
Marco Gribaudo
Mauro Iacono
Tuan Phung-Duc
Rostislav Razumchik (Eds.)

LN
CS

 1
20

39

16th European Workshop, EPEW 2019
Milan, Italy, November 28–29, 2019
Revised Selected Papers

Computer
Performance Engineering

Lecture Notes in Computer Science 12039

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Marco Gribaudo • Mauro Iacono •

Tuan Phung-Duc • Rostislav Razumchik (Eds.)

Computer
Performance Engineering
16th European Workshop, EPEW 2019
Milan, Italy, November 28–29, 2019
Revised Selected Papers

123

Editors
Marco Gribaudo
Politecnico di Milano
Milano, Italy

Mauro Iacono
Università degli Studi
della Campania “L. Vanvitelli”
Caserta, Italy

Tuan Phung-Duc
University of Tsukuba
Tsukuba, Japan

Rostislav Razumchik
Federal Research Center
“Computer Science and Control”
of the Russian Academy of Sciences
Moscow, Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-44410-5 ISBN 978-3-030-44411-2 (eBook)
https://doi.org/10.1007/978-3-030-44411-2

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-44411-2

Preface

Following the tradition of the previous EPEWs, the goal of this workshop was to gather
academic and industrial researchers working on all aspects of performance engineering.
The papers presented at the workshop were devoted to modeling and analysis of
network/control protocols and high performance/big data information systems, analysis
of scheduling, blockchain technology, and analytical modeling and simulation of
computer/network systems. The call for papers gathered 13 high-quality submissions,
and each was peer reviewed by an average of three reviewers from the Program
Committee (PC). Each reviewer assessed the relevance, novelty, and technical
soundness of the assigned papers. After the reviews were collected, it was decided that
10 papers would be accepted having the highest (also weighted across the reviewers’
confidence) score among the positive ones. This year there were two keynote talks
given by Prof. Emeritus Giuseppe Serazzi from Politecnico di Milano (Italy) and Prof.
Anne Remke from the University of Münster (Germany). Prof. Giuseppe Serazzi
addressed current research and recent developments in the JMT software – simulator of
SPN and GSPN, CPN and QN models. Prof. Anne Remke explored the state of the art
in model checking Hybrid Petri nets, featuring a newly released tool, which performs
full-fledged STL model checking efficiently for Petri nets with a finite but arbitrary
number of random variables. We thank our keynote speakers, as well as all PC
members who placed their reviews on time despite the extremely tight reviewing
deadline and provided constructive and insightful comments. We also express our
gratitude to the Organizing Committee at Politecnico di Milano for their continuous
and valuable help, the EasyChair team for their conference system, and Springer for
their continued editorial support. Above all, we would like to thank the authors of the
papers for their contribution to this volume, which we hope that you, the reader, will
find useful.

February 2020 Marco Gribaudo
Mauro Iacono

Tuan Phung-Duc
Rostislav Razumchik

Organization

General Chairs

Marco Gribaudo Politecnico di Milano, Italy
Mauro Iacono Università degli Studi della Campania “Luigi

Vanvitelli”, Italy

Technical Program Chairs

Tuan Phung-Duc University of Tsukuba, Japan
Rostislav Razumchik Federal Research Center “Computer Science

and Control” of the Russian Academy of Sciences,
Russia

Program Committee

Elvio Gilberto Amparore University of Turin, Italy
Paolo Ballarini CentraleSupeléc, France
Enrico Barbierato Politecnico di Milano, Italy
Marco Bernardo University of Urbino, Italy
Marko Boon Eindhoven University of Technology, The Netherlands
Laura Carnevali University of Florence, Italy
Hind Castel Télécom SudParis, France
Davide Cerotti Politecnico di Milano, Italy
Ioannis Dimitriou University of Patras, Greece
Dieter Fiems Ghent University, Belgium
Jean-Michel Fourneau Université de Versailles Saint-Quentin-en-Yvelines,

France
Marco Gribaudo Politecnico di Milano, Italy
Boudewijn Haverkort Tilburg University, The Netherlands
András Horváth University of Turin, Italy
Esa Hyytiä University of Iceland, Iceland
Mauro Iacono Università degli Studi della Campania “Luigi

Vanvitelli”, Italy
Alain Jean-Marie Inria, France
Lasse Leskelä Aalto University, Finland
Oleg Lukashenko Institute of Applied Mathematical Research

of the Karelian Research Centre of the Russian
Academy of Sciences, Russia

Andrea Marin University of Venice, Italy
Marco Paolieri University of Southern California, USA
Nihal Pekergin Université Paris-Est Créteil, France

Tuan Phung-Duc University of Tsukuba, Japan
Agapios Platis University of the Aegean, Greece
Rostislav Razumchik Federal Research Center “Computer Science

and Control” of the Russian Academy of Sciences,
Russia

Philipp Reinecke Cardiff University, UK
Alexander Rumyantsev Institute of Applied Mathematical Research of the

Karelian Research Centre of the Russian Academy
of Sciences, Russia

Markus Siegle Bundeswehr University Munich, Germany
Miklós Telek Budapest University of Technology and Economics,

Hungary
Nigel Thomas Newcastle University, UK
Joris Walraevens Ghent University, Belgium
Katinka Wolter Freie Universität Berlin, Germany

viii Organization

Hybrid Petri Nets Featuring Multiple Random
Variables (Keynote)

Anne Remke

Westfälische Wilhelms-Universität, Münster, Germany
anne.remke@uni-muenster.de

Abstract. Hybrid Petri nets have been extended with random variables to model
stochastic time delays. This restricted class of stochastic hybrid systems has
successfully been used to model critical infrastructures like water sewage sys-
tems and smart home energy storage and control. The logic STL has been
proposed to formulate properties, which can automatically be model checked for
Hybrid Petri nets. Model checking requires to first build the underlying state
space and then relies on geometric operations on convex state sets which
symbolically represent sets of states with similar properties. After the satisfac-
tion sets are computed a final integration step is needed to compute the prob-
ability that a specific STL formula holds. This paper provides an overview on
the state-of-the-art in model checking Hybrid Petri nets, featuring a newly
released tool, which performs full-fledged STL model checking efficiently for
Hybrid Petri nets with a finite but arbitrary number of random variables.

Keywords: Hybrid Petri nets � Model checking � Stochastic hybrid systems

Hybrid Petri nets with general transitions (HPnG) [11] extend Hybrid Petri nets [2] by
adding stochastic delays through general transitions which fire after a randomly dis-
tributed amount of time. HPnGs provide a high-level and process-oriented formalism
for a restricted class of stochastic hybrid systems, where the continuous behaviour is
piece-wise linear without resets and the inherent non-determinism is resolved proba-
bilistically. Hybrid Petri nets without the above mentioned stochastic extension form a
subclass of Hybrid Automata [2], for which several approaches exist to analyze their
time-bounded reachability, e.g., flowpipe construction for different state-space repre-
sentations [9, 20, 23]. Several approaches for Hybrid Automata extended with discrete
probability distributions exist [19, 28, 29, 31]. Stochastic hybrid systems require a high
level of abstraction [1, 16], as e.g. applied to uncountable-state stochastic processes
[27] and infinite-state Markov chains [17]. Related Petri net approaches [5, 12] are
restricted e.g., with respect to the number of continuous variables [12] or to Markovian
jumps [5].

Hybrid Petri nets with stochastic firings have shown to be useful for evaluating e.g.
the survivability of critical infrastructures, like water and power distribution [6, 15]
using model checking algorithms. Properties of HPnGs can be specified using
Stochastic Time Logic (STL).

State space representation Choosing a state space representation that separates the
stochastic from the deterministic evolution in the Petri net, their analysis has in the past
been limited with respect to the number of stochastic firings. Since every firing of a

general transition dimension adds one dimension to the state space, techniques and
implementations for multi-dimensional geometric operations are required for the
development of efficient and automated model checking techniques for HPnGs. While
earlier work [7] was restricted to one stochastic firing, first extensions to more random
variables [8, 10] required libraries for halfspace intersection and hyperplane arrange-
ment, which to the best of our knowledge is not available for more than three
dimensions.

The evolution of the state space over time of an HPnG can be partitioned into sets
of states with similar behavior. This is done by conditioning their evolution on the
firing times of the general transitions, either as locations, organized in a Parametric
Location Tree (PLT) or using a geometric representation as convex polytopes
(so-called regions) with similar characteristics. Recently vertex enumeration was pro-
posed [14] to circumvent the problem of hyperplane arrangement, when constructing
the geometric state set representation as regions.

The tree-based representation of the state space can be constructed for an arbitrary
but finite number of stochastic firings [13]. In a next step, a geometric representation
can be computed for each location in the PLT [14], featuring the library HyPro [26],
which offers efficient implementations for operations on convex polytopes [32] in
higher dimensions. The advantage of HyPro e.g. with respect to [4, 30], is the clean
interface and the variety of options.

Model checking Stochastic Time Logic, which can be used to formally specify prop-
erties of the HPnG, closely resembles MITL [3] or the temporal layer of STL/PSL [22]
and is used to specify properties of HPnGs. Model checking STL then relies on the
geometric representation of regions as convex polytopes and recursively follows the
parse tree of the formula. Per region a convex representation of its satisfying parts is
returned. The satisfaction set of (the conjunction of) atomic properties is a single
convex polytope, and negation requires a translation into a convex representation, since
the representation of convex polytopes is not closed w.r.t. negation. Model checking
the until operator relies on a series of geometric operations, including polytope
inversion, and potentially iterates over child locations until the pre-specified time
bound is reached. The resulting satisfaction sets implicitly contain the stochastic
evolution and can be used to compute the probability that the STL property holds.

Integration Each random variable in the Hybrid Petri net is assigned a unique proba-
bility density function, which allows to integrate the joint probability distribution of all
stochastic firings over the convex polytopes of the satisfaction set of an STL formula.
Using the order in which the stochastic firings have occured, a d-dimensional Delayney
Triangulation is required to create simplices of the convex polytopes from the satis-
faction set. The ordered integration bounds are then obtained from an affine transfor-
mation of these simplices. To calculate the actual value of the integral, currently Monte
Carlo methods [21] are used.

Tool support The analytical evaluation of HPnGs highly depends on their piece-wise
linear evolution, resulting in exact state-space representations via convex polytopes.
The recently released C++ tool hpngm efficiently implements and combines algorithms

x A. Remke

for state-space creation, transformation to a geometric representation, model checking a
potentially nested STL formula and integrating over the resulting satisfaction set to
yield the probability that the property holds. Since model checking and integrating are
computationally expensive, the option of parallel execution has been included in the
tool.

Furthermore, discrete-event simulation as proposed for Hybrid Petri nets [25]
allows to validate analytical results and recent extensions to linear time invariant
systems [18], enable the simulation of more complex continuous dynamics [24].

References

1. Abate, A., Katoen, J.-P., Lygeros, J., Prandini, M.: Approximate model checking of
stochastic hybrid systems. Eur. J. Control 6, 624–641 (2010)

2. Alla, H., David, R.: Continuous and hybrid petri nets. J. Circuits Syst. Comput. 8(01),
159–188 (1998)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1),
116–146 (1996)

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a complete set
of numerical abstractions for the analysis and verification of hardware and software systems.
Sci. Comput. Prog. 72(1–2), 3–21 (2008)

5. Everdij, M.H.C., Blom, H.A.P.: Piecewise deterministic Markov processes represented by
dynamically coloured Petri nets. Stochastics 77(1), 1–29 (2005)

6. Ghasemieh, H., Remke, A., Haverkort, B.: Survivability analysis of a sewage treatment
facility using hybrid petri nets. In: Performance Evaluation, vol. 97, pp. 36–56. Elsevier
(2016)

7. Ghasemieh, H., Remke, A., Haverkort, B., Gribaudo, M.: Region-based analysis of hybrid
petri nets with a single general one-shot transition. In: Jurdziński, M., Ničković, D. (eds.)
FORMATS 2012. LNCS, vol. 7595, pp. 139–154. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33365-1_11

8. Ghasemieh, H., Remke, A., Haverkort, B.R.: Hybrid petri nets with multiple stochastic
transition firings. In: 2014 8th International Conference on Performance Evaluation
Methodologies and Tools, pp. 217–224. ICST (2014)

9. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari M.,
Thiele L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31954-2_19

10. Godde, A., Remke, A.: Model checking the STL time-bounded until on hybrid petri nets
using net polyhedra. In: Reinecke, P., Di Marco, A. (eds.) EPEW 2017. LNCS, vol. 10497,
pp. 101–116. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66583-2_7

11. Gribaudo, M., Remke, A.: Hybrid petri nets with general one-shot transitions. Perform. Eval.
105, 22–50 (2016)

12. Horton, G., Kulkarni, V.G., Nicol, D.M., Trivedi, K.S.: Fluid stochastic Petri nets: Theory,
applications, and solution techniques. J. Oper. Res. 105(1), 184–201 (1998)

13. Hüls, J., Pilch, C., Schinke, P., Delicaris, J., Remke, A.: State-space construction of hybrid
petri nets with multiple stochastic firings. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS,
vol. 11785, pp. 182–199. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-
8_11

Hybrid Petri Nets Featuring Multiple Random Variables (Keynote) xi

https://doi.org/10.1007/978-3-642-33365-1_11
https://doi.org/10.1007/978-3-642-33365-1_11
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-319-66583-2_7
https://doi.org/10.1007/978-3-030-30281-8_11
https://doi.org/10.1007/978-3-030-30281-8_11

14. Hüls, J., Schupp, S., Remke, A., Ábrahám, E.: Analyzing hybrid petri nets with multiple
stochastic firings using HyPro. In: 11th International Conference on Performance Evaluation
Methodologies and Tools (2017)

15. Jongerden, M.R., Hüls, J., Remke, A., Haverkort, B.R.: Does your domestic photovoltaic
energy system survive grid outages? Energies 9(9), 736 (2016)

16. Julius, A.A.: Approximate abstraction of stochastic hybrid automata. In: Hespanha, J.P.,
Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 318–332. Springer, Heidelberg (2006).
https://doi.org/10.1007/11730637_25

17. Klink, D., Remke, A., Haverkort, B.R., Katoen, J.-P.: Time-bounded reachability in
tree-structured QBDs by abstraction. J. Spec. Issue Perform. Eval. 68(2), 105–125 (2011)

18. Kofman, E.: A second-order approximation for DEVS simulation of continuous systems.
SIMULATION 78(2), 76–89, 2002.

19. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time
systems with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150 (2002)

20. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support functions.
Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010)

21. Peter Lepage, G.: A new algorithm for adaptive multidimensional integration. J. Comput.
Phys. 27(2), 192–203 (1978)

22. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakh-
nech, Y., Yovine, S. (eds.) FTRTFT 2004, FORMATS 2004. LNCS, vol 3253, pp. 152–166.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

23. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. SIAM (2009)
24. Pilch, C., Niehage, M., Remke, A.: HPnGs go non-linear: statistical dependability evaluation

of battery-powered systems. In: IEEE International Symposium on the Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems, pp. 157–169. IEEE (2018)

25. Pilch, C., Remke, A.: Statistical model checking for hybrid petri nets with multiple general
transitions. In: 47th International Conference on Dependable Systems and Networks,
pp. 475–486. IEEE (2017)

26. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ library of state set
representations for hybrid systems reachability analysis. In: Barrett, C., Davies, M., Kahsai,
T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-57288-8_20

27. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: formal abstractions of
uncountable-STate STochastic processes. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 272–286. Springer, Heidelberg. https://doi.org/10.1007/978-3-662-
46681-0_23 (2015)

28. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In: Joseph, M.,
(eds.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidelberg. https://doi.org/10.
1007/3-540-45352-0_5 (2000)

29. Teige, T., Fränzle, M.: Constraint-based analysis of probabilistic hybrid systems. IFAC Proc.
Vol. 42(17), 162–167 (2009)

30. The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 4.10 edition
(2017)

31. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification for prob-
abilistic hybrid systems. Eur. J. Control 18(6), 572–587 (2012)

32. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer Science & Business Media, New
York (2012). https://doi.org/10.1007/978-1-4613-8431-1

xii A. Remke

https://doi.org/10.1007/11730637_25
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/3-540-45352-0_5
https://doi.org/10.1007/3-540-45352-0_5
https://doi.org/10.1007/978-1-4613-8431-1

Contents

Abandonment Attack on the LEACH Protocol . 1
Albatool Alhawas and Nigel Thomas

Coherent Resolutions of Nondeterminism. 16
Marco Bernardo

Emulating Self-adaptive Stochastic Petri Nets . 33
Lorenzo Capra and Matteo Camilli

Design and Evaluation of an Edge Concurrency Control Protocol
for Distributed Graph Databases . 50

Paul Ezhilchelvan, Isi Mitrani, Jack Waudby, and Jim Webber

A Novel Data-Driven Algorithm for the Automated Detection
of Unexpectedly High Traffic Flow in Uncongested Traffic States. 65

Bo Klaasse, Rik Timmerman, Tessel van Ballegooijen, Marko Boon,
and Gerard Eijkelenboom

A Network Aware Resource Discovery Service. 84
Luigi Liquori, Rossano Gaeta, and Matteo Sereno

EthExplorer: A Tool for Forensic Analysis of the Ethereum Blockchain. 100
Yuriy Marchenko, William J. Knottenbelt, and Katinka Wolter

A Queueing Model that Works Only on the Biggest Jobs. 118
Andrea Marin and Sabina Rossi

Performance Evaluation of Thermal-Constrained Scheduling Strategies
in Multi-core Systems . 133

Muhammad Usama Sardar, Clemens Dubslaff, Sascha Klüppelholz,
Christel Baier, and Akash Kumar

Bounding the Rate of Convergence for One Class of Finite Capacity
Time Varying Markov Queues . 148

Alexander Zeifman, Yacov Satin, Rostislav Razumchik,
Anastasia Kryukova, and Galina Shilova

Author Index . 161

Abandonment Attack on the LEACH Protocol

Albatool Alhawas1,2(B) and Nigel Thomas1

1 School of Computing, Newcastle University, Newcastle upon Tyne, UK
{a.alhawas2,nigel.thomas}@newcastle.ac.uk

2 College of Computer and Information Sciences, King Saud University,
Riyadh, Kingdom of Saudi Arabia
Aalhawas2@ksu.edu.sa

Abstract. Despite their popularity and widespread use, wireless sensor networks
are vulnerable to different types of attacks due to their low energy consumption,
simplicity and scalability constraints. This paper explores the possible network-
layer attacks on WSN routing protocols. In addition, it proposes a comprehensive
method for measuring the impact of network-layer attacks on WSNs. Moreover,
it introduces a new network-layer attack – called “abandonment attack” – on one
suchWSNrouting protocol, the low-energy adaptive clustering hierarchy protocol.
Last, it measures the impact of the abandonment attack on the LEACH protocol.
In the end, this paper finds that the abandonment attack increases the collision
rate and the end-to-end delay on the LEACH protocol and decreases the network
lifetime.

Keywords: LEACH · Routing protocols · Security · Performance · Network
attacks

1 Introduction

Wireless sensor networks (WSNs) grew in popularity after the emergence of internet
of things (IoT) technology due to their unique properties of being cheap, simple, scal-
able and low in energy consumption. However, having such properties renders WSNs
vulnerable to a wide range of attacks on all network layers: the physical layer, the data
link layer, the network layer, the transport layer and the application layer. Therefore,
attacks on WSNs should be examined and analysed to determine appropriate detection
and prevention solutions. This study introduces a new network-layer attack, abandon-
ment attack, on one specificWSN protocol: the low-energy adaptive clustering hierarchy
(LEACH) protocol. The study examines the attack’s impact on the LEACHprotocol over
various network settings (i.e., attack scenarios) to detect the influence of certain network
properties, such as the malicious node location and the base station location, on the
impact of the attack. This makes the study results more precise and nuanced.

The remainder of the paper is organised as follows: the background provides a brief
overview of LEACH protocol and outlines current network-layer attacks on WSNs. The
literature review surveys different related studies, proposes a comprehensive method
for measuring the impact of network-layer attacks on WSNs and compares the current

© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): EPEW 2019, LNCS 12039, pp. 1–15, 2020.
https://doi.org/10.1007/978-3-030-44411-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44411-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-44411-2_1

2 A. Alhawas and N. Thomas

study with the literature. The abandonment attack section gives a theoretical explanation
of abandonment attack. The simulation environment section provides details about the
simulation settings and lists the attack scenarios. The results and evaluation section
presents and analyses the impact of abandonment attack on the LEACHprotocol. Finally,
the paper ends with a conclusion and some suggestions for future work.

2 Background

2.1 The Low-Energy Adaptive Clustering Hierarchy Protocol

LEACH is a continuous protocol in which the sensor nodes periodically send their data
to the base station – the base station does not query the sensor nodes for any data. It
operates on rounds that keep running until all the sensor nodes on the network are dead.
Each round is composed of a setup phase and a steady phase. In the setup phase, the
sensor nodes form a collection of clusters – each one of which has a sensor node as
its cluster head and multiple sensor nodes as child nodes. In the steady phase, which is
composed of multiple time frames, the child nodes send their data to their correspondent
cluster head. The cluster heads aggregate the data received from their child nodes and
forward them to the base station at the end of every time frame. The steady phase keeps
running until a new round begins with a new cluster setup. Having new cluster heads in
each round deters the network from having dead cluster heads, allowing it to live longer.

The setup phase of the LEACH protocol is composed of the following steps: (1)
determining cluster heads, (2) announcing cluster heads, (3) joining clusters, (4) creating
a transmission schedule and (5) advertising the transmission schedule. In the first step,
determining cluster heads, if all the nodes in the network have the same initial energy,
a threshold value of T(n, k, r) is calculated by all the nodes in the network according to
Eq. 1. Here, n is the total number of nodes in the network, k is the maximum number
of clusters in the network and r is the number of rounds that have passed. However, if
the nodes have variant initial energies and a different threshold value, T(Ei , Etotal , k) is
calculated by all the nodes in the network according to Eq. 2. Here, Ei is the energy of
the node, Etotal is the total energy for all the nodes in the network and k is the maximum
number of clusters in the network.

T(n, k, r) = k/(n − k ∗ (r mod n/k)) (1)

T (Ei , Etotal , k) = Ei ∗ k/Etotal (2)

Next, all the nodes that have not been cluster heads for the past n/k rounds will choose a
random value x from 0 to 1; if the node has been a cluster head, x will be 0. In the end, if
x is less than the threshold, and the number of cluster heads in the network is less than k,
the node will become a cluster head and will go to step two, announcing cluster heads,
to announce itself as a cluster head by broadcasting an ADV message using a non-
persistent carrier-sense multiple access (CSMA) MAC protocol. Here, CSMA means
that the cluster heads sense the channel to check if there is another transmission before
broadcasting the ADV message. If the node has not become a cluster head, it will go to
step three, joining clusters, where it will listen for the ADV messages from the cluster

Abandonment Attack on the LEACH Protocol 3

heads and then send a join request message (Join-REQ) to the cluster head that has the
strongest ADV signal (i.e., the closest cluster head) using a non-persistent CSMAMAC
protocol. The node will then wait for a transmission schedule from its correspondent
cluster head.

Once all the Join-REQmessages are sent, steps four andfivewill start, respectively. In
other words, the cluster heads will create a transmission schedule and then advertise it by
broadcasting anADV-SCHmessage to their child nodes. This transmission schedule will
eliminate internal collisions within the cluster by providing time divisionmultiple access
(TDMA) between the child nodes in the cluster. In addition to TDMA, a code division
multiple access (CDMA) will be used by each cluster to avoid external collisions with
other clusters in the network. Hence, when a cluster head and its child nodes exchange
messages, they will spread their signals over a unique spreading code using a direct
sequence spread spectrum (DSSS). Any messages that are spread over a different code
will be considered as noise; thus, the message signals of one cluster will not collide with
the message signals of another cluster.

After that, the setup phase ends and the steady phase begins. In the steady phase,
the child nodes send their data in a DATA message to their correspondent cluster heads
according to the transmission schedule of their cluster. The datawill be sent usingCDMA
MAC protocol, which eliminates the collision rate and reduces the packet delay. Once
a cluster head receives data from all its child nodes, it will aggregate the data into one
message and transmit it to the base station using non-persistent CSMA MAC protocol.
This transmission process will keep repeating itself until a new setup phase begins or
until the end of the network lifetime.

In LEACH protocol, when the sensor nodes communicate with the base station or
send an ADVmessage, they only use CSMA to sense whether the channel is idle before
transmitting. Thus, collision might occur when two nodes sense the channel at the same
time, and both find it idle. Also, the packet delay increases when there is a high number
of nodes using the channel. Yet, when the sensor nodes communicate with their cluster
heads, they use CDMA and TDMA, which eliminates the collision rate and reduces the
packet delay [1].

2.2 Network Layer Attacks on WSNs

Due to their widespread use and design simplicity, WSNs have become a tempting target
for attackers and, hence, a trending research topic for many security experts. In one study
about security measurements in WSNs, Xie et al. [2] listed the five network layers of
WSNs (the physical layer, the data link layer, the network layer, the transport layer and
the application layer) and their associated threats and identified eight specific attacks
against the network layer:

• Replay attack. The attacker catches a legitimate packet and re-sends it to different
nodes in the network to consume their energy.

• Sybil attack. A malicious node possesses different identities and tricks a genuine
node into falsely believing that it has multiple neighbours.

• Blackhole attack. A malicious node does not forward the packets it receives to their
intended destinations.

4 A. Alhawas and N. Thomas

• Grayhole attack. A malicious node does not forward some of the packets it receives
to their intended destinations. This attack is also referred to as a ‘selective forwarding
attack’.

• Wormhole attack. Two malicious nodes in two remote locations form a tunnel
between each other to forward legitimate packets to a different part of the network.
This attack is considered to be particularly dangerous because it can forward legitimate
packets without compromising any cryptography techniques.

• Sinkhole attack. A malicious node prompts the surrounding nodes to send it their
packets by advertising a stronger signal and faster route. This attack is often used in
conjunction with other types of attacks, such as blackhole and grayhole. Nevertheless,
it differs from blackhole and grayhole attacks because in these attacks, the attacker
does not change the route of the packets and may only discard the packets. However,
in a sinkhole attack, the attacker may not discard the packets and may only increase
the end-to-end delay.

• Hello flood attack. This attack targets routing protocols with hello messages (such
as the LEACH protocol in Sect. 2.1, where cluster heads advertise themselves so that
other nodes mark them as heads and forward their packets to them). In this attack, a
malicious nodewill advertise itself as a cluster head, prompting other nodes to forward
their packets to it.

• Spoofing attack. The attacker alters the routing information to increase end-to-end
delays.

Table 1. Attacks against select routing protocols [6]

Protocol Relevant attacks

TinyOS beaconing Bogus routing information, selective
forwarding, sinkhole, Sybil, wormhole,
hello flood

Directed diffusion and its multipath
variant

Bogus routing information, selective
forwarding, sinkhole, Sybil, wormhole,
hello flood

Geographic routing (GPSR, GEAR) Bogus routing information, selective
forwarding, Sybil

Clustering-based protocols
(LEACH, TEEN, PEGASIS)

Selective forwarding, hello flood

Rumour routing Bogus routing information, selective
forwarding, sinkhole, Sybil, wormhole

Energy-conserving topology
maintenance (SPAN, GAF, CEC,
AFEA)

Bogus routing information, Sybil, hello
flood

Abandonment Attack on the LEACH Protocol 5

Alajmi, Pathan et al. andGoyal et al. described similar possible network layer attacks
in [3, 4] and [5], respectively. Goyal et al. [5] also included acknowledgment of spoofing
as a possible attack. In this method, the attacker sends a replayed or forged acknowledg-
ment to deceive a genuine node into believing that a dead node is alive or that a weak
link is strong.

Karlof and Wagner [6] evaluated the possibility of different attacks against multiple
routing protocols. Their study mainly focused on Berkeley’s TinyOS sensor platform.
Table 1 summarises the list of attacks they evaluated against each protocol (‘bogus
routing information’ refers to spoofing and replay attacks, and ‘selective forwarding’
includes both blackhole and grayhole attacks). In Table 1, one notices that they claimed
that clustering-based protocols, such as LEACH, were only subjected to selective for-
warding and hello flood attacks. Yet according to the LEACH description in Sect. 2.1,
it appears that compromised cluster heads could perform Sybil and wormhole attacks.
This is perhaps because the authors assumed that all the cluster heads were benign.

3 Literature Review

It is important to consider the studies that examine WSN performance while under
attack to find appropriate ways to analyse such attacks. The first such study is by Almo-
mani et al. [7]; it examined LEACH protocol performance under hello flood, grayhole,
blackhole and scheduling attacks. Scheduling attacks are a new type of attack that the
aforementioned researchers introduced in their paper. Here, a malicious cluster head in
the LEACH protocol amends the packet transmission time of its child nodes so that all
its child nodes send their packets at the same time, causing an intentional collision. In
their study, the researchers simulated the attacks using an NS-2 simulator on one fixed
network topology composed of 100 nodes and five cluster heads. The simulation of the
attacks was performed with three different levels of compromised nodes in the network:
10%, 30% and 50%. After the simulation, the effects of the attacks on the network were
presented using three matrices (packet delivery ratio, network lifetime and consumed
energy). Overall, they found that the flood attack decreased the network lifetime and
the packet delivery ratio. The blackhole, grayhole and scheduling attacks increased the
network lifetime and decreased the packet delivery ratio.

Ioannou et al. [8]1 measured the impact of grayhole, grayhole plus sinkhole and hello
flood attacks on a weighted shortest path (WSP), a protocol that propagates messages
between nodes through a path that is built based on the nodes’ distances from the final
destination and the nodes’ signal strength, respectively. In this study, they used a COOJA
simulator to model the attacks on two network topologies comprised of 25 nodes each.
One topology located the base station in the middle of the network, whereas the other
topology had the base station at the edge of the network. All the simulation scenarios
contained only one malicious node. However, they simulated the attack 25 times (the
number of nodes in the network), with each simulation having a different malicious
node location. The researchers found that in grayhole attacks, packet loss was highly
significant if the malicious node was next to the base station. However, its significance

1 The researchers used different names for the attacks in their study.

6 A. Alhawas and N. Thomas

decreased dramatically when the malicious node was further away from the base station.
They also noted that the network topology with the base station at the edge was more
affected by the grayhole attack than the network topology with the base station in the
middle. In addition, they found that a combined grayhole and sinkhole attack always
had significant packet loss regardless of the malicious node location or the base station
location (because in a sinkhole attack, amalicious node deceives other nodes into sending
it their packets). In the hello flood attack, the results were arbitrary for the different
malicious node locations.

Salam et al. [9] used an NS-2 simulator to analyse the impact of a hello flood attack
on an ad hoc on-demand distance vector (AODV) protocol. This protocol is similar to
directed diffusion protocol, a well-known WSN protocol, but it allows a source node to
build a route to a destination node only when necessary and does not maintain routes
that are not currently in use. In the study, a hello flood attack was simulated on one
fixed network topology of 100 nodes with one, four, five and six malicious nodes. The
network throughput and packet delay matrices were used to measure the impact of the
hello flood attack on the WSNs. The results showed that as the number of malicious
nodes increased, the packet delay increased and the throughput decreased.

Lastly, Baskar et al. [10] used an NS-2 simulator to simulate a sinkhole attack on a
tree-based routing protocol that is described in their paper. The researchers used energy
consumption, throughput and a packet delivery ratio as matrices to measure the impact
of sinkhole attacks in different attack scenarios that varied in network size, number of
malicious nodes, location of malicious nodes and power of malicious nodes. The results
showed that the impact of a sinkhole attack did not changewith the change in the network
size; however, it increased with the increase in the number of malicious nodes or with
the increase of the power of the malicious nodes. Also, the impact of the sinkhole attack
increased when the malicious node was closer to the base station.

Table 2 summarises the aforementioned studies. The table shows the protocols,
attacks, impact matrices and number of topologies used in the studies. In addition, it
indicates whether the studies covered different amounts of malicious nodes, different
malicious node locations and different malicious node powers. Based on this data, four
parameters impacted the results of the cited studies and must be taken into consideration
when an attack is being simulated: (1) the network topology (i.e., location of the base
station), (2) the number of malicious nodes, (3) the location of the malicious nodes and
(4) the power of the malicious nodes. Also, there are several ways to measure the impact
of an attack on WSNs. These include packet delivery ratio (PDR), energy consumption
(EC), network lifetime (LT), throughput and packet delay.

It is, however, advisable to look at all these matrices when an attack impact analysis
is being conducted, as looking at the results of [10] and [8], there is a contrast in their
results that could be due to the different impact matrices used in the studies. In [10],
the researchers stated that the significance of the sinkhole attack increased when the
malicious nodemoved closer to the base station,whereas in [8], the researchers stated that
the sinkhole attack had a significant impact on the network regardless of the location of
themalicious node. This contrast could be because in [8], they only considered the packet
delivery ratio, whereas in [10], they considered the energy consumption, throughput and
packet delivery ratio.

Abandonment Attack on the LEACH Protocol 7

Table 2. Literature review with comparison of the present study

Ref. Protocol Attacks Impact
matrices

Network
topology

Different
number of
malicious
nodes

Different
location of
malicious
nodes

Different
power of
malicious
nodes

[7] LEACH Blackhole,
grayhole,
hello flood,
scheduling

PDR, EC, LT One Yes No No

[8] WSP Grayhole,
sinkhole plus
grayhole,
hello flood

PDR Two No Yes No

[9] AODV Hello flood Throughput
and delay

One Yes No No

[10] TBR Sinkhole PDR, EC,
throughput

One with
two
different
sizes

Yes Yes Yes

This
paper

LEACH Abandonment PDR,
throughput,
delay, LT, EC

Two Yes No Yes

Table 2 also shows the difference between the present study and the literature. This
study introduces the abandonment attack – a new network layer attack on the LEACH
protocol – and measures its impact on the LEACH protocol’s PDR, EC, network LT,
throughput and end-to-end delay. In addition, this study uses different attack scenarios
to show the influence of the network topology, number of malicious nodes and power of
the malicious nodes on the analysis results.

4 Abandonment Attack

This study introduces a new network layer attack on the LEACH protocol: abandonment
attack. In this attack, a malicious cluster head sends an ADV message to announce that
it has become a cluster head. It then receives Join-REQ messages from child nodes.
Instead of creating a legitimate transmission schedule, it creates a fake transmission
schedule full of fake node IDs to deceive its child nodes into thinking that they do not
have a transmission time. This being done, the child nodes transmit their data directly
to the base station using a non-persistent CSMA MAC protocol, which causes them
to consume more energy because the base station is far from these nodes, and sending
data to a far location is energy consuming. It also increases both the collision rate and
the transmission delay since the number of nodes directly connected to the base station
increases. That is because all these nodes that are directly connected to the base station
transmit their signals using CSMA, in which the nodes keep sensing the channel until
it is idle to transmit their signals – if two nodes transmit their signals at the same time,
a collision occurs. This is unlike when the child nodes are connected to a cluster head,

8 A. Alhawas and N. Thomas

where they use TDMA and CDMA to avoid inter-cluster and intra-cluster collisions and
to minimise the transmission delay.

5 Simulation Environment

The attack was simulated using an NS-2.34 simulator on top of Wendi Heinzelman’s
code of LEACH protocol [11]. The attack was run over different simulation scenarios to
capture the influence of some network properties (i.e. base station location, number of
malicious nodes and power of malicious nodes) on the impact of the attacks. This section
explains these different scenarios in detail. Also, Table 3 shows the general proprieties
that are shared across all the scenarios.

Table 3. General simulation properties

Network properties

Network size 100 m × 100 m

Number of nodes 100 nodes

Maximum number of clustersa 5 clusters

Data sizeb 500 bytes

Header size 25 bytes

Network bandwidth 1 Mbps

Round duration (cluster change) 20 s

Simulation time 500 s

Sensor properties

Sensor type µAMPS

Idle energy 0

Sleep energy 0

Beam-forming energy 5e-9 J/Bit

Transmit amplifier energy 9.67e-
12 J/Bit/m2

aThis is the optimum number of cluster heads to
get the best energy dissipation results in the current
network settings [12].
bNS-2 does not send real packets; therefore, the data
size and the header size are fixed.

5.1 Scenario I: Different Malicious Node Percentages

In this scenario, the LEACH performances under attack with 0%, 10%, 20% and 30%
malicious nodes in the network are compared. The base station is located at the top of
the network at point (50, 175), and all the sensor nodes have an initial energy of two
joules. Figure 1 shows the locations of the malicious nodes in the network.

Abandonment Attack on the LEACH Protocol 9

5.2 Scenario II: Different Base Station Locations

This scenario compares the LEACH performance under attack when the base station is
located in the middle of the network at point (50, 50) with the LEACH performance
under attack when the base station is located at the top of the network at point (50,
175). All the sensor nodes in this scenario have an initial energy of two joules, and the
percentage of malicious nodes in the network is 10%. Figures 1 and 2 show the locations
of the base station and the malicious nodes.

5.3 Scenario III: Malicious Nodes Have Higher Energy

This scenario compares the LEACHperformance under attackwhen themalicious nodes
have an initial power that is equal to the genuine sensor nodes, which is two joules of
energy, with the LEACH performance under attack when the malicious nodes have a
higher power than the genuine sensor nodes, which is 200 J of energy. Based on the
LEACH protocol explanation in Sect. 2.1, the cluster head selection process will be
different when the nodes in the network have different initial powers. Thus, the nodes
with a higher power will have a higher probability of becoming a cluster head. In any
case, the location of the base station in this scenario is at the top of the network at point
(50, 175), and the percentage of malicious nodes in the network is 10%. Figures 1 and
2 show the locations of the base station and the malicious nodes.

Fig. 1. Malicious node locations

10 A. Alhawas and N. Thomas

Fig. 2. Base station locations

6 Results and Evaluation

In the LEACH protocol, the effect of an attack cannot bemeasured by only looking at the
results of a single run, for two reasons. First, the cluster head locations and the number
of child nodes in each cluster have a major effect on the performance matrices in the
LEACH protocol. Second, the cluster head locations and the number of child nodes in
each cluster change with every round in a single LEACH run. Hence, each run of the
LEACH protocol will have different cluster head combinations and will yield different
performance matrices. So, to measure an attack impact on the LEACH protocol, the
attack simulation must be run multiple times and the average impact must be found.
Therefore, the results in this section are the average of the results of three LEACH runs.

The rest of this section presents the impact of abandonment attack on LEACHperfor-
mance over three attack scenarios through the following matrices: packet delivery ratio,
throughput, end-to-end delay, energy consumption and number of live nodes. These
matrices use the following measurement units, respectively: percentage, 1.25 kbyte per
second, seconds, joules and nodes.

6.1 Scenario I Results

Figure 3 shows the impact of the abandonment attacks on the LEACH protocol over
different percentages of malicious nodes in the network. The figure reveals that the PDR,
throughput and the number of live nodes decrease with the increase in the percentage
of malicious nodes in the network. However, both the end-to-end delay and energy
consumption level rise with the increase in the percentage of malicious nodes in the
network. Though the concept that the end-to-end delay increases while the throughput
decreases is questionable, it becomes very logical when the behaviour of the nodes
during the attack is analysed. During the attack, the abandoned child nodes try to connect
directly to the base station through a non-persistent CSMA MAC protocol. Therefore,
the delay increases because the nodes’ packets are delayed on the MAC layer, as they
must wait for the channel to be clear before they are sent. In contrast, the throughput,
which is measured by the number of delivered bits per second, decreases because only
one packet can keep the whole channel busy. Without the abandonment attack, the nodes
join different clusters and use CDMA and TDMA to send multiple packets at the same

Abandonment Attack on the LEACH Protocol 11

time with minimal delay. In addition, Fig. 3 illustrates that the energy consumption level
increases with the increase in the percentage of malicious nodes in the network. This is
because the increase in the number of the malicious nodes increases the possibility that
a malicious node will become a cluster head. Hence, more nodes will be abandoned and
will connect directly to the base station. Unlike the nodes that are connected to a cluster
head, the nodes that are connected to the base station will always be awake and never
go to sleep, causing them to consume more energy.

Fig. 3. Abandonment attack results – Scenario I

6.2 Scenario II Results

Figure 4 displays the impacts of the abandonment attacks when the base station is in
the middle of the network and when the base station is at the top of the network. When
the base station is at the top of the network, the abandonment attack has lower impact
on the end-to-end delay. This is because when the base station is in the middle, and

12 A. Alhawas and N. Thomas

many abandoned nodes are sending their packets directly to the base station using non-
persistent CSMA MAC protocol, the channel is busy most of the time and subjected to
a lot of noise. However, when the base station is located at the top, the channel has less
noise, causing the impact on the delay to be lower. Further, there is fluctuation in the
PDR of the LEACH when the base station is in the middle. This fluctuation is because
the performance parameters are logged every 10 s, with a new cluster head nomination
process beginning every 20 s.

Fig. 4. Abandonment attack results – Scenario II

6.3 Scenario III Results

The LEACH protocol has two variations. In the first one, the nodes’ energy is not a
parameter in the cluster head nomination process. In the second one, the nodes’ energy
is a parameter in the cluster head nomination process. Figure 5 exhibits the impact of
the abandonment attack on the second variation of the LEACH protocol and compares it

Abandonment Attack on the LEACH Protocol 13

to the impact of the attack on the first variation. Here, the ‘power abandonment attack’
refers to the second variation of LEACH, with the malicious nodes having a higher
energy than the genuine nodes. The ‘abandonment attack’ refers to the first variation
of LEACH, with the malicious nodes having an energy equal to the genuine nodes. In
the power abandonment attack, only malicious nodes can be cluster heads because they
have more energy than the genuine nodes. Therefore, in every round, all the child nodes
are abandoned, leading to low PDR and throughput at all times. Moreover, in the power
abandonment attack, the energy consumption level rises rapidly while the number of
live nodes declines sharply. However, the number of live nodes stops decreasing when it
reaches 10 nodes, as this is the number of malicious nodes in the network. These nodes
have higher energy than all the other nodes, therefore they do not die quickly. They are,
also, the reason why the network has a long lifetime and the end-to-end delay never
drops below 0.8 s. Still, the end-to-end delay decreases gradually with the decrease in
the number of live nodes in the network.

Fig. 5. Abandonment attack results – Scenario III

14 A. Alhawas and N. Thomas

7 Conclusion

The study results elicit several points. First, the abandonment attack increases the col-
lision rate, end-to-end delay, and the energy consumption level. Also, it decreases the
PDR, throughput, and number of live nodes in the network. Second, in spite of the
abandonment attack, the LEACH protocol maintains its property of having better per-
formance when the base station is in the middle of the network. Yet, the impact of the
abandonment attack on the end-to-end delay is higher when the base station is in the
middle of the network. Third, in an abandonment attack, when the malicious nodes have
higher energy then the genuine nodes in the network, they have a higher probability of
becoming cluster heads than the genuine nodes, leading the impact of the attacks to be
higher.

8 Limitations and Future Work

In this study, the locations of the malicious nodes are static in all the attack scenarios.
Hence, the influence that the location of the malicious nodes has on the attack impact
level (high or low impact) is not captured. Furthermore, this study only gives the average
result of three LEACH runs without providing the variance between the three results.
Although we haven’t noticed any major difference in the results’ average after the third
run, finding the variance between the three runs or increasing the number of runswell help
strengthen the findings of this study. In future work, different locations for the malicious
nodes might be considered. Moreover, the attacks’ performance matrices could be fed to
some machine-learning classifiers, such as the random forest classifier and multi-layer
perceptron classifier, to derive the hidden relations between the attacks and the network
performance anomalies. Doing this will help researchers to create attack detection rules
for WSN intrusion detection systems.

References

1. Heinzelman, W.: Application-specific protocol architectures for wireless networks. Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA (2000)

2. Xie, H., Yan, Z., Yao, Z., Atiquzzaman, M.: Data collection for security measurement in
wireless sensor networks: a survey. IEEE Internet Things J. 1(1), 1–22 (2018)

3. Alajmi, N.: Wireless sensor networks attacks and solutions. Int. J. Comput. Sci. Inf. Secur.
12(7), 37–40 (2014)

4. Pathan, A., Lee, H.-W., Hong, C.S.: Security in wireless sensor networks: issues and
challenges. In: 2006 8th International Conference Advanced Communication Technology,
Phoenix Park, South Korea, vol. 2, pp. 1046–1048. IEEE (2006). https://doi.org/10.1109/
ICACT.2006.206151

5. Goyal, S., Bhatia T., Verma, A.: Wormhole and Sybil attack in WSN: a review. In: 2015 2nd
International Conference on Computing for Sustainable Global Development (INDIACom),
New Delhi, India, pp. 1463–1468. IEEE (2015)

6. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and countermea-
sures. In: Proceedings of the First IEEE InternationalWorkshop on Sensor Network Protocols
andApplications 2003, Anchorage, USA, pp. 113–127. IEEE (2003). https://doi.org/10.1109/
SNPA.2003.1203362

https://doi.org/10.1109/ICACT.2006.206151
https://doi.org/10.1109/SNPA.2003.1203362

Abandonment Attack on the LEACH Protocol 15

7. Almomani, I., Al-Kasasbeh, B.: Performance analysis of LEACH protocol under Denial of
service attacks. In: 2015 6th International Conference on Information and Communication
Systems (ICICS), Amman, Jordan, pp. 292–297. IEEE (2015)

8. Ioannou, C., Vassiliou, V.: The impact of network layer attacks in wireless sensor networks.
In: 2016 International Workshop on Secure Internet of Things (SIoT), Heraklion, Greece,
pp. 20–28. IEEE (2016). https://doi.org/10.1109/SIoT.2016.009

9. Salam, M., Halemani, N.: Performance evaluation of wireless sensor network under hello
flood attack. Int. J. Comput. Netw. Commun. (IJCNC) 8(2), 78–87 (2016)

10. Baskar, R., Raja, K., Joseph, C., Reji, M.: Sinkhole attack in wireless sensor networks—
performance analysis and detection methods. Indian J. Sci. Technol. 10(12), 1–8 (2017)

11. µAMPS ns Code Extensions. http://www.mtl.mit.edu/researchgroups/icsystems/uamps/
research/leach/leach_code.shtml. Accessed 06 May 2019

12. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication
protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii
International Conference on System Sciences,Maui, HI, USA, pp. 1–10. IEEE (2000). https://
doi.org/10.1109/HICSS.2000.926982

https://doi.org/10.1109/SIoT.2016.009
http://www.mtl.mit.edu/researchgroups/icsystems/uamps/research/leach/leach_code.shtml
https://doi.org/10.1109/HICSS.2000.926982

Coherent Resolutions of Nondeterminism

Marco Bernardo(B)

Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy
marco.bernardo@uniurb.it

Abstract. We study the impact that different ways of resolving nonde-
terminism within probabilistic automata have on the properties of prob-
abilistic behavioral equivalences. Firstly, we provide a uniform defini-
tion of structure-preserving and structure-modifying resolutions of non-
determinism, respectively generated by different families of schedulers.
Secondly, we exhibit a number of anomalies arising from the excessive
power of the various families of schedulers, which affect the discriminat-
ing power, the compositionality, and the backward compatibility of prob-
abilistic trace equivalence. Thirdly, we propose to remove those anoma-
lies by enforcing coherency within resolutions of nondeterminism. This
ensures that a scheduler cannot select different continuations in equiva-
lent states of an automaton, so that also the states to which they corre-
spond in any resolution of the automaton have equivalent continuations.

Keywords: Probabilistic automata · Schedulers · Equivalences

1 Introduction

Quantitative models of computing systems describe the order in which activi-
ties are executed – possibly admitting nondeterminism in case of concurrency
phenomena or to support implementation freedom – and include information
about the probabilities or the timing of the activities themselves. A particularly
expressive model is given by probabilistic automata [22], as they encompass fully
nondeterministic models like labeled transition systems [18], fully probabilis-
tic models like action-labeled variants of discrete-time Markov chains [19], and
reactive probabilistic models like Markov decision processes [11].

Behavioral relations play a fundamental role in the analysis of quantita-
tive models. They formalize observational mechanisms that permit relating
models that, despite their different representations in the same mathematical
domain, cannot be distinguished by external entities when abstracting from
details deemed unimportant for specific purposes. Moreover, they support sys-
tem modeling and verification by providing a means to relate system descriptions
expressed at different levels of abstraction, as well as to reduce the size of a sys-
tem representation while preserving specific properties to be assessed later.

In the case of fully nondeterministic models, from the first comparative
work [8] to the elaboration of the full spectrum [13], a number of equivalences

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): EPEW 2019, LNCS 12039, pp. 16–32, 2020.
https://doi.org/10.1007/978-3-030-44411-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44411-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-44411-2_2

Coherent Resolutions of Nondeterminism 17

have emerged that range from the branching-time – i.e., (bi)simulation-based –
endpoint [21] to the linear-time – i.e., trace-based – endpoint [7] passing through
testing relations [9]. The spectrum becomes simpler when considering fully prob-
abilistic models [1,14,17], whereas as shown in [4] it is much more variegated
in the case of models with nondeterminism and probabilities like probabilistic
automata. The reason is that the probability of equivalence-specific events can
be calculated only after removing nondeterminism. Examples of such events are
reaching via given actions certain sets of equivalent states (bisimulation seman-
tics) or executing specific action sequences (trace semantics), with states/traces
being possibly decorated with additional information.

In this paper, we study the impact on the discriminating power, the compo-
sitionality, and the backward compatibility of behavioral equivalences for non-
deterministic and probabilistic models, due to the different ways of resolving
nondeterminism. We restrict ourselves to simple probabilistic automata [22],
i.e., state-transition graphs where each transition is labeled with an action and
goes from a state to a probability distribution over states. In this model, nonde-
terminism is expressed by the presence of several transitions departing from the
same state. A resolution of nondeterminism is obtained by applying a scheduler
that decides which activity has to be performed next, where by activity we mean
executing a transition or stopping the execution altogether.

The first contribution of this paper is a discussion of different families of
schedulers, with the result of providing a uniform way, based on correspondence
functions, of defining the resolutions induced by those schedulers.

We divide resolutions into structure preserving and structure modifying,
depending on whether they respect or alter the structure of the automaton
from which they are obtained. A structure-preserving resolution is produced
by a deterministic scheduler, which selects at the current state one of the tran-
sitions departing from that state or no transitions at all. A structure-modifying
resolution is derived via a randomized scheduler [22], which probabilistically
combines the transitions departing from the current state, or an interpolating
scheduler [10], which splits the current state into copies, each having at most
one outgoing transition, whose probabilities sum up to the probability of the
original state. We formalize any resolution as a fully probabilistic automaton,
which we equip with a correspondence function from the acyclic state space of
the resolution to the possibly cyclic state space of the original automaton, as
done for the first time in [15] for deterministic schedulers.

The second contribution of this paper is the presentation of a number of
anomalies affecting probabilistic behavioral equivalences, mostly arising under
deterministic schedulers, together with a proposal for avoiding them based on
limiting the excessive power of schedulers.

We focus on probabilistic trace equivalence by showing that it does not con-
tain probabilistic bisimilarity, it is not a congruence with respect to action prefix,
and it is not backward compatible with its version for fully probabilistic models.
The reason is that schedulers have the freedom to make different decisions in
equivalent states occurring in the target distribution of a transition, with these

18 M. Bernardo

decisions being not necessarily replicable in equivalent distributions of distinct
automata. This is especially true for deterministic schedulers, as the resolutions
they induce must be structure preserving.

Such anomalies can be avoided by employing coherent resolutions in the
definition of probabilistic trace equivalence. The idea is that, if several states in
the target distribution of a transition are equivalent, then the states to which
they correspond in a resolution must be equivalent as well. This constraint can
be formalized by reasoning on trace distributions, i.e., families of sets of traces
each endowed with its execution probability in a given resolution.

This paper is organized as follows. In Sect. 2, we recall simple probabilistic
automata. In Sect. 3, we discuss different notions of resolution usable in proba-
bilistic behavioral equivalences and provide a uniform way of defining all of them.
In Sect. 4, we illustrate the aforementioned anomalies of probabilistic trace equiv-
alence caused by the excessive power of schedulers. In Sect. 5, we show how to
avoid those anomalies by forcing resolutions to be coherent. Finally, in Sect. 6
we present some concluding remarks.

2 Nondeterministic and Probabilistic Models

We formalize systems featuring nondeterminism and probabilities through a vari-
ant of simple probabilistic automata [22], in which we do not distinguish between
external and internal actions.

Definition 1. A nondeterministic and probabilistic labeled transition system,
NPLTS for short, is a triple (S,A,−→) where S �= ∅ is an at most countable
set of states, A �= ∅ is a countable set of transition-labeling actions, and −→ ⊆
S × A × Distr(S) is a transition relation with Distr(S) being the set of discrete
probability distributions over S. �

A transition (s, a,Δ) is written s
a−→ Δ. We say that s′ ∈ S is not reachable

from s via that a-transition if Δ(s′) = 0, otherwise we say that it is reachable
with probability p = Δ(s′). The reachable states form the support of Δ, i.e.,
supp(Δ) = {s′ ∈ S | Δ(s′) > 0}. An NPLTS can be depicted as a directed graph
in which vertices represent states and action-labeled edges represent transitions,
with states in the same support being linked by a dashed line and decorated
with the respective probabilities (see the forthcoming Figs. 1, 2, 3, 4, 5, 6, 7, 8
and 9).

An NPLTS represents (i) a fully nondeterministic process when every tran-
sition has a target distribution with a singleton support, (ii) a fully probabilistic
process when every state has at most one outgoing transition, or (iii) a Markov
decision process when for each action any state has at most one outgoing transi-
tion labeled with that action implying the absence of internal nondeterminism.

Definition 2. Let L = (S,A,−→) be an NPLTS and s, s′ ∈ S. We say that the
finite sequence:

c ≡ s0
a1−�→ s1

a2−�→ s2 . . . sn−1

an−�→ sn

Coherent Resolutions of Nondeterminism 19

is a computation of L of length n ∈ N from s = s0 to s′ = sn compatible with
trace α = a1 a2 . . . an ∈ A∗, written c ∈ CC(s, α), iff for all i = 1, . . . , n there
exists in L a transition si−1

ai−→ Δi such that si ∈ supp(Δi), with:

– Δi(si) being the execution probability of step si−1

ai−�→ si conditioned on the
selection of transition si−1

ai−→ Δi at state si−1, or simply the execution prob-
ability of that step if L is fully probabilistic;

– prob(c) =
∏

1≤i≤n Δi(si) being the execution probability of c if L is fully
probabilistic, assuming that prob(c) = 1 when n = 0;

– prob(C) =
∑

c∈C prob(c) if L is fully probabilistic, provided that none of the
computations in C is a proper prefix of one of the others. �

3 An Overview of Resolutions of Nondeterminism

When several transitions depart from the same state s of an NPLTS L, they
describe a nondeterministic choice among different behaviors. Eliminating these
choices is necessary to perform the calculations required by probabilistic behav-
ioral equivalences. A resolution of s is the result of a possible way of resolving
nondeterministic choices starting from s, as if a scheduler were applied that
decides which activity has to be performed next. A resolution of nondetermin-
ism can thus be formalized as a fully probabilistic NPLTS Z with a tree-like
structure, whose branching points correspond to target distributions of transi-
tions deriving from those of L.

We now present an overview of various ways of resolving nondeterminism,
with the result of providing a uniform technique for defining all of them based on
correspondence functions, so to facilitate their comparison. In Sects. 3.1 to 3.3
we address the notions of resolution stemming from two different approaches,
respectively preserving or modifying the structure of the original NPLTS. The
idea underlying the former approach is to construct a resolution by importing
states and transitions from the original model. The idea at the basis of the latter
approach is that (i) a transition of a resolution can be produced by probabilisti-
cally combining transitions of the original model, or (ii) a state of a resolution
can be obtained by probabilistically splitting states of the original model.

3.1 Structure-Preserving Resolutions via Deterministic Schedulers

A deterministic scheduler selects one of the transitions departing from the cur-
rent state or no transitions at all thus stopping the execution. As a consequence,
the resulting resolution is isomorphic to a submodel of the original model (or of
its unfolding, should cycles be present), thereby preserving the structure of the
original model (or of its unfolding). If the model is fully nondeterministic, each
of its resolutions coincides with a computation of the model; if the model is fully
probabilistic, its maximal resolution coincides with the entire model.

In [26] a resolution was defined as a maximal subtree of the unfolding of the
considered model – with the unfolding yielding a potentially infinite tree – in

20 M. Bernardo

which every state has at most one outgoing transition. Resolutions were defined
as fully probabilistic maximal subtrees also in [16], but the considered models
were finite trees in lieu of directed graphs. Subtree maximality was required just
because of the focus of those works on testing semantics.

1s’

s"1

2s’

2s"

1z’

z"1

z’2

2z"

aaa a a
0.5

b

0.5

c

0.5

b

0.5 0.5

b

0.5

cbbc

’szs

Fig. 1. Lack of injectivity breaks structure preservation

The paper [15], instead of reasoning in terms of unfoldings and submodels,
introduced for the first time a correspondence function corrZ : Z → S from the
acyclic state space of the resolution Z = (Z,A, −→Z) being built, to the possibly
cyclic state space of the considered model L = (S,A,−→). This function had to
satisfy the following constraint on transitions: if z

a−→Z Δ then corrZ(z) a−→ Γ ,
with Δ(z′) = Γ (corrZ(z′)) for all z′ ∈ supp(Δ).

The correspondence function with its constraint as defined in [15] and reused
in [3,4] has the drawback of not being structure preserving in the case that
the target distribution of a transition assigns the same probability to several
inequivalent states. Let us see for instance the three NPLTS models in Fig. 1.
The correspondence function that maps z to s, z′

1 and z′
2 to s′

1, and z′′
1 and

z′′
2 to s′′

1 causes the central NPLTS to be considered a legal resolution of the
leftmost NPLTS, although the former is not isomorphic to any submodel of the
latter. This may have no consequences on the discriminating power of testing
equivalences, the subject of [15], if all transitions of testing systems are identi-
cally labeled. However, it would lead to consider the leftmost NPLTS and the
rightmost NPLTS as trace equivalent, because also the leftmost one would have
a resolution in which trace a b (resp. trace a c) is executable with probability 1.

The constraint was rectified in [5] by requiring the injectivity of corrZ over
supp(Δ), so that in Fig. 1 z′

1 and z′
2 can no longer be both mapped to s′

1. We also
point out that in [2] it was further observed that bijectivity between supp(Δ) and
supp(Γ), rather than injectivity, is necessary to preserve the overall reachability
mass in more general settings like the ULTraS metamodel where, unlike the
probabilistic case, there is no predefined value like 1 for the reachability mass of
the target of a transition.

Below is the rectified definition of [5] in the style of [15], i.e., based on a
correspondence function from the acyclic state space of the resolution to the
possibly cyclic state space of the considered model.

Coherent Resolutions of Nondeterminism 21

Definition 3. Let L = (S,A,−→) be an NPLTS and s ∈ S. An acyclic
NPLTS Z = (Z,A, −→Z) is a structure-preserving resolution of s, written
Z ∈ Ressp(s), iff there exists a correspondence function corrZ : Z → S such
that s = corrZ(zs), for some zs ∈ Z, and for all z ∈ Z it holds that:

– If z
a−→Z Δ then corrZ(z) a−→ Γ , with corrZ being injective over supp(Δ)

and satisfying Δ(z′) = Γ (corrZ(z′)) for all z′ ∈ supp(Δ).
– At most one transition departs from z. �

1z 2z

1−p

z3

b

a

c

a a

b c

p

b

a

c

a

s

a

b c

s’

Fig. 2. An example of structure modification induced by a randomized scheduler

3.2 Structure-Modifying Resolutions via Randomization

If the current state has n ∈ N≥1 outgoing transitions, a randomized scheduler
generates pi ∈ R[0,1] for i = 1, . . . , n such that

∑n
i=1 pi ≤ 1 and then selects tran-

sition i with probability pi or stops with probability 1−∑n
i=1 pi. A deterministic

scheduler is a special case in which pi = 1 for some i or pi = 0 for each i.
Randomized schedulers, proposed in [22] and applied to the definition of

probabilistic trace [23] and testing [24] semantics, probabilistically combine tran-
sitions of the original model. Therefore, the resulting resolutions are not neces-
sarily isomorphic to submodels of the original model (or of its unfolding) because
a modification of the structure of the original model may have taken place. An
example of this phenomenon is shown in Fig. 2, where the NPLTS in the left-
most part admits under randomized schedulers the three maximal resolutions
depicted next to it in the figure. The resolution starting with z3 is obtained by
combining the two a-transitions departing from s with probabilities p and 1− p.

The formalization via a correspondence function of a resolution stemming
from a randomized scheduler is not an easy task. The reason is that, according
to [22], a combined transition may derive from several differently labeled tran-
sitions, as shown in the central part of the forthcoming Fig. 3. In other words,
a resolution of a simple probabilistic automaton [22], in which every transition
has a single label, may have a transition with several labels, thereby deviating
from a simple probabilistic automaton and hence from an NPLTS.

Similar to [3], below we formalize a resolution induced by a variant of random-
ized scheduler consistent with the definition of probabilistic bisimilarity given
in [25] for simple probabilistic automata. At the current state, the scheduler
decides to stop or to perform a certain action among the available ones; in the

22 M. Bernardo

latter case, it takes a convex combination (i.e., the sum of the values pi is 1)
of the outgoing transitions identically labeled with that action. To compensate
for the impossibility of combining differently labeled transitions, we admit self-
combinations; e.g., in Fig. 3 a combination of the a-transition departing from s
with itself n times is able to reproduce the situation in the rightmost part of the
same figure, which is equivalent to the one in the central part.

Definition 4. Let L = (S,A,−→) be an NPLTS and s ∈ S. An acyclic NPLTS
Z = (Z,A, −→Z) is a structure-modifying resolution via randomization of s,
written Z ∈ Ressm,r(s), iff there exists a correspondence function corrZ : Z → S
such that s = corrZ(zs), for some zs ∈ Z, and for all z ∈ Z it holds that:

– If z
a−→Z Δ then there exist n ∈ N≥1, pi ∈ R]0,1] for 1 ≤ i ≤ n summing up to

1, and corrZ(z) a−→ Γi for 1 ≤ i ≤ n, with corrZ being injective when con-
sidered from supp(Δ) to the disjoint union of the sets supp(Γi) and satisfying
Δ(z′) =

∑n
i=1 pi · Γi(corrZ(z′)) for all z′ ∈ supp(Δ).

– At most one transition departs from z. �

Injectivity cannot be directly imposed as in Definition 3, otherwise in Fig. 2
the NPLTS model starting with z3 would not be a legal resolution induced by
the self-combination of the a-transition departing from s′ in the rightmost part,
and hence s′ would not be considered trace equivalent to s in the leftmost part.

3.3 Structure-Modifying Resolutions via Interpolation

For every state in the support of the target distribution of the current transition,
an interpolating scheduler splits it into n ∈ N≥1 copies, each having a single
outgoing transition or no transitions at all, to which probabilities are assigned
whose sum is the overall probability of the original state, and then selects one
of the copies based on its probability. A deterministic scheduler is a special case
in which n = 1.

Interpolating schedulers, proposed in [10], probabilistically split states of the
original model thereby inducing resolutions possibly modifying the structure of
the original model. As mentioned in [10], for each resolution obtained from an

1b bn

1q nq n+1q

zrand

1b bn1q nq

n+1q

zinterpn+11p = q +...+q +qn

1b bn

aa

s

a
p

s’

Fig. 3. Equivalent resolutions induced by randomized and interpolating schedulers

Coherent Resolutions of Nondeterminism 23

interpolating (resp. randomized) scheduler, there exists a resolution obtained
from a randomized (resp. interpolating) scheduler with the same trace distri-
bution. This can be seen in Fig. 3, where in the leftmost part we have a state
s′ reached with probability p in the target distribution of an a-transition. The
resolution in the central part, induced by a randomized scheduler that com-
bines the transitions departing from s′, is equivalent to the resolution in the
rightmost part, induced by an interpolating scheduler that splits state s′, where∑n+1

i=1 qi = p.
Resolutions arising from interpolating schedulers were natively defined in [10]

through a correspondence function that maps all split states to the original state
from which they derive. Unlike Definitions 3 and 4, the constraint on transitions
is formulated with respect to the states in the support of the corresponding
transition of the original model – rather than the states in the support of the
transition of the resolution – and the preservation of the overall probability
associated with each such state makes injectivity requirements unnecessary.

Definition 5. Let L = (S,A,−→) be an NPLTS and s ∈ S. An acyclic NPLTS
Z = (Z,A, −→Z) is a structure-modifying resolution via interpolation of s,
written Z ∈ Ressm,i(s), iff there exists a correspondence function corrZ : Z → S
such that s = corrZ(zs), for some zs ∈ Z, and for all z ∈ Z it holds that:

– If z
a−→Z Δ then corrZ(z) a−→ Γ , with corrZ satisfying for all s ∈ supp(Γ)

Γ (s) =
∑corrZ(z′)=s

z′∈supp(Δ) Δ(z′).
– At most one transition departs from z. �

A variant of the structure-modifying resolution above has been proposed
in [6], which combines the effect of interpolating and randomized schedulers.

4 Consequences of the Excessive Power of Schedulers

Although deterministic schedulers are very intuitive, the rigid preservation they
ensure about the structure of the original model, together with their freedom of
performing choices inconsistent with each other in states with equivalent contin-
uations, causes the resulting probabilistic trace equivalence to be overdiscrim-
inating, thereby violating certain desirable properties. This also happens, to a
much lesser extent, with randomized and interpolating schedulers. In the follow-
ing, after presenting in Sect. 4.1 the definition of some probabilistic behavioral
equivalences, we illustrate in Sect. 4.2 a number of anomalies.

4.1 Equivalences for Nondeterministic and Probabilistic Processes

The spectrum of behavioral equivalences for nondeterministic and probabilistic
processes was studied in [4]. Here we focus on the two endpoints of the spectrum
by recalling the definitions of bisimulation and trace semantics.

Probabilistic bisimilarity requires that two NPLTS models are able to mimic
each other behavior stepwise, in terms of the probability of reaching the same

24 M. Bernardo

class of equivalent states when executing the same action [20,25]. Its definition
does not need to explicitly resort to resolutions, as these are implicitly built
while selecting a single transition from each pair of states.

Definition 6. Let (S,A,−→) be an NPLTS and s1, s2 ∈ S. We write s1 ∼PB

s2 iff there exists a probabilistic bisimulation B over S such that (s1, s2) ∈ B.
An equivalence relation B over S is a probabilistic bisimulation iff, whenever
(s1, s2) ∈ B, then for all a ∈ A it holds that for each s1

a−→ Δ1 there exists
s2

a−→ Δ2 such that for all equivalence classes C ∈ S/B:

Δ1(C) = Δ2(C) �

In contrast, trace equivalence requires that two NPLTS models possess the
same trace distributions, i.e., the same family of sets of action sequences weighted
with their execution probabilities, where each set is related to a specific resolution
of nondeterminism [23]. Its definition, which abstracts from branching points of
process behavior, explicitly relies on Res(), with which we denote any of the
sets of resolutions introduced in Definitions 3 to 5.

Definition 7. Let (S,A,−→) be an NPLTS and s1, s2 ∈ S. We write s1 ∼PTr s2
iff for each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that for all traces
α ∈ A∗:

prob(CC(zs1 , α)) = prob(CC(zs2 , α))

and also the condition obtained by exchanging Z1 with Z2 is satisfied. �

4.2 Anomalies and Counterexamples

We now present a number of counterexamples showing that:

– ∼PTr is not coarser than ∼PB under deterministic schedulers.
– ∼PTr is not a congruence w.r.t. action prefix under deterministic schedulers.
– ∼PTr is not backward compatible with its version for fully prob. processes.

Consider the two NPLTS models in the leftmost part of Fig. 4. It holds that
s1 ∼PB s2, but s1 �∼PTr s2 because of the resolution in the central part of Fig. 4,
where trace a b is executable with probability p instead of 1. This resolution
belongs to Ressp(s2) \ Ressp(s1) as it does not preserve the structure of the
NPLTS whose initial state is s1. Notice that the same resolution belongs to
Ressm,r(s1), if the a-transition of s1 is combined with itself, and to Ressm,i(s1),
if z′

2 and z′′
2 are both mapped to s′

1.
One may be tempted to admit only maximal resolutions in the definition

of probabilistic trace equivalences, but the problem would still be there if a
c-transition departed from z′′

2 . Moreover, by so doing, probabilistic trace equiv-
alences would no longer be compatible with trace equivalence. For instance,
the former would not identify the two fully nondeterministic, trace equivalent
NPLTS models in Fig. 4 whose initial states are s1 and s, because the maximal

Coherent Resolutions of Nondeterminism 25

resolution of s with an a-transition only – featuring traces ε and a – is not
matched by the two maximal resolutions of s1 – resp. featuring also a b and a c.

Let us move to examine the two NPLTS models in the leftmost part of Fig. 5.
After the two a-transitions, two distributions are reached that are probabilistic
trace equivalent, in the sense that for each class of equivalent states they both
assign the same probability to that class. However, it holds that s3 �∼PTr s4 due
to the resolution in the rightmost part of Fig. 5, where trace a a′ b is executable
with probability p instead of 1. This resolution belongs to Ressp(s3) \ Ressp(s4)
as it does not preserve the structure of the NPLTS whose initial state is s4. The
same resolution belongs to Ressm,r(s4), if the a-transition of s4 is combined with
itself, and to Ressm,i(s4), if z′

3 and z′′
3 are both mapped to s′

4.
This example reveals that, under deterministic schedulers, probabilistic trace

equivalence is not a congruence with respect to the action prefix operator, which
concatenates the execution of an action with a process. The difference with
trace equivalence for fully nondeterministic processes is that in our setting the
continuation after an action is not a single process, but a probability distribution
over processes. The problem arises when several equivalent states are in the
support of the same distribution, as in the target distribution of the a-transition
of s3, thereby allowing schedulers to act inconsistently.

We finally study the two NPLTS models in the leftmost part of Fig. 6. They
are identified by the trace equivalence for fully probabilistic processes of [17],
which does not use schedulers as in those processes there are no nondeterministic
choices to be solved. However, it turns out that s5 �∼PTr s6 because ∼PTr does
make use of schedulers, in particular their capability of stopping the execution.
This is witnessed by the resolution in the rightmost part of Fig. 6, where not only
trace a b c1 but also trace a b is executable with probability p. This resolution
belongs only to Ressp(s6) as it does not preserve the structure of the NPLTS
whose initial state is s5. It does not even belong to Ressm,r(s5) ∪ Ressm,i(s5)
because in the NPLTS starting with s5, after performing the a-transition and
the b-transition, the c1-transition can be executed with probability p, while the
c1-transition in the resolution can be executed with probability 1 and hence its
source state cannot be mapped to the source state of the former c1-transition.

s1

s’1

2s

2s"
p1−

2s’

2z

2z’ 2z"
p1−

a

b c

a
p

a
p

b c b c b

s

a a

b c

Fig. 4. Violation of s1 ∼PB s2 =⇒ s1 ∼PTr s2 (maximality does not help)

26 M. Bernardo

s3

s’3
1−p

s"3

s4

s’4

z3

z’3
1−p

z"3
a’

p

a’

a

b c

a’

b c

a’

a

b c

a

a’

p

a’

cb

Fig. 5. Violation of congruence with respect to action prefix: s3 �∼PTr s4

This further example highlights that schedulers inducing structure-modifying
resolutions are not exempt from shortcomings despite their greater flexibility.
The considered resolution would be ruled out by imposing maximality but, as
we have seen at the beginning of this section, that may generate other anomalies.

5 Anomaly Avoidance via Coherent Resolutions

The anomalies shown in Figs. 4, 5 and 6 are due to the freedom of schedulers
of making different decisions in equivalent states and cause probabilistic trace
equivalence to be overdiscriminating. We thus propose to limit the excessive
power of schedulers by restricting them to yield coherent resolutions. This means
that, if several states in the support of the target distribution of a transition are
equivalent, then the decisions made by the scheduler in those states have to be
coherent with each other, so that the states to which they correspond in any
resolution are equivalent as well. The coherency constraint implementing this
idea will be expressed by reasoning on coherent trace distributions, i.e., families
of sets of traces weighted with their execution probabilities in a given resolution,
built through the following operations.

s’5

p1−

s6

p1−
s’6 s"6

z6

p1−
z’6 z"6

s5

c1 c2c1 c2 c1

a

p
b

a
p

b b

a
p

b

Fig. 6. Incompatibility w.r.t. fully prob. processes: s5 �∼PTr s6 (levelwise coherency)

Coherent Resolutions of Nondeterminism 27

Definition 8. Let A �= ∅ be a countable set. For a ∈ A, p ∈ R, TD ⊆ 2A∗×R,
and T ⊆ A∗ × R we define:

a .TD = {a . T | T ∈ TD} a . T = {(aα, p′) | (α, p′) ∈ T}
p · TD = {p · T | T ∈ TD} p · T = {(α, p · p′) | (α, p′) ∈ T}

tr(TD) = {tr(T) | T ∈ TD} tr(T) = {α ∈ A∗ | (α, p′) ∈ T for some p′ ∈ R}

while for TD1,TD2 ⊆ 2A∗×R we define:

TD1 + TD2 =

⎧
⎪⎪⎨

⎪⎪⎩

{T1 + T2 | T1 ∈ TD1 ∧ T2 ∈ TD2 ∧ tr(T1) = tr(T2)}
if tr(TD1) = tr(TD2)

{T1 + T2 | T1 ∈ TD1 ∧ T2 ∈ TD2}
otherwise

where for T1, T2 ⊆ A∗ × R we define:

T1 + T2 = {(α, p1 + p2) | (α, p1) ∈ T1 ∧ (α, p2) ∈ T2} ∪
{(α, p) ∈ T1 ∪ T2 | α /∈ tr(T1) ∩ tr(T2)} �

Weighted trace set addition is commutative and associative. In the definition
of T1 + T2, which is inspired by [3], probabilities of identical traces in the two
summands are always added up for coherency purposes. Before Definition 3.5
of [3], the definition of X + Y , i.e., T1 + T2, should have included (α, q) ∈ X ∪ Y
in the sum anyhow, otherwise the right-to-left implication in Lemma 3.7 of [3]
cannot hold as can be seen from trace a b of the (incoherent) resolution in the
central part of Fig. 4 of this paper; that definition of X + Y works here instead,
because of the focus on coherency.

Trace distribution addition is only commutative. Intuitively, the two sum-
mands in TD1 + TD2 represent two families of sets of weighted traces exe-
cutable in the resolutions of two states in the support of a target distribution.
Every weighted trace set T1 ∈ TD1 is summed with every weighted trace set
T2 ∈ TD2 – so to characterize an overall resolution – unless TD1 and TD2 have
the same family of trace sets, in which case summation is restricted to weighted
trace sets featuring the same traces for the sake of coherency. In the definition
below, the double summation ensures that trace distributions Δ(s′) · TDc

n−1(s
′)

exhibiting the same family Θ of trace sets will be summed up first.

Definition 9. Let L = (S,A,−→) be an NPLTS and s ∈ S. The coherent trace
distribution of s is the subset of 2A∗×R]0,1] defined as follows:

TDc(s) =
⋃

n∈N

TDc
n(s)

28 M. Bernardo

where the coherent trace distribution of s whose traces have length at most n is
defined as:

TDc
n(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ε, 1) † ⋃

s
a−→ Δ

a .

(
∑

Θ∈tr(Δ,n−1)

tr(TDc
n−1(s

′))=Θ∑

s′∈supp(Δ)

Δ(s′) · TDc
n−1(s

′)

)

if n > 0 and s has outgoing transitions
{{(ε, 1)}}

otherwise

for tr(Δ,n−1) = {tr(TDc
n−1(s

′)) | s′ ∈ supp(Δ)} and (ε, 1)†TD = {{(ε, 1)}∪
T | T ∈ TD}. �

Let us reconsider the three counterexamples of Sect. 4 plus two more:

– In Fig. 4 we have TDc(s′
2) =

{{(ε, 1)}, {(ε, 1), (b, 1)}, {(ε, 1), (c, 1)}} =
TDc(s′′

2) – from which TDc(s2) =
{{(ε, 1)}, {(ε, 1), (a, 1)}, {(ε, 1), (a, 1),

(a b, 1)}, {(ε, 1), (a, 1), (a c, 1)}} = TDc(s1) follows – but in the resolution
TDc(z′

2) = {{(ε, 1)}, {(ε, 1), (b, 1)}} �= {{(ε, 1)}} = TDc(z′′
2).

– In Fig. 5 we have TDc(s′
3) =

{{(ε, 1)}, {(ε, 1), (a′, 1)},
{
(ε, 1), (a′, 1),

(a′ b, 1)
}
, {(ε, 1), (a′, 1), (a′ c, 1)}} = TDc(s′′

3) whereas in the resolution
TDc(z′

3) = {{(ε, 1)}, {(ε, 1), (a′, 1)}, {(ε, 1), (a′, 1), (a′ b, 1)}} �= {{(ε, 1)},

{(ε, 1), (a′, 1)}, {(ε, 1), (a′, 1), (a′ c, 1)}} = TDc(z′′
3).

– In Fig. 6 we have TDc(s′
6) = {{(ε, 1)}, {(ε, 1), (b, 1)}, {(ε, 1), (b, 1), (b c1, 1)}}

�= {{(ε, 1)}, {(ε, 1), (b, 1)}, {(ε, 1), (b, 1), (b c2, 1)}} = TDc(s′′
6). However,

TDc
1(s

′
6) = {{(ε, 1), (b, 1)}} = TDc

1(s
′′
6) while in the resolution TDc

1(z
′
6) =

{{(ε, 1), (b, 1)}} �= {{(ε, 1)}} = TDc
1(z

′′
6). This shows that we should set up

separate coherency constraints relying on TDc
n sets for every n ∈ N.

– Consider the two fully probabilistic NPLTS models in the leftmost part of
Fig. 7. They are identified by the trace equivalence of [17], but s7 �∼PTr s8
due to the resolution in the rightmost part of the same figure. It holds
that TDc

2(s
′
7) = {{(ε, 1), (b, 1), (b c, 0.3)}} �= {{(ε, 1), (b, 1), (b c, 0.2)}} =

TDc
2(s

′′
7), with TDc

3(s7) = {{(ε, 1), (a, 1), (a b, 1), (a b c, 0.25)}} = TDc
3(s8).

However, we observe that tr(TDc
2(s

′
7)) = {{ε, b, b c}} = tr(TDc

2(s
′′
7)) whereas

tr(TDc
2(z

′
7)) = {{ε, b, b c}} �= {{ε, b}} = tr(TDc

2(z
′′
7)). This indicates that the

coherency constraints should rely on TDc
n sets up to the probabilities they

contain, i.e., the coherency constraints should rely on tr(TDc
n) sets.

– The violations in Figs. 6 and 7 of backward compatibility with the trace equiv-
alence of [17] have a twofold interpretation. The former is that incoherent
selections are made by the scheduler in states having the same traces of a
certain length. The latter ascribes the lack of coherency to the fact that, in
both resolutions depicted in those figures, the scheduler proceeds by selecting
a transition along one direction while it stops the execution along the other
direction. This is even more evident with the two fully probabilistic NPLTS
models in the leftmost part of Fig. 8, which are identified by [17] but told
apart by the resolution on the right, where a b c1 is executable with prob-
ability 0.25, as tr(TDc

2(s
′
10)), tr(TDc

2(s
′′
10)), and tr(TDc

2(s
′′′
10)) are pairwise

Coherent Resolutions of Nondeterminism 29

s7

s’7 s"7

s8

s’8

7z

7z’ 7z"

a

0.3

0.5

0.7
b

c

0.5

0.2 0.8

c

a

0.25 0.75
b

c

a

0.3

0.5

0.7
b

c

0.5

b b

Fig. 7. Incompatibility w.r.t. fully prob. processes: s7 �∼PTr s8 (probability abstraction)

different. In every coherent resolution of s9, trace a b c1 can be executed only
with probability 0.5. This calls for a complete presence of computations of
the same length in each resolution – including shorter maximal computations
if any – which is different from requiring resolution maximality.

Definition 10. Let L = (S,A,−→) be an NPLTS, s ∈ S, and Z =
(Z,A, −→Z) ∈ Res(s) with correspondence function corrZ : Z → S. We say
that Z is a coherent resolution of s, written Z ∈ Resc(s), iff for all z ∈ Z,
whenever z

a−→Z Δ, then for all n ∈ N:

1. tr(TDc
n(corrZ(z′))) = tr(TDc

n(corrZ(z′′))) =⇒ tr(TDc
n(z′)) = tr(TDc

n(z′′))
for all z′, z′′ ∈ supp(Δ).

2. If there exists z′ ∈ supp(Δ) such that tr(TDc
n(z′)) contains traces of length n,

then for all z′′ ∈ supp(Δ) either tr(TDc
n(z′′)) contains traces of length n too,

or any α ∈ A∗ occurring in tr(TDc
n(z′′)) has length less than n but there

exists a maximal trace in tr(TDc
n(corrZ(z′′))) corresponding to α. �

In the definition above, Res() denotes any of the sets of resolutions intro-
duced in Definitions 3 to 5. From now on, we focus on Rescsp(). Notice that the
resolutions in Figs. 4 to 8 do not respectively belong to Rescsp(s2), Rescsp(s3),
Rescsp(s6), Rescsp(s7), and Rescsp(s10).

We conclude by proving that probabilistic trace equivalence no longer suf-
fers from the anomalies illustrated in Sect. 4 when using coherent resolutions
induced by deterministic schedulers. In the following, we lift a probabilis-
tic behavioral equivalence ∼ from states to distributions over states by let-
ting Δ1 ∼ Δ2 iff Δ1(C) = Δ2(C) for all equivalence classes C of ∼. More-
over, the action prefix construction a .Δ stands for an a-transition whose tar-
get distribution is Δ, whereas ∼fp

PTr denotes the probabilistic trace equiva-
lence for fully probabilistic processes defined in [17] by letting s1 ∼fp

PTr s2 iff
prob(CC(s1, α)) = prob(CC(s2, α)) for all α ∈ A∗.

We point out that coherency was unfortunately neglected in [3,4]. In particu-
lar, property 1 below is the rectified version of a chain of results in [4] consisting
of Thms. 6.5(2), 5.9(3), 4.5(2) and property 3 below is the rectified version

30 M. Bernardo

s9

s’9

c1 c2

s"9

c1 c2

s’10 s"10
10s"’

s10

c1 c1 c2 c2

10z

10z’
10z" 10z"’

c1

a
0.5

b
0.5 0.5

0.5

0.5 0.5
b

a

b
0.5 0.5

0.25 0.25

b b

0.5
a

b

0.25 0.25

b b

0.5

Fig. 8. Incompat. w.r.t. fully prob. processes: s9 �∼PTr s10 (levelwise completeness)

of Thm. 3.4(2) of [3,4]; deterministic schedulers were considered in all those
theorems. Property 3 now holds also in the case of randomized/interpolating
schedulers by just imposing condition 2 of Definition 10.

Theorem 1. Let L = (S,A,−→) be an NPLTS, s1, s2 ∈ S, Δ1,Δ2 ∈ Distr(S).
Under coherent resolutions induced by deterministic schedulers it holds that:

1. s1 ∼PB s2 =⇒ s1 ∼PTr s2.
2. Δ1 ∼PTr Δ2 =⇒ a .Δ1 ∼PTr a .Δ2 for all a ∈ A.
3. If L is fully probabilistic, then s1 ∼PTr s2 ⇐⇒ s1 ∼fp

PTr s2. �

We finally observe that looser coherency constraints, based on weighted trace
sets rather than trace distributions as in Definition 10, would not work. Similar
to TDc(s) in Definition 9, one may define T c(s) by considering all weighted traces
executable from s at once – i.e., without keeping track of the resolutions in which
they are feasible – and use it for coherency purposes, but then probabilistic
trace equivalent NPLTS models like the ones in Fig. 9 would be told apart.
Indeed, we would have tr(T c(s′

1)) = {ε, b, b c1, b c2, b c} = tr(T c(s′
2)) – whereas

tr(TDc(s′
1)) �= tr(TDc(s′

2)) – hence in any coherent resolution of s′ traces a b c1,
a b c2, a b c could only be executed with probability 0.5 if present, while s′′ admits
coherent resolutions in which those traces have execution probability 0.25.

Fig. 9. Using weighted trace sets for coherency breaks probabilistic trace equivalence

Coherent Resolutions of Nondeterminism 31

6 Conclusions

To guarantee a number of desirable properties for probabilistic trace equivalence
over probabilistic automata, we have proposed a set of coherency constraints as
a solution to the problem – addressed also in [12] for a different probabilistic
model and equivalence – of limiting the excessive power of schedulers.

The highlighted anomalies mostly have to do with structure-preserving res-
olutions generated by deterministic schedulers, so one may wonder why not to
avoid those schedulers altogether. The first reason is that, as shown in [4], the use
of a specific family of schedulers has an impact on the discriminating power of
behavioral equivalences, so there might be situations in which considering deter-
ministic schedulers is more appropriate. The second reason is that, as witnessed
by Fig. 6, some of the examined anomalies affect also equivalences defined on
structure-modifying resolutions generated by randomized/interpolating sched-
ulers. The third reason is that in more general frameworks, like the ULTraS
metamodel [2] of which probabilistic automata are an instance, the applicability
of deterministic schedulers is always possible, while this might not be the case
for other families of schedulers.

Acknowledgement. We would like to thank Valeria Vignudelli for pointing out the
property violation illustrated in Fig. 4 and Rob van Glabbeek for the valuable discus-
sions on interpolating and randomized schedulers.

References

1. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Inf. Comput. 200, 149–214 (2005)

2. Bernardo, M.: Genesis and evolution of ULTraS: metamodel, metaequivalences,
metaresults. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Mod-
els, Languages, and Tools for Concurrent and Distributed Programming. LNCS,
vol. 11665, pp. 92–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21485-2 7

3. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting trace and testing equivalences
for nondeterministic and probabilistic processes. Logical Methods Comput. Sci.
10(1:16), 1–42 (2014)

4. Bernardo, M., De Nicola, R., Loreti, M.: Relating strong behavioral equivalences
for processes with nondeterminism and probabilities. Theor. Comput. Sci. 546,
63–92 (2014)

5. Bernardo, M., Sangiorgi, D., Vignudelli, V.: On the discriminating power of testing
equivalences for reactive probabilistic systems: results and open problems. In: Nor-
man, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 281–296. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10696-0 23

6. Bonchi, F., Sokolova, A., Vignudelli, V.: The theory of traces for systems with non-
determinism and probability. In: Proceedings of the 34th ACM/IEEE Symposium
on Logic in Computer Science (LICS 2019), no. (19:62), pp. 1–14. IEEE-CS Press
(2019)

7. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31, 560–599 (1984)

https://doi.org/10.1007/978-3-030-21485-2_7
https://doi.org/10.1007/978-3-030-21485-2_7
https://doi.org/10.1007/978-3-319-10696-0_23

32 M. Bernardo

8. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica
24, 211–237 (1987)

9. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

10. Deng, Y., van Glabbeek, R., Morgan, C., Zhang, C.: Scalar outcomes suffice for fini-
tary probabilistic testing. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
363–378. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-
6 25

11. Derman, C.: Finite State Markovian Decision Processes. Academic Press,
Cambridge (1970)

12. Georgievska, S., Andova, S.: Probabilistic may/must testing: retaining probabilities
by restricted schedulers. Formal Aspects Comput. 24, 727–748 (2012)

13. van Glabbeek, R.J.: The linear time - branching time spectrum I. In: Handbook
of Process Algebra, pp. 3–99. Elsevier (2001)

14. Huynh, D.T., Tian, L.: On some equivalence relations for probabilistic processes.
Fundamenta Informaticae 17, 211–234 (1992)

15. Jonsson, B., Ho-Stuart, C., Yi, W.: Testing and refinement for nondeterministic
and probabilistic processes. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.)
FTRTFT 1994. LNCS, vol. 863, pp. 418–430. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58468-4 176

16. Jonsson, B., Yi, W.: Compositional testing preorders for probabilistic processes.
In: Proceedings of the 10th IEEE Symposium on Logic in Computer Science (LICS
1995), pp. 431–441. IEEE-CS Press (1995)

17. Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations
for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990.
LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990). https://doi.org/10.1007/
BFb0039071

18. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19, 371–384
(1976)

19. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand, New York (1960)
20. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.

94, 1–28 (1991)
21. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River

(1989)
22. Segala, R.: Modeling and verification of randomized distributed real-time systems.

Ph.D. thesis (1995)
23. Segala, R.: A compositional trace-based semantics for probabilistic automata. In:

Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60218-6 17

24. Segala, R.: Testing probabilistic automata. In: Montanari, U., Sassone, V. (eds.)
CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7 62

25. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jon-
sson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer,
Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1 35

26. Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Pro-
ceedings of the 12th International Symposium on Protocol Specification, Testing
and Verification (PSTV 1992), pp. 47–61. North-Holland (1992)

https://doi.org/10.1007/978-3-540-71316-6_25
https://doi.org/10.1007/978-3-540-71316-6_25
https://doi.org/10.1007/3-540-58468-4_176
https://doi.org/10.1007/3-540-58468-4_176
https://doi.org/10.1007/BFb0039071
https://doi.org/10.1007/BFb0039071
https://doi.org/10.1007/3-540-60218-6_17
https://doi.org/10.1007/3-540-61604-7_62
https://doi.org/10.1007/978-3-540-48654-1_35

Emulating Self-adaptive Stochastic
Petri Nets

Lorenzo Capra1 and Matteo Camilli2(B)

1 Department of Computer Science, Università degli Studi di Milano, Milan, Italy
lorenzo.capra@unimi.it

2 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
matteo.camilli@unibz.it

Abstract. Traditional Petri nets lack specific features to conveniently
describe systems with an evolving structure. A model based on the Sym-
metric Net formalism has been recently introduced. It is composed of an
emulator reproducing the behaviour of a Place/Transition net (encoded
as a marking) and a basic set of net-transformation primitives to spec-
ify evolutionary behaviour. In this paper, we discuss the adoption of
the stochastic extension of Symmetric Nets for performance analysis,
considering important issues related to time specification and analysis
complexity. We put into place theoretical aspects by using a running
example consisting in a self-healing manufacturing system.

Keywords: Evolving systems · Stochastic petri nets · Symmetric nets

1 Introduction

Both low- and high-level Petri nets (PNs) lack features to describe in a sim-
ple way structural changes that may occur in a wide class of systems, like
reconfigurable, self-adaptive, self-healing, and so forth. To bridge this gap, new
PN-based formalisms have been proposed in literature in the last decade, often
hybrid and/or characterized by complex annotations, in which enhanced mod-
elling capabilities are not supported by analysis techniques and tools.

A formal model for evolving systems based on the Symmetric Nets (SNs) for-
malism (formerly known as Well-formed Nets) [8] has been recently introduced
in [6]. The idea takes inspiration from the “nets within nets” paradigm [12,15]
and is based on a meta-level net (a SN) emulating a system-level net (a Place/-
Transition -P/T- system with inhibitor arcs, known to be Turing-complete)
encoded as a marking of the meta-net. The modeling approach supplies a set of
transformation primitives (SN subnets), accessible through a simple API, which
can be profitably used to specify adaptation procedures acting on the emulated
system. The resulting approach is conceptually uniform and simple, differently
from other proposals with similar objectives. SNs are a flavour of Colored Petri
Nets [10] characterized by a structured syntax implicitly capturing system sym-
metries, which may be exploited to reduce the complexity of analysis techniques.
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): EPEW 2019, LNCS 12039, pp. 33–49, 2020.
https://doi.org/10.1007/978-3-030-44411-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44411-2_3&domain=pdf
http://orcid.org/0000-0002-1029-1169
http://orcid.org/0000-0003-2491-5267
https://doi.org/10.1007/978-3-030-44411-2_3

34 L. Capra and M. Camilli

Fig. 1. MS nominal behaviour.

SN were originally proposed in their stochastic version, called SSN. The use of
the SN formalism offers the great advantage of exploiting a well engineered, off-
the-shelf tool, GreatSPN [1], that natively supports it. In this paper we discuss
the usage of the emulation-based model for performance analysis. Relevant issues
concerning time specification, time semantics preservation, and analysis com-
plexity, are addressed. A simple manufacturing system (MS) with self-healing
capabilities is used as a running example, to illustrate the core concepts and dis-
cuss some experimental results. The emulation-based technique is general: any
P/T model can be emulated with this approach. The entire emulation process
may be easily automated, even if currently only some steps are: the emulator’s
initial marking is directly derived from a P/T net in PNML format, whereas
the algebra module of GreatSPN is used to link the user-defined adaptation
procedures to the emulator. There is ongoing work to set up the model’s stochas-
tic parameters in a semi-automated way, as discussed in Sect. 5. Moreover, the
design of adaptation sub-nets is completely unaware of emulator inside.

Related Work. The emulator-based approach has been introduced in [5] using
pure spec-inscribed PN [10]. Thanks to the abstraction provided by this for-
malism, the resulting model is much more compact than the one considered
here. It has been implemented as an extensible library [4] but, currently, with
reduced analysis capabilities (interactive simulation and a LTL model checker are
available) and without timing. A survey on approaches combining higher-order
tokens and the features of object-orientation can be found in [15]. Reference
Nets [2] are the representative of this class of formalisms, and are supported
by tool Renew. The formalism introduced in [9] extends Algebraic Higher-Order
(AHO) nets (i.e., HLPNs annotated with higher-order algebraic language) with
the main concepts of graph transformation systems. Common drawbacks of mod-
els based on algebraic-functional languages and/or higher-order tokens are the
lack of a sound/clear semantics, the use of hybrid formalisms hard to manage
by non experts, and, consequently, a limited support in terms of tools/analysis
techniques. Considering time extensions, there are a few available models that
refer to PNs oriented to real-time systems [3]. The formalism introduced in [14]

Emulating Self-adaptive Stochastic Petri Nets 35

integrates GSPNs with graph-rewriting rules and supports simple evolution pat-
terns. For a general survey on available formalisms for self-adaptive systems we
let the reader refer to [16].

2 Background

Assuming that the reader is familiar with low-level PN, let us give a brief
overview of P/T nets [13], exemplified by Fig. 1. In these nets there a 3 kinds
of arcs, input/output/inhibitor (the latter drawn with a small ending circle),
described by multisets on P ×T , i.e., maps P ×T → N, where P and T are (dis-
joint, non-empty, and finite) sets holding the net’s places and transitions. Null-
weight arcs are not drawn. A marking m (i.e., a system state) is a multiset on P .
A transition t ∈ T is enabled in m iff ∀p, I(p, t) ≤ m(p)∧(H(p, t) = 0∨H(p, t) >
m(p)). If enabled, t may fire leading to m′, where m′(p) = m(p)+O(p, t)−I(p, t).
This is denoted m[t > m′. A P/T system is a P/T net with an initial marking m0.
Its reachability graph is a multi-graph whose nodes are the markings reachable
from m0, and such that there is an edge m

t−→ m′ iff m[t > m′.
In SN [8] (see Fig. 3), like in any high-level PN formalism, nodes are asso-

ciated with domains, expressed as Cartesian products of finite color classes. A
color class, denoted hereinafter by a capital letter, e.g., C, may be partitioned
into static subclasses {Cj}. Colours in a class represent entities of the same
nature, but only colors within the same static subclass are guaranteed to behave
similarly. A color class may also be circularly ordered. The SN in Fig. 3 has two
basic color classes, P = {pli} and T = {trj}, encoding the nodes of a P/T net.
They may have to be partitioned and/or ordered for the sake of modelling.

A place’s color domain, cd(p), defines the type of tokens the place may hold.
Places IN, OUT, H, with domain P×T, encode the structure of a P/T net. The
domain of place MARK is P, in fact, this place encodes a P/T net marking.
Each place contains a multiset defined on its domain, the place’s marking. For
example, the multiplicity of the token 〈pri, trk〉 in place IN encodes the weight of
a P/T arc from pli to trk. A SN marking is denoted M , with M(p) ∈ Bag[cd(p)],
where Bag[D] is the set of multisets defined on domain D.

SN transitions represent parametrized events. The instances of t are elements
of its domain, cd(t), which is implicitly defined by the typed variables annotating
the arcs which surround t (assuming an implicit order among them). A variable
is denoted by a small letter, which refers to the variable’s color class, with a sub-
script, possibly omitted when there is one variable of a given type. A transition
instance, also denoted (t, b), is a binding of t’s variables with colors of proper
type. Transition nextT in Fig. 3 has got one variable, t, therefore its domain is
T. Transition sc H has got variables p, t1, t2, so its domain is P × T × T.

A guard can be used to restrict the domain of t: it is a logical expression
defined on cd(t), and its terms, called basic predicates, allow one to (1) compare
colors assigned to variables of the same type (c1 = c2, c1
= c2); (2) test whether
a color belongs to a given static subclass (c1 ∈ Ci); (3) compare the static
subclasses of the colors assigned to two variables (d(c1) = d(c2), d(c1)
= d(c2)).

36 L. Capra and M. Camilli

Fig. 2. MS self-adaptation upon a fault on line 2.

Again, there are input/output/inhibitor arcs linking places to transitions,
annotated by functions, denoted W−[p, t], W+[p, t] and Wh[p, t], respectively.
An arc function is a map cd(t) → Bag[cd(p)], formally expressed as a linear
combination of tuples 〈f1, . . . , fk〉 of class functions. A class-C function fi is a
map cd(t) → Bag[C], expressed in turn as a linear combination of elementary
functions chosen among cj , cj++,Cq, All: cj (variable, or projection) maps a tuple
in cd(t) to the jth occurrence of color C in it; ++ gets the successor mod|C|, if
the class is ordered; Cq and All are constants mapping to

∑
x∈Cq

x and
∑

x∈C x,
respectively. The evaluation of 〈f1, . . . , fk〉 on b ∈ cd(t) results in f1(b)×. . . fk(b),
where × is the multiset Cartesian product.

For example, the firing of nextT with binding t=tr1 replaces color tr1 with its
successor, tr2, in place toTest, and withdraws tr2 from AllT. The function 〈All〉
on the inhibitor arc linking place checkList to transition endTestEnab checks for
the absence of tokens in that place. The same function on the output arc from
endTestEnab to AllT makes this place be filled with all the colors in T. The
tuple 〈p1, t1 + t2〉 evaluated on the binding p1=pl3, t1=tr1, t2=tr4..., results in
the multiset 〈pl3, tr1〉 + 〈pl3, tr4〉. And so forth.

The SN formalism admits two different kinds of transitions: transitions drawn
as rectangles represent observable (or time-consuming) events, whereas those
drawn as tiny black bars represent invisible (or logical) activities. The latter
take priority over the former, assumed to have priority 0. “Black” transitions
may have different priorities, specified by a map π : Tblack → N

+.
(t, b) has concession in marking M if ∀p W−[p, t](b) ≤ M(p) ∧ ∀c ∈ cd(p)

Wh[p, t](b)(c) = 0 ∨ Wh[p, t](b)(c) > M(p)(c). An instance (t, b) having conces-
sion in M is enabled if no higher priority transition instance has. In this case it
may fire, leading to M ′, where ∀p M ′(p) = M(p)−W−[p, t](b)+W+[p, t](b). This
is denoted M [(t, b) > M ′. If σ is a sequence of transition instances, M [σ > M ′

means that M ′ is reachable from M through σ.
A SN marking is called vanishing if some black transition is enabled, tangible

otherwise. Assuming that the initial marking M0 is tangible, and no cyclic paths
of black transitions do exist, we may build the tangible reachability graph (TRG)

Emulating Self-adaptive Stochastic Petri Nets 37

of a SN, whose nodes are tangible markings such that Mi
β−→ Mj if and only

if Mi[βσ > Mj , where β is an observable transition instance whereas σ is a
(possibly null) sequence of black transition instances.

3 A Self-adaptive Manufacturing System Example

As a running example, we use a simple manufacturing system (MS) equipped
with self-healing capabilities. The MS is composed of two symmetric production
lines working a number of raw pieces which are loaded (two at a time) into
the system and evenly distributed to the lines. Pairs of worked pieces are then
assembled into the final artifact. Either line is periodically subject to failures (the
possibility of simultaneous faults on both lines is considered null). The system’s
nominal behaviour, and the fault occurrence, are shown in Fig. 1: whenever either
place broken1 or broken2 is marked the corresponding line is blocked and the
MS, without any further action, would eventually get stuck.

A first adaptation scenario is represented by the MS reconfiguration upon
a failure. At the end of adaptation the MS layout looks like Fig. 2. During
adaptation the MS is not shut down, but continues working using the avail-
able resources: the faulty line is detached, and the behaviour of both the loader
and the assembler are changed accordingly. The presence of pending pieces on
the faulty line is a critical issue. Once adapted, the loader puts two row pieces
at a time on the available line, whereas the assembler takes pairs of worked
pieces from that line. The second scenario brings the MS back to its nominal
configuration as soon as the faulty component has been repaired. Once again,
without stopping the system. Despite its simplicity, trying to model the MS and
its adaptation with PN (even if high-level) is very hard and costly. Our approach
follows a clear separation of concerns and consists of representing the adaptation
procedures as apart components (SN sub-nets) running on a distributed infras-
tructure, which concurrently monitors the current state/topology of a base-level
(P/T) system and possibly rearrange it. The base-level system’s dynamics is
emulated by a meta-level SN model encoding the system as a marking. Adapta-
tion is implemented by read/write primitives (SN sub-nets) which safely operate
on the system’s encoding, through a simple API. We can thus easily represent
disconnection/reconnection of a faulty/repaired production line, migration of
raw pieces from one line to the other, failure repair (through a newly created
transition), and so forth.

4 The SN-Based Emulating Framework

The SN model in Fig. 3 (called emulator) is the building-block of a modelling
approach to highly dynamic discrete-event systems based on SN. It reproduces
the interleaving semantics of a P/T system encoded as a marking. The emula-
tor (and the whole framework based on it) can be interactively simulated and
analysed by means of GreatSPN1. Despite its complexity, caused by the lack
1 All the SN sources (GreatSPN .PNPRO files) are publicly available at https://

github.com/SELab-unimi/sn-based-emulator.

https://github.com/SELab-unimi/sn-based-emulator
https://github.com/SELab-unimi/sn-based-emulator

38 L. Capra and M. Camilli

step iiistep ii

step i

Fig. 3. Symmetric net emulating model.

of abstraction in SN color structure, it allows for significant achievements in
dynamic system modelling. The depicted version is one of the three available
ones, pretty similar but different in analysis capability (Sect. 7).

4.1 The Emulator Model

The emulator’s color annotations build on basic classes P and T, whose elements
represent the nodes of a P/T net. For simplicity, we identify colors and corre-
sponding nodes. Let N = (P, T, I,O,H,m0) be a P/T system: classes P and T
contain the nodes of N (P ⊇ P,T ⊇ T), and should be large enough to cover its
possible evolutions. The emulator’s places IN, OUT, H (with domain P × T)
and MARK (cd(MARK) = P) encode the (current) structure and marking of

Emulating Self-adaptive Stochastic Petri Nets 39

N , respectively. Their initial marking is: ∀pli ∈P,∀trj ∈T

M0(IN)[〈pli, trj〉)] = I(pli, trj) M0(OUT)[〈pli, trj〉] = O(pli, trj)
M0(H)[〈pli, trj〉] = H(pli, trj) M0(MARK)[〈pli〉] = m0(pli).

For convenience, the SN places O I and I O encode the functions O−I and I−O.
The emulator has a cyclic behaviour, which can be summarized as follows

(see [6] for further details). Any reachable tangible marking corresponds to a
reachable marking of the encoded P/T system, any enabled instance of transition
PT fire (the onlyobservable, but for start) matches an enabled P/T transition.
The firing of (PT fire, t=trk) triggers a sequence σ of black transition instances
reproducing the firing of trk, according to the atomic semantics of PN. The
sequence σ is composed of three parts: (step ii) the marking of place MARK
is updated, according to the P/T firing rule; (step iii) two lists holding the
transitions that were enabled before the firing of trk (place enabList) and those
whose enabling must be checked upon it (checkList) are efficiently updated,
taking into account the structural conflict (SC) and causal connection (SCC)
relations. Both steps ii and iii rely on the information held in places O I and
I O; (step i) all and only the transitions marked as “to be checked” are tested
for enabling, first considering input places then inhibitor places. After place
checkList has been emptied, and enabList updated, the emulation cycle restarts
(transition endTestEnab). The emulator can be initialized by either putting a
(neutral) token in place startUp and all transitions of N in checkList, or a token
in beginFiring and the precomputed set of transitions enabled in m0 in enabList.

For any encoded P/T system N , the following properties holds:

1. mi[trk > mj if and only if Mi[β · σ > Mj , where Mi and Mj are emulator’s
tangible markings such that Mi(MARK) and Mj(MARK) correspond to mi

and mj , respectively, β = (PT fire, t = trk), and σ is a sequence of immediate
transition instances

2. if Mi[β · σ > Mj and Mi[β · σ′ > Mh then Mj = Mh.

The tangible reachability graph of the emulator encoding N therefore is iso-
morphic to the reachability graph of N .

4.2 The Evolutionary API

Figure 4a isolates the set of emulator’s places encoding the P/T system’s current
state and structure. For example, as for the MS model, M0(MARK) = N · 〈In〉,
where N is the number of pieces worked in a single production cycle. This set
represents the emulator’s evolutionary interface.

The adaptive behaviour of a system is described by a number of concurrent,
user-defined procedures, which exploit a basic set of read/write primitives, called
evolutionary API, to safely interface with the emulator. Each primitive acts on
the emulator’s evolutionary interface. The evolutionary API is a minimal but
complete library for base-level introspection/intercession: one can get informa-
tion about the marking and the graph structure of the P/T system, add/remove

40 L. Capra and M. Camilli

MARK : PIN : Arc H : ArcOUT : Arc

I_O : Arc O_I : Arc

Emulator

class: P = pl{1, ..., k}, T = tr{1, ..., r}
domain: Arc = P × T

(a) Places encoding the base-level.

OUT : Arc

delOut1

O_I : Arc I_O : Arc

delOut2

API

Emulator

⟨p,t⟩ ⟨p,t⟩ ⟨p,t⟩ ⟨p,t⟩ ⟨p,t⟩

delOut : Arc

⟨p,t⟩ ⟨p,t⟩
=2 =2

(b) The delOut primitive.

Fig. 4. Emulator section and the delOut API primitive example.

P/T nodes, set the weight of arcs, change the current marking, etcetera. A prim-
itive is defined by a SN subnet which reads and/or consistently modifies the P/T
system’s encoding in an atomic way, i.e., through a sequence of invisible actions.
The evolutionary API is similar to the reflection API of most modern program-
ming languages, as in the seminal idea introduced in [11] for (object) Petri nets.

Figure 4b shows a simple example of primitive (the delOut operation), which
decreases the weight of a base-level output arc. When a token 〈pr, tr〉 is put
into place delOut (holding the input of the primitive), one of the two mutually
exclusive transitions delOut1, delOut2 may become enabled. Its firing removes
the token 〈pr, tr〉 from the OUT place and updates the marking of I O and
O I accordingly. The priorities of transitions composing a primitive sub-net are
relative: when bringing all together, the greatest priority in a primitive-net is set
lower than the lowest priority in the emulator.

Other primitives are more complex, due to additional consistency checks they
perform. As an example, the primitive which decreases the weight of an input
arc (the argument) has to check whether the linked transition is currently either
in enabList or in checkList; if not, it has to be added to checkList.

4.3 Self-Adaptation Procedures

The managing subsystem, i.e., the part of the whole model driving the system
evolution, is made up of a collection of adaptation procedures, each implement-
ing a feedback control loop which deals with an adaptation concern. A procedure
is described by a sub-net, which may contain both observable and logical transi-
tions, and is indirectly connected to the emulator by means of the evolutionary
API’s input/output places. Figure 5 shows the procedure which, in the running
example, manages a fault occurrence. This procedure refers to a simplified ver-
sion of the MS running example, where just one line is faulty and it is periodically
subject to failures.

This procedure is triggered whenever place Broken of the MS model is
marked. A challenging point is that the MS execution keeps going while changes

Emulating Self-adaptive Stochastic Petri Nets 41

getMARK : P getIN : Arc

⟨Broken⟩

API

Procedure

start blockedLoader

blockLoader

addH : Arc

⟨Broken,Loader⟩ ⟨Loaded,Flush⟩

changeAssembler
[p Worked p1 Worked p p1]

getH : Arc

⟨Broken,t⟩

getOUT : Arc addIn : Arc delIn : Arc

⟨p,t⟩ ⟨p1,Assembler⟩

⟨p,Assembler⟩

assemblerReady

changeLoader
[p1 Loaded p p1]

⟨p,Loader⟩

⟨Broken,t⟩
⟨p,t⟩

⟨p,Flush⟩

delOut : Arc addOut : Arc

⟨p,Loader⟩ ⟨p1,Loader⟩+ ⟨p1,Flush⟩

loaderReady

resume

⟨p⟩

⟨Broken⟩

delH : Arc

⟨Broken,Loader⟩

Fig. 5. The fault managing procedure.

are being carried out. Even though single transformations are atomic, the
sequence used to apply them may bring the overall system into inconsistent
states and thus affect the functional correctness.

A fault occurrence is checked by the blockLoader transition through the
getMARK primitive. When blockLoader fires, it temporarily suspends the loader
by linking it to place Broken with an inhibitor arc (addH primitive). Then
changeAssembler modifies the arcs surrounding assembler, as shown in Fig. 2,
through the addIN and delIN primitives. In a similar way, the procedure changes
the loader behaviour to avoid loading of raw pieces into the faulty line (through
addOut and delOut primitives). A new transition is inserted through which resid-
ual row pieces on the faulty line eventually move to the working one. Loading is
resumed at the end of the procedure by removing the temporary inhibitor arc
between Broken and Loader. The procedure which brings the system back to its
default layout (after the faulty line has been repaired) is not described due to
lack of space. The tricky point there is that the system must enter a safe state
before the reconfiguration can take place. The specification of this procedure is
available on the online repository mentioned before.

The emulator, the evolutionary API, and the adaptation procedures are con-
nected using a simple place superposition. The composition process can be auto-
matically performed using the Algebra package of GreatSPN.

5 Performance Analysis

The emulator-based model can be used for performance analysis if the stochas-
tic extensions of PNs (SPNs), and symmetric nets (SSN) are used. Time spec-
ification and complexity issues have to be addressed. In SPNs, each transition
t is associated with a rate ρ(t) ∈ R

+ characterizing a non-negative exponen-
tial probability density function. A SPN is isomorphic to a Continuous Time
Markov Chain (CTMC) whose states are the SPN reachable markings: the entry
[qi,j] (i
= j) of the generator matrix is

∑
t:mi[t>mj

ρ(t) ([qi,i] = −∑
i,j i �=j qi,j).

42 L. Capra and M. Camilli

Performance indices can be computed from either the transient or steady state
probability vector.

The ability to define marking-dependent rates considerably enhances SPN
expressivity. A rate is defined by a product φ(t,m) = ρ(t) · e(m), where ρ(t) is
the base rate of t, and e(m) ∈ R

+ is the evaluation of a function e on marking
m. The marking expression e may involve particular places of the net (usually,
of •t), e.g., p1 + 1

2p2 (hence e(m) = m(p1) + 1
2m(p2)). A more generic type

of marking dependency assigns a transition a firing policy, like the infinite/k-
server, the mass-action, and so forth. For example, if t is infinite-server, φ(t,m) =
ρ(t) · minp∈•t

⌊
m(p)
I(p,t)

⌋
, the 2nd factor being the enabling degree of t.

The time semantics of a stochastic SN (SSN) [8] is that of its unfolding,
a Generalized SPN (GSPN). Timed (i.e., observable) transitions are associated
with exponential firing rates, as in SPN, whereas immediate (i.e., logical/black)
transitions fire in zero-time. The latter are assigned weights to probabilistically
determine which transition fires, in the case of simultaneous enabling. In SSN,
rate/weights may be associated with transition instances. A function ω defines
the rates/weights of a timed/immediate transition, as follows (c ∈ cd(t)):

ω(t, c) =
{

ri if condi(c), i = 1, . . . , n;
rn+1 otherwise

where condi is a boolean expression built of standard predicates on the tran-
sition’s color instance. Hence, the firing rate/weight ri ∈ R

+ of a transition
instance can only depend on the static subclasses of the colors assigned to the
transition variables and on the comparison of variables of the same type. We
assume that the conditions condi are mutually exclusive.

The stochastic process underlying a SSN model is a CTMC, whose states
are identified with the SSN tangible markings. The entry [qi,j] (i
= j) of the
generator matrix is

∑
t∈T,c∈cd(t),σ:Mi[(t,c)·σ>Mj

ω(t, c)Pσ, where σ is a (possibly
null) immediate transition sequence and Pσ the corresponding probability (1 if
σ is empty).

Marking dependent rates/weights may be defined, according to the static
partitioning of basic color classes, through a function ϕ(M, t, c) = ω(t, c) · ê(M),
where the 2nd element of the product is the evaluation of a (symbolic) marking
expression in which static subclasses are used instead of colors. Assuming, e.g.,
cd(p1) = C, cd(p2) = C × C, C = C1 ∪ C2: the expression ê = p2(〈C1,C2〉)

max(1,p1(C1))
,

when evaluated on M , gives the ratio between the number of tokens in place p2
with 1st element of subclass C1 and 2nd of subclass C2, and the max between 1
and the number of tokens of subclass C1 in place p2

2.

5.1 Emulator’s Colour Class Partitioning

We have seen that the untimed behaviour of a P/T system is exactly reproduced
by the emulator encoding it. In order for the emulator to preserve also the time
2 (in)equalities between colors of the same subclass may be expressed through condi.

Emulating Self-adaptive Stochastic Petri Nets 43

semantics of the encoded SPN, the emulator’s color classes may have to be
partitioned. In fact, a SPN transition tr corresponds to the binding (t = tr) of
SN timed transition PT fire (Fig. 3).

No Marking Dependency or Use of Generic Firing Policies in the SPN. In these
cases, we may only have to partition color class T into

⋃n
i Ti, such that ∀i :

Ti ⊇ {trj ∈ T |ρ(trj) = ri} and ω(PT fire, t = trj) = ri if t ∈ Ti.
A generic firing policy at SPN level is expressed in terms of emulator’s places

MARK and IN. As for the infinite-server, the enabling degree of tr becomes

min
pl: IN(〈pl,tr〉) �=0

⌊
MARK(pl)]
IN(〈pl, tr〉)

⌋

Transitions in a given subclass must be characterized by the same firing policy.

Use of General Marking Dependency in the SPN –If we want to reflect this kind
of dependency in the emulator, we may have to partition also color class P. Let
etr be the expression defining the marking dependency of a SPN transition. This
expression involves some SPN places. The idea is to partition classes T and P
into

⋃
i Ti and

⋃
j Pj , such that the condition above holds and, letting êtr be the

symbolic expression obtained from etr by replacing every place symbol with the
static subclass it belongs to, ∀i, tr ∈ Ti : êtr = êTi

, where êTi
is the transition

subclass marking expression.

Marking Dependency Issues–The use of marking dependency in a dynamic con-
text, however, has got some trickiness. The possibility of withdrawing places from
the encoded net may lead to a situation in which, e.g., all the places of a given
subclass disappear, whereas there is some transition which refers to it in the
marking dependency pattern. Emptying the pre-set of a SPN transition with an
infinite- or k-server semantics is another cause of incongruence. To avoid such
situations, we have enriched the primitives of the evolutionary API removing
places/input arcs with simple additional controls based on subclasses.

Assignment of Weights to Immediate Transitions–Due to property 2 at the end
of Sect. 4 (independently of the order in which immediate transitions fire, from
a given TM we always reach the same TM), this has no relevance on the timed
behaviour of the emulator. Weights may therefore be arbitrarily assigned. Sum-
marizing (possibly after a partitioning of the emulator’s color classes), the fol-
lowing claim holds: any transition from a state m to m′ of the encoded SPN
characterized by rate λ is matched by a transition between corresponding tan-
gible states M , M ′ of the emulator with the same rate.

The weights assigned to the immediate transitions of the evolutionary API’s
primitives do not influence the model’s stochastic behaviour because of the
absence of conflicts among them.

6 Experiments

Table 1 reports some experiments conduced on the running example, the self-
healing MS, by using GreatSPN. The whole model, composed of the emulator

44 L. Capra and M. Camilli

Table 1. Reachability graph size/building time and transition throughputs.

Model N |RG| (TM/VM) Time (s.) |SRG| (TM/VM) Time (s.) Throughput Time (s.)

MS 2 55/3484 0.15 55/3484 3.40 0.20074 0.66

4 184/13906 2.31 184/13906 10.06 0.26590 1.12

8 985/91586 8.04 985/91586 64.11 0.33175 5.36

16 7964/886842 77.11 7964/886842 622.91 0.38866 49.71

32 95568/11108025 1544 95568/11108025 ≈3.5 h 0.43867 560.11

SMS 2 92/6708 1.71 48/3437 5.36 0.19532 0.93

4 276/23268 2.79 142/11986 10.06 0.25852 1.88

8 1289/131761 10.12 662/66663 91.66 0.32164 5.59

16 9103/1114027 99.05 4634/561461 816.71 0.37521 62.27

32 109236/13945378 1978 55448/7078872 ≈4.8 h 0.41121 720.30

(initially encoding the P/T system in Fig. 1) and the two adaptation procedures,
has been analysed for values of N (number of worked pieces per cycle) 2 to
32. Since the model’s TRG have a cyclic structure (their initial markings are
home states), a steady-state solution of the corresponding CTMS does exist.
Transition firing rates (irrelevant, for our scopes) are those indicated in Figs. 1
and 2. All transitions are assumed to be infinite-server. The color class T, which
holds as many colours as the union of transition in Figs. 1 and 2, has been
partitioned into subclasses characterized by the same firing rate, as described
in Sect. 5. Given that GreatSPN doesn’t currently support a color-dependent
definition of rates, timed transition PT fire has been partially unfolded into a
set of mutually exclusive instances, each associated with a guard t ∈ Ti, where
Ti is a subclass (e.g., {line1, line2}). The throughput column shows the average
throughput of the Assembler transition, that measures the system efficiency
and (when compared to the nominal MS behaviour in absence of faults) the
overhead due to reconfiguration. Two variants of the MS model are considered:
the symmetric one (denoted SMS) described in Fig. 1, and the asymmetric one
(MS), in which only one of the two lines may be periodically off. As discussed
later, some data refer to the solution of a lumped CTMC directly derived from
(the tangible part of) a quotient graph of the ordinary RG, called Symbolic
Reachability Graph (SRG), which exploits the (possible) model symmetries. The
throughput values are congruently the same for the ordinary CTMC and the
lumped one. The last column of Table 1 reports the time required to compute the
throughput. This value ranges from a few milliseconds to a few hundred seconds.
The size of the RG and SRG are listed in terms of tangible and vanishing states.
Execution times are reported, varying from dozens ms to a few hours. We observe
that, as discussed later, the SRG takes much more time than the RG.

7 Facing Complexity

The high number of immediate transitions in the SN emulator may leads to
an explosion of vanishing markings, as evident from Table 1, thus affecting the
model’s solution. The state-space builder implemented in GreatSPN has, in

Emulating Self-adaptive Stochastic Petri Nets 45

fact, some drawbacks. In particular, it does not use any on-the-fly reduction of
immediate transition paths, i.e., the vanishing markings are eliminated (to get
the corresponding TRG, and the associated CTMC) after the whole reachabil-
ity set of markings is built. Moreover, simultaneously enabled immediate SN
transitions are fired in an interleaved way (causing a combinatorial explosion of
vanishing states), even when their instances are independent. The first limita-
tion might be faced only reimplementing the state-space builder. The inefficiency
caused by the interleaving of immediate transitions instances has been tackled
by using two orthogonal approaches, shortly discussed in the following.

Ordering/Partitioning of Basic Classes–The main source of inefficiency is the
way in which the enabling test of P/T transitions is performed (step i), that is,
through an interleaving of the instances of transition nextT, which is in charge
of selecting the next P/T transition to be checked for. By the way, the order in
which these transitions are considered is irrelevant, therefore the interleaving can
be significantly reduced by defining the color class T as ordered. This solution,
the one used in the emulator in Fig. 3, drops the number of immediate firing
sequences (potentially) from n! to n, where n is the cardinality of class T. Just
to give an idea, for N = 32 the number of vanishing markings (SMS model)
lowers to around one million, and the RG building time to 300 s. We might
analogously set the class P as ordered, so to consider input/inhibitor/output
places in an arbitrary order during both the enabling and firing steps, even if the
achievements should be less evident, but for particular cases. Although ordering
colour classes is effective, it unfortunately prevents from exploiting symmetries
in performance analysis, except in the extremely rare circumstance in which
no static partitioning of classes is required: in fact, ordering a partitioned class
implicitly causes its complete splitting into singleton subclasses.

An alternative solution is to exploit the partition of color class T into sub-
classes, induced by the SPN model’s time specification, to reduce the interleaving
of nextT. This simple idea is described in Fig. 6 (for a generic case), showing the
portion of the SN emulator that has to change accordingly: transition nextT has
been split into a number of mutually exclusive instances, each one associated
with a guard testing the membership of a P/T transition to a specific subclass.
Transitions belonging to different subclasses are considered in an arbitrary order,
by assigning the partially unfolded instances of nextT different priorities. The
gain, in terms of interleaving reduction, depends on the size of the biggest sub-
class (the smaller, the better). As for the (S)MS example, where this size is two,
the achieved reduction of vanishing states is slightly lower than the one achieved
with the ordering of class T.

Structural Techniques–[7] recently introduced a calculus (and a working imple-
mentation3) for deriving symbolic structural relations between SN nodes, in par-
ticular SC, and CC, that may help build efficiently the reachability graph. Struc-
tural relations between SN transitions are defined as mappings cd(t) → 2cd(t′).
For example SC(t, t′) (the asymmetric Structural Conflict) maps an instance

3 Available at http://www.di.unito.it/∼depierro/SNex/.

http://www.di.unito.it/~depierro/SNex/

46 L. Capra and M. Camilli

Fig. 6. Split of nextT due to the partition of T into T1 ∪ T2.

(t, b) to the set of instances {(t′, b′)} that can disable (t, b) by withdrawing color-
tuples from some input place of t or adding color-tuples into some inhibitor place
of t. Such relations are syntactically expressed by using a simple extension of SN
arc functions’ grammar. By computing SC, CC, and the transitive closure, it is
possible to check whether two transitions t and t′ are structurally independent,
meaning that there is no instance of t conflicting (either directly, or indirectly
through a sequence of causally connected higher priority transitions) with any
instance of t′, and vice versa. Independent SN transitions have been assigned dif-
ferent priorities, to reduce interleaving. It is worth noting that it is also possible
to decrease the interleaving of instances of the same transition, which is a major
concern in the SN emulator. For instance, since SC(testNextIn, testNextIn) = ∅,
the instances of testNextIn (which selects a place from a P/T transition’s preset)
might be fired in any order. Structural analysis has been also used to validate
the emulator-based model. In particular, we exploited it to prove the absence of
conflicts among immediate transition instances of the evolutionary API subnets,
what makes the assignment of weights to this component irrelevant from the
performance analysis point of view.

Symmetry Exploitation–By setting an initial symbolic marking it is possible to
build a quotient-graph, called symbolic reachability graph (SRG), which retains
all the information of the ordinary RG. SRG nodes are syntactical equivalence
classes of ordinary colored markings, where m,m′ are equivalent if and only if
m′ is obtained from m through a permutation on basic classes preserving the
partition into subclasses and the circular ordering. In stochastic SN a CTMC is
derived from the SRG, whose states denote aggregates for which both the exact
and strong lumpability hold. This reduced CTMC can be solved, instead of the
original one. A symbolic marking (SM) is defined in terms of dynamic subclasses.

Emulating Self-adaptive Stochastic Petri Nets 47

Fig. 7. A symmetric MS model

Each dynamic subclass refers to a static subclass, or to a basic class (in the case
of a non partitioned class), and has a cardinality. Dynamic subclasses represent
parametric partitions of color (sub-)classes. Dynamic subclasses of an ordered
class are ordered too. A simple way to set up an initial symbolic marking in
the emulator is to replace in the ordinary initial marking colors {pli} and {tri}
with (cardinality one) dynamic subclasses {zpi} and {ztri}, respectively. The
resulting SRG nodes (SMs) represent classes of isomorphic marked P/T nets.
Checking graph isomorphism is a demanding task and in our model corresponds
to bring an SM (which encodes a graph) into its canonical form [8]. Table 1 shows
that in the case of symmetric MS the SRG size, as expected, is more or less the
half of the ordinary RG. On the other side, there is an evidence that building the
SRG is much more time consuming than building the ordinary RG. We believe
that a major source of inefficiency, in the current implementation, is that the
cardinality of an SM has to be computed, and this is done by explicitly enu-
merating the possible permutations represented by the SM. In order to alleviate
this problem, it is convenient to further refine the partitions of classes T and P
induced by time specification, so that each subclass contains nodes which are
known a priori as permutable.

A possible way to automatically derive this information is starting from a
symmetric SPN, like that described in Fig. 7, which represents a parametric
version of the MS system with max copies of the MS. The idea is that all and
only the P/T nodes which are the unfolded instances of a SSN node would be
gathered in the same subclass.

Analysing models composed of a large number of identical modules, on the
other hand, is unfeasible without exploiting symmetries. Think, e.g, that a con-
figuration with 4 MS components, each working 4 pieces per cycle, results in
several dozens millions states, against just a few thousands symbolic ones.

48 L. Capra and M. Camilli

8 Conclusion and Future Work

We have introduced a SSN-based model able to emulate SPNs with changing
layout. The approach exploits SN analysis capabilities and is supported by off-
the-shelf analysis tools like GreatSPN. A self-healing MS has been used as
a running example to point out benefits/drawbacks of the model. Major com-
plexity issues have been faced by using two complementary techniques based on
ordering/partitioning of basic color classes and computation of symbolic struc-
tural relations, respectively. We plan to fully automate the modelling process
and develop an optimized state-space builder by leveraging on-the-fly reduction
of vanishing markings and structural techniques.

References

1. Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli, S., Franceschinis,
G.: The GreatSPN tool: recent enhancements. SIGMETRICS Perform. Eval. Rev.
36(4), 4–9 (2009). https://doi.org/10.1145/1530873.1530876

2. Cabac, L., Duvigneau, M., Moldt, D., Rölke, H.: Modeling dynamic architec-
tures using nets-within-nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005.
LNCS, vol. 3536, pp. 148–167. Springer, Heidelberg (2005). https://doi.org/10.
1007/11494744 10

3. Camilli, M., Gargantini, A., Scandurra, P.: Specifying and verifying real-time self-
adaptive systems. In: 2015 IEEE 26th International Symposium on Software Relia-
bility Engineering (ISSRE), pp. 303–313, November 2015. https://doi.org/10.1109/
ISSRE.2015.7381823

4. Camilli, M., Capra, L., Bellettini, C.: PNemu: an extensible modeling library for
adaptable distributed systems. In: Donatelli, S., Haar, S. (eds.) PETRI NETS
2019. LNCS, vol. 11522, pp. 80–90. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21571-2 5

5. Capra, L.: A pure SPEC-inscribed PN model for reconfigurable systems. In: 2016
13th International Workshop on Discrete Event Systems (WODES), pp. 459–465,
May 2016. https://doi.org/10.1109/WODES.2016.7497888

6. Capra, L., Camilli, M.: Towards evolving petri nets: a symmetric nets-based frame-
work. IFAC-PapersOnLine 51(7), 480–485 (2018). https://doi.org/10.1016/j.ifacol.
2018.06.343. 14th IFAC Workshop on Discrete Event Systems WODES 2018

7. Capra, L., De Pierro, M., Franceschinis, G.: Computing structural properties of
symmetric nets. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol.
9259, pp. 125–140. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22264-6 9

8. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed
coloured nets for symmetric modelling applications. IEEE Trans. Comput. 42(11),
1343–1360 (1993)

9. Hoffmann, K., Ehrig, H., Mossakowski, T.: High-level nets with nets and rules as
tokens. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
268–288. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744 16

10. Jensen, K., Rozenberg, G. (eds.): High-level Petri Nets: Theory and Application.
Springer, London (1991). https://doi.org/10.1007/978-3-642-84524-6

11. Lakos, C.: Towards a reflective implementation of object petri nets. In: Proceedings
of TOOLS Pacific, pp. 129–140 (1996)

https://doi.org/10.1145/1530873.1530876
https://doi.org/10.1007/11494744_10
https://doi.org/10.1007/11494744_10
https://doi.org/10.1109/ISSRE.2015.7381823
https://doi.org/10.1109/ISSRE.2015.7381823
https://doi.org/10.1007/978-3-030-21571-2_5
https://doi.org/10.1007/978-3-030-21571-2_5
https://doi.org/10.1109/WODES.2016.7497888
https://doi.org/10.1016/j.ifacol.2018.06.343
https://doi.org/10.1016/j.ifacol.2018.06.343
https://doi.org/10.1007/978-3-319-22264-6_9
https://doi.org/10.1007/978-3-319-22264-6_9
https://doi.org/10.1007/11494744_16
https://doi.org/10.1007/978-3-642-84524-6

Emulating Self-adaptive Stochastic Petri Nets 49

12. Lakos, C.: Object oriented modelling with object petri nets. In: Agha, G.A., De
Cindio, F., Rozenberg, G. (eds.) Concurrent Object-Oriented Programming and
Petri Nets. LNCS, vol. 2001, pp. 1–37. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45397-0 1

13. Reisig, W.: Petri Nets: An Introduction. Springer, New York (1985). https://doi.
org/10.1007/978-3-642-69968-9

14. Tigane, S., Kahloul, L., Benharzallah, S., Baarir, S., Bourekkache, S.: Reconfig-
urable GSPNs: a modeling formalism of evolvable discrete-event systems. Sci. Com-
put. Program, 102302 (2019). https://doi.org/10.1016/j.scico.2019.102302

15. Valk, R.: Object petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN
2003. LNCS, vol. 3098, pp. 819–848. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27755-2 23

16. Weyns, D., Iftikhar, M.U., de la Iglesia, D.G., Ahmad, T.: A survey of formal
methods in self-adaptive systems. In: Proceedings of the Fifth International C*
Conference on Computer Science and Software Engineering, C3S2E 2012, pp. 67–
79. ACM, New York (2012). https://doi.org/10.1145/2347583.2347592

https://doi.org/10.1007/3-540-45397-0_1
https://doi.org/10.1007/3-540-45397-0_1
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1016/j.scico.2019.102302
https://doi.org/10.1007/978-3-540-27755-2_23
https://doi.org/10.1007/978-3-540-27755-2_23
https://doi.org/10.1145/2347583.2347592

Design and Evaluation of an Edge
Concurrency Control Protocol

for Distributed Graph Databases

Paul Ezhilchelvan1(B), Isi Mitrani1(B), Jack Waudby1(B), and Jim Webber2(B)

1 School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
{paul.ezhilchelvan,isi.mitrani,j.waudby2}@ncl.ac.uk

2 Neo4j UK, Union House, 182-194 Union Street, London SE1 0LH, UK
jim.webber@neo4j.com

Abstract. A new concurrency control protocol for distributed graph
databases is described. It avoids the introduction of certain types of
inconsistencies by aborting vulnerable transactions. An approximate
model that allows the computation of performance measures, including
the fraction of aborted transactions, is developed. The accuracy of the
approximations is assessed by comparing them with simulations, for a
variety of parameter settings.

Keywords: Graph databases · Reciprocal consistency · Edge-order
consistency · Arbitration · Stochastic modelling · Simulation

1 Introduction

Existing large-scale distributed data stores such as Google Docs, Dynamo [4]
and Cassandra [3] implement an ‘eventually consistent’ update policy (see [14]).
That is, update requests are processed as soon as they arrive. In some cases this
is a reasonable choice. For a non-partitioned system there are several solutions to
dealing with what is effectively lag between replicas. However, when a database is
partitioned among several hosts, the eventual consistency approach raises serious
problems, especially when there are explicit or (application) implied relationships
between the data stored in different partitions.

For example, a patient might observe an appointment has been booked in
their timeline on partition A, while the corresponding clinician in partition
B hasn’t yet blocked off that slot. Eventual consistency makes it possible for
another patient to book into that slot either overwriting or double-booking the
clinician. While each partition on its own will be eventually consistent, the sys-
tem as a whole has violated a constraint.

This is similar in a sense to problems that can occur in traditional databases
with Snapshot Isolation (SI), but unlike SI there are no mechanisms in eventually
consistent databases to detect distributed constraint violations. For distributed
graph databases this is a critical problem because explicit relationships (edges)
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): EPEW 2019, LNCS 12039, pp. 50–64, 2020.
https://doi.org/10.1007/978-3-030-44411-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44411-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-44411-2_4

Design and Evaluation of a Concurrency Protocol 51

routinely span across partitions, and unless both partitions agree reciprocally on
the existence, direction, and content of the edge then the database has become
corrupted.

Another example, by Bailis and Ghodsi [2] refers to an ATM service where
eventual consistency can allow two users to simultaneously withdraw more
money than their (joint) bank account holds; such an anomaly, on being detected,
is reconciled by invoking exception handlers. Given that an ATM service is
expected to be available 24/7 and that account holders are permitted to access
only their own accounts, the eventually consistent approach is appropriate.

A vast majority of common graph database applications, however, allow data
modified by one (user) transaction to be read by an arbitrary number of other
(users’) transactions (see Robinson et al. [12]). In such cases, data corrupted
by one transaction and read by subsequent transactions, can lead to further
corruption from which it is impossible to recover. This process, which was studied
at some detail by Ezhilchelvan et al. [5], can in time cause the entire database
to become unusable. That is a situation that is certainly worth avoiding.

In this paper we propose a new update protocol where conflicting updates
are detected and handled. Corruption is thus prevented, but the price paid for
this improvement is that some transactions are aborted. In order to evaluate just
how heavy is that price, we also construct and analyse an approximate model
that allows us to compute the average number of transactions aborted per unit
time and other performance measures.

To simplify the protocol presentation and analysis, we assume that the hosts
are reliable and data items in a database are not replicated. Provisions for crash-
tolerance can be incorporated as an orthogonal aspect by using well-known tech-
niques (e.g., single server abstraction) and supportive technologies (e.g., Raft [8],
Paxos [7]).

The problem context and the proposed protocol are described in Sects. 2
and 3. The approximate model and its analysis are presented in Sect. 4. Some
numerical and simulation results are reported in Sect. 5, while Sect. 6 outlines
the conclusions.

2 Problem Description

A graph database consists of nodes representing entities, and edges representing
relations between them (see [12]). For example, node X may represent an entity
of type Author and Y an entity of type Book. X and Y will have an edge between
them if they have a relation, e.g. X is an author of Y.

The popularity of the graph database technology owes much to this simple
structure from which sophisticated models can be easily built and be efficiently
used for query or transaction processing. Examples of operations performed on a
graph database are: finding shortest paths between two locations in a transport
network, performing product recommendations, looking for cancerous patterns
in biological data, etc.

When nodes are connected by an edge, the database stores some reciprocal
information at the origin and destination records of that edge. For example, if

52 P. Ezhilchelvan et al.

there is an edge from node X to node Y, then node X would have an outgoing
record wrote and node Y would have an incoming record wrote, which can be
interpreted as written by. Maintaining this reciprocal information enables an
edge to be traversed in either direction.

An edge e is said to be reciprocally consistent, if its origin and destination
records, denoted as e1 and e2, at the nodes that it connects, have mutually
consistent, reciprocal entries.

In a distributed graph database, graph data is partitioned and each partition
is hosted by a server in a cluster. Partitioning a graph is non-trivial and even the
most optimal partitioning algorithms (e.g., [10,11]) seek only to minimise, and
cannot eliminate, the presence of distributed edges. The outgoing and incom-
ing records of a distributed edge are on different hosts1. It has been estimated
in [13], that a fraction varying between 25% and 75% of all edges would be
distributed. Maintaining reciprocal consistency across a distributed edge is chal-
lenging because its e1 and e2 records cannot be updated simultaneously. The
time interval that elapses between those updates permits interference among
concurrent transactions.

Suppose, for example, that nodes F and S, referring to a flight and a seat
in an airline database, are stored on hosts H1 and H2 respectively, with the
edge between them indicating availability. Two transactions, U and V , write ‘S
is available in F’ and ‘S is booked in F’, respectively. Each update operation is
carried out first on one of the hosts and then, after a small but non-zero ‘network
delay’, on the other host. These two phases of the update are referred to as ‘part
1’ and ‘part 2’, respectively. The delay interval between them, D, is a random
variable which may, in principle, be unbounded.

Such an implementation, if left uncontrolled, makes possible the introduction
of faults in the edge records. This is illustrated in Fig. 1, which shows three
possible conflict scenarios between transactions U and V (time flows downwards).
In case (a), transaction U performs part 1 of the update on H1 at time t and
part 2 on H2 at time t + D. At some point between t and t + D, transaction
V performs part 1 on H2, and part 2 on H1 some time later. The result of this
occurrence is a violation of reciprocal consistency: the H1 entry ends up saying
‘seat S is booked in F’, while the H2 entry says ‘seat S is available in F’.

A similar conflict is shown in case (b), except that here part 1 of V is per-
formed on H2 before time t, and part 2 on H1 after t. Finally, there is the
possibility (c), where both transaction traverse the edge in the same direction,
but U overtakes V during the network delay. The result of that conflict is that
H1 claims ‘seat S is available in F’, while H2 says ‘seat S is booked in F’.

In order to prevent such conflicts, only transactions whose distributed
updates are ‘interference-free’, should be allowed to proceed. That is, if part 1 of
an update for a given edge precedes part 1 of another update for the same edge,
then so should part 2, and vice versa. One could, of course, avoid such conflicts

1 This is avoided in edge-partitioned graph databases, where all instances of a given
edge type reside in the same partition, and nodes are replicated. Then the problem
is to ensure that updates to nodes are consistent across partitions.

Design and Evaluation of a Concurrency Protocol 53

H1

t

H2

t+D

H1 H2

t+D

H1 H2

t+D

t U
t

U V
V

V

U

(a))c()b(

Fig. 1. Three possible conflict scenarios

by using a strong consistency mechanism, but the availability and throughput
penalties are generally prohibitive.

A different type of possible conflicts arises when transactions update more
than one edge during their lifetime. For example, suppose that transactions A
and B both update edges e and e′, and do so without interference either among
themselves or with other transactions. It may happen that e is updated by
A before B, while e′ is updated by B before A, as illustrated in Fig. 2 (here
time flows from left to right and the conflict-free updates are collapsed to single
instants). Such an occurrence, if allowed, would violate the property of ‘edge-
order consistency’ between transactions.

Transaction A

Transaction B

t1 t2 t3 t4 time

e

e e

e

Fig. 2. Edge-order consistency violation

Inconsistencies of this type are to be avoided because they compromise an
important database property known as serializability.

3 Edge Concurrency Control Protocol

Our protocol employs two distinct mechanisms, referred to as ‘collision detec-
tion’ and ‘order arbitration’, respectively. These are aimed at enforcing

54 P. Ezhilchelvan et al.

(i) reciprocal consistency for distributed updates and (ii) edge-order consistency
between transactions. Collision detection is applied at every update and may
trigger an immediate abort. Transactions that survive collision detection may, if
necessary, go to order arbitration. The latter may also result in an abort.

Like many concurrency control protocols in the literature (e.g., [6,9]), our
protocol treats updates as being provisional initially. They become permanent
only if, and when, the transaction that contains them is allowed to commit.

Provisional updates on a given record can occur only one at a time and each is
time-stamped using the local host’s clock. Thus, when a transaction attempts to
update a given record, it can identify all other transactions, called predecessors
(if any), that have earlier updated that record provisionally. Read operations
receive the latest committed version of a record and ignore any provisionally
updated values.

Collision Detection. Remember that an update operation by a transaction
for a distributed edge has a part 1, carried out at the first host visited, and
part 2, performed at the second host after a network delay. The corresponding
provisionally updated records are now given labels 1 and 2, respectively, and are
associated with the id of that transaction. These labels act as ‘history’ meta-data
indicating the host where a transaction started and completed its update. The
following rule is applied:

Cancellation Rule: If, by the time part 2 is performed, a previous provisional
update labeled 1 has been observed, but the corresponding label 2 has not been
observed, then this update is cancelled. In other words, an update is cancelled
if it has observed the start of a previous attempt, but not its completion.

When an update is cancelled, the transaction containing it is aborted and all
its provisional records are erased.

According to the this rule, update U in Fig. 1, cases (a) and (b), is cancelled
because it observes a predecessor V with label 1 in H2, but has not observed V ’s
label 2 in H1. Whether update V is cancelled or not, depends on whether U ’s
provisional updates remain or have been erased by the time V performs part 2.
In case (c), U is cancelled but V is not, because it does not observe U ’s label 1.

Order Arbitration. The purpose of this mechanism is to detect and prevent
edge-order inconsistencies between transactions. It only applies to transactions
that contain more than one distributed update. Those with a single update that
have not been aborted by collision detection are allowed to commit and depart.

Using the records relating to provisional updates, each multi-update trans-
action maintains a ‘predecessor list’ containing all predecessor transactions it
encountered during its provisional updates. If that list is empty when the trans-
action successfully completes all its provisional updates, then it commits and
departs. Otherwise it goes to arbitration.

The arbiter is a special service, assumed here to have been implemented in
a dedicated host. A list called the hit-list is maintained. It contains transactions
which, if allowed to commit, risk violating edge-order consistency. Transactions
arriving for arbitration join a queue and are served in order of arrival. If the

Design and Evaluation of a Concurrency Protocol 55

transaction at the head of the queue is not present in the hit-list, it commits. All
transactions in its predecessor list are added to the hit list if not already there.
If it is in the hit list, it aborts and all its provisional updates are erased. What
has happened in this case is an overtaking: the current transaction was named
as a predecessor by a transaction that committed earlier.

We can informally argue that our approach is correct by considering the
edge-order inconsistency depicted in Fig. 2. It can be seen that A will have B in
its predecessor list while updating e′, and B will observe A as a predecessor while
updating e. Both A and B must approach the arbiter because they update more
than one edge and have a non-empty predecessor list. If the first transaction to
be processed by the arbiter is allowed to commit, the second one will be entered
in the hit list and will abort. Thus only one of A and B, but not both, can
commit and edge order inconsistency is always avoided.

Note that this approach to arbitration is pessimistic. It aborts a transaction
as soon as it detects a risk of edge-order violation, even though the actual viola-
tion may not occur. Consequently, some transactions are aborted unnecessarily,
just because they are overtaken by their successors. To eliminate unwarranted
aborts, the arbiter would have to keep much more detailed information about
the updates performed by all transactions, and would have to do considerably
more processing.

We now proceed to the task of evaluating certain performance measures,
such as the average number of transactions that are aborted per unit time, the
offered load at the arbiter, and the average time a transaction remains in the
system. Since the processes involved are rather complex, such an evaluation will
inevitably entail approximations. That, in turn, will necessitate an assessment
of the accuracy of those approximations.

4 Approximate Model

We are concerned with updates performed on distributed edges in a graph
database (i.e., edges whose source and destination nodes are stored on differ-
ent hosts). These edges are divided into T types, numbered 1, 2, . . ., T . The
number of edges of type i is Ni, and the probability that an update operation is
aimed at an edge of type i is pi. All edges of a given type are equally likely to
be addressed, so that the probability of accessing a particular edge of type i is
pi/Ni.

Transactions arrive into the system in a Poisson stream, at the rate of λ
per second. Each transaction performs a random number, K, of updates for
different distributed edges. The distribution of K is arbitrary: P (K = k) = rk
(k = 1, 2, . . .). The average number of updates per transaction is κ. Thus, the
arrival rate of updates at a particular distributed edge of type i, ξi, is equal to

ξi =
κλpi
Ni

; i = 1, 2, . . . , T. (1)

The first approximation is to assume that the arrival process of updates for
a particular edge of type i is Poisson with rate ξi.

56 P. Ezhilchelvan et al.

We wish to estimate the probability, ui, that an update, U , for an edge of
type i, is cancelled due to a collision with another update, V , for the same edge.
That is, either V arrives in the opposite host during the network delay of U
(Fig. 1, case (a)), or U arrives in the opposite host during the network delay of
V (case (b)), or U arrives in the same host during the network delay of V and
its network delay completes before that of V (case (c)).

Assume that the network delays are i.i.d random variables distributed expo-
nentially with parameter δ (mean 1/δ). This may or may not be an approxima-
tion.

Updates for a particular edge of type i arrive in a particular one of the two
hosts involved at rate ξi/2. Moreover, a given network delay completes before
another with probability 1/2. Hence, we can estimate the probabilities of cases
(a), (b), and (c), u

(a)
i , u

(b)
i and u

(c)
i , as

u
(a)
i = u

(b)
i =

ξi
ξi + 2δ

; u
(c)
i =

1

2

ξi
ξi + 2δ

; i = 1, 2, . . . , T , (2)

where ξi is given by (1) and δ is the parameter of the network delay. The overall
probability, ui, that at least one of those events will happen, is

ui = 1 − (1 − u
(a)
i)(1 − u

(b)
i)(1 − u

(c)
i) ≈ 2.5ξi

ξi + 2δ
; i = 1, 2, . . . , T. (3)

The last approximation in the right-hand side holds when the rate ξi is small
compared to δ.

The unconditional probability, u, that an arbitrary update is cancelled by
the collision detection mechanism, is given by

u =
T∑

i=1

piui. (4)

The probability, vk, that a transaction containing k updates is aborted
because one of them is involved in a collision, is equal to

vk = 1 − (1 − u)k, (5)

and the unconditional probability, v, that a transaction is aborted due to a
collision is given by

v =
∞∑

k=1

rkvk. (6)

Now consider the average run time, ak, of a transaction that contains k
update operations. Assume that each update takes time b, on the average. Those
times include read operations and computations, as well as network delays. If the
first j − 1 provisional updates are completed successfully but the j-th update is
cancelled as a result of a collision, then the average run time would be jb. Hence,
ak is given by

ak =
k∑

j=1

jb(1 − u)j−1u + kb(1 − u)k, (7)

where u is given by (4)

Design and Evaluation of a Concurrency Protocol 57

With a little manipulation, this expression can be simplified to

ak = b

k∑

j=1

(1 − u)j−1 = b
1 − (1 − u)k

u
. (8)

The unconditional average run time of a transaction, a, is equal to

a =
∞∑

k=1

rkak. (9)

If all provisional updates in a transaction are completed successfully, and
if either there was only one update, or there were no predecessors, then the
transaction commits. Otherwise it goes to the arbiter. The time that a transac-
tion spends queueing and being served by the arbiter will be referred to as the
‘arbitration time’.

Assume (this is another approximation) that each transaction joins the
arbiter queue with probability α, independently of the others. That is, the arrival
process is Poisson, with rate λα. The arbiter’s average service time, s, is a given
parameter. Thus the offered load at the arbiter is ρ = λαs.

Treating the arbiter as an M/M/1 queue, we estimate the average arbitration
time, w, as

w =
s

1 − ρ
, (10)

provided that ρ < 1. If ρ ≥ 1, then w = ∞. The total average time that a
transaction spends in the system is

W = a + αw, (11)

where a is given by (9).
We shall now develop an iterative fixed-point approximation for α. Denote

by dj,k the average lifetime of the j’th update within a transaction containing k
updates, excluding any possible arbitration time. By an argument similar to the
one that led to (8), we obtain

dj,k = b

k+1−j∑

i=1

(1 − u)i−1 = b
1 − (1 − u)k+1−j

u
. (12)

The lifetime of a randomly chosen update within a transaction containing k
updates, dk (again excluding arbitration), is given by

dk =
1
k

k∑

j=1

dj,k = b
(k + 1)u + (1 − u)k+1 − 1

ku2
. (13)

Hence, the total average time spent in the system by an arbitrary update
(including the arbitration time), d, is equal to

d =
∞∑

k=1

rkdk + αw, (14)

where w is given by (10).

58 P. Ezhilchelvan et al.

Now, let γi be the probability that an update of type i has a predecessor,
i.e. the probability that such an update arrives while a preceding update for the
same edge is still in the system. Assuming that the update residence times are
distributed exponentially with mean d given by (14), this can be approximated as

γi =
ξid

1 + ξid
, (15)

where ξi is given by (1).
The unconditional probability, γ, that an arbitrary update has a predeces-

sor, is

γ =
T∑

i=1

piγi. (16)

If a transaction contains k updates, the probability that at least one of them
has a predecessor, αk, is

αk = 1 − (1 − γ)k. (17)

Remembering that a transaction goes to the arbiter if it has more than one
update and all updates avoid collisions and at least one of them has a predecessor,
we write

α =
∞∑

k=2

rk(1 − u)kαk. (18)

Note that the right-hand side of (18) depends on α, via (14) and (15). In
other words, we have a fixed-point equation of the form

α = f(α). (19)

This can be solved by a simple iterative scheme. Start with an initial guess, α0,
say α0 = 0. At iteration n, compute

αn = f(αn−1), (20)

stopping when two consecutive iterations are sufficiently close to each other.
The probability α allows us to evaluate the offered load at the arbiter queue,

and hence estimate the average response time of a transaction, W . Another
important performance measure is the rate of aborts, R, i.e. the average number
of transactions that are aborted per unit time. Note that a transaction may be
aborted due to a collision, with probability v given by (6), or it may be aborted
because it finds itself on the arbiter’s hit list. Denoting the probability of the
latter occurrence by β, we can write

R = λ[v + (1 − v)β]. (21)

To find an expression for the probability β, note that a transaction, A, is
aborted by the arbiter if (i) A goes to the arbiter and (ii) another successfully
committing transaction, B, which arrived at the arbiter before A, had A in its

Design and Evaluation of a Concurrency Protocol 59

list of predecessors (A would then have been added to the hit list). That is, B
arrives in the system during the run time of A, tries to update one of the edges
that A has updated, completes before A, goes to the arbiter and is allowed to
commit.

Suppose that A contains k updates, and let t be the instant when the j-th of
those updates is attempted. The average interval from t until the completion of
A, given that all updates succeed, is (k + 1 − j)b. If the j-th update is of type i,
let hi be the average interval from t until the completion of the next transaction,
B, that updates the same edge and then goes to the arbiter. That average can
be estimated as

hi =
1

ξiα
+

κ − r1
2(1 − r1)

b, (22)

where α is given by (18). The multiplier of b in the right-hand side is half of the
average number of updates in a transaction, given that there are more than one.

Denote by βijk the probability that B arrives after the j-th update out of
the k in A, and completes before A, and A goes to the arbiter but is aborted
because B commits, given that the j-th update is of type i. We write

βijk = α(1 − β)
(k + 1 − j)b

hi + (k + 1 − j)b
. (23)

Removing the conditioning on the type of update, we get the probability,
βjk, that A is aborted by the arbiter due to the j-th of its k updates:

βjk =
T∑

i=1

βijkpi. (24)

The probability, βk, that at least one of the k updates will cause A to be
aborted, is

βk = 1 −
k∏

j=1

(1 − βjk). (25)

Finally, the unconditional probability, β, that an arbitrary transaction is
aborted by the arbiter, can be expressed as

β =
∞∑

k=2

βkrk. (26)

The right-hand side of this equation depends on α, which has already been
computed, and also on β. Thus, we have another fixed-point equation which can
be solved by an iterative procedure of the type (20).

One might wish to measure the performance of the system by a cost function
of the form

C = c1W + c2R, (27)

where c1 and c2 are some coefficients reflecting the relative importance given
to the average response time and number of aborts. There are trade-offs that

60 P. Ezhilchelvan et al.

may need to be controlled. If, for example, the arbiter is overloaded, leading to
large or infinite response times, a ’voluntary abort’ policy may be introduced.
If a transaction cannot commit upon completion (because its predecessor list
is non-empty), it tosses a biased coin and, with probability σ, aborts instead of
going to the arbiter. The offered load at the arbiter queue would then be reduced
to ρ = λα(1 − σ)s. The optimal value of σ would be chosen so as to minimize
the cost function C.

5 Numerical and Simulation Results

The purpose of this section is to assess the accuracy of the model estimates by
comparing them with simulations. In order to reduce the number of parame-
ters to be set, we focus on the smallest and most frequently accessed class of
edges, ignoring the larger classes where conflicts are very unlikely to occur. The
examples we have chosen contain a single class with N distributed edges, each
of which is equally likely to be the target of an update. The size and traffic
parameters are typical of a large scale-free graph database (see also [5]).

In the first example, N is varied between 5000 and 25000 edges. The arrival
rate is fixed at λ = 1000 transactions per second. The average network delay
is assumed to be 5 ms (i.e., δ = 200). That is also the value of b (the average
time per update). The distribution of the number of updates in a transaction is
geometric, with mean κ = 5. The average arbiter service time is s = 0.01 and
that value will be kept fixed in the following examples.

In Fig. 3, the total average number, R, of transaction aborted per unit time
by the collision detection and by the order arbitration parts of the protocol, is
plotted against the number of edges. The estimated points are computed by the
algorithm described in Sect. 3, while each simulated point represents the result
of a simulation run where one million transactions pass through the system.

Intuitively, we expect that when the number of edges increases, there will be
fewer collisions and instances of overtaking, and therefore fewer aborts. Indeed,
that is what is observed. The model consistently underestimates the number of
aborts, but the relative errors are not large. They vary from 9% at N = 5000 to
5% at N = 25000. That underestimation is probably caused by the simplifying
assumptions used in deriving the approximate estimates. On the other hand, the
times taken to produce the two plots were vastly different: the model plot took
a small fraction of a second to compute, while the simulation runs were several
orders of magnitude slower.

From now on, the number of edges will be fixed at N = 10000 and the effect of
different parameters will be explored. In the second example, the arrival rate λ is
varied between 700 and 1200 transactions per second, while the other parameters
are kept as before.

In Fig. 4, the average number of aborted transactions per second, R, is plotted
against the arrival rate λ, using both the model approximation and simulations.
Each simulated point is again the result of a run where one million transactions

Design and Evaluation of a Concurrency Protocol 61

0

5

10

15

20

25

30

35

40

5000 10000 15000 20000 25000

R

N

Model estimates
Simulations

Fig. 3. Abort rate as a function of N λ = 1000, κ = 5, δ = 200, b = 0.005, s = 0.01

pass through the system. Once more, we observe that the model slightly under-
estimates the values of R, but the relative errors are quite small; they are on the
order of 6% or less, over the entire range.

The average response time of a transaction, W , was about 25 ms; its value
changed very little over this range of arrival rates.

For these parameter values, the model predicts that the arbiter queue
becomes unstable when the arrival rate is about λ = 1500. The simulation
agrees. The observed rate at which transactions join the arbiter queue exceeds
the service rate, μ = 100, for that value of λ.

For the next experiment, the average network delay is doubled to 10 ms,
δ = 100. Intuitively, this should have the effect of increasing the rate at which
transactions are aborted, and also should increase the offered load at the arbiter
queue.

Figure 5 confirms our intuition. The relative errors of the model estimates
are still quite low, on the order of 9% or less. The arrival rate is now varied
between λ = 600 and λ = 1000. Both the model and the simulation agree that
the arbiter queue becomes unstable when λ = 1100.

In the fourth experiment, the network delay is back to 5 ms, but the num-
ber of updates in a transaction, K, has a different distribution and mean. The
assumption now is that K is uniformly distributed on the range [1,19], with a
mean of 10. The results are illustrated in Fig. 6

The larger number of updates per transaction leads to both higher likeli-
hood of collisions and more visits to the arbiter. The saturation point for the
arbiter queue is now a little below λ = 550. As Fig. 6 illustrates, the model
approximation is still accurate, with relative errors on the order of 8% or less.

62 P. Ezhilchelvan et al.

0

5

10

15

20

25

700 800 900 1000 1100 1200

R

λ

Model estimates
Simulations

Fig. 4. Abort rate as a function of λ κ = 5, δ = 200, b = 0.005, s = 0.01

0

5

10

15

20

25

30

35

40

600 650 700 750 800 850 900 950 1000

R

λ

Model estimates
Simulations

Fig. 5. Larger network delays κ = 5, δ = 100, b = 0.01, s = 0.01

It is perhaps worth noting that in the last three examples, the rate of aborts
increases roughly linearly with λ. For all arrival rates in example 2, between 1%
and 2% of the incoming transactions are aborted. In example 3 that fraction is
between 2% and 3%, while in example 4 it is between 3% and 4%.

Design and Evaluation of a Concurrency Protocol 63

0

5

10

15

20

25

400 420 440 460 480 500 520

R

λ

Model estimates
Simulations

Fig. 6. Different distribution of updates κ = 10, δ = 200, b = 0.005, s = 0.01

6 Conclusion

We have addressed the information corruption problem caused by interferences
among transactions which update distributed edges. The proposed concurrency
control protocol has two distinct mechanisms: collision detection and arbitration
between transactions. That protocol has an impact on system performance, in
terms of aborted transactions and load on the arbiter. To evaluate this impact,
an approximate model was developed and solved. It provides estimates for the
average number of transactions that are aborted per unit time, the probability
that a transaction will need to go to arbitration, and the average response time
of a transaction. The accuracy of the solution was examined by comparisons
with simulations and was found to be very high under a variety of parameter
settings.

Similar to the edge-order inconsistency examined here, there may also be
node-order inconsistency, occurring when transactions interfere while updating
the same set of nodes. Eliminating node-order inconsistencies will be addressed
in future work. It is well known in the database literature that there is a hier-
archy of approaches which achieve various degrees of concurrency control (see
[1]). Selecting an approach for a given application typically involves a trade-off
between consistency requirements and performance. The most stringent common
form of concurrency control is serializability, which maintains an abstraction of
transactions being executed in some serial order. That requirement incurs the
highest performance overhead.

64 P. Ezhilchelvan et al.

References

1. Adya, A.: Weak consistency: a generalized theory and optimistic implementations
for distributed transactions. Ph.D. thesis, Massachusetts Institute of Technology
(1999)

2. Bailis, P., Ghodsi, A.: Eventual consistency today: limitations, extensions, and
beyond. Queue 11(3), 20–32 (2013)

3. Apache Cassandra. http://cassandra.apache.org/. Accessed 11 Dec 2019
4. DeCandia, D., et al.: Dynamo: Amazon’s highly available key-value store. SIGOPS

Oper. Syst. Rev. 41(6), 205–220 (2007)
5. Ezhilchelvan, P., Mitrani, I., Webber, J.: On the degradation of distributed graph

databases with eventual consistency. In: Bakhshi, R., Ballarini, P., Barbot, B.,
Castel-Taleb, H., Remke, A. (eds.) EPEW 2018. LNCS, vol. 11178, pp. 1–13.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02227-3 1

6. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM
Trans. Database Syst. (TODS) 6(2), 213–226 (1981)

7. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. (TOCS) 16(2),
133–169 (1998)

8. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: USENIX Annual Technical Conference, pp. 305–319. USENIX Association,
Philadelphia (2014)

9. Escriva, R., Wong, B., Sirer, E.G.: Warp: lightweight multi-key transactions for
key-value stores. CoRR:abs/1509.07815 (2015)

10. Huang, J., Abadi, D.J.: Leopard: lightweight edge-oriented partitioning and repli-
cation for dynamic graphs. VLDB Endow. 9(7), 40–551 (2016)

11. Firth, H., Missier, P.: TAPER: query-aware, partition-enhancement for large, het-
erogeneous graphs. Distrib. Parallel Databases 35(2), 85–115 (2017)

12. Robinson, I., Webber, J., Eifrem, E.: Graph Databases, New Opportunities for
Connected Data. O’Reilly Media, Inc., Sebastopol (2015)

13. Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs.
In: 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1222–1230. ACM, Beijing (2012)

14. Vogels, W.: Eventually consistent. Comm. ACM 52(1), 40–44 (2009)

http://cassandra.apache.org/
https://doi.org/10.1007/978-3-030-02227-3_1

A Novel Data-Driven Algorithm
for the Automated Detection

of Unexpectedly High Traffic Flow
in Uncongested Traffic States

Bo Klaasse1, Rik Timmerman1(B) , Tessel van Ballegooijen2, Marko Boon1 ,
and Gerard Eijkelenboom2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
r.w.timmerman@tue.nl

2 De Verkeersonderneming, Rotterdam, The Netherlands

Abstract. We present an algorithm to identify days that exhibit the
seemingly paradoxical behaviour of high traffic flow and, simultaneously,
a striking absence of traffic jams. We introduce the notion of high-
performance days to refer to these days. The developed algorithm con-
sists of three steps: step 1, based on the fundamental diagram (i.e. an
empirical relation between the traffic flow and traffic density), we esti-
mate the critical speed by using robust regression as a tool for labelling
congested and uncongested data points; step 2, based on this labelling of
the data, the breakdown probability can be estimated (i.e. the probability
that the average speed drops below the critical speed); step 3, we iden-
tify unperturbed moments (i.e. moments when a breakdown is expected,
but does not occur) and subsequently identify the high-performance
days based on the number of unperturbed moments. Identifying high-
performance days could be a building block in the quest for traffic jam
reduction; using more detailed data one might be able to identify specific
characteristics of high-performance days. The algorithm is applied to a
case study featuring the highly congested A15 motorway in the Nether-
lands.

Keywords: High-performance days · Traffic breakdown · Data-driven
algorithm · Fundamental diagram · Congestion · Detector data

1 Introduction

Nowadays, traffic jams have become an inevitable part of road traffic. In par-
ticular, near or in urban areas the high vehicle-to-capacity ratio on the road
imposes cars to slow down or even stop too frequently. This causes a wide vari-
ety of problems, as in the Netherlands alone, the amount of monetary value lost
due to traffic jams in 2018 is estimated at 1.3 billion euros [3]. Moreover, traffic
jams cause pollution and decrease the quality of life e.g. in cities.
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): EPEW 2019, LNCS 12039, pp. 65–83, 2020.
https://doi.org/10.1007/978-3-030-44411-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44411-2_5&domain=pdf
http://orcid.org/0000-0002-8964-8748
http://orcid.org/0000-0001-8804-8743
https://doi.org/10.1007/978-3-030-44411-2_5

66 B. Klaasse et al.

Reducing traffic congestion is a challenging problem. Obviously, increasing
the capacity of existing roads, e.g. by adding lanes, would provide a solution to
the problem. However, such actions are costly and not always desired, or even
possible. Alternatively, one could aim to influence drivers’ behaviour. This can
be achieved by, for example, monetary means (such as toll systems or congestion
pricing, see e.g. [2,7]), encouraging drivers to drive outside peak hours (see [5] for
instance) or dynamic road signalling (see e.g. [8]). It is increasingly important
to find the exact effect of these measures, but this is a complicated problem,
which is partly due to the highly complex nature of traffic and the fact that the
manifestation of congestion is subject to randomness, see for example [1,20].

In this paper, we approach the problem of reducing traffic congestion from a
different perspective, as we look at the absence of traffic jams. Typically, once
the traffic flow, i.e. the throughput measured in vehicles per hour, has passed a
certain threshold, congestion could emerge. This phenomenon is referred to as a
“breakdown”. We are interested in days during which a relatively large number
of breakdowns were expected, but did not occur. Such days will be referred to as
“high-performance days”. Specifically, we develop an algorithm to automatically
identify these high-performance days based on historical traffic data and test
our method on a section of the A15 motorway in the Netherlands. In a future
study, one could try to determine the specific characteristics of the resulting
high-performance days using more detailed data. Ultimately, the goal is to find
out whether the high-performance days could be caused by specific behavioural
patterns of individual drivers. However, we focus on the first step, namely the
automated detection of high-performance days.

Our algorithm relies on the shape of the fundamental diagram, the well-
known empirical diagram that displays the relationship between the traffic flow
q (vehicles per hour) and the traffic density ρ (vehicles per kilometre) at a spe-
cific location. Many studies have shown that the fundamental diagram can be
divided into two regions, a region for congestion and a region for free flow. The
empirical fundamental diagram has been studied extensively and a wide variety
of theoretical models has been proposed (see for example [6] for an overview).
Our aim is not a theoretical model for the fundamental diagram however; we are
merely interested in the critical speed, i.e. the speed which defines congestion
and separates the free-flow region from the congestion region in the fundamental
diagram. So, we can get around the problem of modelling the congestion region
and exploit the roughly linear flow-density relationship during free flow. We show
that robust regression is an excellent technique to obtain the free-flow speed and
subsequently distinguish between free flow and congestion based on the calcu-
lated weights. Utilizing the method proposed by [1], we subsequently estimate
the breakdown probability. This paves the way to identifying high-performance
days.

To the best of our knowledge, our approach to obtain the critical speed
and the introduction of the notion of high-performance days are original. Many
papers focus on (real-time) traffic jam estimation using GPS-data and/or tra-
jectory data, see a.o. [15,16,21]. This is partly due to the widespread availability

Unexpectedly High Traffic Flow in Uncongested Traffic States 67

of GPS data. However, we have chosen to use detector data, as traffic detectors
are present on most Dutch motorways and provide a sufficiently high granular-
ity. Detector data is also used in the literature; in [12] detector data is used to
automatically track congestion and in [10] detector data is used to study phase
transitions on German highways. However, the work that is probably closest to
our study is [4]. Therein, the authors use detector data to estimate highway
characteristics such as the free-flow speed and the critical density. These quanti-
ties are then used to calibrate a cell transmission model. We determine a related
highway characteristic (the critical speed), but in our study this is a tool to
estimate the breakdown probability. Indeed, our main goal is different: we iden-
tify a surprising absence of traffic jams. This could be an important first step
towards a better understanding of the reasons why on certain days the traffic
flow is so much better than on other days, although the circumstances seem to
be identical.

In Sect. 2 we provide information about the location of the experimental
region and discuss the data. We proceed with the theoretical foundation and
the three main steps of the algorithm in Sect. 3. The validation of important
assumptions and parameter choices is presented in Sect. 4, as well as the main
insights of the case study. We close with a conclusion and multiple suggestions
for future research in Sect. 5.

2 Description of the Location and the Data

In this section, we discuss the relevant aspects of the part of the A15 motorway
from which the data is obtained. Subsequently, we elaborate on the structure of
the data set and which steps we take in the preprocessing of the data.

2.1 Location of the Experimental Region

The location under consideration is the A15 motorway near Rotterdam, at the
interchange with Papendrecht (see Fig. 1). Five detectors have been placed in the
eastern direction, with a distance of approximately 300 m between consecutive
detectors (see Fig. 1b). Between the second and third detector, an off-ramp to
Papendrecht is located. Shortly afterwards, the vehicles on the A15 merge from
three to two lanes. The maximum speed along this whole trajectory of the A15
is 120 km/h. The traffic jams on this trajectory belong to the most costly traffic
jams in the Netherlands (see [3]) and the A15 is one of the most congested
roads in the Netherlands, connecting one of the world’s largest ports with the
European main land, which makes this a particularly interesting motorway to
study.

2.2 Description of the Data Set

The data is obtained from the Dutch National Data Warehouse for Traffic Infor-
mation (NDW), a collaboration of 19 public authorities that cooperate on collect-
ing, storing, and redistributing data. The data is publicly available and can be

68 B. Klaasse et al.

(a) (b)

Fig. 1. (a) Overview of the trajectory, marked red and indicated by the red arrow, in
relation to Rotterdam. (b) The location of the five detectors on the trajectory. (Color
figure online.)

requested at the website of the NDW [14]. The data we obtained from the NDW
spans a period from January 1, 2018 until December 31, 2018. Every minute, the
detectors measure, for each lane individually, the number of vehicles that have
passed (i.e the traffic flow q, in vehicles per hour) and the average speed v of the
passing cars in kilometres per hour, calculated using the arithmetic mean. We
can estimate the average traffic density ρ using ρ = q/v, although this formula is
known to underestimate the density when the arithmetic mean is used [11]. We
combine the various lanes as in [19]. For the sake of reducing the variability in
the data, we aggregate the measurements to a period of 5 min, as is done in [1].
The arithmetic mean is used to obtain the average traffic flow and the average
speed is calculated analogous to the average speed over multiple lanes.

The resulting data set can be described as follows. We introduce the set of
locations I := {1, 2, 3, 4, 5}, in accordance with Fig. 1b. Moreover, we focused
our research on weekdays and thereby excluded all weekend days from the data,
because the traffic flow is oftentimes significantly lower. The set containing all
261 weekdays in 2018 is denoted by J . After the aforementioned exclusions, we
have one set of measurement dates J (i) ⊆ J for each detector i ∈ I. At each
location we have measurements of the average traffic flow and average vehicle
speed, as well as an estimate for the density, aggregated to 5-minute intervals.
Hence, for location i ∈ I and date j ∈ J (i) we have a sequence of measurement
times

T (i,j) :=
{

t
(i,j)
1 , t

(i,j)
2 , . . .

}
⊆ T , (1)

where T is the set containing all 5-minute intervals on a day. The corresponding
set of measurements for detector i on date j is

X (i,j) :=
{ (

q
(i,j)
t , v

(i,j)
t , ρ

(i,j)
t

)
: t ∈ T (i,j)

}
. (2)

Unexpectedly High Traffic Flow in Uncongested Traffic States 69

The data set containing only the flow and the density is denoted by

X̄ (i,j) :=
{ (

ρ
(i,j)
t , q

(i,j)
t

)
: t ∈ T (i,j)

}
. (3)

In total we have |I| = 5 locations and |J | = 261 dates, leading to a total
of 5 · 261 = 1305 instances. However, in the first step of the algorithm (i.e.
estimating the critical speed), we do not include all days/critical speeds:

1. We exclude the most extreme critical speeds of each location (see Sect. 3 for
a motivation in relation to our assumptions and Eq. (11)/the last paragraph
of Sect. 3.2 for a further elaboration);

2. We exclude instances where the free-flow and congestion region are not lin-
early separable by a straight line through the origin, given the labelling (see
Remark 2);

3. We exclude days with little or no congestion (see Sect. 4.2).

For the remaining steps, we do include all 1305 instances, meaning that no
weekdays are beforehand excluded when identifying the high-performance days.

All the analyses were performed in the statistical software package R.

3 The Main Algorithm

We present the main algorithm in this section and elaborate on the theoreti-
cal foundation using traffic theory, robust regression and the estimator for the
breakdown probability proposed in [1]. The algorithm consists of three parts: (i)
estimating the critical speed, (ii) estimating the breakdown probability, and (iii)
identifying the high-performance days. In Sect. 3.1 we formally define the rele-
vant notions, such as the critical speed. In Sect. 3.2 we explain how the critical
speed is obtained using robust regression as a labelling tool. Lastly, in Sect. 3.3
we discuss the estimator for the breakdown probability and provide a definition
for high-performance days, based on “unperturbed moments”.

3.1 The Fundamental Diagram and the Critical Speed

Studying the traffic behaviour at a specific location, say location i, one can
distinguish two different traffic states: free flow and congestion. As in [9], we can
define free flow and congestion based on the critical speed.

Definition 1 (Free flow, Congestion and Critical speed). Free (traffic)
flow is a state when the vehicle density in traffic is small enough for interactions
between vehicles to become negligible. Therefore, vehicles have an opportunity to
move at their desired maximum speeds [9]. When the density increases beyond a
certain threshold in free flow, vehicle interaction cannot be neglected anymore.
Due to this vehicle interaction, the average vehicle speed decreases to a value
lower than the critical speed, which is the minimum average speed that is still
possible in free flow. This new state of traffic is referred to as a state of congested
traffic.

70 B. Klaasse et al.

We denote the critical speed at location i by v
(i)
crit. In the fundamental dia-

gram, this critical speed separates the free-flow region from the congestion region.
The free-flow set of location i on date j, i.e. the set containing all data points
corresponding to free flow, is defined as

F (i,j) :=
{ (

q
(i,j)
t , v

(i,j)
t , ρ

(i,j)
t

)
∈ X (i,j) : v

(i,j)
t ≥ v

(i)
crit

}
, (4)

i.e. the set of all data points of location i and date j for which the average
speed is equal to or higher than the critical speed of location i. Naturally, the
congestion set is defined as the complement of the free-flow set, i.e.

C(i,j) := X (i,j) \ F (i,j). (5)

The difference between free flow and congestion is clearly visible in the fun-
damental diagram (or the empirical fundamental diagram of traffic flow, to be
precise), which is a plot of the measured flow rates q

(i,j)
t against the vehicle

densities ρ
(i,j)
t . An example of the empirical fundamental diagram is presented

in Fig. 2a. In this example, the black line clearly separates the free flow set from
the congestion set.

During free flow, the flow-density relationship can be modelled by a straight
line (see the orange line in Fig. 2a), which logically must pass through the origin:

q ≈ ρ · v
(i)
free ∀(q, v, ρ) ∈ F (i,j). (6)

When using the data set X (i,j), we assume the following conditions are met:

(i) The average speed during free flow v
(i)
free is constant for all locations i ∈ I;

(ii) The road conditions at location i are homogeneous for all dates j ∈ J (i),
for all locations i ∈ I;

(iii) For each i ∈ I and j ∈ J (i), the number of free-flow measurements signifi-
cantly exceeds the number of congestion measurements.

Whenever at least one of these conditions is violated, for a certain day j at
location i, day j will not be taken into account when determining v

(i)
crit. The first

condition is rarely violated, since a constant free flow speed follows from the
definition of free flow (see e.g. [9]), given conflict free roads with a fixed speed
limit and homogeneous conditions. Assumptions (ii) and (iii) may be violated
on days where circumstances are completely different from ordinary days, for
example in case of accidents, road works or extreme weather conditions. These
days could be detected using additional data and therefore be removed from the
data set. However, in order to keep the algorithm as simple and self-contained
as possible, we simply choose to exclude the most extreme critical speeds. We
emphasise that in our experimental region the core elements of the road were
fixed throughout the year, i.e. the speed limit is fixed and no traffic lanes where
removed or added. Furthermore, despite the experimental region being subject
to heavy congestion, congestion occurs mainly during the morning and afternoon

Unexpectedly High Traffic Flow in Uncongested Traffic States 71

rush hour, which means that in general the number of free-flow measurement well
exceeds the number of congestion measurements. As a result, Assumptions (i),
(ii) and (iii) are only violated in extreme cases and removing the most extreme
critical speeds will be sufficient to ensure the assumptions are met. This explains
the first point regarding the removal of several critical speeds stated in Sect. 2.2.

0 50 100 150

0
10

00
20

00
30

00
40

00

density (vehicles/km)

flo
w

 (v
eh

ic
le

s/
h)

C(i,j)

(i,j)

v
(i)
crit = 86 km/h

(a)

0 50 100 150
0

10
00

20
00

30
00

40
00

density (vehicles/km)

flo
w

 (v
eh

ic
le

s/
h)

(b)

Fig. 2. The fundamental diagram with free-flow points (green) and congestion points
(red). In (a) it is shown how the free-flow region and the congestion region are linearly
separable by a straight line through the origin (the black line), the slope of this line
is the critical speed. Additionally, the slope of the orange line through the origin is
the (constant) free-flow speed, which is 95.5 km/h. Note that the free-flow speed is
significantly below the speed limit, as this is an average over both multiple vehicles
and multiple lanes. In (b) it is shown how the critical speed can be estimated by the
line that lies exactly between the boundary line of the free-flow region (blue) and the
boundary line of the congestion region (magenta). (Color figure online.)

3.2 Using Robust Regression to Label Data Points

The purpose of our algorithm is to find the free flow set and the congestion
set, for every day and location. More formally, we aim to find a label for each
(q, v, ρ) ∈ X (i,j) that indicates whether (q, v, ρ) ∈ F (i,j) or (q, v, ρ) ∈ C(i,j). A
logical first step is to determine the straight line through the origin that lies
exactly between the free-flow region and the congestion region, as depicted by
the black line in Fig. 2b. The slope of this line is the estimate of the critical speed
of location i for each date j ∈ J (i), denoted by v

(i,j)
crit .

In order to obtain the critical speed and the corresponding labelling from
the fundamental diagram, several methods have been studied in the literature.
Examples are an iterative regression method after performing a change-point
analysis [1], the use of fuzzy logic for clustering [17], and assuming a specific
model for the fundamental diagram, obtaining the critical density and subse-
quently labelling each point [11]. However, we opt for a more intuitive and

72 B. Klaasse et al.

efficient method based on robust regression, to exploit the underlying structure
of the fundamental diagram.

Robust regression essentially does the same as ordinary regression, yet is more
robust to potential violations of the modelling assumptions (e.g. outliers), see
for example [13]. To this end, each data point x is assigned a weight w(x) ∈ [0, 1]
and subsequently a linear model is fitted and a reiterative weighted least squares
fit is performed (where the weights are updated each step according to the new
estimate); in this way outliers have a smaller influence on the final estimates due
to their lower weights and the model aims to fit the majority of the data, rather
than the whole data set. We apply robust regression to the flow-density set X̄ (i,j)

of each location i and date j separately. Specifically, we fit the following model:

qt = v
(i,j)
free · ρt + εt ∀(ρt, qt) ∈ X̄ (i,j), (7)

where the εt are error terms with expectation zero. In our case, the “outliers”
are the points corresponding to congestion. The reason why this method works
so well for this application, is threefold:
1. We exploit the fact that in free flow, the relation between q and ρ is linear;
2. We do not have to assume any specific relation between q and ρ in the con-

gested set, because these points fulfill the role of outliers;
3. The method computes weights that are a measure for the contribution of each

point to the final estimate, which can be used for the labelling.

Remark 1. Assumption (iii) from Subsect. 3.1, specifying that we only consider
days where the number of points corresponding to congestion is smaller than
the number of free flow points, is essential. On a day where this assumption is
violated, we have more points belonging to congestion, meaning that the fitted
regression line would no longer pass through the free flow set. In this case, the
estimated free flow speed v

(i,j)
free would be significantly lower than the maximum

speed, which makes these days extremely easy to detect (and remove).

The robust regression is performed using the function rlm from the MASS-
package in R, with MM-estimation and Tukey’s Bisquare function for the weights
with the default S-estimator as suggested in [22]. Tukey’s Bisquare function
behaves similarly to the squared error function except for larger errors, for which
it decreases the weight (see e.g. [13]). This results in an estimate for v

(i,j)
free and

certain weights w(x) for each data point x ∈ X̄ (i,j). Instead of the usual interest
in the model and parameter estimation, we are interested in the weights asso-
ciated with each data point. Using the weights, we perform the labelling: if the
weight is low and if the data point corresponds to a speed lower than the free-
flow speed, v

(i,j)
free , the data point will be labelled as congestion. All other points

will be labelled as free flow. Hence, for each x = (ρ, q) ∈ X̄ (i,j) we determine
1C(x) := 1{x ≡ (q, v, ρ) ∈ C(i,j);x ∈ X̄ (i,j)}, i.e. the indicator function for
the event that x corresponds to congestion or not. The critical weight has been
placed at 0.01 (see Sect. 4.2 for a justification), hence

1C(x) =

{
1 if w(x) < 0.01 and v = q/ρ < v

(i,j)
free

0 otherwise.
(8)

Unexpectedly High Traffic Flow in Uncongested Traffic States 73

After we obtain the labels, we estimate v
(i,j)
crit (see the black line in Fig. 2b)

by determining the slope of the straight line through the origin that lies exactly
between the free-flow region and the congestion region.

Remark 2. It may happen that the boundary line of the congestion region lies
above the boundary line of the free-flow region (i.e. the magenta line has a larger
slope than the blue line in Fig. 2b), since the weights are calculated based on
the Euclidean distance from the free-flow line. In this case, the free-flow region
and the congestion region are not linearly separable by a straight line through
the origin, given the labelling. For such instances, there will exist data points
x ≡ (q, v, ρ) ∈ C(i,j) and x′ ≡ (q′, v′, ρ′) ∈ F (i,j) such that v > v′. The critical
speed for such instances is indeterminate and therefore we do not include these
instances in the determination of the critical speed of the corresponding location.

In the end, the critical speed of location i is estimated as follows:

v
(i)
crit = median{V(i)

crit}, (9)

where

V(i)
crit :=

{
v
(i,j)
crit

}
(10)

such that: ∣∣∣v(i,j)
crit − μ

{
v
(i,j)
crit

}
j∈J (i)

∣∣∣ < 2σ
{
v
(i,j)
crit

}
j∈J (i) ; (11)

v′ > v ∀x ∈ C(i,j),x′ ∈ F (i,j); (12)

MAPE
(
X̄ (i,j)

)
≥ 0.1. (13)

where μ{·} and σ{·} denote the mean and standard deviation of the correspond-
ing sets respectively and MAPE

(
X̄ (i,j)

)
denotes the mean absolute percentage

error of the regression model presented in Eq. (7).
Equation (11) removes the most extreme critical speeds. By excluding days

with a critical speed that lies outside a range of twice the standard deviation
from the average, we prevent potential violations of the assumptions from influ-
encing the estimates (as elaborated upon in Sect. 3.1). Equation (12) excludes
days where the boundary line of the congestion region lies above the bound-
ary line of the free-flow region (see Remark 2). Lastly, Eq. (13) ensures that the
critical speed of a location is not based on days with little or no congestion.
As one can imagine, in case of hardly any congestion, a free-flow point with a
relatively slow speed might be incorrectly labelled as congestion. We therefore
impose a minimal level of congestion and use the mean absolute percentage error
(MAPE, see e.g. [18]) of the corresponding model (see Eq. (7)) as a surrogate
of the average congestion level. The MAPE expresses the error of the model
in terms of a percentage; a low MAPE corresponds to a very accurate model,
implying hardly any congestion, whereas a high MAPE indicates that various
points deviate from the straight line through the origin, which corresponds to

74 B. Klaasse et al.

the presence of congestion during that day. The critical level of the MAPE has
been placed at 0.1, in Sect. 4.2 this threshold will be motivated.

The set of critical speeds of location i, corresponding to the instances of
location i which satisfy the three conditions presented in Eqs. (11), (12) and (13),
is given by V(i)

crit. The critical speed of location i is subsequently determined by
taking the median of this set. We take the median of the critical speeds among
multiple days to provide a solid baseline for comparison among different days.
We emphasise that in the end the critical speed of each location is estimated as
the median of at least 147 critical speeds (out of 261 weekdays) and that most
instances were removed based on Eq. (12).

3.3 Estimating the Breakdown Probability and Identifying
the High-Performance Days

Congestion arises as a consequence of a breakdown, which is defined as a tran-
sition from free flow to congestion (see, e.g. [1]). Usually, this happens when the
traffic flow is high and some kind of disruption occurs (e.g. a vehicle changing
lanes or another sudden movement of a driver).

Definition 2 (Breakdown). A breakdown, at location i and date j, is a mom-
ent t

(i,j)
k ∈ T (i,j) such that

v
(i,j)

t
(i,j)
k

≥ v
(i)
crit > v

(i,j)

t
(i,j)
k+1

.

We assume that breakdowns have a probabilistic nature, see e.g. [1,20], mean-
ing that from a macroscopic point of view the occurrence of breakdowns (given a
certain traffic flow) is random. This implies the existence of a breakdown proba-
bility (as a function of the traffic flow). To estimate this probability, we use the
non-parametric estimator discussed in Arnesen and Hjelkrem [1]. To calibrate
this estimator, the aforementioned classification of each data point as either
free flow or congestion is required. Arnesen and Hjelkrem define two functions;
Q(i)(q), which is the number of breakdowns at location i while the traffic flow is
equal to or lower than q, and R(i)(q), which is the number of times a breakdown
did not occur at location i with a traffic flow of at least q. Subsequently, the
breakdown probability P (i)(q), which denotes the probability of a breakdown at
location i when the traffic flow is q, can be estimated by

P (i)(q) =
Q(i)(q)

Q(i)(q) + R(i)(q)
. (14)

Remark 3. To avoid including “fake breakdowns” (e.g. a single vehicle driving
unnecessarily slow at night), we pose the additional constraint on a breakdown
that it does not happen before 5:00 in the morning. Indeed, multiple times we
observed before 5:00, at a minimal traffic flow, a sudden drop of the average speed
to just below the critical speed. We assume that such events are not relevant
for estimating the breakdown distribution as this could be a truck driving at its
speed limit of 80 km/h.

Unexpectedly High Traffic Flow in Uncongested Traffic States 75

To reduce the complexity of the estimation method, we use a surrogate for the
breakdown probabilities, obtained by fitting a cumulative normal distribution
function, as is done in [1].

In Sect. 1, an intuitive description of a high-performance day was given. In
this section we present a criterion to determine a quantitative definition for
high-performance days. To this end, we employ the estimated breakdown prob-
ability in Eq. (14), to find unperturbed moments. An unperturbed moment is a
moment at which the probability of a breakdown is at least 0.5, but the expected
breakdown did not occur, or more mathematically:

Definition 3 (Unperturbed moment). An unperturbed moment, at location
i on date j, is a moment t

(i,j)
k ∈ T (i,j) with intensity q

(i,j)

t
(i,j)
k

≥ q
(i)
upt and speed

v
(i,j)

t
(i,j)
k

≥ v
(i)
crit for which it holds that

P (i)
(
q
(i,j)

t
(i,j)
k

)
≥ 1/2 ∧ v

(i,j)

t
(i,j)
k+1

≥ v
(i)
crit, (15)

where q
(i)
upt is the smallest value of the traffic flow q such that P (i)(q) ≥ 1/2.

A plausible definition of a high-performance day follows naturally.

Definition 4 (High-performance day). A high-performance day is a day
with a large number of consecutive unperturbed moments in both time and space
compared to other days.

Note that a high-performance day is thereby a relative measure, as it will
depend on the location how many unperturbed moments are generally present
(some locations experience more variability in terms of breakdowns in relation
to the traffic flow). Indeed, a certain level of freedom in the definition of high-
performance days is required. For example, quantifications such as the top 0.05
percentile, though plausible in some cases, incorrectly imply the existence of
high-performance days at any location. Furthermore, concretizations of the def-
inition in terms of the number of unperturbed moments depend on the experi-
mental region.

4 Key Insights and Validation

In this section, we present the results of our algorithm and validate the estimation
methods. In particular, we study the results of the three steps of the algorithm
and present several measures of the top 10 high-performance days. In addition,
we take a closer look at what exactly a high-performance day looks like and
how we can use our macroscopic data to visualise the dynamics of such days
for the whole trajectory. Subsequently, we elaborate on several problems one
might encounter when applying the method at a different location and how
these problems could be tackled. Specifically, we state how we dealt with these
problems and how we obtained the critical weight and the critical level of the
MAPE.

76 B. Klaasse et al.

4.1 Results and Key Insights

In Table 1 we present the results of the first and second step of the algorithm
(i.e. estimating the critical speed and the breakdown probabilities respectively).
We observe that the critical speed is roughly equal for the various locations.
We see a similar behavior for the estimated free-flow speeds, which are con-
sistently roughly 10 km/h above the corresponding estimated critical speeds.
Furthermore, we observe that the smallest value of the traffic flow for which the
breakdown probability is at least 0.5 decreases along the trajectory, meaning
that the last two locations experience breakdowns at a lower traffic flow than
the first three locations. This makes sense considering the merge from 3 lanes to
2 lanes at the fourth location.

Table 1. Columns from left-to-right: the rounded estimated critical speed of location
i, the rounded estimated free-flow speed of location i (based on the median of the free-
flow speeds of the instances that were used to estimate the critical speed of location
i), the number of instances used for estimating the critical speed of location i (out of a
total of 261 weekdays) and the smallest traffic flow for which the breakdown probability
is at least 0.5. The speeds are expressed in kilometres per hour and the traffic flows
are expressed in vehicles per hour.

v
(i)
crit v

(i)
free |V(i)

crit| q
(i)
upt

Location 1 95.5 104.5 147 4358

Location 2 93 103 162 4019

Location 3 93 102 175 3901

Location 4 94.5 104.5 180 3195

Location 5 92.5 102.5 175 3164

In Fig. 3 we present a scatter plot displaying the average number of unper-
turbed moments per location for each weekday of 2018. Additionally, the colour
of each point corresponds to the average breakdown probability of the unper-
turbed moments. We observe that the days can be grouped into roughly three
categories: days with hardly any unperturbed moments, days with some unper-
turbed moments, and days with a relatively large number of unperturbed
moments. It turns out that most days in the first group correspond to days
with significantly less traffic, thus implying a low traffic flow and thereby a lack
of unperturbed moments. For example, the grey points in Fig. 3 often correspond
to (school) holidays. The third group, however, is of major interest to us, as these
are the high-performance days.

In Table 2 we present several measures of the top 10 high-performance days
(based on Fig. 3), corresponding to the fourth location. We choose to only present
results for the fourth location, because averaging the speeds over the various
locations requires a critical speed for the whole trajectory as a baseline (whose
definition is not straightforward). To study the characteristics of these days, we

Unexpectedly High Traffic Flow in Uncongested Traffic States 77

0

3

6

9

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
month

av
er

ag
e

un

pe
rtu

rb
ed

 m
om

en
ts

0.5
0.6
0.7
0.8
0.9
1.0

Fig. 3. Plot of the average number of unperturbed moments for each weekday of 2018.
The colour of each point indicates the average breakdown probability of the unper-
turbed moments. In case no unperturbed moments occurred, the corresponding point
is grey.

investigate the average speed and average fraction of free-flow measurements. We
look at three time intervals: the morning rush hour 6.30–9.30, outside peak hours
9.30–15.30 and the afternoon rush hour 15.30–19.00. We observe that, though all
days show a relatively large number of unperturbed moments, the characteristics
of the various days can differ greatly. For example, the top 7 high-performance
days all have an average speed during the morning rush hour that is below the
critical speed of the corresponding location (i.e. 94.5 km/h) and at least 10%
of the measurements during the morning rush hour correspond to congestion,
whereas the remaining three days shows hardly any signs of congestion in the
morning. We also observe a similar pattern across all high-performance days; the
mornings are significantly better (in terms of the average speed and the fraction
free flow) than the afternoons. In fact, it seems that severe congestion during the
afternoon was present in almost all high-performance days (only February 14,
2018 is an exception). Nevertheless, the mornings of the top 10 high-performance
days are quite extraordinary, in particular when comparing the average speed and
the fraction free flow with the median over all weekdays from 2018 at location 4.

We now thoroughly study the traffic behaviour during October 17, 2018. Dur-
ing this day, an average of 9 unperturbed moments was identified (see Table 2).
This day is particularly interesting because of the seemingly large difference
between the morning rush hour and the afternoon rush hour. In fact, this day
is the only day in the top 10 high-performance days which does not show any
congestion during the entire morning rush hour. In Fig. 4 a joint time series of
the average flow and average speed at the fourth location during this day is pre-
sented. As expected, we notice a large number of unperturbed moments, mostly
during the morning. The contrast between the morning and the afternoon is
indeed interesting, as the breakdown, which remained absent in the morning,
manifested in the late afternoon at a lower traffic flow. This is in line with our
probabilistic view on the occurrence of a breakdown, at least from a macroscopic
point of view, and confirms that this morning was indeed extraordinary.

78 B. Klaasse et al.

Table 2. Several measures of the top 10 high-performance days, based on Fig. 3, cor-
responding to the fourth location. The average speed is presented during the morning
rush hour 6.30–9.30, outside peak hours 9.30–15.30 and during the afternoon rush
hour 15.30–19.00, as well as the corresponding fraction free flow. The median over all
weekdays of 2018 is presented as well.

Average
number

unperturbed
moments

(per location)

Average
speed

morning
rush hour

Average
speed
outside

peak hours

Average
speed

afternoon
rush hour

Fraction
free flow
morning
rush hour

Fraction
free flow
outside

peak hours

Fraction
free flow
afternoon
rush hour

Average
speed
legend

Fraction
free flow
legend

12-Jun 11.4 88.5 99.3 33.2 0.76 0.96 0.12 0.0 0.00
14-Feb 11.2 92.9 99.8 75.3 0.86 0.94 0.60 10.0 0.10
13-Sep 11.2 93.4 99.2 32.1 0.83 0.94 0.07 20.0 0.20
7-Mar 11 82.9 104.2 41.9 0.72 1.00 0.36 30.0 0.30
20-Feb 10.6 58.5 97.7 52.9 0.39 0.88 0.36 40.0 0.40
4-Sep 10 95.2 104.4 41.2 0.86 1.00 0.21 50.0 0.50
21-Jun 9.6 90.3 99.2 18.3 0.81 0.96 0.00 60.0 0.60
3-Oct 9.6 99.7 103.5 30.9 0.94 1.00 0.05 70.0 0.70

20-Dec 9.2 100.8 92.2 30.8 0.97 0.86 0.12 80.0 0.80
17-Oct 9 103.1 99.5 39.3 1.00 0.96 0.19 90.0 0.90

>94.5 1.00
Median 2.2 71.2 99.4 44.0 0.51 0.94 0.21

Additionally, one could employ visualizations to investigate the whole tra-
jectory simultaneously, see Fig. 5. We verified that the morning of October 17,
2018 was extraordinary at the fourth location and Fig. 5 shows that this was the
case for the whole trajectory. Indeed, we observe multiple unperturbed moments
during the morning rush hour at each of the five locations. In particular, despite
the high traffic flow (recall that unperturbed moments only occur at a traffic
flow of at least 3164 vehicles per hour, see Table 1), we observe no significant
speed decrease. Furthermore, as we expect based on Fig. 4, a breakdown along
the whole trajectory can clearly be seen around 15.20-15.30 (see Fig. 5).

00:00 05:00 10:00 15:00 20:00

20
40

60
80

12
0

time

sp
ee

d
(k

m
/h

)

0
10

00
20

00
30

00

flo
w

 (v
eh

ic
le

s/
h)

flow
speed

Fig. 4. Time series of the average speed (black) and average flow (red) during Octo-
ber 17, 2018 at location 4. Unperturbed moments are indicated by a green dot and
breakdowns are indicated by a red dot. The horizontal black line is the estimated criti-
cal speed and the horizontal red line is the smallest traffic flow for which the breakdown
probability is at least 0.5. (Color figure online.)

Unexpectedly High Traffic Flow in Uncongested Traffic States 79

morning afternoon

06:00 07:00 08:00 15:00 16:00 17:00

1

2

3

4

5

time

lo
ca

tio
n

nu
m

be
r

0
25
50
75
100

Fig. 5. A space-time diagram of the morning rush hour and the afternoon of October
17, 2018. The average speed is displayed along the whole trajectory. Furthermore,
breakdowns are marked with a black marker and unperturbed moments are marked
with a red dot. (Color figure online.)

4.2 Validation

The critical speeds are estimated based on a labelling of the data points resulting
from the robust regression method discussed in Sect. 3.2. As the exact shape of
the fundamental diagram depends on the location, it is difficult to make general
statements about the accuracy of the critical speed estimation. However, we can
identify three possible issues: 1. little or no congestion occurred during a day;
2. extreme congestion occurred during a day; 3. the free-flow speed was not
(approximately) constant. We also present a way to determine whether or not
those problems did arise (besides additional information about the experimental
region). Finally, we conclude this section with a discussion on how to choose the
critical weight, which is used to determine whether observations belong to the
congestion set or the free-flow set.

Little or No Congestion. In this case, robust regression might interpret a free-
flow point with a relatively slow speed as an outlier and therefore cause a free-
flow point to be labelled as a congestion point. This leads to a higher estimate
of the critical speed during that day. Though in our case it is not likely that the
final estimate of the critical speed will be strongly influenced by several overes-
timates (considering that our experimental region is generally subject to heavy
congestion), we still exclude days with little or no congestion. As mentioned
in Sect. 3.2, we use the mean absolute percentage error (MAPE) of the robust
regression model presented in Eq. (7) as a surrogate for the average congestion
level. In Fig. 6 a scatter plot of the MAPE for the various days of location 1 is
shown. We observe that, for example, during the holidays (the beginning of Jan-
uary/end of December) and throughout the summer break, the MAPE is close
to zero. Indeed, during those days the traffic flow was significantly lower and

80 B. Klaasse et al.

therefore hardly any congestion occurred. Based on Fig. 6 (and similar figures
for the other locations), we decided to place the threshold at 0.1; instances with
a MAPE of less than 0.1 will be excluded when determining the critical speed,
as in Eq. (13).

Extreme Congestion. This may lead to severe underestimations of the critical
speed. One can imagine that if the number of congestion measurements becomes
too large, not all congestion points will be observed as outliers by the robust
regression method. In particular, what may happen is that robust regression
fits a model through the congestion region, see also Remark 1. For the MM-
estimators it is known that (asymptotically) in case more than half of the data
points lie on a straight line through the origin, the final model will fit that
line [23]. This means that, if we assume a constant flow-density relation in free
flow, the free-flow speed should be accurately estimated if more than half of
the measurements correspond to free-flow. However, because Eq. (6) is only an
approximate relation, the algorithm will be even more sensitive to a larger con-
gestion set. In our case study, the fraction of free flow was generally well above
0.5. However, before employing robust regression to determine the critical speed,
it is recommended one verifies that the average free-flow level is above 0.5. In case
the congestion level is around 0.5 one should cautiously verify that the critical
speed is correctly estimated (by e.g. studying the distribution of the estimated
critical speed for the various days).

Non-constant Free-Flow Speed. In case the free-flow speed is not constant, the
structure of the fundamental diagram will change heavily (in comparison with
e.g. Fig. 2). One example would be a decrease of the speed limit when the rush-
hour lane is open. In case the rush-hour lane is opened during peak hours, this
could result in a free-flow curve, rather than a straight line, displaying an average
speed decrease at high traffic flows. Such a scenario could be problematic for our
algorithm, as the approximate flow-density relationship, presented in Eq. (6), no
longer holds. We suggest that one beforehand verifies that the free-flow speed
is constant, either by using information about the experimental region or by
studying the fundamental diagram. In our case there was no dynamic speed
limit and the fundamental diagrams showed no indication of a non-constant
free-flow speed.

Critical Weights. In Sect. 3.2, we introduced the critical weight, which is used
to distinguish between congestion and free flow. The critical weight has been
placed at 0.01, meaning that points with a weight below 0.01 are labelled as
free flow. This value is determined using Fig. 7, which shows a scatter plot of all
speeds and corresponding weights of the first location. We observe that almost
all low speeds (say speeds below 70 km/h), have a weight which is either zero
or very close to zero. Speed-weight plots of the other four locations showed a
similar pattern. Therefore, we conclude that a critical weight of 0.01 generally
allows for a sensible labelling.

Unexpectedly High Traffic Flow in Uncongested Traffic States 81

0.0

0.5

1.0

1.5

2.0

2.5

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
month

M
A

P
E

Fig. 6. Plot of the MAPE of the robust
regression model for all days.

0

50

100

150

0.00 0.25 0.50 0.75 1.00
weight

sp
ee

d

Fig. 7. Plot of the weights and corre-
sponding speeds for location 1.

5 Conclusion and Discussion

We have developed an algorithm to identify high-performance days based on an
estimation of critical speed and the breakdown probability. The algorithm is rel-
atively straightforward and only requires two quantities; the average traffic flow
and the average speed. The algorithm relies on the shape of the fundamental dia-
gram; each observation is classified as either free flow or congestion using robust
regression and the critical speed is estimated as the separating line between the
two sets. Using a non-parametric estimator for the breakdown probability, we
are able to quantify both characteristics of a high-performance day (roughly
speaking, high speed and high flow). The algorithm has shown its capabilities
by identifying high-performance days on the A15 near Papendrecht in 2018.

A natural follow-up question would be in the direction of causality. Indeed,
one could wonder why certain days exhibit extraordinary behaviour, in terms
of an unexpected absence of traffic jams. A possible explanation could be traf-
fic homogeneity; perhaps during the high-performance days, there were fewer
trucks, leading to fewer speed differences between vehicles. Alternatively, the
answer may lie hidden in microscopic data; certain (desirable) behavioural char-
acteristics of drivers might be over-represented during high-performance days.
This paves the way towards reducing traffic jams from a different perspective and
may lead to new insights as well as an easier investigation of countermeasures
against traffic jams. This non-trivial extension is, however, beyond the scope of
this paper. Instead, we present this tool to facilitate further research into coun-
termeasures against traffic jams, as the algorithm is able to identify which days
need to be studied further.

We must be critical of our approach as well, in particular in terms of gener-
ality. This mainly relates to the two (subjective) thresholds: the critical weight
(to distinguish between congestion measurements and free flow measurements)
and the critical level of the MAPE of the regression model (to identify a lack
of congestion). Both values were determined based on the five locations of the

82 B. Klaasse et al.

A15 Papendrecht 2018 data set. However, when testing the algorithm on other
data sets, we still observed both a sensible labelling of the data points as well
as a plausible recognition of days with little or no congestion. In fact, we tested
the algorithm on data sets which violated the assumption of a constant free-
flow speed and the algorithm still identified days with a high traffic flow and a
striking absence of traffic jams.

Acknowledgements. This work was supported by NWO under Grant 438-13-206. We
thank De Verkeersonderneming for hosting Bo Klaasse during his internship. We thank
Stella Kapodistria and Onno Boxma for interesting discussions on the manuscript.

References

1. Arnesen, P., Hjelkrem, O.A.: An estimator for traffic breakdown probability based
on classification of transitional breakdown events. Transp. Sci. 52(3), 593–602
(2017). https://doi.org/10.1287/trsc.2017.0776

2. Bergendorff, P., Hearn, D.W., Ramana, M.V.: Congestion toll pricing of traffic
networks. In: Pardalos, P.M., Hearn, D.W., Hager, W.W. (eds.) Network Opti-
mization, pp. 51–71. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-
642-59179-2 4

3. Bremmer, D.: Dit zijn de 20 duurste files van Nederland (2019). https://www.ad.
nl/economie/dit-zijn-de-20-duurste-files-van-nederland∼a4803756/. Accessed 01
Aug 2019

4. Dervisoglu, G., Gomes, G., Kwon, J., Horowitz, R., Varaiya, P.: Automatic cal-
ibration of the fundamental diagram and empirical observations on capacity. In:
Transportation Research Board 88th Annual Meeting, vol. 15 (2009)

5. Ettema, D., Knockaert, J., Verhoef, E.: Using incentives as traffic management
tool: empirical results of the “peak avoidance” experiment. Transp. Lett. 2(1),
39–51 (2010). https://doi.org/10.3328/TL.2010.02.01.39-51

6. Gaddam, H.K., Rao, K.R.: Speed-density functional relationship for heterogeneous
traffic data: a statistical and theoretical investigation. J. Mod. Transp. 27(1), 61–74
(2019). https://doi.org/10.1007/s40534-018-0180-z

7. Goh, M.: Congestion management and electronic road pricing in Singa-
pore. J. Transp. Geogr. 10(1), 29–38 (2002). https://doi.org/10.1016/S0966-
6923(01)00036-9

8. Hegyi, A., Hoogendoorn, S.P., Schreuder, M., Stoelhorst, H., Viti, F.: SPECIAL-
IST: a dynamic speed limit control algorithm based on shock wave theory. In: 2008
11th International IEEE Conference on Intelligent Transportation Systems, pp.
827–832. IEEE (2008). https://doi.org/10.1109/ITSC.2008.4732611

9. Kerner, B.S.: Introduction to Modern Traffic Flow Theory and Control: The Long
Road to Three-phase Traffic Theory. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02605-8

10. Kerner, B.S., Rehborn, H.: Experimental properties of phase transitions in traf-
fic flow. Phys. Rev. Lett. 79(20), 4030–4033 (1997). https://doi.org/10.1103/
PhysRevLett.79.4030

11. Knoop, V.L., Daamen, W.: Automatic fitting procedure for the fundamental dia-
gram. Transp. B: Transp. Dyn. 5(2), 129–144 (2017). https://doi.org/10.1080/
21680566.2016.1256239

https://doi.org/10.1287/trsc.2017.0776
https://doi.org/10.1007/978-3-642-59179-2_4
https://doi.org/10.1007/978-3-642-59179-2_4
https://www.ad.nl/economie/dit-zijn-de-20-duurste-files-van-nederland~a4803756/
https://www.ad.nl/economie/dit-zijn-de-20-duurste-files-van-nederland~a4803756/
https://doi.org/10.3328/TL.2010.02.01.39-51
https://doi.org/10.1007/s40534-018-0180-z
https://doi.org/10.1016/S0966-6923(01)00036-9
https://doi.org/10.1016/S0966-6923(01)00036-9
https://doi.org/10.1109/ITSC.2008.4732611
https://doi.org/10.1007/978-3-642-02605-8
https://doi.org/10.1007/978-3-642-02605-8
https://doi.org/10.1103/PhysRevLett.79.4030
https://doi.org/10.1103/PhysRevLett.79.4030
https://doi.org/10.1080/21680566.2016.1256239
https://doi.org/10.1080/21680566.2016.1256239

Unexpectedly High Traffic Flow in Uncongested Traffic States 83

12. Li, H., Bertini, R.L.: Comparison of algorithms for systematic tracking of patterns
of traffic congestion on freeways in Portland. Oregon. Transp. Res. Rec. 2178(1),
101–110 (2010). https://doi.org/10.3141/2178-11

13. Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to Linear Regression
Analysis. Wiley, Hoboken (2012)

14. NDW: Home - Nationale Databank Wegverkeersgegevens (2019). https://www.
ndw.nu/en/. Accessed 10 Sept 2019

15. Ong, R., et al.: Traffic jams detection using flock mining. In: Gunopulos, D., Hof-
mann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI),
vol. 6913, pp. 650–653. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23808-6 49

16. Petrovska, N., Stevanovic, A.: Traffic congestion analysis visualisation tool. In:
2015 IEEE 18th International Conference on Intelligent Transportation Systems,
pp. 1489–1494. IEEE (2015). https://doi.org/10.1109/ITSC.2015.243

17. Stutz, C., Runkler, T.A.: Classification and prediction of road traffic using
application-specific fuzzy clustering. IEEE Trans. Fuzzy Syst. 10(3), 297–308
(2002). https://doi.org/10.1109/TFUZZ.2002.1006433

18. Swamidass, P.M.: MAPE (mean absolute percentage error). In: Swamidass, P.M.
(ed.) Encyclopedia of Production and Manufacturing Management, pp. 462–462.
Springer, Boston (2000). https://doi.org/10.1007/1-4020-0612-8 580

19. Treiber, M., Kesting, A.: Traffic Flow Dynamics: Data, Models and Simulation.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32460-4

20. Tu, H.: Monitoring travel time reliability on freeways. Ph.D. thesis, TU Delft (2008)
21. Vaqar, S.A., Basir, O.: Traffic pattern detection in a partially deployed vehicular

ad hoc network of vehicles. IEEE Wirel. Commun. 16(6), 40–46 (2009). https://
doi.org/10.1109/MWC.2009.5361177

22. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S-PLUS. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-0-387-21706-2

23. Yohai, V.J.: High breakdown-point and high efficiency robust estimates for regres-
sion. Ann. Stat. 15(2), 642–656 (1987). https://doi.org/10.1214/aos/1176350366

https://doi.org/10.3141/2178-11
https://www.ndw.nu/en/
https://www.ndw.nu/en/
https://doi.org/10.1007/978-3-642-23808-6_49
https://doi.org/10.1007/978-3-642-23808-6_49
https://doi.org/10.1109/ITSC.2015.243
https://doi.org/10.1109/TFUZZ.2002.1006433
https://doi.org/10.1007/1-4020-0612-8_580
https://doi.org/10.1007/978-3-642-32460-4
https://doi.org/10.1109/MWC.2009.5361177
https://doi.org/10.1109/MWC.2009.5361177
https://doi.org/10.1007/978-0-387-21706-2
https://doi.org/10.1214/aos/1176350366

A Network Aware Resource Discovery
Service

Luigi Liquori1 , Rossano Gaeta2 , and Matteo Sereno2(B)

1 Université Côte d’Azur, INRIA Sophia Antipolis - Méditerranée,
Biot, Sophia Antipolis, France

Luigi.Liquori@inria.fr
2 Dipartimento di Informatica, Università di Torino, Turin, Italy

{rossano.gaeta,matteo.sereno}@unito.it

Abstract. Internet in recent years has become a huge set of channels
for content distribution highlighting limits and inefficiencies of the cur-
rent protocol suite originally designed for host-to-host communication.
In this paper we exploit recent advances in Information Centric Net-
works in the attempt to reshape the actual Internet infrastructure from
a host-centric to a name-centric paradigm where the focus is on named
data instead of machine name hosting those data. In particular, we pro-
pose a Content Name System Service that provides a new network aware
Content Discovery Service. The CNS behavior and architecture uses the
BGP inter-domain routing information. In particular, the service regis-
ters and discovers resource names in each Autonomous System: contents
are discovered by searching through the augmented AS graph represen-
tation classifying ASes into customer, provider, and peering, as the BGP
protocol does. Performance of CNS can be characterized by the fraction
of Autonomous Systems that successfully locate a requested content and
by the average number of CNS Servers explored during the search phase.
A C-based simulator of CNS is developed and is run over real ASes
topologies provided by the Center for Applied Internet Data Analysis to
provide estimates of both performance indexes. Preliminary performance
and sensitivity results show the CNS approach is promising and can be
efficiently implemented by incrementally deploying CNS Servers.

Keywords: Discovery Service · Naming · Performance evaluation ·
Network and economical awareness

1 Introduction

Information Centric Networks (ICN) is a clean-state approach to redesign the
actual Internet infrastructure from a host-centric, fully connected, paradigm to
a name-centric, loosely connected, paradigm where the focus is on named data
instead of machine name hosting those data. In the last decade many proposals
raised from research to capture this new paradigm: they mainly can be grouped
into two schools of thought: Content Centric Networks referring to the Jacobson-
based vision [6,11,13], where routing is driven by fully qualified - human readable
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): EPEW 2019, LNCS 12039, pp. 84–99, 2020.
https://doi.org/10.1007/978-3-030-44411-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44411-2_6&domain=pdf
http://orcid.org/0000-0003-3961-4205
http://orcid.org/0000-0002-6521-403X
http://orcid.org/0000-0002-5339-3456
https://doi.org/10.1007/978-3-030-44411-2_6

A Network Aware Resource Discovery Service 85

- hierarchical names and Data Oriented Network Architecture referring to a flat,
unreadable but unique name-space [7] (see also [1,3,12]).

While it is always exciting to conceive a new network starting from new
concepts and from a clean-state design, network’s history teaches us that the
Internet infrastructure and its protocol suite have little changed; this is, quite
obviously, because of strong backward-compatibility needs, and because of the
tremendous expansion of the Internet phenomenon.

This paper supports the evolutive research line and presents a lightweight
network aware Internet Service to be implemented between the Transport and
the Session layers (referring to the ISO-OSI protocol layering). We call this new
service Content Name System (CNS) organized throughout a set of communi-
cating CNS Servers and we design a protocol, called link, implementing the
Service Discovery.

The purpose of this Discovery Service is to publish machine-IP-addresses
being the owners (or the purveyors) of some named-contents and retrieve that
machine-IP-addresses performing a distributed search using the named-content
as the database-key. The service binds a set of IP-addresses to content-names,
the latter referred by hypernames. The CNS Service stops when some or no IP-
addresses are returned or when no other CNS Server can be delegated in the
iterative call implementing the distributed data-base query. Each CNS Server is
equipped with a database containing for each queried content-name, the set of
corresponding IPs ordered by local awareness.

In our proposal, the CNS Servers are distributed over the Internet
Autonomous Systems (AS): there is one CNS Server per AS (or for load bal-
ancing purposes there can be multiple CNS Servers) taking care of resources
registered inside the AS itself. Furthermore, the Discovery Service leverages on
AS relationships by mimicking their hierarchy; in the CNS Service each AS uses
the (business) relationships with the ASes in its neighborhood to also drive the
content location process according to the so called “valley-free” property, i.e.,
that the discover process does not generate any supplementary cost for the AS
involved in the discovery. Therefore, the main contributions of the paper are:

– The definition of a Resource Discovery Service (CNS) with related protocol
link allowing to search contents names through Autonomous Systems: the
service is achieved by defining (i) a naming notation to denote contents, (ii)
a distributed database implemented by CNS Servers deployed along ASes,
and (iii) the link Discovery Protocol, to route queries along the ASes.

– The development of a C-based simulator of CNS and the link protocol to
conduct a preliminary performance and sensitivity analysis of the proposed
CNS. To this end, performance of the proposed CNS is represented by the
hit probability (that is defined as the fraction of ASes that successfully locate
a requested object) and the average lookup length representing the average
number of CNS Servers explored during the search phase. Experiments are
run over real ASes topologies provided by CAIDA [2] to provide reliable
and meaningful estimates of both performance indexes; we also analyze how

86 L. Liquori et al.

high performance can be if Tier-1 ASes are excluded from the search phase
providing that Tier-2 ASes are incentivized to cooperate.

The rest of the paper is organized as follows: in Sect. 2 we define the proposed
CNS (we define hypernames, the CNS Servers, and the link protocol); Sect. 3
presents preliminary simulation results to assess the performance of CNS Service.
Finally, Sect. 4 summarizes the paper contributions and discusses some further
developments.

2 Content Name System

2.1 Hypernames

A hypername (HN) is a human readable string denoting the content name,
enriched with a number of optional parameters to identify its ownership, its
integrity, its hosting, and its attribute-list. Hypernames are generated by the
following abstract syntax:

[fing_princ:][fing_cont:][hosts:][tags:]cont_name, where

– cont_name is a (possibly human readable) string denoting a content name
(e.g. “openoffice.iso”, “traffic light”, “defibrillator”, “plastic bottle”, “pedes-
trian”, URI, MAC, GUID, etc.);

– tags is an optional (possibly human readable) list of keywords (e.g. “sell”,
“buy”, “rent”, “cars”, etc) associated with a given content;

– hosts is an optional list of hostnames being the purveyors of the content:
when a hypername contains a list of hostnames, then the content name is
retrieved from one of the hostnames: the local CNS perform a DNS query,
transforms one (or all) hostname(s) into IP address(es) and return that list
to the sender of the discovery request;

– fing_cont is an optional digital signature (hash) denoting the integrity of
the content to be retrieved;

– fing_princ is an optional digital signature denoting the public asymmetric
key of the principal, i.e. the owner of the content: it allow to identify the
identity of the latter as soon as we retrieve the content itself.

Therefore, a hypername is characterized by a human readable part and another
part which is human unreadable.

2.2 CNS Servers

Similarly to the well-known DNS Service, we locate the CNS Server in the ISO-
OSI hourglass at the application level. The goal of CNS is to translate hyper-
names into lists of IP addresses, that is HN =⇒ {IPi}i∈I with I = ∅ in case of
discovery failure.

A Network Aware Resource Discovery Service 87

BGP Business Relationship Among ASes. CNS servers are distributed
over the ASes; more precisely, there is one CNS per AS (or for load balancing
purposes there can be multiple servers) taking care of resources registered inside
the AS itself. The Discovery Service leverages on AS relationships: the CNS
server hierarchy mimics the AS relationship hierarchy. It is well-known that
the routing between ASs (also called interdomain routing) is determined by
the Border Gateway Protocol (BGP) [10]. The main feature of the interdomain
routing is that it allows each AS to choose its own administrative policy in
selecting the best route, and announcing and accepting routes.

The commercial agreements between two ASes domains can be classified
into two main classes of agreements: customer to provider, and peering1. An
AS customer pays its AS provider (or ASes in case of multiple providers) for
connectivity to the rest of the Internet. A pair of ASes can set up a peering
relation and in this case they agree to exchange traffic between their respective
customers free of charge.

The AS-graph annotated with these two kinds of relationships is one of the
most famous and studied representations of the Internet (e.g., see the measure-
ment studies provided by CAIDA [2].) In this graph, according to their roles, we
can distinguish three different kind of ASes: Tier-1, Tier-2, and Tier-3. A Tier-1
is an AS that can reach every other destination on the Internet without paying
other ASes. In other words, a Tier-1 is an AS with (many) customer ASes but
with no provider. For connectivity purposes, the Tier-1-s set up peering rela-
tionships among them. On the other hand, a Tier-3 is a stub AS, without any
transit customers, and with some peering relationships. Tier-3 ASes generally
purchase transit Internet connection from Tier-2 ASes and, in some cases, even
from the Tier-1 ASes as well. Finally, a Tier-2 is an AS with customers, and
some peering, but that still buys transit service from Tier-1 ASes to reach some
portion of the Internet.

The relationships among the ASes play a fundamental role in shaping the
AS graph structure and in defining the routing policies implemented throughout
BGP. In particular, the paths between two ASes must avoid routing policies that
would result in unjustified payments by some AS. Examples of such incorrect
routing paths are, for instance, an AS provider that routes the traffic directed
to another AS provider by forwarding it to one of its AS customers. This path is
incorrect because would cause an unjustified cost in charge to the AS customer
used as an intermediate. Another example of incorrect path occurs when an AS
forwards its traffic by using as intermediate step one of its peering relationships.
In this case the peer AS chosen as intermediate would be in charge of the transit
cost for the traffic it forwards. Figure 1 (presented in [5]) shows a simple configu-
ration of seven ASes, their relationships (i.e., provider-to-customer and peering).
On this simple AS graph we report two wrong, and two correct paths.

The routing paths among pairs of ASes is obtained by the BGP protocol
that uses selective exporting path rules (i.e., each AS selectively provides transit

1 The ASes can establish also other type of relationships such as “sibling” and
“backup”. For the purposes of this paper we neglect them.

88 L. Liquori et al.

AS2

AS1

AS4 AS5

AS7

AS3

provider-to
customer edge

peer-to-peer
edge

wrong paths

correct paths

AS3

Fig. 1. A simple AS graph with two wrong and two correct routing paths.

services for its neighboring ASes). All the paths (also called routes) with property
we previously discussed are called free-valley (or no-valley) paths [5].

CNS Hierarchical Topology. The CNS distributed database is organized
into a hierarchy of CNS servers deployed according to the Tier-1/Tier-2/Tier-3
AS topology. Each AS must have at least one CNS, called authoritative, whose
database will take into account the association of each hypername with a list
of IPs that have registered a content named by a hypername. The authoritative
CNS also knows exactly its position in the distributed database, namely (i) the
IP addresses of all customers’ CNS, (ii) the IP addresses of all providers’ CNS
and (iii) the IP addresses of all peer-to-peer CNSs: this will allow to dispatch
queries along the distributed database.

In order to make a content discoverable, the owner or purveyor publishes an
hypername referring to a content in the local CNS. Note that the publication in
a CNS associates the hypername with a principal, and that principal holds the
content as an owner or a purveyor (the content being mutable or immutable).
Suppose a given content be available by a host belonging to an autonomous sys-
tem: the host can publish, through the CNS Service, the content in the authori-
tative CNS local database. To do this, at the beginning, the host creates a proper
hypername that will be sent as a formal parameter to the authoritative CNS.
Note that the host decides which attribute to attach to the hypername and if it
should publish that content as a owner or as a purveyor. In the first case (owner)
the publication is done by a simple write in the CNS’ database2. In the second
case (purveyor) the host could be asked to package a .torrent file and write it
in the CNS’ database. Following the Bittorrent jargon, the purveyor plays a role
of seed and it will be asked to publish itself as a purveyor of the content every
time interval: further nodes entering the swarm for the content will be asked to
publish his name in the torrent; for that content, the CNS server would serve as
a kind of network aware Bittorrent tracker.

2 Depending on a local policy, the CNS could ask to republish the content every n
seconds.

A Network Aware Resource Discovery Service 89

1.01 on receipt of link(HN,DOWN) from provider do // receive a query from a ‘‘downhill”
1.02 value = lookupdb(HN); // search HN in the CNS’ local data base
1.03 if (value �= 0) // some IP publishing HN are found
1.04 then {publish(HN,value) to CNS; return value to provider}; // write in the local CNS

and return IPs ‘‘back to the downhill’’
1.05 else list = select(α,customerlist); // select some customers CNS
1.06 forall cus ∈ list do value = value ∪ send link(HN,DOWN) to cus; // and forward the

query downhill through a customer
1.07 publish(HN,value) to CNS; return value to provider; // write in the local CNS and

return IPs ‘‘back to the hill’’

Fig. 2. Queries from provider with downhill direction continue on α thread downhill.

2.01 on receipt of link(HN,UP) from peer do // receive a query from a peer on the ‘‘top of the hill”
2.02 value = lookupdb(HN); // search HN in the CNS’ local data base
2.03 if (value �= 0) // some IP publishing HN are found
2.04 then {publish(HN,value) to CNS; return value to peer}; // write in the local CNS and

return IPs ‘‘back to the top of the hill’’
2.05 else list = select(α,customerlist); // select some customers CNS
2.06 forall cus ∈ list do value = value ∪ send link(HN,DOWN) to cus; // and forward the

query but downhill through a customer
2.07 publish(HN,value) to CNS; return value to peer; // write in the local CNS and

return IPs ‘‘back to the top of the hill’’

Fig. 3. Queries from peer with uphill direction will change on α thread downhill.

2.3 The link Discovery Protocol

Each autonomous system holds an authoritative CNS server, that records the
mappings for all the hypernames published inside it. The CNS database is orga-
nized hierarchically following CAIDA’s augmented graph [2]. Let α, β and γ
being AS-specific parameters; in a nutshell, the link protocol proceeds intu-
itively as follows:

1. the client first contacts its authoritative CNS and then searches the hyper-
name in the local publications (i.e. in the current and in the peering CNS);

2. if the above fail, then the authoritative CNS forwards the query through α-
CNS belonging to ASes in “downstream”, i.e., with which we have signed
some provider-to-customer agreement;

3. if the above fails, then the authoritative CNS forward the query through γ-
CNS belonging to ASes in peer, i.e., with which we have signed some peering-
to-peering agreement;

4. if all of the the above fail, then the authoritative CNS forward the query
through β-CNS belonging to ASes in “upstream”, i.e., with which we have
signed some customer-to-provider agreement.

The link pseudocode is presented in Figs. 2, 3, and 4. A client sends a query
to the local authoritative CNS server, with argument the hypername HN and
a direction UP (from customer-to-provider or from peer-to-peer) or DOWN (from
provider-to-customer). This query is recursive and the client will be blocked
until the CNS will answer positively with a result containing a set of addresses
{IPi}i∈I associated with HN, or with a search failure.

90 L. Liquori et al.

3.01 on receipt of link(HN,UP) from customer do // receive a query from a ‘‘uphill”
3.02 value = lookupdb(HN); // search HN in the CNS’ local data base
3.03 if (value �= 0) // some IP publishing HN are found
3.04 then {publish(HN,value) to CNS; return value to customer}; // write in the local CNS and

return IPs ‘‘back to the uphill’’
3.05 else list = select(α,customerlist); // select some customers CNS
3.06 forall cus ∈ list do value = value ∪ send link(HN,DOWN) to cus; // and forward the

query but downhill through a customer
3.07 if (value �= 0) // some CNS are suggested
3.08 then {publish(HN,value) to CNS; return value to customer}; // write in the local CNS and

return IPs ‘‘back to the uphill’’
3.09 else list = select(γ,peerlist); // select some peers CNS
3.10 forall per ∈ list do value = value ∪ send link(HN,UP) to per; // and forward the query

uphill through a top of the hill peer
3.11 if (value �= 0) // some CNS are suggested
3.12 then {publish(HN,value) to CNS; return value to customer}; // write in the local CNS

and return IPs ‘‘back to the uphill’’
3.13 else list = select(β,providerlist); // select some provider CNS
3.14 forall pro ∈ list do value = value ∪ send link(HN,UP) to pro; // and forward the query

uphill through a provider
3.15 publish(HN,value) to CNS; return value to customer // write in the local CNS and return

IPs ‘‘back to the uphill’’

Fig. 4. A query from customer with uphill direction will continue on three directions:
first α-downhill, then γ-downhill, and finally β-uphill.

Location Process Start. A client sends a query to the authoritative CNS server
where the client belongs to, with argument the hypername HN. In DNS jargon,
this query is recursive i.e., the client will be blocked until the CNS will answer
positively with a result containing a set of addresses {IPi}i∈I associated with HN,
or with a search failure.

Figure 2: from Provider with Downhill Direction. This code refers to the general
case when the current CNS receives a link message with a HN and a downhill
direction from a provider-CNS (line 1.01). First of all, a local lookup is performed
(1.02); in case of success, the result value is returned to the sender3 (1.04); else
selects α-customer-CNS (1.05) and sends α-iterative link queries with the same
HN and the same downhill direction (1.06); then collects the result value and
send it back to the sender of the first link message (1.07). Before return, all
the results will be written in the local CNS in order to give a direct answer in
successive queries.

Figure 3: from Peer with Uphill Direction. Following the BGP jargon, this code
refers to the case of being “on the top of the hill”, i.e., receiving a message
from uphill and from a peer-to-peer-CNS. Execute the same code as the one of
Fig. 2, with the following exception: invert the direction from uphill to downhill
when sending α-iterative link queries (2.06). Before return, all the results will
be written in the local CNS in order to give a direct answer in successive queries.

3 At the beginning of the search, the sender is just the authoritative-CNS itself, while
in the middle of the location process, the sender is a provider-CNS.

A Network Aware Resource Discovery Service 91

Figure 4: from Customer with Uphill Direction. This code refers to the case where
a CNS receives a link message from uphill from a customer-CNS. Following
the BGP jargon, when we receive a query from a customer and with an uphill
direction the following steps are executed. First of all, a local lookup is performed
(line 3.02): in case of success, the result value is returned to the sender (3.04);
else select α-customer-CNS4 (3.05) and send α-iterative link queries with the
same HN but inverting the direction from uphill to downhill (push downhill the
query) (3.06); in case of success, the result value is returned to the sender (3.08);
else select γ-peer-CNS (3.09) and send γ-iterative link queries with the same
HN and the same direction5 (3.10); in case of success, the result value is returned
to the sender (3.12); else select β-provider-CNS (3.13) and send β-iterative link
queries with the same hypername and the same uphill direction (in other words:
go uphill only after tried to invert the search downhill but all the queries failed)
(3.14); as the last resort of the query, return a success or failure value to the
sender. As in [6], before return all the results will be written in the local CNS
in order to give a direct answer in successive queries.

Note. All α, β, and γ are dependent on the local CNS; all messages not matching
with the above pseudocode are flushed by the receiving CNS server.

2.4 CNS vs DNS

Because of its resemblance with the DNS Service, we highlight differences and
similarities in the following:

– DNS [9] is a fundamental phone book directory for the Internet. It mainly
uses the UDP transport to query other distributed DNS servers to answer
client questions like “which IP addresses are associated with the name
www.google.com?” The DNS Service provides information about hosts query-
ing the DNS hierarchy: this hierarchy can go through ASes and does not follow
the AS cash flow route: the small amount of packets involved in DNS reso-
lution makes DNS economically scalable. On the contrary, and this has been
made explicit in the link pseudocode, packets will be routed following the
economic interest of the AS that generates the query: this point is crucial for
ensuring the Discovery Service to be economically scalable.

– DNS delegates name resolution into domain zones from the smallest to the
biggest zone. With the same idea, the CNS delegates content discovery (con-
tent name resolution) through ASes always trying to follow, when possible, a
reverse cash flow route in order to suggest to the further content delivery an
ordinary cash flow route;

– DNS distributed database is indexed via domain names. On the other hand,
the relations among CNS servers are derived by the relations among ASes
(customer-to-provider, provider-to-customer and peering relations). These

4 Do not choose the customer-CNS that have sent the query.
5 Successive execution of code in Fig. 3 will later invert the direction from uphill to

downhill, i.e. we push downhill the query.

www.google.com

92 L. Liquori et al.

relations can be derived by using CAIDA’s AS relationships dataset maps
(see [2] and Gao’s pioneering work [5] on valley-free routing);

– DNS queries can be iterative or recursive: the same holds for CNS: neverthe-
less, an efficient implementation of the CNS Service prefers iterative queries.

3 Performance Results

In this section we present results that characterise the performance of the CNS
Service and of the link protocol. Simulations show that link is able to success-
fully locate objects with high probability at low cost; they also show that good
performance can be obtained by excluding Tier-1 ASes from the search phase
providing that Tier-2 ASes are incentivized to cooperate.

Performance is represented by two indexes: the hit probability (denoted as
phit) that is defined as the fraction of ASes that successfully locate a requested
object, and the average lookup length (denoted as avgll) representing the aver-
age number of CNS servers explored during the search phase. To this end, we
developed a C-based simulator of the proposed object Discovery Service. The
simulator runs by using real ASes topologies provided by CAIDA [2] and is able
to reproduce the dynamic behavior of location requests. We provide a sensitivity
analysis of the lookup algorithm link with respect to parameters α, β, and γ.
We also discuss the performance of link as a function of the fraction of ASes
that actually deploy a CNS server to support the location service.

3.1 Scenario

In our experiments we selected an ASes topology provided by CAIDA containing
all the ASes and their type of relationships. In these snapshots edges between
two nodes either represent peer relationships between ASes (undirected edges)
or provider-to-consumer roles (directed edges). We classify ASes in Tier-1/Tier-
2/Tier-3 [2] subsets based on the topological characteristics of nodes. In partic-
ular, we define as: (i) Tier-1 those snapshot nodes with no incoming edges, i.e.,
ASes that have no providers; (ii) Tier-3 those snapshot nodes with no outgoing
edges, i.e., ASes that have no customers; (iii) Tier-2 all other snapshot nodes.
We consider a resource whose popularity is equal to 0.1 among Tier-2 and Tier-3
ASes; we assume Tier-1 ASes do not hold a copy of the resource. Furthermore,
we run the simulator by restricting location requests to only Tier-2 and Tier-3
ASes. To summarize, Tier-1 ASes participate in the search process but do not
contribute any further.

3.2 Sensitivity to Lookup Parameters

We characterize the performance of link by relying only on customers, i.e.,
parameters β and γ are both equal to 0. In this case, Tier-3 ASes can successfully
resolve the location request only if they hold a copy of the resource. Tier-2
ASes can exploit more search path, instead. Indeed, their phit is higher than the

A Network Aware Resource Discovery Service 93

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.2 0.4 0.6 0.8 1
 0

 0.5

 1

 1.5

 2

 2.5

 3
H

it
pr

ob
ab

ili
ty

A
ve

ra
ge

 lo
ok

up
 le

ng
th

α

phit
avgll 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.2 0.4 0.6 0.8 1
 0

 0.5

 1

 1.5

 2

 2.5

 3

H
it

pr
ob

ab
ili

ty

A
ve

ra
ge

 lo
ok

up
 le

ng
th

γ

phit(α=0.1)
avgll(α=0.1)

phit(α=0.5)
avgll(α=0.5)

phit(α=1.0)
avgll(α=1.0)

Fig. 5. Values of phit and avgll during the lookup (left plot as function of α with
β = γ = 0, right plot as function of γ with β = 0).

resource popularity and the overall results are represented in Fig. 5 (left plot).
It can be noted that increasing α raises phit from 0.105902 to 0.151068: the
performance for α = 1 represents an upper bound on the achievable performance.
Furthermore, the rather small values of avgll for all considered values of α show
that a little number of search requests contacts more than one CNS.

To evaluate the impact peers in the AS snapshot we consider all combinations
of parameters α and γ where β = 0 in results we present in Fig. 5 (right plot).
It can be noted that parameter γ has moderate impact since Tier-3 ASes have
very limited peer AS relationships. On the contrary, Tier-2 ASes can exploit
their peering relations to increase their phit although the maximum achievable
performance is just 0.298151.

The impact of parameter β on the performance of link is remarkable,
instead. It can be noted from results in Fig. 6 that by increasing β from 0.1
to 0.5 for a very low value of α (0.1) we obtain phit = 0.562925 (from the value
0.107914). By further increasing it to 1 we obtain that location requests are suc-
cessfully served almost surely for any value of α. Of course, this improvement is
paid by the increased cost of the service in terms of the avgll values.

The last set of results we present is to analyze how the resource popularity
impacts on the cost of lookups and how effectively link is able to success-
fully serve location requests. To this end, we considered the triple of parameters
(α, β, γ) = (0.1, 0.75, 0.1) and performed location requests for increasingly rare
objects. We chose these low values for link parameters because it aims at avoid-
ing that the search phase (and as a byproduct the resource exchange) indiscrim-
inately jumps on the different network locations thus possibly increasing transit
fees.

Figure 7 shows results that link yields values of phit that are order of mag-
nitudes higher than resource popularity even for rather scarce object diffusion.
Of course, the scarcer the resource the higher the number of CNS to contact
before finding one that owns a copy. Indeed, avgll values increase as resource

94 L. Liquori et al.

H
it

pr
ob

ab
ili

ty

A
ve

ra
ge

 lo
ok

up
 le

ng
th

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 12

 14

α

phit(β=0.1)
avgll(β=0.1)

phit(β=0.5)
avgll(β=0.5)

phit(β=1.0)
avgll(β=1.0)

Fig. 6. Values of phit and avgll during the lookup as function of pair (α, β) for γ = 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1
 0

 20

 40

 60

 80

 100

H
it

pr
ob

ab
ili

ty

A
ve

ra
ge

 lo
ok

up
 le

ng
th

popularity

phit
avgll

Fig. 7. Values of phit and avgll during the lookup as a function of popularity for
parameters (α, β, γ) = (0.1, 0.75, 0.1).

popularity decreases although the average lookup length for the scarcer resource
is only 0.2% of the size of the AS snapshot we use for experiments.

As a final remark, please note that although the analysis we presented does
not account for the dynamic evolution of the resource popularity (i.e., we are
assuming here that the resource popularity does not change during the lookup
phase), the insight it provides can be used by the CNSs to explore a wide set of
parameters vs. the resource popularity.

In particular, performance can be tuned by letting each CNS modulate the
costs of the lookup phase in terms of number of explored CNSs (and hence
of the distance in terms of AS hops). In other words, the lookup algorithm can
modulate the CNS’s network awareness by tuning parameters (α, β, γ) to balance
costs and expected phit since each CNS is aware of its connectivity relations and
of the transit costs related with these relations.

A Network Aware Resource Discovery Service 95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1
 0

 1

 2

 3

 4

 5

 6

 7
H

it
pr

ob
ab

ili
ty

A
ve

ra
ge

 lo
ok

up
 le

ng
th

pdep

phit
avgll 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1
 0

 1

 2

 3

 4

 5

 6

 7

H
it

pr
ob

ab
ili

ty

A
ve

ra
ge

 lo
ok

up
 le

ng
th

pdep

phit
avgll

Fig. 8. Values of phit and avgll during the lookup as a function of pdep for param-
eters (α, β, γ) = (0.1, 0.75, 0.1) and popularity 0.1 (left). The case with (α, β, γ) =
(0.1, 0.75, 0.1) and same resource popularity for un-cooperating Tier-1 ASes (right).

3.3 Sensitivity to Deployment of CNS

Here we evaluate the performance of link as a function of how widespread CNS
are in the entire network.

To this end, Fig. 8 (left plot) shows results when Tier-1 ASes deploy a CNS
with a certain probability pdep for (α, β, γ) = (0.1, 0.75, 0.1) and resource popu-
larity equal to 0.1.

It can be noted the contribution of Tier-1 ASes to the performance of link
is not so high. Indeed, when Tier-1 ASes do not cooperate during the lookup we
obtain phit = 0.461884 that is moderately less than the highest possible value,
i.e., 0.58548. This can be explained by noting that Tier-2 ASes are generally
well connected with many peers and many customers. This means that link
can easily give up Tier-1 ASes and still be able to provide very good chances to
successfully locate objects.

We further consider the case where no Tier-1 AS deploys a CNS and both
Tier-2 and Tier-3 cooperate with probability pdep. Results are summarized in
Fig. 8 (right plot); it can be noted that at least 40% of ASes should deploy a
CNS to obtain a hit probability value that is greater than the resource popularity.

The last set of results characterizes a system where Tier-1 ASes do not coop-
erate while all Tier-2 ASes do. We consider varying levels of cooperation of Tier-3
ASes (the majority of ASes in the CAIDA snapshot) modeled by the adoption
probability pdep.

Results are reported in Fig. 9; they show that link performance are only
slightly degraded when only 10% of Tier-3 ASes cooperate in the search process
by adopting a CNS. This means that adoption of a CNS can progressively start
by incentivizing Tier-2 ASes to participate in the lookup framework.

96 L. Liquori et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1
 0

 1

 2

 3

 4

 5

 6

 7

H
it

pr
ob

ab
ili

ty

A
ve

ra
ge

 lo
ok

up
 le

ng
th

pdep

phit
avgll

Fig. 9. Values of phit and avgll during the lookup for cooperating Tier-2 ASes, as a
function of cooperation of Tier-3 ASes (probability pdep) for parameters (α, β, γ) =
(0.1, 0.75, 0.1) and popularity 0.1.

4 Further Developments

This section presents some improvements and features that could be explored
and included in CNS Service.

Discovery Improvements

1. To improve queries hit and limit messages, CNS can put in a cache the result
of a successful queries lookup giving positive results not in the current AS.
The positive effect of caches applied to all the CNS databases can leverage
the number of message exchanges between CNSes;

2. To reduce traffic and flooding attacks, each CNS can limit the number of
link packets arriving from an AS-customer, AS-provider and AS-peer; their
number can be fixed on a AS-to-AS basis;

3. To improve liveness, a liveness politics can be implemented (see the Kadem-
lia’s bucket-table ordering republication [8]). Each publication in an author-
itative CNS can have a lifespan: after the end of the lifespan, either the
publisher re-publish the content in the CNS, or the record is simply dropped
out from the CNS;

4. To limit the research space, a TTL can be introduced in link messages; TTL
allows to limits the lifetime of lookup messages. A TTL counter attached to
each link message allows to flush messages whose counter has elapsed;

5. To improve participation, incentives to locally republish contents retrieved
abroad can be introduced: republication can be a simple pointer to another
CNS. A tit-for-tat strategy could be installed between clients (looking for
contents) and purveyors (distributing the contents) were the CNS should
play a special role being in the middle of the above two actors;

6. To improve load distribution, CNS can perform load distribution among repli-
cated copies of a single content. If CNS tables map a hypername into a lists

A Network Aware Resource Discovery Service 97

of IP, then the CNS can respond with the entire list of purveyors, or it can
rotate the ordering of the addresses within each reply. As such, IP rotation
performed by CNS can distribute among multiple purveyors;

7. To improve the discovery success rate and focus the discovery search, each
CNS can dynamically refine their α, β and γ flooding parameters by combin-
ing with the success probability of a given tag in the previous queries.

Content Aggregation in CNS. The data quality can be compromised by
many factors, including data entry errors (“OpneOffice” instead of “OpenOf-
fice”), missing integrity constraints (“eat before December 12018”), multiple con-
vention (“1 st, rue Prés. Wilson, Antibes”, versus “1, rue du Président Wilson,
Antibes”), optional arguments (“+33(0)678123456” versus “0033678123456”),
see [4] for a survey of data deduplication techniques. For a simple intuition, let
the following hypername:

HN1 = fing_cont:hosts1:tags1:cont_name1

be published in some CNS and let

HN2 = fing_cont:hosts2:tags2:cont_name2

be retrieved by a link query: HN1 and HN2 differ in content names and in all
logical attributes but the digital signature of the content fing_cont, which is
the same. Because the digital signature is the same, the two hypernames should
be merged into a single one. More generally, each time a purveyor publishes an
immutable content with a given HN2, or a query return a list of purveyors, the
authoritative CNS should verify that the same content is not already published
with a similar but equationally different HN16 and, when it is the case, merge
the two entries. Content aggregation should rewrite the previous two entries and
substitute with the following ones:

HN1 = link to HN3
HN2 = link to HN3
HN3 = fing_cont:hosts1,hosts2:tags1,tags2:cont_name1|cont_name2

where the symbol “,” denotes list concatenation and the symbol “|” denotes an
“or” operator that allow to match both content names in pattern matching.

Mobility. Since traffic from wireless and mobile devices has exceeded traffic
from wired devices, most contents are requested and delivered by both wireless
and mobile devices. It is well known that wireless and mobile devices may easily
switch networks, changing their IP address and thus introducing new communi-
cation modalities based on intermittent and, possibly, opportunistic connectivity
[12]. The CNS Service Discovery should be able to deal with mobility in case the
owner/purveyor is a mobile host.

6 E.g. synchronizing mail or telephone contact across multiple google accounts.

98 L. Liquori et al.

Nomadism. When a mobile node wants to publish a content, two cases can
happen according to the (im)mutability of the content:

– immutable: (most common of the two). The authoritative CNS related to
the mobile Internet provider accept the publication of an immutable content
by a mobile user with the proviso of (i) recording the identity of the user,
via e.g. the MAC address of the mobile device (or another identifier of the
mobile node), and (ii) asking to the mobile user to re-publish the content
more frequently than a fixed device, and (iii) possibly blacklisting a mobile
device that appear and disappear too fast or too often.

– mutable: it deal with the possibility to keep an identity also in case the user is
navigating through different mobile networks. The authoritative CNS related
to the mobile ISP could accept the publication of a mutable content if and
only if the logical attribute fing_princ is present and the logical attribute
hosts contains only one symbolic name or only one IP.

Security. Until now, a few significant DNS attacks has corrupted the DNS
service: this is because (i) DNS Servers are machines managed and protected by
system administrators, (ii) the DNS protocol pushes lookup always “below” the
hierarchical database, minimizing the “uphill ascents”, and (iii) of making use of
cache techniques. We think that the above arguments could be applied also the
CNS Service because the relatively fixed number of CNS servers (∼70K) could
be managed by AS system administrators, and link always pushes the location
process first downhill the customer-CNS distributed database, and, only in case
of failure, uphill through a peer-CNS or a provider-CNS. Nevertheless, the CNS
Discovery Service is not vaccinated by either DDoS bandwidth-flooding attack,
or man in the middle attack, or poisoning attack, or spoofing an IP of a node
below an authoritative CNS.

Acknowledgments. The work has been partially supported by the HOME (Hier-
archical Open Manufacturing Europe) project, supported by the Regione Piemonte,
Italia (framework program POR FESR 14/20).

References

1. Bari, M.F., et al.: A survey of naming and routing in information-centric networks.
IEEE Commun. Mag. 50(12), 44–53 (2012)

2. CAIDA: Center for Applied Internet Data Analysis: AS relationship (2016). http://
www.caida.org/data/as-relationships/

3. Chand, R., Cosnard, M., Liquori, L.: Powerful resource discovery for arigatoni
overlay network. Future Gener. Comput. Syst. 24(1), 31–48 (2008)

4. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a
survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

5. Gao, L.: On inferring autonomous system relationships in the internet. IEEE/ACM
Trans. Netw. 9(6), 733–745 (2001)

6. Jacobson, V., et al.: Networking named content. In: Proceedings of CoNEXT. ACM
(2009)

http://www.caida.org/data/as-relationships/
http://www.caida.org/data/as-relationships/

A Network Aware Resource Discovery Service 99

7. Koponen, T., et al.: A data-oriented (and beyond) network architecture. SIG-
COMM Comput. Commun. Rev. 37(4), 181–192 (2007)

8. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45748-8 5

9. Mockapetris, P.: Domain names - concepts and facilities (1983). https://tools.ietf.
org/html/rfc882. RCF 883, updated 973, 1034, 1035

10. Rekhter, Y., Li, T.: A Border Gateway Protocol 4 (BGP-4) (1995). https://tools.
ietf.org/html/rfc4271. RCF 4271, obsoletes 1654, 1267, 1163, 1105

11. Shang, W., et al.: Named data networking of things. In: Proceedings of IEEE IoTDI
(2016)

12. Xylomenos, G., et al.: A survey of information-centric networking research. IEEE
Commun. Surv. Tutor. 16(2), 1024–1049 (2014)

13. Zhang, L., et al.: Named data networking. Comput. Commun. Rev. 44(3), 66–73
(2014)

https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5
https://tools.ietf.org/html/rfc882
https://tools.ietf.org/html/rfc882
https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc4271

EthExplorer: A Tool for Forensic Analysis
of the Ethereum Blockchain

Yuriy Marchenko1 , William J. Knottenbelt2 , and Katinka Wolter1(B)

1 Free University Berlin, Takustr. 9, 14195 Berlin, Germany
yuriy.marchenko@gmail.com, katinka.wolter@fu-berlin.de

2 Imperial College London, London SW7 2AZ, UK
wjk@imperial.ac.uk

Abstract. This paper presents EthExplorer, a graph-based tool for
analysing the Ethereum blockchain. EthExplorer has been designed for
the assessment of Ethereum transactions, which represent diverse and
complex activities in a large-scale distributed system. EthExplorer shows
Ethereum addresses as nodes and transactions as directed arcs between
addresses. The graph is annotated in several ways: arcs are scaled accord-
ing to the amount of Ether they carry and the nodes are colour encoded
to indicate types of addresses, such as exchanges, miners or mining pools.
Ether transfer transactions and smart contracts are distinguished by
line styles. EthExplorer can be used to trace the flow of Ether between
addresses. For a given address all its output or input transactions with
the corresponding receiver or sender addresses can be found. The set of
considered addresses can be increased by adding selected addresses to
the set of analysed addresses.

Keywords: Ethereum · Blockchain · Graphical analysis

1 Introduction

Blockchain technologies and cryptocurrencies have received much attention in
recent years. Ethereum [1,2] is to date the second largest cryptocurrency after
Bitcoin [3] in terms of market valuation. Ethereum allows not only for the
exchange of Ether between nodes, but also hosts programs (smart contracts)
[1], as highly complex transactions. Smart contracts can be used to define new
tokens on top of the Ethereum blockchain.

To date, the Ethereum blockchain consists of 8.6 million blocks, each holding
on average approximately 130 transactions. Hence, there are many transactions
on the Ethereum blockchain and even though the blockchain is public finding
relevant information is challenging. Graph theoretic analysis of the Ethereum
blockchain has been performed in recent years [4–6].

A number of blockchain explorers exist: an live graphical presentation of the
Bitcoin blockchain has been developed for the data observatory at the Data
Science Institute in London [7], https://etherscan.io/ allows to retrieve infor-
mation on Ethereum transactions, addresses and blocks, https://ethplorer.io/ is
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): EPEW 2019, LNCS 12039, pp. 100–117, 2020.
https://doi.org/10.1007/978-3-030-44411-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44411-2_7&domain=pdf
http://orcid.org/0000-0002-9128-0372
http://orcid.org/0000-0002-8490-1011
http://orcid.org/0000-0002-8630-0869
https://etherscan.io/
https://ethplorer.io/
https://doi.org/10.1007/978-3-030-44411-2_7

EthExplorer: A Tool for Forensic Analysis of the Ethereum Blockchain 101

specialised on Ethereum tokens and displays additional token market informa-
tion. A number of other text based information sites for the Ethereum blockchain
exist (https://www.etherchain.org/, https://blockscout.com and https://enjinx.
io/ are non-exhaustive examples from this list). https://ethtective.com/ is simi-
lar to our EthExplorer in that it shows addresses as nodes in a graph, transaction
as links between the nodes. It has some scaling according to amount, but much
less annotation and selection features than EthExplorer.

EthViewer (http://ethviewer.live/) provides an insightful real-time graphical
view of the mechanics of Ethereum by showing the generated individual trans-
actions and how they are gathered into the next mined block, which is then
appended to the chain of blocks. Valid blocks are shown in green, while uncle
blocks are red. The tool has great educational value, but does not allow to trace
the flow of Ether.

EthExplorer is different from the above in that it facilitates understanding
the flow of Ether between the Ethereum addresses, rather than explaining the
mechanics of Ethereum. Therefore, EthExplorer uses a database created from
the Ethereum blockchain which has been enriched with additional information,
such as the types of addresses and transactions, as well as the names connected to
Ethereum addresses that can be found on etherscan [8]. The annotation process
makes use of heuristic arguments on the large, complex, distributed Ethereum
system. The display of addresses and transactions uses colour encoding to denote
the different types. Selection features allow to aggregate transactions to provide
a broad overview of the activities of one or more addresses as well as to dig
into the details of an addresses Ethereum business. EthExplorer is made for
the qualitative and quantitative assessment of Ethereum activities, a large-scale
secure distributed system. In experimental exemplary studies we aim at illus-
trating the potential and limits of the confidentiality of the Ethereum system.
The paper is organised as follows. We first briefly introduce the fundamentals
of blockchain technologies and the Ethereum blockchain in the next two sec-
tions. Then we introduce our tool EthExplorer, its software architecture and the
database design. In Sect. 5 we will discuss observations we have made for the
Ethereum blockchain and in Sect. 4.2 we illustrate how to use EthExplorer in a
case study and show what insights can be gained using the tool. We will also
discuss the limitations of this type of analysis. Section 6 concludes the paper.

2 Blockchain Basics

A blockchain as used by Bitcoin or Ethereum can be seen as a chain of blocks
that is held in redundant copies by a P2P network of full nodes. A block refers
to the previous one by including a hash pointer as reference. Blocks are created
by miners. A miner of a proof-of-work (PoW) blockchain collects a number of
transactions to be included in the block, generates the block header and solves
a hash puzzle. The challenge in solving the hash puzzle is to find a nonce such
that the hash of the block header including the nonce will stay below the target.
The target is adjusted in regular intervals as to keep the mean time between
subsequent blocks found by the network of miners constant.

https://www.etherchain.org/
https://blockscout.com
https://enjinx.io/
https://enjinx.io/
https://ethtective.com/
http://ethviewer.live/

102 Y. Marchenko et al.

A full node can create a mining pool by delegating sub-problems of the hash
puzzle to a group of individual miners. In the reverse perspective, miners join
forces in a mining pool. The mining pool behaves like a miner with a lot of
hash power, since solving the hash puzzle essentially requires performing a large
number of hash operations in the attempt to find a valid nonce. The mining pool
will then distribute most of the reward it obtains for finding a valid block to the
miners according to some strategy [9].

In Bitcoin or Ethereum the respective currency can be obtained either as
mining reward, from transaction fees of transactions included in the generated
block, or by exchanging it for a fiat currency (or another cryptocurrency) at an
exchange. Those exchanges are similar to a stock exchange in that they typically
facilitate the exchange of units of cryptocurrency for units of fiat currency. In
consequence, exchanges are places where the familiar currencies of the physical
world meet the more esoteric cryptocurrencies of the virtual world.

3 Ethereum

Ethereum is more than a pure blockchain; it rather is a platform for cryptoas-
sets. Its potential beyond a cryptocurrency like Bitcoin is primarily due to the
programs (called smart contracts) written in the Turing-complete language Solid-
ity. Smart contracts can define new currencies in the form of (tokens) on top of
Ethereum or deliver other services. A token in essence is a smart contract that
follows a particular standard. Currently there are ten different token standards,
which are denoted by their ERC (Ethereum Request for Comment) number.
The most common tokens are the ERC-20 [10] and ERC-721 [11] tokens. Smart
contracts are executed on the Ethereum platform when they are fuelled by gas
in a transaction.

Fig. 1. Ethereum addresses and transactions (Color figure online)

The Ethereum blockchain is a PoW blockchain as described above. It was
first released in the summer of 2015. Addresses in Ethereum are called accounts

EthExplorer: A Tool for Forensic Analysis of the Ethereum Blockchain 103

and Ethereum uses two types of accounts: externally owned accounts (EOAs) and
contract accounts. Both types of accounts can hold an Ether balance. Externally
owned accounts are similar to addresses in Bitcoin; they can be used as sender
and receiver account in transactions to send or receive Ether in interaction with
other accounts. Contract accounts have an attached program byte code (the
smart contract) which can be executed when used in a transaction. We will
only distinguish between the two types of accounts where necessary and will call
accounts also addresses.

Transactions triggering a smart contract must be equipped with some amount
of Ether, the gas, to limit the runtime of the smart contract, while a transaction
fee is paid to the miner who includes the transaction in its block. This payment
incentivises miners to perform the necessary work on a transaction and it limits
the runtime of a smart contract, hence avoiding infinitely running programs.

Fig. 2. Number of Ethereum blocks found

Figure 1 shows some statistics on the Ethereum blockchain collected at the
end of 2018, when it had approximately 700 million transactions made by
65 million addresses (shown as the blue line with respect to the right y-axis). The
graph shows the increasing number of traces over time. Traces are smart contract
interactions (such as function calls, or token transfers), or internal transactions
that are not permanently kept on the blockchain. The graph has been created
using the data stored in the database as described in Sect. 4.

The role of mining pools is illustrated in Fig. 2, which analyses the blocks
found over time between July 2015 and July 2018. While the difficulty target is
set as to keep the blocks found over time constant, there is still some fluctuation

104 Y. Marchenko et al.

and in particular in September 2017 there was a crash in the mining activity in
Ethereum, following a value crash in June of the same year.

Fig. 3. Degree distribution of the Ethereum nodes

The figure also shows that the 12 largest miners (mostly mining pools) found
90% of all blocks. This demonstrates the dominance of the mining pools in
Ethereum mining.

Compared to the number of addresses in Ethereum, only very few have a high
degree of activity with other addresses, as shown in Fig. 3. The figure shows the
degree distribution of all Ethereum addresses we extracted from the blockchain.
The very few addresses with high degree of interaction are for example the mining
pools and the exchanges.

Among the Ethereum addresses that interact with very few other addresses
are the one-time addresses [12], which are only created for one transaction and
are then never used again. The degree of an address over the selected time period
can be found as an attribute of the address in EthExplorer, as we will discuss
in the next section.

4 EthExplorer

This section introduces the software system in the first subsection and in the
second subsection we explain how to use EthExplorer and what information it
displays.

EthExplorer: A Tool for Forensic Analysis of the Ethereum Blockchain 105

4.1 System Design

EthExplorer is a web-based graphical application to explore transaction data and
the flow of Ether and tokens based on Ether along the Ethereum blockchain. It
can be accessed at https://ethereum.imp.fu-berlin.de/.

The software architecture of the tool is quite simple. A web application serves
as interface with the user. The web application accesses the database through a
webserver which runs a Java application program. In essence, EthExplorer selects
information from the EthExplorer database and displays it using a graph layout.
As graph layouts we have included two algorithms from the Gephi Toolkit, the
Fruchterman–Reingold and the Yifan–Hu layout [13,14].

The graph layout algorithms are implemented in the Java library of the Gephi
Toolkit1 [15], which is included in the Web application.

The most important component of EthExplorer is its database including the
annotations of the raw data. The database has been generated running a full
Parity mining node, which has downloaded the complete Ethereum blockchain
from other nodes in the P2P network. In this full node all blocks have been
scanned for transaction information. As can be seen in the database schema in
Fig. 4 the extracted components are the blocks, which can contain various trans-
actions of three types: simple transactions, token transfers, and smart contract
transactions. Those transactions carry different attributes. The value of Ether in
Dollars at the time when a block is mined is saved in the block table (rate). In the
graphs the exchange rate between Ether and Dollar is used to determine the Dol-
lar value of transactions. An important difference between our database entries
and the data on Ethereum nodes is that approximately 40% of the addresses

Fig. 4. Design of the Ethereum database

1 https://gephi.org/toolkit/.

https://ethereum.imp.fu-berlin.de/
https://gephi.org/toolkit/

106 Y. Marchenko et al.

were labelled using information from other sources, such as Etherscan [8]. The
size of the largest tables in the database is given in Table 1. We specify the num-
ber of rows in the table as well as the file size for the data and for the index
information, which is larger than the pure data. The total file size of the tables is
roughly 195 GB, which is significantly less than the 2000 GB needed by the full
node to store the blockchain in archive mode and more than the 138 GB needed
without archive mode. The runtime of a database query strongly depends on the
type of query. A simple query which finds all transactions for one address needs
80–250 ms, while a complex query including ERC20/721 tokens and smart con-
tract internal transactions can take minutes if the whole blockchain is traversed.

Table 1. Sizes of the database tables

Block Transaction Address

Rows 6.047.918 279.807.270 67.953.422

Data 666 MB 14 GB 8563 MB

Index 789 MB 27 GB 28 GB

contract transaction token transfer

Rows 511.408.420 102.261.273

Data 33 GB 6094 MB

Index 63 GB 11 GB

Addresses were colour encoded if they belong to one of the following types:
mining pool, smart contract, one time address, trace, miner, exchange, token, or
the genesis block. Addresses for which no type could be determined are shown in
grey. Where aliases for the addresses could be found through etherscan.io they
are stored in the database table and used in the graph display as node label.
Transactions where the to field is empty are classified as smart contracts. An
address with only one incoming and one outgoing transaction has been iden-
tified and labelled as one-time address [12]. The number of transactions that
could be assigned to the types are shown in Fig. 5. Interestingly, the number of
transactions involving a mining pool decreased over time, while most other types
increased in number.

The classification of miners and mining pools is not so straightforward. All
addresses found in the coinbase transaction of the blocks are labelled mining pool.
However, this may not always be correct. In the early days of Ethereum ordinary
individual miners would mine blocks. Those were erroneously classified as mining
pools. The classification of miners is as follows. Miners are addresses which have
been recipients of at least one transaction from a mining pool, which has mined
more than 2 489 blocks and whose node degree is lower than the average degree
of all recipients of transactions from the pool. This definition uses two heuristics
and will therefore not always be accurate. The first is to classify a miner as

EthExplorer: A Tool for Forensic Analysis of the Ethereum Blockchain 107

Fig. 5. Labelled addresses

the recipient of a mining pool which has mined more than 2 489 blocks. When
discarding the first 1 000 000 blocks, the average number of blocks found by a
mining pool, as classified above, is 2 489. Hence the selection of this threshold.
The study of the node degree of recipients of nine popular mining pools, as shown
in Fig. 12 confirms that most of those recipients have a low node degree. Hence
we generalised this observation and assume that recipients of mining pools (as
classified above) with a low node degree will be miners. We are aware that we
may misclassify miners of the early days of Ethereum as mining pools, while
they should rather be labelled as miners and we are possibly misclassifying some
members of mining pools.

Exchanges were identified using their aliases on etherscan.io. To find the
exchanges on etherscan.io we selected the top 500 addresses and their aliases
according to node degree and verified the names manually. The ERC-721 tokens
were identified using the token tracker website. The dollar value of a transaction
is computed on the fly using the Ether value and exchange rate stored in the
database.

4.2 How to Use EthExplorer

The web interface of EthExplorer is shown in Fig. 6. The web interface is still
under development as its usability needs improvement. Upon accessing the web
interface the display screen is empty. In the top panel the user can enter one or
more Ethereum addresses or block number(s). A click on show/download will
display the graph of the address or block. When entering a block number the
transactions in the block will be shown as pairs of nodes (addresses) connected by
an edge for the transaction. The thickness of the arc indicates the amount of the
transaction in dollars at the time the transaction was issued. This is shown with
the mouse over the arc. For clarity, nodes are not labelled with the corresponding
Ethereum address by default. Instead, a node is labelled with the total number

108 Y. Marchenko et al.

Fig. 6. Web interface of Ethexplorer

of neighbours it has, even if those are outside the graph display. Synonymous
names are shown where they exist. The left most field in the bottom panel allows
to select the hash identifier or an abbreviated hash as node label instead of the
node degree.

Fig. 7. Settings block

The Settings block on the top left in the web interface, as shown in Fig. 7
allows to set parameters which can greatly improve the visual impression if the
set of results is extremely large.

The settings allow to aggregate several transactions (edges) into one, which is
then scaled by the total amount of the transactions. In addition, token transfers
and activities of smart contracts as well as interaction with smart contracts can
be included or excluded by selecting or un-selecting the respective buttons.

EthExplorer: A Tool for Forensic Analysis of the Ethereum Blockchain 109

Fig. 8. Detailed information (left) and simple information (right) on a transaction

Clicking on an edge (a set of transactions) will open an information window
as shown in Fig. 8 on the right, where the dollar value of the transactions has
been determined as the sum of the individual transaction values at the time of
their issuing.

The graph can either be shown in the browser, or it can be exported to Gephi
[15] for further usage. The graph layout can use one of the two algorithms, Yifan–
Hu layout [14] or Fruchterman–Reingold [13] algorithm. Yifan–Hu pushes nodes
with low link count (degree) more strongly to the periphery, while Fruchterman–
Reingold keeps a symmetrical sphere shape, offering a more harmonious picture.
We mostly use the Fruchterman–Reingold layout, but depending on the subject
of investigation the Yifan–Hu algorithm might more clearly show the centre of
activities. We find that limiting the layout time to 10 s mostly provides a good
result within reasonable time. Finally, the considered range of blocks can be
limited to a subset of all available blocks in the database, which greatly speeds
up the result, especially when a large graph is created.

More nodes can be shown by either entering addresses manually in the
address field in the top panel, or by selecting an address type in the bottom
panel on the right and adding all addresses of that type. This will add all shown
nodes of that type to the list of explored addresses. Upon the next issue of
show/download the direct neighbours of all those addresses will be added to the
shown graph.

When unselecting the merge transactions button in the Settings section
the click on an edge between two nodes will open an information window as
shown in Fig. 8 on the left, where information on a transaction in block 1 598 866
is shown. The total amount of Ether transferred in this transaction is shown
as well as its value and the time when the block holding this transaction was
generated.

Fig. 9. Information for a token transaction (left) and an address (right)

110 Y. Marchenko et al.

Transactions are in general shown as arcs from the sender address to the
recipient address with an arrow at the end of the arc. Arcs are drawn in the colour
of the sender address. Solid arcs indicate Ether or token transactions, while
dashed arcs denote smart contract transactions. Note, that for smart contract
transactions sometimes no amount is shown in the information window because
not all smart contract transactions transfer Ether. Some of them transfer tokens,
which is then shown in the information window. In the latter case the mouse
over the edge shows $0.0, while for Ether transfer it shows the corresponding
dollar amount.

Moving the mouse over a node will show the dollar amount of an edge origi-
nating at that node. The balance of an address can not yet be shown by EthEx-
plorer, this feature is among future work.

Selecting an arc will open up an information window as shown in Fig. 8 on the
right, which provides information on the number of transactions joined in the arc
and their total accumulated value, each at the time of issuing the transaction.
If the selected arc belongs to a token transaction the information window, as
shown in Fig. 9 on the left will display information on the type and amount of
token transferred in the accumulated transactions. In the shown example two
transactions were joined in one arc carrying a total of 15 196 573.7 Kin, a token
connected to the Kik messenger app (https://www.kin.org/).

Fig. 10. Graphical presentation of an ERC20/721 transaction (left) and internal trans-
action of a smart contract (right) (Color figure online)

A mouse click on a blue node will open the address information window as
shown in Fig. 9 on the right. In general, information windows for nodes come
with buttons to remove either in- or outgoing arcs, or both. In large graphs this
can be very helpful. Removing arcs from the display of the overall graph can be
done using the respective buttons in the bottom panel of the web interface. A
double click on a node adds the node’s address to the list of shown addresses.

There are some special transactions for which a slightly different display
has been implemented. Figure 10 on the left shows the token transfer of Elcoins
(token address 0xa04bf47f0e9d1745d254b9b89f304c7d7ad121aa) from block
917 132. This transaction in fact consists of two or three transactions.

https://www.kin.org/

EthExplorer: A Tool for Forensic Analysis of the Ethereum Blockchain 111

Assume a token is transferred from address A to address B, then selecting
the parameter ERC20/721 original transaction (slow) in the settings window
on the top left will show an additional transaction from address C to D which
has triggered the token transfer. Sometimes a token transfer is triggered by
two transactions, as in Fig. 10 on the left2. The same transaction appears in
etherscan.io as shown in Fig. 11.

Fig. 11. The ERC20/721 transaction in etherscan.io

In such cases the arrows of the secondary transaction are not drawn at the
destination, but in the middle of the arc. Including such transactions in the search
slows down the database request considerably, which is therefore indicated on
the respective button.

Another special type of transaction are the smart contract internal transac-
tions as shown in Fig. 10 on the right. A mining pool issues a transaction to a
smart contract which is then executed with an output to an unlabelled (grey)
address of unknown type.

2 See https://etherscan.io/tx/0x25f0937d338c3b3a09e8e97dc4f2777afce4910c383523ae
37f26278a3e725bc for the transaction(s) shown in the figure.

https://etherscan.io/tx/0x25f0937d338c3b3a09e8e97dc4f2777afce4910c383523ae37f26278a3e725bc
https://etherscan.io/tx/0x25f0937d338c3b3a09e8e97dc4f2777afce4910c383523ae37f26278a3e725bc

112 Y. Marchenko et al.

5 Observations on the Ethereum Blockchain

In face of the large number of Ethereum blocks, transactions and addresses the
real challenge is to be able to filter and see the relevant pieces of information
within the flood of data.

Fig. 12. Histogram of the node degree of recipients of nine mining pools

Mining pools provide an easy interface to miners, who very often use their
address for mining, receiving their reward and transferring it to an exchange or
another destination for payout. This assumption is supported by the analysis
of the node degree of the recipients of the nine most popular mining pools as
shown in Fig. 12.

EthExplorer: A Tool for Forensic Analysis of the Ethereum Blockchain 113

Most participants in mining pools have only very few contacts. For mining
and payout two contacts are needed and most members of the mining pools
indeed interact with only few other addresses, less than 10 addresses in total.
This is very different for the mining pools themselves, for exchanges or other
addresses that provide services.

Fig. 13. Miners with no other transactions

For the beauty of presentation Fig. 13 shows a set of 390 miners, labelled
as mining pools, having mined a total of 4223 blocks, but who have not made
any other transactions. Such sets can be determined with a direct query to the
database using the query button to open a field for database requests. Interest-
ingly, those miners have instead bought 35 different tokens (mostly An Etheal
Promo, INS Promo, VIU, XENON, Datacoin, OmiseGO and BitClave).

114 Y. Marchenko et al.

Fig. 14. Ten miners of Ethermine (in violet) (Color figure online)

Figure 14 shows ten members of the mining pool Ethermine and their activ-
ities. The selected addresses have performed transactions with Ethermine in
a volume between 0.1 and 5 Ether. Until autumn 2017 the block reward was
5 ETH, then it was 3 ETH until February 2019, since then it is 2 ETH. The
selected addresses made transactions with Ethermine of at most a full block
reward, so they are all considered small miners. In Fig. 14 Ethermine is shown
as the central blue node with ten outgoing arcs. The arcs point to violet nodes,
the miners.

The miners connect to addresses of exchanges, such as Poloniex, Bitfinex or
Changelly for payout of their mining reward. Some miners use several exchanges.
The exchanges are shown in purple. Miners working for Ethermine also con-
tribute to other mining pools, such as Nanopool, Antpool, Dwarfpool, also shown
in blue, like Ethermine.

The bottom left miner is rather active, as it has degree 19. It trades on
ShapeShift and invests in The DAO, a token that aims at creating a decen-
tralised organisation. The miner on the right has 22 contacts, among them three
exchange sites, another miner (potentially another address used by the same
person), a number of one time addresses, and several unlabelled addresses for
which no information exists. We are wondering whether one-time addresses are
implemented by some exchanges as gateway addresses into the exchange, used
for single payouts.

EthExplorer: A Tool for Forensic Analysis of the Ethereum Blockchain 115

Fig. 15. Recipients of the Golem token

Figure 15 shows another study looking at the recipients of the ERC-20 Golem
token (GNT). Golem is a system where participants can offer their computing
resources for usage by others in exchange for Golem tokens. The graph has
556 nodes and 1 039 edges. The Ethereum address of Golem can be found on
etherscan.io and the following database query delivers the shown nodes, which
are then enriched by adding all one-time addresses using the button in the bot-
tom panel of EthExplorer.

SELECT t.to
FROM token_transfer t
JOIN address a ON t.token = a.id
WHERE a.hash = lower(
0xa74476443119A942dE498590Fe1f2454d7D4aC0d)
LIMIT 10

Golem is shown as one of the three turquoise nodes left of the centre at
around 10 o’clock. It is the token node with eight outgoing edges. Interestingly,
the recipients of Golem tokens use many other tokens as well and the connected
one-time addresses link to addresses with very high degree, such as exchanges.

116 Y. Marchenko et al.

Users of the Golem token apparently receive payments which they transfer
to exchanges. Among them is a big miner shown in purple in the bottom right
part of the graph. For further analysis we could add selected addresses to the
list of explored addresses, but we skip that here.

Our final observation concerns the Gatecoin hack, referring to the loss of
185 000 Ether and 250 Bitcoins in May 2016 worth roughly US$2.14m in a
cyber attack. Gatecoin was a Hong Kong based exchange loosely connected to
Ethereum-based DAOs.

Fig. 16. Hack of Gatecoin

Figure 16 shows a large transfer from a Gatecoin address to an unlabelled
one from where several smaller amounts were transferred through one-time
addresses and unlabelled addresses to other exchanges, i.e. Poloniex, Bittrex
and Changelly.

6 Conclusion

We have presented EthExplorer, a tool for the analysis of activities on the
Ethereum blockchain and the flow of Ether between addresses. The tool allows to
investigate the transactions made by given addresses and to successively expand
and reduce the set of explored addresses. EthExplorer uses a database, which
we have generated while running a Parity full node and enriched with additional
information, such as the type of an address and the dollar value of a transaction
at its time of issue. The graph layout is taken from Gephi, where we use two
standard algorithms, the Fruchterman–Reingold layout and the Yifan–Hu algo-
rithm. The selected addresses and their transactions can either be displayed in
a web interface, or can be exported to Gephi for further processing.

EthExplorer: A Tool for Forensic Analysis of the Ethereum Blockchain 117

EthExplorer is a powerful tool, but still many issues remain open. Currently it
is not possible to determine the balance of an address. Only amounts of transac-
tion transfers are stored, converted and accumulated. The graph display can also
be further improved by adding a selection slider based on calendar time, rather
than on block number. Finally, when changing the list of explored addresses the
graph layout is triggered, removing a possibly better manual layout. It should
be possible to maintain a layout and simply add or remove nodes and edges.
Last, we are working on an online update, to keep the database up to date at
all times.

Acknowledgments. We would like to thank the anonymous reviewers for their
insightful comments on the paper, especially for the suggestion to make our database
directly available to the public. We will work on this.

References

1. Bulterin, V.: A next-generation smart contract and decentralized application plat-
form (2013)

2. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2018)
3. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
4. O’Kane, E.: Detecting patterns in the Ethereum transactional data using unsu-

pervised learning. Master’s thesis, University of Dublin, Trinity College, Dublin,
Ireland, August 2018

5. Chan, W., Olmsted, A.: Ethereum transaction graph analysis. In: 2017 12th Inter-
national Conference for Internet Technology and Secured Transactions (ICITST),
pp. 498–500 (2017)

6. Chen, T., et al.: Understanding ethereum via graph analysis. In: IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, pp. 1484–1492, April 2018

7. McGinn, D., Birch, D., Akroyd, D., Molina-Solana, M., Guo, Y., Knottenbelt,
W.J.: Visualizing dynamic bitcoin transaction patterns. Big Data 4(2), 109–119
(2016)

8. How Can I Add My Name Next To Address On Etherscan? (2017). https://
www.reddit.com/r/ethereum/comments/4d612u/how can i add my name next
to address on etherscan/d1p8ns9/. Accessed 10 Jan 2019

9. Zamyatin, A., Wolter, K., Werner, S., Harrison, P.G., Mulligan, C.E.A., Knot-
tenbelt, W.J.: Swimming with fishes and sharks: beneath the surface of queue-
based Ethereum mining pools. In: 2017 IEEE 25th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 99–109, September 2017

10. Vogelsteller, F., Buterin, V.: ERC-20 token standard, 2015 (2018). https://github.
com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md

11. Entriken, W., Shirley, D., Evans, J., Sachs, N.: Non-fungible token standard, doc-
ument ERC-721, September 2018

12. Huge ethereum mixer. Accessed 19 July 2018
13. Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement (1991)
14. Hu, Y.F.: Efficient and high quality force-directed graph drawing. Math. J. 10,

37–71 (2005)
15. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for explor-

ing and manipulating networks (2009)

https://www.reddit.com/r/ethereum/comments/4d612u/how_can_i_add_my_name_next_to_address_on_etherscan/d1p8ns9/
https://www.reddit.com/r/ethereum/comments/4d612u/how_can_i_add_my_name_next_to_address_on_etherscan/d1p8ns9/
https://www.reddit.com/r/ethereum/comments/4d612u/how_can_i_add_my_name_next_to_address_on_etherscan/d1p8ns9/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md

A Queueing Model that Works Only
on the Biggest Jobs

Andrea Marin(B) and Sabina Rossi

Università Ca’ Foscari Venezia, via Torino, 155, 30172 Venice, Italy
{marin,sabina.rossi}@unive.it

Abstract. We consider a queueing system with capacity 1 and subject
to a Poisson arrival process. Jobs consists of a random number of tasks
and at each arrival, the system will continue to work on the current job
if the number of its tasks is higher or equal than the number of tasks
of the job just arrived, otherwise the job in the queue leaves the system
and the one just arrived begins its service. The service time of each task
is independent and exponentially distributed with the same parameter.

We give an explicit solution for the stationary distribution of the queue
by resorting to time-reversed analysis and we observe that this approach
gives a much more elegant and constructive way to obtain the result
than the traditional approach based on the verification of the system of
global balance equations. For geometric distribution of the number of
tasks, we use the q-algebra to make the results numerically tractable.
The queueing system finds applications in contexts in which the size of
jobs is known or partially known and schedulers or dispatchers can take
decisions based on this information to improve the overall performance
(e.g., reducing the mean response time).

Keywords: Queueing systems · Reversed-time analysis · q-series

1 Introduction

In the last decades, queueing models that can take advantage of the exact or
approximate knowledge of the job sizes have been widely investigated (see,
e.g., [2,5,10,13]). Applications scenarios in which some form of knowledge of
the job sizes is possible includes the scheduling of TCP flows from a web servers
(see, e.g., [15]) or other scenarios in which the precise size of a job is unknown,
but the number of tasks which must be performed to complete its service is
known [10,13]. Although the main application of size-based scheduling is the
implementation of disciplines that mimic or implement the Shortest Remain-
ing Processing Time (SRPT) thanks to its optimality in the average response
time [14], in this paper, we use similar ideas with a different purpose, i.e., we
aim at maximising the system utilisation.

That system that we presented here is similar to those studied in [3,12], where
queueing networks consisting of finite capacity stations follow the skipping policy :
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): EPEW 2019, LNCS 12039, pp. 118–132, 2020.
https://doi.org/10.1007/978-3-030-44411-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44411-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-44411-2_8

A Queueing Model that Works Only on the Biggest Jobs 119

at the arrival of a job at a saturated queue, this is directly (probabilistically)
routed to the next station. In our case, we complicate the routing decision by
comparing the size of the job in service and that of the just arrived job. Given
the difficulties in the exact analysis, we limit our study to a single queueing
system since, in contrast with the models studied in [3,12], the composition of
several components of such a type is not in product-form.

Let us consider a queueing system with capacity 1. Job arrives according to a
time-homogeneous Poisson process and consist of a random number of tasks; we
will use the term job size to denote the number of tasks it consists of, while we
use job length to refer to the sum of the sizes of all the tasks that contribute to its
service time. The size of each task is independent an exponentially distributed.
At each arrival, the queue will begin the service on the job with larger remaining
size, while the other leaves the system (e.g., may migrate to a slower queue).

The contributions of this paper can be summarised as follows:

– We give an explicit expression of the invariant measure of the queue. For the
case of geometric job sizes, we also give the expression of the normalising
constant and prove that the system is unconditionally stable. From the theo-
retical point of view, the case of geometric job sizes is particularly interesting
since it involves some beautiful results inherited from the q-series analysis.

– We compare the utilisation of the system that works only on the largest jobs
with that of a system that is unaware of the job sizes such as those considered
in [3,12].

– We also emphasise the benefits of an analysis based on the time-reversed
chains. Indeed, we give the proof of the stationary distribution for the model
with geometric job sizes by using the global balance equation approach, while
the proof for the case of general independent distributions is based on the
analysis of the time-reversed chain. Clearly, the former may be derived by the
latter as a special case (and we show, as sanity check, that this is possible),
but we believe that the two versions improve the readability of the paper by
allowing researcher not familiar with time-reversed analysis to access to the
results and helps in appreciating the constructive approach of the latter proof
method.

– Finally, we show the connections of this queueing system, specifically of its
stationary idle probability, with the generating function of number sequence
A008289 [1] which plays an important role in combinatorics.

The paper is structured as follows. Section 2 reviews the literature related
to this contribution. In Sect. 3 we introduce and solve the queueing model with
geometrically distributed job sizes while the general case is considered in Sect. 4.
Section 5 illustrates the connections between these results and number theory.
Finally, Sect. 6 concludes the paper.

2 Related Work

The idea of modelling the partial knowledge of the job length by means of the
knowledge of the tasks it consists of can be found in [10,13]. In [13] the authors

120 A. Marin and S. Rossi

consider a queueing system with infinite capacity that modulates its service
speed according to the size of the batch it is serving. In [10], the authors study
the SRPT scheduling discipline with speed scaling by approximating the exact
knowledge of the job length with the exact knowledge of the number of tasks
that form the job. In [3,12], the authors consider the skipping policy for handling
finite capacity queueing systems and prove that a network of queues with such a
discipline is in product-form. In our case, the skipping policy is more complicated
because it involves the comparison of the job sizes, and so is the analysis. As
unfortunate consequence, we loose the property of separability in the stationary
distributions of networks of this type of queues.

The results on time-reversed analysis that we use in our proofs can be found
in [6–9].

3 The Queueing Model

We consider a queueing model that can store at most one job. Each job consists
of a finite but potentially unbounded number of tasks, thus the capacity of the
queue for the tasks is infinite. The jobs arrive from the outside according to an
independent and homogeneous Poisson process. We assume that each job consists
in a random number B of tasks. We call B the size of the job, in contrast with
its length, which is instead the sum of the sizes of the tasks. In this section, we
consider the size of the jobs to be geometrically distributed:

Pr{B = k} = (1 − β)βk−1 = pk ,

where 0 < β < 1, while in Sect. 4 we generalise the result for arbitrary dis-
tributions of the job sizes. The only way that the system has to estimate the
remaining work on a customer is given by the number of tasks that still have to
be served. Each task has an independent exponentially distributed size whose
parameter is μ ∈ R

+. Thus, the length of a job J is exponentially distributed
with average:

E[J] =
1

(1 − β)μ
,

Since the sum of a geometric number of independent and identically distributed
exponential random variables is an exponential random variable. The server has
constant unitary speed.

The system aims at working on the job that requires more refinements, i.e.,
the job with the largest amount of remaining tasks. Let us assume that at time
t the system is working on a job consisting of n(t) remaining tasks, and that a
job of size B arrives. Then, immediately after the arrival epoch, t+, the state is:

n(t+) = max(B,n(t)).

Thus, a job may leave the system for two reasons: either because the server has
completed its work or because a job with a larger amount of tasks arrived from
the outside. Since we assume that the arrival process of jobs is a homogeneous

A Queueing Model that Works Only on the Biggest Jobs 121

Poisson process with intensity λ, then n(t) is a continuous time Markov chain
(CTMC) whose state space is N.

The transition rates for the CTMC are defined as follows:

q(n1, n2) =

{
μ if n2 = n1 − 1 and n2 ≥ 0 ,

λpk if n2 = k and k > n1 .
(1)

3.1 Stationary Analysis of the Model

In this part, we propose the derivation of the expression of the stationary prob-
ability distribution. We will see that its explicit form relies on some q-series
analysis. First, let us introduce the system of global balance equations (GBE)
for the queue:{

π(i)
(
μ + λ

∑∞
j=i+1 pj

)
=

∑i−1
j=0 π(j)λpi + π(i + 1)μ , i > 0

π(0)λ = π(1)μ
(2)

which can be rewritten as:{
π(i)

(
μ + λβi

)
= λ(1 − β)βi−1

∑i−1
j=0 π(j) + π(i + 1)μ, i > 0

π(0)λ = π(1)μ

Let us introduce the following Lemma that gives the invariant measure for
the queueing system, while Theorem 1 will discuss the stability of the queue and
gives its stationary distribution.

Lemma 1. The invariant measure for the queueing system described by the
infinitesimal generator (1) is

g(n) =

{
κρβn−1 (−ρ;β)n−1 if n > 0
κ if n = 0

, (3)

where κ ∈ R
+, ρ = λ/μ, and (a; q)n is the q-Pochhammer’s symbol:

(a; q)n =
n−1∏
k=0

(1 − aqk).

We present two proofs of Lemma 1. The first is based on verifying that Eq. (3)
satisfies the system of global balance Eq. (2). This proof is not constructive
and, differently from what usually happens with Markovian queues of the type
M/M/k, neither the formulation of the ‘educated guess’ on the expression of
the invariant measure nor the algebraic steps to prove its correctness are simple
or intuitive. In contrast, in Sect. 4 we consider batches of arbitrary size distri-
bution and we propose a constructive method to quickly derive the expression
of the stationary distribution based on time-reversed analysis. The model with
geometrically distributed job sized is a special case.

122 A. Marin and S. Rossi

Proof. By replacing Expression (3) in the first equation of System (2) we have:

κρβi−1(−ρ, β)i−1(μ + λβi)

= λ(1 − β)βi−1κρ

⎛
⎝i−1∑

j=1

βj−1(−ρ, β)j−1

⎞
⎠ + λ(1 − β)βi−1κ + κρβi(−ρ, β)iμ.

Let us divide both hand sides of the equation by κρ(−ρ, β)i−1 which is strictly
positive since the empty product gives 1. Then, we have:

μ + λβi =
λ(1 − β)

(−ρ, β)i−1

i−1∑
j=1

(−ρ, β)j−1β
j−1 +

1 − β

(−ρ, β)i−1
μ + β(1 + βi−1ρ)μ,

which can be reduced to:

μ =
λ(1 − β)

(−ρ, β)i−1

i−1∑
j=1

(−ρ, β)j−1β
j−1 +

(1 − β)
(−ρ, β)i−1

μ + βμ.

Therefore, we need to prove that:

μ =
λ

(−ρ, β)i−1

i−1∑
j=1

(−ρ, β)j−1β
j−1 +

1
(−ρ, β)i−1

μ. (4)

We proceed by induction on i. The case i = 1 trivially gives an identity since
the first sum is 0 and (−ρ, β)0 = 1. Let us consider the case i + 1, with i ≥ 1,
then we have:

1
(−ρ, β)i

⎛
⎝λ

i∑
j=1

(−ρ, β)j−1β
j−1 + μ

⎞
⎠

=
1

(−ρ, β)i−1

(−ρ, β)i−1

(−ρ, β)i

⎛
⎝λ

i−1∑
j=1

(−ρ, β)j−1β
j−1 + λ(−ρ, β)i−1β

i−1μ

⎞
⎠

=
1

(−ρ, β)i−1

β

β + ρβi

⎛
⎝λ

i−1∑
j=1

(−ρ, β)j−1β
j−1 + μ

⎞
⎠ +

λβi

β + ρβi
.

By inductive hypothesis, we can rewrite the expression as:

μ
β

β + ρβi
+

λβi

β + ρβi
,

which easily simplifies to μ as required by Eq. (4). ��
Theorem 1. The queue described by the infinitesimal generator (1) is uncon-
ditionally stable. The steady-state distribution has the following expression:

π(n) = π(0)ρβn−1 (−ρ;β)n−1 , n > 0 (5)

A Queueing Model that Works Only on the Biggest Jobs 123

where 0 < π(0) < 1 is the probability of the empty queue:

π(0) =
1

(−ρ;β)∞
.

Proof. Thanks to Lemma 1 we just need to focus on the computation of π(0). If
we can prove that 0 < π(0) < 1 for 0 < β < 1, then the CTMC is ergodic since
its transition matrix is irreducible and at least state 0 is positive recurrent. By
definition, we have π(0) = (1 + G)−1, where:

G =
∞∑

n=1

ρβn−1 (−ρ;β)n−1 . (6)

Lemma 2 allows us to conclude the proof about the stability of the chain and
the expression of π(0). Indeed, since in stability G = −1 + (−ρ;β)∞, we have
that π(0) = 1/(−ρ;β)∞. (−ρ, β)∞ > 1 is convergent since we can rewrite the
product as:

exp

(∞∑
i=0

log(1 + ρβi)

)

and, by D’Alambert convergence criterion:

lim
i→∞

log(1 + ρβi+1)
log(1 + ρβi)

= β < 1.

Moreover (−ρ;β)∞ > 1 since it is the product of infinite terms strictly greater
than 1. Thus 0 < π(0) < 1, as required. ��
Lemma 2. If 0 < β < 1, the following relation holds:

∞∑
n=1

ρβn−1(ρ;β)n−1 = −1 + (−ρ, β)∞.

Proof. Let us introduce the following equality assuming the convergence of the
series and products present:

− 1 +
∞∏

i=1

(1 + ai) =
∞∑

i=1

ai

i−1∏
j=1

(1 + ai), (7)

which can be easily proved by rearranging the terms of the product:

−1 + (1 + a1)(1 + a2)(1 + a3) · · · ,

as
a1(1) + a2(1 + a1) + a3(1 + a1)(1 + a2) +

Now, let us consider this latter expression and observe that it corresponds to the
definition of G according to Eq. (6) by setting ai = ρβi−1. Moreover, it is easy

124 A. Marin and S. Rossi

to see that this series converges for ρ > 0 and 0 < β < 1, as required. Therefore,
we can write:

G = −1 +
∞∏

i=1

(1 + ρβi−1),

where the second addend is the definition of (−ρ;β)∞. ��
Example 1. Let us consider the system with jobs of size 1. In this case, the
queue can contain 1 or 0 tasks. The transition rate from 1 to 0 is μ and that
from 0 to 1 is λ. Thus, we have π(0) = μ/(λ + μ) and π(1) = λ/(λ + μ). If we
consider Theorem 1 and take the limit β → 0+, we obtain π(0) = (1 + ρ)−1 =
μ/(λ + μ) and π(1) = π(0)ρ = λ/(λ + μ), with all the other states with negligible
probability, as expected.

Unfortunately, π(0) does not have a closed form expression. However, we can
approximate it by resorting to the Pochhammer’s symbol approximation. In [11,
Thm. 4] an accurate approximation is presented under the conditions ρ > 0 and
0 < β < 1, i.e., we have:

log ((−ρ1, β)∞) =
p∑

k=−1

(−1)kBk+1L1−k(−ρ1)
(k + 1)!

(− log(β))k + O((− log(β))p+1),

where:

– Bk is the k-th Bernoulli number whose exponential generating function is:

gB(x) =
∞∑

k=0

Bk
xk

k!
=

x

ex − 1
,

– Ln is the n-th Polylogarithm function:

Lk(z) =
∞∑

j=1

zj

jk
,

that for negative integer values of k can be expressed by rational functions
as:

L−n(z) =
(

z
∂

∂z

)n
z

1 − z
, n ≥ 0,

while:

L0(z) =
z

1 − z
, L1(z) = − log(1 − z) , L2(z) = −

∫ z

0

log(1 − t)
t

dt.

As we can see, the approximation becomes quite accurate when β → 1−. For
practical purposes, we can have very low values of p to obtain very good approx-
imations. For instance for p = 2 we have:

π(0)−1 � (π∗(0))−1 = eL2(−ρ)/ log(β)
√

1 + ρβ− ρ
12(1+ρ) . (8)

A Queueing Model that Works Only on the Biggest Jobs 125

Fig. 1. Approximation of π0: relative error as function of the parameters ρ and β.

In Fig. 1, we show the error between the approximation given by Eq. (8) and the
approximation of the q-Pochhammer symbol obtained by the series expansion of
Mathematica. This software approximates the q-Pochammer symbol at arbitrary
precision, although the algorithm is not really applicable for symbolic analysis.
We define ε as the relative error:

ε =
|π∗(0) − π(0)|

π(0)
,

Under the assumption that π(0) is evaluated at the highest machine precision.
As we may observe, the approximation tends to become worse when β → 0+

and ρ is high. However, this is also the case when the system becomes ‘less
interesting’ since the jobs are mainly formed by single tasks and hence in most
of the cases have the same size and find the system either empty of with a job
with their same size.

Example 2. Let us consider a system with λ = 0.8, μ = 1. In Fig. 2 we show the
stationary probability distribution for three values of β, while in Fig. 3 we show
the impact of μ for fixed values of λ = 0.8 and β = 0.4.

As in many other queueing systems, the idle probability π(0) plays a crucial
role in the performance analyses. Figure 4 shows the stationary probability of
finding an empty queue. As expected, the idle probability tends to 0 when the
size of the jobs or the arrival rate increase.

Example 3 (Comparison with a queue with blocking). In this example, we com-
pare the idle stationary probability of the queue studied in this section and
the simpler one, πb(0), that accepts a job if it is empty or drops it if it con-
tains one job. This queue simply is a M/M/1 queue with finite capacity (1) and
rejection. The length of the jobs are exponentially distributed with expectation
((1 − β)μ)−1. Then, we have:

πb(0) =
μ(1 − β)

λ + μ(1 − β)
.

In Fig. 5, we show the ratio between πb(0) and π(0). We observe that the queueing
system that works only on the largest jobs gives a much better utilisation when β

126 A. Marin and S. Rossi

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

0 2 4 6 8 10

π
(n
)

n

Stationary distribution λ = 0.8, μ = 1

β = 0.3
β = 0.5
β = 0.7

Fig. 2. Stationary distribution of the number of tasks in the queue for different values
of β.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 2 4 6 8 10

π
(n
)

n

Stationary distribution λ = 0.8, β = 0.5

μ = 0.4
μ = 1.0
μ = 1.5

Fig. 3. Stationary distribution of the number of tasks in the queue for different values
of μ.

is close to 1 (jobs consisting of many tasks) and high load factors. This is rather
intuitive since we have already observed that, when the jobs consist of few tasks,
the finite capacity queue and that studied here have the same behaviour (see
Example 1). Moreover, when the load factor is low, the system tends to complete

A Queueing Model that Works Only on the Biggest Jobs 127

Fig. 4. Idle probability as function of μ and β.

Fig. 5. Comparison of the idle probabilities of a M/M/1/1 queue with blocking and
the queue working only on the largest jobs.

the service on the jobs and hence the replacement mechanism has a small impact
on the stationary idle probability.

The work performed by the system in stability is 1 − π(0) jobs per unit of
time (recall that we assume that the server has a constant speed of 1 job per
unit of time), thus if the expected size of the jobs in input is E[J], the expected
amount of work arriving at the system in an long time interval Δt is:

E[J]λΔt =
λΔt

(1 − β)μ
.

128 A. Marin and S. Rossi

In the same interval, the queue has done an expected amount of work expressed
by (1 − π(0))Δt. Thus, we can write that the expected length of the jobs in
output, E[Jo], is:

E[Jo] = E[J] − 1 − π(0)
λ

. (9)

We may also derive the expected residence time of a job in the queue. Recall
that a job may leave the queue either because a larger job arrives (i.e., a job
consisting of more tasks than that stored in the system) or because its service
is finished. Therefore, the expected number of jobs in the queue is 1 − π(0)
and the throughput of the system is λ. Hence, the expected residence time is:
E[R] = (1 − π(0))/λ.

4 Jobs with Arbitrary Size Distribution

In this section, we consider a non-geometric distribution for the job sizes:
p1, p2, . . . , pn, . . ., where pb ≥ 0 and

∑∞
j=1 pj = 1. As a special case, we derive

the distribution of the case considering geometric batch distribution.

Theorem 2. In stability, the queueing model with arbitrary job size distribution
has the following stationary distribution:

π(n) = π(0)
λ

μn

⎛
⎝1 −

n−1∑
j=1

pj

⎞
⎠ n−2∏

j=0

(
λ

(
1 −

j∑
k=1

pk

)
+ μ

)
. (10)

Before proving Theorem 2, it may be useful to recall some important results
on time-reversed analysis. These can be found in [6–8]. Let X(t) be a stationary
CTMC, then X(τ − t) is also a stationary CTMC for all τ ∈ R. Henceforth, we
will call X(τ − t) as XR(t) for brevity (since it is stationary). If the statistics
of X(t) and XR(t) are the same for all t ∈ R, then we say that X(t) is time-
reversible. However, it is important to notice that even stationary processes
that are not reversible admit a time-reversed process. This is the case for this
queue that, in fact, does not have an underlying reversible CTMC. Generalised
Kolmogorov’s criteria provide necessary and sufficient conditions for deciding if
Y (t) is the reversed process of X(t) based on the analysis of the transition rates.

K1: For every state of the chain, its residence times in the forward and reversed
processes have the same distribution;

K2: For every cycle i1 → i2 → · · · → in → i1, with ik a state of the CTMC and
n ≥ 2, the product of its rates in the forward chain is equal to the product
of the rates in the reversed process.

Henceforth, we denote the transition rate from state i to state j by qij , and
the rate of the inverse transition by qR

ji. Why is it so important to know the
rates of the reversed process? Indeed, it turns out that if we know the rates of
the forward and reversed processes, then we can easily compute the invariant

A Queueing Model that Works Only on the Biggest Jobs 129

...

...

...
...

...

...
...

(A)

(B) 0

0

1

1

2

2

3

3
λp1

λp2

λp2

λp3
λp3

λp3

μ

μμ

Fig. 6. (A) CTMC underlying the queue studied in Sect. 4. (B) Reversed chain.

measure of the chain. We proceed as follows. Let us consider a reference state
that, without loss of generality, can be state 0. Then, given an arbitrary state
i, we can compute π(i)/π(0) as the ratio between the product of the rates of an
arbitrary path from 0 to i divided by the product of the reversed rates of the
transitions of the same path.

We are now ready to prove Theorem 2

Proof (Theorem 2). In contrast with the proof of Theorem 1, the use of time-
reversed analysis does not require us to guess the expression of the stationary
distribution but is entirely constructive.

In Fig. 6-(A) we show a sketch of the CTMC underlying the queue, and in
Fig. 6-(B) its reversed process. Let us consider state 0: the residence time in the
forward chain has rate λ. We notice that in the reversed chain, there is only one
outgoing transition from state 0, i.e., that going to state 1, thus, by K1, we have:
qR
01 = λ. If we consider the cycle 0 → 1 → 0, we use K2 to obtain qR

10 = μ1p1.
The residence time in state 1 has rate λ(1 − p1) + μ, but now we have two

outgoing transitions in the reversed chain: qR
10 and qR

12. By K1, we can solve:

λ(1 − p1) + μ = qR
10 + qR

12,

whose only unknown is qR
12 that results to be:

qR
12 =

λμp2
(λ + μ)(1 − p1)

.

Rate qR
21 can be derived by considering the cycle 1 → 2 → 1 in the forward chain

and qR
20 thanks to the cycle 0 → 2 → 1 → 0. In each case, we have only one

unknown. It is possible to see that this holds also for the following states, and
hence we can derive all the transition rates in the reversed process.

The stationary distribution is derived thanks to the relation [8] πiqij = πjq
R
ji.

Thus, we first derive π(1) as function of π(0) thanks to transition 1 → 0, then

130 A. Marin and S. Rossi

π(2) as function of π(1) thanks to transition 2 → 1, and so on. The regularity
of the procedure allows us to obtain Eq. (10) constructively. ��
As sanity check, it is worth to verify that Lemma 1 is a special case of Theorem 2.
Let us verify that Eq. (10) reduces to Eq. (5) when pn = (1 − β)βn−1. Let us
start with the third factor, we have:⎛

⎝1 −
n−1∑
j=1

pj

⎞
⎠ =

⎛
⎝1 −

n−1∑
j=1

(1 − β)βj−1

⎞
⎠ = βn−1.

The cases n = 1 and n = 2 are trivial, so let us we consider the last product of
Eq. (10) for n > 2:

n−2∏
j=0

(
λ

(
1 −

j∑
k=1

pk

)
+ μ

)
=

n−2∏
j=0

(λβj + μ) = μn−1
n−2∏
j=0

(
1 +

λ

μ
βj

)

= μn−1

(
−λ

μ
;β

)
n−1

.

It is now easy to see that Eq. (5) is a special case of Eq. (10).

5 Connection with Number Theory

In this Section, we show an interesting connection between the expression of
π(0) given by Eq. (5) and the two variable generating function of the triangular
integer sequence identified as A008289 [1] in the OEIS database.

Let us define Q(n,m) as the number of ways that we can partition n objects
in m non-empty groups in such a way that each group has a different size. For
example, Q(10, 3) = 4, since we have:

10 = 1 + 7 + 2 = 1 + 6 + 3 = 1 + 5 + 4 = 2 + 5 + 3.

More details on this sequence can be found in [4, Ch. 2] where the following
recursive relation is proved:

Q(n,m) =

⎧⎪⎨
⎪⎩

1 if n = 1,m = 1
Q(n − m,m) + Q(n − m,m − 1) if n > m > 0
0 otherwise

.

The generating function of Q(n,m) is (see, e.g., [1]):

gQ(x, y) = 1 +
∑
n>0
k>0

Q(n, k)xnyk =
∏
n>0

(1 + yxn) =

∏
n≥0(1 + yxn)

1 + y

=
(−y, x)∞

1 + y
. (11)

A Queueing Model that Works Only on the Biggest Jobs 131

If we evaluate gQ(x, y) for x = β and y = ρ then we obtain the following elegant
relation:

π(0) =
1

1 + ρ
gQ(β, ρ)−1.

From expression:
∞∑

n=1

ρβn−1

(
− λ

μ̃1
;β

)
n−1

we can apply the q-binomial theorem and obtain a new expression for the gen-
erating function of Q(n,m):

gQ(x, y) =
∑∞

n=1

∑∞
k=1 xnyk k+1

2∏k
i=1(1 − yi)

.

6 Conclusion

In this paper, we have studied a special type of queues that can host only one job
consisting of a finite (but potentially unbounded) number of tasks. The queue
aims at always working on the largest jobs, i.e., those jobs consisting of more
tasks. A preemptive policy is adopted in case of an arrival while another job is
in service. We have shown that the system admits a rather complicated explicit
solution for the stationary probabilities and that this can be quickly derived
thanks to a time-reversed analysis. We believe that, for this case, the guess of the
stationary distribution would not be a viable route to the analysis of the queue as
shown in the proof of Lemma 1. However, it would have been possible to address
the problem by resorting to the method of probability generating functions that
however, although more general (in its applicability) than that used for the proof
of Theorem 2, poses some difficulties that are instead overcome by the time-
reversed analysis. Finally, we have described some curious connections between
the queueing system under analysis and the generating function of an important
sequence of numbers used in combinatorial analysis.

Acknowledgements. We would like to thank prof. Michael Somos for his invaluable
suggestions on the relations between the q-series considered in this paper and number
theory.

References

1. The on-line encyclopedia of integer sequences. https://oeis.org/A008289. Accessed
30 Aug 2019

2. Aalto, S., Ayesta, U., Nyberg-Oksanen, E.: Two-level processor-sharing scheduling
disciplines: mean delay analysis. ACM SIGMETRICS Perform. Eval. Rev. 32(1),
97–105 (2004). Proceedings of ACM Sigmetrics/Performance

3. Balsamo, S., Harrison, P., Marin, A.: A unifying approach to product-forms in net-
works with finite capacity constraints. ACM SIGMETRICS Perform. Eval. Review
38(1), 25–36 (2010). Proceedings of ACM Sigmetrics/Performance

https://oeis.org/A008289

132 A. Marin and S. Rossi

4. Comtet, L.: Advanced Combinatorics, The Art of Finite and Infinite Expansion.
D. Reidel Publishing Company, Dordrecht (1974)

5. Grosof, I., Scully, Z., Harchol-Balter, M.: SRPT for multiserver systems. Perform.
Eval. 127–128, 154–175 (2018)

6. Harrison, P.: Turning back time in Markovian process algebra. Theor. Comput.
Sci. 290(3), 1947–1986 (2003)

7. Harrison, P., Marin, A.: Product-forms in multi-way synchronizations. Comput. J.
57(11), 1693–1710 (2014)

8. Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Hoboken (1979)
9. Marin, A., Balsamo, S., Fourneau, J.M.: LB-networks: a model for dynamic load

balancing in queueing networks. Perform. Eval. 115, 38–53 (2017)
10. Marin, A., Mitrani, I., Elahi, M., Williamson, C.: Control and optimization of the

SRPT service policy by frequency scaling. In: McIver, A., Horvath, A. (eds.) QEST
2018. LNCS, vol. 11024, pp. 257–272. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99154-2 16

11. McIntosh, I.J.: Some asymptotic formulae for q-shifted factorials. Ramanujan J.
3, 205–214 (1999)

12. Pittel, B.G.: Closed exponential networks of queues with saturation: the Jackson-
type stationary distribution and its asymptotic analysis. Math. Oper. Res. 4(4),
357–378 (1979)

13. Pradhan, S., Gupta, U.C.: Modeling and analysis of an infinite-buffer batch-arrival
queue with batch-size-dependent service. Perform. Eval. 108, 16–31 (2017)

14. Schrage, L.: A proof of the optimality of the shortest remaining processing time
discipline. Oper. Res. 16, 678–690 (1968)

15. Schroeder, B., Harchol-Balter, M.: Web servers under overload: how scheduling can
help. ACM Trans. Internet Technol. 6(1), 20–52 (2006)

https://doi.org/10.1007/978-3-319-99154-2_16
https://doi.org/10.1007/978-3-319-99154-2_16

Performance Evaluation of
Thermal-Constrained Scheduling
Strategies in Multi-core Systems

Muhammad Usama Sardar1(B) , Clemens Dubslaff2 ,
Sascha Klüppelholz2 , Christel Baier2 , and Akash Kumar1

1 Chair for Processor Design, Technische Universität Dresden, Dresden, Germany
muhammad usama.sardar@mailbox.tu-dresden.de, akash.kumar@tu-dresden.de
2 Institute for Theoretical Computer Science, Technische Universität Dresden,

Dresden, Germany
{clemens.dubslaff,sascha.klueppelholz,christel.baier}@tu-dresden.de

Abstract. The increasing usage of multi-cores in safety-critical appli-
cations, such as autonomous control, demands high levels of reliability,
which crucially depends on the temperature. On the other hand, there is
a natural trade-off between reliability and performance. The scheduling
of tasks is one of the key factors which determine the resulting system
performance as well as reliability. Commonly used techniques, such as
simulation based on benchmarks, can simulate only a limited number of
input sequences of system runs and hardly optimize the performance-
reliability trade-off. In order to accurately evaluate the schedulers and
provide formal guarantees suitable in early design stages, we use for-
mal methods for a quantitative performance-reliability trade-off analy-
sis. Specifically, we propose to use energy-utility quantiles as a metric
to evaluate the effectiveness of a given scheduler. For illustration, we
evaluate TAPE, a state-of-the-art thermal-constrained scheduler, with
theoretical optimal ones.

Keywords: Probabilistic model checking · Thermal-constrained
scheduling · Mutli-core systems · Energy-utility quantiles

1 Introduction

The enormous increase in the processor power density [8] due to the decreasing
feature size has made on-chip temperature a critical design constraint of multi-
core systems. The elevated chip temperatures adversely impact other design con-
straints, such as reliability, performance, fault-tolerance, packaging and cooling
costs [16]. High temperatures can result in more frequent transient errors and/or
even permanent faults [23]. Industrial studies have demonstrated that a small
difference in the operating temperature (order of 10–15 ◦C) can result in almost
two times difference in the device lifespan [25]. Studies also show that the cool-
ing cost increases super-linearly with the thermal dissipation [9]. Moreover, the
c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): EPEW 2019, LNCS 12039, pp. 133–147, 2020.
https://doi.org/10.1007/978-3-030-44411-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44411-2_9&domain=pdf
http://orcid.org/0000-0001-7652-559X
http://orcid.org/0000-0001-5718-8276
http://orcid.org/0000-0003-1724-2586
http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0001-7125-1737
https://doi.org/10.1007/978-3-030-44411-2_9

134 M. U. Sardar et al.

static (leakage) power [26] has exponential dependence on the operating temper-
ature, which potentially results in more thermal runaway [19]. Hence, to ensure
the reliability, performance, and safety of the multi-core for modern embedded
real-time systems like autonomous control [15], thermal-constrained scheduling
is crucial, i.e., the thermal constraints should be accounted for in the scheduling
of tasks to the cores.

Although simulation with existing benchmarks to analyze the effectiveness
of the scheduling strategy is popular in the embedded system community, most
of the approaches can simulate only a limited number of input sequences and
thus may result in missing critical situations. These in turn may lead to delays
in the deployment of thermal management schemes as happened in the case
of Foxton thermal management that was designed for the Montecito chip [5].
It may also result in poor performance and/or thermally unsafe behaviors or
even catastrophic failures at run-time, e.g., vehicle breakdown or smartphone
explosion [15].

Exhaustive formal methods such as model checking (see, e.g., [2]) are popular
for ensuring reliability of critical system parts. In this regard, a few abstract ther-
mal models have been proposed for the formal analysis. Most of these works, e.g.,
[10–12,21], ignore the thermal coupling among the cores. The models without
incorporating thermal coupling can result in underestimation of the temperature,
which accounts for a significant difference in reliability estimation.

An application gaining more and more attention is the capability of formal
methods for a quantitative trade-off analysis. Energy-utility quantiles [1] pro-
vide a relevant trade-off measure in probabilistic systems, e.g., systems where
the environment, the workload or the occurrence of errors is modelled proba-
bilistically. For example, a possible instance of an energy-utility quantile is the
minimal number of thermal violations to ensure finishing a given number of
tasks within a given time horizon with sufficiently high probability. The thermal
violations refer to the situation where the temperature of a core is above the
critical temperature, resulting in low functional reliability of the system. Such
properties cannot be determined using simulative approaches.

In this paper, we present a new thermal model of multi-core systems that
is simple but yet expressive enough to show realistic behaviors and analyze the
model with respect to its performance-reliability trade-off properties. Particu-
larly, our contribution comprises:

– A formal thermal model in terms of a Markov decision process (MDP, see,
e.g., [2]) that, in contrast to existing works, incorporates thermal coupling of
cores and transient temperatures (Sect. 2).

– A formal analysis of selected sanity checks underpinning the confidence in
our abstract model (Sect. 3).

– A formal comparative performance-reliability trade-off analysis of heuris-
tics with a scheduling strategy optimal according to the stochastic workload
assumptions (Sect. 4).

Performance Evaluation of Scheduling Strategies 135

2 Proposed Model

In this section, we present our proposed formal thermal model for 2D/3D multi-
core systems as well as describe our workflow and parametric model. Finally, we
present a model instance that we implemented for a quantitative analysis using
the PRISM model checker. We denote the set of integers i, i + 1, ..., j − 1, j by
[i..j] for i, j ∈ N.

2.1 Abstract Thermal Model

For simplicity, we consider a 2D grid layout in which N = n × n homogeneous
cores are placed, where we refer to a core placed at position (i, j) via an index
i + n · j ∈ [0..N − 1]. The model can easily be extended for 3D heterogeneous
multi-core systems. Similar to the related works [3,10–12,21], we consider a
discrete-time model where the power states and resulting temperatures of the
cores are observed after fixed discrete intervals of time. Intuitively, the change in
temperature of a core depends on three major factors: (i) power dissipated by the
core, (ii) heat transferred by the core to the ambience, and (iii) heat transferred
among the cores. We merge the first two factors into one called self-heating and
model the last one as thermal coupling.

We now explain the mathematical model by equations that hold for each core
with some given index i. The change in temperature of core i is given by:

ΔTempi = wsh · sh(Tempi, Poweri) + wcpl · cpli(Temp[0..N−1]), (1)

where ΔTempi, Tempi and Poweri represent the change in temperature, the
current temperature, and the current power state (e.g., ON or OFF), respec-
tively, of core i. The weight wsh ∈ Q is a constant used to represent the scaling
for self-heating, which depends on the nature of the material and environmental
conditions. The weight wcpl ∈ Q represents the overall scaling of the thermal
coupling and is specifically dependent on the conductivity of the material and
the sampling interval Δt, as suggested by the general equation of heat conduction
[20]. Moreover, sh and cpl represent self-heating and thermal coupling functions,
as described below. The power dissipated by a core for performing some compu-
tation produces heat while the heat transferred by a core to the ambience leads
to a drop in the temperature of the core. The overall effect is represented by the
self-heating function sh:

sh(Tempi, Poweri) = pd(Poweri) + amb(Tempi), (2)

where the function pd models the increase in the temperature of a core due to
the power consumed for doing some computation in one time step. For a 2-level
Dynamic Voltage and Frequency Scaling (DVFS), it is defined as follows:

pd(Poweri) =
{

p1, if Poweri = 1
p2, if Poweri = 0,

(3)

136 M. U. Sardar et al.

where p1, p2 ∈ Q>0 are positive parameters, depending on the microarchitec-
ture, application, and leakage characteristics. The function amb models the heat
transferred to the ambience, inspired by the Newton’s law of cooling [4,20]:

amb(Tempi) = −c · (Tempi − Tempamb), (4)

where c ∈ Q>0 is a positive parameter, depending on the cooling solution (heat
sink and spreader) specifications, and Tempamb represents the ambient temper-
ature. The negative sign shows that it leads to a drop in the temperature of the
core.

The thermal coupling mainly depends on the conductivity of the material,
sampling time, the difference of the temperature of the cores, and distance
between the cores [20]. The first two factors are modeled by wcpl while the
last two factors vary from core to core and are captured in our model by the
thermal coupling function cpli, as described below:

cpli(Temp[0..N−1]) =
∑

j∈[0..N−1],j �=i

{
wij · (Tempj − Tempi)

}
, (5)

where while the index i still represents the index of the core under consideration,
the index j in the sum represents the index of other cores. We model the weights
wij ∈ Q for thermal coupling, i.e., coupling coefficients, by the reciprocal of the
Euclidean distance between the two cores in the 2D grid, i.e.,

wij =
1

‖x − y‖22
, (6)

where x and y represent the 2D position vectors of the cores i and j, respectively.
Considering Dirichlet’s condition [22], the temperature outside the boundary of
the 2D grid of cores is assumed to be the ambient temperature. Since we consider
coupling coefficients wij for any pair of cores, the model is applicable to 3D
multi-core systems with trivial changes.

2.2 Workflow and Parametric Model

The workflow of the proposed approach, presented in Fig. 1, begins with the ther-
mal simulator, which requires models of floorplan, packaging and power traces.
The floorplan describes sizes and placement of the cores. The user can select
parameters for floorplan and packaging based on the system under considera-
tion. Power traces of the application are then given to the thermal simulator to
compute transient temperatures. The transient temperatures are then analyzed
in our proposed tool to find the trends in the behavior of the temperature, which
form the basis for the validation of our proposed thermal model. A reasonable
continuous-valued thermal model is developed from transient temperatures. In
order to find the optimal weights for Eq. (1), we use properties of symmetry
with respect to power and memorylessness with respect to the initial temper-
ature and the minimum mean square error criteria to evaluate our discretized
thermal model against the continuous-valued one.

Performance Evaluation of Scheduling Strategies 137

For exhaustive formal analysis, the continuous parameters, such as temper-
ature, have to be discretized to a certain number of levels to analyze the results
within a suitable time. In our parametric model, the designer can select various
parameters, such as the number of temperature and power levels, number of
cores in the system and the scheduling strategy (optimal/heuristic) for the anal-
ysis. In case of heuristic analysis, the scheduling criteria is required. Additionally,
the designer may choose the probability distribution and its characteristics (e.g.,
mean) to capture the behavior of the application.

With the above parameters, we generate model variants, i.e., transition
systems, Discrete-time Markov Chains (DTMCs) or MDPs, depending on the
desired analysis. The purpose of having states in a transition system is the
step-wise behavior induced by the task arrival and scheduling. The probability
distributions model the task arrival and the non-determinism is used to model
the different choices for task scheduling on the cores. Depending on the desired
analysis, we provide flags in our tool for the option whether to include time or
thermal violations in the state space and generate properties to be investigated
accordingly. The generated formal model along with the property (e.g., quantile
query) is input to the probabilistic model checker to perform the analysis (e.g.,
to compute quantiles for various probability thresholds). The output logs from
the probabilistic model checker are input to our tool to generate quantile plots
as well as analyze model sizes. Thus, our approach helps the designer to perform
performance-reliability trade-off analysis for the designed scheduler even with
minimal prior knowledge of formal methods.

Proposed tool

Probabilistic Model Checker

Analysis

Thermal Simulator

Application
Models of

floorplan, power
and packaging

Scheduling
Strategy Desired AnalysisThermal/Power

Model

Number of cores
Sizes of cores
Power traces

Number of
temperature and

power levels

Probability
distribution Optimal/Heuristic

Probabilistic
model instance

Quantile query
generation

Output logs

Performance-
Reliability
trade-off

Transient
temperature

Quantile
plots

Model
sizes

Fig. 1. Workflow of the proposed approach

138 M. U. Sardar et al.

We use a popular thermal simulator, HotSpot [24], for the thermal analysis.
Since MATLAB is one of the most commonly used software environment for
performance analysis, we utilize MATLAB to develop our tool. For probabilistic
model checking, we choose PRISM [14] as it supports computing quantiles.

2.3 Concrete Model

For illustrative purposes, we present the details of the concrete model, instanti-
ated from the parametric model presented above, for the configurations used in
our experiment: the system has 9 cores arranged in a 2D grid of 3× 3. We chose
a granularity of 3 temperature levels, represented as 0, 1 and 2, respectively,
for our experiments. We further considered 2 level DVFS, i.e., core power has 2
states (ON or OFF).

Further parameters chosen are p1 = 1 and p2 = 0 in Eq. (3), i.e., the temper-
ature rise due to power dissipation in one time step is unity and zero, when the
core is powered ON and OFF, respectively. Moreover, the value of constant c for
heat sink and spreader specifications in Eq. (4) is selected as 0.25. For brevity,
in this work we consider thermal coupling effects from 4 direct neighbors of each
core. The cores are considered to be unit distance apart, so that the weights wij

in Eq. (6) are taken as unity for all the 4 direct neighbors. The selected weights
for Eq. (1) for the above parameters by using the minimum mean square error
are 1.3 for self-heating (wsh) and 0.09 per core per temperature level difference
for thermal coupling (wcpl). It should be noted that the concrete model is a
proof-of-concept and we do not claim to share the realistic parameters.

3 Validation of Thermal Model

While our abstract thermal model we presented in Sect. 2 has been motivated
by principles from physics, the focus of the work is neither to find an exact
model nor a model reflecting every aspect of heat transfer in multi-core systems.
The focus of the work is to find a suitable implementation that can be subject
of a trade-off analysis using probabilistic model checking. The simplifications,
e.g., discretization to 3 temperature levels, done towards such an implementa-
tion could have introduced severe side-effects. Hence, to increase confidence in
the methods we proposed, we analyzed the concrete model presented in Sect. 2.3
against basic sanity checks one would naturally assume to hold in any thermal
model for heat transfer of multi-core systems. In the initial configuration, there
is no constraint on the temperature and power of any core, i.e., all initial con-
figurations with any possible combination of temperature and power levels are
considered. The sanity checks are formalized in Linear Temporal Logic (LTL)
[2], with temporal modalities eventually, always, and next by ♦, �, and ©,
respectively. We first considered the standard model with full non-determinism
in the power level switches and then a variant with non-determinism only in the
initial configurations, i.e., power levels cannot be switched anymore after the ini-
tial time-step. For the actual analysis, we used the probabilistic model checker
PRISM [14] with its support of verifying (non-probabilistic) LTL properties.

Performance Evaluation of Scheduling Strategies 139

3.1 Non-restricted Power Level Switches

First, we considered persistence properties (cf., e.g., [2]) that should be fulfilled in
any scenario of powering cores in the multi-core system. Our proposed thermal
model satisfies the following properties for all the 9 cores starting from any
possible initial state (any power or temperature level for any core):

1. Non-decreasing temperature: Whenever a core is turned ON and its current
temperature is less than or equal to the steady-state temperature, the tem-
perature of the core at the next instant is greater than or equal to its current
temperature. The second condition is required because if the temperature of
the core is above the steady-state temperature, it may decrease even if the
core is powered ON because of the thermal coupling effect. For each core i,
this is formalized by the LTL formula:

�

(
(Poweri = ON ∧ Tempi � TempSSi) ⇒ (©Tempi � Tempi)

)
, (7)

where ∧ represents the conjunction of the predicates and Poweri represents
the power status of the core i. Moreover, TempSSi represents the steady state
temperature of a core i and ©Tempi represents the temperature of the core
i at the next instant.

2. Non-increasing temperature: Whenever a core is turned OFF and its current
temperature is greater than the minimum (ambient) temperature, the tem-
perature of the core at the next instant is less than or equal to its current
temperature. The second condition is required because if the core is at the
ambient temperature, it may increase even if the core is powered OFF because
of the thermal coupling effect. For each core i, this is formalized by an LTL
formula:

�

(
(Poweri = OFF ∧ Tempi > Tempamb) ⇒ (©Tempi � Tempi)

)
, (8)

where Tempamb represents the ambient temperature.

3.2 Fixed Power Levels

While in the last section, power levels could change nondeterministically over
time, we now consider properties regarding limit behaviors when fixing power
levels (voltage and frequency) on cores. The reason for fixing power levels is that
such properties could be observed using the temperature data from HotSpot. We
could show that our proposed thermal model satisfies the following properties
starting from any possible initial state (any temperature level for any core):

1. Drop to initial temperature at power-OFF : If from some point onwards all
cores remain powered OFF, the temperatures of all cores eventually drop to
the initial temperature and stay there. In HotSpot, this case was analyzed by
giving a power trace with each core consuming 0 m W after some point in time.
Formally, in every path, if at some point of time, all cores remain continuously

140 M. U. Sardar et al.

powered OFF, then from some moment on all cores remain continuously at
the initial temperature. This is formalized as follows:

♦(
� ∧0≤i≤8(Poweri = OFF) ⇒ ♦ � ∧0≤i≤8(Tempi = Tempinit)

)
, (9)

where Tempinit represents the initial temperature. For the analysis of this
property, all power levels are initially set to OFF in the PRISM model and
remain OFF throughout. Our proposed model satisfies this property because
all cores disseminate heat to the ambience. Also, the hotter cores continue
to transfer heat to the cooler cores to balance the temperature. So from any
starting temperature, the cores eventually end up in the initial temperature.

2. Maximum temperature at the central core: If from some point onwards all
cores remain powered ON, the temperature of the central core eventually
remains the maximum of all cores in the 3 × 3 core system. In HotSpot, this
was tested using same power dissipation for all the cores. This is formalized
as follows:

♦(
� ∧0≤i≤8(Poweri = ON) ⇒ ♦ � (Temp4 = max(Temp0, ..., T emp8))

)
.

(10)
For the analysis of this property, all the power levels are initially set to ON
in the PRISM model.

3. Average temperature property : If from some point onwards all cores remain
powered ON, the temperature of the central core in the 3 × 3 core system
eventually remains greater than or equal to the average temperature of its 4
neighboring cores. In HotSpot, this was tested using same power dissipation
for all the cores. This is formalized as follows:

♦(
� ∧0≤i≤8(Poweri = ON) ⇒ ♦ � (Temp4 � 1

4
·

∑
j∈Neigh

(Tempj))
)
, (11)

where Temp4 represents the temperature of the central core and Neigh rep-
resents the set of indices of direct neighbors of the central core, i.e., {1,3,5,7}.
For the analysis of this property, all the power levels are initially set to ON
in the PRISM model.

4 Comparative Analysis of Heuristics

In this section, we present a refined formal model that reflects the system behav-
ior in practical applications, with additional stochastic information, e.g., on the
workload of the system. For including thermal management strategies in our
model to distribute workload on the cores, we add non-deterministic choices
of the cores to be powered ON as soon as the required amount of workload
is apparent. This yields a MDP with probabilistic workload choices and non-
deterministic powering of cores. Our model then does not only pave the way for
a best- and worst-case analysis, revealing optimal thermal management policies
for the assumed probabilistic workload profile, but can also be used to analyze
existing thermal management heuristics.

Performance Evaluation of Scheduling Strategies 141

4.1 Formal Model

Inspired by the work [18] from the literature, we consider that the number of
tasks arriving in the multi-core at each time instant follows the Poisson distribu-
tion. For a N -core system, we truncate and normalize the Poisson distribution
for 0 − N tasks. We compute the probabilities in our MATLAB-based tool and
export to PRISM as constants. Similar to simulation-based analysis [17], we
assume that there is no data dependency among tasks, i.e., we consider indepen-
dent tasks. For brevity, each task is assumed to have an execution time of one
time step. Moreover, we assume that each core executes only one task at a time.

For the optimal scheduler, we use non-determinism to capture the possible
ways that a controller can influence the behaviour of the system. Since we are
interested in determining which cores should be turned ON, the non-determinism
is in the selection of a core to run a task and the decision whether to put the
tasks in a queue. The optimal scheduler is then computed that resolves all the
non-deterministic choices such that the expected values are either maximized or
minimized.

For the PRISM implementation, the task mapping is implemented in two
phases, utilizing different synchronization labels. In the first phase, all cores are
powered OFF and the number of tasks is selected probabilistically depending
on the parameterized mean value of the Poisson distribution. The temperature
from the previous step is also updated in the first phase. Then, in the second
phase, a core is non-deterministically selected from the cores which are currently
OFF for the task to be mapped and the number of tasks is decremented by one.
The process is repeated until the number of tasks becomes zero, or the number
of tasks left to be mapped are less than or equal to the queue size and no more
cores are thermally suitable for mapping the tasks (i.e., the temperature of all
available cores is greater than or equal to the threshold temperature). Then, the
two phases are repeated. In the initial configuration, all cores are turned OFF,
all cores are at the ambient temperature, the queue is empty and there are no
tasks to be mapped to the multi-core. In order to analyze the temperature, time,
number of thermal violations and tasks, transition rewards [7] are utilized. The
rewards are updated on the transition to the selection of new tasks.

For the heuristics, the non-determinism is resolved by the specific schedulers,
resulting in a DTMC [2]. In this work, we consider 3 specific schedulers with a
defined mapping criteria. For more than 1 core satisfying the mapping criteria, to
resolve the non-determinism in each case, we use a specific order, i.e., [0 8 6 2 1 3 5
7 4], where the numbers indicate the indices of the cores, e.g., core 8 is scheduled
before core 5. The mapping criteria of considered heuristics are presented below:
A popular thermal-aware scheduler, TAPE [6], is based on the economic model
and maps the tasks to the core with the criteria max(sellTi − buyTi), and in
case of multiple cores satisfying this criteria: min(abs(buyTi)), where sellTi and
buyTi represents sell and buy values, respectively, of a core i at temperature
Ti. For modelling TAPE, we use the same weights as presented in the paper
[6]. The reactive thermal-aware schedulers map to the cores with the criteria

142 M. U. Sardar et al.

Tempi < TempThreshold and the minimum temperature scheme maps to the
coolest core among the currently available cores, i.e., min(Tempi).

4.2 Comparative Trade-Off Analysis

The formal model presented above is parameterized in the queue size and mean
value. For a real-world scenario, the queue size is selected according to the system
under consideration and the mean value is selected based on the prior information
about the workload. In the following analysis, we consider the mean value of 7.5
and queue size of 3.

We propose to use performance metrics for the evaluation of a thermal-aware
scheduler based on energy-utility quantiles [1]. Within energy-utility quantiles,
two reward structures formalize quantities of the system and a trade-off condi-
tion is posed by putting bounds on the accumulated reward during an execution.
Varying one of the bounds and optimizing this value such that the probability
mass of paths with the accumulated rewards staying within the bounds exceeds
a given threshold provides a trade-off metric that can be computed using prob-
abilistic model checking [1].

Maximal Time to Thermal Violations. One of the most important func-
tionalities of a thermal-aware scheduler is to maximize the system’s thermal
stability, in terms of the time to a certain number of violations. So, we consider
the following energy-utility quantile: what is the maximal time the system sur-
vives with probability p until reaching a certain number of thermal violations
for some scheduler. Formally, this can be expressed as the following existential
energy-utility upper-bound quantile (path formula is increasing and state prop-
erty is decreasing) [1]:

max
{
t : Prmin

s

(♦ (Time � t ∧ #Violations � v)
)

� p
}
, (12)

where v ∈ N represents a lower bound on the accumulated number of global
thermal violations, t ∈ N represents an upper bound on time and p ∈ [0, 1] ∩ Q

represents the probability threshold. The results for v = 30 are presented in
Fig. 2 and show that TAPE and minimum temperature heuristic have the same
trade-off characteristics. This is because task migration is not considered in this
work. Both of them perform better than the reactive heuristic.

Minimal Thermal Violations in a Specific Time. The number of thermal
violations in a specific time is an indication of the lifetime reliability of the
system. So, we consider the following quantile: the minimal number of thermal
violations in a specific time with at least a probability of p. Formally, this can be
expressed as the following existential energy-utility upper-bound quantile (path
formula is increasing and state property is increasing) [1]:

min
{
v : Prmax

s

(♦ (#Violations � v ∧ Time = t)
)

> p
}
, (13)

Performance Evaluation of Scheduling Strategies 143

0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
0

2

4

6

8

10

12

14
Time-Viola on Quan le

Op mal Reac ve TAPE/MinTemp
Probability Threshold

Ti
m

e
to

 V
io

la
on

s

Fig. 2. Time to reach 30 global thermal violations

where v ∈ N represents a lower bound on the accumulated number of global
thermal violations, t ∈ N represents the time for analysis and p ∈ [0, 1] ∩ Q rep-
resents the probability threshold. The results for t = 10 are presented in Fig. 3.
Other than the low probability thresholds (covering only a few practical cases),
the heuristics are near-optimal on this criteria. For instance, at a probability
threshold of 0.99, the heuristics exhibit a single thermal violation more than the
optimal scheduler. So, there is less room for improvement in this case.

0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
0

10

20

30

40

50

60
Time-Viola on Quan le

Op mal Reac ve TAPE/MinTemp
Probability Threshold

Th
er

m
al

 V
io

la
on

s

Fig. 3. Number of global thermal violations in 10 time steps

Minimal Consecutive Thermal Violations in a Specific Time. From
the perspective of core lifetime reliability, it is important how long the thermal
violation stays on a core. In this regard, we compute the quantile, similar to
(13):

min
{
c : Prmax

s

(♦(#ConsecVio � c ∧ Time = t)
)

> p
}
, (14)

where c represents the number of consecutive thermal violations. The results for
t = 10 are presented in Fig. 4 and conforms with the above findings. Specifically,

144 M. U. Sardar et al.

at a probability threshold of 0.99, the TAPE and reactive heuristics exhibit 1
and 2 thermal violations, respectively, more than the optimal scheduler.

0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
0
5

10
15
20
25
30
35
40

Time-Viola on Quan le

Op mal Reac ve TAPE/MinTemp
Probability Threshold

Co
ns

ec
u

ve
 V

io
la

on
s

Fig. 4. Number of global consecutive thermal violations in 10 time steps

The model sizes and timings are presented in Table 1. The model size is
represented in terms of the number of states, transitions and binary decision
diagram (BDD) nodes. The heuristics are small enough to be analyzed by the
faster explicit engine in the PRISM model checker. Hence, BDD nodes are not
provided. The timings for building the model and computation of quantiles are
also provided. For instance, the computation of the optimal scheduler of quantile
(14) takes a couple of days. For such model sizes, the computation of advanced
properties like quantiles may take a few days [13]. However, various experiments
were performed to ensure the scalability of the approach with various temper-
ature levels and quantile bounds. The results show that the time for model
checking does not explode with the increase in temperature levels.

Table 1. Model sizes and timings for optimal scheduler and heuristics

Model sizes Timings [s]

Quantile Scheduler Constants States Transitions BDD nodes Construct Compute

(12) Optimal v = 30 1809781760 10738895130 25134175 622 50310

Reactive 6940244 19164152 - 492 538

TAPE 15128017 41888689 - 2666 2815

MinTemp 15128017 41888689 - 734 2697

(13) Optimal t = 10 465432065 2762915430 4954803 118 65605

Reactive 1206986 3320915 - 102 24

TAPE 2137295 5901950 - 261 38

MinTemp 2137295 5901950 - 149 41

(14) Optimal t = 10 465432065 2762915430 4954803 103 156566

Reactive 1206986 3320915 - 69 32

TAPE 2137295 5901950 - 226 69

MinTemp 2137295 5901950 - 195 87

Performance Evaluation of Scheduling Strategies 145

5 Conclusions

In this work, we presented a formal thermal model for multi-cores incorporating
thermal coupling as well as transient temperatures. This is challenging because
HotSpot gives only the final temperature instead of the individual components
of self-heating and thermal coupling. The presented model is validated against
various sanity checks for non-restricted power level switches as well as constant
power levels. We proposed a quantitative performance-reliability trade-off anal-
ysis, based on quantiles, of thermal-aware scheduling strategies for multi-core
systems. The results show that the evaluated scheduler TAPE can be improved
with respect to the maximal time to reach a certain number of thermal viola-
tions. Our approach thus helps in the evaluation of heuristics. For future, the
evaluation of heuristics for heterogeneous multi-core systems can be very inter-
esting. Moreover, performance evaluation in terms of throughput of a scheduler
can also be interesting.

Acknowledgments. We would like to thank Steffen Märcker for debugging memory
related issues in the quantile implementation of PRISM.

Christel Baier, Clemens Dubslaff, and Sascha Klüppelholz are supported by the
DFG through the Collaborative Research Centers CRC 912 (HAEC) and TRR 248 (see
https://perspicuous-computing.science, project ID 389792660), the Clusters of Excel-
lence EXC 2050/1 (CeTI, project ID 390696704) and EXC 1056 (cfAED) as part of
Germany’s Excellence Strategy, and the Research Training Groups QuantLA (GRK
1763) and RoSI (GRK 1907). Akash Kumar is supported by the DFG through the
Cluster of Excellence EXC 1056 (cfAED).

References

1. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–
299. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6 24

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Bukhari, S.A.A., Lodhi, F.K., Hasan, O., Shafique, M., Henkel, J.: FAMe-TM:
formal analysis methodology for task migration algorithms in many-core systems.
Sci. Comput. Program. 133(2), 154–174 (2017). https://doi.org/10.1016/j.scico.
2016.06.004

4. Burmeister, L.C.: Convective Heat Transfer. Wiley, Hoboken (1993)
5. Dunn, D.: Intel delays Montecito in roadmap shakeup. EE Times, Manufactur-

ing/Packaging (2005)
6. Ebi, T., Al Faruque, M.A., Henkel, J.: TAPE: thermal-aware agent-based power

economy multi/many-core architectures. In: Computer-Aided Design, pp. 302–309.
IEEE (2009). https://doi.org/10.1145/1687399.1687457

7. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

https://perspicuous-computing.science
https://doi.org/10.1007/978-3-319-06200-6_24
https://doi.org/10.1016/j.scico.2016.06.004
https://doi.org/10.1016/j.scico.2016.06.004
https://doi.org/10.1145/1687399.1687457
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3

146 M. U. Sardar et al.

8. Gnad, D., Shafique, M., Kriebel, F., Rehman, S., Sun, D., Henkel, J.: Hayat: har-
nessing dark silicon and variability for aging deceleration and balancing. In: Design
Automation Conference, pp. 1–6. ACM/EDAC/IEEE (2015). https://doi.org/10.
1145/2744769.2744849

9. Gunther, S.H., Binns, F., Carmean, D.M., Hall, J.C.: Managing the impact of
increasing microprocessor power consumption. Intel Technol. J. 1–9 (2001)

10. Iqtedar, S., Hasan, O., Shafique, M., Henkel, J.: Formal probabilistic analysis of
distributed dynamic thermal management. In: Design, Automation and Test in
Europe, pp. 1221–1224. IEEE (2015). https://doi.org/10.7873/DATE.2015.0503

11. Iqtedar, S., Hasan, O., Shafique, M., Henkel, J.: Probabilistic formal verifica-
tion methodology for decentralized thermal management in on-chip systems. In:
Enabling Technologies: Infrastructures for Collaborative Enterprises, pp. 210–215.
IEEE (2015). https://doi.org/10.1109/WETICE.2015.39

12. Ismail, M., Hasan, O., Ebi, T., Shafique, M., Henkel, J.: Formal verification of
distributed dynamic thermal management. In: Computer-Aided Design, pp. 248–
255. IEEE (2013). https://doi.org/10.1109/ICCAD.2013.6691126

13. Klein, J., et al.: Advances in probabilistic model checking with PRISM: vari-
able reordering, quantiles and weak deterministic Büchi automata. Int. J. Softw.
Tools Technol. Transfer 20(2), 179–194 (2017). https://doi.org/10.1007/s10009-
017-0456-3

14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

15. Lee, Y., Chwa, H.S., Shin, K.G., Wang, S.: Thermal-aware resource management
for embedded real-time systems. Comput.-Aided Des. Integr. Circuits Syst. 37(11),
2857–2868 (2018). https://doi.org/10.1109/TCAD.2018.2857279

16. Liu, Z., Tan, S.X.D., Huang, X., Wang, H.: Task migrations for distributed thermal
management considering transient effects. IEEE Trans. Very Large Scale Integr.
Syst. 23(2), 397–401 (2015). https://doi.org/10.1109/TVLSI.2014.2309331

17. Pagani, S., Chen, J., Shafique, M., Henkel, J.: Advanced Techniques for Power,
Energy, and Thermal Management for Clustered Manycores. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-77479-4

18. Pathania, A., Venkataramani, V., Shafique, M., Mitra, T., Henkel, J.: Defragmen-
tation of tasks in many-core architecture. Archit. Code Optim. 14(1), 2:1–2:21
(2017). https://doi.org/10.1145/3050437

19. Pedram, M., Nazarian, S.: Thermal modeling, analysis, and management in VLSI
circuits: principles and methods. Proc. IEEE 94(8), 1487–1501 (2006). https://doi.
org/10.1109/JPROC.2006.879797

20. Remsburg, R.: Advanced Thermal Design of Electronic Equipment. Springer, Hei-
delberg (2011)

21. Sardar, M.U., Hasan, O., Shafique, M., Henkel, J.: Theorem proving based for-
mal verification of distributed dynamic thermal management schemes. J. Parallel
Distrib. Comput. 100, 157–171 (2017). https://doi.org/10.1016/j.jpdc.2016.06.011

22. Sbalzarini, I.F.: Spatiotemporal modeling and simulation (2016)
23. Srinivasan, J., Adve, S.V., Bose, P., Rivers, J.A.: Lifetime reliability: toward an

architectural solution. IEEE Micro 25(3), 70–80 (2005). https://doi.org/10.1109/
MM.2005.54

https://doi.org/10.1145/2744769.2744849
https://doi.org/10.1145/2744769.2744849
https://doi.org/10.7873/DATE.2015.0503
https://doi.org/10.1109/WETICE.2015.39
https://doi.org/10.1109/ICCAD.2013.6691126
https://doi.org/10.1007/s10009-017-0456-3
https://doi.org/10.1007/s10009-017-0456-3
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/TCAD.2018.2857279
https://doi.org/10.1109/TVLSI.2014.2309331
https://doi.org/10.1007/978-3-319-77479-4
https://doi.org/10.1145/3050437
https://doi.org/10.1109/JPROC.2006.879797
https://doi.org/10.1109/JPROC.2006.879797
https://doi.org/10.1016/j.jpdc.2016.06.011
https://doi.org/10.1109/MM.2005.54
https://doi.org/10.1109/MM.2005.54

Performance Evaluation of Scheduling Strategies 147

24. Stan, M.R., Skadron, K., Barcella, M., Huang, W., Sankaranarayanan, K.,
Velusamy, S.: HotSpot: a dynamic compact thermal model at the processor-
architecture level. Microelectronics 34(12), 1153–1165 (2003). https://doi.org/10.
1016/S0026-2692(03)00206-4

25. Viswanath, R., Wakharkar, V., Watwe, A., Lebonheur, V.: Thermal performance
challenges from silicon to systems. Intel Technol. J. 1–16 (2000)

26. Yeo, I., Liu, C.C., Kim, E.J.: Predictive dynamic thermal management for multi-
core systems. In: Design Automation Conference, pp. 734–739. ACM/IEEE (2008).
https://doi.org/10.1145/1391469.1391658

https://doi.org/10.1016/S0026-2692(03)00206-4
https://doi.org/10.1016/S0026-2692(03)00206-4
https://doi.org/10.1145/1391469.1391658

Bounding the Rate of Convergence
for One Class of Finite Capacity Time

Varying Markov Queues

Alexander Zeifman1 , Yacov Satin2 , Rostislav Razumchik3(B) ,
Anastasia Kryukova2, and Galina Shilova2

1 Vologda State University, Institute of Informatics Problems,
Federal Research Center “Computer Science and Control” of the Russian Academy

of Sciences, Vologda Research Center of RAS, Vologda, Russia
a zeifman@mail.ru

2 Vologda State University, Vologda, Russia
krukovanastya25@mail.ru, yacovi@mail.ru, shgn@mail.ru
3 Institute of Informatics Problems, Federal Research Center

“Computer Science and Control” of the Russian Academy of Sciences,
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

rrazumchik@ipiran.ru, razumchik-rv@rudn.ru

Abstract. Consideration is given to the two finite capacity time varying
Markov queues: the analogue of the well-known time varying M/M/S/0
queue with S servers each working at rate μ(t), no waiting line, but with
the arrivals happening at rate λ(t) only in batches of size 2; the analogue
of another well-known time varying M/M/1/(S −1) queue, but with the
server, providing service at rate μ(t) if and only if there are at least 2
customers in the system, and with the arrivals happening only in batches
of size 2. The functions λ(t) and μ(t) are assumed to be non-random non-
negative analytic functions of t. The new approach for the computation
of the upper bound for the rate of convergence is proposed. It is based on
the differential inequalities for the reduced forward Kolmogorov system
of differential equations. Feasibility of the approach is demonstrated by
the numerical example.

Keywords: Queueing systems · Rate of convergence ·
Non-stationary · Markovian queueing models · Limiting characteristics

1 Introduction

Non-stationary Markovian queueing models have been actively studied over the
past few decades (see [1–6,9,15,16,19,21] and the references therein) and the
interest in this topic seems not to be declining. There exists one (to some extent)

This research was supported by Russian Science Foundation under grant 19-11-00020.

c© Springer Nature Switzerland AG 2020
M. Gribaudo et al. (Eds.): EPEW 2019, LNCS 12039, pp. 148–159, 2020.
https://doi.org/10.1007/978-3-030-44411-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44411-2_10&domain=pdf
http://orcid.org/0000-0002-7855-3364
http://orcid.org/0000-0002-4168-1071
http://orcid.org/0000-0002-4092-5396
https://doi.org/10.1007/978-3-030-44411-2_10

Bounding the Rate of Convergence for One Class of Time Varying Queues 149

general framework for the analysis of such systems, which was developed in the
series of papers by the authors. It consists of the following four steps1:

(a) find the upper bounds for the rate of convergence to the limiting regime2;
(b) find the lower bounds for the rate of convergence to the limiting regime,

which demonstrate that the dependence on the initial condition cannot van-
ish before some time instant t∗;

(c) obtain the stability (perturbation) bounds providing that if the structure
of the rate (generator) matrix of the process is taken into account in an
appropriate way, and the errors in the transition rates are small, then the
basic characteristics of the process are calculated in an adequate way;

(d) approximate the process X(t) by a similar, but truncated processes with a
smaller number of states and construct the corresponding estimates for the
approximation error.

By carrying out the steps (a)—(d) for the system with 1−time-periodic rates
and by solving the forward Kolmogorov system of differential equations (like
(6)) with the simplest initial condition X(0) = 0 for the truncated process on
the interval [t∗, t∗ + 1] one obtains all basic probability characteristics of the
process X(t) and the “perturbed” processes. It is worth noticing that the step
(a) is the most important among the four. This is due to the fact that once
the upper bounds are obtained all other steps (b)—(d) can be carried out in a
straightforward manner, by using the results of [19–25].

It is worth noticing that exact estimates of the rate of convergence yield
exact estimates of stability (perturbation) bounds (see [7,8,10–13,17,20] and
references therein).

In the previous two papers [14,27] one has outlined the new approach for
the computation of the upper bound for the rate of convergence, which is based
on the application of differential inequalities to the reduced forward Kolmogorov
system of differential equations. Here one presents the detailed description of this
approach for the case of finite state inhomogeneous Markov chains (see Sect. 2).
Its feasibility is demonstrated on one class of non-stationary Markovian queues
(see Sect. 3). In the Sect. 4 the numerical example is given. Section 5 concludes
the paper.

Throughout the paper vectors are regarded as column vectors, T denotes
the matrix transpose. The norm of a vector is denoted by ‖ · ‖ and means the

1 For the more detailed description the reader is referred to [26].
2 The limiting regime implies that beginning from a certain time instant, say, t∗, the

probability characteristics of the process X(t) for t > t∗ do not depend on the
initial conditions (up to a given discrepancy). Note that a Markov chain X(t) is
called weakly ergodic, if ‖p∗(t) − p∗∗(t)‖ → 0 as t → ∞ for any initial conditions
p∗(0) and p∗∗(0), where p∗(t) and p∗∗(t) are the corresponding solutions of (6).
When considering weak ergodicity and inhomogeneous Markov chains, in general,
any regime may be regarded as a limiting one. For example, in the case when the
transition rates are 1−periodic functions, the system (6) has 1−periodic solution in
the weak ergodic sense and it is reasonable to regard this solution as limiting.

150 A. Zeifman et al.

sum of the absolute values of the vector’s elements. When a vector, say x(t), is
considered only for t from the fixed interval, say I, and not from the whole real
positive line, the notation ‖x(t)‖I is used.

2 Description of the Approach

Consider a homogeneous system of linear differential equations in the vector-
matrix form:

d

dt
x(t) = K(t)x(t), (1)

where x(t) is the real column vector and K(t) is the S × S matrix with the
elements kij(t), being real functions, which are analytic for any t ≥ 0. Let x(t)
be the non-trivial solution of (1). Fix an arbitrary time instant t = t0. Assume
for now that x1(t0) > 0. Due to the continuity assumption for some value ε1 > 0
x1(t0) remains positive in the interval I1 = (t0 − ε1, t0 + ε1). For other S − 1
elements of x(t0) one can find other appropriate intervals I2, . . . , IS in which the
sign of the corresponding element does not change. Denote by I = (t1, t2) the
intersection of all of these intervals i.e. I = I1∩· · ·∩IS . In this common interval I
the signs of the elements of x(t) do not change. Let us assume that xi(t) < 0 for
i ∈ {i1, . . . , ik} ⊂ {1, . . . , S} and xi(t) ≥ 0 for i ∈ {1, . . . , S}\{i1, . . . , ik}. Choose
S positive numbers, say {dI

1, . . . , d
I
S}, and put zi(t) = −dI

i xi if i ∈ {i1, . . . , ik}
and zi(t) = dI

i xi otherwise. Then zi(t) ≥ 0 for all t ∈ I and i ∈ {1, . . . , S} and
thus

∑S
i=1 zi(t) is the norm of the vector z(t) in the interval I. By differentiating

‖z(t)‖I with respect to t, one has:

d

dt
‖z(t)‖I =

S∑

i=1

dzi(t)
dt

=
S∑

j=1

S∑

i=1

dI
i

dI
j

ϑijkij(t)

︸ ︷︷ ︸
αI

j (t)

zj(t) =
S∑

j=1

αI
j (t)zj(t), (2)

where ϑij = 1 if xi(t) and xj(t) are of the same sign and ϑij = −1 otherwise.
Therefore from (2) one has the following upper bound

d

dt
‖z(t)‖I ≤ αI(t)‖z(t)‖I , (3)

where αI(t) = max1≤j≤S αI
j (t) and thus

‖z(τ2)‖I ≤ e
∫ τ2

τ1
αI(u) du‖z(τ1)‖I ,

for any t1 ≤ τ1 ≤ τ2 ≤ t2. By comparing the norms ‖z(t)‖I and ‖x(t)‖ one
obtains the following upper bound for the ‖x(t)‖:

‖x(τ2)‖ ≤ CIe
∫ τ2

τ1
αI(u) du‖x(τ1)‖, (4)

for any t1 ≤ τ1 ≤ τ2 ≤ t2, where CI = max1≤i≤S dI
i

min1≤i≤S dI
i
.

Bounding the Rate of Convergence for One Class of Time Varying Queues 151

Note that the first step in the derivation of (4) was the assumption that some
elements of x(t) are negative and the other are non-negative in I. But since the
total number of elements in x(t) is S there are a total of 2S such assumptions
(i.e. 2S possible combinations of elements’ signs in x(t)). Let us assume that
for each of the 2S combinations one can find proper I and {dI

i , 1 ≤ i ≤ S},
and thereby compute αI(t) and CI . Thus one has 2S upper bounds of type (4)
and among them one can choose the worst one. Note that if for some t the
two-sided derivative of ‖x(t)‖ does not exist, it can be replaced by the right-
hand derivative. Thereby all possible combinations of elements’ signs in x(t) are
considered and the following theorem holds.

Theorem. Let all kij(t) be analytic functions of t for t ≥ 0. Then for any
0 ≤ s ≤ t and any initial condition ‖x(s)‖ the following bound holds:

‖x(t)‖ ≤ Ce
∫ t

s
α(u) du‖x(s)‖, (5)

where C = maxall I CI , α(t) = maxall I αI(t).
In the next section it is being demonstrated how this approach works in the

case of several Markov queues with time varying arrival and service rates.

3 Model Description

Consider3 a time varying M/M/ · /S queue in which customers arrive only in
the batches of size 2 with rate λ(t). If a pair of customers arrives but there is
no free room in the system for both customers, they both are lost. The service
rate may depend on the total number of customers in the system and is equal
to μi(t), when i customers are present in the system. Clearly, μ0(t) = 0. The
functions λ(t) and μi(t) are assumed to be non-random non-negative analytic
functions of t.

In the notation M/M/ ·/S one has not specified the number of servers in the
system. This is due to the fact that the number of servers explicitly depends on
the values of μi(t). In what follows two extreme cases are considered:

(i) μi(t) = iμ(t), 1 ≤ i ≤ S, which means that the considered queue is the
analogue of the well-known time varying M/M/S/0 queue with S servers
each working at rate μ(t), no waiting line, but with the arrivals happening
only in the batches of size 2;

(ii) μ1(t) = 0 and μi(t) = μ(t), 2 ≤ i ≤ S, which means that the considered
queue is the variant of another well-known time varying M/M/1/(S − 1)
queue, but this time with the server, providing service (at rate μ(t)) if and
only if there are at least 2 customers in the system, and with the arrivals
happening only in the batches of size 2. Note that here only one customer
at a time may be served.

3 This is one of the four classes of systems considered in [24,25].

152 A. Zeifman et al.

For the time being it is more convenient to assume that the service rate in
the system is equal to μi(t) and do not specify which of the two cases, (i) or (ii),
is being considered.

Let X(t) be the Markov process, equal to the total number of customers in
the system at time t i.e. X(t) takes values in the finite set X = {0, 1, . . . , S}.
Denote by pij(s, t) = P {X(t) = j |X(s) = i}, i, j ≥ 0, 0 ≤ s ≤ t, the transition
probabilities of X(t) and by pi(t) = P {X(t) = i}—the probability that X(t) is in
state i at time t. Let p(t) = (p0(t), p1(t), . . . , pS(t))T be probability distribution
vector at instant t. Throughout the paper it is assumed that in a small time
interval h the possible transitions and their associated probabilities are

pij(t, t + h) =

{
qij(t)h + αij (t, h) , if j �= i,

1 − ∑

k∈X ,k �=i

qik(t)h + αi (t, h) , if j = i,

where qij(t) are the transition rates and αij (t, h) = o(h) for all i, j. For the
queueing system under consideration the transition rates can be easily specified:
qi,i+2(t) = λ(t), 0 ≤ i ≤ S − 2, and qi,i−1(t) = μi(t), 1 ≤ i ≤ S.

The vector p(t) satisfies the forward Kolmogorov system of differential equa-
tions

d

dt
p(t) = A(t)p(t), (6)

where A(t) is the transposed rate matrix i.e. aij(t) = qji(t), i, j ∈ X . Denote
f(t) = (a10(t), . . . , aS0(t))

T and z(t) = (p1(t), . . . , pS(t))T and introduce the
new matrix4 B(t) of size S × S, with the (i, j) entry bij(t) equal to

bij(t) = aij(t) − ai0(t), 1 ≤ i, j ≤ S.

Using the normalization condition p0(t) = 1 − ∑S
i=1 pi(t), the system (6) can

rewritten as
d

dt
z(t) = B(t)z(t) + f(t).

All bounds of the rate of convergence to the limiting regime for X(t) correspond
to the same bounds of the solutions of the system

d

dt
y(t) = B(t)y(t), (7)

where y(t) = (y1(t), . . . , yS(t))T is the vector with the elements of arbitrary signs
(not necessarily all non-negative as in p(t)). As it was firstly noticed in [18], it is
more convenient to study the rate of convergence using the transformed version
B(t) given by B∗(t) = TB(t)T−1, where T is the S ×S upper triangular matrix
of the form

4 In other papers this matrix is sometimes called the reduced intensity matrix. It does
not have any probabilistic interpretation.

Bounding the Rate of Convergence for One Class of Time Varying Queues 153

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, T−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 · · · 0
0 1 −1 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

After some algebraic manipulations it can be seen that for the queueing
system under consideration the matrix B∗(t) is equal5 to

B∗(t) =

⎛

⎜
⎜
⎜
⎝

−(λ(t)+μ1(t)) μ1(t) 0 . . . 0 0 0
0 −(λ(t)+μ2(t)) μ2(t) . . . 0 0 0

λ(t) 0 −(λ(t)+μ3(t)) . . . 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
0 0 0 . . . 0 −(λ(t)+μS−1(t)) μS−1(t)
0 0 0 . . . λ(t) −λ(t) −μS(t)

⎞

⎟
⎟
⎟
⎠

.

Introduce the new notation u(t) = Ty(t). Then the system (7) can be rewritten
in the form

d

dt
u(t) = B∗(t)u(t), (8)

where u(t) = (u1(t), . . . , uS(t))T is, as well as y(t), the vector with the elements
of arbitrary signs (not necessarily all non-negative as in p(t)). Notice that one
has converted the system (6), describing the probabilistic dynamic of the total
number of customers in the considered queue, to the system (8), which looks
the same as (1). So (8) is the starting point for the application of the proposed
method.

Consider the case (ii), which implies that the service rates μi(t) in the matrix
B∗(t) are equal to μ1(t) = 0 and μi(t) = μ(t), 2 ≤ i ≤ S. The sequence of steps
by which one applies the method depends on whether the arrival rate is “larger”
or “smaller” than the service rate. At the expense of some loss of generality6 only
the “larger” case is considered below. Let u(t) be the solution of (8). Remember
that there are 2S possible combinations of elements’ signs in u(t). Assume that
all elements of the u(t) are positive i.e. ui(t) > 0, 1 ≤ i ≤ S. Put dS = 1,
dS−1 = δ−1, dS−2 = δ, and dk−1 = δdk, for 1 ≤ k ≤ S − 2, where δ > 1.
Denoting w(t) = Du(t), where D = diag(d1, . . . , dS), (8) can be rewritten in
the form

d

dt
w(t) = B∗∗(t)w(t),

5 Note that whenever the matrix B∗(t) after all these transformations turns out to be
essentially non-negative for any t ≥ 0 i.e. b∗

ij(t) ≥ 0 for i �= j, the rate of convergence
can be studied using the logarithmic norm method (see [24,25]).

6 Although the “smaller” case is not treated here, there is no principal difficulty, but
longer sequence of steps in dealing with it. Note also that here the terms “larger”
and “smaller” should be understood in the integral sense.

154 A. Zeifman et al.

where B∗∗(t) = DB∗(t)D−1. Let us write out the column sums of B∗∗(t). For
the sake of brevity introduce the notation −αi(t) =

∑S
j=1 b∗∗

ji (t). Then

α1(t) = λ(t) − δ−2λ(t),
α2(t) = (λ(t) + μ(t)) − δ−2λ(t),
αk(t) = (λ(t) + μ(t)) − δ−2λ(t) − δμ(t), 3 ≤ k ≤ S − 3,

αS−2(t) = (λ(t) + μ(t)) − δ−1λ(t) − δμ(t),
αS−1(t) = (λ(t) + μ(t)) + δλ(t) − δ2μ(t),

αS(t) = μ(t) − δ−1μ(t).

Hence for this interval one can bound the corresponding αI(t) by

αI(t) = min
1≤i≤S

αi(t) =
(
1 − δ−1

)
min (μ(t), λ(t) − δμ(t)) . (9)

The second argument in the min(·, ·) function is positive since λ(t) is assumed
to be larger than μ(t). Assume now that uS(t) < 0 and all other elements of
u(t) are positive i.e. ui(t) > 0, 1 ≤ i ≤ S − 1. Put dS = −1, dS−1 = δ and
dk−1 = δdk, for 1 ≤ k ≤ S − 1, where δ > 1. Then

α1(t) = λ(t) − δ−2λ(t),
α2(t) = (λ(t) + μ(t)) − δ−2λ(t),
αk(t) = (λ(t) + μ(t)) − δ−2λ(t) − δμ(t), 3 ≤ k ≤ S − 3,

αS−2(t) = (λ(t) + μ(t)) + δ−2λ(t) − δμ(t),
αS−1(t) = (λ(t) + μ(t)) − δ−1λ(t) − δμ(t),

αS(t) = μ(t) + δμ(t).

Hence for this interval one can bound the corresponding αI(t) by

αI(t) = min
1≤i≤S

αi(t) =
(
1 − δ−1

)
(λ(t) − δμ(t)) . (10)

Moreover one can note that in all other 2S − 2 cases only negative elements in
the columns of the matrix B∗(t) can be added. Thus in all other intervals the
values of αI(t) is greater for the same |dk|. Thus one obtains the following upper
bound for the rate of convergence for the queueing system (ii):

‖u(t)‖ ≤ C∗e− ∫ t
0 α∗(u) du‖w(0)‖, (11)

for any t ≥ 0, where C∗ = δS , α∗(t) =
(
1 − δ−1

)
min (μ(t), λ(t) − δμ(t)). More-

over X(t) is weakly ergodic and the following bound on the rate of convergence
holds:

‖p∗(t) − p∗∗(t)‖ ≤ 4C∗e− ∫ t
0 α∗(u) du‖w(0)‖, (12)

for any initial conditions.
Even though the case (i) can be treated in the same way as described above,

it is more convenient to treat it differently. Notice that in the case (i) all off-
diagonal elements of the matrix B∗(t) are non-negative and the sums

∑S
j=1 b∗

ji(t)

Bounding the Rate of Convergence for One Class of Time Varying Queues 155

for the matrix B∗(t) are equal to −μ(t). Thus the logarithmic norm of the matrix
B∗(t) is γ(B∗(t)) = −μ(t) and one can apply the approach based on the notion
of the logarithmic norm. The results from the papers [6,19,25] immediately give
that X(t) is weakly ergodic and the following bounds on the rate of convergence
hold:

‖u(t)‖ ≤ e− ∫ t
0 μ(τ) dτ‖u(0)‖, (13)

‖p∗(t) − p∗∗(t)‖ ≤ 4e− ∫ t
0 μ(τ) dτ‖u(0)‖, (14)

for any initial conditions.

4 Numerical Example

Using the proposed method one can calculate not only the rate of convergence
but also the approximate values for the limiting performance characteristics of
the process X(t) for appropriate interval [t1, t2] with the known approximation
error (see steps (a)—(d) in the Sect. 1.)

Let in the queue considered in Sect. 3 the functions λ(t) and μ(t) be
1−periodic functions equal to λ(t) = 4 + sin(2πt) and μ(t) = 1 + cos(2πt),
respectively7. Let S = 100. Then by applying the convergence bounds8 of the

0 5 10 15
t

20 25
0

20

40

60

80

100
X(0)=0
X(0)=100

Fig. 1. Case (i). Rate of convergence of the mean number of customers in the system
in the interval [0, 30] for two different initial system occupancies (X(0) = 0 and X(0) =
100).

7 Such choice of functions is justified as follows. Firstly, the results in Sect. 3 are
presented for the case when λ(t) is “larger” than μ(t). Secondly for 1−periodic
functions it is easier to decide which regime is reasonable to regard as a limiting one
(see also the Footnote 2).

8 For the case (i) the bound (14), for the case (ii) the bound (12).

156 A. Zeifman et al.

previous section, one can compute, for example, the limiting value of the mean
number of customers in the systems i.e.

∑S
i=0 ipi(t). For the case (i) in Fig. 1

one can see two graphs of the mean number of customers in the system at time
t corresponding to two different initial conditions: when initially the system is
empty (lower graph) and when initially the system is full (upper graph). The
graphs are getting closer to each other as time t increases and eventually both
coincide with the “limiting” graph, depicted in Fig. 2.

29 29.2 29.4 29.6 29.8 30
6.5

7

7.5

8

8.5

9

9.5

10
X(0)=0
X(0)=100

t

Fig. 2. Case (i). The limiting mean number of customers in the system in the interval
[29, 30] for two different initial system occupancies (X(0) = 0 and X(0) = 100).

Figures 3 and 4 provide the same information for the mean number of cus-
tomers in the system for the case (ii). The time interval [0, 30] (for both cases)
was chosen by repeated attempts, shifting the right end of the interval until the
convergence has become clearly visible. Note that by comparing Figs. 1 and 3
one can see that the convergence rate in the case (ii) is much slower than in the
case (i).

Bounding the Rate of Convergence for One Class of Time Varying Queues 157

0 5 10 15 20 25 30
0

20

40

60

80

100
X(0)=0
X(0)=100

t

Fig. 3. Case (ii). Rate of convergence of the mean number of customers in the system
in the interval [0, 30] for two different initial system occupancies (X(0) = 0 and X(0) =
100).

29 29.2 29.4 29.6 29.8 30
99.1

99.15

99.2

99.25

99.3

99.35

99.4
X(0)=0
X(0)=100

t

Fig. 4. Case (ii). The limiting mean number of customers in the system in the interval
[29, 30] for two different initial system occupancies (X(0) = 0 and X(0) = 100).

158 A. Zeifman et al.

5 Conclusion

Coming back to (3) one can note that

αI(t) ≤ max
1≤j≤S

⎛

⎝kjj(t) +
S∑

i=1,i �=j

dI
i

dI
j

|kij(t)|
⎞

⎠ .

By putting dI
i = 1 for all 1 ≤ i ≤ S, one immediately arrives at the inequality

α(t) ≤ γ(K(t)), where γ(K(t)) is the logarithmic norm of the matrix K(t).
Thus the method proposed in Sect. 2 always gives results, which are no worse
than results obtained using the approach based one the logarithmic norm. Since
the logarithmic norm method gives exact bounds in the case of essential non-
negativity of the matrix K(t) (see [22]), the method of differential inequalities
yields exact estimates in this case as well.

The proposed approach can be applied if and only if there is an opportunity
to find proper constants {dI

i , 1 ≤ i ≤ S} for each interval I. Since (apparently)
there does not exist any general algorithm for selecting {dI

i , 1 ≤ i ≤ S} for
a general inhomogeneous birth and death process with a finite state space, the
scope of the proposed approach is hard to define. For every new problem instance
one has to examine the matrix K(t) and act on the trial and error basis, when
searching for {dI

i , 1 ≤ i ≤ S}.

References

1. Andersen, A.R., Nielsen, B.F., Reinhardt, L.B., Stidsen, T.R.: Staff optimization
for time-dependent acute patient flow. Eur. J. Oper. Res. 272(1), 94–105 (2019)

2. van Brummelen, S.P.J., de Kort, W.L., van Dijk, N.M.: Queue length computation
of time-dependent queueing networks and its application to blood collection. Oper.
Res. Health Care 17, 4–15 (2018)

3. Chen, A.Y., Pollett, P., Li, J.P., Zhang, H.J.: Markovian bulk-arrival and bulk-
service queues with state-dependent control. Queueing Syst. 64, 267–304 (2010)

4. Di Crescenzo, A., Giorno, V., Krishna Kumar, B., Nobile, A.G.: A time-non-
homogeneous double-ended queue with failures and repairs and its continuous
approximation. Mathematics 6(5) (2018). Article ID 81

5. Giorno, V., Nobile, A.G., Spina, S.: On some time non-homogeneous queueing
systems with catastrophes. Appl. Math. Comp. 245, 220–234 (2014)

6. Granovsky, B., Zeifman, A.: Nonstationary queues: estimation of the rate of con-
vergence. Queueing Syst. 46, 363–388 (2004)

7. Kartashov, N.V.: Criteria for uniform ergodicity and strong stability of Markov
chains with a common phase space. Theory Probab. Appl. 30, 71–89 (1985)

8. Liu, Y.: Perturbation Bounds for the stationary distributions of Markov chains.
SIAM J. Matrix Anal. Appl. 33(4), 1057–1074 (2012)

9. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: foster- Lyapunov
criteria for continuous time processes. Adv. Appl. Probab. 25, 518–548 (1993)

10. Mitrophanov, A.Y.: Stability and exponential convergence of continuous-time
Markov chains. J. Appl. Probab. 40, 970–979 (2003)

Bounding the Rate of Convergence for One Class of Time Varying Queues 159

11. Mitrophanov, A.Y.: The spectral gap and perturbation bounds for reversible
continuous-time Markov chains. J. Appl. Probab. 41, 1219–1222 (2004)

12. Mitrophanov A.Y.: Connection between the rate of convergence to stationarity and
stability to perturbations for stochastic and deterministic systems. In: Proceedings
of the 38th International Conference Dynamics Days Europe, DDE 2018, Lough-
borough, UK (2018). http://alexmitr.com/talk DDE2018 Mitrophanov FIN post
sm.pdf

13. Rudolf, D., Schweizer, N.: Perturbation theory for Markov chains via Wasserstein
distance. Bernoulli 24(4A), 2610–2639 (2018)

14. Satin, Y., Zeifman, A., Kryukova, A.: On the rate of convergence and limiting
characteristics for a nonstationary queueing model. Mathematics 7(8), 678 (2019)

15. Schwarz, J.A., Selinka, G., Stolletz, R.: Performance analysis of time-dependent
queueing systems: survey and classification. Omega 63, 170–189 (2016)

16. Tan, X., Knessl, C., Yang, Y.: On finite capacity queues with time dependent
arrival rates. Stoch. Process. Appl. 123(6), 2175–2227 (2013)

17. Zeifman, A.I.: Stability for continuous-time nonhomogeneous Markov chains. In:
Kalashnikov, V.V., Zolotarev, V.M. (eds.) Stability Problems for Stochastic Mod-
els. LNM, vol. 1155, pp. 401–414. Springer, Heidelberg (1985). https://doi.org/10.
1007/BFb0074830

18. Zeifman, A.I.: Properties of a system with losses in the case of variable rates.
Autom. Remote Control 50(1), 82–87 (1989)

19. Zeifman, A., Leorato, S., Orsingher, E., Satin, Ya., Shilova, G.: Some universal
limits for nonhomogeneous birth and death processes. Queueing Syst. 52, 139–151
(2006)

20. Zeifman, A.I., Korolev, V.Y.: On perturbation bounds for continuous-time Markov
chains. Stat. Probab. Lett. 88, 66–72 (2014)

21. Zeifman, A., Korotysheva, A., Korolev, V., Satin, Y., Bening, V.: Perturbation
bounds and truncations for a class of Markovian queues. Queueing Syst. 76, 205–
221 (2014)

22. Zeifman, A.I., Korolev, V.Y.: Two-sided bounds on the rate of convergence for
continuous-time finite inhomogeneous Markov chains. Stat. Probab. Lett. 103,
30–36 (2015)

23. Zeifman, A.I., Korotysheva, A.V., Korolev, V.Y., Satin, Y.A.: Truncation bounds
for approximations of inhomogeneous continuous-time Markov chains. Theory
Probab. Appl. 61(3), 513–520 (2017)

24. Zeifman, A., et al.: On sharp bounds on the rate of convergence for finite
continuous-time Markovian Queueing models. In: Moreno-Diaz, R., Pichler, F.,
Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory EUROCAST 2017.
LNCS, vol. 10672, pp. 20–28. Springer, Cham (2018)

25. Zeifman, A., Razumchik, R., Satin, Y., Kiseleva, K., Korotysheva, A., Korolev,
V.: Bounds on the rate of convergence for one class of inhomogeneous Markovian
queueing models with possible batch arrivals and services. Int. J. Appl. Math.
Comput. Sci. 28, 141–154 (2018)

26. Zeifman, A., Satin, Y., Kiseleva, K., Korolev, V., Panfilova, T.: On limiting char-
acteristics for a non-stationary two-processor heterogeneous system. Appl. Math.
Comput. 351, 48–65 (2019)

27. Zeifman, A., Satin, Y., Kiseleva, K., Kryukova, A.: Applications of differential
inequalities to bounding the rate of convergence for continuous-time Markov chains.
In: AIP Conference Proceedings, vol. 2116, Article ID 090009 (2019)

http://alexmitr.com/talk_DDE2018_Mitrophanov_FIN_post_sm.pdf
http://alexmitr.com/talk_DDE2018_Mitrophanov_FIN_post_sm.pdf
https://doi.org/10.1007/BFb0074830
https://doi.org/10.1007/BFb0074830

Author Index

Alhawas, Albatool 1

Baier, Christel 133
Bernardo, Marco 16
Boon, Marko 65

Camilli, Matteo 33
Capra, Lorenzo 33

Dubslaff, Clemens 133

Eijkelenboom, Gerard 65
Ezhilchelvan, Paul 50

Gaeta, Rossano 84

Klaasse, Bo 65
Klüppelholz, Sascha 133
Knottenbelt, William J. 100
Kryukova, Anastasia 148
Kumar, Akash 133

Liquori, Luigi 84

Marchenko, Yuriy 100
Marin, Andrea 118
Mitrani, Isi 50

Razumchik, Rostislav 148
Rossi, Sabina 118

Sardar, Muhammad Usama 133
Satin, Yacov 148
Sereno, Matteo 84
Shilova, Galina 148

Thomas, Nigel 1
Timmerman, Rik 65

van Ballegooijen, Tessel 65

Waudby, Jack 50
Webber, Jim 50
Wolter, Katinka 100

Zeifman, Alexander 148

	Preface
	Organization
	Hybrid Petri Nets Featuring Multiple Random Variables (Keynote)
	Contents
	Abandonment Attack on the LEACH Protocol
	1 Introduction
	2 Background
	2.1 The Low-Energy Adaptive Clustering Hierarchy Protocol
	2.2 Network Layer Attacks on WSNs

	3 Literature Review
	4 Abandonment Attack
	5 Simulation Environment
	5.1 Scenario I: Different Malicious Node Percentages
	5.2 Scenario II: Different Base Station Locations
	5.3 Scenario III: Malicious Nodes Have Higher Energy

	6 Results and Evaluation
	6.1 Scenario I Results
	6.2 Scenario II Results
	6.3 Scenario III Results

	7 Conclusion
	8 Limitations and Future Work
	References

	Coherent Resolutions of Nondeterminism
	1 Introduction
	2 Nondeterministic and Probabilistic Models
	3 An Overview of Resolutions of Nondeterminism
	3.1 Structure-Preserving Resolutions via Deterministic Schedulers
	3.2 Structure-Modifying Resolutions via Randomization
	3.3 Structure-Modifying Resolutions via Interpolation

	4 Consequences of the Excessive Power of Schedulers
	4.1 Equivalences for Nondeterministic and Probabilistic Processes
	4.2 Anomalies and Counterexamples

	5 Anomaly Avoidance via Coherent Resolutions
	6 Conclusions
	References

	Emulating Self-adaptive Stochastic Petri Nets
	1 Introduction
	2 Background
	3 A Self-adaptive Manufacturing System Example
	4 The SN-Based Emulating Framework
	4.1 The Emulator Model
	4.2 The Evolutionary API
	4.3 Self-Adaptation Procedures

	5 Performance Analysis
	5.1 Emulator's Colour Class Partitioning

	6 Experiments
	7 Facing Complexity
	8 Conclusion and Future Work
	References

	Design and Evaluation of an Edge Concurrency Control Protocol for Distributed Graph Databases
	1 Introduction
	2 Problem Description
	3 Edge Concurrency Control Protocol
	4 Approximate Model
	5 Numerical and Simulation Results
	6 Conclusion
	References

	A Novel Data-Driven Algorithm for the Automated Detection of Unexpectedly High Traffic Flow in Uncongested Traffic States
	1 Introduction
	2 Description of the Location and the Data
	2.1 Location of the Experimental Region
	2.2 Description of the Data Set

	3 The Main Algorithm
	3.1 The Fundamental Diagram and the Critical Speed
	3.2 Using Robust Regression to Label Data Points
	3.3 Estimating the Breakdown Probability and Identifying the High-Performance Days

	4 Key Insights and Validation
	4.1 Results and Key Insights
	4.2 Validation

	5 Conclusion and Discussion
	References

	A Network Aware Resource Discovery Service
	1 Introduction
	2 Content Name System
	2.1 Hypernames
	2.2 CNS Servers
	2.3 The link Discovery Protocol
	2.4 CNS vs DNS

	3 Performance Results
	3.1 Scenario
	3.2 Sensitivity to Lookup Parameters
	3.3 Sensitivity to Deployment of CNS

	4 Further Developments
	References

	EthExplorer: A Tool for Forensic Analysis of the Ethereum Blockchain
	1 Introduction
	2 Blockchain Basics
	3 Ethereum
	4 EthExplorer
	4.1 System Design
	4.2 How to Use EthExplorer

	5 Observations on the Ethereum Blockchain
	6 Conclusion
	References

	A Queueing Model that Works Only on the Biggest Jobs
	1 Introduction
	2 Related Work
	3 The Queueing Model
	3.1 Stationary Analysis of the Model

	4 Jobs with Arbitrary Size Distribution
	5 Connection with Number Theory
	6 Conclusion
	References

	Performance Evaluation of Thermal-Constrained Scheduling Strategies in Multi-core Systems
	1 Introduction
	2 Proposed Model
	2.1 Abstract Thermal Model
	2.2 Workflow and Parametric Model
	2.3 Concrete Model

	3 Validation of Thermal Model
	3.1 Non-restricted Power Level Switches
	3.2 Fixed Power Levels

	4 Comparative Analysis of Heuristics
	4.1 Formal Model
	4.2 Comparative Trade-Off Analysis

	5 Conclusions
	References

	Bounding the Rate of Convergence for One Class of Finite Capacity Time Varying Markov Queues
	1 Introduction
	2 Description of the Approach
	3 Model Description
	4 Numerical Example
	5 Conclusion
	References

	Author Index

