can be very
useful for extracting glossary terms from a large body of existing requirements.
This research work can be extended in several interesting directions which are
as follows:

– Implement a tool that takes as input the large-sized requirements document
and automatically mines the Web to build a requirements-specific reference
corpus. In the next step, it should automatically extract the set of candidate
glossary terms by applying our word embeddings based semantic filter.

– Extend this technique to automatically extract the glossary terms from a
large body of natural language requirements for software product lines [20].

– Compare the effectiveness of Word2vec semantic filter with other word embed-
ding techniques, e.g., GloVe and fastText.

– Come up with some guidelines to determine how to create the domain-specific
reference corpus.
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