
Nazim Madhavji · Liliana Pasquale ·
Alessio Ferrari · Stefania Gnesi (Eds.)

LN
CS

 1
20

45

26th International Working Conference, REFSQ 2020
Pisa, Italy, March 24–27, 2020
Proceedings

Requirements Engineering:
Foundation
for Software Quality

Lecture Notes in Computer Science 12045

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Nazim Madhavji • Liliana Pasquale •

Alessio Ferrari • Stefania Gnesi (Eds.)

Requirements Engineering:
Foundation
for Software Quality
26th International Working Conference, REFSQ 2020
Pisa, Italy, March 24–27, 2020
Proceedings

123

Editors
Nazim Madhavji
Computer Science, Middlesex College
Western University
London, ON, Canada

Liliana Pasquale
School of Computer Science
University College Dublin
Dublin, Ireland

Alessio Ferrari
Area della Ricerca CNR di Pisa
Istituto di Scienza e Tecnologie
dell'Informazione “Alessandro Faedo”
Pisa, Italy

Stefania Gnesi
Area della Ricerca CNR di Pisa
Istituto di Scienza e Tecnologie
dell'Informazione “Alessandro Faedo”
Pisa, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-44428-0 ISBN 978-3-030-44429-7 (eBook)
https://doi.org/10.1007/978-3-030-44429-7

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020, corrected publication 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0636-5663
https://orcid.org/0000-0002-0139-0421
https://doi.org/10.1007/978-3-030-44429-7

Preface

With great pleasure, we welcome the participants and readers to the proceedings of the
26th International Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ). The REFSQ working conference is the leading European
conference series on Requirements Engineering (RE). It is the goal of REFSQ to foster
the creation of a strong European RE community across industry and academia. Since
the dawn of the field of RE in the 80s, it has influenced the quality of software, systems,
and services that we all enjoy on a daily basis.

Academics and practitioners gathered at REFSQ 20201 to report on novel ideas,
concepts, methods, techniques, tools, processes, product representations, and empirical
findings; to reflect upon current research and industrial RE practices; and provide new
views on RE. A strong relationship between industry and academia is critical for an
applied research field, such as RE, as to incubate high-impact results, both through
research on practically relevant problems and rapid technology transfer to industry.

As computer systems are increasingly evolving to be cyber-physical, it is becoming
important to explore the role that RE can play in the development of “smart”
cyber-physical systems. These are the systems that need to guarantee satisfaction
of their requirements, while also dealing with complexity arising from the systems’
scale, connectivity, and uncertainty inherent in their operating environment.

To support the development and evolution of these next generation systems, it is
thus important to:

• Seek new RE concepts, methods, techniques, tools, and processes
• Create new domain models and specifications that integrate cyber and physical

elements including human aspects
• Ensure scalability of analysis techniques (for handling large sets of requirements)

and requirements prioritization techniques
• Create techniques for estimating project risks and cost
• Be able to integrate function and data paradigms into the RE process
• Address uncertainty in the operating environment, e.g., by continuously monitoring

requirements satisfaction
• Support adaptation of requirements to suit changing conditions.

Through the REFSQ 2020 conference theme “RE & Cyber-Physical Systems,” we
bring this emerging topic to the attention of the REFSQ community. We would like to
thank the keynote speakers for accepting our invitation to present and the interaction
this generated among participants.

1 Although we were prepared to have a great REFSQ conference in Pisa, we were concerned about the
health of our attendees and about the many concerns we received regarding the coronavirus outbreak in
Italy. Therefore, we decided to postpone the REFSQ conference to a later point in time.

REFSQ has a strong history of being a working conference; that is, an event where
accepted contributions from research and practice are extensively discussed and
elaborated upon in various presentation and discussion formats. Presentations of
established research as well as research previews and visions that report on new
developments and emerging results were critiqued by a dedicated discussion leader and
the participating audience. An important feature of REFSQ is a distinct day that focuses
on results and challenges from industrial practice, facilitating a rich exchange between
practitioners and researchers.

This main program was complemented by a set of workshops, a doctoral sympo-
sium, a session with live studies, and posters and tools. The REFSQ 2020 conference
was organized as a three-day symposium. The sessions contributed to the topic of the
conference in various ways. Thus, we take pride in that REFSQ is a key event series
that promotes the scientific and practical dimensions of the field of RE in a significant
way. This would clearly not have been possible without worldwide teams of creative
authors conducting RE research and submitting their work to REFSQ for peer review,
as well as practitioners sharing their experiences from the trenches.

We are thus honored to be entrusted with the compilation of this volume comprising
the REFSQ 2020 proceedings. It features 21 accepted papers (14 full and 7 short
papers) on different topics in RE research and practice. The Program Committee
(PC) carefully reviewed 84 submissions and selected 5 technical design papers, 9
scientific evaluation papers, 6 research previews, and 1 vision paper. Also, despite the
conference being operationally rooted in Europe, REFSQ is an international confer-
ence: we have authors, PC members, additional reviewers, and organizers from four
continents.

We would like to express our sincere gratitude to all these dedicated individuals who
put so much effort in creating, reviewing, and preparing outstanding contributions to
the RE field. REFSQ 2020 would certainly not have been possible without them. The
various committees are listed below. As editors of these proceedings, we would like to
thank the REFSQ Steering Committee members for regular meetings and feedback; we
mention Prof. Kurt Schneider, for his availability and for his excellent ongoing guid-
ance. Our special appreciation is afforded to Prof. Klaus Pohl for his long-term support
to the REFSQ conferences. We are also indebted to the REFSQ 2019 co-chairs, Dr.
Eric Knauss and Dr. Michael Goedicke, for their helpful advice on diverse matters
often at inconvenient times. We are grateful to all the members of the PC for their
timely and thorough reviews of the submissions and for their time and expertise
generously given both online and face to face during the PC meeting. In addition, we
thank the PC members who volunteered to serve in the role of shepherd or gatekeeper
to authors of conditionally accepted papers. We would like to thank the members of the
local organization at the ISTI-CNR in Pisa, Italy, in particular, Dr. Alessio Ferrari and
Prof. Stefania Gnesi, for their unfailing support, determination, and availability at all
times. We are also indebted to the organizers of other satellite events included in
REFSQ 2020: the Workshops Co-chairs: Dr. Mehrdad Sabetzadeh and Dr. Andreas
Vogelsang; the Posters and Tools Co-chairs: Dr. Markus Borg and Eduard C. Groen;
the Doctoral Symposium Co-chairs: Dr. Vincenzo Gervasi and Dr. Maya Daneva; the
Industry Track Co-chairs: Dr. Sarah Gregory and Dr. Angelo Susi; the Live Study
Co-chairs: Dr. Nelly C. Fernández and Dr. Luisa Mich; the Social Media and Publicity

vi Preface

Co-chairs: Dr. Muneera Bano and Dr. Davide Fucci; the Student Volunteers Chair: Dr.
Davide Basile; the Website Chair: Dr. Giorgio O. Spagnolo; and the Local Financial
Chair: Dr. Maurice ter Beek.

We would like to thank the various student volunteers, without whom the conduct
of the conference would be arduous. Finally, we would like to thank Vanessa Stricker
for her excellent work in coordinating the background organization processes, and Faeq
Alrimawi for his support in preparing this volume.

These proceedings consist of articles of original research. We hope that the reader
will find it stimulating, interesting, and inspirational to follow up and build upon these
works or pursue his/her own research in RE – to ride and enjoy the crest of fast moving
technologies and systems that we observe in our society.

February 2020 Nazim Madhavji
Liliana Pasquale

The original version of the book was revised: Two volume editors were added. The
correction to the book is available at https://doi.org/10.1007/978-3-030-44429-7_22

Preface vii

http://dx.doi.org/10.1007/978-3-030-44429-7_22

Organization

Program Committee Chairs

Nazim Madhavji Western University, Canada
Liliana Pasquale University College Dublin, Lero, Ireland

Steering Committee

Kurt Schneider (Chair) Leibniz Universität Hannover, Germany
Anna Perini (Vice-chair) Fondazione Bruno Kessler, Italy
Klaus Pohl Universität Heidelberg, Germany
Fabiano Dalpiaz Utrecht University, The Netherlands
Paola Spoletini Kennesaw State University, USA
Nazim Madhavji Western University, Canada
Liliana Pasquale University College Dublin, Lero, Ireland
Michael Goedicke University of Duisburg-Essen, Germany
Eric Knauss Chalmers University of Gothenburg, Sweden
Erik Kamsties University of Applied Sciences and Arts Dortmund,

Germany
Jennifer Horkoff Chalmers University of Gothenburg, Sweden
Paul Grünbacher Johannes Kepler University Linz, Austria
Maya Daneva University of Twente, The Netherlands
Oscar Pastor Lopez Universitat Politècnica de València, Spain

Program Committee

Raian Ali Hamad Bin Khalifa University, Qatar
Joao Araujo Universidade NOVA de Lisboa, Portugal
Vanessa Ayala-Rivera University College Dublin, Ireland
Fatma Başak Aydemir Utrecht University, The Netherlands
Muneera Bano Swinburne University of Technology, Australia
Nelly Bencomo Aston University, UK
Dan Berry University of Waterloo, Canada
Sjaak Brinkkemper Utrecht University, The Netherlands
Jaelson Castro Universidade Federal de Pernambuco, Brazil
Nelly Condori-Fernández Universidade da Coruña, Spain
Luiz Marcio Cysneiros York University, Canada
Fabiano Dalpiaz Utrecht University, The Netherlands
Maya Daneva University of Twente, The Netherlands
Oscar Dieste Universidad Politécnica de Madrid, Spain
Joerg Doerr Fraunhofer, Germany
Xavier Franch Universitat Politécnica de Catalunya, Spain

Samuel A. Fricker FHNW, Switzerland
Davide Fucci Blekinge Institute of Technology, Sweden
Matthias Galster University of Canterbury, New Zealand
Vincenzo Gervasi University of Pisa, Italy
Sepideh Ghanavati University of Maine, USA
Martin Glinz University of Zurich, Switzerland
Michael Goedicke University Duisburg-Essen, Germany
Paul Grünbacher Johannes Kepler University Linz, Austria
Renata Guizzardi Universidade Federal do Espírito Santo, Brazil
Jin L. C. Guo McGill University, Canada
Irit Hadar University of Haifa, Israel
Jane Hayes University of Kentucky, USA
Andrea Herrmann Free Software Engineering Trainer, Germany
Jennifer Horkoff Chalmers University of Gothenburg, Sweden
Zhi Jin Peking University, China
Hermann Kaindl Vienna University of Technology, Austria
Erik Kamsties University of Applied Sciences and Arts Dortmund,

Germany
Eric Knauss Chalmers University of Gothenburg, Sweden
Marjo Kauppinen Aalto University, Finland
Emmanuel Letier University College London, UK
Grischa Liebel Reykjavik University, Iceland
Lin Liu Tsinghua University, China
Patrick Mäder Technische Universität Ilmenau, Germany
Anas Mahmoud Louisiana State University, USA
Fabio Massacci University of Trento, Italy
John Mylopoulos University of Toronto, Canada
Maleknaz Nayebi École Polytechnique de Montréal, Canada
Nicole Novielli University of Bari, Italy
Andreas L. Opdahl University of Bergen, Norway
Barbara Paech Universität Heidelberg, Germany
Elda Paja University of Trento, Italy
Oscar Pastor Lopez Universitat Politècnica de València, Spain
Anna Perini Fondazione Bruno Kessler, Italy
Klaus Pohl Paluno, University of Duisburg-Essen, Germany
Guenther Ruhe University of Calgary, Canada
Nicolas Sannier SNT, University of Luxembourg, Luxembourg
Pete Sawyer Aston University, UK
Kurt Schneider Leibniz Universität Hannover, Germany
Paola Spoletini Kennesaw State University, USA
Angelo Susi Fondazione Bruno Kessler, Irst, Italy
Michael Unterkalmsteiner Blekinge Institute of Technology, Sweden
Michael Vierhauser University of Notre Dame, USA
Andreas Vogelsang TU Berlin, Germany
Yves Wautelet Katholieke Universiteit Leuven, Belgium
Krzysztof Wnuk Blekinge Institute of Technology, Sweden

x Organization

Eric Yu University of Toronto, Canada
Yijun Yu The Open University, UK
Tao Yue Simula Research Laboratory and Nanjing University

of Aeronautics and Astronautics, China
Didar Zowghi University of Technology Sydney, Australia

Additional Reviewers

Dilrukshi Abeyrathne
Fatma Başak Aydemir
Paul Hübner
Anja Kleebaum
Eriks Klotins
Jordi Marco
Sabine Molenaar
Cristina Palomares

Vik Pant
Tarcísio Pereira
João Pimentel
Astrid Rohmann
Carla Silva
Tjerk Spijkman
Jéssyka Vilela

Organizers

Sponsors

Gold

Organization xi

Contents

Requirements Specification

How Do Quantifiers Affect the Quality of Requirements? 3
Katharina Winter, Henning Femmer, and Andreas Vogelsang

Generation of Formal Requirements from Structured Natural Language 19
Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou,
and Johann Schumann

Using Eye Tracking Data to Improve Requirements Specification Use 36
Maike Ahrens and Kurt Schneider

Requirements Documentation

Hearing the Voice of Software Practitioners on Causes, Effects,
and Practices to Deal with Documentation Debt . 55

Nicolli Rios, Leonardo Mendes, Cristina Cerdeiral,
Ana Patrícia F. Magalhães, Boris Perez, Darío Correal,
Hernán Astudillo, Carolyn Seaman, Clemente Izurieta, Gleison Santos,
and Rodrigo Oliveira Spínola

Innovation Workshop Documentation for Following Software
Engineering Activities . 71

Patrick Mennig and Claudia Nass

Industrial Practices on Requirements Reuse: An Interview-Based Study 78
Xavier Franch, Cristina Palomares, and Carme Quer

Privacy and Legal Requirements

Disambiguating Requirements Through Syntax-Driven Semantic Analysis
of Information Types . 97

Mitra Bokaei Hosseini, Rocky Slavin, Travis Breaux, Xiaoyin Wang,
and Jianwei Niu

On Understanding How Developers Perceive and Interpret Privacy
Requirements Research Preview . 116

Mariana Peixoto, Dayse Ferreira, Mateus Cavalcanti, Carla Silva,
Jéssyka Vilela, João Araújo, and Tony Gorschek

A Methodology for Implementing the Formal Legal-GRL Framework:
A Research Preview . 124

Amin Rabinia, Sepideh Ghanavati, Llio Humphreys,
and Torsten Hahmann

Stakeholders Feedback and Training

Towards Integrating Data-Driven Requirements Engineering
into the Software Development Process: A Vision Paper 135

Xavier Franch, Norbert Seyff, Marc Oriol, Samuel Fricker, Iris Groher,
Michael Vierhauser, and Manuel Wimmer

Identifying and Classifying User Requirements in Online Feedback
via Crowdsourcing . 143

Martijn van Vliet, Eduard C. Groen, Fabiano Dalpiaz,
and Sjaak Brinkkemper

Designing a Virtual Client for Requirements Elicitation Interviews 160
Sourav Debnath and Paola Spoletini

Agile Methods and Requirements Comprehension

Explicit Alignment of Requirements and Architecture
in Agile Development . 169

Sabine Molenaar, Tjerk Spijkman, Fabiano Dalpiaz,
and Sjaak Brinkkemper

Applying Distributed Cognition Theory to Agile
Requirements Engineering . 186

Jim Buchan, Didar Zowghi, and Muneera Bano

Automatic Word Embeddings-Based Glossary Term Extraction
from Large-Sized Software Requirements . 203

Siba Mishra and Arpit Sharma

Requirements Modelling

Conceptualizing Requirements Using User Stories and Use Cases:
A Controlled Experiment . 221

Fabiano Dalpiaz and Arnon Sturm

A Semi-automated Approach to Generate an Adaptive Quality Attribute
Relationship Matrix . 239

Unnati Shah, Sankita Patel, and Devesh Jinwala

xiv Contents

Evaluating the Effects of Different Requirements Representations
on Writing Test Cases . 257

Francisco Gomes de Oliveira Neto, Jennifer Horkoff, Richard Svensson,
David Mattos, and Alessia Knauss

Requirements Visualization

Vision Meets Visualization: Are Animated Videos an Alternative? 277
Melanie Busch, Oliver Karras, Kurt Schneider, and Maike Ahrens

Requirements Assessment in Smart City Districts: A Motivation
Concept for Citizens . 293

Svenja Polst and Frank Elberzhager

Visualizing Feature-Level Evolution in Product Lines:
A Research Preview . 300

Daniel Hinterreiter, Paul Grünbacher, and Herbert Prähofer

Correction to: Requirements Engineering: Foundation
for Software Quality . C1

Nazim Madhavji, Liliana Pasquale, Alessio Ferrari, and Stefania Gnesi

Author Index . 307

Contents xv

Requirements Specification

How Do Quantifiers Affect the Quality
of Requirements?

Katharina Winter1(B), Henning Femmer2 , and Andreas Vogelsang3(B)

1 Technische Universität München, Munich, Germany
kathi.winter@tum.de

2 Qualicen GmbH, Garching, Germany
henning.femmer@qualicen.de

3 Technische Universität Berlin, Berlin, Germany
andreas.vogelsang@tu-berlin.de

Abstract. [Context] Requirements quality can have a substantial
impact on the effectiveness and efficiency of using requirements arti-
facts in a development process. Quantifiers such as “at least”, “all”, or
“exactly” are common language constructs used to express requirements.
Quantifiers can be formulated by affirmative phrases (“At least”) or neg-
ative phrases (“Not less than”). [Problem] It is long assumed that nega-
tion in quantification negatively affects the readability of requirements,
however, empirical research on these topics remains sparse. [Principal
Idea] In a web-based experiment with 51 participants, we compare the
impact of negations and quantifiers on readability in terms of reading
effort, reading error rate and perceived reading difficulty of requirements.
[Results] For 5 out of 9 quantifiers, our participants performed better
on the affirmative phrase compared to the negative phrase. Only for one
quantifier, the negative phrase was more effective. [Contribution] This
research focuses on creating an empirical understanding of the effect of
language in Requirements Engineering. It furthermore provides concrete
advice on how to phrase requirements.

Keywords: Requirements syntax · Natural language · Reqs. quality

1 Introduction

Requirements are a crucial part of the software development process. However,
in contrast to the code making up the software, requirements themselves do not
have much direct value for a customer. Femmer and Vogelsang define require-
ments as “means for a software engineering project” [7]. Thus, bad quality in
requirements may result in issues that possibly arise in later stages of the devel-
opment process leading to a rework of process steps, potentially impacting soft-
ware code or tests, for example. Indicators of these potential quality issues are
named “Requirements Smells” [8], including, for instance, ambiguous words or
passive voice. In this paper, we examine the use of specific quantifiers as one

c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-44429-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_1&domain=pdf
http://orcid.org/0000-0002-6059-4635
http://orcid.org/0000-0003-1041-0815
https://doi.org/10.1007/978-3-030-44429-7_1

4 K. Winter et al.

particular type of requirements smells. Although the use of quantifiers, such as
“at least”, “all”, or “exactly”, is substantial in requirements specifications [2],
they have not received much attention in literature so far. Questions on how dif-
ferent use and phrasing of quantifiers affect the quality of requirement artifacts
remain unacknowledged. To shed light on this topic, we categorize the quanti-
fiers into different scopes and use this categorization as a theoretical foundation
to compare them. Each quantifier scope has one semantic interpretation but can
be expressed in different syntactic ways. For example, “At least” and “Not less
than”, belong to the same semantic scope but one is expressed in an affirmative
syntax, while the other is expressed in negative syntax.

In this paper, we examine 9 different quantifier scopes and compare the
impact on requirements readability. We conducted an experiment with 51 par-
ticipants and compare reading times, error rates, and perceived difficulty of
quantifiers in affirmative and negative syntax. The goal of our research is to pro-
vide empirical evidence for justifying requirements writing guidelines and offer
best practices on quantifier usage in requirements specifications.

Our results show that the use and phrasing of specific quantifiers has a sig-
nificant effect on reading times, errors, and perceived difficulty. Based on our
results, we formulate concrete advice for writing better requirements.

2 Background

2.1 Quantifiers in the English Language

Determiners are frequent parts of speech in the English language. While deter-
miners in general describe what a noun refers to, for instance, “the”, “some”, or
“their”, quantifiers represent a subcategory of determiners referring to a certain
quantity of the noun. Keenan and Stavi offer an extensive list of natural lan-
guage determiners, which includes a substantial number of quantifiers [11]. Many
quantifiers have similar meaning. As an example, “at least n” or “n or more”
include the same set of items with regard to “n”. We categorized the quantifiers
according to their semantic scope, i.e. quantifiers of the same category hold true
for equal sets. Based on this categorization, we defined 11 scopes, of which two
defined as Some and Many are ambiguous and thus irrelevant to this paper, which
deals with explicit quantifiers. The 9 exact scopes are: None, All, Exactly n, At
least, At most, Less than, More than, One and All but, as depicted in Fig. 1.
Exact quantifiers are either numbers, like “one”, “two”, or “exactly a hundred”,
which is contained in the scope Exactly n. When speaking of All, every element
of a set is included, while None as its counterpart excludes all elements. Some
quantifiers are graded: The scope At least is upward entailing, i.e. it includes
all elements in the subset [n,max), while the scope At most is its downward
entailing counterpart. The scopes More than and Less than are similar, how-
ever, they have open intervals, thus exclude the value “n”. The scope One refers
to a certain instance, rather than any set with a certain property. Quantifiers
included in this scope are, for example, “the”, or “a”, as in “the object”, or “a

How Do Quantifiers Affect the Quality of Requirements? 5

group of objects”. The scope All but is the counterpart to this scope, excluding
this instance of a set.

Fig. 1. Quantifier scopes

The quantifiers listed by Keenan and Stavi [11] can be classified into these
semantic scope categories. From the original set of determiners, indefinite quan-
tifiers, such as “nearly all” are excluded and duplicates or similar quantifiers,
such “five or more” and “a hundred or more” are aggregated into one scope.

Hence, natural language possesses a variety of determiners [9] that can be
utilized to express the different scopes of quantification. This presents us the
question, whether some determiners are more readable and comprehensible than
others with an equivalent semantic scope.

2.2 Affirmative and Negative Sentences

Christensen [4] examined the neurobiological implications of affirmative and neg-
ative sentences in the brain. The findings suggest that different brain areas are
activated when processing affirmative and negative sentences, i.e. sentences con-
taining a negative operator. Moreover, the brain requires more processing time
for negation than for affirmation, thus response time is also longer. Performance,
however, is suggested to be equal for both types of sentences. According to Chris-
tensen, affirmative sentences involve a simpler semantic and syntactic structure
than negative sentences [4]. According to their work, negative sentences entail a
more complex syntactical structure, which requires “additional syntactic compu-
tation” in the brain [4]. Christensen denotes affirmative polarity as “default”, to
which negative operators add additional structure. More precisely, when reading
negative sentences, the human brain interprets all sentences as affirmative at
first and in the second step, adds negative polarity to negative sentences [4].

In the dataset of requirements specifications used as a source for this paper,
quantifiers are formulated in both, affirmative and negative form. To express
the same semantic scope, one can employ positive and negative structures. For
example, one could say “at least ten”, or equivalently “no fewer than ten”. Which
of these two possibilities is more advisable to use in requirements specifications?
Although Christensen has given an indication on the answer to this question,

6 K. Winter et al.

it could also be assumable that negative quantifiers yield longer response time,
but better reading comprehension.

2.3 Requirements Readability

Requirements artifact quality can be understood as the extent to which proper-
ties of the artifact impact activities that are executed based on the artifact. In
particular, quality factors affect the effectiveness and efficiency of use [7]. One
relevant activity on requirements specifications is reading [1]. Consequently, good
quality in practice includes efficient and effective readability of the requirements
specifications. We therefore examine the implications of the quality factor quan-
tifiers on effectiveness and efficiency of reading. We understand readability as
an indicator for the “ease of understanding or comprehension due to the style
of writing” [12]. Readability thus describes reading efficiency and good quality
in readability minimizes the reading effort to gain comprehension of the require-
ments. Reading comprehension indicates effectiveness of reading. When consid-
ering readability, the reading performance must not be neglected. Although ease
of understanding and sentence comprehension are closely related, good readabil-
ity that yields a wrong understanding of the phrase is an indicator of bad quality.
It is thus required to achieve both, efficiency and effectiveness in requirements
specifications.

Objective indicators are one aspect of the assessment of quality in readability.
Klare [12] makes a point with the statement: “The reader must be the judge”.
Hence, subjective perception should also be considered in regard to readabil-
ity of requirements specifications. Therefore, we examine the readability, com-
prehension, and subjective perception of syntactically affirmative and negative
quantifiers for a limited set of quantifier scopes.

3 Study Design

In this study, we analyze the impact of affirmative and negative quantifier phrases
on readability, comprehension, and perceived difficulty.
Research Question 1: How does affirmative and negative syntax of quantifiers
impact reading efficiency?
Research Question 2: How does affirmative and negative syntax of quantifiers
impact reading effectiveness?
Research Question 3: How does affirmative and negative syntax of quantifiers
impact the subjective perception of reading difficulty?

3.1 Data Collection

We conducted an experiment to gather data on the research questions following
the guideline by Wohlin et al. [14]. To assess the differences between affirmative
and negative quantifiers, we examine the relationship between quantifier syntax

How Do Quantifiers Affect the Quality of Requirements? 7

and readability, comprehension, and perceived difficulty. We implemented a web-
based experiment, which yields a controllable testing environment and allows
for a general evaluation of our hypotheses since the experiment questions are
not bound to a certain context and thus do not require prior knowledge on a
particular topic. Instead, the web application contains an artificial problem to
easily gain first results on the research questions.

3.2 Study Objects and Treatments

Based on the research questions, the independent variable that is controlled in
this experiment is the syntactical structure of the quantifying sentences. The two
treatments are affirmative and negative syntactical structure. The dependent
variables that will be measured in the experiment are the readability, under-
standability, and subjective perception of difficulty for each treatment.

Wohlin et al. [14] offer a standard design type for such experiments with one
factor and two treatments. Leaning on this design type, we aim “to compare the
two treatments against each other”. Furthermore, we choose a paired comparison
study design, where “each subject uses both treatments on the same object” [14].
We compare the two treatments, affirmative and negative syntactical sentence
structure, on sentences addressing the same quantifier scope.

Table 1 lists all samples of quantifiers that are given in the experiment. These
samples were made up by us and did not have any specific background or focus.
For each quantifier scope, an affirmative quantifier and a negative equivalent is
displayed. Note that the scope None is a special case, as it is naturally negative
and thus its counterpart is positive. Words in bold are characteristic for the
respective syntactic structure.

The task of the experiment was to compare the given sentence with three
given situations and decide which of the three situations (one, two, or all three)
match the given sentence. The situations are presented as images. Figure 2
depicts one of the 18 answers in the experiment and belongs to the sentence
“A highly defective machine has no less than 5 defects”. The images are nearly
identical, except for quantification, represented in red crosses in this image. The
quantifier scope At least, which is stated here in negative syntax, entails the
amounts of {five, six, seven, . . . } crosses. Thus, the correct answers to select are
Image 1 and Image 2, as they are entailed, whereas Image 3 does not accurately
describe the sentence.

As recommended by Wohlin et al. [14], the order of the sentences is ran-
domized to prevent the effect of order and have a balanced design, such that the
subjects’ paths through the experiment are diverse. To further avert information
gain from past questions, we not only randomized each sentence pair, but mix all
sentences. Moreover, we created sentence pairs with identical quantifying scopes
and similar but not equal semantic meaning (see Table 1).

8 K. Winter et al.

Table 1. Affirmative and negative syntax samples for each quantifier scope.

Scope Affirmative
syntax sample

Negative
syntax sample

All All registered machines must be
provided in the database

No deficit of a machine is not
provided in the database

None All access is blocked without a
valid login

None of the service workers may
have access to ‘Budget’

More than At more than 5 deficits the signal
token turns red

Not only defective machines are
displayed in the system

At least The number of new parts per order
must be at least 3

A highly defective machine has no
less than 5 defects

At most Per machine, at most 4 photos
can be uploaded to the database

An approved machine has no
more than 2 minor defects

Less than Less than 3 supervisors may be
assigned to each service worker

Not as many supervisors as 3
may be assigned to each machine

Exactly n Exactly 2 emergency contacts
must be displayed at all times

No more or less than 2
supervisors must be online at all
times

All but All machines but the current one
must be on the list ‘new jobs’

No location but the location of
the current machine is on the map

One Only the location of the current
machine is on the map

The current job is the only job
that is not listed in ‘last jobs’

Fig. 2. Example question from the experiment: which of the images match the sentence
“A highly defective machine has no less than 5 defects”?

How Do Quantifiers Affect the Quality of Requirements? 9

3.3 Subject Selection

We selected the subjects for the experiment by convenience sampling [14] via
mailing lists, or personal and second-degree contacts of the authors. The exper-
iment was conducted online with anonymous participants. Thus, we had no
control over the situation and context in which the experiment was executed
by each participant. Our web-based experiment was started by 76 participants
of which 51 completed the experiment. All figures in this paper refer to the 51
participants that completed the experiment. Prior to the experiment, we ask the
participants whether they have a background in computer science (yes: 94.1%,
no: 5.9%), whether they are native English speakers (yes: 5.9%, no: 94.1%), and
what their profession is (academic: 23.5%, professional : 49.0%, student : 27.5%).

3.4 Data Analysis

To answer the proposed research questions, we selected the following metrics.

Readability: To evaluate readability in terms of efficient reading, the effort of
reading needs to be measured. Many studies and experiments measure reading
time as an indicator for the level of difficulty it requires to process a sentence
[5,10,13]. Therefore, we also use reading time as an indicator of reading difficulty
to examine the effort for a person to understand a sentence. In the experiment,
we measured the time that a participant required to read and comprehend the
sentence. The counter was started when the sentence appeared on the screen and
stopped again when the participant clicked on the button to submit the answer.
To examine the differences in reading time between the affirmative and the
negative syntax sample for each scope, we applied a Wilcoxon signed-rank test,
which is suitable for comparing two paired samples with data that is not normally
distributed. As we will see later, the assumption of the Wilcoxon signed-rank test
holds, since the reading times in our experiment are not normally distributed.
The test returns a p-value to assess the significance of the effect and an effects
size to assess the magnitude of the effect.

Understandability: To measure correctness, we test whether the understand-
ing reflects the true meaning of the sentence or represents a false belief. As
discussed in Sect. 2.1, some quantifiers entail a range of correct solutions. For
instance, the quantifier five items or more entails all numbers of items of five
and above (i.e. five, six, seven, . . .). For other quantifiers, like exactly five
items, one number, namely five, is the correct quantification, while all other
numbers, like four or six items, do not reflect the true meaning of the quantifier.
Hence, the three situations presented as answers in the online experiment are
independent and include correct as well is incorrect quantifications of the given
statement. We consider a sentence as “understood” if all included and excluded
options are correctly identified. To examine the differences in correctly under-
stood sentences, we build a 2 × 2 contingency table containing the number of
participants with correct and incorrect answers in affirmative and negative sen-
tences (see Table 2). Since our samples are matched, we focus on the discordant

10 K. Winter et al.

cells in the contingency table (b and c) and apply an exact binomial test to com-
pare the discordant cell b to a binomial distribution with size parameter n = b+c
and probability p = 0.5. This test is suggested for 2 × 2 contingency tables with
matched samples and few samples in the discordant cells (b + c < 25). As a
measure for the effect size, we report the odds ratio: OR = b/c.

Table 2. 2 × 2 contingency table of correct and incorrect answers for one scope.

Negative syntax Affirmative syntax

Incorrect Correct

Incorrect a b

Correct c d

Perceived Difficulty: For the determination of perceived difficulty, we asked
the participants to rate the reading difficulty on a scale with the values “easy”,
“medium”, and “difficult”. We use this ordinal scale as it allows for the assess-
ment of less to greater, where intervals are not equal. The perceived difficulty is
subjective and intervals between the options “easy” and “medium”, as well as
between “medium” and “difficult” are not necessarily equal. Furthermore, levels
of difficulty may differ in between the category itself. To examine the differ-
ences in the perceived difficulty, we applied a Wilcoxon signed-rank test, which
is suitable for comparing two paired samples with ordinal data.

3.5 Experiment Validity

Prior to starting the experiment and collecting the data, we launched a test
run with three participants to receive feedback on the correctness of language,
the comprehensibility of the overall experiment, and remaining technical bugs.
Although the affirmative and negative syntax sample for each quantifier describe
different situations (see Sect. 3.1), the generated sentences are similar by choos-
ing a narrow vocabulary throughout the experiment. The difference between
sentences averages about 1.77 words, where in five cases the affirmative sentence
contains more words and in four cases the negative sentences is longer. The
sentences have a simple structure, such that other syntactical phenomena, like
sentence complexity, do not invalidate the results. On average, the sentences have
11 words. For each sentence, the study subjects have three answer options. To
avoid complexity of the answers through e.g. answer sentences that are difficult
to understand, the answer options are displayed as images (see Fig. 2). Like the
sentences, the images have a similar image vocabulary containing equal symbols
and language of form. For each sentence in the experiment, the images have
minimal, but distinguishable differences. One or more of these images represent
the correct meaning of the sentence given. By providing more than one correct
answer, the effect of exclusion by comparison between different images should
be avoided and the subject is forced to deal with each answer option separately.

How Do Quantifiers Affect the Quality of Requirements? 11

To assure transparency and improve reproducibility, we have published the
raw results of the experiment and the R-script that we used for processing the
data.1

4 Study Results

4.1 Effects on Readability (RQ1)

When examining the collected reading times, we saw that all values were below
77 s, except for two data points where the reading time were 665 s and 12,281 s
(both measured for sentences with negative syntax). Since we had no control
over the situation in which the experiment was conducted, we consider both
data points as outliers, possibly due to a disturbance of the participant, and
removed the data points as well as their corresponding affirmative sentences
from the dataset. Figure 3 displays boxplots of the remaining reading times for
each scope. As shown in the figure, for six of the nine pairs, it took more time
on average to read the negative quantifier compared with the positive quantifier
of the same scope.

Fig. 3. Distribution of reading times per scope

Table 3 lists the results of the Wilcoxon signed-rank test for each scope in
terms of the p-value and effect size for significance level α = 0.05.

According to the significance test, the following quantifier scopes exhibit a
significant difference in reading time: All, None, At least, Less than, Exactly
n, All but, and One. Only for quantifiers At most, and More than, we were not
1 https://doi.org/10.6084/m9.figshare.10248311.

https://doi.org/10.6084/m9.figshare.10248311

12 K. Winter et al.

Table 3. Wilcoxon signed-rank test for differences in reading times between affirmative
and negative syntax in each scope.

Scope All None More than At least At most Less than Exactly n All but One

p-value .000 .019 .077 .000 .409 .001 .000 .000 .000

Effect size .46 .23 .18 .37 .08 .32 .58 .52 .52

able to reject the null hypothesis of equal reading times. Among the quantifier
scopes, All but and None yield significantly longer reading times for the affir-
mative quantifier than for the negative, as depicted in Fig. 3. In all other cases,
affirmative quantifiers perform better than their negative equivalences regarding
the average reading time. The effect size values indicate small (0.2) to moderate
effects (0.5) [6]. An effect size of 0 means that exactly 50% of participants spent
less reading time for the affirmative sentence than the mean reading time for the
negative case (i.e., there is no difference). A moderate effect size of 0.5 indicates
that 69% of participants spent less reading time for the affirmative sentence than
the mean reading time for the negative case, while for large effect size (0.8) this
is already true for 79% of participants.

4.2 Effects on Comprehension (RQ2)

Figure 4 shows the ratio of incorrect answers per scope. For 6 of the 9 quantifiers,
our participants made more errors in the sentence with negative syntax. Only for
the quantifier scopes More than, At most, and All but, the participants made
more errors in the sentence with affirmative syntax.

Fig. 4. Distribution of incorrect answers per scope

Table 4 lists the results of the exact binomial test for each scope in terms of
the p-value and the odds ratio as a measure for effect size for significance level
α = 0.05.

How Do Quantifiers Affect the Quality of Requirements? 13

Table 4. Binomial test for differences in error ratio between affirmative and negative
syntax in each scope

Scope All None More than At least At most Less than Exactly n All but One

p-value .007 1.0 .000 .013 1.0 .017 .008 .016 1.0

Odds ratio 6.50 1.50 12.50 6.00 1.33 3.40 Inf Inf 2.00

For 5 of the 9 quantifier scopes, our participants made significantly more
errors in the negative sentence. For the scopes All but and More than, our
participants made significantly more errors in the affirmative sentences. The
odds ratios as a measure for effect size varied between small effects (or < 2.57),
moderate effects (2.75 ≤ or < 5.09) and large effects (or ≥ 5.09) [3]. An odds
ration of 6.5 for the scope All, for example, means that the chances of incor-
rectly answering the negative sentence was 6.5 times higher than the chances of
answering the affirmative sentence incorrectly.

4.3 Effects on Perceived Difficulty (RQ3)

After each question in the experiment, the participants were confronted with
a self-assessment scale on how difficult they perceived the sentences. Answer
options were easy, medium, and difficult. Figure 5 depicts the assessments
over the participants.

Table 5 lists the results of the Wilcoxon signed-rank test for each scope in
terms of the p-value and effect size for significance level α = 0.05.

Table 5. Wilcoxon signed-rank test for differences in perceived difficulty between affir-
mative and negative syntax in each scope

Scope All None More than At least At most Less than Exactly n All but One

p-value .000 .510 .000 .000 .141 .000 .000 .164 .001

Effect size .55 .07 .36 .51 .15 .49 .52 .14 .37

Six of the nine quantifier scopes show significant differences in the perceived
difficulty. For all of these scopes, the participants perceived the affirmative phrase
as easier. The effect size measures for the scopes with significant differences all
indicate moderate effects (0.35 ≤ effect < 0.65) [6]. For the remaining three
scopes, the difference in perceived difficulty is not significant.

14 K. Winter et al.

Fig. 5. Subjective perception of sentence difficulty per scope

4.4 Summary of the Results

Figure 6 summarizes the results of the three research questions. The figure shows
the scopes and the measured differences with a qualitative evaluation of the effect
sizes according to Cohen [6].

Overall, negative quantifiers perform worse in more cases than positive quan-
tifiers, which is clear for the quantifiers All, At least and Exactly n and also
apparent for the quantifier Less than. For other quantifiers, results are neu-
tral, like the quantifier None, which is in a special position, as it naturally is
formulated in negative syntax, or At most and One, which exhibit neutral objec-
tive measurements, but show tendencies in self-assessment towards differences
in subjective difficulty. The quantifier More than was the outlier in the mea-
surements regarding the number of mistakes in the positive sentence. Thus, this
result should be treated with care. Especially, since self-assessment showed clear
tendencies that the negative sentence is more difficult. Last but not least, the
extra quantifier All but performed worse in two measurements, namely reading
time and self-assessment, and only neutral when it came to the number of wrong
answers. Hence, it is the only quantifier that yields a worse overall performance
of the positive quantifier.

How Do Quantifiers Affect the Quality of Requirements? 15

Fig. 6. Summary of results

5 Discussion

5.1 Threats to Validity

For the interpretation of the results, several threats to validity need to be con-
sidered.

Construct Validity: Only one specific representative quantifier was stated for
each scope in the experiment. Thus, results are inferred from these exact repre-
sentatives, not the quantifier scopes in general. Using other quantifiers to express
a scope may possibly yield different results. In addition, results may depend on
the setup of the experiment. As subject area of all sample requirements, we used
a software product for machine maintenance. Each quantifier was then embedded
in a sentence that was equal for all test subjects and had specific answer options
encoded as images. A different use of sentences, images, or other factors, such as
the professional background and English proficiency of the subjects, could lead
to different results.

Conclusion and Internal Validity: Prior to starting the experiment and
collecting the data, we launched a test run with three participants to receive
feedback on the correctness of language, the comprehensibility of the overall
experiment, and remaining technical bugs. Since we used an experimental design
where all participants were faced with all treatments in a random order, we do
not expect effects due to a confounding variable. The sample size of 51 subjects

16 K. Winter et al.

is reasonable to draw statistical conclusions. We only asked the participants
whether they have a background in computer science, whether they are native
English speakers, and what their profession is. We did not analyze the effect of
these demographic factors due to the small size of single groups. In addition, we
are not able to analyze effects related to further contextual factors of subjects
such as experience, closeness to the application domain, or others. We selected
the applied statistical tests based on the characteristics of the experiment (e.g.,
paired samples) and checked the test’s assumptions (e.g., normal distribution).
All elicited measures (reading times, number of errors, and perceived difficulty)
are independent from any kind of judgement by the authors. To make the results
transparent, we report p-value and effect size. Still, we used an arbitrary, yet
common, significance level threshold of α = 0.05 for the statistical tests.

External Validity: Since we used convenience sampling, we cannot claim that
our participant group is representative for the group of all people working with
requirements. Particularly, participants with a different language background
may have more or less difficulties with negative or affirmative syntax. In addition,
we used artificial requirements for the treatments. We cannot claim that these
are representative for real requirements in the context of each participant.

5.2 Interpretation and Writing Guidelines

Taking the threats to validity into account, we can cautiously interpret these
results. We conclude that some quantifiers exhibit better readability and better
comprehension when phrased in affirmative syntax. Furthermore, self-perception
mostly coincides with readability and comprehension, which might be owed to
the fact that longer reading time and the guessing of answers impact the per-
ceived difficulty of the sentences. Nevertheless, even for the quantifier scopes
where participants made significantly more errors and spent more reading time
with the affirmative syntax, the participants did not perceive the negative phras-
ing as easier to read (see Fig. 6).

An observation that was surprising to us was the high error rate for the
scopes More than (affirmative case) and Less than (negative case). As shown
in Fig. 4, almost 60% of our participants answered the question incorrectly. A
deeper analysis of the results showed that, for the sentence “more than x. . . ”, a
large number of participants incorrectly selected the answer that showed exactly
x instances. This results is mirrored in the negative case of the Less than scope.
Apparently, our participants had difficulties with sentences that represent open
intervals. Given that the error ratio for scopes At least, and At most is lower,
we may conclude that it is better to use formulations that represent closed
intervals.

In summary, we draw the following conclusions that can be used as advice
for writing requirements that are faster to read, have lower chances of misinter-
pretation, and are perceived as easier to read:

How Do Quantifiers Affect the Quality of Requirements? 17

1. Use affirmative syntax for scopes All, At least, Less than,
Exactly n, and One:

– Write All... instead of No...not
– Write At least... instead of No less than...
– Write Less than... instead of Not as many as...
– Write Exactly n... instead of No more or less than n...
– Write Only ... instead of Only...not

2. Use negative syntax for the scope None:
– Write None of... instead of All...without

3. Use closed-interval formulation instead of open-interval formula-
tion:

– Write At least... instead of More than...
– Write At most... instead of Less than...

4. In doubt, use affirmative syntax since it is perceived as easier.

5.3 Relation to Existing Evidence

Berry and Kamsties [2] noticed that some quantifiers may be dangerous to use
in requirements because they create ambiguity. They specifically recommend
avoiding indefinite quantifiers, such as “nearly all”, and the quantifier all with a
plural noun because it is not clear whether the corresponding statement applies
to each instance separately or to all instances as a whole. In our experiment,
the affirmative sentence for the scope All contained the quantifier all with a
plural noun. Although 10% of our participants gave an incorrect answer for this
sentence, this number was not particularly higher than in other scopes.

Christensen [4] performed an empirical study on the effect of negative and
affirmative statements on response time (i.e., how fast did subjects answer ques-
tions about the presented statements) and reading performance (i.e., how often
were the answers correct). They found significantly shorter response times for
affirmative sentences and lower error rates (differences were not significant). Our
results corroborate the results of Christensen in general although there were some
scopes with effects in favor of the negative syntax (e.g., All but).

6 Conclusion

In the course of this study, we raised questions on the readability, comprehension,
and subjective difficulty of affirmative and negative quantifier formulations in
natural language requirements. We designed and conducted a web-based experi-
ment, from which we evaluated the results using the time for readability, correct-
ness for comprehension, and self-assessment for subjective difficulty. The results
were interpreted and yielded a tendency towards better overall performance of
affirmative quantifiers compared to their negative equivalences. This extends
and confirms related studies from psycholinguistics. Moreover, our results sug-
gest using quantifiers representing closed intervals instead of open intervals.

18 K. Winter et al.

Our results depict first empirical impressions on quantifiers in requirements
specifications. However, much about this topic remains to examine. First of all,
it remains to review, whether the categorization of quantifiers in this study is
sensible or whether other categorizations are also possible. Since we only exam-
ined one concrete quantifier formulation for each scope, the results may not be
generalized to other syntactic representations of the same scope. Future research
could thus involve repeating the experiment with a different set of quantifiers
in a different context to validate the results and give additional information to
eventually generalize the results. Last but not least, certain quantifiers could
be proposed as new requirements smells and tools may be used to detect these
smells to improve the quality of natural language requirements.

References

1. Atoum, I.: A novel framework for measuring software quality-in-use based on
semantic similarity and sentiment analysis of software reviews. J. King Saud Univ.
Comput. Inf. Sci. 32(1), 113–125 (2020)

2. Berry, D.M., Kamsties, E.: The syntactically dangerous all and plural in specifica-
tions. IEEE Softw. 22(1), 55–57 (2005)

3. Chen, H., Cohen, P., Chen, S.: How big is a big odds ratio? Interpreting the mag-
nitudes of odds ratios in epidemiological studies. Commun. Stat. Simul. Comput.
39(4), 860–864 (2010)

4. Christensen, K.R.: Negative and affirmative sentences increase activation in differ-
ent areas in the brain. J. Neurolinguist. 22(1), 1–17 (2009)

5. Cirilo, R.K., Foss, D.J.: Text structure and reading time for sentences. J. Verbal
Learn. Verbal Behav. 19(1), 96–109 (1980)

6. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Routledge,
New York (2013)

7. Femmer, H., Vogelsang, A.: Requirements quality is quality in use. IEEE Softw.
36(3), 83–91 (2019)

8. Femmer, H., Mèndez Fernàndez, D., Wagner, S., Eder, S.: Rapid quality assurance
with requirements smells. J. Syst. Softw. 123, 190–213 (2017)

9. Glanzberg, M.: Quantifiers, pp. 794–821. Oxford University Press, Oxford (2006)
10. Graesser, A.C., Hoffman, N.L., Clark, L.F.: Structural components of reading time.

J. Verbal Learn. Verbal Behav. 19(2), 135–151 (1980)
11. Keenan, E.L., Stavi, J.: A semantic characterization of natural language determin-

ers. Linguist. Philos. 9(3), 253–326 (1986)
12. Klare, G.R.: The measurement of readability: useful information for communica-

tors. ACM J. Comput. Doc. 24(3), 107–121 (2000)
13. MacKay, D.G.: To end ambiguous sentences. Percept. Psychophys. 1(5), 426–436

(1966)
14. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-

mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell (2000)

Generation of Formal Requirements
from Structured Natural Language

Dimitra Giannakopoulou1(B), Thomas Pressburger1, Anastasia Mavridou2,
and Johann Schumann2

1 NASA Ames Research Center, Moffett Field, CA, USA
{dimitra.giannakopoulou,tom.pressburger}@nasa.gov

2 SGT, NASA Ames Research Center, Moffett Field, CA, USA
{anastasia.mavridou,johann.m.schumann}@nasa.gov

Abstract. [Motivation] The use of structured natural languages to
capture requirements provides a reasonable trade-off between ambiguous
natural language and unintuitive formal notations. [Problem] There are
two major challenges in making structured natural language amenable
to formal analysis: (1) associating requirements with formulas that can
be processed by analysis tools and (2) ensuring that the formulas con-
form to the language semantics. [Results] FRETISH is a structured nat-
ural language that incorporates features from existing research and from
NASA applications. Even though FRETISH is quite expressive, its under-
lying semantics is determined by the types of four fields: scope, condition,
timing , and response. Each combination of field types defines a template
with Real-Time Graphical Interval Logic (RTGIL) semantics. We present
an approach that constructs future and past-time metric temporal logic
formulas for each template compositionally, from its fields. To establish
correctness of our approach we have developed a framework which, for
each template: (1) extensively tests the generated formulas against the
template semantics and (2) proves equivalence between its past-time and
future-time formulas. Our approach has been used to capture and analyze
requirements for a Lockheed Martin Cyber-Physical System challenge.
[Contribution] To the best of our knowledge, this is the first approach
to generate pure past-time and pure future-time formalizations to accom-
modate a variety of analysis tools. The compositional nature of our algo-
rithms facilitates maintenance and extensibility, and our extensive veri-
fication framework establishes trust in the produced formalizations. Our
approach is available through the open-source tool fret.

Keywords: Structured natural languages · Requirements elicitation ·
Compositional formalization · Temporal logics · Verification

1 Introduction

Requirements engineering is a central step in the development of safety-critical
systems. Requirements are typically written in natural language, which is
This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 19–35, 2020.
https://doi.org/10.1007/978-3-030-44429-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_2

20 D. Giannakopoulou et al.

ambiguous and consequently not amenable to formal analysis. On the other hand,
a variety of analysis techniques have been developed for requirements written
in formal, mathematical notations [4,7,10,11,17], e.g. completeness, consistency,
realizability, model checking, or vacuity checking. Despite the ambiguity of unre-
stricted natural language, it is unrealistic to expect developers to write high-level
requirements in mathematical notations.

fretish is a restricted natural language for writing unambiguous require-
ments, supported by our open source tool fret1 (see Fig. 1). fretish incorporates
features from existing approaches (e.g., property patterns [8] and EARS [19]), and
from NASA applications. Even though the fretish grammar is quite expressive,
its underlying semantics is determined by the types of four fields: scope, condi-
tion, timing , and response. Each combination of field types defines a template with
Real-Time Graphical Interval Logic (RTGIL) [21] semantics. There are two chal-
lenges in making fretish amenable to formal analysis: (1) associating fretish
requirements with formulas that can be processed by analysis tools, and (2) ensur-
ing that the formulas conform to the fretish semantics.

We propose an approach that constructs two metric temporal logic formulas
for each fretish template: a pure past-time (denoted pmLTL), and a pure future-
time (denoted fmLTL) formula, interpreted over finite traces.2 We support both
fmLTL and pmLTL so as to interface with a variety of analysis tools. Formula gen-
eration is performed compositionally, based on the types of the template fields. We
establish correctness of the produced formalizations through a fully automated
framework which, for each template: (1) extensively tests the generated formulas
against the template semantics, and (2) proves equivalence between its past-time
and future-time formulas. The fretish grammar, its RTGIL semantics, the for-
mula generation approach and its verification framework are available through the
fret repository. We report on the application of our approach to the Lockheed
Martin Cyber-Physical Systems (LMCPS) challenge [20].

Related Work. Work on gleaning patterns from a body of property specifi-
cations resulted in the Specification Pattern System [8], with later extensions
for real-time properties [16], composite properties [12], and semantic subtleties
[6]. Tools such as Prospec [12], SPIDER [15] and SpeAR [10] were developed to
support users in writing requirements according to supported patterns. SALT
(Structured Assertion Language for Temporal logic) [3] is a general purpose
specification and assertion language designed for readability, which incorporates
property pattern features like scope. We use SALT as an intermediate language.
The Easy Approach to Requirements Syntax (EARS, [19]) proposed five infor-
mal templates that were found to be sufficient to express most high-level require-
ments; recent work has attempted to formalize the templates in LTL [18]. STIM-
ULUS [14] enables the user to build up a formal requirement by dragging and
dropping phrases, and then simulate the system specified by the requirements.
ASSERTTM [7] uses the constrained natural language SADL for formalizing

1 Formal Requirements Elicitation Tool: https://github.com/NASA-SW-VnV/fret.
2 fmLTL with infinite-trace semantics can be produced with a very simple modification

to our generation algorithms.

https://github.com/NASA-SW-VnV/fret

Generation of Formal Requirements from Structured Natural Language 21

domain ontologies, and a requirements language SRL that can express condi-
tions, including temporal conditions, on monitored variables, and constraints on
controlled variables. Tools such as VARED [2] and ARSENAL [13] attempt to
formalize more general natural language.

Contributions. Our approach is related to all these works by pursuing similar
goals and incorporating experience represented by existing requirement tem-
plates and patterns. The main driver for our work is to enable intuitive writing
of requirements during early phases of the software lifecycle. We do not require
users to define the variables used in requirement sentences; variables can be
defined later for analysis, or can be connected to models or code as needed for
verification [20]. We are not aware of other work that supports the generation of
pure past-time, together with finite- and infinite-trace future-time metric tem-
poral logic formulas. We are thus able to connect to analysis tools that may not
support the combination of future and past time operators (e.g., CoCoSim [20]).
Our developed algorithms are open source, and their compositional nature facili-
tates maintenance and extensibility. We currently support 112 templates, which
may increase in the future to accommodate the needs of fret users. Finally,
unlike previous work, we provide an extensive, open source, automated verifica-
tion framework for the correctness of the generated formulas. This is crucial for
using fret in safety-critical contexts.

2 Background

Intermediate Language. SALT [3] serves as an intermediate language in
our formula generation approach. In particular, several SALT features facili-
tate our formalization algorithms: operator qualifiers inclusive/exclusive or
required/optional; scope operators such as before, after, or between; for-
mula simplifications and generation in nuXmv format. Note that we are only
able to use scope operators with fmLTL formulas; unfortunately, scope opera-
tors in the context of past-time SALT expressions result in formulas with mixed
future and past-time operators. Our framework targets pure future-time or pure
past-time formulas, i.e., formulas that utilize exclusively future-time or past-time
operators, respectively.

We use SALT’s propositional operators: not, and, or, implies, and the tem-
poral operators: until, always, eventually, next for future time, and since,
historically, once, previous for past-time. A timed modifier: timed[∼] where
∼ is one of < or ≤ turns temporal operators into timed ones (e.g., once
timed[≤ 3]φ). Modifier timed[=] is also allowed with previous and next. It
is mandatory to specify whether delimiting events are included (inclusive) or
not (exclusive), and whether their occurrence is strictly required or optional.
For example, φ until inclusive required ψ means that φ needs to hold until
and including the point where ψ occurs, and moreover ψ must occur in the
execution.

Temporal Logics. fmLTL formulas use exclusively future-time temporal opera-
tors (X, F, G, U, corresponding to next, eventually, always, until in SALT),

22 D. Giannakopoulou et al.

and look at the portion of an execution that follows the state at which they are
interpreted. pmLTL formulas use exclusively past-time temporal operators (Y,
O, H, S, corresponding to previous, once, historically, since in SALT);
they look at the portion of the execution that has occurred up to the state
where they are interpreted. We interpret formulas over discrete time points. An
fmLTL/pmLTL formula is satisfied by an execution if the formula holds at the
initial/final state of the execution, respectively.

We review the main future and past time operators for LTL by exploring
their dualities. The X (resp. Y) operator refers to the next (resp. previous) time
point, i.e., Xφ (resp. Yφ) is true iff φ holds at the next (resp. previous) time
point.3 The F (resp. O) operator refers to at least one future (resp. past) time
point, i.e., Fφ (resp. Oφ) is true iff φ is true at some future (resp. past) time
point including the present time. Gφ (resp. Hφ) is true iff φ is always true in the
future (resp. past). Finally, φUψ is true iff ψ holds at some point t in the future
and for all time points t′ (such that t′ < t) φ is true. φSψ is true iff ψ holds at
some point t in the past and for all time points t′ (such that t′ > t) φ is true.
Our formalizations often use since inclusive so, in order to reduce formula
complexity, we extend LTL with an operator SI where φ SIψ ≡ φ S (ψ &φ).
This feature is only used when the targeted analysis tools support operator SI.
Timed modifiers restrict the scope of temporal operators to specific intervals.
For example, O[≤ 3] restricts the scope of operator O to the interval including
the point where a formula is interpreted and 3 points in the past.

3 Requirements Language

The fretish language aims at providing a vocabulary natural to the user. As
such, the fretish grammar offers a variety of ways for expressing semanti-
cally equivalent notions; for example, conditions can be introduced using the
synonyms while, when, where, and if. While certain aspects of fretish require-
ments are in natural language, Boolean expressions, familiar to most developers,
are used to concisely capture conditions on state. Internally, each requirement is
mapped to a semantic template, used to construct the requirement’s formaliza-
tion. To illustrate the fretish language, we use requirement [AP-003b] from
the LMCPS challenge (see Sect. 6):

“In roll hold mode RollAP shall immediately satisfy
abs(roll angle) < 6 ⇒ roll hold reference = 0.”

A fretish requirement is automatically parsed into six sequential fields,
with the fret editor dynamically coloring the text corresponding to the fields
as the requirement is entered (Fig. 1). The fields are scope, condition, compo-
nent , shall , timing , and response, three of which are optional: scope, condition,
and timing . The mandatory component field specifies the component that the
requirement applies to (e.g., RollAP, the roll autopilot). The shall keyword states

3 Yp is false at the first time point, for all p.

Generation of Formal Requirements from Structured Natural Language 23

Fig. 1. fret screenshot: editor (left) and semantics (right) for requirement [AP-003b].
Semantics is provided in intuitive textual and diagrammatic forms. The LTL accordions
are not expanded to save space but the formulas are displayed in Table 5.

that the component behavior must conform to the requirement. The response
field currently is of the form satisfy R, where R is a non-temporal Boolean-valued
expression. The three optional fields above specify when the response is, or is
not, to occur, which we now describe.

Component behavior is often mode-dependent. Field scope specifies the inter-
val(s), relative to when a mode holds, within which the requirement must hold
(e.g., “in roll hold mode”). If scope is omitted, the requirement is enforced on
the entire execution, known as global scope. For a mode M , fret provides seven
relationships: before M (the requirement is enforced strictly before the first point
M holds); after M (the requirement is enforced strictly after the last point M
holds4); in M (or the synonym during M ; the requirement is enforced while the
component is in mode M); and not in M . It is sometimes necessary to specify
that a requirement is enforced only in some time frame, meaning that it should
not be satisfied outside of that frame. For this, the scopes only after , only before,
and only in are provided.

Field condition is a Boolean expression that triggers the need for a response
within the specified scope. For example, requirement [AP-004a] (Sect. 6) con-
tains the condition “when steady state & calm air”. Lastly, field timing specifies
when the response is expected (e.g., immediately) relative to each trigger (or
relative to the beginning of the scope, when condition is omitted). There are
seven possibilities for the timing field: immediately , never , eventually , always,
within n time units, for n time units5, and after n time units, the latter meaning:
not within n time units and at the n+1st time unit. When timing is omitted, it
is taken to mean eventually . To specify that the component shall satisfy R at

4 Actually the first occurrence of a last time in the mode; see Sect. 4.
5 The timing field possibilities correspond to the absence, existence and universality

occurrence patterns of [8] and the bounded response and invariance patterns of [16].

24 D. Giannakopoulou et al.

all times where C holds, one can use Boolean implication in combination with
timing always, as done in requirement [AP-001] (Sect. 6).

To summarize, we currently support 8 values for field mode (including global
scope), 2 values for field condition (condition included or omitted), and 7 values
for field timing, for a total of 8×2×7 = 112 semantic templates. Each template
is designated by a template key ; for example, [in, null, always] identifies require-
ments of the form In M mode, the software shall always satisfy R; null means
the optional condition has been omitted (as opposed to regular when a condition
is included). The classic response pattern: always (condition implies eventually
response), is captured by the key [null, regular, eventually]; null means scope is
omitted, which corresponds to global scope.

4 Compositional Formalization

Our approach to formalization is compositional: rather than creating a dedicated
formula for each semantic template, we build formulas by putting together sub-
formulas corresponding to the types of the template fields. For each semantic
template key of fretish, we generate an fmLTL and a pmLTL formula; these
formulas contain variables that get instantiated for each particular requirement.
For example, the template for the key [in, null, immediately] of our example
requirement [AP-003b] is: H($Fin scope mode$ → $post condition$), and gets
instantiated as shown in the last row of Table 5.

Our formalization algorithms produce SALT formulas, and invoke the SALT
tool to convert these formulas into nuXmv format. This paper focuses on finite
traces so we generate future-time formulas that only check up to the last point
of a finite trace, denoted last. Due to limited space, we only present our con-
struction of pmLTL formulas; the structure for fmLTL generation is similar but
simpler, since it can directly incorporate SALT’s support for expressing scope.

Scope. The scope of a requirement characterizes a set of disjoint finite intervals
where the requirement must hold, and as such defines a high-level template for
the generated formulas. Our approach treats a scope interval as an abstract
interval between endpoints left (inclusive) and right (exclusive), with two
semantic options: if left occurs but is never followed by right, then the interval
(1) is not defined (between semantics) or (2) is defined and spans to the end of the
finite trace (after-until semantics). Figure 2(a) illustrates after-until semantics
for scope: “in mode”. It characterizes the types of intervals where requirements
must hold: (1) intervals defined between any point (denoted by the box on the
top line of the diagram) where mode becomes true and the first subsequent point
where mode becomes false; and (2) an interval where mode is true to the end
of the execution. Our pmLTL formulas have the following high-level template:

generalform = (g-a) and (g-b)
g-a = historically (right implies previous baseform to left)

g-b = ((not right) since inclusive required left)

implies baseform to left

baseform to left = (baseform [since inclusive required left]∗)

Generation of Formal Requirements from Structured Natural Language 25

Fig. 2. RTGIL semantics: (a) “in mode”; (b) “when condition cond”; (c) “eventually
P”. Our semantics is compositional: the blue interval of a diagram can be replaced by
another diagram. For example, (d) illustrates the combined result of (b) and (c), i.e.,
“when cond, eventually p”. ee (end of execution) denotes time point last+1. (Color
figure online)

The template is a conjunction of two formulas. In formula g-a, historically
imposes the requirement on all intervals of the target scope; previous is needed
because intervals are open on the right; baseform to left is the formula base-
form that must be checked back to, and including, the left endpoint of each
interval. baseform is defined later in the section, and expresses the require-
ments that must hold within each scope interval; the part within baseform
enclosed in []∗ is omitted in some cases, as discussed later. Formula g-b is appli-
cable only with the after-until option; it similarly imposes baseform to left
on intervals that span to the end of the execution (i.e., right never occurs).

The endpoints left and right in our general template get instantiated
depending on the type of scope. Table 1 defines scope endpoints in terms of abbre-
viations (left), each characterized by a logical formula that tracks changes in the
values of mode variables M (right). We use abbreviations FiM/LiM: first/last
state in mode; FNiM/LNiM: first/last state not in mode; FFiM/FLiM: first
occurrence of FiM/LiM in execution; FTP: first time point in execution; LAST:
last time point in execution. FiM and LiM are used with scope key in; they
are characterized by M becoming true (from false) and vice versa, respectively.
Endpoint formulas may involve checking whether endpoints occur at state FTP
(e.g., when (M and FTP) is true, FiM holds).

26 D. Giannakopoulou et al.

Fig. 3. Example execution including graph-
ical representation of endpoints used in
pmLTL scope semantics

Figure 3 provides an example sys-
tem execution including mode-related
information, and depicting the differ-
ent types of endpoints used in defin-
ing scopes. For scope after, left is
time point 3, and right is time
point 10 (last+1). As mentioned,
our intervals are open to the right:
[left,right); this is because the
right endpoint of scopes can only
be detected one time point later (see
Table 1). For example, in Fig. 3, the

last point in the first mode interval is 2, but LiM is detected at time point 3,
where M is false, but was true at the previous time point. As mentioned in
Sect. 2, qualifier only expects the requirement to not hold outside of the speci-
fied scope. This means two things: (1) scope interval endpoints must be selected
accordingly (Table 1), and (2) the base formula must be negated.

Note that for scopes null, after, and only before, the right endpoint of their
associated intervals is last+1 (see Table 1). Since past-time formulas get evalu-
ated backwards starting at the last point in an execution, we do not need to pro-
vide a formula for last+1. Rather, for these cases, we simplify the general tem-
plate to the following: generalform = (once left) implies baseform to left.

Table 1. (left) Scope endpoints. (right) pmLTL formulas associated with each end-
point. last+1 is not provided because our formulas do not use it.

Scope left right

null FTP last+1

before FTP FFiM

after FLiM last+1

in FiM LiM

notin, onlyin FNiM LNiM

only before FFiM last+1

only after FTP FLiM

Symbol Formula

FFiM FiM and previous (historically (not M))

FLiM LiM and previous (historically (not LiM))

FiM M and (FTP or (previous not M))

LiM not M and previous M

FNiM not M and (FTP or previous M)

LNiM M and previous (not M)

FTP not previous true

Base Formulas. baseform describes the expectations of the requirement
within each scope interval. We remind the reader that all baseform formu-
las appear in the context of generalform and are interpreted starting at the
right of each scope. A base formula is determined by whether a condition exists,
the timing, and the type of response.

Table 2 illustrates the base formulas that correspond to various timings, with-
out, and with conditions. A base formula f enclosed in [f]∗ indicates that the
part in baseform to left similarly enclosed in []∗ must be omitted; for exam-
ple, eventually formulas cannot be checked at each point of the interval. Some

Generation of Formal Requirements from Structured Natural Language 27

Table 2. BASEFORMS without and with conditions. since ir/since er denote since
inclusive/exclusive required, respectively.

Timing baseform baseform with conditions

immediately left implies res trigger implies res

always [res since ir left]∗ nocondition or (res since ir trigger)

never [always(not res)]∗ always(cond, (not res))

eventually [not ((not res) [nocondition or

since ir left)]∗ not ((not res) since ir trigger)]∗

for n (once timed[≤n] left) F1 and F2

implies res F1 ≡ (((not left) since er trigger) and

(once timed[≤n] trigger)) implies res

F2 ≡ (cond and left) implies res

within n ((not res) since ir left) (previous timed[=n]

implies (trigger and not res))

(once timed[<n] left) implies (once timed[<n] (left or res))

after n for(n, not (res)) for(cond, n, not (res)) and

and within(n+1, res) within(cond, n+1, res)

timings are expressed in terms of others (e.g., never); we use a function-like
notation to denote that. Timed cases have special treatment when the remain-
ing interval in scope is too short to cover their duration. Take the trace of Fig. 3,
for example. At time point 8: (1) for 3 time units imposes res to the end of the
execution; (2) within 3 time units is trivially true; (3) after 3 time units imposes
that res not occur until the end of the execution.

There are several options for interpreting conditions: is a requirement trig-
gered by a condition being or becoming true? We currently only support the latter
option, as illustrated in Fig. 2: we check requirements when a condition becomes
true (from false) or is true at the first point where the requirement is in scope, as
expressed by a trigger formula: trigger = (cond and previous not(cond))
or (cond and left). We can easily add support for different options by provid-
ing alternative trigger formulas. When conditions never occur in a scope of inter-
est, then the requirement is true trivially. Base formulas with conditions therefore
typically contain a disjunction with nocondition (Table 2), where nocondition

= (not cond since inclusive required left).
Finally, note that negating base formulas in only scopes does not always

consist of wrapping the formula in a logical not. For this reason, negations of
timings are specified explicitly in our approach (not illustrated for lack of space).

5 Verifying Formalizations

We provide assurance that formulas generated by our approach capture the
intended semantics through a modular and extensible verification framework.
For each template key and its corresponding fmLTL and pmLTL formulas φft

28 D. Giannakopoulou et al.

and φpt, our framework (1) checks that φft and φpt conform to the template key
RTGIL semantics, and (2) verifies for a specified trace length that φft and φpt

are equivalent. Our verification framework consists of the following components:

• trace generator produces traces, i.e., example executions such as the one
illustrated on Fig. 3: mode M holds in intervals {[0..2], [6..9]}, condition cond
holds in the interval {[2..3]}, and response res holds in intervals {[2..2], [7..9]}.

• formula retriever produces the set of all possible verification tuples
〈t, φft, φpt〉, where t is a template key, and φft and φpt are its correspond-
ing fmLTL and pmLTL formulas, respectively. This component establishes
the set of formulas that must be checked by our framework.

• oracle takes a trace and a verification tuple 〈t, φft, φpt〉, and computes the
truth value of t on the trace, in terms of RTGIL semantics. For example, for
template key [in, null, always] and the trace of Fig. 3, the expected value is
false, because when M is active in interval [0..2], res does not hold on the
entire interval.

• semantics evaluator receives a trace, a verification tuple 〈t, φft, φpt〉, and
an expected value e (provided by oracle), and checks whether φft and φpt

evaluate to e on the trace. In other words, it checks if, in the context of
the particular trace, the generated formulas conform to the template key
semantics.

• equivalence checker receives a verification tuple 〈t, φft, φpt〉, and checks
whether φft and φpt are equivalent formulas, thus ensuring consistency
between different formalizations of the same template key.

5.1 Trace Generation

We support two approaches for trace generation: the first targets interesting
relationships between mode, condition, response, and duration (for metric tim-
ing), while the second uses a random approach. Our framework is designed in a
highly modular way, so additional strategies can easily be incorporated.

The first approach uses boundary value analysis and equivalence class strate-
gies similar to [22], with the difference that we generate traces automatically as
opposed to manually, and we additionally deal with durations for metric timing.
We base trace generation on specifying numerical constraints on endpoints for
mode, condition, and response. We then use constraint logic programming6 to
compute all solutions satisfying the constraints. These solutions define concrete
traces used by our framework.

A trace spans between time points 0 and Max. We first select a point x
where a condition trigger is imposed, with 0 ≤ x ≤ Max. We optionally add
another trigger point a fixed distance away. Condition intervals are currently of
length 1 (for example, [5..6]). We then generate a mode interval [x1..x2] where
0 ≤ x1 ≤ x2 ≤ Max around the first trigger point according to boundary value
and equivalence class testing strategies. In particular, we generate constraints on

6 We use clp(fd) in SWI-Prolog: https://www.swi-prolog.org/.

https://www.swi-prolog.org/

Generation of Formal Requirements from Structured Natural Language 29

x1 and x2 where x1 = x, or x1 +1 = x (boundary cases), or x is the midpoint of
x1 and x2 (to represent the equivalence class of interior points between x1 and
x2), or x2 = x (another boundary case).

We also generate traces with a second scope interval [x3..x4] (where x3 >
x2 + 1) based on a selected duration n. There are several cases for time point
x + n: it could lie between x1 and x2, be x2, be between x2 and x3, be x3,
be between x3 and x4, be x4, or be greater than x4. Next, we explore response
intervals that implement each of the Allen interval relationships [1] to each mode
interval, merging pairs of response intervals that are not separated. This process
generates, for example: 1908 traces with Max = 6 and duration= 2; 12562 traces
with Max = 9 and duration = 4 (the example of Fig. 3 is one of those); and 32717
traces with Max = 12 and duration = 4.

Random trace generation constructs a random number, between 0 and 3, of
random, disjoint, non-consecutive intervals between 0 and Max, for each of mode,
condition, and response. It also generates a random duration for metric timings.
We used thus produced 60000 different random traces in the range [0..12].

5.2 Test Oracles

oracle interprets the RTGIL semantics of a template key on a trace generated
as above and produces an expected value of true or false. It performs this in a
compositional fashion, which reflects the way in which the corresponding RTGIL
semantics is defined. More specifically, fields scope and condition determine the
intervals within a trace where the template is relevant, and fields timing and
response determine the corresponding true or false value, as follows.

The first step consists of establishing the scope of the requirement as a set
of intervals where the requirement must be evaluated. This is performed based
on the trace and the type of field scope. Take, for example, the trace illustrated
in Fig. 3, where M holds in intervals {[0..2], [6..9]}. If the scope field is after or
in, then the scope of the requirement is {[3..9]} or {[0..2], [6..9]}, respectively.

If the condition field is regular, then the intervals where the requirement
must be evaluated get modified accordingly, based on the trigger point for the
condition. The trigger point is computed as the first point where a scope interval
intersects some condition interval. This could be the left endpoint of the scope
interval, some other point within the interval, or no point, if the condition never
holds within that interval. For example, in Fig. 3 where cond holds in the interval
{[2..3]}, if the scope is {[0..2], [6..9]}, the condition triggers are time point 2
for [0..2], and none for [6..9]. As a consequence, the requirement must only be
evaluated in interval [2..2]; this is established by truncating interval [0..2] to start
at the condition trigger 2, resulting in interval [2..2].

Timing and response fields determine the true or false value produced
by the oracle through appropriate interval operations for each of the timing
operators. Note that the timing constraints are applied to each interval in the
scope, and the results are combined to establish the returned value. At a high
level, our approach is based on interval operations, which we have implemented
in a generic interval logic class. We discuss a few examples here to provide the
intuition behind this step. For the trace illustrated in Fig. 3 and for a template

30 D. Giannakopoulou et al.

key with scope field in, requirements must be evaluated in intervals {[0..2], [6..9]}.
Let us focus on interval [0..2], where similar steps are applied to the second
interval [6..9].

First, consider the case where the condition is null, i.e., the requirement must
hold unconditionally. For timing always, our algorithm checks whether there
exists some interval in the set of response intervals that includes interval [0..2],
resulting in false (since res holds in intervals {[2..2], [7..9]}). For eventually,
it checks whether there exists some interval in the set of response intervals that
is not disjoint with interval [0..2], resulting in true. For timing field within and
duration 1, we truncate [0..2] to interval [0..1] that has the specified duration,
and within which we expect the response to occur. We then check whether there
exists some interval in the set of response intervals that is not disjoint with the
truncated interval [0..1], resulting in false.

If the condition field is regular, then we need to take the condition trigger
into consideration. If there exists no condition trigger in the scope interval (e.g.,
[6..9]), then the result is vacuously true. For interval [0..2], the trigger is 2. As
mentioned, the scope interval is then truncated to start at the condition trigger,
meaning to [2..2], and timing operators are applied similarly as before, but this
time on interval [2..2]. For timing field always and eventually, our algorithm
returns true; within with duration 1 falls outside the range of the original scope
interval, and hence also returns true (i.e., the remaining interval in scope is too
short to cover duration).

Since requirements are expected to hold in all scope intervals, our oracle
computes the expected result as the conjunction of the results obtained for each
interval. For example, in the case of template key [in, null, always], the result
is false for scope interval [6..9], and false for [0..2], so the expected value is
false.7 Note that only scopes involve negating the body of the requirement,
which our oracle also supports.

5.3 Testing and Verification

Components semantics evaluator and equivalence checker use the
model checker nuXmv. Given a trace and a verification tuple 〈t, φft, φpt〉, seman-
tics evaluator encodes the trace in nuXmv and evaluates the truth value of
formulas φft and φpt on the trace. Our framework subsequently checks if the
truth values of φft and φpt agree with the expected value computed by oracle.

The code listing below is the nuXmv code generated for the trace of Fig. 3.
The intervals for mode, condition and response involved in a trace correspond
in nuXmv to definitions of propositions (see lines 7 through 22 in Listing 1.1).
Following the define clause are future-time and past-time formalizations of each
template key to be checked, represented as φ(arguments) in Listing 1.1. The
future-time formulas are evaluated at the beginning of time (t = 0) at line 24,
and the past-time formulas are evaluated at the end of time (t = 9) at line 26.

7 Had the scope interval [6..9] been [7..9] instead, the result would have been true for
that interval, but still false for the result.

Generation of Formal Requirements from Structured Natural Language 31

Listing 1.1. nuXmv Input for φ(·)
1 MODULE main

2 VAR t : 0 .. 10;

3 ASSIGN init(t):=0;

4 next(t):=(t >= 10)?10:t+1;

5 DEFINE

6 LAST := (t = 9);

7 MODE := case

8 t < 0 : FALSE;

9 t <= 2 : TRUE;

10 t < 6 : FALSE;

11 t <= 9 : TRUE;

12 TRUE : FALSE; esac;

13 COND := case

14 t < 2 : FALSE;

15 t <= 3 : TRUE;

16 TRUE : FALSE; esac;

17 RES := case

18 t < 2 : FALSE;

19 t <= 2 : TRUE;

20 t < 7 : FALSE;

21 t <= 9 : TRUE;

22 TRUE : FALSE; esac;

23 LTLSPEC NAME F0_ft_key :=

24 G((t=0)->φft(LAST ,MODE ,COND ,RES));

25 LTLSPEC NAME F1_pt_key :=

26 G((t=9)->φpt(MODE ,COND ,RES));

Given a verification tuple 〈t, φft, φpt〉, equivalence checker uses nuXmv
to check (G (LAST ⇒ φpt)) ⇔ φft over an unconstrained model of specified
trace length (for example, length 10 in Listing 1.2. Formulas φft and φpt are
instantiated with the unconstrained nuXmv Boolean variables mode, cond, and
response; moreover, a specific duration (say, 3) is chosen for metric timings.

Listing 1.2. Equivalence checking
1 MODULE main
2 VAR t : 0 .. 10;
3 mode , cond , res : boolean;
4 ASSIGN init(t):=0;

5 next(t):=(t >= 10)?10:t+1;
6 DEFINE LAST := (t = 9);
7 LTLSPEC NAME F0_key :=
8 G(LAST -> φpt(mode ,cond ,res))
9 <-> φft(LAST ,mode ,cond ,res);

Despite our high expertise with formal logics, our verification framework was
central for detecting errors in our produced formalizations. The compositional
nature of our algorithms simplifies formalization repairs: changes target partic-
ular fields and automatically affect all templates that include these fields. In
the following, we describe a very subtle problem detected by our framework,
concerning the formalization for conditions with within timing, for which the
baseform formula was originally:

(((not res) and (not left)) since exclusive required ((not res) and
trigger)) implies (once timed[<n] trigger)

In other words, if within the target scope interval, no res occurs since and
including trigger, trigger must occur less than n time points in the past,
otherwise within is violated. The following discrepancy is reported by our veri-
fication framework for the pmLTL formula over a trace interval [0..12]:
Mode: {[0..1][5..10]}; Condition: {[1..2], [4..5]}; Duration: 4; Response: {[0..0], [6..10]}
Discrepancy null, regular, within: expected: false; nuXmv: true.

Scope null signifies that the requirement is evaluated in the entire trace inter-
val. The condition is triggered at points 1 and 4. The trigger at point 1 requires
res to occur within 4 time points, i.e., by, or at, time point 5. Despite the fact
that the response does not occur in that interval, the formula evaluates to true.
The reason is that the above formula states that if res does not hold since trig-
ger, then trigger must occur in less than 4 time units. Unfortunately, since
trigger also holds at time point 4, it satisfies the formula. Indeed, it is not pos-
sible to identify which trigger the formula refers to in order to avoid this prob-
lem. To address it, we used the timed equality operator previous timed[=n].
The formula of Table 2 removes all discrepancies associated with this error.

32 D. Giannakopoulou et al.

6 Lockheed Martin Cyber Physical Systems Challenge

We applied fret to the publicly-available Lockheed Martin Cyber Physical
Systems (LMCPS) challenge [9]. The requirements, given in natural language,
were formulated in fretish. The Simulink models, included with the challenge,
were verified against the formulas generated by fret. The case study aimed
to assess the expressiveness of fretish, the quality of produced formalizations,
and the capability of fret to drive analysis tools. Table 3 provides an overview
of the detailed study [20]: we found that most requirements could be captured
in fretish and fret successfully produced formalizations for analysis tools.

We also studied the conciseness of formulas generated by fret compared to
equivalent8 formulas produced by hand starting from the original natural lan-
guage requirements. We observed that, for elaborate semantic templates, writing
formulas was hard and error-prone; for simple semantic templates, hand-written
formulas could be significantly more concise. Motivated by these findings, we
implemented a rewriting engine that applies Boolean algebra and temporal logic
simplifications to reduce the complexity and size of produced formulas.

Table 3. LMCPS summary. NR: #requirements; NF : #requirements expressed in
fretish; NA: #requirements for which fret produced verification code.

Component NR NF NA

Triplex Signal Monitor (TSM) 6 6 6

Finite State Machine (FSM) 13 13 13

Tustin Integrator (TUI) 4 3 3

Control Loop Regulators (REG) 10 10 10

Nonlinear Guidance (NLG) 7 7 7

Feedforward Neural Network (NN) 4 4 4

Control Allocator Effector Blender (EB) 5 3 3

6DoF Autopilot (AP) 14 13 13

System Safety Monitor (SWIM) 3 3 3

Euler Transformation (EUL) 8 7 7

We discuss three requirements of increasing complexity. These are part of the
“6DoF Autopilot” challenge, which concerns an aircraft autopilot (AP) system
featuring several modes and commands under various conditions. The challenge
includes components Autopilot , and the RollAP unit of the AP. In [AP-001]
(Table 4), signal ap engaged indicates whether the AP is active (engaged) or not;
roll act cmd denotes the numeric output signal to the aircraft control surfaces
for roll. The last row of Table 4 illustrates the significantly more concise formula
produced by the rewriting engine as compared to the original formula above it.

8 Equivalence of formulas was checked with Kind2. [5].

Generation of Formal Requirements from Structured Natural Language 33

Table 4. [AP-001]: natural language, fretish, pmLTL, simplified pmLTL

Requirement [AP-003b] (Table 5, Fig. 1) describes the conditions that must
be satisfied in the roll hold mode of operation and belongs to the [in, null,
immediately] template key. Here, Fin roll hold, Lin roll hold are as described in
Table 1 for M = roll hold. The immediately timing was used to specify that the
response must be satisfied at the time of roll hold mode engagement. For this
template key, the complicated pmLTL formula is equivalent to the formula in the
last row of the table. We could not devise rewriting rules to achieve this result,
so we added a special case in the formula generation algorithms. Finally, [AP-
004a] (Table 6) talks about conditions that must be satisfied when commands

Table 5. [AP-003b]: natural language, fretish, fmLTL, pmLTL, equivalent pmLTL

Table 6. [AP-004a]: natural language, fretish, pmLTL

34 D. Giannakopoulou et al.

are sent in the roll hold mode. The displayed pmLTL formula using operator SI
is over 3x shorter than the corresponding formula using operator S.

7 Conclusions

We presented a compositional approach for generating and verifying formaliza-
tions of structured natural language requirements. Such modularity is key for
maintainability and extensibility. We have also developed an automated verifi-
cation framework for the formulas that we generate. Despite our high degree of
expertise in temporal logics, automated verification has been key for detecting
subtle errors in our algorithms. Our approach may produce more complex for-
mulas than could be custom-written for individual template keys. We implement
several formula simplification steps, which we will further improve in the future;
in particular, we will focus on templates that occur most often in practice.

We plan to extend fretish with responses that involve ordering of actions,
and conditions that persist for some time interval. Moreover, we intend to sup-
port customization of fretish to fit domain-specific styles and towards including
other requirement notations such as tables or finite-state machines. Finally, we
are exploring natural-language processing in order to fit existing requirements
within the templates supported by fret. We are also extending fret towards
providing user-support in correcting requirements.

Acknowledgements. We gratefully acknowledge the NASA ARMD System-Wide
Safety Project for funding this work.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26(11), 832–
843 (1983)

2. Badger, J., Throop, D., Claunch, C.: VARED: verification and analysis of require-
ments and early designs. In: RE 2014, pp. 325–326 (2014)

3. Bauer, A., Leucker, M.: The theory and practice of SALT. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
13–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5 3

4. Bloem, R., Cavada, R., Pill, I., Roveri, M., Tchaltsev, A.: RAT: a tool for the
formal analysis of requirements. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 263–267. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73368-3 30

5. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 29

6. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User guidance for creating precise and
accessible property specifications. In: Proceedings of SIGSOFT 2006/FSE 2014.
ACM (2006)

7. Crapo, A., Moitra, A., McMillan, C., Russell, D.: Requirements capture and anal-
ysis in ASSERT(TM). In: RE 2017, pp. 283–291 (2017)

https://doi.org/10.1007/978-3-642-20398-5_3
https://doi.org/10.1007/978-3-540-73368-3_30
https://doi.org/10.1007/978-3-540-73368-3_30
https://doi.org/10.1007/978-3-319-41540-6_29

Generation of Formal Requirements from Structured Natural Language 35

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of ICSE 1999, pp. 411–420. ACM (1999)

9. Elliott, C.: An example set of cyber-physical V&V challenges for S5. Lockheed
Martin Skunk Works. In: Proceedings of S5 2016. AFRL (2016). http://mys5.org/
Proceedings/2016/Day 2/2016-S5-Day2 0945 Elliott.pdf

10. Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis,
J.A.: SpeAR v2.0: formalized past LTL specification and analysis of requirements.
In: NfM 2017, pp. 420–426 (2017)

11. Gacek, A., Katis, A., Whalen, M.W., Backes, J., Cofer, D.: Towards realizability
checking of contracts using theories. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 173–187. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17524-9 13

12. Gallegos, I., Ochoa, O., Gates, A., Roach, S., Salamah, S., Vela, C.: A property
specification tool for generating formal specifications: Prospec 2.0. In: SEKE 2008,
pp. 273–278 (2008)

13. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSE-
NAL: automatic requirements specification extraction from natural language. In:
Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 41–46.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0 4

14. Jeannet, B., Gaucher, F.: Debugging embedded systems requirements with STIM-
ULUS: an automotive case-study. In: ERTS 2016 (2016)

15. Konrad, S., Cheng, B.H.C.: Facilitating the construction of specification pattern-
based properties. In: Proceedings of RE 2005, pp. 329–338. IEEE (2005)

16. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proceedings of
ICSE 2005, pp. 372–381. ACM (2005)

17. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int.
J. Softw. Tools Technol. Transf. 4(2), 224–233 (2003)

18. Lúcio, L., Iqbal, T.: Formalizing EARS - first impressions. In: 1st International
Workshop on Easy Approach to Requirements Syntax (EARS), pp. 11–13 (2018)

19. Mavin, A.: Listen, then use EARS. IEEE Softw. 29(2), 17–18 (2012)
20. Mavridou, A., Bourbouh, H., Garoche, P.L., Hejase, M.: Evaluation of the FRET

and CoCoSim tools on the ten Lockheed Martin cyber-physical challenge problems.
Technical report, TM-2019-220374, NASA (2019)

21. Moser, L.E., Melliar-Smith, P.M., Ramakrishna, Y.S., Kutty, G., Dillon, L.K.: The
real-time graphical interval logic toolset. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102, pp. 446–449. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-61474-5 99

22. Salamah, S., Gates, A., Roach, S., Mondragon, O.: Verifying pattern-generated
LTL formulas: a case study. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,
pp. 200–220. Springer, Heidelberg (2005). https://doi.org/10.1007/11537328 17

http://mys5.org/Proceedings/2016/Day_2/2016-S5-Day2_0945_Elliott.pdf
http://mys5.org/Proceedings/2016/Day_2/2016-S5-Day2_0945_Elliott.pdf
https://doi.org/10.1007/978-3-319-17524-9_13
https://doi.org/10.1007/978-3-319-17524-9_13
https://doi.org/10.1007/978-3-319-40648-0_4
https://doi.org/10.1007/3-540-61474-5_99
https://doi.org/10.1007/3-540-61474-5_99
https://doi.org/10.1007/11537328_17

Using Eye Tracking Data to Improve
Requirements Specification Use

Maike Ahrens(B) and Kurt Schneider

Software Engineering Group, Leibniz Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany

{maike.ahrens,kurt.schneider}@inf.uni-hannover.de

Abstract. [Context and motivation] Software requirements specifi-
cations are the main point of reference in traditional software projects.
Especially in large projects, these documents get read by multiple people,
multiple times. [Question/problem] Several guidelines and templates
already exist to support writing a good specification. However, not much
research has been done in investigating how to support the use of spec-
ifications and help readers to find relevant information and navigate in
the document more efficiently. [Principal ideas/results] We used eye
tracking data obtained from observing readers when using specifications
to create three different attention transfer features to support them in
this process. In a student experiment, we evaluated if these attention
visualizations positively affect the roles software architect, UI-designer
and tester when reading a specification for the first time. The results
show that the attention visualizations did not decrease navigation effort,
but helped to draw the readers’ attention towards highlighted parts and
decreased the average time spent on pages. [Contribution] We explored
and evaluated the approach of visualizing other readers’ attention focus
to help support new readers. Our results include interesting findings
on what works well, what does not and what could be enhanced. We
present improvement suggestions and ideas on where to focus follow-up
research on.

Keywords: Attention transfer · Software requirements specification ·
Requirements document · Eye tracking · Visualization · Empirical
study

1 Introduction

Specifications are the most important documents to ensure effective transfer of
requirements and knowledge to developers and other project participants in tra-
ditional, non-agile software projects [8]. After eliciting, interpreting and possibly
negotiating requirements, they are documented in a specification. These docu-
ments are read by a variety of roles: customers, software architects, UI-designers,
testers, etc. They read, review, and use the specification throughout the project
for several purposes [18]. Due to the variety of readers, specifications are mostly
c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 36–51, 2020.
https://doi.org/10.1007/978-3-030-44429-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_3

Using Eye Tracking Data to Improve Requirements Specification Use 37

written in natural language to ensure common understandability. A good struc-
ture and writing style is essential for an efficient use. Several guidelines and
heuristics already exist to support writing specifications. Templates provide use-
ful structures and serve as a checklist to cover all important aspects. However,
not enough research has yet been done in investigating how specifications are
actually used and how this process can be improved.

We apply the approach of attention transfer to reading specifications to coun-
teract this lack of focus on the process of using specifications and how to provide
support for it. In a previous study we observed by eye tracking how readers use
specifications and where they primarily focus on depending on their role in the
project [3]. Now we use these data to generate helpful visualizations to sup-
port others when getting familiar with the same specification and help them to
find relevant information more efficiently. In this paper, we report on an exper-
iment with 29 student participants that we conducted to investigate the effect
of three different attention visualization features in requirements specifications:
(1) quick access buttons to quickly navigate to important sections, (2) heatmap
bars to subtly visualize reading intensity next to paragraphs and (3) role icons
to indicate relevance differences between roles.

All these visualizations were automatically generated based on the previously
recorded eye tracking data, i.e., in this approach we use eye tracking opera-
tionally and not just for analysis. We measured how these features influenced
the reading process of different readers with regard to their role: software archi-
tect, UI-designer and tester.

Main research question: Do visualizations of other readers’ attention help
developers to find relevant information for their task in requirements docu-
ments faster and navigate more efficiently?

The results show:

– The quick access buttons did not decrease the time spent on scrolling, but
were, nevertheless, perceived as valuable by the participants.

– The heatmap bars decreased the average time spent per page and seemed to
provide a good indicator of what is important on a fine-grained level.

– The role icons drew the readers’ attention more towards sections highlighted
by the buttons for their role and decreased attention on sections that were
indicated as less relevant by the icons.

This paper is structured as follows: Sect. 2 gives an overview of related work.
Section 3 describes our approach of creating attention visualizations on require-
ments specifications. The design of our conducted experiment is covered in
Sect. 4, followed by the analysis and results in Sect. 5. In Sect. 6 the threats
to validity that apply to our experiment are presented. Finally, Sect. 7 discusses
our results and presents suggestions for future work and Sect. 8 concludes this
paper.

38 M. Ahrens and K. Schneider

2 Related Work

Software requirements specifications are read with different purposes, either to
gain knowledge, detect defects, or to implement a design [18]. Several reading
techniques already exist to support the reader in finding defects, such as ad-hoc
reading, checklist-based reading, defect-based reading, perspective-based read-
ing, or usage-based reading [18]. Guidelines and templates (e.g., Volere [13])
support writing and structuring specifications. However, only few authors have
looked at the general reading and use of specifications. Gross et al. [10] conducted
three explorative studies to investigate the information needs of different roles
when reading a specification based on the TORE framework [1] and introduced
the vision of view-based requirements specifications. Ahrens et al. [3] partially
replicated their study and used eye tracking to observe readers with different
roles when reading a specification created with a slightly adapted version of the
Volere template [13]. Gotel and Marchese [9] suggested using visual representa-
tions of specifications, e.g., with word clouds, for a preliminary quality check.

In this paper, we build on the findings where different readers focus on in spec-
ifications, and evaluate the approach to visualize their attention focus recorded
by eye tracking in order to support new readers to use requirements specifica-
tions more efficiently and effectively. Hill and Hollan [11] introduced the terms
edit wear and read wear to describe the history of modifying or looking at a doc-
ument. They suggested to visualize this information with attribute-mapped scroll
bars that show most edited or read areas by horizontal marks on the scroll bar.
Based on that, DeLine et al. [7] developed the idea of wear-based filtering, i.e.,
filtering out parts that were less interacted with. They applied this approach to
UML diagrams by highlighting class names with a heatmap, as well as to code by
hiding less frequently accessed classes based on interaction history. Similarly, the
Eclipse Plugin Mylyn [12] hides infrequently accessed classes dependent on the
user’s task based on a task context model. In addition to these approaches that
make use of interaction history, some also use eye tracking to record and guide
developer’s attention. Eye tracking data provides richer and more fine-grained
information about what people focus on than interaction contexts [5]. Hence, it
can track attention on a more detailed level. However, so far these applications
are limited to software maintenance [2], programming [6], code comprehension
[15] and localization of bugs [16]. We explore the benefit of this approach for
reading and using specifications.

3 Attention Visualizations on Requirements
Specifications

Eye tracking can provide detailed insight about where people focus their atten-
tion on when working with a document or artifact [5]. Our approach is to use
this information to generate helpful visualizations to guide readers on where to
look at first, thereby support them to get familiar with the document and give
them an indicator on what is most important. At the same time, this visual-
ization of others’ attention focus can also indicate what information has been

Using Eye Tracking Data to Improve Requirements Specification Use 39

overlooked so far and thus identify neglected requirements. Using eye tracking
data of reading and using requirements specifications, we developed the follow-
ing three different attention visualization features that aim at supporting new
readers. Figure 1 shows a screenshot of each of them.

Quick Access Buttons: To ease navigation in the document and prevent time
loss on scrolling and searching in the document, we analyzed between which
distanced sections readers switch most often. These sections were provided as
quick access buttons next to the document, so that when the reader clicked on
the button with the respective section’s heading, they could reach the position
in the document directly without needing to scroll to it.

Heatmap Bars: We represented the reading intensity within sections using small
heatmap bars next to the text to visualize not only an entire section’s rele-
vance, but also highlight focused parts within a section. These were calculated
by counting the number of fixations in small, fixed-sized horizontal intervals and
then interpolating these numbers using cubic spline interpolation. Finally, we
used the interpolated values to calculate an RGB color from green (zero fixa-
tions) to yellow (50% of fixations) to red (maximum number of fixations within
an interval in the document) for each pixel to create the heatmap bars. To miti-
gate the effect of outliers with an extremely high number of fixations, we reduced
the maximum from 95 to 70 to get a more adequate distribution of red, yellow
and green areas.

Role Icons: By considering the reader’s role, we identified sections that signifi-
cantly differed in reading intensity between the roles. Those were marked with
attached role icons whose border was colored on a heatmap scale representing
the reading time on a scale from green (short) to yellow (medium) to red (long).

Using Eye Tracking Data of a Previous Experiment: In a prior eye
tracking experiment [3], we recorded the gaze data of ten subjects (8 computer
science students, 2 professional developers) while reading two requirements spec-
ifications: one on screen and one on paper. The participants in that experiment

Quick access buttons
(translated from German)

Heatmap
bars

Role icons (clockwise from top
left: UI-designer, Tester,

Software architect)

Fig. 1. Attention visualizations based on eye tracking (Color figure online)

40 M. Ahrens and K. Schneider

were assigned one of the following roles: software architect, UI designer, tester or
developer. They were given a role-specific task to work on while reading the spec-
ification with a time limit of 20 min per specification. The software architect had
to design a general architecture of the described software and draw a UML class
diagram for it. The tester had the task to create test cases for the application,
each specified with a setup, input and expected output. The UI-designer had to
design mockups for the user interface and the participants with the developer
role should work on all three tasks. For both the quick access buttons and the
heatmap bars, we used the data of all four roles. For the quick access buttons,
we focused on the data of the specification on paper because it gave the readers
the option to freely switch and sort pages in an arbitrary order. For the role
icons, we analyzed and represented the data of each role separately.

4 Experiment Design

Following the GQM paradigm [4], we started our experiment design by defining
our research goal and refining it to questions and metrics. To ensure that the
goal of our experiment is well-defined, we applied the goal template provided by
Wohlin et al. [17].

Research Goal:
Analyze the effect of attention data representations based on eye tracking
for the purpose of evaluation
with respect to the efficiency of reading and using requirements specifications
from the point of view of software architects, testers and UI designers
in the context of a controlled experiment with computer science students.

4.1 Research Questions and Metrics

After defining the research goal, we formed research questions and refined these
through metrics and hypotheses. Our three research questions are concerned
with testing the three attention representations. We wanted to find out whether
the features actually help the readers of requirements specifications or whether
they have no or even a negative effect on them. We consider reading efficiency
in terms of the two aspects navigating in the document and finding relevant
information in it.

RQ1: Does a selection of quick access buttons help developers to navigate faster
in specification documents?

RQ2: Does the visualization of reading intensities in the form of heatmap bars
next to requirement specification sections help developers to find relevant
information in the document faster?

RQ3: Do role dependent gaze time visualizations in the form of role icons
attached to requirements specification sections help developers identify rele-
vant sections for their particular task faster?

Using Eye Tracking Data to Improve Requirements Specification Use 41

Table 1 shows an overview of all metrics that we took into account for each
research question. The three metrics in the rightmost column were influenced by
all three attention transfer features and were therefore analyzed collectively.

Table 1. Overview of questions and applied metrics

Research

question

Metrics

RQ1 Quick

access buttons

Time spent on scrolling

Ease of finding

relevant information

for respective task

Perceived clarity

of specification

presentation

Perceived ease of

getting acquainted

with the document

Total number of page switches

Number of button uses

Avg. time spent on page after button use

Perceived value

Perceived detriment

Preference to have option to hide buttons

Preference to show all sections instead

RQ2 Heatmap

bars

Understandability of heatmap bars

Avg. dwell time per page longer than 3 s

Correlation of total dwell time on each page with

heatmap intensity

Perceived value

Perceived detriment

Preference to have an option to hide heatmap

RQ3 Role

Icons

Understandability of role icons

Dwell times on pages with role icons for each role

Perceived value

Perceived detriment

Preference to have an option to hide icons

4.2 Hypotheses

For each metric that compares quantitative data, we stated hypotheses up front.
They were used as a point of reference to compare results to.

H1: The availability of quick access buttons reduces the time spent on scrolling.
Readers can quickly and directly jump to often visited sections without need-
ing to scroll and search for them and are hence assumed to save scroll time.

H2: The availability of quick access buttons reduces the number of page switches.
The buttons allow farther jumps through the document without going over
each page in between.

H3: Readers spend more time on pages that are directly accessed with the quick
access buttons than on other pages. These are pages that were previously
frequently accessed and are therefore assumed to be highly relevant.

H4: The heatmap bars reduce the time spent on each page on average.
Being provided the reading intensity of others, readers are assumed to find
relevant parts and the information they are looking for more quickly.

42 M. Ahrens and K. Schneider

H5: Pages with a high heatmap intensity are visited longer than the same pages
shown without the heatmap visualization. Analogously, pages with a low
heatmap intensity are read less.

H6: Role Icons lead to an increase (respectively decrease) of reading time from
persons where the icon indicates a high (or low) relevance for their role.

4.3 Design

We conducted the study as a controlled experiment with between-group design
with two groups. The control group read the specification as a normal PDF file
without any attention transfer features. The treatment group read the same spec-
ification including all three features. All subjects were assigned one of the three
roles that were also addressed in the initial study from which the eye tracking
data were taken: software architect, tester and UI-designer [3]. Accordingly, they
were assigned the same tasks to either create class diagrams of the application’s
architecture, specify test cases or design mock ups of the user interface.

4.4 Material

As study material, we used an 18-page long specification that was created in
a four-month student software project. The template was a slightly adapted,
mainly simplified version of the Volere template by Robertson and Robertson
[13]. The software that is described in the specification is an application that is
supposed to provide multiple translations and synonyms for a given word based
on a number of online dictionaries.

We displayed the document in the browser using the PDF viewer script
PDF.js1 in order to provide a realistic environment to read the specification
with still being able to track metrics automatically in the background. Figure 2
shows the experiment environment for the treatment group. As described above,
the role icons were only displayed at sections where the reading intensity sig-
nificantly differed between the roles. So in this example the second section in
the screenshot has no icons attached because the reading intensities between
all three roles were too similar. The environment for the control group looked
exactly the same, except for the omitted quick access buttons on the top right
and the heatmap bars and icons next to the paragraphs. Both were shown a
timer with the remaining experiment time in the upper left corner of the web
page. Underneath, there was a button to end the experiment prematurely.

4.5 Collecting Data for Metrics

The web page that displayed the specification tracked all quantitative raw data
for our defined metrics automatically. This was done by creating a log in the
background that kept track of information about page switches, as well as time-
stamps of quick access button clicks, the time that the page was opened and the
1 https://github.com/mozilla/pdf.js (accessed 07/16/2019).

https://github.com/mozilla/pdf.js

Using Eye Tracking Data to Improve Requirements Specification Use 43

time when the session ended. As soon as the subject opened the specification,
a timer counted down to display the remaining time to read the specification.
Once the timer hit zero or the participant ended the experiment, the log file was
automatically retrieved.

Fig. 2. Screenshot of experiment environment with attention visualizations

4.6 Subjects’ Demography

Our sample consisted of 35 participants from which six data sets had to be
excluded due to technical difficulties or unsuitability for the experiment because
of a color vision deficiency or lack of knowledge of the German language. Since
it was crucial to be able to distinguish red and green in the attention visualiza-
tions and the used specification was in German, we did not include the data of
these subjects in our analysis. This left us with 29 subjects (23 male, 6 female).
Most students were undergraduate computer science or technical computer sci-
ence students and three were graduate electrical engineering and information
technology students. All students successfully completed a preliminary course
including theoretical knowledge about specifications, its contents and role in the
development process. All subjects had at least an average level of knowledge of
their task in the study as they stated in an initial questionnaire.

4.7 Setting and Procedure

The study was conducted as part of a course teaching software quality principles.
Students could voluntarily take part in the experiment and as incentive they
received a bonus point for the final exam of the course in return for participating
in the experiment. However, getting the bonus point was in no way connected

44 M. Ahrens and K. Schneider

to how they performed in the experiment and students were informed that they
could quit the experiment at any time without experiencing any disadvantage.

The participants were assigned as evenly as possible to the control and treat-
ment group, as well as the three roles. That is, for both groups we had five par-
ticipants per role except for the role UI-designer in the treatment group which
was only represented by four participants. This inequality was caused by the
necessary exclusion of data sets in the subsequent analysis process (see above).

Figure 3 shows the procedure of the experiment. Each session took about
40 min. For the treatment group, the task assignment additionally gave an expla-
nation of the three attention transfer features. To bias participants as little as
possible, it only stated that the visualizations are based on where others looked,
not that they had to be used or necessarily indicate relevance.

Fig. 3. Experiment process

5 Analysis and Results

Before analyzing and interpreting the results, we made sure that all completely
and successfully recorded data are valid by manually checking subjects’ deliv-
erables, comments and log files. During this process, the above mentioned six
participants were excluded from the analysis. The results of the analysis of the
data sets of the remaining 29 subjects are described in this section.

Table 2 shows an overview of the results of the quantitative metrics for the
control and treatment group. The rightmost column gives the U and p-values of
performing an unpaired nonparametric Mann-Whitney test to test the hypothe-
ses that we defined beforehand. We treated all Likert scales in our questionnaire
as interval data because we only labeled the lowest and highest option. Since the
options in between did not have a label, they were equidistant which allowed us
to compute the mean and use statistical tests suitable for interval scaled data.

We divide the presentation of results according to the three research ques-
tions. Regarding the three metrics “ease of finding relevant information for the
respective task”, “perceived clarity of the specification representation” and “per-
ceived ease of getting acquainted with the document”, we did not find any effect.

Using Eye Tracking Data to Improve Requirements Specification Use 45

RQ1 Quick Access Buttons: The quick access buttons were used by 12 of
14 participants of the treatment group for an average of 6.25 times (min =
1, max = 18). As shown in Table 2, the buttons did neither decrease the time
spent on scrolling (H1), nor the total amount of page switches made during the
30 min of the experiment (H2). Apart from those metrics, we analyzed how long
participants spent on pages they accessed over the quick access buttons. Since
these are paired values we used a Wilcoxon signed rank test to test whether
these pages are read longer than the pages accessed over normal page switches.
We only considered subjects that used the quick access buttons more than twice
to obtain representative values and no outliers. Pages accessed over the buttons
were read for an average of 44.41 s (SD = 29.17) and all the remaining pages
were read for an average of 23.65 s (SD = 10.74). In this case the Shapiro-Wilk
test indicated a normal distribution with p = .757 and p = .849 respectively.
Hence, we could perform a t-test resulting in t(7) = 2.25 and p = .030. With a
significance level of 5%, we could thus reject the null hypothesis and show that

Table 2. Metrics results: perceived value from 1 = helpful to 5 = not helpful, perceived
detriment from 1 = not annoying to 5 = annoying, preference to have option to hide
the respective feature from 1 = yes to 5 = no; dashes denote not applicable metrics.

Metrics Control group Treatment group Statistics

Mean SD Mean SD U p

Scrolling time (Sum of page visits <3 s) [s] 37.14 16.59 40.49 19.03 94 .690

Total number of page switches 67.67 17.5 82.86 43.04 79 .876

Avg. number of quick access button uses - - 5.36 4.99 - -

Perceived value of quick access buttons - - 1.93 1.21 - -

Perceived detriment of quick access buttons - - 1.64 1.01 - -

Preference to have an option to hide buttons - - 3.21 1.72 - -

Preference to show a button for every section - - 3.07 1.64 - -

Understandability of heatmap bars [1 =

easily understandable, 5 = difficult to

understand]

- - 1.46 0.52 - -

Avg. dwell time spent per page >3 s [s] 66.58 17.90 64.72 31.40 134 .109

Perceived value of heatmap bars - - 2.86 1.03 - -

Perceived detriment of heatmap bars - - 2.62 1.12 - -

Preference to have an option to hide heatmap - - 2.79 1.63 - -

Understandability of role icons [1 = easily

understandable, 5 = difficult to understand]

- - 1.79 0.98 - -

Perceived value of role icons - - 2.71 1.14 - -

Perceived detriment of role icons - - 1.93 1.14 - -

Preference to have an option to hide icons - - 3.14 1.75 - -

Ease of finding relevant information for

respective task [1 = easy, 10 = difficult]

4.60 2.85 4.86 1.75 95.5 .670

Perceived clarity of specification presentation

[1 = clear, 10 = unclear]

3.87 1.92 3.79 2.01 109.5 .588

Perceived ease of getting acquainted with the

document [1 = fast, 10 = slow]

3.93 2.02 4.21 2.72 103.5 .535

46 M. Ahrens and K. Schneider

pages accessed over the quick access buttons are read longer than pages accessed
over normal page switches (H3).

Although they did not decrease navigation effort, the participants still rated
the quick access buttons as rather helpful and hardly annoying on average. When
being asked if they wanted an option to be able to hide the buttons on demand
or have all sections available as buttons instead of only most accessed ones, the
responses were rather undecided. There were barely any ratings in the middle
and the answers were almost evenly split between yes and no. Moreover, it can
be noted that the treatment group spent more time on the last page that could
be switched to with a button. This page was further away from the pages that
readers tended to dwell on, i.e., the buttons helped to access it without the need
to scroll through many pages.

RQ2 Heatmap Bars: As stated in the questionnaire, the heatmap bars were
fairly easy to understand and their meaning was intuitively clear to the subjects.
The results (see Table 2) also show that they decreased the average time spent
on each page, even though not in a significant way (H4). This indicates that
participants could find the information that they were looking for on each page
faster than without the attention visualizations.

As an additional metric to evaluate the effect of the heatmap bars, we com-
pared the total dwell time on each page for both groups. The values are shown
in the bar chart in Fig. 4. Page 3 had a very high heatmap intensity and pages 5,
7, 8 and 14 had a medium heatmap intensity (i.e., some yellow areas), whereas
for all remaining pages the heatmap bars were mostly green indicating a low
intensity. Pages 3, 6, 7 and 14 were the pages that were accessible over the quick
access buttons. As you can see in the diagram, pages 3 and 14 were looked at
longer by the treatment group, while pages 5, 6, 7 and 8 were looked at longer
by the control group on average. However, none of these differences is signif-
icant. That is, the heatmap bars do not generally increase the time spent on
pages with many yellow areas, but they do increase the time spent on pages
with many red areas (H5). Moreover, the subjective assessments of the metrics
value and detriment of the heatmap bars were mostly somewhere in the middle
between “helpful” and “not helpful” and “annoying” and “not annoying”. Yet
none of the subjects rated them as “not helpful” or “annoying”.

RQ3 Role Icons: The role icons were rated as fairly easy to understand by
the subjects, i.e., their meaning was intuitively clear to them. To quantitatively
assess the effect of the role icons, we compared the average reading times of
pages with role icons with the sections’ relevance indicated by them. We took
the reading times for both treatment and control group into account to determine
whether the feature had an increasing or decreasing influence on the page’s dwell
time. To factor out the slightly differing total reading times of the specifications,
we normalized the reading times for each participant for this purpose. These are
shown in Fig. 5 and the relevance indicated by the icons on those pages is given
in Table 3. By comparing the dwell times on the pages with role icons for the

Using Eye Tracking Data to Improve Requirements Specification Use 47

Fig. 4. Summarized time spent on each page (pages with high or medium heatmap
intensity are marked with underlined bold page numbers)

two groups, you can see that they mostly had the intended effect to increase
awareness on highlighted sections for the respective role and decrease attention
on sections ranked as less relevant (H6). The only exceptions for this effect are
pages that were generally looked at very long (see pages 5 and 6 for the role
“software architect”) or very briefly already (see pages 14, 15 and 17). However,
these differences could not be proven significant given the small number of four
or five subjects per role.

The ratings of the perceived value of the icons were mostly in the middle
between “helpful” and not “helpful”. Regarding the perceived detriment they
were rated as hardly annoying on average. The option to be able to hide role
icons on demand was favored by about half the participants.

Fig. 5. Normalized average time spent on pages with role icons per role

48 M. Ahrens and K. Schneider

Table 3. Relevance indicated by role icons (low = green, medium = yellow, high =
red)

Page Software architect UI-designer Tester

4 Medium Low High

5 Medium Low High

6 Medium Low Low

14 Low Low Medium

15 Low Low Medium

17 Medium Low Low

6 Threats to Validity

We distinguish threats to validity according to Wohlin et al. [17]:
Conclusion validity was ensured by testing on a 5% significance level and

always making sure that required preconditions for statistical tests were given.
To gain a high level of internal validity, all subjects read the same specification
and got all introduction in written form to make sure they receive exactly the
same information. However, the number of page switches or the time spent on
each page might also be influenced by other unobserved, more individual factors.
We tried to counteract this threat by choosing a homogeneous group and having
multiple subjects for each role in the control and treatment group. Besides, we
only considered dwell times longer than three seconds to measure the effect of
the heatmap bars to exclude scrolling or mislead page switches.

One threat to construct validity might be that due to the design of our
experiment, we cannot always clearly tell by which attention transfer feature
an effect was caused since the treatment group was provided with all three of
them and the control group with none. E.g., page 3 and 14 were highlighted by
the quick access buttons and the heatmap bars. However, we assume that the
reading time increase on page 14 was caused by the quick access buttons since
to be affected by the heatmap bars, subjects had to already access that page in
the first place. Page 3 on the other hand was in the beginning of the document,
so readers usually came across that page anyway. We made this decision to
also observe how the combination of multiple attention transfer features affect
readers.

Regarding the external validity, it can be noted that our results are proba-
bly generalizable to other specification templates as well, as long as they contain
mostly natural language. However, since we only considered student participants
over a short period of time, the experiment should be replicated with people from
industry with measuring the effect for longer than 30 min to ensure generaliz-
ability.

Using Eye Tracking Data to Improve Requirements Specification Use 49

7 Discussion

The experiment that we conducted investigated the effect of three attention data
representations. The quick access buttons did not have the intended effect to
reduce time spent on navigation. Interestingly, they were still perceived as help-
ful by most subjects. Particularly, they increased attention to otherwise rather
neglected specification parts further back in the document. That is, such a selec-
tion of quick access buttons can help to draw attention to relevant parts on back
pages that otherwise might get overlooked. Since there was no clear preference
on whether all sections should be accessible over buttons and if the participants
want an option to hide the buttons on demand, we recommend providing both
options to the specification readers, let them decide and investigate the usage
in further research. Another option could also be to show all options and then
highlight the most accessed ones.

The heatmap bars decreased the average time spent per page which indicates
that they helped to directly focus on more relevant parts and spend less time
reading rather irrelevant information. They also increased the dwell time on the
page with many red highlighted areas, but not on the ones with many yellow
areas consisting mostly of the pages with the use case diagram and the use case
descriptions. This could mean that these artifacts are less suitable for this kind
of attention visualization because the use case fields already give a suggestion of
what is most important and the readers can easily filter themselves.

Regarding the role icons, it can be stated that for pages with an average
reading time they had the intended effect of drawing the reader’s attention to
parts highlighted by the icon for their role or otherwise decrease the reading time
if not highlighted for their role. However, some participants remarked that the
icons’ value was fairly limited due to the small number of them in the document.
One subject also said that they “overloaded” the document. An alternative could
be to show role-dependent heatmap bars instead of the icons. Generally, the
results for this feature were neither clear-cut positive nor negative and their
effect and perception need further investigation over longer periods of time.

For both the heatmap bars and the role icons it must be noted that they
are supposed to serve as an entry point to ease getting acquainted with the
specification, especially under time pressure. Hence, it is important that they
are understood as such. It might make sense to offer an option to switch the
features off in either case because once the reader is completely familiar with the
document, the visualizations might be more distracting than helpful. However,
this hypothesis still requires validation. Furthermore, the visualizations are based
on where others looked at. Besides showing what is most relevant and where to
start reading, this could also serve as an indicator to look at the parts that were
not focused on yet to detect possibly neglected requirements.

In addition, further ways and visualizations of attention transfer should be
explored to see if there are other options to guide the requirements document
reading process by making use of others’ attention data. One factor that should
also be looked at is the effect on the reader’s deliverables. It could be interesting
to see whether their focus on artifacts change depending on what is highlighted

50 M. Ahrens and K. Schneider

and whether they save time overall. It might also be beneficial to use eye track-
ing to observe what the readers focus on with the attention representations in
more detail. Moreover, other usage scenarios are possible as well, such as using
attention visualizations to see what reviewers focused on to improve inspec-
tion. Since all these features can be generated automatically in a “By-Product
Approach” [14], they could support the reader at a very low cost. With an option
to switch them off on demand, users could evaluate for themselves whether they
are of benefit for them and let them switched off otherwise.

8 Conclusion

In this work we explored the approach to transfer attention on requirements
specifications and tested three attention representation features that were cre-
ated based on eye tracking data: quick access buttons to most accessed sections,
heatmap bars to visualize reading intensity and role icons to indicate a section’s
differing relevance for the roles software architect, UI-designer and tester. We
evaluated their effect in an experiment with 29 computer science students reading
a specification. Our results indicate different benefits from the three mechanisms
investigated.

So far, eye tracking is yet too expensive and out of reach for everyday use.
However, decreasing prices and sizes of eye tracking devices may soon make
attention transfer features a valid choice for making requirements engineering
work more productive.

References

1. Adam, S., Riegel, N., Doerr, J.: TORE - a framework for systematic requirements
development in information systems. Requir. Eng. Mag. 4 (2014)

2. Ahrens, M., Schneider, K., Busch, M.: Attention in software maintenance: an eye
tracking study. In: Proceedings of the 6th International Workshop on Eye Move-
ments in Programming, pp. 2–9. IEEE (2019)

3. Ahrens, M., Schneider, K., Kiesling, S.: How do we read specifications? Experiences
from an eye tracking study. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS,
vol. 9619, pp. 301–317. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
30282-9 21

4. Basili, V.R., Caldiera, G., Rombach, D.H.: The Goal Question Metric Approach,
vol. I. Wiley, Hoboken (1994)

5. Bednarik, R.: Expertise-dependent visual attention strategies develop over time
during debugging with multiple code representations. Int. J. Hum Comput Stud.
70, 143–155 (2012)

6. Deitelhoff, F., Harrer, A.: Towards a dynamic help system: support of learners
during programming tasks based upon historical eye-tracking data. In: 2018 IEEE
18th International Conference on Advanced Learning Technologies (ICALT), pp.
77–78. IEEE (2018)

7. DeLine, R., Khella, A., Czerwinski, M., Robertson, G.: Towards understanding pro-
grams through wear-based filtering. In: Proceedings of the 2005 ACM symposium
on Software visualization - SoftVis2005, pp. 183–192. ACM, New York (2005)

https://doi.org/10.1007/978-3-319-30282-9_21
https://doi.org/10.1007/978-3-319-30282-9_21

Using Eye Tracking Data to Improve Requirements Specification Use 51

8. Fricker, S.: Requirements value chains: stakeholder management and requirements
engineering in software ecosystems. In: Wieringa, R., Persson, A. (eds.) REFSQ
2010. LNCS, vol. 6182, pp. 60–66. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14192-8 7

9. Gotel, O.C.Z., Marchese, F.T.: Scouting requirements quality using visual rep-
resentations. In: 13th International Conference on Information Visualization, pp.
519–526. IEEE (2009)

10. Gross, A., Doerr, J.: What you need is what you get!: the vision of view-based
requirements specifications. In: 2012 20th IEEE International Requirements Engi-
neering Conference (RE), pp. 171–180. IEEE (2012)

11. Hill, W.C., Hollan, J.D., Wroblewski, D., McCandless, T.: Edit wear and read
wear. In: Proceedings of the SIGCHI conference on Human factors in Computing
Systems, pp. 3–9. ACM (1992)

12. Kersten, M., Murphy, G.C.: Mylar: a degree-of-interest model for IDEs. In: Pro-
ceedings of the 4th International Conference on Aspect-Oriented Software Devel-
opment, pp. 159–168. ACM, New York (2005)

13. Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison-
Wesley Professional, Boston (2012)

14. Schneider, K.: Rationale as a by-product. In: Dutoit, A.H., McCall, R., Mistŕık,
I., Paech, B. (eds.) Rationale Management in Software Engineering, pp. 91–109.
Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-30998-7 4

15. Schulte, C., Heinemann, B., Vrzakova, H., Budde, L., Bednarik, R.: Eye-movement
modeling examples in source code comprehension: a classroom study. In: Proceed-
ings of the 18th Koli Calling International Conference on Computing Education
Research, pp. 1–8. ACM (2018)

16. Stein, R., Brennan, S.E.: Another person’s eye gaze as a cue in solving program-
ming problems. In: Proceedings of the 6th International Conference on Multimodal
Interfaces - ICMI 2004, pp. 9–15 (2004)

17. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

18. Zhu, Y.M.: Software Reading Techniques. Springer, Heidelberg (2016)

https://doi.org/10.1007/978-3-642-14192-8_7
https://doi.org/10.1007/978-3-642-14192-8_7
https://doi.org/10.1007/978-3-540-30998-7_4
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Requirements Documentation

Hearing the Voice of Software Practitioners
on Causes, Effects, and Practices to Deal

with Documentation Debt

Nicolli Rios1, Leonardo Mendes2, Cristina Cerdeiral2, Ana Patrícia F. Magalhães8,
Boris Perez3,4, Darío Correal3, Hernán Astudillo5, Carolyn Seaman6,
Clemente Izurieta7, Gleison Santos2, and Rodrigo Oliveira Spínola8(B)

1 Federal University of Bahia, Salvador, BA, Brazil
nicollirioss@gmail.com

2 Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
{leonardo.cabral,gleison.santos}@uniriotec.br,

cerdeiral@gmail.com
3 University of Los Andes, Bogota, Colombia

{br.perez41,dcorreal}@uniandes.edu.co
4 University Francisco de Paula Santander, Cúcuta, Colombia

5 Univ. Técnica Federico Santa María, Valparaíso, Chile
hernan@inf.utfsm.cl

6 University of Maryland Baltimore County, Baltimore, MD, USA
cseaman@umbc.edu

7 Montana State University, Bozeman, MT, USA
clemente.izurieta@montana.edu
8 Salvador University, Salvador, BA, Brazil

{ana.fontes,rodrigo.spinola}@unifacs.br

Abstract. [Context and Motivation] It is common for teams to take shortcuts
during software development that, in the future, will lead to maintainability issues
and affect productivity and development cost.Different types of technical debtmay
affect software projects, including those associated with software documentation.
Although there are many studies on technical debt, few focus on documenta-
tion debt in an industrial environment. [Question/Problem]We aimed to identify
how software practitioners perceive the occurrence of documentation debt in their
projects. We present a combined analysis of the results from two complemen-
tary studies: a survey (InsighTD) and an interview-based case study. [Principal
Ideas/Results] We provide a list of causes and effects of documentation debt,
along with practices that can be used to deal with it during software develop-
ment projects. [Contribution]We find that documentation debt is strongly related
to requirements issues. Moreover, we propose a theoretical framework, which
provides a comprehensive depiction of the documentation debt phenomenon.

Keywords: Documentation debt · Causes of documentation debt · Effects of
documentation debt · Technical debt · InsighTD

© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 55–70, 2020.
https://doi.org/10.1007/978-3-030-44429-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_4

56 N. Rios et al.

1 Introduction

The technical debt (TD)metaphor describes a daily challenge that software development
teams face in their projects: balancing the costs for properly performing short-term prod-
uct development activities with its long-term quality [1]. When the TD items incurred
in a software project are identified, development teams will be able to understand their
possible benefits or drawbacks to the project [3].

Different types of TD may affect software projects [4]. Some examples include
design, architecture, testing, and documentation debt (DD). The latter is perceived as one
of the fourmost important types in the embedded systems industry [5]. According to Sea-
man and Guo [7], DD refers to problems encountered in software project documentation
looking for missing, inconsistent, outdated, or incomplete documentation.

Despite the growing number of studies in the area [8, 9], and particularly in the
software industry [18, 19], little is still known about the impacts of TD [4]. Analyzing
the TD phenomenon from the perspective of its causes, effects, and control practices
deserves investigation because it is expected that TD prevention could sometimes be
cheaper than TD repayment. Besides, when TD is prevented as much as possible, it also
helps other TD management activities, and setting up TD prevention practices helps
especially in catching inexperienced developers’ not-so-good solutions [11]. Knowing
the causes for TD can support development teams in defining actions that could be taken
to prevent the occurrence of debt items. From the effects perspective, implications of TD
can affect projects in differentways.Having this information could aid in prioritization of
TD items to pay off, by supporting a more precise impact analysis and also the definition
of corrective actions to minimize possible negative consequences for the project [12].

This paper contributes to this discussion from the perspective of DD. Defining,
documenting andmaintaining requirements is an important step in software engineering,
and these critical activities form an integral part of producing high quality software.
Thus, understanding DD will lead to decidedly better software. Although the lack of
direct perceived benefits of a document to its producer is considered a base reason for
many issues in software documentation [20, 21], it is also necessary to investigate other
factors that can influence software documentation.

We investigate the causes, effects, and practices that can be employed to deal (prevent
or pay the debt off) with this type of debt in the software industry. The research strategy
adopted is based on the triangulation of the results of two complementary studies. The
first study, InsighTD, is a globally distributed family of industrial surveys onTD [12]. For
this article, we considered the data sets from Brazil, Chile, Colombia, and the United
States. Although significant analysis has already been conducted over the available
InsighTD data [12–14, 17], much still remains to be studied. The second study is an
interview-based case study with practitioners from a large organization.

We provide a list of the top 10 DD causes (deadline being the most cited) and
effects (low maintainability being the most cited) from InsighTD data. From the case
study we identified 15 practices that can be used to deal with DD during a software
development project, which corroborate with InsightTD participants’ opinion that DD
can be prevented. The case study provided six additional causes and one effect associated
with DD. Results from both studies indicated a strong relationship between this type of
debt and requirements issues in software projects. Moreover, based on the evidence we

Hearing the Voice of Software Practitioners 57

gathered from the data triangulation, we present a theoretical framework that depicts the
DD phenomenon.

This paper is organized as follows: Sect. 2 presents a brief introduction to TD and
the InsighTD project history, Sect. 3 presents the research strategy adopted, Sects. 4 and
5 describe and present our results, Sect. 6 discusses our main findings, Sect. 7 presents
threats to the validity of the study, and finally, Sect. 8 presents our final considerations
and next steps.

2 Background

2.1 Technical Debt

TD contextualizes the problem of pending software development tasks (for example,
inexistent software documentation, tests not performed, non-adoption of good practices)
as a type of debt that brings a short-term benefit to the project (usually in terms of higher
productivity or shorter release times), but that may have to be paid later with interest in
the development process (for example, the evolution of a poorly designed class tends
to be more costly than if it was implemented considering good object-oriented design
principles) [1, 7].

Alves et al. [9] identified that TD can occur in several artifacts throughout the life
cycle of a software product. This paper focuses on the study of DD. The existing knowl-
edge in the technical literature about this type of debt is still scarce, restricting itself to
recognizing its existence and importance [4, 9]. In one of the few studies that specifically
considered this type of debt, Spínola et al. [2] identified that DD cannot be automati-
cally identified by current TD identification strategies based on the use of metrics. This
paper sheds some light on this discussion by analyzing the causes and effects of DD,
and practices that can be employed to prevent or address its existence.

2.2 The InsighTD Project

InsighTD is a globally distributed family of industrial surveys initiated in 2017. Planned
cooperatively among TD researchers from around the world, the project aims to organize
an open and generalizable set of empirical data on the state of practice and industry trends
in the TD area. This data includes the causes that lead to TD occurrence, the effects
of its existence, how these problems manifest themselves in the software development
process, and how software development teams react when they are aware of the presence
of debt items in their projects. Its design establishes the foundations for the survey to be
continuously replicated in different countries. Up to date, researchers from 11 countries
(Brazil, Chile, Colombia,CostaRica, Finland, India, Italy,Norway, SaudiArabia, Serbia,
and the United States) have joined the project. At the moment, we have concluded data
collections of the InsighTD replications inBrazil, Chile,Colombia, and theUnitedStates.

Rios et al. [12] discussed the basic survey design and the preliminary results of the
first round of InsighTD. In that paper, the authors focused on the discussion on the top 10
causes and effects of TD, regardless the type of debt. Rios et al. [13] complemented the
discussion of the previous work, focusing specifically on the causes and effects of TD in

58 N. Rios et al.

agile software projects. Rios et al. [14] proposed the use of cross-company probabilistic
cause-effect diagrams to represent information about the TD causes and effects being
analyzed. More Recently, Freire et al. [17] investigated preventive actions that can be
used to curb the occurrence of TD and the impediments that hamper the use of those
actions.

In this work, we go further into the analysis of InsighTD data by considering the
point of view of the respondents about DD.

3 Research Strategy

3.1 Research Questions

We defined the following main Research Question (RQ) “How do software development
teams perceive the occurrence of DD in their projects?” The goal of this RQ is to gather
information on how practitioners face DD in their daily activities. To investigate it, we
broke down this question into the following sub-questions:

RQ1:What are themain causes that lead development teams to incurDD in their projects?
This question investigates the possible causes that contribute to the insertion of DD in
software projects.
RQ2: What effects does DD have on software projects? This question is aimed at
identifying the main effects felt by development teams due to the presence of DD.
RQ3: How often is the occurrence of DD items seen as preventable in software projects?
Although DD can be incurred by choice –for example, to reduce costs or speed a release,
it still has decidedly negative consequences on a project. In this question we explore
our pre-conception that DD can be prevented, given a choice to do so, regardless of
whether theDD item is intentional or unintentional. Through it, we explore practitioners’
responses and have an indication on how often TD items could be prevented in their
scenarios.
RQ4:What stage of a software development life cycle is most affected by the presence of
DD? The documentation of a software project is a broad area, ranging from requirements
specification to code comments. The purpose of this question is to investigatewhich stage
of a software development life cycle has been more commonly seen as affected by DD.
RQ5: How can development teams react to the presence of DD? This question is aimed
at identifying actions that can be used to deal (prevent or pay the debt off) with DD.

3.2 Method

The method is based on the combined analysis of the results from two complementary
studies: a survey (InsighTD) and an interview-based case study, both with a population
of software practitioners. While InsighTD allowed us to achieve a broad audience and
collect answers to support the answering of RQ1, RQ2, RQ3, and RQ4, the interview
study served to check and complement, through data triangulation, the findings from
InsighTD and, also, to gather more contextual information to answer the RQ5.We chose

Hearing the Voice of Software Practitioners 59

to perform triangulation because it is an important tool for confirming the validity of
conclusions [15].

Sections 4 and 5 describe the data collection and analysis procedures of each study
as well as the obtained results. Then, Sect. 6 combines the results to answer the posed
research questions. The empirical package of the survey and interview study containing
their questions, answers/transcriptions, and codes are available at http://bit.ly/2uHv8x9.

4 Surveying Software Practitioners on Causes and Effects
of Documentation Debt (InsighTD)

4.1 Data Collection

The data were collected in the context of the InsighTD project. The InsighTD ques-
tionnaire consists of 28 questions, previously described in [12]. Table 1 presents the
subset of the survey’s questions related to the context of this work. Q1 to Q8 capture the
characterization questions, Q13 asks participants to provide an example of a TD item
that occurred in their project and Q15 asks participants about the representativeness of
that example. In Q16 to Q18 and Q20, the participants answer questions about causes
and effects, respectively, considering the example provided in Q13. Finally, Q22 asks
participants if the TD item (from Q13) could be prevented.

Table 1. Subset of the InsighTD survey questions considered in this paper.

No. Question (Q) Type

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

What is the size of your company?
In which country you are currently working?
What is the size of the system being developed in that project? (LOC)
What is the total number of people of this project?
What is the age of this system up to now or to when your involvement ended?
To which project role are you assigned in this project?
How do you rate your experience in this role?
Which of the following describes the development process model you follow on this project?

Closed
Closed
Closed
Closed
Closed
Closed
Closed
Closed

Q13
Q15

Give an example of TD that had a significant impact on the project that you have chosen to tell us about:
About this example, how representative it is?

Open
Closed

Q16
Q17
Q18

What was the immediate, or precipitating, cause of the example of TD you just described?
What other cause or factor contributed to the immediate cause you described above?
What other causes contributed either directly or indirectly to the occurrence of the TD example?

Open
Open
Open

Q20 Considering the TD item you described in question 13, what were the impacts felt in the project? Open

Q22 Do you think it would be possible to prevent the type of debt you described in question 13? Closed

The questionnaire was sent to only practitioners, because the objective of InsighTD
is to investigate the state of the practice of TD. Some keywords related to software
development activities and roles were used in LinkedIn to identify the participants. Also,
invitations were sent to industry-affiliated member groups, mailing lists, and industry
partners. The same strategy was applied in Brazil, Chile, Colombia, and the United
States.

http://bit.ly/2uHv8x9

60 N. Rios et al.

4.2 Data Analysis

The survey questionnaire consists of closed and open-ended questions. Therefore, it is
necessary to adopt a series of different procedures to analyze the data. For the answers
to the closed questions, descriptive statistics were used to understand the data, and then
mode andmedian statisticswere used for the central tendency of ordinal and interval data.
For nominal data, the number of participants’ choices about each option was calculated.

Qualitative data analysis techniques [15, 16] were applied to open-ended questions
about causes and effects of TD. As the answers were unrelated to any previous expecta-
tions, an inductive logical approach was adopted. Then, manual coding was applied to
the open questions as follows: initially, two researchers from each country (BR: authors
N.R. and R.S., CH: B.P. and H.A., CO: B.P. and D.C., and US: N.R. and C.S.) indi-
vidually coded the set of all answers for two subsets of related questions (RQ1: Q16 +
Q17 + Q18 and RQ2: Q20). This involves open coding as described in [16] and axial
coding to derive higher level categories. They then discussed possible differences in their
coding until they reached consensus. Thus, the answers were coded and the emerged
concepts (causes/effects) were organized into a hierarchy of categories. This process
was performed until the point where no new code or category was identified.

4.3 Results

Characterization of the Participants. In total, 39 participants from InsighTD replica-
tions in Brazil, Chile, Colombia, and the United States answered questions about DD.
Participants are well distributed among small (28%), medium (41%), and large (31%)
companies. Looking at the data in more detail, we can see that most (mode) partici-
pants work in organizations with more than 2,000 employees (9 participants) and 11–50
employees (9), closely followed by 51–250 companies (7), and 251–500 employees (7).
The average size of organizations is 251 to 500 employees. Therefore, participants tend
to work in larger companies, but there are representatives of companies of all sizes.

Responses to Q3 on the system size, most participants indicated that the systems had
between 10–100 KLOC (36%), followed by smaller systems (<10 KLOC - 26%). The
results also indicated a significant sample of responses for larger systems (1–10 MLOC
- 18%) (>10 MLOC - 5%). Responses to Q4 on the size of development teams that
participants tend to work, most (31%) reported working in teams 5–9 people, followed
by less than five members of staff (26%). There is also a good sample in teams of 10–30
people (20%) and larger development teams with more than 30 professionals (23%).
Responding to Q5 about the age of the system developed in the project, most indicated
age 2 to 5 years (33%). There are also a significant number of systems represented
from 1 to 2 years (26%), closely followed by less than one year (20%). About 18% of
participants indicated working on projects for more than 10 years.

Regarding the role assumed by the participants in their projects (Q6), several types
of project roles were indicated in the results. Most of them work as a developer (46%),
followed by project leader/project manager (18%), architect software (7%), test man-
ager/tester (7%), and requirements analyst (7%). In response to Q7, results show that a
significant portion of the sample is Proficient, Competent or Expert (92% of the total),

Hearing the Voice of Software Practitioners 61

indicating that, in general, the questionnaire was answered by professionals with expe-
rience in their roles. On the other hand, answers from professionals with low experience
level (8%) were also obtained.

Finally, the responses to Q8 indicate that of the 39 respondents, 15 participated in
projects that adopted agile process models (38%) and 15 indicated the use of hybrid
process models (38%). Less common is the use of a traditional process (24%).

Thus, in general, although it is not possible to guarantee that the participants represent
all the professionals in the software industry from Brazil, Chile, Colombia, and the
United States, respondents characterize a broad and diverse audience that spans different
functions and participant experience levels, different sizes of organizations and projects
of different ages, sizes, team sizes, and process models.

What are themain causes that lead development teams to incurDD in their projects
(RQ1)? In total, as informed by the participants in Q16–18, there are 37 causes that lead
development teams to incurDD in their projects. The tenmost commonly cited causes are
displayed in Table 2 (the complete list can be accessed at http://bit.ly/2BtHglx).Deadline
is the most cited cause. This indicates that it is a factor that normally contributes to the
occurrence of DD items. The company does not give importance to documentation and
non-adoption of good practices are other causes cited by at least 13% of the participants.

Table 2. Top 10 documentation debt causes cited.

Rank Documentation debt cause # of citations Confirmed in interview based case
study?

1st Deadline 12 Yes

2nd The company does not give
importance to documentation

6 Yes

3rd Non-adoption of good practices 5 Yes

4th Inaccurate time estimate 4 Yes

5th Inappropriate planning 4 Yes

6th Outdated/incomplete
documentation

4 Yes

7th Team Overload 4 Yes

8th Nonexistent documentation 3 Yes

9th Not effective project management 3 Yes

10th Poor allocation of resources 3 Yes

We can also observe in Table 2 that practitioners also commonly cited other causes
like inaccurate time estimate, inappropriate planning, outdated/incomplete documenta-
tion, and team overload. The results of the data triangulation with the interview-based
case study, partially presented in the fourth column, is discussed in Sect. 5.3.

What effects does DD have on software projects (RQ2)? In total, as informed by
the participants in Q20, there are 24 effects of DD in software projects. Table 3 shows

http://bit.ly/2BtHglx

62 N. Rios et al.

the ten most commonly cited effects (the complete list can be accessed at http://bit.ly/
2BtHglx). Two effects stood out: low maintainability and delivery delay. Low maintain-
ability encompasses problems that occur during software maintenance activities, such
as an increased effort to fix bugs as well as limitations in system evolution. Delivery
delay refers to the non-fulfillment of the deadlines agreed upon with the customer.

We can also observe in Table 3 that, in the point of view of the practitioners, rework,
low external quality and inadequate/nonexistent/outdated documentation are issues that
commonly affect software projects in the presence of DD. Also, there are three effects
related to relations among people: developer dependency and stress with stakeholders.
Thus, practitioners see that the presence of DD can harm the work environment.

How often is the occurrence of DD items seen as preventable in software projects
(RQ3)? Answers to Q22 (yes/no question) of InsighTD indicated that DD could be
prevented for most of the cases (95%). The two participants that reported that their
DD items could not be prevented indicated cost as the main reason: “the development
team does not have the documentation updated because it needs to be more productive
to do not lose the contract” and that “the effort needed to be invested to maintain the
documentation updated is too high.”

Table 3. Top 10 documentation debt effects cited.

Rank Documentation debt effects # of citations Confirmed in interview based case
study?

1st Low maintainability 9 Yes

2nd Delivery delay 8 Yes

3rd Rework 5 Yes

4th Low external quality 4 Yes

5th Inadequate/nonexistent/outdated
documentation

3 Yes

6th Developer Dependency 2 Yes

7th Difficulty conducting tests 2 Yes

8th Increased effort 2 Yes

9th Need of refactoring 2 No

10th Stress with stakeholders 2 Yes

Answers to RQ5 in the interview-based case study, discussed in Sect. 5.3, comple-
ment this result by indicating some practices that can be used to prevent DD.

What stage of a software development life cycle is most affected by the presence
of DD (RQ4)? Results from InsighTD indicate a strong relationship between DD and
requirements issues. By analyzing the answers of participants to Q13, about 53% of
them reported requirements issues in their examples of DD. Some examples are: “Little
clarity and specificity in the definition of requirements,” “Having to create code that

http://bit.ly/2BtHglx

Hearing the Voice of Software Practitioners 63

was not stipulated, since the requirement was not considered in the documentation,”
and “The lack of documentation and understanding of the requirements in the analysis
and design activities caused rework in the construction of the prototypes.” Besides, all
participants reported in Q15 that those instances of debt occur often or very often in
their projects.

Other commonly cited software development areas (in Q13) affected by the presence
of DD are design (10%), code comment (7%), testing (5%), and architecture (2%).
We could not identify the specific area for 23% of the responses because they were
about documentation in general (e.g.: “hard maintenance and future change due to
poor documentation from the development team” and “do not keep the documentation
updated”).

5 Interview-Based Case Study

This study complements the results obtained with InsighTD by (i) identifying new evi-
dence to confirm causes and effects, and (ii) identifying practices that can be employed
to prevent or deal with DD in software projects.

5.1 Data Collection

Data collection was performed through face-to-face interviews considering four open-
ended questions. All interviews were recorded, with previous authorization of the partic-
ipants, and then transcribed. Next, the transcripts were validated by their corresponding
interviewees through peer reviews. The interviewswere performed in Portuguese as well
as their data analysis. Only the results were translated to English. The author L.M. trans-
lated the results (and also the text fragments used in this article), which were reviewed
by the author G.S.

The first three questions address the characterization of the organization’s develop-
ment process: (P1) “Does the organization adopt any project management methodology
(traditional/agile)? If so, which one?”; (P2) “Did the organization define processes for
software development? How are they performed?”; (P3) “How is the documentation pro-
cess carried out in the organization and how are the documents prepared for each phase
of the software life cycle?” Finally, we characterized the issues found in the execution of
processes in the organization: (P4) “Are those involved in the software development pro-
cess aware of the problems that may arise from not adopting adequate documentation?
If so, could you cite possible causes and effects?”

5.2 Data Analysis

The data analysis began with transcription of interviews and approval by participants.
Then, we coded the content of the transcripts [16]. The coding considered excerpts of
the transcriptions containing evidence on causes, effects and practices to deal with DD.
Then, we grouped the identified causes, effects and practices.

The following example illustrates how we performed the coding of causes: “We
need to go fast with the development process, so we went directly to the testing phase.

64 N. Rios et al.

As consequence, the documentation of the project was inappropriate.” The underlined
fragments support the codes: inappropriate documentation and focus on producing more
at the expense of quality.

The coding was done by the author L.M. The author G.S. reviewed all citations
and codes. Participants were also asked to validate the results obtained. In the end, the
codes identified for causes and effects were standardized considering the nomenclature
obtained from the InsighTD results. This standardization was performed by the authors
L.M. and R.S., who were involved in each of the studies.

5.3 Results

Execution. Participants were advised to feel free to talk about work processes and
documentation issues. Participants allowed the interviews to be recorded and signed a
Consent and Participation document. Each participant was interviewed individually, and
the interviews took about 30 min.

The defined questions (P1–4) were performed sequentially. The researcher respon-
sible for conducting the interviews complemented the questions with brief comments to
adapt them to the working reality of the interviewees. During the interviews, new ques-
tions were formulated for gathering more details as needed (e.g.: “Is there any practical
situation that generated a problem with the documentation?”).

Characterization of the Participants. Four software practitioners who have worked
as project manager, systems analyst, developer, and tester for 7, 2, 1 and 14 years,
respectively, participated in the study. The selection of participants was made by conve-
nience.Ourmain selection criterionwas having answers frompractitionerswith different
responsibilities in the development process and with different levels of experience. The
four participants worked on the same development team and reported their experiences
with both traditional and agile methods. All participants also indicated that the existing
development processes are not followed.

The software organization where the study was conducted operates in the public
health area. The study was conducted specifically in one of the software development
areas. We selected the organization by convenience. The second author works in the
organization, but in a different unit from the interviewees. In addition, we chose a public
organization because the staff had little turnover so that we could better observe the
influence of organizational culture on development processes.

The product used as a reference by the participants was an academic management
system of the organization. The organization started the development of the product in
2009 and it has been maintained by the organization since 2014. The system is currently
in production, but some of its modules are being refactored.

What are themain causes that lead development teams to incurDD in their projects
(RQ1)? The participants reported 23 causes that contribute to the occurrence of DD.
Participants reported, for example, the situation of a specific project that had three
consecutive management changes during its implementation. The changes were mainly
characterized by unsuccessful attempts to implement different development methods
(agile and traditional). These consecutive management changes were characterized as

Hearing the Voice of Software Practitioners 65

one possible cause and were coded as changes in management during the project. The
interviewed project manager, systems analyst, and developer stated that the organization
did not have well-defined processes (lack of a well-defined process).Deadline, one of the
causes reported by all participants, is considered responsible for most of the problems
faced by the teams.

Participants were unanimous in stating that all team members were aware of docu-
mentation problems in their projects. The systems analyst said that, while practitioners
are aware of the problems, therewere negligence in not trying to solve them (the company
does not give importance to documentation).

Table 2 presents ten of the causes identified in this study that are among those most
commonly cited by InsighTD participants. The complete list of all identified causes can
be accessed at http://bit.ly/2BtHglx. Seventeen common causes were identified between
the two studies, and six were uniquely identified in the interviews: inappropriate docu-
mentation, unknown legal requirements that affect the existing documentation, delays in
the project, tacit knowledge not documented, changes in management during the project,
and political issues.

What effects does DD have on software projects (RQ2)? Participants reported 15
effects of DD. Nine of them are among those most cited by InsighTD participants as
can be observed in Table 3. Only one of the reported effects had not been previously
identified in InsighTD: communication issues among team members.

Some of the most critical effects reported by participants in this study were: project
does not serve customer, developer dependency, difficulty in project development, lack
of understanding, and increased effort to maintain the product.

How can development teams react to the presence of DD (RQ3 andRQ5)? We iden-
tified 15 practices (Table 4) that have been used by the organization to address software
documentation issues and could be employed to deal with (prevention or payment) DD.

Most of the identified practices refer to preventive actions, as can be seen in the
second column of Table 4. This result complements the indication provided by InsighTD
participants that DD can be prevented. We can also observe that, from the point of view
of the participants, the preventive actions usually have a well-defined documentation
process. We also highlight the need of having the commitment from people responsible
for documenting activities. To improve the commitment, one possible solution would be
to increase the incentives to produce the documentation, and further, developers must
feel how these improvements are a benefit to themselves [20, 21]. From Table 4, we see
that only three practices are focused on debt payment.

What stage of a software development life cycle is most affected by the presence
of DD (RQ4)? The interview-based case study confirmed the results from InsighTD
for this question. Thus, participants also indicated during the interviews that DD is
related to several areas of software development (requirements, design, coding, test,
and maintenance). Particularly, the identified causes (~91% of them), effects (~80%),
and practices (~87%) are almost all related to requirement issues as confirmed by the
participants after we reported the results to them.

http://bit.ly/2BtHglx

66 N. Rios et al.

Table 4. List of practices.

Practices Prevention/payment

Adopt TD payment prioritization criteria Payment

Comment the code Prevention

Create tutorials on how to fill in the documentation Prevention

Define process and good practices for documentation Prevention

Define roles concerning the documentation process Prevention

Document the project since its begin Prevention

Have a documentation repository Prevention

Improve commitment of the team concerning documentation Prevention

Involve several roles in documenting the project Prevention

Keep the documentation updated Payment

Penalties if not follow the documentation process Prevention

Review outdated documentation Payment

Training on the problems by don’t document Prevention

Use of Peer review Prevention

Use of UML to document and share information Prevention

6 Discussion

There is a clear need for research that consolidates data collected from empirical studies
in the software industry. Results from both studies presented in this paper indicate that,
from the point of view of software practitioners, DD can be prevented. Further, although
practitioners are particularly concerned about requirements issues, we also found that
DD can affect other areas of software development projects.

The aforementioned results stimulated us to organize the data (causes, effects, and
practices) collected from both studies into a theoretical framework of DD, which is
presented in the next subsection.

6.1 Theoretical Framework of Documentation Debt

Figure 1 summarizes the theoretical framework developed from this research. The frame-
work aims to provide a comprehensive depiction of the DD phenomenon. It consists of
causes that can lead development teams to incur DD in their projects, effects that can
be felt in its presence, and, also, practices that can be employed to prevent or eliminate
items of debt present in projects. The organization of causes and effects into groups
(e.g.: development issues, methodology, people issues, external quality issues) followed
the categories proposed by Rios et al. [12].

As a conceptual device, the framework can be employed to inform action in response
to perceived DD, and as a comprehensive guide when assessing software development

Hearing the Voice of Software Practitioners 67

Fig. 1. Theoretical framework of documentation debt.

practices. The framework facilitates more effective identification and acknowledgement
of DD by highlighting aspects of software development that impact or is impacted by
the presence of the debt.

By assisting inmaking theDDvisible, as a communication device, the framework can
be used to support development teams to more effectively communicate technical prob-
lems to management, and for managers to make better-informed decisions concerning
DD.

7 Threats to Validity

As in any empirical study, there are threats to validity [6] in this work. We attempted
to remove them when possible and mitigate their effect when removal was not possible.
In this work, the primary threat to conclusion validity arises from the coding process as

68 N. Rios et al.

coding is mainly a creative task. To mitigate this threat, in InsighTD, the coding pro-
cess was performed individually by two researchers and reviewed by one experienced
researcher. In the interview-based case study, the coding process was performed by one
researcher and reviewed by one experienced researcher. The recording/transcription pro-
cess could raise threats too.We reduced them by validating the transcriptions with a peer
review process involving the corresponding interviewees. Lastly, the data triangulation
activities were performed by one researcher from each study, who also discussed their
results until consensus was reached.

Concerning the internal validity, the questionnaire represents the main threat that
could affect InsighTD. As indicated in [12], the questionnaire has direct questions,
avoiding misunderstanding that could lead to meaningless answers. Besides, the ques-
tionnaire has passed through successive validation tasks (three internal and one external)
and a pilot study to detect any inconsistencies or misunderstandings before executing
the survey.

Finally, we reduced the external validity threats by targeting industry profession-
als and seeking to achieve participant diversity among the respondents. In InsighTD,
we approached 39 practitioners from replications of the questionnaire in Brazil, Chile,
Colombia, and the United States. The interview-based case study had the participation of
four practitioners with different roles and levels of experience. Although the population
provides interesting results on DD, we still cannot generalize the results. In search of
more generalizable results, the InsighTD is now being replicated in Finland and Costa
Rica.

8 Final Remarks

Documentation debt is a type of debt that still suffers from a lack of empirical evidence
from software industry. This article approached this gap by triangulating results from two
complementary studies with software practitioners. Results include the indication that
we can prevent DD and that it affects several software development areas but specially
requirements. Moreover, we defined a theoretical framework of DD, which presents the
DD phenomenon in a more complete and comprehensive form.

For the practitioner community, the framework helps to realize the utility of technical
debt as a tool for conceptualization, communication, and management. It can be used as
tool to understand the reasons that lead development teams to incur in debt, which are
the possible effects of its presence, and what actions can be taken to prevent or pay the
debt off.

The next steps of this research include the analyses of InsighTD data collected from
replications in Costa Rica and Finland. We also intend to run a follow up study in one
of our industry partners based on the results reported in this article. Lastly, based on
the conceptual framework presented in Fig. 1, we are also planning to look into relating
causes, effects, and practices more directly to each other.

Acknowledgements. Thisworkwas partially supported by theCoordination for the Improvement
of Higher Education Personnel - Brazil (Capes), under the Capes/IIASA Sandwich Doctoral
Program, process nº 88881.189667/2018-01. This research was also supported in part by funds

Hearing the Voice of Software Practitioners 69

received from the David A. Wilson Award for Excellence in Teaching and Learning, which was
created by the Laureate International Universities network to support research focused on teaching
and learning. For more information on the award or Laureate, please visit www.laureate.net.

References

1. Kruchten, P., Nord, R., Ozkaya, I.: Technical debt: from metaphor to theory and practice.
IEEE Softw. 29(6), 18–21 (2012). https://doi.org/10.1109/MS.2012.167

2. Spínola, R.O., Zazworka, N., Vetro, A., Shull, F., Seaman, C.: Understanding automated and
human-based technical debt identification approaches-a two-phase study. J. Braz. Comput.
Soc. 25 (2019). https://doi.org/10.1186/s13173-019-0087-5

3. Ernst, N.A., Bellomo, S., Ozkaya, I., Nord, R.L., Gorton, I.: Measure it?Manage it? Ignore it?
Software practitioners and technical debt. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pp. 50–60. ACM, New York (2015).
https://doi.org/10.1145/2786805.2786848

4. Rios, N., Mendonça, M.G., Spínola, R.O.: A tertiary study on technical debt: types, manage-
ment strategies, research trends, and base information for practitioners. Inf. Softw. Technol.
102, 117–145 (2018). https://doi.org/10.1016/j.infsof.2018.05.010. ISSN 0950-5849

5. Ampatzoglou, A., et al.: The perception of technical debt in the embedded systems domain:
an industrial case study. In: 8th International Workshop on Managing Technical Debt. IEEE
(2016)

6. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering: An Introduction. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29044-2

7. Seaman, C., Guo, Y.: Measuring and monitoring technical debt. Adv. Comput. 82, 22 (2011)
8. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its

management. J. Syst. Softw. 101, 193–220 (2015)
9. Alves, N.S.R., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Seaman, C.:

Identification and management of technical debt: a systematic mapping study. Inf. Softw.
Technol. 70, 100–121 (2016). https://doi.org/10.1016/j.infsof.2015.10.008

10. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing technical debt in software
engineering (dagstuhl seminar 16162). In: Dagstuhl Reports, vol. 6, no. 4. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2016)

11. Yli-Huumo, J., Maglyas, A., Smolander, K.: How do software development teams manage
technical debt? An empirical study. J. Syst. Soft. 120, 195–218 (2016)

12. Rios, N., Spínola, R.O., Mendonça, M.G., Seaman, C.: The most common causes and effects
of technical debt: first results from a global family of industrial surveys. In: The Proceedings
of the 12th International Symposium on Empirical Software Engineering and Measurement,
Oulu, p. 10. ACM, New York (2018). https://doi.org/10.1145/3239235.3268917. Article no.
39

13. Rios, N., Mendonça, M., Seaman, C., Spínola, R.O.: Causes and effects of the presence
of technical debt in agile software projects. In: The Americas Conference on Information
Systems (AMCIS), Cancun (2019)

14. Rios, N., Spínola, R.O., Mendonça, M.G., Seaman, C.: Supporting analysis of technical debt
causes and effects with cross-company probabilistic cause-effect diagrams. In: Proceedings
of the Second International Conference on Technical Debt (TechDebt 2019), pp. 3–12. IEEE
Press, Piscataway (2019). https://doi.org/10.1109/techdebt.2019.00009

15. Seaman, C.: Qualitative methods in empirical studies of software engineering. IEEE Trans.
Softw. Eng. 25(4), 557–572 (1999). https://doi.org/10.1109/32.799955

http://www.laureate.net
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1186/s13173-019-0087-5
https://doi.org/10.1145/2786805.2786848
https://doi.org/10.1016/j.infsof.2018.05.010
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1145/3239235.3268917
https://doi.org/10.1109/techdebt.2019.00009
https://doi.org/10.1109/32.799955

70 N. Rios et al.

16. Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. Sage Publications, Thousand Oaks (1998)

17. Freire, S., et al.: Actions and impediments for technical debt prevention: results from a
global family of industrial surveys. To appear in the Proceedings of the 35th ACM/SIGAPP
Symposium on Applied Computing

18. Klotins, E., et al.: Exploration of technical debt in start-ups. In: Proceedings of the 40th
International Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP 2018), pp. 75–84. ACM, New York (2018)

19. Nayebi, M., et al.: A longitudinal study of identifying and paying down architecture debt.
In: Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Practice, pp. 171–180. IEEEPress (2019). https://doi.org/10.1109/ICSE-SEIP.
2019.00026

20. Arkley, P., Riddle, S.: Overcoming the traceability benefit problem. In: The Proceedings of the
13th IEEE International Conference on Requirements Engineering (RE 2005), Paris, France
(2005). https://doi.org/10.1109/re.2005.49

21. Berry, D.M., Czarnecki, K., Antkiewicz, M., Abdelrazik, M.: The problem of the lack of
benefit of a document to its producer. In: Proceedings of the IEEE International Conference
on Software Science, Technology and Engineering, Beer-Sheva, Israel (2016). https://doi.org/
10.1109/swste.2016.14

https://doi.org/10.1109/ICSE-SEIP.2019.00026
https://doi.org/10.1109/re.2005.49
https://doi.org/10.1109/swste.2016.14

Innovation Workshop Documentation
for Following Software Engineering

Activities

Patrick Mennig(B) and Claudia Nass

Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{patrick.mennig,claudia.nass}@iese.fraunhofer.de

Abstract. [Context & motivation] Requirements engineering (RE)
can be seen as creative problem solving (CPS), overlapping with user
experience (UX) and design activities. Creative processes, such as inno-
vation workshops (IWs), are often facilitated group activities. They pro-
vide an understanding of challenges and user needs, leading to increased
software quality. A large number of results from IWs needs to be docu-
mented in a suitable manner for later use, as not all results can be fol-
lowed up upon immediately. [Question/problem] With current means
of IW documentation, it is hard to extract the required information (e.g.,
photo minutes), or they are inefficient to produce or digest (e.g., audio
and video recordings, textual documentation). Documentation of only
the results leads to the loss of any discussions, decisions, reasons, and
discarded alternatives, as these are usually not written down during an
IW. The interpretation of the documentation depends on the viewer’s
memory and understanding of the IW and the results, which is prone
to misinterpretation and errors unless enriched with context information
from the IW planning. [Principal ideas/results] We explored the lim-
itations of IW documentation during a workshop with 29 experts from
the usability and UX domain. Problems with using the results in later
software engineering (SE), RE, and UX activities arise from misalign-
ment between IW result documentation and activity requirements. The
experts created a set of initial solution ideas, but no concrete solutions.
[Contributions] We address the need for reasonable methods for doc-
umenting the results of IWs so that they can be used efficiently in later
activities. The design and preliminary results of the expert workshop are
presented. Furthermore, we discuss a research roadmap towards making
targeted improvements to IW documentation by understanding subse-
quent activities.

Keywords: Requirements engineering · Documentation · Creative
problem solving · Innovation workshop · Creativity workshop

1 Creative Problem Solving

Many activities in software engineering (SE) are related to creative problem solv-
ing (CPS) [10]. Requirements engineering (RE) and user experience (UX) rely
c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 71–77, 2020.
https://doi.org/10.1007/978-3-030-44429-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_5

72 P. Mennig and C. Nass

on an increasing number of methods that involve interdisciplinary teams engag-
ing in collaborative face-to-face activities [6]. Design thinking, design sprints
and innovation workshops (IWs) [4,11] provide methodologies for solving busi-
ness and design problems alike [3]. These involve many different methods (e.g.,
affinity diagrams, card sorting, brainstorming, brainwriting, storyboarding, low-
fidelity prototypes, etc.) centered around face-to-face communication and the
use of analog materials. Their success lies in their ease of application, as a team
of professionals from disciplines such as RE, UX, and design can follow a struc-
tured approach to solving complex problems. IWs help to understand challenges,
user needs, and requirements. One aspect that we think deserves more atten-
tion from both research and practice is the integration of these methods’ results
into subsequent SE, RE, and UX activities. Karras et al. mention that written
requirements specifications lack communication richness and effectiveness, and
propose the use of videos in RE [7], especially for communicating project visions.
Ideas found in IW an to be used in subsequent SE activities, are often expressed
as concepts or goals, rather than concrete requirements, and need to be trans-
formed [12]. Barrios et al. note that, in order to be capitalized on, results from
IW need to be formalized and conserved [2].

2 Problem

In our business practice, we have conducted more than 40 IWs with different
clients from research and industry in various domains, and have observed that
many organizations struggle with actually implementing solutions found in CPS
activities in later project stages. Actually utilizing the results in subsequent
activities highly depends on whether they have been documented in a suitable
manner. Typically, results created in IWs are built on initial hypotheses (e.g.,
problem statements, user needs, solution approaches) that need to be verified
later on. Potential solutions need to be tested for their feasibility and applicabil-
ity. Hence, appropriate documentation of workshop results and its availability is
crucial for facilitating later processing and later application.

During an IW, participants create a large number of different artifacts.
Within a typical two-day workshop, interdisciplinary teams compile a list of
challenges (typically 30–60), analyze some of these challenges in detail (3–9),
come up with many different initial solution ideas (approx. 600), select a subset
of promising ideas, create storyboards or low-fidelity prototypes, and assess the
solutions through presentations and discussions [1]. During face-to-face group
activities, participants discuss the problems, ideas, and solutions, form mental
models, bring in their own professional experience and background knowledge,
and reason about the inclusion and exclusion of aspects found during and before
the workshop. Even though many results are written down on sticky notes, paper
cards, flipchart paper, and whiteboard walls, we observe that these often lack
detail and only serve as mental anchors during the IW. Participants are busy
following the creative process. Writing down details of their discussions that are
not of immediate use slows down their thought processes, hence these are usually
omitted.

IW Documentation for Following SE Activities 73

Memories of details known during an IW fade with the time passing until
its results are picked up or until subsequent activities are to be performed. One
obvious means of documenting IWs is to take pictures of any results created, but
these can only cover what is actually written down. Dedicating one participant
to the documentation pulls her out of the group activity. Having a separate
person (e.g., a co-moderator) doing the documentation can impose feelings of
being observed or monitored. Audio and video recordings would provide the most
detailed form of documentation, but a typical two-day IW with three sub-groups
leads to about 42 h of recorded material. In order to make it usable, it has to be
processed after the IW, either manually, increasing the cost (in person-hours) of
the workshop by a large amount, or with the help of automation [8].

A more effective way of documenting IW results would enable them to be
used more efficiently in subsequent activities, and in turn increase the applica-
bility of IWs in RE. Understanding the requirements of the subsequent activities
using these outcomes allows making targeted improvements to the way IW are
documented. To collect initial evidence in support of this idea, we conducted an
expert workshop.

3 Method

A workshop with usability and UX experts was held in which they discussed
and analyzed the challenge and came up with initial solution ideas by applying
CPS methods themselves. The workshop took place at the 2019 “Mensch und
Computer (MuC)” conference held in Hamburg, Germany, and was part of the
Usability Professionals (UP) track. Twenty-eight experts (23 female, 5 male)
and two moderators were present throughout the 90-min workshop. One expert
(female) joined later. Twenty-one disclosed their affiliation with a professional
organization or company, two with a research institute or university, and six did
not disclose their affiliation.

Session 1: At first, the problem of incomplete documentation was presented
to the attendants in order to establish a common understanding of the goal of
this expert workshop. In a twenty-minute presentation, we presented our typical
approach to structuring two-day creativity processes [1,4]. We used the photo
minutes of an example IW held in October 2018 about a ridesharing solution in
small communities, and showed images from the photo minutes for each phase
of the IW. During the ridesharing IW, we had applied creativity methods to
explore the problem space, analyze details of high-priority problems, come up
with a large number of ideas, build solution scenarios, reiterate them with trans-
formational methods, and conclude with prototyped solutions. The experts were
able to understand the structure and creativity methods applied in the rideshar-
ing example through the images shown and the explanations given. For their own
reference and to support further discussion, a hand-out was prepared. The actual
results of the ridesharing example were not explained in detail, as we wanted the
experts to express their own experiences and knowledge rather than discuss our

74 P. Mennig and C. Nass

example. We highlighted the documentation problem and concluded the presen-
tation with the key takeaways: 1. Pictures of IW results only show content that
is written down, drafted, drawn, or built. 2. Pictures do not show artifacts that
are not used or are deemed unusable for the IW topic. 3. Photo minutes cannot
convey discussions between participants that may lead to important decisions;
only their outcomes. 4. The full context of an IW cannot be reflected completely
in photo minutes, as it also includes the background and knowledge of the par-
ticipants, often embedded into an organizational body of knowledge. Session 2:
Directly after the presentation, we had the participants reflect on the presen-
tation and share their own knowledge. The experts could contribute their own
experiences with either CPS methods or with documentation of their outcomes.
This was done to ensure that the presented problems were understood by all par-
ticipants. For Session 3, the experts were randomly divided into five groups.
Each group was assigned one step of the presented creative process. The experts
were given the task to 1. discuss which creativity methods they typically use in
their group’s respective step, 2. write down a short summary of how the meth-
ods are performed, 3. analyze the types of results the method typically produces,
4. discuss in which activities after the creative process the results are typically
used, and finally 5. what problems arise during later usage. The goal of this
session was twofold: On the one hand, it should allow all the experts in a group
to understand how they all apply creativity methods and form a rapport. On the
other hand, we confronted them with the challenge that results of creative pro-
cesses are used in later activities and the related assumption that this is difficult
due to documentation problems. This implicitly includes our claim that proper
documentation of IWs is important, as it allows their results to be used in later
activities. The experts analyzed nine different CPS methods. Session 4 was
concerned with finding possible solution approaches to the challenges identified
in the preceding session, which was again done in the subgroups. We allowed the
experts to follow any ideation strategy they deemed suitable. Twenty problems
(16 distinctive ones) with using the results of creative processes were identified
and written down by the experts (e.g., “insights are not transferred”, “other
ideas are lost”, “assumptions, reasons, decisions are lost due to swarm intelli-
gence”). Session 5: The expert workshop concluded with a group discussion
between all participants, allowing them to share their findings and elaborate on
the problems of documentation, respectively the use of results for later activities.

4 Initial Results

The notion that there is a challenge with documentation in CPS activities was
shared by all workshop participants. The experts agreed with our idea that
later activities determine the requirements for the documentation. One expert
group analyzed the brainstorming method to collect problems. Osborn’s rules
for brainstorming lead to a large number of results that are neither judged nor
relate exclusively to the initial challenge, but are often based on associations
that participants follow. The advantage of this approach is that it allows arriving

IW Documentation for Following SE Activities 75

at findings and insights that might have been overlooked or never uttered due
to social pressure. But this leads to disadvantages for the documentation. The
reasoning behind a single note is not part of it, hence it is lost once the participant
forgets it. Additionally, the documentation can get unwieldy due to the large
number of different notes, at varying levels of readability. The “Moonshot” or
“Think Big” method [5] was analyzed by another group of experts. This method
is used to work on product strategy and roadmaps in order to determine long-
term goals. Many ideas for potential product features are created, of which only
few are further elaborated. Assumptions and decisions made by the participants
are not documented well through the “Moonshot” method itself. According to
the experts, this happens due to the effects of swarm intelligence: During an IW,
assumptions and reasons for decisions are shared, hence not written down. The
results of the “Affinity Diagram” method [14] are used in conception, UX design,
and implementation, according to the experts. They mentioned problems when
using the results in later activities: The method builds empathy with the user,
which degrades after an IW. Participants gain insights into the problem space,
especially the user’s needs, which are lost due to not being documented well,
leading to the potential risk of implementing improper solutions. The “Crazy
Eights” is a method [9] that helps to quickly come up with variants of ideas.
Within eight minutes, participants draw or describe eight alterations of an initial
idea that can be used for comparing solutions and assessing feasibility. The
results are low-fidelity due to time constraints and missing descriptions, which
makes it hard to use them in later activities.

One solution that might spring to mind is the use of a specific room for
groups over the course of working on a topic or project, where all results can
stay visible for an extended period of time, typically several weeks, so people
do not lose track of any spatial interrelations formed in their mind. Notes can
be rearranged to improve readability. Assumptions stay visible until rejected or
confirmed. Such spaces can be referred to as “creativity rooms” [13] and provide
a good context for projects incorporating CPS methods, but they are seldom
available. Only one of the 29 participants has permanent access to such a room
for their work. All others need to clean and remove all results from the physical
collaboration space after an IW.

5 Further Research Plan

The initial results obtained from the expert workshop support our idea that the
documentation of CPS activities, especially IWs, needs improvement. Though
the expert workshop provided some insights into the problem of CPS documen-
tation, the initial ideas and proposed solutions are not sufficient for solving the
challenges of IW documentation. However, the experts’ first insights into the
problems of IW documentation motivate further research to fully understand
the challenges and to come up with adequate solutions. The experts came up
with an initial set of problems regarding the use of IWs results in later activities.
This indicates that IW results do indeed need to be made available in a suitable

76 P. Mennig and C. Nass

manner for subsequent SE activities. A better understanding of which activities
require input from IW will lead to a clearer scope of relevant subsequent activi-
ties. Analyzing different approaches to SE, RE, and UX processes will provide a
comprehensive list of activities performed. We plan to elaborate on the analysis
of how individual results of IWs can be used best in later activities from different
angles.

To understand how the documentation of IW results can be improved, it
would be beneficial to understand how it is used. Each subsequent activity should
be analyzed in terms of the individual actions performed and the types of input
required, such as information about the system to be built, the maturity of
the requirements, or user needs. The input types then need to be categorized
and condensed in order to be matched with the actual output of IWs. Not
all information needs of later activities should be fulfilled by IWs, hence an
understanding of result types is also necessary.

A large set of documentations on CPS activities and IW results should be
obtained (e.g., existing photo minutes). If available, the documents used for
planning the IWs will provide insights into the utilized methods and additional
semantic information that might be useful for enriching available documenta-
tions. They should be analyzed and the output should be categorized by the type
of output created (e.g., problems, ideas, scenarios, prototypes). According to our
experience, different methods will provide the same type of output, even though
the physical form of how the output is represented differs. On the other hand, one
method might produce several types of output, either implicitly (e.g., assump-
tions uttered during discussions among CPS method participants) or explicitly
(e.g., a concrete scenario). The output types should then be matched with the
input types of subsequent activities, leading to a subset of IW result types that
actually need to be preserved. For these, existing and novel approaches to doc-
umentation should be applied and evaluated. Not all means of documentation
might be applicable.

Creative methods for groups collaborating face-to-face impose their own
restrictions on possible means of documentation. They should not hinder the
flow of ideas by overburdening the participants of IWs, neither by forcing them
through seemingly unrelated activities nor by adding a feeling of being under
surveillance. These constraints should be identified through literature research
as well as experimental setups. Methods from IWs can be performed with static
challenges and varying types of documentation (e.g., automatically analyzed
audio recordings, team members facilitating the documentation, photo minutes).
The quantity and quality of the results produced should provide an indication of
problems arising from incorporating documentation into the CPS method. Pos-
sible documentation methods could be tailored specifically to the input needs of
SE, RE, and UX processes, adapted to the given outputs, and incorporate the
constraints of CPS methods. We envision different documentation approaches
for different methods, which the facilitator will have to choose from, leading to
better incorporation of IW results into later SE, RE, and UX activities.

IW Documentation for Following SE Activities 77

Acknowledgements. Parts of this work have been funded by the “EnStadt: Pfaff”
project (grants no. 03SBE112D and 03SBE112G) of the German Federal Ministry for
Economic Affairs and Energy (BMWi) and the German Federal Ministry of Education
and Research (BMBF).

References

1. Adam, S., Trapp, M.: Success factors for creativity workshops in RE. In: CEUR
Workshop Proceedings, vol. 1342, pp. 54–61 (2015)

2. Barrios, P.C., Monticolo, D., Sidhom, S., Gabriel, A.: An organizational model
to understand the creativity workshop. In: 2017 13th International Confer-
ence on Signal-Image Technology Internet-Based System, pp. 496–502. IEEE,
December 2017. https://doi.org/10.1109/SITIS.2017.87. http://ieeexplore.ieee.
org/document/8334793/

3. Brem, A., Spoedt, H.: Same same but different: perspectives on creativity work-
shops by design and business. IEEE Eng. Manag. Rev. 45(1), 27–31 (2017).
https://doi.org/10.1109/EMR.2017.2667143

4. Kerkow, D., Adam, S., Riegel, N., Ünalan, Ö.: A creativity method for busi-
ness information systems. In: 16th International Working Conference on Require-
ments Engineering: Foundation for Software Quality, Proceedings of the Workshop
CreaRE, PLREQ, RePriCo RESC, pp. 8–20 (2010)

5. Haigh, T.: Hey Google, what’s a moonshot? How Silicon Valley mocks Apollo.
Commun. ACM 62(1), 24–30 (2018)

6. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic
literature review on agile requirements engineering practices and challenges. Com-
put. Hum. Behav. 51, 915–929 (2015). https://doi.org/10.1016/j.chb.2014.10.046

7. Karras, O.: Software professionals’ attitudes towards video as a medium in require-
ments engineering. In: Kuhrmann, M., et al. (eds.) PROFES 2018. LNCS, vol.
11271, pp. 150–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03673-7 11

8. Karras, O., Kiesling, S., Schneider, K.: Supporting requirements elicitation by tool-
supported video analysis. In: Proceedings of the 2016 IEEE 24th International
Requirements Engineering Conference, RE 2016, pp. 146–155 (2016). https://doi.
org/10.1109/RE.2016.10

9. Knapp, J., Zeratsky, J., Kowitz, B.: Sprint: how to solve big problems and test
new ideas in just five days. Simon and Schuster (2016)

10. Maiden, N., Jones, S., Karlsen, K., Neill, R., Zachos, K., Milne, A.: Requirements
engineering as creative problem solving: a research agenda for idea finding. In:
Proceedings of the 2010 18th IEEE International Requirements Engineering Con-
ference, RE 2010, pp. 57–66 (2010). https://doi.org/10.1109/RE.2010.16

11. Maiden, N., Manning, S., Robertson, S., Greenwood, J.: Integrating creativity
workshops into structured requirements processes. In: Proceedings of the 2004 Con-
ference on Designing Interactive Systems: Processes, Practices, Methods, and Tech-
niques, DIS 2004, p. 113. ACM Press, New York (2004). https://doi.org/10.1145/
1013115.1013132. http://portal.acm.org/citation.cfm?doid=1013115.1013132

12. Maiden, N., Ncube, C., Robertson, S.: Can Requirements Be Creative? Experiences
with an Enhanced Air Space Management System Centre for HCI Design, City
University, London, UK Atlantic Systems Guild, London, UK Abstract (2007)

13. Mennig, P., Trapp, M.: Designing flexible creative spaces. In: CEUR Workshop
Proceedings, vol. 2376 (2019). http://ceur-ws.org/Vol-2376/CreaRE paper2.pdf

14. Plain, C.: Build an affinity for KJ method. Qual. Prog. 40(3), 88 (2007)

https://doi.org/10.1109/SITIS.2017.87
http://ieeexplore.ieee.org/document/8334793/
http://ieeexplore.ieee.org/document/8334793/
https://doi.org/10.1109/EMR.2017.2667143
https://doi.org/10.1016/j.chb.2014.10.046
https://doi.org/10.1007/978-3-030-03673-7_11
https://doi.org/10.1007/978-3-030-03673-7_11
https://doi.org/10.1109/RE.2016.10
https://doi.org/10.1109/RE.2016.10
https://doi.org/10.1109/RE.2010.16
https://doi.org/10.1145/1013115.1013132
https://doi.org/10.1145/1013115.1013132
http://portal.acm.org/citation.cfm?doid=1013115.1013132
http://ceur-ws.org/Vol-2376/CreaRE_paper2.pdf

Industrial Practices on Requirements Reuse:
An Interview-Based Study

Xavier Franch(B) , Cristina Palomares , and Carme Quer

Universitat Politècnica Catalunya (UPC-BarcelonaTech), Barcelona, Spain
{franch,cpalomares,cquer}@essi.upc.edu

Abstract. [Context and motivation] Requirements reuse has been proposed as
a key asset for requirements engineers to efficiently elicit, validate and document
software requirements and, as a consequence, obtain requirements specifications of
better quality through more effective engineering processes. [Question/problem]
Regardless the impact requirements reuse could have in software projects’ suc-
cess and efficiency, the requirements engineering community has published very
few studies reporting the way in which this activity is conducted in industry.
[Principal ideas/results] In this paper, we present the results of an interview-
based study involving 24 IT professionals on whether they reuse requirements
or not and how. Some kind of requirements reuse is carried out by the majority
of respondents, being organizational and project-related factors the main drivers.
Quality requirements are the type most reused. The most common strategy is
find-copy-paste-adapt. Respondents agreed that requirements reuse is beneficial,
especially for project-related reasons. The most stated challenge to overcome in
requirements reuse is related to the domain of the project and the development of a
completely new system. [Contribution]With this study, we contribute to the state
of the practice in the reuse of requirements by showing how real organizations
carry out this process and the factors that influence it.

Keywords: Requirements reuse · Requirements elicitation · Requirements
documentation · Requirements engineering · Survey · Interview-based study

1 Introduction

Requirements reuse is the practice of systematically eliciting and specifying require-
ments not starting from scratch, but from already available artefacts. These artefacts
range from requirements appearing in previous requirement specification documents, to
templates stored in some sort of catalogue, adapted to every new project.

As reported in Sect. 3, there is a good number of research works addressing software
reuse in the scientific literature. Still, not many of them report on the state of the practice.
Questions as: is requirements reuse an extended practice among requirements engineers
in industry?, if so, how is it implemented?, what are the challenges to overcome and
the perceived benefits?, require further field investigation through empirical studies with
practitioners. In this paper, we report the results of a study in this direction.

© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 78–94, 2020.
https://doi.org/10.1007/978-3-030-44429-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_6&domain=pdf
http://orcid.org/0000-0001-9733-8830
http://orcid.org/0000-0003-4722-5584
http://orcid.org/0000-0002-9000-6371
https://doi.org/10.1007/978-3-030-44429-7_6

Industrial Practices on Requirements Reuse: An Interview-Based Study 79

The rest of the paper is organized as follows. Sections 2 and3describe the background
and relatedwork on requirements reuse that contextualizes our study. Section 4 describes
themethodological aspects of the study, including the research questions, population and
analysis procedures. Sections 5 and 6 present the results and their discussion organized
according to the research questions. Finally, Sect. 7 concludes the paper and outlines
some lines of future work.

2 Background

Two recent papers described in detail the background needed in this study. In a previ-
ous paper [1], we included a detailed description of background on requirements reuse
until December 2015. In a paper published one year after [2], Irshad et al. presented a sys-
tematic literature review on requirements reuse based on publications previous to March
2016. The classification criteria that appear in both papers and that help to characterize
better the reuse approaches are: the type of reusable artefacts and themeans to retrieve the
reusable artifacts from a repository. In this section, we classify the background according
these criteria. The background consists on approaches identified in [1, 2] enriched with a
search of approaches published afterMarch 2016 in the three main RE-specific scientific
venues: RE, REJ and REFSQ.

The type of reusable artifacts that are mainly used in the existing proposals are:
requirements in natural language that can comply or not a certain form or template
[3, 4]; domain models [5, 6]; and use cases [7, 8]. Other artifacts that are not strictly
requirements but that are also reused are: ontologies [9, 10]; classifications of require-
ments in requirement specification or specification templates [11–14] and relationships
or dependencies among requirements or models for reuse [11, 15, 16].

The means to retrieve the reusable artifacts that are mainly proposed in the existing
proposals are: pattern based, using information embedded in the pattern (e.g., its goal)
[11, 17]; matching based, comparing and matching with existing requirements [8, 18];
analogy based, searching for similar cases for applying requirements to be reused from
past projects [19]; and ontology based, which in this case use ontologies not as reuse
artifact but as a way to facilitate the retrieval of requirements to reuse suitable for a
project [20, 21].

Other criteria that can be mentioned are: the existence of a process prescribing
the reuse strategy; the existence of tool support; the elaboration of the structure of the
repository. For details, we refer again to the two papers mentioned above [1, 2].

3 Related Work

In this section, we identify existing studies with similar aims than ours. We can consider
two different types of studies.

Type 1: papers with requirements reuse proposals applied and validated in an indus-
trial context. We already found out through a systematic search of publications (see [1]
for more details) that there is a low percentage of papers on requirements reuse that con-
duct an experimental validation. Complementing this information, Irshad et al. reported
that from the 69 papers analysed in their review, only 22 were validated in industry [2].

80 X. Franch et al.

Remarkably, after the validation, the papers only describe positive results with respect
to requirements reuse, and do not mention the possible negative aspects. The main result
reported is the decrease of effort.

Type 2: papers presenting the state of the practice of requirements reuse in industry
through surveys or interviews. We identified in [1] two secondary studies that present
surveys or interviews fully focused on requirements reuse [22, 23]. Applying the same
systematic search used in [1], we have found one new paper published after 2016 in
the context of ERP implementations [24]. The works reported in [22, 23] address four
aspects of reuse in practice, the level of application, the benefits, obstacles and critical
factors. As levels of reuse the results of both surveys give a level of reuse from 59%
to 72%. Benefits reported from reuse are: the improved performance of requirements
engineering; reduced projects costs; and requirements easier to understand. Regarding
obstacles, theymention: the risk of lowmaintenance of the reuse repository and difficulty
of identifying requirements to reuse. Furthermore, a critical factor that was observed is
the existence of tool support for reuse. The work in [24] is not relevant for the work
presented here, since it has a different goal, namely to identify reusable requirement
artifacts used in the ERP implementation industry, and to define metrics to measure
reusability of artifacts.

4 The Study

In this section we summarize the study protocol; full details are given in the document
available at [25].As a preamble, it is necessary to say that the results reported in this paper
are part of a broader study that includes research questions not only on requirements
reuse but also on requirements elicitation and documentation. For the sake of clarity, we
present the part related to reuse as if it were an independent study.

Research Questions. This study aims at investigating the state of the practice on
requirements reuse. To conduct this investigation, we identified the research questions
(RQs) shown in Table 1. The overall question is to investigate how extended is require-
ments reuse in industry (RQ1). Since we do not expect this RQ to have an uncontextual
answer, we inquiry next what factors may influence in reusing or not reusing (RQ2).
Also, from former studies, we are aware that some types of requirements may be more
prone to reuse than others, motivating (RQ3). We are also interested in knowing the

Table 1. Research questions of the study.

RQ1 Is requirements reuse a usual practice in industry?

RQ2 What factors influence the level of adoption of requirements reuse?

RQ3 What types of requirements are subject of reuse?

RQ4 What is the process followed to implement requirements reuse?

RQ5 What are the benefits brought by requirements reuse?

RQ6 What are the challenges to overcome in requirements reuse?

Industrial Practices on Requirements Reuse: An Interview-Based Study 81

way in which requirements reused is implemented in practice (RQ4). Last, we want to
understand the benefits (RQ5) and challenges (RQ6) brought by reuse as perceived by
practitioners, since the final decision will be a trade-off of both.

Population. We interviewed 24 subjects coming from 12 companies working in differ-
ent domains. Although our aim was having 2 subjects per company, we finally had one

Table 2. Subjects, companies and projects of the study

ID Exper. Comp. Years Project domain Methodology

S1 15 A 3 Messaging System Waterfall

S2 15 A 10 Website Waterfall

S3 20 B ≈9 Website Agile

S4 13 B 13 Website Agile

S5 25 C 4 Mobile OS Waterfall

S6 20 D 20 Machine to Machine
Internal System

Agile

S7 19 D 19 Carrier Business/Internal
System

Agile

S8 15 E 15 Energy Measurement
System

Waterfall

S9 20 E 6 Business Support System Waterfall

S10 16 F 9 Carrier Business/Internal
System

Agile

S11 17 F 0 Website Agile

S12 12 G ≈9 Carrier Business/Internal
System

Waterfall

S13 23 G 14 Carrier Business/Internal
System

Waterfall

S14 10 H 5 Embedded System Waterfall

S15 10 H 4.5 Embedded System Waterfall

S16 25 I 19 Embedded System Agile

S17 8 I 8 Embedded System Waterfall

S18 9 J 2 Embedded System Waterfall

S19 3 J 2 Embedded System Waterfall

S20 23 J 16 Embedded System Waterfall

S21 21 K 12 Mobile App Waterfall

S22 9 K 9 Mobile App, Website Agile

S23 15 L 4.5 Construction Waterfall

S24 26 L 3.5 Construction Waterfall

Exper.: Years in Industry; Comp.: Company ID; Years: Years in Organization

82 X. Franch et al.

company with only 1 subject (company ID = C) and another one with 3 (company ID
= J). Details are provided in Table 2. For brevity, we only include information that is
referred to in Sects. 5 and 6.

Procedure and Instruments. In order to gather data from the target population, we
designed a semi-structured interview guide following the guidelines stated by Oates
[26]. We asked the respondents to focus on one single project in order to gain as much
insights as possible. The interview guide is available at [25]. The guide was piloted. The
results were recorded but not transcribed according to the respondents’ request.

Data Analysis. We applied coding techniques [27] with the support of the Atlas.ti1

tool. We used multiple coding techniques in different steps, see details in [25]. We also
applied some statistical techniques to look for associations among variables, remarkably
Chi-square test of independence [28] (considering statistical significance if p-value <
0.05) and Cramer’s V to estimate the strength of the association (strong association
if V is ≥ 0.5, moderate if V ≥ 0.3) [29]. Not all correlations neither all significant
correlations are reported, but only those that we think are interesting and eventually
explainable. Therefore, some characteristics of the participants of projects that onemight
thought might influence the results (such as the years of experience or the development
methodology used) are onlymentioned in the results when it showed interesting insights.

Threats to Validity. We outline threats to validity and outline strategies used to deal
with them. Again we refer to the protocol document for complete explanations [25].

• Construct Validity. The studywas supported by twomain principles: rigorous planning
and the establishment of protocols for data collection and data analysis as suggested in
[30]. Additionally, the interview guide was designed and piloted. Finally, both in the
interview guide and during the actual interview, the subjects were aware that the data
and information they provided would be confidential, anonymised, and aggregated
with the rest of interviews, so the subjects could freely share their real experiences
and perceptions.

• Conclusion Validity. Throughout the coding, many concepts and their relationships
were identified.Traceability from the rawdata to the categories, and their relationships,
was preserved.Different coding techniques (theory triangulation)were used to capture
various aspects of the reuse phenomenon.

Given that some respondents didn’t really apply reuse in the selected project or even
in any other project (see RQ1 results), some of the responses given in RQ2–RQ6 are
more based on educated opinions than in past experiences. We opted by not considering
some of these responses if we thought they were too vague or too speculative.

• Internal Validity.We focused most of the questions on a single software development
project. In this way, it was possible to further inquire and analyse specific contexts
that generated a particular decision. To avoid subsequent threats: (1) the interview

1 http://atlasti.com/.

http://atlasti.com/

Industrial Practices on Requirements Reuse: An Interview-Based Study 83

guide was sent in advance to the respondents so they rarely had difficulties remem-
bering project details; (2) to minimize the risk of selecting only successful projects,
we remarked that the study was not focused on analysing “wrong practices” but on
knowing “how it is done in industrial practices”.

To address single researcher bias in the coding process, we applied triangulation
in different forms. Selected interviews were analysed independently by two researchers
and the results were discussed to identify and eliminate any individual biases. Responses
were triangulated too. In addition, the generated categories were analysed, discussed and
reviewed by the team to ensure their accuracy, understanding and agreement.

• External Validity.Qualitative studies rarely attempt to make universal generalizations
beyond the studied setting. Instead, as Robson explains [31], they are more concerned
with characterizing, explaining and understanding the phenomena under the contexts
of study. Still, we took some actions to strengthen external validity: (1) combination
of convenience sampling and maximum variation sampling to select the companies;
(2) freedom for respondents to choose the project for the interview. In addition, also
a third party involved in the study had contacts with the companies, she did not
knew about their way of working with respect to requirements engineering, so no pre-
selection criteriawas applied to choose the companies involved in the study. To support
replication and validation by independent researchers, we are making available not
just the protocol but all the coding results for the answers to research questions [32].

5 Results

In this section we report the results obtained for the 6 research questions. As general
strategy, we applied content analysis to identify categories and subcategories.We usually
present the results with bar graphics where the values are the number of respondents who
answered in this category; the total number of respondents is explicitly stated given that
usually it will be lower than the sum of respondents per category. To present the results,
we have followed a narrative style integrating quasi-quotes from the respondents2 in the
general explanations. These quasi-quotes include the identifier of the subjects between
curly braces.

5.1 RQ1. Is Requirements Reuse a Usual Practice in Industry?

A slight majority of respondents (14) stated that there was some kind of reuse in the
projects that they reported in the survey (see Fig. 1, left).

The level of reuse was quite balanced among them, with almost the same amount of
respondents reporting high level of reuse (5 respondents informing up to 85%) and low
level of reuse (6 respondents down to only 5%). The interpretation of “high” and “low”

2 With “quasi-quotes” we mean syntactical adaptations of the sentences to make them fit to the
story (e.g., including missing context in the sentence, aligning verb tenses, …).

84 X. Franch et al.

is quite consistent and the frontier seems to be in the interval [30%–50%], which was
qualified as High percentage by one respondent, compared to [30%–40%] qualified as
Low by another. Even the only respondent who qualified the level of reuse as Medium
provides a consistent interval [60%–70%]. Effort reduction also oscillates, ranging from
5% to 80%. This effort reduction is focused on the requirements engineering stage: less
effort would have been put into the project, less time would have been needed for the
elicitation of requirements, and less errors would have been made on the requirements
{S13}. As expected, there is a strong correlation among the level of the reuse and the
effort reduction (see Fig. 1, right). It is interesting to quote the observation made by
{S04} saying that in their case “more reuse would not have been more beneficial as they
already reused as much as they could”.

As a follow-up question, to those respondents who reported lack of reuse in the
selected projects, we raised some additional questions that allowed to see that 3 of them
have reused requirements in other projects, while 5 others were expecting to start reuse
in a near future. Overall, only 2 respondents reported complete lack of reuse.

Fig. 1. Requirements reuse in industry (left) and relation among level of reuse and effort reduction
(right).

Weexplored the possible impact of demographic factors into software reuse adoption.
We found an interesting statistically-relevant association with the project domain (p-
value = 0.020; V value = 0.746), so that some domains seem more prone to reuse than
others. As an extreme case, all 7 respondentswho selected projects developing embedded
systems did reuse requirements, while none of the 5 respondents who selected projects
related to internal systems reused requirements.

5.2 RQ2. What Factors Influence the Level of Adoption of Requirements Reuse?

Given that 2 out of the 14 respondents that reported reuse in the selected projects in
RQ1 were not able to identify factors influencing reuse, the answer to this research
question is based on the responses given by 12 respondents only. From these interviews,
we identified four big categories of factors (Fig. 2).

Organizational. Up to 7 respondents reported factors related to the organization.
Among them, the most mentioned one (5 respondents) was organizational culture, e.g.

Industrial Practices on Requirements Reuse: An Interview-Based Study 85

reuse seen as positive in the organization {S19}. Also, a couple of respondents men-
tioned unavailability of previous specification documents for different reasons, like not
having any more intellectual rights of the previous documents (because the organization
has been purchased by another) {S18}. Finally, one respondent highlighted maturity of
the organization, because they have a quite mature requirements process that allows that
the requirements of other projects are good enough to be reused {S04}.

Project-Related. The same number of respondents as above justified the adoption of
requirements reuse upon the similarity of the selected project to similar previous projects.
As obvious as it can seem, if there is no previous system with some similar functionality
or part that you can reuse, then it is impossible to reuse {S03}.

Human. Only mentioned by 3 respondents, who justified the adoption of reuse upon
the engagement and personal attitude of the requirements engineer who put the extra
effort to apply some requirements reuse {S11}.

Technical. Also mentioned only by 3 respondents who provided a varied set of reasons,
like compliance to a new standard to be fulfilled by the platform {S18} or impediments
for tool support (Electra was not used before, so not too many requirements were in
Electra at the start of the project and they could not be reused {S18}).

Fig. 2. Requirements reuse in industry: (a) categorization; (b) most frequent answers.

5.3 RQ3. What Types of Requirements Are More Prone to Reuse?

The majority of respondents (up to 20) provided information related to this research
question; only 4 of them didn’t make it.

We got two categories of answers: types of requirements that are prone to be reused
and types of requirements that are prone not to be reused. The majority of answers
(from 19 respondents) come from the first category (see Fig. 3) and, in fact, one type
(not surprisingly) prevails: non-functional/quality requirements (NFRs), reported by 10

86 X. Franch et al.

Fig. 3. Types of requirements prone to reuse. Fig. 4. Benefits brought by requirements reuse.

respondents (e.g. infrastructure requirements such as performance and network capacity
{S08}) because these ones might be common to other projects {S10}. Still 3 respondents
mentioned functional requirements (FRs) when they weren’t the innovative part of the
project {S05} and therefore they didn’t change from previous projects {S18}. The same
number of respondents mentioned also reuse for domain-related requirements like a
search engine {S03} or requirements related to a specific part of the system like the
client environment (operating systems, browsers, screen sizes, etc.) {S11}. Remarkably,
only one respondent mentioned reuse related to standards, namely for health & safety
issues {S15} (Fig. 4).

Types that prevent reusewere very different. For instance, {S23} identified as difficult
to reuse the requirements that evolve too much technologically, whilst {S18} was more
specific to a certain category, the group that manages the requirements of the hardware
used to activate it [a particular embedded subsystem] because from project to project
what changes most is the hardware.

5.4 RQ4. What Is the Process Followed to Implement Requirements Reuse?

Again, we had 20 respondents providing details on the process followed, and this number
increased until 22 considering some additional information related to the process itself,
like techniques, artefacts and tools used during requirements reuse.

Similar to RQ3, a prevalent response emerged (see Fig. 5, a): the most popular
process (10 respondents) was to search similar requirements in past requirements spec-
ification documents, copy them into the current specification and then adapt to the new
project. This find-copy-paste-adapt strategy at the requirements level, was applied by
3 respondents at the software requirements specification document level by looking at
other projects, finding the most similar one, duplicating it and work in the parts as
needed {S05}.

Another approach to the reuse process followed by 4 respondents was the use of
catalogues as central asset, i.e. a kind of requirements repository, and user can check the
repository by systems, subsystems, keywords, etc. and reuse something if necessary by
linking to the source and copy and pasting to the new project {S12}.

Industrial Practices on Requirements Reuse: An Interview-Based Study 87

Some artefacts or concepts were mentioned when describing the process. Remark-
ably, three respondents talked about traceability to the source having a link from where
the requirements came from {S18}. The use of tags or design rules (set of requirements
that all the projects/products have to comply with {S07}) was also reported.

Last, we inquired the respondents about tool support (see Fig. 5, b). The majority
of respondents (12) did not use tool support, but the rest did at some extent, in all cases
using the same tool as the one used for managing the requirements {S24}. Half of
them (4) reported a tool-centric approach to the reuse process, e.g. Jira allows reusing
requirements by having a main ticket (requirement) to which you can link from a new
system by creating a new ticket in another project that links to that main ticket {S10}.

Fig. 5. (a) Processes followed to implement requirements reuse; (b) Existence of tool support.

5.5 RQ5. What Are the Benefits Brought by Requirements Reuse?

Most of the respondents (22) considered reuse as a beneficial practice independently
of whether they were reusing or not in the selected project (it was beneficial {S05}
vs. it would have been beneficial {S01}). Only one respondent was absolutely negative
because at the end it was too much time to look for something, to reuse just a small
part {S03} while the other provided a contextual answer (requirements reuse is not
beneficial in my organization because everything we create is new {S06}). Statistical
analysis showed a moderate correlation (p-value = 0.037; V value = 0.426) between
the perception of reuse being not beneficial and the type of project: the only 2 people
not seeing reuse as beneficial work in projects following agile methodologies.

From those 22 respondents, 18 provided some justification to sustain their opinion.
We classified the answers into the same categories as in RQ2 (see Fig. 3).

Organizational. 7 of the respondents reported causes related to the organization, in
terms of less effort needed for eliciting and specifying the requirements {S02}. An
additional reason given by {S11} only is that a reuse infrastructure makes it possible
not having to rely that much on people experience and knowledge, making thus the

88 X. Franch et al.

organization less vulnerable. Amoderate correlation (p-value= 0.020; V value= 0.473)
informs that people perceiving organizational benefits also perceives project-related
benefits (7 out of 8 respondents).

Project-Related. Up to 12 respondents mentioned gain of efficiency in the RE process
as the main benefit brought by reuse, mainly because less time is needed for eliciting
and specifying requirements {S23}; more specifically, if there is a high-level set of
requirements already defined […] to start the discussion, you could get faster to the key
points {S09}. The second reason given by only one respondent is that reuse can bring a
standard way of specifying requirements… including the level of detail and abstraction
you should arrive {S01}.We remark that we found a strong correlation (p-value= 0.030;
V value = 0.612) among this type of benefits and years in the organization: while 12
out of the 13 respondents who worked in the organization less than 15 years reported
these benefits, only 1 out of 5 working more of 15 years reported them too. Another
correlation was only moderate (p-value = 0.043; V value = 0.414) but also interesting:
project-related benefits was mostly perceived by respondents working in projects that
follow a waterfall methodology (11 out of 13 people).

Human. AshappenedwithRQ2, thiswas the least influential category. Two respondents
argued that reuse may ease communication inside the development team by helping to
put everyone together in the same page, from developers to testers {S01}. An additional
respondent highlighted that reuse was beneficial in front of customers because it was
easier to have something ready to introduce to customers {S04} and get feedback from
them earlier.

Technical. Some of the respondents argued that requirements reuse is beneficial from
a technical perspective. One reason mentioned by 4 subjects was that with reuse in
general, you get more quality [in requirements], and because of that less errors {S19};
only {S22}mentioned amore concrete quality criterion (it is easier towrite unambiguous
requirements). Other reasons were mentioned by one respondent each, e.g. not only to
reuse the requirements, but also the information about the effort and the historical data
associated to the requirements (problems encountered, etc.) {S16}, or also (and related)
the reuse of requirements implies for them also the reuse of code, tests, etc. {S17}. It is
worth to mention a statistically significant strong correlation here (p-value = 0.001; V
value = 0.772): technical benefits are mostly perceived by people working in industry
less than 10 years (and in fact, the 4 respondents in this situation reported technical
benefits for reuse).

5.6 RQ6. What Are the Challenges to Overcome in Requirements Reuse?

Remarkably enough, 8 respondents didn’t identify any challenge to overcome related
to requirements reuse. Answers given by the remaining 16 respondents showed two
different strengths on the opinion. On the one hand, 11 respondents reported reasons that,
either as an observation from the selected project or as an educated opinion, absolutely

Industrial Practices on Requirements Reuse: An Interview-Based Study 89

prevent the adoption of reuse practices, related to three of the categories mentioned in
RQ2 and RQ5 (see Fig. 6, left):

Organizational. 2 respondents reported organizational challenges of different type:

• Immature organization: If the organization is not mature, they do not put that much
effort on requirements and they think that the effort is not worthwhile {S10}.

• Siloed projects: They don’t work enough together between projects because they have
too many projects at the same time {S01}.

• Focus on short-term benefits only (and reusing requirements produces benefits only
in the long term {S01}).

• Cost of licenses of the tools required to implement a reuse infrastructure: without
having Jira free of cost, we would have not tried {S10}.

Project-Related. 9 respondents informed about project-related challenges responding
to two causes:

• Developing a new type of system (5 responses): reuse is not applicable in a totally
new platform; there was anything before, it was totally blank {S01}.

• Developing a system in a new domain (5 responses): it can be related to the application
domain but also a new domain for the requirements engineer {S24}, meaning that
she has difficulties on reusing from a domain she does not master.

We found a strong correlation (p-value = 0.028; V value = 0.547) showing that
most of the respondents having project-related reasons to not reuse requirements (8 out
9 people) are not reusing requirements now.

Technical. 4 respondents mentioned as technical challenges:

• Difficulty to access previous requirement specifications (3 respondents): in the
extreme case, no requirements were available of the old system to be replaced {S13}.

• Lack of agreed standards: this causes that everyone writes requirements in a different
way […] so it becomes really hard to take over somebody else requirements {S01}.

• Low support from the requirements management tool: the tool their used was not used
for specifying the requirements of the system; it is used for other systems {S02}.

On the other hand, 5 respondents communicated obstacles that made reuse chal-
lenging but still possible (see Fig. 6, right). The only category mentioned by more of
one respondent was organizational, and among them, low consideration of RE in the
company was cited by 3 respondents (not too much attention is put into requirements
{S08}). Interestingly, {S03} stated as obstacle that reusing is not fun (it will cut the
creativity part of the projects) […] people likes to do new things.

90 X. Franch et al.

Fig. 6. Challenges to overcome in requirements reuse: preventing (left) or interfering (right).

6 Discussion

Observation 1. Requirement reuse is part of the requirements engineer toolbox. RQ1
reports that a slight majority of respondents have reused requirements either in the
project selected for this study or in the past. This observation aligns well with previous
studies in the field [1, 22, 23]. Putting this fact together with the factors reported as
barriers or incentives to reuse, we may conclude that reuse shall be considered not as a
universal principle that needs to be always pursued, but as yet-another-technique in the
requirements engineer toolbox. For instance, the benefits of reuse in elicitation reported
by several respondents point out that reuse can be viewed as an additional technique
supporting requirements elicitation, as interviews, focus groups and others, with its own
selection criteria [33]. Adding to this observation, the significantly statistical correlation
informed in Sect. 5.1 (use in embedded systems) and Sect. 5.5 (use in agile projects)
may hint that reuse may be more useful for some kind of projects than others.

Observation 2. Requirement engineers have a positive perception about software reuse.
Even not being used in all projects, respondents clearly consider benefits outweighing
challenges. Only one respondent was absolutely skeptical about requirements reuse.
The difference among this positive consideration and the real extent and level of reuse
reported in the study has to be attributed as said in Observation 1: reuse is not for every
project but when contextual conditions apply, it will bring benefits.

Observation 3. Organizational and project-related factors are determinant to reuse,
over human and technical factors. Connecting with Observation 1 again, it is clear that
requirements reuse is hindered by new types of systems and new domains, although the
fact that non-functional requirements have been identified as the most reusable artefact
opens the door for their reuse at least at a high abstraction level even if this situation.
About human factors, they are recognized to be capital for RE as a discipline, given the
central role that stakeholders play. However, the study shows that this is not the case
when it comes to requirements reuse. In fact, the only factor that is mentioned by some is
the requirements engineer attitude towards adopting reuse and positive impact on human
communication.

Industrial Practices on Requirements Reuse: An Interview-Based Study 91

Observation 4. Requirements reuse is still implemented in a very simple way. As the
answer toRQ4 shows, copy-and-paste based solutions are largely dominant as reuse tech-
nique, which fully aligns to our previous questionnaire-based study [2]. This dominance
has a negative effect in the reuse level, as indicated by a statistically significant correla-
tion (p-value = 0.008; V value = 0.807) that we found: most of the respondents using
this approach to reuse report Low or Medium level of reuse. The main reason behind the
dominance of copy-and-paste solutions can be the absence of tool support and the lack of
well-established methods in the organization. The first candidate reason is supported by
another significant correlation (p-value= 0.002; V value= 0.632): all respondents using
catalogues for requirements reuse have tool support (i.e., the catalogue is not a separate,
ad-hoc instrument but it is integrated somehow in the requirements management tool).

Comparing to the relatedwork reported in Sect. 3, we can observe how some findings
in our study are aligned with their observations (reuse level and benefits), but not all of
them (neither obstacles nor adoption influencing factors) (Table 3):

• The level of reuse found in this study (14 respondents reusing in their selected projects,
i.e. 58%) is in the lower range of the interval [59%–72%] reported in [22, 23].

• Related work mentions three benefits. One of them, efficiency in the RE process, is
the main benefit uncovered by our study. Another benefit, reduced project costs, is
directly related to the decrease in cost identified as second main benefit in our study.
Instead, the third benefit, better understanding of requirements, is only marginally
mentioned by our respondents.

• The two obstacles identified in the related work are just marginally mentioned in our
study. Instead, the main challenges and obstacles that we report in this paper are not
identified in the previous work.

• Last, the existence of tool support was not a major influencing factor in our study.

Table 3. Comparison of this study and the previous questionnaire-based study reported in [1]

Observations in the questionnaire-based study This study

A significant percentage of the respondents practice requirements reuse PA

The level of requirements reuse is usually low PA

Participants of larger organizations declare a higher level of reuse NE

Requirements reuse techniques most commonly used are those based on textual
copy and subsequent modification of requirements from previous projects

FA

There is a correlation between the level of requirements reuse and the
requirements reuse techniques used

PA

Organizations with more established software processes and methods are the ones
that declare a higher level of requirements reuse

NE

NFRs are more likely to be similar or recurrent among projects FA

Ignorance of reuse techniques and processes is the main reason for the lack of
reuse adoption

NE

92 X. Franch et al.

To finalize this discussion, we compare the observations reported in our previous
questionnaire-based study [1] with those uncovered in this current study. For each obser-
vation in [1] related to reuse, we assign as value: if the current study is fully aligned
(FA), partially aligned (PA), misaligned (MA) or does not provide any evidence in this
direction (NE). It is worth to mention that none of the 8 findings in [1] is contradicted
in this study, but on the other side, only 2 of them are fully endorsed by ours, with 3
others partially aligned and 3 for which we did not get any evidence. This last statement,
together with the slight misalignments with related work mentioned above, calls for
more empirical studies to gather more evidence to build a theory on requirements reuse.

7 Conclusions and Future Work

In this study, we have presented an empirical study based on interviewswith practitioners
on the adoption level of requirements reuse and the practices, benefits and challenges
related. We responded six research questions, which results are:

• RQ1: Moderate adoption of reuse practices by practitioners
• RQ2: Prevalence of organizational and project-related factors influencing reuse
adoption.

• RQ3: Non-functional requirements as the type of requirement more prone to reuse.
• RQ4: Find-copy-paste-adapt the most popular approach to implement reuse.
• RQ5: Prevalence of organizational and project-related benefits stemming from reuse
adoption.

• RQ6: Prevalence of project-related challenges to overcome when reusing.

In addition to giving answer to the research question, we found some interesting
insights. We found that requirement reuse is quite a common practice for requirements
engineers and that they have a positive perception of reuse, since it usually leads to
benefits. However, the determinant factors to reuse are associated to organizational and
project-related issues, and requirements reuse is still implemented in a very simple way.

Finally, we compare our results with the related work and a previous questionnaire-
based study. In both cases, we can observe how some results from our study are aligned
with their observations, but not all of them (mainly because we did not get enough
evidence to consider it a result as such).

Future work moves on the direction of replicating these studies in other settings in
order to find further evidence that may help in establishing a theory on the topic.

Acknowledgements. This work has been partially funded by the Horizon 2020 project OpenReq,
which is supported by the European Union under the Grant Nr. 732463.

References

1. Palomares, C., Quer, C., Franch, X.: Requirements reuse and requirement patterns: a state of
the practice survey. Empirical Softw. Eng. 22(6), 2719–2762 (2017). https://doi.org/10.1007/
s10664-016-9485-x

https://doi.org/10.1007/s10664-016-9485-x

Industrial Practices on Requirements Reuse: An Interview-Based Study 93

2. Irshad,M., Petersen, K., Poulding, S.: A systematic literature review of software requirements
reuse approaches. Inf. Softw. Technol. 93, 223–245 (2018)

3. de Gea, J.M.C., Nicolás, J., Alemán, J.L.F., Toval, A., Vizcaíno, A., Ebert, C.: Reusing
requirements in global software engineering. In: Maalej, W., Thurimella, A. (eds.) Managing
Requirements Knowledge. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
34419-0_8

4. Pacheco, C., Garcia, I., Calvo-Manzano, J.A., Arcilla, M.: Reusing functional software
requirements in small-sized software enterprises: a model oriented to the catalog of
requirements. Requirements Eng. J. 22(2), 275–287 (2017)

5. Haeng-Kon, K.: Effective domain modeling for mobile business AHMS (Adaptive Human
Management Systems) requirements. In: SNPD 2014 (2014)

6. Veleda, R., Cysneiros, L.M.: Towards a tool to help exploring existing non-functional
requirements solution patterns. In: REW 2017 (2017)

7. Chung, L., Supakkul, S.: Capturing and reusing functional and non-functional requirements
knowledge: a goal-object pattern approach. In: IRI 2006 (2006)

8. Kundi, M., Chitchyan, R.: Use case elicitation with FrameNet frames. In: REW 2017 (2017)
9. Salini, P., Kanmani, S.: A knowledge-oriented approach to security requirements for an E-

voting system. Int. J. Comput. Appl. 49(11), 21–25 (2012)
10. de Brock, B.: Towards pattern-driven requirements engineering: development patterns for

functional requirements. In: MoDRE 2018 (2018)
11. Franch, X., Quer, C., Guerlain, C., Renault, S., Palomares, C.: Constructing and using soft-

ware requirement patterns. In: Maalej, W., Thurimella, A. (eds.) Managing Requirements
Knowledge. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34419-0_5

12. Renault, S., Méndez-Bonilla, O., Franch, X., Quer, C.: PABRE: pattern-based requirements
elicitation. In: RCIS 2009 (2009)

13. Panis, M.C.: Reuse of architecturally derived standards requirements. In: RE 2015 (2015)
14. Darimont, R., Zhao, W., Ponsard, C., Michot, A.: Deploying a template and pattern library

for improved reuse of requirements across projects. In: RE 2017 (2017)
15. Srivastava, S.: A repository of software requirement patterns for online examination system.

Int. J. Comput. Sci. 10(3), 247 (2013)
16. Chen, X., Han, L., Liu, J., Sun, H.: Using safety requirement patterns to elicit requirements

for railway interlocking systems. In: REW 2016 (2016)
17. Knote, R., Söllner, M., Leimeister, J.M.: Towards requirement patterns for smart physical

work assistants. In: REW 2017 (2017)
18. Niu, N., Savolainen, J., Niu, Z., Jin, M., Cheng, J.R.C.: A systems approach to product line

requirements reuse. IEEE Syst. J. 8(3), 827–836 (2014)
19. Chiang, C.C., Neubart, D.: Constructing reusable specifications through analogy. In: SAC

1999 (1999)
20. Bonilla, B., Crespo, S., Clunie, C.: Reuse of Use Cases Diagrams: An Approach based on

Ontologies and Semantic Web Technologies. Int. J. Comput. Sci. 9(1), 24–29 (2012)
21. Carvalho, R.M., Andrade, R.M.C., Oliveira, K.M., Kolski, C.: Catalog of invisibility

requirements for UbiComp and IoT Applications. In: RE 2018 (2018)
22. Chernak, Y.: Requirements reuse: the state of the practice. In: SWSTE 2012 (2012)
23. Bakar, N.H., Kasirun, Z.M.: Exploring software practitioners perceptions and experience in

requirements reuse: an empirical study in Malaysia. Int. J. Softw. Eng. Technol. 1(2), 33–42
(2014)

24. Baig, J.J.A., Al Fadel, M.A.: Measuring reusability during requirement engineering of an
ERP implementation. In: ICICIS 2017 (2017)

25. Palomares, C., Franch, X., Quer, C.: Industrial practices on requirements reuse: an interview-
based study – research protocol. http://tiny.cc/reuse-protocol

https://doi.org/10.1007/978-3-642-34419-0_8
https://doi.org/10.1007/978-3-642-34419-0_5
http://tiny.cc/reuse-protocol

94 X. Franch et al.

26. Oates, B.J.: Researching Information Systems andComputing. SAGEPublications, Thousand
Oaks (2006)

27. Saldana, J.: The Coding Manual for Qualitative Research. SAGE Publications, Los Angeles
(2009)

28. Field, A.: Discovering Statistics Using SPSS. SAGE Publications, London (2009)
29. Cohen, J.: Statistical PowerAnalysis for theBehavioral Sciences, 2nd edn. Lawrence Erlbaum

Associates, Hillsdale (1988)
30. Runeson, P., Höst,M.:Guidelines for conducting and reporting case study research in software

engineering. Empirical Softw. Eng. 14(2), 131 (2009)
31. Robson, C.: Real World Research: A Resource for Social Scientists and Practitioner-

Researchers. Blackwell Publishers Inc., Oxford (2002)
32. Franch, X., Palomares, C., Quer, C.: Industrial practices on requirements reuse: an interview-

based study – coding results. http://tiny.cc/reuse-replication-package
33. Carrizo,D.,Dieste,O., Juristo,N.: Systematizing requirements elicitation technique selection.

Inf. Softw. Technol. 56(6), 644–669 (2014)

http://tiny.cc/reuse-replication-package

Privacy and Legal Requirements

Disambiguating Requirements Through
Syntax-Driven Semantic Analysis

of Information Types

Mitra Bokaei Hosseini1(B), Rocky Slavin2, Travis Breaux3, Xiaoyin Wang2,
and Jianwei Niu2

1 St. Mary’s University, San Antonio, TX, USA
mbokaeihossein@stmarytx.edu

2 University of Texas at San Antonio, San Antonio, TX, USA
{rocky.slavin,xiaoyin.wang,jianwei.niu}@utsa.edu

3 Carnegie Mellon University, Pittsburgh, PA, USA
tdbreaux@andrew.cmu.edu

Abstract. [Context and motivation] Several state laws and app mar-
kets, such as Google Play, require the disclosure of app data practices
to users. These data practices constitute critical privacy requirements
statements, since they underpin the app’s functionality while describ-
ing how various personal information types are collected, used, and with
whom they are shared. [Question/Problem] When such statements con-
tain abstract terminology referring to information types (e.g., “we collect
your device information”), the statements can become ambiguous and
thus reduce shared understanding among app developers, policy writers
and users. [Principle Ideas/Results] To overcome this obstacle, we pro-
pose a syntax-driven method to infer semantic relations from a given
information type. We use the inferred relations from a set of informa-
tion types (i.e. lexicon) to populate a partial ontology. The ontology is a
knowledge graph that can be used to guide requirements authors in the
selection of the most appropriate information type terms. [Contributions]
Our method employs a shallow typology to categorize individual words
in an information type, which are then used to discharge production rules
in a context-free grammar (CFG). The CFG is augmented with seman-
tic attachments that are used to generate the semantic relations. This
method is evaluated on 1,853 unique information types from 30 privacy
policies to yield 0.99 precision and 0.91 recall when compared to human
interpretation of the same information types.

Keywords: Privacy policy · Abstraction · Ontology

1 Introduction

Mobile and web application (app) companies manage data practice requirements
concerning information collection, use, and sharing. These requirements are com-
municated to users through privacy policies [1,18]. When describing data prac-
tices, privacy policies often use vague, high-level terms with unclear conditions
c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 97–115, 2020.
https://doi.org/10.1007/978-3-030-44429-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_7

98 M. Bokaei Hosseini et al.

to generalize a wide range of information types [29]. To be comprehensive, the
language used in these policies tends to be ambiguous, which consequently leads
to multiple, unwanted interpretations [25]. Ambiguity can also reduce the shared
understanding among app developers, policy writers, and regulators who need
to support privacy compliance and data transparency [7]. Such misunderstand-
ing has consequences, such as the recent $5 billion settlement of Federal Trade
Commission with Facebook [16]. This penalty arose from poor data practices
resulting in leaking the personal information of 87 million users to third parties.

To ensure data transparency and compliance, methods have been proposed
to analyze data practices in privacy policies. For example, Breaux et al. formal-
ized data practice requirements from privacy policies using Description Logic [6],
to automatically detect conflicting requirements across interacting services [8].
Tracing privacy requirements across policies can enhance developers’ under-
standing of third-parties’ data practices and comply with legal requirements,
such as General Data Protection Regulation (GDPR), Articles 13.1 and 14.12.
Other researchers have proposed techniques to trace requirements from privacy
policies to app code using lookup tables, platform permissions, and information
flow analysis [28,33]. These methods were based on a manually-compiled lexicon
(i.e. set of information types), wherein information types were grouped into cat-
egories tagged by keywords, such as “location”, “contact”, or “identifier” [33].
Coarse categorization can lead to inaccuracies, e.g., the phrase “WiFi SSID”
can be construed to be a type of location information [33], perhaps because the
corresponding technology can be used to infer device locations; however, this
type does not constitute a location.

Hypernymy occurs when a more abstract or general information type is used
instead of a more specific information type (e.g., the broader term “device infor-
mation” used in place of “mobile device identifier”) [3]. Hypernymy permits
multiple interpretations of words and phrases, which leads to ambiguity and
inconsistency in traceability.

Fig. 1. Ontology example

Consider the following snippet from EA Games’ privacy policy1 stating, “We
collect other information automatically [. . .], including: [. . .]; Mobile and other
1 https://www.ea.com/legal/privacy-policy.

https://www.ea.com/legal/privacy-policy

Disambiguiating Requirements 99

hardware or device identifiers; Browser information, including your browser type
and the language you prefer; [. . .]; Information about your device, hardware and
software, such as your hardware settings and components [. . .]”. In this example,
an analyst may make several inferences: (1) that “mobile identifiers”, “hardware
identifiers”, and “device identifiers” are all kinds of “identifiers” that EA collects;
(2) that “browser type” and “browser language” are both kinds of “browser
information”; (3) “hardware information” and “software information” can be
inferred as specific kinds of “device information”; and (4) that “hardware settings
and components” are a specific kind of “hardware information”. The analyst
can infer such hypernymy relationships between information types intuitively by
applying their domain knowledge and experience. An analyst who documents
these inferences could create a reusable ontology, shown in Fig. 1, to illustrate
each term and it’s semantic relationships to other terms via hypernymy.

Ontologies are useful in dealing with requirements that are presented in
potentially abstract human language. Without an ontology, analysts may be
inconsistent in their interpretations by inconsistently applying heuristics in an ad
hoc manner. In contrast, ontologies enable precise, reusable and semi-automated
analysis of requirements [8,9,31,32].

Prior work on ontology construction has relied on manual comparison of
information types [31], which is tedious and still susceptible to human error due
to fatigue and gaps in analyst domain knowledge. Furthermore, the language use
evolves, requiring ontology reconstruction. Two recent studies employed regular
expressions that were hand-crafted from individual policy statements to extract
hypernymy [12,21]. These approaches require a new analysis for each new policy,
which does not generalize well.

To summarize, the research has shown the significance of utilizing ontologies
in disambiguating vague and abstract requirements [8,9,31,32]. However, the
current ontology construction methods rely on manual analysis, lack scalability
or validation on information types from various domains (e.g., app categories
and data practices). To address these issues and enable easier, more consistent
ontology construction, we propose a syntax-driven semantic analysis method
to construct an ontology. This method is evaluated on information types from
six domains of mobile and web-based privacy requirements considering various
data practices. The contributions of this paper are two-fold: (1) a syntax-driven
method to infer semantic relations from a given information type. This method
is based on the principle of compositionality, which states the meaning of each
phrase can be derived from the meaning of its constituents [15,23]. Using this
principle, we developed a context-free grammar (CFG) augmented with semantic
attachments [2] over typed constituents of an information type to infer seman-
tic relations between the information type and its constituents. (2) an empiri-
cal evaluation of our syntax-driven semantic analysis method on sample set of
1,138 information types from 30 mobile and web-based apps’ requirements in six
domains, including shopping, telecommunication, social networks, employment,
health, and news.

100 M. Bokaei Hosseini et al.

This paper is organized as follows. In Sects. 2 and 3, we discuss important
terminology and related work. In Sect. 4 we introduce our method. In Sect. 5, we
present the evaluation and results, followed by threats to validity and concluding
remarks in Sects. 6 and 7.

2 Background

In this section, we introduce terminology, datasets, and research method used
throughout this paper.

Hypernymy : a relationship between two noun phrases where the meaning of one
(hypernym) is more generic than the other (hyponym), e.g., “device information”
is a hypernym of “device ID”.

Meronymy : a part-whole relationship between two noun phrases, e.g., “device
ID” is a part of “device”.

Synonymy : a relationship between two noun phrases with a similar meaning or
abbreviation, e.g., “IP” is synonym of “Internet protocol”.

Lexicon: a collection or list of noun phrases that are information type names.

Ontology : an arrangement of concept names in a graph in which terms are con-
nected via edges corresponding to semantic relations, such as hypernymy and
synonymy, among others [24]. In this paper, we only consider information type
names.

Morphological Variant : a concept name that is a variant of a common lexeme,
e.g., “device ID” is a morphological variant of “device”.

In the definitions above, we assume that noun phrases expressed in text
have a corresponding concept and that the text describes one name for the
concept. This relationship between the phrase and concept is also arbitrary,
as noted by Saussure in his theory of the signifier, which is the symbol that
represents a meaning, and the signified, which is the concept or meaning denoted
by the symbol [11]. Peirce defines a similar relationship between sign-vehicles and
objects, respectively [20].

Context-free Grammar : a set of production rules, expressing the way that sym-
bols of a language can be grouped and ordered together [24].

Semantic Attachment : each production rule in a grammar is mapped to its
semantic counterpart, called semantic attachment [2].

Lexicon L1: a previously published lexicon containing 351 platform-related infor-
mation types (e.g., “IP address”) defined as “any information that the app or
another party accesses through the mobile platform that is not unique to the
app.” The information types were extracted from collection data practices of 50
mobile app privacy policies [21,31].

Lexicon L2: a previously published lexicon containing 1,853 information types
related to any data collection, use, retention, and sharing practices, extracted

Disambiguiating Requirements 101

from 30 mobile and web app privacy policies across six domains (shopping,
telecommunication, social networks, employment, health, and news) [12].

Grounded Theory : a qualitative inquiry approach that involves applying codes
to data through coding cycles to develop a theory grounded in the data [30].
We describe three applications [10] in this paper: (1) codes applied to phrases in
Lexicon L1 to construct a context-free grammar; (2) memo-writing to capture
results from applying the grammar and its semantic attachments to infer rela-
tions from L1; and (3) theoretical sampling to test the proposed method on a
sample set of information types in lexicon L2.

3 Related Work

Lexicons play an important role in reducing ambiguity and improving the qual-
ity of specifications [17]. Boyd et al. proposed to reduce ambiguity in controlled
natural languages by optimally constraining lexicons using term replaceability
[5]. Our proposed method improves lexicon development through automation to
account for discovering new, previously unseen terms. By incorporating seman-
tic relationships between terms, a lexicon can be expanded into an ontology.
Breitman and do Prado Leite describe how ontologies can be used to analyze
web application requirements [9]. Breaux et al. use an ontology to identify con-
flicting requirements across vendors in a multi-stakeholder data supply chain [8].
Their proposed ontology was formalized for three apps (i.e., Facebook, Zynga,
and AOL) and contains hierarchies for actors roles, information types, and pur-
poses. Their work motivates the use of ontologies in requirements analysis, yet
relies on a small set of policies and has not been applied at scale.

Oltramari et al. propose using a formal ontology to specify privacy-related
data practices [27]. The ontology is manually populated with practice categories,
wherein each practice has properties, including information type. While the
ontology formalizes natural language privacy requirements, there are no seman-
tic relations formalized among information types, thus the ontology does not
encode hypernymy.

Zimmeck et al. proposed an approach to identify the misalignments between
data practices expressed in privacy requirements and mobile app code [33]. The
approach uses a bag-of-words for three information types: “device ID”, “loca-
tion”, and “contact information”. For example, “IP address” is contained in
the bag-of-words associated with device ID. Without an ontology, this approach
cannot distinguish between persistent and non-persistent types, which afford
different degrees of privacy risk to users.

Slavin et al. identify app code that is inconsistent with privacy policies using
a manually constructed ontology [22,31]. The approach overcomes the limitation
of Zimmeck et al. [33] and exemplifies the efficacy of ontologies for requirements
traceability. However, it is costly and lacks scalability due to: (1) the time spent
by analysts to compare information types, and (2) errors generated by analysts
during comparison [22].

102 M. Bokaei Hosseini et al.

Hosseini et al. [21] proposed 26 regular expression patterns to parse the infor-
mation types in lexicon L1 (see Sect. 2) and to infer semantic relations based on
their syntax. The discovered patterns fail to cover all the information types in
lexicon L1 and the approach requires extending the pattern set for new policies.
To address this problem, we propose a context-free grammar to formally infer
all the information types in L1 with regard to pre-defined inference heuristics
that are policy-independent.

Lexical ontologies, such as WordNet, can be used in requirements analysis.
WordNet contains English words grouped into nouns, verbs, adjectives, adverbs,
and function words [13,26]. Within each category, the words are organized by
their semantic relations, including hypernymy, meronymy, and synonymy [13].
However, only 14% of information types from a privacy policy lexicon [22] are
found in WordNet, mainly because the lexicon is populated with multi-word,
domain-specific phrases. Therefore, finding an information type can be a chal-
lenging task for requirement analysts. We aim to address this limitation and
facilitate automated analysis of data requirements.

4 Ontology Construction Method

Figure 2 presents our method overview given a privacy policy lexicon. This figure
is summarized as follows: in step 1, information types in a lexicon are pre-
processed and reduced; in step 2, an analyst manually assigns semantic roles
to the words in each reduced information type, a step that is linear in effort
in the size of the lexicon; in step 3, a context-free grammar (CFG) and its
semantic attachments are used to automatically infer morphological variants
and candidate ontological relations.

Fig. 2. Ontology construction method overview

The production rules that comprise the CFG and that are introduced in
this paper are used to formalize and analyze the syntax of a given information
type. To infer semantic relations, we implement the rule-to-rule hypothesis [2] by
mapping each production rule in the CFG to its semantic counterpart, presented
using λ-calculus.

Disambiguiating Requirements 103

4.1 Lexicon Reduction

In step 1, the information types from the input lexicon are reduced as follows:
(1) plural nouns are changed to singular nouns, e.g., “peripherals” is reduced to
“peripheral”; (2) possessives are changed to non-possessive form, e.g., “device’s
information” is reduced to “device information”; and (3) suffixes “-related”,
“-based”, and “-specific” are removed, e.g., “device-related” is reduced to
“device”;

4.2 Semantic Role Tags

Given the reduced lexicon as input, step 2 consists of tagging each word in a
phrase with one of five semantic roles: modifier (m), which describe the quality
of a head word, such as “mobile” and “personal”; thing (t), which is a concept
that has logical boundaries and can be composed of other things; event (e),
which describe action performances, such as “usage”, “viewing”, and “clicks”;
agent (a), which describe actors who perform actions or possess things; property
(p), which describe the functional feature of an agent, place or thing such as
“date”, “name”, “height”; and (x) which is an abstract tag indicating any general
category of information, including “information”, “data”, and “details,” among
others. In an ontology, the concept that corresponds to x (e.g., “information”) is
the most general, inclusive concept in the hierarchy [21]. The roles are the result
of grounded analysis on lexicon L1 conducted by Hosseini et al. [21].

Part-of-speech (POS) is commonly used to tag natural language phrases and
sentences [24]. event (e) words, for example, often correspond to noun-forms of
verbs with special English suffixes (e.g., “usage” is the noun form of “use” with
the suffix “-age”), and things (t) and actors (a) are frequently nouns. However,
the analysis of lexicon L1 shows that only 22% of tagged sequences can be
identified using POS and English suffixes [21]. Therefore, we rely on manual
tagging of words using five semantic roles by two analysts. The effort required
for this task is linear in the size of lexicon.

The information type tagging is expressed as a continuous series of letters
that correspond to the semantic roles. Figure 3 shows an example informa-
tion type, “mobile device identifier” that is decomposed into the atomic words:
“mobile”, “device”, and “identifier”, and presented with tag sequence mtp. The
intuition behind step 2 in the overall approach is based on the observation that
information types are frequently variants of a common lexeme.

Fig. 3. Example of lexicon phrase, tokenized and tagged

104 M. Bokaei Hosseini et al.

4.3 Syntactic Analysis of Information Types Using Context-Free
Grammar

A context-free grammar (CFG) is a quadruple G = 〈N,V,R, S〉, where N , V ,
and R are the sets of non-terminals, terminals, productions, respectively and
S ∈ N is the designated start symbol.

Step 3 (Fig. 2) begins by processing the tagged information types from the
reduced lexicon using the CFG in Table 1. The CFG represents the antecedent
and subsequent tags used to infer morphological variants from a given informa-
tion type. The grammar is yielded by applying grounded analysis to the tag
sequences of all information types in lexicon L1. Notably, the grammar distin-
guishes between four kinds of tag sub-sequences: (1) a type that is modified
by a modifier, called Modified1 ; (2) a type that is modified by an agent (e.g.,
“user” or “company”) or event (e.g., “click” or “crash”), called Modified2 ; (3)
a Final type that describes the last sequence in a typed string, which can end
in a part, an information suffix, or an empty string; (4) for any parts of a whole
(Part), these may be optionally described by modifiers, other parts, or things;
and (5) Info, including those things that are described by information (e.g.,
“device information”).

Table 1. Context-free grammar for syntax analysis

<S>→<Modified1> | <Modified2> | <Final> | x

<Modified1>→ m<Modified1> | m <Modified2> | m <Final> | mx

<Modified2>→ a <Final> | e <Final> | a <Info>

<Final>→ t <Part> | t <Info> | e <Info> | p

<Part>→<Modified1> | <Modified2> | <Final>

<Info>→ x|ε

Figure 4 shows the parse tree for the phrase “mobile device identifier” with
type sequence mtp. Next, we discuss how these productions are extended with
semantic attachments to infer ontological relationships.

4.4 Inferring Morphological Variants and Semantic Relations

Based on the compositionality principle, the meaning of a sentence can be con-
structed from the meaning of its constituents [15,23]. We adapt this principle to
infer semantics between an information type and its constituent morphological
variants by extending the CFG production rules with semantic attachments.

Each production r ∈ R, r : α → β1...βn is associated with a semantic rule
α.sem : {f(β1.sem, ..., βn.sem)}. The semantic attachment α.sem states: the
representation assigned to production r contains a semantic function f that
maps semantic attachments βi.sem to α.sem, where each βi, 1 ≤ i ≤ n is a

Disambiguiating Requirements 105

Fig. 4. Parse tree for “mobile device identifier” with tag sequence “mtp”

constituent (terminal or non-terminal symbol) in production r. The semantic
attachments for each production rule is shown in curly braces {. . .} to the right of
the production’s syntactic constituents. Due to space limitations, we only present
the semantic attachments of four production rules used in Fig. 4 in Table 2. The
full table is published online2. We first introduce λ-calculus functions used in
Table 2, before presenting an example where semantic attachments are applied
to the tagged information type “mobile device identifier-mtp”.

In λ-calculus, functions are represented by symbolic notations called λ-
expressions. Variables and constants are atomic constituents of λ-expressions.
Complex λ-expressions can be built from variables based on their application
and abstraction [19].

Unary function WordOf(y) maps a non-terminal to its tagged phrase
sequence. For example, WordOf(Final) returns “device identifier-tp” in Fig. 4.
In this example, Final refers to the left-side non-terminal of Modifier1.

Concat(y, z) is a binary function used to concatenate two tagged phrase
sequences, for example Concat(mobile-m, information-x) produces “mobile
information-mx”.

SubV ariant(y) is a higher-order function accepting other functions like
Concat as an argument. It returns a list of variants that can be constructed using
the input argument, e.g., SubV ariant(mobile device identifier-mtp) returns the
following list of variants: [mobile device identifier-mtp, device identifier-mtp,
identifier-p].

IsInfo(y) is a unary function on a tagged phrase sequence, returning
an empty list if the input sequence matches “information-x” and Eqv(y,
information-x), otherwise. For example, IsInfo(data-x) returns Eqv(data-x,
information-x), since “data-x” and “information-x” do not match.

2 http://galadriel.cs.utsa.edu/∼rslavin/ontology-grammar/.

http://galadriel.cs.utsa.edu/~rslavin/ontology-grammar/

106 M. Bokaei Hosseini et al.

KindOf(y, z), PartOf(y, z), and Eqv(y, z) are higher-order functions that
map two tagged phrases to a single-element list containing a candidate hyper-
nymy, meronymy, and synonymy axioms, respectively.

Map(y, z) is a binary higher-order function that distributes the application
of a function over a list of tagged phrases. More precisely, it can be shown as:

Map(f, [E1, ..., En]) = [(f)E1, ..., (f)En]

Table 2. Rules and semantic attachments for “mobile device identifier-mtp”

Production Semantic attachments Line

p1 <Modified1>→m<Final> {λy.λm.Final.sem(Concat(y, m)); 1

λm.KindOf(WordOf(Modified1), Concat(m, information-x)); 2

KindOf(WordOf(Modified1), WordOf(Final))} 3

p2 <Final>→t <Part> {λy.λt. Part.Sem(Concat(y, t)); 1

KindOf(WordOf(Final), WordOf(Part)); 2

Map(λz.PartOf(Concat(z, WordOf(Part)),z))λy.λt

SubVariant(Concat(y, t))}
3

p3 <Part>→<Final> {λy.Final.sem(y)} 1

p4 <Final>→p {(Map(λp.λz.PartOf(p, z)))λy.SubVariant(y); 1

λy.λp.PartOf(Concat(y,p),y)} 2

We now describe step 3 (Fig. 2) using the tagged information type “mobile
device identifier-mtp”. The tagged information type is first parsed using the
grammar in Table 1. Its semantics are computed by visiting the nodes of the
parse tree in Fig. 4 and applying the corresponding semantic attachments from
Table 2 during a single-pass, top-down parse. Following this order, the semantics
of production rule p1 is mapped to the following λ-expressions, where l in p1.l
refers to line l in Table 2:

p1.1 represents an abstraction with two lambda variables, where y refers to the
inherited tagged phrase from the right and top of the parse tree and m refers
to the tagged phrase “mobile-m” read through the lexical analyzer. In this case,
variable y refers to an empty string, since no tagged phrase precedes “mobile-m”.
Therefore, the first λ-expression can be reduced to Final.sem(“mobile-m”). In
this λ-expression, “mobile-m” is inherited by non-terminal Final in the parse
tree. Based on the principle of compositionality, the semantics of a phrase
depends on the order and grouping of the words in a phrase [23]. An unambiguous
grammar like the CFG cannot infer all possible variants, such as “mobile device”
and “device identifier”, by syntax analysis alone, because the input phrase
“mobile device identifier” would require both left- and right-associativity to be
decomposed into these two variants. We overcome this limitation by introducing

Disambiguiating Requirements 107

an unambiguous right-associative grammar and utilize λ-calculus to ensure that
each non-terminal node inherits the sequence of words from the node’s parents
and siblings.

p1.2 represents an abstraction which reduces to a list containing a seman-
tic relation: [KindOf(“mobile device identifier-mtp”, “mobile information-mx”)]
through reading variable m from the lexical analyzer. One might raise a point
that “mobile information” is not a valid phrase. We acknowledge this fact, how-
ever, applying this rule to phrases such as “unique device identifier”, “anonymous
device information”, and “anonymous demographic information” will results in
creation of “unique information”, “anonymous information”, and “demographic
information”, which are meaningful phrases. We emphasize that the variants and
relations generated through our method are only candidates and might not be
semantically sound.

p1.3 represents a λ-expression which is the application of KindOf on two
operands, which reduces to a single element list [KindOf(“mobile device
identifier-mtp”, “device identifier-tp”)]. In the next step, we analyze the seman-
tics of production rule p2 that are presented using three λ-expressions:

p2.1 represents a λ-expression to concatenate tagged phrases associated with the
inherited variable y and variable t and passes the concatenation result (“mobile
device-mt”) to direct descendants of this node.

p2.2 represents the application of KindOf function on “device identifier-tp”
and “identifier-p”, resulting a hypernymy relation in a single element list.

p2.3 is an application that maps a λ-expression to a list of variants.
This list is constructed using a λ-abstraction that can be reduced to Sub-
Variant(“mobile device-mt”), producing [mobile device-tp, device-t]. Finally,
Map applies PartOf function on all the elements of this list resulting in
[PartOf(“mobile device identifier-mtp”, “mobile device-mt”), PartOf(“device
identifier-tp”, “device-t”)].

Without inheriting “mobile-m” from the ancestors, we would not be able
to infer the meronymy relationships between “mobile device identifier-mtp” and
“mobile device-mt”. Moreover, variant “mobile device-mt” is generated using
syntax analysis of the tagged phrase sequence and semantics attached to the
syntax. In contrast, other tagged phrases like “device identifier-tp” are solely
generated through syntax analysis of “mobile device identifier-mtp”. By aug-
menting syntax analysis with semantic attachments, we capture the ambiguity
of natural language as follows. If we show the grouping using parenthesis, we
can present the phrase associated with “mobile device identifier-mtp” as (mobile
(device identifier)) which means mobile is modifying device identifier, e.g., an
IP address as a kind of device identifier that changes based on location which
makes it mobile. Another possible grouping is ((mobile device) identifier) which is
interpreted as an identifier associated with a mobile device, e.g., a MAC address
associated with a mobile phone, tablet or laptop. Therefore, grouping of words
in “mobile device identifier-mtp” helps us consider all the possible semantics
associated with an ambiguous phrase.

108 M. Bokaei Hosseini et al.

p3.1 is used to pass the inherited tagged phrase “mobile device-mt” to Final as
the right-hand side, non-terminal. The semantics of production rule p4 as the
last node visited in the parse tree is mapped to the following attachments:

p4.1 is the application of Map to a variant list constructed from a λ-abstraction.
This abstraction is reduced to SubVariant(“mobile device-mt”), returning the
following variant list: [“mobile device-mt”, “device-t”]. Finally, Map applies
PartOf function on all the elements of this list resulting in [PartOf(“identifier-
p”, “mobile device-mt”), PartOf(“identifier-p”, “device-t”)].

p4.2 represents an abstraction that reduces to [PartOf(“mobile device identifier-
mtp”, “mobile device-mt”)].

All the above production rules and semantic attachments yield a collection
of candidate relations contained in multiple lists. As the final procedure in step
3, we merge the lists and add the relations to the output ontology.

5 Evaluation and Results

We answer the following research questions as part of our evaluation:

RQ1: How much, and to what extent, does the grammar generate the rela-
tionships between information type pairs in Lexicon L1?
RQ2: Which semantic relations are missed by the method in comparison with
the ground truth ontology?
RQ3: What level of effort is required to maintain the method for each new
lexicon addition, considering the type of apps and data practices the lexicon
is constructed from?
RQ4: How reliable is the method with respect to a new lexicon addition?

Research questions RQ1 and RQ2 evaluate the ontology construction method
using lexicon L1, discussed in Sect. 5.1. Research questions RQ3 and RQ4 eval-
uate the generalization and coverage of our method using lexicon L2, discussed
in Sect. 5.2.

5.1 Evaluation Using Lexicon L1

We evaluate ontology construction method using lexicon L1 to answer RQ1 and
RQ2. L1 contains 351 information types which are used to develop the context-
free grammar (CFG) in Sect. 4.3. We acquired the reduced and tagged informa-
tion types in L1 online3. Given 335 reduced tagged information types, the CFG
and semantic attachments yield 4,593 relations between phrases that share at
least one word, which we published here (See Footnote 2).

We require a ground truth (GT) ontology containing the relations between
information types in lexicon L1 to evaluate the accuracy of the inferred relations
3 http://gaius.isri.cmu.edu/dataset/plat17/study-platform-lexicon-typedPhrases-

reduced.csv.

http://gaius.isri.cmu.edu/dataset/plat17/study-platform-lexicon-typedPhrases-reduced.csv
http://gaius.isri.cmu.edu/dataset/plat17/study-platform-lexicon-typedPhrases-reduced.csv

Disambiguiating Requirements 109

to answer RQ1. We acquired the results of a study published by Hosseini et al.
[21]4 and followed their approach to construct the GT. This study contains 2,253
information type pairs which is the result of pairing all the information types
that share at least one word in the reduced version of lexicon L1 (based on step
1). Further, the study contains the relations assigned to each pair by 30 human
subjects (called participant preferences). The participants were recruited from
Amazon Mechanical Turk, had completed over 5,000 HITs, had an approval
rating of at least 97%, and were located within the US [21].

Due to the diversity of participant experiences, which allows participants
to perceive different phrase senses, participants can assign different semantic
relations to the same pair, e.g., “mac” can refer to both a MAC address for
Ethernet-based routing, and a kind of computer sold Apple. In another exam-
ple, “email” can refer to three different senses: a service or program for sending
messages; a message to be sent via the SMTP protocol; or to a person’s email
address, which is the recipient address of an email message. Therefore, partic-
ipants may conclude “email address” is a part of “email”, or is equivalent to
“email” which are both valid interpretations. To avoid excluding valid interpre-
tations, we follow Hosseini et al.’s approach to build a multi-viewpoint GT that
accepts multiple, competing interpretations [21]. Valid interpretations for a pair
are the ones that the observed number of responses per category exceeds the
expected number of responses in a Chi-square test, where p< 0.05. This thresh-
old means that there is at least a 95% chance that the elicited response counts
are different than the expected counts [21]. The expected response counts for a
relation are based on how frequently participants chose that relation across all
participant comparisons. Finally, we constructed a multi-viewpoint GT as fol-
lows: for each surveyed pair, we add an axiom to the GT for a relation category,
if the number of participant responses is greater than or equal to the expected
Chi-square frequency; except, if the number of unrelated responses exceeds the
expected Chi-square frequency, then we do not add any axioms.

We compared the inferred relations with the relations in the GT. An inferred
relation is a true positive (TP), if it is logically entailed by GT, otherwise,
that relation is a false positive (FP). Overall, 980 inferred relations are logically
entailed in the GT. We use logical entailment to identify TPs, because subsump-
tion is transitive and whether a concept is a hypernym of another concept may
rely on the transitive closure of that concept’s class relationships in the GT. We
only found two inferred relations as FPs. An unrelated information type pair in
the GT is considered as true negative (TN), if we cannot match any inferred
relation with it. We found 805 pairs as TNs. For all information type pairs with
valid interpretations (i.e., hypernymy, meronymy, and synonymy) in GT that do
not match an inferred semantic relation, we count these as false negatives (FN).
We found 466 of the related pairs in the GT that cannot be logically entailed in
the ontology fragments inferred through our method.

We computed Precision(Prec.) = TP/(TP + FP) and Recall(Rec.) =
TP/(TP + FN) for the ontology construction method using CFG and semantic

4 http://gaius.isri.cmu.edu/dataset/plat17/preferences.csv.

http://gaius.isri.cmu.edu/dataset/plat17/preferences.csv

110 M. Bokaei Hosseini et al.

attachments, presented in Table 3. We also compare the results of our method to
the previously proposed ontology construction method using 26 regular expres-
sion patterns by Hosseini et al. [21]. Our model outperforms the 26 regular
expression patterns, by decreasing the number of FNs and improving the recall.

Table 3. Performance Measures for Lexicon L1

Method Prec Rec

26 regular expression patterns 0.99 0.56

CFG and semantic attachments 0.99 0.67

RQ2 concerns the type of relations that cannot be inferred using our syntax-
driven method. To answer this question, we open coded the 466 FNs and iden-
tified four codes that explain the reasons that our method could not infer the
relations:

(1) Tacit Knowledge: The relation requires tacit knowledge to be inferred and
may not be inferred using syntax analysis of phrases, alone. For example, the
hypernymy relation between “crash events” and “device event information”
requires knowing that a crash is a software or hardware failure on a device,
which is tacit knowledge that our method lacks. We identified 404/466 of
the FNs that fall into this category.

(2) Parse Ambiguity: Our method analyzes phrases by grouping words from the
right and left using the CFG and inherited variants in semantic attachments,
respectively. However, we have observed 17/466 of FNs that disregard this
grouping and therefore, cannot be inferred by our method. For example, an
equivalence relation between “device unique identifier” and “unique device
identifier” would be inferred as two kinds of “device identifier”, but not as
equivalent concepts.

(3) Modifier Suppression: Participants may ignore modifier roles in a phrase and
thus prefer an equivalent relation between a pair of phrases. For example,
“actual location” and “approximate location” are identified equivalent in the
GT ontology. This phenomenon was also reported by Hosseini et al. [21]. We
identified 34/466 phrase pairs and their relations that fall into this category.

(4) Unjustifiable: We identified 11/466 phrase pairs in the GT that we cannot
justify despite the participant preference for these relations. For example,
individuals identified “general demographic information” as a kind of “gen-
eral geographic information”. In another example, “mobile device type” is
identified as a kind of “mobile device unique identifier” by the individuals.

5.2 Evaluation Using Lexicon L2

RQ3 and RQ4 ask about the level of effort to maintain the method, and the
method’s reliability. We pre-processed 1,853 information types in lexicon L2

Disambiguiating Requirements 111

using the strategies mentioned in Sect. 4.1, yielding 1,693 information types. In
the four steps presented in Fig. 2, only step 2 involves manual effort for semantic
tagging. During this step, two analysts individually assigned tags to information
types in L2. We calculated the inter-rater agreement for the assigned tags using
Fleiss’ Kappa co-efficient, which is a chance-corrected measure of agreement
between two or more raters on a nominal scale [14]. The comparison resulted in
518 disagreements with Kappa = 0.704. After reconciling the disagreements, we
increased Kappa to 0.917 and randomly selected tag assignments from one of
the analysts.

To address RQ4 on method reliability, we require a ground truth for relations
in L2. For this reason, we selected information type pairs that share at least one
word, yielding 1,466,328 pairs. Due to this large number, we sampled the pairs
by creating strata that represent comparisons between tag sequences as follows:

Phase A: Each information type pair is mapped to their respective tag sequence
pair, e.g., pair (mobile device, device name) is mapped to (mt, tp), yielding 974
unique tag sequence pairs, which we call the strata.

Phase B: Proportional stratified sampling is used to draw at least 2,000 sam-
ples from all strata with layer size range 1–490. The wide range in layer sizes
implies unbalanced strata; e.g., strata that contain 1–3 pairs when divided by
the total number of information type pairs yields zero. Therefore, we select all
the pairs from strata with size one to ensure strata coverage. For strata of size
two and three, one random information type pair is selected. For the remaining
strata with sizes greater than three, sample sizes are proportional to the strata
size, yielding one or more pairs per stratum. For each stratum, the first sample
is drawn randomly. To draw the remaining samples, we compute a similarity
distance between the already selected pairs and remaining pairs in each stra-
tum: First, we create a bag-of-lemmas by obtaining word lemmas in the already
selected pairs. Next, in each stratum, the pairs with the least common lemmas
with the bag-of-lemmas are selected. We update the bag-of-lemmas after each
selection by adding the lemmas of the selected pairs. This strategy ensures the
selection of pairs with lower similarity measure, resulting in a broader variety of
words in the sampled set.

Further, we ensure that each tag sequence is represented by at least one
sampled item, and that sequences with a larger number of examples are propor-
tionally represented by a larger portion of the sample. Using the initial sample
size of 2,000, we captured 2,283 samples from 1,466,328 phrase pairs. Our sam-
ples contain 1,138 unique information types from Lexicon L2. Using the pairs,
we published a survey that asks subjects to choose a relation for pair (A,B)
from one of the following six options [21]:

s: A is a kind of B, e.g., “mobile device” is a kind of “device.”
S: A is a general form of B, e.g., “device” is a general form of “mobile device.”
P: A is a part of B, e.g., “device identifier” is a part of “device.”
W: A is a whole of B, e.g., “device’ is a whole of “device identifier.”
E: A is equivalent to B, e.g.,“IP” is equivalent to “Internet protocol.”
U: A is unrelated to B, e.g., “device identifier” is unrelated to “location”.

112 M. Bokaei Hosseini et al.

We recruited 30 qualified Amazon Mechanical Turk participants following the
criteria mentioned in Sect. 5.1. We constructed a multi-viewpoint ground truth
(GT) containing 2,283 semantic relations (See Footnote 2). Application of the
CFG and semantic attachments on sampled information types from L2 results in
21,745 inferred relations (See Footnote 2). To compute Precision and Recall, we
compare the inferred relations with the multi-view GT. Overall, the method cor-
rectly identifies 1,686/2,283 of relations in the GT. We also compare the inferred
relations using 26 regular expression patterns [21] with the GT. The performance
measures in Table 4, suggest that our proposed CFG and semantic attachments
reduce the number of false negatives (FNs). FNs are the semantic relations
between information type pairs in the GT that do not match inferred semantic
relations. By reducing the number of FNs, our proposed method improves the
recall compared to the 26 patterns.

Table 4. Performance measures for lexicon L2

Method Precision Recall

26 regular expression patterns 0.99 0.62

CFG and semantic attachments 0.99 0.90

6 Threats to Validity

Internal Validity - Evaluating semantic relations depends on reliable tagging
of information types by analysts. Changes in tags affect the performance of the
method when compared to the ground truth (GT). In Sect. 5.1, we identified
four categories reflecting the relations that cannot be inferred when compared
with ground truth (GT) for lexicon L1. During second-cycle coding of Tacit
Knowledge category, we observed a potential explanation for why individuals
prefer a relation that differs from our results. The terms in “application software”
were tagged tt, which is used to entail that “software” is part of an “application”.
However, we believe that participants recognize that “application software” is a
single entity or thing. We also believe this explanation applies to 20 phrases and
69 semantic relations in the GT. We revised the tag sequences for these phrases
and inferred relations based on this revision. Applying our method on the set of
revised tagged types results in an additional 74 FNs compared to the original
tagged information types. For example, the method cannot infer the relations
between the following pairs: (“application software”, “software information”),
(“page view order”, “web page”). Therefore, semantic ambiguity in tokenization
and tagging can result in changes to the inferred relations, which is a shortcoming
of the method.

For lexicon L2, two analysts individually assigned tags to information types
with an initial Kappa = 0.70. The analysts reconciled their differences to reach
a Kappa = 0.92.

Disambiguiating Requirements 113

External Validity - The CFG is constructed on lexicon L1 containing 351
platform-related information types defined as “any information that the app or
another party accesses through the mobile platform that is not unique to the
app.” The information types were extracted from collection data practices of 50
mobile app privacy policies [21,31]. To study generalizability beyond lexicon L1,
we utilize lexicon L2 for evaluation. Lexicon L2 contains 1,853 information types
related to collection, usage, retention, and transfer data practices, extracted from
30 mobile and web app privacy policies [12]. Further study is needed to determine
how well the method extends beyond these datasets.

7 Conclusion and Future Work

Privacy policies are expressed in natural language and thus subject to ambi-
guity and abstraction. To address this problem, we propose a method to infer
semantic relations between information types in privacy policies and their mor-
phological variants based on a context-free grammar and semantic attachments.
This method is constructed based on grounded analysis of information types
in 50 privacy policies and tested on information types from 30 policies. Our
method shows an improvement in reducing the number of false negatives, the
time, and effort required to infer semantic relations, compared to previously pro-
posed methods by formally representing the information types. Evidence from
Bhatia et al. shows that between 23–71% of information types in any new pol-
icy will be previously unseen [4], which further motivates the need for a high-
precision, semi-automated method to infer ontological relationships.

In future work, we plan to augment our method with a neural network clas-
sification model to infer semantic relations that are independent of syntax and
purely rely on tacit knowledge, such as hypernymy relation between “phone”
and “mobile device”.

Acknowledgment. This research was supported by NSF #1736209 and #1748109.

References

1. Anton, A.I., Earp, J.B.: A requirements taxonomy for reducing web site privacy
vulnerabilities. Requir. Eng. 9(3), 169–185 (2004)

2. Bach, E.: An extension of classical transformational grammar (1976)
3. Bhatia, J., Breaux, T.D.: Towards an information type lexicon for privacy policies.

In: RELAW, pp. 19–24. IEEE (2015)
4. Bhatia, J., Breaux, T.D., Schaub, F.: Mining privacy goals from privacy policies

using hybridized task recomposition. TOSEM 25(3), 22 (2016)
5. Boyd, S., Zowghi, D., Gervasi, V.: Optimal-constraint lexicons for requirements

specifications. In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS,
vol. 4542, pp. 203–217. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73031-6 15

6. Breaux, T.D., Antón, A.I., Spafford, E.H.: A distributed requirements management
framework for legal compliance and accountability. Comput. Secur. 28(1–2), 8–17
(2009)

https://doi.org/10.1007/978-3-540-73031-6_15
https://doi.org/10.1007/978-3-540-73031-6_15

114 M. Bokaei Hosseini et al.

7. Breaux, T.D., Baumer, D.L.: Legally “reasonable” security requirements: a 10-year
FTC retrospective. Comput. Secur. 30(4), 178–193 (2011)

8. Breaux, T.D., Hibshi, H., Rao, A.: Eddy, a formal language for specifying and
analyzing data flow specifications for conflicting privacy requirements. Requir. Eng.
19(3), 281–307 (2013). https://doi.org/10.1007/s00766-013-0190-7

9. Breitman, K.K., do Prado Leite, J.C.S.: Ontology as a requirements engineering
product. In: Proceedings. In: 11th IEEE International Requirements Engineering
Conference, pp. 309–319. IEEE (2003)

10. Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. Sage Publications (2014)

11. De Saussure, F., Harris, R.: Course in General Linguistics. (Open Court Classics).
Open Court, Chicago and La Salle (1998)

12. Evans, M.C., Bhatia, J., Wadkar, S., Breaux, T.D.: An evaluation of constituency-
based hyponymy extraction from privacy policies. In: RE, pp. 312–321. IEEE
(2017)

13. Fensel, D., McGuiness, D., Schulten, E., Ng, W.K., Lim, G.P., Yan, G.: Ontologies
and electronic commerce. IEEE Intell. Syst. 16(1), 8–14 (2001)

14. Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull.
76(5), 378 (1971)

15. Frege, G.: Über begriff und gegenstand (1892)
16. FTC: FTC’s $5 billion Facebook settlement: record-breaking and history-making

(2019)
17. Gervasi, V., Zowghi, D.: On the role of ambiguity in RE. In: Wieringa, R., Persson,

A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 248–254. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14192-8 22

18. Harris, K.D.: Privacy on the go: recommendations for the mobile ecosystem (2013)
19. Henk, B.: The lambda calculus: its syntax and semantics. Stud. Logic Found. Math.

(1984)
20. Hookway, C.: Peirce-Arg Philosophers. Routledge, Abingdon (2010)
21. Bokaei Hosseini, M., Breaux, T.D., Niu, J.: Inferring ontology fragments from

semantic role typing of lexical variants. In: Kamsties, E., Horkoff, J., Dalpiaz, F.
(eds.) REFSQ 2018. LNCS, vol. 10753, pp. 39–56. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77243-1 3

22. Hosseini, M.B., Wadkar, S., Breaux, T.D., Niu, J.: Lexical similarity of informa-
tion type hypernyms, meronyms and synonyms in privacy policies. In: AAAI Fall
Symposium (2016)

23. Janssen, T.M., Partee, B.H.: Compositionality. In: Handbook of Logic and Lan-
guage, pp. 417–473. Elsevier (1997)

24. Jurafsky, D., Martin, J.H.: Speech and Language Processing, vol. 3. Pearson, Lon-
don (2014)

25. Massey, A.K., Rutledge, R.L., Antón, A.I., Swire, P.P.: Identifying and classifying
ambiguity for regulatory requirements. In: RE, pp. 83–92. IEEE (2014)

26. Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38(11),
39–41 (1995)

27. Oltramari, A., et al.: PrivOnto: a semantic framework for the analysis of privacy
policies. Semant. Web 9(2), 185–203 (2018)

28. Petronella, G.: Analyzing privacy of android applications (2014)
29. Reidenberg, J.R., Bhatia, J., Breaux, T.D., Norton, T.B.: Ambiguity in privacy

policies and the impact of regulation. J. Leg. Stud. 45(S2), S163–S190 (2016)
30. Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage, Thousand Oaks

(2015)

https://doi.org/10.1007/s00766-013-0190-7
https://doi.org/10.1007/978-3-642-14192-8_22
https://doi.org/10.1007/978-3-319-77243-1_3
https://doi.org/10.1007/978-3-319-77243-1_3

Disambiguiating Requirements 115

31. Slavin, R., et al.: Toward a framework for detecting privacy policy violations in
android application code. In: ICSE (2016)

32. Wang, X., Qin, X., Hosseini, M.B., Slavin, R., Breaux, T.D., Niu, J.: GUILeak:
identifying privacy practices on GUI-based data (2018)

33. Zimmeck, S., et al.: Automated analysis of privacy requirements for mobile apps.
In: NDSS (2017)

On Understanding How Developers
Perceive and Interpret Privacy
Requirements Research Preview

Mariana Peixoto1(B), Dayse Ferreira1, Mateus Cavalcanti1, Carla Silva1,
Jéssyka Vilela1, João Araújo2, and Tony Gorschek3

1 Universidade Federal de Pernambuco (UFPE), Recife, Brazil
{mmp2,dmmf,mcl2,ctlls,jffv}@cin.ufpe.br

2 Universidade Nova de Lisboa (UNL), Lisbon, Portugal
p191@fct.unl.pt

3 Blekinge Institute of Technology (BTH), Karlskrona, Sweden
tony.gorschek@bth.se

Abstract. [Context and motivation] Ensuring privacy of users’ data
has become a top concern in software development, either to satisfy users’
needs or to comply with privacy laws. The problem may increase by the
time a new law is in the vacancy period, and companies are working
to understand how to comply with it. In addition, research has shown
that many developers do not have sufficient knowledge about how to
develop privacy-sensitive software. [Question/problem] Motivated by
this scenario, this research investigates the personal factors affecting the
developers’ understanding of privacy requirements during the vacancy
period of a data protection law. [Principal ideas/results] We con-
ducted thirteen interviews in six different private companies. As a result,
we found nine personal factors affecting how software developers perceive
and interpret privacy requirements. [Contribution] The identification
of the personal factors contributes to the elaboration of effective methods
for promoting proper privacy-sensitive software development.

Keywords: Privacy requirements · Software development ·
Qualitative study

1 Introduction

Data handled in software applications often reveal large quantities of personal
information, which are sometimes used for other purposes than initially intended
and constitutes, in many cases, an invasion of privacy [6,12]. In this sense, users’

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-44429-7 8) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 116–123, 2020.
https://doi.org/10.1007/978-3-030-44429-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_8
https://doi.org/10.1007/978-3-030-44429-7_8
https://doi.org/10.1007/978-3-030-44429-7_8

On Understanding How Developers Perceive and Interpret Privacy 117

privacy can be defined as the right to determine when, how and to what purpose
information about them is communicated to others [6].

According to Spiekermann and Cranor [10], new regulatory demands and
consumer concerns are driving companies to consider privacy-friendly policies.
Face to this, it is necessary to consider privacy principles and apply them from
the early stages of the Software Development (SE) process, i.e., from the Require-
ments Engineering (RE) phase [3,6].

One approach created for this purpose is called Privacy by Design (PbD)
[2]. It begins with explicit recognition of the value and benefits of proactively
adopting strong privacy practices at the early stages of software development
[2,5]. PbD has been embraced by the European Union to create the European
General Data Protection Regulation (GDPR) [4]. This regulation was applied
in May 2018 and introduced rules regarding the protection and processing of
personal data. In Brazil, the General Personal Data Protection Law 13.709/2018
(in Portuguese, Lei Geral de Proteção de Dados or LGPD) was approved in
August 2018 and is in the vacancy period [7].

On the other hand, there is still limited awareness of the importance of
privacy requirements. For example, people are not aware of how privacy can
be used to mitigate the damage caused by a potential security violation. In
addition, there is little research related to the fact that developers1 do not have
sufficient knowledge of how to develop software with privacy requirements [5].
In fact, to successfully deploy PbD, we need to know how developers understand
privacy [5].

In this context, we take advantage of the LGPD vacancy period, when orga-
nizations are struggling to come into compliance, to perform a qualitative study
to identify the personal factors that affect how developers interpret and perceive
privacy requirements in their daily work. To achieve this, we conducted thirteen
semi-structured interviews with developers from six different private organiza-
tions. Data analysis was performed in light of personal factors of the Social
Cognitive Theory (SCT) [1]. In SCT, a personal factor can be characterized as
an element that constitutes human cognition, that is, the ability of the human
being to memorize, plan, judge, among others [1,5].

Next sections are organized as follows: Sect. 2 describes the research method.
Section 3 presents the study results. Section 4 details the threats to validity. And,
finally, Sect. 5 shows the final considerations.

2 Research Method

We summarize the goal of our research as follows: Analyze personal factors, for
the purpose of understanding their influence, with respect to interpretation
and perception of privacy, from the point of view of software developers, in
the context of Brazilian software development companies, more specifically, at
Recife. Based on our goals, and a previous study provided by Hadar et al. [5],

1 We generalize the term developer to those who work in software development.

118 M. Peixoto et al.

we aim to answer the following Research Question (RQ): What personal factors
influence developers’ perception and interpretation of privacy requirements in
software development?

Design and Procedures. Grounded Theory (GT) [11] was performed in light
of the personal factors of SCT [1]. It is composed of the findings related to
developers’ perceptions and their interpretation of privacy requirements. For
data collection, we performed semi-structured interviews based on the question-
naire2 provided by Hadar et al. [5]. We decided to use the questionnaire because
it was already used in previous research and validated to observe how personal
factors of SCT affect the understandings of privacy by software developers. We
chose non-probabilistic convenience sampling because it would be challenging to
identify all members of the target population (i.e., software developers). There-
fore, our candidates’ selection was based on our known industrial contacts who
were available and willing to participate.

We previously had a pilot interview with a member of a software develop-
ment company to verify comprehension of the questions and to measure the time
spent. After that, two authors conducted thirteen detailed in-depth face-to-face
interviews between January 2019 and May 2019. Each interview lasted an aver-
age of 37.46 min and resulted in 8 h and 11 min of audio time. At the beginning
of each interview, the participant’s verbal consent, as well as audio recording
permission, were confirmed to continue the procedure of data collection.

After data collection, two authors transcribed all interviews. The data anal-
ysis was conducted by four authors, based on qualitative coding principles of
GT [11]. We started the coding process by performing open coding, in which we
created codes for extracts of the text. After that, in axial coding, we took further
readings in the transcripts and the created codes (from open coding). Thus, we
identified other text extracts and also group similar codes. Finally, in selective
coding, we identified categories that codes could be linked to. These categories
are the personal factors that affect how developers interpret and perceive pri-
vacy in RE. We present an example of coding in Fig. 1. The coding process was
performed using atlas ti software (cloud.atlasti.com).

Fig. 1. Category creation.

2 Supplementary Material: https://marianapmaia.github.io/REFSQ2020/.

https://marianapmaia.github.io/REFSQ2020/

On Understanding How Developers Perceive and Interpret Privacy 119

3 Results and Analysis

We interviewed a total of thirteen developers from six private companies. Table 1
shows the sample characterization. The model presented in Fig. 2 explains the
personal factors that play a role in developers’ understanding of privacy. In the
rectangles, we show nine categories as personal factors that affect positively (+)
or negatively (−) how developers perceive and interpret privacy requirements.
The arrows between categories (personal factors) represent that the related cat-
egories can influence each other. We also found some secondary factors (repre-
sented as a statement with an arrow to a category) which can influence positively
(+), i.e., corroborate, or negatively (−), i.e., oppose the personal factors.

Table 1. Sample characterization.

Id cpy. Cpy. size* Domain Role (years of experience)

1 Medium Marketing CEO (5)

2 Very small Software factory CEO (9)

3 Large Several** Soft. Engineer (5/5/16/10/3/4); Soft. Consultant (20)

4 Medium Security Soft. Analyst (3); Soft. Engineer (5)

5 Very large Several Developer (10)

6 Very small Aug. reality Developer (2)

*Number of employees: Very small < 10; Small < 100; Medium < 500; Large < 1000; Very Large

> 1000. ** Offers services, maintenance, software creation, courses, etc.

Empirical knowledge about informational privacy is a positive per-
sonal factor which is corroborated by two secondary factors indicating that
respondents had a practical knowledge about personal data. For example, inter-
viewee 2 (from cpy 2) said: “I have already served as an architect [...] that handle
user data”. This personal factor influences and is influenced by other positive
personal factors. For example, Experience in allowing the user to control
their data stored by the system, in particular, is corroborated by three
secondary factors indicating that respondents concern about the need for trans-
parency in the collection and use of personal information. For example, inter-
viewee 12 (from cpy 3) said: “I think all kinds of information I collect, the user
has to give me consent” .

Privacy decision depends on each development project is a posi-
tive personal factor that influences and is influenced by Empirical knowledge
about informational privacy and Lack of formal privacy knowledge.
This personal factor is corroborated by two secondary factors that allowed us to
observe consistency among answers related to how privacy should be handled in
each development project interaction. Indeed, interviewee 12 (from cpy 3) said:
“[...] it depends on each company, the way it deals with its users.

Lack of formal privacy knowledge is a negative personal factor and it
is corroborated by two secondary factors, indicating the unawareness regarding
the laws and privacy definition. For example, interviewee 4 (from cpy 4) said,

120 M. Peixoto et al.

Fig. 2. Personal factors influencing interpretation and perception of privacy.

“I haven’t had this contact [with the law] yet”. This personal factor is related to
Confusion between security and privacy concepts, also a negative per-
sonal factor because security and privacy have different meaning. This personal
factor is corroborated by two secondary factors, indicating that respondents
defined privacy using security-related terms. For example, interviewee 5 (from
cpy 3) said: “I think it’s the data security part, refers to the protection of per-
sonal information”. Other answer was provided by interviewee 13 (from cpy 3):
“When you give permission to use your data, and that application eventually
leaks [...] it’s also a matter of privacy, but I don’t know if it’s a security issue”.

Confusion between security and privacy concepts also influences and
is influenced by Focus on security issues. This factor is corroborated by two
secondary factors, indicating the respondent’s main concern is just security as
well as privacy is all about security. For example, interviewee 4 (from cpy 4)
said: “We need to make sure our software is secure [...]”.

Respondents mostly believe Privacy is everyone’s responsibility,
including the architect’s. One secondary factor corroborates and one opposes
to this personal factor. This category showed respondents think privacy respon-
sibility should be shared between the architect, clients, or the team. For example,
interviewee 12 (from cpy 3) said: “It is not only the responsibility of [the archi-
tect]”. Some respondents did not believe that the responsibility for privacy lies
with the developer as, for example, interviewee 12 (from cpy 3): “Privacy issues
do not come [to the developer] very much. These security issues are linked to
development, but privacy issues not”.

User proactivity is related to privacy rights is a negative personal
factor with two corroborations. In some cases, it was pointed out that the right
to privacy is equally proportional to the user proactivity to achieve it. Interviewee
2 (from cpy 2) quoted: “If the application is free, you have to accept that you
are the product”. This personal factor influences and is influenced by Lack of
importance about user data, which is also a negative factor. It has three
corroborations related to the belief that data should be kept into the system

On Understanding How Developers Perceive and Interpret Privacy 121

regardless users’ consent and privacy breach risk. For example, interviewee 12
(from cpy 3) said: “I don’t think that storing personal information is privacy
violation because with this I make user’s life more comfortable”.

Our findings indicate that developers have empirical knowledge of privacy,
but most of them do not know how to interpret properly privacy requirements,
as well as many of them do not know about formal privacy or LGPD. Empirical
knowledge is a positive point, despite that, the fact of developers do not have
formal knowledge can be seen as problematic because it is a period of privacy law
vacancy. They generally understand that privacy could be implemented by using
practices for implementing security because they make confusion between privacy
and security. This finding is similar to the findings provided by Hadar et al. [5],
that developers use the vocabulary of security to address privacy challenges, and
this vocabulary limits their perceptions of privacy. In addition, some respondents
do not intend to use privacy practices (for example, delete personal data when
it is no longer needed) even recognizing their importance. They believe privacy
is a trade-off, that the lack of privacy is justified by the provision of the service.
Also, there was no concern to restrict the collection of personal data to only
those necessary for the software operation. In fact, unrestricted data collection
can become a bigger problem if a security problem occurs. This findings may
be a negative factor for the acceptance and incorporation of PbD, that is, the
implementation of privacy practices since the beginning of software development.

4 Threats to Validity

In the validity threats, we considered the indications provided by Runeson and
Höst [9]. Construct validity reflects the extent to which operational measures
represent what the researcher has in mind and what is investigated according to
the RQs. We considered this threat by ensuring that the identities of participants
and companies would not be disclosed. Besides that, prior to the interviews, we
presented clarifications on the research reasons. In addition, we considered this
validity when using a questionnaire already tested and validated for the same
purpose (privacy point of view by developers).

Internal validity considers whether there are other factors that influence
the results. To mitigate this type of threat, the sample was composed of indi-
viduals with different roles/years of experience and from companies of differ-
ent sizes/domains. External validity is concerned with to what extent it is
possible to generalize the results. We cannot assure the presented results can
be generalized because the qualitative study was carried out with few partic-
ipants. However, these results presented similar findings to that provided by
Hadar et al. [5].

Reliability is concerned with to what extent the data and the analysis are
dependent on the specific researchers. To mitigate this threat, we followed a
clear method and we conducted several rounds of discussion among the involved
researchers before the interviews. In addition, the interviews and data analysis
were carried out by more than one researcher.

122 M. Peixoto et al.

5 Final Considerations

This paper presented results of a qualitative study on how developers perceive
and interpret privacy requirements. We showed nine personal factors that posi-
tively or negatively affect the developer’s understanding of privacy requirements.
We found that developers have practical knowledge of privacy, rather than the-
oretical knowledge. They often focus on security and this can compromise the
resolution of privacy issues. Besides that, many developers recognize the impor-
tance of using privacy practices but some have no intention of using it.

As ongoing research, we are analysing other data collected in the interviews to
observe the behavioral and environmental factors of SCT, and how they interact
with personal factors and affect developers’ understanding of privacy. We are
also working on defining and evaluating a requirements specification method
designed to guide developers to consider privacy from the beginning of agile
software development [8].

Acknowledgments. This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, sup-
ported by the S.E.R.T research profile, (see rethought.se, kks.se), and NOVA LINCS
Research Laboratory (Ref. UID/CEC/04516/2019).

References

1. Bandura, A.: Social Foundations of Thought and Action. Prentice-Hall, Inc., Engle-
wood Cliffs (1986)

2. Cavoukian, A.: Privacy by design: the 7 foundational principles. Inf. Priv. Com-
missioner Ontario Canada 5 (2009)

3. del Alamo, J.M., Mart́ın, Y.-S., Caiza, J.C.: Towards organizing the growing knowl-
edge on privacy engineering. In: Hansen, M., Kosta, E., Nai-Fovino, I., Fischer-
Hübner, S. (eds.) Privacy and Identity 2017. IAICT, vol. 526, pp. 15–24. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92925-5 2

4. GDPR: General data protection regulation (2018). https://eugdpr.org/
5. Hadar, I., et al.: Privacy by designers: software developers’ privacy mindset. Empir.

Softw. Eng. 23(1), 259–289 (2018)
6. Kalloniatis, C., Kavakli, E., Gritzalis, S.: Addressing privacy requirements in sys-

tem design: the pris method. Requir. Eng. 13(3), 241–255 (2008)
7. LGPD: General Law on Personal Data Protection/Lei Geral de Protecao de Dados

n. 13.709 (2018). http://www.planalto.gov.br/ccivil 03/ ato2015-2018/2018/lei/
L13709.htm

8. Peixoto, M., Silva, C., Lima, R., Araújo, J., Gorschek, T., Silva, J.: PCM tool:
privacy requirements specification in agile software development. In: 10th Brazilian
Software Conference: Theory and Practice (CBSoft 2019), pp. 108–113. SBC (2019)

9. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131 (2009)

10. Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Trans. Software Eng.
35(1), 67–82 (2008)

https://doi.org/10.1007/978-3-319-92925-5_2
https://eugdpr.org/
http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709.htm
http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709.htm

On Understanding How Developers Perceive and Interpret Privacy 123

11. Strauss, A., Corbin, J.: Basics of Qualitative Research Techniques. Sage Publica-
tions, Thousand Oaks (1998)

12. Van Der Sype, Y.S., Maalej, W.: On lawful disclosure of personal user data: what
should app developers do? In: International Workshop on Requirements Engineer-
ing and Law (RELAW), pp. 25–34. IEEE (2014)

A Methodology for Implementing
the Formal Legal-GRL Framework:

A Research Preview

Amin Rabinia1(B), Sepideh Ghanavati1, Llio Humphreys2,
and Torsten Hahmann1

1 University of Maine, Orono, ME 04469, USA
amin.rabinia@maine.edu

2 University of Torino, 10124 Turin, TO, Italy

Abstract. [Context and motivation] Legal provisions create a dis-
tinct set of requirements for businesses to be compliant with. Capturing
legal requirements and managing regulatory compliance is a challeng-
ing task in system development. [Question/problem] Part of this task
involves modeling legal requirements, which is not trivial for require-
ments engineers as non-experts in law. The resultant legal requirements
models also tend to be very complex and hard to understand. [Princi-
pal ideas/results] To facilitate the modeling process, we propose a for-
mal framework for modeling legal requirements. This framework includes
a methodology that helps to resolve complexities of legal requirements
models. [Contribution] In this paper, we outline this methodology and
present a procedure that reduces modal and conditional complexities of
legal models and facilitates automation of the modeling process.

Keywords: Goal model · Formal logic · Legal requirements · GDPR

1 Introduction

Analysts extract legal requirements from regulations and model them in a format
to be used for compliance analysis. Due to the complexity of legal texts, the
modeling process can be challenging. Moreover, the resultant legal requirements
models usually contain the complexities inherited from the original texts.

To address regulatory compliance problems, goal- and non-goal-oriented
methods have been used in requirements engineering [2]. While non-goal-oriented
methods, such as some logic-based approaches, provide a stronger reasoning sup-
port on requirements models, goal-oriented approaches, with visual and natural
language representations, are easier to understand and use [10]. In [12,13], we
proposed a modeling framework that integrates a formal method for extracting
legal requirements with an expressive representation in Goal-oriented Require-
ments Language (GRL) [4]. This framework, called Formal Legal GRL (FLG), is
composed of three phases: (A) a legal requirements extraction phase, where legal

c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 124–131, 2020.
https://doi.org/10.1007/978-3-030-44429-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_9

A Methodology for Implementing the Formal Legal-GRL Framework 125

requirements are manually extracted by following the FLG procedure (Sect. 2);
(B) a data storage and retrieval phase, where legal requirements are manually
stored in a database and then automatically retrieved as an .xml/.grl file; and
(C) a goal model generation phase, where a .grl file is imported into GRL’s tool
support, jUCMNav [5], to automatically create a goal model.

This paper focuses on Phase A, which employs a logic-based methodology
to resolve modal and conditional complexities of legal models. Most logic-based
modeling attempts mirror such complexities with the aim of preserving accuracy
and isomorphism in their models. However, the resulting models are arguably too
complex to be usable. In this paper, we describe our modeling approach, using
an algorithm for resolving legal complexities. With this approach, we are able
to simplify legal models without losing their validity. Our proposed algorithmic
procedure is also a step towards increased automation of the FLG framework.

2 Legal Requirements Extraction (Phase A) - Overview

In Phase A, we extract legal requirements from regulations and annotate them
based on the Deontic notions of obligation and permission [3]. Next, we reduce
the modal and conditional complexity of legal statements by following the
procedure described in Subsect. 2.1. Reducing these complexities helps (semi)-
automating Phase B and Phase C of the FLG framework and in creating legal
goal models which are more concise and understandable to human analysts.

Modal complexity relates to the difference between obligations and permis-
sions, and the complication of different behaviors that satisfy them. To decrease
the modal complexity of legal models, we keep obligations as-is and interpret pro-
hibitions as negative obligations. On the other hand, we formalize permissions in
an obligatory setting of the form A ∨ ¬A. For example, this permissible clause,
“the data protection officer [DPO] may fulfill other tasks and duties” [1], can
be formulated as A: the DPO fulfills other tasks and duties OR ¬A : the DPO
does NOT fulfill other tasks and duties. Where the clause is not originally an
obligation, choosing between A or ¬A is patently inevitable and thus convertible
to obligation. With this technique, the final model only contains obligations (e.g.
duties), negative obligations (e.g. prohibitions), and choices between obligations
(e.g. permissible norms such as rights and powers).

Conditional complexity arises from legal statements that include (pre)-
conditions or exceptions. To simplify conditional sentences, we convert them to
equivalent disjunctive sentences by applying the implication rule (i.e. A → B ↔
¬A ∨ B). Both humans and computers can more easily represent and process
the simpler connective of disjunction as compared to a conditional.

After converting all legal statements to an obligatory format, we aggregate
the obligations to form non-modal (descriptive) statements that utilize only sim-
ple connectives ‘and’, ‘or’, and ‘xor’. The end result is then forwarded to Phase B.

2.1 The Procedure of Generating Non-modal Statements

We now describe our proposed procedure for modeling legal statements in Deon-
tic logic and for converting them to non-modal statements.

126 A. Rabinia et al.

First, we focus on the target stakeholder, who is supposed to satisfy the
legal requirements, and convert the norms in a legal document to obligations
or permissions for him. Next, we decompose the legal document based on its
logical structure. A document’s building blocks, or entities (i.e. paragraphs, sub-
paragraphs, sentences, and phrases) are connected via logical connectives (and,
or, if then). Thus, we formalize these entities and connectives in a logical expres-
sion that represents how atomic entities of a legal document are connected to
each other. Given such logical expressions, then, we follow a process defined
in Algorithm 1, to resolve complexities and create non-modal statements. The
procedure for modeling legal statements as logical expressions and resolving
complexities consists of seven steps:

– Step 1– Convert the norms for the targeted stakeholders.
– Step 2– Identify entities (i.e. building blocks) of the document and label

them as E1, E2, ..., Ei.
– Step 3– Identify connectives between the entities.
– Step 4– Model the set of entities in Deontic logic (using the modal operators

‘O’ for obligation and ‘P’ for permission) to create a logical expression.
– Step 5– Use Algorithm 1 to resolve complexities.
– Step 6– Document the output by replacing the Ei ’s with their natural lan-

guage contents. For negations, we write the sentence in negative form.
– Step 7– Validate the result by analyzing non-compliance cases based on the

original text, and examining whether resultant statements capture them.

Algorithm 1. Algorithm for Resolving Legal Complexities
1 FLG Function(logical expression) begin
2 if the logical expression contains modal complexity then
3 switch the logical expression do
4 case unconditional obligation, OE do
5 keep the obligation as is;

6 case conditional obligation, E1 → OE2 do
7 factor out the obligation (O[E1 → E2]);

8 case unconditional permission, PE do
9 transform to obligatory form (O[E ∨ ¬E]);

10 case conditional permission, PE1 → E2 do
11 transform to conditional obligation (¬E2 → O¬E1);
12 factor out the obligation (O[¬E2 → ¬E1]);

13 if the logical expression contains conditional complexity then
14 factor out the obligations;
15 apply the implication rule, i.e. convert E1 → E2 to ¬E1 ∨ E2.

Algorithm 1, at this point, only provides a general guideline for manual
process of logical expressions of generic and simplified cases. To extend and

A Methodology for Implementing the Formal Legal-GRL Framework 127

implement this algorithm, we need to articulate its data-flow and include more
complex inputs.

3 An Example of Modeling with the FLG Procedure

In this section, we apply the procedure explained in Subsect. 2.1 to an excerpt
of Article 15 of the General Data Protection Regulation (GDPR) [1] which is
as follows:(1) The data subject shall have the right to obtain from the controller
confirmation as to whether or not personal data concerning him or her are being
processed, and, where that is the case, access to the personal data. [The rest is
removed]. (2) Where personal data are transferred to a third country or to an
international organisation, the data subject shall have the right to be informed of
the appropriate safeguards [cross-reference]. [Paragraph 3 and 4 are removed].

Fig. 1. Example of annotation for step 1 (Ei denote entities)

Step 1 (Extract obligations). Since the requirements model is made for the
controller, we convert the data subject rights to obligations for the controller
(shown in Fig. 1: E4, E7, and E9).

Step 2 (Identify entities) starts with identifying the building blocks of the
document and decomposing them based on their logical structure. As shown
in Fig. 1, E1 has two paragraphs (E2 and E3). Paragraph 1 has two parts (E4
and E5) connected with ‘and’. E5 is a conditional statement, where E8 is its
antecedent and E9 is its consequent. Same for E6 and E7, in Paragraph 2.

Step 3 (Identify the connectives): To satisfy the article, both the paragraphs
are required. Therefore, E1 entails E2 AND E3; E2 entails E4 AND E5; E3
entails IF E6 THEN E7 (Note that E3 involves a conditional obligation, i.e. the
obligation might not be in force if the precondition is not met. This is captured
by the material conditional); E5 entails IF E8 THEN E9.

Step 4 (Formalize the entities). We annotate the obligations with ‘O’:
E1 = E2 ∧ E3

= (OE4 ∧ E5) ∧ (E6 → OE7)
= (OE4 ∧ [E8 → OE9]) ∧ (E6 → OE7).

128 A. Rabinia et al.

Fig. 2. GRL model created for article 15

Step 5 (Use Algorithm 1) resolves the modal complexity, by factoring out
the obligations:

= (OE4 ∧ O[E8 → E9]) ∧ O(E6 → E7) line 7 of the algorithm
= O[(E4 ∧ [E8 → E9]) ∧ (E6 → E7)] line 14.
And conditional complexity, by using the implication rule:
= O[(E4 ∧ [¬E8 ∨ E9]) ∧ (¬E6 ∨ E7)] line 15.
Step 6 (Document the output by replacing the Ei ’s with their content):
It shall be the case that [(the controller enables confirmation as to whether or

not personal data concerning the data subject are being processed AND [either
the processing is NOT the case OR the data subject has access to the personal
data]) AND (either personal data are NOT transferred to a third country or to
an international organization OR the controller enables the data subject to be
informed of the appropriate safeguards)]

Step 7 (Validation): There are three cases of non-compliance based on the
original text: (1) when the data subject cannot obtain the confirmation (E4 =
false); (2) when the personal data is being processed but the data subject has
no access (E8 = true,E9 = false); (3) when the data is transferred but the
data subject cannot be informed of the safeguards (E6 = true,E7 = false).
If any of the cases happens, the entire logical expression becomes false, which
indicates non-compliance.

Figure 2, depicts the final model of the running example, created with the
FLG methodology and represented in GRL. Entities are annotated in the figure
based on the logical expression (O[(E4 ∧ [¬E8 ∨ E9]) ∧ (¬E6 ∨ E7)]).

A Methodology for Implementing the Formal Legal-GRL Framework 129

4 Literature Review

Governatori and Rotolo [9] present a conceptual model for handling legal obli-
gations for business process compliance. Their model includes a language based
on Defeasible and Deontic logic for representing, and reasoning about legal obli-
gations. Although the paper [9] focuses on complexities related to obligations,
their approach influenced our method for dealing with various legal complexities.
Torre et al. [15] propose a UML-based representation of the GDPR [1] with two
generic and specialized tiers. The modeling process in their work relies heavily
on the participation of legal experts, which limits its automation. Another app-
roach [6] systematically extracts and represents requirements in a semi-formal
notation. We follow their methodology to develop the FLG framework. How-
ever, their work [6] only provides textual requirements models, which reduces
its flexibility for compliance analysis.

Nòmos 3, a goal-oriented modeling language for evaluating compliance [11],
presents a sophisticated language for reasoning and representing rights and
duties. However, Nòmos 3 lacks a detailed methodology for extracting and mod-
eling legal requirements. Legal-URN [7,8], another goal-oriented framework for
modeling legal requirements, extracts the natural language legal requirements
and creates their corresponding goal models in Legal-GRL. Despite the expres-
siveness of Legal-GRL models, its modeling process is manual.

5 Evaluation Plan

To evaluate our framework, we plan to perform both conceptual and empirical
evaluations. For the conceptual evaluation, we aim to demonstrate the soundness
of theoretical and legal basis of the FLG methodology, based on Deontic logic
and legal theories (such as [3,14]).

For the empirical evaluation, we aim to apply the proposed FLG methodol-
ogy to various regulations, specifically comparing how experts and non-experts
apply the method. Measuring the degree of consensus and dissensus between the
resultant models indicates the reliability and replicability of the methodology.
Our preliminary study shows that the degree of consensus will increase when (1)
the methodology is accompanied by details of logical conventions and rules, and
when (2) example patterns of modeling are provided.

We will also evaluate the validity and comprehensiveness of the produced
models with participation of legal experts (and against the annotated documents
as the gold standard). Although the FLG models seem intuitively and theoret-
ically simpler, we need to also evaluate this empirically. This work will require
participants (e.g. requirements engineers) to compare the FLG models versus
the original regulations and also models from other approaches (e.g. Legal-GRL,
Nòmos 3). For this evaluation, we will use our corpus of models created for 38
privacy-related articles of the GDPR.1

1 Part of the corpus is accessible at: https://bit.ly/35znB0t.

https://bit.ly/35znB0t

130 A. Rabinia et al.

6 Conclusion and Future Work

In this paper, we proposed a seven step procedure for the extraction of legal
requirements as a step towards increased automation within the FLG frame-
work. At the center of this procedure lies an algorithm that resolves modal and
conditional complexities of a given legal text.

In future, we will elaborate on the proposed procedure to handle cross-
references, ambiguities, and legal interpretations, and also on the algorithm to
cover complexities beyond the generic cases. We also plan to expand our effort
in implementing and automating Phases A of the FLG framework (using NLP
techniques) and perform a detailed evaluation as outlined in Sect. 5.

References

1. The general data protection regulation (GDPR) (2018). https://gdpr-info.eu/
2. Akhigbe, O., Amyot, D., Richards, G.: A systematic literature mapping of goal and

non-goal modelling methods for legal and regulatory compliance. Requirements
Eng. 24(4), 459–481 (2018). https://doi.org/10.1007/s00766-018-0294-1

3. Alchourrón, C.E.: Logic of norms and logic of normative propositions. Logique et
analyse 12(47), 242–268 (1969)

4. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Eval-
uating goal models within the goal-oriented requirement language. Int. J. Intell.
Syst. 25(8), 841–877 (2010)

5. Amyot, D., Mussbacher, G., Ghanavati, S., Kealey, J.: GRL modeling and analysis
with jUCMNav. iStar 766, 160–162 (2011)

6. Breaux, T.D., Antón, A.I.: A systematic method for acquiring regulatory require-
ments: A frame-based approach. RHAS-6), Delhi, India (2007)

7. Ghanavati, S.: Legal-URN framework for legal compliance of business processes.
Ph.D. thesis, Université d’Ottawa/University of Ottawa (2013)

8. Ghanavati, S., Amyot, D., Rifaut, A.: Legal goal-oriented requirement language
(legal GRL) for modeling regulations. In: Proceedings of the 6th International
Workshop on Modeling in Software Engineering, pp. 1–6. ACM (2014)

9. Governatori, G., Rotolo, A.: A conceptually rich model of business process com-
pliance. In: Proceedings of the Seventh Asia-Pacific Conference on Conceptual
Modelling, vol. 110, pp. 3–12. Australian Computer Society, Inc. (2010)

10. Hashmi, M., Governatori, G., Lam, H.-P., Wynn, M.T.: Are we done with business
process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1),
79–133 (2018). https://doi.org/10.1007/s10115-017-1142-1

11. Ingolfo, S., Jureta, I., Siena, A., Perini, A., Susi, A.: Nòmos 3: legal compliance
of roles and requirements. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER
2014. LNCS, vol. 8824, pp. 275–288. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-12206-9 22

12. Rabinia, A., Ghanavati, S.: FOL-based approach for improving legal-GRL modeling
framework: a case for requirements engineering of legal regulations of social media.
In: IEEE 25th International RE Conference Workshops (REW), pp. 213–218 (2017)

13. Rabinia, A., Ghanavati, S.: The FOL-based legal-GRL (FLG) framework: towards
an automated goal modeling approach for regulations. In: 2018 IEEE 8th Inter-
national Model-Driven Requirements Engineering Workshop (MoDRE), pp. 58–67
(2018)

https://gdpr-info.eu/
https://doi.org/10.1007/s00766-018-0294-1
https://doi.org/10.1007/s10115-017-1142-1
https://doi.org/10.1007/978-3-319-12206-9_22
https://doi.org/10.1007/978-3-319-12206-9_22

A Methodology for Implementing the Formal Legal-GRL Framework 131

14. Sartor, G.: Fundamental legal concepts: a formal and teleological characterisation.
Artif. Intell. Law 14(1–2), 101–142 (2006)

15. Torre, D., Soltana, G., Sabetzadeh, M., Briand, L., Auffinger, Y., Goes, P.: Using
models to enable compliance checking against the GDPR: an experience report.
In: Proceeding of the IEEE/ACM 22nd International Conference on Model Driven
Engineering Languages and Systems (MODELS 19) (2019)

Stakeholders Feedback and Training

Towards Integrating Data-Driven Requirements
Engineering into the Software Development

Process: A Vision Paper

Xavier Franch1, Norbert Seyff2, Marc Oriol1(B), Samuel Fricker2, Iris Groher3,
Michael Vierhauser3, and Manuel Wimmer3

1 Universitat Politècnica de Catalunya, Barcelona, Spain
{franch,moriol}@essi.upc.edu

2 University of Applied Sciences and Arts Northwestern Switzerland FHNW,
Windisch, Switzerland

{norbert.seyff,samuel.fricker}@fhnw.ch
3 Johannes Kepler University Linz & CDL-MINT, Linz, Austria

{iris.groher,michael.vierhauser,manuel.wimmer}@jku.at

Abstract. [Context and motivation] Modern software engineering processes
have shifted from traditional upfront requirements engineering (RE) to a more
continuous way of conducting RE, particularly including data-driven approaches.
[Question/problem] However, current research on data-driven RE focuses more
on leveraging certain techniques such as natural language processing or machine
learning than on making the concept fit for facilitating its use in the entire soft-
ware development process. [Principal ideas/results] In this paper, we propose
a research agenda composed of six distinct research directions. These include a
data-driven RE infrastructure, embracing data heterogeneity, context-aware adap-
tation, data analysis and decision support, privacy and confidentiality, and finally
process integration. Each of these directions addresses challenges that impede
the broader use of data-driven RE. [Contribution] For researchers, our research
agenda provides topics relevant to investigate. For practitioners, overcoming the
underlying challenges with the help of the proposed research will allow to adopt a
data-driven RE approach and facilitate its seamless integration into modern soft-
ware engineering. For users, the proposed research will enable the transparency,
control, and security needed to trust software systems and software providers.

Keywords: Data-driven requirements engineering · Feedback gathering ·
Requirements monitoring ·Model-driven Engineering

1 Vision

Software systems have an increasingly critical role in today’s society. The efficient con-
struction, operation, and evolution of software systems to satisfy the functionality and
quality that users expect is key to success. This also includes to anticipate user expecta-
tions and provide functionality and qualities that users are unaware of and cannot com-
municate explicitly. Moreover, software systems that adapt to context changes need to
c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 135–142, 2020.
https://doi.org/10.1007/978-3-030-44429-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_10

136 X. Franch et al.

gain users’ trust. New approaches such as continuous software engineering [7,15] have
the potential to successfully keep the user in the loop, which is still a challenge in the
requirements engineering discipline (RE) [6].

With this new demand, the so-called data-driven RE (DDRE) has emerged [9,10].
DDRE proposes a paradigm shift in that RE is becoming a data-centred endeavour in
support of the continuous evolution of software-intensive systems. Instead of letting a
requirements engineer elicit, analyze, document, and validate requirements, (a crowd
of) users generate data that leads to requirements as a result. This data can be provided
by users either explicitly in the form of comments, ratings, and other kinds of feedback
or implicitly through usage logs and monitoring data [7]. The realization of DDRE
benefits from recent technological advancements, such as machine learning (ML) and
natural language processing (NLP). In contrast to traditional RE techniques, DDRE
enables the continuous elicitation of requirements directly from the (crowd of) end-
users using the software. Although DDRE can only be applied to eliciting requirements
from existing software, and must take into account regulatory and privacy concerns,
the advent of Continuous Delivery, combined with techniques for privacy management,
foster the applicability of DDRE and reduce those limitations. Furthermore, it is argued
that software products’ success depends on user feedback [9]. For instance, a recent
survey with release engineers showed that 90% believed that users’ feedback has the
highest importance for evaluating success and failure of mobile apps [10].

While the general idea of DDRE is clear and increasingly accepted, its impact on
software development and software systems is still an open question. Maalej et al. [9]
have identified three directions for future research: more sophisticated ML and NLP
techniques with analytic capabilities, integration of explicit and implicit feedback, and
exploitation of data in release planning. While these three areas are subject of cur-
rent research (e.g., [3,12,16]), we deem additional research directions crucial for the
success of DDRE. These are the systematic development and integration of software
development and runtime infrastructure required to implement DDRE, the integration
of DDRE into a continuous software engineering process, and the trust of end-users in
the responsible use of their data. Some research has started, e.g., with the integration of
data-driven requirements management into rapid software development [5]. However,
additional effort is needed considering the ongoing shift in software technologies (e.g.,
Cyber-Physical Systems) and software engineering (e.g., Agile/Lean and DevOps).

In this paper, we present our vision of enabling and integrating DDRE in continuous
software engineering. Section 2 describes the challenges we deem important. Section 3
outlines our research roadmap alongside an introduction of an envisioned DDRE frame-
work. Finally, Sect. 4 concludes the paper.

2 Research Challenges

In recent years, researchers have proposed adaptations of traditional RE with aspects
of DDRE, such as user feedback and runtime monitoring [12,16]. However, no holis-
tic approach has been proposed for the integration of DDRE into software engineer-
ing. This goal would require flexible processes and tools that seamlessly integrate with
existing environments and development processes. In the following, we describe the

Towards Integrating DDRE into the Software Development Process 137

challenges we deem crucial for our vision coming to fruition. The identified challenges
were obtained after studying the scientific state of the art and analyzing the limitations
of current approaches.

Challenge 1: Seamless integration into existing development processes and
software systems. Typically, the development of DDRE components (such as feedback
forms or monitoring components) is done ad-hoc without considering the information
needs of the different stakeholders in the development processes. Furthermore, the evo-
lution and adaptation of these DDRE components is not always well-coordinated and
aligned with the evolution of the system itself. This co-evolution process requires a flex-
ible and configurable DDRE infrastructure incorporating different tools and interfaces
to keep the system and the DDRE components in sync.

Challenge 2: Collection, processing, and integration of relevant heterogeneous
information. The combination of user data from diverse sources into a consoli-
dated source of feedback provides semantically richer information for decision-making
[10,12,16]. The “diverse sources” comprise those mentioned above: data collected with
feedback forms (e.g., ratings, text, images, or videos), logs of user interactions with the
system, and quality-of-service data gathered through runtime monitoring of the system
execution (e.g., response time, invalid accesses).

Challenge 3: Context-awareness and adaptability. The contexts in which users
operate with the systems may change even during runtime when the system is being
used. It is necessary to adapt the DDRE infrastructure to these changes. The context
comprises several facets, for instance, locations, time of the day, environmental condi-
tions, and user profiles [2].

Challenge 4: Provision of actionable feedback. Consolidated feedback needs to
be analysed to inform decision-makers about the users’ experience. The increasing
popularity and adoption of software analytics [11], data science [4], and visualization
approaches offer novel techniques to design methods supporting DDRE. Traceability to
the requirements and design artefacts of the system is key, but often missing [14].

Challenge 5: Gaining users’ trust. Information obtained via monitoring and col-
lecting feedback from users is sensitive. The information may be misused for exposure,
discrimination, and even identity theft. If such information concerns business affairs,
it can expose a company to business intelligence and espionage. Hence, DDRE must
win the users’ trust in the responsible use of the collected data. It may do so by guiding
developers in ethically sound use of data and help them to comply with regulations,
e.g., by respecting the human users’ privacy and the corporate users’ business secrets.

Challenge 6: Provision of value for the entire life-cycle. So far, DDRE has mainly
focused on the utilization of user data to support requirements elicitation, covering only
a fraction of a system’s life-cycle. We envision the same concepts being applied during
system maintenance and evolution. E.g., before putting a release in operation, collected
data could be leveraged to create realistic and lifelike simulations. This way, the DDRE
infrastructure may be used for multiple ends and improve the return of investment in it.

Although we deem those six challenges as crucial for integrating DDRE into soft-
ware engineering, it must be acknowledged that there might be additional issues that
may require further research. For instance, analyzing the limitations and pitfalls of
DDRE; defining types of systems or domains for which DDREmay be difficult to apply;

138 X. Franch et al.

studying the possible combination of DDRE with traditional RE techniques; identifying
the risks of misuse of DDRE (e.g., biased data or inappropriate choice of data sources);
or challenges in upgrading the skills and training of RE practitioners.

3 Research Roadmap

In order to tackle the challenges presented in Sect. 2, we identify and elaborate respec-
tive research directions and propose a conceptual model-driven DDRE infrastructure
(cf. Fig. 1). The infrastructure comprises five major parts: a family of domain specific
languages (DSLs), the management of data sources, code generation, DDRE support
components (such as monitoring and context-based feedback mechanisms), and com-
ponents for analytics and decision support.

The first two parts are dedicated to the description and management of various dif-
ferent design time artifact that play a critical role in a data-driven RE process. This
includes, for example, the requirements for the system, various design and context mod-
els, and monitoring or adaptation rules. In order to consolidate these diverse sources,
we envision a family of DSLs facilitating the declarative description of these artifacts in
a structured way. The third part of the infrastructure is dedicated to making use of these
components at runtime. This is achieved by employing a model-driven approach that
allows generating executable components based on the descriptions found in the DSL
(e.g., monitors collecting certain information about the system). The data and user feed-
back collected by these components then needs to be consolidated and analysed. Finally,
this will provide the foundation for the last part, supporting the decision-making process
for new or changing requirements of the system. Related to these parts we have derived
six distinct research challenges that drive our work on the DDRE infrastructure:

Research Direction 1: Specification and Generation of DDRE infrastructures.
Bridging the gap between system development and infrastructure generation requires
developing them from the same underlying basis, namely the system requirements. We
think that system requirements provide valuable information to identify feedback needs
and guide infrastructure development and customization. For instance, a non-functional
requirement such as “The system shall complete a user’s purchase order in less than 2 s
in 95% of the time” points out the need for: (a) logging response times, (b) generating
infrastructure code to aggregate all purchase order response times and check the stated
condition, (c) generating context-based feedback forms to be shown to users for validat-
ing the requirement, and (d) mining suitable forums (blogs, twitters, ticketing systems)
to gain additional information about user satisfaction or dissatisfaction. We anticipate
employing a model-driven development approach [1] for generating DDRE infrastruc-
ture (cf. Fig. 1 – RD 1). A family of DSLs may allow specifying a DDRE infrastructure
by, e.g., refining the requirements as formulas and linking them to the design of the sys-
tem that receives the user data during runtime. An important milestone in this direction
would be the availability of first DSLs for DDRE.

Research Direction 2: Embracing heterogeneous sources and feedback types.
In order to collect valuable information for DDRE, the large variety of different sources
and diverse types of feedback need to be taken into consideration [12,16]. This in
turn requires to identify relevant sources and to understand their information structure.

Towards Integrating DDRE into the Software Development Process 139

Again, dedicated DSLs are needed to describe different feedback types (cf. Fig. 1 – RD
2). Such descriptions allow for the structured combination of different kinds of feed-
back and are the basis for any form of subsequent data analysis. Bringing together het-
erogeneous feedback, therefore, is key to automatically uncover hidden requirements,
identify problems to be solved, and improvement opportunities to be seized. Concrete
outcomes regarding this second research direction could include advanced definitions
of data sources and data sets in the form of data models. The availability of such models
could be considered as important milestone in this direction.

Research Direction 3: Context-Aware Adaptation of the DDRE infrastructure.
As a response to Challenge 3, we envision a certain degree of (self-)adaptability of the
infrastructure to foresee, respond to, and learn about changing user contexts. This also
means that this challenge includes two main aspects, context-awareness and adaptation.
Analyzing usage contexts and being aware of the capabilities of DDRE components,
we expect so-called context-awareness patterns to emerge that can be used to generate
context-related code (cf. Fig. 1 – RD 3). These patterns will be bound to certain context
dimensions and provide the necessary input for the adaptation of DDRE components in
order to ensure the effective and efficient collection of data. Furthermore, the adaptation
is needed to ensure that users’ data is gathered accurately, efficiently, and in a non-
intrusive way. For example, when a mobile device is running out of battery (a context
change) the monitoring sampling rate could be reduced or monitoring could even be
temporarily deactivated (adaptation of the DDRE components). This pattern may be
always applied in systems deployed on a mobile device. The provision of advanced
context models, the definition of context-awareness patterns and actual code generation
to ensure the adaptation are important milestones for this research direction.

Fig. 1. Generation of the data-driven RE infrastructure: a model-driven vision.

Research Direction 4: Advanced Data Analysis capabilities and Decision Sup-
port Systems. We foresee the extensive use of analytics tools (such as SonarQube [13])
fed with the data collected by the DDRE infrastructure. Analytics may include indica-
tors about customer satisfaction, risk, or time-to-market. They inform decision-makers

140 X. Franch et al.

and guide the evolution of the system by triggering requirement changes (cf. Fig. 1 – RD
4). As we perceive requirements to be the source for building the DDRE infrastructure,
requirement changes also have an impact on this infrastructure. This self-adaptation
enabling loop means that the infrastructure can co-evolve with the monitored system
even at runtime. Providing first prototypes of DDRE infrastructures which are capa-
ble of co-evolving with the system itself, based on requirements for the system can be
considered as key milestone here.

Research Direction 5: Ensuring Users’ Trust in DDRE. Building and maintain-
ing user trust requires an ethically and legally sound approach for collecting and pro-
cessing data (cf. Fig. 1 – RD 5). In particular, DDRE should support privacy and busi-
ness secrecy laws, such as the European General Data Protection Regulation 2016/679
(GDPR) and Trade Secrets Directive 2016/943. These will affect the DDRE technical
architecture and DSL, the software lifecycle processes benefiting from DDRE, and the
organisational structure of the data processors and users. Several aspects will need to
be considered, such as purposeful data minimisation and safeguarding, end-user data
governance with dynamic consent, and mobility of the collected data. Furthermore, any
DDRE approach will need to be evaluated in terms of privacy and trust impact and in its
ability to unlock data for supporting decisions in the software process. In general, a bet-
ter understanding of user’s trust in the context of DDRE and the documentation of this
understanding, e.g., in the form of trust models can be considered important milestones.

Research Direction 6: Processes Integration of DDRE into existing software
development lifecycles. DDRE needs to be smoothly integrated and exploited in rapid,
even continuous software development (cf. Fig. 1 – RD 6). The support of all relevant
activities in the end-to-end process should be studied, starting with the identification of
user needs and ending with the addition of requirements to the product backlog. Know-
ing how and when data analysis is performed and by whom allows understanding the
implications of DDRE in the software process. Furthermore, the DDRE infrastructure
has to be validated before going into production. This is challenging considering the
context-dependent nature of the infrastructure, which calls for a component able to gen-
erate contexts that are part of the infrastructure-testing process. Finally, DDRE needs to
be aligned with existing paradigms and methods in software engineering and business
modelling. E.g., online controlled experimentation is one such relevant method [8] that
uses collected usage data, here for evaluating different implementations of a feature.
The data-driven nature of such paradigms and methods calls for the exploration of pos-
sible synergies. In the previous paragraph, we have highlighted several important steps
towards process integration of DDRE which represent key milestones in this regard.

4 Conclusion

Recent research in DDRE contributes important pieces of the puzzle. To be valuable
and useful in real-world applications, these pieces need to be arranged so that they fit
together seamlessly and automation possibilities need to be explored. This is particu-
larly true for current user-driven approaches that are already delivering value to soft-
ware producers but also face challenges which we have outlined in this paper. Although
we expect DDRE to have a major impact on RE in the near future, RE as we know it

Towards Integrating DDRE into the Software Development Process 141

will still be necessary when it comes to the development of entirely new systems where
experiences and data cannot be sufficiently leveraged to “generate” requirements. Fur-
thermore, DDRE does not limit creative developers but is intended to offer means that
empower creativity. We are convinced that this novel RE paradigm will increase the
effectiveness of RE, improve software quality, and eventually will help to increase the
trust of users in software applications.

Acknowledgements. This work has been supported by: the Spanish project GENESIS
(TIN2016-79269-R), the Christian Doppler Forschungsgesellschaft, the Austrian Federal Min-
istry for Digital and Economic Affairs, the National Foundation for Research, Technology
and Development, and the Austrian Science Fund (FWF) under the grant numbers J3998-N31,
P28519-N31, and P30525-N31.

References

1. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven Software Engineering in Practice, 2nd
edn. Morgan & Claypool Publishers, San Rafael (2017)

2. Cabrera, O., Franch, X., Marco, J.: 3LConOnt: a three-level ontology for context modelling
in context-aware computing. Softw. Syst. Model. 18(2), 1345–1378 (2017). https://doi.org/
10.1007/s10270-017-0611-z

3. D ↪abrowski, J., Letier, E., Perini, A., Susi, A.: Finding and analyzing app reviews related
to specific features: a research preview. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019.
LNCS, vol. 11412, pp. 183–189. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
15538-4 14

4. Ebert, C., Heidrich, J., Martinez-Fernandez, S., Trendowicz, A.: Data science: technologies
for better software. IEEE Softw. 36(6), 66–72 (2019)

5. Guzmán, L., Oriol, M., Rodrı́guez, P., Franch, X., Jedlitschka, A., Oivo, M.: How can quality
awareness support rapid software development? – a research preview. In: Grünbacher, P.,
Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 167–173. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0 12

6. Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., Robinson, W.: The brave new
world of design requirements. Inf. Syst. 36(7), 992–1008 (2011)

7. Johanssen, J.O., Kleebaum, A., Bruegge, B., Paech, B.: How do practitioners capture and
utilize user feedback during continuous software engineering? In: Proceedings of RE (2019)

8. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experimentation in
product development. Inf. Softw. Technol. 77, 80–91 (2016)

9. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements engineering.
IEEE Softw. 33(1), 48–54 (2015)

10. Maalej, W., Nayebi, M., Ruhe, G.: Data-driven requirements engineering: an update. In:
Proceedings of ICSE/SEIP, pp. 289–290. IEEE (2019)

11. Martı́nez-Fernández, S., et al.: Continuously assessing and improving software quality with
software analytics tools: a case study. IEEE Access 7, 68219–68239 (2019)

12. Oriol, M., et al.: FAME: supporting continuous requirements elicitation by combining user
feedback and monitoring. In: Proceedings of RE, pp. 217–227. IEEE (2018)

13. SonarQube: https://www.sonarqube.org. Accessed 24 Jan 2020
14. Vierhauser, M., Cleland-Huang, J., Burge, J., Grünbacher, P.: The interplay of design and

runtime traceability for non-functional requirements. In: Proceedings of the 10th Interna-
tional Workshop on Software and Systems Traceability, pp. 3–10. IEEE (2019)

https://doi.org/10.1007/s10270-017-0611-z
https://doi.org/10.1007/s10270-017-0611-z
https://doi.org/10.1007/978-3-030-15538-4_14
https://doi.org/10.1007/978-3-030-15538-4_14
https://doi.org/10.1007/978-3-319-54045-0_12
https://www.sonarqube.org

142 X. Franch et al.

15. Villela, K., Groen, E.C., Doerr, J.: Ubiquitous requirements engineering: a paradigm shift
that affects everyone. IEEE Softw. 36(2), 8–12 (2019)

16. Wüest, D., Fotrousi, F., Fricker, S.: Combining monitoring and autonomous feedback
requests to elicit actionable knowledge of system use. In: Knauss, E., Goedicke, M. (eds.)
REFSQ 2019. LNCS, vol. 11412, pp. 209–225. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-15538-4 16

https://doi.org/10.1007/978-3-030-15538-4_16
https://doi.org/10.1007/978-3-030-15538-4_16

Identifying and Classifying User
Requirements in Online Feedback

via Crowdsourcing

Martijn van Vliet1, Eduard C. Groen1,2(B), Fabiano Dalpiaz1,
and Sjaak Brinkkemper1

1 Department of Information and Computing Sciences,
Utrecht University, Utrecht, Netherlands

{m.vanvliet,f.dalpiaz,s.brinkkemper}@uu.nl
2 Fraunhofer IESE, Kaiserslautern, Germany

eduard.groen@iese.fraunhofer.de

Abstract. [Context and motivation] App stores and social media
channels such as Twitter enable users to share feedback regarding soft-
ware. Due to its high volume, it is hard to effectively and systematically
process such feedback to obtain a good understanding of users’ opinions
about a software product. [Question/problem] Tools based on natural
language processing and machine learning have been proposed as an inex-
pensive mechanism for classifying user feedback. Unfortunately, the accu-
racy of these tools is imperfect, which jeopardizes the reliability of the
analysis results. We investigate whether assigning micro-tasks to crowd
workers could be an alternative technique for identifying and classifying
requirements in user feedback. [Principal ideas/results] We present a
crowdsourcing method for filtering out irrelevant app store reviews and
for identifying features and qualities. A validation study has shown pos-
itive results in terms of feasibility, accuracy, and cost. [Contribution]
We provide evidence that crowd workers can be an inexpensive yet accu-
rate resource for classifying user reviews. Our findings contribute to the
debate on the roles of and synergies between humans and AI techniques.

Keywords: Crowd-based requirements engineering · Crowdsourcing ·
Online user reviews · Quality requirements · User feedback analysis

1 Introduction

As a growing body of requirements engineering (RE) literature shows, substan-
tial amounts of online user feedback provide information on user perceptions,
encountered problems, suggestions, and demands [3,21,22]. Researchers have
predominantly focused on analyzing user feedback about mobile apps. Of the
various online sources of user feedback, they have emphasized app stores and
Twitter because these readily offer large amounts of user feedback [23].

c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 143–159, 2020.
https://doi.org/10.1007/978-3-030-44429-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_11

144 M. van Vliet et al.

The amount of feedback typically obtained for an app is too large to be
processed manually [12,17], and established requirements elicitation techniques,
such as interviews and focus groups, are not suitable for engaging and involving
the large number of users providing feedback. Hence, user feedback analysis has
become an additional elicitation technique [13]. Because most user feedback is
text-based, natural language processing (NLP) techniques have been proposed
to automatically—and thus efficiently—process user feedback [4,22,24,34].

However, although NLP approaches perform well for simple tasks such as
distinguishing informative from uninformative reviews, they often fail to make
finer distinctions such as feature versus bug, or privacy versus security require-
ments [5,34]. Also, most NLP techniques focus on functional aspects, while online
user feedback has been found to contain much information on software product
quality by which users are affected directly [11], such as usability, performance,
efficiency, and security. Their correct identification is made more difficult by lan-
guage ambiguity due to poor writing [34]. Extensive training and expert super-
vision are required to improve the outcomes of NLP techniques.

We surmise that a crowdsourcing-based approach to identifying and classify-
ing user feedback could overcome the limitations of existing approaches that are
NLP-based or reliant on expert analysts. The premise is to train crowd workers
to perform the classification. Spreading the tagging workload over the members
of an inexpensive crowd might make this approach a feasible alternative for orga-
nizations, with more accurate results than those obtained through automated
techniques. Moreover, since the extraction is done by human actors, the results
may in turn be used as training sets for NLP approaches [12,17,30].

The challenge is that the quality of the annotation results largely depends on
the knowledge and skills of the human taggers. A crowdsourcing setting offers
access to many crowd workers, but they are not experienced in requirements iden-
tification or classification. Hence, we employ strategies from the crowdsourcing
field [18], including the provision of quick training to the workers [7], simplifica-
tion of their work in the form of micro-tasks, and the use of redundant annotators
to filter out noise and to rely on the predominant opinion.

Our main research question is: “How can a method that facilitates the identi-
fication of user requirements1 through a sizeable crowd of non-expert workers be
constructed?” Such a method should ease the removal of spam and other useless
reviews, and allow laypeople to classify requirements aspects in user reviews. It
also needs to be feasible and cost-effective: The quality of the tagging should
be regarded sufficiently high by the app development company to justify the
investment, also thanks to the time saved by crowdsourcing tasks that would
otherwise be performed by employees. We make the following contributions:

1. We present Kyōryoku: a crowdsourcing method for eliciting and classifying
user requirements extracted from user feedback. Our method aims to allow
laypeople to deliver effective outputs by simplifying tasks.

1 In this paper, user requirements are understood as “a need perceived by a stake-
holder”, as per one sub-definition of requirement in the IREB Glossary [9].

Identifying and Classifying User Reqs in Online Feedback via Crowdsourcing 145

2. We report on a validation of the method performed on a sample of 1,000 app
store reviews over eight apps, which attracted a large crowd and provided
good results in terms of processing speed, precision, and recall.

3. We provide the results from the crowd workers and our gold standard as
an open artifact [33] that other researchers can use for training automated
classifiers that rely on machine learning (ML) or for assessing the quality of
human- or machine-based classification methods.

Organization. After reviewing related work in Sect. 2, we describe our method
in Sect. 3. We present the design of our experiment in Sect. 4, and report and
analyze the results in Sect. 5. We review the key threats to validity in Sect. 6,
while Sect. 7 presents conclusions and future directions.

2 Related Work

Crowd involvement in RE has been studied by various researchers over the past
decade, especially through the proposal of platforms that allow the crowd of
stakeholders, users, and developers to actively participate in the communication
of needs for creating and evolving software systems [20,29]. The Organizer &
Promoter of Collaborative Ideas (OPCI; [1]) is a forum-based solution that sup-
ports stakeholders in collaboratively writing, prioritizing, and voting for require-
ments. Through text analysis, initial ideas of the stakeholders are clustered into
forums, and a recommender system suggests further potentially relevant forums.
Lim and Finkelstein’s StakeRare method includes an online platform for iden-
tifying stakeholders via peer recommendation, and for eliciting and prioritizing
the requirements they suggest [20]. REfine [29] is a gamified platform based
on idea generation and up-/downvoting mechanisms through which stakeholders
can express their needs and rank their priority. A similar idea forms the basis of
the Requirements Bazaar tool [26]. All these platforms offer a public space for
stakeholders to interact and express their ideas.

Other researchers have investigated the adequacy of crowd workers in acting
as taggers in requirements-related tasks. This has been explored, for example,
in the context of user feedback collected from app stores. The Crowd-Annotated
Feedback Technique (CRAFT) [16] is a stepwise process that creates micro-tasks
for human taggers to classify user feedback at multiple levels: (i) category, e.g.,
bug reporting vs. feature request; (ii) classification, e.g., whether a bug regards
the user interface, error handling, or the control flow; and (iii) quality of the
annotated feedback and confidence level of the tagger. CRAFT inspires our work
because it aims to provide empirical evidence regarding the actual effectiveness of
such annotation techniques in practice. Stanik, Haering and Maalej [30] recently
employed crowdsourcing to annotate 10,000 English and 15,000 Italian tweets to
the support accounts of telecommunication companies, which in turn served as
part of their training set for ML and deep learning approaches.

User feedback classification has seen a rapid rise of automated techniques
based on NLP and ML. Research on the automatic classification of feedback
has given rise to alternative taxonomies; for example, Maalej and Nabil [22]

146 M. van Vliet et al.

tested the performance of classic ML algorithms with different feature sets to
distinguish bug reports, feature requests, ratings, and user experience. Panichella
et al. [24] took a similar approach but included slightly broader classes, like
information seeking and information giving. Guzmán and Maalej [14] studied
how the polarity of sentiment analysis can be applied to classify user feedback.

Automated classification techniques deliver good results in terms of preci-
sion and recall, but they are inevitably imperfect. This is largely due to the
noise inherently present in user-generated feedback [34], which leads to imper-
fect classifications that decrease the trust of the user in the algorithm and the
platform in which the outputs are embedded [4]. Furthermore, these approaches
achieve their best results when using supervised ML algorithms, which require
extensive manual work and expensive tagging to train the algorithms. This led
to approaches like that of Dhina et al. [5], which aims to diminish human effort
by employing strategies like active learning. In our work, we want to assess the
adequacy of inexpensive crowd workers for the task.

Performing RE activities through crowdsourcing is part of Crowd-based RE
(CrowdRE) [13], which includes all approaches that engage a crowd of mostly
unknown people to perform RE tasks or provide requirements-relevant informa-
tion [10]. CrowdRE aims to involve a large number of stakeholders, particularly
users, in the specification and evolution of software products. To realize this
vision, it is key to understand for which tasks CrowdRE is (cost-)effective. This
is one of the goals of our paper, which aligns with the results of Stol and Fitzger-
ald’s [31] case study, which showed that crowdsourcing in software engineering
is effective for tasks with low complexity and without interdependencies, such
as tagging of user reviews, but less suited for more complex tasks.

3 Kyōryoku: Crowd Annotation for Extracting
Requirements-Related Contents from User Reviews

We propose Kyōryoku2, a method for crowd workers to identify requirements-
related contents in online user reviews. In particular, we describe an annotation
process that focuses on the separation of useful and useless reviews, and on
the identification of reviews that mention requirements-related aspects such as
features and qualities. This process can be viewed as a complex task (cf. [28]),
which crowd workers cannot generally perform because they lack the required
level of expertise in RE. For example, laypeople who act as crowd workers are not
familiar with the distinction between features and the qualities of these features.

Complex tasks can be outsourced to a large crowd of laypeople by decom-
posing these tasks into so-called micro-tasks; the dominant form of directed
crowdsourcing [32]. Micro-tasks involve simpler and more routine data extrac-
tion decision workflows that are performed by laypeople in return for relatively
small rewards. The difficulty lies in how such a complex task can be structurally

2 Kyōryoku is a Japanese term for collaboration: literally, it combines strength

with cooperation .

Identifying and Classifying User Reqs in Online Feedback via Crowdsourcing 147

transformed into a set of simpler tasks. This involves the definition of effective
workflows to guide paid, non-expert workers toward achieving the desired results
that are comparable to those that experts would attain [27].

Fig. 1. Overview of the Kyōryoku crowd-based annotation method.

Kyōryoku consists of a stepwise classification process with three phases, as
visualized in Fig. 1. In line with the CrowdForge framework [19], each phase is
conceived as a micro-task, each being more granular than the preceding phase.
Our design approach was iterative and based on empirical evidence: Each micro-
task was discussed extensively among three of the authors, and then tested
internally with master’s degree students in order to maximize the probability
that the micro-tasks were defined in a way that they can be executed well by
laypeople in a crowdsourcing marketplace. We defined the following phases:

P1: Filter user reviews. Following the principle of increasing granularity
[19], crowd workers should first analyze the nature of the data itself before
classifying the requirements-relevant aspects. In this phase, crowd workers
distinguish between user reviews that are “helpful” to software developers
from those that are “useless”, i.e., spam or irrelevant. “Spam” is any ineligible
user review that is not written with good intent, while a user review is
“irrelevant” if it does not contain useful information from an RE perspective.
The input for Phase 1 is a set of unprocessed user reviews; crowd workers
are presented with the entire body text of each user review.

P2: Filter fragments. Via a text processor, the reviews classified as “helpful”
are split into sentences, which we call fragments. The crowd workers perform
the same task as in Phase 1, except that they handle one-sentence fragments
of helpful user reviews. One-sentence reviews from Phase 1 that are not split
up can be kept in the dataset to improve filtering effectiveness.

148 M. van Vliet et al.

P3: Categorize. The fragments classified as “helpful” in Phase 2 undergo a
more fine-grained classification into five categories. This is a more demanding
task for the crowd workers, so it calls for a clear job description with good
examples. The category “Feature Request” applies to fragments addressing
functional aspects. Three categories are included to denote software quality
aspects, and “None of the Above” is used for aspects such as general crit-
icism and praise. Our categories of software product qualities are based on
Glinz’ taxonomy [8], which we modified to ease the task and maximize com-
prehensibility by laypeople. The category “Performance Feedback” reflects
the quality “performance”. To help crowd workers understand better how
“reliability” is distinct, we named it “Stability Feedback”, reflecting the reli-
ability aspect most commonly addressed in user feedback [11]. To limit the
number of categories, several qualities – including “usability”, “portability”,
and “security” – have been combined into “Quality Feedback”.

Fig. 2. Abridged job description for the crowd workers in Phase 1.

Identifying and Classifying User Reqs in Online Feedback via Crowdsourcing 149

Our approach emphasizes proper training because crowd workers base the
decisions they make during the categorization work on our instructions in the job
description. We paid attention to balancing clarity with brevity, both essential
properties of a job, i.e., a task assigned to a crowd worker.

Figure 2 shows an abridged version of the job description for Phase 1, with the
template we used for the job description of each phase. All job descriptions are
available in our online appendix [33]. The introduction triggers the participants’
attention, followed by the steps, guidelines, and examples. The guidelines cover
the core principles of each answer category, while in the examples, we provide
a selection of actual reviews that are representative of these categories. Drafts
were tested in two pretests, which showed that the job description required
improvements to better guide crowd workers towards the correct decision.

Following the job description, crowd workers are presented with an eligibility
test that serves two purposes: First, the crowd workers can practice the job, and
after the test read the explanations for the items they categorized incorrectly, so
they can learn from these mistakes and improve their decision-making. Second,
it allows us to ensure that only well-performing crowd workers can participate.
The annotation task itself is like an eligibility test, with a page presenting a
number of items for the crowd workers to categorize.

4 Experiment Design and Conduction

To validate Kyōryoku, we designed a single group experiment for which we
recruited crowd workers through the online crowdsourcing marketplace Figure
Eight3 to annotate a set of 1,000 user reviews in the three phases shown in Fig. 1.
Through our experiment, we sought to confirm the following hypotheses:

H1. Crowd workers can distinguish between useful and useless reviews.
H2. Crowd workers can correctly assign user reviews to different requirement

categories.
H3. Extracting RE-relevant contents from online user feedback through crowd-

sourcing is feasible and cost-effective.

H1 focuses on Phases 1–2, and H2 focuses on Phase 3 of Kyōryoku. H3 is a more
general hypothesis regarding the method as a whole.

The Figure Eight platform allows crowd workers to perform jobs by assigning
micro-tasks in exchange for fixed-price monetary rewards. We set the reward for
Phase 1 to $0.03 per user review, based on a pretest in which the participants
took an average of 9.3 min to classify 50 user reviews. This means that the hourly
remuneration is similar to the minimum wage in the United States [15].

In order to test the ability of individual workers to follow Kyōryoku, we
decided to offer individual micro-tasks rather than collaborative tasks where
crowd workers can assess the contributions of others. However, collaboration
and peer reviewing are important research directions to explore in future work.

3 https://www.figure-eight.com/.

https://www.figure-eight.com/

150 M. van Vliet et al.

We opted for an open crowd selection policy: candidates qualify for partic-
ipation through an eligibility test. We saw no need to add further restrictions
such as native language or reputation. Rather, we found it realistic to expect
non-native English-speaking crowd workers to be capable of performing such a
task. If confirmed, this expectation would greatly expand the size of the available
crowd and thus the number of crowd workers participating in our micro-tasks.

We selected Figure Eight because of its support for data categorization tasks
and its many embedded quality control mechanisms, including eligibility test
questions defined by the crowdsourcer that crowd workers must pass to con-
tribute, control questions throughout the actual task, and a reputation system.

Our reviews are a sample of Groen et al.’s dataset [11]. We omitted the
“Smart Products” category, which refers to a combination of hardware and soft-
ware, and the “Entertainment” category, whose reviews were found not to be rep-
resentative of the general population of app store reviews in an earlier study [11].
We also discarded the reviews from Amazon’s app store, from which reviews can
no longer be retrieved, limiting its potential for use in future studies. From the
resulting dataset, we took a systematic stratified sample of 1,000 user reviews, in
accordance with the job size limit of a Figure Eight trial account. The reviews
were stratified across apps and app stores, but we limited the proportion of
reviews about the Viber app to ≤30%. The sample resembled the characteris-
tics of the whole dataset with respect to the distribution of stars, sentiment, and
years, while the disparity of average app ratings was negligible (maximum +0.16
for TweetCaster Pro).

A gold standard for this dataset was created based on the work of this paper’s
first author and feedback from other researchers on selected samples. We will
compare the crowd work against the gold standard on two different levels of
strictness, with the first (strict) being the gold standard defined a priori, and
the second (lenient) being a revision that takes into account potential errors by
the researcher, as well as commonly misclassified reviews that can be attributed
to ambiguities for which the job description did not provide guidance. The lenient
gold standard was constructed after examining the answers by the crowd work-
ers, taking the perspective of the crowd workers, who neither have information
regarding the apps to which the reviews refer, nor access to the entire review
once it is chunked after Phase 1.

The tags app reviews, spam detection, and user reviews were applied to each
test as a means of generating visibility and interest among crowd workers. A
total of 45 test questions were constructed to provide 15 unique test questions
per phase for quality control purposes. We constructed our test questions to
equally represent all possible tagging categories (e.g., all five aspects in Phase
3). For each phase, ten test questions were randomly allocated to the eligibility
test. Seven of them had to be answered correctly in order to pass, while the
remaining five were used as control questions during the actual task. The workers
were presented with pages containing ten items, nine of which were randomly
selected fragments of the dataset, and one a control question. A micro-task was
limited to five pages, for a total of 50 items, to prevent all the work being done

Identifying and Classifying User Reqs in Online Feedback via Crowdsourcing 151

by a small group of early responders. The crowd workers could abandon their
job every time they finished a page. We included a setting that disqualified a
crowd worker from further participation if they completed a ten-item page too
quickly (<20 s for Phases 1 & 2; <30 s for Phase 3). Average time per judgment
varied between 23 (Phase 3) and 14 (Phases 1 & 2) s. The test questions along
with the job descriptions can be viewed in the online appendix [33].

Table 1. Summary of the configuration of Figure Eight per phase.

Phase-session Jobs Judgments per review Required judgments $ per judgment

1-1 200 3 600 0.04

1-2 800 3 2400 0.03

2-1 242 3 726 0.02

2-2 1000 3 3000 0.02

3-1 683 6 4098 0.02

As Table 1 shows, Phases 1 and 2 were carried out in two different sessions.
Due to the experimental nature and the limited budget, Phase 1 commenced with
a trial job of only 200 reviews to detect possibly overlooked faults or flaws in the
process. We were required to split Phase 2 between two accounts because Figure
Eight ’s trial accounts are limited to 1,000 tasks, but we obtained 1,242 fragments
from splitting the helpful reviews from Phase 1 into individual sentences. For
Phases 1 and 2, three judgments from three different crowd workers were required
to reach a satisfactory classification. For Phase 3, we raised this number to six
due to the increased complexity of the task with a larger number of categories.
Six annotations across five categories moreover precluded a balanced outcome
with several categories getting tagged only once. Remuneration varied slightly
between the different sessions. Participants in the first session of Phase 1 received
a reward that was slightly above average because we had underestimated the
efficiency of crowd workers on the platform. Due to budget constraints, Phase 3
offered remunerations slightly below minimum wage for the length of the task.

5 Results

We have organized the results of our experiment as follows: First, we will describe
the crowd that we assembled through Figure Eight (Sect. 5.1), then present some
statistics regarding job duration and cost (Sect. 5.2), and finally report on the
outcome of the jobs in terms of precision and recall (Sect. 5.3).

5.1 Demographics of the Gathered Crowd

We gathered a large worldwide crowd through multiple crowd work channels
associated with Figure Eight. A total of 603 unique crowd workers commenced

152 M. van Vliet et al.

participation in the five sessions listed in Table 1, 422 of whom passed the eligi-
bility test and quality checks. These 422 workers can be considered contributors.
They were from 42 different countries, with the highest number of contributors
coming from Venezuela (36.7%), probably due to the current economic situation
[25], followed by Ukraine (11.6%), Russia (7.8%), Egypt (6.6%), and Turkey
(6.4%).

An automatically deployed contributor survey showed that the contributors
deemed the test questions fair, the tasks not too difficult to complete, and the
remuneration satisfactory. However, the overall rating did decrease from 4.3/5 in
Phase 1 to 3.7/5 in Phases 2 & 3, probably due to the increasing overall difficulty
of the task or the reduced compensation.

The total number of annotations to user reviews or fragments amounted to
10,555. Each contributor classified 24.8 items on average, with the vast major-
ity of crowd workers either tagging the minimum of 10 or the maximum of 50
contributions. On average, 16.4% of the crowd workers failed the eligibility test
to perform the job. The failure rates for Phase 1 (9.6%), Phase 2 (11.7%), and
Phase 3 (27.4%) highlight the increasing difficulty of the tasks.

5.2 Job Statistics

Table 2 shows that the total cost of our experiment was $354.72, which includes
Figure Eight ’s 20% usage fee. Because we reduced the remuneration due to the
tagging of shorter text fragments, Phase 2 was the cheapest. In total, the jobs
were active for a total of 323 min before reaching full completion. Phase 3 had the
highest workload, and therefore took the longest time to reach completion. Phase
2 amassed a large group of contributors the quickest, and therefore achieved
completion in the least amount of time.

Table 2. Launch time and completion statistics for all the launched jobs.

Phase-

session

Launch

(CET; 2019)

Duration

(min.)

Contributions Test

question

judgments

Total

judgments

Judgments

per min.

Time per

judgment

Total

cost ($)

1-1 May 7, 10:47 29 600 477 1086 38 13.7 33.60

1-2 May 15, 11:27 82 2400 1437 3855 46 12.6 97.20

2-1 May 23, 11:21 28 726 665 1463 42 12.3 21.36

2-2 May 29, 16:40 44 3000 2091 5250 113 10 84.96

3-1 June 13, 11:04 140 4098 1943 6311 43 23.6 117.60

Total & Micro-Avg 323 10824 6613 17965 56 15.9 354.72

As shown in Fig. 3, the jobs ramped up slowly in the beginning, followed
by a period of intense contributions, and finally a long tail for the unfinished
jobs to be completed. The average number of judgments per minute was 56,
and varied from 38 judgments in session 1-1 to 113 judgments in session 2-2. In
the intense contribution phase, which we set as the center 90% contributions in
each distribution so as to remove the initial slower phase and the long final tail,

Identifying and Classifying User Reqs in Online Feedback via Crowdsourcing 153

the average number of judgments per minute varied from 54 for session 1-1 to
373 for session 2-2. The not-so-steep activity for session 3-1 can be explained by
the higher number of contributors failing the eligibility test. The contributors
required significantly more time per judgment in Phase 3 (23.6 s) than in Phases
1 & 2 (between 10 and 13.7 s).

Fig. 3. Total number of contributions received over the course of each session.

5.3 Outcome of the Crowd Work

As summarized in Fig. 4, the crowd workers processed 1,000 reviews from app
stores, in which they identified 683 requirements-relevant fragments, which they
then classified into five RE-relevant categories.

Fig. 4. Overview of the course of the user reviews through the different phases.

Table 3 compares the crowd judgments against the gold standard. In Phase 1,
the crowd was able to classify the reviews with a precision of 93%, meaning that
only 7% of helpful reviews were misjudged as useless by the crowd. Depending
on the strictness of the gold standard (strict or lenient, see Sect. 4), the crowd

154 M. van Vliet et al.

Table 3. Detailed comparison of the results of the crowd for Phases 1 & 2.

Phase Positives:

useless (Gold

Std)

Negatives:

helpful

(Gold Std)

True

positives

True

negatives

False

positives

False

negatives

Precision Recall

1 (strict) 620 380 459 347 33 161 0.93 0.74

1 (lenient) 547 453 460 421 32 87 0.93 0.84

2 (strict) 679 563 478 482 81 201 0.86 0.70

2 (lenient) 609 633 493 566 66 117 0.88 0.81

was able to correctly identify either 74% or 84% of the useless reviews from the
dataset (recall)4.

In Phase 2, the crowd was able to classify useless results with a precision
of 88%, meaning that 12% of helpful fragments were discarded incorrectly. The
crowd was able to identify 81% of all useless fragments. This constitutes effective
filtering, although 19% of the useless fragments still remained in the dataset.
Fragments that received the same judgments from all three contributors (61.4%
of all cases) were more often classified correctly, reaching 87% accuracy, while
accuracy dropped to 64% for the cases in which only two contributors agreed.

As Table 4 shows, the crowd workers reached an average accuracy of 78%
(lenient) in Phase 3. The confusion matrix in Table 5 reveals that there was
some misalignment between categories, mainly between “None” and “Quality”
and, to a lesser degree, “Performance”. Crowd workers were the most precise
in classifying “Stability” issues, while reaching the highest recall on “Feature
Requests”. They were the least precise on “None” and “Performance” issues,
and reached the lowest recall on “Performance” issues. Further investigation
of the agreement between the six contributors per review fragment (Table 4)
revealed a meaningful impact of the level of agreement on the accuracy of the
classification. Accuracy ranged from 100% for fragments that the six contributors
classified unanimously, down to 49% when only two contributors picked the same
category.

Table 4. Accuracy for the different levels of agreement between contributors.

Agreement Frequency Correct Incorrect Accuracy

Six out of six 85 (12%) 85 0 100%

Five out of six 144 (21%) 131 13 91%

Four out of six 170 (25%) 145 25 85%

Three out of six 196 (29%) 128 68 65%

Two out of six 88 (13%) 43 45 49%

Total 683 (100%) 532 151 78%

4 Note: because Phases 1 and 2 focus on filtering out irrelevant reviews, we take the
useless category as our positives.

Identifying and Classifying User Reqs in Online Feedback via Crowdsourcing 155

6 Threats to Validity

Despite our efforts to carefully design Kyōryoku, not every aspect could be
accounted for due to the experimental nature of this research. Kyōryoku relies on
several assumptions due to the scarcity of literature on how to assemble effective
micro-tasks. Thus, we have no way of knowing whether Kyōryoku reached its
highest or lowest potential, which makes it harder to put the results into context.
Furthermore, it is currently impossible to trace back potential flaws to individual
design decisions, because only one such experiment was conducted and no varia-
tions have been tested so far. However, the effectiveness of the training method
seems to be the most crucial aspect, due to the high number of participants who
failed the eligibility test.

Table 5. Confusion matrix for the results of the crowd in Phase 3 (lenient).

Crowd Gold Standard Precision Recall

None Feature Stability Performance Quality

None 67 5 3 3 14 0.57 0.73

Feature 4 94 1 1 2 0.83 0.92

Stability 14 8 134 6 20 0.93 0.80

Performance 4 5 3 29 19 0.63 0.41

Quality 28 1 3 7 208 0.80 0.84

Average 0.75 0.74

The tests were conducted with only limited experience with the Figure Eight
platform, and without prior experience in outsourcing tasks to the crowd. No
restrictions were in place to exclude countries or channels that might provide
results with significantly lower quality. The analysis of the results currently does
not account or compensate for possible influences from these sources. Compar-
ing the results against the gold standard, however, did not reveal significant
discrepancies for any particular country or channel in terms of accuracy.

Each phase of our experiment utilized inputs from the preceding phases; thus,
errors by crowd workers were perpetuated in all subsequent phases. Although this
affected the cumulative results, we decided to examine the performance of the
whole method performed sequentially, not that of individual phases. Testing each
phase separately might lead to slightly different results. An inherent shortcoming
of this approach is furthermore that the classifications are left to a very small
subset of the crowd, with only three judgments in Phases 1 & 2, and six in
Phase 3. As Table 4 corroborates, the quality of the results can be improved by
involving more crowd workers, although this also increases costs. Finally, the
dataset contains user reviews from 2011–2015; due to the rapid evolution of the
app landscape, results may differ with more recent user feedback.

156 M. van Vliet et al.

The creation of the gold standard and the review of the crowdsourcing task’s
outputs relied mostly on a single researcher, with other researchers cross-checking
samples. Thus, although we transparently share our materials publicly, only sam-
ples of the gold standard classification have been reviewed. It is not unreasonable
to assume that some errors were introduced into the gold standard that may
affect the validity of the results.

Finally, the quality control mechanisms that we deployed into the Figure
Eight platform have an effect on the results, for they determine the inclusion
or exclusion of crowd workers. Despite our efforts to make it as robust as pos-
sible, this quality control mechanism is imperfect. This might especially affect
the potential accuracy by incorrectly excluding good workers or by improperly
detecting poor workers.

7 Conclusion and Future Work

We have presented Kyōryoku, a crowdsourcing method for identifying and clas-
sifying user requirements – more precisely, requirements-relevant information –
in online user feedback through crowd work. Kyōryoku was tested on 1,000 app
store reviews, which were analyzed and classified by over 400 crowd workers.

Based on the outcomes of Phases 1 & 2 of Kyōryoku, we can confidently state
that crowd workers are able to distinguish between useful and useless reviews
(H1). The crowd workers achieved precision rates of 93% and 88% and recall
rates of 84% and 81%, respectively, in these phases. Although there is no auto-
mated technique that serves as a baseline, further research is needed to compare
against algorithms based on automated spam detection in app reviews [2].

When we consider the ability of the crowd workers to correctly assign user
reviews to different requirement categories (H2), the results are positive, but
inevitably not as good as the binary useful/useless classification. The overall
accuracy was 74% for the five categories that we deemed suitable for crowd-
sourced classification: “Feature”, “Stability”, “Performance”, (other) “Quality”,
and “None”. Interestingly, for the 85 fragments with perfect agreement among
all six taggers, we could observe 100% accuracy. We have not tested Kyōryoku
against automated classifiers yet. These results seem to be at least as good
as optimized automated classifiers of NFRs [21], which achieve an accuracy of
∼70%.

H3 concerned the feasibility and cost-effectiveness of Kyōryoku to extract
RE-relevant contents from online user feedback. We were able to show the fea-
sibility of such a method through the tasks we composed for the crowd workers
to carry out. In terms of cost-effectiveness, 1,000 reviews were fully processed
through crowdsourcing for approximately $350 and in 5.4 h for all phases and
sessions combined. On the other hand, creating a gold standard, i.e., tagging
the data without crowd workers, required circa 20–30 person-hours. Although
we cannot provide a conclusive answer to H3, the results suggest that Kyōryoku
might be suitable for companies who wish to analyze user reviews about their
products, but who do not have sufficient resources to hire an expert assessor.

Identifying and Classifying User Reqs in Online Feedback via Crowdsourcing 157

This work presents a novel method for engaging a crowd to elicit user require-
ments from online user feedback, and paves the way for future work in this
direction. Kyōryoku, which includes openly available task descriptions [33], can
be taken as is and used by organizations who would like to classify a reviews
dataset. Kyōryoku can be improved by changing the wording of the job descrip-
tion, the examples, and the classification taxonomy. To do so, it is imperative
to complement our quantitative results with a qualitative analysis that reveals
which utterances are most likely to lead to false positives and false negatives.
We hope that future studies will take Kyōryoku as a baseline to improve upon;
researchers can directly compare their automated or human-driven method using
the gold standard we make available. Alternatively, it is possible to use this gold
standard to train approaches based on ML. Also, it would be interesting to inves-
tigate whether the crowd can effectively use fine-grained taxonomies of quality
requirements. It is essential to test the approach on larger datasets that contain
recent user reviews. The outcomes of such an analysis might also have financial
consequences: Is Kyōryoku feasible for companies whose products receive thou-
sands of user reviews per day? Moreover, different aggregation techniques can
be studied to reconcile the taggers’ opinions. Finally, in the context of adopting
crowdsourcing for analyzing large-scale industrial datasets requires assessing the
ethical concerns [6] that crowd work entails, since most contributors originate
from countries with a complex social and political situation.

More generally, this research advocates the use of crowdsourcing for complex
tasks in RE or other disciplines. Our results warrant increased exploration of the
applicability of crowdsourcing to similar challenges that revolve around large
volumes of data with a difficult nature. This research has shown that crowd
workers are able to deal with perhaps more complex problems than anticipated,
provided they receive proper instruction.

References

1. Castro-Herrera, C., Duan, C., Cleland-Huang, J., Mobasher, B.: Using data mining
and recommender systems to facilitate large-scale, open, and inclusive requirements
elicitation processes. In: Proceedings of the RE, pp. 165–168 (2008)

2. Chandy, R., Gu, H.: Identifying spam in the iOS app store. In: Proceedings of the
WebQuality, pp. 56–59 (2012)

3. Chen, N., Lin, J., Hoi, S.C., Xiao, X., Zhang, B.: AR-miner: mining informative
reviews for developers from mobile app marketplace. In: Proceedings of the ICSE,
pp. 767–778 (2014)

4. Dalpiaz, F., Parente, M.: RE-SWOT: from user feedback to requirements via
competitor analysis. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS,
vol. 11412, pp. 55–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
15538-4 4

5. Dhinakaran, V.T., Pulle, R., Ajmeri, N., Murukannaiah, P.K.: App review analysis
via active learning. In: Proceedings of the RE, pp. 170–181 (2018)

6. Fort, K., Adda, G., Cohen, K.B.: Amazon mechanical turk: gold mine or coal mine?
Comput. Linguist. 37(2), 413–420 (2011)

https://doi.org/10.1007/978-3-030-15538-4_4
https://doi.org/10.1007/978-3-030-15538-4_4

158 M. van Vliet et al.

7. Gadiraju, U., Fetahu, B., Kawase, R.: Training workers for improving performance
in crowdsourcing microtasks. In: Conole, G., Klobučar, T., Rensing, C., Konert,
J., Lavoué, É. (eds.) EC-TEL 2015. LNCS, vol. 9307, pp. 100–114. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24258-3 8

8. Glinz, M.: On non-functional requirements. In: Proceedings of the RE, pp. 21–26
(2007)

9. Glinz, M.: A glossary of requirements engineering terminology. Version 1.7. Inter-
national Requirements Engineering Board (IREB) (2017). https://www.ireb.org/
en/cpre/cpre-glossary/

10. Glinz, M.: CrowdRE: achievements, opportunities and pitfalls. In: Proceedings of
the CrowdRE, pp. 172–173 (2019)

11. Groen, E.C., Kopczyńska, S., Hauer, M.P., Krafft, T.D., Doerr, J.: Users—The
hidden software product quality experts? A study on how app users report quality
aspects in online reviews. In: Proceedings of the RE, pp. 80–89 (2017)

12. Groen, E.C., Schowalter, J., Kocpzyńska, S., Polst, S., Alvani, S.: Is there really
a need for using NLP to elicit requirements? A benchmarking study to assess
scalability of manual analysis. In: Proceedings of the NLP4RE (2018)

13. Groen, E.C., et al.: The crowd in requirements engineering: the landscape and
challenges. IEEE Softw. 34(2), 44–52 (2017)

14. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment
analysis of app reviews. In: Proceedings of the RE, pp. 153–162 (2014)

15. Horton, J.J., Chilton, L.B.: The labor economics of paid crowdsourcing. In: Pro-
ceedings of the EC, pp. 209–218 (2010)

16. Hosseini, M., Groen, E.C., Shahri, A., Ali, R.: CRAFT: a crowd-annotated feed-
back technique. In: Proceedings of the CrowdRE, pp. 170–175 (2017)

17. Hosseini, M., Phalp, K.T., Taylor, J., Ali, R.: Towards crowdsourcing for require-
ments engineering. In: Proceedings of REFSQ Workshops (2014)

18. Howe, J.: The rise of crowdsourcing. Wired 14(6), 1–4 (2006)
19. Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: CrowdForge: crowdsourcing com-

plex work. In: Proceedings of the UIST, pp. 43–52 (2011)
20. Lim, S.L., Finkelstein, A.: StakeRare: using social networks and collaborative filter-

ing for large-scale requirements elicitation. IEEE Trans. Softw. Eng. 38(3), 707–735
(2012)

21. Lu, M., Liang, P.: Automatic classification of non-functional requirements from
augmented app user reviews. In: Proceedings of the EASE, pp. 344–353 (2017)

22. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On automat-
ically classifying app reviews. In: Proceedings of the RE, pp. 116–125 (2015)

23. Nayebi, M., Cho, H., Ruhe, G.: App store mining is not enough for app improve-
ment. Empir. Softw. Eng. 23(5), 2764–2794 (2018). https://doi.org/10.1007/
s10664-018-9601-1

24. Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C.A., Canfora, G., Gall, H.C.:
How can I improve my app? Classifying user reviews for software maintenance and
evolution. In: Proceedings of the ICSME, pp. 281–290 (2015)

25. Posch, L., Bleier, A., Flöck, F., Strohmaier, M.: Characterizing the global
crowd workforce: a cross-country comparison of crowdworker demographics. arXiv
preprint arXiv:1812.05948 (2018)

26. Renzel, D., Behrendt, M., Klamma, R., Jarke, M.: Requirements bazaar: social
requirements engineering for community-driven innovation. In: Proceedings of the
RE, pp. 326–327 (2013)

27. Retelny, D., et al.: Expert crowdsourcing with flash teams. In: Proceedings of the
UIST, pp. 75–85 (2014)

https://doi.org/10.1007/978-3-319-24258-3_8
https://www.ireb.org/en/cpre/cpre-glossary/
https://www.ireb.org/en/cpre/cpre-glossary/
https://doi.org/10.1007/s10664-018-9601-1
https://doi.org/10.1007/s10664-018-9601-1
http://arxiv.org/abs/1812.05948

Identifying and Classifying User Reqs in Online Feedback via Crowdsourcing 159

28. Schenk, E., Guittard, C.: Towards a characterization of crowdsourcing practices.
J. Innov. Econ. Manag. 1(7), 93–107 (2011)

29. Snijders, R., Dalpiaz, F., Brinkkemper, S., Hosseini, M., Ali, R., Ozum, A.: REfine:
a gamified platform for participatory requirements engineering. In: Proceedings of
the CrowdRE, pp. 1–6 (2015)

30. Stanik, C., Haering, M., Maalej, W.: Classifying multilingual user feedback using
traditional machine learning and deep learning. In: Proceedings of the AIRE (2019)

31. Stol, K.J., Fitzgerald, B.: Two’s company, three’s a crowd: a case study of crowd-
sourcing software development. In: Proceedings of the ICSE, pp. 187–198 (2014)

32. Valentine, M.A., Retelny, D., To, A., Rahmati, N., Doshi, T., Bernstein, M.S.: Flash
organizations: crowdsourcing complex work by structuring crowds as organizations.
In: Proceedings of the CHI, pp. 3523–3537 (2017)

33. van Vliet, M., Groen, E., Dalpiaz, F., Brinkkemper, S.: Crowd-annotation results:
identifying and classifying user requirements in online feedback (2020). https://
doi.org/10.23644/uu.c.4815591.v1. Zenodo

34. Williams, G., Mahmoud, A.: Mining Twitter feeds for software user requirements.
In: Proceedings of the RE, pp. 1–10 (2017)

https://doi.org/10.23644/uu.c.4815591.v1
https://doi.org/10.23644/uu.c.4815591.v1

Designing a Virtual Client for Requirements
Elicitation Interviews

Sourav Debnath(B) and Paola Spoletini(B)

Kennesaw State University, Marietta, USA
sdebnath@students.kennesaw.edu, pspoleti@kennesaw.edu

Abstract. [Context and motivation] Role-playing offer experiential learning
through the simulation of real-world scenarios; for this reason, it is widely used
in software engineering education. In Requirements Engineering, role-playing is
a popular way to provide students hands-on experience with requirements elicita-
tion interviews. [Problem]However, managing a role-playing activity to simulate
requirements elicitation interviews in a class is time consuming, as it often requires
pairing students with student assistants or fellow classmates who act as either cus-
tomers or requirement analysts as well as creating and maintaining the interview
schedules between the actors. To make the adoption of role-playing activities in a
class feasible, there is a need to develop a solution to reduce instructors’ workload.
[Principal ideas] To solve this problem we propose the use of VIrtual CustOmer
(VICO), an intent-based, multimodal, conversational agent. VICO offers an inter-
view experience comparable to talking to a human and provides a transcript of
the interview annotated with the mistakes students made in it. The adoption of
VICO will eliminate the need to schedule interviews as the students can inter-
act with it in their free time. Moreover, the transcript of the interview allows
students to evaluate their performance to refine and improve their interviewing
skills. [Contribution] In this research preview, we show the architecture of VICO
and how it can be developed using existing technologies, we provide an online
rule-based initial prototype and show the practicality and applicability of this tool
through an exploratory study.

Keywords: Requirements elicitation interview · Role-playing · Requirements
engineering education and training · Intelligent agent

1 Introduction

The goal of requirements elicitation is to discover requirements for a system by commu-
nicating with the stakeholders and exploring available information. Among the variety
of available elicitation techniques, requirements elicitation interviews are the most used
[1, 6, 11] and among the most effective [5, 6, 14]. While often perceived by students and
young analysts as an easy technique to master, the success of requirements elicitation
interviews depends on many (soft) skills, such as the ability to create a relationship with
the interviewee to ease the process, formulate questions properly, and introspect or probe
into the customers’ needs. The importance of these skills and the level of effort required

© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 160–166, 2020.
https://doi.org/10.1007/978-3-030-44429-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_12

Designing a Virtual Client for Requirements Elicitation Interviews 161

to acquire them are difficult to communicate in a convincing way through traditional
lectures but are immediately perceived by students through practice. For this reason,
role-playing is a popular pedagogical approach to teach these skills [15].

As a class activity, role-playing for requirements elicitation interviews can be per-
formed by pairing students with each other [16] or with student assistants acting as
either customers or requirements analysts [9]. Despite the positive results obtained by
using role-playing activities to teach requirements elicitation interviews [15, 16], such
activities are not often adopted since they can be cumbersome to manage in a standard
classroom setting. Indeed, scheduling students for the interview activity (with either
peers or student assistants) and maintaining the schedule are time and resource consum-
ing activities. Furthermore, role-playing does not provide all students with an experience
of comparable quality: some students may be partnered with someone motivated and
talented who plays her role well, while others may be partnered with someone who has
no interest in the activity and so underperforms. Also, students can usually role-play only
one or two interviews which may not provide them with enough experience to realize
their mistakes and improve their interviewing skills.

Toovercome these limitations, and consequently support the diffusionof role-playing
activities to teach requirements elicitation interviews and to train young analysts, sim-
ilarly to what is done in other fields [2, 10, 8, 12, 13] we propose the use of VIrtual
CustOmer (VICO), an intent-based, multimodal, conversational agent, able to offer an
interview experience comparable to the one provided by a human. In addition, VICO
also provides the users with a transcript of the interview annotated with the mistakes
that the user made in the interview. Given its double contribution, the adoption of VICO
has the potential not only to resolve the problems connected to organize role-playing
interviews, but also to allow students to evaluate and reason on their performance to
refine and improve their interviewing skills. Our research towards the development of
VICO has the goal to answer to the following research questions:

RQ1: Can the use of an agent-based solution statistically significantly improve
interviewing skills of novice analysts?

RQ2: How comparable can an agent-based solution be to real human interaction in
terms of (2.1) usability, (2.2) learning experience, (2.3) engagement?

Because of the ambitious nature of our research, we are planning to develop a series
of prototypes with increasing level of intelligence and building on the evaluation of
each prototype to develop the subsequent one using more advanced algorithms and
architectures. In particular, we are planning to produce three prototypes to evaluate our
idea and results in a timely manner.

In the rest of the paper, we present an overview of the envisioned final version of
VICO (Sect. 2), we outline our research agenda (Sect. 3), and we then describe our first
prototype of VICO, V0 and the results of an exploratory study aimed to initially answer
to RQ2 (Sect. 4). Finally, Sect. 5 concludes the paper.

162 S. Debnath and P. Spoletini

2 An Overview of VICO

VICO is defined as a multimodal intent-based conversational agent. Roughly speaking,
this means that VICO can support different input and output modalities and is capable
of processing natural language questions and building an adequate response to them.

VICO has two main goals: playing the role of a customer who wants to develop a
product and is interviewed by a VICO’s user, and producing a transcript annotated with
the mistakes made by the user during the interview. To achieve these goals, VICO needs
to be able to (1) listen to the interviewer and understand her questions, (2) appropriately
react to them, generating a suitable answer, (3) communicate the answer to the inter-
viewer, (4) keep track of the interview status, and (5) identify the mistakes the user made
while conducting the interview.

The capabilities (1)–(3) are comparable to capabilities of virtual agents, such as Ellie,
or the agents created with either TARDIS or Virtual People Factory, used for training
purposes in specific fields. Ellie [8] is a virtual human, a fully animated face-to-face
interviewer used tomake automated healthcare decision after conversingwith patients. It
supports a pre-fixed number of sentences (and their variations) and can detect nonverbal
behavior like distress, anxiety. This tool can show emotions like empathy and active
engagement which builds trust with the patients. TARDIS [2] is, instead, a framework to
create virtual agents that can be used to run social coaching workshops in which young
adults are taught how to talk, behave and present themselves in job interviews. In this
tool the scenes, dialogues and animations are predetermined by the authors. Similarly,
to Ellie, also TARDIS agents have the capability to detect social cues of the participants
and produce reactive animations in the virtual recruiter. Finally, Virtual People Factory
[4] is a tool to create virtual humans whose conversational capabilities rely on a model
built on real conversations. In [15], Virtual People Factory has been used to build virtual
patients with stomachache capable of talking in natural language. The goal was to use
these virtual humans to teach medical students how to interact with patients in realistic
settings. To build the conversational model efficiently, Rossen et al. propose the use of
crowdsourcing [15].

The above-mentioned tools suggest that constructing a virtual agent with human-
comparable conversational capabilities using the existing technologies is a realistic goal.
However, since these solutions are domain-specific and require building a specificmodel
for each different type of human, adopting them in our case would require building a
new model for each requirements elicitation interviewee. While our current prototype
is also based on predefined knowledge, our plan for VICO is to create a tool that relies
on a model independent from the domain of the interview built only on the structure of
correct/incorrect interviews and correct/incorrect questions. The specific domain, sepa-
rated by the model and provided as a knowledge base, will be used only to contextualize
the answers of the agent, while their structure will be determined using an analysis of
the question structure and the interview current state. To realize this separation, we will
rely on the high-level architecture shown in Fig. 1.

VICO’s users interact with it online through a user interface with an Embodied
Agent. The inputs from the users will be analyzed using a Speech Synthesizer; which
will extract the intents and entities. Intents are categorizations of the user’s input that
identify what the user wants from VICO and entities are keywords that determine what

Designing a Virtual Client for Requirements Elicitation Interviews 163

specific information a user is requesting. The intents and the entities are then combined
with the interview status, a list of the past intents, entities, questions and answers of the
current interview, received from the Interview Recorder. The combined information will
then be sent to the answer generator. A part of the Speech Synthesizer could be built
using DeepSpeech [7], an open-source speech recognition software.

Fig. 1. Overview of VICO

The contextualized and structured information related to the current question are then
sent to theAnswerGenerator that uses them and the domain knowledge in the knowledge
base to formulate an appropriate answer to the question. This component is the core of
VICO and will be developed to identify the structure of the response independently from
the domain and to complete this response using the knowledge base separately. In this
way, the only part to update, when a new domain for the interview is selected, is the
domain base.

The response generated by the Answer Generator is then sent to the user through
the Embodied Agent and to the Interview Recorder, an aggregator that keeps track of
the interview from its beginning to its current state. The status, as explained above, is
used in the Speech Synthesizer, and is also sent to the Report Generator, which analyzes
the questions to identify the user’s mistakes. The complete recorded interview annotated
with the mistakes identified by Report Generator is provided to the user.

3 Research Agenda

Because of the ambitious nature of the proposed idea, before developing the agent with
all the characteristics described in Sect. 2, we plan to develop two prototypes with
increasing level of intelligence and, by building on the evaluation of each prototype, to
construct the subsequent one using more advanced algorithms and architectures. This
will allow us to evaluate our idea in a timely manner.

The goal of the first prototype, V0, is to evaluate the potential of our idea. V0 is
designed as a basic online multiple-choice text adventure software that uses an open-
source interactive non-linear story-telling tool to simulate a requirements elicitation

164 S. Debnath and P. Spoletini

interview. V0 is evaluated through an exploratory study to investigate the perception of
users while using V0 and its potential impact on their performance. More details on V0
and the results of the exploratory study are briefly V0 presented in Sect. 4.

As intermediate prototype,we plan to develop a toolwith similar capability of the tool
described in Sect. 3, with the only difference that this prototype will have limited ability
to formulate answers. Its Answer Generator will act exactly as the agents produced by
TARDIS and Virtual People Factory and will use the input from the Speech Synthesizer
to select the appropriate response from a knowledge corpus. This corpus will contain a
comprehensive set of responses related to the domain of the interview. These responses
are primarily extracted from role-played interviews and manual entries from domain
experts. To evaluate this prototype, we plan to run two controlled experiments, one to
answer to RQ1 and one to answer to RQ2. In the first experiment, the control group
will only be taught how to run interviews and will be then asked to execute one as
interviewer, while the experimental group will use the tool before running the interview.
The interviews of both groups will be independently analyzed by two experts to measure
the effectiveness of VICO in improving the quality of the interviews. During the analysis
of the interviews, the experts will be blind with respect to the group in which participants
belong. The second experiment, to evaluate RQ2, compares the impact of the training
with a human with the impact of the training with VICO. So, the control group will be
first role-playing with a human, while the experimental group will be role-playing with
VICO, then they both run a second interview with a human. The participants in both
groups will be asked to fill out a follow-up questionnaire, aimed to investigate how the
groups perceived the effect of the training. Also, as done for the interview in the first
experiment, the second interview of both groups will be analyzed to have an objective
measure of the effectiveness of VICO compared with the human-based experience.

The final product of VICO will be evaluated in a similar way. Moreover, we will
analyze the required time to build knowledge bases to evaluate the time needed to build
new customers. Finally, wewill askmembers of our institution’s industry advisory board
to evaluate the tool with their younger analysts to explore the opportunity to use it in
industry settings as a training tool for freshly hired analysts.

4 Initial Prototype and Exploratory Study

The initial prototype1for VICO, V0, simulates a virtual customer, who wants to build a
software system for her ski resorts. It has been developed using Twine, an open-source
tool for creating non-linear stories. When using V0, at each step, the user is given three
options of questions to ask the customer. Once the user selects a question, V0 provides a
suitable predefined answer. Each question has different levels ofmistakes associatedwith
it. The questions and responses were developed by examining 80 interview recordings
collected from role-playing interview activity and cover 12 types of mistakes, selected
from the 34 mistake types described in [3]. At the end of the interview, the participants
are given the full list of questions they asked and the associated mistakes.

We performed an initial exploratory study with 17 undergraduate junior students
majoring in software engineering to evaluate the potential of V0. The participants were

1 Available at http://www.interviewsim.com.s3-website.us-east-2.amazonaws.com/.

http://www.interviewsim.com.s3-website.us-east-2.amazonaws.com/

Designing a Virtual Client for Requirements Elicitation Interviews 165

divided into 2 groups. Both groups initially watched a 20 min video on how to conduct
elicitation interviews [9]. Then the participants in the first group were given an initial
description of a ski resort project and were asked to use the tool and analyze their mis-
takes. The second group skipped this step. Then, both groups were given the description
of another project for a hair salon and performed interview as interviewers on this topic
with a human fictional customer. The interviews were recorded and analyzed indepen-
dently by the authors to identify the mistakes in the asked questions using an evaluation
sheet provided in [9]. To ensure a unbiased review of the interviews the assignment of
the participants to each group was performed by an external researcher and not shared
with the authors. This preliminary informal analysis shows that the participants who
used V0 before conducting the interview with the customer made less mistakes than the
participants who did not use the prototype. In particular, they avoided the majority of
the mistake types embedded into V0.

Moreover, 25 participants used V0 and evaluated its engagement, helpfulness
and level of difficulty, with the following results: 73% of the participants rated the
engagement positively, 81% found V0 helpful and 77% found it easy to use.

5 Conclusion

In this research preview,we introduced our idea and research agenda to develop a human-
comparable agent-based customer to train analysts to perform requirements elicitation
interviews and save the resources needed to manage the same activity with human
participants.We have also presented our initial prototype, V0, and the preliminary results
obtained by using it. Notice that some of the user of V0 sent us verbose positive feedback
that encourages us to further evaluate V0 and move forward with our research agenda.

Acknowledgment. The authors thank Kim Hertz for her support in the enrollment of the par-
ticipants that guaranteed that the authors were blind with respect to the participants’ assigned
group, the graduate and undergraduate research assistants in the Tiresias Lab for beta testing V0,
and all the participants for their time. This work was partially supported by the National Science
Foundation under grant CCF-1718377.

References

1. Agarwal, R., Tanniru, M.R.: Knowledge acquisition using structured interviewing: an
empirical investigation. JMIS 7(1), 123–140 (1990)

2. Anderson, K., et al.: The TARDIS framework: intelligent virtual agents for social coaching
in job interviews. In: Proceedings of International Conference on Advances in Computer
Entertainment, pp. 476–491 (2013)

3. Bano,M., Bano,M., Zowghi, D., Ferrari, A., Spoletini, P., Donati, B.: Learning frommistakes:
an empirical study of elicitation interviews performed by novices. In: IEEE 26th International
Requirements Engineering Conference (RE), pp. 182–193 (2018)

4. Carnell, S., Lok, B., James, M.T., Su, J.K.: Predicting student success in communication
skills learning scenarios with virtual humans. In: 9th International Conference on Learning
Analytics & Knowledge, pp. 436–440. ACM (2019)

166 S. Debnath and P. Spoletini

5. Coughlan, J., Macredie, R.D.: Effective communication in requirements elicitation: a
comparison of methodologies. Requirements Eng. 7(2), 47–60 (2002)

6. Davis, A.M., Tubío, Ó.D., Hickey, A.M., Juzgado, N.J., Moreno, A.M.: Effectiveness of
requirements elicitation techniques: empirical results derived from a systematic review. In:
14th IEEE International Requirements Engineering Conference, pp. 179–188 (2006)

7. DeepSpeech. https://github.com/mozilla/DeepSpeech
8. DeVault, D., et al.: SimSensei Kiosk: a virtual human interviewer for healthcare decision sup-

port. In: Proceedings of the 13th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2014), Paris, France, 5–9 May 2014, pp. 1061–1068. International
Foundation for Autonomous Agents and Multiagent Systems, Richland (2014)

9. Ferrari, A., Spoletini, P., Bano, M., Zowghi, D.: Learning requirements elicitation interviews
with role-playing, self-assessment and peer-review. In: IEEE 27th International Requirements
Engineering Conference (2018)

10. Gratch, J., Wang, N., Gerten, J., Fast, E., Duffy, R.: Creating rapport with virtual agents. In:
Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007.
LNCS (LNAI), vol. 4722, pp. 125–138. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74997-4_12

11. Hickey, A.M., Davis, A.M.: Elicitation technique selection: how do experts do it? In: 11th
IEEE International Requirements Engineering Conference, pp. 169–178 (2003)

12. Kleinsmith, A., Rivera-Gutierrez, D., Finney, G., Cendan, J., Lok, B.: Understanding empathy
training with virtual patients. Comput. Hum. Behav. 52, 151–158 (2015)

13. Rossen, B., Lind, S., Lok, B.: Human-centered distributed conversational modeling: effi-
cient modeling of robust virtual human conversations. In: Ruttkay, Z., Kipp, M., Nijholt,
A., Vilhjálmsson, H.H. (eds.) IVA 2009. LNCS (LNAI), vol. 5773, pp. 474–481. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04380-2_52

14. Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns. In: RE
2013, pp. 92–104. IEEE (2013)

15. Svensson, R.B., Regnell, B.: Is role playing in requirements engineering education increasing
learning outcome? Requirements Eng. 22(4), 475–489 (2017)

16. Zowghi, D., Paryani, S.: Teaching requirements engineering through role playing: lessons
learnt. In: 11th IEEE International Requirements Engineering Conference, pp. 233–241
(2003)

https://github.com/mozilla/DeepSpeech
https://doi.org/10.1007/978-3-540-74997-4_12
https://doi.org/10.1007/978-3-642-04380-2_52

Agile Methods and Requirements
Comprehension

Explicit Alignment of Requirements
and Architecture in Agile Development

Sabine Molenaar1(B), Tjerk Spijkman1,2, Fabiano Dalpiaz1,
and Sjaak Brinkkemper1

1 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

{s.molenaar,f.dalpiaz,s.brinkkemper}@uu.nl
2 fizor., Soest, The Netherlands

tjerk@fizor.io

Abstract. [Context & Motivation] Requirements and architectural
components are designed concurrently, with the former guiding the lat-
ter, and the latter restricting the former. [Question/problem] Effec-
tive communication between requirements engineers and software archi-
tects is often experienced as problematic. [Principal ideas/results]
We present the Requirements Engineering for Software Architecture
(RE4SA) model with the intention to support the communication within
the development team. In RE4SA, requirements are expressed as epic sto-
ries and user stories, which are linked to modules and features, respec-
tively, as their architectural counterparts. Additionally, we provide met-
rics to measure the alignment between these concepts, and we also dis-
cuss how to use the model and the usefulness of the metrics by applying
both to case studies. [Contribution] The RE4SA model employs widely
adopted notations and allows for explicitly relating a system’s require-
ments and architectural components, while the metrics make it possible
to measure the alignment between requirements and architecture.

Keywords: Requirements Engineering · Software Architecture · User
stories · Alignment · Metrics · Case study · Agile RE

1 Introduction

Requirements and design are interdependent and cannot be conducted as sep-
arate activities [28]. The Twin Peaks model describes how requirements and
architecture are defined concurrently, yet being separate activities, with the for-
mer guiding the latter and the latter constraining the former [28]. Extending
Nuseibeh’s model, the Reciprocal Twin Peaks model [22] focuses on agile devel-
opment and discusses why the synergy between requirements and architectural
elements matters. Throughout the development process, one has to manage a
continuous flow of requirements, as well as a continuously changing architecture.

Since software engineering is essentially a social activity among collaborating
humans [36], communication within and across the various disciplines of software
c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 169–185, 2020.
https://doi.org/10.1007/978-3-030-44429-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_13

170 S. Molenaar et al.

engineering (requirements analysis, architectural design, development, testing,
etc.), is of primary importance [25]. In Requirements Engineering (RE), flawed
communication within the development team is a common cause of project fail-
ure [15]. Furthermore, client wishes and needs change continuously, leading to
volatile requirements that are hard to cope with [13,39].

While RE is still mostly rooted in a written set of requirements, the lack of
proper documentation is a serious problem in Software Architecture (SA), which
creates high risks of architectural drift and erosion, as well as increased costs and
a decrease in software quality [34]. Inaccurate or missing documentation leads
to difficult to maintain software. To make matters worse, the impact of new
requirements are uncertain and reuse of components is nearly impossible [21].

The challenge that we tackle in this paper is how to keep RE and SA aligned
in the context of agile development. While both Nuseibeh [28] and Lucassen
[22] identified challenges and explained how RE and SA can support each other,
they did not specify how to tackle them. What makes the problem hard is
that a good solution should not increase stakeholders’ workload or costs, in line
with the principles of ubiquitous traceability [9]. Furthermore, Cleland-Huang
et al. [10] identified seven challenges concerning the Twin Peaks model, of which
we aspire to address five: lack of in-depth communication between requirements
analysts and architects, lack of requirements/architectural knowledge, lack of
architectural visualization and explicit traceability between the two domains.

As a solution, we present explicit concepts and relationships that link func-
tional requirements and functional architectural components in order to achieve
alignment, among other purposes. While this solution requires some upfront
work, aimed at creating or recovering the architecture and linking the require-
ments, we expect it to decrease rework in the subsequent development phase.
Furthermore, to minimize the extra effort, we make use of notations that are
widely adopted in agile development and in software architecture. Specifically,
we make the following contributions:

– We present a refined version of the RE4SA model [32], which includes nota-
tions and relationships for linking RE and SA in agile development;

– We introduce metrics that allow quantifying the relationship between the two
domains. While meant for RE4SA, the metrics can be applied more in general
to other notations for expressing requirements and architectures;

– We report on two case studies that apply RE4SA for the purpose of architec-
ture discovery and architecture recovery, respectively.

The rest of the paper is structured as follows. Section 2 discusses background
work. In Sect. 3 we present the RE4SA model, followed by the alignment metrics
in Sect. 4. Section 5 illustrates how the model and its metrics can be applied in
practice, using two case studies. Limitations, expected benefits and future work
are discussed in Sect. 6, followed by the conclusion in Sect. 7.

Explicit Alignment of Requirements and Architecture in Agile Development 171

2 Background

The rise of agile development created new challenges for the RE and SA disci-
plines. Requirements documentation changed from long, detailed specifications
to less detailed documentation and increased face-to-face contact [8]. The most
common notation for requirements in agile development is user stories, a concise
notation that captures only the essential elements of a requirement [23]. Regard-
ing the SA discipline, agile practices require the incremental, step-wise con-
struction of a product’s functionality, which calls for modular architectures that
require minimal coordination with other modules and are easy to extend [12].
This dynamic context is the one within which this paper is positioned.

Keeping software artifacts aligned falls under the umbrella term of software
traceability [9], which includes techniques for establishing and maintaining trace
links between different artifacts like requirements, architecture, code, and tests.
Among the open challenges that pertain to our work, ubiquitous traceability
[17] is especially important, as it stresses the need of tools and techniques that
minimize the required human effort to create and keep the trace links up to date.

Many automated tools exist for the automated establishment of trace links.
Trace Analyzer [14] uses certain or hypothesized dependencies between artifacts
and common ground and then considers nodes that contain overlapping common
ground to establish a trace link. The common ground they use, however, is
source code, which is unusable when the system is still under design. Zhang
et al. [38] use an ontology-based approach to recover trace links, but only link
the source code to documentation. Traceability links have also been explored
in agile development, with a focus on establishing links between commits and
issues [30].

The systematic mapping by Borg et al. [4] shows that the most frequently
studied links in information retrieval-based traceability are the links between
requirements and between requirements and source code. Other popular links are
between requirements and tests, and other artifacts and code. Linking require-
ments and architectures is a less studied topic.

Tang et al. [33] study the creation of traces between requirements and archi-
tecture. They provide an ontology for annotating manually specifications and
architectural artifacts, which are then documented in a semantic wiki. This wiki
shows which architectural design outcome realizes which requirement, which
decisions have been made, and the links to quality requirements.

Rempel and Mäder [31] are among the first ones to propose traceability met-
rics in the context of agile development. They propose graph-based metrics that
link requirements and test cases. Numerous researchers in the field of software
maintenance proposed metrics, starting from the seminal work by Pfleeger and
Bohner [29]. Our work, however, focuses solely on metrics between requirements
and architectures in the context of agile development for software products.

Recently, Murugesan et al. [27] presented a hierarchical reference model to
capture the relationship between requirements and architecture. Their goals are
similar to those of this research, but they focused on technical architectures.

172 S. Molenaar et al.

Our work, instead, investigates functional architectures and suggests the use of
specific artifacts to formulate more specific guidelines, as opposed to a generally
applicable requirement-to-component connection model.

3 The RE4SA Model

To facilitate good communication within the development team and support con-
sistency, we propose the Requirements Engineering for Software Architecture
(RE4SA) model. Figure 1 shows the four core concepts of the RE4SA model,
and an example for each of the concepts from a case study [32]. RE4SA was
assembled on the basis of tight collaboration with industrial partners in the
software products domain and combines artifacts that we often found employed
in their agile practices [24,32]. Like the Twin Peaks model, RE4SA links the RE
and SA domains. More specifically, it relates Epic Stories (ESs) [24] and User
Stories (USs) [11] in the requirements domain, and modules and features from
the functional architecture model [7]. The problem space, which describes the
intended behavior through requirements, is related to the solution space that
defines how such intended behavior is implemented, i.e., how the requirements
are satisfied [2]. Note that the model is only concerned with horizontal trace-
ability [18].

Fig. 1. The Requirements Engineering for Software Architecture (RE4SA) model.

3.1 Representing Requirements and Architecture

The concepts that are part of the RE4SA model encompass notations that are
highly adopted in the industry, in an attempt to minimize the need for change
and training of professionals. USs, for example, are often found to be among
the requirements documents used in agile methods [20], and a US describes a
requirement for one feature [23]. Features are often represented using feature

Explicit Alignment of Requirements and Architecture in Agile Development 173

diagrams, a graphical language for organizing features hierarchically [19]. By
focusing on the details, USs and features make it hard for the stakeholders to
obtain an overview of the system that is necessary for clear and easy com-
munication within the development team, thereby calling for a higher level of
abstraction.

In practice, USs are grouped together using themes, epics or ‘large USs’ [35].
However, themes and epics tend to consist of one or a few words and thus
lack the rationale that justifies why a requirement should be satisfied by the
system [37]. Therefore, we propose the use of ESs [24], which make use of a clear
template including both a motivation aspect and an expected outcome. From
the architectural standpoint, we take the notion of ‘module’ from the functional
architecture framework [7] as a grouping of features, that also allows for the
visualization of usage scenarios through information flows [5].

3.2 Relationships Between the RE4SA Concepts

The RE4SA model supports the establishment of relationships between the four
concepts in two ways: (i) Architecture Discovery (AD) is a top-down process that
takes the requirements as input in order to create an architecture; (ii) Architec-
ture Recovery (AR) is a bottom-up process that extracts the architecture from
an implemented system [1]; then, the architectural components can be linked
to the requirements. Figure 2 illustrates the four types of relationships between
the concepts of RE4SA. The solid arrows indicate relationships in an AD pro-
cess, while dashed arrows indicate an AR process. Furthermore, the relationships
can be classified depending on whether they affect the granularity of the spec-
ification (refinement and abstraction) or they support the alignment between
requirements and architecture (allocation and satisfaction).

Fig. 2. Relationships between the RE4SA concepts.

174 S. Molenaar et al.

Refinement. According to the SWEBOK guide “decomposition centers on iden-
tifying the major software functions and then elaborating and refining them
in a hierarchical top-down manner” [6]. In an AD process, the major func-
tions are described first, in ESs and modules, and subsequently refined into
more specific functions and descriptions (here, in USs and features).

Abstraction. “[. . .] refers to both the process and result of generalization by
reducing the information of a concept, a problem, or an observable phe-
nomenon so that one can focus on the “big picture”” [6]. USs are grouped
together using ESs, while features are bundled together based on similar
functionality and placed in modules. The groupings of USs and features dif-
fer in the functionality they describe and the functionality they provide,
respectively. The process of placing these sets of USs and features in ESs and
modules we refer to as abstraction.

Allocation. The process of relating requirements to architectural components
is “the assignment to architecture components responsible for satisfying the
requirements” [6]. Since both requirements and architectural components
exist on two levels of granularity, this relationship is included on both levels.

Satisfaction. The SWEBOK guide states that “the process of analyzing and
elaborating the requirements demands that the architecture/design compo-
nents that will be responsible for satisfying the requirements be identified” [6].
Therefore, we refer to this relationship from architectural components to
requirements as satisfaction.

Since this paper investigates requirements-architecture alignment, we leave
the study of refinement and abstraction to future research.

3.3 Architecture Discovery and Architecture Recovery

The AD process (solid arrows in Fig. 2) aims to design an intended architecture
based on the requirements. It is advisable to start at the highest level of granular-
ity, for the collection of ESs describe the functionality of the entire system, while
USs specify the details of how such a high-level functionality is to be delivered.
Once the requirements have been defined, they can be allocated to architectural
components. W e suggest starting at the highest level: ESs are allocated to mod-
ules, then USs to features within the identified modules. Finally, it is useful to
check if the features included in the software architecture are all represented
in the requirements set. Features that cannot be linked to a requirement can
indicate missing requirements or unnecessary features.

The goal of an AR process (dashed arrows in Fig. 2), instead, is to recover the
implemented architecture from the system, using available documentation, such
as source code and a run-time version of the system, and linking the recovered
components to requirements. We suggest starting at the lowest level of granu-
larity, and documenting the identified elements in a feature diagram. Different
modules can then be defined to group the features.

Then, the architectural components can be linked to requirements by creating
satisfaction links. We recommend starting at the highest level of granularity: the

Explicit Alignment of Requirements and Architecture in Agile Development 175

ES-module alignment. If these relationships are established first, it should be
easier to identify which feature satisfies which US, for the USs are abstracted to
ESs. Optionally, missing ESs or USs can be formulated, if the module or feature
they will be allocated to is still relevant and/or required. On the other hand,
ESs or USs that cannot be allocated to an architectural component need to be
assessed. If the functionality the requirement describes is not required or desired,
the requirement can be removed. If the opposite is true, the implementation of
the feature(s) that would satisfy the requirement can be added to the backlog.

4 Alignment Metrics

We introduce metrics that allow for quantitative investigation of the relationship
between requirements and architecture through the lenses of the RE4SA model.
To do so, we present the necessary formal framework the metrics build on. We
use numbered definitions only for the core concepts of our framework.

Let R = {r1, r2, . . . , rn} be a collection of requirements and C = {c1, . . . , cm}
be a collection of architectural components. In the RE4SA model, a requirement
can be either an Epic Story (ES) or a User Story (US), while a component can
be either a module or a feature.

Since a requirement can denote multiple needs (e.g., using the conjunction
‘and’), we introduce the function needs : R → 2C that maps a requirement r to
the needs it expresses. Formally, given a set of needs N , we have that for any
r ∈ R, needs(r) = {n ∈ N. requested by(n, r)}, where requested by(n, r) is true
when n is expressed in the text of requirement r. In this paper, the identification
of the needs that are requested by a requirement is left to human analysis.

We can now define the set NR =
⋃

r∈R needs(r) as the collection of needs
that are requested by individual requirements in the collection R.

Definition 1 (Alignment matrix). A matrix A of size |NR| × |C| such that
aij = 1 if and only if the need ni ∈ NR matches the component cj ∈ C. Formally,

aij =

{
1, if matches(ni, cj)
0, otherwise.

The alignment matrix is a key element of our framework that can be used to
explore the mutual relationship between requirements and components. Based
on the matrix, we define the function allocation : R → 2C that returns the
set of components that match the needs in a requirement. Formally, allocation
(r) =

⋃
ni∈needs(r){cj . aij = 1}. Conversely, we define a function satisfaction :

C → 2R that returns all the requirements with needs matching a given compo-
nent. Formally, satisfaction(cj) =

⋃
r∈R{ni. aij = 1 ∧ ni ∈ needs(r)}.

Based on the allocation function, we can partition the set of requirements
into four non-disjoint subsets: R = Rnot ∪ Runder ∪ Rexact ∪ Rmulti, defined as
follows:

– Rnot = {r ∈ R. allocation(r) = ∅}

176 S. Molenaar et al.

– Runder = {r ∈ R. 0 < |allocation(r)| ∧ ∃ni ∈ needs(r). (
∑

j aij) = 0}
– Rexact = {r ∈ R. ∀ni ∈ needs(r). (

∑
j aij) = 1}

– Rmulti = {r ∈ R. ∃ni ∈ needs(r). (
∑

j aij) > 1}.

Rnot is the set of requirements that are not allocated, Runder are those
requirements with some but not all allocated needs, Rexact are those require-
ments with each need allocated to exactly one component, and Rmulti are those
requirements having at least one need allocated to multiple components. The four
sets are not disjoint. For example, a requirement requesting needs n1 and n2,
with n1 matching components c1 and c2 and with n2 matching no components
would be both multi-allocated (because of n1) and under-allocated (because
of n2).

Definition 2 (Allocation degrees). The partitioning of R into Rnot, Runder,
etc. can be used to define metrics on the allocation degree of a set of requirements.
We introduce three degrees, each in the [0, 1] range:

– multi-allocation degree: multi allocd = |Rmulti|/|R|
– exact allocation degree: exact allocd = |Rexact|/|R|
– under-allocation degree: under allocd = (|Rnot| + |Runder|)/|R|
The ideal case is one in which the exact allocation degree is close to 1 and
the other two degrees are close to zero: in that case, indeed, each need in a
requirement can be traced to exactly one architectural component. This situation
is good because the needs are homomorphically mirrored in the architectural
design, thereby facilitating the conversation between experts in either discipline.
An exception to this case is when the system includes variability: in that case,
it is desired to have a multi-allocation degree, for multiple components may be
devised as alternative ways to fulfill one requirement.

Similar to the partitioning of requirements based on the allocation func-
tion, we can partition the set of components based on the satisfaction func-
tion. Specifically, the set of components is partitioned into two disjoint subsets:
C = Cnot ∪Csat, where Csat = {c ∈ C. satisfaction(c) 	= ∅} and Cnot = C \Csat.

Definition 3 (Satisfaction degree). It defines the ratio of components that
satisfy at least one need in a requirement as follows: satd = |Csat|/|C|.
When the satisfaction degree reaches the value of 1, all architectural compo-
nents trace back to at least one requirement and, thus, their existence is justi-
fied. Unlike Definition 2, we do not include a notion of multi-satisfaction, for we
are interested in assessing whether a component is justified or not, instead of
counting how many needs the component accommodates.

To represent the combination of allocation and satisfaction, we introduce the
metric of alignment which is a weighted arithmetic mean of the extent to which
needs are allocated, and the extent to which components can be traced back to
requirements. To do so, we first need to introduce the need allocation degree:

need alld =
|{ni ∈ NR. (

∑
j aij) = 1}|

|NR| .

Explicit Alignment of Requirements and Architecture in Agile Development 177

Definition 4 (Alignment degree). It is a weighted arithmetic mean (with
α ∈ [0, 1]) of the need allocation degree and the component satisfaction degree:
alignd = α · need alld + (1 − α) · satd.

In this paper, we set α = 0.5 and give equal weight to the requirements and
architecture perspectives. Similar to the debate on the β in the Fβ-score [3],
in-vivo studies are necessary to tune our parameter based on the relative impact
of need allocation degree and component satisfaction degree. However, our expe-
rience with the software production industry reveals that early product releases
include several implicitly expressed needs (e.g., printing, storage, menu interac-
tion), thereby requiring a high α > 0.5, whereas later releases focus on explicit
(customer) requirements allocation with α < 0.5.

The concepts and definitions above apply to the generic notions of require-
ment and component. In RE4SA, as per Fig. 2, we can reason about alignment
at two granularity levels: high and low. The definitions and metrics can therefore
be applied at either level:

– high: the set R contains ESs, C includes modules, N consists of outcomes
from an ES, and the function needs returns the set of outcomes of an ES;

– low : R contains USs, C consists of features, N includes actions from a US,
and the function needs returns the set of actions of a US.

5 The RE4SA Model in Practice

To assess the feasibility and usefulness of RE4SA and our metrics, we apply
them to two case studies. The first presents an AD process, while the second
illustrates an AR process. After introducing each case, we discuss the granularity
relationships in Sect. 5.1, and analyze the alignment metrics in Sect. 5.2.

VP. The discovery case concerns a portal for vendors to manage their open
invoices through an integration with the customers’ ERP system. Following a
requirements elicitation session with the customer, a list of USs was created and
then grouped in themes. We defined ESs from the themes by rewording them and
by splitting one of them into two (based on the word “and”). The SA was created
by transforming the requirements into an intended architecture following the AD
process described in Sect. 3.3. The software architect was allowed to include his
interpretation of the requirements, e.g., by adding missing features and modules.

YODA. The recovery case regards a research application called Your Data
(YODA, https://github.com/UtrechtUniversity/). A rich collection of USs was
available, already grouped in themes. We used these one-word themes to for-
mulate ESs. The functional architecture had to be recovered. As described in
Sect. 3.3, this was done using a bottom-up approach. Using the implemented
system, in this particular case a web application, all features were recovered by
modeling every user-interactive element in the GUI as a feature.

https://github.com/UtrechtUniversity/

178 S. Molenaar et al.

5.1 Granularity: Exploring Refinement and Abstraction

Descriptive statistics of both cases are shown in Table 1, including the arithmetic
mean for the granularity. The average number of USs in an ES is shown on the

Table 1. Descriptive statistics of both the Vendor Portal (VP) and YODA case.

Case Level of granularity Requirements Comp. Granularity

R Needs Rnot Runder Rexact Rmulti C Csat µES-US µM-F

VP ES-module 8 9 1 0 4 3 14 11 3.8 3

US-feature 30 37 2 2 17 9 43 35 1 1

YODA ES-module 12 12 0 0 12 0 12 12 8 12.6

US-feature 96 102 3 3 84 6 161 66 1 1

top row, while the number of ESs a US is abstracted to, on average, is shown
below that. The same is done for the averages of modules and features.

VP. This collection of requirements has an average of 3.8 US per ES. Analyzing
our artifacts, we see that one ES only contains a single US, four modules have
a single feature, and five modules only have two features. On average, a module
has three features. This may indicate either the existence of few requirements
per ES, high modularity, or non-detailed requirements. Due to the use of Scrum
in the project, it is likely that the number of requirements will grow during
development. The ES with a single US can indicate missing requirements, that
it should actually be a US, or that it is expected to be extended in later phases.
On the SA side, the aforementioned modules with one or two features should be
analyzed as they can indicate missing features, modules to be extended, or an
incorrect organization of features.

YODA. While all ESs contain at least two USs, thereby representing a proper
refinement, three of them are larger than average. Regarding the modules, three
contain less than two features, and one contains far more features than the
average. The YODA development team can use these results to analyze their
architecture and code. The larger-than-average module, for instance, may include
too much functionality. In addition, the three modules with zero or one feature
may lead the team to consider removing these modules or expanding upon them
in the future. After speaking with the lead developer, it turns out that they have
recently been working on ‘simplifying’ the largest module, since it was difficult
to maintain and complex to use. On the other hand, they have been adding
features to the modules that are relatively small.

5.2 Alignment: Studying Allocation and Satisfaction

The alignment metrics for both cases are presented in Table 2, including the
ES-module alignment and the US-feature alignment.

Explicit Alignment of Requirements and Architecture in Agile Development 179

VP. On both levels of granularity, the under-allocation degree shows that 13%
of the requirements contain needs that are not addressed by architectural compo-
nents. The exact allocation degree is 0.50 for ES-M and 0.57 for US-F; roughly
half of all requirements have each of their needs allocated to exactly one SA
element. The remaining requirements are multi-allocated, with a degree of 0.38
for ES-M and 0.30 for US-F, which could indicate duplicate features or ineffi-
cient solutions. Only around 80% of the components satisfy a requirement ; the
remaining components are not explicitly justified by the requirements.

Table 2. The alignment-related metrics applied to the VP and YODA cases.

Relationship Metric VP YODA

ES-M US-F ES-M US-F

Allocation multi allocd 0.38 0.30 0.0 0.06

exact allocd 0.50 0.57 1.0 0.88

under allocd 0.13 0.13 0.0 0.06

Satisfaction satd 0.79 0.81 1.0 0.41

Alignment need alld 0.89 0.86 1.0 0.94

alignd 0.84 0.84 1.0 0.68

Since this is an AD process, we expect a high alignment degree, as the archi-
tecture is based on the requirements before taking implementation factors into
account (as opposed to the AR process). The alignment degree is 0.84 on both
granularity levels, indicating some discrepancies between the requirements and
the architecture. Together with the multi-allocation degrees of 0.30 and 0.38,
this seems to indicate the requirements set is not sufficiently detailed. The under-
allocation degree indicates that the software architect either did not agree with
certain requirements, or missed them during the AD process. The inexact alloca-
tion on the ES-M level can indicate an incorrect categorization of requirements,
that the granularity of ES is not on a module level, or that the architect’s cate-
gorization differs from that of the requirements engineer.

Figure 3 shows how USs can be allocated to features. The first US in the
figure is multi-allocated, as it is linked to two features, specifically the need “use
password forgotten functionality” is allocated to the features “initiate password
recovery”, and “send password recovery email”. The other two USs are exact-
allocated as they contain a single need and are allocated to a single feature.

The metrics from the VP case were discussed with the CEO of the com-
pany that developed the portal. He was surprised by the low alignment score,
for the project was rather simple and the requirements were the basis for the
architecture. The metrics were mentioned to be useful in highlighting potential
issues with the requirements, and it was noted that the requirements specification
was not revisited after the SA creation. Multi-allocation was seen as the most
important allocation degree, as it can indicate unnecessary costs, while under-
allocation was expected to be detected during use of the application, or denote

180 S. Molenaar et al.

Fig. 3. Example of how USs were allocated to features.

missing features to add later. The modules that did not satisfy a requirement
were judged to be a result of missing requirements. Finally, he mentioned the
potential for making agreements when outsourcing development, e.g., requiring
the architecture to have a 0.9 alignment degree with the requirements.

YODA. The ESs were allocated one-to-one to modules, while all modules
satisfied exactly one ES; thus, these metrics are not further discussed. Nearly all
USs were allocated to a feature in the architecture. Only three USs are missing
completely and three others have not been fully implemented. The latter three
USs contained two needs, of which only one was allocated to a feature. Regarding
the features, instead, not even half of the features satisfy at least one need.

The missing satisfaction links may be due to a granularity levels discrepan-
cies: the features are probably more specific than the USs. Also, since our feature
recovery was based on exploring the GUI, some features (e.g., those related to
navigation) might not need to be listed in a requirement.

According to the metrics, not all requirements are currently allocated : some
features still need to be implemented. Moreover, since around 60% of the fea-
tures do not satisfy a requirement, either the requirements are incomplete or
unnecessary features exist. The lead developer explained that they do not con-
sider anything in retrospect : when a US is considered completed, it is removed
from the backlog. Thus, he was unaware that six USs have not yet been fully
implemented in the system.

An example of how modules and features were recovered from the GUI is
shown in Fig. 4. For the sake of brevity, the alternative features related to F2 and
F3 were collapsed. The module satisfies an ES that was based on the “Metadata”
theme: “When I am storing research data, I want to include metadata about the
content, so that I can document my data.” Only two of the features satisfy a
US, features F3 and F4 (in Fig. 4) satisfy US3 and US4, respectively:

US3: “As a researcher, I want to specify the accessibility of the metadata of
my dataset, so that access can be granted according to policy [...].”

Explicit Alignment of Requirements and Architecture in Agile Development 181

Fig. 4. Example of how architectural components were recovered from the GUI.

US4: “As a researcher, I want to be able to discard existing metadata and
re-begin adding metadata, so that I can document a data package.”

Therefore, F1 and F2 are part of the Cnot count, while F3 and F4 are considered
part of the Csat.

YODA’s lead developer expects the metrics to be useful, as they could help
foster the creation of trace links, currently nonexistent. The situation is prob-
lematic when new colleagues join (“it takes approximately three months to get
up to speed and be able to add something of value to the system”) or when
someone leaves the team, for their knowledge is lost. Also, team members often
do not know where features originate from. To discover the rationale, the source
code is checked to locate features; if unused, it is removed. This happens because
the team sometimes adds features without defining the requirements first. More-
over, he expects under-allocation to be useful during development, e.g., during
or at the end of every sprint, to check whether all requirements were satisfied
and if they were satisfied in full. Finally, the multi-allocation metric may help
identify duplicate features; the user stories often have overlap, causing the team
to implement the same feature twice. The developer stated they are planning
on using the metrics in their next sprint aiming to improve their work efficiency
and quality.

6 Discussion

We present expected benefits from the use of RE4SA in practice, and present
the validity threats to our study.

Expected Benefits. RE4SA can improve requirements-architecture communi-
cation in agile development product teams, which include product managers and
product owners, through (1) simple communication means, (2) clear structural
guidelines, and (3) consistent domain terminology. Combining the two granular-
ity levels of the RE4SA model provides a shared context view of the software
for the functional and technical experts. Functional experts tend to employ a

182 S. Molenaar et al.

high-level overview (ES-module), while technical experts are mostly focused on
the detailed level (US-feature) [32].

The objective of the RE4SA model, however, is not limited to improving
communication. Gayer et al. [16] argued for the need of dynamic architec-
ture creation. This architecture allows for traceability that can make software
more maintainable, changeable and sustainable. The alignment relationships in
RE4SA support traceability, with little documentation and effort required.

We also surmise that RE4SA helps reason about the system, for all stake-
holders know which parts of the system are being discussed. In addition, when
requirements are changed (modified, added, or deleted), it is apparent which
other parts of the system are affected, due to the explicit relationship between
concepts. Obviously, some effort is required to maintain the artifacts updated.

The RE4SA model and its metrics can be utilized for communication outside
of the development team as well, such as when interacting with clients. One
expected benefit is the ability provide proof for contractual obligations, which
could also be applied to ensuring requirements alignment when outsourcing
development. Using the alignment metrics, a company can prove that its system
complies with the contractual requirements they and the client agreed on for the
project. Furthermore, the company can provide feedback on its progress in per-
centage of realized functionality or satisfied requirements. At times, customers
will have requirements for a software product that form a risk to the maintain-
ability of the product. In these cases, the architecture can be used to visualize
the risks of these particular elements and ensure that the customer is aware and
agrees to the risks before the requirement is accepted as part of the project.

Finally, RE4SA may support release planning. The architecture highlights
feature dependencies, while the requirements show the priorities. Using both
perspectives, the developers can determine the top-priority features and, option-
ally, the pre-requisite features. When customers have a customized version of a
software product, the architecture of the new release can be compared to the
architecture of the customer [32]. Through this comparison, incompatibilities can
be detected, allowing for better planning in an upgrade project for a new release.

Validity Threats. Concerning construct validity, the formulation of ESs
presents some difficulties; in RE practice, ESs are formulated using the US tem-
plate (epics) or as themes. Although our re-formulation did not present particular
difficulties, we need to acknowledge that the ES notation we suggest is not main-
stream yet. All other concepts of RE4SA (user stories, modules, features) are
adopted by the industry. An internal threat in using the RE4SA model is deter-
mining the ‘right’ levels of granularity. While USs should describe a requirement
for exactly one (atomic) feature [23], this is often unfeasible or inefficient and
a US might describe a composite feature instead. For example, a US like “As a
user, I want to select a language.” would result in one feature ‘select language’.
Depending on the chosen granularity level, this feature may either be atomic,
or be a composite one that is refined into separate features to switch to each
supported language. To minimize this threat, we used the same levels of gran-
ularity and metrics for both cases. Conclusion validity is indirectly affected by

Explicit Alignment of Requirements and Architecture in Agile Development 183

the granularity problem: should we have employed a different granularity level,
the conclusions we have drawn may have differed. Regarding external validity,
we considered only two case studies; nevertheless, the metrics are applied to
real-world examples of documentation and cover common software applications.

7 Conclusion

In this study on requirements and architecture alignment, we presented the
RE4SA model [26] that supports communication within the development team.
We formalized the links between the four core concepts in RE4SA and we pro-
vided metrics to quantify the alignment between RE and SA. The results of these
metrics can be used to analyze and improve the alignment. The metrics were
applied in two industry provided cases and allow for detection of improvements
in both the architecture and the requirements.

The results presented in this paper and in previous work regarding RE4SA
[26,32] provide initial evidence on the suitability of our model for experimenta-
tion in practice. In particular, the AR process detailed in Sect. 3.3 allows for the
RE4SA model to be used even if currently no architecture artifacts are in place.

This paper paves the way for various research directions. Firstly, we would
like to study whether the linguistic structure of the artifacts, e.g., the specific
words used, can help relate requirements with architectural components, and
support the proper positioning of new functionality within an existing architec-
ture. Moreover, using the sentence structures in USs, it might be possible to
extract feature names from USs automatically. Secondly, evolution in agile envi-
ronments [10] is a notable challenge that could benefit from the use of RE4SA.
By capturing software changes introduced in extension, customisation and mod-
ification of a product in the architecture, the evolution of the product becomes
visible and manageable. Utilizing the alignment relationships can be used to
ensure that both the requirements and architecture stay up to date. Thirdly,
we intend to apply the RE4SA model and its alignment metrics to additional
cases, aiming to validate them and to determine best practices. One of the first
steps in this direction is to formalize metrics for the granularity relationships, in
the same manner as for the alignment relationships as presented in this paper.
Finally, it is important to investigate how quality requirements are represented in
agile development and how they are mapped to quality aspects in architectures.

Acknowledgements. We would like to thank Remmelt Blessinga, Abel Menkveld
and Thijs Smudde for their contributions to an earlier version of this work.

References

1. Ali, N., Baker, S., O’Crowley, R., Herold, S., Buckley, J.: Architecture consistency:
state of the practice, challenges and requirements. Empirical Softw. Eng. 23(1),
224–258 (2018)

2. Apel, S., Kästner, C.: An overview of feature-oriented software development. J.
Object Technol. 8(5), 49–84 (2009)

184 S. Molenaar et al.

3. Berry, D.M.: Evaluation of tools for hairy requirements and software engineering
tasks. In: Proceedings of the RE Workshops, pp. 284–291 (2017)

4. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability. Empirical Softw. Eng.
19(6), 1565–1616 (2014). https://doi.org/10.1007/s10664-013-9255-y

5. Bosch, J.: Software architecture: the next step. In: Oquendo, F., Warboys, B.C.,
Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24769-2 14

6. Bourque, P., Fairley, R.E., et al.: Guide to the Software Engineering Body of Knowl-
edge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press (2014)

7. Brinkkemper, S., Pachidi, S.: Functional architecture modeling for the software
product industry. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol.
6285, pp. 198–213. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15114-9 16

8. Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study.
IEEE Softw. 25(1), 60–67 (2008)

9. Cleland-Huang, J., Gotel, O.C., Huffman Hayes, J., Mäder, P., Zisman, A.: Soft-
ware traceability: trends and future directions. In: Proceedings of the FOSE, pp.
55–69 (2014)

10. Cleland-Huang, J., Hanmer, R.S., Supakkul, S., Mirakhorli, M.: The twin peaks of
requirements and architecture. IEEE Softw. 30(2), 24–29 (2013)

11. Cohn, M.: User Stories Applied. Addison-Wesley Professional, Boston (2004)
12. Coplien, J.O., Bjørnvig, G.: Lean Architecture. Wiley, Hoboken (2011)
13. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for

large systems. Commun. ACM 31(11), 1268–1287 (1988)
14. Egyed, A., Grünbacher, P.: Automating requirements traceability: beyond the

record & replay paradigm. In: Proceedings of the ASE, pp. 163–171 (2002)
15. Fernández, D.M., et al.: Naming the pain in requirements engineering. Empirical

Softw. Eng. 22(5), 2298–2338 (2017). https://doi.org/10.1007/s10664-016-9451-7
16. Gayer, S., Herrmann, A., Keuler, T., Riebisch, M., Antonino, P.O.: Lightweight

traceability for the agile architect. Computer 49(5), 64–71 (2016)
17. Gotel, O., et al.: The quest for ubiquity: a roadmap for software and systems

traceability research. In: Proceedings of RE, pp. 71–80 (2012)
18. Gotel, O., et al.: Traceability fundamentals. In: Cleland-Huang, J., Gotel, O., Zis-

man, A. (eds.) Software and Systems Traceability, pp. 3–22. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-1-4471-2239-5 1

19. Hubaux, A., Tun, T.T., Heymans, P.: Separation of concerns in feature diagram
languages: a systematic survey. ACM Comput. Surv. (CSUR) 45(4), 1–23 (2013)

20. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic
literature review on agile requirements engineering practices and challenges. Com-
put. Hum. Behav. 51, 915–929 (2015)

21. Lindvall, M., Muthig, D.: Bridging the software architecture gap. Computer 41(6),
98–101 (2008)

22. Lucassen, G., Dalpiaz, F., Van Der Werf, J.M., Brinkkemper, S.: Bridging the
twin peaks: the case of the software industry. In: Proceedings of the TwinPeaks,
pp. 24–28 (2015)

23. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E., Brinkkemper, S.: Improving agile
requirements: the quality user story framework and tool. Requirements Eng. 21(3),
383–403 (2016)

https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1007/978-3-540-24769-2_14
https://doi.org/10.1007/978-3-642-15114-9_16
https://doi.org/10.1007/978-3-642-15114-9_16
https://doi.org/10.1007/s10664-016-9451-7
https://doi.org/10.1007/978-1-4471-2239-5_1

Explicit Alignment of Requirements and Architecture in Agile Development 185

24. Lucassen, G., van de Keuken, M., Dalpiaz, F., Brinkkemper, S., Sloof, G.W.,
Schlingmann, J.: Jobs-to-be-done oriented requirements engineering: a method for
defining job stories. In: Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.) REFSQ 2018.
LNCS, vol. 10753, pp. 227–243. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-77243-1 14

25. McChesney, I.R., Gallagher, S.: Communication and co-ordination practices in
software engineering projects. Inf. Softw. Technol. 46(7), 473–489 (2004)

26. Molenaar, S., Brinkkemper, S., Menkveld, A., Smudde, T., Blessinga, R., Dalpiaz,
F.: On the nature of links between requirements and architectures: case studies
on user story utilization in agile development. Technical report UU-CS-2019-008,
Department of Information and Computing Sciences, Utrecht University (2019).
http://www.cs.uu.nl/research/techreps/repo/CS-2019/2019-008.pdf

27. Murugesan, A., Rayadurgam, S., Heimdahl, M.: Requirements reference models
revisited: accommodating hierarchy in system design. In: 2019 IEEE 27th Interna-
tional Requirements Engineering Conference (RE), pp. 177–186. IEEE (2019)

28. Nuseibeh, B.: Weaving together requirements and architectures. Computer 34(3),
115–119 (2001)

29. Pfleeger, S.L., Bohner, S.A.: A framework for software maintenance metrics. In:
Proceedings of Conference on Software Maintenance, pp. 320–327 (1990)

30. Rath, M., Rendall, J., Guo, J.L.C., Cleland-Huang, J., Mäder, P.: Traceability in
the wild: automatically augmenting incomplete trace links. In: Proceedings of the
ICSE, pp. 834–845 (2018)

31. Rempel, P., Mäder, P.: Estimating the implementation risk of requirements in
agile software development projects with traceability metrics. In: Fricker, S.A.,
Schneider, K. (eds.) REFSQ 2015. LNCS, vol. 9013, pp. 81–97. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16101-3 6

32. Spijkman, T., Brinkkemper, S., Dalpiaz, F., Hemmer, A.F., van de Bospoort, R.:
Specification of requirements and software architecture for the customisation of
enterprise software. In: Proceedings of the RE Workshops, pp. 64–73 (2019)

33. Tang, A., Liang, P., Clerc, V., Van Vliet, H.: Traceability in the co-evolution of
architectural requirements and design. In: Avgeriou, P., Grundy, J., Hall, J., Lago,
P., Mistŕık, I. (eds.) Relating Software Requirements and Architectures, pp. 35–60.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21001-3 4

34. Venters, C.C., Capilla, R., Betz, S., Penzenstadler, B., Crick, T., Crouch, S., Naka-
gawa, E.Y., Becker, C., Carrillo, C.: Software sustainability: research and practice
from a software architecture viewpoint. J. Syst. Softw. 138, 174–188 (2018)

35. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I., Poelmans, S.: Building a rationale
diagram for evaluating user story sets. In: Proceedings of the RCIS, pp. 1–12 (2016)

36. Whitehead, J.: Collaboration in software engineering: a roadmap. In: Proceedings
of FOSE, pp. 214–225 (2007)

37. Yu, E.S.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of ISRE, pp. 226–235 (1997)

38. Zhang, Y., Witte, R., Rilling, J., Haarslev, V.: An ontology-based approach for
traceability recovery. In: Proceedings of the ATEM, pp. 36–43 (2006)

39. Zowghi, D., Nurmuliani, N.: A study of the impact of requirements volatility on
software project performance. In: Proceeding of the APSEC, pp. 3–11 (2002)

https://doi.org/10.1007/978-3-319-77243-1_14
https://doi.org/10.1007/978-3-319-77243-1_14
http://www.cs.uu.nl/research/techreps/repo/CS-2019/2019-008.pdf
https://doi.org/10.1007/978-3-319-16101-3_6
https://doi.org/10.1007/978-3-642-21001-3_4

Applying Distributed Cognition Theory to Agile
Requirements Engineering

Jim Buchan1(B), Didar Zowghi2, and Muneera Bano3

1 Auckland University of Technology, Auckland, New Zealand
jim.buchan@aut.ac.nz

2 University of Technology Sydney, Sydney, Australia
didar.zowghi@uts.edu.au

3 Deakin University, Melbourne, Australia
muneera.bano@deakin.edu.au

Abstract. [Context &Motivation]Agile Requirements Engineering (ARE) is a
collaborative, team-based process based on frequent elicitation, elaboration, esti-
mation and prioritization of the user requirements, typically represented as user
stories.While it is claimed that thisAgile approach and the associatedRE activities
are effective, there is sparse empirical evidence and limited theoretical foundation
to explain this efficacy. [Question/problem] We aim to understand and explain
aspects of the ARE process by focusing on a cognitive perspective. We appropri-
ate ideas and techniques from Distributed Cognition (DC) theory to analyze the
cognitive roles of people, artefacts and the physical work environment in a suc-
cessful collaborative ARE activity, namely requirement prioritization. [Principal
idea/results] This paper presents a field study of two early requirements related
meetings in an Agile product development project. Observation data, field notes
and transcripts were collected and qualitatively analyzed. We have used DiCoT,
a framework for systematically applying DC as a methodological contribution, to
analyze the ARE process and explain its efficacy from a cognitive perspective. The
analysis identified three main areas of cognitive effort in the ARE process as well
as the significant information flows and artefacts. Analysis of these have identified
that the use of physical user story cards, specific facilitator skills, and development
of shared understanding of the user stories, were all key to the effectiveness of the
ARE activity observed. [Contribution] The deeper understanding of cognition
involved in ARE provides an empirically evidenced explanation, based on DC
theory, of why this way of collaboratively prioritizing requirements was effective.
Our result provides a basis for designing other ARE activities.

Keywords: Distributed Cognition · Agile · Requirements prioritization

1 Introduction

The development of a shared understanding of user requirements between the client
and development groups is fundamental to the design and development of software that
satisfies the stakeholders’ needs. In Agile Requirements Engineering (ARE) the effort

© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 186–202, 2020.
https://doi.org/10.1007/978-3-030-44429-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_14

Applying Distributed Cognition Theory to Agile Requirements Engineering 187

to collaboratively understand user requirements, generally represented as user stories,
occurs frequently, in every sprint. Each sprint, the focus is given to identifying and
deepening understanding of user stories that are high value and prioritizing them for
development in the next sprint [1]. Regular ARE activities include team meetings for
requirements prioritizing, elaboration, estimation and planning. The emphasis in Agile
RE is on regular face-to-face communication and collaboration among the client stake-
holders and development team to develop and deepen this shared understanding of the
requirements [2]. While it is claimed that the Agile approach is effective in supporting
the achievement of these RE goals, there is little detailed empirical evidence and limited
theoretical foundations for these claims. This paper proposes viewing ARE as a collab-
orative distributed cognitive process and appropriates a multidisciplinary framework,
Distributed Cognition theory (DC), as a theoretical foundation for understanding and
explaining the efficacy of ARE activities. Viewing ARE as a collaborative cognitive
(information processing) process is a natural perspective, given the emphasis on com-
munication (information flows and processing), and the fundamental cognitive goals of
shared user requirements understanding. DC is a good fit to describe and understand this
since it provides a theoretical foundation for howwork is done in complex, collaborative
team-based activities such as ARE, where the cognitive activities are socially distributed
and interactions with work objects and the work environment are important [3]. A DC
analysis of such work can have the applied aim of explaining and understanding the
efficacy and shortcomings of current workspaces, work practices and technologies used,
as in our case.

Although RE is recognized as a complex socio-technical set of activities involving
people, tools and artefacts, very few studies have attempted to understand the nature
of RE activities through the lens of DC theories. The applications of DC have been
demonstrated in areas such as creative requirements engineering [4], semi-structured
creative processes in group work [5], knowledge management in requirements engineer-
ing [6], distributed requirements engineering [7], Model-Driven requirements [8], and
open source software requirements [9, 10]. Although not focused solely on RE, Sharp
and Robinson [11–13] used the DC framework to analyze the collaborative work in the
XP team development process in order to highlight the potential problem areas in the
activity. Outside RE the DC approach has been used to analyze the computer-supported
co-operative work (CSCW) for discovering the effectiveness of collaborative technolo-
gies [14, 15], community of practice [16], effective design of teamwork systems [3, 17]
and in the field of HCI to analyze the development of interactive systems [18, 19].

The existing literature justifies the use of theDC framework and its theoretical under-
pinning for understanding collaborative RE practices. Our study differs from existing
DC literature by applying the DC analysis to the ARE context, applying it to a shorter
time frame (specific time-boxedmeetings), and how the achievement of the specific cog-
nitive goals of the observed ARE activity are supported through distributed information
processing as cognition. It can be expected that this detailed DC analysis explains the
efficacy of some characteristics of the process involving interactions between people, the
room layout and artefacts, and may also suggest some possible process improvements.

In our field study, a specific ARE activity, early requirements prioritization (RP),
is chosen as the focus of our DC analysis, but the principles and research approach

188 J. Buchan et al.

could be applied to any collaborative aspect of ARE, which is the aim of our future
research. Early RP meetings were selected as an example of applying DC theory to
ARE because, RP is iterative, frequent and central to the agile way of working. Agile
RP is collaborative and, particularly in the early requirements phase, it can be complex
and challenging cognitively. The RP process in practice can vary widely, with context-
dependent adoption of many processes and techniques [20]. The cognitive complexity
of Agile RP can be inferred from the plethora of RP processes and techniques described
in the literature [21, 22].

In summary, this paper reports on an in-depth field study of an aspect of the col-
laborative Agile RE process taking a cognitive perspective. It is based on observational
field work of two early-phase RP meetings in preparation for the first development
sprint. The transcribed audio, video and field notes collected in the meetings are ana-
lyzed to understand the strengths and weaknesses of the observed RE activity from a
distributed cognition perspective. Based onDC theorywe identify the significant interac-
tions between people, the physical work environment and work-related artefacts, viewed
as a single extended information processing (distributed cognition) system. The system
in our study comprises the people, space and artefacts involved in the two RP meetings
observed.

In line with other DC researchers, we have utilized a specific DC framework, Dis-
tributed Cognition for Teamwork (DiCoT) [17], to guide what aspects of ARE work
activities to focus on for the DC analysis as well as to provide a systematic approach
to data collection and analysis. DiCoT was first described and applied in [17] to study
the teamwork in the London Ambulance Service. Application of the DiCoT framework
and its set of 18 cognitive principles and three themes has enabled us to describe three
main areas of cognition involved in this area of ARE, as well as explain the efficacy and
limitations of the observed ARE process in terms of the cognitive significance of par-
ticular people, artefacts, the work place and their interactions. The contributions of this
study are twofold: (1) the first and novel application of DC and the DiCoT framework
to analyze aspects of the collaborative ARE process is a contribution to RE research
and practice, (2) the utility of DiCoT in the context of requirements engineering is a
methodological contribution to DC research.

2 Background

Distributed Cognition (DC) is a theoretical and methodological framework [23] that
describes an approach for studying the organization of cognition in collaborative group
activities. In this framework, cognition is viewed as a system capability, extending
beyond individual brains into the interaction between individuals in the group as well as
interactions with artifacts and structure in the work environment as cognitive resources.
This view is based on the observation that groups have cognitive properties that cannot
be explained by simply aggregating the cognitive properties of the individuals in the
group. The functional system, then, is the cognitive unit of analysis, where this system
has cognitive properties different to the sum of the people in the system and solves cog-
nitive problems differently to individuals [24]. In our case, the functional system is the
people at the ARE meeting, artefacts used in the meeting, as well as characteristics of

Applying Distributed Cognition Theory to Agile Requirements Engineering 189

the room that may support or hinder the distributed cognition related to achieving the
functional goal. The functional goal being the agreement on a priority order for working
on the user stories presented.

Unlike the traditional view of cognition as symbol manipulation inside the heads
of individuals, the distributed cognition is observable since the “computation” is the
flow and transformation of information between the elements of the functional system
(“the propagation of representational states across representational media” [23]). In
this view, artifacts and structure in the workplace appropriated in the performance of
work are more than “mere stimuli for a disembodied cognitive system” [18].

In the DC the emphasis is on uncovering the dynamics of how knowledge is prop-
agated and transformed through the functional system by describing the subtasks and
interactions at a high level of detail, identifying breakdowns and accomplishments in the
functional system. Rogers [3] describes the initial approach as a “micro-level analysis”
that distinguishes the flows of representational states by describing “in increasing detail
the seemingly trivial and the usually taken for granted aspects of actions and interac-
tions.” Vaesen [25] describes this analysis as reverse engineering in the sense that the
task is to “derive and model the system’s information-transforming subfunctions and
the particular ways in which these are organized so as to realize the system’s functional
goal”.

There are a number of possible levels of activity and cognitive perspectives a DC
analysis could focus on when observing and analyzing a work activity: communication
dynamics between people; information filtering or biases; collaborative manipulation
of an artefact; and appropriation of structure to simplify information sharing, collective
memory, or lessen the cognitive load on individuals. TheDiCoT framework [17] provides
a checklist of 28 DC principles to consider for a DC analysis of a collaborative team
activity. The authors of [17] base the principles on their synthesis of those found in DC
literature. In DiCoT, the principles are grouped into five broad themes, each of which
represents a particular emphasis with which to view and analyze the collected data in
multiple passes. The three themes reported in this paper are: (1) information flow (2)
physical layout and (3) artifact details. The other two themes, related to social structure
and temporal considerations, are also relevant to the overall study and will be reported in
a later paper. DiCoT’s tabular and diagrammatic approach to data collection and analysis
was loosely followed in the field notes andwere supplemented by content and interaction
analyses of electronic recordings of meetings and their transcripts.

The information flow theme focuses on identifyingwhat information flows and trans-
formations are important to the ARE activity. Questions to be addressed include: What
information is significant to whom for what purpose? What structures broadcast infor-
mation relevant to the activities (information radiators), as a coordinating mechanism?
What structures act as buffers to information flow to avoid constant interruptions to
work from new information? What is limiting access to relevant information? What
structures or activities are important for information coming together to make decisions
(information hubs)?

The physical layout perspective considers the role of space, spatial structure and the
arrangement of material objects in the workplace in supporting cognition and includes
the possible role of physical bodily support (e.g. pointing). Mechanisms for how people

190 J. Buchan et al.

are kept informed of what the current activity is, and what is planned, are considered
(situational awareness), as well as limitations of the horizon of observation of group
members. The focus of the physical layout perspective is to address the question of how
well the physical layout of the workspace supports information flows and processing
and whether it could be improved.

3 Research Design and Implementation

The main aim of this research was to understand the distributed cognition involved in
the ARE process in practice. Two meetings aimed at prioritizing user stories in the early
requirements phase of an Agile project were selected as examples of the ARE process. A
DCanalysis of the process beginswith identifying the high-level cognition and functional
sub-goals in the process, as well as the enabling information flows and transformations
(RQ1). This cognitive description of the process is then analyzed using the principles
from three themes from the DiCoT framework previously discussed (RQ2). Principles
from DiCoT that are identified as being adhered to in the meetings provide a theoretical
foundation for explaining the efficacy of the RE activities taking place in the meetings.

The two research questions we sought to answer, aligning with this approach, are:

RQ 1 What aspects of the of observed ARE process are cognitively significant?
RQ2 What principles from DiCoT are important in the observed ARE process?

The data for the DC analysis were gathered by observing two requirements prioriti-
zation meetings of an Agile product development project. The meetings occurred early
in the project, before development had started, and involved a group of stakeholders col-
laboratively prioritizing sets of user stories, one at a time. The data collected comprised
observational data (photographs of the workspace and copies of some artefacts), field
notes and transcripts of audio recordings of the two meetings. The data were gathered
by the first author as a non-intrusive observer. A qualitative analysis tool (NVivo) was
used to support the analysis of the meeting transcripts. The field notes captured aspects
of the ARE process being observed. The focus during data collection was to observe and
note the immediate impressions of the cognition occurring in use of space, artefacts and
people, based on researcher’s understanding of DC theory. The field notes were time
stamped periodically to enable easy cross-referencing with the audio transcripts, which
were also time stamped.

Most of the DiCoT analysis was done after the meetings, based on a synthesis of
photographs, field notes and the meeting transcripts. To answer RQ1, the data analysis
involved reviewing the field notes and coding and categorizing snippets of the transcripts
as different types of information being sought, challenged or shared. These types of
informationwere then coded andgrouped according to: (1) the purpose of the information
(expected cognitive outcome or goal); and (2) an area of cognitive effort. For example,
in one transcript the sales manager proposed that a specific user story be given high
priority because she was losing sales as a result of its absence in the product line.
This information was coded as relating to “requirements business value” (rather than
“requirements meaning” for example). It was grouped in the general area of cognitive

Applying Distributed Cognition Theory to Agile Requirements Engineering 191

effort that related to “reasoning about the absolute value of a requirement”, with the
cognitive goal of “understanding multiple perspectives”.

Answering RQ2 involved analysis of the photographs, field notes or coded sections
of the meeting transcripts as suited the information sought for each DiCoT principle.
For example, the information radiator principle fromDiCoT was analyzed based on data
from the transcripts – what information sources did team members refer to often; as
observation in the field notes– what information sources were noted as being referred
to frequently; as well as photographs of the information sources available easily around
the room. The areas of the transcript to focus on were guided by the field notes which
identified interactions of cognitive significance. On the other hand, descriptions of the
perceptual principle and naturalness principle, for example, were based on photographs
of theworkplace and researcher’smemory, remindedby re-readingparts of the transcripts
and field notes.

4 The Context of the Field Work

The field work was conducted in a medium-sized organization in New Zealand in the
Finance/Insurance sector with around 200 employees and 10 agile development teams.
The organization represents the relatively common situation of an in-house software
development department that uses agile development methods with a mixture of prac-
tices from Scrum and Extreme Programming. The software development project studied
involved developing functionality for both internal and external clients.

The two observed RP meetings (P1 and P2) were one-hour long each, three days
apart with the same participants and a very similar format. They took place during the
early requirements phase of the project, prior to development starting but had 75 user
stories in the product backlog (PB), some already prioritized. The functional goal of
these meetings was to agree on the rough order of the large pieces of work (groups of
functionally related requirements)to be done (one or more iterations each), and then
order enough of the more valuable work for the development team to estimate and plan
the first few sprints. Present at bothmeetings were two business analysts (BA1 andBA2),
a Project Manager (PM), the Product Owner (PO), a Customer Services representative
(CS), and the Sales Manager (SM). BA1 facilitated both prioritization meetings, set
the room up and managed the sequencing of the activities in the meetings. The other
members of the core development team (two testers and two developers) were not present
at these meetings because they were still finishing off other projects.

In terms of the physical environment, themeetings took place in ameeting roomwith
everyone sitting around a table. The significant cognitive artefacts were the whiteboard,
the user story cards and the projected computer screen, which all acted as information
radiators, filters and transformers, as described in the DiCoT framework, at different
times.

5 Results of the Distributed Cognition Analysis

In this section the process is analyzed in terms of the significant cognitive goals (RQ1)
and then the analysis using the DiCoT framework is presented (RQ2).

192 J. Buchan et al.

5.1 RQ 1: What Aspects of the Observed ARE Process Are Cognitively
Significant?

The RP process observed involved repeatedly selecting an unprioritized user story and
deciding on its position in the previously ordered part of the PB. Based on analyses
of the transcripts and field notes of the meetings, three aspects the RP process that are
cognitively significant can be distinguished: (C1) explain and reason about stakeholders’
perspectives on the value of that user story; (C2) agree on a position for the user story
in the ordered part of the PB; (C3) reasoning, questioning and explaining the meaning
of user stories in order to develop (or confirm) a shared understanding of the meaning
and context of the user story. For (C1), divergent thinking was prevalent, with different
perspectives and information about the value of a user story being sought from team
members. The type of cognition in (C2) was more convergent thinking, aiming to get
consensus on the priority of the user story being discussed. The information sharing and
cognition in (C3) were about verifying shared understanding of relevant user stories,
mainly through question and answer interactions and re-statement of others’ explana-
tions. A summary of the important information processed and the cognitive outcomes
for each area of cognitive effort is presented in Table 1.

Table 1. Analysis of each area cognitive effort in the observed process

Area of cognitive effort Important information shared and
processed

Cognitive outcomes

(C1) Reasoning about the absolute and
relative value of the user story

- The high-level functional area or part
of the wider product the requirement
relates to
- The main prioritization criteria
- Which prioritization criteria are
currently being applied
- The value of other user stories as
previously discussed

- Shared understanding of different
perspectives on the value of the user
story
- Shared understanding of some
explicit and tacit criteria for reasoning
about the level of importance of a user
story

(C2) Agreeing on the relative priority
of the user requirement

- Previous decisions about priority of
other user stories
- Others’ points of view on priority
order
- Which prioritization criteria are
currently being applied
- Current proposed priority and
changes/alternative proposals

- Consensus on the priority position of
the user story in relation to other
ordered user stories

(C3) Reasoning about the meaning
(functionality) of the user story

-The user story feature, the user type it
is for and the expected value to the user
-Domain knowledge about the current
process relevant to the requirement
-Domain knowledge about the
expected change from the use of the
proposed feature
- The dependencies of the requirement
on other requirements or vice versa

-Shared understanding of meaning of
user requirement. Development of a
Team Mental Model
-Further development of a shared
language
-Uncovering tacit assumptions or
misunderstandings about a user story

Applying Distributed Cognition Theory to Agile Requirements Engineering 193

5.2 RQ 2: What Principles from DiCoT Are Important in the Observed ARE
Process?

Having understood the main cognition in the RP process, this is then analyzed from a
DC perspective using the DiCoT framework in the next section. Each DiCoT principle
within the three DiCoT themes is described based on analysis of the data collected and
the conceptualization of the cognition in the RP process.

Principles for the “Information Flows” Theme

Information Movement. The mechanics of information moving around the cognitive
system (e.g. physical, verbal). Information movement is dense in the RP process, as
identified in the second column of Table 1. This movement involves many information
channels, including between individuals and other group members (verbal and visual);
the writing on the whiteboard (visual and physical); the spatial arrangement of cards
(visual and physical); the writing on story cards (visual); the contents of the projected
screen ((visual, physical). This highlights the cognitive complexity of the interactions
and information flows, which are coordinated and simplified through the use of the
physical story cards complemented by the electronic versions.

Information Transformation. Transformation of information from one representational
form to another. One key and directly observable information transformation was the
transformation of the user story priority and value information in individual’s minds
(evidenced by what they said) to the visual spatial information (order) of user stories
on the whiteboard or table. Conversely, this visual spatial information was transformed
into information in people’s minds for processing (e.g. verifying their view of what
was agreed on, or challenging/strengthening their mental model of the situation). Also,
the visual spatial information of story cards acted as an information filter to focus on
order or categories and not on the written details of a user story. The meeting facilitator
often acted as an information filter, transforming others’ spoken views of value into a
synthesized view or proposing a specific view as strongest. She was skilled at this and
also had a certain power advantage as meeting facilitator, so her information filtering
was often “deferred” to.

Information Hubs. Different information channels meet and information sources are
processed together. Within the meeting the whiteboard with the spatial arrangement
of story cards and writing was the central and most-used information hub. It brought
together the information and information processing from individuals and previous
prioritization work.

Buffering. New information is stored until an appropriate time to avoid interfering with
the task at hand. Information buffers were important at different times in the meeting to
avoid interruptions, but not lose the interrupting information. For example, the white-
board was used as an information buffer. If information was needed about a requirement
or its value, future information gathering task was noted on the whiteboard (and per-
haps the relevant user story card) and the prioritization process continued with minimal
interruption. The spatial arrangement of story cards could also act as a buffer. If a new
idea came up about a user story other than the one being worked on, often this user story
card would be put to one side spatially as a reminder to come back to it.

194 J. Buchan et al.

Communication Bandwidth. Face to face communications is richer than other means
(exchanges more information). The face-to-face and co-located information channels
were high bandwidth in their richness of visual and verbal interactions.

Behavioral Trigger Factors. Individuals respond to local factors rather than an overall
plan. The start and end of the cognitive activities were generally signaled by a behavioral
trigger from an individual team member, generally the meeting facilitator. The move to
agreeing on the priority of a user story was generally signaled by the behavioral trigger
of someone proposing the position of the user story being discussed, and this was either
accepted or resulted in further discussion about value and possibly a counterproposal.
The facilitator was central to the triggering a change in focus and achieving consensus
through behavioral triggers and summarizing others’ views and the prevailing accepted
views. Sometimes there was no clear cognitive trigger to end some discussions about a
requirement since sufficiency is uncertain (more time may uncover unknown unknowns,
misunderstandings, or hidden assumptions to test). Often the facilitator would propose
ending the discussion about a particular user story based on time urgency and others
assented by silence.

Principles for the “Use of Space” Theme

Space and Cognition. The use of space to support cognition such as problem solv-
ing. The spatial arrangement of physical story cards is a visual information channel to
convey functional relationships of requirements, priority order, previous decisions and
understanding, and the requirement with attention. This was the key mediating artefact
throughout the prioritization process and provided diverse cognitive support throughout
the process. This approach to RP would have been cognitively much harder without
physical cards to rearrange, and act as a dynamic, in-the-moment information radiator
and visual “memory” of priority.

Perceptual Principle. The use of spatial representations with clear mapping of spatial
layout to what is being represented. Physical manipulation of story cards simplified the
cognition of proposing and testing a priority position or functional relationship of a
requirements with other requirements. There was a clear mapping between the spatial
distance and order of cards and the functional distance and priority order of requirements.
This manipulation was cognitively important to the prioritization process, particularly
during consensus development.

Naturalness Principle. The form of representation matches the properties of that being
represented. The small size of a story card constrains the amount of detail about a user
story that is documented, supporting its use as a reminder to have a conversation about
the meaning and value of the user story when it is needed. The cognitive significance of
this was – cards small enough to be manipulated but still readable (within the horizon
of observation) of everyone – just enough info to need discussion.

Subtle Bodily Supports. The use of body movements for cognition (e.g. pointing). Point-
ing at user story cards or lifting them off the white board and raising them in the air was
a common way for the facilitator to draw the group’s attention, emphasize a point, or

Applying Distributed Cognition Theory to Agile Requirements Engineering 195

support a behavioral trigger to change tasks. Cognitively this may seem unimportant, but
in fact it was a key mechanism to keep the group on-task, where there were potentially
many information sources to distract them. Non-verbal information exchange through
body language was rich and significant in the meetings. This included nodding and head
shaking, eye contact, pointing and hand gestures. Example of information conveyed are
agreement, disagreement, strength of conviction, attention or loss of it. It was clear that
such visual cues were important cognitively as feedback and attention information for
this group of people doing work together. This strengthens the argument for face-to-face
meetings for this process.

Situation Awareness. Team members are aware of what has happened, is happening
and what is planned. The user story cards on the whiteboard provided situational aware-
ness because they were an information radiator of the current situation: what has been
prioritized, what still needs to be prioritized, what is being proposed and what user story
currently has attention. Sometimes the table was used to draw attention to a sub-set of
user stories to manipulate and decide on priority order. This illustrates the diversity of
the cognitive benefits of using physical user story cards in this way.

Horizon of Observation What Can be Seen and Heard by Team Members. The layout
of the room as well designed to allow the main sources of information and informa-
tion processing, other team members and the main artefacts, to be within the horizon
of observation of everyone in the meeting without much effort or movement. Cogni-
tively, this meant that the exchange of information was low effort and attention could be
redirected easily.

Arrangement of Equipment. The effects of the physical layout of the workspace on infor-
mation flows. The channels of information flow were not inhibited by the arrangement
of equipment. The availability of the projected spreadsheet of user stories was important
cognitively to the effectiveness of the meeting by providing a fast search mechanism for
user stories.

Principles for the “Artefact” Theme

Mediating Artefacts. Artefacts that the team bring into coordination to complete their
task. The user story cards on the whiteboard were the central mediating artefact for
the cognitive effort in the process. The user story cards were brought into coordination
(order) to complete the task of prioritization consensus. The order of other story cards
also indicated the state of previous priority decisions. The story cards also coordinated
the group’s decisions and attention on a proposed priority order or changes to a proposal,
for discussion and agreement or a counterproposal.

Creating Scaffolding. Team members appropriate parts of their environment as to sim-
plify a task. The movement of user story cards on the whiteboard and table is an exam-
ple of “external scaffolding to simplify our cognitive tasks”. As previously discussed,
the transformation of individual’s mental cognition to visual cognition simplified the
coordination of.

196 J. Buchan et al.

Representation-Goal Parity. An artefact explicitly represents the relationship between
the current state and the goals state. The spatial arrangement of story cards closely
represents a current state of unprioritized user stories (spatially separate) and the goal
state of prioritized user stories (the card in the ordered column).

Coordination of Resources. Abstract information structures can be coordinated to sup-
port action or cognition (e.g. a plan or a goal). The pre-arrangement of the spatial
arrangement of the user stories on the whiteboard was cognitively significant as an
information radiator of what prioritization had been done and what needed to be done,
giving the meeting a clear plan and goal. This information was updated as the story cards
were moved around on the whiteboard, providing information about progress towards
the goal and sometimes triggering a new plan for the meeting.

6 Discussion

Overall, analyzing this ARE activity through the lens of DC has highlighted the cogni-
tive complexity of the process in terms of information sharing and processing, as well
as information seeking and retrieval. The DiCoT analysis has provided a structure to
analyze the web of interactions between the group members, the mediating artefacts and
the workspace layout. The analysis has provided evidence to explain the strengths and
weaknesses of this process from a cognitive perspective and evidenced the cognitive
significance of aspects of the workspace, information flows and artefacts.

6.1 The Observed Agile Requirements Prioritization Process: A High-Level View

The observed ARP process cannot be characterized as a single named prioritization
technique identified in the review by ([21] Fig. 5, p. 572). The observed process did
not follow a predictable structure with clear prioritization criteria and did not have
specific roles and information sources pre-planned. This aligns with the findings of [1]
in their interview-based case study which found that the “prioritization process itself
varies significantly in terms of participants involved, prioritization criteria applied,
purpose and frequency of the prioritization”. Despite the observation that the process
was cognitively complex and unpredictable, it was effective: the functional goal was
achieved. The DC analysis provides an explanation of this success, suggesting that it
can be attributed to the good use of space and artefacts and the diversity of participants
as a distributed cognitive system to achieve this goal.

The ARP process conceptualized in a number of other papers (e.g. [1, 26, 27]) is
generally broader in scope and level and does not consider the level of detail in specific
RP meetings that our study has. Our study complements these models by focusing on
this detailed process as well as considering early prioritization meetings. These early
meetings are important because they lay the foundation for subsequent meetings in terms
of planning (e.g. release goals and order of work), initial scope, stakeholder involvement,
and the ARP process itself.

Applying Distributed Cognition Theory to Agile Requirements Engineering 197

6.2 The Cognitive Role of the Prioritization Criteria

It can reasonably be expected that shared understanding of requirements and application
of the prioritization criteria would be central to the RP process. The Scrum framework
does not specify particular criteria to evaluate the value of PB items to order the PB,
so it useful to see what happens in practice, with six different value criteria identified
in this study: (PC1) the strategic value (to the case organization) of the requirement or
its product functional area; (PC2) the strategic and operational value to the current or
potential end-users; (PC3) the negative impact of not implementing the requirement;
(PC4) the cost/effort versus the benefits of developing and deploying the requirement;
(PC5) risk of negative impact on internal stakeholder with dependencies on changes
related to the requirement; (PC6) the potential negative impact of dependencies between
this requirement and others. Different team members tended to be biased towards the
application of specific criteria For example, the PO (amanager also) tended to apply PC1
(“this is part of a strategic initiative”) and PC4 (“it’s cheaper to keep doing this manually
than spending 5 sprints on it”) when discussing priority. The sales manager SM (“we
are losing sales without this”), BA3 (“at installation the customer is surprised it can’t
do this”) and CS1 (“this is the most common feature request I get -, it’s highest priority”)
often invoked PC2 and PC3. BA1 had the clearest “big picture” and would often bring up
PC5 (“we should check if this change will have a big impact on the BI people”) and PC6
(“If we do [this] then we have to send out comms quickly to all affected [customers]”).
These prioritization criteria have some overlap to those found in [26] in their multiple
case study of agile requirements prioritization. While we found business value (PC1 and
PC2), negative value (PC4), risk (PC5) and (limited) developer input were discussed in
our study, project context, estimated size, external change and learning experiences were
not involved in our ARP process. This may highlight some differences between early and
later ARP meetings, but this needs more research. It will almost certainly be a function
of the roles and value biases of those present. The criteria were often tacitly assumed
and applied in a fairly ad hoc manner in the observed meetings. This could be an area of
possible improvement: a mechanism to encourage explicit cognitive effort in developing
shared understanding of the prioritization criteria and an associated information radiator.

6.3 The Cognitive Role of the User Story Cards

The DiCoT analysis provides a compelling argument, at least from a DC perspective, for
the use of physical story cards and their spatial manipulation in RP. The DiCoT analysis
shows that the story cards feature in almost all areas of DC and provide substantial cogni-
tive benefit as information radiators, information buffers, information filters, information
transformers, and attention coordinators. Importantly, the cards afford a significant cog-
nitive load transfer from individual memory of priority to visual perception of order.
Moreover, they were used by the facilitator in behavioral triggers to manage the flow
of the work in the meeting, as well an information radiator for the meeting plan and
progress. Transferring the cards to the development team’s work board, in order, also
served as a memory of the outcome of the process and an information radiator for others

198 J. Buchan et al.

not at the meeting. As a cognitive artefact the user story cards could be used at differ-
ent levels of cognition: reading the text, use of the label or manipulated as a card. The
characteristics of the user story cards were well suited to the RP process: they were
well sized to manipulate and carry around, yet still be read easily; they had sufficient
requirements detail to act a reminder but encourage discussion; the information on the
cards was useful for the process. The availability of the searchable spreadsheet of user
stories complemented the story cards, although was not used often.

6.4 The Important Cognitive Role of the Meeting Facilitator

The DiCoT analysis highlighted the cognitive importance of a skilled facilitator in the
process. The facilitator played a central role in information movement, filtering and
processing. This can be both a strength and a weakness: the effectiveness of the process
relied on the cognitive skills of the facilitator. In addition, the facilitator had more
influence than others in the meeting in terms of the information filtering and flow of
the meeting (changing the group’s attention), because of the power attributed to the
facilitator role.

6.5 The Importance of the Face-to-Face Meeting as an Information Hub

From a DC perspective the meetings can be conceptualized as an important information
hub in the requirements management process. The meetings were a central focus where
many information channels coincided. This information was processed by the group to
make a decision about the requirements priority order. Without this meeting involving
a diversity of stakeholders’ perspectives it would have been difficult to achieve such
high-quality decisions about the priority. The face-to-face interactions provided rich and
immediate information communication channels (including non-verbal). In addition,
the visual cognitive affordance of physical manipulation of user story cards would be
difficult if the group were not co-located.

6.6 The Importance of the Room Layout

The DiCoT analysis identified that the room was well laid out for the cognition involved
in the ARE process. The roomwas laid out so that important information sources (people
and artefacts) were within everyone’s horizon of observation and information flowswere
low effort. It is worth noting that the roomwas sufficiently isolated from outside to avoid
distracting information unrelated to the meeting.

6.7 The Need for a Diversity of Perspectives on User Story Value

ARE promotes consideration of multiple stakeholders’ views in the prioritization pro-
cess and to some extent the DiCoT analysis justifies this. The broader perspectives of
value and meaning for user stories resulted in decisions about priority that were better
informed and benefited from the expanded cognitive base. For example, one set of user
stories (previously a high priority), was discarded and another became high priority

Applying Distributed Cognition Theory to Agile Requirements Engineering 199

unexpectedly based on the views and arguments of some team members influencing
those of others. This effect of diverse perspectives on team decision-making has a strong
theoretical basis (e.g. [28]).

6.8 Secondary Cognitive Outcomes of the RP Process

The DC analysis has identified some significant cognitive outcomes of these early ARE
meetings process, apart from the prioritized user stories, that were important in later
collaborative requirements work. These include: a significant deepening of the shared
understanding of some user stories; a broader view of requirements value from others’
perspectives and criteria to judge value; significant development of shared language for
the team to discuss, explain and reason about requirements; shared understanding and
embedding of a collaborative process for RP.

7 Reflections on the Application of DiCoT

This study has demonstrated the usefulness of using the DiCoT framework to perform
a DC analysis of collaborative work in ARE process. The analysis has provided a rich
set of insights as a basis for understanding the strengths and weaknesses of the ARE
process and reasoning about possible changes. However, the effort in collecting and
analyzing the data was significant and may not be feasible to be conducted regularly.
The framework itself was reasonably straightforward to apply with clear descriptions
of the DiCoT principles. However, the themes were intertwined and sometimes it was
difficult to know how to differentiate the artefact view and the information processing
view. Starting the DiCoT analysis with a high-level cognitive description of the ARP
process was needed to inform the DiCoT description.

This study suggests that the themes and principles of DiCoT could be used as a
checklist to assess anAREactivity, the artefacts involved and the layout of theworkspace.
For example, the physical layout of the room can be checked as being suitable for smooth
information movement between people, and to and from the significant artefacts. The
horizon of observation can be checked as being suitable to provide situational awareness.
This same approach of DiCoT could be used as an assessment tool if the RE process
does not appear to be going well.

The DiCoT framework can also be used to reason about changes or redesign of the
RE process. For example, it is common to have the user stories stored electronically.
Given the understanding of the cognitive affordance of physical story cards, the positive
and negative cognitive impact of replacing them with electronic versions of user stories,
at least in the RP process, can be identified. Another common change to the RE process
to consider is the situation where group members are geographically distributed and
communicating electronically in real time.

8 Threats to Validity

Although it is not possible to cover every contextual factor in this study, we did take some
steps to ensure internal validity. We used data triangulation between the two meetings

200 J. Buchan et al.

throughout data analysis. To ensure continuity of data collection, all field work was
conducted by the first author. It is possible that selection is a threat since the team was
selected by one contact, although invitations were sent more widely. External validity is
low and we cannot claim the results will apply to all Agile projects and teams, however,
our aim was to uncover some useful insights that may resonate with other practitioners.
DiCoT analysis of the ARP in different contexts to broaden the likely applicability is
for future research.

The presence of the researcher in the meetings may have reduced reliability by
changing the behavior of those being observed. To address this the observing researcher
spent some time with the team prior to data collection and gained their trust and a degree
of comfort with the researcher’s presence in meetings. The meetings were transcribed
word for word and the observing researcher identified the speakers. We discussed the
resulting analysis with some team members. We tried to adhere to the explanations
and structure of DiCoT in the original paper by Blandford and Furniss [17] closely but
inevitably we may have made some subjective assumptions in doing this.

9 Conclusion

The novel application of DC theory through the use of DiCoT to the requirements prior-
itization as part of an ARE process has provided an empirically evidenced explanation
of why this way of implementing the RP process was effective. In answering RQ1, three
main areas of cognition were identified in the process. In addition, some insights were
gained about the different perspectives on requirements value associated with differ-
ent roles, as well as the six prioritization criteria applied. Application of the DioCoT
framework (RQ2) also identified a number of aspects of the process that had cognitive
significance to its success. For example, the DiCoT analysis provided substantial evi-
dence that the use of physical story cards, a skilled facilitator, and a cognitive-friendly
work environment were central to the success of this approach. This may provide a basis
for others to design, modify and assess other activities in the ARE process.

Future work planned includes the extension of the DiCoT analysis to include the
two DiCoT themes not included in this study and applying DiCoT analyses in other
contexts. Also, the application of DiCoT to other Requirements Engineering activities
will be explored.

References

1. Bakalova, Z., Daneva, M., Herrmann, A., Wieringa, R.: Agile requirements prioritization:
what happens in practice and what is described in literature. In: Berry, D., Franch, X. (eds.)
REFSQ 2011. LNCS, vol. 6606, pp. 181–195. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19858-8_18

2. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature
review on agile requirements engineering practices and challenges. Comput. Hum. Behav.
51, 915–929 (2015)

3. Rogers, Y., Ellis, J.: Distributed cognition: an alternative framework for analyzing and
explaining collaborative working. J. Inf. Technol. 9(2), 119–128 (1994)

https://doi.org/10.1007/978-3-642-19858-8_18

Applying Distributed Cognition Theory to Agile Requirements Engineering 201

4. Nguyen, L., Shanks, G.: A framework for understanding creativity in requirements engineer-
ing. Inf. Softw. Technol. 51(3), 655–662 (2009)

5. Blackburn, T., Swatman, P., Vernik, R.: Cognitive dust: linking CSCW theories to creative
design processes. In: 2006 10th InternationalConference onComputer SupportedCooperative
Work in Design, pp. 1–6. IEEE (2006)

6. White, S.M.: Application of cognitive theories and knowledge management to requirements
engineering. In: 2010 IEEE International Systems Conference, pp. 137–142. IEEE (2010)

7. Hansen, S.W., Robinson, W.N., Lyytinen, K.J.: Computing requirements: cognitive
approaches to distributed requirements engineering. In: 2012 45th Hawaii International
Conference on System Sciences, pp. 5224–5233. IEEE (2012)

8. Hundal, K.S., Mussbacher, G.: Model-based development with distributed cognition. In:
2018 IEEE 8th International Model-Driven Requirements Engineering Workshop (MoDRE),
pp. 26–35. IEEE (2018)

9. Gopal, D., Lindberg, A., Lyytinen, K.: Attributes of open source software requirements–
the effect of the external environment and internal social structure. In: 2016 49th Hawaii
International Conference on System Sciences (HICSS), pp. 4982–4991. IEEE (2016)

10. Thummadi, B.V., Lyytinen, K., Hansen, S.: Quality in requirements engineering (RE)
explained using distributed cognition: a case of open source development. In: Proceedings of
JAIS Theory Development Workshop (2011)

11. Sharp, H., Robinson, H.: A distributed cognition account of mature XP teams. In: Abra-
hamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044, pp. 1–10. Springer,
Heidelberg (2006). https://doi.org/10.1007/11774129_1

12. Sharp, H., Robinson, H., Segal, J., Furniss, D.: The role of story cards and the wall in XP
teams: a distributed cognition perspective. In: AGILE 2006 (AGILE 2006), pp. 11–75. IEEE
(2006)

13. Sharp, H., Robinson, H.: Collaboration and co-ordination in mature eXtreme programming
teams. Int. J. Hum Comput Stud. 66(7), 506–518 (2008)

14. Halverson, C.A.: Activity theory and distributed cognition: or what does CSCW need to DO
with theories? Comput. Support. Coop. Work (CSCW) 11(1–2), 243–267 (2002). https://doi.
org/10.1023/A:1015298005381

15. Jones, P.H., Chisalita, C.: Cognition and collaboration: analyzing distributed community
practices for design. In: Extended Abstracts on Human Factors in Computing Systems, CHI
2005, p. 2120. ACM (2005)

16. Hoadley, C.M., Kilner, P.G.: Using technology to transform communities of practice into
knowledge-building communities. ACM SIGGROUP Bull. 25(1), 31–40 (2005)

17. Blandford, A., Furniss, D.: DiCoT: a methodology for applying distributed cognition to the
design of teamworking systems. In: Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS,
vol. 3941, pp. 26–38. Springer, Heidelberg (2006). https://doi.org/10.1007/11752707_3

18. Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for human-
computer interaction research. ACM Trans. Comput. Hum. Interact. (TOCHI) 7(2), 174–196
(2000)

19. Wright, P.C., Fields, R.E., Harrison, M.D.: Analyzing human-computer interaction as
distributed cognition: the resources model. Hum. Comput. Interact. 15(1), 1–41 (2000)

20. Racheva, Z., Daneva, M., Buglione, L.: Supporting the dynamic reprioritization of require-
ments in agile development of software products. In: 2008 Second International Workshop
on Software Product Management, pp. 49–58. IEEE (2008)

21. Achimugu, P., Selamat, A., Ibrahim, R., Mahrin, M.N.: A systematic literature review of
software requirements prioritization research. Inf. Softw. Technol. 56(6), 568–585 (2014)

22. Riegel, N., Doerr, J.: A systematic literature review of requirements prioritization criteria. In:
Fricker, S.A., Schneider, K. (eds.) REFSQ 2015. LNCS, vol. 9013, pp. 300–317. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16101-3_22

https://doi.org/10.1007/11774129_1
https://doi.org/10.1023/A:1015298005381
https://doi.org/10.1007/11752707_3
https://doi.org/10.1007/978-3-319-16101-3_22

202 J. Buchan et al.

23. Hutchins, E.: Cognition in the Wild. MIT Press, Cambridge (1995). (no. 1995)
24. Hutchins, E.: How a cockpit remembers its speeds. Cogn. Sci. 19(3), 265–288 (1995)
25. Vaesen,K.: Giere’s (in)appropriation of distributed cognition. Soc. Epistemol. 25(4), 379–391

(2011)
26. Racheva, Z., Daneva, M., Herrmann, A., Wieringa, R.J.: A conceptual model and process for

client-driven agile requirements prioritization. In: 2010 Fourth International Conference on
Research Challenges in Information Science (RCIS), Nice, pp. 287–298 (2010). https://doi.
org/10.1109/rcis.2010.5507388

27. Al-Ta’ani, R.H., Razali, R.: A framework for requirements prioritisation process in an agile
software development environment: empirical study. Int. J. Adv. Sci. Eng. Inf. Technol. 6(6),
846–856 (2016)

28. Hall, D.J., Davis, R.A.: Engaging multiple perspectives: a value-based decision-making
model. Decis. Support Syst. 43(4), 1588–1604 (2007)

https://doi.org/10.1109/rcis.2010.5507388

Automatic Word Embeddings-Based
Glossary Term Extraction from

Large-Sized Software Requirements

Siba Mishra and Arpit Sharma(B)

Department of Electrical Engineering and Computer Science,
Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India

{sibam,arpit}@iiserb.ac.in

Abstract. [Context and Motivation] Requirements glossary defines
specialized and technical terms used in a requirements document.
A requirements glossary helps in improving the quality and under-
standability of requirements documents. [Question/Problem] Man-
ual extraction of glossary terms from a large body of requirements is
an expensive and time-consuming task. This paper proposes a funda-
mentally new approach for automated extraction of glossary terms from
large-sized requirements documents. [Principal Ideas/Result] Firstly,
our technique extracts the candidate glossary terms by applying text
chunking. Next, we apply a novel word embeddings based semantic filter
for reducing the number of candidate glossary terms. Since word embed-
dings are very effective in identifying terms that are semantically very
similar, this filter ensures that only domain-specific terms are present
in the final set of glossary terms. We create a domain-specific reference
corpus for home automation by Wikipedia crawling and use it for com-
puting the semantic similarity scores of candidate glossary terms. We
apply our technique to a large-sized requirements document, i.e., a Crow-
dRE dataset with around 3000 crowd-generated requirements for smart
home applications. Semantic filtering reduces the number of glossary
terms by 92.7%. To evaluate the quality of our extracted glossary terms
we manually create the ground truth data from CrowdRE dataset and
use it for computing precision and recall. Additionally, we also compute
the requirements coverage of these extracted glossary terms. [Contri-
butions] Our detailed experiments show that word embeddings based
semantic filtering can be very useful for extracting glossary terms from
a large body of requirements.

Keywords: Requirements engineering · Natural language processing ·
Word embeddings · Term extraction · Semantic filter

1 Introduction

Requirements are the basis for every project, defining what the stakeholders in
a potential new system need from it, and also what the system must do in order
c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 203–218, 2020.
https://doi.org/10.1007/978-3-030-44429-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_15

204 S. Mishra and A. Sharma

to satisfy that need [8,19]. All subsequent steps in software development are
influenced by the requirements. Hence, improving the quality of requirements
means improving the overall quality of the software product. A major cause
of poor quality requirements is that the stakeholders involved in the develop-
ment process have different interpretations of technical terms. In order to avoid
these issues and to improve the understandability of requirements, it is necessary
that all stakeholders of the development process share the same understanding
of the terminology used. Specialized terms used in the requirements document
should therefore be defined in a glossary. A glossary defines specialized or tech-
nical terms and abbreviations which are specific to an application domain. For
example, if the system is concerned with health care, it would include terms like
“hospitalization”, “prescription drugs”, “physician”, “hospital outpatient care”,
“durable medical equipment”, “emergency services”, etc. Additionally, require-
ments glossaries are also useful for text summarization and term-based indexing.

In order to develop a glossary, the terms to be defined and added need to
be first extracted from the requirements document. Glossary term extraction
for the requirements document is an expensive and time-consuming task. This
problem becomes even more challenging for large-sized requirements document,
e.g., [16,17].

This paper focuses on automatic extraction of glossary terms from large-sized
requirements documents. A first step in this direction is to extract the candidate
glossary terms from a requirements document by applying text chunking. Text
chunking consists of dividing a text in syntactically correlated parts of words.
Since 99% of all the relevant terms are noun phrases [2,9], we only focus on
extracting the noun phrases from a requirements document. Next, we apply a
novel word embeddings based semantic filter to remove the noun phrases that are
not domain-specific from the set of candidate glossary terms. Word embeddings
are capable of capturing the context of a word and compute its semantic similar-
ity relation with other words used in a document. It represents individual words
as real-valued vectors in a predefined vector space. Each word is mapped to one
vector and the vector values are learnt based on the usage of words. Words that
are used in similar ways tend to have similar representations. This means that
distance between two words which are semantically very similar is going to be
smaller. More formally, the cosine of the angle between such vectors should be
close to 1. To compute the similarity scores, we create a domain-specific reference
corpus by crawling the home automation (HA) category on Wikipedia. The key
idea is to use this corpus to check if the candidate glossary terms extracted by
text chunking from a CrowdRE document are domain-specific or not. In other
words, if a term in CrowdRE document has been used in a context which is dif-
ferent from the context in which it has been used in the domain-specific corpus
for home automation then it needs to be removed from the final set of glossary
terms.

We have applied our approach to the CrowdRE dataset [16,17], which con-
tains about 3, 000 crowd-generated requirements for smart home applications.
Our detailed experiments show that advantages of this new approach for glossary

Automatic Word Embeddings-Based Glossary Term Extraction 205

extraction go in two directions. Firstly, our filter reduces the number of glossary
terms significantly. Note that this reduction is crucial for large-sized requirements
documents. Secondly, the semantic nature of our filter ensures that only terms
that are domain or application-specific are present in the final set of glossary
terms. Note that in the case of statistical filtering such terms would be removed
from the final set of glossary terms if they have low frequency of occurrence. To
the best of our knowledge, this is the first time that a word embeddings based
semantic filter has been proposed for automatic glossary term extraction from
large-sized requirements documents.

1.1 Contributions

We propose an automated solution for extracting glossary terms from large-sized
requirements documents. Our solution uses state-of-the art neural word embed-
dings technique for detecting domain-specific technical terms. More specifically,
our main contributions are as follows:

– We extract candidate glossary terms by applying text chunking. Next, we
propose a semantic filtering technique based on word embeddings to ensure
that only terms that are truly domain-specific are present in the final set of
glossary terms. This semantic filter is based on the principle that words that
are used in similar ways tend to have similar representations.

– We apply our technique to the CrowdRE dataset, which is a large-sized
dataset with around 3000 crowd-generated requirements for smart home
applications. Our semantic filter reduces the number of glossary terms signifi-
cantly. More specifically, we reduce the number of glossary terms in CrowdRE
dataset by 92.7%.

– To measure the effectiveness of our technique we manually extract the glossary
terms from a subset of 100 CrowdRE requirements and use this ground truth
data for computing the precision and recall. We obtain a recall of 73.2% and a
precision of 83.94%. Additionally, we also compute the requirements coverage
of these extracted glossary terms.

– Finally, we discuss the benefits and limitations of word embeddings based
semantic filtering technique for glossary extraction.

The remainder of the paper is structured as follows. Section 2 discusses the
related work. Section 3 provides the required background. Section 4 explains our
approach. We present the results and findings in Sect. 5. Finally, Sect. 6 concludes
the paper and provides pointers for future research.

2 Related Work

Word Embeddings for RE. In [4], an approach based on word embeddings and
Wikipedia crawling has been proposed to detect domain specific ambiguities in
natural language text. More specifically, in this paper authors investigate the

206 S. Mishra and A. Sharma

ambiguity potential of typical computer science words using a Word2vec algo-
rithm and perform some preliminary experiments. In [5], authors estimate the
variation of meaning of dominant shared terms in different domains by compar-
ing the list of most similar words in each domain specific model. This method was
applied to some pilot scenarios which involved different products and stakehold-
ers from different domains. Recently, in [15], we have measured the ambiguity
potential of most frequently used computer science (CS) words when they are
used in other application areas or subdomains of engineering, e.g., aerospace,
civil, petroleum, biomedical and environmental, etc. For every ambiguous com-
puter science word in an engineering subdomain, we have reported its most simi-
lar words and also provided some example sentences from the corpus highlighting
its domain specific interpretation. All these applications of word embeddings to
requirements engineering are very recent and only focus on detecting ambiguity
in requirements documents.

Glossary Extraction for RE. In [1,7], authors have developed tools, e.g. find-
phrases and AbstFinder for finding repeated phrases in natural language require-
ments. These repeated phrases have been termed as abstractions. These tools
can be used as the basis for an environment to help organize the sentences and
phrases of a natural language problem description to aid the requirements analyst
in the extraction of requirements. In [18], authors have described an approach for
automatic domain specific glossary extraction from large document collections
using text analysis. A tool named GlossEx has been used to build glossaries for
applications in the automotive engineering and computer help desk domains. In
[10], authors described a case study on application of natural language process-
ing for extracting terms from the text written by domain experts, and build
a domain ontology using them. In [21], a term extraction technique has been
proposed using parsing and parse relations. In this paper, authors have built a
prototype dowsing tool, called Dowser which is capable of achieving high preci-
sion and recall when detecting domain-specific terms in a UNIX manual page.
A text mining technique using term ranking and term weighing measures for
the automatic extraction of the most relevant terms used in Empirical Software
Engineering (ESE) documents has been proposed in [22]. In [23], authors have
developed a procedure for automatic extraction of single and double-word noun
phrases from existing document collections. Dwarakanath et al. [3] presented
a method for automatic extraction of glossary terms from unconstrained nat-
ural language requirements using linguistic and statistical techniques. Menard
et al. [12] retrieved domain concepts from business documents using a text min-
ing process. Their approach has been tested on French text corpora from public
organizations and shown to be 2.7 times better than a statistical baseline for
relevant concept discovery. Recently, Arora et al. [2] have proposed a solution
for automatic extraction and clustering of candidate glossary terms from nat-
ural language requirements. This technique has been evaluated on three-small
sized industrial case studies. Note that in [2] syntactic, e.g., Jaccard, Leven-
stein, Euclidean and knowledge-based similarity measures, e.g., WUP, LCH,
PATH have been used for clustering of glossary terms. More recently, a hybrid

Automatic Word Embeddings-Based Glossary Term Extraction 207

approach which uses both linguistic processing and statistical filtering for
extracting glossary terms has been proposed in [6]. This technique has been
applied to the same CrowdRE dataset which we have used in our paper for
experiments.

All the above mentioned approaches can be broadly classified into linguistic,
statistical or hybrid approaches. Linguistic approaches detect glossary terms
using syntactic properties. In contrast, statistical approaches select terms based
on the frequency of their occurrence. A hybrid approach combines both linguistic
and statistical approaches, e.g., [6].

Our work proposes a new approach for selecting glossary terms based on the
use of state-of-the art neural word embeddings technique. We use word embed-
dings and similarity scores to create a semantic filter which selects only those
candidate terms that are truly domain-specific. We believe that this paper is
a first step forward in the direction of developing advanced semantic filters for
glossary term extraction from large-sized requirements documents.

3 Preliminaries

This section introduces some preliminaries that are needed for the understanding
of the rest of this paper.

3.1 Word Embeddings

Word embeddings are a powerful approach for analyzing language and have
been widely used in information retrieval and text mining. They provide a dense
representation of words in the form of numeric vectors which capture the nat-
ural semantic relationship of their meaning. Word embeddings are considered
to be an improvement over the traditional bag-of-words model which results in
very large and sparse word vectors. Out of various word embedding models, the
model “Word2vec” developed by the researchers at Google [13] has been used
in our work to learn and generate word embeddings from a natural language
text corpus. We focus on the model named skip gram negative sampling (SGNS)
implementation of Word2vec [14]. SGNS predicts a collection of words w ∈ VW

and their contexts c ∈ VC , where VW and VC are the vocabularies of input words
and context words respectively. Context words of a word wi is a set of words
wi−wind, . . ., wi−1, wi+1, . . ., wi+wind for some fixed window size wind. Let D
be a multi-set of all word-context pairs observed in the corpus. Let #»w, #»c ∈ R

d

be the d-dimensional word embeddings of a word w and context c. These vectors
(both word and context) are created by the Word2vec model from a corpus and
are analyzed to check the semantic similarity between them. The main objective
of negative sampling (NS) is to learn high-quality word vector representations
on a corpus. A logistic loss function is used in NS for minimizing the negative
log-likelihood of words in the training set. For more details, we refer the inter-
ested reader to [11,13,14]. As the input corpus changes, word embeddings are
also updated reflecting the semantic similarity between words w.r.t. new corpus.

208 S. Mishra and A. Sharma

Word Similarity Computation. The Word2vec model uses the cosine similarity
to compute the semantic relationship of two different words in vector space.
Let us assume two word embedding vectors

»

w
′

and
»

w
′′
, where

»

w
′

is a word
vector generated for CrowdRE and

»

w
′′

is a word vector for home automation.
The cosine angle between these two word embedding vectors is calculated using
Eq. (1).

cos(
»

w
′
,

»

w
′′
) =

»

w
′ •

»

w
′′

|
»

w
′ ||

»

w
′′ |

(1)

The range of similarity score is between 0 to 1. A score closer to 1 means that
the words are semantically more similar and used in almost the same context.
On the other hand, a score closer to 0 means that the words are less related to
each other.

3.2 Crowd-Generated Requirements

The CrowdRE dataset was created by acquiring requirements from members
of the public, i.e., crowd [17]. This dataset contains about 3000 requirements
for smart home applications. A study on Amazon Mechanical Turk was con-
ducted with 600 workers. This study measured the personality traits and creative
potential for all the workers. A two-phase sequential process was used to create
requirements. In the first phase, user stories for smart home applications were
collected from 300 workers. In the second phase, an additional 300 workers rated
these requirements in terms of clarity and creativity and produced additional
requirements.

Each entry in this dataset has 6 attributes, i.e., role, feature, benefit, domain,
tags and date-time of creation. Since we are interested in extracting domain-
specific terms from this dataset, we only focus on feature and benefit attributes
of this dataset. An example requirement obtained from this dataset after merging
feature and benefit attributes is as follows: “my smart home to be able to order
delivery food by simple voice command, i can prepare dinner easily after a long
day at work”. For further details, we refer the interested reader to [16,17].

4 Approach

This section discusses the approach used to extract glossary terms from large-
sized requirements documents. Figure 1 shows an overview of our approach. The
first step includes the process of data gathering. In the second step we perform
data preprocessing. The third step focuses on extracting the candidate glossary
terms from preprocessed data. In the final step, semantic filtering of candidate
glossary terms provides us the final set of domain-specific terms. The rest of this
section elaborates each of these steps.

Automatic Word Embeddings-Based Glossary Term Extraction 209

4.1 Data Gathering

CrowdRE. For each user story in the CrowdRE dataset, we merge the feature
and benefit attributes to obtain a single textual requirement. This is done by
using a comma (,) between the text present in two attributes and a full stop (.)
to terminate the requirement. Let CCRE denotes the CrowdRE corpus obtained
after applying the above mentioned transformations.

Requirements-Specific Reference Corpus. We use some standard web scraping
packages available in python1 to crawl and build the corpus of home automation
domain. Let CHA denotes the home automation corpus obtained by Wikipedia
crawling. CHA has been built by retrieving the web pages from “Wikipedia home
automation” (HA) category2, which has a tree structure. Wikipedia categories
group together pages on similar subjects. Categories are found at the bottom
of an article page. They support auto linking and multi-directional navigation.
For our case, the maximum depth used for subcategory traversal is 2. This
is primarily because increasing the depth results in extraction of less relevant
pages from Wikipedia. For the sake of completeness, we have crosschecked all
the results (data extraction for the home automation Wikipedia category) with
the help of a widely used Wikipedia category data extraction tool known as
PetScan3. PetScan (previously CatScan) is an external tool which can be used
to find all the pages that belong to a Wikipedia category for some specified
criteria.

4.2 Data Preprocessing

This step involves transforming raw natural language text into an understand-
able format. All the steps of data preprocessing have been implemented using the
Natural Language Toolkit (NLTK)4 in Python. The NLP pipeline used in data
preprocessing is shown in Fig. 2. The textual data (sentences) of each corpus are
broken into tokens of words (tokenization) followed by the cleaning of all special
symbols, i.e., alpha-numeric words. Note that tokenization preserves the syntac-
tic structure of sentences. Next, we convert all the words to lowercase (lowering
of words) followed by the removal of noisy words defined for the English lan-
guage5 (stop word removal). The tokens of each sentence are tagged according
to their syntactical position in the text. The tagged tokens are encoded as 2-
tuples, i.e., (PoS, word), where PoS denotes the part of speech. We have used the
NLTK (pos tag)6 Tagger, which is a perceptron tagger for extracting PoS tags.
A perceptron part-of-speech tagger implements part-of-speech tagging using the
averaged, structured perceptron algorithm. It uses a pre-trained pickled model
1 https://selenium-python.readthedocs.io/.
2 https://en.wikipedia.org/wiki/Home automation.
3 https://petscan.wmflabs.org/.
4 https://www.nltk.org/.
5 https://www.ranks.nl/stopwords.
6 https://www.nltk.org/ modules/nltk/tag.html.

https://selenium-python.readthedocs.io/
https://en.wikipedia.org/wiki/Home_automation
https://petscan.wmflabs.org/
https://www.nltk.org/
https://www.ranks.nl/stopwords
https://www.nltk.org/_modules/nltk/tag.html

210 S. Mishra and A. Sharma

Fig. 1. Semantic approach for glossary
term extraction.

Fig. 2. NLP pipeline.

by calling the default constructor of the PerceptronTagger class7. This tagger
has been trained and tested on the Wall Street Journal corpus. After extracting
the tags, we apply text chunking which consists of dividing a text in syntac-
tically correlated parts of words. Finally, we lemmatize8 the generated chunks
(lemmatization) which removes the inflectional endings and returns the base or
dictionary form of a word, i.e., lemma. For example, after the lemmatization
step books becomes book and cooking becomes cook. Let C ′

CRE and C ′
HA be the

new corpora obtained after applying these steps. Lemmatization is important
because it allows for the aggregation of different forms of the same word to a
common glossary term.

4.3 Extracting Candidate Glossary Terms

Since we are interested only in noun phrases (NPs), let GT be the set of all
lemmatized NPs obtained from C ′

CRE . Similarly, NPs have been extracted from
the Wikipedia corpus, i.e., C ′

HA. Let TW be the set of all lemmatized NPs
obtained from C ′

HA. Finally, we compute the set of NPs on which the semantic

7 https://www.nltk.org/ modules/nltk/tag/perceptron.html#PerceptronTagger.
8 https://www.nltk.org/ modules/nltk/stem/wordnet.html.

https://www.nltk.org/_modules/nltk/tag/perceptron.html#PerceptronTagger
https://www.nltk.org/_modules/nltk/stem/wordnet.html

Automatic Word Embeddings-Based Glossary Term Extraction 211

filtering needs to be applied. In other words, we identify those NPs which are
common to both GT and TW . Let CGT = GT ∩ TW .

4.4 Semantic Filtering of Candidate Glossary Terms

After computing the set CGT , C ′
CRE is transformed into a novel corpus C ′′

CRE by
replacing each occurrence of a NP that appears in the set CGT with a modified
version of the NP. This modified version is obtained by prefixing and suffixing
the NP by an underscore character. For example, the word system is replaced by
system . This transformation helps us in distinguishing the context of a given

noun phrase. Continuing the previous example, the word system denotes that
it is being used in the context of home automation, and system denotes that
it is being used in the context of CrowdRE.

Next, we use the Word2vec model to produce word embeddings and for com-
puting semantic similarity scores of NPs present in CGT . The goal of this step is
to check if each noun phrase of CGT has been used in a similar context in both
C ′′

CRE and C ′
HA or not. Learning of word embeddings is facilitated by joining the

two corpora, i.e, C ′′
CRE ∪C ′

HA which is given as an input to the Word2vec model.
We set the dimension (d = 100), the window size (wind = 10), and the minimum
count (c = 1) for all the experiments. Note that several rounds of experiments
have been performed to identify the most suitable Word2vec parameters for this
case study. As mentioned earlier, the Word2vec model uses cosine similarity to
compute the semantic relationship of two words in vector space. The final set
of glossary terms includes only those candidate terms which have a similarity
score greater than or equal to 0.5. This value has been selected based on our
experiments with the corpora.

Table 1. Descriptive statistics of the corpora.

Data Type Total size Total sentences Total chunks (NPs)

CCRE Corpus 2,966 (R) 2,966 4,156

CHA Corpus 1,196 (P) 64,25,708 64,480

5 Results and Discussions

This section presents the results of our detailed experiments. The semantic app-
roach for glossary term extraction has been implemented in Python 3.7 and
executed on Windows 10 machine with Intel Core-i5-7500 CPU, 4 GB DDR3
primary memory and a processor frequency of 3.40 GHz. The first row of Table 1
reports the number of CrowdRE requirements used in our experiments and total
number of unique chunks (NPs) extracted from these requirements. Here, R
denotes the textual requirements. The second row of this table reports the num-
ber of Wikipedia pages crawled for (HA) category to build the domain-specific

212 S. Mishra and A. Sharma

reference corpus and total number of unique chunks extracted from this corpus.
Here, P denotes the Wikipedia pages. The detailed report of our experiments
including modified CrowdRE dataset, ground truth, final set of extracted glos-
sary terms and similarity scores can be found in this repository9.

Table 2. Some examples of manually extracted glossary terms.

Req Id Textual requirements Glossary terms

R1 My smart home to be able to order
delivery food by simple voice
command, i can prepare dinner easily
after a long day at work

Smart home, order delivery food,
simple voice command, voice
command, dinner, day at work

R2 My smart home to turn on certain
lights at dusk, i can come home to a
well-lit house

Smart home, home, certain
lights, light, dusk, house

R3 My smart home to sync with my
biorhythm app and turn on some
music that might suit my mood when
i arrive home from work, i can be
relaxed

Smart home, biorhythm app,
some music, music, mood, home,
work

R4 My smart home to to ring when my
favorite shows are about to start, i will
never miss a minute of my favorite
shows

Smart home, favorite show

5.1 Ground Truth Generation

Ground truth is used for checking the results of machine learning for accuracy
against the real world. For glossary term extraction, ground truth generation
involves manual creation of correct glossary terms by domain experts or by a
team of experienced requirements engineers. Since CrowdRE dataset does not
contain a reference list of correct glossary terms and it is not possible to create
the correct glossary terms manually for a large body of requirements, i.e., 3000
requirements, we have manually created the ground truth for a subset of 100
requirements. This ground truth allows us to assess the performance of our
approach by computing precision and recall. A total of 250 glossary terms have
been manually extracted from a subset of 100 CrowdRE requirements. Note that
this ground truth also includes the glossary terms (except role descriptions which
do not appear in our subset of 100 requirements) that were manually selected
by the authors in [6]. Some examples of manually extracted glossary terms have
been shown in Table 2.

9 https://github.com/SibaMishra/Automatic-Glossary-Terms-Extraction-Using-
Word-Embeddings.

https://github.com/SibaMishra/Automatic-Glossary-Terms-Extraction-Using-Word-Embeddings
https://github.com/SibaMishra/Automatic-Glossary-Terms-Extraction-Using-Word-Embeddings

Automatic Word Embeddings-Based Glossary Term Extraction 213

5.2 Precision and Recall

To evaluate the quality of our term extraction technique we compute precision
and recall on this subset of 100 CrowdRE requirements. Precision gives us the
fraction of relevant instances among the retrieved instances. On the other hand,
recall gives us the fraction of relevant instances that have been retrieved over
the total amount of relevant instances. As mentioned earlier, to compute the
precision and recall we have manually extracted glossary terms from the subset
of 100 requirements. We consider this set of manually extracted terms as ground
truth. On applying our linguistic processing steps to these 100 requirements we
extract 269 candidate glossary terms. Using our word embeddings based semantic
filter, we reduce the number of glossary terms from 269 to 218. This set of final
extracted glossary terms has 183 true positive terms. Note that we also count
short terms that are included as parts of longer terms of the other set. These true
positive terms lead to a recall of 183

250 = 73.2% and a precision of 183
218 = 83.94%.

These results indicate that our approach manages to strike a balance between
the number of extracted glossary terms and recall rate.

5.3 Automated Glossary Term Extraction

Without applying our word embeddings based semantic filtering, the text chunk-
ing algorithm returns a total of 4156 candidate glossary terms when applied to
the entire CrowdRE dataset, i.e., 2966 requirements. Since the number of glos-
sary terms obtained is very large, we apply our semantic filter to reduce it by
removing terms that are not domain-specific. Using our semantic filter we reduce
the number of glossary terms significantly, i.e., from 4156 to 304. This means
that the number of glossary terms gets reduced by 92.7%. Table 3 presents some

Table 3. Examples of final extracted glossary terms and their similarity scores.

Glossary terms Similarity score

Automatic door 0.9161

Audio system 0.8517

Air conditioner 0.8042

Blood pressure monitor 0.8091

Comfortable temperature 0.9418

Entertainment system 0.8553

Electric blanket 0.9722

ipad 0.6262

Personal computer 0.6067

Smart light 0.9081

Smart alarm clock 0.9534

Smart card 0.5502

214 S. Mishra and A. Sharma

examples of glossary terms extracted by applying word embeddings based seman-
tic filter. The second column of this table shows the similarity score, i.e., score
obtained by computing the cosine similarity with the same word from the home
automation Wikipedia corpus.

5.4 Coverage

In [6], requirements coverage has been advocated as another metric for a glos-
sary’s quality. Roughly speaking, the definition of coverage is the extent to which
something is addressed, covered or included. In the context of glossary term
extraction for software requirements, coverage gives us the percentage of require-
ments that are covered by the terms present in the glossary. It is important to
note that high coverage rate does not necessarily means high quality glossary.
For example, it is possible to achieve a very high coverage rate by including com-
mon words or terms that appear frequently in a requirements document even if
they are not domain or application-specific terms. For CrowdRE dataset, with-
out semantic filtering we obtain a total of 4156 glossary terms with a coverage
rate of 99%, i.e., 2937 of 2966 requirements are covered by these glossary terms.
On applying the semantic filter number of glossary terms reduces to 304 and
the corresponding coverage rate is 51.88%, i.e., 1539 of 2966 requirements are
covered by this new set of glossary terms. This reduction in coverage rate can be
attributed to the following two reasons. Firstly, common nouns or noun phrases
and terms which are not domain-specific but do appear frequently in require-
ments document would not be part of the final set of glossary terms obtained
after applying semantic filter. Secondly, unlike [6] we do not include the content
of role descriptions attribute of CrowdRE dataset as part of every requirement.
Since the same role description can be part of many user stories it ensures a
high coverage regardless of the specific content of the requirements. Some exam-
ple role descriptions from CrowdRE dataset are as follows: student, cook, driver,
parent, mother, wife, manager, adult, pet owner, nanny and husband. From these
examples it is easy to see that role description does not give any useful informa-
tion about the actual contents of a requirement. Semantic filtering reduces the
number of glossary terms by 92.7% while coverage rate is reduced by 47.6%. In
other words, the number of glossary terms gets reduced roughly by less than a
factor of 14 whereas the coverage rate is reduced by less than a factor of 2. Since
for a large-sized requirements document the glossary is required to be restricted
to a manageable size, we believe that our approach is very effective in achieving
a huge reduction in glossary size with a much smaller impact on coverage rate.

Some statistics related to coverage have been reported in Table 4. First row
of this table presents the number of glossary terms that appear only once in the
CrowdRE dataset. Similarly, ith row of this table indicates the number of glossary
terms that are present in i unique requirements from the CrowdRE dataset. As
expected when i increases the number of glossary terms starts decreasing. The
only exception to these findings is the 2nd row of this table where the number
of glossary terms increases.

Automatic Word Embeddings-Based Glossary Term Extraction 215

Table 4. Number of requirements covered by the extracted glossary terms.

Number of requirements Glossary terms

1 48

2 98

3 46

4 23

5 18

6 10

7 8

8 5

9 6

10 4

To highlight the fact that our approach does not remove infrequent domain
or application-specific terms, we have compiled a set of some example techni-
cal terms which have been extracted by our semantic filter (see Table 5). First
column of this table reports some examples of extracted glossary terms that
appear only once in the CrowdRE dataset. Similarly, second column of this table
includes some examples of extracted glossary terms which appear only twice in
the dataset.

Table 5. Examples of extracted glossary terms that appear only once or twice in
CrowdRE.

Glossary terms (1) Glossary terms (2)

Smart sensor Motion sensor

Fingerprint scanner Smart fridge

Smart tag Smart tv

Amazon Ideal temperature

Wireless speaker Room thermostat

Rfid chip Facial recognition

Carbon monoxide detector iphone

5.5 Advantages of Our Approach

A major advantage of our approach is that only those technical terms are added
to the final set of glossary terms which are truly domain-specific. This is primarily
because we use word embeddings and similarity scores for detecting domain-
specific terms. For example, terms that occur very frequently in the requirements
document but are not domain or application-specific will not be part of the

216 S. Mishra and A. Sharma

final set of glossary terms. In contrast, term extraction approaches which only
use statistical filtering would include these terms in the final set of glossary
terms. Additionally, our filtering technique can be used to significantly reduce
the number of glossary terms for large-sized requirements documents.

Another advantage of this approach is that if the number of glossary terms
needs to be reduced further, this can be done easily by selecting a higher similar-
ity threshold used for labeling a term as relevant/domain-specific. Our semantic
filtering technique can also be combined with other filtering techniques, e.g., sta-
tistical and hybrid. Finally, this technique can be used to detect multiple terms
(NPs) with the same meaning, i.e., synonyms. This is helpful as we do not need
to define synonyms as separate glossary terms in the requirements document.
Similarly, terms having the same spelling but different meanings, i.e., homonyms
can be detected. This would allow us to define these terms as separate candidate
glossary terms.

5.6 Limitations of Our Approach

A major limitation of our approach is that for every application domain it
requires a corresponding domain-specific reference corpus which is used by
Word2vec model to filter the candidate glossary terms. This could be an issue
for new application domains where a reference corpus cannot be built due to
the unavailability of large-sized domain-specific documents. Moreover, even for
application domains where it is possible to create a reference corpus, there are
no specific guidelines for selecting the source from where the corpus should be
generated. For example, it is possible that for a particular application domain
multiple sources of relevant data are available, e.g., Wikipedia, existing require-
ments documents, product brochures, handbooks, etc. In this case, it is not clear
which of these documents need to be mined or crawled to generate the reference
corpus which gives us the most accurate results. For home automation domain,
reference corpus created by Wikipedia crawling gives us good results but this
may not be true for other application domains.

Another issue with semantic filters is that for very large-sized documents,
generation of word embeddings and computation of similarity scores for thou-
sands of NPs may take a long time to complete. For home automation domain,
we were able to run the experiments on a laptop but this may not be true for
other application domains.

6 Conclusions and Future Work

This paper proposes an automatic approach for glossary term extraction from
large-sized requirements documents. The first step of our solution extracts can-
didate glossary terms by applying text chunking. In the second step, we use
a semantic filter based on word embeddings to reduce the number of glossary
terms. This semantic filter ensures that domain-specific terms are not removed
from the set of candidate glossary terms. We apply our technique to a large-sized

Automatic Word Embeddings-Based Glossary Term Extraction 217

requirements documents with around 3000 crowd-generated requirements. Our
experiments show that word embeddings based semantic filtering can be very
useful for extracting glossary terms from a large body of existing requirements.
This research work can be extended in several interesting directions which are
as follows:

– Implement a tool that takes as input the large-sized requirements document
and automatically mines the Web to build a requirements-specific reference
corpus. In the next step, it should automatically extract the set of candidate
glossary terms by applying our word embeddings based semantic filter.

– Extend this technique to automatically extract the glossary terms from a
large body of natural language requirements for software product lines [20].

– Compare the effectiveness of Word2vec semantic filter with other word embed-
ding techniques, e.g., GloVe and fastText.

– Come up with some guidelines to determine how to create the domain-specific
reference corpus.

References

1. Aguilera, C., Berry, D.M.: The use of a repeated phrase finder in requirements
extraction. J. Syst. Softw. 13(3), 209–230 (1990)

2. Arora, C., Sabetzadeh, M., Briand, L.C., Zimmer, F.: Automated extraction and
clustering of requirements glossary terms. IEEE Trans. Softw. Eng. 43(10), 918–
945 (2017)

3. Dwarakanath, A., Ramnani, R.R., Sengupta, S.: Automatic extraction of glossary
terms from natural language requirements. In: 21st IEEE International Require-
ments Engineering Conference (RE), pp. 314–319, July 2013

4. Ferrari, A., Donati, B., Gnesi, S.: Detecting domain-specific ambiguities: an NLP
approach based on Wikipedia crawling and word embeddings. In: 25th IEEE Inter-
national Requirements Engineering Conference Workshops (REW), pp. 393–399,
September 2017

5. Ferrari, A., Esuli, A., Gnesi, S.: Identification of cross-domain ambiguity with lan-
guage models. In: 5th International Workshop on Artificial Intelligence for Require-
ments Engineering (AIRE), pp. 31–38, August 2018

6. Gemkow, T., Conzelmann, M., Hartig, K., Vogelsang, A.: Automatic glossary term
extraction from large-scale requirements specifications. In: 26th IEEE Interna-
tional Requirements Engineering Conference, pp. 412–417. IEEE Computer Society
(2018)

7. Goldin, L., Berry, D.M.: AbstFinder, a prototype natural language text abstraction
finder for use in requirements elicitation. Autom. Softw. Eng. 4(4), 375–412 (1997).
https://doi.org/10.1023/A:1008617922496

8. Hull, M.E.C., Jackson, K., Dick, J.: Requirements Engineering, 2nd edn. Springer,
Heidelberg (2005). https://doi.org/10.1007/b138335

9. Justeson, J.S., Katz, S.M.: Technical terminology: some linguistic properties and
an algorithm for identification in text. Nat. Lang. Eng. 1(1), 9–27 (1995)

10. Kof, L.: Natural language processing for requirements engineering: applicability to
large requirements documents. In: Workshop on Automated Software Engineering
(2004)

https://doi.org/10.1023/A:1008617922496
https://doi.org/10.1007/b138335

218 S. Mishra and A. Sharma

11. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In:
Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2. NIPS 2014, pp. 2177–2185 (2014)

12. Ménard, P.A., Ratté, S.: Concept extraction from business documents for software
engineering projects. Autom. Softw. Eng. 23(4), 649–686 (2015). https://doi.org/
10.1007/s10515-015-0184-4

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representa-
tions of words and phrases and their compositionality. In: Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2.
NIPS 2013, pp. 3111–3119 (2013)

15. Mishra, S., Sharma, A.: On the use of word embeddings for identifying domain spe-
cific ambiguities in requirements. In: 2019 IEEE 27th International Requirements
Engineering Conference Workshops (REW), pp. 234–240 (2019)

16. Murukannaiah, P.K., Ajmeri, N., Singh, M.P.: Toward automating crowd RE. In:
25th IEEE International Requirements Engineering Conference (RE), pp. 512–515,
September 2017

17. Murukannaiah, P.K., Ajmeri, N., Singh, M.P.: Acquiring creative requirements
from the crowd: understanding the influences of individual personality and creative
potential in crowd RE. In: 24th IEEE International Requirements Engineering
Conference (RE), pp. 176–185, September 2016

18. Park, Y., Byrd, R.J., Boguraev, B.K.: Automatic glossary extraction: beyond ter-
minology identification. In: COLING 2002: The 19th International Conference on
Computational Linguistics (2002). https://www.aclweb.org/anthology/C02-1142

19. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques,
1st edn. Springer, Heidelberg (2010)

20. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations. Principles and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

21. Popescu, D., Rugaber, S., Medvidovic, N., Berry, D.M.: Reducing ambiguities in
requirements specifications via automatically created object-oriented models. In:
Paech, B., Martell, C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp. 103–
124. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89778-1 10

22. Romero, F.P., Olivas, J.A., Genero, M., Piattini, M.: Automatic extraction of
the main terminology used in empirical software engineering through text mining
techniques. In: Proceedings of the Second ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement. ESEM 2008, pp. 357–358
(2008)

23. Zou, X., Settimi, R., Cleland-Huang, J.: Improving automated requirements trace
retrieval: a study of term-based enhancement methods. Empir. Softw. Eng. 15(2),
119–146 (2010). https://doi.org/10.1007/s10664-009-9114-z

https://doi.org/10.1007/s10515-015-0184-4
https://doi.org/10.1007/s10515-015-0184-4
http://arxiv.org/abs/1301.3781
https://www.aclweb.org/anthology/C02-1142
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-540-89778-1_10
https://doi.org/10.1007/s10664-009-9114-z

Requirements Modelling

Conceptualizing Requirements Using
User Stories and Use Cases: A Controlled

Experiment

Fabiano Dalpiaz1(B) and Arnon Sturm2

1 Utrecht University, Utrecht, The Netherlands
f.dalpiaz@uu.nl

2 Ben-Gurion University of the Negev, Beer-Sheva, Israel
sturm@bgu.ac.il

Abstract. [Context and motivation] Notations for expressing
requirements are often proposed without explicit consideration of their
suitability for specific tasks. Consequently, practitioners may choose
a sub-optimal notation, thereby affecting task performance. [Ques-
tion/problem] We investigate the adequacy of two well-known nota-
tions: use cases and user stories, as a starting point for the manual
derivation of a static conceptual model. In particular, we examine the
completeness and correctness of the derived conceptual model. [Prin-
cipal ideas/results] We conducted a two-factor, two-treatment con-
trolled experiment with 118 subjects. The results indicate that for deriv-
ing conceptual models, user stories fit better than use cases. It seems
that the repetitions in user stories and their conciseness contribute to
these results. [Contribution] The paper calls for evaluating require-
ments notations in the context of various requirements engineering tasks
and for providing evidence regarding the aspects that need to be taken
into account when selecting a requirement notation.

Keywords: Requirements engineering · Conceptual modeling · Use
cases · User stories · Controlled experiment

1 Introduction

Many notations exist for expressing requirements for software systems, rang-
ing from natural language sentences [8], semi-formal models [22,32], to formal
languages [3,13]. Among this landscape, requirements are most often expressed
following some templates or controlled languages, like EARS [31], UML use cases,
and user stories [6]. The adequacy of the notation depends on the type of system
under design, the application domain, and the granularity of the requirements.
Nevertheless, the research community overlooked the contextual adequacy of
these notations, and thus evidence for practitioners on the selection of an effec-
tive notation that fits their needs is missing.

c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 221–238, 2020.
https://doi.org/10.1007/978-3-030-44429-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_16&domain=pdf
http://orcid.org/0000-0003-4480-3887
http://orcid.org/0000-0002-4021-7752
https://doi.org/10.1007/978-3-030-44429-7_16

222 F. Dalpiaz and A. Sturm

Furthermore, the selection of a suitable requirements notation also depends
on the expectations regarding the requirements. They can be used for commu-
nication among stakeholders (i.e., when they express high-level specifications),
for analytical tasks such as finding inconsistency and detecting feasibility, or for
serving the entire software development process. As a first step within the devel-
opment process, an analyst refines an initial set of high-level requirements into
lower-level specifications and may use conceptual models as an artifact that rep-
resents the major entities and relationships that are referred to in the high-level
requirements [18,29,42]. In this work, we limit our attention to static/structural
conceptual models that emphasize the domain entities and their relationships.
Such conceptual models can be employed in requirements engineering in order
to (i) provide a holistic overview for team members to understand the product
domain [1,27]; (ii) identify quasi-synonyms that may lead to misunderstandings
[9]; (iii) support model-driven engineering [24]; and (iv) analyze certain quality
aspects such as security and privacy [28].

In this research, we study the process of deriving a conceptual model (like an
entity-relationship diagram or an UML class diagram) that represents the main
concepts in a collection of high-level requirements. This type of models has been
shown to be a useful learning tool for new employees [27], for representing the
domain in which the system is to operate [1], and for supporting the transition
to later phases in object-oriented software development [15,44].

We investigate the relative suitability of two mainstream notations for
expressing requirements regarding analysts’ effectiveness in manually extract-
ing conceptual models. Our main research question in this paper is as follows:
MRQ. How does the choice of a requirements notation affect the derivation of
static conceptual models?

The two natural language notations that we choose are use cases (UC) and
user stories (US). The former are chosen because they are part of the UML and,
despite some criticism on their suitability to express requirements [14], they are
widely adopted in the software industry. The latter are chosen because of their
popularity in projects that follow agile development methods like Scrum and
Kanban [19,26].

We answer our MRQ via a controlled experiment in which senior under-
grad students, taking a course on object-oriented analysis and design are briefed
to individually derive conceptual models (UML class diagrams) starting from
high-level requirements for two systems using either notation (US and UC). By
defining a gold standard conceptual model, we are able to measure the precision
and recall. Furthermore, we evaluate the preference of the students in extracting
models from either notation.

The results show that, in a course where object orientation is explained in
detail, user stories seem to be preferred for the task at hand. Besides such pref-
erence, the accuracy of the derived models tends to be higher with user stories.
Although preliminary, we believe that these results may inspire other research on
the effectiveness of alternative requirements notations for different requirements-
related tasks.

Conceptualizing Requirements Using User Stories and Use Cases 223

The rest of the paper is organized as follows. In Sect. 2, we set the background
for this study and review related studies. In Sect. 3, we present the design of the
experiment we performed. In Sect. 4, we elaborate on the experiment results
whereas in Sect. 5 we interpret and discuss those results. In Sect. 6, we indicate
the threats to validity. We conclude and set plans for future research in Sect. 7.

2 Background and Related Work

Use cases are a popular notation, part of the UML [34], for expressing require-
ments that describe the interaction between a user and a system. Although typ-
ically used for expressing functional requirements, adaptations and extensions
exist to make them suitable for representing quality aspects such as security and
privacy [28,35]. A use case defines a list of steps between an actor and the system;
they are specified following a textual template and using a use case diagram. In
the context of this work, we focus on a simple template notation adapted from
Larman’s book [23], illustrated in Listing 1, which is based on the widely used
notations by Cockburn [4] and Kruchten [21].

Listing 1. A use case for the Planning Poker game website.

UC1. Set a Game
Primary Actor: Moderator
Main Success Scenario (or Basic Flow):
1. Create a new game by entering a name and an optional description
2. The system records the game parameters
3. Set the estimation policy
4. The system stores the estimation policy
5. Invite up to 15 estimators to participate
6. The system sends invitations and add estimators to the game

User stories are another widespread notation [19,26] that originates from the
agile software development paradigm [6] and that consists of simple descriptions
of a feature written from the perspective of the person who wants them. Multiple
templates exist for representing user stories [39], among which the Connextra
format is one of the predominant ones [26]: As a <role>, I want <action>,
so that <benefit>. The “so that” part, despite its importance in providing the
rationale for a user story [25], is often omitted in practice. In our study, we
formulate user stories using the Connextra template and we group related user
stories into epics. See Listing 2 for some examples.

Listing 2. Some user stories for the Planning Poker game website.

Epic. Set a Game

US1: As a moderator, I want to create a new game by entering a name and an
optional description, so that I can start inviting estimators.
US2: As a moderator, I want to invite estimators, so that we can start the game.
US3: As a moderator, I want to have the “estimate” field filled in automatically if
all estimators show the same card, so that I can accept it more quickly.
US4: As a moderator, I want to enter the agreed-upon estimate, so that we can
move on to the next item when we agree.

224 F. Dalpiaz and A. Sturm

Conceptual models can help refine an initial set of high-level requirements
into lower-level specifications, by representing the major entities and relation-
ships that are referred to in the high-level requirements [18,29,42]. Several
researchers have investigated the derivation of such models from use cases.
Insfrán et al. [18] propose a process that assists in the refinement of high-level
requirements, expressed as a mission statement, into lower-level models that can
be automatically mapped to code. Part of their approach is the creation of use
cases to facilitate the transition from natural language statements to executable
models. Yue et al. [43] observe that informal use case specifications may contain
vague and ambiguous terms that make it hard to derive precise UML models,
including class and sequence diagrams. As a solution, they propose a restricted
version of the use cases template for analysts to adopt. The approach was found
easy to apply by practitioners and led to significant improvements in terms of
class correctness and class diagram completeness.

Fewer methods exist that derive conceptual models from user stories.
Lucassen et al. [27] propose an automated approach for extracting conceptual
models from a collection of user stories by relying on and adapting natural lan-
guage processing heuristics from the literature. The resulting models show good
precision and recall, also thanks to the structure that is set by user stories,
although perfect accuracy is not possible due to the large variety of linguistic
patterns that natural language allows for. Wautelet et al. [38] introduce a process
for transforming a collection of user stories into a use case diagram by using the
granularity information obtained through tagging the user stories. Although this
work is relevant, our goal is to study the independent use of UC and US. Trkman
et al. [37] point out how user stories, being defined independently, do not clearly
represent execution and integration dependencies. Their solution includes the use
of a different type of conceptual model, i.e., business process models, to associate
user stories with activities and, thus, to facilitate the discovery of dependencies
by following the control flow in the business process model.

To the best of our knowledge, no experimental studies that compare the
effectiveness of requirements notations (for certain tasks) exist. Therefore, prac-
titioners have no concrete evidence regarding which notation suits best their
needs. The closest works to ours regard the comparison of (graphical) notations
used in information systems design. Ottensooser et al. [33] compare the Business
Process Modeling Notation (BPMN) against textual user cases in interpreting
business process descriptions. Their experiment shows that BPMN adds value
only with trained readers. Cardoso et al. [2] conduct an experiment that shows
how the adequacy of languages depends on how structured a business process
is. Hoisl et al. [17] compare three notations (textual, semi-structured, diagram-
matic) for expressing scenario-based model tests; their experimental results show
a preference toward natural language based notations.

Conceptualizing Requirements Using User Stories and Use Cases 225

3 Experiment Design

We investigate how requirements can be conceptualized taking as input two dif-
ferent widely used requirements notations: use cases and user stories. By concep-
tualizing requirements, we refer to the manual derivation of a static conceptual
model starting from a set of requirements specified in each of the notations.

3.1 Hypotheses

To compare the differences in the effectiveness of UC and US as a starting point
for the manual derivation of a conceptual model, we measure correctness and
completeness with respect to a gold standard solution. Furthermore, we collect
and compare the preference of the subjects with respect to the use of the two
notations for various tasks.

We observe that use case descriptions are organized in a transactional,
process-oriented fashion, thus making it easier to comprehend the flow and the
intended system. User stories, on the other hand, are short and refined state-
ments that have a standard format, thus making it easier to understand each
requirement separately. Nevertheless, even if organized into epics, it is difficult
to understand the system and the way it operates as a whole. This difference
leads us to have the following hypothesis:

H0: user stories and use cases are equally good for the
derivation of a static conceptual model

To measure the quality of a conceptual model, we use the recall and precision
of the resulting model with respect to the gold standard one. Our hypotheses
are formalized as follows:

HCM-Precision
0 : USCM-Precision = UCCM-Precision

HCM-Recall
0 : USCM-Recall = UCCM-Recall

3.2 Design

We describe the variables and their measurements, the subjects, and the tasks.

Independent Variables. The first variable is the notation according to which the
requirements are specified. It has two possible values: User Stories (US) and Use
Cases (UC). The second independent variable is the case study used. It has two
possible values: Data Hub (DH) and Planning Poker (PP). These case studies
are obtained from a publicly available dataset of user story requirements [7]. DH
is the specification for the web interface of a platform for collecting, organizing,
sharing and finding data sets. PP are the requirements for the first version of the
planningpoker.com website, an online platform for estimating user stories using
the Planning Poker technique.

226 F. Dalpiaz and A. Sturm

Dependent Variables. There are two types of dependent variables that are spec-
ified by comparing the elements in the subject solution (the conceptual model
derived by a subject) against the gold standard solution:

– Recall : the ratio between the number of elements in the subject solution that
also exist in the gold standard (true positives) and the number of elements
in the gold standard (true positives + false negatives).

Recall =
|True Positives|

|True Positives| + |False Negatives|
– Precision: the ratio between the number of elements in the subject solution

that also exist in the gold standard (true positives) and the true positives
plus the number of elements in the subject’s solution that do not exist within
the gold standard solution (false positives).

Precision =
|True Positives|

|True Positives| + |False Positives|
While measuring recall and precision, we refer to various ways of counting the
elements of a conceptual model:

– Number of entities, i.e., classes
– Number of relationships between classes
– Total: number of entities + number of relationships

Furthermore, since relationships can be identified only when the connected enti-
ties are identified, we introduce an adjusted version of precision and recall for
the relationships, which calculates precision and recall with respect to those rela-
tionships in the gold standard among the entities that the subject has identified.
So, for example, if the gold standard has entities A, B, C with relationships
R1(A, B), R2(B, C) and R3(A, C), but the subject has identified only A and C,
then only relationship R3 is considered while computing precision and recall in
the adjusted version.

Subjects. We involved third year students taking the course on Object-oriented
Analysis and Design at Ben-Gurion University of the Negev. The course teaches
how to analyze, design, and implement software based on the object-oriented
paradigm. In the course, the students-subjects learned the notion of modeling
and, in particular, class diagrams. They learned the use of user stories and
use cases for specifying requirements as part of the development process. They
also practiced class diagrams, use cases and user stories, through homework
assignments. In those assignments, they achieved good results, indicating that
they understood the notations well.

Recruiting the students was done on a volunteering basis. Nevertheless, they
were encouraged to participate in the experiment by providing them with addi-
tional bonus points to the course grade based on their performance. Before
recruiting the students, the research design was submitted to and approved by
the department ethics committee.

Conceptualizing Requirements Using User Stories and Use Cases 227

Task. We designed the experiment so that each subject would experience the
derivation of a conceptual model from both notations. For that purpose, we
designed two forms (available online [10]), in which we alternate the treatment
and the case study.

The form consists of 4 parts: (1) a pre-task questionnaire that checks the
back-ground and knowledge of the subjects; (2) the first task, in which subjects
receive the requirements of the Data Hub application, specified either in use cases
or user stories, and were asked to derive a conceptual model; (3) the second task,
in which subjects receive the requirements of the Planning Poker application,
specified either in use cases or user stories, and were asked to derive a conceptual
model; (4) questions that measure the subjects’ perception of the two notations
and their usefulness. We asked the subjects to derive a conceptual model that
would serve as a domain model for the backbone of the system to be developed
(as was taught in the course).

We prepared the requirements set used in the experiment through several
stages. First, we collected the original requirements from [7]. Second, we filtered
the requirements to fit the experiment settings and wrote corresponding use
case specifications. Third, we double checked the specifications to align contents
and granularity of the use cases and the user stories and verified that both can
be used to derive the same conceptual model, which we then set as the gold
standard solution. Finally, we translated the requirements to Hebrew, so the
subjects can perform the task in their native language. The case studies had
different complexity. Table 1 presents various metrics and indicates that the DH
case introduces higher complexity than the PP case.

Table 1. Case studies metrics

Data Hub Planning Poker

Number of user stories 24 21

Number of use cases 4 3

Number of lines in use cases 38 36

Number of entities 10 6

Number of relationships 13 8

To create the gold standard, whose conceptual models are listed in
AppendixA, the authors of this paper have first created independently a con-
ceptual model that depicts the main entities and relationships from both the use
cases and the user stories separately. We further verified the conceptual model
by adopting the heuristics used by the Visual Narrator [27], which suggest to
look for (compound) nouns to identify concepts and to detect relationships by
searching for action verbs. Then, we compared our models and produced the
reconciled versions in the AppendixA.

228 F. Dalpiaz and A. Sturm

Execution. The experiment took place in a dedicated time slot and lasted approx-
imately 1 h, although we did not set a time limit for the subjects to complete
the tasks. The assignment of the groups (i.e., the forms) to the 118 subjects was
done randomly. The distribution of groups was as followed:

– Form A: DH with user stories and PP with use cases: 57 subjects;
– Form B: DH with use cases and PP with user stories: 61 subjects.

Analysis. The paper forms delivered by the students were checked by the sec-
ond author against the gold standard. We performed a lenient analysis of the
solutions, in which we did not consider over-specification: if the student had
identified an additional entity mentioned in the requirements, which we deemed
as an attribute rather than an entity, we would not penalize the student. We also
accepted solutions that deviated slightly from the gold standard, so we could cope
with alternative solutions. The results were encoded into IBM’s SPSS, which was
used to calculate precision, recall, and the other statistics listed in Sect. 4. Both
authors analyzed the data to cross-check the analyses and to identify the most
relevant findings.

4 Experiment Results

We run a series of analyses over the results (all materials are available online
[10]). We first compare the background of the two groups. Table 2 presents the
comparison criteria among the groups, the mean (x) and standard deviation (σ)
for each, and the statistical analysis results in terms of statistical significance
(p < 0.05), and effect size. For non-parametric tests, like Wilcoxon Signed-Rank
test or Mann-Whitney U test, we follow Fritz et al.’s recommendation [12]: test
statistics are approximated by normal distributions to report effect sizes. For
parametric tests, like the T-Test, we employ Hedges’ g value [16]. To facilitate

Table 2. Pre-questionnaire results: mean, standard deviation, significance, and effect
size.

Form A Form B
p

Effect

x σ x σ size

Class Diagram (CD) Familiarity 4.16 0.71 4.07 0.60 0.356 0.147

UC Familiarity 3.73 0.62 3.57 0.74 0.293 0.174

US Familiarity 3.92 0.76 3.70 0.69 0.111 0.298

UC Homework Delivered 4.45 0.80 4.34 0.66 0.153 0.237

US Homework Delivered 4.48 0.66 4.26 0.73 0.066 0.308

CD Homework Delivered 4.54 0.57 4.30 0.74 0.071 0.301

Participation in the UC Lecture 0.91 0.29 0.89 0.32 0.629 0.065

Participation in the US Lecture 0.95 0.23 0.90 0.30 0.349 0.186

Grade 85.54 5.87 81.49 14.58 0.048 0.360

Conceptualizing Requirements Using User Stories and Use Cases 229

the interpretation of the results, we transform effect sizes to Hedges’ g. To do
so, we employ an online calculator1. All criteria were indicated by the subjects
except for the grade, which is the final grade of the course. The familiarity
and the homework participation criteria were retrieved using a 5-point Likert-
type scale (1 indicates low familiarity and participation and 5 indicates high
familiarity and participation), lecture participation criteria take either true or
false, while the grade is on a scale from 0 to 100.

Although the division into groups was done randomly, it appears that the
background of the group of subjects assigned to Form A was superior than the
group of subjects assigned to Form B. Applying a Mann-Whitney test [30] to
the “subjective” criteria, we found no statistically significant differences, yet
when applying a T-test [36] to the last three rows, we found that the difference
for the grade was statistically significant and had a small-to-medium effect size
(g = 0.360). These differences should be taken into account when analyzing the
results.

In analyzing the results of the completeness and correctness of the concep-
tual models, we performed an Anova test [11] and found out that the interaction
between the case study and the notation, concerning the adjusted total precision
and recall, is statistically significant. This probably occurred due to the com-
plexity differences between the two case studies as appears in Table 1. We thus
analyze each case study separately.

Tables 3 and 4 present the results of the DH and PP case studies, respectively.
For the user stories and the use cases columns, we report arithmetic mean and
standard deviation for the related metric. Bold numbers indicate the best results,
whereas gray rows indicate statistically significant differences (applying T-test).

In all metrics, the conceptual models derived from the set of user stories
outperform the conceptual models derived from the set of use cases. For the DH

Table 3. Data Hub results.

User Stories Use Cases
p

Effect

x σ x σ size

Entity Recall 0.73 0.13 0.70 0.14 0.258 0.222

Entity Precision 0.66 0.14 0.61 0.12 0.089 0.384

Relation Recall 0.38 0.15 0.34 0.12 0.047 0.296

Relation Precision 0.34 0.14 0.29 0.10 0.028 0.413

Total Recall 0.54 0.11 0.50 0.11 0.061 0.364

Total Precision 0.48 0.11 0.43 0.10 0.017 0.476

Adjusted Relation Recall 0.66 0.19 0.55 0.20 0.007 0.563

Adjusted Relation Precision 0.52 0.19 0.43 0.16 0.007 0.514

Adjusted Total Recall 0.68 0.09 0.63 0.10 0.004 0.525

Adjusted Total Precision 0.58 0.11 0.53 0.08 0.002 0.523

1 https://www.psychometrica.de/effect size.html.

https://www.psychometrica.de/effect_size.html

230 F. Dalpiaz and A. Sturm

Table 4. Planning Poker results.

User stories Use cases p Effect

x σ x σ size

Entity Recall 0.80 0.17 0.78 0.17 0.520 0.118

Entity Precision 0.75 0.18 0.72 0.17 0.380 0.171

Relation Recall 0.45 0.22 0.42 0.28 0.623 0.120

Relation Precision 0.37 0.21 0.35 0.23 0.618 0.091

Total Recall 0.62 0.17 0.60 0.19 0.532 0.111

Total Precision 0.54 0.17 0.52 0.17 0.496 0.118

Adjusted Relation Recall 0.63 0.25 0.58 0.24 0.322 0.204

Adjusted Relation Precision 0.48 0.23 0.44 0.22 0.409 0.178

Adjusted Total Recall 0.63 0.20 0.60 0.20 0.440 0.150

Adjusted Total Precision 0.53 0.17 0.51 0.16 0.489 0.121

case study, the difference was statistically significant in the case of the relation,
for all the adjusted metrics as well as for the total precision. Furthermore, the
effect sizes for DH indicate an intermediate effect for many metrics, all those
with g > 0.5 according to Cohen [5]. Analyzing the preferences of the students
regarding the use of the two notations (Table 5)—using the Mann-Whitney test
since our visual analysis of the distributions revealed non-normality for some
statements—we found no statistically significant differences between the two
groups. In the tasks related to deriving a conceptual model, identifying classes,
identifying relationships, providing a system overview, and clearly presenting a
single requirement, there was a consensus regarding the benefits of using user
stories to describe the requirements. However, there was no consensus regarding
their benefit over use cases with respect to comprehending the system structure.
Furthermore, in both groups most subjects generally prefer to use user stories
to use cases.

Gathering the preferences of both groups together, Table 6 indicates a clear
preference towards user stories. These preferences are of statistical significance
(applying Wilcoxon test [40]) in the case of developing a conceptual model,
identifying classes, and clearly presenting a single requirement. The validity of
these findings is confirmed by their intermediate effect, equal or above to 0.5.

Based on the results, we can conclude that for the Data Hub application
we can reject both H0 hypotheses on the equality of both notation in the effec-
tiveness of deriving a conceptual model for the metrics defined above (the grey
rows in Table 3). In that case, introducing user stories resulted in better con-
ceptual models. For the other metrics, we accept H0 hypotheses, and can infer
that no difference exists in using both notations in deriving a conceptual model.
Drilling down into the actual conceptual models and their alignment with the
gold standard solution, we had additional observations.

Conceptualizing Requirements Using User Stories and Use Cases 231

Table 5. Preferences by group; effect size is omitted due to the high p values.

Statement Form A Form B p

Use cases fit for developing a conceptual model 3.24 3.45 0.267

User stories fit for developing a conceptual model 3.87 3.69 0.324

Use cases help in identifying classes 3.48 3.46 0.966

User stories help in identifying classes 3.74 3.86 0.809

Use cases help in identifying relationships 3.63 3.46 0.531

User stories help in identifying relationships 3.72 3.66 0.534

Use cases help comprehend the system structure 3.50 3.63 0.402

User stories help comprehend the system structure 3.57 3.57 0.855

Use cases provide a system overview 3.28 3.36 0.563

User stories provide a system overview 3.54 3.43 0.648

A use case clearly presents a single requirement 3.41 3.32 0.730

A user story clearly presents a single requirement 3.74 3.86 0.583

Which method do you prefer? US=31 US=37 0.413

UC = 21 UC = 18

Table 6. Preferences by notation.

Statement
User Stories Use Cases

p
Effect

x σ x σ size

Fit for developing a conceptual model 3.78 0.91 3.35 1.00 0.002 0.613

Help in identifying classes 3.79 0.92 3.46 0.87 0.010 0.500

Help in identifying relationships 3.67 0.98 3.53 0.96 0.336 0.183

Help comprehend the system structure 3.59 0.89 3.57 0.99 0.988 0.003

Provide a system overview 3.49 1.09 3.33 1.12 0.228 0.229

Clearly presents a single requirement 3.81 0.99 3.37 0.97 0.002 0.613

Which method do you prefer? 68 39

For the Data Hub case study:

1. Site Admin was less recognized in the use cases (US-96%, UC-80%) – it
appears only once in the use cases and 4 times in the user stories.

2. Usage Metric was less recognized in the user stories (US-31%, UC-69%) – it
appears only once in the user stories and 4 times in the use cases.

3. Billing System was less recognized in the use cases (US-50%, UC-27%) –
though in both techniques it appears only once.

4. Account was less recognized in the use cases (US-50%, UC-19%) – it appears
twice in the use cases and 4 times in the user stories.

5. The Publisher – Usage Metrics relationship was less recognized in the user
stories (US-5%, UC-44%)– it appears twice in the use cases and only implicitly
in the user stories.

232 F. Dalpiaz and A. Sturm

6. The Publisher – User relationship was less recognized in the use cases (US-
59%, UC-18%) – this relationship is implicitly mentioned 3 time in the user
stories and only once in the use cases.

7. The Site Admin – User relationship was less recognized in the use cases (US-
59%, UC-18%) - it appears once in each of the descriptions.

For the Planning Poker case study, we had the following observations:

1. Game Round was less recognized in the user stories (US-37%, UC-61%) – it
appears 9 time in the use cases and only twice in the user stories.

2. The Moderator – Estimator relationship was less recognized in the use cases
(US- 37%, UC-14%) – an implicit relationship between the moderator and
estimator appears 7 times in the user stories and only 2 times in the use
cases.

3. The Moderator – Estimation Item relationship was less recognized in the use
cases (US-50%, UC-14%) – an implicit relationship between the moderator
and estimation item appears 6 times in the user stories and only 4 times in
the use cases.

5 Discussion

As highlighted in Table 1, the complexity of the case studies affects the results.
The Planning Poker case study was less complex than the Data Hub case study
(14 versus 23 concepts). Even though Planning Poker was presented as the sec-
ond case study in the experiment forms—one would expect the participants to
be less effective because of being tired—, the conceptual models fit better the
gold standard solution. For Data Hub, the complexity emerges due to various
factors: the number of entities, the number of relationships, the introduction
of an external system (the billing system) with which the system under design
interacts, the multiple interactions among the roles/actors, and the existence of
several related roles/actors with similar names. The results may also be affected
by the course context : the focus was the design of a system, thus interactions
among actors were of less importance, as well as those with external systems.

The results indicate the existence of differences between the groups. The best
performing group had the Data Hub case specified with user stories and the
Planning Poker specified with use cases. That group achieved better results in
the case of the Data Hub (having user stories). The other group (inferior in
the subjects’ background and grading) also achieved better results when having
user stories. The later results, related to Planning Poker, were not statistically
significant; yet, this can be attributed to the fact that the group that had the
user stories was inferior to the group that had the use cases. Another explanation
can be related to the complexity of the case study: the Planning Poker case study
was simpler and, therefore, differences were of low magnitude.

When referring to the qualitative inspection of the results, it seems that
when related to actors, there are multiple repetitions of these concepts in the user
stories and thus the subjects were able to better identify the actors as well as the

Conceptualizing Requirements Using User Stories and Use Cases 233

relationships between them. In use cases, actors are usually mentioned only in
the beginning of each use case (in the “actor” section), and the described actions
are implicitly referring to the interaction between the actor and the system. In
user stories, instead, actors are expressed in every user story in the “As a” part.
Similar to actors, it seems that in the user stories there are entities that recur
multiple times, as they are used in many operations. This also led to better
identification of such entities when deriving the conceptual models.

Another explanation for the user stories supremacy may be the fact that
these are focused on the specification of individual features that an actor needs,
whereas use cases blur the identification of entities within a transaction flow.
It would be interesting, therefore, to explore which of the two notations is the
most adequate to re-construct a process model that describes how the actions
are sequentially linked.

One major difficulty for the students was to understand the difference between
entities and relationships. Several errors were made because the students did
not mark the identified concepts correctly. This may be due to shallow reading,
time pressure, or an actual difficulty in distinguishing them. However, it seems
that the template structure of user stories made it easier for the students to
distinguish entities from relationships.

The subjects also perceive the user stories notation as better fit for the tasks
we ask them to perform. This is remarkable, since the course in which this
experiment was embedded focuses on the use of the UML for system design.
The students also acknowledge the benefits for other tasks, yet the difference
was not significant.

6 Threats to Validity

Our results need to be considered in view of threats to validity. We follow Wohlin
et al.’s classification [41]: construct, internal, conclusion, and external validity.

Construct validity threats concern the relationships between theory and obser-
vation and are mainly due to the method used to assess the outcomes of the
tasks. We examined the use of two RE notations for the purpose of conceptual
model derivation and we used two sets of requirements. The selection of the
domains may affect the results; our choice is justified by our attempt to pro-
vide domains that would be easy to understand by the subjects. Moreover, it
might be that the specification using the two notations were not aligned in the
sense that they emphasize different aspects (process in the software vs. individ-
ual features). However, this is exactly one of the triggers of our research. To
mitigate the risk of favoring one notation over the other, before the experiment,
both authors created a conceptual model from either notation, independently,
to minimize bias that could stem from the way the specifications were written.

Internal validity threats, which concern external factors that might affect the
dependent variables, may be due to individual factors, such as familiarity with
the domain, the degree of commitment by the subjects, and the training level
the subjects underwent. These effects are mitigated by the experiment design

234 F. Dalpiaz and A. Sturm

that we chose. We believe that due to the domains characteristics, the students
were not familiar with them, and thus they probably were not affected. The
random assignment that was adopted should eliminate various kinds of external
factors. Although the experiment was done on a voluntary basis, the subjects
were told that they would earn bonus points based on their performance, and
thus we increased the motivation and commitment of the subjects as they took
advantage of entire time allocated for the experiment. The revealed differences
among the groups may also affect the results, though the trend exist in both
groups. In addition, it might be that acquiring reasoning abilities in extracting
entities and their relationships affect the results. These indicate that the second
task resulted in better conceptual model. Yet, we attribute this difference to the
lower complexity of the second domain. This leads to another threat that the
order of the domains within the experiment may also affect the results. Another
threat could emerge from the multiple tasks and fatigue.

Conclusion validity concerns the relationship between the treatment (the nota-
tion) and the outcome. We followed the various assumptions of the statistical
tests (such as normal distribution of the data and data independence) when
analyzing the results. In addition, we used a predefined solution, which was
established before the experiment, for grading the subjects’ answers; thus, only
limited human judgment was required.

External validity concerns the generalizability of the results. The main threat in
this area stems from the choice of subjects and from using simple experimental
tasks. The subjects were undergraduate students with little experience in soft-
ware engineering, in general, and in modeling in particular. Kitchenham et al.
argue that using students as subjects instead of software engineers is not a major
issue as long as the research questions are not specifically focused on experts [20],
as is the case in our study. In addition, it might be that the template selected
for the two notations also affected the results. Yet, these are the most common
ones in their categories. Generalizing the results should be taken with care as
the case studies are small and might be different in the way user stories and use
cases are written in industry settings.

7 Summary

We provided initial evidence on the benefit of using user stories over use cases
for deriving static conceptual models. We performed a controlled experiment
with 118 undergraduate students that we conducted as part of a system design
course. The results indicate that, probably because of the conciseness and focus
of user stories and the repetitions of entities in the user stories, the derived
conceptual models are more complete and correct. This work is a first attempt
in the direction of evaluating requirements notations side-by-side for a specific
task. We started from the task of deriving a static conceptual model; this is a
self-contained activity that can be performed in a relatively short time, especially
for not-so-large specifications.

Conceptualizing Requirements Using User Stories and Use Cases 235

Our paper calls for further experimentation for this particular task, as well
as for other tasks that are based on requirements notations. The research com-
munity needs to build a corpus of evidence to assist practitioners in the choice
of a notation (and technique) for the RE tasks at hand. We plan to continue
this research with larger case studies using qualitative methods to investigate
the trade-offs among RE notations.

Appendix A

See Figs. 1 and 2.

Fig. 1. The Data Hub gold standard solution

Fig. 2. The Planning Poker gold standard solution

236 F. Dalpiaz and A. Sturm

References

1. Arora, C., Sabetzadeh, M., Nejati, S., Briand, L.: An active learning approach
for improving the accuracy of automated domain model extraction. ACM Trans.
Softw. Eng. Methodol. 28(1), 1–34 (2019)

2. Cardoso, E., Labunets, K., Dalpiaz, F., Mylopoulos, J., Giorgini, P.: Model-
ing structured and unstructured processes: an empirical evaluation. In: Comyn-
Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016.
LNCS, vol. 9974, pp. 347–361. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46397-1 27

3. Ciancarini, P., Cimato, S., Mascolo, C.: Engineering formal requirements: an anal-
ysis and testing method for z documents. Ann. Softw. Eng. 3(1), 189–219 (1997).
https://doi.org/10.1023/A:1018965316985

4. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional, Boston
(2000)

5. Cohen, J.: Statistical power analysis. Curr. Dir. Psychol. Sci. 1(3), 98–101 (1992)
6. Cohn, M.: User Stories Applied: For Agile Software Development. Addison Wesley,

Boston (2004)
7. Dalpiaz, F.: Requirements Data Sets (User Stories) (2018). http://dx.doi.org/10.

17632/7zbk8zsd8y.1. Mendeley Data, v1
8. Dalpiaz, F., Ferrari, A., Franch, X., Palomares, C.: Natural language processing

for requirements engineering: the best is yet to come. IEEE Softw. 35(5), 115–119
(2018)

9. Dalpiaz, F., van der Schalk, I., Brinkkemper, S., Aydemir, F.B., Lucassen, G.:
Detecting terminological ambiguity in user stories: tool and experimentation. Inf.
Softw. Technol. 10, 3–16 (2019)

10. Dalpiaz, F., Sturm, A.: Experiment User Stories vs. Use Cases (2020). https://doi.
org/10.23644/uu.c.4815591.v1. Figshare

11. Fisher, R.A.: On the ‘probable error’ of a coefficient of correlation deduced from a
small sample. Metron 1, 1–32 (1921)

12. Fritz, C.O., Morris, P.E., Richler, J.J.: Effect size estimates: current use, calcula-
tions, and interpretation. J. Exp. Psychol.: Gen. 141(1), 2 (2012)

13. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specify-
ing and analyzing early requirements in tropos. Requirements Eng. 9(2), 132–150
(2004). https://doi.org/10.1007/s00766-004-0191-7

14. Glinz, M.: Problems and deficiencies of UML as a requirements specification lan-
guage. In: Proceedings of the International Workshop on Software Specifications
& Design, pp. 11–22 (2000)

15. Harmain, H., Gaizauskas, R.: CM-Builder: a natural language-based CASE tool
for object-oriented analysis. Autom. Softw. Eng. 10(2), 157–181 (2003). https://
doi.org/10.1023/A:1022916028950

16. Hedges, L.V.: Estimation of effect size from a series of independent experiments.
Psychol. Bull. 92(2), 490 (1982)

17. Hoisl, B., Sobernig, S., Strembeck, M.: Comparing three notations for defining
scenario-based model tests: a controlled experiment. In: Proceedings of the Interna-
tional Conference on the Quality of Information and Communications Technology
(2014)

18. Insfrán, E., Pastor, O., Wieringa, R.: Requirements Engineering-based Concep-
tual Modelling. Requirements Eng. 7(2), 61–72 (2002). https://doi.org/10.1007/
s007660200005

https://doi.org/10.1007/978-3-319-46397-1_27
https://doi.org/10.1007/978-3-319-46397-1_27
https://doi.org/10.1023/A:1018965316985
http://dx.doi.org/10.17632/7zbk8zsd8y.1
http://dx.doi.org/10.17632/7zbk8zsd8y.1
https://doi.org/10.23644/uu.c.4815591.v1
https://doi.org/10.23644/uu.c.4815591.v1
https://doi.org/10.1007/s00766-004-0191-7
https://doi.org/10.1023/A:1022916028950
https://doi.org/10.1023/A:1022916028950
https://doi.org/10.1007/s007660200005
https://doi.org/10.1007/s007660200005

Conceptualizing Requirements Using User Stories and Use Cases 237

19. Kassab, M.: An empirical study on the requirements engineering practices for agile
software development. In: Proceedings of the EUROMICRO International Confer-
ence on Software Engineering and Advanced Applications, pp. 254–261 (2014)

20. Kitchenham, B.A., et al.: Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002)

21. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley,
Boston (2004)

22. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley, Hoboken (2009)

23. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Prentice Hall, Upper Saddle River
(2004)

24. Loniewski, G., Insfran, E., Abrahão, S.: A systematic review of the use of require-
ments engineering techniques in model-driven development. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 213–227.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16129-2 16

25. Lucassen, G., Dalpiaz, F., van der Werf, J., Brinkkemper, S.: Improving agile
requirements: the quality user story framework and tool. Requirements Eng. 21(3),
383–403 (2016). https://doi.org/10.1007/s00766-016-0250-x

26. Lucassen, G., Dalpiaz, F., Werf, J.M.E.M., Brinkkemper, S.: The use and effec-
tiveness of user stories in practice. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016.
LNCS, vol. 9619, pp. 205–222. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30282-9 14

27. Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.:
Extracting conceptual models from user stories with Visual Narrator. Require-
ments Eng. 22(3), 339–358 (2017). https://doi.org/10.1007/s00766-017-0270-1

28. Mai, P.X., Goknil, A., Shar, L.K., Pastore, F., Briand, L.C., Shaame, S.: Modeling
security and privacy requirements: a use case-driven approach. Inf. Softw. Technol.
100, 165–182 (2018)

29. Maiden, N.A.M., Jones, S.V., Manning, S., Greenwood, J., Renou, L.: Model-driven
requirements engineering: synchronising models in an air traffic management case
study. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 368–383.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25975-6 27

30. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)

31. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: EARS (easy approach to
requirements syntax). In: Proceedings of of the IEEE International Requirements
Engineering Conference, pp. 317–322 (2009)

32. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented require-
ments analysis. Commun. ACM 42(1), 31–37 (1999)

33. Ottensooser, A., Fekete, A., Reijers, H.A., Mendling, J., Menictas, C.: Making
sense of business process descriptions: an experimental comparison of graphical
and textual notations. J. Syst. Softw. 85, 596–606 (2012)

34. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley Professional (2004)

35. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases.
Requirements Eng. 10(1), 34–44 (2005). https://doi.org/10.1007/s00766-004-
0194-4

36. Student: The probable error of a mean. Biometrika 6(1), 1–25 (1908)

https://doi.org/10.1007/978-3-642-16129-2_16
https://doi.org/10.1007/s00766-016-0250-x
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/s00766-017-0270-1
https://doi.org/10.1007/978-3-540-25975-6_27
https://doi.org/10.1007/s00766-004-0194-4
https://doi.org/10.1007/s00766-004-0194-4

238 F. Dalpiaz and A. Sturm

37. Trkman, M., Mendling, J., Krisper, M.: Using business process models to better
understand the dependencies among user stories. Inf. Softw. Technol. 71, 58–76
(2016)

38. Wautelet, Y., Heng, S., Hintea, D., Kolp, M., Poelmans, S.: Bridging user story
sets with the use case model. In: Link, S., Trujillo, J.C. (eds.) ER 2016. LNCS,
vol. 9975, pp. 127–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47717-6 11

39. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and extending user story
models. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 211–225.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6 15

40. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83
(1945)

41. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

42. Yue, T., Briand, L.C., Labiche, Y.: A systematic review of transformation
approaches between user requirements and analysis models. Requirements Eng.
16(2), 75–99 (2011). https://doi.org/10.1007/s00766-010-0111-y

43. Yue, T., Briand, L.C., Labiche, Y.: Facilitating the transition from use case models
to analysis models: approach and experiments. ACM Trans. Softw. Eng. Methodol.
22(1), 1–38 (2013)

44. Yue, T., Briand, L.C., Labiche, Y.: aToucan: an automated framework to derive
UML analysis models from use case models. ACM Trans. Softw. Eng. Methodol.
24(3), 1–52 (2015)

https://doi.org/10.1007/978-3-319-47717-6_11
https://doi.org/10.1007/978-3-319-47717-6_11
https://doi.org/10.1007/978-3-319-07881-6_15
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/s00766-010-0111-y

A Semi-automated Approach to Generate
an Adaptive Quality Attribute

Relationship Matrix

Unnati Shah1(B), Sankita Patel2, and Devesh Jinwala3

1 C. K. Pithawala College of Engineering and Technology, Surat 395007, India
unnati.shah25@gmail.com

2 National Institute of Technology, Surat 395007, India
3 Indian Institute of Technology, Jammu, Jammu 181221, Jammu and Kashmir, India

Abstract. [Context and Motivation] A critical success factor in Requirements
Engineering (RE) involves recognizing conflicts in Quality Requirements (QRs).
Nowadays, Quality Attributes Relationship Matrix (QARM) is utilized to iden-
tify the conflicts in QRs. The static QARM represents how one Quality Attribute
(QA) undermines or supports to achieve other QAs. [Question/Problem] How-
ever, emerging technology discovers new QAs. Requirements analysts need to
invest significant time and non-trivial human effort to acquire knowledge for the
newly discovered QAs and influence among them. This process involves search-
ing and analyzing a large set of quality documents from literature and industries.
In addition, the use of static QARMs, without knowing the purpose of the QRs in
the system may lead to false conflict identification. Rather than taking all QAs,
domain-specific QAs are of great concern for the system being developed. [Prin-
cipal ideas/results] In this paper, we propose an approach which is aimed to
build an adaptive QARM semi-automatically. We empirically evaluate the app-
roach and report an analysis of the generated QARM. We achieve 85.67% recall,
59.07% precision and 69.14% F-measure to acquire knowledge for QAs. [Contri-
butions]We provide an algorithm to acquire knowledge for domain-specific QAs
and construct an adaptive QARM from available unconstrained natural language
documents and web search engines.

Keywords: Requirements Engineering · Quality ontology · Quality Attribute
Relationship Matrix

1 Introduction

In Requirements Engineering (RE), Quality Requirements (QRs or Non-Functional
Requirements) describe the overall behavior of the system [1]. Requirements analysts
have to acquire knowledge ofQualityAttributes (QAs) and influences among them,when
they specify QRs for the system. In literature, there exist various approaches to specify
QRs [2–12]. We divide them into two categories such as the NFR Framework-based
approach and QARM (Quality Attribute Relationship Matrix) based approach.

© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 239–256, 2020.
https://doi.org/10.1007/978-3-030-44429-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_17

240 U. Shah et al.

The NFR Framework [4] is a systematic approach to define QRs for the system. It
provides visibility to relevant QAs and their interdependencies1. The NFR Framework
is based on the Soft-goal Interdependency Graph (SIG). It is a graph of interconnected
soft-goals (means goals without clear cut criteria or hard to define) where each soft-
goal represents a QR for the software under development. However, the NFR Frame-
work approach suffers from limitations such as (i) It is mostly reliant upon drawing
SIGs manually, which is time-consuming and error-prone; (ii) SIG provides an informal
description of the goals. Even though graphical representation is suitable for interaction
between requirements analysts and end-users, it does not support machine readability.
Hence, for large scale software, it is impractical to use such graphical representations.

On the other hand, in the QARMbased approach, requirements analysts specify QRs
using QARM that represents a pair-wise relationship between QAs. Various QARM
based work has been carried out in [5–8]. These QARMs are generic to any system.
In addition, as discussed in [12], the advent of emerging technologies introduces new
QAs such as mobility [13], context-awareness [14], ubiquity [15] and invisibility [16].
However, the limitations in [13–16] are as follows:

1. Usage of the manual process to define QAs and their relationship is tedious and their
outcomes rely upon the participant’s skills. Also, for each newly discovered QAs,
the process needs repetition. Hence, it is difficult to reuse and refine.

2. Lack of information concerning the relationship among newly discovered QAs to
the traditional ones such as security, performance, usability among others.

The goal of our research is to build an adaptiveQARMsemi-automatically, acquiring
knowledge from available natural language quality standards, industry documents, and
web search engines.

The paper is organized as follows: In Sect. 2, we review the related work. We present
the proposed approach in Sect. 3. Then we describe our research methodology in Sect. 4.
In Sect. 5, we present and discuss the results of our approach. In Sect. 6, we present
threats to validity. Finally, we conclude the paper with the future directions in Sect. 7.

2 Related Work

A large number of quality models have been proposed to make the abstract concept of
software quality more tangible [17]. The main purpose of the quality models [18–21]
is to decompose quality concepts down to a level where one can measure and evaluates
the quality. The quality model is “the set of quality characteristics and the relationships
between them (i.e. QARM) that provides the basis for specifying QRs and evaluation”
[19]. Various QARM based work has been carried out in [5–12]. We broadly classify
them into two categories viz.QA to QA relationship matrix [5–8] andQA to functionality
relationship matrix [9–12].

QA to QA relationship matrix represents howoneQAundermines (−) or supports (+)
achieving other types of QAs. From the literature, we observe four such matrices based

1 In this work, the term “Interdependency” indicates the relationship among QAs (i.e. how QAs
support or limit one or more QAs).

A Semi-automated Approach to Generate an Adaptive Quality 241

on: (i) Potential conflicts and cooperation relationship among QRs [5]; (ii) Standard
quality model ISO/IEC9126 [6]; (iii) Positive and negative relationships among QRs
[7]; and (iv) Relative, absolute and never conflicts relationship among QRs [8]. On
the other hand, QA to Functionality relationship matrix represents how one technique
to achieve QA undermines (−) or supports (+) achieving other types of QAs. This
matrix was first proposed by the authors in [4]. The authors state that each QA should
be specified by the level of operationalizing soft-goals. The soft-goals are the possible
design techniques that will help to implement the QA. They can be operations, functions,
data, and constraints which may affect other QAs. In Table 1, we provide a comparative
study of the existing approaches to generate QARM.

Table 1. Comparative study of the existing approaches to generate QARM

QARM characteristics [5] [6] [7] [8] [9] [10] [11] [12] Our approach

False conflict
identification

Y Y N Y N N N Y N

Adaptive N N N N N N N N Y

Domain-specific N N N N Y Y Y Y Y

QARM generation
process

M M M M M M M M SA

QA to QA relationship Y Y Y Y N N N Y Y

QA to functionality
relationship

N N N N Y Y Y N Y

QA level H H H H L L H H L

QARM representation Mx Mx Mx Mx Mx Mx Mx SIG Ontology

The table contains QARM characteristics such as false conflict identification
(Yes/No), adaptivematrix (Yes/No), domain-specific (Yes/No), QARMgeneration pro-
cess (Manual/Semi-automated (SA)), QA to QA relationship (Yes/No), QA to function-
ality relationship (Yes/No), QA level (High/Low), QARM representation (SIG/Matrix
(Mx)/Ontology). Our comparative study shows that the relationship between QAs
present in [6, 8] is inconsistent. In [6], security and usability have no relationship, while
in [8], security and usability have a relative relationship (i.e. These QAs are sometimes
in conflict and sometimes not, depending on the application domain and inwhich context
they are used) that leads to the false conflict identification and analysis. In addition, more
than 50% of QAs (such as autonomy, productivity, satisfaction) listed in the literature [8]
do not have clear definitions and their relationship. Furthermore, non-adaptive QARMs
are based on the past literature and industry experience. Hence, recently discovered QAs
such as recoverability, context awareness, mobility, transparency, and their relationships
need to be considered which are not available [12].

242 U. Shah et al.

3 Proposed Approach

The objective of our proposed approach is to help the requirement analysts to semi-
automatically acquire knowledge of the domain-specific QAs (from available quality
standards, industry documents and web search engine) and generate QARM (Fig. 1).
The approach consists of twomodules viz. Acquiring knowledge andQARMgeneration.
Here, we first provide a vector representation of the QAs and QA related documents: Let
QA be the set of QAs QA = {QA1, QA2….QAn}. Let QAD be the set of QA documents
QAD = {D1, D2…Dn}, where a document Dn contains information for the QAn. Let T
be the set of terms extracted from the Dn represented by {t1, t2…tm}. We discuss these
modules in the subsequent subsections.

Fig. 1. Proposed approach

3.1 Acquire Knowledge

To acquire knowledge, the entire process is divided into two iterative steps. Firstly,
we discover QA information from web search engines and available quality stan-
dards/documents for a given QAn and store it in the Dn. Secondly, we extract relevant
sub-QAs from the Dn. We present the details of each step in the following sub-sections.

A Semi-automated Approach to Generate an Adaptive Quality 243

3.1.1 Discover QA Information

Definitions and/or descriptions of the QA are the basis that helps us to learn the relevant
concepts of the QAs. We analyze a large number of quality documents and websites in
order to find the relevant concepts for the QA by searching the QA’s definitions. We
notice that these definitions on the web differ from each other in some aspects and have
similarities in others. Based on our study, we formulate the following questions and
search queries in order to discover the information for a given QAn:

1. What are the “Quality_Attribute” definitions? This question aims to collect
definitions available on the web/documents about a QAn;

Query 1: Define OR definition OR about OR what is + Quality_Attribute => Dn
Query 2: Quality_Attribute +is/are => Dn
Query 3: Quality_Attribute + is/are + called OR defined as OR known as OR refer

(s) OR described as OR formalized as => Dn
Query 4: is/are + called ORdefined as OR known as formalized as + Quality_Attribute

=> Dn

2. What are the “Quality_Attribute” definitions in “Specific_Domain”? This question
aims to collect definitions available on web/documents about QAn in a specific
domain;

Query 5: Define OR definition OR about OR what is + Quality_Attribute +[in] +
Domain_Name => Dn

Query 6: Quality_Attribute +[in] + Domain_Name + is/are => Dn
Query 7: Quality_Attribute + [in] + Domain_Name + is/are + called OR defined as

OR known as OR refer (s) OR described as OR formalized as => Dn
Query 8: is/are+ called ORdefined asOR known as formalized as+Quality_Attribute

+ [in] + Domain_Name => Dn

3. How is “Quality_Attribute” characterized? This question aims to collect existing
sub-characteristics for QAn;

Query 9: Feature OR Attributes OR Characteristics OR Matrix + [of] + Qual-
ity_Attribute + [in] + Domain_Name) => Dn

4. What are the details available in “Software Requirements Specification (SRS)” to
implement “Quality_Attribute”? This question aims to identify any kind of solution
available in SRS to implement the QAn;

Query 10: Implement OR Development [method/scheme] OR Execution [details] OR
Technique OR Operationalization OR Achieve [of] + Quality_Attribute =
> Dn

Query 11: Function OR Procedure OR Algorithm OR Standard + [for] + Qual-
ity_Attribute => Dn

244 U. Shah et al.

5. How is the “Quality_Attribute” implemented in “Specific_Domain”? This question
aims to identify any kind of solution used to implement theQAn in a specific domain;

Query 12: Implement OR Development [method/scheme] OR Execution [details] OR
Technique OR Operationalization OR Achieve [of] + Quality_Attribute +
[in] + Domain_Name => Dn

Query 13: Function OR Procedure OR Algorithm OR Standard + [for] + Qual-
ity_Attribute + [in] + Domain_Name => Dn

3.1.2 Extract Relevant sub-QAs

A detailed analysis of ambiguity in RE [22] shows that dealing with the ambiguity
issue at an early stage makes the information accurate. To identify and resolve anaphora
ambiguity in Dn, we follow the procedure present in [23]. After resolving ambiguity, we
extract Terms such as adjectives, ending words with -bility, -bilities, -ness, -able, noun
and verb phrases from Dn. We retain stop-words within noun and verb phrases as they
are important for finding hierarchical relationships. To extract sub-QAs, we apply the
following filters on T:

Filter1: Generic terms such as data, system, computer, network, system, etc. from Dn
Filter2: Terms that are present in 95% of the QA documents.
Filter3: Terms that violate the minimum size constraints.
Filter4: A stemming algorithm for the English language is used to reject plurals, verbal

forms, etc.

For each sub-QA in SubQAn, we perform the following analysis to select the relevant
sub-QAs for a QAn:

(i) Total number of appearances on all the web sites: this is the measure of the impor-
tance of the QA concept’s to the domain and allows eliminating very specific
ones;

(ii) A number of different websites that contain the QA concept at least once: this
provides a measure of the generality of the terms for the domain (e.g. interface is
quite common, but invisibility is not).

After analyzing the SubQAn, for each sub-QA, a new search string is constructed join-
ing the sub-QA with the QA (e.g. “Transparency (sub-QA) + Invisibility (QA)”), and
the entire procedure executes again. Quality experts will assess and confirm the final
SubQAn. The experts can add/update/delete the relevant sub-QAs in SubQAn. Each
relevant sub-QA is represented in a hierarchy by the searching pattern “Noun Phrase
1 + [connector] + Noun Phrase 2”; where the connector can be any combination of
verb phrase/preposition/adjective. If Noun Phrase 1 + connector + Noun Phrase 2 then
Noun Phrase 2 is likely to be the subclass of Noun Phrase 1. For example, “Electronic
signature (Noun Phrase 1) as (connector) authentication (Noun Phrase 2)”, “Biomet-
rics (Noun Phrase 1) as (connector) authentication (Noun Phrase 2)” indicates that

A Semi-automated Approach to Generate an Adaptive Quality 245

electronic signatures and biometrics are the subclasses of the authentication and both
are at the same level in the hierarchy. However, we observe that sometimes the order of
the noun phrase may differ. For example, “Authentication (Noun Phrase 1) via (connec-
tor) password (Noun Phrase 2)”; “Electronic signature (Noun Phrase 1) as (connector)
authentication (Noun Phrase 2)”. In this case, we check both noun phrases and if we
find the exact match in any of the noun phrases, another is considered as sub-classes. We
store the hierarchy with a standard representation language: Web Ontology Language
(OWL) as follows:

<Declaration><Class IRI="#Security"/></Declaration>
<SubClassOf><ClassIRI="#Authentication"/><ClassIRI="#Security"/></SubClassOf>
<SubClassOf><ClassIRI="#Op_Biometric"/><ClassIRI="#Authentication"/></SubClassOf>
<SubClassOf><ClassIRI="#Op_Password"/><ClassIRI="#Authentication"/></SubClassOf>

The OWL is a semantic markup language for publishing and sharing ontologies
on the World Wide Web. Moreover, OWL is supported by many ontology visualizers
and editors, like Protégé 2.0, allowing the user to explore, understand, analyze or even
modify the resulting ontology2 easily. We present the algorithm to acquire knowledge
for a QA as follows:

Algorithm 1: Acquire Knowledge
Input: QAn, Quality Standards/Documents, Selection Constraints
Output: SubQAn: Set of relevant Sub-QAs for a QAn
1. for all Qulaity_Doc do
2. Dn: = Search_Concept (QAn, Quality_Doc)
3. end for
4. List_URLs : = Search_Engine(QAn)
5. for all URL in List_URLs do
6. Page: = Download_Doc (URL)
7. Dn: = Search_Concept(QAn, URL.Description)
8. for all Link in Page do
9. if Concept_match(QAn, Link.Description) then
10. List_URLs: = Link
11. end if
12. end for
13. end for
14. for each statement (i) in Dn do
15. T: = Noun(Tagword(Dn[i]))UAdjective(Tagword(Dn[i]))U

Verbs(Tagword(Dn[i])) U Adverb(Tagword(Dn[i)) U Wordsenwith (bility,
-bilities, -ness) U NounPhrase(Dn[i]) U VerbPhrase(Dn[i])

16. end for
17. SubQAn = Filters(T)
18. Return SubQAn

2 Ontology is a formal description of the concept of sharing, stressing the link between real entities
[24]. The ontology helps domain users- to suggest their NFRs effectively and requirements
analysts- to understand and model the NFRs accurately. Building ontology based on domain
knowledge gives a formal and explicit specification of a shared conceptualization.

246 U. Shah et al.

3.2 QARM Generation

In this module, we aim to define the relationship between sub-QAs. This procedure takes
the input as a SubQA from the previous section and produces output as an ontological rep-
resentation of QARM. The term-based weighting ignores the semantic relation between
the SubQA. In order to overcome the weakness of the term-based weighting, in the
proposed work we have combined two similarities- string similarity and ontology-based
semantic similarity. For string similarity, we use the summation of normalized longest
common subsequence (NLCS)measure, normalizedmaximumconsecutive longest com-
mon subsequence starting at character 1 (NMCLCS1) and normalizedmaximum consec-
utive longest common subsequence starting at any character n (NMCLCSn) presented
in [25].

v1 ← N LC S(SubQ Ai, SubQ Aj)

= len(LC S(SubQ Ai, SubQ Aj)) 2/ len(SubQ Ai) × len (SubQ Aj); (1)

v2 ← N MC LC S1 (SubQ Ai, SubQ Aj)

= len(MC LC S1(SubQ Ai, SubQ Aj))2/ len(SubQ Ai) × len(SubQ Aj); (2)

v3 ← N MC LC Sn(SubQ Ai, SubQ Aj)

= len(MC LC Sn(SubQ Ai, SubQ Aj))2/ len(SubQ Ai) × len(SubQ A); (3)

We take the weighted sum of these individual values v1, v2, and v3 to determine
string similarity weight: wij = v1 + v2 + v3. For ontology-based similarity, we use
WordNet relatedness measure viz. Lesk [26] algorithm on our extracted knowledge for
QAs. The Lesk algorithm [26] works on the concept of identifying relatedness of two
terms based on the overlapping of the context of the two terms. The reason for using
Lesk on our extracted knowledge is the unavailability of some of the sub-QAs in the
existing ontology. For example, if we consider WordNet ontology, sub-QAs such as
login, operability, agility, etc. are not defined and hence not able to find the similarity
of such terms. We utilize the content of the Dn for the Lesk algorithm. The normalized
QA relatedness:

w′i j = Nlesk(lesk(SubQ Ai, SubQ Aj)/100) (4)

We present the algorithm as follows:

Algorithm 2: QARM Generation
Input : SubQAn
Output: QARM: Quality Attribute Relationship Matrix
1.Construct a string similarity matrix M1 = NLCS + NMCLCS1 +NMCLCSn
2.Construct an ontology-based relatedness (lesk) matrix M2
3.Construct a joint matrix QARM = M1 + M2
4.Return QARM

We represent the QARM in the form of triples such as SubQA1, SubQA2, Related-
ness/Relationship. To determine how different QAs relate to each other, we compare

A Semi-automated Approach to Generate an Adaptive Quality 247

every pair of QAs. By using such pairwise comparisons, it is possible to provide a
matrix where the relation between QAs can be decided. To calculate relationship, we
determine the percentage of similarity of each respective SubQA:

Q AR = t + y/x × 100% (5)

Where QAR = percentage of sub-QA similarity; t = QARM weight; y = NSyno and x
= NAnto. We find a number of synonyms and antonyms for each term using ontology
WordNet as NSyno = CountNum(Syno(Wi, Wj) U Hypo(Wi, Wj) U Poly(Wi, Wj)) (Note
that we use the hyponyms to identify the relationship between a generic term and a
specific instance of it.) and NAnto = CountAnto(Anto(Wi, Wj) respectively. Based on the
percentage similarity of sub-QA, we define the relationship- (i) Positive (+): when one
QA supports other QAs; (ii) Negative (−): when one QA adversely affects other QAs;
(iii) Relative (*): when one QA, either supports or adversely affects other QAs.

4 Research Methodology

In order to assess the impact of our approach to construct an adaptive QARM semi-
automatically, we conducted a controlled experiment on 18 QAs. We followed the
guidelines provided in [27].

4.1 Research Questions

The following Research Questions (RQs) are established to evaluate our approach.

RQ1: How can we semi-automatically extract the sub-QAs for a given QA? The accu-
racy of our approach is partly driven by the sub-QAs extracted. With RQ1, we exam-
ine whether our approach can find the information for the QAs semi-automatically
from available quality standards, industry documents and web search engines. Also, we
analyze and compare the accuracy of the resulting sub-QAs.
RQ2: To what extent the generated QARM can be useful to requirements analysts? The
overall goal of our experiment is to construct the QARM. In RQ2, we assess the accuracy
of the generated QARM.

Viewing the RQs from an industry perspective, the questions would focus on how the
requirements analysts semi-automatically discover the sub-QAs for newly discovered
QA and perceive the relations among them. For example, the requirements analysts
need to spend considerable time and non-trivial human effort to acquire knowledge for
QAs and influence among them during the process of QRs conflict identification. This
process involves the manual search and analysis of a large set of quality documents. Our
approach parses these documents, extracts sub-QAs and constructs the QARM semi-
automatically at requirements engineering phase. However, the requirements analysts
should be aware of the QAs that are concerned with the system being developed. In
addition, the approach needs an analyst to assess the correctness of the sub-QAs and
QARM.

248 U. Shah et al.

4.2 Experimental Setup

Our proposed approach has been developed in Java, due to the availability of a large num-
ber of libraries that facilitate the retrieval and parsing of web pages and the construction
of ontologies. We use the following supporting tools/API:

1. Stanford-core NLP: It provides a wide range of algorithms for natural language
processing, e.g. Stemming, PosTag, stop-word removal, etc.

2. JavaAPI forWordNetSearching (JAWS): JAWSis a JavaAPI for searchingWordNet.
It helps retrieve synonyms, hyponyms, etc. very easily.

3. jsoup: This HTML parser helps to fetch results from Google search and parse the
html text.

4. Crawler4j: This is a web crawler API, that helps to crawl the websites retrieved from
Google search.

To answer the RQs, we select 18 QAs viz. Security, usability, performance, reliabil-
ity, understandability, portability, maintainability, flexibility, supportability, testabil-
ity, suitability, manageability, reusability, agility, mobility, ubiquity, invisibility, and
enhanceability. In our experiment, we classify these QAs into three categories:

(i) Traditional QAs: QAs that are well defined in the literature and their relation-
ship details are available [5–8] such as security, usability, performance, reliability,
understandability, and portability. With traditional QAs, we aim to validate the
accuracy of the proposed approach with respect to the available literature.

(ii) Traditional QAs but Lack of Relationship Details: QAs that are well defined in the
literature, but their relationship details are missing such as maintainability, flex-
ibility, supportability, testability, suitability, manageability, and reusability. With
this category of QAs, we aim to discover and analyze the relationship details that
are missing in the literature [8];

(iii) Emergent QAs: QAs that are not yet systematically defined and their relation-
ship details are missing [11, 12] such as agility, mobility, ubiquity, invisibility,
and enhanceability. With emergent QAs, we aim to discover the sub-QAs for the
recently discovered QAs and their relationships with the traditional QAs.

For experimental analysis, we use the following evaluation parameters:

(i) Recall = TP/(TP + FN) *100;
(ii) Precision = TP/(TP + FP) *100;
(iii) F-measure = 2 *((precision * recall)/(precision + recall));

Where, TP = True Positive (Number of correctly identified sub-QAs), FP = False
Positive (Number of incorrectly identified sub-QAs), and FN= False Negative (Number
of sub-QAs incorrectly not identified).

A Semi-automated Approach to Generate an Adaptive Quality 249

4.3 Data Gathering and Analysis

To answer RQ1, we analyze quality standards and company documents that provide
the definitions, characteristics, sub-QAs, and its implementation details. Moreover, we
collect relevant concepts for the QAs, from the Google search. During our experimental
study,weobserved that somedata aremisleading, uninterpretable and required additional
processing. We manually analyze the received data and define the following constraints:

(i) According to our findings, the web search engine’s initial pages are more compre-
hensive and important. Therefore, the maximum number of websites per search is
limited to the first hundred results returned by the Google for our experimentation
purpose.

(ii) We considered the maximum depth level (redirections) for finding the relevant
terms.

(iii) We found fromour experimental results that theminimumnumber of characters for
a sub-QA should be at least four characters. Therefore, we have considered Sub-
QAs with a minimum of four characters. The partial results of our experiments are
available online3

(iv) In order to avoid processing irrelevant terms, the maximum number of results
returned by the Google for each new sub-QA is set up to 1200 terms.

(v) Different types of non-HTML document formats (.pdf and.doc) are processed
by obtaining the HTML version from the Google’s cache. Furthermore, through
analyzing each sub-frame, we considered frame-based sites to obtain the complete
set of texts.

We process the document in a text format.We extract adjective, noun, adverb, verb, noun
phrase and verb phrase from the document. We retain stop-words within noun and verb
phrases as they are important to find hierarchical relationships. From our experiment,
we apply four filters as stated in Sect. 3.1. Our approach is based on the textual infor-
mation available on the search engine and cannot deal with the information contained in
the images and tables. To answer RQ2, we experimentally analyzed the semantic sim-
ilarity of the collected sub-QAs. We define the range of positive, negative and relative
relationships among QAs as shown in Table 2.

Table 2. Degree of relatedness based on semantic similarity

Percentage of similarity Relationship

45% ≤ QAR ≤ 100% Positive (+)

31% ≤ QAR ≤ 44% Relative (*)

QAR ≤ 30% Negative (−)

3 https://github.com/UnnatiS/QARM-Generation/tesoutputfile1.txt.

https://github.com/UnnatiS/QARM-Generation/tesoutputfile1.txt

250 U. Shah et al.

5 Results and Discussion

In this section, we present and discuss the RQs based on the results of our approach.

5.1 Results

RQ1: In Table 3, we provide the results of the sub-QAs extracted semi-automatically for
the 18 selected QAs. To validate the proposed approach, we first evaluate the accuracy
of the sub-QAs collected (Table 3) for the traditional QAs by comparing them with the
existing literature. We discover a total of 15 sub-QAs for the QA performance, where 12
sub-QAs viz. Responsiveness, Latency, Throughput, Space, Capability, Execution rate,
Delay, Loss, Consequence effect, Usage, Activeness, Resourcefulness are matched with
[8] and 3 sub-QAs viz. Serviceability, Measurability and Reaction time are new-found.
We observed that in the literature [5–12], some sub-QAs are incorrect or redundant.
For instance, in [8], the authors state 19 QAs viz. Response time, Space, Capacity,
Latency, Throughput, Computation, Execution speed, Transit delay, Workload, Resource
utilization, Memory usage, Accuracy, Efficiency, Compliance, Modes, Delay, Miss rates,
Data loss, Concurrent transaction Processing for the QA performance.

However, QAs such as “resource utilization and memory usage”; “transit delay
and delay”; “computation, Execution speed and concurrent transaction processing”;

Table 3. Experimental results of extracted sub-QAs

Category for
Evaluation

QAs Sub-Qas

Traditional
QAs

Security (S) Confidentiality, Integrity, Availability, Authentication,
Access control, Privacy, Protection, Prevention, Reliability,
Safety

Performance (P) Responsiveness, Latency, Throughput, Serviceability,
Measurability, Capability, Resourcefulness, Space,
Execution, rate, Reaction time, Scalability, Activeness

Usability (U) Simplicity, Understandability, Comfort, Informality,
Operability, Ease of use, User service, Potentiality,
Attractiveness, Likeliness, Accessibility, Familiarity

Reliability (R) Portability, Performance, Availability, Maturity, Accuracy,
Precision, Recoverability, Operability, Maintainability,
Consistency, Correctness, Satisfactorily, Dependability,
Completeness, Robustness, Integrity

Portability (Po) Transferability, Changeability, Channelize, Transpose,
Adjustability, Reusability, Interoperability, Extensibility,
Dependability

Understandability
(Un)

Readability, Predictability, Organization of the document,
Essential, Complexity, Verifiability, Visibility, Clarity,
Controllability, Measurability, Reviewability

(continued)

A Semi-automated Approach to Generate an Adaptive Quality 251

Table 3. (continued)

Category for
Evaluation

QAs Sub-Qas

Traditional
QAs but
Lack of
Relationship
Details

Maintainability
(M)

Operability, Upgrade, Performance, Evolution, Cost,
Changeability, Analysability

Suitability (Su) Appropriateness, Usefulness, Readiness, Interrelate,
Correctness

Testability (T) Ease, Validity, Examination

Flexibility (F) Ease, Interaction, Interface, Modifiability, Changeability,
Maintainability, Adaptable, Simplicity

Manageability
(Ma)

Performance, Monitoring, Flexibility, Tractability

Supportability
(Sp)

Sustenance, Accompaniment, Reinforcement, Substantiate

Reusability (Ru) Probability, Changeability, Efficiency, Interchange,
Evolution

Emergent
QAs

Invisibility (In) Transparency, Obviousness, Clearness, Diffusion,
Interaction

Enhancability
(En)

Portability, Scalability, Flexibility, Evolution

Ubiquity (Ub) Attention, Safety, Privacy, Robust, Mobility, Efficiency,
Inexpensive, Complexity, Context-aware, Transparency,
Invisibility, Calmness, Availability

Mobility (Mo) Adaptability, Flexibility, Ubiquity, Portability, Multispace,
support, Connectivity, Integrity, Availability, Motility,
Movability, Manipulability

Agility (Ag) Changeability, Flexibility, Quickly, Operability, Easiness,
Simplicity, Comfortness, Informality

“Response time and processing” are redundant. Furthermore, an attribute “mode” is
not a valid sub-QA for the QA performance. To evaluate the extracted sub-QAs, we
consider TP as sub-QAs that are matched with the literature (after removing redundant
sub-QAs from literature); FN as sub-QAs that are newly discovered by our approach; FP
as sub-QAs that are not identified by our approach. For instance, in [8], the authors stated
a total of 19 sub-QAs for QA performance. From which 2 sub-QAs are redundant and 1
sub-QA is falsely considered. In our experiment, we identified a total of 15 sub-QAs for
QA performance. From which 12 sub-QAs are matched with [8], 1 sub-QA is falsely
considered and 3 sub-QAs are new-found. Based on these details, we calculate recall and
precision for QA performance as Recall = Sub-QAs matched with the literature/(Sub-
QAs matched with the literature + Sub-QAs newly discover by our approach) *100;
Recall = 12/(12 + 3) = 80%; Precision = Sub-QAs matched with the literature)/(Sub-
QAs matched with the literature + Sub-QAs our approach considered falsely))*100;

252 U. Shah et al.

Precision= 12/(12+ 4)= 75%. InFig. 2,we provide a detailed analysis of the discovered
sub-QAs with respect to the existing literature.

Fig. 2. Detailed analysis of the discovered sub-QAs

RQ2: In Table 4,we present the adaptiveQARMgenerated semi-automatically after ana-
lyzing the QAs’s taxonomy. The ontological representation of the constructed QARM is
available online4. The constructedmatrix (Table 4) extends and complements previously
published QARM [8–11].

5.2 Discussion

The strength of the approach lies in its ability to quickly trawl through quality documents
and web search engines to discover sub-QAs and to construct QARM. Even though the
approach still requires an analyst to evaluate the correctness of the sub-QAs and QARM,
it requires less manual effort than the approach discussed in [8–12].

An interesting observation of the results of our approach is how many sub-QAs we
discovered semi-automatically compared to manual analysis. We discovered that the
proposed approach achieves an average 85.67% recall, 59.07% precision and 69.14% F-
measure to semi-automatically discover sub-QAs. We also observed that 38.88% (7/18)
of the cases, the top 10–20 pages contain the relevant information and the top 20–50
pages contain the relevant information in 61.11% (11/18) of the cases. Furthermore, we
found that 2.86% sub-QAs are falsely considered and 4.31% sub-QAs are redundant
in the literature [5–8] on average. We discovered an average of 4% new sub-QAs for a
given QA.

We constructed theQARMwith positive, negative and relative relationships.Accord-
ing to existing literature [8–11], the resulting QARM is accurate. This QARM can be

4 https://github.com/UnnatiS/QARM-Generation/.

https://github.com/UnnatiS/QARM-Generation/

A Semi-automated Approach to Generate an Adaptive Quality 253

Table 4. An adaptive quality attribute relationship matrix

QAs S P U R Po Un M Su T F Ma Sp Ru In En Web Mo Ag

S * * + − * − * * − + * − − * * − −
P * * − + + − + − − − − * − * − − −
U * * * + + * + * + − − + * − + * *

R + − * − * − + + + * * − +

Po − + + − * − * + + − + + − + + + −
Un * + + * * * * + + * * * + + + * +

M − − * − − * + * + + + − − * − − *

Su * + + + * * + + − * * * + + + * −
T * − * + + + * + − − * * − * − − −
F − − + + + + + − − − * − + − + + +

Ma + − − * − * + * − − * * − + * − −
Sp * − − * + * + * * * * * + + * + +

Ru − * + − + * − * * − * * − + − + +

In − − * * − + − + − + − + − * + + *

En * * − + + + * + * − + + + * * + + +

Ub * − + − + + − + − + * * − + + + *

Mo − − * − + * − * − + − + + + + + +

Ag − − * − − + * − − + − + + * + * +

used to identify the conflicts among QRs in various software development phases. For
instance, in the requirements engineering phase, during the elicitation process, system
analysts would be able to identify the relationship among QRs. This analysis would
allow developers to identify the conflicts among QRs early and to discuss this potential
conflict with the system’s stakeholders before specifying the software requirements. In
addition, during the architecture design process, system designers would also be able to
use the QARM to analyze the potential conflict among QRs in terms of the architecture
decision. The relative relationship among QAs presented in the QARM would allow
system designers to investigate the potential architecture strategies to get the best solu-
tion based on the type of conflicts among QRs. The proposed approach can be applied
to the project management process when the project manager predicts QRs conflicts
before implementing the system and then adjusts manpower, time, or cost-effectively
and efficiently.

254 U. Shah et al.

6 Threats to Validity

Even though we successfully construct QARM, we observe the following threats to the
validity of our approach. A first possible threat is about the validity of the knowledge
discovered from the search engine for the QAs, as the inaccuracy of the information
leads to the false QARM generation. To mitigate this threat, we perform the experiments
on 18 QAs. The experimental datasets and QARMs generated by the approach are
manually analyzed by the authors. However, our evaluationmight differ from an industry
perspective because we use clear-cut definitions available on quality documents/search
engine to identify QAs and influence among them, while industry relies on experience
and implementation details. Tomitigate this threat, the resultant sub-QAs andQARMare
analyzedby three industry experts that are active in thefield of software quality assurance.
The industry experts observed that the approach identifies an average of 9.57% false
relationships among QAs. For instance, we discovered a relative relationship between
QAs usability and manageability. The industry experts argued that “If the system is
user-friendly then managing it will also be easy. Hence, QA usability has a positive
relationship with QA manageability”. In addition, our approach is based on textual
information available on the search engine, for this reason, relevant information may be
left undetected in several cases.

7 Conclusions

In this paper, we present an approach that semi-automatically constructs QARM, dis-
covering knowledge from available quality standards/literature and search engines. This
work helps the requirements analyst to visualize the relationship among QAs by means
of the ontology. We evaluate the approach on 18 QAs and achieve 69.14% F-measure
to extract sub-QAs. Also, we discover 4% of new sub-QAs that are not defined in
the existing literature. Furthermore, we achieve 60% precision to identify the relation-
ship between QAs. In the future, we aim to utilize the knowledge regarding operations
through which QAs are to be achieved to enhance the QARM. The other direction of
work we intend to pursue is to tackle the diverse meaning of the quality attributes such
as confidentiality or privacy, stability or robustness, fault-tolerance or resilience, flex-
ibility or adaptability, evolution or adaptability, sustainability or durability, clarity or
understandability, reasonability or predictability that creates ambiguity using them in
practice.

References

1. IEEE Computer Society, Software Engineering Standards Committee, and IEEE-SA Stan-
dards Board: IEEE recommended practice for software requirements specifications. Institute
of Electrical and Electronics Engineers (1998)

2. Shah, U.S., Patel, S., Jinwala, D.: Specification of non-functional requirements: a hybrid
approach. In: REFSQ Workshops (2016)

3. Guizzardi, R.S.S., Li, F.-L., Borgida, A., Guizzardi, G., Horkoff, J., Mylopoulos, J.: An
ontological interpretation of non-functional requirements. In: FOIS, vol. 14, pp. 344–357
(2014)

A Semi-automated Approach to Generate an Adaptive Quality 255

4. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering, 5th edn. Springer, Heidelberg (2012)

5. Egyed, A., Grunbacher, P.: Identifying requirements conflicts and cooperation: how quality
attributes and automated traceability can help. IEEE Softw. 21(6), 50–58 (2004)

6. ISO/IEC 9126-1:2001 Software engineering product quality-part 1: quality model. Interna-
tional Organization for Standardization (2001)

7. Duque-Ramos, A., Fernández-Breis, J.T., Stevens, R., Aussenac-Gilles, N.: SQuaRE: A
SQuaRE-based approach for evaluating the quality of ontologies. J. Res. Pract. Inf. Technol.
43(2), 159 (2011)

8. Mairiza, D., Zowghi, D., Nurmuliani, N.: Managing conflicts among non-functional require-
ments. In: Workshop on Requirements Engineering, pp. 11–19. University of Technology,
Sydney (2009)

9. Sadana, V., Liu, XF.: Analysis of conflicts among non-functional requirements using inte-
grated analysis of functional and non-functional requirements. In: 31st Annual International
Computer Software and Applications Conference (COMPSAC 2007), vol. 1, pp. 215–218.
IEEE (2007)

10. Abdul, H., Jamil, A., Imran, U.: Conflicts identification among non-functional requirements
using matrix maps. World Acad. Sci. Eng. Technol. 44, 1004–1009 (2010)

11. Mairiza, D., Zowghi, D., Gervasi, V.: Conflict characterization and analysis of non functional
requirements: an experimental approach. In: 12th International Conference on Intelligent
Software Methodologies, Tools and Techniques (SoMeT), September 2013, pp. 83–91. IEEE
(2013)

12. Carvalho, R., Andrade, R., Oliveira, K., Kolski, C.: Catalogue of invisibility requirements for
UbiComp and IoT applications. In: 26th International Requirements Engineering Conference
(RE), pp. 88–99. IEEE (2018)

13. Maia, M.E., Rocha, L.S., Andrade, R.: Requirements and challenges for building service-
oriented pervasive middleware. In: Proceedings of the 2009 International Conference on
Pervasive Services, pp. 93–102. ACM (2009)

14. Carvalho, R.M., deCastroAndrade, R.M., deOliveira, K.M.:AQUArIUM- a suite of software
measures for HCI quality evaluation of ubiquitous mobile applications. J. Syst. Softw. 136,
101–136 (2018)

15. Serrano, M.: Ubiquitous, pervasive and mobile computing: a reusable-models-based non-
functional catalogue objectives of research. In: ER@ BR (2013)

16. Carvalho, R.M., de Castro Andrade, R.M., de Oliveira, K.M., de Sousa Santos, I., Bezerra,
C.I.M.: Quality characteristics and measures for human-computer interaction evaluation in
ubiquitous systems. Softw. Q. 25(3), 743–795 (2017). https://doi.org/10.1007/s11219-016-
9320-z

17. Miguel, J.P., Mauricio, D., Rodríguez, G.: A review of software quality models for the
evaluation of software products. Int. J. Softw. Eng. Appl. 5(6), 31–53 (2014)

18. Boehm, B.W., Brown, J.R., Kaspar, H.: Characteristics of Software Quality. North Holland,
Amsterdam (1978)

19. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality. Volume I. Concepts
and Definitions of Software Quality. General Electric Co., Sunnyvale (1977)

20. Grady, R.B., Caswell, D.L.: Software Metrics: Establishing a Company-Wide Program.
Prentice Hall, Upper Saddle River (1987)

21. Dromey, R.G.: Amodel for software product quality. IEEETrans. Softw. Eng. 21(2), 146–162
(1995)

22. Shah, U.S., Jinwala, D.C.: Resolving ambiguities in natural language software requirements:
a comprehensive survey. ACM SIGSOFT Softw. Eng. Notes 40(5), 1–7 (2015)

https://doi.org/10.1007/s11219-016-9320-z

256 U. Shah et al.

23. Shah, U.S., Jinwala, D.C.: Resolving ambiguity in natural language specification to generate
UML diagrams for requirements specification. Int. J. Softw. Eng. Technol. Appl. 1(2–4),
308–334 (2015)

24. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2),
199–220 (1993)

25. Islam, A., Inkpen, D.: Semantic text similarity using corpus-based word similarity and string
similarity. ACM Trans. Knowl. Discov. Data 2(2), 1–25 (2008). Article No. 10

26. Banerjee, S., Pedersen, T.: An adapted Lesk algorithm for word sense disambiguation using
WordNet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 136–145. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45715-1_11

27. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engineer-
ing. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced Empirical Software
Engineering, pp. 201–228. Springer, London (2008). https://doi.org/10.1007/978-1-84800-
044-5_8

https://doi.org/10.1007/3-540-45715-1_11
https://doi.org/10.1007/978-1-84800-044-5_8

Evaluating the Effects of Different
Requirements Representations on Writing

Test Cases

Francisco Gomes de Oliveira Neto(B), Jennifer Horkoff, Richard Svensson,
David Mattos, and Alessia Knauss

Chalmers and the University of Gothenburg, Gothenburg, Sweden
{francisco.gomes,jennifer.horkoff,richard}@cse.gu.se,

{davidis,alessia.knauss}@chalmers.se

Abstract. [Context and Motivation] One must test a system to ensure
that the requirements are met, thus, tests are often derived manually
from requirements. However, requirements representations are diverse;
from traditional IEEE-style text, to models, to agile user stories, the RE
community of research and practice has explored various ways to capture
requirements. [Question/problem] But, do these different representations
influence the quality or coverage of test suites? The state-of-the-art does
not provide insights on whether or not the representation of requirements
has an impact on the coverage, quality, or size of the resulting test suite.
[Results] In this paper, we report on a family of three experiment replica-
tions conducted with 148 students which examines the effect of different
requirements representations on test creation. We find that, in general,
the different requirements representations have no statistically signifi-
cant impact on the number of derived tests, but specific affordances of
the representation effect test quality, e.g., traditional textual require-
ments make it easier to derive less abstract tests, whereas goal models
yield less inconsistent test purpose descriptions. [Contribution] Our find-
ings give insights on the effects of requirements representation on test
derivation for novice testers. Our work is limited in the use of students.

Keywords: Test design · Requirements representation · Experiment

1 Introduction

System testing is an essential activity for validation of a system before its release.
Therefore, the set of test cases used to exercise the System Under Test (SUT)
should achieve reasonable test coverage and be of good quality (i.e., be internally
consistent, concrete, and independent). During test specification, a system tester
can derive several test cases manually using the SUT requirements [7]. Similar
to all complex manual activities, this kind of test case derivation is risky, as the
resulting test suite can be biased by the tester’s expertise and experience, and
their comprehension of the SUT can be dependent on the type of specification [8].
c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 257–274, 2020.
https://doi.org/10.1007/978-3-030-44429-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_18

258 F. G. de Oliveira Neto et al.

Providing test suites with good coverage and quality helps ensure, for exam-
ple, that safety aspects and other non-functional requirements are fulfilled. How-
ever, the current state-of-the-art does not provide insights on whether or not the
representation of requirements has an impact on the coverage, quality or size of
the resulting test suite and test cases.

Hence, the objective of this study is to investigate how different requirements
representations effect test case derivation. While requirements are traditionally
specified in free text, recently two further types of requirements specifications
have become popular in industry and/or academia: user stories and goal models.
Goal models have a rich body of academic work [15], and have been advocated
as a means to understand the motivations behind requirements. User stories
are considered boundaries objects that facilitate sensemaking between different
stakeholders and have proved popular in agile software development [3], which is
becoming increasingly important in industry in different domains – even in safety
critical domains [19]. Thus, in this initial study, we use textual requirements
generally following the IEEE standard [17], user stories as per Cohn [3], and
a simplified version of goal models as per the iStar 2.0 Standard [5]. Other
representations may be equally valid, but we start with these selections due to
their diversity and popularity.

Our general hypothesis is that by representing the same requirements in
distinct formats (e.g. graphical models, text) we highlight different details that
could facilitate or hinder the creation of sets of test cases. If our results showed
that a particular requirements representation had a positive or negative impact
on test case development, this would have an impact on the preferred format of
requirements in practice, when requirements are used for test derivation.

The potential impact can be measured (i) on different attributes of a test
case and (ii) on the challenges found when deriving tests for specific types of
representation. Here, we focus on test suite size and quality attributes. Specifi-
cally, for size we measure the number of derived test cases (test suite size) [13],
while for quality we measure errors in the derived tests and the coverage of the
system’s requirements. The measurement of errors is inspired by the taxonomy
proposed by Felderer and Herrmann [8]. In turn, specific affordances of the dif-
ferent representation types can also affect practitioners in identifying relevant
information, such as alternative scenarios or connection between requirements.
Thus, we investigate the following research questions:

RQ1: Do the different requirements representations affect the derived tests?
RQ1.1: Do they affect the number of tests created?
RQ1.2: Do they affect the number of requirements covered by the tests?
RQ1.3: Do they affect the number and nature of the test case errors?

RQ2: What are the challenges with deriving test cases from the different require-
ments representations?

In order to answer the research questions, we performed a family of experi-
ments with three replications with 148 software engineering bachelor students.
In three course instances (one for each replication), students were asked to derive

Evaluating the Effects of Different Requirements on Writing Tests 259

system test cases based on different requirements representations, as described
above. We analyse the artefacts created by participants (RQ1) and their answers
to a questionnaires to identify obstacles during their derivation process (RQ2).

This paper is organized as follows: in Sect. 2 we provide background for the
study and describe any related work, followed by the description of our method-
ology (Sect. 3). In Sect. 4 we describe our quantitative and qualitative results,
and in Sect. 5 we use these results to answer our RQs, discussing threats to
validity. We conclude and discuss future work in Sect. 6.

2 Related Work

Our experiment includes three different kinds of requirements representations
(IEEE textual requirements, goal models, and user stories). Different require-
ments representations have their strengths and weaknesses in capturing and
transferring different kinds of information [2]. For instance, goal models are an
important requirements representations for self-adaptive systems due to the need
of reasoning about requirements at runtime [1]; whereas, for agile software devel-
opment, user stories are the method of choice [3].

This paper joins a large body of work experimentally evaluating require-
ments representations. Existing studies have looked at the effects of requirements
formats on comprehensibility. For instance, in [12] authors compare Use Case
and Tropos and show that Tropos models are more comprehensible, but more
time consuming than Use Cases, such that their meta-analysis reveal that both
languages yield similar productivity levels. Similarly, authors in [25] compare
the comprehensibility of graphical and textual representations of requirements.
The authors report no significant difference in participant’s comprehensibility
between both types, even though the subjects required more time and effort
to work with the graphical representation. On the other hand, for specific pur-
poses (e.g., security risk assessment), the difference between graphical and tex-
tual is more noticeable, particularly, tabular risk models are more effective [22].
Nonetheless, the studies suggest that the structure of the representation leads
subjects to follow different strategies in understanding the system. But none of
them evaluate requirements representations for their effect on test derivation.

In turn, manual test case derivations has been widely investigated in liter-
ature [8,9,13,18], given the benefits of having test cases properly aligned with
system requirements [6]. For instance, researchers in [13] and [18] investigate the
effects of derived tests in, respectively, test-driven (TDD) and behavioural-driven
(BDD) development practices. Particularly, there is a statistically significant dif-
ference between the derived tests and the different levels of granularity used to
describe development tasks [18]. Moreover, other empirical studies report that
the difficulties of breaking down requirements into test cases hinders the align-
ment between requirements and tests, particularly, at large-scale companies [6].

The taxonomy in [8] is designed to measure errors based on elements of activ-
ity diagrams, used here as requirements input. The work examines elements such
as missing conditions or very concrete input data. Authors analyse specific arte-
facts of the test case (e.g., scenario, expected result, condition), and their level of

260 F. G. de Oliveira Neto et al.

description (too concrete, abstract, or missing) from a single requirements repre-
sentation. Since we have different representations, we reuse the idea of measuring
errors in parts of test cases, but use fewer levels of description. For instance, we
also detect abstract test cases and missing preconditions, but we do not measure
the expected results of the derived tests. Instead, we measure the purpose of the
test, density of scenarios described per test among other errors.

3 Research Method

We define our family of experiments in terms of the guidelines proposed in [26].
We analyse different requirements representation for the purpose of comparison
with respect to effectiveness from the point of view of the tester in the context
of software engineering students.

Subjects. The students participating as testers in the study are third-year
Software Engineering and Management Bachelor’s students at the University
of Gothenburg (Sweden). Between 2017 and 2019, a total of 148 students (59,
54 and 35) participated in the experiments. We summarize the experience of
the students in requirements and testing in Table 1. The students had a regular
2 month course in testing and verification, but did not have an explicit course in
Requirements Engineering. Furthermore, several students had some industrial
experience leading to a fairly heterogeneous sample, which can be seen in the
high standard deviation (Table 1).

The experiments took place in a course on research methods, where partici-
pation in the experiment was optional, they could either attend the experiment
or design a simple experiment themselves. Prior to the experiment, participants
were made aware that participation is anonymous and their performance would
not affect their course grade. In the last replication, students had the option to
attend, but not submit their data for research use, thus the lower number of
participants for 2019.

Table 1. Subjects experience (in months) in testing and with used requirements per
treatment (Textual Requirements (TR), User Stories (US), Goal Models (GM))

Experience with testing Experience with requirements

All TR US GM All TR US GM

Mean 7 7 6 9 11 11 19 3

Median 2 2 2.5 2 2.5 3 24 0

SD 10.9 12 7.8 12.5 13.9 14.8 12.9 8

Independent, Dependent, and Controlled Variables. Our experiment has
one factor (requirements representation) with three levels: Goal Models (GM),

Evaluating the Effects of Different Requirements on Writing Tests 261

User Stories (US), and Textual Requirements (TR). In terms of controlled vari-
ables, all participants receive the same test case template (based on [16]) and
worked with the same system under test (SUT). The SUT was a code editor
tool similar to, e.g., Atom (https://atom.io/), which the main functional require-
ments were save files, syntax highlighting for supported languages (HTML, Java
and Javascript), and live preview of webpages for HTML coding. In turn, non-
functional requirements referred to compatibility with different Operating Sys-
tems (e.g. Windows 7, MacOS, etc.), browsers (Google Chrome, Firefox, Safari
and Edge), and performance time of certain functions.

Fig. 1. Excerpts of the equivalent requirements representations given to participants

The same requirements were specified in the three different representations.
To ensure consistent and equivalent information as much as is afforded by the
representations, we had a requirements engineering expert create and examine
the different requirements documents used in our experiment. See Fig. 1 for an
excerpt of the three requirements representations. The supplementary material
can be found here: https://tinyurl.com/refsqexperiment.

The dependent variables are: (i) the size of the test suite measured as the
number of derived test cases, (ii) the amount and types of errors in the derived
test cases and (iii) the number of system requirements covered by the derived
tests. In order to measure requirements coverage, we verify which of the follow-
ing 18 requirements (functional or non-functional) are mentioned in the derived
tests: (1) download the application, (2) install the application, (3) write/edit
code, (4) save content in files, (5) save a file in less than 0.5 s, (6) syntax high-
lighting of code, working with (7) Java, (8) Javascript or (9) HTML, (10) have
at least 20 MB of space for installing, running the application on (11) Windows
or (12) MacOS, (13) see a live preview of HTML files, and usage of a (14) default
browser, (15) Chrome, (16) Firefox, (17) Safari or (18) Edge. More details about
the derived tests and the collected data is found in our supplementary material.

Hypotheses and Statistical Analysis. Each participant received a single
requirements representation to derive tests. We use a balanced design [26] to ran-
domly assign participants to treatments while keeping roughly the same amount
of participants per treatment. Moreover, our null hypotheses is that there are
no statistically significant differences between the different representation types,

https://atom.io/
https://tinyurl.com/refsqexperiment

262 F. G. de Oliveira Neto et al.

whereas our alternative hypotheses (two sided) checks for differences between
the representation types (Table 2).

Table 2. Description of formal hypotheses and corresponding statistical tests for the
variables size (S), coverage (C) and errors (E). Each row of hypothesis is connected to,
respectively, RQ1.1, RQ1.2 and RQ1.3.

Null hypotheses Alternative hypotheses Statistical test

H01 : S(GM) = S(TR) = S(US) H11 : S(GM) �= S(TR) �= S(US) Kruskal-Wallis

H02 : C(GM) = C(TR) = C(US) H12 : C(GM) �= C(TR) �= C(US) Kruskal-Wallis

H03 : E(GM) = E(TR) = E(US) H13 : E(GM) �= E(TR) �= E(US) χ2

We use a Kruskal-Wallis and a χ2 test to compare statistically significant
differences between all three levels, such that the alternative hypothesis is that
the levels differ in at least one. Therefore, to identify specific differences between
each pair of levels (e.g., GM vs. TR), we also do a posthoc analysis using a
pairwise test with Bonferroni-Holm correction for the p-values to avoid valid-
ity threats related to alpha inflation [23]. For H01 and H02, we use a pairwise
Mann-Whitney test, whereas for H03 we use χ2 between two levels. We choose
non-parametric tests since they rely on fewer assumptions regarding the data dis-
tribution (e.g., normality) [23]. We choose χ2 for H03 because we collect nominal
data (error vs. no error). Conversely, we collect interval data for H01 and H02

(size and coverage) such that Kruskal-Wallis can be used.

Instruments and Execution. All groups were given the same lecture about
system testing and test specification, along with paper instructions and examples
for the specific requirements representation that they received. At the end of the
experiment execution, we also gave them a questionnaire to capture qualitative
data, such as background information (e.g., previous experience) and facilitators
or inhibitors for generating test cases with that specific requirement.

The 90-min experiment execution session was divided in two parts of 45 min.
During the first part, the participants were given a 30-min introductory lecture
on system testing and a general description of the application that they needed to
test (without pointing out specific requirements). Then, they spent 15 min read-
ing through their assigned requirements representation. After a 15 min break,
45 min was focused only on deriving test cases for the application by filling in
the provided template. Then participants had another 15 min to fill out the ques-
tionnaire, except for 2017, where we had online submissions, and participants
could submit the questionnaire answers after the experiment ended. In 2017, test
cases were written electronically, and a few participants submitted online after
the experiment. The other years were executed on paper in class, to avoid risks
with online submissions and availability of labs with computers for all students.

Data Analysis. After the experiments, the test cases and the questionnaires
were anonymized and manually coded. The test cases were coded in a five-step

Evaluating the Effects of Different Requirements on Writing Tests 263

Table 3. Description of the test case error codes with corresponding inter-rater agree-
ment (Krippendorff’s alpha). The bold codes were used in the study.

Artefact Error code αK Code description

Test case Abstract 0.53 The overall TC is not concrete enough, lacking
important information to perform the test

Many Scenarios 0.64 The TC covers too many scenarios

Purpose Inconsistent 0.44 The purpose of the TC is inconsistent with the
pre-conditions or the steps

Unspecified 0.51 The purpose does not match any requirement

Poor phrasing 0.15 The content written in the field is not phrased as
a purpose

Missing 1.00 Absence of the purpose field

Pre-condition Dependent test 0.00 The test depends on another TC

Poor phrasing 0.20 The pre-conditions are written either in terms of
an action or are not a pre-condition

Missing 0.70 When a precondtion is needed to execute the test,
but it is not there

Step Invalid 0.16 The step is not a system response

Missing response 0.00 There is an action without a system response

No steps 1.00 The whole step section is blank

Additional
information

Misplaced 0.56 Information that should have been placed in
other field of the same TC

process. In step 1, we reviewed the taxonomy in [8] and devised 13 codes to
represent faults and errors in five different parts (artefacts) of the test cases as
depicted in Table 3: test case (two error codes), the purpose of the test (four
codes), the pre-conditions to execute the test (three codes), the test steps (three
codes) and any additional information written by users (one code).

In step 2 and 3 of our coding process, we randomly selected 10% of the par-
ticipants (stratified by year and representation), and had three authors code all
of their derived test cases in order to test for inter-coder reliability. We measured
agreement via the Krippendorff’s αK inter-rater reliability score. We chose αK

because it assesses the agreement between more than 2 independent raters and
can be used on nominal data (error vs. no error). The result is a value between
[-1,1], such that 1 means total agreement between raters, zero means a ran-
dom agreement, and negative values indicate systematic disagreement between
raters [14]. There are different thresholds to indicate strong, moderate or weak
agreement based on the αK value. Here, we use the thresholds defined in [11]
previously used in other software engineering studies [21], where an αK between
0.4 and 0.75 indicates fair to good agreement, whereas excellent agreement is
seen on values above 0.75. After each step, we calculated αK and discussed and
refined the codes, removing those with low agreement (below 0.4).

Table 3 presents the αK for each error (Krippendorff’s αK was calcu-
lated using the R package irr https://CRAN.R-project.org/package=irr, analysis

https://CRAN.R-project.org/package=irr

264 F. G. de Oliveira Neto et al.

scripts are provided in the supplementary material). In step 4, we reached agree-
ment for eight codes. Even though the codes for missing purpose and no steps
had excellent agreement (αK = 1), these codes occurred very infrequently. There-
fore, we did not consider them in our analysis, focusing on six codes. In the fifth
step, we split the remaining participants equally into three parts, and the three
authors independently coded one part with the highlighted codes from Table 3.
The same steps were used when coding the requirements coverage of each test.
A requirement was considered “covered” if participants mentioned its particular
characteristics in their test cases (e.g., test requires Windows or MacOS). For
the sake of space, and since there was agreement on all coverage codes (i.e. all
αK ≥ 0.4), the specific αK values are included in our supplementary material.

In order to answer RQ2, we use thematic analysis for qualitative analysis
of the questionnaires in order to extract the different challenges reported by
participants [4]. We coded the answers by dividing the questions among three of
the authors. The coding was then later checked by a different author.

4 Results

4.1 RQ1: Do the Different Representations of Requirements Affect
the Produced Tests?

First, we checked the data and found no severe outliers or inconsistencies between
the results for each representation (Table 4) that could impact our statistical
analysis. Then, we verify: (i) the size of the derived test suite (RQ1.1), (ii) the
requirements coverage of each generated test suite (RQ1.2), and (iii) the number
of errors found in the test cases (RQ1.3). For each, we first identify whether there
is statistically significant difference between any of the levels (p < 0.05), then we
do a pairwise test to identify which pair(s), specifically, is different, and lastly
we analyse the effect size to detect the magnitude and direction of the difference.

Table 4. Summary of the data, aggregated by requirements representation.

Specification Participants Tests Errors Test suite size Coverage

Mean Median SD Mean Median SD

Goal model 48 209 277 4.2 4 1.8 8.9 9 3.5

Text requirement 49 214 280 4.3 4 1.8 10.7 10 3.9

User stories 51 232 267 4.9 4 2.8 9.0 8 3.6

Total 148 655 824 – – – – – –

Table 5 shows the statistical test results for size and coverage. Regarding
the size, there was no statistically significant difference between the number of
tests generated by each participant. Both the Kruskal-Wallis tests (p = 0.85)
and the post-hoc analysis (p = 1 for all pairwise comparisons) indicate that we
cannot reject the null hypothesis (H01) that there are no differences between
requirements representations with respect to the size of the derived test suites.

Evaluating the Effects of Different Requirements on Writing Tests 265

Table 5. The p-values of all Kruskal-Wallis and Mann-Whitney (pairwise) tests. We
highlight the values that are lower than our chosen level of significance α = 0.05.

Dependent variable GM = TR = US GM = US GM = TR TR = US

Test suite size 0.85 1.00 1.00 1.00

Requirements coverage 0.04 0.95 0.07 0.07

Fig. 2. Number of tests derived for each requirements and representation type.

Figure 2 shows the number of tests that cover each requirement. We asked
the participants (Q8 in the questionnaire) to report reasons whenever they felt
unable to cover all the requirements with test cases. Regardless of which type of
requirement representations the participants used, all participants agreed that
the two main reasons for not being able to cover all requirements with test cases
were Lack of time (76% of all participants) and Lack of experience (20.3% of all
participants), where the participants referred to lack of experience with require-
ments in general, testing in general, and with writing test cases. Nonetheless,
text requirements have higher coverage in most cases (13 out of 18). In fact,
our Kruskal-Wallis test revealed a difference in requirements coverage between
the representations (p = 0.04). However, our post-hoc analysis (pairwise test)
attributes this difference to TR (p = 0.07 in Table 5 when comparing TR with
other representations). Looking closer at the data (Table 4), TR covers one or
two more requirements compared to the other representations (both for mean
and median), however, TR coverage has higher standard deviation.

266 F. G. de Oliveira Neto et al.

For errors, the requirements representation yield a similar amount of errors
when deriving test cases. However, looking at the significant differences in spe-
cific types of errors (Table 6) and the percentage of errors (Fig. 3), we notice
differences between the requirements representations, particularly in three areas.
First, participants using textual requirements derived fewer abstract test cases.
Second, participants using user stories derived tests without many scenarios at
once. Lastly, participants using goal models wrote fewer inconsistent purposes.

Table 6. The p-values of all χ2 test. We highlight the values that are lower than our
chosen level of significance α = 0.05, and the corresponding variable.

Dependent variable GM = TR = US GM = US GM = TR TR = US

Inconsistent purpose 0.02 0.28 0.03 0.30

Unspecified purpose 0.60 1.00 1.00 1.00

Missing pre-condition 0.32 0.48 0.96 0.96

Misplaced information 0.40 0.98 1.00 0.98

Abstract tests 0.01 0.14 0.01 0.20

Too many scenarios 0.01 0.30 0.30 0.01

For effect size analysis of errors, we use the Odds Ratio to identify the ratio
of the odds of making errors due to the requirements representation. Odds ration
is recommended for data with binary categories and it does not assume specific
data distributions (e.g., normality). A ratio value of 1 indicates that the odds

Fig. 3. Percentage of errors made when using GM, TR or US.

Evaluating the Effects of Different Requirements on Writing Tests 267

of deriving erroneous tests are the same for both requirements representations.
When comparing the odds ratio between two requirements representations A
and B, if the odds ratio is greater than 1, then compared to the requirements
representation A, the opposing representation B raises the odds of making an
error. Conversely, a value less than 1 indicates that B lowers the odds of making
an error. The odds ratio for the statistically significant comparisons are presented
in Table 7 and are summarised below:

– The odds are 2.05 greater that a participant wrote an inconsistent purpose
when using text requirements instead of goal models.

– The odds are 1.93 greater that a participants writes an abstract test case
using goal models, in comparison to text requirements.

– The odds are 0.54 less that a participant writes a test with too many scenarios
using user stories, in comparison to text requirements.

Table 7. The odds ratio for each comparison with confidence intervals (CI).

Type of error Comparison Estimated odds 95% CI

Inconsistent purposes GM vs TR 2.05 [1.14, 3.71]

Abstract test cases TR vs GM 1.93 [1.27, 2.92]

Too many scenarios TR vs US 0.54 [0.36, 0.81]

Note that the CI for both the inconsistent purposes and abstract test cases
are wide, indicating high variance of the odds ratio. Nonetheless, results were
significant at α = 0.05 and it complies with the total differences seen in Fig. 3.

4.2 RQ2: What Are the Challenges with Deriving Test Cases
from the Different Requirements Representations?

We found challenges using two perspectives: (i) deriving test cases from the
requirement representations (Q3 in the questionnaire, see supplementary mate-
rial) and (ii) writing test cases for requirements (Q5). Our goal was, respectively,
to allow participants to report on difficulties related to thinking about test cases
(e.g., extracting scenarios from the requirements) and documenting them (e.g.,
placing information in the test case template). Both questions were open-ended,
thus the participants could write more than one challenge.

The results, including sub-challenges,are shown in Table 8. For the challenges
No challenge, Lack of experience, and Lack of time, no sub-challenges were men-
tioned by the participants. Table 8 shows how many participants and the per-
centage of the participants that stated a certain challenge, e.g., for deriving test
cases, 43 participants (referred to as All in Table 8) which is 31% of all partici-
pants, stated that there was no challenge (43/31 in column All under Deriving
test cases). Note that the sum of the number of participants in the sub-categories

268 F. G. de Oliveira Neto et al.

Table 8. Reported challenges with deriving/writing test cases. Each cell includes the
number of participants that reported on the challenge (absolute/percentage).

Challenge (i) Deriving test cases (ii) Writing test cases

All TR US GM All TR US GM

No challenge 43/31 17/37 12/24 14/33 56/41 18/39 21/42 17/40

Requirement representations 30/22 7/15 13/26 10/24 22/16 5/11 10/20 7/17

Too abstract requirements 5/4 1/2 1/2 3/7 0/0 0/0 0/0 0/0

Confusion with specific req. 4/3 2/4 2/4 0/0 2/1 1/2 1/2 0/0

Where to start/end 4/3 1/2 2/4 1/2 3/2 0/0 1/2 2/5

Unclear requirements 1/1 1/2 0/0 0/0 6/4 3/7 3/6 0/0

Req. not prioritised 3/2 2/4 0/0 1/2 2/1 0/0 1/2 1/2

Lack of details in req. 0/0 0/0 0/0 0/0 2/1 1/2 1/2 0/0

Completeness 0/0 0/0 0/0 0/0 2/1 0/0 1/2 1/2

Repetitive US 3/2 0/0 3/6 0/0 0/0 0/0 0/0 0/0

Vague US 3/2 0/0 3/6 0/0 0/0 0/0 0/0 0/0

US difficult 2/1 0/0 2/4 0/0 0/0 0/0 0/0 0/0

GM too complex 4/3 0/0 0/0 4/10 0/0 0/0 0/0 0/0

GM too hard to understand 1/1 0/0 0/0 1/2 3/2 0/0 0/0 3/7

Creating test cases 29/21 6/13 19/38 4/10 23/17 6/13 12/24 5/12

Level of abstraction 12/9 2/4 7/14 3/7 3/2 0/0 2/4 1/2

Decide what to test together 5/4 2/4 3/6 0/0 0/0 0/0 0/0 0/0

Completeness of TC 2/1 0/0 2/4 0/0 3/2 0/0 3/6 0/0

Hard to add details 2/1 0/0 2/4 0/0 2/1 0/0 2/4 0/0

Quality requirements 2/1 1/2 0/0 1/2 2/1 1/2 0/0 1/2

Too similar TC 2/1 1/2 1/2 0/0 0/0 0/0 0/0 0/0

Level of details in steps 1/1 0/0 1/2 0/0 3/2 0/0 2/4 1/2

TC template 0/0 0/0 0/0 0/0 6/4 2/4 2/4 2/5

Missing information 18/13 8/17 2/4 8/19 5/4 2/4 0/0 3/7

General information 12/9 4/9 1/2 7/17 1/1 1/2 0/0 0/0

Product information 8/6 6/13 1/2 1/2 2/1 0/0 0/0 2/5

Missing requirements 0/0 0/0 0/0 0/0 3/2 2/4 0/0 1/2

Lack of experience 11/8 4/9 6/12 1/2 9/7 5/11 3/6 1/2

Lack of time 6/4 1/2 3/6 2/5 7/5 4/9 2/4 1/2

may not be equal to the value of the main category in Table 8. There are two
reasons for this. First, only sub-categories that were mentioned by at least two
participants are shown in Table 8, but that participant is added to the value of
the main category. Second, participants could write more than one challenge,
e.g. one participant could write that one challenge was “vague US” and another
one was “repetitive US”, then the number for each of these sub-categories would
increase by one, but the value of the main category would only be increased
by one since we count number of unique participants. In total, 138 participants
answered the questionnaire, of which 46 participants used TR, 50 used US, and
42 used GM.

Evaluating the Effects of Different Requirements on Writing Tests 269

Only 13 and 10% of all participants using TR and GM reported challenges
related to creating test cases from the perspective of deriving test cases, whereas
almost 40% (19 out of 50) of the participants using US reported difficulties. For
challenges related to writing test cases, regardless of the representation, about
40% of the participants reported no challenges.

Looking into the challenge of Requirement representations when deriving test
cases, for participants using TR, this challenge had a lower impact compared to
participants using US and GM (Table 8). When looking into challenges related
to Requirement representations when writing test cases, we see a similar pattern
as for deriving test cases from the requirements, i.e., this challenge had a lower
impact for participants using TR compared to US and GM.

When it comes to the different representations, our results show that US and
GM led to slightly more challenges with deriving test cases from the requirements
and for writing test cases compared to TR. One participant using GM explained
that the goal models were too complex because “the model seemed quite chaotic
with lines crossing each other”. One US participant explained that deriving test
cases was challenging as the USes were very vague – we could write endless
amounts of test cases for one US.

Looking into the challenge of Creating test cases, we see that this was con-
sidered to be a much bigger challenge for participants using US compared to
participants using TR and GM, especially for deriving test cases (US: 38% of
the participants, TR: 13%, GM: 10%), as illustrated in Table 8.

Regarding the challenge of “missing information” when deriving test cases,
for TR, the main missing information was information about the product itself (6
out of 46 participants), while participants using GM was mainly missing general
information (7 out of 42 participants). As an example, one participant using TR
explained what kind of product information that was missing, “with the lack
of a GUI example of the system it became harder”. One participant using GM
explained, “I found it hard to derive test cases from the goal models. Goals like
‘Produce code’ gives little to no help in regards to creating test cases.”.

Surprisingly, Lack of experience was reported as a bigger challenge for par-
ticipants using TR and US than those using GM, despite their relative lack of
experience with GM (Table 1).

5 Discussion

Here we discuss our results for each research question. Considering the effects
of the representations on tests (RQ1), we found that the representations do not
produce significantly or noticeably different number of tests per representation
(RQ1.1). We also found weak evidence that TR produce better requirements cov-
erage (RQ1.2); however, there was a lot of variance in this result. Furthermore,
the representations do have some effect on the errors found in tests (RQ1.3).

270 F. G. de Oliveira Neto et al.

Those with TR made more errors adding too many scenarios to one test case
(e.g., installing and editing) compared to US. This may be due to the hierarchical
nature of TR, e.g., sub-requirements (see TR in Fig. 1 for an example), leading
participants to group these requirements into one test case. However, GMs also
have an implicit hierarchy, and although they produced higher numbers of this
type of errors than US, this difference was not significant.

Given the nature of GMs, it is not so surprising that they helped the par-
ticipants create a purpose description which was consistent with the rest of the
test when compared to TR. It is interesting that this positive effect could be
observed even given that students had no experience with goal models (Table 1).
This effect was not noticed in comparison with US, perhaps because they also
have a build-in purpose, with the <so that> section. However, US did not per-
form better than TR in this regard. Thus, we see there is a positive effect of
explicitly including purpose in the requirements, and this appears to be best
served (amongst our three options) by GM.

However, GM had the disadvantage of producing more abstract test cases,
not including specific technical information of the SUT (e.g., tests for specific
browsers). This information was present in the model, but was superseded by a
parent goal. Perhaps the participants focused on the parents and ignored the chil-
dren. Thus, this hierarchical structure seemed to encourage abstraction, undesir-
able in testing [8]. However, TR also had a hierarchical structure via indenting
requirements in sub-requirements, yet, this representation produced the least
abstract test cases. It seems in TR, participants were more likely to notice these
specific details.

In RQ2, we looked at reported challenges deriving test cases from the var-
ious representations. Here we see that many did not report challenges, either
because there were none, or the students did not want to write them out. Many
challenges reported were not directly related to the requirements format, e.g.,
missing product information, lack of experience and lack of time. We can con-
clude that writing test cases for students from requirements without seeing the
SUT is difficult, regardless of the representation.

Further reported challenges related more directly to the different require-
ments formats. Quite a few participants reported that GMs were too abstract,
too complex or hard to understand, and several participants also found US vague,
difficult or repetitive, yet we do not see that either format performed significantly
worse overall in terms of errors (Table 4). Overall, from the qualitative question-
naire results, we see issues with all requirements representations, GM and US
both had specific complaints about their format, while TR were more often seen
as unclear, but US had more complaints in terms of perceived completeness of
tests, level of abstraction of test cases, and adding detail.

Comparing the two sets of results, it is interesting that participants particu-
larly complained about abstraction when deriving tests from USes, yet the error
results showed US performed better than GM in that respect (Abstract test in
Table 3). Furthermore, it is interesting that only some participants perceived

Evaluating the Effects of Different Requirements on Writing Tests 271

their US-derived tests to be relatively incomplete, when all representations per-
formed similarly in terms of completeness.

To summarize, writing test cases without seeing the SUT is hard for novel
testers, and one representation does not stand out as clearly better. This is in
line with related work comparing graphical to textual requirements for other
purposes, e.g., [25]. From the quantitative results, one may recommend US as
a format which balances between errors. However, in our qualitative results,
students struggle more with US, even though they have experience with this
representation. As such, it may be desirable to provide more than one type of
representation, if possible. Ideally, a goal model to emphasize the purpose and
provide structure, but also a textual format which emphasizes technical details.

In the end, we can make recommendations over the desired properties of
requirements representations, rather than recommend a specific (set of) repre-
sentations. Our extracted desired properties (i.e. requirements over requirements
representation for the purpose of system testing) can be summarized below. As
with any realistic requirements, one can find conflicts.

– Requirements representations should contain the purpose, here a graphical
form seems to work best.

– Hierarchical requirements lead to tests with too many scenarios, thus hier-
archy should be avoided when using requirements to derive tests, or extra
training is needed to emphasize individual testing of specific scenarios.

– Hierarchy can be good for noticing detail in requirements, thus either it should
be used, or another way of emphasizing details is needed (e.g., font).

5.1 Threats to Validity

Construct Validity: One construct validity threat is the representativeness
of our dependent variables to assess quality of derived tests. We mitigate this
threat by choosing variables also used in software testing literature, such as test
suite size, coverage [13] and comprehensibility [8,9].

We have described and provided the results of our qualitative coding process,
including agreements scores (Table 3). Although we were able to reach sufficient
agreement on several errors, we can observe that in general getting good agree-
ment on test errors is challenging, there were several errors that either did not
appear frequently enough to evaluate sufficiently, or over which we disagreed,
and had to be dropped. It is our impression that if these further errors had been
included, it would not have greatly changed our results, i.e., we did not notice
significant differences in these errors with different requirements representations.

In order to ensure consistent information among different requirements repre-
sentations [20], we asked a requirements engineering expert to write the require-
ments followed by reviews from all authors. However, the different represen-
tations provide different affordances, meaning that exact equivalence was not
possible. Nonetheless, these differences in affordance are exactly what motivates
our research, i.e., which representations better facilitate test derivation.-

272 F. G. de Oliveira Neto et al.

Internal Validity: There were small design differences between 2017 and the
following two years (electronic test cases, submission after the session). Although
this is a potential threat, we see no statistically significant results across years.
To mitigate internal validity threats, all students, regardless of the year, were
given the same instruments, and their grade on the course was not affected by the
performance in this experiment. Moreover, the introductory lecture on system
testing helps to level participants’ knowledge and skill in deriving test cases from
a high-level specification, whereas the balanced design avoids grouping based on
knowledge and disparate sample sizes.

External Validity: Here, we used students as subjects. However, existing work
has shown similar results between students and professionals in experiments in
some contexts [24] and we address the ethical and validity concerns related to
using students in empirical studies [10]. Furthermore, our participants were third
year bachelor students in software engineering with practical experience through
project courses, sometimes carried out in industry. Nonetheless, we cannot gen-
eralize our results for the population of software testers. Additionally, this study
was conducted only in one university in one country.

In this series of initial experiments we have used a simple application that
would be understandable by our participants, and would better enable them
to complete the task in time. More complex, detailed or unfamiliar applications
may have had an effect on our results. Future work should repeat our experiment
with applications from different domains with a variety of sizes and complexity
closer to real-world problems in software development.

6 Conclusion

We have evaluated whether three types of requirements representations, common
in the RE community, have an effect on the quality and coverage of produced test
cases. Although we have found some qualitative and quantitative differences with
the various representations, much of our findings points to the difficulty of creat-
ing test cases using only requirements for novice testers in general. We have used
our findings which relate specifically to the representation types to provide some
recommendations when using different requirements representations to derive
tests. Our findings can help to understand the effects of different requirements
formats on testing, can help us to improve our requirements representations for
this purpose, and can help to guide better training for testers.

Future work should repeat this study with more experienced testers to inves-
tigate whether the different representations have more significant or different
effects, and should look again at the types of errors that can be measured over
the resulting tests, addressing the problem of consistently coding test errors.

References

1. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements
reflection: requirements as runtime entities. In: International Conference on Soft-
ware Engineering, (ICSE), pp. 199–202. ACM/IEEE (2010)

Evaluating the Effects of Different Requirements on Writing Tests 273

2. Brill, O., Schneider, K., Knauss, E.: Videos vs. use cases: can videos capture more
requirements under time pressure? In: Wieringa, R., Persson, A. (eds.) REFSQ
2010. LNCS, vol. 6182, pp. 30–44. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14192-8 5

3. Cohn, M.: User Stories Applied: For Agile Software Development. Addison Wesley
Longman Publishing Co., Inc., Redwood City (2004)

4. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software
engineering In: International Symposium on Empirical Software Engineering and
Measurement, pp. 275–284, September 2011

5. Dalpiaz, F., Franch, X., Horkoff, J.: istar 2.0 language guide (2016). https://arxiv.
org/abs/1605.07767

6. de Oliveira Neto, F.G., Horkoff, J., Knauss, E., Kasauli, R., Liebel, G.: Challenges
of aligning requirements engingeering and system testing in large-scale agile: A
multiple case study. In: 2017 IEEE 25th International Requirements Engineering
Conference Workshops (REW), pp. 315–322, September 2017

7. Felderer, M., Beer, A., Peischl, B.: On the role of defect taxonomy types for testing
requirements: Results of a controlled experiment. In: 2014 40th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA), pp. 377–384
(2014)

8. Felderer, M., Herrmann, A.: Manual test case derivation from uml activity dia-
grams and state machines: a controlled experiment. Inf. Soft. Technol. 61, 1–15
(2015)

9. Felderer, M., Herrmann, A.: Comprehensibility of system models during test
design: a controlled experiment comparing uml activity diagrams and state
machines. Soft. Qual. J. 27(1), 125–147 (2019)

10. Feldt, R., et al.: Four commentaries on the use of students and professionals in
empirical software engineering experiments. Empir. Softw. Eng. 23(6), 3801–3820
(2018). https://doi.org/10.1007/s10664-018-9655-0

11. Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions.
Wiley Series in Probability and Statistics, 3rd edn. Wiley, Hoboken (2003)

12. Hadar, I., Reinhartz-Berger, I., Kuflik, T., Perini, A., Ricca, F., Susi, A.: Compar-
ing the comprehensibility of requirements models expressed in use case and tropos:
results from a family of experiments. Inf. Soft. Technol. 55(10), 1823–1843 (2013)

13. Häser, F., Felderer, M., Breu, R.: Is business domain language support beneficial
for creating test case specifications: a controlled experiment. Inf. Softw. Technol.
79, 52–62 (2016)

14. Hayes, A.F., Krippendorff, K.: Answering the call for a standard reliability measure
for coding data. Commun. Methods Meas. 1(1), 77–89 (2007)

15. Horkoff, J., et al.: Goal-oriented requirements engineering: an extended system-
atic mapping study. Requir. Eng. 24(2), 133–160 (2017). https://doi.org/10.1007/
s00766-017-0280-z

16. ISO/IEC/IEEE: Software and Systems Engineering - Soft. testing - Part 3: Test
documentation. ISO/IEC/IEEE standard 29119–3:2013 (2016)

17. ISO/IEC/IEEE: Systems and Software Engineering - Life cycle processes - Require-
ments Engineering. ISO/IEC/IEEE standard 29148:2018 (2018)

18. Karac, E.I., Turhan, B., Juristo, N.: A controlled experiment with novice developers
on the impact of task description granularity on software quality in test-driven
development. IEEE Trans. on Soft. Eng. 1 (2019). https://doi.org/10.1109/TSE.
2019.2920377

https://doi.org/10.1007/978-3-642-14192-8_5
https://doi.org/10.1007/978-3-642-14192-8_5
https://arxiv.org/abs/1605.07767
https://arxiv.org/abs/1605.07767
https://doi.org/10.1007/s10664-018-9655-0
https://doi.org/10.1007/s00766-017-0280-z
https://doi.org/10.1007/s00766-017-0280-z
https://doi.org/10.1109/TSE.2019.2920377
https://doi.org/10.1109/TSE.2019.2920377

274 F. G. de Oliveira Neto et al.

19. Kasauli, R., Knauss, E., Kanagwa, B., Nilsson, A., Calikli, G.: Safety-critical sys-
tems and agile development: A mapping study. In: 2018 44th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pp. 470–477. IEEE
(2018)

20. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cognit. Sci. 11(1), 65–100 (1987)

21. Massey, A.K., Otto, P.N., Antón, A.I.: Evaluating legal implementation readiness
decision-making. IEEE Trans. Soft. Eng. 41(6), 545–564 (2015)

22. Matulevičius, R., Heymans, P.: Comparing goal modelling languages: an experi-
ment. In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542,
pp. 18–32. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73031-
6 2

23. de Oliveira Neto, F.G., Torkar, R., Feldt, R., Gren, L., Furia, C.A., Huang, Z.:
Evolution of statistical analysis in empirical software engineering research: current
state and steps forward. J. Syst. Softw. 156, 246–267 (2019)

24. Salman, I., Misirli, A.T., Juristo, N.: Are students representatives of profession-
als in software engineering experiments? In: 2015 IEEE/ACM 37th International
Conference on Software Engineering, vol. 1, pp. 666–676. IEEE (2015)

25. Sharafi, Z., Marchetto, A., Susi, A., Antoniol, G., Guéhéneuc, Y.G.: An empirical
study on the efficiency of graphical vs. textual representations in requirements
comprehension. In: 2013 21st International Conference on Program Comprehension
(ICPC), pp. 33–42. IEEE (2013)

26. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-540-73031-6_2
https://doi.org/10.1007/978-3-540-73031-6_2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Requirements Visualization

Vision Meets Visualization:
Are Animated Videos an Alternative?

Melanie Busch(B), Oliver Karras, Kurt Schneider, and Maike Ahrens

Software Engineering Group, Leibniz Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany

{melanie.busch,oliver.karras,kurt.schneider,
maike.ahrens}@inf.uni-hannover.de

Abstract. [Context and motivation] Creating a shared understand-
ing of requirements between all parties involved about a future software
system is difficult. Imprecise communication can lead to misunderstand-
ing of requirements. Vision videos demonstrate and visualize the func-
tionality, use and impact of a software system before the actual devel-
opment process starts. They stimulate discussions about the software
system and its associated requirements. [Question/problem] Vision
videos should be produced with as little effort as possible, in terms of
resources and time consumption, yet with sufficient quality. This raises
the questions: Does the presentation of a vision video influence its per-
ception by the audience? Do animated vision videos offer an alternative
to real videos to communicate a vision? [Principal ideas/results] We
conducted an experiment with 20 participants comparing animated and
real videos showing the same content. The videos illustrate the popula-
tion decrease in rural areas and envision a possible solution to counteract
the consequences of grocery store closings. The participants suggested
own solutions for the problem of grocery store closings, rated the videos
and chose their preferred type of video representation. The results of
the experiment show no difference in neither the amount of solutions
proposed nor the rating of the videos. Likewise, the results show no dif-
ference in the preferred type of video representation. [Contribution]
Our study indicates that animated vision videos offer an adequate alter-
native to real videos. Thus, vision video producers have another viable
option to choose for achieving a shared understanding of a future soft-
ware system.

Keywords: Requirements engineering · Animation · Vision · Video

1 Videos as a Vision Mediator

Whenever stakeholders discuss requirements, their shared understanding of
requirements may differ. It is one of the most challenging tasks to build a shared
understanding between stakeholders [9]. Various people have different mental
models of their environments since different experiences lead to varying mental
c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 277–292, 2020.
https://doi.org/10.1007/978-3-030-44429-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_19

278 M. Busch et al.

models [17, p. 17]. Creighton et al. [6] used videos to illustrate scenarios to avoid
misunderstandings based on communication problems. Xu et al. [29] have also
addressed the topic of videos in the context of scenarios. They focused on how
scenario videos could be produced and updated in an easy and fast way by using
virtual world technology [29].

Within the scope of our paper, we compare animated with real vision videos.
Like Xu et al. [29] we strive for vision videos that are effective and take little
effort. According to Karras et al. [14] vision videos visualize a vision or parts of
a future system. Karras [12] stated that discussions between several stakeholders
should be encouraged by using vision videos to support the exchange on devi-
ating mental models of the future system. Based on this joint dialogue a shared
understanding of the future system can arise [12]. Purposes of making and using
vision videos are to create a shared understanding, to refine visions and to elicit
feedback for a future system [14]. In our paper we want to investigate the ques-
tion: Do animated vision videos offer an adequate alternative to real videos to
communicate a vision and to stimulate feedback?

In the past we researched the field of real vision videos, because they are
rather easy and affordable to produce [23,24]. The aim of this paper is to inves-
tigate whether animated vision videos are an adequate alternative to real vision
videos, not to replace them. An advantage of animated videos may be that they
can show or create any environment. In contrast, real videos can be limited,
because some environments may not be accessible or restricted of use, like in
the airport scenario of Xu et al. [29]. When producing real videos, privacy issues
must additionally be considered and taken into account. Furthermore, the organ-
isation and coordination of required materials and parties involved impedes the
production of real videos.

We conducted a study to compare animated with real vision videos. Short
vision videos of two different types of video representation encouraged partic-
ipants to develop new ideas and solutions for shopping in rural areas. Besides
measuring how effectively videos stimulated feedback, we asked the participants
about their preferred representation type of vision video.

The paper is structured as follows: Sect. 2 provides the background on the
application context. Section 3 presents the representation types of videos consid-
ered. Section 4 discusses related work. Section 5 contains the experiment design.
The results are presented in Sect. 6. In Sect. 7, we interpret and discuss the
results of the experiment. Section 8 concludes the paper.

2 Application Context - Rural Areas

In Germany, the population of rural communities continues to decrease, albeit to
a much lesser extent than in previous years [1]. It can be difficult to buy products
of daily need without a grocery store nearby [2]. In the field of urban planning,
Zibell et al. [31] focused on the local food supply in rural areas in the context of
the demographic change. They looked at problems of rural locations and named
various existing solutions, such as food delivery services [31]. Besides the use of

Vision Meets Visualization 279

widely used RE techniques, Schneider et al. [22] proposed to use vision videos
in the context of public spatial planning. This domain deals with a large crowd
of stakeholders who need to be part of the problem discussions and finding of a
solution. Therefore, Schneider et al. [22] focused on the application example of
food supply in rural areas. Schneider et al. [22] conclude that in the context of
rural areas vision videos can be used to provide concrete context information,
for example in town hall meetings.

In this paper we take a closer look at two different representation types of
vision videos. We investigate (1) which type is more appealing to residents of
smaller villages to communicate a vision and (2) which type stimulates them bet-
ter to increase the amount of feedback. We have chosen the application context
of shopping in rural areas since this problem could be supported by software
systems [22]. With our experiment we wanted to find out, if animated vision
videos offer an adequate alternative to real vision videos.

3 Type of Content Representation - Animated and Real
Video

There are several ways to create videos. Vistisen and Poulsen [26] conducted a
design workshop to use animation-based sketching within the design process of
front-end-concepts. The workshop participants used i.a. stop motion technology
in combination with LEGO figures or with real pictures containing drawn ele-
ments [26]. Additionally, paper prototypes were used to visualize the handling
of the app interface [26].

In the past, we have already looked in more detail at the third and first per-
son perspective in real vision videos, as in Schneider et al. [24]. In general, there
is a large number of kinds of videos (workshop videos [8] or demonstration videos
[25]), which can be represented in several ways due to the different application
contexts and production options. In this paper, we focus on two specific repre-
sentation types of vision videos: Animated and real vision videos. We compare
the perception of the audience. We define the term animated videos as follows:

Definition: An “animated video” is a comic-like, 2D-representation with
a strong simplification of people, environment and entities.

We use the term real videos as follows:

Definition: A “real video” is a video filmed with people as actors, real
environment and materialized objects.

Figure 1 shows an excerpt of the animated and corresponding real vision
videos in comparison. The screenshots stem from the videos used in the study
(see Sect. 5 for details).

280 M. Busch et al.

Fig. 1. Animated videos and respective real videos

4 Related Work

One key application context of videos in requirements engineering is the visual-
ization of scenarios or interactions between humans and computers in sophisti-
cated processes to envision different aspects of a future system: system context
[10], product vision [4,5,18], or scenarios [15,20,30]. Vision videos often demon-
strate a problem, one or more possible solutions in use, and sometimes the benefit
they create [24]. While formal or textual descriptions are difficult to understand
for some users and stakeholders, videos are easy to watch for all parties involved.

Creighton et al. [6] presented vision videos of sophisticated processes, e.g., in
health care. UML diagrams were overlaid with the videos in order to establish
shared understanding between stakeholders and developers. Thus, visible video
elements could be mapped to underlying development objects in UML diagrams.
In collaboration with Siemens, product visions were illustrated as high-end mar-
keting videos. Brill et al. [4] contrasted this high-end with a low-effort approach
of using vision videos. They compared the use of vision videos and use cases
under time pressure. Darby et al. [7] followed a similar low-effort approach and
showed how an envisioned software-based application in providing care to demen-
tia patients could look like. Lay actors enact scenes and pretend to already use
the future system. Schneider et al. [24] proposed showing one problem and three
possible solutions in one vision video in order to create more feedback. In [23],
Schneider and Bertolli described a process to create vision videos in both linear
or interactive style at affordable effort.

Some researchers have used animated actors and videos for specific pur-
poses. Xu et al. [29] emphasized the changes within an agile software devel-
opment cycle as one of the major challenges in current software development.
They proposed the so-called Evolutionary Scenario Based Design using an open-
source virtual world platform called OpenSim. Animated persons replaced real
human actors. Their behavior can evolve without a need to update a traditional
video. Williams et al. [27] investigated how comic scenarios can be used in the

Vision Meets Visualization 281

context of requirements engineering. They found that pictorial representations
help users in imagining revisions and in recognizing new or changed requirements.
In ContraVision, Mancini et al. [16] provided two videos of a future system: One
shows a positive vision of a system, while the other visualizes a negative usage
scenario. Bennaceur et al. [3] used animated videos in their research in com-
bination with ContraVision. They wanted to elicit user reactions to utopian
(positive) and dystopian (negative) videos. Rodden et al. [21] used animated
sketches to visualize future smart energy infrastructures to focus groups. The
animated sketches were the basis to get feedback about concerns and thoughts
of the participants about the not yet existing future energy systems.

All previously discussed related work used only one specific representation
type for their videos (real or animated). Thus, it is not clear how the respective
representation type affects the perception of the audience and the amount of
solicited feedback. Within the scope of our paper we consider and compare these
two video representation types for vision videos.

5 Experimental Design

The following section includes detailed information about our study. It starts
with our research question, goal and hypotheses. The section proceeds with the
used material, the selection of participants and the experiment design.

Research question:
Do animated vision videos offer an adequate alternative to real videos to
communicate a vision and to stimulate feedback?

To formulate our research goal, we used the goal definition template according
to Wohlin [28].

Goal definition:
We analyse two representation types of vision videos
for the purpose of evaluating their impact on perception of the audience
with respect to preference and performance (i.e. stimulated feedback from
participants)
from the point of view of people who have lived in smaller villages for
several months or currently do
in the context of an experimental setting with presence of an experi-
menter.

5.1 Hypotheses

We divided the hypotheses into two different thematic areas: preference and per-
formance. The preference focuses on (1) which type of video is more appealing.

282 M. Busch et al.

Performance considers (2) which type of video stimulates the participants better
to create more ideas (see Sect. 2).

Preference
The preference was measured in two different parts of the experiment. On the
one hand, the preference was measured after the participants watched videos of
one type of representation. On the other hand, the preference was measured after
both types of video representation were shown to the participants. The preference
of the participants regarding the videos was measured partly through 6-point
Likert-scales and partly through questions with predefined response options.
Based on our research question and goal, we formulated the following hypotheses:

H11: There is a difference between the groups regarding the rating of the
overall video quality being watched.
H10: There is no difference between the groups regarding the rating of the
overall video quality being watched.
H21: There is a difference between the groups in terms of identification with
the scene represented in the video.
H20: There is no difference between the groups in terms of identification with
the scene represented in the video.
H31: There is a difference between the groups in terms of identification with
the person represented in the video.
H30: There is no difference between the groups in terms of identification with
the person represented in the video.
H41: There is a difference between the groups regarding the preferred pre-
sentation style of the videos.
H40: There is no difference between the groups regarding the preferred pre-
sentation style of the videos.
H51: There is a difference between the groups with regard to the assessment
of the participants, which video provides more information.
H50: There is no difference between the groups with regard to the assessment
of the participants, which video provides more information.
H61: There is a difference between the groups regarding the recommendation
which type of video should be used in the future.
H60: There is no difference between the groups regarding the recommendation
which type of video should be used in the future.

Performance
The performance was measured after three single videos of one representation
type were viewed. The participants were asked to name solution ideas.

H71: There is a difference between the groups in the number of solution ideas
triggered by the particular video being viewed.
H70: There is no difference between the groups in the number of solution
ideas triggered by the particular video being viewed.

Vision Meets Visualization 283

5.2 Material

Six videos were used in the experiment: three animated and three real videos.
In both types of representation we used a thematic introductory video, a video
that visualizes the product order via photo and a video that illustrates the prod-
uct delivery via a drone. The introductory videos show the prevailing situation:
village population decreases and (grocery) stores close. Solution ideas and sug-
gestions for changing this problematic situation are being sought. The real video
introduction is 66 s long, the animated one 68 s. The second videos show the
ordering process by photographing a product and gets reordered automatically.
Both video versions have a total length of 18 s. The third videos show the deliv-
ery process by a drone. An informing text message is sent to the recipient’s
mobile phone. The real video of the product delivery has a length of 28 s and the
animated video has a length of 27 s, respectively. In the paper “Refining Vision
Videos” of Schneider et al. [24] the real introductory video was already used. In
terms of content, the videos visualize a subset of variants of the Refining Vision
Video paper [24]. The real videos were made by simple means. The real and
animated videos were produced and edited by one person. We used the software
CrazyTalk Animator 3 of Reallusion1 to record our animated vision videos. It
took about one day to produce the real vision videos and one and a half days to
produce the animated videos. The expertise of the video producer has a strong
influence on the time span. In our study the video producer was unfamiliar with
the animation software.

The following table (Fig. 2) shows an extract of the questionnaires. We have
based the questionnaires used on our previous work (cf. Schneider et al. [24]).
For more details on the setting and experiment design, see Sect. 5.4.

Fig. 2. Extract of the used questionnaire (not all questions and statements used in the
context of our study are included)

1 https://www.reallusion.com/de/crazytalk/default.html.

https://www.reallusion.com/de/crazytalk/default.html

284 M. Busch et al.

5.3 Selection of Participants

Living in smaller communities differs from living in the city in many ways. The
connection to public transport and its availability can be limited. Local supply
of daily need products is not guaranteed. Definitions and classifications of spatial
areas often refer to larger settlements or include smaller villages in municipalities
[19]. However, our study refers to smaller villages and their inhabitants. We
define smaller villages as follows:

Definition: A “smaller village” is a settlement with less than 5000 inhab-
itants.

We carefully invited only participants who currently live or have lived in
smaller villages with less than 5000 inhabitants to take part in the study. We
chose this group of participants because their experience of living in smaller
villages might help them to identify better with the content than participants
from larger cities. All participants took part voluntarily.

A total of 20 participants took part in the study. The participants were ran-
domly assigned into two groups. Both groups had a final group size of ten partic-
ipants. The participants were between 26 and 71 years old (M = 45.3, SD = 16.7).
16 participants currently live or have lived without a supermarket or discount
store nearby. 18 participants use online shopping, but only seven of them ordered
everyday products via online shopping at least once.

5.4 Setting and Experiment Design

The experiment was conducted with one participant at a time in a quiet room. At
the beginning, participants received an overview of the experiment. Afterwards,
the participants were asked to sign the declaration of consent.

Fig. 3. Experiment design

Our selected study design is characterized by a subdivision into two large
segments (colored light grey and dark grey), see Fig. 3. In each segment, the
participants saw one type of video representation. Real and animated videos have

Vision Meets Visualization 285

the same content in introduction, order and delivery. The videos were shown on
a 14-inch TN screen with a resolution of 1600×900 pixels, the laptop sound was
turned on. The experimenter started the videos on the laptop and sat next to
the participant during the experiment.

The first segment is divided into three parts in which three videos were shown
to the participants: the introduction, ordering via photo and package delivery
via drone. In the first segment Group 1 saw the animated videos and answered
one page of the questionnaire after each video. Group 2 saw the real videos
and answered the questionnaire respectively. At the end of segment 1, all par-
ticipants rated several statements whether they agree or disagree. In segment
2, the other type of video representation was shown to each participant with-
out pauses. Group 1 saw the three real videos and Group 2 the three animated
videos. Afterwards, all participants were asked which type of vision video com-
municated more information and which one they prefer and recommend. In the
end the participants filled out the background information sheet. We chose this
experiment design for two main reasons (1) to keep the execution time for the
participants as short as possible. (2) Both video types show the same content.
Therefore, the participants already knew the content.

6 Results

Preference

H10: There is no difference between the groups regarding the rating of the
overall video quality being watched.
Participants should rate on a Likert-scale from 0 (do not agree at all) to 5
(fully agree), whether the video quality is sufficient to convey the content. At
that point in time the participants saw only one type of video representation.
We performed a Mann-Whitney U test to investigate, whether the two groups
differ from each other. The test indicated that there is no significant difference
between Group 1 and Group 2, Z =−0,265, p = .795.
For this reason we cannot reject H10 and conclude: There seems to be no
difference between the groups regarding the rating of the overall
video quality.
H20: There is no difference between the groups in terms of identification with
the scene represented in the video.
After the introduction video, the participants were asked whether they can
identify themselves with the video scene. They were asked to give their answer
on a six-point Likert-scale, 0 (do not agree at all) to 5 (fully agree). To assess
whether there are differences between the groups of participants, we per-
formed a Mann-Whitney U test. The test indicated that there is no significant
difference between Group 1 and Group 2, Z =−0,643, p = .522.
Therefore, we cannot reject H20 and conclude: There seems to be no
difference between the groups in terms of identification with the
represented scene.

286 M. Busch et al.

H30: There is no difference between the groups in terms of identification with
the person represented in the video.
After seeing the order and the delivery video, the participants were asked in
each case whether they can identify with the person depicted in the video.
They were asked to give their answer on a six-point Likert scale, 0 (do not
agree at all) to 5 (fully agree). We performed a Mann-Whitney U test to
identify possible differences between the groups of participants. The test indi-
cated that there is no significant difference between Group 1 and Group 2,
Z =−0,680, p = .497.
Consequently we cannot reject H30 and conclude: There seems to be no
difference between the groups in terms of identification with the
represented person.
H40: There is no difference between the groups regarding the preferred presen-
tation style of the videos.
At the end of the study, after the participants had seen both types of rep-
resentation, they were asked which type of representation they preferred. To
answer a single select question, the participants could choose between three
different answers: real, animated or both. Because nominal data is given, we
performed a chi-square goodness-of-fit test with a significance level α = .05.
In accordance with H40, a 0.5/0.5 distribution of the participant’s preferred
video representation type is expected. The result of the chi-square test is
χ2 = 2.13, p = .144. The result is not significant so we cannot reject the null
hypothesis. It seems that there is no difference between the groups
regarding the preferred type of video representation.
H50: There is no difference between the groups with regard to the assessment
of the participants, which video provides more information.
After seeing all animated and all real videos, the participants were asked
which type of video representation provided more information. The partici-
pants could choose between three different answers again: real, animated or
both. We performed a chi-square goodness of-fit-test, because of the nominal
data with a significance level α = .05. In accordance with H50, one would
expect a 0.5/0.5 distribution. The result of the chi-square test is χ2 = 0,471,
p = .493 and it is not significant. We cannot reject the null hypothesis and
conclude that there seems to be no difference between the groups
regarding the assessment of the information content.
H60: There is no difference between the groups regarding the recommendation
which type of video should be used in the future.
At the end of the study, the participants were asked what type of representa-
tion they recommend to use in the future. Once again, the participants could
choose between three different answers: real, animated or both. Because nom-
inal data is given, we performed a chi-square goodness-of-fit test with a sig-
nificance level α = .05. In accordance with H60, one would expect a 0.5/0.5
distribution. The result of the chi-square test is χ2 = 0,04, p = .841 and is
not significant. For this reason we cannot reject the null hypothesis and we
draw the conclusion that there seems to be no deviation between the
groups with respect to the rating of video type presentation.

Vision Meets Visualization 287

Performance

H70: There is no difference between the groups in the number of solution ideas
triggered by the particular video being viewed.
After each video part in the first segment of the experiment, the participants
proposed solutions and ideas on the topic of shopping in rural areas. The
solution ideas were counted. First, we have tested the data for normal dis-
tribution with the Shapiro-Wilk test. The result is W = 0,952, p = .396. The
test result indicates that the results are normally distributed. Afterwards we
performed the T-test, t =−0,429, p = .673. The result of the T-test is not
significant, so we cannot reject the null hypothesis and conclude that the
visualization type of a video does not seem to have any influence
on the number of solution ideas triggered by the video.

Subjective Evaluation of the Video Types
Figure 4 illustrates the subjective rating of Group 1 and Group 2 (N = 10 for
each) of different statements after one of the two video types has been shown.
Overall,the majority of participants like the videos. When comparing the dia-
grams in Fig. 4, animated videos received better ratings in general. The variance
is higher for real videos.

Fig. 4. Subjective evaluation of the animated and real videos

288 M. Busch et al.

7 Interpretation and Discussion

7.1 Interpretation

Within the framework of our study, we examined if animated vision videos offer
an adequate alternative to real vision videos to communicate a vision of a future
system. The participants (all of them currently or formerly inhabitants of smaller
villages) in our study have no significant preference regarding the type of video
representation. The amount of feedback is the same for both type of video rep-
resentation. Overall the statement I liked the videos was rated very positive for
animated and real videos. In general the preference of both video representation
types were mostly positive, although the evaluation of the animated videos were
slightly better. Based on our results the answer to our research question is:

Answer to the Research Question:
Animated vision videos seem to offer an adequate alternative to real videos
to communicate a vision and to stimulate feedback.

7.2 Discussion

Vision videos are one way to improve shared understanding in the early phases
of a project: They visualize a complex envisioned product or process of use, and
they stimulate feedback. In our research, we try to optimize the way affordable
vision videos can be created and used [23]. In [24], we showed three alternative
visions to stimulate more feedback. In the same study, we did not find a con-
vincing advantage in first-person camera perspective over the usual third-party
perspective. In this paper, we investigated whether animated vision videos are
an adequate alternative to real videos, i.e., be accepted at a similar or better rate
than real videos and whether they are able to stimulate feedback. If so, they can
be a new tool in the toolbox of requirements engineers who use vision videos.
Despite all our care in planning and designing the study, we have to mention
that we focus on a single topic and chose a very specific group of participants.
As of now, we can not make any statements about the transferability to other
thematic areas nor can we formulate any general statements. One of the authors
(Schneider) had expected less feedback in animated videos due to the fact that
there are no unintended elements in an animated video. Even those acciden-
tal elements could have triggered feedback. However, our experiment showed
no statistically significant differences between real and animated videos, neither
in terms of performance (feedback solicited) nor in participants’ preference. An
important point to emphasize is the evaluation of the video quality. Participants
rated the quality of both types of videos as sufficient to convey the content,
i.e., the vision. It is encouraging to see that moderate effort is sufficient in the
case of vision videos. Participants of our study do not seem to expect high-end
movie quality in this domain. It should be noted that animated videos were nei-
ther clearly worse, nor much better than real videos. They should not replace

Vision Meets Visualization 289

real videos but be considered when privacy or economical aspects are weighed.
The similarity of results for both types of videos indicates that the choice can
be made on other criteria, e.g., based on effort and speed of video production.
Producing an animated video requires animation software, such as CrazyTalk
Animator 3 of Reallusion2. In our experiment, the production of the animated
video took longer than filming the real video. Effort and speed of production may
depend on the experience of the director and the target level of sophistication.
Bishevsky3 produced a short, affordable animation video for the RE Cares Track
of the International Conference on Requirements Engineering (RE19), envision-
ing a software-based enhancement of the public transportation system at the
venue of RE19. The animated video was produced in Israel while the RE Cares
Track was running in South Korea. Filming with real actors and the real envi-
ronment was impossible due to the distance. Since no human actors had to be
filmed, privacy issues were avoided as a side-effect. The main conclusion of this
paper is: Animated videos appeared as a viable option and an adequate alterna-
tive for the purpose of showing visions and soliciting feedback for requirements
engineering.

7.3 Threats to Validity

We carefully chose our experiment design (see Sect. 5 for details). Several threats
were taken into account for our experiment design.

Internal Validity
Real and animated videos of single scenes were made for the experiment. Despite
similar content, length and spoken texts of the videos, it was not feasible to
produce exactly identical scenes. This could be a confounding factor for the per-
ception of the videos. In segment 2 of our experiment, the participants already
knew the video content. This factor could have influenced the results, because the
participants were no longer unbiased. The physical and mental state of partici-
pants, such as fatigue, boredom or decrease of concentration, could have affected
the outcome of the experiment. We have tried to mitigate this factor by ran-
domly distributing the participants to the two groups. We used only one video
example in our study, this mono operation bias may have influenced the results.
The specific content and the topic of the vision videos may have affected the
results. Another threat to mention is that repeating the experiment might lead
to different ratings.

External Validity
We selected inhabitants of smaller villages as study participants. Hence, partici-
pants had a similar background regarding their current or past place of residence.
We chose this homogeneous group of participants to obtain a high conclusion
validity. However, this limits the generalizability of our results to participants
with a different background. Besides, the experiment requires replication with a
larger sample size to improve generalizability.
2 https://www.reallusion.com/de/crazytalk/default.html.
3 https://drive.google.com/open?id=1Ta4hOIhVNf808CRsASTuNIyNcZwNfEfk.

https://www.reallusion.com/de/crazytalk/default.html
https://drive.google.com/open?id=1Ta4hOIhVNf808CRsASTuNIyNcZwNfEfk

290 M. Busch et al.

Construct Validity
Some participants may have evaluated the videos better, because they are in a
test situation. The experimenter was present throughout the entire experiment
to start the videos and assist with questions. The experimenter’s presence may
have influenced the results. We have tried to keep this threat as small as possible
by having the experimenter behave as quietly as possible. Responses to questions
were kept to a minimum. In addition, this effect affected both participant groups
equally.

Conclusion Validity
The participants have different experiences and mental models which could have
influenced the evaluation and assessment of the videos. We tried to minimize this
threat by inviting only participants who live or have lived in smaller villages.
Due to the small sample size of 20 participants, there is a possibility that we
have drawn false conclusions based on the results. Based on our small sample
size and our focus on a single topic, we cannot derive an equality of the two
approaches for visualizing a vision from our results. Our study did not aim to
infer this equality, but to investigate whether animated videos are an adequate
option to produce vision videos. Replications of our study in other contexts,
other purposes and with a bigger sample size are needed to confirm our findings.

8 Conclusion

In the experiment we compared animated and real vision videos regarding prefer-
ence and performance. Concerning the number of proposed solutions to the topic
of shopping in rural areas, no difference was found between the two groups of
participants. In addition, no significant difference with regard to preferred type
of video representation were seen. Concerning our research question, animated
videos do offer an adequate alternative to real vision videos to communicate a
vision.

Future Work: There are many aspects to vision video production and percep-
tion that we want to research in the future. Among other things, we want to
investigate how vision videos should be watched, for instance in a group with
subsequent discussion or alone via video platforms with online questionnaires.

According to Karras [11] and Karras and Schneider [13] effort and simplicity
are two major aspects that need to be addressed and researched in our future
work. Nevertheless, we found evident leads that viewers like animated vision
videos just as good as real vision videos and give a similar amount of feedback.

Acknowledgement. This work was supported by the Deutsche Forschungsgemein-
schaft (DFG) under Grant No.: 289386339, project ViViReq. (2017–2019).

References

1. Informationen aus der Forschung des BBSR Nr. 3/2019. ISSN 1868-0089 (2019)

Vision Meets Visualization 291

2. Hannoversche Allgemeine Zeitung: Federal mail will send bread. In rural areas,
shopping gets increasing difficult - now, the postman could sell groceries on the
doorstep (original in German), 15 September 2018

3. Bennaceur, A., et al.: Feed me, feed me: an exemplar for engineering adaptive soft-
ware. In: 2016 IEEE/ACM 11th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), pp. 89–95, May 2016. https://
doi.org/10.1109/SEAMS.2016.018

4. Brill, O., Schneider, K., Knauss, E.: Videos vs. use cases: can videos capture more
requirements under time pressure? In: Wieringa, R., Persson, A. (eds.) REFSQ
2010. LNCS, vol. 6182, pp. 30–44. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14192-8 5

5. Broll, G., Hussmann, H., Rukzio, E., Wimmer, R.: Using video clips to support
requirements elicitation in focus groups-an experience report. In: SE 2007 Work-
shop on Multimedia Requirements Engineering (2007)

6. Creighton, O., Ott, M., Bruegge, B.: Software cinema-video-based requirements
engineering. In: 14th IEEE International Requirements Engineering Conference
(RE 2006), pp. 109–118, September 2006. https://doi.org/10.1109/RE.2006.59

7. Darby, A., Tsekleves, E., Sawyer, P.: Speculative requirements: design fiction and
RE. In: 2018 IEEE 26th International Requirements Engineering Conference (RE),
pp. 388–393. IEEE (2018)

8. Fricker, S.A., Schneider, K., Fotrousi, F., Thuemmler, C.: Workshop videos for
requirements communication. Requir. Eng. 21(4), 521–552 (2015). https://doi.org/
10.1007/s00766-015-0231-5

9. Glinz, M., Fricker, S.A.: On shared understanding in software engineering: an essay.
Comput. Sci. Res. Dev. 30(3), 363–376 (2015). https://doi.org/10.1007/s00450-
014-0256-x

10. Jirotka, M., Luff, P.: Supporting requirements with video-based analysis. IEEE
Softw. 23(3), 42–44 (2006). https://doi.org/10.1109/MS.2006.84

11. Karras, O.: Software professionals’ attitudes towards video as a medium in require-
ments engineering. In: Kuhrmann, M., et al. (eds.) PROFES 2018. LNCS, vol.
11271, pp. 150–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03673-7 11

12. Karras, O.: Communicating stakeholders’ needs - vision videos to disclose, dis-
cuss, and align mental models for shared understanding. IEEE Softw. Blog
(2019). http://blog.ieeesoftware.org/2019/10/communicating-stakeholders-needs-
with.html

13. Karras, O., Schneider, K.: Software professionals are not directors: what consti-
tutes a good video? In: 2018 1st International Workshop on Learning from Other
Disciplines for Requirements Engineering (D4RE), pp. 18–21. IEEE (2018)

14. Karras, O., Schneider, K., Fricker, S.A.: Representing software project vision by
means of video: a quality model for vision videos. J. Syst. Softw. (2019). https://
doi.org/10.1016/j.jss.2019.110479

15. Maiden, N., Seyff, N., Grunbacher, P., Otojare, O.O., Mitteregger, K.: Determining
stakeholder needs in the workplace: how mobile technologies can help. IEEE Softw.
24(2), 46–52 (2007)

16. Mancini, C., et al.: Contravision: exploring users’ reactions to futuristic technology.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI 2010, pp. 153–162. ACM, New York (2010). https://doi.org/10.1145/
1753326.1753350

17. Norman, D.A.: The Design of Everyday Things. Basic Books Inc., New York (2002)

https://doi.org/10.1109/SEAMS.2016.018
https://doi.org/10.1109/SEAMS.2016.018
https://doi.org/10.1007/978-3-642-14192-8_5
https://doi.org/10.1007/978-3-642-14192-8_5
https://doi.org/10.1109/RE.2006.59
https://doi.org/10.1007/s00766-015-0231-5
https://doi.org/10.1007/s00766-015-0231-5
https://doi.org/10.1007/s00450-014-0256-x
https://doi.org/10.1007/s00450-014-0256-x
https://doi.org/10.1109/MS.2006.84
https://doi.org/10.1007/978-3-030-03673-7_11
https://doi.org/10.1007/978-3-030-03673-7_11
http://blog.ieeesoftware.org/2019/10/communicating-stakeholders-needs-with.html
http://blog.ieeesoftware.org/2019/10/communicating-stakeholders-needs-with.html
https://doi.org/10.1016/j.jss.2019.110479
https://doi.org/10.1016/j.jss.2019.110479
https://doi.org/10.1145/1753326.1753350
https://doi.org/10.1145/1753326.1753350

292 M. Busch et al.

18. Pham, R., Meyer, S., Kitzmann, I., Schneider, K.: Interactive multimedia story-
board for facilitating stakeholder interaction: supporting continuous improvement
in IT-ecosystems. In: 2012 Eighth International Conference on the Quality of Infor-
mation and Communications Technology, pp. 120–123. IEEE (2012)

19. Porsche, L., Milbert, A.: Kleinstädte in Deutschland - Ein Überblick (in English:
Small Towns in Germany - An Overview). Informationen zur Raumentwicklung
des BBSR Nr. 6/2018 (6) (2018)

20. Rabiser, R., Seyff, N., Grunbacher, P., Maiden, N.: Capturing multimedia require-
ments descriptions with mobile RE tools. In: 2006 First International Workshop
on Multimedia Requirements Engineering, p. 2. IEEE (2006)

21. Rodden, T.A., Fischer, J.E., Pantidi, N., Bachour, K., Moran, S.: At home with
agents: exploring attitudes towards future smart energy infrastructures. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI 2013, pp. 1173–1182. ACM (2013)

22. Schneider, K., Karras, O., Finger, A., Zibell, B.: Reframing societal discourse
as requirements negotiation: vision statement. In: 2017 IEEE 25th International
Requirements Engineering Conference Workshops (REW), pp. 188–193, September
2017

23. Schneider, K., Bertolli, L.M.: Video variants for crowdRE: how to create linear
videos, vision videos, and interactive videos. In: The 3rd International Workshop
on Crowd-Based Requirements Engineering (CrowdRE 2019), International IEEE
Conference on Requirements Engineering (RE 2019), Jeju Island, South Korea
(2019)

24. Schneider, K., Busch, M., Karras, O., Schrapel, M., Rohs, M.: Refining vision
videos. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp.
135–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15538-4 10

25. Stangl, H., Creighton, O.: Continuous demonstration. In: 2011 Fourth International
Workshop on Multimedia and Enjoyable Requirements Engineering (MERE 2011),
pp. 38–41. IEEE (2011)

26. Vistisen, P., Poulsen, S.: Investigating user experiences through animation-based
sketching. In: Murnieks, A., Rinnert, G., Stone, B., Tegtmeyer, R. (eds.) Motion
Design Education Summit 2015 Edited Conference Proceedings, pp. 29–38. Rout-
ledge, Abingdon (2016)

27. Williams, A.M., Alspaugh, T.A.: Articulating software requirements comic book
style. In: 2008 Third International Workshop on Multimedia and Enjoyable
Requirements Engineering - Beyond Mere Descriptions and with More Fun and
Games, pp. 4–8, September 2008. https://doi.org/10.1109/MERE.2008.3

28. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

29. Xu, H., Creighton, O., Boulila, N., Bruegge, B.: From pixels to bytes: evolutionary
scenario based design with video. In: Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE 2012,
pp. 31:1–31:4. ACM, New York (2012)

30. Zachos, K., Maiden, N., Tosar, A.: Rich-media scenarios for discovering require-
ments. IEEE Softw. 22(5), 89–97 (2005)

31. Zibell, B., Diez, J.R., Heineking, I., Preuß, P., Bloem, H., Sohns, F.: Zukunft der
Nahversorgung in ländlichen Räumen: Bedarfsgerecht und maßgeschneidert. In:
Fachinger, U., Künemund, H. (eds.) Gerontologie und ländlicher Raum. VBG, pp.
141–165. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-09005-
0 8

https://doi.org/10.1007/978-3-030-15538-4_10
https://doi.org/10.1109/MERE.2008.3
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-658-09005-0_8
https://doi.org/10.1007/978-3-658-09005-0_8

Requirements Assessment in Smart City
Districts: A Motivation Concept for Citizens

Svenja Polst(B) and Frank Elberzhager

Fraunhofer IESE, Fraunhofer-Platz 1, 67633 Kaiserslautern, Germany
Svenja.polst@iese.fraunhofer.de

Abstract. [Context and motivation] Digitalization is increasingly influencing
cities as they evolve into Smart Cities. However, involving citizens in order to
develop digital solutions that address real needs of users is a challenging task. In
the Smart City project “EnStadt:Pfaff”, concepts are to be developed to encour-
age residents of a city district to participate in the development of a Smart City
district by communicating their needs, wishes, and ideas. [Question/problem] In
the context of Smart City districts, classic requirements engineering (RE) meth-
ods such as interviews can be used, but there is high potential for novel meth-
ods, as the residents are concentrated within a very limited physical space and
can communicate their needs and wishes through a digital platform as well as
through analog communication channels. Our research goal is to investigate such
novel methods and their potential for improving Smart City districts with digi-
tal solutions. [Principal ideas/results] In this research preview, we describe an
initial approach for encouraging a group of citizens (potentially without any soft-
ware engineering background) to participate in requirements elicitation in the
context of Smart Cities. [Contribution] The presented approach consists of nine
steps providing guidance for the selection of motivational measures, the reduc-
tion of obstacles to participation, and communication of requirements elicitation
activities. Furthermore, we present topics for future research.

Keywords: Smart City · Requirements engineering · Digital platform ·
Motivation

1 Introduction

Digital technologies are increasingly being used in city environments, and more and
more cities are planning to develop and offer digital services to their citizens. Examples
include digital platforms for supporting multimodal mobility or communication means
linking citizens to municipalities and enabling them to report damaged infrastructure or
other shortcomings.

Ideally, users of digital solutions, systems, and services (in this case the citizens)
are involved in the development. As digitalization affects almost everyone, everybody
should be empowered to contribute their requirements [1]. However, often not everyone
is involved or even considered.

© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 293–299, 2020.
https://doi.org/10.1007/978-3-030-44429-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_20

294 S. Polst and F. Elberzhager

Furthermore, Doerr et al. claim that there exists a huge potential to explore newways
of conductingREactivities in social contexts and provide two classifications (dimensions
for end-users and RE methods) to support such derivation of new methods [2]. We
follow this claim and believe that citizens can be involved better in the elicitation of
requirements for digital solutions of real benefit for them. One main challenge in this
context, however, is how to motivate the citizens to participate in this process. In this
paper, we therefore present a structured nine-step process that describes how to gather
feedback fromcitizens, andwhich explicitly considersmotivational concepts for citizens.
We attach examples from the “EnStadt:Pfaff” 1 research project where the goal is to build
a climate-neutral Smart City district with the help of digital solutions.

Our basic idea for motivating citizens to participate in RE activities is to reduce
obstacles regarding their participation and to integrate motivational elements already
in the planning of the RE activities. We developed an initial approach consisting of
nine steps that serve as guidance for planning RE activities. The approach is meant to
address potential participants with low to medium intrinsic motivation of contributing
to a requirements elicitation activity. The approach should be applied by requirements
engineers. We believe that several steps could be conducted more efficiently with the
support of tools, such as a set of classified methods. Therefore, we introduce our idea of
what a toolbox could look like. In Sect. 2, we present related work and how we derived
our assumptions and then introduce the 9-step approach in Sect. 3.

2 Related Work and Assumptions

The American Psychology Association (APA) defines “motivation” as: “the impetus
that gives purpose or direction to behavior and operates in humans at a conscious or
unconscious level. Motives are frequently divided into (a) physiological [motives] […];
and (b) personal, social, or secondary motives, such as affiliation, competition, and
individual interests and goals.” 2. Motives are also used in the area of gamification (e.g.,
[3]). In the area of gamification, concrete motivational measures are also applied, for
example leaderboards, badges, and levels [4], which can be linked to motives.

Our approach is based on the assumption that motivational measures integrated into
the method and into the execution of the method increase total motivation. Based on the
above paragraph, we assume that the following aspects should be considered to increase
themotivation of participants: interests, goals, and preferences. Interests refer to interests
in topics, such as environmental protection and digitalization. Goals describe personal
goals such as having a social network or prestige. Preferences refer to the participants’
preferences regarding the design and execution of a method. In our opinion, unfulfilled
preferences do not stop desired participants from participating, but their fulfilment might
make participants feel more comfortable.

According to the literature, there is an interrelationship between motivation, obsta-
cles, and resources. Rudolph et al. [5] developed an intention model that states that
the motivation must be higher than any obstacles so that a person has the intention to

1 https://pfaff-reallabor.de/.
2 https://dictionary.apa.org/motivation.

https://pfaff-reallabor.de/
https://dictionary.apa.org/motivation

Requirements Assessment in Smart City Districts 295

behave in a certain way. Obstacles towards system usage arise if a person does not have
the resources required by the system. For instance, an obstacle arises if a system was
developed for software engineers and requires technical knowledge but the user does
not have the required level of ‘technical knowledge’. The level of technical knowledge
is considered to be a resource.

We assume that obstacles arise when the characteristics of a method do not match
the resources of the participants. We identified these resources based on the above as:
intrinsic motivation, cognitive and physical capacities [5], time [2], and domain knowl-
edge [2, 5].We consider obstacles andmotivation as a kind of equation. If the motivation
to participate in an RE activity is greater than the obstacles, then a person is likely to
participate in it. Higher motivation can be achieved in two ways. On the one hand, the
obstacles can be lowered to such an extent that even someone with low motivation will
engage in an activity. On the other hand, motivation can be increased so that someone
will be willing to alter their resources (e.g., spend more time, gain knowledge) to over-
come the obstacles. Our approach is based on the assumptions that obstacles can be
reduced by matching the citizens’ resources to the characteristics of an RE method and
to the way a method is executed.

There is literature about RE methods in Smart Cities. The paper by Doerr et al. [2]
presents a framework for a classification of RE methods and for social contexts in Smart
Cities and Smart Rural Areas. The classification is intended to ease the creation of new
ways of executing RE activities so that citizens are more likely to participate in them.
This classification scheme for social contexts describes the characteristics of end-users,
such as availability, domain experience, attitude towards IT, locality preference, degree
of impact, and context of system usage. Some of these characteristics are similar to
the characteristics in their scheme of RE methods, but others do not match, such as
atmosphere and number of participants. We conclude that the characteristics of end-
users and the methods could be refined. The authors point out that their work is at an
early stage and that more research needs to be conducted in this field.

We assume that in Smart City districts, there are possibilities for executing a method
in novel ways due to the fact that the desired participants time in the limited physical
space of the district every day and, at least in the Pfaff district, a digital platform for
communication is available. The creation of new methods could also be inspired by the
fields of “Citizen Science” and “Co-Creation”.

3 Approach

In this section, we describe the nine-step approach (see Fig. 1) and how some of the
steps could be supported by a toolbox. Furthermore, we present an example describ-
ing the planning of an RE activity in the district studied in the context of the project
“EnStadt:Pfaff”, called Pfaff district. In the example, a service for elderly people in
the district should be developed that facilitates contact with others in the district so that
elderly people will feel less lonely. One RE activity is to analyze current and past ways of
how these elderly people got in contact with others in their neighborhood. The example
is currently fictive, since the district is under construction and therefore still uninhabited.

296 S. Polst and F. Elberzhager

1 2 3 5 6 8

4

Define
desired
part icipants

Describe
desired
part icipants

Compare
resources to
methods

Search or
create new
methods

Select
method

Compare
resources to
execut ion
opt ions

Add
motivat ional
measures

9
Develop
suggest ions
for invitat ion

7
Select
execut ion
opt ions

Toolbox

Procedure:

Fig. 1. 9-step approach for reducing obstacles and increasing participants’ motivation

Before these activities can be carried out, the objectives (e.g., the elicitation of as-is
scenarios) must be set.

(1) Define desired participants: The sub-group of stakeholders who are intended to
participate in a specific RE activity has to be defined so that appropriate methods
can be selected later on. In a Smart City district, the most relevant stakeholders are
the direct users of the district and digital services offered there, i.e., the residents.
We assume that requirement engineers do not need support in the form of a toolbox
in this step, which is a common step in RE. Example: In our example, the desired
participants are senior citizen who want to have more contact with others in the
district.

(2) Describe desired participants: The characteristics of the desired participants have
to be identified and documented so that they can be systematically considered when
selecting a method. In the current phase of our research, we consider the following
characteristics as relevant: resources, interests, goals, and preferences. The toolbox
should describe a process guiding through the elicitation of these characteristics
and a scheme for documenting the characteristics systematically. Example: The
senior citizens have decreased cognitive capacities compared to younger persons;
for instance, their ability to keep information in the working memory is reduced.
They often have little experience with technical systems. Their physical capacities
are reduced as well. Their goal is to have more contact with other people.

(3) Compare resources to methods: The properties of the methods have to be compared
to the desired participants’ resources and good matches have to be identified to
avoid obstacles. In the Smart City context, classic RE methods such as interviews
can be used, but there is much potential for novel methods such as text mining,
as citizens are likely to use digital services a lot. The toolbox should provide a set
of classical and novel methods already classified according to a scheme. In this
classification scheme, the criteria are aligned to the resources, e.g., the required
cognitive capacities (few, medium, high) so that it is easy to find a match between
method and resources. Example: The methods “interview” and “6-3-5 brainwriting
method” are compared to the senior citizens‘ resources. The 6-3-5 method requires
at least medium cognitive resources since the participant has to keep the previously
described answers in mind. An interview, on the other hand, requires only low
cognitive capacities.

Requirements Assessment in Smart City Districts 297

(4) Search or create newmethods: If themethod criteria do notmatch the resources, new
methods should be searched or created. The toolbox should provide inspiration on
where to find newmethods and describe the procedure for classifying newmethods
according to the scheme mentioned in step 3.

(5) Select method: If two or more methods are identified, the quality of the expected
results, the preferences, or the project constraints (e.g., budget) can be used as
criteria for making the final decision about which method to use. If the project
constraints and number of participants allows to apply several methods, several
different methods could be applied.

(6) Compare resources to execution options: The options for executing the methods
should be compared to the resources in order to avoid obstacles. The toolbox should
provide a set of execution options and a scheme for matching the execution options
to resources. Example: We decided to conduct interviews. Since elderly people’s
technical knowledge is often low, interviews should not be conducted via video
telephony. Since their physical capabilities are often low (e.g., their mobility is
restricted), interviews should be done at or close to their home or via telephone.

(7) Select realization option: If two or more execution options fit, the same selection
criteria apply as for the methods (quality of expected results, pragmatic reasons,
preferences). Example: Due to the senior citizens’ preferences, interviews should
be conducted face-to-face.

(8) Add motivational measures: The method and its execution should be enhanced
through measures for increasing the motivation to participate. Motivational mea-
sures could address the participants‘ interests and goals, or be monetary benefits,
such as vouchers that can be used within the district, or gamification elements such
as leaderboards. The toolbox should provide a set of motivational measures and
their relation to motives. Example: The senior citizens are motivated by a sense of
connectedness. Therefore, the interviews could be conducted by other residents of
the district so that the elderly people get directly in contact with others living in
the district. The interviewers could be recruited via the platform and rewarded with
vouchers for services on the digital platform.

(9) Provide suggestions for invitation: Since the requirements engineers cannot always
contact the desired participants directly due to privacy regulations or because they
do not host the appropriate communication channels, the requirements engineers
should at least make suggestions to the responsible persons (e.g., the municipality)
regardingwhat to communicate and viawhich channel. In addition to organizational
information, such as date and time, the motivational measures should be commu-
nicated. In Smart City districts, a digital platform and its services could be used as
communication channel, but so could information boards in public places such as
bus stops, where people have time to read them. Example: In our example, letters
are sent to the nursing home in the district and flyers are distributed by nursing care
services. The letters stress the value of the interviews as a way of getting in touch
with one’s neighbors.

298 S. Polst and F. Elberzhager

4 Summary and Future Work

We presented a first version of a 9-step approach that provides guidance for the planning
of RE activities (e.g., elicitation of needs and ideas) with citizens of a Smart City district
with a strong focus onmotivational issues. The process ismainly based on our experience
and identified gaps in our contexts.Of course, not all relevant aspects of involving citizens
are currently considered in the approach, which is open to future work. Furthermore,
we want to include several examples in the toolbox itself to better support requirements
engineers during the different steps and to provide concrete motivational elements.

We have several further research questions that emerged during our initial work and
will be considered in the future:

• Is it indeed possible to differentiate between methods and execution of the methods?
• The approach only describes how people can be motivated to engage in a single
activity. Which factors have to be considered if people should be involved several
times?

• The quality of the results might be negatively influenced by the execution of the
method, which was aligned to the participants’ resources and preferences.

• Is it possible to consider a very heterogeneous group? Does the type of execution
determine the type of the actual participants?

• What else has to be consideredwhen characterizing potential participant?Doaversions
and concerns (e.g. regarding privacy) need to be considered?

Besides the general research questions, we will focus on the application of the app-
roach in our research project and use feedback from the participants as well as from
the organizers and moderators to improve our approach. Furthermore, the quality of the
results might depend on different instantiations (e.g., selection of concrete methods) of
our approach. If the parameters for adjusting the approach and the consequences are
known, the approach might yield better results. Our goal is to identify these criteria in
the future. Finally, trade-offs of the approach must be discussed. For example, are fast,
but not so accurate results desired, or should more time be invested and a broader set of
participants considered to obtain better requirements? Answering such questions might
also influence our approach.

Acknowledgments. Parts of this work have been funded by the “EnStadt: Pfaff” project (grant
no. 03SBE112D and 03SBE112G) of the German Federal Ministry for Economic Affairs and
Energy (BMWi) and the German Federal Ministry of Education and Research (BMBF).

References

1. Villela, K., Groen, E., Doerr, J.: Ubiquitous requirements engineering: a paradigm shift that
affects everyone. IEEE Softw. 36(2), 8–12 (2019)

2. Doerr, J., Hess, A., Koch, M.: RE and society - a perspective on RE in times of smart cities and
smart rural areas. In: IEEE 26th International Requirements Engineering Conference (RE),
pp. 100–111. IEEE (2018). https://doi.org/10.1109/re.2018.00020

https://doi.org/10.1109/re.2018.00020

Requirements Assessment in Smart City Districts 299

3. Marczewski, A.: User types. In: Even Ninja Monkeys Like to Play: Gamification, Game
Thinking and Motivational Design, pp. 65–80. CreateSpace Independent Publishing Platform
(2015)

4. Zichermann, G., Cunningham, C.: Gamification by Design: Implementing Game Mechanics
in Web and Mobile Apps. O’Reilly Media Inc., Newton (2011)

5. Rudolph, M., Feth, D., Polst, S.: Why users ignore privacy policies – a survey and intention
model for explaining user privacy behavior. In: Kurosu, M. (ed.) HCI 2018. LNCS, vol. 10901,
pp. 587–598. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91238-7_45

https://doi.org/10.1007/978-3-319-91238-7_45

Visualizing Feature-Level Evolution
in Product Lines: A Research Preview

Daniel Hinterreiter1, Paul Grünbacher1(B), and Herbert Prähofer2

1 Christian Doppler Laboratory MEVSS, Institute Software Systems Engineering,
Johannes Kepler University Linz, Linz, Austria

paul.gruenbacher@jku.at
2 Institute System Software, Johannes Kepler University Linz, Linz, Austria

Abstract. [Context and motivation] Software product lines evolve
frequently to address customer requirements in different domains. This
leads to a distributed engineering process with frequent updates and
extensions. [Question/problem] However, such changes are typically
managed and tracked at the level of source code while feature-level aware-
ness about software evolution is commonly lacking. In this research pre-
view paper we thus present an approach visualizing the evolution in soft-
ware product lines at the level of features. [Principal ideas/results]
Specifically, we extend feature models with feature evolution plots to
visualize changes at a higher level. Our approach uses static code analyses
and a variation control system to compute the evolution data for visuali-
sation. As a preliminary evaluation we report selected examples of apply-
ing our approach to a cyberphysical ecosystem from the field of industrial
automation. [Contribution] Integrating visualisations into state-of-the-
art feature models can contribute to better integrate requirements-level
and code-level perspectives during product line evolution.

Keywords: Product lines · Evolution · Visualization

1 Introduction

Software companies nowadays use product lines to provide highly individual
solutions for customers. Product lines need to evolve frequently to meet new cus-
tomer requirements. Commonly, engineers customize and extend product lines
concurrently in different projects to quickly deliver solutions to customers, result-
ing in a distributed and feature-oriented development process [7]. Specifically,
engineers create new and modify existing features when developing customer-
specific solutions. Existing version control systems like Git provide code-level
tracking of changes in the solution space. This level of abstraction is, however,
insufficient for developers who first need to understand the impact [1] and magni-
tude of such changes at the level of features. In particular, product line engineers
need to assess the complexity of the updated features when integrating selected
features from existing customer projects into their product line to realize domain
requirements.
c© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, pp. 300–306, 2020.
https://doi.org/10.1007/978-3-030-44429-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_21&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7_21

Visualizing Feature-Level Evolution in Product Lines 301

Fig. 1. A feature evolution plot for the feature Movement showing how developers
modified this feature in products A and B compared to the base product line.

Feature models are widely used in industry to describe and manage complex
systems [3]. Feature models, however, are often only weakly linked with code-
level changes and they do not reflect ongoing development. Visualization tech-
niques have been used widely and effectively to increase awareness [5,10] about
software evolution [14]. For instance, Montalvillo et al. [13] presented ’peering
bars’, which extend version control systems to visualize how a product’s features
have been upgraded in other branches to support the merge process. Similarly,
Lettner et al. [10] proposed a publish-subscribe approach to feature-evolution
tracking in software ecosystems based on feature feeds and awareness models.

This research preview paper presents our ongoing research on extending fea-
ture models to visualize the impact of implementation-level changes at the level
of features. We use change metrics based on data from a variation control systems
(VCS) [12]. Our approach builds on our earlier work on feature modelling [15]
and feature-to-artifact mappings [6]. Specifically, we rely on code analyses and
feature-to-code mappings as presented in [6]. However, while this earlier work
focused on computing the evolution of different types of feature interactions it
did not address analyzing and visualizing the evolution of feature size or fea-
ture scattering. We further report results from a preliminary evaluation based
on the evolution history of an industrial project and present a plan for further
evaluating our approach.

2 Visualizing Feature Evolution Metrics

Feature-oriented engineering assumes that features are mapped to the artifacts
realizing them [2]. For instance, many techniques exist for mapping features
to code, models, or documentation [3]. Figure 1 shows a typical development
scenario illustrating the purpose of our visualization extension for feature models.
(1) A company maintains a Base product line of a Pick-and-Place Unit [16],

302 D. Hinterreiter et al.

which is shown as a feature model [8]. (2) Two products A and B are created to
adapt and extend the base product line for two different customers. (3) When
merging selected new features or feature revisions back to the product line the
maintainer of Base needs to integrate the changes made in A and B, thereby
creating Base’. The maintainer requires awareness, i.e., an understanding of
these other development activities as a context for her own activity [5]. Our
approach thus helps to determine (purpose) the complexity (issue) of evolved
features (object) from the perspective of a product line engineer (viewpoint). We
are interested in two questions to assess the evolution of feature complexity: by
how much did a feature change? Did the change(s) affect feature scattering?

In our approach features are mapped to arbitrary (parts of) artifacts such as
statements in source code, model elements, or lines in documents. Our visual-
ization technique relies on two metrics which can be calculated based on these
detailed feature-to-artifact mappings:

Feature size evolution (FSiE). The size of a feature (FSi) is measured by
the magnitude of artifacts mapped to a particular feature (e.g., the number of
program elements in source code or the number of data elements in XML files).
The FSiE is determined by the relative change of the artifact size between two
different points in time t1 and t2:

FSiE = (FSit2 − FSit1)/FSit1

Feature scattering evolution (FScE). Individual features are typically realized
in multiple artifacts and locations. The number of contiguous locations of a fea-
ture’s implementation determines its scattering (FSc). For example, if a feature
is mapped to all source files within one directory, the directory represents the
location of the implementation and the scattering is 1. However, scattering is 5
if the feature is mapped to five independent source files. FScE is then computed
by the relative change of the FSc of a feature between two different points in
time t1 and t2.

FScE = (FSct2 − FSct1)/FSct1

As shown in Fig. 1 we extend feature models to visualize such feature evolu-
tion. Specifically, we add a stack of feature evolution plots to the basic feature
block to visualize the changes of that feature in other customer products. Each
feature evolution plot shows the name of the customer product variant the fea-
ture is attached to (1st column), the FScE (2nd column) and the FSiE (3rd

column) for that product. The FSiE percentage is further detailed using two
compartments. The left compartments represents the percentage of deleted arti-
facts while the right compartments shows the percentage of added artifacts for
the feature in the system. In our example the feature Movement has been evolved
in both products A and B : the developers of product A added code compared
to the base product line, thereby also increasing the FScE. The developers of
product B added but also deleted some code, overall only slightly affecting the
FScE.

We have been implementing our approach to feature evolution awareness
by integrating a feature modeling environment [7] with the VCS ECCO [12]

Visualizing Feature-Level Evolution in Product Lines 303

Fig. 2. Feature evolution plots for the features Ejector and NozzleHeating.

as part of developing our feature-oriented platform. While existing VCS are
mostly bound to specific artifact types [11], ECCO can be extended with plug-
ins to support different domain-specific implementation languages and artifact
types. ECCO creates and maintains feature-to-artifact mappings by comput-
ing differences in features and artifacts of products [12], i.e., our approach does
not assume initial feature-to-artifact mappings, as they are created automati-
cally when evolving the system (or replaying its evolution history). Our current
research prototype extracts the required mappings from the VCS ECCO and
performs all code-level analyses needed to compute the FSiE and FScE metrics.

3 Preliminary Evaluation

Our research is conducted in cooperation with KEBA AG, a company providing
cyberphysical systems for industrial automation, such as their KePlast platform
for developing injection molding machines. KePlast exists in specific platform
variants, e.g., for the Chinese market or for an original equipment manufacturer.
This makes it difficult to understand changes made to the different variants.
For instance, extensions remain largely undocumented, making it difficult for
engineers to understand changes at the level of features. For the purpose of our
preliminary evaluation we analyzed the evolution history of a customer project
conducted by an engineer of KEBA AG. The engineer used our tool FORCE [7]
to track all changes in a feature-oriented manner, i.e., when committing a change
the engineer clearly indicated the affected feature(s). Specifically, the engineer
extended KePlast and committed 70 changes to address customer requirements.
Based on this comprehensive data we (i) illustrate our visualization for selected
features and (ii) show the usefulness of the FSiE and FScE metrics for this
real-world engineering project.

Visualizing Selected Features. To demonstrate the visualization we replayed
a development scenario, following the scenario shown in Fig. 1: we started with
the Base version of KePlast and then created two new products A and B, evolv-
ing independently from each other to address customer needs. In both cases, new
features were created and existing features were adapted by replaying commits
from the project history. At some point in the evolution history of product B we
assume the engineer wants to integrate changes made in product A. The visu-
alization allows to quickly show how significant the changes are for selected
features, thus estimating the resulting integration and maintenance effort.

304 D. Hinterreiter et al.

Fig. 3. Portofolio for 42 features of the industry project. We use a logarithmic scale
for presentation after performing a log-modulus transformation. Darker color is used
to indicate overlapping circles. (Color figure online)

Figure 2 shows the results of this feature-aware three-way diff for two features
of the two evolved products. We can quickly see that both features were only
changed in one of the products. The changes were also rather minor with a rather
small increment in artifact size. However, the FScE is rather high showing that
some changes increased the number of feature locations, thus likely increasing
maintenance and integration effort.

FSiE and FScE Analysis. To give an overview of the usefulness of the defined
metrics we compute their values by comparing the first und the last commit
for all features modified in this industrial project. Figure 3 presents a portfolio
showing the FSiE and FScE for 42 features. Typically these feature were involved
in multiple commits. One can see that most features have rather small changes
in artifact size, some of which are the result of the continuous refinement of
feature-to-artifact mappings during evolution. However, in all cases the changes
resulted in an increment of feature scattering. For example, the FScE of the
Ejector (involved in 14 commits) increased by 2150% whereas the number of
artifacts just increased by about 2.7%. A code inspection revealed that the high
value was caused by user interface code added in many locations. A different
example is the feature JapaneseLanguage (7 commits), which was added as a
new feature in the project. After the feature was initially added, the feature
was only slightly modified. In particular, the deletion of the translation for some
features reduced the FSiE while leaving the FScE unchanged. A similar example
is the newly added feature OilPreHeating (4 commits), which shows only a small
increase in size during the project, but reduced FScE caused by the deletion of
some no-longer-needed code fragments. The feature SlideTable (5 commits) is
an example where artifacts were added and removed during the project, overall
leading to a small reduction in size. Obviously, the newly added code significantly
increased the scattering of this feature.

Visualizing Feature-Level Evolution in Product Lines 305

4 Evaluation Plan

We did not conduct a user study in our preliminary evaluation but analyzed
data from an industrial project repository to validate our metrics. We also used
selected examples from the results of our analyses to illustrate our visualization
approach.

In future research, we will combine both a cognitive walkthrough and a user
study to investigate the usefulness of our visualizations based on our current
prototype. Our evaluation will follow the combined research method described
in [9]. Specifically, we will evaluate feature evolution plots and feature portfolios
as a requirements-level visualization of changes.

The walkthrough will be based on the Cognitive Dimensions of Notations
Framework [4]. Based on the findings of this walkthrough we will improve the
current prototype. The user study will then be based on an industrial scenario on
integrating feature updates during product line evolution. In particular, we plan
to evaluate the usefulness of our visualizations for estimating the complexity of
feature updates. We will evaluate to what extent our requirements-level visual-
izations can guide engineers who are in charge of integrating new or updated
features from related customer projects into a product line to realize domain
requirements. We will further investigate how such visualizations can be com-
bined with detailed feature interaction analyses presented in [6].

5 Conclusions

We presented a visualization approach to extend feature models with feature
evolution plots as a means to increase awareness about feature-level changes in
distributed development scenarios, which are common in software product line
engineering. We also reported results of a preliminary evaluation based on an
industrial product line. In the short term we will extend the Feature Editor of
FORCE to visualize the FSiE and FScE as already computed in our evaluation.
Our long-term plan is to evaluate our approach using large-scale product lines
from our industry partner involving multiple industrial engineers. In particular,
we will apply our tool and visualizations followed by the evaluation of their
usefulness.

Acknowledgements. The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for Research, Technology and
Development, and KEBA AG, Austria is gratefully acknowledged.

References

1. Angerer, F., Grimmer, A., Prähofer, H., Grünbacher, P.: Change impact analysis
for maintenance and evolution of variable software systems. Autom. Softw. Eng.
26(2), 417–461 (2019). https://doi.org/10.1007/s10515-019-00253-7

https://doi.org/10.1007/s10515-019-00253-7

306 D. Hinterreiter et al.

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37521-7 1

3. Berger, T., et al.: What is a feature? A qualitative study of features in industrial
software product lines. In: Proceedings of the 19th International Conference on
Software Product Line, pp. 16–25 (2015)

4. Blackwell, A., Green, T.: Notational systems-the cognitive dimensions of notations
framework. In: Carroll, J.M. (ed.) HCI Models, Theories, and Frameworks, Inter-
active Technologies, pp. 103–133. Morgan Kaufmann, San Francisco (2003)

5. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In:
Proceedings of the 1992 ACM Conference on Computer-Supported Cooperative
Work, pp. 107–114 (1992)

6. Feichtinger, K., Hinterreiter, D., Linsbauer, L., Prähofer, H., Grünbacher, P.: Sup-
porting feature model evolution by suggesting constraints from code-level depen-
dency analyses. In: Proceedings of the 18th ACM SIGPLAN International Confer-
ence on Generative Programming: Concepts and Experiences, pp. 129–142 (2019)

7. Hinterreiter, D., Linsbauer, L., Reisinger, F., Prähofer, H., Grünbacher, P., Egyed,
A.: Feature-oriented evolution of automation software systems in industrial soft-
ware ecosystems. In: 2018 IEEE 23rd International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), pp. 107–114 (2018)

8. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report (1990)

9. Kritzinger, L.M., Krismayer, T., Rabiser, R., Grünbacher, P.: A user study on the
usefulness of visualization support for requirements monitoring. In: Proceedings
of 7th IEEE Working Conference on Software Visualization, pp. 56–66. IEEE,
Cleveland (2019)

10. Lettner, D., Grünbacher, P.: Using feature feeds to improve developer awareness
in software ecosystem evolution. In: Proceedings 9th International Workshop on
Variability Modelling of Software-intensive Systems, pp. 11–18 (2015)

11. Linsbauer, L., Berger, T., Grünbacher, P.: A classification of variation control sys-
tems. In: Proceedings 16th International Conference on Generative Programming:
Concepts & Experiences, pp. 49–62 (2017)

12. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Variability extraction and mod-
eling for product variants. Softw. Syst. Model. 16(4), 1179–1199 (2016). https://
doi.org/10.1007/s10270-015-0512-y

13. Montalvillo, L., Dı́az, O., Fogdal, T.: Reducing coordination overhead in SPLs:
peering in on peers. In: Proceedings of 22nd International Systems and Software
Product Line Conference, pp. 110–120 (2018)

14. Novais, R.L., Torres, A., Mendes, T.S., Mendonça, M.G., Zazworka, N.: Software
evolution visualization: a systematic mapping study. Inf. Softw. Technol. 55(11),
1860–1883 (2013)

15. Rabiser, D., et al.: Multi-purpose, multi-level feature modeling of large-scale indus-
trial software systems. Softw. Syst. Model. 17(3), 913–938 (2016). https://doi.org/
10.1007/s10270-016-0564-7

16. Vogel-Heuser, B., Legat, C., Folmer, J., Feldmann, S.: Researching evolution in
industrial plant automation: Scenarios and documentation of the Pick and Place
Unit. Technische Universität München, Technical report (2014)

https://doi.org/10.1007/978-3-642-37521-7_1
https://doi.org/10.1007/978-3-642-37521-7_1
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1007/s10270-016-0564-7
https://doi.org/10.1007/s10270-016-0564-7

Correction to: Requirements Engineering:
Foundation for Software Quality

Nazim Madhavji, Liliana Pasquale, Alessio Ferrari ,
and Stefania Gnesi

Correction to:
N. Madhavji et al. (Eds.): Requirements Engineering:
Foundation for Software Quality, LNCS 12045,
https://doi.org/10.1007/978-3-030-44429-7

The book was inadvertently published with only two volume editors “Nazim Madhavji
and Liliana Pasquale” whereas there should have been four “Nazim Madhavji,
Liliana Pasquale, Alessio Ferrari and Stefania Gnesi”. The missing two volume editors
were added in the book and the source line was updated accordingly.

The updated version of the book can be found at
https://doi.org/10.1007/978-3-030-44429-7

© Springer Nature Switzerland AG 2020
N. Madhavji et al. (Eds.): REFSQ 2020, LNCS 12045, p. C1, 2020.
https://doi.org/10.1007/978-3-030-44429-7_22

https://orcid.org/0000-0002-0636-5663
https://orcid.org/0000-0002-0139-0421
https://doi.org/10.1007/978-3-030-44429-7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44429-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-44429-7
https://doi.org/10.1007/978-3-030-44429-7_22

Author Index

Ahrens, Maike 36, 277
Araújo, João 116
Astudillo, Hernán 55

Bano, Muneera 186
Bokaei Hosseini, Mitra 97
Breaux, Travis 97
Brinkkemper, Sjaak 143, 169
Buchan, Jim 186
Busch, Melanie 277

Cavalcanti, Mateus 116
Cerdeiral, Cristina 55
Correal, Darío 55

Dalpiaz, Fabiano 143, 169, 221
de Oliveira Neto, Francisco Gomes 257
Debnath, Sourav 160

Elberzhager, Frank 293

Femmer, Henning 3
Ferreira, Dayse 116
Franch, Xavier 78, 135
Fricker, Samuel 135

Ghanavati, Sepideh 124
Giannakopoulou, Dimitra 19
Gorschek, Tony 116
Groen, Eduard C. 143
Groher, Iris 135
Grünbacher, Paul 300

Hahmann, Torsten 124
Hinterreiter, Daniel 300
Horkoff, Jennifer 257
Humphreys, Llio 124

Izurieta, Clemente 55

Jinwala, Devesh 239

Karras, Oliver 277
Knauss, Alessia 257

Magalhães, Ana Patrícia F. 55
Mattos, David 257
Mavridou, Anastasia 19
Mendes, Leonardo 55
Mennig, Patrick 71
Mishra, Siba 203
Molenaar, Sabine 169

Nass, Claudia 71
Niu, Jianwei 97

Oliveira Spínola, Rodrigo 55
Oriol, Marc 135

Palomares, Cristina 78
Patel, Sankita 239
Peixoto, Mariana 116
Perez, Boris 55
Polst, Svenja 293
Prähofer, Herbert 300
Pressburger, Thomas 19

Quer, Carme 78

Rabinia, Amin 124
Rios, Nicolli 55

Santos, Gleison 55
Schneider, Kurt 36, 277
Schumann, Johann 19
Seaman, Carolyn 55
Seyff, Norbert 135
Shah, Unnati 239
Sharma, Arpit 203
Silva, Carla 116

Slavin, Rocky 97
Spijkman, Tjerk 169
Spoletini, Paola 160
Sturm, Arnon 221
Svensson, Richard 257

van Vliet, Martijn 143
Vierhauser, Michael 135

Vilela, Jéssyka 116
Vogelsang, Andreas 3

Wang, Xiaoyin 97
Wimmer, Manuel 135
Winter, Katharina 3

Zowghi, Didar 186

308 Author Index

	Preface
	Organization
	Contents
	Requirements Specification
	How Do Quantifiers Affect the Quality of Requirements?
	1 Introduction
	2 Background
	2.1 Quantifiers in the English Language
	2.2 Affirmative and Negative Sentences
	2.3 Requirements Readability

	3 Study Design
	3.1 Data Collection
	3.2 Study Objects and Treatments
	3.3 Subject Selection
	3.4 Data Analysis
	3.5 Experiment Validity

	4 Study Results
	4.1 Effects on Readability (RQ1)
	4.2 Effects on Comprehension (RQ2)
	4.3 Effects on Perceived Difficulty (RQ3)
	4.4 Summary of the Results

	5 Discussion
	5.1 Threats to Validity
	5.2 Interpretation and Writing Guidelines
	5.3 Relation to Existing Evidence

	6 Conclusion
	References

	Generation of Formal Requirements from Structured Natural Language
	1 Introduction
	2 Background
	3 Requirements Language
	4 Compositional Formalization
	5 Verifying Formalizations
	5.1 Trace Generation
	5.2 Test Oracles
	5.3 Testing and Verification

	6 Lockheed Martin Cyber Physical Systems Challenge
	7 Conclusions
	References

	Using Eye Tracking Data to Improve Requirements Specification Use
	1 Introduction
	2 Related Work
	3 Attention Visualizations on Requirements Specifications
	4 Experiment Design
	4.1 Research Questions and Metrics
	4.2 Hypotheses
	4.3 Design
	4.4 Material
	4.5 Collecting Data for Metrics
	4.6 Subjects' Demography
	4.7 Setting and Procedure

	5 Analysis and Results
	6 Threats to Validity
	7 Discussion
	8 Conclusion
	References

	Requirements Documentation
	Hearing the Voice of Software Practitioners on Causes, Effects, and Practices to Deal with Documentation Debt
	1 Introduction
	2 Background
	2.1 Technical Debt
	2.2 The InsighTD Project

	3 Research Strategy
	3.1 Research Questions
	3.2 Method

	4 Surveying Software Practitioners on Causes and Effects of Documentation Debt (InsighTD)
	4.1 Data Collection
	4.2 Data Analysis
	4.3 Results

	5 Interview-Based Case Study
	5.1 Data Collection
	5.2 Data Analysis
	5.3 Results

	6 Discussion
	6.1 Theoretical Framework of Documentation Debt

	7 Threats to Validity
	8 Final Remarks
	References

	Innovation Workshop Documentation for Following Software Engineering Activities
	1 Creative Problem Solving
	2 Problem
	3 Method
	4 Initial Results
	5 Further Research Plan
	References

	Industrial Practices on Requirements Reuse: An Interview-Based Study
	1 Introduction
	2 Background
	3 Related Work
	4 The Study
	5 Results
	5.1 RQ1. Is Requirements Reuse a Usual Practice in Industry?
	5.2 RQ2. What Factors Influence the Level of Adoption of Requirements Reuse?
	5.3 RQ3. What Types of Requirements Are More Prone to Reuse?
	5.4 RQ4. What Is the Process Followed to Implement Requirements Reuse?
	5.5 RQ5. What Are the Benefits Brought by Requirements Reuse?
	5.6 RQ6. What Are the Challenges to Overcome in Requirements Reuse?

	6 Discussion
	7 Conclusions and Future Work
	References

	Privacy and Legal Requirements
	Disambiguating Requirements Through Syntax-Driven Semantic Analysis of Information Types
	1 Introduction
	2 Background
	3 Related Work
	4 Ontology Construction Method
	4.1 Lexicon Reduction
	4.2 Semantic Role Tags
	4.3 Syntactic Analysis of Information Types Using Context-Free Grammar
	4.4 Inferring Morphological Variants and Semantic Relations

	5 Evaluation and Results
	5.1 Evaluation Using Lexicon L1
	5.2 Evaluation Using Lexicon L2

	6 Threats to Validity
	7 Conclusion and Future Work
	References

	On Understanding How Developers Perceive and Interpret Privacy Requirements Research Preview
	1 Introduction
	2 Research Method
	3 Results and Analysis
	4 Threats to Validity
	5 Final Considerations
	References

	A Methodology for Implementing the Formal Legal-GRL Framework: A Research Preview
	1 Introduction
	2 Legal Requirements Extraction (Phase A) - Overview
	2.1 The Procedure of Generating Non-modal Statements

	3 An Example of Modeling with the FLG Procedure
	4 Literature Review
	5 Evaluation Plan
	6 Conclusion and Future Work
	References

	Stakeholders Feedback and Training
	Towards Integrating Data-Driven Requirements Engineering into the Software Development Process: A Vision Paper
	1 Vision
	2 Research Challenges
	3 Research Roadmap
	4 Conclusion
	References

	Identifying and Classifying User Requirements in Online Feedbackpg via Crowdsourcing
	1 Introduction
	2 Related Work
	3 Kyōryoku: Crowd Annotation for Extracting Requirements-Related Contents from User Reviews
	4 Experiment Design and Conduction
	5 Results
	5.1 Demographics of the Gathered Crowd
	5.2 Job Statistics
	5.3 Outcome of the Crowd Work

	6 Threats to Validity
	7 Conclusion and Future Work
	References

	Designing a Virtual Client for Requirements Elicitation Interviews
	1 Introduction
	2 An Overview of VICO
	3 Research Agenda
	4 Initial Prototype and Exploratory Study
	5 Conclusion
	References

	Agile Methods and Requirements Comprehension
	Explicit Alignment of Requirements and Architecture in Agile Development
	1 Introduction
	2 Background
	3 The RE4SA Model
	3.1 Representing Requirements and Architecture
	3.2 Relationships Between the RE4SA Concepts
	3.3 Architecture Discovery and Architecture Recovery

	4 Alignment Metrics
	5 The RE4SA Model in Practice
	5.1 Granularity: Exploring Refinement and Abstraction
	5.2 Alignment: Studying Allocation and Satisfaction

	6 Discussion
	7 Conclusion
	References

	Applying Distributed Cognition Theory to Agile Requirements Engineering
	1 Introduction
	2 Background
	3 Research Design and Implementation
	4 The Context of the Field Work
	5 Results of the Distributed Cognition Analysis
	5.1 RQ 1: What Aspects of the Observed ARE Process Are Cognitively Significant?
	5.2 RQ 2: What Principles from DiCoT Are Important in the Observed ARE Process?

	6 Discussion
	6.1 The Observed Agile Requirements Prioritization Process: A High-Level View
	6.2 The Cognitive Role of the Prioritization Criteria
	6.3 The Cognitive Role of the User Story Cards
	6.4 The Important Cognitive Role of the Meeting Facilitator
	6.5 The Importance of the Face-to-Face Meeting as an Information Hub
	6.6 The Importance of the Room Layout
	6.7 The Need for a Diversity of Perspectives on User Story Value
	6.8 Secondary Cognitive Outcomes of the RP Process

	7 Reflections on the Application of DiCoT
	8 Threats to Validity
	9 Conclusion
	References

	Automatic Word Embeddings-Based Glossary Term Extraction from Large-Sized Software Requirements
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Preliminaries
	3.1 Word Embeddings
	3.2 Crowd-Generated Requirements

	4 Approach
	4.1 Data Gathering
	4.2 Data Preprocessing
	4.3 Extracting Candidate Glossary Terms
	4.4 Semantic Filtering of Candidate Glossary Terms

	5 Results and Discussions
	5.1 Ground Truth Generation
	5.2 Precision and Recall
	5.3 Automated Glossary Term Extraction
	5.4 Coverage
	5.5 Advantages of Our Approach
	5.6 Limitations of Our Approach

	6 Conclusions and Future Work
	References

	Requirements Modelling
	Conceptualizing Requirements Using User Stories and Use Cases: A Controlled Experiment
	1 Introduction
	2 Background and Related Work
	3 Experiment Design
	3.1 Hypotheses
	3.2 Design

	4 Experiment Results
	5 Discussion
	6 Threats to Validity
	7 Summary
	References

	A Semi-automated Approach to Generate an Adaptive Quality Attribute Relationship Matrix
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Acquire Knowledge
	3.2 QARM Generation

	4 Research Methodology
	4.1 Research Questions
	4.2 Experimental Setup
	4.3 Data Gathering and Analysis

	5 Results and Discussion
	5.1 Results
	5.2 Discussion

	6 Threats to Validity
	7 Conclusions
	References

	Evaluating the Effects of Different Requirements Representations on Writing Test Cases
	1 Introduction
	2 Related Work
	3 Research Method
	4 Results
	4.1 RQ1: Do the Different Representations of Requirements Affect the Produced Tests?
	4.2 RQ2: What Are the Challenges with Deriving Test Cases from the Different Requirements Representations?

	5 Discussion
	5.1 Threats to Validity

	6 Conclusion
	References

	Requirements Visualization
	Vision Meets Visualization: Are Animated Videos an Alternative?
	1 Videos as a Vision Mediator
	2 Application Context - Rural Areas
	3 Type of Content Representation - Animated and Real Video
	4 Related Work
	5 Experimental Design
	5.1 Hypotheses
	5.2 Material
	5.3 Selection of Participants
	5.4 Setting and Experiment Design

	6 Results
	7 Interpretation and Discussion
	7.1 Interpretation
	7.2 Discussion
	7.3 Threats to Validity

	8 Conclusion
	References

	Requirements Assessment in Smart City Districts: A Motivation Concept for Citizens
	1 Introduction
	2 Related Work and Assumptions
	3 Approach
	4 Summary and Future Work
	References

	Visualizing Feature-Level Evolution in Product Lines: A Research Preview
	1 Introduction
	2 Visualizing Feature Evolution Metrics
	3 Preliminary Evaluation
	4 Evaluation Plan
	5 Conclusions
	References

	Correction to: Requirements Engineering: Foundation for Software Quality
	Correction to: N. Madhavji et al. (Eds.): Requirements Engineering: Foundation for Software Quality, LNCS 12045, https://doi.org/10.1007/978-3-030-44429-7

	Author Index

