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Abstract. [Context & Motivation] Requirements and architectural
components are designed concurrently, with the former guiding the lat-
ter, and the latter restricting the former. [Question/problem] Effec-
tive communication between requirements engineers and software archi-
tects is often experienced as problematic. [Principal ideas/results]
We present the Requirements Engineering for Software Architecture
(RE4SA) model with the intention to support the communication within
the development team. In RE4SA, requirements are expressed as epic sto-
ries and user stories, which are linked to modules and features, respec-
tively, as their architectural counterparts. Additionally, we provide met-
rics to measure the alignment between these concepts, and we also dis-
cuss how to use the model and the usefulness of the metrics by applying
both to case studies. [Contribution] The RE4SA model employs widely
adopted notations and allows for explicitly relating a system’s require-
ments and architectural components, while the metrics make it possible
to measure the alignment between requirements and architecture.

Keywords: Requirements Engineering · Software Architecture · User
stories · Alignment · Metrics · Case study · Agile RE

1 Introduction

Requirements and design are interdependent and cannot be conducted as sep-
arate activities [28]. The Twin Peaks model describes how requirements and
architecture are defined concurrently, yet being separate activities, with the for-
mer guiding the latter and the latter constraining the former [28]. Extending
Nuseibeh’s model, the Reciprocal Twin Peaks model [22] focuses on agile devel-
opment and discusses why the synergy between requirements and architectural
elements matters. Throughout the development process, one has to manage a
continuous flow of requirements, as well as a continuously changing architecture.

Since software engineering is essentially a social activity among collaborating
humans [36], communication within and across the various disciplines of software
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engineering (requirements analysis, architectural design, development, testing,
etc.), is of primary importance [25]. In Requirements Engineering (RE), flawed
communication within the development team is a common cause of project fail-
ure [15]. Furthermore, client wishes and needs change continuously, leading to
volatile requirements that are hard to cope with [13,39].

While RE is still mostly rooted in a written set of requirements, the lack of
proper documentation is a serious problem in Software Architecture (SA), which
creates high risks of architectural drift and erosion, as well as increased costs and
a decrease in software quality [34]. Inaccurate or missing documentation leads
to difficult to maintain software. To make matters worse, the impact of new
requirements are uncertain and reuse of components is nearly impossible [21].

The challenge that we tackle in this paper is how to keep RE and SA aligned
in the context of agile development. While both Nuseibeh [28] and Lucassen
[22] identified challenges and explained how RE and SA can support each other,
they did not specify how to tackle them. What makes the problem hard is
that a good solution should not increase stakeholders’ workload or costs, in line
with the principles of ubiquitous traceability [9]. Furthermore, Cleland-Huang
et al. [10] identified seven challenges concerning the Twin Peaks model, of which
we aspire to address five: lack of in-depth communication between requirements
analysts and architects, lack of requirements/architectural knowledge, lack of
architectural visualization and explicit traceability between the two domains.

As a solution, we present explicit concepts and relationships that link func-
tional requirements and functional architectural components in order to achieve
alignment, among other purposes. While this solution requires some upfront
work, aimed at creating or recovering the architecture and linking the require-
ments, we expect it to decrease rework in the subsequent development phase.
Furthermore, to minimize the extra effort, we make use of notations that are
widely adopted in agile development and in software architecture. Specifically,
we make the following contributions:

– We present a refined version of the RE4SA model [32], which includes nota-
tions and relationships for linking RE and SA in agile development;

– We introduce metrics that allow quantifying the relationship between the two
domains. While meant for RE4SA, the metrics can be applied more in general
to other notations for expressing requirements and architectures;

– We report on two case studies that apply RE4SA for the purpose of architec-
ture discovery and architecture recovery, respectively.

The rest of the paper is structured as follows. Section 2 discusses background
work. In Sect. 3 we present the RE4SA model, followed by the alignment metrics
in Sect. 4. Section 5 illustrates how the model and its metrics can be applied in
practice, using two case studies. Limitations, expected benefits and future work
are discussed in Sect. 6, followed by the conclusion in Sect. 7.
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2 Background

The rise of agile development created new challenges for the RE and SA disci-
plines. Requirements documentation changed from long, detailed specifications
to less detailed documentation and increased face-to-face contact [8]. The most
common notation for requirements in agile development is user stories, a concise
notation that captures only the essential elements of a requirement [23]. Regard-
ing the SA discipline, agile practices require the incremental, step-wise con-
struction of a product’s functionality, which calls for modular architectures that
require minimal coordination with other modules and are easy to extend [12].
This dynamic context is the one within which this paper is positioned.

Keeping software artifacts aligned falls under the umbrella term of software
traceability [9], which includes techniques for establishing and maintaining trace
links between different artifacts like requirements, architecture, code, and tests.
Among the open challenges that pertain to our work, ubiquitous traceability
[17] is especially important, as it stresses the need of tools and techniques that
minimize the required human effort to create and keep the trace links up to date.

Many automated tools exist for the automated establishment of trace links.
Trace Analyzer [14] uses certain or hypothesized dependencies between artifacts
and common ground and then considers nodes that contain overlapping common
ground to establish a trace link. The common ground they use, however, is
source code, which is unusable when the system is still under design. Zhang
et al. [38] use an ontology-based approach to recover trace links, but only link
the source code to documentation. Traceability links have also been explored
in agile development, with a focus on establishing links between commits and
issues [30].

The systematic mapping by Borg et al. [4] shows that the most frequently
studied links in information retrieval-based traceability are the links between
requirements and between requirements and source code. Other popular links are
between requirements and tests, and other artifacts and code. Linking require-
ments and architectures is a less studied topic.

Tang et al. [33] study the creation of traces between requirements and archi-
tecture. They provide an ontology for annotating manually specifications and
architectural artifacts, which are then documented in a semantic wiki. This wiki
shows which architectural design outcome realizes which requirement, which
decisions have been made, and the links to quality requirements.

Rempel and Mäder [31] are among the first ones to propose traceability met-
rics in the context of agile development. They propose graph-based metrics that
link requirements and test cases. Numerous researchers in the field of software
maintenance proposed metrics, starting from the seminal work by Pfleeger and
Bohner [29]. Our work, however, focuses solely on metrics between requirements
and architectures in the context of agile development for software products.

Recently, Murugesan et al. [27] presented a hierarchical reference model to
capture the relationship between requirements and architecture. Their goals are
similar to those of this research, but they focused on technical architectures.
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Our work, instead, investigates functional architectures and suggests the use of
specific artifacts to formulate more specific guidelines, as opposed to a generally
applicable requirement-to-component connection model.

3 The RE4SA Model

To facilitate good communication within the development team and support con-
sistency, we propose the Requirements Engineering for Software Architecture
(RE4SA) model. Figure 1 shows the four core concepts of the RE4SA model,
and an example for each of the concepts from a case study [32]. RE4SA was
assembled on the basis of tight collaboration with industrial partners in the
software products domain and combines artifacts that we often found employed
in their agile practices [24,32]. Like the Twin Peaks model, RE4SA links the RE
and SA domains. More specifically, it relates Epic Stories (ESs) [24] and User
Stories (USs) [11] in the requirements domain, and modules and features from
the functional architecture model [7]. The problem space, which describes the
intended behavior through requirements, is related to the solution space that
defines how such intended behavior is implemented, i.e., how the requirements
are satisfied [2]. Note that the model is only concerned with horizontal trace-
ability [18].

Fig. 1. The Requirements Engineering for Software Architecture (RE4SA) model.

3.1 Representing Requirements and Architecture

The concepts that are part of the RE4SA model encompass notations that are
highly adopted in the industry, in an attempt to minimize the need for change
and training of professionals. USs, for example, are often found to be among
the requirements documents used in agile methods [20], and a US describes a
requirement for one feature [23]. Features are often represented using feature
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diagrams, a graphical language for organizing features hierarchically [19]. By
focusing on the details, USs and features make it hard for the stakeholders to
obtain an overview of the system that is necessary for clear and easy com-
munication within the development team, thereby calling for a higher level of
abstraction.

In practice, USs are grouped together using themes, epics or ‘large USs’ [35].
However, themes and epics tend to consist of one or a few words and thus
lack the rationale that justifies why a requirement should be satisfied by the
system [37]. Therefore, we propose the use of ESs [24], which make use of a clear
template including both a motivation aspect and an expected outcome. From
the architectural standpoint, we take the notion of ‘module’ from the functional
architecture framework [7] as a grouping of features, that also allows for the
visualization of usage scenarios through information flows [5].

3.2 Relationships Between the RE4SA Concepts

The RE4SA model supports the establishment of relationships between the four
concepts in two ways: (i) Architecture Discovery (AD) is a top-down process that
takes the requirements as input in order to create an architecture; (ii) Architec-
ture Recovery (AR) is a bottom-up process that extracts the architecture from
an implemented system [1]; then, the architectural components can be linked
to the requirements. Figure 2 illustrates the four types of relationships between
the concepts of RE4SA. The solid arrows indicate relationships in an AD pro-
cess, while dashed arrows indicate an AR process. Furthermore, the relationships
can be classified depending on whether they affect the granularity of the spec-
ification (refinement and abstraction) or they support the alignment between
requirements and architecture (allocation and satisfaction).

Fig. 2. Relationships between the RE4SA concepts.
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Refinement. According to the SWEBOK guide “decomposition centers on iden-
tifying the major software functions and then elaborating and refining them
in a hierarchical top-down manner” [6]. In an AD process, the major func-
tions are described first, in ESs and modules, and subsequently refined into
more specific functions and descriptions (here, in USs and features).

Abstraction. “[. . . ] refers to both the process and result of generalization by
reducing the information of a concept, a problem, or an observable phe-
nomenon so that one can focus on the “big picture”” [6]. USs are grouped
together using ESs, while features are bundled together based on similar
functionality and placed in modules. The groupings of USs and features dif-
fer in the functionality they describe and the functionality they provide,
respectively. The process of placing these sets of USs and features in ESs and
modules we refer to as abstraction.

Allocation. The process of relating requirements to architectural components
is “the assignment to architecture components responsible for satisfying the
requirements” [6]. Since both requirements and architectural components
exist on two levels of granularity, this relationship is included on both levels.

Satisfaction. The SWEBOK guide states that “the process of analyzing and
elaborating the requirements demands that the architecture/design compo-
nents that will be responsible for satisfying the requirements be identified” [6].
Therefore, we refer to this relationship from architectural components to
requirements as satisfaction.

Since this paper investigates requirements-architecture alignment, we leave
the study of refinement and abstraction to future research.

3.3 Architecture Discovery and Architecture Recovery

The AD process (solid arrows in Fig. 2) aims to design an intended architecture
based on the requirements. It is advisable to start at the highest level of granular-
ity, for the collection of ESs describe the functionality of the entire system, while
USs specify the details of how such a high-level functionality is to be delivered.
Once the requirements have been defined, they can be allocated to architectural
components. W e suggest starting at the highest level: ESs are allocated to mod-
ules, then USs to features within the identified modules. Finally, it is useful to
check if the features included in the software architecture are all represented
in the requirements set. Features that cannot be linked to a requirement can
indicate missing requirements or unnecessary features.

The goal of an AR process (dashed arrows in Fig. 2), instead, is to recover the
implemented architecture from the system, using available documentation, such
as source code and a run-time version of the system, and linking the recovered
components to requirements. We suggest starting at the lowest level of granu-
larity, and documenting the identified elements in a feature diagram. Different
modules can then be defined to group the features.

Then, the architectural components can be linked to requirements by creating
satisfaction links. We recommend starting at the highest level of granularity: the
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ES-module alignment. If these relationships are established first, it should be
easier to identify which feature satisfies which US, for the USs are abstracted to
ESs. Optionally, missing ESs or USs can be formulated, if the module or feature
they will be allocated to is still relevant and/or required. On the other hand,
ESs or USs that cannot be allocated to an architectural component need to be
assessed. If the functionality the requirement describes is not required or desired,
the requirement can be removed. If the opposite is true, the implementation of
the feature(s) that would satisfy the requirement can be added to the backlog.

4 Alignment Metrics

We introduce metrics that allow for quantitative investigation of the relationship
between requirements and architecture through the lenses of the RE4SA model.
To do so, we present the necessary formal framework the metrics build on. We
use numbered definitions only for the core concepts of our framework.

Let R = {r1, r2, . . . , rn} be a collection of requirements and C = {c1, . . . , cm}
be a collection of architectural components. In the RE4SA model, a requirement
can be either an Epic Story (ES) or a User Story (US), while a component can
be either a module or a feature.

Since a requirement can denote multiple needs (e.g., using the conjunction
‘and’), we introduce the function needs : R → 2C that maps a requirement r to
the needs it expresses. Formally, given a set of needs N , we have that for any
r ∈ R, needs(r) = {n ∈ N. requested by(n, r)}, where requested by(n, r) is true
when n is expressed in the text of requirement r. In this paper, the identification
of the needs that are requested by a requirement is left to human analysis.

We can now define the set NR =
⋃

r∈R needs(r) as the collection of needs
that are requested by individual requirements in the collection R.

Definition 1 (Alignment matrix). A matrix A of size |NR| × |C| such that
aij = 1 if and only if the need ni ∈ NR matches the component cj ∈ C. Formally,

aij =

{
1, if matches(ni, cj)
0, otherwise.

The alignment matrix is a key element of our framework that can be used to
explore the mutual relationship between requirements and components. Based
on the matrix, we define the function allocation : R → 2C that returns the
set of components that match the needs in a requirement. Formally, allocation
(r) =

⋃
ni∈needs(r){cj . aij = 1}. Conversely, we define a function satisfaction :

C → 2R that returns all the requirements with needs matching a given compo-
nent. Formally, satisfaction(cj) =

⋃
r∈R{ni. aij = 1 ∧ ni ∈ needs(r)}.

Based on the allocation function, we can partition the set of requirements
into four non-disjoint subsets: R = Rnot ∪ Runder ∪ Rexact ∪ Rmulti, defined as
follows:

– Rnot = {r ∈ R. allocation(r) = ∅}
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– Runder = {r ∈ R. 0 < |allocation(r)| ∧ ∃ni ∈ needs(r). (
∑

j aij) = 0}
– Rexact = {r ∈ R. ∀ni ∈ needs(r). (

∑
j aij) = 1}

– Rmulti = {r ∈ R. ∃ni ∈ needs(r). (
∑

j aij) > 1}.

Rnot is the set of requirements that are not allocated, Runder are those
requirements with some but not all allocated needs, Rexact are those require-
ments with each need allocated to exactly one component, and Rmulti are those
requirements having at least one need allocated to multiple components. The four
sets are not disjoint. For example, a requirement requesting needs n1 and n2,
with n1 matching components c1 and c2 and with n2 matching no components
would be both multi-allocated (because of n1) and under-allocated (because
of n2).

Definition 2 (Allocation degrees). The partitioning of R into Rnot, Runder,
etc. can be used to define metrics on the allocation degree of a set of requirements.
We introduce three degrees, each in the [0, 1] range:

– multi-allocation degree: multi allocd = |Rmulti|/|R|
– exact allocation degree: exact allocd = |Rexact|/|R|
– under-allocation degree: under allocd = (|Rnot| + |Runder|)/|R|
The ideal case is one in which the exact allocation degree is close to 1 and
the other two degrees are close to zero: in that case, indeed, each need in a
requirement can be traced to exactly one architectural component. This situation
is good because the needs are homomorphically mirrored in the architectural
design, thereby facilitating the conversation between experts in either discipline.
An exception to this case is when the system includes variability: in that case,
it is desired to have a multi-allocation degree, for multiple components may be
devised as alternative ways to fulfill one requirement.

Similar to the partitioning of requirements based on the allocation func-
tion, we can partition the set of components based on the satisfaction func-
tion. Specifically, the set of components is partitioned into two disjoint subsets:
C = Cnot ∪Csat, where Csat = {c ∈ C. satisfaction(c) 	= ∅} and Cnot = C \Csat.

Definition 3 (Satisfaction degree). It defines the ratio of components that
satisfy at least one need in a requirement as follows: satd = |Csat|/|C|.
When the satisfaction degree reaches the value of 1, all architectural compo-
nents trace back to at least one requirement and, thus, their existence is justi-
fied. Unlike Definition 2, we do not include a notion of multi-satisfaction, for we
are interested in assessing whether a component is justified or not, instead of
counting how many needs the component accommodates.

To represent the combination of allocation and satisfaction, we introduce the
metric of alignment which is a weighted arithmetic mean of the extent to which
needs are allocated, and the extent to which components can be traced back to
requirements. To do so, we first need to introduce the need allocation degree:

need alld =
|{ni ∈ NR. (

∑
j aij) = 1}|

|NR| .
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Definition 4 (Alignment degree). It is a weighted arithmetic mean (with
α ∈ [0, 1]) of the need allocation degree and the component satisfaction degree:
alignd = α · need alld + (1 − α) · satd.

In this paper, we set α = 0.5 and give equal weight to the requirements and
architecture perspectives. Similar to the debate on the β in the Fβ-score [3],
in-vivo studies are necessary to tune our parameter based on the relative impact
of need allocation degree and component satisfaction degree. However, our expe-
rience with the software production industry reveals that early product releases
include several implicitly expressed needs (e.g., printing, storage, menu interac-
tion), thereby requiring a high α > 0.5, whereas later releases focus on explicit
(customer) requirements allocation with α < 0.5.

The concepts and definitions above apply to the generic notions of require-
ment and component. In RE4SA, as per Fig. 2, we can reason about alignment
at two granularity levels: high and low. The definitions and metrics can therefore
be applied at either level:

– high: the set R contains ESs, C includes modules, N consists of outcomes
from an ES, and the function needs returns the set of outcomes of an ES;

– low : R contains USs, C consists of features, N includes actions from a US,
and the function needs returns the set of actions of a US.

5 The RE4SA Model in Practice

To assess the feasibility and usefulness of RE4SA and our metrics, we apply
them to two case studies. The first presents an AD process, while the second
illustrates an AR process. After introducing each case, we discuss the granularity
relationships in Sect. 5.1, and analyze the alignment metrics in Sect. 5.2.

VP. The discovery case concerns a portal for vendors to manage their open
invoices through an integration with the customers’ ERP system. Following a
requirements elicitation session with the customer, a list of USs was created and
then grouped in themes. We defined ESs from the themes by rewording them and
by splitting one of them into two (based on the word “and”). The SA was created
by transforming the requirements into an intended architecture following the AD
process described in Sect. 3.3. The software architect was allowed to include his
interpretation of the requirements, e.g., by adding missing features and modules.

YODA. The recovery case regards a research application called Your Data
(YODA, https://github.com/UtrechtUniversity/). A rich collection of USs was
available, already grouped in themes. We used these one-word themes to for-
mulate ESs. The functional architecture had to be recovered. As described in
Sect. 3.3, this was done using a bottom-up approach. Using the implemented
system, in this particular case a web application, all features were recovered by
modeling every user-interactive element in the GUI as a feature.

https://github.com/UtrechtUniversity/


178 S. Molenaar et al.

5.1 Granularity: Exploring Refinement and Abstraction

Descriptive statistics of both cases are shown in Table 1, including the arithmetic
mean for the granularity. The average number of USs in an ES is shown on the

Table 1. Descriptive statistics of both the Vendor Portal (VP) and YODA case.

Case Level of granularity Requirements Comp. Granularity

R Needs Rnot Runder Rexact Rmulti C Csat µES-US µM-F

VP ES-module 8 9 1 0 4 3 14 11 3.8 3

US-feature 30 37 2 2 17 9 43 35 1 1

YODA ES-module 12 12 0 0 12 0 12 12 8 12.6

US-feature 96 102 3 3 84 6 161 66 1 1

top row, while the number of ESs a US is abstracted to, on average, is shown
below that. The same is done for the averages of modules and features.

VP. This collection of requirements has an average of 3.8 US per ES. Analyzing
our artifacts, we see that one ES only contains a single US, four modules have
a single feature, and five modules only have two features. On average, a module
has three features. This may indicate either the existence of few requirements
per ES, high modularity, or non-detailed requirements. Due to the use of Scrum
in the project, it is likely that the number of requirements will grow during
development. The ES with a single US can indicate missing requirements, that
it should actually be a US, or that it is expected to be extended in later phases.
On the SA side, the aforementioned modules with one or two features should be
analyzed as they can indicate missing features, modules to be extended, or an
incorrect organization of features.

YODA. While all ESs contain at least two USs, thereby representing a proper
refinement, three of them are larger than average. Regarding the modules, three
contain less than two features, and one contains far more features than the
average. The YODA development team can use these results to analyze their
architecture and code. The larger-than-average module, for instance, may include
too much functionality. In addition, the three modules with zero or one feature
may lead the team to consider removing these modules or expanding upon them
in the future. After speaking with the lead developer, it turns out that they have
recently been working on ‘simplifying’ the largest module, since it was difficult
to maintain and complex to use. On the other hand, they have been adding
features to the modules that are relatively small.

5.2 Alignment: Studying Allocation and Satisfaction

The alignment metrics for both cases are presented in Table 2, including the
ES-module alignment and the US-feature alignment.



Explicit Alignment of Requirements and Architecture in Agile Development 179

VP. On both levels of granularity, the under-allocation degree shows that 13%
of the requirements contain needs that are not addressed by architectural compo-
nents. The exact allocation degree is 0.50 for ES-M and 0.57 for US-F; roughly
half of all requirements have each of their needs allocated to exactly one SA
element. The remaining requirements are multi-allocated, with a degree of 0.38
for ES-M and 0.30 for US-F, which could indicate duplicate features or ineffi-
cient solutions. Only around 80% of the components satisfy a requirement ; the
remaining components are not explicitly justified by the requirements.

Table 2. The alignment-related metrics applied to the VP and YODA cases.

Relationship Metric VP YODA

ES-M US-F ES-M US-F

Allocation multi allocd 0.38 0.30 0.0 0.06

exact allocd 0.50 0.57 1.0 0.88

under allocd 0.13 0.13 0.0 0.06

Satisfaction satd 0.79 0.81 1.0 0.41

Alignment need alld 0.89 0.86 1.0 0.94

alignd 0.84 0.84 1.0 0.68

Since this is an AD process, we expect a high alignment degree, as the archi-
tecture is based on the requirements before taking implementation factors into
account (as opposed to the AR process). The alignment degree is 0.84 on both
granularity levels, indicating some discrepancies between the requirements and
the architecture. Together with the multi-allocation degrees of 0.30 and 0.38,
this seems to indicate the requirements set is not sufficiently detailed. The under-
allocation degree indicates that the software architect either did not agree with
certain requirements, or missed them during the AD process. The inexact alloca-
tion on the ES-M level can indicate an incorrect categorization of requirements,
that the granularity of ES is not on a module level, or that the architect’s cate-
gorization differs from that of the requirements engineer.

Figure 3 shows how USs can be allocated to features. The first US in the
figure is multi-allocated, as it is linked to two features, specifically the need “use
password forgotten functionality” is allocated to the features “initiate password
recovery”, and “send password recovery email”. The other two USs are exact-
allocated as they contain a single need and are allocated to a single feature.

The metrics from the VP case were discussed with the CEO of the com-
pany that developed the portal. He was surprised by the low alignment score,
for the project was rather simple and the requirements were the basis for the
architecture. The metrics were mentioned to be useful in highlighting potential
issues with the requirements, and it was noted that the requirements specification
was not revisited after the SA creation. Multi-allocation was seen as the most
important allocation degree, as it can indicate unnecessary costs, while under-
allocation was expected to be detected during use of the application, or denote
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Fig. 3. Example of how USs were allocated to features.

missing features to add later. The modules that did not satisfy a requirement
were judged to be a result of missing requirements. Finally, he mentioned the
potential for making agreements when outsourcing development, e.g., requiring
the architecture to have a 0.9 alignment degree with the requirements.

YODA. The ESs were allocated one-to-one to modules, while all modules
satisfied exactly one ES; thus, these metrics are not further discussed. Nearly all
USs were allocated to a feature in the architecture. Only three USs are missing
completely and three others have not been fully implemented. The latter three
USs contained two needs, of which only one was allocated to a feature. Regarding
the features, instead, not even half of the features satisfy at least one need.

The missing satisfaction links may be due to a granularity levels discrepan-
cies: the features are probably more specific than the USs. Also, since our feature
recovery was based on exploring the GUI, some features (e.g., those related to
navigation) might not need to be listed in a requirement.

According to the metrics, not all requirements are currently allocated : some
features still need to be implemented. Moreover, since around 60% of the fea-
tures do not satisfy a requirement, either the requirements are incomplete or
unnecessary features exist. The lead developer explained that they do not con-
sider anything in retrospect : when a US is considered completed, it is removed
from the backlog. Thus, he was unaware that six USs have not yet been fully
implemented in the system.

An example of how modules and features were recovered from the GUI is
shown in Fig. 4. For the sake of brevity, the alternative features related to F2 and
F3 were collapsed. The module satisfies an ES that was based on the “Metadata”
theme: “When I am storing research data, I want to include metadata about the
content, so that I can document my data.” Only two of the features satisfy a
US, features F3 and F4 (in Fig. 4) satisfy US3 and US4, respectively:

US3: “As a researcher, I want to specify the accessibility of the metadata of
my dataset, so that access can be granted according to policy [...].”
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Fig. 4. Example of how architectural components were recovered from the GUI.

US4: “As a researcher, I want to be able to discard existing metadata and
re-begin adding metadata, so that I can document a data package.”

Therefore, F1 and F2 are part of the Cnot count, while F3 and F4 are considered
part of the Csat.

YODA’s lead developer expects the metrics to be useful, as they could help
foster the creation of trace links, currently nonexistent. The situation is prob-
lematic when new colleagues join (“it takes approximately three months to get
up to speed and be able to add something of value to the system”) or when
someone leaves the team, for their knowledge is lost. Also, team members often
do not know where features originate from. To discover the rationale, the source
code is checked to locate features; if unused, it is removed. This happens because
the team sometimes adds features without defining the requirements first. More-
over, he expects under-allocation to be useful during development, e.g., during
or at the end of every sprint, to check whether all requirements were satisfied
and if they were satisfied in full. Finally, the multi-allocation metric may help
identify duplicate features; the user stories often have overlap, causing the team
to implement the same feature twice. The developer stated they are planning
on using the metrics in their next sprint aiming to improve their work efficiency
and quality.

6 Discussion

We present expected benefits from the use of RE4SA in practice, and present
the validity threats to our study.

Expected Benefits. RE4SA can improve requirements-architecture communi-
cation in agile development product teams, which include product managers and
product owners, through (1) simple communication means, (2) clear structural
guidelines, and (3) consistent domain terminology. Combining the two granular-
ity levels of the RE4SA model provides a shared context view of the software
for the functional and technical experts. Functional experts tend to employ a
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high-level overview (ES-module), while technical experts are mostly focused on
the detailed level (US-feature) [32].

The objective of the RE4SA model, however, is not limited to improving
communication. Gayer et al. [16] argued for the need of dynamic architec-
ture creation. This architecture allows for traceability that can make software
more maintainable, changeable and sustainable. The alignment relationships in
RE4SA support traceability, with little documentation and effort required.

We also surmise that RE4SA helps reason about the system, for all stake-
holders know which parts of the system are being discussed. In addition, when
requirements are changed (modified, added, or deleted), it is apparent which
other parts of the system are affected, due to the explicit relationship between
concepts. Obviously, some effort is required to maintain the artifacts updated.

The RE4SA model and its metrics can be utilized for communication outside
of the development team as well, such as when interacting with clients. One
expected benefit is the ability provide proof for contractual obligations, which
could also be applied to ensuring requirements alignment when outsourcing
development. Using the alignment metrics, a company can prove that its system
complies with the contractual requirements they and the client agreed on for the
project. Furthermore, the company can provide feedback on its progress in per-
centage of realized functionality or satisfied requirements. At times, customers
will have requirements for a software product that form a risk to the maintain-
ability of the product. In these cases, the architecture can be used to visualize
the risks of these particular elements and ensure that the customer is aware and
agrees to the risks before the requirement is accepted as part of the project.

Finally, RE4SA may support release planning. The architecture highlights
feature dependencies, while the requirements show the priorities. Using both
perspectives, the developers can determine the top-priority features and, option-
ally, the pre-requisite features. When customers have a customized version of a
software product, the architecture of the new release can be compared to the
architecture of the customer [32]. Through this comparison, incompatibilities can
be detected, allowing for better planning in an upgrade project for a new release.

Validity Threats. Concerning construct validity, the formulation of ESs
presents some difficulties; in RE practice, ESs are formulated using the US tem-
plate (epics) or as themes. Although our re-formulation did not present particular
difficulties, we need to acknowledge that the ES notation we suggest is not main-
stream yet. All other concepts of RE4SA (user stories, modules, features) are
adopted by the industry. An internal threat in using the RE4SA model is deter-
mining the ‘right’ levels of granularity. While USs should describe a requirement
for exactly one (atomic) feature [23], this is often unfeasible or inefficient and
a US might describe a composite feature instead. For example, a US like “As a
user, I want to select a language.” would result in one feature ‘select language’.
Depending on the chosen granularity level, this feature may either be atomic,
or be a composite one that is refined into separate features to switch to each
supported language. To minimize this threat, we used the same levels of gran-
ularity and metrics for both cases. Conclusion validity is indirectly affected by



Explicit Alignment of Requirements and Architecture in Agile Development 183

the granularity problem: should we have employed a different granularity level,
the conclusions we have drawn may have differed. Regarding external validity,
we considered only two case studies; nevertheless, the metrics are applied to
real-world examples of documentation and cover common software applications.

7 Conclusion

In this study on requirements and architecture alignment, we presented the
RE4SA model [26] that supports communication within the development team.
We formalized the links between the four core concepts in RE4SA and we pro-
vided metrics to quantify the alignment between RE and SA. The results of these
metrics can be used to analyze and improve the alignment. The metrics were
applied in two industry provided cases and allow for detection of improvements
in both the architecture and the requirements.

The results presented in this paper and in previous work regarding RE4SA
[26,32] provide initial evidence on the suitability of our model for experimenta-
tion in practice. In particular, the AR process detailed in Sect. 3.3 allows for the
RE4SA model to be used even if currently no architecture artifacts are in place.

This paper paves the way for various research directions. Firstly, we would
like to study whether the linguistic structure of the artifacts, e.g., the specific
words used, can help relate requirements with architectural components, and
support the proper positioning of new functionality within an existing architec-
ture. Moreover, using the sentence structures in USs, it might be possible to
extract feature names from USs automatically. Secondly, evolution in agile envi-
ronments [10] is a notable challenge that could benefit from the use of RE4SA.
By capturing software changes introduced in extension, customisation and mod-
ification of a product in the architecture, the evolution of the product becomes
visible and manageable. Utilizing the alignment relationships can be used to
ensure that both the requirements and architecture stay up to date. Thirdly,
we intend to apply the RE4SA model and its alignment metrics to additional
cases, aiming to validate them and to determine best practices. One of the first
steps in this direction is to formalize metrics for the granularity relationships, in
the same manner as for the alignment relationships as presented in this paper.
Finally, it is important to investigate how quality requirements are represented in
agile development and how they are mapped to quality aspects in architectures.
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2. Apel, S., Kästner, C.: An overview of feature-oriented software development. J.
Object Technol. 8(5), 49–84 (2009)



184 S. Molenaar et al.

3. Berry, D.M.: Evaluation of tools for hairy requirements and software engineering
tasks. In: Proceedings of the RE Workshops, pp. 284–291 (2017)
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