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Foreword

It is about time! Or, perhaps more accurately, it is about “timing.” Safe and success-
ful short- and long-term weed management is highly dependent upon when weed 
seeds lose or gain dormancy, when they germinate, when seedlings emerge, how 
fast plants grow, when flowers and seeds form, differential sensitivities to disruption 
of growth and development during all phases of plant life cycles, and the fickle 
nature of herbicide fate. No farmer can understand all of these dependencies for 
even a single weed species. Nor, for that matter, can any individual weed scientist. 
Failure to comprehend and predict these dependencies helps explain why weeds 
remain common and usually unwanted residents of agricultural fields even after 
decades of intense efforts at controlling them. Indeed, by the year 2020, many spe-
cies of weeds have evolved resistance to various forms of weed control, and they 
now are not just common, but rampantly abundant in some fields. The sheer volume 
of literature in Weed Science published during the past two decades pertaining to 
resistance underscores the fact that this problem is increasing, not diminishing.

Even though no individual person understands all of the variables that affect any 
weed, groups of weed scientists can come close to doing so. These groups of scien-
tists can collaborate, conceptualize, experimentally test, and develop models that 
attempt to mimic weed behavior and control. Although models of weed growth and 
management were initiated many years ago, only some scientific groups continued 
pursuing this line of research to the present. Many other groups, however, curtailed 
modeling activities with the advent of genetically modified herbicide tolerant crops. 
Creation of herbicide tolerant crops represented truly remarkable scientific achieve-
ments, and these achievements revolutionized weed management beginning in the 
mid-1990s in countries that allowed GM crops to be grown. Unfortunately for farm-
ers and weed scientists in those same countries, evolution also is quite remarkable. 
Selection for weed resistance to herbicides used in GMO-based cropping systems 
occurred faster and was more widespread than anyone had anticipated. This was, 
indeed, a sobering development for Weed Science.

Weed resistance to herbicides is not confined to GMO-based cropping systems. 
Weeds evolve resistance to herbicides whenever and wherever overreliance on her-
bicides occurs, even in countries that banned GM crops. Consequently, the need for 
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understanding weed biology and management is worldwide in scope, and it is never- 
ending, as weeds will continue evolving as new cropping systems and weed control 
techniques are developed and implemented.

Fortunately, small pockets of weed scientists scattered across the globe recog-
nized the continued need for weed models even during the GMO revolution. The 
continued efforts, intellect, and dedication of those groups are reflected in this book, 
Decision Support Systems for Weed Management. The book is divided into four 
parts, each with multiple chapters: (1) Modelling: A Brief Introduction to Decision 
Support Systems, (2) Bio-Ecological and Site-Specific based models, (3) 
Environmental Risk Modelling, and (4) Weed Management Decision Support 
Systems: Study Cases. These parts explain to readers the general and technical 
aspects of modeling and its utility in Weed Science; historical and recent advances 
in the modeling of weed behavior and dynamics, crop–weed interactions, and site-
specific phenomena; assessments of unintended consequences of weed manage-
ment, especially herbicide fate and effects; the utility of several highly functional 
DSS models developed in Australia, Europe, and Latin America. These are truly 
exciting developments.

In my view, the individual chapters, its sections, and the book as a whole repre-
sent the twenty-first-century basis for integrated weed management. In other words, 
adoption of the concepts, if not the specific models, described in this book will help 
lead to the sustainable cropping systems that agriculture must have in the future. It 
is about time!

University of Minnesota Frank Forcella, 
St Paul, MN, USA

Foreword



ix

Preface

Weed management decision support systems (DSS) are increasingly important 
computer-based tools for modern agriculture. Nowadays, extensive agriculture has 
become highly dependent on external inputs, and both economic costs and the nega-
tive environmental impact of agricultural activities demand knowledge-based tech-
nology for the optimization and protection of nonrenewable resources. In this 
context, weed management strategies should aim to maximize economic profit by 
preserving and enhancing agricultural systems resources. Although previous contri-
butions focusing on weed biology and weed management provide valuable insight 
on many aspects of weed species ecology and practical guides for weed control, no 
attempts have been made to highlight the forthcoming importance of DSS in weed 
management. This book is a first attempt to integrate “concepts and practice” pro-
viding a novel guide to the state of the art of DSS and the future prospects, which 
hopefully would be of interest to higher-level students, academics, and profession-
als in related areas.

Buenos Aires, Argentina Guillermo R. Chantre 
Córdoba, Spain  José L. González-Andújar  
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Chapter 1
Mathematical Models

Niels Holst

Abstract Decision support systems (DSSs) rely on computational machinery in 
which mathematical models often constitute an important part. In this chapter, it is 
discussed which kinds of models are best suited for different kinds of DSSs. The 
practical steps involved in model construction are outlined, keeping in mind that 
model construction is a process that must be integrated into the larger software 
development project launched to construct the whole DSS. You are invited into the 
modeller’s workshop, as you follow the considerations involved in formulating a 
simple model of weed emergence. Two case studies close the chapter, demonstrat-
ing models of the population dynamics of annual weeds in a crop rotation and of an 
invasive weed. R scripts for all models can be found in the book’s online appendix. 
It is concluded that weed modellers must be prepared to work in multidisciplinary 
teams and that they should be better at considering the needs of the DSS users. For 
purposes of quality control, the mathematical models should be published open- 
source, while the DSS itself might be proprietary.

Keywords Decision support systems · Model construction · Software 
development · Weed population dynamics · Invasive weed · Weed modeller · 
R scripts
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1.1  Introduction

We build models to grasp the world and to manage our lives and surroundings. 
Whether in science or in everyday life, we express ourselves, we rationalise and we 
communicate by concepts that reflect our perspective on reality. We all have models 
of the world in our minds, whether we are humans—or bats (Nagel 1974). When we 
express models in the language of mathematics, we take our more or less fluffy 
concepts and dip them in the acid of mathematics. Whatever is left stands clearly 
written in equations. Then truly, what can be said at all can be said clearly 
(Wittgenstein 1922).

The disciplines of mathematical modelling and software engineering are essen-
tial to any decision support system (DSS). Mathematical models, which are con-
structed from mathematics and algorithms, constitute the wisdom of the DSS, while 
the DSS user interface makes that wisdom accessible in a language and operational 
mode that is convenient to the user. New DSSs are created in research and develop-
ment environments by teams comprising experts on the problem domain (e.g. weed 
control), together with modellers and software engineers.

In a professional setting, the whole software development process is played out 
according to a well-defined software development protocol, such as agile develop-
ment (Martin 2006). Ideally, in the early design phase of a DSS, the users and their 
needs are defined. Once the user problem domain has been delineated, the next step 
is to identify the modelling approach that will enable the development of models, 
which can provide information helpful to the user.

An unfortunate but common déroute in DSS development is to let the whole 
construction process take place in a closed forum of researchers and modellers, who 
believe that there is a real need for the DSS that they have in mind. When the fin-
ished DSS ultimately attracts little interest, they will blame the end users (e.g. the 
farmers for being too lazy to count weed seedlings and enter those numbers into the 
DSS). I wish to reiterate what has been said many times yet seems a surprisingly 
difficult advice to follow: Before developing a model, make clear what its purpose 
is. Add to that: Before making a DSS, make certain there is an actual need for the 
guidance it will offer, and that end-users will pay the price in time and money needed 
to use the DSS. Private companies would call it a business plan.

To make certain that an initial brainstorm will reveal the full range of possible 
DSS designs, the matrix in Table 1.1 can be used as a guide. The matrix is defined 

Table 1.1 A design matrix for decision support systems (DSSs) with different scopes

Query Q&A Scenarios
What’s the status? What should I do? What if?

Tactics 2.1 2.2 2.3
Strategy 3.1 3.2 3.3
Policy 4.1 4.2 4.3

Numbers refer to the subsections which explore these nine types of DSS further
Question and answer (Q&A)

N. Holst
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by Conway’s (1984) typology which classifies decisions at either tactical, strategic 
or policy level vs. the kind of the support needed, whether it’s a status query, a ques-
tion and answer session or an exploration of what-if scenarios. In the following, I 
will discuss which modelling approaches are most appropriate for the nine classes 
of DSS resulting from the combination of the two typologies in Table 1.1. Two case 
studies and a few recommendations conclude the chapter.

1.2  Models to Support Tactics

Tactical decisions are often the easiest to support with a DSS and also the easiest for 
which to confirm that a model provides accurate advice. Tactical decisions define a 
short time frame and a narrow spatial scale (e.g., weed management decisions 
within a given season and for a specific field). Long-term and larger-scale conse-
quences of one’s actions are deliberately ignored. The typical decision maker is a 
farmer or technical advisor.

1.2.1  Tactical Queries

Basic queries concern weed status: Which species have emerged? At which densi-
ties? In which fields? Where in the fields? Previously, these questions were difficult 
to address except by personal observation, but with the advent of artificial vision 
and multispectral imaging, weed maps can now be drawn with increasing precision 
from videos captured by Global Positioning System (GPS)-enabled field equipment 
or from more or less autonomous rolling or flying drones. The development of 
mathematical models to extract patterns, such as weed species distributions, from 
digital images is a ripe research field driven by demands outside agronomy (e.g. 
military intelligence). This means that a DSS should be designed with future 
changes in mind; it should be easy to plug in new methods for pattern recognition 
as they become available.

1.2.2  Tactical Q&A

When the current state of weed pressure has been assessed, whether through high- 
tech monitoring, visual scouting or personal experience from earlier growing sea-
sons, the question is what to do about it? Thus, a farmer may ask whether weed 
control is necessary, and, if so, which herbicide/s and dosage/s will provide efficient 
control or minimise ecotoxicological side effects?

The model to answer such questions would be based on a database of herbicide 
efficacy for different weed species, maybe even parameters for dose-response 

1 Mathematical Models
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relations and corrections for weed growth stage and crop. The simultaneous opti-
misation on several criteria might be addressed best by optimising each sepa-
rately, and then let it over to the farmer to take the final decision, weighing the 
options.

The models defining the optimisation problem might be based on simple regres-
sion models that describe dose-response-price-environment relations. However, 
with all the possible combinations of weed species, crops, herbicides and non- 
chemical treatment options, these models quickly turn very data hungry. Sensible 
ways of cutting down on this combinatorial explosion should be addressed early in 
the process of model development.

In precision agriculture (PA), questions must be addressed at a fine spatial reso-
lution within each field. This will make the optimisation problem more difficult, 
maybe difficult even to define. Numerical optimisation in itself is a classical disci-
pline within mathematics, physics and computer science. Please, see Chap. 3 of this 
section for a detailed description on numerical optimisation.

1.2.3  Tactical Scenarios

We most often think of scenarios as something distant and far reaching, but even 
within the scope of a single field in a single season, different scenarios can be envis-
aged at the time of weed control. Thus, a farmer may ask, which among the avail-
able control options will give the highest yield, by grain or by net income? If we get 
a dry spring and I do not control the weeds, what will the yield loss be? How much 
should the price of grain change to make one control tactic economically better than 
another?

With scenarios, DSS models become more demanding. Maybe the total range of 
possible outcomes cannot be described by regression models alone. More complex 
simulation models might become necessary. This will incur additional costs in 
terms of model development and assessment of model reliability. A DSS in scenar-
ios mode easily gets more speculative, and the user interface more difficult to design 
to strike the right level of detail and functionality.

1.3  Models to Support Strategy

While tactical decisions are taken in the season as a reaction to imminent weed 
problems, strategic decisions can be made off-season usually as a simulation exer-
cise. The scale of strategic decisions extends into weed management over several 
years in the same field and across all the fields belonging to a farm or a landscape. 
Invasive weeds and the management of weeds in natural habitats are problems that 
necessitate strategic (and policy) level decisions. When we are developing a DSS 
for strategic planning, we should be careful to recognise that weed management 

N. Holst
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forms only a small part of farm management and the whole-farm organisation. We 
should always think carefully about the interface between the DSS and other farm 
management software to achieve a smooth integration and convenience of use. The 
typical user is an agricultural consultant.

1.3.1  Strategic Queries

The necessity of a strategy, rather than just simple tactics, for weed management 
becomes obvious when weed problems escalate above the norm. Common causes 
are a reduced diversity in crop rotation (in the extreme case, monoculture), an over-
reliance on a small subset of herbicides with similar modes of action and, ulti-
mately, the advent of herbicide resistance. For example, a DSS could help by 
identifying and predicting imminent weed outbreaks. If monitoring data on weed 
occurrence were logged, together with a log of field activities, then an ideal DSS 
could issue early warnings which could then inspire changes in weed management 
strategies. Models for such a DSS would incorporate weed population dynamics 
analysed either statistically or numerically through simulation. However, it is doubt-
ful whether farmers/advisers really need an early warning system for weeds. Field 
infestations are obvious to the naked eye, and weed problems will usually announce 
themselves in a few hot spots before large areas suffer from the infestation. At land-
scape level, a DSS taking input from remote sensing could point out patches of 
invasive weeds.

1.3.2  Strategic Q&A

An aspect of weed status that is important for strategic planning yet remains diffi-
cult to ascertain is an answer to the query: What is the current prevalence of herbi-
cide resistance? It still seems far into the future that a DSS, fed with drone-collected 
biomolecular characteristics of weeds, could provide this information. The models 
underpinning such a DSS would be in the reign of bioinformatics.

A more approachable strategic question might be: will this crop rotation control 
this weed? Or, if I choose this crop rotation, which weed species would be prevented 
and which would be promoted? Or, with this rotation of herbicides, will I prevent 
herbicide resistance building up? A model to answer these questions could be a 
rather simple simulation model working in time steps of cropping seasons. The 
model would consist of difference equations describing the mechanisms at a rather 
coarse level. Even so, it might prove difficult to find solid empirical data to estimate 
all model parameters. The best course is then to include parameter uncertainty in the 
model (e.g. by supplying min-max values for all parameters) and use proper meth-
ods to derive the resulting uncertainty in model outputs (Saltelli et al. 2008).

1 Mathematical Models
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1.3.3  Strategic Scenarios

A DSS could provide tools to design a complete weed management strategy, includ-
ing crop rotations and herbicides, or the full complement of methods used in organic 
farming. Outputs could include economic performance, yields, weed densities, 
herbicide- resistance prevalence and environmental side effects. Such a DSS might 
acquire the flavour of a computer game, in which the user tries to win by fulfilling 
as many goals as possible, accepting trade-offs according to personal preferences. 
The model underlying this DSS will be more complex than the previous. A simula-
tion model is clearly called for, and even more detail is needed, reflecting the detail 
of the scenarios and the outputs.

1.4  Models to Support Policy

Policy models are for decision makers at the highest organisational level. They 
might be decision makers at international, national or regional levels, or decision 
makers working for the interest of non-governmental organisations (NGOs), such 
as farmer organisations or nature conservation societies. For a modeller, it can be 
a frightening experience to develop models that will feed into decision processes 
affecting society at large, even though economist modellers seem less challenged 
by this prospect. Policy models play such a powerful role in modern society that 
they have been put in their own category dubbed post-normal models (Funtowicz 
and Ravetz 1993). For policy models, it is of particular importance to include 
uncertainty in model inputs (and consequently, in model outputs) to prevent abuse 
of the models by overzealous policymakers. In a democratic society, the models 
should be open-source since they are used to formulate arguments in the pub-
lic debate.

1.4.1  Policy Queries

At policy level, queries are made to identify problems and motivate the formulation 
of policies. Thus, one may ask, what is the current distribution of an invasive weed? 
What is the current use of herbicides per year, and in which crops are they applied? 
Queries such as these can often be translated into queries into databases. Thus, the 
underlying model is within the range of software engineering, maybe overlaid with 
descriptive statistics.

N. Holst
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1.4.2  Policy Q&A

Weed management policies are formulated with an eye to political goals, preferen-
tially those that can be formulated in terms of performance indicators: production 
quantity and quality, farmer economy, environmental side effects, etc. Political 
instruments are foremost economical (taxes, subsidies) but also include indirect 
measures such as education and research. This means that even the simplest ques-
tion (e.g. if herbicide taxes were increased in proportion to their ecotoxicity, what 
are the consequences on farmer economy and the environment?) will involve sev-
eral fields of knowledge (agronomy, ecology, economics, sociology). The corre-
sponding models will tend to be rich in assumptions and parameters estimated by 
expert opinion. Model outputs will be equally rich and challenging to condense into 
information useful to the decision maker.

It is very difficult to construct a policy model with a clear rationale for which 
components and mechanisms should be included and at which level of detail. Model 
uncertainties must be included in the DSS outputs, but there is a high risk of uncer-
tainty being caused by structural faults (i.e. the exclusion or misrepresentation of 
key elements and key processes), which cannot be diagnosed by formal methods but 
only by scientific argument. Structural faults might lead to biased outputs, as will be 
pointed out soon enough by political combatants. The modeller must be prepared to 
defend in public the scientific base of a policy model.

1.4.3  Policy Scenarios

When even the simplest policy question leads to models of high complexity, the 
modelling of policy scenarios will lead to even higher complexity. We quickly reach 
the limit of what can be modelled with some confidence—and within a weed 
research budget. The conscientious modeller confronted with a demand for a model 
of such immense complexity should consider to decline the order.

A problem domain bordering that of weed management is pesticide legislation 
and regulation. Legislators and land-use administrators are in need of information 
on the fate of herbicides in the environment (e.g. persistence, leakage to ground and 
surface water) and on the magnitude of their unwanted side effects (ecotoxicologi-
cal and human toxicological). A DSS to support these policymakers would incorpo-
rate models of the physicochemical pathways of herbicides in air, soil and biota and 
the derived effects on exposed populations (by necessity including only a few key 
species from selected taxa). The information provided by such a DSS could be used 
to formulate laws and regulations on herbicide use, including the possible banning 
of a specific herbicide. Due to the vast economical interest in herbicides, repre-
sented by farmers and pesticide companies, and the skepticism of NGOs represent-
ing a variety of interests, the modeller should be prepared that the DSS will be 
playing part in a complex political theatre.

1 Mathematical Models
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1.5  Model Development

For models that consist of a few regression equations or other statistical measures, 
the modelling procedure falls inside common research practice. The only challenge 
will be to communicate with software developers on how to embed the statistics in 
a DSS. For models that are simply queries into a database, the software engineer is 
in command and will need the weed modeller only as a consultant to assist in the 
proper interpretation of the data.

The really demanding models are simulation models. Since they will need to be 
embedded in dedicated DSS software, their implementation will become an integral 
part of a commercial-scale software development project. The best software design 
will ensure a loose coupling (Seemann 2012) between the DSS user interface and 
the simulation model, both kept in separate modules. This will allow independent 
development of the DSS and the model. Furthermore, it will allow the DSS code to 
be proprietary (i.e. owned by a company or institute) and the model code to be open- 
source and thereby open for scientific publication and public scrutiny.

Model development goes through a series of steps, generally acknowledged in the 
modelling community and outlined in the following: formulation, parameter estima-
tion, verification, testing, validation, uncertainty analysis and sensitivity analysis.

1.5.1  Formulation

Simulation models are formulated in the language of mathematics and logic. They 
should be based on the theoretical concepts of the topic and should re-use earlier 
models or sub-models when possible. If the model contains many interacting com-
ponents, consider software engineering methods to manage the complexity 
(reviewed by Holst and Belete 2015).

An important part of model formulation is parameterisation. This term is most 
often used in the wrong sense to mean ‘parameter estimation’ (see next subsection). 
What it means properly is to ‘formulate in terms of parameters’. For example, you 
may need a hump-shaped curve to represent a process such as seedling emergence 
rate through time (Fig. 1.1 top). You can formulate that as a parabolic curve using 
the standard parameterisation

 y ax bx c= + +2

 (1.1)

This parameterisation, however, has the problem that none of the parameters 
represent a biological feature of seedling emergence. A better parameterisation 
describes the curve by its start (xbegin) and end (xend) on the x-axis and by its maxi-
mum on the y-axis (ymax). Equivalent to Eq. (1.1), we get

 

y y
x x x x

x x x x
=

−( ) −( )
−( ) −( )

4 max

begin end

begin end end begin  

(1.2)

N. Holst
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Fig. 1.1 A hump-shaped curve to describe seedling emergence rate (Eq. 1.3, top) and accumulated 
seedling emergence (Eq. 1.4, bottom) with xbegin = 160, xend = 174 and ytotal = 80. Implemented in 
the dsswm-1-1.R script

Yet, as you begin to use this equation, you may realise that ymax is not a convenient 
parameter. The area under the curve, expressing total emergence (ytotal), would be a 
much better parameter. Hence, you proceed to integrate Eq. (1.2) and replace ymax 
with ytotal and finally get

 

y y
x x x x

x x x x
=

−( ) −( )
−( ) −( )

6
2total

begin end

begin end end begin  

(1.3)

The benefits of this parameterisation are plenty. The user of the model (foremost 
yourself) can now estimate, communicate and change the parameters with a clear 
rationale. Moreover, in a sensitivity analysis, the uncertainty induced by parameters 
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xbegin, xend and ytotal will have a direct biological interpretation. Compare that to model 
uncertainty caused by a, b and c (Eq. 1.1) which would be difficult to interpret.

Note that both Eqs. (1.1) and (1.3) have three parameters. Thus, they have the 
exact same level of complexity (in fact, they are equivalent). You might want to add 
an additional parameter to Eq. (1.3) to obtain a skewed emergence curve, but with 
every parameter you add to a model, you incur an increasing debt of parameter 
estimation. If the curve is used to describe the course of seedling emergence in the 
field, there will be so many mechanisms not accounted for (weather and soil being 
the most important ones), that further detail is not merited. The detail of model for-
mulation should match the detail in the information available about the real system. 
Modelling of the more intricate details of seed bank dynamics is dealt with in 
Chap. 4.

The curve (Fig. 1.1 top) has a superficial similarity with the normal distribution 
(which would also demand three parameters: mean, standard deviation and y scal-
ing), but Eq. (1.3) has the advantage, that it has well-defined zero limits and is easily 
integrated if needed (as seen in the following, Eq. 1.4). In comparison, the normal 
distribution never reaches zero (an additional parameter would be needed), and it 
has no analytical integral.

1.5.2  Parameter Estimation

Often, model parameters are estimated by standard statistical procedures, such as 
linear or nonlinear regression. For the emergence model (Fig. 1.1 top), for example, 
you could regress observed cumulative emergence (Y) on the integral of Eq. (1.3) 
(Fig. 1.1 bottom):

 

Y
y x x x x x

x x x x
=

− −( ) −( )
−( ) −

total end begin begin

end begin begin e

3 2
2

nnd

,
( )2

 

(1.4)

which expands to a third-degree polynomial. The estimated polynomial coefficients 
can be used to calculate the three parameters: xbegin, xend and ytotal.

In an early stage of model development, you should consider whether the DSS 
ought to include uncertainty. If so, each uncertain parameter must be described by a 
distribution (e.g. uniform between min-max values or normal defined by mean and 
standard deviation). Be suspicious, in particular of parameter values that are expert 
opinions (guesses). Ask the expert up front for parameter ranges or distributions 
rather than simple point values.

In the case of parameters estimated by regression of equations such as Eq. (1.4), 
you cannot always use the standard error of the coefficients to generate random 
parameter values independently. If the standard errors of the regression parameters 
cannot be considered independent, you must use the regression model itself to draw 
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random values from the predicted distribution of y given x. For the particular case of 
the emergence model, however, it does seems reasonable that the three parameters 
vary independently, though you might choose to replace xend with xbegin + xduration, 
where xduration designates the duration of the emergence period.

Some parameters are best estimated from the model itself, a process commonly 
called calibration. This is a somewhat dubious activity: You make the model fit your 
expectations, usually empirical data, by fine-tuning one or several model parame-
ters. The more parameters you calibrate, the less confident you should feel about the 
general applicability and robustness of the model.

1.5.3  Verification

In model verification, you check that model behaviour makes sense. For this pur-
pose, you define a series of parameter sets (often considered model scenarios) of 
increasing complexity and proceed, more or less formally, to check that model out-
puts look right. In other words, you check that model outputs could be true, that the 
behaviour of the model makes sense. Negative, zero or infinite weed densities are 
typical examples of model fragility discovered during verification. You proceed by 
mending the model as needed to pass verification. Do find the root cause of any 
problem and implement a scientifically sane solution. Do not thoughtlessly use this 
solution, often hiding in model code, if (x < 0) then x = 0, or other hacks like it.

1.5.4  Testing

Testing is an important discipline in computer science, even to the degree that the 
whole software development process can be centred around it (Beck 2002). Software 
testing is not a part of model development as such, but the testing of the DSS easily 
becomes intertwined with model verification. As a modeller, you should be pre-
pared to supply the software engineers with unit tests: Each unit test defines the 
output values expected from certain input values. This makes it possible to automa-
tise the test procedure. A less favoured method, nowadays, of software quality 
assurance is debugging, which is an unsystematic stress test traditionally carried out 
by the programmer.

1.5.5  Validation

Validation does not mean proof of model correctness; rather, it is the comparison of 
model outputs with independent field data. Thus, validation aims to convince peers 
that there is a robust and rather accurate match between model predictions and the 
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real world. It is wise always to make a plan for model validation in the early phase 
of model development. The model design should be accommodated to make a final 
validation possible, often by restricting the model’s scope and the modeller’s 
ambitions.

1.5.6  Uncertainty Analysis

If some model parameters are best described not by a single estimate but by a dis-
tribution (e.g. normal), reflecting uncertainty due to statistical error or natural (irre-
ducible) variation, then model output will be distributed as well. Users will be 
familiar with uncertainty from weather forecasts which may predict, for example, a 
20% chance of rain tomorrow. Likewise, a weed DSS may predict, for example, that 
a yield loss >10% is highly improbable due to a risk level of only 1%. Models that 
include uncertainty make most of their assumptions transparent as they shine 
through in the recommendations issued by the DSS. Since DSSs are meant to be 
reliable tools, one should not be shy of situations which produce a very wide range 
of responses. Sometimes, the future may be unpredictable in essence. That informa-
tion can also be useful.

1.5.7  Sensitivity Analysis

Sensitivity analysis is a step following up on uncertainty analysis. In sensitivity 
analysis, the uncertainty in model outputs is apportioned to the inputs thus identify-
ing those inputs, that are most decisive for model uncertainty (Saltelli et al. 2008). 
Sensitivity analysis is usually an academic activity related to the scientific publica-
tion of the model, but it could potentially be useful as a DSS feature. The user could 
be told how much certainty would be gained in DSS outputs by giving more precise 
estimates of, for instance, weed density or herbicide resistance.

1.6  Case Studies in Model Development

1.6.1  A Difference Equation Model for Annual Weeds

Weed populations tend to be highly dynamic; fast establishment and rapid prolifera-
tion are part of being an r strategist. Once established, the soil bank of seeds or 
shoots becomes a constant source of potential outbreaks. The long-term manage-
ment of weeds is a strategic problem raising questions such as: Which level of seed-
ling mortality will be necessary to reduce the infestation? Or, will this change of the 
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crop rotation help to regulate the weeds? Modellers themselves have for a long time 
been prolific developing models to answer such questions (Holst et al. 2007). In the 
following, I will go through the steps of developing a classical iterative model which 
moves forward in steps of 1 year:

 
S S E P= −( ) − +( )1 µsoil prev prev prev  

(1.5)

The equation computes this year’s seed bank (S; m–2) from the previous year’s seed 
bank (Sprev; m–2), emergence (Eprev; m–2) and seed production (Pprev; m–2), while 
undergoing a certain basic seed bank mortality (μsoil; y–1).

From the seed bank, a certain proportion (ϵ; y–1) will emerge as seedlings (E; m–2):

 E S=   (1.6)

of which again a certain proportion (μcontrol; y–1) will be killed by weed control 
measures:

 
N E= −( )1 µcontrol  

(1.7)

to leave some plants surviving (N; m–2) to produce new seeds (P; m–2):

 

P
f
f f

f N

=
+

−
∞

∞1 1

1  

(1.8)

The two parameters describing fecundity are f1 (seeds per plant), which is the 
expected number of seeds produced by one plant growing in competition with the 
crop only, and f∞ (seeds per m2), which is the maximum number of seeds produced 
in competition with the crop by an infinite density of weed plants.

It is not obvious from this formulation (Eqs. 1.5–1.8) that the model is composed 
of difference equations. A mathematically more concise formulation makes this 
clear. Equation (1.6), for example, could be written more correctly as

 ∆ ∆E S t=   (1.9)

where ΔE (m–2) expresses the change in E, i.e. the difference to be added to E over 
the time step Δt = 1 year. Note that multiplication with Δt is necessary to make the 
units right; Equation (1.9) corrects Eq. (1.6) also in that sense. However, here, we 
will maintain the slightly incorrect formulation (Eqs. 1.5–1.8) as this is commonly 
found in literature. The left-out multiplications with 1 will have no effect other than 
to annoy finicky mathematicians, who would in any case likely prefer a differential 
equations formulation. To continue with Eq. (1.6) as an example, this would 
look like
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dE

dt
S= 

 
(1.10)

If you are mathematically skilled, the option stands open for you to build a differen-
tial equations model, rather than a difference equations model, but for most weed 
modellers, this is not the case.

Equations (1.5)–(1.7) are all linear which makes them easy to comprehend. 
Equation (1.8) was given a nonlinear form to take into account density dependence; 
fecundity per plant decreases with increasing plant density until an asymptote is 
reached.

Always verify that the shape of your equations makes sense in the real world. For 
a nonlinear equation, make a plot to ascertain its shape and check its limits both 
graphically and algebraically. In the case of Eq. (1.8), we get meaningful boundary 
conditions:

 

P f N

P f N

P N

→ →∞
= =
→ →

∞ for

for

for
1 1

0 0  

(1.11)

Not all verification turns out as successful. For instance, Zwerger and Hurle (1989) 
proposed an alternative to Eq. (1.8):

 P Nae bN= −
 (1.12)

for which P → 0 for N → ∞. At high weed density, seed production P (m–2) goes 
towards zero. A self-defeating weed!

A model consisting of Eqs. (1.5)–(1.8) is called an iterative model because you 
run a simulation by repeatedly computing Eqs. (1.5)–(1.8), thereby updating the 
four state variables of the model (S, E, N, P) iteratively in time steps of 1 year. It is 
a stage-structured model of population dynamics since the population is divided 
into separate life stages (S, E, N) which are simulated dynamically.

A model needs to be started from some initial state. In this case, we need initial 
values for Sprev, Eprev and Pprev. More importantly, we need to estimate the values of 
the model parameters. For this model, there are only few parameters: μsoil, ϵ, μcontrol, 
f∞  and   f1. The task of parameter estimation seems simple until you realise that 
some of the parameters are likely to depend on the crop. Moreover, they are all lia-
ble to differ between years and locations. To accommodate this inherent variability 
of the parameters, we will define their values as ranges rather than point estimates, 
some of them specific to the crop (Table 1.2).

The values in Table 1.2 are the expected average values, originally given without 
indication of their standard errors (Zwerger and Hurle 1989). However, both f̂  and 
̂  will certainly vary markedly between fields due differences in soil and weather. 
To capture this uncertainty in the model, we pick values at random inside intervals 
defined as
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Table 1.2 Weed life history parameters from Zwerger and Hurle (1989), except∗ from CABI (2019)

Spring barley Maize Winter wheat Any crop

Alopecurus myosuroides

Fecundity f̂( )
∗1000 ∗1000 ∗1000

Emergence ̂( )
0.040 0.034 0.050

Soil mortality (μsoil) 0.81
Avena fatua

Fecundity f̂( )
∗200 ∗200 ∗200

Emergence ̂( )
0.240 0.240 0.230

Soil mortality (μsoil) 0.87
Fallopia convolvulus

Fecundity f̂( )
192 1855 93

Emergence ̂( )
0.043 0.020 0.078

Soil mortality (μsoil) 0.16
Galium aparine

Fecundity f̂( )
3 100 40

Emergence ̂( )
0.036 0.010 0.037

Soil mortality (μsoil) 0.20
Lamium purpureum

Fecundity f̂( )
32 300 280

Emergence ̂( )
0.013 0.017 0.023

Soil mortality (μsoil) 0.16
Thlaspi arvense

Fecundity f̂( )
60 630 330

Emergence ̂( )
0.073 0.021 0.043

Soil mortality (μsoil) 0.08
Veronica persica

Fecundity f̂( )
150 200 150

Emergence ̂( )
0.079 0.066 0.030

Soil mortality (μsoil) 0.50

f̂ : seeds per plant; ̂ : y-1; μsoil: y-1
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Limits for random numbers are conventionally closed-open; [a; b[ designates an 
interval including a and excluding b.

For soil mortality (μsoil), we will use the point estimates (Table 1.1) without any 
variance. We will assume that the efficacy of weed control vary quite much picking 
random values, μsoil ∈ [0.6; 0.9[.

Since we let four of the parameters vary randomly, our model is a stochastic 
model; it will not always give the same result. Hence, we have to run it many times 
to assess the uncertainty in its predictions (Fig. 1.2). During model verification, it 
was found that two of the weed species were dying out (ALOMY, AVEFA). Hence, 
the parameter values from Zwerger and Hurle (1989) were replaced with values 
roughly taken from CABI (2019) (Table 1.2).

The first impression of Fig. 1.2 is that the uncertainty is much larger for some 
species (ALOMY, AVEFA, VERPE) than for others. Note that two units on the 
y-axis correspond to variation by a factor of 100. It could be of interest to know 
which of the model parameters are causing this huge variation. This could be 
resolved by a sensitivity analysis (Saltelli et al. 2008). Some species exhibit fluctua-
tions clearly provoked by crop rotation (FALCO, THLAR), more clearly seen for 
seedling than for seed bank density. This makes sense because different weed spe-
cies are known to emerge either in spring or autumn sown crops, or in both.

During the 24 years covered by this simulation, most species are attaining an 
equilibrium density, THLAR most quickly, AVEFA most slowly. It is difficult to 
imagine, however, how knowledge of the equilibrium density could be interesting 
from a DSS perspective. We would rather like to help the farmer to achieve the situ-
ation illustrated by GALAP for which density is decreasing in this scenario; it is a 
weed under control. It would be wise though to consult with weed experts and dis-
cuss whether this GALAP scenario seems realistic (a belated verification of 
the model).

Simulation experiments with the crop rotation and a sensitivity analysis could help 
suggest effective control strategies for these weed species. The model could be incor-
porated into a DSS, allowing the farmer/advisor to address problematic weed species 
through strategic means, rather than the purely tactical which entails giving up on 
controlling the seed bank (left-hand side of Fig. 1.2) and just limiting its expression 
(right-hand side of Fig. 1.2), which after all is the ultimate cause of yield loss.
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Fig. 1.2 The result of 30 simulations of the crop rotation, maize-winter wheat-spring barley. 
Yellow curves show smoothed averages. For full species names, see Table 1.2. All populations 
started with ten seeds per m2. Model formulated in Eqs. (1.5)–(1.8) and implemented in the 
dsswm-1-2.R script
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1.6.2  A Matrix Model for a Perennial Weed

Matrix models are a class of models which summarises the life history parameters 
of a population in a single matrix (Table  1.3), a so-called Leslie matrix (Leslie 
1945). In the columns, you find the fate over one time step of individuals according 
to life stage. Column sums <1 account for mortality, and column sums >1 account 
for reproduction. Likewise, rows show the origin of individuals entering the differ-
ent life stages. Numbers below the diagonal describe life stage progression; above 
the diagonal, life stage regression; and on the diagonal, life stage conservation. In 
this concrete matrix, the seven stages are a mixture of life stage, age and size classes.

Since this is a deterministic model, only one run is necessary to explore what 
happens after an initial introduction of ten seeds (Fig. 1.3). Notice that the model is 
linear which means that it gives the same result, whether we consider the simulated 
population dynamics pertinent to the whole population or to, say, 1 m2.

The two fields seem clearly different (Fig.  1.3). In field L, the population is 
increasing, approaching exponential growth after c. 10 years. In field J, the popula-
tion is decreasing, approaching a negative exponential decline after c. 5 years. In 
theory, these matrix models will converge towards a state in which all life stages 
grow (or shrink) exponentially with the same growth rate, namely the intrinsic rate 
of increase (r) known from the classical model of unlimited growth:

 
N N rtt = ( )0 exp  

(1.13)

When r has stabilised, so has the relative proportion of the population in each stage; 
the stable stage distribution has been reached. It follows that when the stage distri-
bution is not stable, then r is not stable either. This is obvious from the simulation 
(Fig. 1.3); otherwise, all the points would have fallen on a straight line. Note though 
that the y-axis transformation bends the exponential decrease in field J towards zero. 
The population density in field L initially oscillates (Fig. 1.3), but the reason behind 
these oscillations is different than for the oscillations in the previous model 
(Fig. 1.2). Here, it is due to the unstable stage distribution, and there, it was due to 
crop rotation.

Leslie matrix models can be analysed mathematically which was part of their 
original motivation. Thus, the first eigenvalue of the Leslie matrix equals exp(r), 
and the first eigenvector holds the stable stage distribution. For fields L and J, we get 
r = 0.18 y−1 and r =  − 0.49 y−1, respectively, which match the values arrived at by 
Werner and Caswell (1977).

The lines produced by these growth rates on a log scale (Eq. 1.13) are shown in 
Fig. 1.3, from the time about when the populations reach their stable stage distribu-
tion (again, the line is distorted on the approach towards zero for field J). The initial 
population size (N0 in Eq. 1.13) was chosen to let the line pass through the average 
population size through years 10 to 20 for field L and through years 5–20 for field 
J. The stable stage distributions are computed in the dsswm-1-3.R script.
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Seed0 Seed1 Seed2 RosetteS RosetteM RosetteL Flowering

Field L
Seeds0 0 0 0 0 0 0 503
Seeds1 0.43 0 0 0 0 0 0
Seeds2 0 0.97 0 0 0 0 0
RosettesS 0.01 0.021 0.005 0 0 0 0
RosettesM 0.036 0.003 0 0.19 0.253 0 0
RosettesL 0 0 0 0.07 0.105 0.15 0
Flowering 0 0 0 0 0.002 0.517 0

Field J
Seeds0 0 0 0 0 0 0 476
Seeds1 0.423 0 0 0 0 0 0
Seeds2 0 0.987 0 0 0 0 0
RosettesS 0.024 0.009 0.006 0.007 0 0 0
RosettesM 0.044 0 0 0.05 0.158 0 0
RosettesL 0.001 0 0 0.002 0.008 0 0
Flowering 0 0 0 0 0 0.25 0

Table 1.3 Leslie matrices for Dipsacus sylvestris (from Werner and Caswell (1977)) estimated for 
two fields, L and J

Seeds of age 0, 1 or 2 years. Rosettes of size: small, medium or large. Diagonal cells greyed 
for easier reading

Fig. 1.3 The result of a simulation starting with ten seeds of Dipsacus sylvestris running for 
20 years based on Leslie matrices for field L and J. Seed bank numbers are the sum of all three age 
classes of seeds. Rosette plants are the sum of all three size classes of plants. Orange lines show 
the asymptotic population growth rate. Implemented in the dsswm-1-3.R script
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The outcome of the model is interesting from a weed management point of view. 
The weed population in field J cannot maintain itself, so if by proper management, 
the conditions in field J could be mimicked in other fields, where the weed is a prob-
lem (such as in field L), then a solution would have been found. Werner and Caswell 
(1977) suggested that the high vegetation density in field J was outcompeting 
the weed.

Maybe the fields are representative of two stages in the natural succession going 
from young and susceptible to invasion (field L) to old and resistant to invasion 
(field J). The model tells us nothing about how quickly that succession may happen 
(another model would be needed). Still, the model could be used to predict the effect 
of control measures, such as grazing, which could possibly reduce the survival rate 
of the rosette stages and maybe the fecundity of flowering plants. It could also pre-
dict the fate of the population if all flowering plants were uprooted before seed set, 
simply by setting the value in the upper right corner of the Leslie matrix equal 
to zero.

1.7  Conclusions

DSS software provides a user interface to mathematical models that formulate the 
scientific knowledge relevant to the user’s decision-making. The models are hidden 
for the user who operates them more or less unwittingly through the knobs and but-
tons of the DSS dashboard. Mathematical models can be as simple as the algorithms 
that define a data table query or as complicated as an agro-ecosystem or agro- 
economic simulation model.

Modellers should be prepared to collaborate within a multidisciplinary team dur-
ing DSS construction. At the outset, (1) the whole team should define the domain 
addressed by the new DSS (Table 1.1); (2) the software engineers should choose a 
software development methodology; and (3) the modellers should design a model 
that will be amenable to validation and preferentially uncertainty analysis too. The 
final model should live up to scientific standards and be published scientifically, 
preferentially with full access to the open-source code.
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Chapter 2
Introduction to Decision Support Systems

José L. González-Andújar 

Abstract Decision support systems (DSSs) are computer programs that, by using 
expert knowledge, simulation models and/or databases, are of assistance in the 
decision- making process as they offer management recommendations and/or 
options. The principal aim of a DSS is to improve the quality, speed and effective-
ness of decisions. Since their beginnings in the 1960s, DSSs have been established 
as being an effective decision-making tool in different areas including agriculture. 
Weed science has not been immune to their influence, and since the end of the 
1980s, a batch of DSSs have been developed towards the recognition and identifica-
tion of seeds and seedlings, herbicide selection and the economic assessment of 
management strategies. Despite being powerful tools, DSSs have certain constraints 
and also a given resistance to their use. I hope that this chapter will serve to give a 
general insight into DSSs and their use in weed science, as well as to encourage the 
spreading of these systems in order to establish sustainable agriculture.

Keywords Decision-making · Information technology · Model · Data base · User 
interface · Agriculture · Herbicide · Agriculture · Computer-based systems

2.1  Introduction

Humans, as rational beings, make decisions between possible alternatives for solving 
conflicts, problems or proposals to be made in the future. This act of human intelli-
gence requires a process of analysis and discernment called ‘decision-making 
process’.

Ever since humans have existed on the earth, they have had to face making deci-
sions, so it is difficult to imagine a field of a greater transcendence to humankind 
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(Chen et  al. 1999). The decision-making process has been inherently linked to 
human behaviour since ancient times. There is no doubt that the first human beings 
had to make decisions about the difficult tasks of feeding and protecting themselves 
in order to survive. Centuries later, as human settlements began to take shape due to 
the change towards the sedentary lifestyle, the activities became more elaborated as 
the groups grew and interacted with each other. Thus, the complexity of decision- 
making enormously increased.

In everyday life, we are constantly confronted with situations that we do not 
know how to resolve. Faced with a problem, it is necessary to make a decision (or 
not to make one). When doing so, people use their previous knowledge and experi-
ence, weighing up the consequences that each alternative will have, and then they 
choose that which appears to be sufficiently rational. The idea is to obtain the best 
result that, sometimes, involves maximizing a product to be obtained, or minimizing 
certain consequences of the action. In this process, it is also possible to predict 
future problems resulting from current decisions and even to foresee future ones. 
Uncertainty is also part of the decision-making process, and it is there that our intel-
ligence is demonstrated.

The quality of decision-making is often influenced by the information available, 
so, frequently, the ‘best decision’ is not made due to the lack of necessary data, or 
due to the fuzziness or difficulty of the data process, or even due to lack of necessary 
time of analysis.

As civilization has evolved so have science and the art of making decisions 
(Coulson and Saunders 1987). Nowadays, computers have a great capacity for 
extracting precise, concise and relevant information through the use of databases 
and data managers or processors. Data processors perform the task of selecting, 
filtering and presenting information to the user in an easy-to-use way. Thus, what 
has been called ‘a lack of information due to an excess of it’ is prevented. Since 
computer technology burst into human society, diverse tools have been developed 
with the aim of helping people to resolve their oldest problem: decision-making. 
These tools are generically denominated decision support systems (DSSs).

2.2  Definition and History of Decision Support Systems

2.2.1  Definition

It is no easy task to choose a definition of DSS among the many found in the litera-
ture. Actually, ‘decision support system’ is a highly generic term for which there are 
numerous definitions (Keen and Scott-Morton 1978; Bonczek et al. 1981; Schmoldt 
and Rauscher 1996; Sprague 1980, etc.). A DSS can be described as a computer 
system (software-, app- or weed-based products) that, through using knowledge 
from experts, simulation models and/or databases, helps in the making of decisions 
by providing management recommendations and/or options (Knight 1997). The 
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main objective of a DSS is to improve the quality, speed and effectiveness of deci-
sions made by users.

Different authors have envisioned this technology from different perspectives 
and have placed an emphasis on varied aspects, such as: (a) DSSs are computer- 
based systems; (b) their goal is to help in decision-making; (c) DSSs are applied to 
badly structured and complex problems that typically present themselves to users 
making tactical and/or strategic decisions; when it is a structural decision like, for 
instance, rejecting fruit of a smaller or larger diameter than that stipulated for a 
particular commercial category, or stopping the fruit conveyor belt when there are 
sufficient cases necessary for a shipment, the decision is so mechanical that no 
human action is needed; (d) DSSs are interactive (i.e. the user can communicate 
with the system); and finally (e) DSSs use data and models.

2.2.2  Brief History

It is difficult to pinpoint the exact date of the birth of the DSS. Keen and Scott- 
Morton (1978) mentioned that the concept of the DSS arose out of two research 
lines during the 1950s–1960s: (1) the theoretical studies of decision-making in the 
context of an organization, developed at the Carnegie Institute of Technology 
(USA), and (2) the technical studies on interactive computer systems, mainly per-
formed at the Massachusetts Institute of Technology (MIT), (USA).

The DSS approach has evolved considerably since its advent. In principle, DSSs 
were oriented towards a series of highly specialized applications that, based on the 
knowledge of entrepreneurial sciences and statistics, assisted business management. 
They were later diversified to address other fields, incorporating ideas and knowl-
edge of other scientific disciplines, among which operational research, simulation 
and artificial intelligence stand out (Gonzalez-Andujar 2003).

The introduction of information technology (IT) into the rural sphere was con-
sidered as a ‘new revolution’ in agriculture, similar to agricultural mechanization; 
thus, a great concern arose about the social impact that it might cause in contribut-
ing to the rural exodus (Zullo 1995). The objective of the initial IT-based programs 
elaborated for use in rural areas was to enable substitution of workers in repetitive 
tasks to free them for other more important activities. Those programs were geared 
to the solution of quite specific problems in rural properties on a local scale. Despite 
initial fears, no manpower exclusion was noted in those times, but the programs did 
free some workers to carry out more important jobs in their respective areas. They 
helped professionals to improve the reliability in their work, releasing them from 
activities that were reiterative and exhausting and incurred a risk of errors (Beraldo 
and Zullo Jr 1986).

Although in the early 1960s simulation models, which could be considered to be 
‘primitive’ DSS, began to be employed in agriculture, the application of these sys-
tems in agricultural and agri-food contexts stopped by the 1980s and 1990s 
(Rubio 2002).
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In the mid-1980s, scientific works made references to the usefulness of comput-
ers for performing environment samplings, for recording field data, for the develop-
ment of models, and for database management (Teng and Rouse 1984). At that time, 
portable computers began to appear, and their potential for the organization of abun-
dant information permitting a holistic approach to the agroecosystem was visual-
ized. The models permitted the simulation of the performance of systems in different 
environments. The first ones were set up as games for the teaching of epidemiology 
and the management of plant diseases. That was the case of APPLESCAB at 
Michigan University (USA), an interactive simulator for the computer assigned to 
the teaching of the handling of mange in the apple tree, the most important fungal 
disease affecting that crop.

The DSSs in their original version offer numerous possibilities for agricultural 
development that can be specified in the following points. First, they constitute an 
ideal tool for the transfer of technology, permitting the handling, interpretation and 
transmission of scientific information from research centres (universities, private- 
sector researchers) to extension services and agricultural entrepreneurs (Gonzalez-
Andujar 1995). Second, through the information modelling process, they point out 
gaps in knowledge and their importance, informing researchers on where they 
should direct their investigation efforts. Third, they are of assistance in decision- 
making using abundant and complex information. Finally, they combine suitable 
conditions for being used as educational tools, since they are interactive, graphic 
and affordable, allowing the user to situate in different scenarios, facilitating the 
understanding of the key aspects determining decision-making.

Nowadays, most farmers in industrialized countries use computers for aiding 
decisions. In underdeveloped ones, their dissemination has been more restricted, but 
it is rapidly increasing. Despite the fact that the use of computers was originally 
concentrated by farmers with a greater economic power owning large-sized proper-
ties (Francisco and Pino 2002), nowadays, the popularization of electronic networks 
like Internet and the social networks is providing new possibilities in the dissemina-
tion of DSS information.

2.2.3  Structure

Three fundamental components of DSS architecture are (Marakas 1999) (Fig. 2.1):

 1. The database (or knowledge base).
 2. The model (i.e. the decision context and user criteria).
 3. The user interface

In order to offer appropriate assistance in decision-making, DSS require abun-
dant and precise information (Bajwa and Kogan 2001). The value of any DSS is 
proportional to the extent and quality of its knowledge base. The models are the 
programs representing the decision context. The interface with the user is the set of 
components employed by people to communicate with the computer. The quality of 
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the user interface could be one of the reasons that lead to the success (or failure) of 
the system, since, if it is not appropriate, the user will refuse to use the system even 
when it has been elaborated in the best way possible.

2.2.4  Characteristics

The following characteristics of DSS can be addressed
• Interactivity: provide dynamic and interactive options that permit the user to see 

and interpret the answers easily.
 – Easy to use: be as simple and intuitive as possible even for unexperienced users.
 – Integration between systems: permit access to information stored in global 

databases.
 – Decision types: provide assistance for structured or non-structured decisions; the 

former are those which can be resolved by the tool without needing any human 
help (algorithms); the latter are decisions for which it is not possible to design an 
algorithm.

 – Adequate information for each user: each user will only have the information 
that they require and that is related to their profiles.

2.3  Applications of DSS in Agriculture

The agricultural sector has been characterized as being constituted by a large amount 
of production units spread over wide geographical areas. This sector has tradition-
ally been relegated as far as its access to information and to services is concerned 
mainly in Third World countries. Its production is intended for the consumer mar-
kets in large cities that are distinguished by their constant evolution. This means that 

Fig. 2.1 General structure of a decision support system
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the agricultural sector has to be permanently kept up-to-date in order to be able to 
meet the new demands of these markets.

Agricultural production is a complex activity that requires abundant technical 
knowledge in areas like economy, engineering, production (horticulture, fruit and 
flower growing, etc.), phytopathology, weed science, entomology, post-harvesting 
and marketing, among others. In addition, also the complexity and changeability of 
agricultural legal regulations and the intricacy of production systems sometimes 
rapidly exceed the management capacity of farmers and technicians. Such inherent 
complexity has partly increased, as the adoption of more sustainable management 
practices (e.g. Integrated Weed Management) has become an actual demand by both 
society and governmental regulations. In this context, agricultural extension sys-
tems have to play a leading role in the transference of high-quality technological 
knowledge to farmers and other related sector agents.

Another prominent characteristic of agriculture is the high degree of uncertainty 
existing when making decisions. This uncertainty could be associated to several 
factors such as lack of sufficient data and incomplete knowledge of biological sys-
tems and to specific features of biological processes. Although the number of vari-
ables intervening in agricultural processes is relatively small, their behaviour and 
relationships with each other are aleatory and imprecise (Rubio 2002). Thus, farm-
ers are averse to taking risks, and they react by simplifying the production system 
and deliberately using external inputs with the aim of reducing the risks. One exam-
ple of this is the excessive application of pesticides in order to diminish the risk of 
losses from pests (diseases, weeds or insects).

The increase in complexity in primary production due to the demands of the 
world agri-food market, the need to employ sustainable production practices and an 
increase in information and information flow have led to the development of DSS 
(Bonczek et al. 1981). Numerous DSSs have been set up for different purposes for 
agricultural sciences and have been triggered by the tremendous progress made in 
IT aimed at increasing the efficiency and effectiveness of the decisions made by 
farmers (Lentz 1998; Divya and Sreekumar 2014). These systems have been created 
in different agronomic areas such as plant production, animal production, plant pro-
tection, management and planning, agri-food production, environment and forestry 
production (Carrascal and Pau 1992; Gonzalez-Andujar and Recio 1996; Manos  
et al. 2004). An example of these is Decision Support System for Agrotechnology 
Transfer (DSSAT) to estimate production, resource use and risks associated with 
different crop production practices. DSSAT contains crop- soil simulation models; 
databases for weather, soil and crops; and strategy evaluation programs integrated 
with a user-friendly interface on computers and comprises crop simulation models 
for over 42 crops (Hoogenboom et al. 2019). An example of practical application of 
DSSAT is presented in Chap. 15.

In crop protection, one of the first DSSs was PLANT/ds developed in 1983 by 
Michalski et al. (1983), which diagnosed diseases in soybean in Illinois (USA) and 
which served as a reference for the creation of other systems, especially for 
diagnoses.
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The exchange of information by electronic means is regenerating the role of the 
extension services to provide information, training and assistance in decision- 
making to agricultural producers. Nowadays, a digital photograph of a plant can be 
sent to an agricultural assessor in order to obtain a presumptive diagnosis and suit-
able advice or treatment recommendations. These services are rapidly accepted and 
highly appreciated by the producers.

2.4  Decision Support Systems in Weed Science

In this section, it is not intended to make an exhaustive review of DSSs developed 
in weed science but, rather, to give an overview of their history. In the following 
chapters, some examples of specific applications will be shown.

DSSs began to be used in weed science at the end of the 1980s, beginning of the 
1990s, the main beneficiaries of their employment being three areas:

2.4.1  Recognition and Identification of Seedlings and Seeds

Some systems were oriented towards identifying weed seeds (Naidu et al. 2015), 
but they were mainly focused on the identification of weeds in their seedling state, 
when they are easier to control. Their identification in that state is much harder than 
when they reach the adult stage. The difficulty found by non-botanists for weed 
detection in using classic tools like handbooks (too technical) led to the creation of 
new computer-assisted identification tools.

The first models were generally based on the transference to the computer of 
already available dichotomous keys, with a certain refinement and presented in an 
accessible manner (Lonchamp et al. 1991; Pascual 1994).

Although they are usually of some help, those programs are far from act in the 
way in which the experts resolve this taxonomical problem; by highlighting a few 
relevant characteristics, they arrive at determining the species, without recovering 
all the elements of the dichotomous keys. One advance was the incorporation of 
specialist knowledge and graphic aids, permitting a greater flexibility and speed in 
identification (Gonzalez-Andujar et al. 1990; Ballegaard and Haas 1990). SIMCE 
(Gonzalez-Andujar et  al. 2006), a DSS developed to identify weed seedlings in 
cereals (Fig. 2.2) by means of the combination of a text, expert knowledge and pho-
tographs, allows the identification of 41 species commonly found in cereal crops in 
Spain. The inclusion of specialist knowledge enabled heuristic information to be 
included in the identification process. This system was validated for its educational 
capacity with a group of students with no knowledge of identifying weeds. Aided by 
the SIMCE, they were able to correctly identify 70% of the species evaluated.

Another system with similar characteristics is WEED-ONE, created for the 
visual recognition of weed seedlings (Olmo and Recasens 1995). It consists of a 
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collection of photographs, a multimedia database and a self-evaluation module. It 
contains approximately a 100 species and has been used for educational purposes.

Recognition and identification systems have gone on evolving, with the growth 
of technology, from computers to smartphones. An example of this is WEEDSCOUT, 
an application developed by Bayer that recognizes weeds by means of images taken 
with the telephone. The system possesses a large database of weed images. With 
over 30,000 images registered, the application relies on a collaborative update sys-
tem, which is compiled through the use of photos taken by users to enhance 
algorithms.

2.4.2  Herbicide Selection

A second group of DSSs is formed by those systems that select the treatments based 
on the effectiveness of herbicides (Linker et al. 1990; Sonderskov et al. 2014). First 
approaches were designed by computerizing weed guides used by the agricultural 
extension services. Regardless of how their databases were organized, all of them 
selected the most suitable method based on herbicide efficacies.

Another step forward was the selection of herbicides based on their cost-benefit 
(Mortensen and Coble 1991). Within this group, some examples like CHEX (Bolte 

Fig. 2.2 Snapshot of the start page of the SIMCE DSS
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et  al. 1988), HERB (Bennet et  al. 2003; Wilkerson et  al. 1991) and SOYHERB 
(Renner and Black 1991) can be cited.

In HERB, the determination of herbicide efficacy depends on the growth stages 
of weeds (three classes) and soil moisture (two levels). As such, six efficacy levels 
are given for each herbicide and weed species. SOYHERB, developed by Michigan 
University (USA), gave pre- and post-emergence guidance for weed control in soy-
bean. The pre-emergence advice was based on weed infestation estimates.

2.4.3  DSS with Models in Their Structure

The last group is formed by DSSs that include models inside their structure. The 
most common are bioeconomic models, which permit management strategy selec-
tion to be based on a cost-benefit analysis (Wilkerson et al. 1991; Nordblom et al. 
2003; Lindsay et  al. 2017; Lacoste and Powles 2015). Bioeconomic models are 
integrated by a population dynamics model and/or a weed-crop competition and an 
economic model (Fig. 2.3).

SEMAGI was created by Castro-Tendero and García-Torres (1995) to assess the 
potential yield reduction from weeds and parasitic plants in sunflower and to ascer-
tain a suitable herbicide selection. It combines databases related to herbicides, 
weeds and their interaction. It comprises a total of 34 species of weeds and 26 her-
bicides. The system processes and selects the herbicide(s) considering the limita-
tions of the effectiveness data of the herbicide and of a weed competition model. In 
addition, SEMAGI provides an economic study of any herbicide treatment selected 
or introduced by the user, based on the cost of the herbicide, the increase in the yield 
expected from the weed control treatment and the sale price of the sunflower.

DSSAVENA is a system that permits the economic evaluation of different types 
of strategies to control wild oats (Avena sterilis) in winter wheat in the central area 
of Spain (Gonzalez-Andujar et al. 2011). It employs agronomic (infestation density, 
previous crop, etc.) and economic data (inflation rate, price of herbicide, etc.) 
(Fig. 2.4) (for a more extensive description, see Chap. 14).

Fig. 2.3 Bioeconomic model structure
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Other DSSs are those based on weed emergence models that help the users to 
optimize the use of weed seedling control measures. For instance, RotPiña is a DSS 
developed to predict the emergence of Rottboellia cochinchinensis (Leon et  al. 
2015) in pineapple in Costa Rica. It employs meteorological information for pre-
dicting both timing and quantity of cumulative percentage of emergence (Fig. 2.5). 
For a detailed description of weed emergence tools, the reader is referred to Chap. 5.

2.4.4  Constraints of Decision Support Systems

Being too dependent on a decision support system and depositing an unusual 
amount of confidence in it is not a healthy sign. There are many uncertainties asso-
ciated with the DSS (Parker 2004), like:

An Excess of Information A DSS can sometimes end up with an overload of 
information. Since it analyses all the aspects of a problem, it leaves the user with the 
dilemma of what to take into consideration and what not to; it is not necessary to use 

Fig. 2.4 Data entry screen of DSSAVENA
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Fig. 2.5 Start (a) and output (b) screens in the DSS RotPiña
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all the information in the making of decisions. But when it is present, the decision- 
maker finds it hard to ignore the information that is not a priority.

Too Much Dependence on the DSS Some decision-makers tend to rely too much 
on the computerized decision-making. There is clearly a change in the focus, and 
decision-makers might not perfect their skills due to their excessive dependence on 
the DSS.

Too Much Focus on Rational Thinking A decision support system promotes a 
rational making of decisions by suggesting alternatives based on objectivity. 
Although limited rationality or constrained irrationality plays a fundamental role in 
decision-making, subjectivity cannot and should not be shunned.

An Excessive Focus in Decision-Making Clearly, the focus in computerized 
decision- making is to consider all the aspects of a problem all the time, which may 
not be necessary in many situations. It is of essential importance to train users in 
order to guarantee an efficient and optimal use of DSSs.

Cost of Development The cost of decision-making is reduced once a decision sup-
port system is installed. However, the development and implementation of a DSS 
require sometimes a considerable financial investment.

DSS Updating and Maintaining The updating and maintaining of a DSS is one of 
the major cost for DSS producers. The lack of a financial model for support is an 
important barrier for its diffusion.

2.4.5  Resistance to Using Decision Support Systems

Although DSS use has been increasing in farmers’ lives, many of them show resis-
tance to adoption. A series of factors could be the reasons for which they are still in 
doubt about adopting a DSS. 

Sometimes, people can be reluctant to admit that we lack the technological 
knowledge required for using a DSS.  This is the attitude that puts a user off 
employing a decision support system. In addition, some people do not feel com-
fortable about the idea of doing things with the latest technology. They also fear 
receiving training or taking part in workshops directed towards providing func-
tional skills.

Finally, a lack of awareness of the potential and correct use of the technology and 
a lack of trust in their utility are major barriers to DSS adoption by farmers.
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Chapter 3
Optimization in Decision Support Systems

Aníbal M. Blanco

Abstract Two important components of decision support systems (DSSs) are a 
model that describes the behaviour of the system under study along a certain period 
of time and an optimization algorithm that searches for one or several ‘good’ options 
within the space of admissible human interventions. Both elements received a great 
deal of attention in recent decades, mostly motivated by industrial and management 
applications. There are also many examples of decision support projects in agron-
omy, in particular, in weed control for crop protection. Since the bioeconomic mod-
els arising in Integrated Weed Management (IWM) studies are nonlinear, mixed 
integer and large scale, they are quite difficult to optimize. In this chapter, some 
basic elements of optimization are reviewed, with special emphasis in practical 
issues (modelling, programming), which are less covered than theoretical topics in 
the open literature.

Keywords DSS · Optimization · LP · NLP · MINLP · Mathematical programming 
 · Metaheuristics

3.1  Introduction

Optimization has to do with identifying a good option among many … hopefully the 
best. It is a natural activity carried out by human beings during their decision- 
making processes in most aspects of their lives. If the situation is too complex to be 
solved by intuition or mental enumeration (too many options or too intricate search 
space), the optimization process can benefit from a mathematical model that hope-
fully contains all the alternatives in a compact fashion. Optimal solutions can be 
extracted from mathematical models by theoretical considerations or, more practi-
cally, by numerical algorithms.
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In particular, agronomical production environments are indeed complex systems. 
For example, Doole and Pannell (2008) estimate in 10119 the number of possible 
alternatives to operate with six possible rotation scenarios including five crops and 
12 different weed control strategies for a 20-year period in the Western Australian 
wheat belt. The underlying model is known by its acronym RIM (Ryegrass Integrated 
Management) which was designed as a decision support system (DSS) with empha-
sis in herbicide resistance (a detailed description of RIM and its adaptations are 
presented in Chap. 12). Clearly, such a search space cannot be efficiently explored 
by enumeration without the aid of some algorithmic procedure.

Mathematical models and numerical optimization tools are the core components 
of modern DSS that can help managers to automate their decision-making pro-
cesses. This chapter will focus on the optimization part as mathematical modelling 
is thoroughly addressed along the volume.

Due to its paramount importance to all fields of science and engineering, numeri-
cal optimization had a tremendous progress in the last decades and is still one of the 
most active and challenging fields within applied mathematics and computers sci-
ence. Literally, hundreds of books, thousands of scientific papers and millions of 
lines of programming code have been written on the topic generating an overwhelm-
ing amount of theoretical results, practical tools and applications.

Although rooted in mathematics and computer science, the development of 
numerical optimization was definitely boosted by its application in areas such as 
Operations Research and Management Science. A particularly important landmark 
in the evolution of the field was the emergence in the early 1960s of the Process 
Systems Engineering (PSE), which is the application of systematic computer-based 
methods to process engineering. This field was pioneered by chemical engineers, in 
particular by Prof. Roger Sargent (Imperial College, UK) who is considered the 
father of the discipline. The link between chemical processes and numerical optimi-
zation becomes evident when considering that chemical plants typically operate in 
a continuous fashion for about 8000 hours per year. Therefore, even a modest 
improvement in the adopted performance criterion, typically economic benefit, has 
a tremendous impact when integrated along time.

The developments rapidly disseminated across all technical disciplines at a 
research level all around the world and were even adopted by industrial and com-
mercial sectors in countries of technological leadership. For example, the family of 
commercial software AspenTech1 allowed the implementation of Real-Time 
Optimization (RTO) of large petrochemical plants for more than two decades 
already.

Currently, most engineering careers of all disciplines worldwide include at least 
some elements of numerical optimization in their curricula. Many advanced courses 
in all branches of optimization are also offered in most post-graduate programs of 
science and engineering.

1 https://www.aspentech.com/
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This chapter intends to briefly present some topics on numerical optimization, 
which hopefully will be of interest to weed scientists and agronomists engaged in 
automated DSS. In the first place, a review of the literature on optimal model-based 
weed management is presented. Although such review does not pretend to be 
exhaustive, it will certainly provide some insight in recent developments on the field.

Regarding the abundant material on numerical optimization, such a broad disci-
pline distinguishes ‘theoretical’ and ‘practical’ areas. Theoretical optimization is 
proficiently and didactically covered in a huge amount of textbooks, and many read-
ers might be somewhat familiar with such contents. Therefore, only a panoramic 
view will be presented here. Emphasis will be done instead on ‘practical’ optimiza-
tion, which is the main source of both frustration and delight of the ‘hands-on opti-
mizer’. Although there is also a lot of material on the topic, it is much less covered 
in the open bibliography, the reason being that practical optimization is heavily 
dependent on the specific adopted programming software or modelling platform. 
An overview of the different modelling philosophies will be presented together with 
specific tools to implement them, both commercial and non-commercial.

In all cases, relevant references will be provided. Such bibliography will be non- 
exhaustive and, of course, unavoidably biased since they reflect my personal back-
ground and preferences. However, they undoubtedly constitute a good starting point 
for further research.

3.2  Optimization-Based Agronomical DSS: A Review

This section concentrates on a small number of references that present mathemati-
cal model-based weed control studies that explicitly adopt some type of optimiza-
tion approach. The review is limited to weed management on specific crop 
production systems. This is indeed a quite narrow scope within the agronomical 
DSS literature. In fact, it is even limited within the computer-based weed manage-
ment literature (see Chap. 2). On one hand, it should be highlighted that DSS 
research based on weed control was in a large extent driven by simulation studies 
rather than by optimization efforts. Additionally, many studies address optimal con-
trol of weed infestations in ecosystems different than industrial crop settings, in 
particular to study invasive species. Finally, a great deal of research has been also 
devoted to weed control with emphasis in their spatial distribution. There is also a 
large body of research on optimization methods in pest management, which is also 
beyond the scope of this section. Finally, it should also be recognized that although 
the review intends to be exhaustive within its limited scope, the literature is so vast 
that it is quite likely that some valuable contributions will be missing. The reviewed 
optimization-based studies for weed control are detailed in Table 3.1.

A pioneer work by Fisher and Lee (1981) proposed an optimization approach to 
solve a crop rotation problem considering wild oats (Avena fatua/Avena ludovici-
ana) infestation in cereal crops of the wheat belt of New South Wales (Australia). 
Besides crop-weed competition, the effect of crown rot disease was also included. 
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The approach seeks to maximize the net present value of the revenue stream over a 
10-year planning horizon. The main optimization decision is the crop-fallow 
sequence out of the following options: (1) wheat (no control), (2) wheat + herbi-
cide, (3) sorghum, (4) winter-fallow and (5) summer-fallow. Dynamic Programming 
(DP) was adopted as optimization framework.

Taylor and Burt (1984) presented a model similar to Fisher and Lee’s that 
includes stochastic elements and allows the use of a pre-emergent herbicide for wild 
oat control within the decisions set. The model was parameterized for the spring- 
wheat production area of north central Montana (USA), and it was solved using 
stochastic DP optimization.

Pandey and Medd (1991) worked on wheat cropping systems of southern 
Australia. A multi-period bioeconomic model was developed and solved with a sto-
chastic DP approach. In this case, the decision alternatives are the different doses of 
a selective graminicide (diclofop-methyl) for wild oat control ranging from non-use 
(no-control) to the maximum permitted dose.

In Sells (1995), a mathematical model is applied to a typical (250 ha) heavy land 
cereal farm and also optimized with the stochastic DP methodology. Optimization 
options are (1) four cereals (winter and spring wheat and barley), (2) timing of 
planting of each variety, (3) possible break crop (oilseed rape) and (4) five chemical 
options for wild oat control.

Gorddard et al. (1995) is a pioneer example of the application of nonlinear pro-
gramming in IWM. The objective was to maximize the net present value over a 
30-year horizon in wheat crops of Western Australia under annual ryegrass (Lolium 
rigidum). It was one of the first attempts to deal with diclofop-methyl (FOP) resis-
tance evolution through a combination of chemical and non-chemical tactics.

Wu (2001) used results from optimal control theory to analytically find the 
amount (lb/acre) of herbicide to be applied each year in a 5-year planning horizon 
in order to maximize the present value of profits. The approach was illustrated with 
foxtail (Setaria pumila) and cocklebur (Xanthium strumarium) control using atra-
zine in corn fields of Iowa (USA).

WeedSOFT (Neeser et al. 2004) is a DSS based on a bioeconomic model that 
estimates crop yield loss from a multispecies weed complex and evaluates the net 
return of the system under different herbicide treatments. The software was devel-
oped by the University of Nebraska to address weed control studies in cotton, soy-
beans, sugar beet, corn and wheat in various agricultural areas of USA. The package 
includes an extensive database of pre- and post-emergence treatments considering 
crop rotational and environmental restrictions. A querying procedure ranks (in 
descending order) among potential eligible treatments according to final maximum 
yield (or net gain) values allowing for further analysis by the decision- maker. The 
optimization algorithm performs an exhaustive enumeration of the possible alterna-
tives. WeedSOFT also includes rules to disallow treatments that do not meet envi-
ronmental guidelines.

As previously mentioned, Ryegrass Integrated Management (RIM) is a determin-
istic bioeconomic simulation model that describes L. rigidum population dynamics 
across a 20-year horizon. It was originally developed by Pannell et al. (2004) for the 
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central wheat belt of Western Australia, and it has been adapted to several other 
agroecosystems around the world. Doole and Pannell (2008) optimized the RIM 
model using a technique called compressed annealing. Annual ryegrass control 
options comprise 40 treatments, including chemical and non-chemical alternatives. 
Five crops (wheat, lupins, barley, clover, and serradella (Ornithopus spp.)) are com-
bined in six possible rotation schemes. Such an amount of options along a 20-year 
horizon expands a search space of about 10119 possible intervention strategies, which 
cannot be explored by exhaustive enumeration. Good, near optimal solutions are 
therefore sought by compressed annealing at a reasonable computational cost.

Chalak-Haghighi et al. (2008) developed a bioeconomic model to study possible 
integrated management strategies to deal with Californian thistle (Cirsium arvense) 
in pastures of New Zealand. The model is solved with DP for a 40-year time hori-
zon. Control options include the use of two hormonal herbicides (MCPA, MCPB), 
mechanical and cultural methods, biological methods such as cattle grazing, myco-
herbicides (Sclerotinia sclerotiorum) and an insect biocontrol agent (weevil, Apion 
onopordi).

A stochastic DP approach was applied to maximize gross margin over the rota-
tion using the Weed Manager DSS (Benjamin et al. 2009). The system is based on a 
population dynamic model parameterized for 12 common annual weed species in 
the United Kingdom. Rotations are defined by the user out of nine possible crops. 
The optimization variables are cultivation type (non-tillage, ploughing, rotary), 
sowing time (early, mid, late) and herbicide control efficiency in each crop (low, 
moderate and high).

In Lodovichi et al. (2013), mathematical programming was adopted as optimiza-
tion approach to solve an operational-planning herbicide-based weed control prob-
lem, formulated as a mixed-integer nonlinear model. Differently to most previous 
approaches which have a strategic scope of several years, this model covered a cal-
endar year with a daily discretization of the timeline. The adopted objective func-
tion was the economic benefit of the activity which explicitly considered the 
environmental impact as an external cost. The model was applied to a winter wheat/
wild oat (Avena fatua) system of the semiarid temperate region of Argentina. 
Discrete optimization variables were the optimal time of chemical intervention (day 
of the planning horizon) within a range of eight non-selective (glyphosate and para-
quat) and selective graminicides (FOPs, DEMs and DINs).

Martinez et al. (2018) proposed an optimization model to study optimal control 
strategies of the invasive teosinte (Zea mays ssp.) in corn growing settings of north-
eastern Spain. As no selective herbicide exists for teosinte control in corn, chemical 
interventions are unfeasible. The proposed bioeconomic model allows the predic-
tion of the impact of seven control strategies (no control, manual control, false seed 
bed, and four rotations: barley-sunflower, pea-sunflower, alfalfa, wheat-alfalfa) on 
the net benefit along a 15-year horizon. Model analysis is applied from both single 
farmer economic level and from the farmer’s community viewpoint, considering 
also public expenditures from the government, accounting activities such as divul-
gation, research, surveying, monitoring, etc. The resulting nonlinear model is solved 
with mathematical programming.

A. M. Blanco
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As can be observed in Table 3.1, the majority of such research has been per-
formed on developed countries. Regarding the optimization approach, Dynamic 
Programming largely dominates the solution framework of the underlying bioeco-
nomic models. DP is in fact the first adopted methodology to address the resulting 
multi-period problems, and only recently other methodologies such as mathemati-
cal programming and stochastic optimization arose within IWM DSS. It should also 
be highlighted that only a few studies explicitly consider the environmental impact 
or take into account the probability of resistance evolution associated to chemical 
control. Besides the specifics, it is clear that optimization has been reputed as a valid 
tool to address decision-making in crop/weed management scenarios at a research 
level for almost 40 years.

3.3  Elements of Optimization

From a formal point of view, a quite general formulation of an optimization problem 
is presented in Eq. (3.1). The main elements of such formula are:

x: Continuous variables
xlo, xup: Lower and upper bounds on continuous variables (data)
y: Binary variables
Ө: Parameters (data)
h(.): Equality constraints
g(.): Inequality constraints
OF(.): Objective function

 

min

. .

,x y x y

h x y 0

g x y 0

x x x
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s t
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Θ

Θ
Θ
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( ) =
( ) ≤
≤ ≤

{ } 01
 (3.1)

Bold letter indicates a vector, meaning that there may be many variables, param-
eters and constraints in our optimization model. The formulation is general in the 
sense that there are both continuous and binary variables, and the constraints admit 
any relation among variables, in particular nonlinear relations. This formulation is 
known as a Mixed-Integer Nonlinear Problem (MINLP). OF is the objective func-
tion, the index adopted to evaluate the performance of the system under study. 
Equality constraints h(.) establish the relations among variables. Inequality con-
straints g(.) establish conditions that should not be violated. Constraints and bounds 
define the so called ‘feasible region’. Of course, we are interested in finding the 
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combination of variables x and y within the feasible region that optimizes (in this 
case minimizes) our OF.

An important idea in optimization is that of ‘degrees of freedom’ (DOF). DOF is 
the number of continuous variables that can be independently manipulated in the 
search of the optimum solution. DOF is calculated as the number of continuous 
variables minus the number of equality constraints. If DOF equals zero, the 
solution(s) of the optimization problem is ‘simply’ given by the solution of the sys-
tem of equality constraints h (x, y, Ө) = 0. If DOF is equal or greater than one, there 
is probably some specific combination of variables that is better than the rest.

Continuous variables have very straightforward meaning in models and usually 
represent quantities that can be measured, such as plant densities and crop yields. 
Binary variables can have several sources. A binary variable can be used to model a 
decision (performing or not a particular action on the system, e.g. applying a spe-
cific herbicide in certain moment of the planning horizon). Binary variables are also 
used to model integer variables (an integer number can be modelled through a com-
bination of binaries). Binary variables can also be used to model discontinuous 
functions such as saturations, absolute values and minimum/maximum among 
quantities.

3.4  Complexity of Optimization Problems

MINLPs represent lots of realistic systems. Most planning and scheduling problems 
in all sort of activities (including IWM) admit an MINLP formulation. Unfortunately, 
they are quite difficult to solve. There exist two main sources of complexity: nonlin-
ear and combinatorial. On one hand, nonlinear functions can introduce non- 
convexities, which usually implies that the feasible region is complex (narrow, 
intricate). Non-convexities may also introduce local optima, meaning that there 
exist many feasible solutions that are in a certain region better than its neighbours. 
However, identifying the ‘global best solution’ among the possible ‘locally best 
solutions’ can be a task of considerable difficulty.

On the other hand, the presence of binary variables imposes integrality con-
straints (the variable can be only 0 or 1). Since binary variables are (selectively) 
fixed by many algorithms along the search process, they introduce a ‘combinatorial 
complexity’ which has to do with the problem of enumerating a large number of 
possibilities. The number of possible combinations for a number n of binary vari-
ables is 2n, which is huge even for a modest n (e.g. 220=1,048,576).

If not all the elements are present in the formulation, several simplifications 
are possible. For example, if there are no binary variables and the relationship 
among variables is linear, Eq. (3.1) reduces to a linear problem (LP). If still 
there are no binaries but at least some variables are nonlinearly related, the 
problem is nonlinear (NLP). For example, in Fig.  3.1, a nonlinear objective 
function with one maximum and one minimum, subject to box constraints 
(bounds on variables x1 and x2) is shown.
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If there are binary variables but OF and constraints are linear, the problem is 
Mixed Integer Linear (MILP). If all the complexity is allowed (nonlinear functions 
and binary variables), we recover our original MINLP. Of course, LPs are the  easiest 
to solve, followed perhaps by MILPs. MINLPs are usually harder than plain NLPs.

As might be evident, there exists an additional source of complexity: scale. 
Large-scale problems are usually harder to solve than small ones. Scale can be rep-
resented on a hypothetical coordinate through an index made up of some combina-
tion of the number of variables, constraints, degrees of freedom and nonlinearities. 
In general, the larger this hypothetical index, the hardest the optimization problem. 
In Fig. 3.2, the optimization universe is represented on a sui generis complexity 
space. It is likely that our optimization problem of any kind will lay in some point 
of this space.

Before going a step further into optimization algorithms, it is necessary to men-
tion an important result derived from the so called no-free lunch theorem of optimi-
zation (Ho and Pepyne 2002). According to such theorem, ‘universal optimizers are 
impossible’. In other words, ‘there is no strategy that outperforms all others on all 
problems’. Therefore, despite the numerous efforts in developing general optimiza-
tion solvers, they are expected to efficiently perform only on a sub-set of the uni-
verse of optimization problems.

By exploiting the special characteristics of each of the different problems, 
numerical algorithms (solvers) have been developed to solve them more or less 
efficiently. In particular, if the variables are linearly related (LPs and MILPs), the 
problems are significantly simpler, and very powerful solvers exist to address very 
large instances efficiently. Conversely, nonlinear models do not have a particular 
structure that can be easily exploited, becoming far more difficult to solve. However, 
there exist some algorithms capable to identify local optima of large nonlinear mod-
els and also some global optimization solvers that can find the global solution if 
certain conditions are satisfied. The amount and diversity of algorithms are so vast 

Fig. 3.1 Nonlinear function subject to box constraints. (a) Objective function. (b) Surface levels 
on axes x1 and x2
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that only a brief reference will be done in this chapter, based on a broad typical clas-
sification that recognizes deterministic and stochastic solvers.

3.5  Deterministic Versus Stochastic Algorithms

Deterministic algorithms deal with binary variables using the so called ‘branch and 
bound’ techniques, which are ‘intelligent’ strategies to explore combinatorial 
spaces. Linear problems are addressed through simplex and interior point algo-
rithms. Nonlinear solvers make strong use of function derivatives. These algorithms 
have been under development for several decades. They are mathematically sophis-
ticated and work very efficiently in a large amount of science and engineering prob-
lems allowing the identification of exact solutions. For example, Fig. 3.3 illustrates 
a possible path followed by a deterministic algorithm to find the minimum of the 
function of Fig. 3.1 from a given starting point. The provided initial point is sequen-
tially improved by the algorithm in the steepest descent direction (provided by the 
derivatives of the function) until optimality conditions are met.

There are lots of excellent textbooks on these topics. Some of my favourites are 
Floudas (1995), Nocedal and Wright (2006), Tawarmalani and Sahinidis (2002) and 
Biegler (2010). These methods are very successful but can be extremely time and 
memory consuming for real-world problems (large dimension, multimodal). In 
these cases, decomposition techniques are usually required to solve such instances 
in reasonable computation times (Conejo et  al. 2006). Another weakness is that 
since they proceed by improving an initial solution, sometimes, they can be trapped 
in  local optima (or end in an unfeasible point) rather than achieving the global 
solution.

The other large family of algorithms is the stochastic solvers, also known as 
metaheuristics. Metaheuristics are designed to solve in an approximate fashion a 

Fig. 3.2 Complexity space 
of optimization problems
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wide range of difficult optimization problems without specific adaptions to each 
one. Broadly speaking, these techniques operate by improvement of a population of 
points in the search space according to a set of rules usually inspired in natural or 
biological processes. A very important feature of these type of algorithms is the 
stochastic components. A proper balance between exploration of the feasible region 
and exploitation of the most promising points is required for efficient performance 
of a metaheuristic. Genetic algorithms and particle swarm optimization are among 
the most popular alternatives.

In Fig. 3.4, the initial and final states of a population-based metaheuristic are 
illustrated. First, the initial population is randomly generated within the box. As the 
algorithm proceeds, information from each individual and random components are 
used to decide the next position of every member of the swarm. Finally, the indi-

Fig. 3.3 Hypothetical path 
followed by a deterministic 
algorithm to find the global 
minimum of an objective 
function

Fig. 3.4 A population-based metaheuristic. (a) Initial population. (b) Final population
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viduals of the population hopefully concentrate in the region of the global solution. 
The interested reader is referred to Boussaïd et al. (2013) for a complete survey on 
the subject. The main feature of these techniques is that they basically use function 
values of objective and constraints in the search procedure, without resorting to 
derivative calculation. Although this avoids a lot of mathematical complexity and 
sometimes precludes the entrapment in  local optima, it is also the source of one 
main weakness: the difficulty of dealing efficiently with equality constraints. The 
reader is referred to Coello Coello (2002) and Crawford et al. (2017) for compre-
hensive reviews on how to deal with constraints in metaheuristic optimization.

A word on Dynamic Programming. As previously mentioned in the review, DP 
has been largely adopted to address optimal decision-making in weed management 
scenarios. DP is an optimization approach that does not fit exactly within the cate-
gories provided by the previous classification. Rather, it is an optimization tech-
nique based on the decomposition of original problem into a series of small, 
easy-to-solve sub-problems. Therefore, it is well suited for models that present a 
recursive/sequential/multi-stage structure. Since many industrial and agricultural 
management scenarios present such structure, DP has been one of the most popular 
options in these disciplines for many decades (Shoemaker 1981; Carter 1998). One 
of its major drawbacks is that creative reformulations of the models are usually 
required to apply this technique effectively. Additionally, the problem may become 
computationally intractable if the number of states is large.

Some Final Comments on Formulation (3.1). Although quite general, formula-
tion (3.1) does not explicitly account for many important optimization problem 
variants, frequently raising in practical applications. For example, most real world 
systems are multi-objective (i.e. there are several different objective functions to be 
optimized, ideally in a simultaneous fashion). Moreover, such OF are typically con-
flicting, meaning that each objective can be improved only at the expense of wors-
ening the others. Multi-objective optimization has received a great deal of attention 
in literature. Interestingly, many methodologies to deal with several objectives 
involve reformulations which end up in a single objective model (e.g. a composite 
function made up of the weighted sum of the single objectives).

Another important sub-class of optimization problems involves dynamic models. 
In these cases, it is required to optimize some performance index at a particular 
point in the timeline, or to ensure that a specific variable never violates some safety 
bound along its temporal evolution. To do so, it is necessary to solve an ordinary 
differential equation (ODE) system. One possible approach is to transform the ODE 
system into an algebraic equation system by approximating the differential terms 
through appropriate difference equations. This way, the dynamic optimization prob-
lem can be translated into our well-known MINLP, typically of a very large scale 
(Biegler 2010).

Other type of problems arises when our data (Ө, xlo, xup) are imperfectly known, 
meaning that they are uncertain, described, for example, through bounds or by some 
statistical distribution (mean and deviation). In this case, techniques have been 
developed which, for example, discretizes the parameter space and translates there-
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fore the uncertainty into a very large MINLP. An overview on recent advances on 
the topic is provided in Grossmann et al. (2016).

Therefore, although Eq. (3.1) might not straightforwardly represent every prob-
lem under study, it is much likely that any problem can be reformulated as a 
 large- scale MINLP. In particular, most bioeconomic models for IWM are nonlinear 
since many agronomical and biological variables are nonlinearly related (e.g., 
Cousens’s hyperbolic yield loss function). These models may also involve discrete 
decisions (e.g., to apply or not to apply a given control action) in a specific moment 
of the planning horizon. Moreover, depending on the scope, planning horizons usu-
ally cover from several years to several decades. The discretization of the timeline 
may also consider several periods within each year to represent stages of agronomic 
significance. Such discretization of the timeline over such extended horizons 
expands very large models. Therefore, optimization models to assist in decision- 
making in Integrated Weed Management are, in principle, large-scale MINLPs. 
Moreover, the problem is necessarily multi-objective since at least two objectives of 
outstanding importance can be identified: economic and environmental. Finally, 
uncertainty is of course present along the whole system. Biological and agronomi-
cal variables/parameters of crops and weeds are difficult to measure and usually 
require long-term field, greenhouse and laboratory experiments to be estimated. 
Weather variables such as daily temperatures and particularly precipitations are 
very difficult to forecast even within short-term periods.

3.6  Practical Optimization

Practical optimization has to do with putting hands on optimization problems. Basic 
theoretical topics can be efficiently covered in one or two courses. However, solving 
a specific optimization problem with a computer requires (1) skills on mathematical 
modelling and (2) mastering some programming language or development plat-
form. Usually, the required modelling skills and the adopted development software 
are quite interrelated. Although the acquisition of such abilities can of course be 
tutored, a self-educated experience-based process is usually unavoidable. Most 
solvers perform well close to the origin of the complexity space of Fig. 3.2. The 
further we move in any direction, the more sophisticated software is needed, and the 
more specialized modelling skills are required.

Modelling skills basically imply the wise application of a specific set of tech-
niques, notions and concepts to formulate the problem under study in order to solve 
it as efficiently as possible. Good modelling is somewhat an art, besides a technical 
discipline. A specific set of modelling abilities are needed to address Mixed-Integer 
Linear Problems and another set to address nonlinear problems.

It should be also mentioned that both types of problems are in some extent inter-
changeable. Specifically, binary variables can be reformulated in a continuous fash-
ion through a rather standard reformulation: (1) each variable is relaxed between its 
bounds (0 ≤ y ≤ 1), and (2) an additional nonlinear constraint is introduced per 
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variable to force integrality (y(1 − y) = 0). Then, an MILP or MINLP can be trans-
formed into a plain NLP. This way, the combinatorial complexity is avoided at the 
expense of increasing the nonlinear and scale complexities. On the other hand, a 
nonlinear function can be approximated by linear segments with a large degree of 
accuracy through piecewise linearization. In this technique, the linear segments are 
organized with the aid of binary variables and additional sets of linear constraints. 
Then, an NLP or MINLP can be transformed through piecewise linearization into 
an MILP. In other words, the nonlinear complexity can be overridden by increasing 
the combinatorial and scale complexities.

Modelling techniques are widely spread over many sources for both nonlinear and 
mixed-integer problems. Many can be drawn directly from textbooks. For example, 
the modelling of logic constraints and logic inference, a very important part in devel-
oping integer models, is well developed in Biegler Lorenz et al. (1997). Other con-
cepts can be obtained from the documentation of the optimization platforms/solvers 
themselves. For example, the section ‘Hints on good model formulation’ of the 
CONOPT Solver manual is a very good compilation of techniques to develop nonlin-
ear models. Finally, excellent material can be found on the Internet. For example, the 
online material by consultant Erwin Kalvelagen2 is highly recommended.

Regarding integer models, the wise use of binary variables to represent on/off 
situations is vital. With the aid of big M constraints, lots of different logics can be 
modelled. Just to provide some insight in the type of required modelling skills, con-
sider the situation where a continuous variable x can only take a specific value, say, 
a, if some particular situation occurs represented by binary variable y taking value 
1. Equation (3.2) represents a big M formulation. Parameter M is a large constant, 
much larger than a. If y = 0, variable x is relaxed: (a – M) ≤ x ≤ (a + M), meaning 
that it can take any value within its bounds. If y = 1, big M terms vanish; therefore, 
a ≤ x ≤ a, and then x = a. Interestingly, Eq. (3.2) is just a linear set of equations.

 
x a M y x a M y≤ + −( ) ≥ − −( ). .1 1and

 (3.2)

In turn, good nonlinear modelling typically requires the provision of very good 
bounds and starting points on continuous variables. Since derivatives are involved, 
good scaling of variables and equations is also crucial for good performance. Other 
good modelling practices involve reformulations. For example, x1 = x2/x3 is much 
better posed for numerical optimization purposes programmed as x1.x3 = x2.

3.7  Development Software

Regarding development software, an advantage is the large amount of available 
options, both commercial and non-commercial. Commercial optimization software 
requires the purchase of an appropriate license. Typically, optimization software 
companies offer academic licenses for teaching and research institutions at quite 

2 http://yetanothermathprogrammingconsultant.blogspot.com/
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affordable prices. Licenses for companies, on the other hand, are much more 
 expensive. Of course, commercial optimization platforms undergo permanent 
development and count with very friendly modelling interfaces and very powerful 
solvers. Moreover, they provide excellent documentation and support. There are 
many commercial optimization software platforms. Some current popular choices 
are GAMS3, MATLAB4 optimization toolbox and Excel/Solver5, among many others.

Non-commercial optimization software is freely available and is, in many cases, 
open source, meaning that the code is open for inspection and modification. 
However, usually a great deal of programming skills are required to put them to 
work. Although there is a huge amount of non-commercial optimization projects, 
most usually have low rates of development and limited maintenance and support. 
Very interesting options are APMonitor6, SCIP Optimization Suite7, SciPy/
Optimize8, Pyomo9 and Excel/OpenSolver10, among many others.

Independently of the adopted platform/software, the user will be required to pro-
vide, in some specific format, the involved functions: objective and constraints. If 
the adopted algorithms are of the deterministic type, first order derivatives (and 
eventually second order derivatives) will be also required. Some platforms, how-
ever, provide automatic differentiation options (usually approximate). In particular, 
the GAMS platform provides exact automatic differentiation. If the adopted solver 
is of the stochastic type, only the functions will be required. However, since meta-
heuristics use to perform poorly in highly equality-constrained models, a conve-
nient practice is to work in the ‘reduced space’, meaning to eliminate as much as 
possible equations from the model by explicitly resolving some of the variables 
from previously calculated variables.

An alternative to adopting optimization platforms/solvers (commercial or non- 
commercial) is to develop from scratch on a certain programming language both the 
underlying model and the optimization engine. This alternative overlooks the power 
of tools with many years of development in favour of projects without third-party 
components which usually behave as ‘black boxes’ and might have significant costs.

One element in favour of this strategy is that due to the ‘no free lunch’ results on 
optimization, counting with the most sophisticated and expensive general purpose 
algorithms does not necessarily guarantee to solve easily problems located far from 
the origin of the complexity space (Fig. 3.2). In these cases, a great deal of addi-
tional programming (reformulations, decompositions) might be required to achieve 
satisfactory results even with the most friendly development platforms and competi-
tive solvers. Another argument in favour of this approach is that, from a practical 

3 https://www.gams.com/
4 https://www.mathworks.com/products/optimization.html
5 https://www.solver.com/products-overview
6 http://apmonitor.com/
7 https://scip.zib.de/
8 https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
9 http://www.pyomo.org/
10 https://opensolver.org/

3 Optimization in Decision Support Systems

https://www.gams.com/
https://www.mathworks.com/products/optimization.html
https://www.solver.com/products-overview
http://apmonitor.com/
https://scip.zib.de/
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
http://www.pyomo.org/
https://opensolver.org/


54

point of view, suboptimal solutions obtained with less sophisticated algorithms can 
be good enough in most uncertain systems with extensive planning horizons.

The major drawback of this approach is that a more interdisciplinary develop-
ment team is required since specialized programmers and professionals with a 
strong background on simulation/optimization are needed, other than agronomic 
engineers and biologists who might not have a specific background on applied 
mathematics and software development.

Regarding programming languages, there are also several options for from- 
scratch developments, each with strengths and weaknesses. In fact, ‘the best’ pro-
gramming language is a hot topic among professional programmers. Two very 
popular current options are C and Python. Language C is, maybe, the strongest 
general purpose programming platform. For example, the Linux kernel and many 
other programming languages (such as Python) are programmed in C. C is a ‘low- 
level’ language which allows a close interaction with the hardware and produces 
very fast and resource-efficient programs. Since it has been widely used in the last 
decades, any development in C can benefit from lots of freely available code. 
Python11, on the other hand, is a ‘high-level’ language with a very expressive syn-
tax, optimal for quick code development. Python implementations are therefore 
less efficient and fast compared with those of C, for example, although they can 
be accelerated with several techniques. There is also a large amount of scientific 
and engineering codes over there which can indeed contribute to Python 
developments.

As can be concluded from the previous paragraphs, there are lots of options to 
implement the optimization module within decision support projects. However, as 
mentioned before, nonlinear and mixed-integer models are difficult to optimize 
(Fig. 3.2), which means that finding good suboptimal or even feasible solutions may 
be a hard task for any algorithm. In other words, an algorithm may take a lot of 
clock time (hours, days) to find a satisfactory solution for our problem, even though 
modern computer processors are very fast devices. In these situations, some optimi-
zation algorithms can benefit from parallelization, which basically implies perform-
ing calculations simultaneously instead of sequentially, whenever possible. In fact, 
modern computers include multi-core (several cores) processors allowing a certain 
degree of parallelism in many applications.

Relatively recently, the computer power at a desk level has been boosted by the 
availability of general purpose graphics processing units (GPUs), which are rather 
cheap devices developed originally for the gaming industry. These GPUs are mas-
sive parallel processors (hundreds of cores) which can be programmed to imple-
ment accelerated versions of numerical algorithms.

In particular, NVIDIA GPUs can be programmed with the CUDA12 program-
ming model, a specific set of instructions, resembling C language, to exploit at a 
very low level the hardware of the device. The potential of such devices is also 

11 https://www.python.org/
12 https://developer.nvidia.com/cuda-zone
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 available from other programming languages, for example, to Python through 
Numba13 tools.

These programming options add up to the already huge box of optimization tools 
and should be considered when initiating a new DSS effort or an upgrade of exist-
ing ones.

3.8  Conclusions

Optimization projects for decision support of real systems are complex and exten-
sive efforts. The best option (commercial, non-commercial, deterministic, stochas-
tic, etc.) depends heavily on each particular application. Each developer team 
usually has a favourite set of tools and modelling/programming skills. In particular, 
bioeconomic models for decision-making are typically designed in research labs, 
but they should be ideally developed in conjunction with farmers and agricultural 
advisors. In order to share the code, there should not be licensing constraints. Non- 
commercial options or widely spread software such as Excel spreadsheets might be 
preferable if budgets will be a limitation sometime along the project. It should be 
considered that modelling for decision support projects usually demands several 
years and is really never completely finished. A flexible platform that ensures a 
sustainable development in time should be adopted. Finally, website applications 
are very effective channels to interact with broader audiences, although their develp-
ment requires the involvement of additional software specialists.

Alternative approaches to optimization in decision-making support are, of 
course, valid. For example, the RIM model has recently undergone some re- 
development, and interesting conclusions were drawn by their developers (Lacoste 
and Powles 2016). Specifically, they preferred to retain the ‘what-if’ approach (sce-
nario simulation) rather than to implement an optimization engine to automate the 
analysis and generate ranking recommendations. According to Lacoste and Powles 
(2016), the simulation approach better contributes to both practical and educational 
aims by allowing a more direct and trustworthy interaction and feedback between 
the model and the decision-makers’ abilities and experience. Such considerations, 
rooted in a practical vision of decision-making in agriculture, are indeed valid and 
reasonable. It is our belief, however, that the gap between this type of research 
methodologies and its technological application at a farm level will eventually 
decrease with the advent of (even) cheaper, easily accessible large computation 
power, (even) increased adoption of electronics at a field level and a larger involve-
ment of highly skilled professionals (even PhDs) in the daily decision-making pro-
cess within the farm.

13 http://numba.pydata.org/
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Chapter 4
Modelling Weed Seedbank Dormancy 
and Germination

Diego Batlla, Cristian Malavert, Rocío Belén Fernández Farnocchia, 
and Roberto Benech-Arnold

Abstract Weeds are usually more vulnerable to control practices at the seedling 
stage or at early stages of their growth. Therefore, developing models to predict the 
timing and extent of weed emergence is useful to assist farmers and agronomist to 
time pre- and post-emergence control practices to increase their efficacy. However, 
many important weeds forming persistence seedbanks in agricultural fields present 
dormancy. In those species, the number of established seedlings is strongly related 
to the dormancy level of the seedbank, and the timing of seedling emergence 
depends on the seasonal variation in seedbank dormancy level. Therefore, if we 
pretend to predict timing and extent of seedling emergence, we should include the 
regulation of the seedbank dormancy level in our predictive models. In this chapter, 
we present a conceptual framework to understand how dormancy and germination 
of weed seedbanks are regulated by the environment. This framework is based on 
the distinction between those factors that regulate seasonal changes in the seedbank 
dormancy level (i.e. temperature in interaction with seed moisture content) and 
those factors that terminate dormancy (i.e. light and alternating temperatures). 
Changes in the seedbank dormancy level are related to changes in the range of envi-
ronmental conditions permissive for seed germination, as, for example, the thermal 
range permissive for germination which is defined by the lower and the higher limit 
temperatures. Seeds germinate when environmental conditions are within the per-
missive range, for example, seeds begging to accumulate thermal time towards ger-
mination once soil temperature overlaps the permissive thermal range. We present 
examples of how these concepts can be used to establish functional relationships 
between dormancy and germination regulating factors (i.e. temperature) and 
changes in seedbank population dormancy level and germination dynamics in order 
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to develop mechanistic models to predict the timing and extent of weed seedling 
emergence in the field.

Keywords Dormancy · Predictive models · Seed-bank · Soil temperature · Soil 
water content · Thermal time · Weed emergence

4.1  Introduction

To maximize the success of weed management strategies, we should optimize the 
effect of control practices to avoid crop yield losses due to weed competition in the 
short term and to maintain low weed population levels in the long term. To achieve 
these goals, it is essential to understand the biological and ecological bases of the 
weediness process and to determine those stages in the life cycle of weeds that are 
critical in its regulation. Once those critical stages have been determined, the devel-
opment of models allowing the prediction of their occurrence in time and space 
becomes essential for assisting farmers and agronomist in weed management deci-
sions (Ogg and Dawson 1984; Buhler et al. 1997).

Weed emergence is usually a critical stage for the application of weed control 
practices because young plants and weed seedlings are more vulnerable in that stage 
(Radosevich et al. 1997). Consequently, control methods are more effective when 
weeds are controlled soon after they emerge (Fenner 1987; Batlla and Benech- 
Arnold 2007). The possibility of predicting the timing and extent of weed emer-
gence from soil seedbanks is therefore of paramount importance to increase the 
effectiveness of control practices (Grundy et al. 2000).

The weed seedbank is considered the primary source of weed infestations in crop 
fields (Buhler 1999; Grundy and Mead 2000). Although buried seeds can be non- 
dormant, most weed seed populations composing persistence seedbanks usually 
present dormancy. In weed species showing dormancy, the number of established 
seedlings is strongly related to the dormancy level of the seedbank, and the timing 
of seedling emergence depends on the seasonal variation in seedbank dormancy 
level (Benech-Arnold et al. 2000). Therefore, if we pretend to predict timing and 
extent of seedling emergence from weed seedbanks, we should consider dormancy 
in our predictive models (Batlla and Benech-Arnold 2010).

Weed emergence can be divided into different sub-processes which are regulated 
by different factors (Fig. 4.1): (A) the passage of seeds from a dormant to a non- 
dormant state, and vice versa, (B) the germination process and (C) pre-emergence 
growth (Vleeshouwers and Kropff 2000). Although factors regulating pre- emergence 
growth can occasionally affect timing and extent of seedling emergence, under most 
agricultural situations, emergence can be adequately predicted just taking into 
account factors affecting dormancy and germination; therefore, this chapter will 
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focus on these two latter processes. To predict seedling emergence, we should (1) 
know which are the ‘key’ environmental factors regulating seed dormancy and ger-
mination in a certain ecological scenario, (2) have a clear notion of how those key 
environmental factors affect both processes and (3) establish ‘functional relation-
ships’ between regulating factors and the target processes. In this chapter, we pro-
pose a conceptual framework of how dormancy and germination of weed seedbanks 
are regulated by environmental factors. Based on that framework, we show exam-
ples of how these concepts can be used to predict the timing and extent of weed 
seedling emergence in the field.

4.2  Environmental Regulation of Dormancy 
in Weed Seedbanks

Dormancy can be defined as an internal impedance of the seed that prevents germi-
nation under moisture, thermal and gaseous conditions that, otherwise, would result 
suitable for germination (Egley 1986; Benech-Arnold et al. 2000). The nature of 
this impedance could be physiological (i.e. hormonal), morphological or merely 
physical (Nikolaeva 1967), and based on this, seed dormancy can be classified into 
five different classes (see Baskin and Baskin (2004) for the classification). However, 
within those classes, physiological dormancy is possibly the most common type of 
dormancy in seeds of major agricultural weeds in temperate climates. So, this chap-
ter is mostly referred to this type of dormancy.

Fig. 4.1 Schematic 
representation of sub- 
processes and factors 
regulating seedling 
emergence from weed 
seedbanks
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Dormancy can be also classified into primary dormancy and secondary dor-
mancy (Karssen 1982). While primary dormancy refers to the dormant state seeds 
present at dispersal, secondary dormancy results from the re-induction of dormancy 
in dispersed seeds that had been previously released from primary dormancy or had 
attained a low dormancy level (Fig. 4.2). Usually, primary dormancy level decreases 
with time after dispersal determining the emergence of a proportion of the seedbank 
when environmental conditions are favourable for germination (Fig. 4.2). The frac-
tion of the seedbank that did not emerge, either because the seeds did not achieve a 
sufficiently low dormancy level or because the environmental conditions were not 
favourable for germination, may enter a state of secondary dormancy (Fig. 4.2).

Exit from dormancy followed by subsequent re-inductions into secondary dor-
mancy may determine indefinite seasonal cyclic changes in the seedbank dormancy 
level (Baskin and Baskin 1988) (Fig. 4.2). The dynamics of these cyclic changes in 
relation to season changes throughout the year depends on the species’ life cycle. 
For many summer annual species, the level of dormancy of the seedbank usually 
decreases during winter, determining a minimum level of dormancy at the begin-
ning of spring, and increases again at the end of spring-beginning of the summer 
(Fig. 4.2). This dynamic ensures that the seasonal ‘emergence window’ takes place 
timely during spring allowing the resultant plants to place their reproductive phase 
during summer avoiding frost damage. Conversely, species displaying an annual 
autumn-winter life cycle generally show the reverse dormancy pattern (i.e. the dor-
mancy level decreases during summer and increases during winter).

The environmental factors that affect dormancy of buried seeds can be divided 
into two classes, those that regulate the level of dormancy and those that terminate 
dormancy (Benech-Arnold et al. 2000).

Fig. 4.2 Schematic representation of cyclic seasonal changes in seedbank dormancy level for a 
summer annual weed. Solid line indicates seedbank dormancy level, and dotted line indicates soil 
temperature (Adapted from Batlla and Benech-Arnold 2007)
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4.2.1  Factors That Regulate the Level of Dormancy

Seasonal changes in the seedbank dormancy level are regulated by environmental 
factors which ensure emergence occurrence at the ‘right’ season. Temperature has 
been pointed out as the main factor regulating changes in dormancy level in seeds 
of many weed species (Baskin and Baskin 1985; Batlla and Benech-Arnold 2010). 
The way in which temperature affects seed dormancy level can be different depend-
ing on the species’ life cycle. In the case of summer annuals, low winter tempera-
tures decrease dormancy level determining minimum dormancy at the entrance of 
spring, while high summer temperatures increase dormancy level leading to the 
entrance into secondary dormancy (Fig.  4.2). This type of behaviour has been 
observed in many spring emergence species, such as Chenopodium album L., 
Sisymbrium officinale L., Polygonum persicaria L. (Bouwmeester 1990), Polygonum 
aviculare L. (Kruk and Benech-Arnold 1998) and Ambrosia artemisiifolia L. (Baskin 
and Baskin 1980). In contrast, high summer temperatures determine dormancy 
release in winter annual species, while low winter temperatures might induce sec-
ondary dormancy (Karssen 1982). Dormancy release due to high summer tempera-
tures was observed in many winter annual species, such as Avena fatua (Baskin and 
Baskin 1998), Lolium rigidum (Steadman et al. 2003), Bromus tectorum (Christensen 
et al. 1996), Buglossoides arvensis (Chantre et al. 2009) and Cynara cardunculus 
(Huarte et al. 2018) among others. This effect of temperature is modulated by the 
seed moisture content, which in turn depends on the soil water content. For exam-
ple, in many summer annuals, dormancy release occurs when imbibed seeds per-
ceive low temperatures during winter (i.e. stratification). Conversely, seeds from 
winter annual species are released from dormancy by high temperatures during the 
summer, normally at low seed moisture content (i.e. dry after-ripening) (Karssen 
1982; Probert 1992; Bair et al. 2006). Beyond these general patterns of response, 
there are species in which, depending on their seed moisture content, low and high 
temperatures can both provoke dormancy release, although at difference rates (e.g. 
Arabidopsis thaliana; Finch-Savage et al. 2007).

4.2.2  Factors That Terminate Dormancy

In many weed species, once a minimum dormancy has been attained, dormancy 
needs to be terminated or the last impediments must be removed, for germination to 
proceed. The termination of dormancy requires the action of specific environmental 
cues which are different from those that regulate changes in dormancy level provid-
ing information at the ‘seasonal level’. On the contrary, from an ecological point of 
view, these dormancy-terminating factors indicate if the ‘place’ is safe enough for 
germination and establishment (Finch-Savage and Leubner-Metzger 2006). Among 
these factors, the most common under field conditions are light and alternating tem-
peratures, although there are many others factors that can elicit dormancy 
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termination under specific conditions, such as nitrates, ethylene and carbon dioxide 
(Benech-Arnold et al. 2000).

Light responses are of paramount importance for the functioning of weed seed-
banks (Batlla and Benech-Arnold 2014). Seeds perceive the light stimulus through 
photoreceptors, mainly those belonging to the phytochrome family. Phytochromes 
have two interconvertible forms: Pfr (considered the active form for germination) 
that presents its maximum absorption around 730 nm (FR light) and Pr that presents 
its maximum absorption around 660  nm (R light) (Borthwick et  al. 1954). 
Phytochromes are synthesized in the seed in the Pr form, and the proportion that is 
converted to the active form (Pfr) depends on the light environment (spectral com-
position and irradiance) to which the seeds are exposed. For example, exposures to 
a light environment characterized by a high R/FR ratio results in a high proportion 
of the molecule being in its active form (Pfr) which will trigger a cascade of events 
ending in dormancy termination. Phytochrome action in the LFR (low-fluence 
response) mode provides the seeds with information regarding the eventual pres-
ence of established neighbours which would impair the establishment of the new 
seedling, a mechanism known as gap-sensing (Pons 1992). In contrast, phytochrome 
action in the VLFR (very low-fluence response) mode provides the seeds with other 
kind of information, usually related to soil disturbance in agricultural environments 
being an opportunity for seedling establishment (Batlla and Benech-Arnold 2014).

Many seeds require the stimulus of temperature fluctuations for dormancy termi-
nation. The stimulus can be exerted through different attributes like the thermal 
amplitude of the cycle, the cumulative effect of stimulating cycles (i.e. number of 
cycles) or the upper temperature of the cycle (Totterdell and Roberts 1980). As in 
the case of phytochromes acting in the LFR or in the VLFR mode, the requirement 
of temperature fluctuations to terminate the dormant state and further elicit germi-
nation has been related to the possibility of detecting depth of burial, soil distur-
bance and vegetation gaps (Benech-Arnold et al. 2000).

4.2.3  Seedbank Dormancy Level and Its Relationship 
with the Range of Environmental Conditions Permissive 
for Germination

Seasonal changes in seed dormancy level driven by temperature are related to 
changes in the range of environmental conditions under which germination can 
occur (Vegis 1964; Vleeshouwers et al. 1995). For example, as dormancy is relieved, 
the range of temperatures permissive for germination gradually widens until it is 
maximal, while as dormancy is induced, the range of temperatures narrows until 
germination is no longer possible at any temperature and full dormancy is reached 
(Karssen 1982; Bouwmeester and Karssen 1992) (Fig. 4.3). This range is usually 
determined by two threshold limit temperatures: (1) the lower-limit temperature (Tl; 
below which dormancy is expressed) and (2) the higher-limit temperature (Th; above 
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which dormancy is expressed) which are assumed to be normally distributed within 
the seed population showing a median, Tl(50) and Th(50), and their corresponding 
standard deviations, σTl and σTh (Washitani 1987; Batlla and Benech-Arnold 2015). 
In summer annuals, changes in dormancy level are mainly the result of the decrease 
or the increase in Tl, for dormancy release and induction, respectively (Fig. 4.3), 
while in winter annuals, these changes are mainly driven through the increase and 
the decrease in Th for dormancy release and induction, respectively.

In species that do not require the effect of dormancy-terminating factors (i.e. 
light and/or alternating temperatures), the broadening of the thermal permissive 
range for germination, as a result of dormancy release (as has been referred above), 
allows the germination of a given seedbank fraction when the soil temperature 
enters this range (Fig. 4.3). If the latter does not occur, or if water conditions are 
insufficient for germination, the latter process will be inhibited, and the population 
might be induced into secondary dormancy depending on the prevailing thermal 
environment, thus restarting the cycle (Probert 1992).

Fig. 4.3 Schematic representation of seasonal changes in the permissive thermal range for seed 
germination and its relation with soil temperature dynamics for a summer annual weed. Solid 
black lines indicate the mean lower (Tl(50)) and mean higher (Th(50)) limit temperatures of the 
permissive thermal range for seed germination. Dashed black lines indicate Tl for the 25 and 75% 
seed population fractions. Dashed red-blue lines indicate the soil temperature. The green zone 
represents the moment when germination occurs once the soil temperature enters in the permissive 
thermal range for seed germination. Black arrows indicate the lowering and increase in Tl during 
dormancy release and induction, respectively. The bell-shaped dashed curve indicates that Tl is 
assumed to be normally distributed within the seed population (originally from Probert 2000, 
adapted from Malavert et al. 2017)
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In addition to changes in the range of temperatures permissive for germination, 
dormancy modifications are associated to changes in the sensitivity of the seeds to 
many other factors, as, for example, seed responses to water availability, light and 
alternating temperatures. Working with the summer annual weed P. aviculare, it has 
been shown that dormancy release and induction are associated to an increase and a 
decrease in the width of the range of water potentials (Ψ) permissive for germina-
tion, respectively (Batlla and Benech-Arnold 2004; Batlla and Agostinelli 2017), 
changes in the sensitivity to light (Batlla and Benech-Arnold 2005; Malavert 2017) 
and changes in the sensitivity to alternating temperatures (Batlla et  al. 2003; 
Malavert 2017). Changes in the range of Ψ permissive for seed germination and 
sensitivity to light with modifications in the dormancy level have also been reported 
in other weed species (Christensen et al. 1996; Hawkins et al. 2017; Scopel et al. 
1991; Derkx and Karssen 1993, 1994). Similarly, studies conducted by Benech- 
Arnold et al. (1990a, b) in Sorghum halepense L. showed that, as in the case of light, 
dormancy changes are also related to changes in seed sensitivity to the stimulatory 
effect of alternating temperatures. In summary, changes in seed dormancy level are 
related to changes in the range of temperatures and water potentials permissive for 
seed germination, as in the sensitivity of seeds to the effect of dormancy- terminating 
factors (i.e. light and alternating temperatures).

4.2.4  Conceptual Model

On the basis of the above discussed concepts, we propose a conceptual model 
(Fig. 4.4) in which seeds with a high level of dormancy can germinate in a narrow 
range of temperatures and water potentials and present a low sensitivity to light and/
or to alternating temperatures, or they can directly not germinate under any environ-
mental conditions, showing full dormancy. On the contrary, seeds showing a low 
dormancy level can germinate in a wide range of thermal and water potentials and 
present  a high sensitivity to light and/or to alternating temperatures. Changes in 
dormancy level (from high to low and vice versa) are regulated by soil temperature 
and modulated by seed moisture content which in turn depends on soil water 
content.

Germination and consequent emergence in the field will take place when the 
prevailing environmental conditions coincide with those required for germination 
(the latter depends on the level of dormancy of the seedbank). It is important to note 
that the effect of temperature and its modulation by seed water content depends on 
the species’ life cycle. In summer annuals, the transition from a high to a low dor-
mancy level is mainly determined by the exposure of partially imbibed seeds to low 
temperatures and the transition from a low to a high dormancy level by exposure to 
high temperatures. In winter annuals, the transition from high to low dormancy is 
determined by the exposure of partially dry seeds to high temperatures and the tran-
sition from a low to a high dormancy level by exposure to low temperatures. Finally, 
in species that do not require light or alternating temperatures to terminate 
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dormancy, germination only depends on soil temperature and water potential to be 
within the germination permissive range. In species requiring light or alternating 
temperatures, a low dormancy level could determine not only an increase in the 
sensitivity of the seeds to the effect of such factors but even the loss of this require-
ment in a fraction of the population (i.e. germination in the dark or under constant 
temperatures).

4.3  Temperature and Water Availability Effects 
on Seed Germination

To predict germination in non-dormant species, or in those seedbank fractions in 
which dormancy is not expressed because prevailing environmental conditions are 
within those permissive for germination, it is only required to establish functional 
relationships between germination and its modulating factors. When oxygen is not 
limiting, the main environmental factors controlling germination are temperature 
and water availability.

In the thermal range within which germination is possible, temperature acts only 
modulating the rate of germination (Bewley et al. 2013; Washitani 1985; Batlla and 
Benech-Arnold 2015). The germination rate, defined as the inverse of the time 
required to reach a certain germination percentage at a given incubation 

Fig. 4.4 Flowchart representing the most relevant environmental factors regulating dormancy 
level and changes in the range of environmental conditions for seed germination in soil seedbanks 
(originally from Benech-Arnold et al. 2000, adapted from Batlla and Benech-Arnold 2010)
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temperature, could be described as a bilinear regression characterized by three car-
dinal temperatures (Fig. 4.5), although alternative approaches for relating germina-
tion rate to temperature have been developed as well (Hardegree 2006). As observed 
in Fig. 4.5, the germination rate increases linearly with temperature from a base 
temperature (Tb; that temperature below which germination rate becomes zero), 
considered common for all seeds in the population, until it reaches a maximum at a 
temperature that is consequently defined as the optimum temperature (To). From To, 
germination rate decreases linearly with temperature until it becomes zero at a max-
imum temperature (Tm; that temperature above which germination rate becomes 
zero), which is considered to vary for different population fractions. The range 
between Tb and To is considered the suboptimal thermal range for seed germination, 
while that between To and Tm is considered the supra-optimal thermal range. The 
inverse of each linear slope in both ranges (sub- and supra-optimal) is regarded as 
the thermal time required for seed germination (ϑT), with units being degree days 
(°Cd) or degree hours (°Ch). The thermal time for seed germination  in the sub- 
optimal thermal range varies within the seed population (i.e. a normal distribution 
defined by the median, ϑT(50), and its standard deviation, σϑT), so different fractions 
of the population (10%, 25%, 75%, etc.) will need to accumulate different values of 
ϑT to germinate as the relationship between temperature and germination rate for 
each fraction has a different slope. Instead, in the supra-optimal range, the different 
seed fractions often show the same slopes (parallel lines) resulting in different inter-
cepts on the x-axis (i.e. different Tm; Covell et al. 1986; Ellis et al. 1986); however, 
common Tm values for all seeds in a population have been reported as well (Garcia- 
Huidobro et al. 1982; Hardegree 2006).

Above-mentioned parameters (Tb, To, Tm and ϑT) can be used to describe, or even-
tually predict, the dynamics of germination of a seed population as a function of 
time and temperature using a thermal-time modelling approach (Washitani 1987; 

Fig. 4.5 (a) Schematic representation of the relationship between germination rates (GRg = 1/tg) 
and temperature at the suboptimal and the supra-optimal thermal range for 25, 50 and 75% of a 
seed population. (b) Relationship between GRg and water potential for 25, 50 and 75% of a seed 
population
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Benech-Arnold and Sánchez 1995). For example, in the case of the suboptimal ther-
mal range for seed germination (between Tb and To), if we know the values of Tb and 
ϑT(50) of a particular weed species, we can predict the time required to achieve 50% 
of germination using the following equation:

 
ϑT s b50 50( ) = −( ) ( )T T t

 
(4.1)

where Ts is the soil temperature and t(50) is time for germination of the 50% of the 
seed population. The time for germination of other seed fractions can also be calcu-
lated knowing their corresponding ϑT. The thermal-time approach was successfully 
used to analyse and model the germination and the emergence of different species 
as a function of time and temperature (Garcia-Huidobro et al. 1982; Covell et al. 
1986; Leguizamon et al. 2009). A similar model can be used to predict germination 
as a function of time and temperature in the supra-optimal thermal range (between 
To and Tm); for details, see Bewley et al. (2013).

Another factor that has a marked influence on germination is water availability. 
Variations in soil water content can affect both germination rate and the seed frac-
tion capable to germinate. Similarly, to the thermal-time model, seeds require a 
certain amount of hydro-time (ϑH) to germinate, and that amount of ϑH (in MPa day 
or MPa h) is accumulated above a threshold value called base water potential (Ψb; 
the minimum water potential at which germination will occur for a given seed). 
However, there are differences between models. In the suboptimal thermal range of 
the thermal-time model, seeds accumulate ϑT above a common Tb for the entire seed 
population, and the ϑT required for germination is different for each fraction of the 
population. Instead, in the hydro-time model, the Ψb above which seeds accumulate 
hydro-time is distributed in the population (i.e. a normal distribution defined by the 
median, Ψb(50), and its standard deviation, σΨb), while the amount of ϑH required for 
germination is equal for all the seeds in the population (i.e. similar slopes of the 
relationship between germination rate and Ψ for different seed population fractions) 
(Fig. 4.5b). The response of the seeds to water availability can be analysed in a simi-
lar way to that commented before for the analysis of temperature effects on seed 
germination. So, in analogy to the thermal-time model, seed germination response 
to water availability can be described or predicted using the hydro-time model 
equation:

 
ϑH s b= − ( )( ) ( )Ψ Ψ 50 50t

 
(4.2)

where Ψs is soil water potential in MPa, Ψb(50) is the average water potential of the 
seed population in MPa and t(50) is the time required for the germination of 50% of 
the seed population.

An integrative model, called the hydrothermal-time model, is based on the two 
models explained above (the thermal-time, Eq. (4.1), and the hydro-time, Eq. (4.2)). 
The hydrothermal-time model allows describing the effect of temperature and water 
potential on seed germination together (Gummerson 1986; Bradford 1995, 2002). 
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Thus, for the suboptimal range, germination dynamics can be described using the 
following equation:

 
ϑHT s b s b= − ( )( ) −( ) ( )Ψ Ψ 50 50T T t

 
(4.3)

where ϑHT is the hydrothermal-time (with units being °C MPa d or °C MPa h) 
required for seed germination. The hydrothermal-time model can be also applied to 
the supra-optimal thermal range (for details, see Bewley et al. 2013).

4.4  The Use of Dormancy and Germination Models 
to Predict Timing and Extent of Emergence 
from Weed Seedbanks

As commented previously, to model seedbank dormancy changes, we should estab-
lish functional relationships between key regulating factors and the rates of dor-
mancy alleviation and induction. Because soil temperature is the most important 
environmental factor controlling annual dormancy cycles of buried seeds in most 
temperate zones, relationships should be established between temperature and some 
parameters able to characterize the seedbank dormancy level. As commented before, 
one way to characterize seedbank dormancy level is through the range of tempera-
tures permissive for seed germination, which can be quantified through their limit 
temperatures, Tl and Th (Fig. 4.3). These limit temperatures can be estimated from 
the final fraction of germinated seeds within a temperature range assuming that the 
fraction of germinated seeds in relation to temperature can be predicted based on the 
normal distribution of these two limit temperatures (see Washitani (1987) and Batlla 
and Benech-Arnold (2015) for details). With the purpose of establishing relation-
ships between time, soil temperature and seed dormancy level, Batlla and Benech- 
Arnold (2003) characterized P. aviculare seed dormancy loss for seeds stratified at 
different temperatures through changes in the range of temperatures permissive for 
germination as a consequence of changes in the mean lower limit temperature of the 
range (Tl (50)) (Fig. 4.6a). P. aviculare is a cosmopolitan summer annual weed that 
invades winter crops and forms persistence seedbanks (Costea and Tardif 2005). As 
many other summer annuals, P. aviculare imbibed seeds loss dormancy when 
exposed to low winter temperatures and go into secondary dormancy when exposed 
to high summer temperatures (Batlla et al. 2009). To quantify the effects of stratifi-
cation time and temperature on seed population dormancy level (assessed through 
changes in Tl (50)), authors used a thermal-time equation:

 
S T Ttt c sdays= ( )–

 
(4.4)

where Stt is stratification thermal-time units (°Cd), Tc is the dormancy release ‘ceil-
ing’ temperature (°C) (the temperature at, or over, which dormancy release does not 
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occur) and Ts is the daily mean storage or soil temperature (°C). The optimal ‘ceil-
ing’ temperature for dormancy loss in P. aviculare seeds was 17 °C (according to 
Batlla and Benech-Arnold 2003).

This thermal-time approach is similar to that usually used to relate other biologi-
cal processes (i.e. crop phenology) to time and temperature. However, in contrast to 
common thermal-time models in which degree days are accumulated over a base 

Fig. 4.6 Changes in the mean lower limit temperature (Tl(50)) for P. aviculare seeds during dor-
mancy release and induction. (a) Changes in Tl(50) during dormancy release for seeds stored at 
1.6, 7 and 12 °C, plotted against days of storage and (b) against stratification thermal time (Stt; 
Eq. 4.4). The dotted lines in (a) were fitted linear equations for each storage temperature with R2 
values of 0.98 (1.6  °C), 0.84 (7  °C) and 0.96 (12  °C). The fitted line in (b) (Tl(50)  = −0.007 
Stt + 18.07; Eq. 4.5) is the result of repeated regression analysis to obtain the threshold ‘ceiling’ 
temperature (Tc) with the best fit according to Eq. 4.4. Inset in (b) is estimated values of standard 
deviation of the lower limit temperature (σTl) for P. aviculare seeds stored at 1.6, 7 and 12 °C plot-
ted against the ln(Stt/100)/Ts, where Stt is the stratification thermal time (Eq. 4.4) and Ts is the daily 
mean storage or soil temperature. The line was fitted according to equation σTl  = −11.28 (ln 
(Stt/100)/Ts) 2 + 23.91 (ln (Stt/100)/Ts) with an R2 of 0.9. (c) Changes in Tl(50) during dormancy 
induction for seeds stored at 10, 15, 20, 25 and 30 °C plotted against days of storage and (d) against 
dormancy induction thermal time (DItt). The dashed lines in (c) were fitted by linear equations for 
each storage temperature with R2 values of 0.96 (10 °C), 0.99 (15 °C), 0.87 (20 °C), 0.89 (25 °C) 
and 0.96 (30 °C), while the dotted straight line indicates the mean higher limit temperature for seed 
germination of the seed population (Th (50)). The fitted bilinear line in (d) is the result of repeated 
regression analysis to obtain the threshold ‘dormancy induction temperature’ (TuDI) with the best fit 
according to equation Tl (50) = 0.12 DItt + 7.5, if DItt ≥ 96.5 °Cd Tl (50) = 18 °C (Eq. 4.7) (Figures 
a and b adapted from Batlla and Benech-Arnold 2003; figures c and d adapted from Malavert 
et al. 2017)
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temperature, Stt accumulates degree days below a ceiling threshold temperature 
below which dormancy loss occurs. Using this thermal-time equation, the lower the 
stratification temperature, the more thermal-time units are accumulated and the 
lower the seed dormancy level (i.e. lower Tl(50)). Similar thermal-time approaches 
were used successfully by other authors to quantify time and temperature effects on 
seed dormancy status (Pritchard et  al. 1996; Bauer et  al. 1998; Steadman and 
Pritchard 2003). The possibility of quantifying temperature effects using a thermal- 
time approach allows the prediction of the dormancy level of a seed population 
exposed to the variable soil field thermal environment. For example, in P. aviculare 
seeds Tl(50) could be predicted as a negative linear function of accumulated Stt using 
the following function (Fig. 4.6b):

 
T S Tl tt l hd50 0 007 50( ) = − + ( )( ).

 
(4.5)

where Tl(hd)(50) is the initial Tl(50) of the population (for recently dispersed or for 
seeds showing a high dormancy level) which was determined to be 18 °C by Batlla 
and Benech-Arnold (2003).

Equations (4.4) and (4.5) can be used to predict the time at which 50% of the 
seedbank population would emerge (i.e. when soil temperature surpasses Tl(50); see 
Fig. 4.3). However, weed seedbank populations are usually large, and emergence of 
even a small fraction (e.g. 10%) can result in a high seedling density. Consequently, 
it is important to predict even low levels of emergence. To achieve this goal, we 
should know the Tl for different fractions of the seedbank population (e.g. Tl (10), Tl 
(20), etc.); in other words, we should know the distribution of Tl within the seed 
population. Assuming a normal distribution of Tl, Batlla and Benech-Arnold (2003) 
developed an additional function to predict changes in the standard deviation of Tl 
(σTl) in relation to accumulated Stt units and the daily mean storage or soil tempera-
ture (see inset in Fig. 4.6b). This population threshold model can be used to predict 
the Tl for different fractions of the seed population (i.e. the distribution of dormancy 
levels within the population) allowing for the estimation of the fraction of the seed-
bank that would germinate under a given thermal environment.

However, to predict the seasonal pattern of weed emergence, we should not only 
be able to predict dormancy loss but also dormancy induction. The effect of tem-
perature on P. aviculare dormancy induction assessed through changes in Tl was 
recently quantified by Malavert et al. (2017) (Fig. 4.6c). Obtained results showed 
that, as for many other summer annuals weeds, the higher the temperature, the 
higher the rate of induction into secondary dormancy (i.e. higher rate of Tl(50) 
increase). In order to relate time and temperature to changes in seed dormancy level 
characterized by Tl(50), authors used a positive thermal-time index in which tem-
perature was accumulated over a base temperature for dormancy induction to 
proceed:

 
DI T Ttt s uDIdays= −( )  

(4.6)
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where DItt is dormancy induction thermal time (°Cd) and TuDI is the threshold tem-
perature for induction into secondary dormancy (7.9 °C according to Malavert et al. 
(2017), temperature at or below which dormancy induction does not occur). Tl(50) 
could be predicted through a bilinear function that depends on DItt accumulation:

 
T DI T DI Tl tt l ld tt lif Cd C50 0 12 50 96 5 50 18( ) = + ( ) ≥ ( ) =( )

° °. .
 

(4.7)

where Tl (ld)(50) is the initial Tl(50) of the seed population, that before induction into 
secondary dormancy (i.e. after a period of stratification or for seeds showing a low 
dormancy level). Authors found that σTl did not change during dormancy induction, 
so they assumed a fixed value of 2.7 °C.

Assuming that just Tl changes with changes in dormancy level, while Th remains 
constant (with Th(50) = 18 °C, σTh = 0.1 °C), both models can be used simultane-
ously to predict how the thermal range permissive for seed germination changes as 
a consequence of changes in Tl during dormancy release and induction in relation to 
soil temperature. An example of how both models work together can be observed in 
Fig. 4.7. In summary, both models, Stt (operating at soil temperatures below 17 °C; 
Eq. (4.4)) and DItt (operating at soil temperatures above 7.9 °C; Eq. (4.6)), accumu-
late °Cd simultaneously according to soil temperature on a daily basis once autumn 
mean soil temperature is below 17 °C (inset in Fig. 4.7a) (the model assumes that 
seeds dispersed in autumn are fully dormant and that their dormancy level does not 
change until soil temperature is below the threshold temperature for dormancy 
release, Tc in Eq. (4.4)). From this date onwards, dormancy loss prevails because 
low autumn and winter temperatures determine the accumulation of more Stt than 
DItt, so the decrease in Tl is predicted using Eq. (4.5) based on accumulated Stt 
(Fig. 4.7a). However, during spring, rising temperatures establish a higher accumu-
lation of Ditt than Stt because DItt accumulates °Cd over 7.9  °C and Stt below 
17 °C. The date accumulated DItt surpasses accumulated Stt, dormancy induction 
starts and the increase in Tl is predicted using Eq. (4.7) based on accumulated Ditt 
(Fig. 4.7a). When Tl(50) equals Th(50), full dormancy is reached. The model would 
re-start next autumn when soil temperature values get below 17 °C (i.e. Tc, Eq. 4.4). 
Germination of a certain fraction of the seedbank takes place when mean soil tem-
perature surpasses the Tl for that fraction (i.e. soil temperatures overlap the permis-
sive thermal range for germination of that fraction; Fig. 4.7b). Therefore, assuming 
that the fraction of germinated seeds in relation to temperature can be described 
based on the normal distribution of Tl and Th (Batlla and Benech-Arnold 2015), it 
can be predicted using the following function:

 
GF T T T T TT T( ) = − ( )( )( ) − − − ( )( )( )( / ( /Φ Φl l h h50 1 50σ σ

 
(4.8)

where GF(T) is the fraction of seeds germinating at temperature T and Φ is the nor-
mal probability integral. This allows an acceptable description of the temporal win-
dow of seedling emergence in the field and the fraction of the seedbank able to 
emerge (Fig. 4.7b).
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Similar approaches were developed to predict weed seed dormancy loss through 
dry after-ripening in winter annual weeds. For example, Chantre et al. (2009) devel-
oped a model to predict dormancy loss as a consequence of changes in the mean 
maximum limit temperature for seed germination (Tm(50)) in relation to tempera-
ture for Buglossoides arvensis, a common winter annual weed in the south area of 
the semiarid pampean region of Argentina. Changes in Tm(50) during dormancy loss 
can be predicted through a quadratic equation in relation to the accumulation of 
after-ripening thermal-time units (°Cd) above a base temperature of −6 °C for the 
after-ripening process to occur. The model also accounts for a decrease in the 

Fig. 4.7 Evaluation of models for dormancy release (Eqs. 4.4 and 4.5 and inset in Fig. 4.6b) and 
dormancy induction (Eqs. 4.6 and 4.7) under field conditions. (a) Simulated changes in the lower 
limit temperature (Tl) for P. aviculare seeds during burial in the field. The solid black and red lines 
represent the lower limit temperature for 50% (Tl(50)) and 25% (Tl(25)) of the seed population, 
respectively. The dashed black line represents the higher limit temperature for 50% (Th(50)) of the 
seed population. The dashed blue line indicates the soil temperature at 5 cm and stars the date seeds 
were exhumed from the soil. Inset graph in (a) shows the accumulation of stratification thermal 
time (Stt, blue line) and dormancy induction thermal time (DItt, red line) according to soil tempera-
ture using Eqs. (4.4) and (4.6), respectively. When Stt > DItt, Tl values were predicted using Eq. 
(4.5) and that of the inset in Fig. 4.6b, when DItt > Stt, Tl values were predicted using Eq. (4.7) and 
assuming a fixed value of 2.7 for the standard deviation of Tl. (b) Recorded and simulated field 
emergence percentages for buried P. aviculare seeds
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thermal- time required for seed germination (i.e. an increase in germination rate) as 
a consequence of dormancy loss.

Above examples used changes in the thermal range permissive for seed germina-
tion as a proxy of changes in the dormancy status of the seed population. However, 
as commented before, changes in dormancy level are also related to changes in the 
base water potential for seed germination (Ψb), sensitivity to light and alternating 
temperatures. So, any of this responses can be used as a proxy of the dormancy level 
of the seed population. For example, shifts in Ψb can be used as a proxy of changes 
in germination behaviour in relation to variations in seed population dormancy level 
(Bradford 2002); a decrease in Ψb during dormancy loss determines an increase in 
germination percentage and germination rate, while an increase in Ψb determines a 
decrease in germination percentage and rate as seeds go into secondary dormancy. 
Bauer et al. (1998) and Christensen et al. (1996) successfully used changes in Ψb as 
a proxy of changes in seedbank dormancy status to model seed dormancy loss in the 
annual invasive grass Bromus tectorum L. These authors accurately predicted the 
increase in germination percentage and rate during dormancy loss through a pro-
gressive decrease in Ψb of the seed population. Similar to previous explained mod-
els, the decrease in Ψb can be predicted through negative linear or exponential 
functions based on the accumulation of thermal-time units above a base temperature 
for the after-ripened process to occur (Chantre et al. 2010). Recently, using a similar 
approach, the model was extended to include induction into secondary dormancy 
through an increase in Ψb due to the exposition of seeds to low temperature under 
moderate water stress (Hawkins et al. 2017). Changes in Ψb were also used as a 
proxy of seed dormancy level for modelling dormancy loss through stratification in 
P. aviculare seeds by Batlla and Benech-Arnold (2004). The authors found that 
Ψb(50) became more negative as seeds were released from dormancy while other 
hydro-time parameters, such as σΨb and ϑH, did not change significantly during the 
dormancy loss process. Changes in Ψb(50) in relation to soil temperature were pre-
dicted using a negative exponential equation according to the accumulation of Stt 
units (Eq. 4.4). As commented for B. tectorum, the model was recently extended to 
include dormancy induction due to the effect of high temperatures (Batlla and 
Agostinelli 2017). However, in this case, the decrease in seed germination due to 
induction into secondary dormancy was a consequence of a progressive decrease in 
Ψb(50), together with changes in other hydro-time parameters (σΨb and ϑH). Using 
above-mentioned models, changes in the germination response of seedbanks to tem-
perature and water potential can be simulated as a function of soil temperature.

As mentioned before, dormancy-terminating factors could affect the emergence 
pattern of many weed species under field conditions. For example, light is often an 
important factor controlling weed seedbank emergence under conventional tillage 
systems. Batlla et al. (2003) and Batlla and Benech-Arnold (2005) developed mod-
els to simulate changes in the sensitivity of buried seeds to the stimuli of alternating 
temperatures and light, respectively, as a function of stratification temperature using 
the previously presented stratification thermal-time index (Stt; Eq. 4.4). For exam-
ple, the light sensitivity model allows the simulation of the progressive increase in 
buried seed sensitivity to light during winter and early spring showing how different 
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fractions of the seedbank acquire an extreme sensitivity to light presenting VLFR 
type responses. Due to the fact that the acquisition of a VLFR would permit buried 
seeds to germinate in response to the light flash perceived during soil disturbance 
(Casal and Sánchez 1998), this model could be used to predict the proportion of the 
seedbank able to germinate in response to tillage operations after the accumulation 
of a certain amount of Stt during winter (Batlla and Benech-Arnold 2014). Recently, 
complementary models able to predict how sensitivity to light and alternating tem-
peratures decreases during dormancy induction based on the accumulation of Ditt 
units were developed (Malavert 2017). These models could be coupled to previ-
ously described models to predict changes in the sensitivity of seedbanks to 
dormancy- terminating factors.

As pointed out before, soil water content can also affect seedbank dormancy 
changes through its effects on seed hydration level. However, the effect of soil water 
content or seed moisture on seed dormancy status under natural environments has 
been scarcely studied (Hu et al. 2018), and there are just few models including this 
factor as a modulator of seed dormancy level.

One nice example is the model developed by Bair et al. (2006) for B. tectorum. 
These authors quantified the effect of solutions with different water potentials on 
the rate of dormancy loss in B. tectorum seeds through its effects on the rate of 
decrease  in Ψb(50). These results were further related to the water potential that 
seeds can experience when buried in the soil, showing that soil water potential 
effects on seed dormancy loss rate can be divided into four range zones: (1) one in 
which seeds are too dry for after-ripening to occur (below −375 MPa), (2) an inter-
mediate range in which the dormancy loss rate increases linearly with an increase in 
soil water potential (between −375 and − 150 MPa), (3) a third range within which 
the dormancy loss rate just depends on prevailing soil temperature and is not affected 
by soil water status (between −150 and − 40 MPa) and (4) a fourth range in which 
seeds are too wet for after-ripening to occur (above −40 MPa). Bair et al. (2006) 
showed that including the effect of soil water potential as a dormancy regulating 
factor in previous models that were driven just by soil temperature generally 
improved predictions of dormancy loss under dry soil conditions.

Recently, Malavert (2017) quantified the effect of seed moisture content on the 
rate of dormancy release and induction in P. aviculare seeds. Dormancy changes 
were null for a seed moisture content below 15% (a similar threshold value was 
recently reported for Chenopodium album L. by Hu et al. 2018), while above this 
threshold, the rate of dormancy release increases up to 31% (above 31%, the rate of 
dormancy loss depended only on temperature). The inclusion of the effect of seed 
moisture content on dormancy changes when the soil water content in the seed zone 
establishes a seed moisture content below 31% improved the prediction of seedling 
emergence in relation to predictions made using only temperature as a driver of 
dormancy changes.

Although dormancy is a common feature of many weed seedbank populations, 
there are some weed species in which their sexual and/or asexual propagules show 
a very low dormancy level soon after dispersal or show no dormancy at all. In those 
species, emergence can be predicted just based on thermal-time and 
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hydrothermal- time models previously explained (Eqs. 4.1 and 4.3). These models 
can be used as tools to predict the period in which these weeds are more susceptible 
to the application of chemical control practices improving significantly their effi-
cacy (Ghersa et al. 1990). A throughout description and analysis of empirical-based 
models is presented in the next chapter.

4.5  Conclusions

Models which are able to predict timing and extent of seedling emergence forming 
soil seedbanks in agricultural fields can be useful tools to assist farmers and agrono-
mist to increase the efficacy of weed control methods. Knowing the temporal pat-
tern of weed emergence not only allows us to apply post-emergence control practices 
when a high proportion of the plants had already emerged but are still in the seed-
ling stage but also to time the application of pre-emergent control tactics to affect a 
higher proportion of emerged seedling and avoid weed escapes from control prac-
tices. In this chapter, we show the way in which a conceptual framework of how the 
environment regulates seedbank dormancy can be used to develop mechanistic 
models able to predict seedling emergence patterns in the field. Although this type 
of models requires a clear conceptualization about the functioning of the system, 
they have the advantage that once they are developed for a certain weed, for exam-
ple, a summer annual weed requiring stratification for dormancy release, they can 
be re-parametrize for other species showing a similar response to the environment. 
This raises the possibility of developing models for weed dormancy and/or germi-
native syndromes (group of species that shows similar dormancy and/or germinative 
response to environmental factors), which can then be re-parametrized for different 
weed species within each syndrome (Duarte et al. 2015). On the other hand, these 
mechanistic models can be used to forecast the behaviour of weed seedbanks in 
changing climatic environments and are flexible enough as to introduce the effects 
of other factors affecting seed dormancy level and field emergence, as, for example, 
the effect of the maternal environment (Fernández Farnocchia et al. 2019). Finally, 
although in this chapter we present models dealing with seeds showing physiologi-
cal dormancy, models accounting for the environmental regulation of dormancy in 
weed seeds showing other types of dormancy, such as physical (Gama-Arachchige 
et al. 2013) or combinational type (physical/physiological) dormancy (Renzi et al. 
2016, 2018) have been developed.
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Chapter 5
Weed Emergence Models

Aritz Royo-Esnal, Joel Torra, and Guillermo R. Chantre 

Abstract Weed emergence models are practical tools that aim to describe the 
dynamics of emergence in the field. Such models can be conceptualized from two 
main perspectives: a reductionist/mechanistic approach and an empirical modelling 
viewpoint. While the former provides a close description of the basic ecophysiolog-
ical processes underlying weed emergence (i.e. seed dormancy, germination and 
pre-emergence growth), they usually require a large amount of difficult to estimate 
species-specific parameters, as well as sometimes unavailable or missing experi-
mental data for model development/calibration/validation. Conversely, the latter 
aims to describe the emergence process as a whole by seeking a general mathemati-
cal description of field emergence data as a function of field environmental vari-
ables, mainly temperature and precipitation. As reviewed in the literature, most 
emergence models have been developed using nonlinear regression (NLR) tech-
niques. NLR sigmoidal type models which are based on cumulative thermal or 
hydrothermal time have become the most popular approach as they are easy to 
develop and use. However, some statistical and bioecological limitations arise, for 
example, the lack of independence between samplings, censored data, need for 
threshold thermal/hydric parameter estimation and determination of ‘moment zero’ 
for thermal/hydrothermal-time accumulation, among other factors, which can lead 
to inaccurate descriptions of the emergence process. New approaches based on soft 
computing techniques (SCT) have recently been proposed as alternative models to 
tackle some of the previously mentioned limitations. In this chapter, we focus on 
empirical weed emergence models with special emphasis in NLR models, high-
lighting some of the main advantages, as well as the statistical and biological limita-
tions that could affect their predictive accuracy. We briefly discuss new SCT-based 
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approaches, such as artificial neural networks which have recently been used for 
weed emergence modelling.

Keywords Empirical modelling · Field emergence data · Non-linear regression · 
Hydrothermal-time · Soft computing · Artificial neural networks · Uncertainty

5.1  Introduction

5.1.1  Weed Management: Field Emergence Dynamics

Weeds are the major risk for crop production (Oerke 2006). Field management 
strategies always aim to minimize the impact of weeds, directly by applying spe-
cific weed control practices (chemical or mechanical) or indirectly by cultural man-
agement methods (e.g. crop selection, soil management and fertilization, sowing 
dates). The latter also determine the effectiveness of weed control (Cardina et al. 
2007). In this regard, two important reasons can define the necessity for a precise 
characterization of weed species emergence dynamics in the field: (1) primarily, the 
relative moment of emergence determines the probability of individuals’ successful 
recruitment within the population (Forcella et al. 2000); (2) secondly, early growth 
stages of the population show the highest susceptibility to control interventions and 
both intra- and interspecific competition (Menalled and Schonbeck 2011). Thus, 
knowing both time and magnitude of field emergence is a key aspect of weed 
management.

As described in the previous chapter, mechanistic models are valuable approxi-
mations as they provide a close description of the basic ecophysiological processes 
underlying weed emergence (i.e. seed dormancy, germination and pre-emergence 
growth) (Fig.  5.1). They require a large amount of species-specific parameters 
which can be difficult to estimate, and sometimes, the complexity of the model 
conspires against the level of parsimony desired for practical decision-making 
(Grundy 2003). Reductionist approaches are rather scarce in the literature (e.g. 
Vleeshouwers and Kropff 2000; Gardarin et al. 2012; Renzi et al. 2018) as they can 
be very time-consuming to develop/calibrate/validate. Ideally, they should be part 
of more integrative frameworks including demographic (Gardarin et  al. 2012; 
D’Amico et al. 2018; Renzi et  al. 2019), economic (Pannell et  al. 2004; Beltran 
et al. 2012) and environmental (Lodovichi et al. 2013; Lammoglia et al. 2017) ele-
ments of weed management systems.

In this chapter, we focus on empirical weed emergence approaches with special 
emphasis on sigmoidal type nonlinear regression (NLR) models, highlighting some 
of their main advantages and also the statistical and biological limitations that could 
affect their predictive accuracy. We briefly discuss new soft computing techniques 

A. Royo-Esnal et al.
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(SCT), such as artificial neural networks, which have recently been used for weed 
emergence modelling.

5.1.2  A Summary of Modelling Efforts: A Literature Review

Empirical NLR approaches have been extensively used for weed emergence model-
ling (Gonzalez-Andujar et  al. 2016a, b). Among them, Weibull, Logistic and 
Gompertz are by far the most conspicuous (Tables 5.1 and 5.2).

Models for 58 dicotyledonous (Table 5.1) and 37 monocotyledonous weed spe-
cies (Table 5.2) belonging to 24 botanical families, 22 of them dicotyledonous and 
two monocotyledonous, were developed. For some of these species, only germina-
tion models have been proposed, but because of their field applicability described 
by the corresponding authors, they have also been included.

As observed in Tables 5.1 and 5.2, the number of empirical models developed for 
each weed species denotes their importance. In this sense, Avena fatua could be 
considered the most concerning weed, as substantial efforts have been dedicated by 
the scientific modelling community (Table 5.2). Other species, such as Chenopodium 
album, Amaranthus retroflexus, Ambrosia trifida, Echinochloa crus-galli, Sorghum 
halepense, Ambrosia artemisiifolia, Xanthium strumarium, Thlaspi arvense, 
Abutilon theophrasti, Polygonum aviculare and Digitaria sanguinalis, also received 
considerable attention (Tables 5.1 and 5.2).

Among NLR models, Weibull and its variations have largely been used for 
parameterization, but others like Gompertz and Logistic have also successfully been 
applied. The least used models have been probit regression, Boltzmann, Chapman 
and Hill functions, Gaussian, Linear, General-logistic and Wang and Engel func-
tions (Tables 5.1 and 5.2). As explanatory variables, both thermal-time (TT) and 
hydrothermal-time (HTT) indices have been used to integrate the effects of soil 
temperature and soil water potential on the emergence process. Also, TT and HTT 
are at least at some extent influenced by the cropping system. For example, models 
for weed species from summer irrigated crops have been successfully parameter-
ized using TT, while HTT has been useful in describing autumn-winter annual 
weeds that occur in cereal crops and other rain-fed winter crops (Tables 5.1 and 5.2).

5.2  Empirical NLR Models

5.2.1  Basics

Empirical NLR models are tools for predicting both timing and quantity of cumula-
tive percentage using environmental variables, such as temperature, soil moisture 
and, more recently, light (Royo-Esnal et al. 2015a). They are based on the thermal 
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or hydrothermal-time concept proposed by Gummerson (1986) which assumes that 
seeds need to accumulate a certain amount of growing degree days (°Cd) before 
completing germination and emergence. Soil temperature and soil water potential 
data is usually obtained from in situ determinations using dataloggers, or alterna-
tively, they can be estimated using free available software, such as the STM2 (Soil 
Temperature and Moisture Model) developed by the USDA-ARS (Spokas and 
Forcella 2009).

NLR models can be classified as thermal, hydrothermal or photohydrothermal- 
time based. In any case, during the cropping season, daily mean soil temperature is 
accumulated (TT) above a specific soil water threshold (base water potential for 
germination, Ψb) (Roman et al. 2000) or a combination of water and photoperiod 
thresholds (Royo-Esnal et al. 2015a, c, 2019) until weed emergence is completed. 
In order to generate thermal, hydrothermal-time or photohydrothermal-time data, it 
is necessary to estimate ‘species-specific’ threshold parameters (base temperature, 
base water potential for seed germination/emergence). Threshold parameters for 
thermal-time sum are the base and ceiling temperatures (Tb and Tc, respectively), 
while for HTT, usually, the base soil water potential is considered (ψb). Base tem-
perature is considered that one above which thermal time is accumulated and below 
which not (Roberts 1988); in contrast, ceiling temperature is that one below which 
temperature is accumulated and above which not. With these considerations, for a 
given species, the cumulative TT (θT) is estimated with the following formula 
(Eq. 5.1):

 
θT b b cif and= −( ) > <

=
∑
i n

i iT T T T T
1,  (5.1)

 θT Otherwise= 0  

where θT is the cumulative thermal time at day i and Ti is the mean daily temperature 
at day i. This way of estimating TT was improved by introducing the hydrotime 
concept (Roman et  al. 1999), where thermal time for emergence is accumulated 
only when a threshold moisture value (ψb) is available for a given species, and the 
thermal time (TT) derives in the hydrothermal-time (HTT) concept. Cumulative 
HTT (θHTT) is estimated with the following formula (Eq. 5.2):

 
θHTT b b= −( ) −( )

=
∑
i n

i iT T
1,

Ψ Ψ
 (5.2)

 Ψ Ψ Ψ Ψi i– b bif= >1  

 Ψ Ψ Ψ Ψi i– b bif= <0  

where Ψi is the soil water potential at day i. This way of estimating either TT or HTT 
accumulation has been useful for emergence modelling (Tables 5.1 and 5.2).

Other approaches have also been considered, making corrections or calibrations 
to this basic TT and HTT estimations. For example, using the beta-function, Cochavi 
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et al. (2018) considered that the germination/emergence rate increases from Tb to To, 
while it decreases from To to Tc. Therefore, to consider this variation rate, a correc-
tion factor r (Eq. 5.3) is included to the thermal-time estimation, which is as follows:
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 (5.3)

where Ti is the mean daily temperature at day i, Tb is the base temperature, To is the 
optimal temperature, Tc is the ceiling temperature and a is the shape of the slope. 
Therefore, the newly estimated θT would be calculated as follows (Eq. 5.4):

 
θT b= −( )

=
∑
i n

ir T T
1,  (5.4)

This methodology was found useful in order to improve the accuracy of the germi-
nation model for Euphorbia geniculata (Cochavi et al. 2018).

As previously mentioned, photoperiod can also be a useful factor to improve the 
accuracy of the models. Attempts have been done to introduce this factor to achieve 
better predictions on the emergence of some weeds. Royo-Esnal et al. (2015a) have 
been able to describe the emergence of autumn and spring cohorts of Thlaspi 
arvense in a single accurate model by introducing photoperiod as a correcting factor 
for HTT turning it in photohydrothermal time (PhHTT) (Eq. 5.5) (Fig. 5.2).
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θ θPhHTT HTT=

=
∑
i n

i iD
1,  (5.5)

where θPhHTT is the photohydrothermal-time sum at day i and Di is the proportional 
day length in day i. This is the simplest way of estimating PhHTT, but other ways of 
integrating the light factor have also been suggested (Royo-Esnal et al. 2015c, 2019).

Soil management practices can also influence field emergence dynamics. For 
instance, soil disturbance is known to affect the amount of seedbank germination and 
the proportion of emerged seedlings in arable weed species (Torra et al. 2018), but 
usually the periodicity of these events seems to be less affected (Froud-Williams et al. 
1984). As observed in Fig. 5.3a, under no-tillage system, the emergence of Apera 
spica-venti and Vulpia myuros is delayed with respect to mouldboard ploughing 
(Scherner et al. 2017). Conversely, the emergence patterns of Poa annua (Fig. 5.3b) or 
Bromus diandrus (Fig. 5.3c, d) were not influenced by the tillage system (Garcia et al. 
2013; Scherner et al. 2017). Similarly, for Ambrosia trifida not-till vs. minimum till-
age did not affect the emergence pattern (Barnes et  al. 2017), which was clearly 
affected by cover crops and perennial crops (Goplen et al. 2018).
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5.2.2  NLR Drawbacks

Despite their advantages, NLR models present various statistical and bioecological 
limitations (Gonzalez-Andujar et al. 2016a) that must be considered from both the-
oretical and practical perspectives (Onofri et al. 2010). For this reason, alternative 
approaches should be considered aiming to overcome some of the limitations 
described by Gonzalez-Andujar et al. (2016a).

5.2.2.1  Statistical Limitations

Initial Parameters

The initial parameter estimates determine the quality of the solutions (Gonzalez- 
Andujar et al. 2016a). Poor initial or biased estimates usually result on inadequate 
solutions (Holmström and Petersson 2002). For this reason, it is necessary to gather 
a good pool of data and proceed by an iterative method trying different sets of initial 
values until the optimum solution is final (see Chap. 2).

Algorithm Selection

The parameters of the model are estimated using optimization algorithms such as 
Marquardt–Levenberg or Gauss–Newton (Ratkowsky 1983). NLR models fitting rou-
tines are widely available in both free and commercial statistical software. The selec-
tion of the appropriate algorithm for a given problem is an important issue; however, 
‘default algorithm options’ are commonly used mainly by unexperienced users. As a 
consequence of an inadequate algorithm selection, wrong solutions can be obtained.

Statistical Dependence of the Data

Field data sampling is performed sequentially over the same experimental units. 
Consequently, the percentage of emergences observed on one date will depend on 
the amount of emergences that occurred on the previous sampling dates. Thus, 
emergence observations are dependent values, when the NLR models would require 
statistically independent data to be applied. As a consequence, a positive autocor-
relation of the residuals occurs, and erroneous predictions could be obtained.

Censored Data

Field emergence observation cannot be continuous, unless a video camera is 
placed. In practice, observations are performed periodically (usually on a weekly 
basis). Although emerged seedlings are counted in each date, the emergence pro-
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cess could have occurred at any time between the two sampling dates. For exam-
ple, considering a weekly counting base, suppose that ten new seedlings emerged 
in these 7 days. As the sigmoidal emergence model is a continuous function, ‘esti-
mated emergence data’ result from a linear interpolation among the two consecu-
tive counts. However, we are aware that in a real system, it is impossible to know 
when the ‘true emergences’ have occurred (as they could have happened in the 
whole period in between or immediately after the previous sampling date or 
immediately before the present sampling date). And even they could have hap-
pened in different days and different amounts. These ‘blind’ periods obscure the 
real emergence timing, and these are known as ‘censored data’, which can lead to 
biased results.

In order to make the error associated to these predictions more realistic, some 
authors have suggested the application of other statistical methods to the emergence 
data. Recently, Onofri et al. (2019) proposed the use of time-to-event data, which 
considers an interval of time for a seedling to be emerged. In hydrothermal-time-to- 
event models, the standard errors obtained for the parameters describing emergence 
are larger than those obtained by the NLR models. The effect of the censored data 
is corrected by incorporating the uncertainty concept in accordance to the time lapse 
between sampling dates (Onofri et al. 2018, 2019).

5.2.2.2  Bioecological Limitations

The use of cumulative TT, HTT or PhHTT as single explanatory variables in NLR 
models also involves certain bioecological shortcomings.

TT/HTT/PhHTT as Explanatory Variables

As highlighted by Chantre et al. (2018), such indexes are based on soil microcli-
matic variables (soil temperature and water potential) which are in turn dependent 
on many site-specific variables (e.g. soil texture, surface cover, seed burial depth). 
As a consequence, index calculation depends on (1) in situ soil temperature and 
moisture measurements, or, alternatively, site-specific soil microclimatic variable 
estimation using specific software (such as the STM2), and (2) the assumption that 
emergence rates are proportional to the amount by which soil temperature and soil 
water potential exceed a given threshold value (Bradford 2002). In addition, 
species- specific thresholds (Tb and ψb for seed germination/emergence) are gener-
ally obtained under laboratory-controlled conditions or alternatively by matching 
field data with TT or HTT following a nonlinear least-squares curve-fitting opti-
mization procedure. Regardless of the method used for threshold estimation, cer-
tain  statistical and biological assumptions underlie. As depicted by Bradford 
(2002), (1) population- based threshold parameters and soil microclimatic vari-
ables (soil temperature and water potential) are assumed independent; (2) ther-
mal/hydrothermal time among individuals of a population is considered to follow 
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a normal distribution. Last but not the least, such thresholds could not be simpli-
fied to a ‘set of unique’ parameters for a given weed population, even less for 
different populations of a given weed species, as many sources of variability exist.

Intra- and Inter-population Variability

As mentioned in the previous topic, population’s threshold values can be modi-
fied due to both internal (genetics) and external factors (environmental factors). 
For example, it is known that soil water potential and cumulative temperature 
suffered by the mother plants of Alopecurus myosuroides in the reproductive 
and maturation phases have an effect on the dormancy level of the progeny 
(Menegat et al. 2018). Similarly, maternal effects associated to the soil fertiliza-
tion environment (Longas et al. 2016) proved to influence seed germinability on 
Buglossoides arvensis. Also variations on the physical characteristics of the 
fruit coat for the one-seeded fruit species Neslia paniculata were influenced by 
the maternal environment (Royo- Esnal et al. 2019). Seed dimorphism can also 
affect to dormancy and germination of seeds, as in Polygonum aviculare (Costea 
and Tardiff 2005).

Thus, at an intra-population level, these thresholds can vary over time due to 
genetic, environmental and gene-environment interactions. Variability among popu-
lations is also associated to genetic and environmental factors that translate into 
ecological adaptations (ecotypes) (Keller and Kollmann 1999). For example, a 
Echinochloa crus-galli population from Norway emerges differently from an Italian 
population, while populations from Latvia, Sweden and Poland behave similar to 
the Norwegian, and those from Spain, Turkey and Iran, more similar to the Italian 
one (Royo-Esnal et al. 2018a). But a E. crus-galli population from a maize field 
from Spain also behaves differently from a population from a Spanish rice field 
(Royo-Esnal et al. 2018a).

The reasons that can explain such differences are not few. For instance, different 
soil management (e.g. cultivation operation) vary the vertical distribution of the 
seeds within the soil profile (Grundy et al. 1996). As a result, seeds will have differ-
ent temperature, soil moisture and light conditions, and the rate of dormancy release 
and germination will be different (Cao et al. 2011). In addition, deeply buried seeds 
need more time to emerge than seeds near the soil surface, thereby delaying and/or 
extending the emergence flushes.

Although TT/HTT/PhHTT models are of general applicability, validation results 
show that empirical models may not be accurate if environmental conditions vary 
significantly from the original conditions in which the experiment was conducted 
(Izquierdo et al. 2013). As a consequence, the accuracy of a given model is rarely 
extrapolable to other climatic areas or habitats (Dorado et al. 2009). As stated by 
Chantre et al. (2014), weed species ecological adaptations hinder the development 
of ‘universal’ weed emergence predictive models.
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Difficulties Establishing the Zero Moment for Thermal-Time Accumulation

A zero moment must be established prior to the onset of TT or HTT accumulation 
for weed emergence. Generally, this moment is not a big problem for summer 
weeds in temperate and Mediterranean climates, where soil moisture is not restric-
tive, thus establishing this starting point at some time during winter, or when soil 
disturbance for crop seeding is performed, which are reasonable options. For 
example, Tb values for Amaranthus retroflexus (8.9 °C) (Guillemin et al. 2013), 
Echinochloa crus-galli (9.7 °C) (Bagavathiannan et al. 2011) and Solanum nigrum 
(11.6  °C) (Guillemin et  al. 2013) usually emerge after crop sowing. However, 
other species such as Chenopodium album (3 °C) (Schutte et al. 2014) and Bassia 
scoparia (3.5 °C) (Werle et al. 2014b) show advanced emergence periods, usually 
starting before soil preparation for sowing and lasting till crop setting. Extended 
emergence periods are associated to the seedbank dormancy dynamics and its 
interaction with environmental germination/emergence cues (as described in 
Chap. 4).

In temperate and Mediterranean climates, soil moisture is seldom a limiting fac-
tor, as spring seasons are usually wet. Conversely, when the climatic conditions tend 
to be more oceanic with mild winters, or in tropical (rainy and drought periods) or 
arid/semiarid climates, soil moisture tends to be a limiting factor for TT/HTT accu-
mulation. For example, for some winter annual weeds, which usually have low Tb 
values, like Avena sterilis (0.8 °C) (Leguizamón et al. 2005), Papaver rhoeas (1 °C) 
(Izquierdo et al. 2009) and Galium aparine (0 °C) (Royo-Esnal et al. 2010), emer-
gence occurs mainly during early autumn when soil temperature drops below Tc. In 
many cases, despite the appropriate temperature conditions, HTT accumulation for 
emergence does not start until a rainfall event occurs (e.g. first autumn rains) as it 
happens in Bromus diandrus (Garcia et al. 2013) where emergence can be delayed 
for more than 3 months (Royo-Esnal et al. 2018b).

Lack of Knowledge on the Level of Infestation

As seen before, these models describe the cumulative percentage of emergence 
during a certain crop season (Figs. 5.2 and 5.3). Although they are valuable tools 
for weed emergence simulation/prediction and for the application of control 
methods from a short-time planning perspective, they also lack the capacity to 
predict the population dynamics in the long term, unless a previous seedbank 
estimation has been performed. Moreover, empirical models lack the mechanistic 
insight that reductionist approaches provide, and only simulations have been per-
formed trying to combine emergence models with population dynamic biblio-
graphic data, for example, for A. fatua (Gonzalez-Diaz et  al. 2007). From a 
long-term management planning perspective, weed population bioecological 
studies aiming to characterize the demographic dynamics of weed species are of 
overwhelming importance.
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5.2.3  New Modelling Approaches

New approaches have turn up as alternative methods to tackle some of the previ-
ously mentioned drawbacks (Gonzalez-Andujar et al. 2016a). Among them, algo-
rithmic modelling (sensu Breiman 2001) is of special interest to weed modellers as 
it clearly departs from the concept of an ‘ideal system’ described by complete-and- 
precise information and heads towards a real, uncertain and complex system. Real- 
world problems are in fact typically ill-defined systems, difficult to model and with 
large-scale solution spaces (Bonissone 1997). From this perspective, soft computing- 
based models have proved their capacity to deal with such systems. As stated by Das 
et al. (2013), soft computing techniques (SCT) unlike conventional computing (also 
known as hard computing) are tolerant to uncertainty, imprecision and partial truth, 
not requiring strict mathematical definitions.

Among soft computing techniques, artificial neural networks (ANNs) as model-
ling framework (Chantre et al. 2012, 2014) and genetic algorithms (Haj Seyed Hadi 
and Gonzalez-Andujar 2009; Blanco et al. 2014) as optimization engines have been 
proposed for weed emergence modelling (Tables 5.1 and 5.2).

As reviewed by Gonzalez-Andujar et al. (2016a), ANN models are inspired by 
the operation of the biological networks of the animal brain. ANNs are generally 
represented as a system of interconnected processing units (neurons), which 
exchange signals (i.e. information) between each other. The connections have 
numeric values (i.e. weights) that are adjusted during the training (i.e. learning) 
process using a given algorithm. Therefore, an ANN model is characterized by (1) 
its architecture (i.e. the pattern of neuronal connections), (2) its learning process 
(i.e. the training function for weight estimation) and finally (3) its activation func-
tions (i.e. mathematical functions that process input data).

In Chantre et al. (2018), a feed-forward ANN with three layers was implemented. 
The theoretical model, which is briefly shown in Fig. 5.4, has (1) two input variables 
(x1, x2) each connected to a given receptor neuron of an entrance layer, (2) an inter-
mediate eight-neuron layer and (3) an output variable (y).

As observed in Fig. 5.4, each neuron of the entrance layer receives a given input 
variable (x1, x2) and broadcasts its value to each neuron of the hidden layer. Each neu-
ron computes an activation function and generates an outcome (z1, …, z8) which is 
further transmitted to the output layer neuron which finally yields the network output 
(y). The output signal of each neuron in the hidden layer (zj) is calculated as (Eq. 5.6)
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while the output of the network is given by (Eq. 5.7)
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where f(.) represents the transfer (activation) function, vij are the weights of the con-
nections between the input and the intermediate neurons, v0j is the bias on neuron, 
wj represent the weights of the connections between the intermediate and output 
neurons and w0 is the bias on the output neuron.

The modelling framework proposed by Chantre et  al. (2018) showed reliable 
predictions for A. fatua, L. multiflorum and V. villosa ssp. villosa. The main strength 
of the proposed ANN approach is the absence of specific underlying modelling 
assumptions (e.g. normal/log-normal distribution of the cumulative emergence 
function) and the direct use of commonly available field meteorological data. 
Although SCT are well known for their flexibility and uncertainty tolerance, they 
also have some limitations, such as the following: they have (1) very low  extrapolation 
capacity; thus, a wide range of observed scenarios are needed to capture data vari-
ability; and (2) limited interpretable biological meaning of input-output 
relationships.

Fig. 5.4 ANN architecture with three layers (entrance, intermediate and exit layer). x1 and x2 rep-
resent the input variables (each neuron of the first layer receives a given input variable); a hidden 
layer with eight nodes (i.e. processing units) and a unique exit neuron that produces the final 
response (output variable). f(.) represents the activation functions of the neurons; vij are the connec-
tion weights between input-hidden layer neurons; wj are the connection weights between hidden 
and output layer neurons; v0j is the bias of each hidden neuron j, while w0 is the output neuron bias; 
zj is the output signal of each hidden neuron. y stands for the output variable. Extracted from 
Chantre et al. (2018)
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5.3  Decision Support System Developments: Websites 
and Software

In this regard, few attempts have been done to integrate empirical emergence mod-
els in software or computer programs aiming to provide practical decision-making 
for agronomists, producers and stakeholders. However, some developments can be 
mentioned.

5.3.1  WeedCast Model (USDA-ARS)

Forcella (1998) developed a tool called WeedCast to assess weed species emergence 
in real time. This program, which is downloadable from the USDA-ARS website 
(https://www.ars.usda.gov/research/software/download/?softwareid=112), predicts 
the emergence potential, timing and seedling height of up to 20 weed species.

To use this program, some previous information must be added, such as soil 
structure, initial soil water content, previous season’s crop and type of tillage. 
Weather data must also be provided to the software, as well as the user’s required 
time lapse of simulation.

In Fig. 5.5, the interface of the software is shown. A hypothetical scenario con-
sists of a field from Morris (Minnesota, USA) with chisel plough management, corn 
crop during the previous season and a sandy loam soil under wet conditions 
(Fig. 5.5a). Echinochloa crus-galli (barnyardgrass), Solanum nigrum (black night-
shade), Xanthium strumarium (common cocklebur) and Chenopodium album (com-
mon lambsquarters) were the selected species (Fig. 5.5b). With this information, the 
program predicts cumulative emergence patterns as well as the expected height of 
the seedlings. Additional data, such as soil temperature (thermal time) and moisture 
(soil water potential), are provided as model’s output (Fig. 5.5c).

5.3.2  AlertInf (Masin et al. 2012, 2014)

Masin et al. (2012, 2014) in the Veneto region of Italy developed a useful tool that 
predicts the emergence of A. theophrasti, A. retroflexus, C. album, P. persicaria, 
S. nigrum and Sorghum halepense in maize and soybean (Fig. 5.6). The emergence 
of these species is modelled based on the soil temperature from 0 to 10 cm of several 
sites of Veneto’s region.

AlertInf allows the user to select the meteorological station available nearby, the 
date when the seedbed was prepared and the date for which the emergence percent-
age of a given species is required (Fig. 5.6). Despite this valuable information, the 
user must be aware that the program only provides the percentage of emergence, but 
information about the phenological stage is lacking; thus, in order to apply herbi-

A. Royo-Esnal et al.

https://www.ars.usda.gov/research/software/download/?softwareid=112


107

Fig. 5.5 WeedCast 4.0 Windows interface showing soil site property description (a), weed species 
selection and weather file (b) and the final output (c) including the cumulative emergence and 
height of the weeds, soil temperature, growing degree days (GDD), soil moisture and soil water 
potential are also provided. This software can be downloaded at https://www.ars.usda.gov/
research/software/download/?softwareid=112. For clarity of Figure c, the order of the columns in 
the output has been modified
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cide solutions, field monitoring is necessary. This tool is in Italian, but English 
information of how to use it and of technical aspects is also provided in the website 
(http://www.arpa.veneto.it/upload_teolo/agrometeo/infestanti.htm). The advantage 
of this program with respect to WeedCast 4.0 is that weather data is automatically 
taken from the nearest weather station.

5.3.3  WEPS-ANN (Chantre et al. 2018)

An artificial neural network approach was proposed by Chantre et al. (2018) to pre-
dict the emergence patterns of weed species in the semiarid Pampean region of 
Argentina (Austral Pampas). Unlike traditional empirical weed emergence models, 
the ANN approach allows a direct input–output relationship between daily gener-
ated meteorological information and field emergence data without the necessity of 
soil microclimatic derived indexes (i.e. thermal/hydrothermal time) or ‘species- 
specific’ population thresholds. (see Sect. 5.2.3 for further details).

Fig. 5.6 AlertInf website interface for the prediction of the percentage of emergence of six weed 
species (Abutilon theophrasti, Amaranthus retroflexus, Chenopodium album, Polygonum persi-
caria, Solanum nigrum and Sorghum halepense) in maize and soybean (Masin et al. 2012, 2014). 
This information is available at http://www.arpa.veneto.it/upload_teolo/agrometeo/infestanti.htm
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As observed in Fig. 5.7a, both the daily and cumulative emergence pattern of 
A. fatua can be easily monitored. The website also provides a chart with site- specific 
meteorological data (Fig. 5.7b). A website version including A. fatua, L. multiflo-
rum and Vicia villosa Roth. is currently available at http://pronostico-malezas.frbb.
utn.edu.ar/.

5.4  Practical Implementation of Emergence Models

Apart from the available platforms (websites and software), practical examples of 
the use of these models in commercial fields are very scarce. An example of real 
field implementation of these models is provided by Royo-Esnal et al. (2018b).

Fig. 5.7 WEPS-ANN website interface. Daily and cumulative emergence data of Avena fatua (a) 
and meteorological data (b). Available at http://pronostico-malezas.frbb.utn.edu.ar/
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Garcia et al. (2013) developed an emergence model that describes the emergence 
of B. diandrus under arid conditions of Spain. Royo-Esnal et al. (2018a, b) evalu-
ated the efficacy of the delay in the sowing date of the crop and the effect in the 
control of B. diandrus (Fig. 5.8).

Royo-Esnal et al. (2018b) observed that the first sowing of rapeseed (canola) in 
September 2014 was not useful for mechanical control, but delay seeding (on 31 
October 2014) allowed the elimination of more than 50% of the B. diandrus popula-
tion within the season (Fig. 5.8). When sowing was delayed to January, 100% of the 
emergences had already occurred and were killed.

In Fig. 5.8, it can be observed that the sowing delay was a valuable tool in order 
to reduce the initial B. diandrus infestation in autumn-winter 2014 and 2016, but not 
in 2015 (due to a severe drought condition), as the peak of emergences was delayed 
to February 2016. In the latter case, an earlier sowing would have even been more 
appropriate in order to favour the crop with more time to grow before the emergence 
of B. diandrus.

5.5  Conclusions

Although the number of examples proving the usefulness of these tools is few, the 
interest to optimize the prediction of emergence timing of weed species is still an 
actual issue, and ongoing research is being performed in different countries. 

Fig. 5.8 Simulation of the emergence of Bromus diandrus based on the HTT emergence model 
developed by Garcia et al. (2013) and according to the climatic conditions in each season (2014–
2015, 2015–2016 and 2016–2017). Counting of the HTT started after the first important rains in 
late summer and early autumn. Red arrows show the sowing dates each season (modified from 
Royo-Esnal et al. 2018b)
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Additional efforts should be directed to the implementation of these models into 
technological platforms (e.g. software, web platforms, smartphone apps) which can 
help to unleash the potential of DSS tools.

Future projects should try to develop these platforms, integrating emergence 
models, and in close collaboration with companies, which can lead farmers to a bet-
ter management of their fields, improving the weed control and avoiding unneces-
sary economic losses due to inadequate application of control methods.
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Chapter 6
Weed Interference Models
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Abstract Weeds are a major biotic constraint in agricultural systems. Farmers need 
to quantify the damage that weeds cause to crops, and many models have been 
developed to predict yield loss. Empirical functions are the most commonly used 
models, which additionally provide information for weed threshold values. The 
limitations of such models are that they are based on statistical functions and usu-
ally do not consider biological insights for crop-weed interference. Conversely, 
mechanistic models take into account various underlying processes but are rather 
complex in nature; thus, their major utility lies in generating information for weed 
studies under different locations/conditions. Mechanistic models are based on simu-
lation models that mingle both explanatory and descriptive features, with well- 
known plant processes studied in a mechanistic fashion, and poorly understood 
processes considered as a descriptive approach. Weed interference models are an 
important part of the decision support systems to establish recommendations based 
on the economic quantification of different weed management strategies. Thus, 
these models are very useful tools for the development of integrated weed manage-
ment. In this chapter, we present empirical and mechanistic models that are cur-
rently in use for studying crop-weed interference.
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6.1  Introduction

Weeds are a major biotic constraint of agricultural systems worldwide. These are 
undesirable plants interfering with crop production and use of natural resources. 
Interference denotes direct and indirect effects, which two neighbouring plants 
impose upon each other. Weed science generally includes the study of competition 
and allelopathy as main crop-weed interactions. Crop productivity reduction 
depends upon weed species present, severity and period of infestation, crop vigour 
and climatic conditions. Annually, weeds cause an economic loss of more than 
US$100 billion (Appleby et al. 2000), and herbicides worth US$25 billion are being 
used for weed management on a global scale (Agrow 2003). A 10% yield loss has 
been estimated despite the adoption of various weed control measures by farmers 
(Appleby et al. 2000). Further, weed-related crop yield losses are estimated at 5 and 
25% for developed and underdeveloped countries, respectively. In India, for exam-
ple, annual yield losses in ten major crops are about US$11 billion (Gharde et al. 
2018), while a sum of US$43 billion has been reported in corn and soybean in the 
USA and Canada (Kansas State University 2016).

Competition and allelopathy are the two main components of weed interference. 
Resource competition, a form of physical interference, occurs when a number of 
plant species adversely affect each other while utilizing common resources, which 
are in short supply. In allelopathy, a chemical interference, a crop or weed species 
produces phytotoxic or growth-inhibiting substances in spite of abundant nutrient 
supply. Although weed allelopathy has been demonstrated in many studies, the 
effect of this chemical interference has been minor relative to competition. Moreover, 
it may be very difficult to separate allelopathic from competitive effects in field 
studies (Bertholdsson 2010). This difficulty in assessing allelopathic interactions 
has led to fewer real field investigations compared to weed competition studies, 
which alone has been referred to as ‘weed interference’ in most cases.

Regarding crop-weed competition, two main principles should be mentioned: (1) 
more aggressive individuals usually dominate in the intermixed community of 
weeds and crops, and (2) the first individual to occupy a given area has an advantage 
over latecomers. The latter principle is of great importance in practical weed man-
agement, where agronomic practices are always focused on a rapid crop establish-
ment before weed settlement. In general, weeds with a similar growth pattern to 
crops are more serious competitors than those species with a dissimilar growth 
pattern.

Field weed-crop competition is always more severe in the early stages of a crop 
than at later stages. Early weed infestations lead to a decrease in the crop photosyn-
thetic rate, thus overruling a crop’s asymmetric growth advantage. This leads to 
crop smothering due to competition and ultimately results in yield losses. However, 
there is a critical competition period (CCP) during which impact of weeds on crop 
yield is highest (i.e. the shortest time span during crop growth when weeding results 
in the highest economic returns). Therefore, the crop has to be maintained in weed- 
free conditions during the CCP. An attempt for creating weed-free conditions 
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throughout the crop ontogeny may involve unnecessary additional expenditure 
without an equivalent increase in yield. Invariably, a crop of 100 days must be kept 
weed-free for the first 35 days of sowing. The crop can compete successfully with 
late-emerging weeds primarily through shading; however, these late-emerging 
weeds would produce propagules increasing the soil seedbank. In general, the inten-
sity of weed-crop competition is most severe in slow-growing rate crops (i.e. 
6–8 weeks after sowing) such as sunflower, cotton and sugarcane.

Yield reduction is a widely accepted variable for the quantification of crop-weed 
competition. The relationship between crop yield and weed density is clearly non-
linear; thus, increasing weed density results in a yield decline following, in general, 
a hyperbolic model or other nonlinear functions (i.e., exponential). In addition, 
weeds interfere with crop handling and act as a reservoir of insect pests and diseases.

6.2  Factors Affecting Weed-Crop Competition

Competition can be interspecific (among weed and crop) or intraspecific (within the 
same species), while the characteristic crop-weed association is the final result of 
competition (Tominaga and Yamasue 2004). The imbalanced nature of crop-weed 
competition can be manipulated in order to favour crops by modifying soil and 
cropping conditions. Association of weed(s) with a particular crop may be due to a 
congenial environment [e.g. Cichorium intybus L. in Egyptian clover/berseem 
(Trifolium alexandrinum L.)], morphological similarities [e.g. Phalaris minor L. in 
wheat (Triticum aestivum L.)], seed shedding behaviour (e.g. P. minor in wheat), 
seed escape removal through sieving (e.g. Malva neglecta L. seeds in wheat), ger-
mination/emergence flushes (e.g. P. minor in wheat) or continuous use of herbicides 
with the same mechanism of action [e.g. dominance of Caesulia axillaris in rice 
(Oryza sativa L.) due to repeated anilofos herbicide applications] (Walia 2010).

As a general rule, competition remains up to the time when the crop covers 
≥80% of the ground (Rasmussen 1992). The competitive ability of crops depends 
upon many factors, such as (1) crop type and cultivar (variety) selection, sowing 
date, row spacing and tillage systems; (2) weed density (abundance) and composi-
tion; (3) edapho-climatic factors (soil type, environmental conditions); and (4) crop 
rotation scenarios.

6.2.1  Crop Density and Spatial Uniformity

Both factors influence the ecological niche of weeds. As the crop density increases, 
weed growth decreases accordingly, although very high crop densities may lead to 
interspecific competition (Bleasdale and Nelder 1960). A crop planted at wide row 
spacing may result in dense weed growth and both inter- and intraspecific 
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 competition (Chauhan and Johnson 2010a), whereas a crop grown in square plant-
ing is ideal for reducing intraspecific competition (Hashem et al. 1998).

6.2.2  Weed Density and Composition

Weed density affects the length of the CCP, while weed emergence timing relative 
to the crop determines density thresholds (Dunan et al. 1995). Weed species archi-
tecture and growth habitat (i.e. grass, broadleaves or sedges) also affect weed-crop 
competitive relationships. Weed diversity has a variable effect on crop yield, and 
this difference may be due to various weed ecological adaptations acquired over 
time. For example, annual weeds which present a high leaf area development rate 
(e.g. Echinochloa crus-galli (L.) P. Beauv. in rice and Setaria viridis in corn) greatly 
influence weed-crop competition reducing crop yield significantly. Xanthium stru-
marium L. and wild mustards (Brassica and Sinapis spp.) are better competitors 
than grass weeds at early growth stages due to their capability for rapid soil cover. 
Also, Brassica spp. develop a more extensive root system than grass species after 
3 weeks of emergence (Snapp et al. 2005). Many perennial weeds have an extensive 
deep-root system which feeds from deep soil layers (e.g. Sorghum halepense L., 
Acroptilon repens L., Diplotaxis tenuifolia). In dry areas, perennials are more com-
petitive than annual weeds. For similar weed densities, a composite stand of weed 
species is always more competitive than a solid single weed stand (Liebman 
et al. 2004).

6.2.3  Crop Types and Varieties

It has been estimated that the use of vigorous crop species (or cultivars) can reduce 
costs involved in weed management by 30% (Snapp et al. 2005). Some crops such 
as sorghum (Sorghum bicolor L. Moench), corn (Zea mays), pearl millet (Pennisetum 
glaucum (L.) R.Br.) and cowpea (Vigna unguiculata (L.) Walp.) have the capacity 
for rapid growth and fast soil cover showing tolerance to weed competition. On the 
other hand, crops such as sugarcane (Saccharum officinarum L.), cotton (Gossypium 
arboreum L.) and sunflower (Helianthus annuus L.) have slow initial growth requir-
ing a longer time for soil surface cover.

Choice of a given crop variety depends on its adaptation to local edapho-climatic 
and management conditions. Barley (Hordeum vulgare) has a higher competitive 
ability against weeds compared to other cereal crops like rye, wheat and oat. Such 
high competitive ability is attributed to the development of a deep extensive root 
system within 3 weeks of sowing. Crops differ in their competitive ability due to 
differences in crop vigour (Mohler 2004). Tall and rapid canopy-forming crops (or 
varieties) usually have lower ‘weed pressure’ than short-statured, slow-growing 
crops. However, such tall varieties usually lodge and are low yielders. Crops (or 
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varieties) with a short stature are usually more susceptible to weed competition than 
taller ones; therefore, dwarf and high yielding varieties perform better only when 
chemical weed management is used (Saito et al. 2010).

6.2.4  Edapho-climatic Conditions

Soil texture, pH, fertility and moisture influence crop-weed competition by affect-
ing the vigour of both crops and weeds. Fertile soils usually favour weed growth, 
thus reducing crop yield. For example, Buglossoides arvensis vegetation coverage 
and seed production per plant increase significantly in nitrogen-enriched soils 
(Bischoff and Mahn 2000). Thus, weed control measures must be highly efficient to 
minimize weed pressure. The soil-type reaction is also an important factor that 
influences weed-crop competition. In general, a pH ≈ 7 is adequate for crop growth, 
while acid or alkaline soils negatively influence crop stands, thus increasing weed 
pressure. Some species like Rumex acetosella L. are typical of acidic soils, while 
others such as Taraxacum officinale F.H. Wigg. are more abundant on alkali- reactive 
soils (Tominaga and Yamasue 2004). Soil-water relations, particularly the quantity 
of rainfall and its distribution, influence weed-crop competition. Weeds are more 
adapted to moisture stress (both drought and inundation effects) than crops. The 
time of irrigation might also influence the weed-crop balance as weeds get more 
benefit when a ‘weedy crop’ is irrigated. As the inherent capacity of crops to com-
pete against weeds is weakened by climatic and soil stresses (Mohler 2004), various 
farm operations can be adjusted in such a way to suppress weed growth.

6.2.5  Agronomic Practices

Crop sowing time, seed rate, row spacing, fertilization and water management influ-
ence weed-crop competition (Swanton et al. 2015). Regarding sowing time, weed- 
crop competition will be higher if the crop is sown before or after the recommended 
time for optimal growth (Walia 2010). Early wheat sowing suffers less competition 
from P. minor infestation due to early crop establishment (Mehra and Gill 1988). At 
the right sowing time, a crop attains adequate vigour, thus being more competitive 
than weeds. Similarly, if a good initial crop stand is obtained, the competition abil-
ity of the crop will be enhanced.

The time of weed emergence relative to the crop is the most important variable 
for deciding the impact of weed-crop competition (Dew 1972; O’Donovan et al. 
1985; Kropff and Spitters 1991). If the first weed emergence flush takes place along 
with crop emergence, then intense weed-crop competition is expected. The thresh-
old levels of Amaranthus retroflexus and E. crus-galli in corn, soybean and dry bean 
crops are two to ten times lower for weeds that emerge with the crops than those 
weeds emerging 3–4 weeks after crop emergence (Knezevic et al. 1994; Cardina 
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et al. 1995; Dieleman et al. 1996). Sowing methods such as ‘dust mulching’ that 
dries the topsoil can be used for weed control. By using this practice, the weed 
seedbank present in the topsoil cannot absorb moisture, and thus, weed emergence 
will be delayed. In such situations, early seedling emergence is avoided, and the 
crop individuals will be more competitive. The tillage method, frequency and depth 
of cultivation can influence weed establishment and growth (Pekrun and Claupein 
2004; Chauhan and Johnson 2009). For example, mouldboard ploughing may bring 
buried weed seeds to the soil surface, thus affecting seedbank distribution and weed 
composition. Deep ploughing in summer months may also be helpful for control-
ling deep-rooted perennials like Saccharum spontaneum and Cyperus rotundus 
(Bàrberi 2002). In non-tillage systems, cover crops are being used for weed control 
(Price and Norsworthy 2013).

In addition, crop rotations, as well as alternating row and broadcast crops, can be 
helpful in reducing weed-crop competition. Competitive ability of crops can be 
increased, and weeds can be reduced by following a crop rotation, for example, 
P. minor infestation in wheat can be reduced by rotating rice-wheat with rice- 
berseem (Trifolium alexandrinum L.) (Malik and Singh 1995). In addition, this 
practice will help to reduce other weeds in the succeeding year following the 
wheat crop.

6.3  Harnessing Weed-Crop Competition: A Weed 
Management Option

The objective of weed management is to evolve methods for different situations to 
ensure a sustainable ecosystem and minimum weed interference. Weed manage-
ment programs require constant reviewing and improvement for modern agricul-
tural systems due to weed diversity and herbicide resistance issues.

Integrated weed management including sanitation, mechanical methods, biologi-
cal means and herbicide use reduction is gaining importance due to the well-known 
negative environmental and social effects of more narrow, herbicide-dependent 
strategies. Weed preventative methods such as the use of weed-free crop seed, clean 
farm machinery, well-rotted farmyard manure, sanitation and legal measures can be 
adopted to prevent the new entry of weeds in an area. These weed management 
efforts emphasize reducing crop-weed competition in the early crop growth stage. 
Good ‘crop husbandry’ methods include selective stimulation of crops, stale seed-
bed, smother cropping, crop rotation, summer fallowing, zero tillage and soil solar-
ization. Weed control practice cannot substitute good crop husbandry methods. As 
stated by Chauhan et al. (2012), if good crop husbandry methods are applied, half 
of the required weed control is achieved.

An example of this is the selective stimulation of crop growth leading to vigorous 
crop plants that better compete with weeds through rapid ground cover. Competitive 
crops/varieties sown at proper planting time, the implementation of bidirectional, 

M. Singh et al.



123

narrow spacing or the ridge/bed sowing of crops may also result in a low weed den-
sity. Early crop seedling vigour can also be maximized by maintaining a proper crop 
stand, or by split applications of inorganic fertilizers, especially in sandy soils. 
Adequate application of N, P and K fertilizers in a band (or as side dressing) 
improves crop growth. Weeds growing 20 cm or more away from the fertilizer band 
usually fail to make use of even a mobile nutrient like N. Foliar fertilization in wide 
row crops such as maize, sugarcane and cotton might also help in selective stimula-
tion. Addition of N fixers, phosphorus solubilizing cultures and soil amendments 
(like gypsum or lime) are important steps for favouring crop growth.

Stale seedbed methods allow for weed management before crop planting. In gen-
eral, one or two weed flushes can be managed using chemical or mechanical inter-
ventions. Otherwise, weeds may overtake the crop at the early crop growth period. 
Soil tillage affects vertical distribution of weed seeds in arable soils, with more than 
56% of the seedbank in the upper soil layer in zero tillage, while only 5% in the top 
layer under conventional tillage (Chauhan and Johnson 2009). In countries like the 
USA and the UK, crops are sown using zero tillage to avoid seed burial and reduce 
the persistence of annual weeds. However, crops sown under zero tillage have more 
problems with perennial weeds. Zero tillage with residue retention practiced over a 
5- to 6-year period of wheat monoculture results in a decrease in the density of 
P. minor with an incremental increase in perennial and broadleaf weeds (Simerjeet- 
Kaur personal observation).

Smother crops (such as Vigna unguiculata, Medicago sativa, Trifolium alexan-
drinum, Pennisetum sp., Sorghum bicolor, Sorghum × drummondii, Brassica jun-
cea and Hordeum vulgare) can be used as intercrops for weed suppression. In 
addition, crop rotation is effective in controlling weeds which are associated with a 
particular crop. With each crop, certain typical weeds appear which are less serious 
in some other crops. Some weeds increase their numbers quickly if a favourable 
crop is raised continuously (i.e. monoculture). For example, parasitic weeds like 
Cuscuta in Medicago sativa or Trifolium alexandrinum can be reduced by rotating 
the crop with cereal crops. Phalaris minor density in wheat may be reduced by rota-
tions with potato or mustard/berseem. Avena fatua L. (wild oat) can be controlled in 
rotation with pea and chickpea for 2–3  years. Many perennial weeds, including 
S. halepense, C. rotundus, Cynodon dactylon and Cirsium arvense, were managed 
with the introduction of paddy rice in the Indian Punjab (Walia 2010).

Fallow in summer has been a common weed management practice for decades, 
especially for perennial weeds in India, as well as many other countries with tropical 
climates. In this practice, the soil is heated during the hot summer months (April–
June) through a process called solarization. Soil solarization with the help of a poly-
ethylene sheet increases the surface temperature of the soil reaching 40–45 °C. Thus, 
seeds, rhizomes and tubers of S. halepense and C. rotundus are easily desiccated 
which is sufficient to kill propagules in the top 5 cm soil layer. Some weeds are more 
susceptible to flooding than others, for example, the latter technique can be used in 
combination with glyphosate applications for the control of the invasive perennial 
A. repens in Argentinian pastures (Gajardo 2019). Conversely, water drainage may be 
employed for controlling aquatic and semi- aquatic weeds.
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6.4  Need for Crop-Weed Competition Models

Weeds represent a continuous problem in agricultural production due to their 
dynamic and resilient nature. Mathematical models offer a significant tool for 
understanding and predicting the crop yield losses incurred due to weed-crop inter-
ference. Weed-crop competition models help to inform weed management deci-
sions, both on a short-term basis to tackle the present weed population and in the 
long term to plan sustainable weed management strategies (Renton et al. 2015). For 
example, herbicide-based weed management has helped the agricultural community 
in a big way; however, after prolonged use, problems of evolution of herbicide- 
resistant weeds, shifts in weed flora and environmental pollution have surfaced 
(Johnson et al. 2009). Weed scientists are interested in reducing reliance on herbi-
cides, creating the challenge of developing sustainable weed management practices, 
which could then be incorporated into present practices. Weed management prac-
tices require the integration of two objectives: first to prevent crop yield loss due to 
weed competition in the short term and second in the long term to avoid the addition 
of weed seeds or asexual propagules to the soil seedbank (Battle et  al. 1996). 
Competition models can be integrated within the framework of a decision support 
system (DSS) (Renton and Lawes 2009; Lawes and Renton 2010). Modelling of 
crop-weed competition can also help to generate the in-depth scientific basis of vari-
ous processes and to understand interactions.

6.4.1  Empirical Versus Mechanistic Models

Various types of models have been used to predict crop-weed competition. The 
approach used in some models is empirical, while other models are based on mech-
anistic processes. Empirical models may help to predict the crop yield loss (or crop 
yield) in response to variable weed density (or biomass) in certain environmental 
conditions. Conversely, mechanistic models may be useful for understanding bio- 
ecophysiological processes and also for predictive purposes.

Most competition studies are based on empirical models. Linear and nonlinear 
regression models have been developed (Patterson 1995; Zimdahl 2004), such as 
the negative power function (Shinozaki and Kira 1956; Bleasdale and Nelder 1960; 
Watkinson 1980) or the hyperbolic function (Cousens 1985). More complex empiri-
cal models have been developed by taking into account variables such as weed 
emergence times (Cousens et al. 1987; Neve et al. 2003), multiple weed species in 
simultaneous competition (Firbank and Watkinson 1985; Pantone and Baker 1991; 
Park et al. 2002; Diggle et al. 2003), and weeds with multiple emergence periods 
and variable degrees of overlapping with the crop (Peltzer et al. 2012).

Crop-weed competition is a complex phenomenon, and to understand this, a 
detailed mechanistic model offers better insights than an empirical model. 
Mechanistic or explanatory models take into account all underlying processes or 
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mechanisms and their dependence on each other with respect to time and external 
drivers. These modelling methods are process based and dynamic and also referred 
to as ontological, mechanistic or bottom-up approaches.

Many of the existing competition models have been proposed for use in both 
research and application, and there is no distinction between them. Simulation mod-
els provide avenues for conducting crop-weed experiments under variable climatic 
conditions and different hypotheses for testing. Simulation models use historical 
weather data and need validation for each location. A mechanistic simulation 
approach studies the reasons for a particular response. Sensitivity analysis may also 
be performed to identify the most important factor for that response. With model-
ling approaches, various hypotheses may be tested about the type of complex rela-
tionships among variables and uncovering knowledge gaps. Plant processes such as 
light interception and photosynthesis, which are well known, are studied in a mech-
anistic way, while plant processes such as resource allocation, which are poorly 
understood, are considered in the descriptive approach.

6.4.2  Basics of Empirical Competition Modelling

Empirical crop-weed competition models are derived from agronomic studies com-
prising crops and weed species in diverse experimental designs. Most important 
designs used to study competition are mixtures of additive and replacement series 
(Gibson et  al. 1999; Freckleton and Watkinson 2000; Swanton et  al. 2015). 
Replacement series comprise two species grown in different proportions while 
maintaining overall constant stand density (de Wit 1960). It is not a favoured 
approach because of its dependence on total stand density (Inouye and Schaffer 
1981; Connolly 1986) and failure to differentiate the effects of intra- and interspe-
cific competition (Snaydon 1991; Watkinson and Freckleton 1997). In additive 
series, both the population and proportion of crop and weed species are varied in 
mixtures. In field experiments, the density of crop species is kept constant, while 
weed density is varied. A complete additive design may help in the estimation of 
both intra- and interspecific competition when analysed using a two-species regres-
sion model (Pantone and Baker 1991; Park et al. 2002).

Commonly used single species models (e.g. the equation given below) can be 
extended for studying two or more species by using the relationship:

 
w w Ni m i ij j

b

, 1+ ∑( )−α
 (6.1)

where w is a measure of plant performance; wm is the performance of an isolated 
plant; α represents the per capita effects of intra- (αii) and interspecific (αij) competi-
tion (Watkinson 1985); b is the parameter, which determines yield-density relation-
ship (b > 1 represents over-turning; b = 1 represents asymptotic; b < 1 represents 
uniform increase); and i and j are the species.
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One such preliminary study described the crop yield loss due to weed competi-
tion with the hyperbolic model (Cousens 1985, see Sect. 6.4.4.2).

An alternative approach for studying competition is a neighbourhood approach 
(Mack and Harper 1977). It comprises evaluating the performance of a target spe-
cies in relation to the density of neighbouring species in proximity. This approach 
assumes that the production of target plants is related to number, biomass and prox-
imity of the neighbouring plants. Thus, such models incorporate a spatial arrange-
ment in addition to the density of weed species individuals; however, such designs 
may be resource intensive due to extensive data requirements. This approach has 
been little used for the competition quantification context in agricultural studies.

6.4.3  Basics of Mechanistic Competition Modelling

Existing crop growth models (e.g. CERES) were modified to include weed species. 
Models are used to simulate crop and weed growth in two distinct productive sce-
narios. The first one is the potential production scenario in which a crop is grown 
under a stress-free environment and crop growth is entirely determined by soil, cli-
matic and crop factors, with inputs supplied in ample quantities. The instantaneous 
CO2 assimilation rate of the canopy is measured, and the daily growth rate is 
obtained after subtracting respiration costs. In the second one, the crop suffers from 
water stress. This effect is simulated using a soil water balance in the model. The 
potential CO2 assimilation rate will reduce in the case of water shortage. Leaf area 
development as affected by temperature is simulated by using relative growth rate 
and specific leaf area. The relative distribution of radiation over the species is also 
simulated, and potential transpiration is measured. Plant growth reduction is calcu-
lated on the basis of potential transpiration and soil moisture content for both spe-
cies separately.

6.4.4  Examples of Competition Models

Spitters and Aerts (1983) introduced mechanistic dynamic simulation models for 
crop-weed competition on the basis of the distribution of resources like light, water 
and nutrients within the species. The growth of crop and weed is determined by 
their dry matter accumulation which is calculated from the amount of resources 
(light, water, nutrients, etc.) assimilated by the competing species. These models 
describe the background of competition and may provide more insight into the 
 crop- weed system. Such models are effective for a wide range of environments and 
can be used to simulate competition effects for new environments after thorough 
validation. These simulation models have been developed for diverse scenarios such 
as stress-free potential production situations and also for production scenarios in 
which plants face water and/or N stress (Spitters and Aerts 1983; Spitters 1984). 
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Most of the weed-crop simulation models (Ryel et al. 1990; Weaver et al. 1994; 
Weaver 1996; Chikoye et al. 1996; Park et al. 2003; Deen et al. 2003) have been 
developed as products of crop simulation models in which single species models are 
extrapolated to two species.

6.4.4.1  Weed Growth Models

One of the most comprehensive weed growth models of crop-weed competition is 
INTERCOM (Kropff and Spitters 1992; Kropff and van Laar 1993), which is based 
on the earlier work done on simulation modelling of crop growth (de Wit et al. 1978; 
Spitters et al. 1989) and competition (Spitters and Aerts 1983; Spitters 1989). The 
growth of each species is measured from day 1 and expressed at the population 
level, that is, in kg biomass ha−1, and measured till maturity. Light interception and 
resource distribution among competing species is the main approach used in this 
model. INTERCOM has been calibrated and validated successfully over locations, 
different crops, weed species, crop-weed competition and contrasting climatic con-
ditions. However, Kropff et al. (1993) observed that in an extremely dry year, yield 
losses in maize due to E. crus-galli were underestimated. The model did not take 
into account the effects of water stress on crop morphological development, espe-
cially stem elongation.

Another mechanistic model is SOYWEED developed by Wilkerson et al. (1990), 
which is derived from the crop growth model SOYGRO (Jones et al. 1987), and it 
simulates soybean [Glycine max (L.) Merr.] and Xanthium strumarium L. competi-
tion for light and water. The heterogeneity in leaf area distribution was considered 
in the first version of the SOYWEED model, and variables crop and weed height 
were not. SOYWEED also does not simulate weed seed production. Later, another 
sub-model (LTCOMP) was incorporated into SOYWEED by Wiles and Wilkerson 
(1991), which takes into account the competition for light. Simulation of light inter-
ception was done as a function of plant height, leaf area and the extinction coeffi-
cient of crop and weed species. This LTCOMP-SOYWEED model simulated the 
combined growth of crops and weeds with improved efficacy.

Another model, ALMANAC, simulates competition for light, water and nutrients 
(N and P) between two plant species (Kiniry et al. 1992). It was developed, param-
eterized and evaluated for two competing species, S. halepense and Setaria faberi in 
soybean and wheat. Practically, this model can be used for simulating weed-crop 
interference along with its various other uses such as modelling hydrology, climate 
change, erosion, plant community dynamics, soil carbon, pesticide fate, nutrient 
cycling and phenology studies.

NTRM-MSC (Nitrogen, Tillage, Residue Management—Multiple Species 
Competition) model developed by Bail and Shaffer (1993) simulates competition 
between at least ten plant species. It simulates light interception, soil water and N 
dynamics and competition for these resources by the competing species. This model 
was parameterized for Zea mays-A. retroflexus competition and predicted leaf area 
development and biomass of each species in a mixture. However, the model did not 
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consider the morphological plasticity of weeds grown in monoculture and mixture, 
also underestimating light interception by weeds in monoculture.

A crop growth model for rice was constructed by Graf et al. (1990a) and expanded 
to simulate crop-weed competition for light and N in the presence of multiple weed 
species (Graf et al. 1990b). Weed species were grouped on the basis of height, leaf 
shape, growth form and phenology. The competition model developed by Spitters 
and Aerts (1983) was used for the simulation of competition for light. The propor-
tion of the soil profile exploited by the crop and each of the weed groups was used 
for simulation of competition for N. This model was later parameterized and vali-
dated for competition between E. crus-galli and rice by Graf and Hill (1992) and 
simulated the effect of densities of both crop and weed on rice yield. Lotz et al. 
(1990) used a similar model for describing competition between Triticum aestivum 
and weeds for light and water. Ryel et al. (1990) developed a model to simulate 
competition for light in a mixed canopy and predicted instantaneous capture of inci-
dent radiation and net photosynthesis of each species. This simulation is based on 
incident radiation, canopy structure and photosynthetic characteristics. Barnes et al. 
(1990) and Beyschlag et al. (1990) used this model to simulate crop-weed competi-
tion between irrigated wheat and A. fatua. Dunan et al. (1994) developed a model to 
simulate crop-weed competition for light, similar to that of Spitters and Aerts 
(1983), but plant height was not considered a parameter. It included an economical 
sub-model to analyse different weed management strategies and was applied for the 
study of A. fatua-barley (H. vulgare) competition.

6.4.4.2  Yield Loss Models

For the decision on weed management to be economical, knowledge on how uncon-
trolled weeds impact the crop yield is required. Therefore, competition models are 
an integral part of the weed management profitability assessment. Most of the 
developed models are empirical in nature. Crop-weed competition models have 
been developed on biologically sound principles, which consider the following 
points (Kropff 1988):

 1. When weeds are added one by one to the crop stand, each plant may have a com-
petitive effect, which can be measured by crop yield loss. At low density, the 
effect of competition could be additive, as there would be little or no intra- 
specific competition.

 2. Yield loss can never be beyond 100%, and it can be expected that yield loss may 
approach a certain upper limit as weed density increases.

 3. At high densities, the distance between weed plants would be less, and they start 
to interfere with each other due to intra-specific competition as a result. This 
may lead to a decrease in impact that each weed plant would make on the crop 
yield.

In crop-weed competition modelling, the rectangular hyperbolic model (Fig. 6.1) 
best defines the relationship between crop yield loss and weed density (or biomass) 
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irrespective of the weed species, crop and location (Cousens 1985). Such models 
provide a good explanation of data for a variety of weeds in various crops and can 
be easily interpreted in agronomic and biological terms. As we can only measure 
yield and yield loss cannot be observed directly, such hyperbolic models should be 
designed in order to be able to express in terms of yield. Even though experimental 
designs contain weed-free plots to observe yield losses, the observations in these 
plots are also open to error, like any other observations. Cousens’ (1985) model 
describes crop yield per unit area (Y) as a negative function of weed density per unit 
area (Nweed):

 
Y Y I N I N A= − ( ) +( ) wf weed weed1 1. / . /

 (6.2)

where Ywf represents the crop yield under weed-free conditions, and the parameter 
A represents the upper limit of proportional crop yield loss as weed density 
approached infinity, whereas the parameter I can be taken as the initial slope of the 
curve, i.e. the amount of proportional yield loss attributable to a single weed per unit 
area as weed density approaches zero.

There are other similar equations for a rectangular hyperbola in literature, which 
may define the relation of increasing crop yield loss with increasing weed density. 
Crop yield loss as a function of weed population can also be shown by using the 
following simple formula that follows an increasing hyperbola:

 
YL UYL YLweed weed= +( ). /N N N50  (6.3)

where YL is the absolute yield loss at a weed density Nweed, and the parameters UYL 
is the upper limit of yield loss as Nweed approaches infinity, and N50YL is the weed 
density at which 50% of the upper limit of yield loss occurs. Y becomes equal to YL 
when Y = Ywf – YL, UYL = Ywf.A and N50 YL = A/I.

Fig. 6.1 The rectangular hyperbolic model for the relation of crop yield loss with weed density
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The relative competitiveness of a weed species and environmental conditions are 
important factors determining the value of N50 for a weed species. Where crop yield 
loss quickly approaches the maximum value with increase in weed density, low 
values of N50 are observed, while higher values of N50 signify that each additional 
weed plant per unit area has a relatively smaller effect on crop yield loss. This advo-
cates that weed species with low values of N50 would be relatively more competitive 
than weed species having more values of N50.

Weed emergence timings may affect this hyperbolic yield density equation. 
Cousens et al. (1987) revised this simple empirical model to account for the timing 
of weed emergence relative to the crop along with weed density. A similar two- 
parameter model was suggested by Kropff et al. (1995) which describes crop yield 
loss as dependent on the relative weed leaf area. This model takes into account the 
timing of weed emergence relative to crop emergence; thus, it was more acceptable 
than the density-based model. Lotz et al. (1990) reported that predicted yield loss 
seemed to be mainly affected by weed emergence timing. Although these dynamic 
prediction models help to explain variation in yield loss due to weed density and 
relative weed emergence time, additional research experiments might increase the 
practicality of such models for the study of crop-weed interactions and for use in 
advisory systems. In some simulation models, all weed plants of a particular species 
are assumed to emerge on one date; therefore, those approaches might overestimate 
weed competitiveness.

Besides regular hyperbolic functions, other nonlinear functions have been devel-
oped to model the weed-crop competition, such as the negative exponential model 
(Fig. 6.2). Torner et al. (1991) used an exponential model to demonstrate the rela-

Fig. 6.2 Generalized negative exponential relation between crop yield and weed density
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tion of barley yield with Avena sterilis. The relationship was described using the 
equation

 Y a bx= −.exp  (6.4)

where Y is barley yield, x is wild oat density, a is an estimate of barley yield in the 
absence of wild oats and b is the estimate of the rate of reduction in barley yield with 
increase in wild oat density. A similar function was proposed for the competitive 
relationship between the growth of coffee plantations in competition with different 
weed species (Ronchi and Silva 2006). Variations in predictions of yield loss mod-
els have been attributed to different environmental conditions, limiting their use 
over a wide range of conditions.

6.4.4.3  Crop Yield and Weed Biomass Functions

The qualitative measure of weed competitiveness is weed biomass, and crop yield 
loss is believed to have a linear relationship with increasing weed biomass (over a 
wide range of weed density). Weeds accumulate dry matter by utilizing the same 
resources that would otherwise be used by crop plants (Spitters and Aerts 1983). 
Over a range of weed densities, weed biomass replaces a constant proportion of 
crop yield (which can be represented by weed biomass produced divided by crop 
biomass lost due to weeds), and this replacement is generally linear (Fig. 6.3). Most 
of the studies relating crop yield and weed biomass showed a negative linear func-
tion. For instance, linear regression models explained about 95% of the variation in 
grain yield of rice due to the biomass of grass weeds and sedges associated in the 
crop, when grown in a dry direct-seeded system (Singh et al. 2014). In the same 
study, a linear relation of grain yield with broadleaf weed dry matter described 
91–93% variation in grain yield.

6.4.4.4  Critical Period of Crop-Weed Competition

To study the critical period of crop-weed competition, two sets of treatments are 
commonly used (Nieto et al. 1968; Weaver and Tan 1987; Hall et al. 1992). In the 
first treatment set, the crop is kept weed-free after sowing for increasing lengths of 
time to determine the period when the crop must be kept free of weeds to avoid yield 
loss. No weed control measures are required beyond this point to achieve maximum 
crop production. In the second treatment set, the crop is kept weedy for increasing 
lengths of time to determine the maximum period for which a crop can tolerate 
weeds without any significant yield loss. The critical period of weed control is the 
combination of these two periods (Fig. 6.4), and the presence of weeds before and 
after this period would not reduce crop yield.

The Gompertz equation is generally used to model the effect of the weed-free 
period (treatment set I) on grain yield, whereas the logistic equation is used to model 

6 Weed Interference Models



132

Fig. 6.3 Linear replacement of crop yield/biomass loss with weed biomass over increasing weed 
density range

Fig. 6.4 The influence of time of weed emergence or weed removal on percent maximum crop 
yield
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the influence of weed duration (treatment set II) on yield. In most crops, this period 
can be clearly marked from the studies, where the early and late association of 
weeds does not affect the crop. For example, Singh et al. (2014) reported that the 
critical period for crop-weed competition starts at 17–20 days and ends at 48–57 days 
for short duration rice cultivars in dry-seeded rice systems. In other crops or situa-
tions, there may not be a clear period, requiring further investigation into the period 
up to which the weeds must be controlled before being allowed to emerge/grow in 
the crop. For example, in a study on soybean, Almarie (2017) suggested weed 
removal for the first 5 weeks to get relatively unaffected yields. The critical periods 
and weed threshold density levels provide good information to producers, but 
emphasis must be given on controlling weed seed production which involves the use 
of weed control measures beyond this critical period. Weaver et al. (1992) demon-
strated the use of eco-physiological (mechanistic) models for prediction of the criti-
cal period of crop-weed competition in sugar beet and transplanted tomato. The 
simulation model suggested that weed density determines the start of the critical 
period, such as early-season competition, and also the total length of the critical 
period to avoid crop yield losses.

6.4.4.5  Crop-Weed Allelopathy Interaction Models

Although weed-crop allelopathy has been recognized as a part of crop-weed inter-
ference, most of the studies developing crop-weed interference models pertain to 
crop-weed competition only. The reason for this may be difficulty in separating this 
type of chemical interference from the physical competition. Liu et al. (2005) pro-
posed a simple mathematical equation for separating the effect of allelopathy from 
competition, which was derived from the equation for calculating the performance 
of one species in a two-species mixture. This equation was given as

 
y y fi jm = ( )δ

 (6.5)

where ym is the yield of main species in mixed-species scenario; yi is the yield of 
main species in isolation, i.e. in the absence of other species; and f(δj) is the function 
(effect) of other species on main species. f(δj) may be equal to 1 if there is no effect, 
greater than 1 if there is stimulation and less than 1 if there is interference. As the 
interference is dependent on the densities of two species, f(δj) was included in the 
equation as

 
y y y yi i

m n

m m= ( )/
/

 (6.6)

where m and n are the densities per unit area of main species and other species, 
respectively.
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This equation of f(δj) was modified to two separate equations for allelopathy and 
competition:

 
Equation for allelopathy a m a1( ) = −( ): //R y y yi i  

 
Equation for competition c m c2 ( ) = −( ): //R y y yi i  

where Ra and Rc refer to the magnitude of allopathic effect and competition effect in 
two-species mixture.

Other approaches were also suggested to separate the effects of allelopathy from 
competition in literature. Bertholdsson (2011) suggested the use of partial least 
square regression (PLSR). Using PLSR models, it was predicted that with improve-
ment in both crop biomass and allelopathy in wheat (to the levels of triticale), up to 
60% reduction in weed biomass can be observed, while allelopathy improvement 
alone can suppress weeds by only 18–28%.

Many studies suggest that allelopathy and competition could act synergistically 
(Reigosa et al. 1999), as having even a little allelopathic effect can change the bal-
ance of competition between the species. Similarly, allelochemicals have been 
believed to release under stress conditions, which may occur due to competition for 
important resources. This compounded effect of allelopathy and competition 
becomes difficult to measure in models which makes estimations on the basis of a 
simple additive effect.

6.5  Challenges and Future Work Direction

Models of crop-weed interference can contribute to improved weed management 
strategies and evaluation of weed control programs (Orwick et al. 1978; Lotz et al. 
1995; Debaeke et al. 1997); however, most of the models have been developed using 
a limited set of experimental data usually from a single site and rarely being vali-
dated over a number of locations. Crop-weed competition models should be linked 
to weed density dynamics models and simulation of weed seed production over 
time. Linkage of such models can result in useful integrated decision support sys-
tem (DSS) for the management of weeds in crops. Morphological and physiological 
plasticity in weed species is another challenge for models that are developed on the 
basis of weed growth. Recently, research on weed biology and ecology has been 
undertaken, but it needs to be strengthened in a more systematic way to elucidate 
suitable weed management decisions and simulation models (Van Acker 2009; 
Chauhan and Johnson 2010b). Cousens (1999) reported that weed threshold levels 
need to be exploited practically for estimating crop yield losses. Many underlying 
processes in weed science are still not understood; extensive studies should be con-
ducted to shift our focus from ‘what occurs’ to ‘why things happen in this way’. It 
is important to enhance the practical utility of these models and strengthen the 
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research efforts for more scientific insights of processes involved in crop-weed 
interference.

Numerous eco-physiological models of crop-weed competition have been devel-
oped to improve understanding of underlying processes. Crop-weed competition 
models may be used at different locations to deduce crop yield loss due to weeds 
(Lotz et al. 1995; Vitta and Satorre 1999), to understand the crop-weed-environment- 
management interactions (Lindquist and Kropff 1996) and, in situations where there 
is no experimental data, to extrapolate the model (Kropff 1988). Even with these 
models, sensitivity analysis can help us identify the plant traits that confer competi-
tiveness, thus giving guidelines to breeders for developing competitive crops 
(Lindquist and Kropff 1996).

The process-based competition models can be used to predict yield losses (Lotz 
et al. 1995); the attempts in this direction need to be undertaken by extrapolation 
outside the experimental data. The interdisciplinary experimentation should be 
undertaken for constant feedback for testing of hypotheses about mechanisms 
included in the model, rather than just validating the model or making predictions 
from it.

In the dominion of descriptive modelling, this area has been well studied, and 
various empirical functions are available. Models may be refined with time by using 
improved available data. However, an intensive data collection is highly expensive 
and unjustifiable. New ways by which statistical models are being parameterized or 
validated can be improved, for example, Bayesian methods allow users to generate 
a semi-automated process where parameters in crop-weed competition models are 
updated as, and when, new data for a given location or weed/crop species is avail-
able (Albert 2009). The meta-modelling methods may also permit statistical models 
to be validated using the outputs of mechanistic models, thus partly averting the 
need for collection of more empirical data (Conti and O’Hagan 2010; Renton 2011a; 
Renton and Savage 2015).

The development of mechanistic simulation approaches will decide the future of 
weed management scenarios and lead to a new scientific vision to tackle emerging 
problems like superweeds and weed shifts. Such models can be integrated into DSS 
for better understanding of crop-weed interactions and management of weeds under 
threshold levels. Research on integrated weed management approaches will get 
strengthened with the development of more mechanistic simulation modelling 
approaches. Improved theoretical understanding with models will likely result in 
practical outcomes. Mechanistic models will represent spatial and temporal details 
by using advanced computational skills. Adaptive mechanisms and plant processes 
in response to a change in environment will be understood with more studies based 
on process-based models (Evers et  al. 2010, 2011; Bongers et  al. 2014; Zhu 
et al. 2015).

Model development, validation, sensitivity analyses and documentation are 
time-consuming processes, and useful models need frequent updating with new 
information. Mechanistic models are sometimes too complex to be comprehended 
by new users (Renton 2011a). Efforts must be taken to develop and link comple-
mentary models rather than attempting to put all the details into one ‘supermodel’ 
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(Renton 2011b; Holzworth et  al. 2014; Lawes and Renton 2015). For modelling 
biological systems such as crop-weed competition, the quality of data and insights 
will undergo frequent testing and refinement (Haefner 2005). There are many avail-
able programming languages for writing the models, which would then help in shar-
ing the model due to accessible structure and available documentation of such 
languages.

6.6  Conclusions

Modelling studies provide the basic framework which can be utilized in decision 
support systems for effective management of weeds. Many models suggest the 
threshold levels of specific weed species, where the yield of the crop could be 
affected significantly. Moreover, the models for the critical period of crop-weed 
competition, which provide information on the exact timing of weed control, are 
required to reduce the yield loss in crops. Such models can be incorporated in 
DSS to provide help in adjusting the weed control methods and timing as per the 
crop needs. There are several models which provide information on crop-weed 
competition based on morphological traits of weeds and crops. Breeders may ben-
efit from such models for developing competitive crop cultivars. Bio-economic 
models (which link crop and weed density models with the economics of weed 
control) may play a role in the promotion and adoption of new weed management 
technologies.

Crop-weed competition models achieved notable success in demonstrating the 
effect of competition on crop yield and profitability of using weed management 
strategies. However, our understanding of prediction under diverse environments, 
that is, spatial and temporal variability, in model parameters has to be enhanced for 
a wide range of weeds and crops. Integrated weed management strategies can be 
devised using these models, and weed biodiversity in current and future crops may 
be studied. Against the backdrop of climate change, models will continue to help us 
simulate and understand crop-weed competition scenarios and their effects on crop 
growth and yield in general and on agriculture at regional/national/interna-
tional levels.
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Chapter 7
Site-Specific Based Models

Cesar Fernández-Quintanilla, José Dorado, Dionisio Andújar, and J. M. Peña

Abstract This chapter reviews the major conceptual approaches and specifications 
for the design of site-specific weed management decision support systems (SSWM- 
DSS), recent advances in the use of remote and ground platforms and sensors for 
information gathering and processing, and initial experiences translating this infor-
mation into chemical and physical weed control actuations through decision algo-
rithms and models.

Keywords Site-specific · Weed management · DSS design · Prescription maps · 
Online decisions · Sensors · Aerial images

7.1  Introduction

The advent of geospatial technologies (global positioning system (GPS), geographic 
information system (GIS)), information and communications technologies (ICT), 
new soil and plant sensors, and advanced agricultural machinery has opened the 
possibility of careful tailoring of soil and crop management to fit the different con-
ditions found in each field. This concept has received different names: precision 
agriculture, precision farming, and smart agriculture. Site-specific weed manage-
ment (SSWM) is the application of this concept to one particular aspect of agricul-
tural production: weed control. Site-specific weed management is based on the fact 
that weed populations are commonly irregularly distributed within crop fields and it 
implies applying chemical and/or physical weed control measures only where and 
when they are really needed (Christensen et al. 2009).

Decision models for weed management can be divided into either efficacy based 
or population based. The efficacy-based systems assist decision-makers in choosing 
herbicide products and doses. Population-based models incorporate weed biology 
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and ecology through simple, deterministic models (e.g. threshold models where 
plant densities above a specified economic threshold are controlled). The efficacy- 
based systems comprise large databases with herbicide performances in different 
crops, weed species, growth stages, etc., enabling ranking and recommendations of 
the most efficient product and dose against a weed mixture. In the population-based 
systems, the estimated yield loss or changes in the soil seed bank without weed 
control define the need for weed control and determine whether weed control will 
be cost-effective.

Although a large number of weed management decision support systems (DSS) 
have been developed in the past in various European countries (Rydahl et al. 2008; 
Parsons et al. 2009; Sønderskov et al. 2016) and in the USA (Neeser et al. 2004), all 
of them have ignored the spatial variation of weed populations within a field. This 
is a serious limitation. The use of field-scale mean density estimates in spatially 
heterogeneous weed populations results in underprediction of yield loss at locations 
where weed density is high and overprediction in parts of the field where weed den-
sities are low or weeds are absent. Consequently, uniform herbicide application 
based on fixed economic weed thresholds is likely to result in under-application in 
some parts of the field and over-application in others.

In order to avoid this problem, it would be required to integrate site-specific 
information about weed species composition and density, knowledge about crop- 
weed competition, the effect on crop yield and quality, and the species-specific effi-
cacies of possible control methods. The effect of soil conditions, crop husbandry, 
and machinery are also variables that have significant influence on weed emergence, 
competition, and propagation of different species and are also important for 
decision- making. The infinite combination of biological and agronomic variables 
with the range of efficacies of all possible control methods generates a need for 
SSWM-DSS that optimizes economic goals and meets environmental constraints.

Building SSWM-DSS needs, as a logical starting point, defining specific deci-
sions (e.g., patch spraying) and the minimum spatial and temporal datasets needed 
to make those decisions, at both temporal and spatial scales—in other words, pro-
viding “the right data at the right time” (Yost et al. 2019). Different types of data 
may be needed for real-time decisions (e.g., for online spraying) than for generation 
of weed maps (e.g., for prescription maps based on historical data). Furthermore, 
decisions and definitions of minimum data will be different for each scale (e.g., 
individual plant, management zone, field, and farm).

7.2  Conceptual Approaches for the Design of SSWM-DSS

Several commercial and public DSS have been developed to be used in precision 
agriculture (Yost et al. 2019). Although they are mainly focused on N fertilization 
and irrigation practices, some of the basic concepts used in these systems could be 
applied to weed management. According to Yost et al. (2019), usable models and 
DSS for on-farm subfield management decisions should include:
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 1. Improved understanding of underlying mechanisms. Fundamental research on 
how incremental herbicide rates input changes affect outcomes is needed as dif-
ferential responses may be accurate while absolute outcomes may not.

 2. More synergy and synchrony between data generators (e.g., synergistic use of 
diagnostic environmental sensors and models for accurate and ongoing 
parameterization).

 3. Better incorporation of end-user input and data. This may include translation of 
collected data to management parameters and decisions from grower’s perspec-
tive in order to connect them to their property and feedback loop from farmer to 
consultant for better utilization of models to ensure farmer observations are 
incorporated.

The first decision algorithm specifically designed for patch spraying (DAPS) was 
developed by Christensen et al. (2003). The main components of DAPS were:

 1. A crop-weed competition model that estimates yield loss as a function of weed 
species and their densities.

 2. A model that estimates yield gain and net return as a function of herbicide dose 
and weed species composition and responses.

 3. An algorithm that finds the economically optimal herbicide dose of a given weed 
mixture.

This model, in combination with an appropriate sensor system for weed recognition 
and classification as well as an improved application technology, allows variable 
rates and herbicide mixtures in real time. The results of a 5-year field experiment 
designed to assess this model under field conditions showed that optimization of the 
dosage to the local weed species composition and densities every year reduced her-
bicide usage 45–67% without reducing the crop yield or increasing the density of 
the weed population.

Lamastus-Stanford and Shaw (2004) adapted HADSS, a computerized yield loss 
and post-emergence herbicide selection decision aid, to the variable weed popula-
tions present in various soybean fields. To determine the effect of an SSWM pro-
gram on the net returns and amount of herbicide applied to the fields, weed 
populations for each sample location within each field were subjected to HADSS, 
using various sampling scales (10 × 10 m, 40 × 40 m, 60 × 60 m, and 80 × 80 m). 
These researchers demonstrated the potential value of SSWM from an economic 
standpoint. The differences between projected net returns from SSWM and the 
broadcast applications ranged from $10.42 to $14.1 ha−1. Results from larger, less- 
intense sampling scales were not significantly different.

Gutjar and Gerhards (2010) developed HPS-ONLINE, another decision model 
developed for site-specific herbicide application. This model can be divided into 
two parts:

 1. Knowledge before application. Although HPS-ONLINE offers the possibility 
for the implementation of population dynamics aspects for weed control, in this 
program, the model’s user is able to choose the importance of this aspect him-
self. If the user is planning to use long crop rotation intervals or narrow row 
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spacings, the population dynamics aspects may be disregarded. Regarding 
weather conditions, if the user considers that conditions are optimal for herbicide 
application, HPS-ONLINE offers the possibility for a general reduction of her-
bicide dose. This implementation of users’ expert knowledge and experience is a 
valuable component of this system.

 2. Knowledge during application. The system uses the weed coverage at the time of 
weed control for the estimation of weed competition. This data is obtained auto-
matically using a bispectral sensor system. Plant species are classified in four 
categories (crop and three weed types) by their shape features using an automatic 
classifier. Based on this information, a separate application decision is made for 
each weed class.

Fernandez-Quintanilla et al. (2011) proposed the basic specifications for the design 
of a DSS based on spatiotemporal information on weed infestations. This proposal, 
designed to be used by a fleet of patch-spraying robots, was structured in five mod-
ules (Fig. 7.1):

 1. Field inspection. Monitoring weed populations at various times of the growing 
season by using unmanned aerial vehicles (UAV).

 2. Long-term decisions. The objective of this module is to optimize the choice of 
crop and herbicide rotations as well as the tillage system throughout a rotation 
defined by the user, trying to find the best long-term strategy. Historic (legacy) 
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Fig. 7.1 Proposed system architecture for a SSWM-DSS for a fleet of robots
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maps, constructed using the weed distribution data obtained in the previous step, 
may provide one major element for this process. In addition, empirical knowl-
edge of the farmer, gathered through many years of working the field, may also 
be a valuable data source that should be exploited.

 3. Current year decisions. This is a complex decision requiring the integration of 
information on weed biology, expected crop yields, and potential yield losses 
caused by different weeds, herbicide options, timing and efficacy of each herbi-
cide, influence of climatic conditions, economic profitability of the treatment, 
and herbicide resistance risks. Nowadays, agricultural growers and consultants 
can manage the integration of these complex factors by using available DSS 
(Parsons et al. 2009; Sønderskov et al. 2016).

 4. Unit distribution and path planning. The objective of this module is to plan the 
routes to be followed by each individual robotic unit, taking into consideration 
the geometry of the field, the strategy of the operation, and the spatial distribu-
tion of weeds.

 5. Online decisions. Although prescription maps may provide the basic information 
of the field areas that should be sprayed, this information needs to be contrasted 
with that obtained at spraying time with cameras or sensors that detect weed 
presence and discriminate different weed types. Once the detected weed patch 
has been considered as a suitable target for spraying, a fast-response controller 
could regulate discharge of the different herbicides in each individual nozzle.

Decisions derived from DSS should not be considered as compulsory operations 
to be conducted by the farmer but as recommendations to be considered in his final, 
personal decision. In any case, it is desirable to assess the results obtained from the 
application of those final decisions. This assessment should take into consideration 
agronomic, economic, and environmental criteria. In order to do that, it would be 
required to collect data at the field scale (e.g., total herbicide use, total yield, etc.) 
and at the subfield scale (e.g., yield mapping, weed mapping at harvest time, etc.).

7.3  Using Remote-Sensed Images to Construct 
Prescription Maps

Remote sensing technology can provide spatial and temporal information on the 
presence and absence of weeds at the field scale as key input data to feed a DSS. The 
primary phase consists of classifying the remote-sensed images into a weed map 
that shows the weed plants or the weed patches. Prior to the widespread use of 
drones, remote images taken with piloted aircrafts or satellite platforms allowed to 
detect large weed patches (at least 2 m by 10 m in size) with a low resolution. This 
fact limited the potential implementation of this technology to late-season inspec-
tion of crop fields with large weed patches (Brown and Noble 2005). Early studies 
used high-altitude images for late-season weed discrimination in cereal and legume 
crops, soybean and sunflower (Gómez-Candón et al. 2012a; de Castro et al. 2012, 
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2013; Gray et al. 2008; Peña-Barragán et al. 2007). However, although weed control 
treatments at a late crop stage are generally inappropriate or ineffective, these weed 
maps may be useful for weed control in the following year if weed patches are spa-
tially stable over time, such as those of Avena sterilis (Barroso et al. 2004), Ridolfia 
segetum (Peña-Barragán et al. 2007), and Alopecurus myosuroides (Lambert et al. 
2017). These late-season maps may also have other uses, e.g., relating weed infesta-
tions and crop yields (Gutiérrez et al. 2008; Peña-Barragán et al. 2010), assessing 
the impact or efficiency of specific weed control treatments (Franco et al. 2017;. 
Huang et al. 2018; Rasmussen et al. 2013), and studying weed population dynamics 
(Castillejo-González et al. 2019). Spatial resolution of the remote images (i.e., pixel 
size) is a key parameter to the success of weed detection and mapping. Hengl (2006) 
considered that pixel size should be at least a quarter of the target element (in our 
case, the weed plant or patch). Currently, drones generally provide remote images 
of a few centimeters and, in some cases, of less than 1 mm. This feature allows weed 
detection at very early stages of the crop and weeds, the critical period for weed 
treatments (Pflanz et al. 2018; Torres-Sánchez et al. 2013). Several investigations 
have demonstrated the capability of early-season drone-based images to detect 
weeds in maize (Castaldi et al. 2017; Gao et al. 2018; Peña et al. 2013; Pérez-Ortiz 
et al. 2016), sunflower (López-Granados et al. 2016; Pérez-Ortiz et al. 2015, 2016), 
barley (Franco et al. 2017; Rasmussen et al. 2013), wheat (Jurado-Expósito et al. 
2019; Pflanz et al. 2018), vineyards (Jiménez-Brenes et al. 2019), and rice (Huang 
et al. 2018). High-resolution weed maps can be generated by combining advanced 
object-based image analysis (OBIA) techniques and machine learning algorithms 
(de Castro et al. 2018; Gao et al. 2018; Pérez-Ortiz et al. 2016; Pflanz et al. 2018) 
(Fig. 7.2). These procedures usually incorporate spatial and spectral information of 
each plant previously segmented as objects within the images. Classification algo-
rithms are usually more effective in row crops, where the position of the weeds rela-
tive to the crop row is generally a decisive factor (Louargant et  al. 2018; Peña 
et al. 2013).

In order to practice SSWM, a subsequent phase consists of converting weed 
maps to prescription maps. These maps are a set of grids with the corresponding 
weed infestation values (weed coverage or weed density). The prescription maps 
also provide additional information on the crop field and crop development. This 
information is important to design and apply DSS. Peña et al. (2013) developed an 
OBIA procedure based on a drone-based weed map in maize. This procedure con-
sists of three levels of information according to the spatial scale of field observation. 
The upper level provides global information of the crop field, including field dimen-
sions, number of crop rows, crop row orientation, average crop row separation, and 
total weed-free and weed-infested areas, including total area of three different cat-
egories of weed coverage (low, moderate, and high). The intermediate level pro-
vides detailed information on each crop row, including identification number, 
length, width, coordinates of the extremes, and number and category of the weed- 
infested grids of each row. Finally, the lower level provides detailed information on 
each grid unit, including identification number, coordinates, dimensions, relative 
position within the crop row, distance to the start and the end of the crop row, weed 
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coverage percentage, and weed coverage category of each grid. For the develop-
ment of a DSS, this dataset at the three levels enables to estimate the total area that 
needs weed treatment and, therefore, calculate the herbicide volume needed prior to 
its application, as well as the location of the weed-infested grids, the orientation of 
the crop rows, and the general pattern of the crop field, which is fundamental to plan 
treatment routes and optimize the tractor trajectory (Gonzalez-de-Santos et al. 2016).

Generally, the prescription maps are exported to the sprayer to conduct the treat-
ment according to the position of each grid and the weed-treatment decision (e.g., 
spray or do not spray) following an SSWM strategy. The ultimate objective is to 
decrease the amount of herbicide in comparison to a uniform weed treatment. In 
their study, Peña et al. (2013) determined that the area free of weeds and with low 
weed coverage (<5% weeds) was 23% and 47%, respectively, which demonstrated 
the high potential for reducing herbicide applications in this case study. Castaldi 
et al. (2017), working also in maize crops, designed prescription maps of 2 m × 2 m 
in size from drone images and reported herbicide savings between 14 and 39.2% for 
patch spraying as compared to a blanket application.

However, overall herbicide savings would vary depending on the level of weed 
infestation, the criteria established for herbicide application, and the size of the 
spray grid considered. Gómez-Candón et  al. (2012a, b) evaluated the impact of 
these variables on herbicide savings by using aerial images for mapping Avena ster-
ilis in wheat fields and reported that the herbicide savings increased from 20% to 
90% for weed treatment thresholds of 0% and 30% of weed coverage, respectively 

Fig. 7.2 (a) Using an Unmanned Aerial Vehicle (UAV) flying at 30 m altitude over a sunflower 
field to detect weed infestations. (b) Classified image by applying an auto-trained Random Forest 
classifier Object-Based Image Analysis (RF-OBIA) algorithm (de Castro et al. 2018)
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(Fig.  7.3). These authors also indicated that treatment efficiency increases three 
times as much if the grid size is reduced from 20 m × 6 m (i.e., for the entire sprayer 
platform) to 1.2  m  ×  1.5  m (i.e., for individual nozzles). López-Granados et  al. 
(2016), using images from two sunflower fields, studied the variability of herbicide 
treatment maps generated from UAV images using weed thresholds ranging from 
0% to 15%. The results obtained showed that the total area of weed treatment 
decreased from a maximum area of 46% at a weed threshold of 0% to a minimum 
area of 3% at a weed threshold of 15%. This study also evaluated the impact of flight 
altitude (i.e., image spatial resolution) and type of camera (i.e., RGB vs. multispec-
tral) in the accuracy of the prescription maps as affected by the studied weed thresh-
olds. The results showed that the multispectral camera was better than the RGB 
camera in all cases and that reasonable accuracy (i.e., overall accuracy >85%) was 
obtained from weed thresholds above 2.5–5% on average with both cameras. Huang 
et  al. (2018), using UAV-based images on rice fields for the generation of 

Fig. 7.3 Using aerial images to design herbicide application: (a) NVDI image view of a winter 
wheat field infested with Avena sterilis. Original RGB images obtained from a plane flying at 
1500 m altitude; (b) herbicide prescription map with three classes: high rates when >26% infested 
pixels, low rates when 11 to 26% infested pixels, and no herbicide when <11% infested pixels 
(Gómez-Candón et al. 2012a, b)

C. Fernández-Quintanilla et al.



151

prescription maps, also quantified high herbicide savings depending on the treat-
ment threshold used, reporting savings between 58 and 71% for weed coverage 
thresholds of 0 to 25%, respectively.

7.4  Using Ground Sensing Imagery to Make 
Online Decisions

Farmers are more likely to adopt embodied technologies that do not require acquir-
ing additional skills (e.g., smart online sprayers) than information intensive tech-
nologies that require special skills (e.g., weed mapping from aerial images) (Lutman 
and Miller 2007; Griffin 2016). The data required to take online decisions can be 
obtained from different types of sensors or cameras.

The simplest devices are spectral reflectance sensors. This technology, devel-
oped originally by Felton and McCloy (1992), is based on the fact that the spectral 
curve of plants differs significantly from the reflectance of soil. Consequently, if 
these sensors are located in crop-free areas (e.g., inter-rows, tramlines, fallow land), 
the decision to be made is simple and can be taken in milliseconds: all green detected 
objects are supposed to be weeds and should be sprayed. This principle has been 
widely used in the past for real-time patch spraying of herbicides (Felton and 
Mccloy 1992; Dammer and Wartenberg 2007; Dammer 2016). However, since 
crops and weeds cannot be discriminated with these sensors, this approach has 
important limitations.

Weed plants can be discriminated from other elements in the image (soil, crop) 
by using three sequential processes (Fernandez-Quintanilla et al. 2018):

 1. Segmentation of the original image, obtaining an image with white pixels repre-
senting plant cover and black pixels depicting soil.

 2. Identification of zones corresponding to crop rows, quantifying crop cover, and 
eliminating these pixels.

 3. Estimation of weed cover after the improvement of image by filtering noise and 
errors from previous steps.

Up to now, the most widely used technique for crop-weed discrimination is based 
on imaging with sensitive sensors within the range of the visible light (Peteinatos 
et  al. 2014). Relatively low-cost and easily operated RGB cameras can acquire 
images with proper spatial resolution to allow the identification of plant species 
based on their location, shape, color, and texture features. Using expensive hyper-
spectral images may result in substantial improvements in this process. The integra-
tion of these images with a machine-learning procedure can achieve high recognition 
levels for crop vs. weed discrimination (Zhang and Slaughter 2011; Zhang 
et al. 2012a).

In order to discriminate individual plant species, it is possible to create image 
databases for all the species of interest, using their spectral signatures and/or their 
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characteristic shape features (Gerhards and Oebel 2006; Weis and Gerhards 2007; 
López-Granados et al. 2008). Berge et al. (2008) used an object-oriented algorithm 
(“WeedFinder”) for the automatic detection of broad-leaved weeds in cereals. The 
results obtained in two experimental fields show that the estimates by the program 
and the corresponding true values of total broad-leaved weed density and weed 
cover were positively correlated, but there were serious dispersion and discrepancy 
from the 1:1 relationship (Fig. 7.4).
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3D modeling has been recently proposed for the morphological characterization 
of weed plants (Andújar et  al. 2018). These techniques can be based on visible 
images (Arvidsson et al. 2011), LiDAR (Guo et al. 2017), structured light (Nguyen 
et al. 2015), spectroscopy (Gutierrez et al. 2016), thermal images (Ludovisi et al. 
2017), ultrasound (Andújar et al. 2011), etc.

In order to practice SSWM, in addition to the weed sensing system, it is neces-
sary to implement a weed management DSS and have a precision weed control 
device, such as a boom sprayer having independent boom sections or nozzles or a 
precise physical weed removal actuator (Christensen et  al. 2009; Fennimore 
et al. 2016).

According to a relatively simple approach, weed control actuator, either chemi-
cal or physical, will be started automatically when estimated total weed cover in a 
given area is higher than experimentally determined thresholds. However, and due 
to the relatively long processing time of all these processes, this approach has some 
limitations to be used for online actuation. In addition, some aspects such as leaf 
overlapping or plant biomass quantification still need further research.

The most powerful method capable of robust, automated in-field discrimination 
of individual plant species is based upon hyperspectral imaging. This principle has 
been used in various horticultural crops for automated weed control (Zhang et al. 
2012b; Fennimore et al. 2016). To translate weed maps into spray control maps, the 
predominant object classification (weed, crop, soil) in each region of the hyperspec-
tral image determined the spray decision for that zone.

Currently, the use of artificial intelligence models is replacing some of the last 
decade developments. The concept is wide and many machine-learning processes 
can provide novel tools for online weed identification through image processing 
(Liakos et al. 2018; Yu et al. 2019). These fast analysis algorithms can be used in 
conjunction with smart sprayers to accurately apply herbicides site-specifically. 
Various commercial initiatives using leading-edge hardware, software, and artificial 
intelligence have already yielded equipment capable to detect weeds, decide the 
action to be taken, and act immediately. Blue River Technology, a Silicon Valley 
startup, used computer vision and machine learning to identify plant species—both 
crops and weeds—with a high accuracy and then artificial intelligence algorithms to 
make spraying decisions on the spot.

Custom nozzle designs enabled spraying individual plants. EcoRobotix, a small 
Swiss company, has designed, constructed, and commercialized a small robotic unit 
equipped with a camera for weed recognition, a powerful computer with data pro-
cessing using artificial intelligence algorithms, and a set of movable nozzles that 
deposit herbicide microdoses in a targeted way. Deepfield Robotics, a Bosch startup, 
has developed an autonomous weeding machine equipped with a weed detection 
camera, a machine learning system, and a mechanical weeding mechanism that 
destroy individual plants. Bosch has recently teamed up with Bayer, the giant 
German chemical firm, for a “smart spraying” research project using the detection 
and decision-making technologies developed for BoniRob.
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Chapter 8
Theory and Practice for Environmental 
Risk Assessment: Understanding 
the Trade-Off Between the Benefits 
and Risks Behind Herbicide Use as Tool 
for Designing Sustainable Weed 
Management Systems

Felipe Ghersa, Sebastián Pessah, Alejandra C. Duarte Vera, 
and Diego O. Ferraro

Abstract The adoption of herbicides as a weed control strategy has allowed farm-
ers to reduce the short-term effects of biological adversities on crop yields. However, 
they have also jeopardized agroecosystem sustainability by causing negative altera-
tions of social and environmental subsystems. The physicochemical properties of 
herbicides (volatility, adsorption, or water solubility) can make them persist in the 
soil, air, and water, changing the structure and function of key environmental com-
partments. The occurrence of herbicide-resistant weed populations has generated a 
positive feedback loop requiring the application of higher doses, aggravating nega-
tive externalities. Hence, the economic benefits of herbicides as a unique control 
strategy substantially decrease in time. In addition, the dependence of agricultural 
systems on external inputs generates an herbicidal “lock-in” process that hinders the 
transition towards more sustainable integrated management systems. Therefore, 
there is a pressing need to elucidate the principal aspects of environmental risk 
analysis of herbicide use in agroecosystems. The objectives of this chapter are: (1) 
to introduce key concepts related to the construction and application of environmen-
tal risk indicators with a focus on agricultural system risk assessment, (2) to list the 
potentially negative effects associated with the use of herbicides, (3) to understand 
the processes that regulate herbicides’ fate and behavior in farming systems, (4) to 
highlight the importance of decision support systems (DSS) in reducing herbicide 
use in favor of integrated weed management (IWM), and (5) to understand the 
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decision- making logic behind the increasing adoption of chemical weed control 
despite its negative socio-environmental effects.

Keywords Risk modelling · Technology adoption · Pesticides · Ecotoxicity · 
Indicators · Decision making

8.1  Introduction

The growing demands for food and fiber products has brought about a substantial 
increase in the use of nonrenewable resources, such as soil and fossil fuels, to close 
the gap between attainable and actual yield levels (Van Ittersum and Rabbinge 
1997). However, the high dependence on external inputs, due to the simplification 
of social and environmental subsystems, has altered the possibility of sustaining 
modern industrial agricultural systems in time (Hansen 1996; Pretty 2007). One of 
the principle determinants of this productive gap is the presence of biological adver-
sities such as weeds, which have led to increasing use of chemical products.

The term “weed” is generally centered around the anthropocentric viewpoint of 
any plant species that interferes with productive activities and human well-being 
(Radosevich et al. 2007; Neve et al. 2009). There are no fixed biological character-
istics that allow the identification of a particular plant as a weed, although some 
ideal traits have been identified (Baker 1974). Therefore, those plants that are con-
sidered weedy, aside from having no particular use, generally have negative effects 
on crop yields and crop product quality (Gibson et al. 2008). Through control strate-
gies (chemical or mechanical), weed populations can be reduced or suppressed 
within a defined area; however, this seldom implies their complete eradication. The 
fact that weed species populations increase in number, and expand geographically, 
greatly influences agricultural decision-makers on the amount of resources they 
spend to inhibit their occurrence (Gould et al. 2018).

Despite the increase in herbicide use, weeds are still present as a productive 
adversity because of an increase in the abundance of individuals that elude herbicide 
action or that present evolutionary mechanisms towards the establishment of 
herbicide- resistant populations (Jasieniuk et al. 1996; Vidal et al. 2010). These pro-
cesses generate positive feedback loops (Chapin III et al. 1996) that imply a bur-
geoning dependence on chemical applications in order to control weeds, with a 
consequent increase in weed resistance followed by a cyclic need to apply higher 
herbicide doses. Therefore, decisions on how to control weeds are principally influ-
enced by species biology and the particular technological package applied 
(Radosevich et al. 1997). It becomes evident that these management strategies can 
influence agroecosystems’ sustainability by affecting their principal components—
i.e., water, soil, and atmosphere. Some of these effects include emissions of 
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herbicides and their byproducts into the environment, decreases in native species 
populations, and negative impacts in animal welfare (Pimentel et al. 1992). In addi-
tion, these externalities generate additional costs, which producers do not usually 
include in their gross margin estimations (Wilson and Tisdell 2001). In order to 
quantify the effects of cultural practices on agroecosystem services (Costanza et al. 
2014), both environmental risk indicators (ERI) and decision support systems (DSS) 
can be used. These provide a knowledge base regarding how technologies affect 
systems’ properties, sustainability, and resource use (Ferraro et al. 2003), and allow 
for transitions from damaging positive feedback cycles to more stable and desirable 
states with lower environmental and social impacts (Swift and Anderson 1994).

In addition to these ecological considerations, social factors are a key determi-
nant in appropriate design and implementation of integrated weed management 
(IWM) strategies. This requires a thorough understanding of farmers’ behavioral 
patterns by analyzing their decision-making process using tools that capture the 
associated complexity and heterogeneity and integrates them with the ecological 
aspects of the agricultural system practices. Multi-agent models are a possible way 
to represent human behavior and link it with the physical functions of productive 
systems (Schreinemachers and Berger 2011). In these models the interaction 
between agents and their environment determines the possible functional and struc-
tural configurations that a system can take. In addition, multi-agent models could be 
coupled with optimization models or algorithms allowing more flexibility to 
decision- making by increasing the scope and precision of inputs used (Whittaker 
et al. 2017). This could allow more informed fact-based decisions that may be coun-
ter to established cultural knowledge regarding optimal presence of weed popula-
tions and trade-offs between increasing chemical control and accruing environmental 
and economic costs (Rossi et al. 2014).

Based on the previously depicted benefit-risk trade-off between herbicide use 
and weed control the objectives of this chapter are to: (1) introduce some key con-
cepts related to the agricultural systems environmental risk assessment (ERA), (2) 
list the potentially negative effects associated with the use of herbicides, (3) clarify 
the endogenous and exogenous aspects of the herbicides that regulate their fate in 
the environment, (4) provide evidence for understanding the logic of increasing 
adoption of herbicides, despite their negative socio-environmental effects, and (5) 
review the role of DSS as useful tools in promoting better and informed decisions to 
reduce herbicide use in favor of more IWM strategies.

8.2  Environmental Risk Assessment in Agricultural Systems

Risk is defined as the probability of occurrence of an event and its associated con-
sequences. Risk analysis gathers several statistical modeling and database manage-
ment techniques that allow the prediction of future unknown events through the 
analysis of previous patterns and occurrences. These models are known as environ-
mental risk indicators (or estimators) (ERI) (Bockstaller and Girardin 2003), and 
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their construction requires knowledge about key system variables which determine 
the presence of risk. In this way, most analyses follow a basic structure in order to 
identify predictive variables (i.e., explanatory variables) and response variables 
(i.e., actual risk), as well as, the causal mechanisms that link them together (Jakeman 
et al. 2006).

As a result, using ERI to solve environmental, ecological, or agricultural-derived 
problems allows an in-depth systemic understanding (Scoullar et al. 2010), giving 
decision-makers the possibility of identifying low-risk management practices that 
comply with both productivity and sustainability goals. However, it is important to 
note that for ERI’s adequate development and use, certain conditions must be met, 
such as, they: (1) should be updated and improved, as knowledge about the system 
structure and function increase; (2) must have a meaning and interpretability about 
the system beyond its objective value; (3) should respond to the user’s necessities, 
(4) must be accessible and easily interpretable at a given temporal and spatial scale, 
(5) must be as objective as possible, and (6) should be easily applied by its “target 
population” (e.g., farmers and scientists) (Fernandes and Woodhouse 2008). 
Nevertheless, the choice and selection of ERI and their respective input variables 
depend ultimately on the problem to be solved and the particular analysis objective 
(Ghersa et al. 2000). In addition, ERI’s predictive variables should also comply with 
certain criteria. Specifically, explanatory variables should: (1) be quantitative values 
(a numerical meaning must be assigned), (2) be sensitive to changes at a systemic 
level, (3) condense complex information in a simple and concise manner, and (4) be 
simple/easy to store and extract from database structures. It is worth noting that 
variables selection is an important step in measuring risk. For example, not consid-
ering or involuntarily omitting key ones, may lead to increase the probability of 
associated error (Von Wirén-Lehr 2001). Conversely, using too many variables 
(overparameterization) may hinder the development of models that are easy to man-
age, interpret, analyse, and/or update (Van Cauwenbergh et al. 2007). In addition, 
variables should be able to detect direct and indirect relationships between compo-
nents of the system such as trade-offs or synergies (Bennett 2009). Trade-offs arise 
when a change in a variable generates an inverse effect on another variable, while 
synergies consist of situations in which at least two variables increase or decrease 
simultaneously generating a larger overall effect than the individual sum of effects 
(Chapin III et al. 1996; Raudsepp-Hearne et al. 2010; Luukkanen et al. 2012). In 
agricultural systems, knowledge about the interrelationship between variables 
determines which decisions are adequate to reduce the associated risk thus enabling 
prosperous management strategies (Chapin III et al. 1996).

Finally, ERA requires the consideration of the ecological effects of chemicals 
across different scales and levels of biological organization. This appears to be a 
daunting task, as Köhler and Triebskorn (2013) suggest that it is increasingly diffi-
cult to track the effects of pesticides beyond the population level, especially within 
a context of dynamic global change. In agreement with this argument, Rohr et al. 
(2016) point out that, in general, ERA shows a negative relationship between level 
of biological organization and ease of assessing cause–affect relationships when a 
high-throughput screening of a large numbers of chemicals is considered. In turn, 
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two initial consequences arise from these assertions, (1) the difficulty of capturing 
ecological effects beyond toxicological laboratory tests and (2) a clear trade-off 
between precision of measurements and their final utility to assess the anthropic 
impact on biophysical environmental components. As noted by Jepson (1993), 
Freemark and Boutin (1995), and Topping et al. (2015) the integration of ecological 
theory with toxicological and environmental chemistry are key aspects to generate 
appropriate risk assessment frameworks. Particularly, the pattern and frequency of 
exposure to the toxic chemical and the landscape structure are important determi-
nants of risk for pollutants with short persistence, in temporary habitats or those 
affecting dispersive invertebrates.

In sum, the choice and identification of ERI are of significant importance in order 
to evaluate possible anthropic effects on key ecosystem properties (Ghersa et  al. 
2000). In agricultural systems, ERA presents an alternative framework that encom-
passes the biophysical functionality with the productivist (utilitarian) dimension 
into a systemic viewpoint (Müller 2005). Also, they offer the possibility of evalua-
tion of ecosystem change in relation to weed management strategies and technolo-
gies, and how to apply viable solutions to ameliorate environmental degradation 
without necessarily compromising economic output (Duarte Vera et al. 2015).

8.3  Fate of Herbicides in Agricultural Systems

Beyond their typification, in terms of the hazard that herbicides use may imply over 
nontarget populations, a large part of the environmental effects of these substances 
are associated with both their fate and behavior once applied. These two aspects are 
closely related to both (1) their physicochemical structure and (2) herbicides’ trans-
port processes in soil, water, and air, which are in turn influenced by the environ-
mental conditions. Although herbicides represent the largest proportion of total 
pesticide use (Zhang 2018), physicochemical and environmental processes that 
determine their fate in the environment are generally applicable to the majority of 
pesticides.

8.3.1  Physicochemical Description of Herbicides

The most common substances used as herbicides are organic chemicals, which are 
mainly composed of hydrogen and carbon atoms. In addition, few other elements 
compose the active ingredient molecules such as oxygen, nitrogen, sulfur, phospho-
rus, and the halogen group. The chemical structure of most herbicides is heterocy-
clic, and many contain a halogen within their structure. By way of chemical 
processes, these substances are altered into forms such as esters, alcohols, and 
organic acids which allow changes in physicochemical properties that are more 
effective for the intended use and allow easier application. In addition, these 
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formulations greatly influence the fate of these chemicals in the environment due to 
their solubility in water, electrical charge, and volatility. The key chemical structure 
of an herbicide is its biological active portion, or active ingredient (a.i.) which deter-
mines its ability to kill “target” individuals. Small changes in the molecular compo-
sition and/or configuration can directly alter the a.i. biological activity and physical 
properties. Active ingredients can be altered by chemical processes like esterifica-
tion or transformation into organic salts to enhance biological activity, change the 
method of application and finally alter the fate of the herbicide in the environment. 
It is often the case that active ingredients derived from alcohols, phenols, and 
organic acids are more soluble in water, while esters are more soluble in organic 
solvents and have a tendency to produce vapors (Leonard et al. 1995). In the case of 
esters, for example, the size of the molecule may also influence its degree of volatil-
ity, determining both the method of application as well as the interaction between 
the “target population” and the surrounding environment.

8.3.2  Herbicides Transport in the Environment

Ultimately, displacement amongst ecosystem compartments, soil adsorption, and 
physical, chemical, and/or biological degradation determine the fate of the herbi-
cide in the environment. This makes knowledge about key ecosystem processes 
linked to persistence important in planning safe pest management strategies, per-
forming damage control in highly contaminated areas and prevent increasing trade- 
offs between high productivity, technology, and environmental health.

Figure 8.1 presents a flow diagram of herbicide molecules after spraying or 
ground application. The molecules that are not metabolized by target organisms 
flow through the environmental compartments (atmosphere, waterbodies, soil, and 
biota) until they are degraded into other compounds or removed by crop harvest.

8.3.2.1  Herbicide Soil Persistence

Half-life is a measure of persistence of an active ingredient (or formulation) in the 
environment. Specifically, half-life refers to the time required to degrade 50% of the 
applied dose of any substance. According to Kamrin (1997), a criteria to classify 
herbicide persistence is as follows: (1) nonpersistent or weakly persistent is 
<30 days, (2) moderately persistent is between 30 and 100 days, and (3) strongly 
persistent is >100 days. In addition to its chemical structure, the herbicide’s persis-
tence also depends on the environmental conditions, such as soil adsorption (attrac-
tion of ions or molecules to the soil surface, Koc), soil temperature and moisture, 
vegetation, and soil microorganisms. These factors determine the susceptibility of a 
substance to both chemical and microbial degradation. As a result, the interaction 
between half-life and soil conditions will effectively determine herbicide’s persis-
tence. For example, an herbicide can have a long half-life but due to a low sorptive 
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capacity it cannot exert toxic effects into the environment. Conversely, a substance 
can be virtually inactive to target organisms but affect nontarget organisms or bio-
magnify after a short period of time (Radosevich et al. 2007).

Herbicides reach the soil through various pathways (Fig. 8.1). Some herbicides 
are mixed or applied directly into the soil, while others reach the soil surface after 
canopy interception as runoff from treated foliage or when affected individuals 

Fig. 8.1 Fate of herbicides in the environment. Environmental compartments refer to the principal 
herbicide pools (atmosphere, waterbodies, soil, and biota). Anthropic herbicide flows are a direct 
consequence of application, while secondary flows refer to herbicide molecules that have gone 
unaltered through an environmental compartment. Anthropic herbicide output is the removal of 
biomass from the system by way of crop harvest. Dotted clouds that represent degradation pro-
cesses are system outputs, since herbicide molecules are no longer in the system but have been 
altered into new compounds. These remain in the system, either dissolved in water or adsorbed to 
clay or organic matter

8 Theory and Practice for Environmental Risk Assessment: Understanding…



168

decompose into the soil (Weber et al. 1989). Once they have reached the soil, herbi-
cides interact with the solid, liquid, gaseous, and biological components. Some her-
bicides interact with the solid phase of soil; that is, they adsorb to soil colloids (e.g., 
negatively charged particles of clay and organic matter (OM)). These processes are 
a key factor affecting herbicide persistence and availability for plant uptake, since 
adsorption inhibits uptake, degradation, and leaching. Soils with course texture and 
low OM content have low adsorptive capacity favoring both herbicides degradation 
and leaching. Additionally, soil pH has been found to influence persistence of cer-
tain herbicides like sulfonylureas and triazines, which break down through acid 
hydrolysis (Hiltbold and Buchanan 1977; Sarmah and Sabadie 2002). In general, at 
pH levels above 6.8 chemical degradation by hydrolysis stops, while water solubil-
ity increases. As a consequence, under these conditions both sulfonylureas and tri-
azines are more persistent and available for plant uptake causing potential carryover 
effects on succeeding crops (Bailey and White 1970). In acidic soils (i.e., pH below 
7) adsorption to soil particles is increased, which may increase persistence of herbi-
cides such as imidazolinones that are primarily degraded by microbial activity. In 
the case of sulfonylurea and triazine herbicides, low pH levels can render these 
products ineffective since they are both highly adsorbed and broken down by 
hydrolysis.

8.3.2.2  Herbicide Air Displacement

Herbicides can move through air by way of drift or volatilization (Fig. 8.1). Volatility 
refers to the tendency of a chemical to change its phase from liquid or solid to gas 
(volatilize). This process is principally determined by their temperature and vapor 
pressure of the chemical, so all herbicides are potentially volatile with wide range 
of degrees. Herbicides that have low vapor pressure are relatively nonvolatile, while 
the opposite occurs with those that have high vapor pressure.

Drift refers to the movement of particles—solid or liquid—through air, away 
from the site of application. Since most herbicides are applied through air in the 
form of a suspension, it is the most serious concern since it can potentially damage 
nontarget organisms, generate residue in adjacent fields, or contaminate water and 
food sources. To reduce the risk of displacement through air, several methods can be 
used. When an herbicide is sprayed, the size of the droplet will likely influence the 
propensity to drift. In general, heavier droplets (i.e., more than 200 μm in diameter) 
reach the intended target, while smaller droplets are more likely to drift away 
(Matthews et al. 2014). Thus, using larger droplets and spraying the product down-
ward can greatly reduce the risk that the substance will move through the air into 
unintended sites. Notwithstanding, for nonsystemic herbicides larger droplets may 
be less precise and provide worse control, since they do not cover as much surface 
area. Buffer zones are also a suitable method to reduce the effects of substances that 
drift from the site of application (de Snoo and de Wit 1998).
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8.3.2.3  Herbicide on Surface and Leaching Water

Water dynamics and soil physical chemistry greatly influence the movement of her-
bicides. Water moves through the soil profile and the molecules that are not adsorbed 
to soil colloids are leached. Therefore, herbicide movement depends on soil proper-
ties, herbicide solubility, and the amount of water that percolates into the soil. Most 
leaching involves vertical movements, although lateral or even upward leaching 
may take place (Fig. 8.1). In cases when herbicides do not degrade completely or 
leave residues and enough water falls onto the soil, herbicides have been found to 
reach groundwater supplies (Thurman et al. 1991; Johnson et al. 2001).

8.3.2.4  Herbicide Degradation

Degradation of the original molecule into simpler chemical structures occurs 
because of exposure to sunlight (photochemical decomposition), soil chemical pro-
cesses (chemical decomposition), and degradation by microorganism activity 
(microbial decomposition). These processes mostly occur in the soil, but may also 
take place in air, water, plants, microbes, and animals (Goring et al. 1975; Fenner 
et al. 2013). Persistence curves determine the amount of time that an herbicide is 
active in the environment and depends on soil factors and climatic factors such as 
pH, soil composition, moisture, temperature, and radiation, as well as the physico-
chemical properties of the applied substances (Curran 2016). Photochemical 
decomposition results from the photolysis process that breaks down molecules of 
herbicides that lie on the surface of leaves or topsoil. However, not all herbicides are 
degraded by solar radiation at the same rate such that photolysis is an herbicide- 
specific process. In addition, herbicides can undergo chemical decomposition in the 
soil through processes of oxidation-reduction, hydrolysis, and water-insoluble salts 
and chemical complex formations. Microbial decomposition accounts for a large 
proportion of herbicide degradation in the soil (Chapin III et al. 2011). Several fac-
tors influence these processes, such as soil moisture, temperature, pH, and OM con-
tent. Strong alterations in these factors can cause microbial activity to slow down 
and hinder decomposition (Curran 2016). Microorganisms decompose herbicides 
through the secretion of specific enzymes that break down complex organic mole-
cules. These compounds are then used by microbes as a source of carbon, nutrients, 
and energy. According to Anderson (1996), microorganisms perform degradative 
reactions that alter the original herbicide molecule, for example, dehalogenation 
(removes chlorine, bromine, or other halogen atoms), dealkylation (removes organic 
side chains), hydrolysis (removes amides or esters), ring hydroxylation (adds 
hydroxyl (-OH) groups to aromatic ring), ring cleavage (breaks structure of aro-
matic ring), and reduction (addition of hydrogen to NO2 groups under anaerobic 
conditions). Although they are a principal agent in herbicide degradation, soil mac-
rofauna is also adversely affected by certain toxic components. Nitrogen-fixing bac-
teria and mycorrhizal fungi are two groups that are known to be negatively affected 
by certain pesticides (Trappe et al. 1984; Johnsen et al. 2001).
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8.4  Potentially Negative Effects of Herbicides

Despite the irrefutable advantage of weed management practices for food and fibers 
production, the extended and continual use of chemical weed control strategies can 
have deleterious effects on the environment. Some of these consequences are: (1) 
food chain disruption, (2) increased risk of invasive species and weed resistance, (3) 
leaching of herbicide components and other agrochemicals to waterbodies, (4) 
direct and indirect effect on local fauna, such as short- and long-term toxicity as 
well as alteration of vegetative structure and cover for feeding and habitat, and (5) 
negative effects on soil physicochemical properties and microorganism communi-
ties (Levitan et al. 1995; Pimentel and Burgess 2014).

The physicochemical properties of herbicides such as volatility, adsorption, or 
solubility in water can make them persist in the environment in their original form 
or as toxic metabolites. In addition, some substances bind to body lipids in organ-
isms making them likely to bioaccumulate (Fig. 8.1), which increases their level of 
toxicity across food chains (a process known as biomagnification).

The toxicological effects range from acute after immediate oral, dermal, or inha-
lation exposure to chronic such as cancer or organ failure because of long-term 
exposure or carcinogenicity of certain active ingredients or surfactants.

8.4.1  Ecotoxicity

Adequate use, safety, and further development of commercial herbicide products 
require their classification into groups regarding similarities in chemical structure, 
use, and effect on plants (Briggs 1992). However, it has been recognized that toxic-
ity and dose of application are major factors in determining the final effect of herbi-
cides (Ferraro et  al. 2003). Therefore, they can also be classified based on their 
toxicity and hazard level, providing a more thorough description of their effects on 
target population as well as possible environmental externalities.

Based on the premise that all chemicals are toxic at some dose (the Roman 
Paracelsus, known as the father of toxicology, expressed as dosis sola facit vene-
num), ecotoxicity refers to the chemical, biological, or physical stress that a sub-
stance can cause to the constituents of an ecosystem (such as animals, plants, and 
microorganisms) (Truhaut 1977). These effects can occur after: (1) immediate her-
bicide exposure (acute toxicity), such as eye and skin irritation or neurotoxicity; or 
(2) after long-term gradual exposure or accumulation (chronic or sub-chronic toxic-
ity), such as impaired liver function, reproductive abnormalities, and cancer 
(Mansour 2004).

Toxicological evaluations are performed through experimental procedures on 
laboratory animal tests, which are exposed to different doses of herbicides on vary-
ing timescales from hours to years (Whitford 2002). Only those results that arise 
from experiments on species that have similar known reactions to humans can be 
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extrapolated to generate precise warnings on human health. However, real human 
susceptibility can only be estimated when systematic exposure of a group of humans 
to a substance has produced consistent results over a reasonable time period 
(Mostafalou and Abdollahi 2013).

8.4.1.1  Acute Toxicity

The effect of a substance after immediate exposure on an individual can be mea-
sured in relation to its body weight. As the dose applied on a test population 
increases, the response (such as death) on the individuals increases in a proportional 
manner. A common test to measure acute toxicity is Lethal Dose 50 (LD50), or 
Lethal Concentration 50 (LC50), for individuals exposed through air or water, 
respectively. For a group of individuals of a given species, the toxicity test measures 
the amount of a substance that is necessary to kill 50% of the evaluated population 
within a specified time. The test has been criticized for being a rough estimate of a 
substance’s toxicity, which is affected by species tested, age, weight, sex, genetic 
strain, health, diet, temperature, housing conditions, season, and probably other 
environmental conditions at the time of the test (Briggs 1992). In addition, many 
ratings for substances have been done when requirements were less rigorous and 
could provide inadequate measures of toxicity (Zbinden and Flury-Roversi 1981). 
In general, toxicity ratings are represented by way of a sigmoidal dose-response 
curve. At the bottom of the curve, the is no significant effect on the affected popula-
tion which is referred to as no observed adverse effect level (NOAEL). This is fol-
lowed by an increased linear response which starts with the lowest observed adverse 
effect level (LOAEL), the lowest dose at which a significant effect on the test popu-
lation is noticeable. Finally, the curve reaches a saturation plateau where 100% of 
the test population is killed, or the maximum observed adverse effect level (MOAEL).

Once a dose-response curve is found, a rating scale can be generated to deter-
mine the risk associated with amount and type of exposure. A commonly used rat-
ing scale was devised by the United States Environmental Protection Agency 
(USEPA), which distinguished three categories of exposure (Table 8.1): oral (inges-
tion risk), dermal (skin absorption), and inhalation (inhalatory risk). The fifth col-
umn in Table 8.1 details a dose that could be lethal for an average weight human, 
also known as reference dose (RfD) or margin of exposure (MOE). Considering that 
dose-response curves are found using test animals, a safety factor of 100 is used to 
find the RfD once the NOAEL is determined.

8.4.1.2  Chronic Toxicity

Chronic and sub-chronic toxicity refer to long-term effects of exposure such as 
organ damage, failure, or cancer. These effects are measured on laboratory test ani-
mals over periods ranging from weeks to 1 or 2 years (Whitford 2002). LD50 and 
RfD for chronic toxicity are obtained through the same procedures as for actuate 
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toxicity. Briggs (1992) adequately points out that it is often difficult to estimate the 
true nature of chronic effects as long-term testing performed in a systematic basis 
would be necessary, which is clearly impractical on humans for ethical reasons.

Biomagnification is also a result of the cumulative character of some herbicides, 
such as organochlorines that bind to body lipids. It is the accumulation of a sub-
stance in a food chain, and it occurs when small amounts of a toxic substance in the 
soil, air, or water is taken up by plants, later eaten by small animals, and succes-
sively building-up at the top of the food chain. Predators at the top of food chains, 
such as humans, can present thousands of times the amount compared to the envi-
ronment. To estimate the propensity of an herbicide to bioaccumulate the biological 
concentration factor (BCF) and KOW are used (Kamrin 1997). BCF measures the 
concentration of a substance in a living organism in relation to the concentration in 
the surrounding environment, while KOW is the octanol-water coefficient—(i.e., how 
well a chemical substance is distributed at equilibrium between octanol and water). 
Despite the fact that BCF is more sensitive to biological accumulation, KOW measure 
provides a reference value of 1000:1 octanol-water differential gradient when the 
ln(KOW) is 3 or more. This level indicates that a substance is very likely to concen-
trate at the top levels of a food chain (Chadwick and Shaw 2016).

In addition to causing organ damage, due to the metabolic and accumulative 
effects of toxic substances, certain components can also be carcinogenic. 
Carcinogenic substances are especially dangerous since no minimum threshold has 
been found, below which no effect is observed. Thus, in theory, a given molecule of 

Table 8.1 Required pesticide labels based on EPA rating for acute toxicity

Required 
label

EPA 
rating

Type of 
exposure

Amount of 
exposure

Probable lethal dose for 
150-pound human

“Danger” I Oral 0–50 mg/kg Teaspoon
Dermal 0–200 mg/kg
Inhalation 0–0.2 mg/L

“Warning” II Oral 50–500 mg/kg 1 teaspoon–1 ounce
Dermal 200–2000 mg/kg
Inhalation 0.2–2 mg/L

“Caution” III Oral 500–5000 mg/kg 1 ounce–1 pint (for 1 pound)
Dermal 2000–20,000 mg/

kg
Inhalation 2–20 mg/L

No label IV Oral Over 5000 mg/kg Over 1 pint or pound
Dermal Over 20,000 mg/

kg
Inhalation Over 20 mg/L

Oral and dermal ratings are expressed in terms of LD50 and inhalation is expressed in terms of 
LC50. LD50 = lethal dose that kills 50% of test animals in a given time. LC50 = lethal concertation 
in air or water in which animals live that kills 50% in a given time mg/L = milligrams per liter. A 
milligram is 1/1000 of a gram. This measurement is comparable to parts per million (ppm). mg/
kg = milligrams (of toxin) per kilogram (of body weight of animal). This measurement is compa-
rable to parts per million (ppm). Adapted from Briggs (1992) and Radosevich et al. (2007)
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a carcinogenic substance could affect a susceptible cell inducing abnormal growth. 
Chronic exposure to herbicides can also cause adverse reproductive effects such as 
increased tendency to abort, reduced offspring weight, malformations, birth defects, 
and behavioral and learning disorders in offspring (Prüss-Ustün et  al. 2011). To 
determine mutagenic herbicide effects testing is performed on developmental and 
fertility processes, as well as in vivo and in vitro. This allows to identify if an herbi-
cide causes damage on either chromosomes or genes and serves as a screen for 
suspect carcinogens since most mutagens may also cause cancer (Ames 1979; 
Cairns 1981). Finally, it has been noted that some herbicides may act as endocrine 
disruptors by mimicking hormones and disrupting processes such as metabolism, 
stress, development, and reproduction (McKinlay et al. 2008). However, Radosevich 
et al. (2007) state that the subject is still quite controversial and more evidence has 
to be collected to establish conclusive evidence.

8.4.2  Herbicides and Human Health

The bourgeoning use of herbicides to control adversities in cropping systems has 
increased the risk of exposure to both nontarget species and humans. Exposure can 
be both intentional (i.e., self-poisoning) or unintentional (i.e., occupational and 
take-home pathways, home and garden use, public health applications, and residues 
in food or water) (Hoppin and LePrevost 2017). The physiological response to 
exposure depends on both dosage and time (Fig. 8.2).

Although the widespread use of herbicides is an increasing risk factor in the lives 
of the general population, the most at-risk segment of society are agricultural work-
ers. Occupational exposures are the most common in terms of concentration, fre-
quency, and duration as well as the high levels of toxicity found in the formulations 
used in these settings (Aiassa et al. 2019). In addition, the general population is at 
risk from non-occupational and environmental (air, water, and soil) herbicide expo-
sure through diet (e.g., chemicals or residues that have been applied to fruits and 
vegetables) and when herbicides are applied to homes, gardens, or drift from nearby 
agricultural fields (Krieger 2001; López et al. 2012; Hoppin and LePrevost 2017).

8.4.2.1  Chronic and Acute Toxicity in Humans

Herbicides and other pesticides pose a risk to human health due to acute and chronic 
effects. It is estimated that there are between 3 and 25 million reported cases of 
acute pesticide poisoning worldwide (Jeyaratnam 1990); although, the difficulty in 
measuring the effects and bad access to healthcare in rural areas makes most cases 
go underreported or undiagnosed. Ratings for acute toxicity are generally done by 
organizations such as the United States Environmental Protection Agency (USEPA 
2003) or the World Health Organization (WHO 2010). Hoppin and LePrevost 
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(2017) also note that many agricultural workers fail to report symptoms due to cul-
tural factors and lack of awareness regarding health risks.

Symptoms for acute poisoning in humans range from a mild irritation in the skin, 
eyes or throat to possible death. This depends on several factors such as the specific 
herbicide, the amount of exposure and the age and size of the individual. Most 
symptoms are nonspecific and include headaches, dizziness, abdominal pain, nau-
sea, diarrhea, and vomiting, which in turn makes it difficult to diagnose as poisoning 
and prescribe an adequate treatment.

The most difficult adverse effects to diagnose and detect result from long-term 
low-level exposure, which cause chronic conditions such as cancer, neurological 
consequences, respiratory outcomes, diabetes, birth defects, and cardiovascular dis-
eases (Krieger 2001). However, it is often difficult to know which substances are the 
cause of these adverse effects, since not all of them are persistent or bioaccumulate 
making some chemicals untraceable. In the case of substances with low levels of 
persistence, such as organophosphates, chronic toxicity must be measured through 
alternative measures of exposure like surveys and questionnaires. This can lead to 
questionable data since it relies on the knowledge of the person being interviewed 
regarding information on active ingredient and doses of applied herbicide products. 
In addition, it is often costly and time-consuming to perform these measurements.

Most studies present an exposure–response relationship, such that longer expo-
sure would mean higher and more significant risk levels (Hoppin and LePrevost 

Fig. 8.2 Human health effects of herbicides in response to time of exposure and the dose. Acute 
poisoning occurs at high doses and short-term exposure, while physiological changes of uncertain 
significance are a result of long-term exposure at low doses. Presence of an individual in one poly-
gon does not exclude presence in the others. Adapted from Prüss-Ustün et al. (2011)
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2017). Weichenthal et al. (2010) found relationships between specific pesticides and 
lung, pancreatic, colon, rectum, bladder, and brain cancers in a US Agricultural 
Health Study cohort. Nevertheless, evidence to support carcinogenic effects is often 
inconclusive, especially regarding childhood cancer (Hoppin and LePrevost 2017). 
In the case of adult cancers, evidence seems more conclusive, with data from occu-
pational and population-based studies. In general, individuals with long-term expo-
sures (over 10  years) presented increased risks of lymphohematopoietic cancers 
(Merhi et al. 2007). In addition, other effects of chronic effects on humans have 
been associated with damage of genetic material (Porcel de Peralta et  al. 2011; 
López et al. 2012; Aiassa et al. 2019), neurological conditions (Kamel and Hoppin 
2004), and respiratory ailments (Proskocil et al. 2008; Cho et al. 2008; Fukuyama 
et al. 2009).

8.4.2.2  Occupational Hazard: The Case of Argentina

In Argentina, agricultural expansion and intensification associated to strong com-
modities markets and technological advances related to genetic modifications have 
engendered the increment of crop production from 8.8 million (in 1961) to more 
than 32 million harvested hectares in 2018 (Rolla et al. 2018). This almost fourfold 
increase in agricultural land use can be chiefly explained by the expansion of soy-
bean production, which had the largest overall increase in harvested area especially 
since the late 1980s with the introduction of no-tillage farming (Grau et al. 2005). 
Soybean went from representing less than 1% of total harvested area in 1961 to 
approximately 60% in 2017 (54 million ton). The combined effect of intensification, 
expansion, and the wide transition towards no-tillage farming systems (which relies 
more heavily on chemical inputs to control adversities than conventional farming) 
entailed an increased risk of exposure to pesticides.

The expansion of soy production principally occurred in the Pampa region and 
its surrounding areas—Santa Fe, Entre Rios, and Cordoba provinces. Now, more 
than 50  years into the process of agricultural expansion and intensification, the 
effects of long-term exposure to pesticides are becoming evident. Therefore, chronic 
toxicity has recently become a relevant factor in ERA in addition to the risk of acute 
toxicity posed by chemical products and their derivatives to both rural and urban 
populations (López et al. 2012).

In Córdoba, where approximately 10% of the population live in towns with less 
than 2000 inhabitants and small settlements dispersed within the agricultural pro-
ductive matrix, several studies have begun to trace the carcinogenic and genotoxic 
effects in adult and children populations.

Recent findings show a positive correlation between years of exposure and geno-
toxicity indicators (i.e., frequency of micronucleus, frequency of chromosome aber-
rations, DNA fragmentation, and plasma cholinesterase levels) (Martínez-Valenzuela 
and Gómez-Arroyo 2007; Do Carmo and Alvarez 2009; López et al. 2012; Aiassa 
et al. 2019). It is worth noting that most studies on long-term exposure cannot iso-
late the effect of a single product or class of pesticide, rather they evaluate the effect 
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of a technological package, which generally includes a combination of agrochemi-
cals (herbicides, insecticides, fungicides, fertilizers).

Figure 8.3 shows Aiassa et al. (2019) results on genotoxic effects of long-term 
occupational pesticide exposure on a rural population of male workers in Cordoba, 
Argentina. Trial sample population were exposed individuals who were selected 
considering labor activity, number of applications sprayed in the area per year (≥3), 
age (18–65 years), and exposure time ≥3 years. The control (reference) group con-
sisted of inhabitants whose residences were ≥1000 m away from areas sprayed with 
agrochemicals (without any contact with pesticides), age 18–65 years, and a similar 
lifestyle habit to that of the exposed sample. Biomarkers of exposure analyzed by 
Aiassa et al. (2019) were chromosomal aberrations, micronuclei, and DNA frag-
mentation through the comet assay and as a biomarker of effect on plasma cholin-
esterase enzyme. Correlation analysis did not isolate a single risk factor (i.e., 
herbicide product) but rather a technological package generally consisting of sev-
eral of pesticides (i.e., glyphosate, cypermethrin (CY), 2,4-d, endosulfan, atrazine, 
and chlorpyrifos).

In particular, higher levels of chromosome aberration and micronuclei are indic-
ative of genetic damage and instability that is correlated to several neoplastic dis-
eases and increased risk of cancer (Gollapudi and Krishna 2000; López et al. 2012). 
Several other studies from Cordoba (Mañas et  al. 2009; Peralta et  al. 2011) and 
Santa Fe (Simoniello et al. 2010) provinces, Paraguay (Benítez-Leite et al. 2010) 
and Mato Grosso in Brazil (Do Carmo and Alvarez 2009) reached similar results in 
populations of long-term occupational exposure. It is worth noting that none of 
these studies were able to isolate a specific product as a cause of increased cancer 

Fig. 8.3 Genotoxic effects of occupational pesticide exposure in Córdoba, Argentina. Study con-
ducted on 30 pesticide applicators from the province of Cordoba, Argentina. Difference in effects 
between applicators and referents (control) were significant for all indicators (p < 0.05). Extracted 
from Aiassa et al. (2019)
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risk, rather several pesticides that are sequentially applied on a regular basis are 
probably involved.

Non-occupational exposure can also generate negative health effects, although 
responsible chemicals are even more difficult to trace (Whitmore et  al. 1994; 
Damalas and Eleftherohorinos 2011). The principal risk arises due to ingestion of 
food or contaminated water. Lepori et al. (2013) reviewed Argentinian studies on 
pesticide contamination in food products and waterways. Their results suggest and 
increasing level of pesticides on household food products and waterways in the 
main productive areas of Argentina. Although more information is needed to accu-
rately assess the indirect health risk effects that these patterns could pose on the 
general population (especially organochlorine pesticides, which tend to bioaccumu-
late) there seems to be enough evidence to warn both agricultural workers and the 
general public regarding the possible risks associated with long-term direct and 
indirect pesticide exposure.

8.5  Why Farmers Continue to Use Herbicides?

Environmental and human health deleterious effects of pesticides (including herbi-
cides) are evident. Operational advantages of chemical control over alternative 
weed management methods have generated an almost exclusive dependence on this 
technology on a global scale (Walsh et al. 2013). Although stern regulations exist at 
both national and international levels, the dominance of both transgenic and tolerant 
crops has brought about the overuse of chemicals (Green 2014) with the consequent 
risk increase on both society and the environment (Pimentel et al. 1992; Pimentel 
and Greiner 1997). Despite their relevance and recurrent warnings about the exter-
nalities of herbicide use, these aspects are seldom taken into account for weed man-
agement decision-making (Wilson and Tisdell 2001). In addition to effectively 
implement sustainable agricultural technologies it is necessary to adequately mea-
sure risk indicators related to toxicology, pollution, or other forms of contamination, 
as well as the responsible application of tools and technologies by decision-makers 
(i.e., understand the use and potential damage that agricultural technologies can 
cause). Farmers are ultimately the ones responsible for the decision of which weed 
management strategies they adopt, so understanding the decision-making process 
can be helpful to promote a more sustainable agricultural.

8.5.1  Externalities and Agroecosystem Sustainability

Environmental hazard depends on both potential risk of chemicals and other tech-
nologies, as well as the capacity that biophysical systems have of processing the 
external inputs (Mejer and Jørgensen 1979).
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The costs associated with herbicide externalities expand beyond the agricultural 
sector, and they not only affect present producers but also jeopardize the future 
productive capacity of ecosystems (Carlson 1989; Strange and Scott 2005; Damalas 
2009; Beketov et al. 2013; Malaj et al. 2014; Stehle and Schulz 2015). The inherent 
complexity of environmental and social problems hinders their evaluation and 
quantification, which in turn makes them rarely appear within producers’ cost 
matrix generating market failures or externalities (Devine and Furlong 2007; Leach 
and Mumford 2008; Waterfield and Zilberman 2012).

Negative externalities produced can be grouped into three categories: (1) damage 
to human health, (2) impacts on system productivity, and (3) generation of herbicide- 
resistant weeds (Bullock et al. 2018). The costs incurred by the effects of herbicide 
exposition to human health (both short- and long-term) are often ignored by produc-
ers and actors associated with agricultural activities. This is because of incorrect 
diagnoses of observed ailments, scarce medical resources (especially in developing 
countries), and general lack of certainty regarding the temporal relationship between 
herbicide application and human health effects. Regarding functional systemic 
alterations, changes in biodiversity can cause a steep drop in yields due to loss of 
soil fertility, ecosystem services, and modifications in functional relations between 
pest and beneficial species. Lastly, the appearance of herbicide-resistant popula-
tions can be understood from common pool resources management perspective. 
Given that a producers’ actions can have repercussions on both spatial (e.g., disper-
sion of weed seeds and reproductive materials) and temporal scales (e.g., future 
weed populations), pest management strategies should incorporate factors that 
affect pests’ population dynamics. A clear compromise exists between controlling 
present weed populations and preserving herbicide susceptibility of future popula-
tions (Ambec and Desquilbet 2012).

The cause of negative externalities can be understood through the prisoner’s 
dilemma, a classical game theory situation (Fig.  8.4). The short-term economic 
gains that chemical control can offer over other management strategies has made it 
a dominant and unsustainable agricultural practice. As it is depicted in Fig. 8.4a, 
chemical control offers a small advantage over Integrated Weed Management 
(IWM). According to Kogan (1998), IWM is centered upon the premise of optimal 
crop growth with the least possible alteration of agroecosystem functions. This may 
entail forgoing maximum profits through total resource exploitation, which explains 
why chemical control offers higher socio-environmental returns before the thresh-
old is crossed.

However, continued herbicide use as a principal strategy would make the relative 
economic benefits eventually decrease as resources are depleted and environmental 
compartments become polluted (i.e., less yields and stability). Once the initial 
threshold is crossed, IWM becomes the better alternative, providing more stable and 
higher socio-environmental welfare. In addition, the rise in crop supply would mean 
a consequent decrease in their market price. Thus, the use of herbicides could turn 
into an inescapable need for those producers that did not use them previously, to 
reach a satisfactory economic performance. This attractor point can be observed in 
quadrants II and III of Fig. 8.4b. When a farmer decides to use IWM practices he/
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she may be affected negatively by the externalities produced by those who imple-
ment chemical control. In addition, in this context the farmer that chose IWM also 
has an economic disadvantage, increasing his opportunity cost even more. This sce-
nario forces the farmers that chose IWM to move towards the more profitable chem-
ical control methods that in the long term will lead towards quadrant I. When both 
farmers chose the chemical control methods the system may become highly unsus-
tainable making socio-environmental welfare drop in the mid- to long-term 
(Fig. 8.4a). Therefore, strong incentive systems for collaborative networks, science- 
based modeling such as DSS to incorporate environmental data and functions into 
decision-making, and sociopolitical institutions are necessary to aid farmers in 
modifying weed management decisions towards integrated practices that allow for 
optimal equilibrium between economic return and socio-environmental welfare 
(Ostrom 2009).

The perception that the short-term costs of externalities are lower than ordinary 
costs of production, in addition to lack of individual incentives that push producers 
to use alternative management methods, places the benefits that society reaps from 
controlling weeds into a suboptimal equilibrium (Fig. 8.4b). That is, society would 
be better off if individual actors incorporated collective benefits into their decision 
paradigm, rather than simply short-term gains. This situation generates a strong 
need for policies and legislation that promote a more responsible use of herbicides 
that minimize the negative effects on the environment and human health. Possible 
alternatives are integrated, systemic and science-based pest management strategies 
that would greatly reduce chemical control and the negative side effects.

Fig. 8.4 Prisoner’s dilemma for weed management strategies. (a) Socio-environmental welfare 
(i.e., economic benefits and ecosystem services) because of either IWM or chemical control, (b) 
prisoner’s dilemma outcomes for multiple farmers under different combinations of technological 
decisions
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8.5.2  Why Farmers Continue to Use Herbicides? 
20 Years Later

In their article, Wilson and Tisdell (2001) analyze the causes of the predominance 
in the use of herbicides over other pest management strategies. Their results suggest 
that a series of conditioning factors exist that force producers to continue using the 
same agricultural practice despite their negative long-term effects. Particularly, 
rather than lack of research or technology, it has to do with farmers’ attitude and 
action relative to other alternatives (Moss 2019). Almost 20 years later, the agricul-
tural sector in most countries finds itself under the same circumstances in relation to 
problems that arise from weed control (e.g., yield loss, dependence on synthetic 
herbicides, resistance to herbicides) (Chauvel et  al. 2001; Oerke 2006; Chauvel 
et al. 2012) and new growing environmental and social pressures (Lechenet et al. 
2014; Petit et al. 2015).

According to Tisdell (2005) there is a strong relationship between the adoption 
of an agricultural practice or technology and its short-term economic outcome, 
although its future costs may increase by way of market mechanisms or social and 
environmental externalities. This situation makes productive systems oscillate 
around inefficient attractor points generating economic barriers which hinder the 
adoption of more sustainable alternatives. For the weed management case once a 
control strategy is adopted it often becomes a dominant strategy (Cowan and Gunby 
1996). This “lock-in” phenomenon was initially observed by Arthur (1989). If a 
technology or practice has a competitive advantage over others it will end up domi-
nating the market, even though it is not the most efficient. When resistant crop 
hybrids started to be commercialized, most of these products offered higher yields 
than IWM strategies; however, most farmers and decision-makers did not account 
for the long-term externalities that were associated with the technology.

8.5.3  Factors That Generate the “Lock-In” Effect

Economic costs for changing towards a different technology are among the factors 
that strengthen the feedback loops that lock-in producers into certain control prac-
tices. Not only are new technologies’ learning curves generally steep, but many are 
also usually incompatible with IWM methods. In addition, the size of productive 
fields used under chemical control schemes make a steady transition towards IPM 
more difficult. Regarding crop rotations, the pressure to produce certain “cash 
crops,” such as agricultural commodities for food and biofuels, has generated a 
simplification of rotation strategies leading to more favorable environments for both 
resistant and tolerant weed species. Finally, there exists a research bias towards 
chemical control—i.e., integrated weed management has not been a central part of 
the research agenda.
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8.5.4  Adoption Process for New Agricultural Practices

A thorough review of factors that affect adoption rates for new technology allowed 
the identification of those that have a positive impact on farmers’ decisions. These 
factors can be classified into three main groups:

8.5.4.1  Social Factors

A study by Prokopy et al. (2008) suggests that there are multiple social factors that 
affect a farmers decisions on the adoption of a new technology. The authors find that 
age, level of education, perceived earnings, disposable income and capital, interac-
tion with other farmers, farm size, and the diversity of agricultural activities are key 
determinants.

8.5.4.2  Perception of Profitability

The notion that economic variables play a central role in the likelihood of technol-
ogy adoption was first established during the 1950s (Griliches 1957, 1960; Mansfield 
1961).Those farmers that perceive that a productive practice may be more profitable 
are more likely than others to adopt it. Therefore, long-term studies on the profit-
ability of IPM could be a critical factor in increasing its rate of adoption. Tisdell 
(2005) points out that a strong limiting factor in the decision-making process regard-
ing weed control strategies is the lack for information about economic outcomes of 
each practice (also known as bounded rationality). By having limited knowledge 
about the effects and cost-benefit relationship of alternative control methods, farm-
ers are usually incapable of taking optimal decisions from an economic standpoint 
and they are easily influenced by marketing campaigns and commercial information.

8.5.4.3  Attitude Towards Risk

Risk aversion has been frequently associated with a reduction in the adoption rate 
of new technological practices (Lindner et al. 1982; Lindner 1987; Tsur et al. 1990; 
Leathers and Smale 1991; Feder and Umali 1993). Studies by Finnoff et al. (2005, 
2007) show that higher risk aversion can lead to higher rates of reactive behavior 
(weed control or eradication) compared to proactive alternatives (i.e., preventive 
measures) . Given that chemical control strategies are more likely to generate nega-
tive externalities, prevention measures can provide higher social and environmental 
benefits, despite being associated with higher risk-taking decision-makers.
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8.6  Decision Support Systems: A Tool Towards Integrated 
Weed Management

Decision support systems (DSS) can play an important role in improving weed 
management strategies, as well as communication, collaboration, and engagement 
between the scientific community, farmers, and other agricultural decision-makers 
(Montull et al. 2014). These tools generally consist of a framework of computer 
models or software packages that connect on-site data at different scales (i.e., weed 
composition and community structure, climate and soil conditions, crop genetics 
and ecophysiology, and management strategies) with ERI, agronomic and ecologi-
cal models. (see DSS in Section I and examples in Section IV). Their main purpose 
is to simulate environmental stocks and flows within agricultural systems, such as 
nutrients, energy, or species composition, to understand the relationship between 
human action (i.e., management strategies) and ecosystem structure and function 
(Blackshaw et al. 2006). As a result, weed management DSS are instrumental in 
shedding light on optimal control and management strategies in order to reduce 
environmental risk while maintaining yield levels. By highlighting trade-offs and 
synergies between herbicide use, tillage or other weed control methods and environ-
mental outputs, farmers can use these results to expand their decision-making hori-
zon beyond a short-term chemical-based viewpoint (Colbach et al. 2017).

However, it is often the case that farmers are also reluctant to incorporate these 
tools into their decision-making due to low herbicide cost, variability in chemical 
weed control outcomes, and lack of interest or resources to collect necessary input 
data to run the models (Olson and Eidman 1992; Rossi et al. 2014). In consequence, 
crop protection products are generally applied implying worst-case scenario of 
adversities, irrespective of heterogeneity in field conditions regarding weed compo-
sition, crop development, soil, and climate (Montull et al. 2014). Breaking these 
barriers to increase DSS adoption amongst decision-makers will require close-knit 
collaboration between the scientific community, extensionists, and farmers to 
reduce possible learning curves, facilitate data collection, and incorporate long-term 
ecosystem dynamics (Swanton and Weise 1991; Buhler 2002). It is the case that 
IWM will not necessarily increase average income by way of higher yields, but 
rather by lowering both social and environmental burdens that result from indis-
criminate use of chemical products (Berti et al. 2003).

8.7  Conclusions

Farmers continue to use herbicides despite clear warnings from the scientific com-
munity since the 1990s about the detrimental effects on the environment, human 
health, and questionable economic benefits. In this chapter the causes for a positive 
feedback loop of chemical weed control which hinders the adoption of alternative 
technologies and management strategies are analyzed. Lack of available 
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information for decision-makers regarding the complete costs of chemical weed 
control, in addition to scarce knowledge about agroecosystem function under differ-
ent weed management practices, makes indicators that reflect environmental and 
human health under alternative strategies necessary. ERA could provide informa-
tion to characterize potential negative effects of herbicide use, evaluate the costs and 
risks associated with alternative management strategies, and generate tools and 
channels to allow information regarding environmental and human health risks to 
reach herbicide users and the general public. However, such broad frameworks pres-
ent trade-offs between precision and utility of models used, especially when consid-
ering different spatial and temporal scales. These challenges expose the need for 
transdisciplinary research efforts to integrate toxicological and environmental 
chemistry with ecological theory and agent-based and optimization models that 
make possible the generation of predictive frameworks in relation to both ecological 
and socioeconomic effects of herbicide use.

Nevertheless, in order to close the gap between knowledge generation and its 
adequate application, close-knit feedback networks must be created between 
researchers, extensionists, land manager, and communities within the context of 
improved productive system development (Freebairn and King 2003). Altogether, 
IWM strategies require a balanced value system that incorporates the possibility of 
increasing material well-being without compromising essential biophysical struc-
tures and functions, and ecosystems services. In addition, it should incorporate the 
idea of justice as fairness such that all peoples, both present and future, have the 
same right to usufruct natural resources (Radosevich et  al. 2007). Difficulties to 
reach unifying consensus about the value systems require strong social and govern-
mental institutions as well as precise science-based information, such as DSS, to 
provide adequate incentives and knowledge on how to avoid tragedy of the com-
mons situations (Hardin 1968; Ostrom 2009). Ultimately, reducing environmental 
risk in agriculture depends on strong value systems, social and political consensus, 
and tools that allow the generation of precise information and decision support sys-
tems on both biophysical and socioeconomic variables.
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Chapter 9
Environmental Risk Indicators for Weed 
Management: A Case Study of Ecotoxicity 
Assessment Using Fuzzy Logic

Diego O. Ferraro, Alejandra C. Duarte Vera, Sebastián Pessah, 
and Felipe Ghersa

Abstract Herbicide use is a key element in the current intensification of agricul-
tural production systems that usually leads to increases in crop yield. However, 
development of theoretical frameworks and tools is necessary to allow for environ-
mental assessment of herbicides. In this chapter, we present a series of elements that 
should be considered for designing these types of tools. In addition, we describe the 
structure of RIPEST, a simple model based on fuzzy logic that evaluates the eco-
toxicological hazard of pesticides (herbicides, fungicides and insecticides). RIPEST 
was run using a time series of pesticide use and actual soybean yields from Argentina. 
Results from this cropping system assessment allows for discussion of the ecotoxi-
cological risk of herbicide use, in particular, and pesticides, in general.

Keywords Sustainability · Risk modelling · Pesticides · Indicators · Decision 
rules · Eco-efficiency

9.1  Introduction

Intensification in modern agriculture includes the use of genetically modified crops, 
the expansion of agricultural frontiers and the increased use of inputs (Ferraro and 
Benzi 2015; Qaim and Traxler 2005). These changes positively impacted cropping 
systems with a significant increase in yields (Foley et al. 2011). However, the poten-
tial environmental costs of this intensification process have become a cause for con-
cern (Bommarco et al. 2013). Thus, current agricultural intensification highlighted 
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the importance of assessing potential environmental impacts on agroecosystems. 
Particularly, rising pesticide use (herbicides, insecticides and fungicides) has been 
related to both human health and environmental degradation processes (Kim et al. 
2017; Arias-Estévez et al. 2008; Imfeld and Vuilleumier 2012). Herbicides account 
for approximately 50% of all pesticides applied for pest management purposes in 
the USA and approximately 40% globally (Prosser et al. 2016). The global increase 
of herbicide-resistant weeds jeopardizes these figures by inferring a potential rise in 
herbicide dosage required for future weed management. Thus, an understanding and 
a practical assessment of the impact of agrochemical inputs are essential goals for 
designing sustainable cropping systems (Pretty 2008). Based on these antecedents, 
the aims of this chapter are (1) to highlight some key aspects for developing risk 
assessment frameworks, (2) to show the potential of fuzzy logic for risk modelling, 
(3) to illustrate the use of fuzzy logic in the development of a hazard assessment 
model: RIPEST (Risk of PESTicides) and (4) to assess the long-term dynamics 
(1986–2018) of ecotoxicological hazard due to both pesticide use, in general, and 
herbicide use, in particular, in one of the main Argentinean cropping systems.

9.2  Key Aspects for Risk Modelling

In this section, it is presented a brief synthesis of three key aspects related to the 
requirements and potential constraints for designing an environmental risk assess-
ment process due to chemical inputs (e.g. herbicides). First, emphasis is placed on 
the need to define, unequivocally, the idea of risk and the laboratory-scale proce-
dures that are followed to obtain parameters that allow to define risk levels on 
organisms. Then, the limitations imposed by uncertainty are raised, both in terms of 
parameters obtained and also regarding the different organization levels involved 
that imply several interactions between organisms and that will define the environ-
mental risk value in relevant scales (e.g. populations, ecosystems). Finally, the 
decision- making component that should embraced the risk modelling approaches, 
highlighting aspects like the simplicity and clarity when defining the risk indicators, 
and also the ability to communicate conclusions about the environmental risk that 
may improve the design of agricultural practices involving the use of pesticides.

9.3  A Comprehensive Risk Modelling Approach

By definition, risk is a combination of the probability of occurrence of a dangerous 
event and the severity of the damage or problems that may be caused for that event 
(Kaplan and Garrick 1981). It follows from this definition that both probability and 
severity are two key aspects for developing a risk model that allows addressing 
issues related to exposure (i.e. probability) and hazard (i.e. severity). For example, 
herbicides are assessed through ecological risk assessments in order to show that its 
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use will cause no unacceptable effects (Thorbek et al. 2009) on non-target organ-
isms (i.e. beneficial arthropods, native flora, local biota). Hazard identification is the 
process of identifying the effects that are considered to be adverse, and is the first 
step in ecological risk assessments, especially when dealing with chemical com-
pounds (Renwick 2002). When considering contaminants, hazard is related with 
preliminary toxicity test, epidemiological data, of adverse effects records (Renwick 
2002; Hayes et al. 2004). Once, the hazard is identified, a subsequent process of 
hazard characterization should be carried out. During this hazard characterization 
process, in vivo dose–response curves are required for assessing the toxicological 
properties related to specific compounds. This quantitative step is the basis of stan-
dard calculations for hazard assessment such as the no-observed-adverse-effect-
level (NOAEL), the lowest-observed adverse-effect-level (LOAEL), the acceptable 
daily intake (ADI), the reference dose (RfD) or the most widely end point used for 
pesticide evaluation: the lethal dose 50 (LD50) if exposure occurs through the oral 
or dermal route, and the lethal concentration 50 (LC50) if the exposure occurs 
through inhalation (Lewis et al. 2016). A subsequent step in a comprehensive risk 
modelling approach must include an exposure assessment to estimate the contact of 
a chemical, physical or biological agent with the outer boundary of an organism 
(WHO 2002). Finally, the overall risk model is usually based on ratios between 
predicted environmental concentrations (i.e. exposure) and predicted no-effect con-
centrations (i.e. no hazard level). Although this process of risk assessment has gen-
erated much of the information and knowledge for developing chemical regulations, 
its application is not exempt from difficulties and limitations (Kramer et al. 2011), 
which must be considered when defining a final approach for risk assessment for 
defining, for example, sustainable weed management practices in agricultural 
systems.

9.4  Dealing with Uncertainty

The very definition of risk imposes the notion of uncertainty (Kaplan and Garrick 
1981). There are several uncertainty sources but a simple way to group them is into 
(1) model structure uncertainty, which is the uncertainty about the form of the model 
itself (including the behavior of the system, parameter estimation uncertainty and 
the interrelationships among the system elements) and (2) model technical uncer-
tainty, which is uncertainty arising from the computer implementation of the model. 
The former uncertainty group is crucial for understanding the modelling output 
because it includes the imperfection of our knowledge and the inherent variability 
of the phenomena being described. When dealing with environmental risk, much of 
the uncertainty comes from the difficulty for understanding and parameterizing the 
changes from small and controllable scales based on few interactions (i.e. an herbi-
cide dose–survival response curve) to larger and more complex scales (i.e. benefi-
cial population size change). Thus, an important aspect of ecological risk assessment 
is linked to the scales of space and time (Bradbury et al. 2004).
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Much of the possibility of understanding the functioning of a system (and thus 
diagnose the risk associated with a change) has to do with being able to understand 
how the processes studied at different scales are coupled (Levin 1992). Large spatial 
and temporal phenomena (such as climate patterns) may generate restrictions that 
operate on a smaller scale (top-down effects). An example of this may be the model-
ling the effects of humid climate cycles on crop yields, starting from inferring a 
cause–effect ratio of the major scale to the minor (Jones 2010). Following this 
example, it is also possible to consider the effects of scales lower-to-high (bottom-
 up effects), such as farmers’ decision-making or crop genetic improvement, to cope 
with larger-scale constraints. As far as pesticides are concerned, this integration 
between the top-down and bottom-up effects is highly relevant, since (as explained 
in the previous section) ecotoxicology has traditionally based its risk measurement 
approach through extrapolation from organisms to ecosystems and from small-scale 
to large-scale systems. This approach is reductionist because it is unable to capture 
the complex and variable nature of the interaction between biota that occurs in real- 
world systems at large spatial scales (Beketov and Liess 2012). However, while the 
quantification of the individual effects is more accessible, the effects on a popula-
tion or a community imply indirect effects such as the interaction between popula-
tions, the possible effects of mitigation in a trophic network or other emergent 
properties that derive from the interaction between different life forms (Odum 1994).

9.5  Focus on Decision-Making Process

The last aspect to consider in relation to risk assessment is its connection to the 
decision-making process in the use of natural resources. It is known that environ-
mental risk assessments are framed in specific regulations, but they still need to be 
adapted to the decision-making needs, the quality of the available data and the 
legally recognized protection objectives (Forbes et al. 2009). However, environmen-
tal decisions are generally complex and, in addition to presenting the multiplicity of 
aspects presented above, they imply a combination of agents with different decision 
logic (Le et al. 2008). This subjectivity implies that the tools (models) designed to 
assess environmental risk should be clear enough for the user to evaluate the costs 
and benefits of a decision. This clarity is based on (1) the explanation of each of the 
principles used to assess environmental risk, (2) the trade-off assessment among 
risk components (e.g. herbicide risk on different organisms) or even between legal 
or economic aspects and (3) a visualization of results according to the logic of the 
users which make the decisions. For environmental risk assessment to be effective, 
it is therefore necessary to integrate, in the model structure, some results that may 
be useful in the user decision-making process. Although, for the purposes of discus-
sions on conservation or ecological processes, pesticide risk models have an impor-
tant consideration, their real adoption by other agents (farmers, technicians, 
extensionists) is still limited (Nienstedt et al. 2012). Two key issues emerge that 
would hinder the adoption of risk models by these agents: (1) the need for 
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modelling outcome as guide towards the adoption of Good Agricultural Practices 
(GAP) (Hobbs 2003), as well as (2) the scarcity of case studies that can be used to 
explore the added value of ecological models for risk assessment (Forbes et  al. 
2009; Schmolke et al. 2010).

A key aspect in relation to the design of environmental risk assessment tools has 
to do with the way in which the results are transferred. The information provided 
must have some link to the objectives pursued by the end user. In other words, in an 
agricultural system, where the objective is to maximize the economic benefit by 
increasing crop yields; decision makers must be able to evaluate the actions that 
lead to the risk that has been identified, with a similar logic to the one used to make 
productive decisions. For example, if a set of herbicides at a specific dose generates 
a particular environmental impact, the risk model must provide the information of 
those doses and of these products so that the user (technician, agronomist, producer) 
can evaluate how their input-cost matrix will change, using other weed management 
that may eventually improve the environmental performance of the cropping sys-
tem. This approach may clearly highlight the potential trade-offs between economic 
results (agricultural income) and environmental and health outcomes (environmen-
tal pollution or health risks for both non-target organism and rural populations), and 
environmental risk models would increase adoption chances to the extent that they 
show compromised solutions for a given set of resources and technology (Lahr and 
Kooistra 2010).

9.6  A Simple and Clear Risk Assessment Framework: 
The Fuzzy Logic Approach

The need to include the aforementioned aspects in the environmental assessment 
process (management of uncertainty, clarity in the assumptions adopted and effi-
ciency in communicating the results) implies having a framework of modelling 
appropriate to these objectives. Moreover, this analytical framework should be 
quantitative and be able to integrate different types of information, which are not 
always expressed in the form of functional relationships based on empirical evi-
dence but may also represent a desirable state in terms of acceptance (or not) of a 
hazard level.

Fuzzy logic has been used meaningfully in knowledge-based systems for both 
the knowledge representation and inference mechanisms (Zimmermann 1996; Tan 
2005). It is a very flexible framework that allows integration of different types of 
information to formalize conclusions, and has already been applied to ecosystem 
assessment in agriculture (Metternicht and Gonzalez 2005; Ferraro 2009); forestry 
(Iliadis 2005) and social aspects of environmental management (Zhang et al. 2013). 
Fuzzy logic is capable of handling the goal’s ambiguity and is well-suited for elicit-
ing expert knowledge when data is lacking or there is no full agreement in the desir-
able level of the system key attributes (Fleming et al. 2007).
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The structure of a fuzzy model comprises three main elements: (1) the input 
variables that are related to measurable conditions, (2) the membership functions 
that functionally relate input variables and system processes or attributes (i.e. fuzzy 
propositions) and (3) the logical nodes that combine and weight the different pro-
cesses for assessing the system performance. A membership function (Fig.  9.1) 
defines the fuzzy nature of the indicators describing the degree to which an event 
occurs, but not whether it effectively occurs. Membership functions may take any 
value from the interval [1, 0] representing the full (i.e. “true”) or null (i.e. “false”) 
degree to which each proposition occurs, respectively. The contribution of an input 
variable to the final truth value of the proposition (Fig. 9.1) is expressed in terms of 
“linguistic variables”. Linguistic variables take linguistic values, such as “true” or 
“false” and “sustainable” or “unsustainable”. A linguistic value therefore is a fuzzy 
subset of a fuzzy proposition; and a membership function defines each linguistic 
value by determining to what degree (i.e. truth value) an input variable is “true” or 
“false” (Cornelissen et  al. 2001). Therefore, membership functions reflect the 
knowledge available in the literature and the authors’ perception about effect of 
system input variables on key system processes. Linear membership functions, with 
two thresholds assigning each parameter value to a “True” and/or “False” class, are 
more often chosen due to their simplicity for showing continuous changes of the 
variable under study, from a minimum to a maximum level.

The outputs from fuzzy propositions (i.e. the truth value) are combined by using 
either logical operators (i.e. logical node) or a set of rules (i.e. rule node) for assess-
ing both the intermediate and the final system performance. A logical node com-
prise the use of a logical connective in order to evaluate a proposition in terms of the 
strength of evidence provided by analysis of its subordinate propositions (i.e. its 
antecedents) (Reynolds 1999). A fuzzy network may use different logical connec-
tives: (1) the (U) union, (2) the OR and (3) the AND operator. The U connective is 
used to specify that low strength of evidence for one topic can be compensated by 
strong evidence from another. Arithmetically, the U connective computes the aver-
age of its arguments (Marchini 2011). Eventually, when some specific criteria of 

Fig. 9.1 Generic linear membership function for assessing the truth value of a fuzzy proposition. 
The function represents the gradual change from the totally false (Tv = 0) to totally true (Tv = 1) 
over the variable domain. If and It are the values where the fuzzy proposition becomes 100% false 
or 100% true, respectively
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relative importance need to be represented, the U connective computes the weighted 
average of its antecedents. The relative importance value can range from 1 (equal 
importance) to 0 (null importance of the antecedent in the logical node). The OR 
connective uses the logical max-operator, and implies that the maximum value of 
the subordinate proposition determines the final value of the proposition evaluated. 
Oppositely, the AND connective uses the min-operator which implies that final 
value of the subordinate proposition depends on the minimal value of the anteced-
ents, and represents a precautionary view when assessing ecosystem integrity.

Conversely, the rule nodes are represented by fuzzy rules of the form IF (ante-
cedent)–THEN (consequent). One fuzzy rule consists of K arguments in the form of 
fuzzy sets Ai,j with membership functions μAj and one response variable r with a 
numerical conclusion wi:

 
Ri IF x isAi AND x isAi THEN r iswi) , ,1 1 2 2( ) ( )  

(9.1)

where Ri is the i rule, Ai,j are the fuzzy subsets corresponding to a partitioned 
domain of the input variable xj (j = 1, …, K), r is an output variable and wi is the 
numerical conclusion of the i rule. For example, in the case that the IF–THEN rule 
includes the logical connective AND among the antecedents, the intersection of 
both fuzzy sets is represented through the min-operator:

 
mRi x x xK ,;,;,K1 2 1 2; ; min ,;,;, ,;,;, ,;,;, ,;,;,( ) = ( )µ µ µAi Ai Ai

 
(9.2)

where mRi (x1;x2;xK) is the final membership value of the i rule and μAi,1 to K are 
the observed membership value of 1 to K fuzzy subsets. This final value depends on 
the minimal value of the antecedents and represents a precautionary view when 
assessing ecosystem integrity.

In fuzzy logic, the conclusion of each one of the rules has usually expresses 
using linguistic values (i.e. very high risk or moderate risk). Nevertheless, the logi-
cal inference allows for the replacing of these conclusions by numerical values in 
the interval [0, 1] (Zadeh 1965). Consequently, in all fuzzy rules used, the numerical 
conclusion is graded between 1 (100% true) and 0 (100% false). Then, fuzzy rules 
are combined in each module through a rule node. A rule system consists of i = 1 to 
M rules and can be represented in the form of a matrix with positive integer values 
Ai,j and wi:

 

R =
…
… … …
…

















A A w

A A w

K

M M K K

1 1 1 1

1

, ,

, ,

..

 

(9.3)

Finally, rules are aggregated (i.e. defuzzification process) with the purpose of trans-
forming the set of numeric conclusions from each module into a single value using 
different defuzzification methods. There are several defuzzification methods, such 
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as the weighted-average, maximum membership, average maximum membership 
and centre of gravity (Takagi and Sugeno 1985).

9.7  RIPEST: An Example of Pesticide Assessment Model

RIPEST is a simple fuzzy-based model to estimate the ecotoxicological hazard of 
pesticides in agricultural systems. Its approach is based on the link between the 
toxicity of the different plant protection products (herbicides, insecticides or fungi-
cides) with its dose used to estimate an environmental potential harmful value. 
Users can access the RIPEST site to register and create their own information repos-
itory. RIPEST can be used free of charge from the website of the Faculty of 
Agronomy, University of Buenos Aires (http://malezas.agro.uba.ar/ripest/). The use 
of RIPEST allows to assess the ecotoxicological hazard for (1) insects, (2) mam-
mals and (3) the joint hazard of both impacts. RIPEST is built from ecotoxicological 
information of 3054 formulations registered in the Argentinean National Service for 
Sanitary and Quality of Agriculture and Food (SENASA), for extensive grain crops 
(corn, wheat, sunflower, soybeans, cotton, rice, oats, barley, rye, rapeseed, flax, pea-
nuts and sorghum) (SENASA 2018). In the next sections, the elements of the 
RIPEST model are described, following the generic structure of a fuzzy logic model 
described previously: (1) the input variables, (2) the membership functions and (3) 
the decision rules.

9.8  Input Variables

The indicator of pesticide impact used three input variables that describe the toxic-
ity and the amount of active ingredients utilized in each field: (1) oral acute lethal 
dose 50 for rats, (2) contact acute LD50 for bees and (3) the dose applied for each 
pesticide application. Therefore, each active ingredient was characterized by means 
of two different toxicity values: (1) mammal toxicity and (2) insect toxicity. In order 
to assess the magnitude of the impact of each application, the values of mammal and 
insect toxicity were measured using the concept of Toxic Units (TU) (Newman 2010).

 
Tmam TUm D LD r[ ] = / 50

 
(9.4)

 
Tins TUi D LD b[ ] = / 50

 
(9.5)

where Tmam is the mammal toxicity of each pesticide application, Tins the 
insect toxicity of each pesticide application, D the dose applied (g formulated prod-
uct/ha), LD50r the oral acute lethal dose 50 for rats (mg formulated product/1000 g 
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rat weight), LD50b the contact acute lethal dose 50 for bees (μg formulated product/
bee) and TUi and TUm the toxic units for insects and mammals, respectively.

When the formulated product includes a single active ingredient the LD50 value 
is calculated by considering the concentration of the active ingredient in the final 
formulation. In the case of mixtures, RIPEST applies the principle of additivity for 
calculating the LD50 value (Altenburger et al. 2003). According to this principle, 
after the LD50 affect the concentration of each active component of the mixture, the 
concentrations of all toxic can be summed to obtain a value that can be used to pre-
dict toxicity. According to the additive model, the total concentration of a mixture 
which is expected an effect can be calculated using the following equation (Faust 
et al. 2000)

 

100

TE

C

TEmix
n

i

i

= ∑
 

(9.6)

where TE = Toxicity estimator (in the case of RIPEST, LD50 of rats and bees); 
Ci = Concentration of component i of the mixture, i = component of the mixture and 
n = number of ingredients.

After calculating LD50 of a single active ingredient in formulations and mix-
tures, RIPEST uses the sum of the toxic units (TU) of all the pesticides applied in 
each field order to calculate the overall toxicity value (Newman 2010; Rose 1998):

 
SumTmam TUm Tmam[ ] = ∑

i

n

 
(9.7)

 
SumTins TUi T ins[ ] = ∑

i

n

 
(9.8)

where Sum Tmam is the mammal toxicity of all the pesticides applied, Sum Tins 
the insect toxicity of all the pesticides applied and n the number of pesticide appli-
cations on each field, during a single cropping cycle.

9.9  Membership Functions

Once defined the input variables, it is necessary to move forward from measurement 
to assessment. In fuzzy logic, membership functions are primarily involved in this 
process by defining the fuzzy subsets and the interval shape. In RIPEST, the overall 
toxicity values (i.e. Sum Tmam and Sum Tins) were used to calculate two different 
indexes: (1) mammal index (M) and (2) insect index (I) (Fig. 9.2).

These indexes show the level of achievement of the adopted criteria for assessing 
the pesticide use impact. These criteria are characterized by the fuzzy subsets of 
“accepted” and “unaccepted” values of Sum Tmam and Sum Tins and the member-
ship function shape. In RIPEST, the criteria adopted are as follows:
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 (a) M = 0 and I = 0, correspond to a pesticide use scenario without any pesticide 
applied (i.e. the “acceptable” fuzzy subsets).

 (b) M = 1 (i.e. the “unacceptable” fuzzy subset for mammal toxicity) corresponds 
to a value of Sum Tmam = Tmammax.

 (c) I = 1, (i.e. the “unacceptable” fuzzy subset for insect toxicity) corresponds to a 
value of Sum Tins = Tinsmax.

The full memberships to the fuzzy subsets “unacceptable” (i.e. Tmammax and 
Tinsmax) are part of the assessment criteria of RIPEST, and they are calculated using 
both ecotoxicological data and the pesticide maximum dose (Dose max) (Tables 9.1 
and 9.2). Value of Dose max are from pesticides registered in the Argentinean 
National Service for Sanitary and Quality of Agriculture and Food (SENASA 2018). 
As RIPEST is focused on cropping system assessment, the Tmammax and Tinsmax 
values were set up from pesticides registered for the following extensive crops: 
wheat, barley, rye, oats, corn, sunflower, soybean and cotton. From these pesticide 
profile, RIPEST selected the pesticides that, applied at its maximum recommended 
dose, result more toxic (i.e. the maximum TU value) for both mammals (Table 9.1) 
and insects (Table 9.2).

Fig. 9.2 Membership 
function for calculating 
both the I and the M index. 
Sum Tmam and Sum Tins 
are the overall mammal 
and insect toxicity of all 
the pesticides applied, 
respectively. Tmammax and 
Tinsmax represent the 
numerical value (in toxic 
unit) for defining the full 
membership to the 
“unacceptable” fuzzy set 
of each index. Data sources 
for Tmammax and Tinsmax 
are provided in Tables 9.1 
and 9.2, respectively
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9.10  Decision Rules

Finally, in order to calculate the overall pesticide impact of pesticides, the (M) and 
(I) indexes are integrated by two fuzzy rules of the form IF (antecedent)–THEN 
(consequent) to assemble the pesticide index (P) which indicates the overall impact 
of pesticide on each analyzed field. All indexes range from 0 (totally unacceptable 
use of pesticides) to 1 (totally acceptable use of pesticides). In RIPEST the rule 
node is calculated following Eqs. (9.1), (9.2) and (9.3):

 
R IF Mis AND I is THENP isw1 1 1 1 01) .( ) ( ) =

 

 
R IF Mis AND I is THENP isw2 1 0 0 12) .( ) ( ) =

 

 
R IF Mis AND I is THENP isw3 0 1 0 13) .( ) ( ) =

 

 
R IF Mis AND I is THENP isw4 0 0 0 04) .( ) ( ) =

 

where R1 to 4 are fuzzy rules, M is the mammal index, I is the insect index, P is the 
Pesticide index, 1 is the full membership condition to the fuzzy subset “unaccept-
able” of each fuzzy variable, 0 is the full membership condition to the fuzzy subset 
“acceptable” of each fuzzy variable and w1 to w4 are the numerical conclusions of 
each rule. The logical connective AND among the antecedents defines the intersec-
tion of both fuzzy sets through the min-operator following Eq. (9.2):

 
mR1 1 1= ( )min ,;, ,;, ,;,µ µM I

 

Table 9.1 Pesticide data for calculating the unacceptable fuzzy set value of the M index (Tmammax)

Pesticide Crop
Dose max
(g/ha)

LD50r
(mg/kg)

Tmammax

(TUm)

Methidathion 0.4 Cotton 1500 62.5 24.0

Dose max: the highest pesticide dose registered in the Argentinean National Service for Sanitary 
and Quality of Agriculture and Food (SENASA 2018); LD50b: pesticide oral acute lethal dose for 
bees; TUm: Toxic units for mammals

Table 9.2 Pesticide data for calculating the unacceptable fuzzy set value of the I index (Tinsmax)

Active ingredients Crop
Dose max
(g/ha)

LD50b
(μg/bee)

Tinsmax

(TUi)

Zeta-cypermethrin 0.2 Corn 200 0.01 20,000.0

Dose max: the highest pesticide dose registered in the Argentinean National Service for Sanitary 
and Quality of Agriculture and Food (SENASA 2018); LD50r: pesticide oral acute lethal dose 50 
for rats; TUi: Toxic units for insects
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mR2 1 0= ( )min ,;, ,;, ,;,µ µM I

 

 
mR3 0 1= ( )min ,;, ,;, ,;,µ µM I

 

 
mR4 0 0= ( )min ,;, ,;, ,;,µ µM I

 

where mR1 to mR4 are the membership value each rule, μM,1 is the observed 
membership value to the fuzzy subset “unacceptable” of the M index, μM,0 is the 
observed membership value to the fuzzy subset “acceptable” of the M index. μI,1 is 
the observed membership value to the fuzzy subset “unacceptable” of the I index 
and μI,0 is the observed membership value to the fuzzy subset “acceptable” of the I 
index. Finally, the final membership values of all rules are integrated in a single 
crisp value by defuzzification process (Takagi and Sugeno 1985). RIPEST use the 
weighted average method, which can be used only for symmetrical output member-
ship functions. The crisp value according to this method is as follows:
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1  
(9.9)

where P is the final crisp value of the fuzzy rule node (i.e. the P index value), mRi 
is the membership value the rule i and wi is the numerical conclusions of the i rule.

9.11  Illustrative Examples

For illustrative purpose, RIPEST was used for building a time series (1986–2018) 
of ecotoxicological hazard in the main cropping area of Argentina (Rolling Pampa, 
Pergamino, Buenos Aires). The Rolling Pampa is the subregion of the Río de la 
Plata grasslands with a cropping history of more than 100  years (Soriano et  al. 
1991). Traditionally a mixed grazing-crop area, the spread of no-tillage in the early 
1990s as well as the wheat–soybean double cropping and the lower cost of inputs 
(fertilizers, pesticides) lead to a rapid expansion and intensification of agricultural 
production (Manuel-Navarrete et al. 2009), mainly by the increase in the soybean 
production area (MinAgri 2018). The change from the conventional tillage system 
to no-tillage system has also led to a strategy shift for weed control, from a scheme 
based on tillage to a pesticide-based management strategy. Pesticide time series was 
built using the annual profile of pesticides used in the soybean crop. Annual pesti-
cide profiles were extracted from the Argentine trade magazine Márgenes 
Agropecuarios (http://www.margenes.com). We also used the district average yield 
(MinAgri 2018) for this time period in order to link the dynamics of pesticide haz-
ard and crop yield during the period analyzed.

Temporal dynamics of both I and M indexes as well as the overall P index 
revealed different time trends during the analyzed period (Fig. 9.3).

D. O. Ferraro et al.

http://www.margenes.com


203

Fig. 9.3 Time series plots of P, M and I indexes for soybean crop in the main cropping area of 
Argentina (Pergamino) from 1986 to 2018 presented as annual values (points), and 3-year moving 
averages (lines). Broken and full lines indicate soybean under conventional and no-tillage systems, 
respectively
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All indexes exhibited a similar dynamic, characterized by high ecotoxicological 
hazard values at the beginning of the period (1986–1988) followed by a drop in all 
indexes associated with the prohibition of highly toxic products (Heptachlor, 
Parathion). The assessment of ecotoxicological hazard on insects (I index) showed 
a further improvement in the ecotoxicological profile in the mid-1990s, while the M 
index was stabilized until the beginning of 2000s (Fig. 9.3). By this time, the no- 
tillage system began to spread in the studied area, by coexisting a few years with 
conventional tillage (Fig. 9.3). Results from RIPEST showed that the ecotoxicologi-
cal hazard soared from this technological change, not only in the no-tillage system 
(which was stabilized at a higher risk value than conventional tillage) but also in the 
initial system of conventional tillage (Fig. 9.3). The technological changes in the 
study area were not only due to the tillage system change of farming system but also 
due to the appearance of RR soybean (resistant to glyphosate herbicide) in 1996. 
This technological change of higher input levels for weed control, together with an 
economic context of high grain prices, led to an increase in the pesticide use 
(CASAFE 2012). Data from RIPEST showed a consequent increased in P index 
values in the 2000s, reaching similar values to those of mid-1980s (Fig.  9.3). 
RIPEST indexes remained high during the 2000s, although with relatively lower 
values for M index than for I index. However, the current decade (2010–2018) 
shows a remarkable improvement in the indexes analogous to those observed at the 
beginning of 1990s and towards the end of the period. RIPEST results exhibited the 
lowest index values in the period analyzed, particularly in the I index (Fig. 9.3).

One remaining aspect in ecotoxicological assessment is the relative impact due 
to herbicides among all pesticides. Current agricultural systems are experiencing 
remarkable rise in herbicide use due to the continual difficulty in controlling weeds 
(Benbrook 2012; Green 2014). Moreover, the rise of herbicide resistance has forced 
producers to use active ingredients that have ceased to be used, either by the appear-
ance of more efficient products or because of an unacceptable environmental impact 
(Westwood et al. 2018). Data analysis from the illustrative example is able to show 
the relative contribution of herbicides in the RIPEST indexes (Fig. 9.4). In this fig-
ure, RIPEST indexes were calculated only with the herbicides (Ph, Ih and Mh) and 
related to the index values calculated with the whole pesticides (P, I and M; from 
Fig.  9.3). Results show an increase in the relative importance of herbicides for 
determining the ecotoxicological hazard values, something that is more evident in 
the impact on mammals than in the impact on insects (Fig. 9.4). In the latter case, it 
is possible to observe that, although there was a noticeable drop in the ecotoxico-
logical hazard indicator on mammals (Fig. 9.3), this impact is now almost entirely 
attributed to the lethality of herbicides. These results would then be defining that the 
system studied has increased the relative impact associated with the use of herbi-
cides, most likely derived from the weed management challenges described above.

As mentioned earlier, the importance of an environmental indicator resides not 
only in the system assessment but also in the possibility of achieving a rational 
choice towards more desirable states. The success of this improvement is partly 
affected by the way the results are reported and it is important to do so using ele-
ments used in the process of decision-making by farmers. One example is the 
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Fig. 9.4 Time series plots of the ratio between P, M and I indexes calculated using only the herbi-
cides and using all the pesticides (PH/P; MH/M and IH/I, respectively). Data, points and line pattern 
description are the same as that in Fig. 9.3
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assessment of the environmental impact per unit of economic activity, a very fre-
quent approach in the life cycle analysis (Bockstaller et al. 2008). For an ecotoxico-
logical assessment, this approach can be followed by using the ratio between final 
crop yield and the ecotoxicological hazard associated to the pesticide profile used. 
In RIPEST terms, this ratio (P index/yield) should be able to assess the dynamic of 
a proxy indicator for the environmental efficiency of the crop system analyzed, 
regarding pesticide use (Fig. 9.5).

RIPEST results first showed a decreasing phase of pesticide hazard per unit of 
crop yield, which ended by the time of no-tillage adoption. The following period 
(2000–2005) showed a sustained increase of the hazard per unit of yield obtained, 
stabilizing P index values of 0.2 per ton of soybean yield until the end of the 2000s 
(Fig. 9.5). This result supports the idea of Fig. 9.3 about a relative worsening in the 
soybean cropping system analyzed in terms of the ecotoxicity of the pesticides used 
during this sub-period. However, the stabilization values achieved towards the end 
of the 2000s represent half of the observed impacts by the beginnings of the time 
series analyzed (Fig. 9.3). Finally, by the end of the 2000s there was a decay period 

Fig. 9.5 Time series plots of yield (in blue, right axis) and P index/yield ratio (in black, left axis) 
for soybean crop in the main cropping area of Argentina (Pergamino) from 1986 to 2018 presented 
as annual values (points), and 3-year moving averages (lines). Black broken and full lines indicate 
soybean under conventional and no-tillage systems, respectively
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of hazard per unit of yield which implied not only a positive improvement of the 
ecotoxicological hazard in this last decade (Fig.  9.3) but also a non-appreciable 
trade-off between this improvement and the observed yields which consistently 
grow during this period, improving environmental efficiency in the use of pesticides 
(Fig. 9.5).

9.12  Conclusions

The intensification of crop production systems has been achieved, among other ele-
ments, by the intensive use of pesticides, with a considerable contribution from 
herbicides. The need for assessing the environmental consequences of these changes 
entails also the need for the development of clear indicators, with biological signifi-
cance, and that express changes that can be incorporated into the farmers’ decision- 
making process. In this chapter we presented the development of an environmental 
hazard indicator based on fuzzy logic (RIPEST). The simple and explicit character-
istic of its structure provides the elements for designing a robust tool for assessing 
the environmental consequences of the use of pesticides. Illustratively, the use of 
RIPEST in a time series of pesticide use and soybean yield in the main cropping 
area of Argentina showed the RIPEST aptitude for identifying trajectories for 
improvement and deterioration in terms of ecotoxicity of production systems, both 
in absolute terms of ecotoxicity and in its relation to the obtained yield. Beyond the 
conclusions that derive from this type of RIPEST applications, it is important to 
note that risk is a variable that includes not only the hazard but also the severity of 
the damage and mainly the level of exposure to chemical compounds. Therefore, all 
these sources of variation should be included in a full risk assessment of pesticide 
use in agricultural systems. Moreover, within the framework of the decision support 
systems (DSS), an analytical tool such as RIPEST can play an important role in 
improving weed management strategies through assessment of environmental dam-
age of potential integrated management decisions.
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Chapter 10
DRASTIC and PIRI GIS-Based Indexes: 
Assessing the Vulnerability and Risk 
of Groundwater Pollution

Jorgelina C. Montoya, Carolina Porfiri, Pablo M. Vazquez, Sharon Papiernik, 
Pamela Azcarate, and Zinda Roberto

Abstract Groundwater resources in semiarid lands of central Argentina are cur-
rently threatened by contamination from agricultural pesticides. This chapter 
addresses the vulnerability and risk assessment of the quaternary aquifer system as 
regards pesticide pollution. We used pesticide DRASTIC Index and PIRI GIS-based 
models to assess the groundwater vulnerability and leaching potential of commonly 
used herbicides. DRASTIC and PIRI are two indices that provide complementary 
information. Incorporating them into a decision support system would help policy 
makers to identify areas most vulnerable to groundwater pollution and develop her-
bicide usage guidelines that protect groundwater resources.

Keywords Groundwater pollution · Pesticides · Aquifer vulnerability · Leaching 
potential · Risk assessment · Environmental tools · Risk indexes · GIS

10.1  Introduction

Agriculture is one of the main non-point sources of groundwater pollution. The 
intensive use of pesticides in modern agriculture has had an impact on groundwater 
quality worldwide (Parris 2011). Therefore, the protection of groundwater quality 
has become a global concern. It is important to supply local authorities and farmers 
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with innovative and practical tools to support sustainable agricultural production. 
Groundwater pollution risk assessment is an important tool in protecting groundwa-
ter from pollution (Zhang et al. 2013). Integrating risk assessments into decision 
support systems (DSS) can aid in the development of environmental and agricul-
tural policies that help protect the environment and ensure the safety of our food and 
water supplies. In areas where pesticide contamination of groundwater is a concern, 
it is critical to define the soils that are vulnerable to pesticide leaching, and to under-
stand pesticide properties and use patterns that may affect their transport to 
groundwater.

In practice, sampling and monitoring can contribute to the assessment of the 
environmental impact of pesticides, but this is very costly and will only detect con-
tamination after it happens. The risk of groundwater pollution by pesticides can be 
estimated based on the vulnerability of groundwater and the leaching potential of 
pesticides. Knowledge of the regional groundwater hydrogeological conditions and 
the type of agricultural activities (type and application rate of pesticides, frequency 
of use, etc.) can be used to assess potential groundwater contamination. Currently, 
overlay and index methods are among the most widely used tools for groundwater 
pollution risk assessment. These methods are considered as simple and practical 
tools that can assist in decision-making and policy formulation to minimize or avoid 
the negative impacts of pesticides on the natural quality of groundwater (Finizio and 
Villa 2002; Kookana et al. 2007).

Two of the most widely used models to assess groundwater vulnerability and 
leaching potential are DRASTIC (Aller et al. 1987) and PIRI (Kookana et al. 2005), 
respectively. In general, the DRASTIC index estimates groundwater pollution risk 
based on hydrogeological setting and climatic factors of the region of interest, with-
out taking into account the pollutant characteristics. The pesticide impact rating 
index (PIRI) can be used to rank pesticides in terms of their mobility.

We used these two approaches to assess the potential risk of groundwater 
contamination: (1) by evaluating the groundwater vulnerability using DRASTIC, 
identifying if the hydrogeological system is under threat with respect to pesti-
cides in general, and (2) by using PIRI to rank the capacity of six herbicides to 
leach to groundwater. Both the DRASTIC and PIRI indices made use of data 
extracted from national and international public databases and several regional 
studies.

The assessments were focused on the potential groundwater risk to contami-
nation by herbicides from agricultural lands in the semiarid region of central 
Argentina. The semiarid lands of central Argentina have poor surface water 
resources; therefore, groundwater is the primary drinking water source for both 
urban and rural populations. These lands are an important productive region of 
Argentina characterized by intensive agriculture highly dependent on herbicides 
(Viglizzo et al. 2011), so the natural quality of groundwater is projected to be 
under substantial threat.
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10.2  General Features of the Study Area

The study area of 27,612 km2 is in the northeast of La Pampa province, displayed 
(Fig. 10.1) between 63°–64°15′ W and 35°–37°15′ S coordinates, within the semi-
arid lands of central Argentina. The climate of the study region is semiarid temper-
ate. Most rainfall occurs between the spring and fall seasons (October–March), and 
average precipitation decreases from 800 to 600 mm per year along a NE-to-SW axis.

The study region includes (1) the sandy plain (SP) situated in the east of the 
region, and (2) the calcrete plain (CP) in the west of the area. The parent materials 
of soils are mainly eolic sediments with a low clay and high silt content. Sandy soils 
are mostly found in the SP sub-region where rainfall is higher and soil depth is not 

Fig. 10.1 Location of the study area
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limited by a calcrete layer, whereas CP soils have finer loamy textures but are shal-
low due to the presence of calcrete. The thickness of the upper sand layer in the 
landscape ranges between 15 m in dunes and 2–3 m in depressions (Malán 1983). 
In the western sector there is a calcrete/rocky layer close to the surface, underlying 
the loess deposits. Calcrete formation is characterized by a low permeability, poorly 
drained layer; a perched water table can be present in the calcrete formation. 
Calcrete fissures and fractures allow for water percolation to the water table (Giai 
et al. 2002).

10.3  DRASTIC Approach

The DRASTIC index was developed by the US Environmental Protection Agency 
(Aller et al. 1987) and is one of the most widely used groundwater vulnerability 
assessment methods. The acronym DRASTIC corresponds to the initials of the 
seven hydrogeological parameters involved: depth to water (D), net recharge (R), 
aquifer (A) media, soil media (S), topography (T), Impact of vadose zone media (I), 
and hydraulic conductivity of the aquifer (C). The DRASTIC index is the sum of the 
products of ratings (R) and weights (W) of the seven parameters according to Eq. 
(10.1). The resulting DRASTIC pesticide index (DPI) represents a relative measure 
of groundwater vulnerability: the higher the DPI, the greater the potential ground-
water pollution.

 
DRASTICIndex R W R W R W R W R W R W R W= + + + + + +D D R R A A S S T T I I C C  (10.1)

The DRASTIC Index considers the net recharge on an annual basis. However, in 
semiarid regions, mean annual precipitation is lower than potential evapotranspira-
tion (Simmers 1997), so the water balance method, used on an annual basis, results 
in no groundwater recharge at all. Therefore, instead of annual net recharge, monthly 
recharge was calculated in this study in order to (1) identify the times of the year 
when water excess might occur and (2) provide information for those times when 
aquifers are more vulnerable to pesticide pollution.

The objectives of the study were (a) to estimate groundwater recharge on a 
monthly basis using long-term data, in order to identify the periods when the aquifer 
has high susceptibility to contamination, (b) to assess groundwater vulnerability to 
pollution using the Pesticides DRASTIC GIS-based model for each month with 
recharge. For more details and information refer to Montoya et al. (2018).

Our results indicate that the aquifers under study are susceptible to pollution in 
March, April and November (Fig. 10.2). According to the results of the groundwater 
vulnerability assessment, the study area can be divided in two zones: moderate vul-
nerability (DPI interval 100–159) and high vulnerability (DPI interval 160–266). In 
these months, low vulnerability zones accounted for <2% of the study area.
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The maps revealed that 93.7 and 91% of the area have high risk of pollution for 
March and April, respectively, and 79% of the area shows high vulnerability in 
November. For all other months, the lack of recharge placed the entire region in the 
low vulnerability classification.

Based on the hydrogeological conditions, the three vulnerability maps of the 
present study showed that eastern lands are highly vulnerable, while central and 
western lands have moderate vulnerability. The high vulnerability of eastern lands 
can be explained by a combination of shallow water tables, highly permeable soils, 
a predomination of sandy components in the vadose zone, and positive water bal-
ances in March, April, and November.

The DRASTIC Index may be used as a pollution prevention tool in land use plan-
ning at the regional scale through the prioritization of areas where groundwater 
protection is a critical issue. While the original version of DRASTIC described the 
spatial vulnerability of lands, we incorporated a temporal scale in our study in order 
to identify periods of higher vulnerability. The temporal analysis also aids in imple-
menting precise management strategies for dominant crops such as soybean, maize 
and sunflower. Based on recharge, November is a highly vulnerable month that cor-
responds to the sowing date of summer crops, so agrochemicals applied at sowing 
should be managed to prevent leaching. The index indicates that the aquifer is less 
vulnerable in spring than in March and April. At this moment the environmental and 
productivity factors indicate a yellow light related to the risk of groundwater con-
tamination by pesticides in this region.

The vulnerability zonification provided by DRASTIC allows the user to focus 
the assessment of potential herbicide leaching to the most vulnerable scenarios. In 
this way, we modeled the potential of the SP, being the area most prone to 

Fig. 10.2 Maps of the pesticides aquifer vulnerability (DPI) for (a) March, (b) April, and (c) 
November
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groundwater pollution, to be contaminated by six commonly used herbicides (sul-
fometuron, metsulfuron, nicosulfuron, imazethapyr, imazamox, and imazapyr).

10.4  PIRI Approach

The PIRI model is a quantitative index used to estimate the leaching potential of 
pesticides. PIRI is a user-friendly risk indicator of the off-site migration potential of 
pesticides to groundwater (Kookana et al. 2005). As a simple risk indicator, PIRI 
does not attempt to predict concentrations of pesticides in water. Instead, it is useful 
for comparing the risks of water contamination from different pesticides applied 
under the same conditions, or from the same pesticide when applied under different 
conditions (Kookana and Oliver 2018). It is based on soil characteristics and physi-
cochemical properties of the compounds of interest, which play a vital role in 
mobility and consequent contamination of groundwater. Indices like PIRI help to 
identify which pesticides have a relatively high risk to contaminate groundwater. 
Potential off-site pesticide movement is estimated using pesticide characteristics 
(amount used, sorption, and persistence in soil), soil physicochemical properties 
(organic carbon content, bulk density, and soil moisture), and other site conditions 
(recharge rate, soil layers/horizons, water table depth, etc.) (Kookana et al. 2005). 
Sorption coefficients are among the most sensitive input parameters in pesticide fate 
models, and accounting for the variation in sorption coefficients within soil land-
scapes could reduce uncertainties in pesticide environmental risk assessments when 
scaling up from the landscape to regional and national scales (Farenhorst et al. 2001).

The sulfonylurea (SU) herbicides are used to control broadleaf weeds and some 
grasses in a variety of crops. Sulfonylureas Tolerant Soybean (STS®) was launched 
to the Argentinian market in 2012 under the brand Ligate® (Sulfometuron methyl 
15%  +  Clorimuron ethyl 20%, DuPont). SU herbicides have been considered 
reduced risk pesticides, in part because of their low application rates (4–50 g ia ha−1) 
(Beyer et al. 1988; Hay 1990). However, there are several environmental concerns. 
Even at low application rates, these herbicides can persist in the soil throughout 
more than one growing season and may injure rotational crops (Bedmar et al. 2006). 
They also have a potential for off-site transport. Therefore, it is important to charac-
terize their mobility in soil to better assess their impact on the environment.

Imidazolinones (IMI) represent a relatively new class of herbicides that can be 
used either pre- or post-emergence for the control of a wide range of weeds in 
broadleaf and cereal crops, and in non-crop situations. In addition, IMIs are used 
with imidazolinone-tolerant (Clearfield®) crops (Tan et  al. 2005). In Argentina, 
much of the soybean crop is treated with imazethapyr. During the years 2005 to 
2009, imazethapyr ranked as the 17th to 30th most used pesticide according to the 
Argentinian pesticide market reports (CASAFE 2019). In 2003, BASF SA regis-
tered the herbicide imazapyr for sunflower under the brand CLEARSOL® (24%), 
which was later available as CLEARSOL® DF (80%). During 2003 and 2004, ima-
zapyr was the 24th most used herbicide in Argentina (CASAFE 2019). In 2010, the 
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Clearfield system launched to the market a new herbicide called CLEARSOL® Plus 
(BASF SA) which contains both imazamox (3.3% W/V) and imazapyr (1.5% W/V).

The goal of this study was to evaluate the groundwater contamination potential 
of three SU and three IMI herbicides in the SP sub-region. This work integrated the 
PIRI Index with a GIS into a spatial domain and included factors relating to the 
frequency with which each pesticide was used in the typical cropping sequence and 
the projected land area to which each herbicide was applied.

PIRI uses a modified version of the attenuation factor index (AF) and also incor-
porates the retardation factor (RF), both developed by Rao et al. (1985), for assess-
ment of pesticide leaching in groundwater. AF serves as an index for pesticide 
leaching from the vadose zone, and its value ranges between 0 and 1 (Eq. 10.2). An 
AF value of 1 indicates that all of the surface-applied pesticide is likely to leach to 
the groundwater, whereas a value of 0 suggests that none of the applied pesticide 
will reach groundwater.
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where D(m) is the depth to the groundwater or the depth (m) at which AF is to be 
calculated, θFC (m3 m−3) is the volumetric water content at field capacity of soil, RF 
is the dimensionless retardation factor, q is the groundwater recharge (m year−1), 
and t1/2 (year) is the pesticide degradation half-life (year).

RF is the retardation factor, which represents the retardation of pesticide leach-
ing through soil due to partitioning of the pesticide between the sorbed and liquid 
phases (Eq. 10.3)

 
RF oc oc b FC= + ( )1 K f ρ θ/

 
(10.3)

where ρb (kg m−3) is the bulk density of the soil (kg m−3), foc (kg kg−1) is the organic 
carbon content of the soil, and Koc (m3 kg−1) is the organic carbon normalized sorp-
tion coefficient of the pesticide (Table 10.1).

Table 10.1 Recommended annual rates for each crop expressed as formulated products (fp), half- 
life (t½), range of the normalized organic carbon sorption coefficient (Koc), and retardation factor 
(RF) obtained for the studied soils profiles (0 to 100 cm depth)

Herbicides Crops

Rate fp t½ Koc

RFkg ha−1 Days L kg−1

Metsulfuron Wheat 0.008 30 0–42.6 1.00–2.13
Sulfometuron STS® soybean 0.100 28 3.2–100.1 1.05–1.93
Nicosulfuron Maize 0.070 21 32.3–363.4 1.36–9.16
Imazamox Clearfield® sunflower 1.200 30 13.7–1166 1.42–9.82
Imazethapyr Soybean 0.114 90 16.6–2332 1.43–11.13
Imazapyr Clearfield® sunflower 0.100 142 22–2469 1.43–14.97
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The expected impact on the groundwater is the product of the loading factor (Li) 
(Eq. 10.4) and AF of each pesticide by year.

 L f d a pi i i i i=  (10.4)

where fi is the frequency of application, di is the application rate (kg m−2), aii is the 
proportion of active ingredient in the product (kg kg−1), and pi is the proportion of 
the study area that receives the pesticide (m2 m−2).

The total load of a pesticide that is likely to reach groundwater at a site is given 
by Eq. (10.5).

 L Li iGW GWAF= ∑  (10.5)

It was assumed that the concentration of a pesticide in the groundwater is a function 
of the mixing of the pesticide residue in certain thickness of the aquifer and aquifer 
porosity (n). Assuming the top 1 m is the mixing zone (MZ) in the aquifer (a con-
servative estimate), the predicted concentration (CGWi in kg m−3) of pesticide in the 
top 1 m of the saturated zone is (Eq. 10.6) as follows:

 
C L

ni i iGW GWAF MZ= 





1

 
(10.6)

This concentration (Eq. 10.7) can be related to the detection limit of the method of 
analysis in a monitoring program. It can also be compared to the acceptable concen-
tration of a pesticide in groundwater. Since the WHO Guidelines for Drinking- 
Water Quality values for SU and IMI have not been established, for the calculation 
of the groundwater risk index we considered that the acceptable concentration 
would not exceed the EU-maximum concentration limit (MCL) of 0.1 μg L−1.

 
GRIndex

MCL
GW=

C

 
(10.7)

10.4.1  Spatiotemporal Integration of the Results with a GIS

In order to assess the regional impact of non-point source herbicides pollution on 
groundwater, the PIRI Index was integrated with a GIS (Pollock et al. 2005). The 
annual CGWi was calculated by PIRI for individual soil profiles that represent shoul-
der, middle, and foot slope positions. These values were integrated with the digital 
soil map in a GIS. To estimate the cumulative concentration of a pesticide, it was 
necessary to know the proportion that each crop is sowed during the 10-year period 
(R) and the proportion area occupied by crops (PC) in this region. R was estimated 
by county using data provided by the Government of La Pampa province, Statistics 
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and Census Bureau: 2005–2015 (Table 10.2). PC was estimated by analyzing satel-
lite image time series (Modis TERRA MOD13Q1 with spatial resolution = 250 m) 
during the period 2005–2015 (Vázquez et al. 2013) (Fig. 10.3). Values were summed 
to estimate the cumulative concentration of pesticides in the aquifer after 10 years 
of agricultural activity (CC) (Eq. 10.8).
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In Argentina, the information regarding the use of herbicides and technological 
adoption is scant, and this makes it difficult to define scenarios for the use of pesti-
cides. In this study, it was assumed that 100% of wheat area was treated with met-
sulfuron; and 100% of soybean area was treated with imazethapyr (Table  10.3). 
Although STS® Soybean did not completely displace non-STS soybeans, given the 
lack of information it was assumed that 100% of soybeans were treated with sul-
fometuron. The proportion of sunflowers with Clearfield technology increased by 
6% of the area during 2005–2015, reaching 75% of sunflowers planted in the south-
ern region of the country. We assumed an average value of 50% of sunflowers with 

Table 10.2 Mean annual sowed area expressed by county in hectares with the different crops 
during the studied period 2005–2015

County Total Sunflower Maize Soybean
Others 
summer crops Wheat

Others 
winter crops

Agustoni 18,319 4072 4013 6975 2259 543 457
Alta Italia 12,855 3375 1917 2793 1892 2309 569
Anguil 25,824 8427 5611 1622 2670 4626 2868
Catrilo 28,500 10,562 5012 6642 3993 1476 815
Ceballos 22,867 3086 4461 10,973 3023 1016 308
Colonia Barón 21,696 5903 4219 3925 3156 3086 1407
Coronel Hilario 
Lagos

9513 781 2102 4549 1473 476 132

Dorila 14,249 4231 2601 4151 2303 741 222
Falucho 7101 1138 1236 3217 867 345 298
General Pico 60,487 11,212 12,254 22,391 8140 3679 2811
Intendente 
Alvear

37,145 3198 7347 19,841 4568 1250 941

Lonquimay 21,694 7595 3427 5240 2731 1884 817
Miguel Cané 10,517 4146 1685 2997 1129 223 337
Quemú 37,198 10,086 6791 12,402 4687 1714 1518
Relmo 3330 1400 688 900 314 0 28
Sarah 8192 596 1261 4796 949 580 10
Speluzzi 6671 2134 1385 1440 1052 260 400
Uriburu 24,965 9117 4512 3581 2490 3912 1353
Vertiz 12,885 4324 1786 4366 1578 549 282
Total 384,008 95,383 72,308 122,801 49,274 28,669 15,573

10 DRASTIC and PIRI GIS-Based Indexes: Assessing the Vulnerability and Risk…



220

this technology. In the early 2000s nicosulfuron was used massively (CASAFE 
2019). Nowadays not much information is available about its use; therefore, it was 
assumed that 100% of maize crop was treated with nicosulfuron.

From the spatiotemporal integration of 10 years’ crop sequence, we found that 
the CCGW10 varied by herbicide and soil properties. PIRI estimated cumulative con-
centrations of imazethapyr and imazapyr in groundwater that exceed the EU’s MCL 
of 0.1 μg L−1. Low concentrations of imazamox and the SU herbicides were esti-
mated (Fig. 10.4). Both SUs and IMIs have very low sorption to these soils, and they 
are used with low application rates. Imazapyr has long persistence in soil with 

Fig. 10.3 Proportion area occupied by crops

Table 10.3 Proportion (%) of the area of crops treated with herbicides

Herbicides Sunflower Maize Soybean Wheat

Metsulfuron – – – 100
Sulfometuron – – 100 –
Nicosulfuron – 100 – –
Imazamox 50 – – –
Imazethapyr – – 100 –
Imazapyr 50 – – –
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half- life of 142 days. Imazethapyr has intermediate persistence, and imazamox and 
the other tested herbicides have shorter half-lives, 30  days or less (Table  10.4). 
Imazethapyr has shorter half-life than imazapyr; however, we assumed 
122,801 ha year−1 was treated with imazethapyr, compared with 47,691 ha year−1 
treated with imazapyr. For herbicides like imazapyr and imazethapyr with relatively 
long half-life and low sorption to soils, the treated area becomes important for the 
prediction of CCGW10. Regional groundwater monitoring studies confirm these 
results. Porfiri et al. (2017) analyzed 758 groundwater samples from a rural area for 
atrazine and imazapyr. Of the 159 samples that contained imazapyr, 65% contained 
<5 μg L−1, 22% contained 5–20 μg L−1, 7.5% contained 20–40 μg L−1, and 5% con-
tained >40 μg L−1 imazapyr. High concentrations of imazapyr suggested non-point 
and point source contamination. Imazapyr has been detected in 3.1% of groundwa-
ter samples in Argentina at concentrations ranging between 0.2 and 6.4  μg  L−1 
(Montoya et al. 2018).

For this simulation, we assumed that 100% of soybean land was treated with 
imazethapyr and sulfometuron. Results for the spatial PIRI Index showed greater 
estimated concentrations of imazethapyr than of sulfometuron in the top 1 m of the 
superficial aquifer because of the longer persistence and higher application rate of 
imazethapyr than sulfometuron. Metsulfuron showed low risk of groundwater pol-
lution, in part because it is only used on wheat (28,669  ha  year−1), it has short 

Fig. 10.4 Estimation of the cumulative concentrations of pesticides in the groundwater (CCGW10) 
for the herbicides

Table 10.4 Spatiotemporal 
integration of GRIndex for 
each herbicide

Herbicide GRIndex Classification

Nicosulfuron <<<1 × 10−6 Very low
Sulfometuron <1 × 10−6 Very low
Metsulfuron 1 × 10−6 to 1 × 10−2 Low
Imazamox 1 × 10−1 to 1 × 10−1 Low
Imazapyr 1–10 High
Imazethapyr 1–10 and 10–100 High to very high
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persistence, and the application rate is very low. Nicosulfuron has a short half-life 
(21 days) and was not predicted to reach groundwater (map not shown), even though 
it was modeled as applied to 100% of maize land, 72,300 ha year−1. Although these 
herbicides have low sorption capacity to the studied soils, their usage, persistence, 
and application rates become important in the prediction of the cumulative concen-
tration of pesticides in the groundwater.

The spatiotemporal integration of the GRIndex showed that imazethapyr and 
imazapyr have risk of leaching and polluting groundwater at concentrations exceed-
ing the MCL established by the EU (Table 10.4).

10.5  Conclusions

In summary, the DRASTIC vulnerability maps revealed that groundwater in the 
northeast portion of La Pampa province is under high-to-moderate vulnerability to 
pollution during the months that aquifer recharge occurs. The SP of the study area 
is dominated by high pollution vulnerability class, and this is very strongly related 
to shallow groundwater systems, highly permeable sediments, and periodic positive 
net recharge.

The PIRI Index was calculated to estimate the relative risk of groundwater con-
tamination of six commonly used herbicides. The PIRI Index offers a powerful tool 
to estimate groundwater contamination potential by herbicides. Because PIRI takes 
into account herbicide persistence, use patterns, and hydrogeological factors in 
addition to herbicide sorption data, it may provide a more accurate prediction of the 
risk of off-site transport of herbicides compared with an RF model or other simple 
models. The inclusion of the frequency and regional extent of herbicide usage pro-
duce a more accurate prediction of groundwater contamination by pesticides.

In agricultural soils of the semiarid region of Argentina, SU herbicides are 
applied at a low rate and typically once a year; they have relatively low sorption and 
low persistence. For SUs, the PIRI-GIS predicted a low risk of groundwater con-
tamination. On the other hand, IMIs have similar application patterns, low sorption, 
and higher persistence in these soils; PIRI-GIS indicated a substantial risk that ima-
zethapyr and imazapyr may leach to groundwater. The results of this study indicate 
the need to minimize the use of persistent herbicides and promote IWM practices to 
prevent the detrimental environmental effects of herbicide use on Argentina’s water 
quality.

The DRASTIC and PIRI indices provide complementary information. Embedding 
them in a DSS would allow policy makers to identify the area most vulnerable to 
groundwater pollution and define effective scenarios of herbicide management to 
support the sustainable use of agrochemicals. Integrating these tools into a GIS 
framework provides a graphic demonstration of the projected consequences of her-
bicide usage. These tools must be coupled with good alternative pest management 
practices to minimize environmental risk.
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Chapter 11
How to Use a “Virtual Field” to Evaluate 
and Design Integrated Weed Management 
Strategies at Different Spatial 
and Temporal Scales

Nathalie Colbach

Abstract Switching from intensive herbicide-based to agroecological weed man-
agement needs models to explore the vast range of possible combinations of crop-
ping techniques, to assess long-term effects and weed (dis)services. This chapter 
presents the mechanistic FlorSys model, a “virtual field” simulating daily weed 
and crop growth and reproduction over the years, on which arable cropping systems 
can be experimented in temperate climates. The model inputs include a detailed 
description of the cropping system, soil characteristics, weather and the regional 
weed species pool. A detailed life cycle predicts daily state variables describing 
weeds, crops and soil conditions depending on inputs, with a 3D individual-based 
representation of the multispecies crop–weed canopy. Effects on a given plant or 
seed depend on weather and soil conditions, management operations, biophysical 
environment as well as species, plant morphology and stage. To simplify the addi-
tion of new species, difficult-to-measure model parameters are estimated with func-
tional relationships from easily measured species traits, trait databases and expert 
opinion. To simplify the comparison of cropping systems, the detailed daily and 3D 
outputs are translated into indicators assessing crop production and weed (dis)ser-
vices. A series of case studies illustrates how the model is used to (1) optimise 
individual cropping techniques with frequency analyses, (2) run multicriteria evalu-
ations of existing and prospective cropping systems at the field and landscape scales, 
(3) identify the cropping techniques and species traits that drive crop production and 
weed (dis)services and (4) design innovative cropping systems and to promote inte-
grated weed management in participatory workshops with farmers.
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11.1  Introduction

Because of environmental and health issues and the resulting changes in agricul-
tural policies, weed management strategies must be rethought from scratch to rely 
little or not at all on herbicides. The switch from a single highly efficacious tech-
nique, that is, herbicides, to a combination of partially efficient preventive and 
curative techniques (Liebman and Dyck 1993; Liebman and Gallandt 1997) needs 
models to explore the vast range of possible combinations, to assess long-term 
effects and the many services (e.g. trophic resources for pollinators and pest ene-
mies) and disservices (e.g. competition for soil resources, host for crop pests) 
depending on weeds.

In order to understand and predict the variability in effects observed for the dif-
ferent cropping techniques in a large range of situations without reparameterisation, 
mechanistic models are best. Such models decompose the life cycle of weeds and 
crops into elementary processes depending on biophysical effects of cropping sys-
tems, in interaction with biophysical variables (Colbach et al. 2005; Colbach 2010). 
Indeed, it is not sufficient to quantify the average effects of techniques; farmers also 
need to know the probability of success of a given management strategy and the risk 
of obtaining the opposite effect of the one they were originally aiming at (Colbach 
et al. 2014a).

For that purpose, the required model needs to consider most of the cropping 
system components, even if they do not directly target weeds as do herbicides or 
mechanical weeding. Indeed, any effect on the crop or the environmental condi-
tions will also affect weeds. Model inputs must also include pedoclimatic condi-
tions to take account of regional differences and, most importantly, to integrate 
interactions between cropping systems and environmental conditions (Colbach 
2010). As weed seed banks persist for several years in the soil (Lewis 1973), a 
comprehensive model must allow for simulations over several years or even 
decades to assess how today’s decisions could affect weed flora and crop produc-
tion during the years to come (Colbach et al. 2014a). This model needs a daily 
time step to be consistent with the temporal scale of farming operations and the 
interactions with pedoclimate. The model should also be multispecies, both in 
terms of weeds and crops. Indeed, arable fields include several dozens or even 
hundreds of different weed species (Fried et al. 2008), and crop diversification is 
an important lever of integrated weed management (Liebman and Dyck 1993; 
Liebman and Gallandt 1997).

This chapter will present such a model and describe how it is used to design 
agroecological weed management strategies. FlorSys (Colbach et  al. 2014b, c, 
2017c; Gardarin et al. 2012; Mézière et al. 2015; Munier-Jolain et al. 2013, 2014) is 
a “virtual field” (in silico) approach which allows for the simulation of weed and 
crop growth and reproduction on a daily basis over the years, on which cropping 
systems can be experimented and a large range of crop, weed and environmental 
measures estimated (Fig. 11.1).
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11.2  FlorSys: The “Virtual Field” Model

11.2.1  Input Variables

The input variables of FlorSys (Fig. 11.1) consist of (1) a description of the simu-
lated field (i.e. daily weather, latitude and soil characteristics); (2) all the simulated 
crops and management operations in the field (including dates, tools and options); 
and (3) the initial weed seed bank size and composition which is either measured on 
soil samples or, more feasible, estimated from regional flora assessments (Colbach 
et al. 2016).

11.2.2  Weed and Crop Life Cycle

The input variables influence the annual life cycle which applies to both annual 
weeds and crops, with a daily time step (Fig. 11.1). Pre-emergent stages (e.g. sur-
viving, dormant and germinating seeds, emerging seedlings) are driven by soil 
structure, temperature and water potential. The crop–weed canopy is represented in 
3D with an individual though simplified representation of each crop and weed plant. 
Post-emergent processes (e.g. photosynthesis, respiration, growth, etiolation) are 
driven by light availability and air temperature. At plant maturity, weed seeds are 
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Fig. 11.1 General representation of the (1) research model FlorSys (Colbach et  al. 2014c; 
Gardarin et al. 2012; Mézière et al. 2015; Munier-Jolain et al. 2013) which simulates crop growth 
and weed dynamics from cropping system, weather and soil inputs based on a mechanistic repre-
sentation of biophysical processes at a daily time step (3D representation), and the (2) metamodel 
DeciFlorSys which directly estimates weed services and disservices from cropping system inputs 
(Colas et al. 2020) (Nathalie Colbach © 2018)
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added to the soil seed bank; crop seeds are harvested to determine crop yield. 
FlorSys (Colbach et al. 2014c; Gardarin et al. 2012; Mézière et al. 2015; Munier-
Jolain et al. 2013) is currently parameterised for 25 annual weed species (including 
different populations differing in terms of herbicide resistance) and 33 cash and 
cover crop species typical of temperate European agroecosystems.

11.2.3  Effect of Cultural Practices

Life cycle processes also depend on the dates, options and tools of management 
practices (tillage, sowing, herbicides, mechanical weeding, mowing, harvesting), in 
interaction with weather and soil conditions on the day the operations are carried 
out. For instance, weed plant survival probabilities are calculated deterministically 
depending on (1) management operations (tillage, herbicides, mechanical weeding, 
mowing, harvesting) and their options (e.g. tillage depth, tool, speed), (2) biophysi-
cal environment (e.g. soil moisture, canopy density) as well as (3) plant morphology 
and stage. The actual survival of each plant is determined stochastically by compar-
ing this probability to a random probability. Survival after herbicide spraying also 
depends on plant genotype.

11.2.4  Parameterising Many Contrasting Species

A mechanistic approach is important to ensure that a model allows continuously 
synthesising knowledge (Colbach 2010) but it  requires an enormous amount of 
parameters, which hinders the addition of new species to the model. This is the 
reason why Gardarin et al. (2012, 2016) developed a new methodology based on 
functional relationships to estimate difficult-to-measure model parameters from 
easily measured species traits, databases and/or expert knowledge. The validity of 
this approach was checked on weed species, for the critical emergence stage 
(Gardarin 2008) and at a multiannual scale (Colbach et al. 2016; Pointurier et al. 
submitted to Ecological Modelling).

11.2.5  Assessing Crop Production and Weed (Dis)Services

To simplify the comparison of cropping systems and to make simulations more 
accessible to policy makers, crop advisors and farmers, the detailed outputs are 
translated into indicators assessing crop production, as well as weed-borne agroeco-
logical services and disservices. FlorSys production indicators comprise crop yield 
in terms of weight and energy (Fig. 11.2). Indicators of weed disservices describe 
weed harmfulness for crop production and were developed in cooperation with 
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(Colbach et al. 2014c; Gardarin et al. 2012; Munier-Jolain et al. 2013). (a) Temporal representation 
of annual life cycle of crops and weeds, showing the 1D representation of the soil seed bank. 
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tition for light (Nathalie Colbach © 2019)
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farmers and crop advisors (Colas et al. 2020; Mézière et al. 2015). Direct (crop yield 
loss and harvest pollution by weed debris) and indirect weed harmfulness (weed- 
borne pests) affecting crop yield, as well as technical (harvesting problems due to 
weeds blocking the combine) and sociological harmfulness (weed field infestation 
as a proxy of the farmer’s worry of being thought incompetent by his peers, even if 
there is no actual effect over yield loss) were included.

Weed-service indicators were developed with ecologists and agronomists 
(Colbach et al. 2020; Mézière et al. 2015; Moreau et al. 2020 in press at European 
Journal of Agronomy) and reflect the contribution that weeds make to biodiversity 
and the environment. They consider weed plant diversity (richness and evenness), 
the role of weeds for feeding three major guilds in the agro-ecosystems (pollinators, 
farm birds and carabids) and for reducing three physical farming impacts on the 
environment (nitrate leaching, pesticide transfer and soil erosion). 

11.2.6  Domain of Validity

FlorSys was evaluated with independent field data, showing that crop yields, daily 
weed species densities and, particularly, densities averaged over the years were gen-
erally well predicted and ranked Colbach et al. 2016, Pointurier et al. submitted). 
However, a corrective function was required to keep weeds from flowering during 
winter in southern France (e.g. below 46°N) (Colbach et al. 2016).

11.3  Running Virtual Experiments

In this section, different case studies illustrate how FlorSys is used to run virtual 
experiments at different temporal and spatial scales, aiming not only to control 
weed but also to promote weed-based services.

11.3.1  Efficacy Evaluation of a Management Technique

Integrated crop production methods often delay seeding to enhance weed control. 
For example, delayed sowing in winter crops allows more time for false (or stale) 
seed bed technique favouring autumnal weeds to emerge during the summer fal-
low, thus resulting in a reduced weed seed bank at crop sowing and, hopefully, in 
a lower weed emergence inside the crop (Moss and Clarke 1994). However, this 
strategy is only efficient if the targeted weed seeds are not dormant before crop 
sowing. Moreover, its efficiency varies considerably with environmental condi-
tions, mainly with soil moisture. Indeed, false seed bed techniques work best 
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when the targeted weed seeds are moist. Conversely, if the sowing operation is 
combined with a superficial tillage and carried out when the soil is moist, tillage 
triggers additional weed germination, resulting in increased weed emergence 
inside the crop (Fig. 11.3).

To evaluate the success rate of delayed sowing and the risk of unexpected side 
effects, a virtual experiment was carried out with FlorSys (Table 11.1). Five wheat 
sowing dates were tested in two French regions, and each was repeated with ten dif-
ferent weather series. The initial weed seed bank consisted mostly of Alopecurus 
myosuroides, an autumnal grass weed typical of winter-crop rotations in Eastern 
France. The frequency analysis of the simulation output showed that delayed sow-
ing indeed decreased weed emergence in crops in both regions, in average. But, in 
Northern France, sowing had to be delayed until 7 Nov. to avoid all risk of increas-
ing weed emergence. In Burgundy, where the soil often is too dry for germination in 
early October, a residual risk of increased weed emergence persisted until mid- 
November (Table 11.1).
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Fig. 11.3 Effect of the last tillage date associated with the sowing operation (carried out on 26 
Sept.; 3 Oct.; 10 Oct.; or 17 Oct.) on the cumulated autumnal emergence of grass weeds (e.g. 
Alopecurus myosuroides Huds.) in winter wheat in Burgundy simulated with the monospecific 
prototype of FlorSys. The arrows indicate the sowing date relative to the daily weed emergence 
(dashed line) in case of the earliest sowing (26 Sept.). Grey areas indicate days where the soil was 
too dry for germination. Delayed crop sowing allows to avoid the earliest weed emergence flush 
and reduces in-crop weed emergence (sowing on 3 Oct. and 17 Oct. vs 26 Sept.). If the crop is 
sown shortly after the soil was remoistened by rain (10 Oct.), the associated tillage triggers a ger-
mination flush resulting in a huge increase in weed emergence after sowing. No additional trigger-
ing occurs if the soil is tilled in dry conditions (3 Oct.) or in continuously moist soil (17 Oct.) 
(based on Colbach et al. 2005) (Nathalie Colbach ©)
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11.3.2  Multicriteria Long-Term Evaluation 
of Cropping Systems

The main interest in using a model such as FlorSys lies in the long-term and mul-
ticriteria assessment of comprehensive cropping systems. Figure  11.4 shows an 
example of model use in interaction with crop advisors, to assess the advantages of 
crop diversification, introducing spring crops into the usual 3-year winter rotation 
consisting of oilseed rape, wheat and barley. The analysis of the yield-loss dynamics 
over time demonstrated the necessity to evaluate innovations in the long term. For 
example, spring pea presented the highest yield loss of all tested crops (Fig. 11.3.A), 
but the yield loss in the following wheat crop was consistently lower than in wheat 
following oilseed rape or sunflower, even though both these crops presented a much 
lower yield loss than spring pea. Consequently, in average for the long-term evalu-
ated time horizon, the rotation including spring pea performed much better in terms 
of crop production and weed harmfulness than the 3-year reference rotation and as 
good as the 5-year rotation including sunflower and spring barley (Fig. 11.5b).

In addition to conventional biodiversity and harmfulness criteria, FlorSys also 
allowed to assess performance indicators that are almost impossible to evaluate 
under field conditions, such as weed-based food offer for pollinators or farm birds. 
In the present example, crop diversification allowed to improve all analysed perfor-
mance indicators (i.e. increased biodiversity and crop production while reducing 
weed harmfulness and herbicide use).

This approach is invaluable to assess innovations before they are actually autho-
rised and introduced into cropping systems, for instance to evaluate the impact of 
genetically modified herbicide-tolerant crops and the accompanying changes in 
cropping practices on biodiversity (Bürger et al. 2015; Colbach et al. 2017b), herbi-
cide resistance in weeds (Colbach et al. 2017c; Sester et al. 2006) or harvest quality, 
for instance in terms of fatty acid content (Baux et al. 2011) or genetic impurities 
(Sausse et al. 2013).

Sowing date

Northern France Burgundy (Eastern France)
Probability of occurrence (%) Probability of occurrence (%)

Weed emergence Weed emergence
decreased e10% increased e 10% decreased by e 10% increased by e 10% 

3 Oct. Initial sowing date
10 Oct. 7 7 14 14
17 Oct. 14 0 14 14
24 Oct. 7 14 0 36
31 Oct. 29 7 14 14
7 Nov. 43 0 79 14
14 Nov 86 0 79 14

Table 11.1 Effect of delayed winter-wheat sowing (combined with a power harrow) on autumnal 
grass weed emergence (e.g. Alopecurus myosuroides Huds.) in the crop simulated with the 
monospecific prototype of FlorSys. Probability of occurrence (% years) that weed emergence 
increases or decreases relatively to the initial sowing date on 3 Oct. (based on Colbach et al. 2014a)
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11.3.3  Upscale to Landscapes

Model-based evaluation is also helpful when upscaling from the field to the land-
scape level. Switching scales could be necessary when weeds disperse to neighbour 
fields (via seeds or pollen) as the management of a given field will influence what 
happens in neighbour fields. Pollen dispersal is an issue if the immigrant genes 
change the fitness of the native population, which is particularly the case for herbi-
cide resistance. Even without propagule exchange, working at the field cluster or 
landscape scale can be pertinent when there are trade-offs between crop production 
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§ TFI is treatment frequency index (a herbicide at full dosage over whole field = 1)

Fig. 11.4 Effect of crop diversification on crop yield loss due to weeds simulated with FlorSys. 
Annual means averaged over 10 weather repetitions with a Burgundy pedoclimate as a function of 
time (vertical bars show intra-annual standard-deviation averaged over time) (a) and multicriteria 
evaluation of weed (dis)services averaged over rotation (b) for winter oilseed rape/winter wheat/
winter barley (OWB, red line); winter oilseed rape/winter wheat/spring pea/winter wheat (OWpW, 
blue line); winter oilseed rape/winter wheat/sunflower/winter wheat/spring barley (OWsWb, green 
line). Means followed by the same letter are not significantly different at p = 0.05, using a least- 
significant difference test. (Colbach and Cordeau 2018b; Colbach et al. 2010) (Nathalie Colbach 
©). § TFI is treatment frequency index (a herbicide at full dosage over whole field = 1)
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and biodiversity conservation. In such a case scenario, models can contribute to 
decide whether landsharing or landsparing is more adequate (Colbach et al. 2018). 
Indeed, semi-natural habitats and landscape crop patterns contribute to weed 
dynamics by locating favourable habitats, both in time and in space (Petit et al. 2013).

FlorSys allows tackling some of these questions by simulating several fields 
and/or semi-natural habitats in parallel (Colbach et al. 2018). At seed shed, weed 
seeds as well as shattered crop seeds are dispersed from a source plot to neighbour-
ing habitats. Seed dispersal distance increases with weed plant height and decreases 
with seed mass; and it is higher for seeds dispersed by animals and wind than for 
those dispersed by gravity (Colbach et  al. 2018; Thomson et  al. 2011). The dis-
persed seeds then colonise new fields and habitats or integrate existing populations, 
contributing to wild plant biodiversity but also negatively affecting crops.

The spatially explicit model proposed by Colbach et al. (2018) allows to virtually 
experiment different landscape management scenarios, aiming to reconcile crop 
production with biodiversity conservation, either at field (landsharing) or landscape 
(landsparing) levels. Three series of scenarios were simulated over 28 years and 10 
weather repetitions, using maize-based cropping systems (Fig.  11.5). The 
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consisted of four 3-ha fields and a typical pedoclimate from Aquitaine (south-western France). (a) 
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aiming to maximise crop production (“Prod”) but converting part of the field into permanent grass 
strips (green 10 m wide strips); and (c) Landsparing scenarios with varying proportions of con-
trasting cropping systems in the landscape, either aiming to maximise biodiversity (“Biodiv”) or 
crop production (“Prod”) (based on Colbach et al. 2018) (Nathalie Colbach ©)
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simulations showed that landsparing scenarios were better than landsharing, result-
ing in high crop production and medium biodiversity at the landscape scale 
(Table 11.2). Landsharing scenarios always produced less biodiversity and less crop 
production. The more crops were grown each year in the landscape, the more the 
weed impact on production and biodiversity increased.

11.3.4  Disentangling Effects

Many of the evaluations of the previous sections would also be possible with empir-
ical models. One of the major advantages of process-based models such as FlorSys 
is their ability to disentangle complex interactions in the agroecosystem, often bet-
ter than in situ field experiments could do. For instance, yield loss is notoriously 
difficult to assess in field conditions because it is next to impossible to produce a 
weed-free control identical to the weed-infested treatments except for the presence 
of weeds. Similarly, farm-field networks (i.e. a large number of farm fields that are 
monitored in terms of management practices and, for example, crop yield or weed 
infestation) are usually inadequate to assess the effect of individual management 
techniques, even influential ones such as herbicides, because farmers reason each 
technique depending on other cropping-system components (e.g. mechanical weed-
ing, tillage and rotation) (Colbach and Cordeau 2018b).

FlorSys was used to unravel some of these interactions by monitoring a vir-
tual farm-field network covering contrasting production situations with several 

Landscape pattern Weed-related biodiversity in landscape
Crop 

production
(MJ/ha)

Weed harmfulness in crops
Species richness

(number of 
species)

Bird
food

Bee
food

Yield
loss (%)

Harvest
pollution

A. Landsharing scenarios: Annual crop pattern in landscape grown with soybean/maize/wheat/maize
One crop per year 11.22 g 3.55 i 0.66 f 68344 d 22.68 e 1.20 f
Two crops per year 12.04 e 4.16 gh 0.91 e 60184 e 33.92 c 1.60 e
All crops per year 12.94 d 4.31 f 1.11 d 51920 f 44.31 a 2.04 c
B. With semi-natural habitats in landscape grown with high-production cropping systems 
10% grass strips 10.65 h 7.13 d 0.55 g 90161 b 0.14 h 0.98 g
C. Landsparing scenarios: % fields with high-production vs. with high-biodiversity cropping systems 
(production - biodiversity %)
0 – 100 % 15.72 a 9.58 a 2.78 a 59257 e 40.83 b 2.78 a
25 – 75 % 14.88 b 8.90 b 2.23 b 70045 d 30.30 d 2.38 b
50 – 50 % 13.26 c 8.02 c 1.57 c 80603 c 19.69 f 1.88 d
75 – 25 % 11.72 f 7.11 d 0.94 e 90257 b 9.93 g 1.21 f
100 – 0 % 8.44 i 5.36 e 0.18 h 100452 a -0.10 h 0.00 h

Table 11.2 Effect of landsharing and landsparing scenarios (Fig.  11.5) on weed (dis)service 
indicators at the landscape scale (Colbach et al. 2018)

Comparison of means after analyses of variance of weed (dis)service indicators simulated with 
FlorSys and averaged over the field cluster as a function of landscape scenario, weather repeti-
tion, time, and the interaction between scenario and time. Means of a given column followed by 
the same letter are not significantly different at p = 0.05 (least significant difference test)
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hundred cropping systems recorded in seven regions ranging from northern France 
to northern Spain (Colbach and Cordeau 2018a). The effect of herbicides was 
discriminated from that of other management practices by comparing the simu-
lated weed floras and yields of the recorded cropping systems to those of these 
same systems minus herbicides (and without any other changes in practices). 
Moreover, the authors differentiated the relative effects of weeds and management 
practices on crop production by comparing the yields of simulations run with and 
without weeds. Also, management practices effects on weeds were separated from 
their reciprocals (i.e. effects of weeds on management practices) by simulating 
the recorded cropping systems without adapting the practices to the simulated 
weed floras. Long-term weed harmfulness was also assessed by looking at weed 
dynamics and weed-caused yield loss over succeeding years instead of consider-
ing only annual data. As a result, Colbach and Cordeau (2018a) were able to show 
that (1) weed–crop biomass ratio at crop flowering was the best indicator of the 
year’s yield loss (Fig.  11.6); (2) herbicide use intensity was not correlated to 
either weed variables or yield loss, because farmers compensated reduced herbi-
cide use by other preventive (e.g. false seed bed techniques) and curative mea-
sures (e.g. mechanical weeding); (3) average weed biomass during crop growth 
and yield loss increased by +116 and + 62% (averaged over rotation) respectively 
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Fig. 11.6 Generic function predicting grain yield loss (%, i.e. 100 t t−1) in annual crops from the 
ratio of weed biomass vs crop biomass at the onset of crop flowering established on a virtual farm- 
field network simulated with FlorSys. Each data point is 1 year of one cropping system and one 
weather repetition out of a total of 272 cropping systems × 30 years × 10 weather repetitions. Red 
line fitted to data with non-linear regression (Nathalie Colbach © 2018) (based on Colbach and 
Cordeau 2018a)
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when herbicides were eliminated without any other change in management prac-
tices; and (4) effects were more visible at multiannual (rotation) than the 
annual scales.

This kind of virtual farm-field network can be used for other purposes, for 
instance to track innovations among farming practices. FlorSys simulations dem-
onstrated the importance of crop diversity in rotations to control weed harmfulness 
with few or no herbicides (Colbach and Cordeau 2018a). Three types of strategies 
could be identified among the investigated farmers’ cropping systems, which dif-
fered in terms of rotation, tillage strategy and so on. The strategy based on a summer- 
crop monoculture relied heavily on herbicides as well as mechanical weeding to 
limit weed-caused yield loss. Conversely, two other strategies diversified crops, 
with longer rotations, crop mixtures, cover crops and temporary grassland. 
Combined with well-reasoned tillage, crop diversification allowed for reducing her-
bicide use while limiting yield loss.

More generally, these farm-field networks allow to identify which management 
techniques drive weed (dis)services. The previous studies simulated actual crop-
ping systems practiced by farmers or proposed by crop advisors, but the network 
can also be extended with randomly constructed systems to run sensitivity analy-
ses. This was actually the approach used when metamodelling FlorSys into a 
decision- support system (see section 11.4.1) where various statistical methods 
were used to identify the most influential management techniques. Table  11.3 
shows an example of a ranking of management techniques in terms of their effect 
on weed contribution for protecting the soil from erosion and nitrate leaching. 
This analysis shows that tillage, particularly deep and/or inverting operations, was 
the major determinant of weed-based soil protection while rotation and herbicides 
had much less impact.

The same simulation approach, combined with statistical methods usual in ecol-
ogy, such as RLQ or fourth corner, can identify crop and weed traits that drive crop 
production and weed (dis)services (Colbach et  al. 2014d; Colbach et  al. 2017a; 
Colbach et al. 2017b; Colbach et al. 2019). Table 11.4 shows an example where the 
aim was to identify which weed-morphology parameters that drive weed harmful-
ness for crop production in average over many contrasting cropping systems and 
pedoclimates. The most damaging weeds in terms of crop yield loss and harvest 
pollution were the ones that occupied space earlier and faster, starting with a large 
leaf area at emergence and with larger and/or thinner leaves (larger SLA). Later in 
the season, shading neighbours with taller plants per unit biomass (larger SPH) also 
becomes important, but lateral space occupation is still an issue, as wider heavier 
plants (larger HPW) with a uniform leaf area distribution (lower MLH) are more 
damaging. When shaded, the damaging weeds react by shifting their leaves top-
wards (increase in MLH).
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Table 11.3 Identification of key management techniques influencing weed (dis)services in a 
virtual farm-field network consisting of several hundred cropping systems from six French and 
Spanish pedoclimates simulated with FlorSys over 27 years and 10 weather repetitions (based on 
Moreau et  al. 2020). Example of weed-based protection from soil erosion and nitrate leaching 
averaged over 27 simulated years, identifying key techniques with LASSO regressions

Cropping system component
Regression parameter value
Nitrate leaching Soil erosion

Years between successive direct sowings −0.273 −0.356
Tillage depth (cm) −0.717
Frequency of mouldboard ploughing in winter (operations/year) −1.03
Superficial tillage (operations/year)

  Total −1.24
  In winter (operations/year) −1.12 −12.3
  With disks −9.91 −28.0
  With a chisel −4.49 −15.7
  With a power harrow −0.46 −23.9
  With a rotavator −30.7
Days from harvest to first tillage 0.0109
Residue shredding height (cm) −0.104 0.558
Days from last rolling operation to cash-crop sowing −0.0040 −0.0630
Rotation: proportion of

  Flax 1285
  Triticale 35.8
  Oilseed rape −30.4
  Barley 6.56
  Spring crops −2.43
  Pea −10.1
Cropping-season diversitya 16.1
Frequency of cover crops (years/years) −4.57 58.3
Duration of cover crops (months/12 months) −21.2 .
Sowing date of spring crops . 0.0784
Harvest date of spring crops −0.0340
Herbicidesb: Number of treatments per year with

  Multi-entry herbicides −0.507
  Pseudo-root-only herbicides 8.24
  Root only herbicides −0.0853

Only techniques with a significant effect are shown (P < 0.05). For the nitrate-leaching indicator, 
n = 2306 and R2 = 0.69. For the soil-erosion indicator, n = 2590 and R2 = 0.61 
aProportion of crop years where previous and current cash crops differ in terms of winter, summer 
and multiannual crops
bHerbicides can enter plants via leaves (“foliar”), shoot tips during emergence (“pseudo-root”) or 
roots (“root”). Multiple entry modes are possible (“multi-mode”)
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11.4  Decision Support with Stakeholders

11.4.1  DeciFlorSys: A Decision Support Tool

The previous sections show examples of how FlorSys can be used to track innova-
tions in existing farming practices, test, diagnose and fine-tune prospective cropping 
systems proposed by farmers and crop advisors, produce expert knowledge for pol-
icy makers and so on. However, FlorSys still remains a research model inadequate 
for direct use in participatory workshops as (1) it requires numerous input variables 
to be assigned and parameters to be tuned, (2) its mechanistic and individual-based 
approach induces a high algorithmic complexity and very slow simulations and (3) 
it evaluates cropping-system candidates rather than actually designing these 

Weed parameter
Stage
(BBCH 
scale)

Yield 
loss

Harvest 
pollution

Weed harmfulness
Low High

A. Early growth parameters
Leaf area at emergence (cm²) 0.21 0.17

B. Potential plant morphology parameters in unshaded conditions
Specific leaf area SLA
(cm²/g)

0 0.19 0.16
1 0.19 0.14
8 -0.21
9 -0.22
10 -0.20

Specific plant height SPH
(cm/g)

7 0.19 0.17
8 0.20 0.18
9 0.20 0.17
10 0.19 0.16

Increase in plant width with 
plant biomass HPW (no unit)

9 -0.15
10 -0.20 -0.17

Median relative leaf height
MLH (cm/cm) 7 -0.19 -0.16

C. Parameters driving weed shading response

Increase in MLH 6 0.15
7 0.15
10 0.15

Table 11.4 Which weed plant-morphology parameters drive weed harmfulness for crop 
production?

Pearson correlation coefficients r (and p-values) between weed parameters and annual weed harm-
fulness indicators estimated with RLQ and fourth corner analyses via weed plant density. Only 
correlations exceeding 0.10 and significant at p = 0.05 were kept in the table. Cells with correla-
tions were coloured from green (−1) to 1 (red), depending on coefficient values. The pictures in the 
last two columns illustrate the morphological characteristics of weeds resulting in respectively low 
or high weed harmfulness for crop production (based on Colbach et al. 2019) (Nathalie Colbach ©)
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candidates (Colbach 2010). In order to address these limitations, we transformed 
FlorSys into a Decision Support System (DeciFlorSys). DeciFlorSys gathers 
three operational tools, each addressing one of the above issues. The three tools all 
derive from the metamodelling of FlorSys using sensitivity analyses and machine 
learning, and they were co-designed with future users (Colas et al. 2020). Instead of 
using detailed inputs, DeciFlorSys uses aggregated inputs corresponding to meta- 
decision rules at the rotation scale (e.g. proportion of spring crops in rotation, fre-
quency of mouldboard ploughing) (Fig. 11.7). It directly predicts weed (dis)service 
indicators, without calculating detailed crop and weed variables (Fig. 11.1). The 
three DeciFlorSys tools are (1) a table showing the cropping system components 
to be changed as a priority, (2) decision trees showing how to combine management 
practices to reach a given goal in terms of weed (dis)services and (3) a predictor 
based on random forests (AI technique) that calculate the performance of the 
cropping- system prototypes, with a much faster response time than FlorSys and 
easier to handle than the parent model.

While the DeciFlorSys predictor is as good as FlorSys to rank cropping sys-
tems, it cannot adequately evaluate effects that strongly interact with pedoclimatic 
conditions, such as the effect of tillage timing with respect to soil moisture 
(Colas 2018).

11.4.2  Use of Models to Promote Integrated 
Weed Management

Both FlorSys and its derivate, DeciFlorSys, have been used by our research team 
and crop advisors in participatory workshops with farmers. Implicating farmers in 
cropping-system design is essential, as innovations proposed by scientists are often 
disregarded by farmers because they are incompatible with farming constraints 
(Meynard et al. 2018) or with farmers’ risk perception and management (Wilson 
et al. 2008). Crop advisors can also be reticent to promote the necessary changes 
(Pasquier and Angevin 2017). In this context, models are invaluable teaching tools 
to propagate knowledge and promote innovations via training sessions, participa-
tory workshops and role-playing games (Hossard et al. 2013; Martin et al. 2011; 
Meylan et  al. 2013; Sausse et  al. 2013). This is particularly true for easy-to-use 
models such as DeciFlorSys, which allow stakeholders to directly and immedi-
ately see the consequences of changes in their practices in their particular produc-
tion situation.

Using models with farmers and crop advisors is somewhat different than when 
using them for research purposes (Fig. 11.8c vs. b). During the workshops, farmers 
start from their own experience, they are implicated in all steps and get an immedi-
ate feedback, all of which makes the resulting solutions more acceptable to them. 
Conversely, the risk of missing highly performant solutions and remaining inside 
current conventions is much higher. The best approach for investigating a larger 
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range of possible solutions is automatic optimisation algorithms (Fig. 11.8a) which 
have already been used with simpler and faster models than FlorSys (Bergez et al. 
2010) and are now being adapted to FlorSys (Maillot et al. 2019).

11.5  Discussion and Conclusion

FlorSys is one of the very few process-based models that include all the key mech-
anisms that are relevant for cropping system and does this at a sufficiently precise 
scale to produce realistic results. To overcome the trade-off between process analy-
sis and decision aid (Colbach 2010), the detailed simulated outputs were aggregated 
into indicators to support decisions (Bockstaller et  al. 2008), and the knowledge 
synthesised in the mechanistic research model was further extracted and sum-
marised as the empirical (meta)model DeciFlorSys which is easier to use. This 
dual approach allowed us to synthesise knowledge on the functioning and effects of 
crop diversification at different levels of detail and make it available to different 
stakeholders, consisting of scientists, crop advisors, farmers and policy makers. It is 
also essential to continue including new knowledge, by adding new crop and weed 
species as well as management techniques.

All these advantages are subject to the model’s prediction quality, which must 
be confirmed by comparing model simulations to independent observations or 
expertise (model evaluation). This step is even more crucial for a mechanistic 
model aggregating data and models from different teams and disciplines, to make 
sure that the new entity produces consistent results. Though this step has been 
carried out for FlorSys, it also pointed to a major drawback of complex mecha-
nistic models (i.e. the difficulty to find adequate data for evaluating the model and 
its many submodels).

The possibility of continuous model evolution is crucial as, despite its complex-
ity, FlorSys (and its derivate DeciFlorSys) neglect several processes that are 
essential for the more innovative cropping systems, particularly in a context of crop 
diversification, input reduction and climate change. For instance, including compe-
tition for soil nitrogen would improve the assessment of legumes or drought- 
resistant crops in rotations and mixtures.

The synthesis of the various case studies demonstrated the usefulness of FlorSys 
not only for synthesizing knowledge on biophysical processes implicated in crop-
ping system effects but above all for producing emerging knowledge on the func-
tioning of the agroecosystem, and for promoting this knowledge among farmers. In 
terms of integrated weed management, the many studies carried out with FlorSys 
to date demonstrated that, generally, (1) weed damage can be controlled with few or 
no herbicides if the cropping system is consistently redesigned, (2) many conclu-
sions in terms of crop diversification only have a local validity, (3) which proves the 
need for flexible rules and (4) the usefulness of models such as FlorSys and opti-
misation algorithms to establish these rules.

11 How to Use a “Virtual Field” to Evaluate and Design Integrated Weed Management…
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Chapter 12
Ryegrass Integrated Management (RIM)–
Based Decision Support System

Joel Torra and Marta Monjardino

Abstract RIM, or “Ryegrass Integrated Management”, is a model-based decision 
support system (DSS) for weed management that aims to deliver key recommenda-
tions to manage herbicide resistance (HR). Its success as a DSS for HR manage-
ment is proven by the various adaptations of RIM to a range of weed species and/or 
cropping systems: Multispecies RIM for Lolium rigidum and Raphanus raphanis-
trum in Australia, Wild Radish RIM for Raphanus raphanistrum in Australia, PIM 
for Papaver rhoeas in Spain, RIMPhil for Echinochloa crus-galli in the Philippines, 
BYGUM for Echinochloa colona in Australia, PAM for Amaranthus palmeri in the 
USA, Brome RIM for Bromus spp. in Australia, Barley Grass RIM for Hordeum 
glaucum in Australia, SA-RIM for Lolium rigidum in South Africa and DK-RIM for 
Lolium multiflorum in Denmark. This chapter will describe the rationale, structure 
and strengths of these RIM-based DSS to manage HR.

Keywords Adoption · Bioeconomic model · Herbicide resistance · IWM · Lolium 
rigidum · Annual ryegrass · Simulation modeling

12.1  Introduction

Cropping enterprises in Australia, as in many parts of the world, are heavily depen-
dent on herbicides for weed control. However, during the 1990s, the phenomenon of 
herbicide resistance in prominent crop weeds increased dramatically, especially in 
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the dominant weed species of Australian cropping, Lolium rigidum Gaud. (annual 
ryegrass) (Owen et al. 2014).

Lolium rigidum has been able to develop resistance to a broad spectrum of sites 
of action (SoA) in Australia, including almost all herbicide chemistries currently 
available. Therefore, it can evolve resistance to any existing SoA.  Moreover, 
 multiple and cross-resistant populations are common by means of enhanced metab-
olism, giving unpredictable resistance patterns (Busi and Powles 2016).

The evolution of herbicide-resistant populations of L. rigidum led Australian 
weed researchers to promote an integrated weed management (IWM) approach that 
combines chemical, physical and biological practices with the aim to kill existing 
weeds, prevent seed set and deplete the seed bank (e.g. Matthews et al. 1996; Powles 
et al. 1997).

A consequence of herbicide resistance is that integration with non-herbicide 
methods for weed control is required. Alternatives to herbicides include a return to 
integrated strategies that had been minimised as a result of herbicide efficacy, as 
well as the potential for innovative new practices. IWM strategies rely on ecological 
processes, physical and cultural control methods, and a reduced range of herbicides 
of types that, in combination, are sustainable (Powles and Bowran 2000). Thus, by 
necessity, many Australian farmers started adopting diverse combinations of weed 
control measures but faced a number of difficulties in their decision-making about 
the implementation of IWM programmes. These include (1) they may be unfamiliar 
and inexperienced with a number of the control options; (2) strategies must be eval-
uated over the longer term; (3) the long-term impacts of multiple control options are 
difficult to predict; (4) the impacts of individual methods within an integrated strat-
egy are difficult to interpret from field observations; (5) some strategies have indi-
rect and direct costs; and (6) there are many possible combinations of methods to be 
considered. Given these difficulties, IWM within farming systems benefited from a 
decision support system (DSS) approach for farm advisors and farmers.

DSS development has focussed on the tactical/strategic planning problems, 
where alternative weed control scenarios can be tested and compared according to 
their economic output over a long-term horizon (Pannell et al. 2004; Torra et al. 
2010). Some DSS, such as the RIM-based tools, do not include automated optimisa-
tion features nor provide management recommendations. Instead, users can easily 
experiment with options and visually compare the consequences of their manage-
ment choices (Lacoste and Powles 2015).

12.2  The Original RIM Model

12.2.1  Motivation for Model Development

RIM—Ryegrass Integrated Management—is a model-based DSS originally devel-
oped for testing the biological and economic performance of integrated L. rigidum 
management strategies for dryland broadacre systems of the southern Australian 
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grain belt. The model simulates a comprehensive set of weed management methods, 
including both herbicide and non-herbicide options.

Simpler models that pre-dated and led to the development of RIM are described 
by Bennett and Pannell (1998), Gorddard et al. (1995, 1996), Schmidt and Pannell 
(1996) and Stewart (1993), all from Western Australia. Apart from these publica-
tions, there is little in the literature on economic aspects of herbicide resistance 
management, an exception being Orson (1999).

RIM’s first phase of development spanned several years starting in the late 1990s 
which culminated in 1999 with RIM’s first official launch and in 2004 with RIM 
final version (version RIM 2004), described in Pannell et al. (2004).

The core of RIM, including baseline data, results from the collective effort of 
many scientists within various institutions, including the University of Western 
Australia (UWA), the Australian Herbicide Resistance Initiative (AHRI), the 
Department of Agriculture and Food of Western Australia (DAFWA), the University 
of Adelaide, the Cooperative Research Centre for Weed Management (Weeds CRC) 
and the CSIRO.  More recently, significant model improvements led to the 2013 
launch of redeveloped RIM (version RIM 2013) as an open-access product (Lacoste 
and Powles 2015, 2016).

12.2.2  Model Description

RIM is a dynamic simulation model that combines weed, crop and pasture biol-
ogy, agronomy and economics in more than 500 parameters, many of which are 
adjustable by the user (Fig.  12.1). Specification of values for each of these 
parameters was a major task in its development. Sources of data and informa-
tion were numerous and diverse. Economic parameters were obtained from an 
existing whole-farm economic model (Kingwell and Pannell 1987), and updated 
from budget guides published for farmers. Parameters for control effectiveness 
of weed control options were estimated based on long-term field experiments 
designed to evaluate their effects and from other field trials conducted by 
DAFWA. Parameters for weed competition functions were calibrated in coop-
eration with specialists from DAFWA to provide relationships consistent with 
field trial evidence.

RIM users select a crop–pasture sequence over a 10-year period and specify a 
feasible agronomic strategy that combines a range of chemical and non-chemical 
practices, based on pre-defined control efficacy values. The main outputs of the 
model are financial gross margins ($/ha) and weed plant and seed numbers per hect-
are, which change with the strategy selected. Other outputs include weed control 
expenses and income for each enterprise. Figure 12.2 provides a snapshot of the 
core page of the RIM model. A more detailed description of RIM can be found in 
Pannell et al. (2004) and Lacoste and Powles (2014, 2015).
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12.2.3  RIM Adaptations to Other Weed Species and Cropping 
Systems

Since the development of the original RIM model in 2002, several versions have 
been created for a range of herbicide-resistant weeds and cropping systems around 
the world (Table 12.1). Weed species modelled so far include L. rigidum in Australia 
and South Africa; Raphanus raphanistrum, Echinochloa colona, Bromus sp. and 
Hordeum glaucum in Australia; Papaver rhoeas in Spain; Echinochloa crus-galli in 
the Philippines; Amaranthus palmeri in the USA; and Lolium multiflorum in 
Denmark. Development of RIM adaptations to several other weed species is cur-
rently underway in Australia and Denmark, and there are plans for a Laos version as 
well (based on RIMPhil).

All RIM versions are deterministic and do not represent annual variations in 
weather, yield, prices, costs and herbicide performance. They represent only a 
single field and a single weed species, with the exception of Multispecies RIM 
that represent two weeds: a grass species and a broadleaf species. With the 

Fig. 12.1 Key relationships between the main components of the RIM model (Source: Lacoste 
and Powles 2015)
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expansion of RIM and the desire to retain the RIM brand, the original model 
became known as Ryegrass RIM.

12.2.4  Model Validation

The biological output of the Western Australian version of Ryegrass RIM (Pannell 
et al. 2004) has been validated against field data, as reported in Draper and Roy 
(2002). In addition, sensitivity analysis is a useful approach for evaluating the sig-
nificance of data deficiencies and facilitating a more focussed research effort 
(Pannell 1997), and users can readily alter the biological and economic parameter 
values to suit their particular situation.

12.2.5  Model Applications: Examples of Scenario Analyses

The RIM model has been used in a range of bioeconomic analyses of L. rigidum 
management, including in a specific research project testing a novel metaheuristic 
optimisation technique, compressed annealing (CA), implemented in RIM as an 

Fig. 12.2 Snapshot of the core page of the Ryegrass RIM model: example of strategy building and 
associated key bioeconomic outputs
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optimisation algorithm (Doole and Pannell 2008a). While CA is currently unavail-
able to all RIM users, it was effectively used to evaluate the potential economic 
value of a range of strategies to control L. rigidum in the Western Australian dryland 
agriculture, such as the following:

• Crop rotations including Medicago sativa L. (lucerne or alfalfa) phases (Doole 
and Pannell 2008b);

• Crop rotations including a popular pasture species, Ornithopus sativus Brot. cv. 
Cadiz (French serradella) (Doole et al. 2009);

• Ungrazed pasture fallows grown tactically between crop phases (Doole and 
Weetman 2009);

• Crop rotations including the newly developed Trifolium dasyurum C.  Presl 
(Eastern star clover), a legume pasture species with delayed germination suited 
to short pasture phases (Doole and Revell 2010).

Table 12.1 Existing versions of the RIM model adapted to different herbicide-resistant weed 
species and cropping systems worldwide

Name Weed species
Region/
Country

Crop 
system

No. of 
crop/
pasture 
options Key publications

Ryegrass 
RIM

Lolium rigidum Western/
Southern 
Australia

Grain–
livestock

7 Pannell et al. (2004) 
and Lacoste and 
Powles (2015, 2016)

Multispecies 
RIM

Lolium rigidum 
and Raphanus 
raphanistrum

Western 
Australia

7 Monjardino et al. 
(2003)

Wild radish 
RIM

Raphanus 
raphanistrum

Western 
Australia

7 Monjardino et al. 
(unpublished)

PIM Papaver rhoeas Spain Winter 
cereals

3 Torra et al. (2010)

RIMPhil Echinochloa 
crus-galli

Philippines Rice 1 Beltran et al. 
(2012a)

BYGUM Echinochloa 
colona

Northern 
Australia

Cotton–
grain

8 Thornby and Werth 
(2015)

PAM Amaranthus 
palmeri

Southern 
USA

Cotton, 
corn, 
soybean

6 Lindsay et al. (2017)

SA-RIM Lolium rigidum Western 
South Africa

Winter 
cereals

4 Spammer (2018)

Brome RIM Bromus sp. Southern 
Australia

Grain–
livestock

7 Monjardino and 
Llewellyn (2018)

Barley grass 
RIM

Hordeum 
glaucum

Southern 
Australia

7

DK-RIM Lolium 
multiflorum

Denmark Grain–
pasture

8
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12.2.6  Adoption and Current Status

The RIM model can be used either as a management, training or research tool (i.e. 
hypothesis generator). It is therefore aimed at a wide audience in the agricultural 
field, including the following:

• Farmers attempting to make weed management decisions;
• Private consultants, extension agents or agribusiness agronomists wishing to pro-

vide advice to their clients;
• Facilitators running RIM workshops with groups of farmers;
• Researchers, students and others wishing to understand the management of a 

particular weed species within farming systems.

The tool is most often used in workshops with a combination of farmers, advisers 
and agronomists with the goal to provide answers to a range of questions, such as 
the following:

• Which combination of control options and crop rotations provides the best over-
all weed management system in the long-term?

• How fast can a specific weed problem develop?
• How can income be maintained if herbicides become ineffective?
• If a pasture phase is included, how long should it be for?
• Is it worth investing in specific machinery? Is a particular treatment (e.g. green 

manuring) a profitable practice? If so, under what circumstances?

Between 2003 and 2005 several RIM workshops were conducted across the 
states of Western Australia—WA, South Australia—SA, Victoria—Vic and New 
South Wales—NSW.  These workshops included the release of an updated RIM 
package with a pea crop and the option for top crop treatment. Some RIM work-
shops were delivered as part of the national adviser IWM training programme (118 
advisers, 6 workshops NSW, Vic, WA). Another series of RIM workshops on the 
topic “Breaking the bank—managing weeds for the future” was delivered to 200 
farmers and 82 advisors as part of the Victorian DPI State Focus 2004.

Most of these workshops were concluded with questionnaires for evaluating 
RIM among its target audience, that is, farmers and consultants of the southern 
Australian grain belt. Key findings following the evaluation of 10 herbicide resis-
tance workshops using RIM were as follows:

• Using RIM was stated as a highlight of the workshops, which were highly valued 
overall. Almost 90% of participants thought RIM was useful and a good learning 
experience;

• Participants saw RIM as an engaging, accessible “hands-on” tool;
• Particularly praised was the possibility of exploring scenarios through simula-

tion, and the group interaction and discussions;
• 80% of the participants said attending the workshop changed their perception 

about herbicide resistance and as many specified they may change their crop–
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weed management as a result, particularly specific techniques and/or increasing 
the overall system diversity;

• Suggested changes to RIM revolved around adding or developing more options 
(management and enterprises).

A broader evaluation of extension on management of herbicide-resistant weeds 
by means of RIM workshops confirmed that “changes in the perceived short-term 
economic value of some weed management practices did occur where the broader 
value of practices to the farming system, not necessarily relating to weed control, 
could be demonstrated. This also led to more growers deciding to adopt those prac-
tices” (Llewellyn et al. 2005).

Since the 2003–2005 workshops, uptake of the RIM model and manual package 
roughly doubled, reaching a record of 500 copies in 2005 (Lacoste et  al. 2013). 
Between 2005 and 2012, records show that, while less than 10 copies of RIM 2004 
were requested in total, 10–15 IWM workshops were delivered annually by consul-
tants in WA, NSW and SA with RIM as a key component. In addition, a few RIM 
sessions a year were run with students in universities in Australia (e.g. UWA, 
Charles Sturt University, Cleve Area School), as well as the UK and Canada. In 
2006, RIM featured prominently in the programme of an EWRS-funded International 
Workshop on Bio-economic Modelling for Weed Management held in Denmark. 
During 2017–2018, eight workshops have been conducted with farmers, advisers 
and or/researchers using the new Brome and Barley Grass RIM tools.

Despite a lack of knowledge of the actual number of people who have adopted 
the RIM models suite in Australia and beyond, recent records of the number of RIM 
workshops delivered, count of model downloads from the Australian Herbicide 
Resistance Initiative website (https://ahri.uwa.edu.au/), count of podcast listeners 
and number of RIM-related publications and citations provide an indication of at 
least the interest generated in the tools (Table 12.2).

12.3  Multispecies RIM: Lolium rigidum and Raphanus 
raphanistrum in Australia

12.3.1  Motivation for Model Development

Lolium rigidum and Raphanus raphanistrum L. (wild radish) dominate and co-exist 
throughout southern Australian dryland cropping regions (Owen et al. 2014; Walsh 
et al. 2001). R. raphanistrum and L. rigidum are economically important weeds of 
crops in many parts of the world, especially Australia, and herbicide-resistant popu-
lations are now widespread in the cropping regions of Western Australia (Lu 
et al. 2019).

Widespread herbicide resistance in both these species has led to the need to adopt 
even more diverse and complex IWM practices, which require evaluation of their 
impact on the farming system. Therefore, a multispecies version of the RIM model 

J. Torra and M. Monjardino

https://ahri.uwa.edu.au/


257

was developed to compare long-term economic and weed population outcomes of 
different integrated management scenarios.

12.3.2  Key Model Updates and Changes

The original single-species Ryegrass RIM model was extended to include 
R. raphanistrum biology and additional weed management practices used to control 
this weed species. Changes were made to key biological processes such as seed 
germination, production and mortality, plant growth, as well as inter- and intra- 
species competition to account for the multiple weed effects in the crop field.

Careful selection of a multispecies competition approach for use in the 
Multispecies RIM model resulted in a single crop yield function approach, capable 

Table 12.2 Key indicators of dissemination, use and adoption of the Australian adaptations of 
RIM

Name

Total 
number of 
workshops 
delivered

Count of 
model 
download 
since online 
release

Number of 
webinar/
podcasta 
listeners RIM-related publications

Number 
of 
citationsb

Ryegrass 
RIM

70–100 328c – Pannell et al. (2004), 
Doole and Pannell 
(2008b), Doole et al. 
(2009), Doole and 
Weetman (2009); Doole 
and Revell (2010) and 
Lacoste and Powles (2014, 
2015, 2016)

272

Multispecies 
RIM

– – – Monjardino et al. (2003, 
2004a, b, 2005)

109

Wild radish 
RIM

– – – Monjardino et al. 
(unpublished)

–

BYGUM – 255 90 Thornby and Werth (2015) –
PAM – 182 – Lindsay et al. (2017) 3
Brome RIM 6 264 143 Monjardino and Llewellyn 

(2018) and Llewellyn et al. 
(2018)

2

Barley grass 
RIM

2 250 119 Monjardino and Llewellyn 
(2018)

2

ahttps://weedsmart.org.au/webinars/rick-llewellyn-describes-new-brome-rim/ (launched 
20/09/2017). https://ahri.uwa.edu.au/podcast/new-barley-grass-and-brome-rim/ (launched 
06//09/2017); https://ahri.uwa.edu.au/podcast/barley-grass-rim-is-now-available/ (launched 
01/08/2018)
bGoogle Scholar (accessed 27 Feb 2019)
cSince the counter feature was included in 2017—model uptake expected to be much higher since 
first model release in the early 2000s
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of representing different crop plant densities and the realistic features of crop–weed 
and weed–weed competition, including the fact that the effects of a weed on crop 
yield depend on the density of another species, and that high densities of different 
weeds result in different minimum crop yields (Monjardino et al. 2003).

The Multispecies RIM accounts for a broader range of weed control options, 
including herbicides for both grass and broadleaf control. Each control treatment 
has its own impact on weed mortality and seed set, based on the control efficacy 
parameters represented in the model for L. rigidum and R. raphanistrum. The Multi- 
species RIM model is not a resistance model as it excludes the genetics of resis-
tance. However, it evaluates the effects of resistance by allowing the user to specify 
the herbicide resistance status of both weed species with respect to each of nine 
herbicide mode-of-action groups.

12.3.3  Model Applications: Examples of Scenario Analysis

Multispecies RIM has been used to evaluate weed management scenarios for co- 
existing herbicide-resistant species by investigating the implications of different 
crop–pasture rotational sequences and varying herbicide availability. Examples of 
scenario analyses include the economic value of including non-cropping phases in 
the rotation, such as haying/green manuring (Monjardino et al. 2004a) and pasture 
phases (Monjardino et  al. 2004b), and the value of glyphosate-resistant canola 
(Monjardino et al. 2005) in the management of L. rigidum and R. raphanistrum in a 
Western Australian farming system.

Results indicated that, while the inclusion of hay/green manuring did not gener-
ally increase returns (except in cases of extreme weed numbers and/or high levels of 
herbicide resistance), involving occasional 3-year phases of pasture in the sequence 
was competitive with the best continuous cropping rotation, particularly where her-
bicide resistance was at high levels. In contrast, the clear benefits of glyphosate- 
resistant canola over the commonly grown triazine-resistant canola would need to 
be weighed up against potential risks to marketability (due to consumer resistance) 
and risks of increased weed resistance to glyphosate (due to increased selection 
pressure). Overall, the Multispecies RIM analyses revealed that economic differ-
ence between the scenarios is less due to differences in weed densities than to dif-
ferences in total weed control costs.

12.3.4  Adoption and Current Status

Widespread use of Multispecies RIM has been limited due to lack of effective 
calibration. The L. rigidum section of the model has undergone a fairly extensive 
validation process, particularly in regard to input data, individual functions and 
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testing of population dynamics (Draper and Roy 2002). However, the R. raphanis-
trum  section was less thoroughly validated given that only limited relevant 
research data was available at the time of development. Specifically, more data are 
needed in the areas of R. raphanistrum population dynamics, weed–crop competi-
tion and weed control by non-herbicide methods. Multispecies competition also 
requires new research attention. In addition, Multispecies RIM would greatly ben-
efit from an upgrade to the current, more user-friendly format (Lacoste and 
Powles 2015).

12.4  Wild Radish RIM: Raphanus raphanistrum in Australia

12.4.1  Motivation for Model Development

Wild Radish RIM was developed in the sequence of Multispecies RIM, when the 
team identified the opportunity to easily create a similar tool designed specifically 
for the evaluation of long-term management strategies for the control of R. raphanis-
trum in western Australian broadacre agriculture.

12.4.2  Key Model Updates and Changes

Wild Radish RIM was essentially created by removal of all parameters and relation-
ships relating to L. rigidum and weed–weed interactions present in the Multispecies 
RIM. Likewise, considerable effort was expended on data collection for R. raphanis-
trum, but there are still areas where the available biological information is relatively 
weak, or has not been updated since model development in the early 2000s. This 
seems inevitable in such a comprehensive model.

12.4.3  Model Applications: Examples of Scenario Analysis

Wild Radish RIM has been used to investigate the impacts of changing farm enter-
prise sequences for R. raphanistrum control. That analysis concluded that the choice 
of crop–pasture sequence had major implications for the management of this weed 
species. In particular, inclusion of pasture phases had the potential to reduce reli-
ance on selective herbicides and other practices, despite poor economic returns 
given the assumed market conditions at the time. Overall, the unpublished results 
indicated the potential for more diverse rotations to allow for more flexible manage-
ment of R. raphanistrum.
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12.4.4  Adoption and Current Status

Wild Radish RIM has never been released to potential users outside the research 
team, partly because R. raphanistrum often coexists with L. rigidum in cropping 
fields, thus giving Multispecies RIM a relative advantage over the single-weed 
model. In addition, Wild Radish RIM would also benefit from stronger validation of 
the R. raphanistrum component, as well as an upgrade to the newest format (Lacoste 
and Powles 2015).

12.5  PIM: Papaver rhoeas in Spain

12.5.1  Motivation for Model Development

Papaver rhoeas L. (common corn poppy) is the most important dicotyledonous 
weed species infesting winter cereals in southern Europe. Because of high fecun-
dity, highly persistent seeds and an extended period of germination, P. rhoeas is 
difficult to control and can substantially reduce grain yields (Torra and Recasens 
2008). Control has become worse with the appearance of herbicide resistance to 
ALS inhibitors and/or synthetic auxins in several European countries (Heap 2019). 
Resistance mechanisms to group B are quite well established (Délye et al. 2011; 
Rey-Caballero et al. 2017a), and significant advances have occurred for group O 
(Rey-Caballero et al. 2016; Torra et al. 2017). In Spain, it is estimated that 40% of 
the dry-land cropping fields infested with P. rhoeas harbour some type of herbicide- 
resistant biotype (CPRH 2017). This scenario was the key motivation for develop-
ing a RIM-based DSS, the Poppy Integrated Management (PIM), to help Spanish 
farmers better manage this weed species (Torra et al. 2010).

12.5.2  Key Model Updates and Changes

PIM simulates the population dynamics of P. rhoeas over a 20-year period within 
a single cereal field. The model operates biologically at the level of nine periods 
in which the agronomic year is divided based on timing of control treatments, till-
age operations and sowing dates. In this version, some structural modifications 
were made compared with the original RIM model (Pannell et al. 2004) in order 
to better accommodate the biology of P. rhoeas and the Spanish agronomic 
context.

The most significant change in PIM was the inclusion of four seed bank layers of 
5 cm down to 20 cm because it was considered necessary to simulate seed move-
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ment in the soil profile associated with the different soil tillage systems that can be 
present in Spain (Torra et al. 2010). In brief, the model draws from matrices of seed 
movement from one layer to another as a result of tillage operations. Different rates 
of seed bank decline for each soil layer depending on soil cultivation were also 
incorporated into PIM, along with different emergence rates in cultivated versus 
uncultivated soil (Cirujeda et al. 2006, 2008).

Users of PIM might specify the crop sequence (barley, wheat and fallow) and any 
feasible combination of 38 different weed management practices, including selec-
tive herbicides (14), non-selective herbicides (1), biological and cultural treatments 
(11) and user-defined treatments (1).

12.5.3  Model Applications: Examples of Scenario Analysis

This DSS may be used to evaluate weed management scenarios by investigating 
the implications of different tillage, fallow and cereal rotational sequences, as 
well as constraints on herbicide availability. Model validation showed that PIM 
was sufficiently accurate for predicting P. rhoeas population dynamics within a 
single season (Torra et  al. 2010). The simulation of three different scenarios 
(mouldboard ploughing, minimum tillage and zero tillage) showed that profit 
increased as tillage operations were reduced, with the best income for the zero-
tillage scenario. Conversely, seed bank depletion improved in the two scenarios 
with tillage. A combined scenario (7 years with zero tillage, 2 with minimum till-
age and 1 with ploughing) was a good compromise between profitability and 
P. rhoeas management, representing an 83% seed bank reduction over 10 years 
(Torra et al. 2010).

12.5.4  Adoption and Current Status

This version is an experimental tool that has never been released to potential users. 
Due to lack of resources, its update and maintenance has ceased, making impossible 
the delivery to farmers and other stakeholders. A decade after its creation, PIM has 
remained mostly unchanged with its use restricted to a limited number of universi-
ties and private educators (J. Torra, personal communication). An upgrade should be 
undertaken considering that new herbicides have become available and others 
banned in Europe, or crops that have since become part of the rotations, such as 
winter oilseed rape and field pea. Likewise, a new validation process should be 
undertaken, particularly in regard to weed population dynamics into the mid- to 
long-term, as several relevant field studies have since been conducted (Torra et al. 
2011, 2018; Rey-Caballero et al. 2017b).
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12.6  RIMPhil: Echinochloa crus-galli Complex 
in the Philippines

12.6.1  Motivation for Model Development

Echinochloa crus-galli L. (annual barnyard grass) is the most harmful weed species 
in rice crops due to its rapid development to seed shed, high phenotypic plasticity, 
high reproduction capacity, germination flexibility, and strong competitive ability 
(Beltran et al. 2012a). Moreover, E. crus-galli is the second weed species in the 
world resistant to at least 10 different SoA (Heap 2019). In addition, E. crus-galli is 
one of the most serious weeds of rice crops in the Philippines, where butachlor 
(group K3)- and propanil (group C2)-resistant populations have been reported in 
some important rice-growing areas (Juliano et al. 2010). Consequently, rice farmers 
throughout the Philippines were encouraged to use IWM strategies, which led to the 
development of RIM Philippines (RIMPhil), a bioeconomic model to inform weed 
management decisions and to analyse the implications of IWM programmes for rice 
farmers in the Philippines (Beltran et al. 2012a).

12.6.2  Key Model Updates and Changes

RIMPhil simulates predicted effects on the E. crus-galli population, grain yield and 
profit over 5, 10, 15 and 20-year periods a rice field. The RIMPhil model incorpo-
rates around 300 parameters, typical for a lowland irrigated rice farm, but could 
readily be adapted to similar rice production systems in other countries (Beltran 
et al. 2012a). The model user defines the maximum number of applications of each 
group of herbicides that can be used prior to the onset of herbicide resistance, as in 
the original RIM (Pannell et al. 2004). RIMPhil includes herbicide (selective, non- 
selective, pre-emergence, early or late post-emergence) and non-herbicide weed 
controls. Non-chemical tactics include different types of stale-seedbed preparation 
(also with chemical control), tillage, seeding (transplanted or direct wet-seeded 
rice), seed quality, seeding rates and manual or mechanical weeding at different tim-
ings. Even though some crop rotation options are available in these farming sys-
tems, RIMPhil focusses on a single crop, rice (Beltran et al. 2012a).

The model assumes that the weed has different emergence flushes during the 
growing season. Potential weed-free yield is higher in the dry than in the wet crop-
ping season. Cohorts that emerge and survive in direct-seeded rice are more com-
petitive than in transplanted crops. However, the biological output of RIMPhil has 
not been validated given the absence of reliable information, particularly over a 
series of years (Beltran et al. 2012a). On the other hand, RIMPhil demonstrates that 
the framework in which RIM was developed is flexible enough to adapt it to very 
different farming/weed scenarios.
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12.6.3  Model Applications: Examples of Scenario Analysis

Bioeconomic analyses indicated that a mixture of chemical and non-chemical treat-
ments can provide good E. crus-galli control in Philippine rice crops, maximising 
long-term profit while lowering weed plant densities and seed banks (Beltran et al. 
2012a). The model is particularly useful for testing scenarios of labour intensifica-
tion and higher resistance to herbicides (Beltran et al. 2012b). Outputs of such anal-
yses indicated that herbicides would become increasingly attractive relative to 
manual weeding as labour cost increases and also that the onset of herbicide resis-
tance would result in substantial losses in farm profit.

12.6.4  Adoption and Current Status

The authors are unaware of the adoption and current status of RIMPhil or of future 
updates and improvements, apart from those detailed in the published literature. A 
potential project is under consideration for adapting RIMPhil to the Laos context.

12.7  BYGUM: Echinochloa colona in Australia

12.7.1  Motivation for Model Development

Glyphosate is the cornerstone of chemical weed management for cotton growers in 
Australia in the last decade. However, the appearance of several glyphosate- resistant 
weeds, such as Echinochloa colona L. (awnless barnyard grass), is challenging 
weed management in these cropping systems. The referred species is one of the 
most common in cotton fields, and glyphosate resistance is now widespread. 
Moreover, populations resistant to photosystem II inhibitors (atrazine) are also 
reported in the country (Heap 2019). This motivated using the basis of RIM to cre-
ate a new tool, the BarnYard Grass Understanding and Management (BYGUM) to 
help growers’ engagement in IWM thinking and strategy development for subtropi-
cal Australian cotton–grain farming systems (Thornby and Werth 2015).

12.7.2  Key Model Updates and Changes

BYGUM extends the framework of RIM to northern subtropical Australian farming 
systems, where winter and summer crops (including irrigated and rainfed cotton, 
sorghum, corn and mung beans) and fallows, as well as new cover crops, are all 
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important components of the system. In BYGUM 1 year from the original RIM is 
divided into summer and winter periods, with all choices for each period as for a 
usual RIM year; therefore, 5 years is the time frame evaluated. BYGUM also allows 
for more weed control applications than RIM, including different herbicides and 
cultivation. BYGUM evaluates 5-year rotations including testing the weed manage-
ment and economic value of fallows, winter and summer cropping, cover crops, 
tillage, different herbicide options and herbicide resistance management. Some 
northern region-specific enhancements are included such as subtropical crop 
choices, barnyard grass seed bank, competition, ecology parameters and more free-
dom in weed control applications.

12.7.3  Model Applications: Examples of Scenario Analysis

This RIM-based DSS has been used to assess the remaining value of glyphosate in 
rotations with glyphosate-resistant E. colona, both with strong resistance (5% effi-
cacy) and moderate resistance (40% efficacy). The result was that after 5 years the 
system was still profitable if using high levels of crop competition to keep seed 
production (per escaping weed) low, while adding other tactics to effectively reduce 
the number of surviving plants to moderate/low levels (i.e. less than 14 plants per 
square meter at the end of the fifth season). BYGUM has been also used to test the 
value of a cover crop, showing that the benefit came, as expected, in the following 
crop, where the seed bank was driven down and the final weed density was kept low 
(www.cottoninfo.com.au).

12.7.4  Adoption and Current Status

To date, BYGUM has been used for creating extension materials around specific weed 
management issues. It has been successfully delivered to industry in a series of work-
shops over a 3-year period (2015–2018). Approximately 90 industry agronomists 
attended the workshops and received a copy of BYGUM subsequently. Also, there have 
been 255 individual user downloads so far. Despite no active plans to create a new ver-
sion of BYGUM, new funding to develop a multi-species version is highly sought after.

12.8  PAM: Amaranthus palmeri in the USA

12.8.1  Motivation for Model Development

Several attributes confer Amaranthus palmeri S. Wats. (Palmer amaranth) the capacity 
to become the most troublesome weed in row crops, especially in cotton and soybean, 
on much of the American continent. Such attributes include dioecy, C4 photosynthetic 
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pathway, high growth rate and reproduction capacity, genetic variability, multiple 
cohorts and stress tolerance (Palma-Bautista et al. 2019). This species has become even 
more concerning and widespread due to the evolution of multiple herbicide-resistant 
biotypes to glyphosate, ALS inhibitors, protoporphyrinogen oxidase inhibitors and/or 
triazines (Heap 2019). As a result, A. palmeri is very hard to control, and a zero-thresh-
old strategy has already been suggested for its management (Norsworthy et al. 2014). 
However, before the development of the Palmar Amaranth Management (PAM) model, 
no DSS was available to help demonstrate farmers the long-term biological and eco-
nomic viability of IWM strategies of this species (Lindsay et al. 2017).

12.8.2  Key Model Updates and Changes

Like RIM, PAM plans in a 10-year horizon to allow the user to simulate consecutive 
3-year crop rotations including mouldboard ploughing in Autumn (Fig.  12.3). 
A. palmeri management tactics include chemical and non-chemical approaches, 
such as crop rotation, row spacing, cover crops, seedbed preparation tillage prac-
tices, mouldboard ploughing and harvest-time weed seed control, among others. 
The economic component of PAM was designed to replicate southern US crop pro-
duction practices, and like RIM, uses crop budgeting and discounting techniques to 
determine the overall profitability of weed management strategies. However, a new 
key aspect of PAM is its ability to demonstrate the magnitude of long-term benefits 
(net present value, NPV) vs. potential short-term losses (Lindsay et al. 2017).

Another new feature is that the user can monitor the degree of diversity of weed 
control options employed as an indirect assessment of risk of resistance evolution, 
as well as the timing of escapes (Fig. 12.3). The resistance risk assessment uses 

Fig. 12.3 Snapshot of the core page of the PAM model: example of strategy building and associ-
ated risk assessment and weed escapes on left side
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23-parameter model with higher percentage scores indicating a lack of diversity in 
weed control tactics and more risk of resistance evolution. The PAM model is cur-
rently available for download at http://agribusiness.uark.edu/decision-support-soft-
ware.php#PAM.

12.8.3  Model Applications: Examples of Scenario Analysis

So far, two contrasting strategies have been compared to show the usefulness of 
PAM: a “Non-Diverse Options” strategy based on no-tillage and relying heavily on 
herbicides and planting only a few crop traits; and a “Diverse Options” strategy to 
reflect a diversified strategy that uses both chemical and nonchemical management 
options, such as fall cultural practices to drive seedbank near to zero and limit 
A. palmeri escapes (Fig. 12.4). Results showed that yields for the “Non-Diverse 
Options” strategy were volatile (and net returns became negative with years) com-
pared with the “Diverse Options” strategy, which maintained relatively constant 
yield potential near 100%, with net returns in the positive range of 415 to 880 USD 
per ha. Furthermore, the “Non-Diverse Options” showed 53% risk of resistance, 
whereas the “Diverse Options” strategy showed only 38% risk, as shown in Fig. 12.4 
(Lindsay et al. 2017).

12.8.4  Adoption and Current Status

The PAM model has been widely circulated through various outreach outlets 
and is currently used in extension activities. The major target audience for this 
tool is crop consultants and extension personnel, who run various scenarios and 

Fig. 12.4 Snapshot of two contrasting strategies (“Non-Diverse Options” versus “Diverse 
Options”) and associated key bioeconomic outputs and risks assessments on the left
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use the information in their weed management planning and outreach activities, 
while some progressive farmers also use this by themselves. A number of weed 
management and crop production scenarios can be simulated by the software 
and the outputs are used to quantify and demonstrate the long-term benefits of 
diversified weed management. The analytics data and downloads reports indi-
cate that the PAM software was downloaded 182 times, with the majority of 
users located across the southern USA. A recent user-survey has indicated that 
the most common users of the software were crop consultants, extension per-
sonnel and sales representatives, who collectively impact several hundreds of 
thousands of acres across the South since each of them serve several farmers. 
Thus, the tool has been widely impactful in management decision making in the 
southern region.

12.9  SA-RIM: Lolium rigidum in South Africa

12.9.1  Motivation for Model Development

This RIM adaption is focussed on winter cereal farming in the Central Swartland 
area of the Western Cape Province in South Africa. L. rigidum is the most important 
weed affecting crop production in the area, and farmers are heavily reliant on chem-
ical control. This heavy reliance on herbicides together with mal-practice regarding 
their application has caused L. rigidum to develop herbicide resistance. To date, 
resistance to glyphosate, paraquat, and ACCase and ALS inhibitors have been 
reported in South Africa (Heap 2019). That was why researchers from this area in 
South Africa were motivated to adapt RIM to this winter cereal farming system and 
develop the South Africa RIM (SA-RIM) (Spammer 2018).

12.9.2  Key Model Updates and Changes

This RIM adaptation targets the same key weed species in a similar farming system 
with a Mediterranean-type climate as found in Western Australia; therefore, not many 
changes were required compared to the original RIM. A group of experts validated the 
parameters and assumptions of the Australian version when no data from South Africa 
were available or reliable. Some of the main differences in SA-RIM include calcula-
tions not being based on one-hectare units, nor farm size being an option, like it is 
done in the Ryegrass RIM. Also, yield benefits of 20–30% are assumed in canola after 
legumes in this version but not in the original RIM. Moreover, maximum L. rigidum 
density was increased in SA-RIM because South African farmers are able to crop with 
a higher weed burden in their fields than their Australian counterparts. Finally, annual 
self-regenerating pasture legumes are very common in the crop rotation in this South 
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African region with more alkaline soils, so a decision was made to change subterra-
nean clover to Medicago spp. as a rotational pasture option in SA-RIM.

12.9.3  Model Applications: Examples of Scenario Analysis

So far, SA-RIM has only been used to assess the negative effect of L. rigidum her-
bicide resistance on the profitability of winter cereals. A non-resistance scenario 
was compared to two different resistance scenarios. While resistance always caused 
the highest reductions of gross margin under wheat monoculture, when any crop 
rotation was chosen these detrimental effects were alleviated, or even eliminated in 
a 10-year horizon in all simulations. Finally, the 4-year wheat Medicago spp. rota-
tion achieved the highest level of L. rigidum control in all three scenarios.

12.9.4  Adoption and Current Status

Since SA-RIM was developed in 2018, no more updates are expected, and its cur-
rent status has not changed.

12.10  Brome RIM: Bromus Sp. in Australia

12.10.1  Motivation for Model Development

Australian grain farms have the highest level of adoption of conservation cropping 
systems worldwide. These systems are built on three principles of minimum soil 
disturbance (i.e. minimum/zero tillage), permanent soil cover (retained stubble, 
crop/pasture cover) and diversity in rotations. Currently most broadacre grain farms 
routinely retain a majority of crop residues, and their ambition is to maximise stub-
ble retention provided that any impacts on crop performance and profitability can be 
managed. As a result, a new research initiative was funded to take a farming systems 
approach to maintain profitable farming business with retained stubble, including 
grass weed management in retained stubble CSIRO, part of a Grains Research and 
Development Corporation (GRDC) initiative. In particular, herbicide-resistant grass 
weeds, such as Bromus sp. L. (brome grass), Hordeum glaucum and L. rigidum, 
were considered a significant threat in most southern farming systems of Australia. 
Therefore, the Brome RIM model was developed (along with Barley Grass RIM and 
a southern version of Ryegrass RIM) to improve understanding of the impact of 
contemporary stubble management systems such as cutting heights, windrowing 
and inter-row sowing, on the seed bank dynamics of these weeds so that their threat 
can be better managed.
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12.10.2  Key Model Updates and Changes

Brome RIM represents the population dynamics of Bromus spp. over a period of up 
to 10 years. Key biological factors that drive the pattern of Bromus sp. population 
change over time include weed and seedbank population dynamics (i.e. germination 
rates during the growing season, and natural mortality rates of seedlings, dormant 
seeds during season and of seeds over summer), as well as weed–crop competition 
effects for each crop type. Overall, Bromus sp. has high seed dormancy and longev-
ity in the soil, is an aggressive germinator and is a very competitive grass weed 
against all crops, especially cereals (Kleeman and Gill 2009).

As part of the CSIRO/GRDC initiative, additional trials were conducted in 2017 
to collect biological data to inform Brome RIM. These complement the trials being 
run through grower groups including EPARF, UNFS and MSF on Bromus sp. 
Additional Bromus sp. focussed trials run by CSIRO include (I) interactive effect of 
pre-emergent herbicide and crop row placement on Bromus sp. control and (II) effi-
cacy of current and potential new pre-emergent herbicide options for Bromus sp. 
control (in collaboration with the University of Adelaide) (e.g. Kleeman and Gill 
2008; Boutsalis et al. 2014).

Based on feedback by workshop users, Brome RIM was further adjusted to 
achieve the following:

• Replace “Cadiz serradella” pasture with a grazing vetch option (both legumes) in 
order to get grazing value from vetch before it is brown manured. Inputs and 
costs were left unchanged.

• Replace the original “clover” pasture with a “clover/Medicago spp.” option to 
allow for different soil types—inputs and costs left unchanged.

• Include “higher crop density” as a more generic option, for example to show the 
impact of a better crop establishment on sandy soils.

12.10.3  Model Applications: Examples of Scenario Analysis

The new Brome RIM model has been used to illustrate the potential for improving 
crop establishment and thus competition against weeds that are becoming increas-
ingly difficult to manage in the southeastern dryland cropping regions of Australia 
(Monjardino and Llewellyn 2018). The results of this analysis indicate the potential 
for greater crop competition to reduce weed seedbanks and improve profit, at least 
for the default rotation and management strategy used in the models. This is particu-
larly relevant in the case of Bromus sp., which is often found on sandy soils where 
achieving strong crop establishment can be difficult.

Brome RIM has also been used in a brief analysis of crop sequencing for the 
Mallee (SA), which showed that weed management is a major driver of the overall 
profitability of crop sequences, in particular that broadleaf, Clearfield and hay crops 
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are effective tools to control Bromus sp. and improve the profitability of Mallee 
farming systems (Moodie 2017).

Finally, Brome RIM has been used to assess the cost-effectiveness of Bromus sp. 
management by using fenceless spatial grazing technology in sheep. Results dem-
onstrate the ability to use virtual fencing within a field to focus grazing pressure on 
a weedy area while successfully excluding livestock from areas where high stocking 
density would cause environmental damage and usually prevent the use of high 
grazing pressure as a weed control tool (Llewellyn et al. 2018).

12.10.4  Adoption and Current Status

Since online release in mid-2018, Brome RIM has been downloaded 264 times. In 
addition, it has been used in a series of five workshops with farmers and consultant 
agronomists in South Australia and Victoria.

12.11  Barley Grass RIM: Hordeum glaucum in Australia

12.11.1  Motivation for Model Development

Hordeum glaucum Steud. (barley grass), like Bromus sp. and L. rigidum, is an 
important weed in the conservation farming systems of southern Australia with 
focus on no-till, stubble retention and crop rotations (Llewellyn et  al. 2015). 
Managing these grass weeds is an increasingly challenging task requiring integra-
tion of several practices, often in low-rainfall, low-cost cropping environments with 
relatively limited herbicide options within cereal crops, and emerging herbicide- 
resistance risk (Owen et al. 2015). Hordeum spp. populations with delayed germi-
nation are now demanding a more strategic IWM approach be applied, hence the 
development of Barley Grass RIM.

12.11.2  Key Model Updates and Changes

Barley Grass RIM represents the population dynamics of Hordeum spp. over a 
period of up to 10 years. As for all RIM models, key biological factors that drive the 
population dynamics of the focus weed species change over time, including germi-
nation, growth, mortality and weed–crop competition effects for each crop type.

Hordeum spp. is considered a difficult weed to control due to its high seed 
germination potential, high seed dormancy and longevity in the soil, high disper-
sion potential, and a particularly short growing season, which allows it to set seed 
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even in the driest of seasons. In addition, it is an alternate host for a number of 
cereal diseases, such as take-all, harbour scald, net blotch and stripe rust (e.g. 
barley grass); its seed causes stock health problems, such as damage to skin, gums 
and eyes of sheep, fatal injuries in lambs, decreased bodyweight and reduced 
wool quality (e.g. barley grass); and it has only limited control with post-emer-
gence herbicides.

As part of the CSIRO/GRDC initiative, regional trials that were conducted in 
2017 to collect weed data also informed the Barley Grass RIM. These complement 
the trials being run through grower groups including EPARF, UNFS and MSF on 
Hordeum spp. (e.g. Mudge 2016; Fleet et al. 2017).

Barley Grass RIM has undergone similar adjustments to pasture and crop density 
representation as described for Brome RIM.

12.11.3  Model Applications: Examples of Scenario Analysis

Like Brome RIM, the new Barley Grass RIM model has been used to assess the 
effect of increased crop competition on reducing reliance on selective herbicides, 
lowering weed seed banks and increasing profitability over time in dryland cropping 
regions of Australia increasingly threatened by Hordeum spp. (Monjardino and 
Llewellyn 2018). This brief analysis highlights the long-term biological and eco-
nomic benefits of potential innovations that could improve crop competition, dem-
onstrating potential for analyses around specific technologies, such as high vigour 
cultivars (e.g. Mudge 2016), soil wetter agents and on-row sowing in non-wetting 
soils (McBeath et  al. 2017) that may increase the relative advantage of the crop 
against weeds.

12.11.4  Adoption and Current Status

Since online release in late 2018, Barley Grass RIM has been downloaded 250 times.

12.12  DK-RIM: Lolium multiflorum in Denmark

12.12.1  Motivation for Model Development

Lolium multiflorum Lam. (Italian ryegrass) is an increasing problem in Danish 
crop rotations with large proportions of winter cereals. Moreover, this species has 
developed resistance to ALS and ACCase inhibiting herbicides in Denmark (Heap 
2019). With this background the Australian DSS for herbicide resistance manage-
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ment, RIM was adjusted to Danish conditions by Aarhus University to develop 
DK-RIM (Sønderskov 2018).

12.12.2  Key Model Updates and Changes

One of the major changes in DK-RIM relative to the original RIM is offering the 
possibility of two sowing seasons; autumn and spring sown crops. Furthermore, 
DK-RIM does not include animal production and has a limited economic compo-
nent around purchases of equipment. A broader variety of crops has been imple-
mented compared to the original RIM, including winter wheat, winter barley, winter 
rye, spring barley, spring wheat, spring oat, winter oilseed rape and legumes. In 
addition, grass and grass clover can be included in the crop rotation, but are not 
cash-crops in the system. The main tools for the management of L. multiflorum 
include crop rotation, soil tillage, and the option to alternate herbicide modes of 
action. There are no harvest control options in Denmark, hence also not in 
DK-RIM. Options for desiccation and crop sacrifice have been built into this ver-
sion of the model.

12.12.3  Model Applications: Examples of Scenario Analysis

So far, DK-RIM has only provided an overview about which combination of control 
measures and crop rotations, such as spring or grass options, is the optimal strategy 
in the long term to manage L. multiflorum in Denmark. Also, DK-RIM allows users 
to choose between ACCase, ALS or metabolic resistant populations to understand 
which the best management practices are when different resistance profiles can be 
present.

12.12.4  Adoption and Current Status

DK-RIM has only had limited adoption due to its recent release but it has much 
potential for use in similar Scandinavian cropping systems. However, these 
authors are unaware of future updates and/or improvements. This DSS is in 
Danish, but an English translation of DK-RIM is available by contacting the 
developer. English documentation for DK-RIM was released in early 2019, and a 
scientific publication is planned. Users can download DK-RIM, along with a 
Danish users guide, from the web page https://www.landbrugsinfo.dk/Planteavl/
Sider/pl_19_AU_DK_RIM_bekaempelse_italiensk_rajgraes.aspx.
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12.13  Future Versions and Adaptations

The future release of RIM updates, as well as versions and adaptations for other 
weeds/cropping systems/countries is summarised in Table 12.3 and described in the 
sections below.

12.13.1  Blackgrass DK-RIM, Denmark

Alopecurus myosuroides Huds. (Blackgrass) is one of the most important grass- 
weeds in North-western Europe and is also the most important herbicide-resistant 
weed species in European agricultural systems (Keshtkar et al. 2015). In Denmark, 
populations with multiple resistance to the three SoA ACCase, ALS and Microtubule 
assembly inhibitors are prevalent. The widespread occurrence of particularly NTSR 
is a severe challenge to the effective management of A. myosuroides. In this country 
this challenge is even more prominent due to few SoA being available for its control 
mainly due to national regulation on groundwater protection (Keshtkar et al. 2015). 
This scenario is motivating the development of Blackgrass DK-RIM, a version of 
the L. multiflorum DK-RIM, by the same developers of the former Danish RIM- 
based DSS.

Information on the life of the weed seed bank (persistence) is critical for the 
growers to develop management practices for herbicide-resistant populations or for 
difficult-to-control weeds. At this stage, information on the rate of decline of seed 
banks for the nominated locally important weeds under field conditions is not avail-
able. Therefore, this project will undertake studies to quantify the rate of decline of 
weed seed banks under field conditions. In addition, there will also be investigation 
into seed production, dormancy, establishment pattern and phenology of the target 
weed species.

Weed biology information and practical management options will be used to 
update the RIM model, which will undergo further adaptation to accommodate the 
summer, weeds. The new Summer Weeds RIM will then be used by consultants and 
farmers to further understand the impact of their management decisions on 
these weeds.

Table 12.3 Ongoing adaptations and future releases of the RIM model

Name Weed species Country Crop system

DK-RIM 2 Alopecurus myosuroides Denmark Winter 
cereals

RIMLao Echinochloa crus-galli Southern 
Laos

Rice
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12.13.2  RIMLao, Laos PDR

A proposed research project would focus on adapting RIMPhil to the conditions of 
southern Laos in order to increase the capacity of smallholder farmers to reduce the 
impacts of weeds on rice systems in that region. Rice weeds, such as E. crus-galli, 
reduce yield and quality of rice, and limit adoption of new and improved crop estab-
lishment techniques, such as direct-seeding. Most smallholder farmers still use 
hand-weeding for weed control in Laos, but labour is scarce and costly, and alterna-
tive control methods are urgently required. To manage weeds effectively there is a 
need to introduce farmers and advisors to a range of cultural, physical and chemical 
methods for integrated weed management. Questions around, for example, whether 
the adoption of sustainable direct-seed rice production without or with minimal use 
of herbicides would be economically viable in the long term could be best answered 
using a RIM-type DSS.

12.14  Conclusions

The RIM-based models are tools aiming to aid complex farm managerial decisions 
and communication thereof. The software fulfils this objective by allowing users to 
assess the impacts of various management strategies in a relative manner. However, 
according to Lacoste and Powles (2015), “RIM only deals with a partial aspect of 
the herbicide resistance problem and does not replace expert judgment and direct 
observations. As such, it should be remembered that RIM is not a forecast model 
aiming to provide exact predictions. RIM is built with compromises, with accessi-
bility taking precedence over representativeness, simplicity over accuracy, and 
modelling efficiency over complexity.”

The key strengths of RIM can be summarised as follows:

• Its user-friendly platform allows farmers and industry professionals to conve-
niently test and compare the long-term performance and profitability of numer-
ous weed control options.

• Its decision support system can aid the delivery of key recommendations among 
the agricultural community for cropping systems threatened by herbicide 
resistance.

• Its research and training potential are particularly useful in workshops and stu-
dent fora with the goal to provide answers to a range of weed management ques-
tions involving complex trade-offs.

But to achieve the end use of RIM as a practical and effective DSS, a number of 
simplifications, exclusions and/or compromises in the assumptions behind RIM 
were deemed necessary. These include the following:

• Deterministic approach (vs. stochastic), where there is no representation of 
annual variations in weather, yield, prices, costs, herbicide performance, control 
efficacies, soil, germination, biomass growth, animal behaviour, etc.

J. Torra and M. Monjardino



275

• Crops and pastures are generic, i.e. enterprises do not represent a given cultivar 
or species but rather a type of enterprise, defined by adjustable characteristics 
and management specifics.

• Single field and single weed species are used in all model adaptations, except the 
Multispecies RIM that represents a grass species and a broadleaf species.

• Weed genetics and the evolution mechanisms of herbicide resistance are not 
modelled. Simulation of a resistant weed can be represented by altering the con-
trol efficacy of herbicides.

• The environmental impact of weeds and/or management practices is only par-
tially represented, as is the case of increased risk of soil erosion by specific phys-
ical practices e.g. full-cut seeding and mouldboard plough.

Overall, RIM is a unique decision support tool with potential to help with the 
extension effort to advocate sustainable practices when the rise of herbicide resis-
tance poses a serious challenge to the agricultural industry, in Australia and 
worldwide.
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Chapter 13
IPMwise: A Decision Support System 
for Multispecies Weed Control in Cereal 
Crops
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Abstract Integrated weed control is mandatory in the current legislative frame-
work for sustainable plant protection programmes. The advent of synthetic pesti-
cides in the 1950s allowed farmers to simplify cropping systems and forego more 
complicated crop protection strategies, especially in cereal production. Moreover, 
the awareness of the necessity to decrease pesticide use has been raised consider-
ably since the mid-1980s in Europe. In this work, a Danish Decision Support System 
(DSS) for Field-Specific Crop Management is presented. This DSS, known as Crop 
Protection Online (CPO) and later IPMwise, optimizes herbicide weed control by 
providing recommendations of specific herbicide solutions to achieve a required 
control level. It has been developed since the 1980s, and the actual version (IPMwise) 
has recently been adapted to the edaphic and climatic conditions of Spain.

The adaptation process required (1) generation of dose–response curves for 
Spanish-relevant weed species and (2) calculation and adjustment of the shift of the 
dose–response curves according to phenological stages of the weed species. 
IPMwise was validated in winter cereal field trials from 2010 to 2018 and in maize 
from 2016 to 2018. IPMwise recommendations were compared to the efficacies 
obtained with standard herbicide treatments decided by local advisors. In 84% of 
the evaluated cases, efficacies were equal to or higher than those predicted by advi-
sors. Thus, IPMwise is a robust DSS tool showing the potential to decrease amounts 
of applied herbicides by at least 30% in Spanish cereal agricultural systems.
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13.1  Introduction

Agriculture and livestock farming require continuous evolution towards more effi-
cient production processes. This is applicable for all inputs, but due to various rea-
sons, such as social acceptance and economics, it is especially applicable for 
pesticide use.

Pesticide use has increased exponentially due to its excellent cost–benefit rela-
tionship compared to other agricultural practices since its appearance in the market 
in the 1950s. For example, herbicide consumption in Spain was 6,326 metric tonnes 
in 1995 reaching 14,179 metric tonnes by 2013 (FAOSTAT 2016), being the major-
ity of this consumption related to winter cereal crops which in Spain totalizes about 
six million hectares (MAPAMA 2019).

Their excellent cost–benefit relationship in economic terms has led to a misuse 
of pesticides with a negative impact on non-target organisms and contamination of 
groundwater and surface water. However, the use of herbicides for nearly 60 years 
has created a deep knowledge of their advantages and disadvantages. For example, 
it is known that the effect of herbicides can be modulated more easily than other 
weed control methods. Thus, optimizing their use should consider both improving 
the economic efficiency of farms and also decreasing the negative environmental 
impacts of their widespread use. In addition, the evolution of society entails greater 
awareness of environmental issues, which has resulted in various directives and 
regulations in Europe. Within this legal framework various initiatives such as the 
Network of Excellence ENDURE and the PURE-IPM Project have been developed 
in order to promote tools, such as DSS for European farmers with the objective of a 
more sustainable use of pesticides.

Following this philosophy, CPOWeeds has been developed since the 1980s and 
the actual version (IPMwise) has currently been adapted to edaphic and climatic 
conditions in Spain. Conversely to other Spanish DSS for weed management (see 
Gonzalez-Andujar et al. 2010a, b; Torra et al. 2010), IPMwise does not focus only 
on specific weed species. Instead, the aim of IPMwise is to generate several alterna-
tives for tactical control, based on specific aspects that the user (advisors/farmers) 
can choose. The IPMwise response is based specifically on the weed community 
present in the plot, helping to assess the best spraying options from a list including 
most of the authorized herbicides for a given crop. In this way, IPMwise supports 
decision-making to improve current weed management practices.

In Spain, climatic conditions vary widely within the different parts of the coun-
try. It has been defined nine agroclimatic conditions taking into account the rainfall 
and temperature values of each locality (GENVCE 2015). Regarding temperature, 
the following areas have been established:

• Cold areas, with an average temperature below 11 °C in April.
• Temperate zones, with an average temperature between 11 and 13 °C in April.
• Warm areas, with an average temperature above 13 °C in April.

Regarding rainfall:
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• Semi-arid zones: Areas where annual rainfall is <500 mm.
• Subhumid zones: Areas with an annual rainfall >500 mm and <700 mm.
• Humid zones: Areas with an annual rainfall >700 mm.

Compared to Spanish agroclimatic conditions, Denmark presents colder envi-
ronments, with an average temperature in April below 7 °C with subhumid to humid 
zones depending on the distance to the sea. For that reason, the main issue to use 
this technology in Spain was to verify whether the assumptions calculated for north-
ern Europe remained valid for Spanish conditions considering different herbicide 
options and different weed communities.

13.2  Towards a Sustainable Use of Herbicides Using 
Precision Agriculture Techniques

In Western Europe, there has been a tradition to recommend herbicide treatment 
programmes on a regional level, as supported by regional advisors. This allowed for 
some differentiation, for example, in terms of adjustments of treatment programmes 
according to dominating weed species in each region.

A next step has been to encourage and equip farmers and advisors to promote 
decision-making and treatments at both farm and field levels. In this case, farmers 
may need support to (1) identify weed infestations, (2) to quantify needs for control 
and (3) identify suitable alternative accompanying options for a sustainable weed 
control.

Precision Agriculture (PA) techniques aiming to increase spatial resolution have 
been widely examined in terms of design and field validation of CPOWeeds and 
more recently IPMwise.

Results from field trials, comparing traditional weed management methods at a 
regional scale (used as reference) and recommendations from IPMwise have dem-
onstrated the following reductions of the input of herbicides:

• In Denmark, at least 40% in cereal crops and 20% in crops sown in a wide row 
distance like sugar beet and maize (Rydahl 2003; Sønderskov et al. 2014).

• In Norway, about 30% mainly in spring cereal crops (Netland 2005).
• In Spain, about 30% in winter cereal crops and maize (Montull et al. 2014).

Currently, only in Denmark, 1500 farmers/advisors use CPOWeeds (Rydahl, 
personal communication). In addition, it is implemented to varying degrees in 
Norway, Estonia, Poland and Germany in one or more crops. In these countries, the 
validation tests have showed that the recommendations were robust (Sønderskov 
et al. 2015). However, the potential of herbicide reductions varies between countries 
and depends on the weed species present in the fields and also on management deci-
sions (Been et al. 2010). Furthermore, an ongoing project develops CPOWeeds for 
control in maize in Germany, Italy and Slovenia with a module for mechanical mea-
sures included (Rydahl et al. 2015).
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In this case, the DSS is used to make a Field-Specific Crop Management, which 
is a form of precision agriculture approach whereby decisions on resource applica-
tion and agronomic practices are improved to better match soil and crop require-
ments as they vary between the fields. In this case, the differences in weed infestation 
for each field require different doses of herbicides or even different herbicides. 
Actual PA implementation in the 1980s started when farmers integrated newly 
developed fertilizers capable of deploying variable rate application technology with 
maps that showed the spatial variability of soil chemical properties.

In Denmark, the PA challenge for IWM is being addressed in a project, which 
have the acronym name “RoboWeedMaPS”, and which runs in 2017–2020. This 
project aims to establish a chain of commercial products, which includes the follow-
ing steps:

• Collecting digital pictures to determine weed infestations.
• Production of weed-maps on the species level.
• Automatic calculation by IPMwise of needs for control and accompanying her-

bicide products and dose rates, to produce digital spray-maps, which are read-
able to controller units, which may be integrated with sprayers.

• Site-specific spraying (PA spraying), by injections sprayers, which may regulate 
mixing on the fly, and which exist in various technical versions.

This project fits completely with the basic definition of PA: to apply the right 
treatment in the right place at the right time (Gebbers and Adamchuk 2010), or as 
mentioned in the area of crop protection: application should be as much as neces-
sary but as little as possible (Been et al. 2010). A next step, which is more difficult 
to achieve with current technology, would be also to apply the required amount of 
herbicide plant by plant, to centimetre accuracy. However, although it seems rela-
tively simple, optimizing the application of plant protection products is a complex 
decision and it is affected by many variables, such as the crop type, growth stage of 
the weeds and crops, weather and soil conditions, treatment cost, expected return, 
expected sales price and also long-term profitability.

That is why in the past 30 years various DSS for crop protection have been devel-
oped, in particular trying to optimize the use of herbicides as it is shown in the next 
section.

13.3  The Danish Crop Protection Online (CPOWeeds)

A general challenge, in order to achieve a more rational use of herbicides, is the 
estimation in a simple and quick way of both the need for weed control and the 
expected efficacy of control measures. To achieve this goal, since the 1980s, scien-
tists from Aarhus University began to develop what is now the most widely used 
DSS for IWM in Europe, the Crop Protection Online-Weeds (Rydahl 2003). It was 
initially designed only for spring cereals, such as spring barley (Rydahl and Pedersen 
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2003) and it was first released in 1989 and further commercialised since 1991 
(Rydahl 2003; Kudsk 2008a, b).

Up to date, four generations have been produced, which reflect ongoing develop-
ments in Information Technology (IT) and IWM. The third generation, which was 
released in 2002, and which will be operational outside Denmark until March 2020, 
is called Crop Protection Online (CPOWeeds). Basically, the goal of CPOWeeds is 
to optimise herbicide use by combining type and dosages according to the weed 
infestation levels in a given crop considering either by lowest TFI or lowest price 
depending on farmer/advisor decision. This system is owned jointly by Aarhus 
University and SEGES/Danish Farmers Unions. The fourth generation tool is called 
IPMwise, which differ from CPOWeeds in terms of IT standards, new agronomical 
features including non-chemical control, resistance management and PA-facilities 
like the availability to create spraying maps. As CPOWeeds and IPMwise contain 
several common features, both systems will be referred according to the periods of 
time, where these were used. The neutral term DSS is used to refer indistinctly to 
any of the systems.

In CPOWeeds, target efficacies are estimated based upon both crop and weed 
species densities and growth stages. The general principle is that high competitive-
ness and weed densities induce high target efficacies, while the less competitive 
weed species and low densities calls for lower target efficacies. The aim is to set a 
target efficacy level, which ensures yield and prevent excessive build-up of the soil 
weed seed banks but still enables reduced doses.

In the user-interface eleven criteria are integrated to define the weed scenario in 
a particular field. These criteria are season, crop type and density, potential yield, 
weed species densities, phenological stages of both crop and weeds, temperature 
and water stress. When the user has provided this information, the programme cal-
culates the level of control required for every weed species and accompanying rec-
ommendations for control.

The latest update of IPMwise in Spain has been the integration of herbicide resis-
tance management. This is a major concern issue in weed control. In this case, 
resistant weed biotypes are incorporated by creating separate weed biotypes, which 
are supplied with dose-response calculations, which show very low efficacy of her-
bicides with the mode of action, for which they are resistant. In IPMwise, additional 
measures have been included to reduce the risk of new herbicide resistance. This has 
been done by integration of measures to avoid unilateral use of active substances of 
herbicides (mode-of-actions, MoAs), which are considered risky in terms of genera-
tion of herbicide resistance on the national level (HRAC 2019).

A major advantage of these DSS is that technical control recommendations are 
based on models and parameters, which are easy to understand, and with a straight-
forward association to weed biology and herbicides’ behaviour (Rydahl 2003). The 
optimization process is based on mathematical models as shown in Streibig et al. 
(1998) and Jensen and Kudsk (1988). Despite being designed in Denmark, the cost 
optimization models and TFI have succeeded in adapting to Spanish conditions.
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13.4  High Doses vs. Low Doses in the Development 
of Resistance Cases: An Open Debate

Technically, one of the greatest controversies on the development and large-scale 
use of some DSS’s has been related to those cases where recommendations point 
out lower doses than the maximum recommended rates by manufacturers. In these 
cases, farmers may fear yield losses and/or weed seedbank density increase in the 
long term (Kudsk 2014).

Bulk data of herbicide efficacy available to farmers merely classifies weed spe-
cies as “controlled”, “partly controlled” or “not controlled” using the maximum 
registered dose rates. For most herbicides, the group of weeds classified as “con-
trolled” consist of species easily managed with doses considerably lower than the 
maximum label rate and species satisfactorily controlled at full recommended doses 
(Kudsk 1989, 2008a, b). Despite the fact that dose-response data for most com-
monly used herbicides is a necessary input for improvement of the decision-making 
process, such information is rarely available.

As no direct and linear relationship between herbicide dose and efficacy exists, 
it must be wondered, whether the dose rate debate should focus on dose rather on 
herbicide efficacy. In fact, depending on the application time and the weed species, 
a given herbicide dose can produce very different efficacies. Therefore, idealisti-
cally, debates on the importance of herbicide dose rates should conveniently be 
exchanged by a debate on the importance of achieved efficacy. In fact, when scien-
tific articles mention low doses use and the generation of resistant weed biotypes, 
the results show that biotypes were selected among individuals which survived 
doses that caused about 30% mortality (Busi et al. 2012; Yu et al. 2012). Hence, 
these works are about low dose selection but also low efficacies that in no case could 
be acceptable from an agronomic point of view.

According to herbicide product labels, even the registered dose rate will proba-
bly never provide 100% efficacy. According to herbicide products and dose-response 
calculations included in IPMwise in Denmark, susceptible species could be con-
trolled with reduction of 10–20% of the registered label dose rate. These results 
support the authors’ viewpoint that a set-off in levels efficacy should be made rather 
than concentrating on application doses. Also, when a scientific paper discusses 
about resistance management in relation to high or low doses, it is merely in relation 
to the maximum authorized dose in each country. However, the maximum amount 
authorized for diclofop-methyl in Australia is 375  g a.i./ha, while in Spain and 
France is 630 and 900 g a.i./ha, respectively. In Australia, prosulfocarb maximum 
authorised rate is 2000  g a.i./ha while in Spain is 4800  g a.i./ha. This fact also 
depends on the registration criteria and the active dose for each country. For that 
reason, there are fewer differences for the new authorized herbicides. However, 
herbicide efficacy varies between environments due to many factors, such as crop 
density and weed species characteristics, so it is unclear whether and to what extent 
these differences in “regulated rates” can be translated into real differences in an 
“effective application rate” at the level of individual weeds and thus into real 
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differences in control levels (Renton et al. 2011). Hence, globally, there are coun-
tries with greater potential (than others) to optimize the pesticide use, especially 
when having a high maximum authorized rate.

Here again, the DSS plays an important role because they allow to adjust the 
applied dose to obtain a particular efficacy without increasing the selection pressure 
that can favour resistance evolution. Finally, DSS can offer the option to select or 
avoid a given MOA according to information risk on weed resistant biotypes.

13.5  Developing the IPMwise in Spain

Taking into account these pros and cons, and the potential to prevent and manage 
resistant biotypes, the general objective was to develop an IPMwise version for 
Spanish agroclimatic conditions, common herbicides and weed species. The exist-
ing and newly developed algorithms were used to tune up a version for northern 
Spain agricultural systems.

The first issue was to determine the parameters for dose–response curves of key 
weed species. The second issue was to validate the CPOWeeds concept under 
Spanish conditions.

13.5.1  Obtaining Dose-Response Parameters for Key Weeds

In many cases, the maximum authorized rate is based on environmental parameters 
or safety restrictions for farmer’s use. Chemical companies need to demonstrate that 
their products are safe for workers and the environment at the suggested maximum 
rates. A secondary aspect is related to efficacy. For these reasons, if there are spe-
cific cases in which the amount of applied product can be diminished, the evaluation 
is not necessarily done. This occurs since it is difficult to have enough data to know 
the behaviour of plant protection products at doses different than the maximum. 
This is an important issue for optimizing herbicide use given that efficacy can vary 
considerably depending on weed species and environmental conditions (Minkey 
and Moore 1996).

In the article 14 of the Directive 2009/128/CE it is said that Member States shall 
establish or support the establishment of necessary conditions for the implementa-
tion of Integrated Pest Management. In particular, they shall ensure that profes-
sional users have at their disposal information and tools for pest monitoring and 
decision-making, as well as, advisory services on IPM.

In this context, DSS allow advisors to make an adjusted recommendation, con-
sidering both environmental as well as economic goals. To build a proper DSS it is 
necessary to gather enough data regarding herbicide efficacy for every weed species 
under all possible field conditions (climate, soil, growth stage, etc.).
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One way to model all this data is using dose–response curves, which are the basis 
of CPOWeeds (Sønderskov et  al. 2014). The use of these dose–response curves 
allows applying the optimal solution in a given agronomic context.

The first step to adapt IPMwise in Spain consisted of the determination of dose–
response curves for relevant herbicide–weed species combinations in standard con-
ditions. The second step consists in determining the magnitude of the parallel 
displacement which is specific for each herbicide and is based on experimental data 
(Rydahl 2003). The efficacy response is assumed to be well explained by the logis-
tic model proposed by Seefeldt et al. (1995). Although, it is assumed that the maxi-
mum response available for an infinite dose is 100%, and the minimum response is 
equal to 0 at dose = 0.

An alternative version of this equation can be obtained as follows:

 

Y

a b
x

r r r

=
+ − +
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(13.1)

where.

Y: relative efficacy (%),
bh: “slope” in inflection point, herbicide specific,
aw: horizontal displacement specific for each weed species,
x: dose (g/ha of 1 or more a.i.’s),
rs, rt, rw: relative potencies or “dose factors”, quantifies the relative effect of growth 

stage, temperature and drought stress, respectively, as compared to a refer-
ence point.

A graphical illustration of this function is provided in Fig. 13.1.

Fig. 13.1 Herbicide 
dose-response functions 
for herbicides A, B and C
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Theoretically, if herbicides have the same site of action, then all other parameters 
should be equal; that is, their response curves should be similar (parallel) with a 
relative horizontal displacement. On the other hand, the assumption of similar 
curves is a necessary but not sufficient condition for assuming similar MOAs of 
compounds (Streibig et al. 1998). For these reasons, bh only depends on the mode of 
action of the herbicide; thus, such parameter is available for all herbicides (Kudsk 
1989). Therefore, for a given weed species and herbicide, the unique unknown 
parameter would be the horizontal displacement of the curve, this value is the 
aw-parameter.

Performing dose–response curves is the best way to manage big data generated 
after running field tests for new herbicide registration. Moreover, using too many 
tests under different climatic conditions allow for better estimation of herbicide 
behaviour.

It is needed efficacy data for each weed species and herbicide combination at 
different doses. In the first version of IPMwise Spain, 35 herbicides were intro-
duced. Chemical companies interested in developing the DSS provided an impor-
tant part of this data. Data was obtained from official field trials conducted by the 
companies to develop herbicides, and this raw efficacy data was used as the basis to 
perform statistical studies. Such field tests have proved to be very useful because 
generating this information in such a short time would have been virtually impos-
sible. Usually, these trials are performed in several places, versus different, natural 
weed infestations under different climatic conditions. All this contribute to estimate, 
how various factors (as in Eq. 13.1) affect herbicide efficacy against different spe-
cies. For the same reason, and by using proper statistical tools, it is possible to pre-
dict herbicide efficacy in a wide range of situations, which is one of the objectives 
of a DSS.

Such efficacy datasets are often available for 2–4 herbicide dose rates, which 
often include the registered dose rate, the highest dose and some systematically 
reduced dose rate. For example, ¼X, ½X and the registered dose rate (X). However, 
datasets with so few dose rates are not sufficient for using statistical methods to 
estimate the dose-response parameters (bh and aw). For such limited datasets, a dif-
ferent method executed by the local experts is used to estimate aw. Using an estimate 
of bh, which is based on information on MOA, the achieved efficacy of the regis-
tered dose rates is used to produce the estimate of aw. Using these estimates of bh 
and aw, efficacy is subsequently simulated for 6–8 dose rates (including the dose 
rates, on which efficacy data is supported) and these are compared to the real data 
obtained in the field. Estimates of aw are changed until the estimated efficacy fits 
with the real efficacy values taking into account also requirements for ensuring the 
agronomical robustness (i.e. some safety margins need to be included).

As IPMwise calculates the herbicide dosage for the desired control level based 
on dose–response curves, all trials should be conducted with a minimum of four 
replicates. At the moment of spraying, certain weed phenological stage should be 
the standard application moment for each herbicide.

The aw parameter is the basis for starting the calculation of herbicide dose rates. 
If there is a minimum of one weed species which need to be controlled (by a certain 
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level of target efficacy); the actual herbicide dose can be lowered accordingly by use 
of Eq. (13.1). and the actual estimates of aw and bh, which are stored in the DSS 
database. In these cases, the DSS will recommend the exact dose to achieve the 
expected efficacy in the actual field. Conversely, if the estimated efficacy at the 
registered (maximum) dose rate cannot meet the efficacy targets, the DSS will rec-
ommend necessary tank-mixtures of two or more herbicides with the exact dose for 
each herbicide.

The second aspect for optimizing herbicide use is to know the effect of weed 
growth stage on herbicide performance. This is important, since it is known that 
annual weed species are generally more susceptible to herbicides at early growth 
stages, although some exceptions might be mentioned, for example Galium aparine 
L. vs mecoprop and fluroxypyr or Avena spp. vs some graminicides (Kudsk 2008b). 
Moreover, these differences in efficacy due to weed growth stages, differ also 
between herbicides. For example, one conclusion extracted from the previously 
cited study carried out by the EWRS Herbicide Optimization Working Group, stated 
that growth stage affects the performance of clodinafop but not mesosulfuron + iodo-
sulfuron (EWRS Herbicide Dose Optimisation WG 2013).

Parallel dose–response curves could also be used to compare the effect of the 
growth stage on herbicide performance. With this aim, the relative herbicide potency 
(R-parameter) could be used (Streibig 2003):
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i

=
ED
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(13.2)

being ED501 the parameter value calculated at standard weed growth stage and 
ED50i the parameter value for the other weed growth stages. The R in Eq. (13.2) 
represents rs, rt and rw in Eq. (13.1).

In conclusion, IPMwise development in Spain required quantifying the efficacy 
variation of herbicides (Ri-parameter or rs-parameter) depending on the five key- 
weed growth stages: 0–1 leaf, 2–3 leaves, 4–5 leaves, 6–8 leaves and >8 leaves. For 
this the local R-parameters for the dose-response function described by Seefeldt 
et al. (1995) were parameterized. As an example, Bromus diandrus behaviour vs 
[iodosulfuron methyl sodium 0.6%  +  mesosulfuron methyl 3%] can be seen in 
Fig. 13.2. As expected, brome grass is less susceptible to herbicides when sprayed 
at bigger growth stages, showing about 10% less herbicide efficacy at standard dose 
for both herbicides.

In cases, where efficacy data on different weed growth stages were sparse, default 
estimates from similar products or for other countries were used, ultimately worst- 
case estimates (i.e. the highest values of Ri as observed in the countries yet involved 
in customization of the DSS for practical use).

When considering the numbers of countries, crops, weeds, herbicides and “agro-
nomical conditions”, yet included in the DSS, underlying datasets on efficacy will 
always be variable. Consequently, a general ambition of a DSS is to safely interpret 
different available datasets and supplementary information. If additional datasets 
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are provided later, updates will be made accordingly. In general, regular updating is 
required to follow the continuously changes in supply of herbicide products, and 
also changes in legal restrictions for use of previously registered products.

13.5.2  New Equations in IPMwise

In order to tune up the IPMwise database to include more extreme weed infestations 
(i.e. weed density and growth stages) and to reduce time for calculation and thereby 
prepare for PA technology in real-time site-specific spraying, some database look-
 up functions have been replaced.

The new algorithms include calculations of the following:

• Y, which is target values of the relative efficacy (%).
• rs, which is the relative potencies (dose factors) for classes of weed size.
• rt, which is the relative potencies (dose factors) for classes of temperature on the 

day of herbicide application.

Estimates of rw, which is the relative potencies (dose factors) for classes of water 
(drought) stress, are stored and looked up in the DSS database and depend on each 
active ingredient.

Fig. 13.2 Estimated percentage of efficacy of iodosulfuron methyl sodium 0.6% + mesosulfuron 
methyl sodium 3% at 13BBCH in black and 16BBCH in red of brome grass
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13.5.2.1  Y Estimation

For combinations of crop–weed species, a threshold value is used to determine the 
class of weed density, where values of Y > 0, shall be initiated. For higher classes of 
weed density, values of Y will increase towards an upper asymptote, approaching 
total control (Fig. 13.3). As a 100% control can never be achieved or would require 
extremely high input of herbicide dose rates, a general maximum value of Y has 
been set to 97–98% for Spanish agricultural systems.

To calculate estimates of Y, a combination of a traditional thresholds and the fol-
lowing equation is used:

if Density > DensityMin

 
Y EfficacyMin Density DensityMin a= + −( )∗log

 
(13.3)

 
a EfficacyMax EffiacyMin DensityMax DensityMin= −( ) −( )/ log

 
(13.4)

where local expert support estimates of the parameters:

DensityMin = minimum density that require control (threshold value, fixed for com-
binations of crop and weed species),

DensityMax = maximum density (fix on national level),
EfficacyMin = efficacy target at minimum density (fix on crop × weed level),
EfficacyMax = max efficacy target at maximum density (fixed national level).

The actual start and end points are determined by local experts and should 
include conditions which local farmers consider to be important (e.g. quantity and 
quality of yield, weed propagation, harvesting problems, cosmetic aspects [farmer’s 
pride]).

Fig. 13.3 Estimated vs. observed herbicide efficacy as a function of weed density
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In order to identify estimates of Y, which balances the above-mentioned aspects, 
actual values (i.e. start and end points) should idealistically be determined from 
field validation experiments, where values of Y have been varied, and where yield 
and residual weed infestation, and additional conditions which farmers find impor-
tant have been measured/evaluated. In Spain, initial values of Y were used, which 
local experts considered to be safe and subsequently systematic reductions were 
used (e.g. 5%-point in maize and 20%-points in wheat). Field validation trials were 
used to identify versions suitable for official release (see Sect. 13.6).

13.5.2.2  rs Estimation

In general, annual weeds will often be most susceptible at seedling stage, while 
perennials require downward translocation to reach an effective control (e.g. 3–6 
leaves may be required at the time of spraying to ensure enough herbicide absorp-
tion and translocation).

To calculate estimates of the parameter rs, which provided dose adjustment fac-
tors for the influence of classes of weed growth stages, Eq. (13.5) is used:

 
r MinWeedSize par e e XC B
s = + ∗ ∗( )_

 
(13.5)

where X are original values/classes of weed growth stage; MinWeedSize_par, eC 
and eB, are parameters stored in the model dataset running IPMwise.

Estimates have been calculated by Excel Solver for minimizing sum of squares 
of deviations between original and calculated values. The neutral level (=1.0) has 
been determined from the actual weed growth stage in efficacy data behind bh and 
aw (e.g. below the “3–4 leaves” weed growth stage).

The values of rs refer to weed growth stages, which were found in field experi-
ments, where estimates of aw were produced. As an example, for early post- 
emergence herbicides, the standard is the 3–4 leaf stage. In cases where weeds were 
smaller or bigger (e.g. 0–2 leaves or 5–6 leaves), this point should be used as refer-
ence point instead (where rs has a neutral value of 1.0).

13.5.2.3  rt Estimation

The efficacy of many herbicides depends on the general conditions for plant growth. 
Temperatures may affect efficacy, mainly at the time of application. According to 
results obtained from studies in climatic simulators in Denmark, temperature is 
relatively less important to efficacy compared to weed species and classes of weed 
size (estimates of aw and rs). According to IPMwise, estimates of rt are typically 
0.7–1.3 for different herbicides for extreme conditions. However, as temperatures 
(for a region) is often relatively normal, actual estimates will often be relatively 
smaller. Algorithms/equations used in Denmark are as follows:
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 for tx r TLowIntercept TLowSlope x≤ = + ∗9 5. :  (13.6)

 for tx r THighIntercept THighSlope x> = + ∗9 5. :  (13.7)

where x is the mean day/night temperature (°C); TLowIntercept, TLowSlope, 
THighIntercept and THighSlope are calculated parameters.

The neutral level (=1.0) has been determined by actual temperatures, when the 
efficacy data behind “b-par/a-par” was created, in the example below 9.5 °C.

In Fig. 13.4, examples of original and calculated estimates of rt are provided. 
These have been calculated from efficacy data produced in small pots placed in 
climatic simulators. These differ for different herbicide products.

13.5.3  rw Estimation

In Spain and other countries of southern Europe, water is the most important envi-
ronmental factor limiting plant growth. This affects also the growth of weeds, which 
may be simultaneously affected by both drought stress and herbicide application.

Based on the results obtained from efficacy trials in climatic simulators, it has 
been generally concluded that weed species which have no visual symptoms of 
withering will have normal susceptibility to herbicides. When visual symptoms of 
wilting can be detected, also a decreased susceptibility to herbicides may be 
expected (Rydahl, personal communication).

Striving generally for simplicity in DSS design, only three levels of water stress 
have been found suitable (i.e. “No water stress”, “Slight water stress” and “Severe 
water stress”). Original estimates of rw are stored in the IPMwise database. In case 
of severe stress, estimates of rw may be in the range of 3–6, which are likely to have 
the implication that maximum doses may be exceeded, why IPMwise may be unable 

Fig. 13.4 Original vs. estimated dose factor values (rt) as a function of mean daily temperature
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to provide options for treatment. Consequently, “Severe water stress” operates indi-
rectly as a message to the user indicating that due to drought conditions, herbicides 
will not work.

13.5.4  Common Features for Estimates of rs, rt and rw

Small pot trails behind estimation of rs, rt and rw, did not include all possible herbi-
cide options, but instead selected different MOAs which according to literature 
were considered to differ in terms of affecting estimates of these three parameters. 
For example, estimates from studies on MCPA, were copied to other members of 
the HRAC group O (auxinic effect), or estimates from studies on tribenuron-methyl 
were copied to other members of the HRAC group B (ALS-enzyme inhibitors).

A total exclusion of these three parameters may be relevant in the so-called 
minor use crops, where efficacy data is really sparse. Eventually, only information 
from herbicide product labels may be available. In crops grown in bigger areas, 
more data may be available, and more refinements may be used, idealistically also 
with an increased potential for herbicide savings.

13.6  Field Validation

The last step was to validate the adjusted version of IPMwise under Spanish 
conditions.

Values of target efficacy were established by local experts’ evaluation 
(Table 13.1), with the aim of being relatively safe, when considering all the aspects 
included in Sects. 13.3 and 13.5.2.1. In order to fine-tune these values, and to evalu-
ate options for dose reduction (i.e. Herbicide input reduction), different prototypes 
were constructed and field tested. To that effect, the original targets values were 
systematically reduced. In wheat by up to 20%-points, and in maize by around 
5%-points (i.e. only the estimates in Eqs. (13.3) and (13.4) of DensityMin and 

Table 13.1 Target efficacies (%) for different weed species and densities in IPMwise Spain

Species Efficacy required (%) for each density (plants/m2)
½–1 2–10 11–40 41–150 >150

Alopecurus myosuroides 0 85 85 90 95
Avena sterilis 0 75 85 90 95
Galium aparine 85 90 90 95 95
Lolium rigidum 0 85 85 90 95
Papaver rhoeas 0 80 85 90 95
Abutilon theophrasti 80 90 95 97 98
Echinochloa crus-galli 75 85 95 98 98
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EfficacyMin were reduced, while the estimates of DensityMax and EfficacyMax 
were not reduced).

Based on actual weed infestations and the obtained values, CPOWeeds listed all 
possible solutions for a given weed composition in specific fields sorted by TFI.

Different trial setups were conducted with different winter cereals and maize 
crops from 2010 till 2018. Some field trials were performed to check for efficacy 
and others to check yields.

Different spraying times were considered depending on the standard moment for 
each herbicide, and in all cases, a standard treatment was chosen by local advisors 
for all fields to have a reference for the IPMwise solutions. The accuracy of the DSS 
predictions was estimated based upon weed counting 35 days after spraying in the 
efficacy trials.

For winter cereals, nine different species were used in the analyses and there 
were some differences in the accuracy among the species (Fig. 13.5). As shown in 
Fig. 13.5, observed values were equal to or higher than predicted for 84.2% of the 
sampling points. In addition, 88% of results are included in the range 5–10% error, 
with an average value of 2.35% difference between the observed and predicted values.

The average difference between predicted and observed efficacies for A. sterilis, 
L. rigidum and P. rhoeas, which are key species in this region, showed a difference 
just above 2%. This was similar to that obtained with Anthemis arvensis L., which 
is less commonly found in this region. For Malcolmia africana (L.) R.  Br. and 
A. myosuroides, differences between observed and predicted values were as low as 
0.7% and 0.15%. The largest differences between predicted and observed efficacies 
were found for L. rigidum and P. rhoeas in 2011, although these differences were 

Fig. 13.5 Difference between field observed values and predicted efficacies by the IPMwise for 
different weed species and growth stages (legend indicates growth stages)
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not consistently positive or negative. Generally, the negative differences for L. rigi-
dum were found for plants sprayed at the earliest stage (BBCH 10–13), whereas 
there was no tendency for P. rhoeas for dependence on growth stage.

Weed species growth stage at the time of application did not influence the robust-
ness of the model recommendations, as the difference between predicted and 
observed efficacies were not significant (P = 0.41, n = 4). The model was designed 
to account for the developmental stage at the time of application and IPMwise was 
observed to adequately adjust the doses.

The observed efficacies were less consistent with the predicted efficacies in 2011 
than in the other years. During 2011, the rainfall was only 33.7 mm compared to an 
average rainfall ≈110  mm in the period when the field tests were carried out 
(December 2010 till February 2011). In semi-arid climatic conditions, such as those 
typically found in the northern Spain, it is important to focus future studies on mod-
elling the effect of water stress on herbicide effectiveness.

Water stress causes a shift of the dose–response curve to the right (i.e. greater 
dose required to achieve the same efficacy). This effect may vary according to the 
mode of absorption of the herbicide. In general, root absorbed herbicides, which 
need to be dissolved in the water phase are more affected by drought than foliar 
herbicides (Kudsk 2008a, b). This effect should be studied for each herbicide com-
pound, as pre-emergent herbicides like pendimethalin which act also through con-
tact could be more independent of soil moisture. In addition, performance could 
also vary depending on the formulation used (e.g. microencapsulated or slow release 
formulations). This kind of formulations may affect soil bioavailability as is the 
case with other herbicides such as mesotrione (Galán-Jiménez et al. 2015) or flufe-
nacet (Gómez-Pantoja et al. 2015).

Yield trials support the results obtained in the efficacy trials, which show that 
IPMwise provide adequate weed control recommendations being agronomically 
robust. The yield of IPMwise treatment was equal to or even higher than the stan-
dard treatments as can be seen in Table 13.2.

Table 13.2 Yield trials in 
winter cereals. Yields of 
IPMwise treatments are given 
as an interval as 4–6 different 
solutions were tested in 
each field

Location Treatment Yield (kg ha−1)

Termens Standard 10,450a

IPMwise 6403b–11,006a

Vimbodí 1 Standard 4082a

IPMwise 4168a–4793a

Vimbodí 2 Standard 4763a

IPMwise 6286b–7103b

Lower-case letters indicate differences 
between standard treatment and IPMwise 
treatments
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13.7  Future Challenges

Despite the fact that IPMwise is able to handle with herbicide-resistant biotypes, 
there were a few fields where weeds were controlled insufficiently, which was prob-
ably due to the lack of identification of resistant weed biotypes prior to spraying. 
Actually, a resistance prevention initiative has been developed in IPMwise, which 
aims at limiting the development of more resistant weed species by systematically 
altering herbicides’ MoA among weed generations. These precautions are used 
according to reports from the Herbicide Resistance Action Committee which moni-
tor and report developments in combinations of MOAs and weeds where incidents 
have been found (HRAC 2019). However, in case the number of combinations of 
MOAs and weed species where resistance cases increase drastically, the IPMwise 
will require to formulate more drastic measures, eventually without use of herbicides.

In the future, feedback from users will be important to adjust the target efficacies 
to levels that will provide sufficient control in all situations. The present target effi-
cacies were estimated by experts, but experiences from Denmark has shown that 
adjustments are necessary through the initial implementation period as it is difficult 
to account for all influencing factors. The final conclusion is that the use of this tool 
allows for an optimization of herbicide applications, adjusting the applied dose rate 
with a very high robustness for the conditions of northern Spain and it has a poten-
tial to reduce the amount of applied herbicides ≥30%.

References

Been TH, Consiglio A, Evans N, Gouache D, Gutsche V, Jensen JE, Kapsa J, Levay N, Munier- 
Jolain N, Nibouche S, Raynal M, Rydahl P (2010) Review of new technologies critical to effec-
tive implementation of Decision Support Systems (DSS’s) and Farm Management Systems 
(FMS’s), Critical policy studies. Aarhus University, Denmark

Busi R, Gaines TA, Walsh MJ, Powles SB (2012) Understanding the potential for resistance evolu-
tion to the new herbicide pyroxasulfone: field selection at high doses versus recurrent selection 
at low doses. Weed Res 52:489–499. https://doi.org/10.1111/j.1365-3180.2012.00948.x

EWRS Herbicide Dose Optimisation WG (2013) Joint experiment background and results. 
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEw
jhgfHFkcjkAhW9DGMBHQoACGcQFjABegQIABAB&url=http%3A%2F%2Fwww.ewrs.
org%2Fdoc%2FHTV%2FWG_Herbicide_Dose_Opt.pdf&usg=AOvVaw0Edl3O-XSkob86c-
s1hnZgZ. Accessed 11 Sept 2019

FAOSTAT (2016) Pesticides used in selected countries. Rome. http://faostat3.fao.org. Accessed
Galán-Jiménez M, Undabeytia T, Morillo E, Florido M (2015) Síntesis y eficacia de formulaciones 

de liberación lenta del herbicida mesotrione. In: Actas del XV Congreso de la SEMh, pp. 79–84
Gebbers R, Adamchuk VI (2010) Precision agriculture and food security. Science 

327(5967):828–831. https://doi.org/10.1126/science.1183899
GENVCE (2015) Evaluación agronómica y de la calidad de las nuevas variedades de cebada, trigo 

blando, trigo duro, triticale, avena y centeno en España. Campaña 2014–2015. www.genvce.
org/repositorio/ba36/informe/1107/2/cereal-de-invierno.pdf?d=1

J. M. Montull et al.

https://doi.org/10.1111/j.1365-3180.2012.00948.x
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjhgfHFkcjkAhW9DGMBHQoACGcQFjABegQIABAB&url=http://www.ewrs.org/doc/HTV/WG_Herbicide_Dose_Opt.pdf&usg=AOvVaw0Edl3O-XSkob86cs1hnZgZ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjhgfHFkcjkAhW9DGMBHQoACGcQFjABegQIABAB&url=http://www.ewrs.org/doc/HTV/WG_Herbicide_Dose_Opt.pdf&usg=AOvVaw0Edl3O-XSkob86cs1hnZgZ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjhgfHFkcjkAhW9DGMBHQoACGcQFjABegQIABAB&url=http://www.ewrs.org/doc/HTV/WG_Herbicide_Dose_Opt.pdf&usg=AOvVaw0Edl3O-XSkob86cs1hnZgZ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjhgfHFkcjkAhW9DGMBHQoACGcQFjABegQIABAB&url=http://www.ewrs.org/doc/HTV/WG_Herbicide_Dose_Opt.pdf&usg=AOvVaw0Edl3O-XSkob86cs1hnZgZ
http://faostat3.fao.org
https://doi.org/10.1126/science.1183899
http://www.genvce.org/repositorio/ba36/informe/1107/2/cereal-de-invierno.pdf?d=1
http://www.genvce.org/repositorio/ba36/informe/1107/2/cereal-de-invierno.pdf?d=1


297

Gómez-Pantoja M, López-Fernández E, Florido M, Morillo E, Undabeytia T (2015) Evaluación 
de formulaciones de liberación controlada del herbicida flufenacet. In: Actas del XV Congreso 
de la SEMh, pp 85–91

Gonzalez-Andujar JL, Fernandez-Quintanilla C, Bastida F, Calvo R, Izquierdo J, Lezaun 
JA (2010a) Assessment of a decision support system for chemical control of annual 
ryegrass (Lolium rigidum) in winter cereals. Weed Res 51:304–309. https://doi.
org/10.1111/j.1365-3180.2011.00842.x

Gonzalez-Andujar JL, Fernandez-Quintanilla C, Bastida F, Calvo R, Gonzalez-Diaz L, Izquierdo 
J, Urbano J (2010b) Field evaluation of a decision support system for herbicidal con-
trol of Avena sterilis ssp. ludoviciana in winter wheat. Weed Res 50(1):83–88. https://doi.
org/10.1111/j.1365-3180.2009.00744.x

Herbicide Resistance Action Commitee (HRAC) (2019). https://www.hracglobal.com/
Jensen PK, Kudsk P (1988) Prediction of herbicide activity. Weed Res 28(6):473–478. https://doi.

org/10.1111/j.1365-3180.1988.tb00830.x
Kudsk P (1989) Experiences with reduced herbicide doses in Denmark and the development of the 

concept of factor-adjusted doses. In: Brighton crop protection conference—weeds, Brighton, 
pp 545–554

Kudsk P (2008a) Chapter 16: Optimising herbicide performance. In: Weed management hand-
book. John Wiley & Sons, New York, pp 323–344. https://books.google.com/books?id=jXbGt
8ttluIC&pgis=1. Accessed

Kudsk P (2008b) Optimising herbicide dose: a straightforward approach to reduce the risk 
of side effects of herbicides. Environmentalist 28(1):49–55. https://doi.org/10.1007/
s10669-007-9041-8

Kudsk P (2014) Reduced herbicide rates: present and future. In: 26th German conference on weed 
biology and weed control, pp 37–44. https://doi.org/10.5073/jka.2014.443.003

MAPAMA (2019) Cultivos herbáceos e industriales en España. https://www.mapa.gob.es/va/agri-
cultura/temas/producciones-agricolas/cultivos-herbaceos/cereales/default.aspx

Minkey D, Moore J (1996) Estimating dose response curves for predicting glyphosate use in 
Australia. s.l., s.n., p 4

Montull JM, Soenderskov M, Rydahl  P, Boejer OM, Taberner A, (2014) Four years validation 
of decision support optimising herbicide dose in cereals under Spanish conditions. Crop 
Protection 64:110–114

Netland J, Torresen KS, Rydahl P (2005) Evaluation of the weed module in the Danish decision 
support system ‘‘Crop Protection Online’’ adapted to Norwegian conditions. In Proceedings 
of the 13th EWRS Symposium, 19–23 June 2005. Bari, Italy: European Weed Research 
Society, CD-ROM

Renton M, Diggle A, Manalil S, Powles SB (2011) Does cutting herbicide rates threaten the sus-
tainability of weed management in cropping systems. J Theor Biol 283(1):14–27. https://doi.
org/10.1016/j.jtbi.2011.05.010

Rydahl P (2003) A web-based decision support system for integrated management of weeds in 
cereals and sugarbeet. EPPO Bull 33:455–460

Rydahl P, Pedersen L (2003) User interfaces and system architecture of a web-based decision sup-
port system for integrated pest management in cereals. EPPO Bull 33:473–481

Rydahl P, Berti A, & Munier-Jolain N (2008) Decision support systems (DSS) for weed control in 
Europe – state-of-the-art and identification of best parts for unification on a European level. In: 
Endure international conference, pp. 12–15

Rydahl P, Munier-jolain N, Masin R, Sattin M, Germiniani E, Lescovcek R, Bojer OM (2015) A 
generic Decision Support System for integrated weed management. Aarhus University, Denmark

Seefeldt SS, Jensen JE, Fuerst P (1995) Log-logistic analysis of herbicide dose-response relation-
ships. Weed Technol 9(2):218–227

Sønderskov M, Kudsk P, Mathiassen SK, Bøjer OM, Rydahl P (2014) Decision support system for 
optimized herbicide dose in spring barley. Weed Technol 28:19–27. https://doi.org/10.1614/
WT-D-13-00085.1

13 IPMwise: A Decision Support System for Multispecies Weed Control in Cereal Crops

https://doi.org/10.1111/j.1365-3180.2011.00842.x
https://doi.org/10.1111/j.1365-3180.2011.00842.x
https://doi.org/10.1111/j.1365-3180.2009.00744.x
https://doi.org/10.1111/j.1365-3180.2009.00744.x
https://www.hracglobal.com/
https://doi.org/10.1111/j.1365-3180.1988.tb00830.x
https://doi.org/10.1111/j.1365-3180.1988.tb00830.x
https://books.google.com/books?id=jXbGt8ttluIC&pgis=1
https://books.google.com/books?id=jXbGt8ttluIC&pgis=1
https://doi.org/10.1007/s10669-007-9041-8
https://doi.org/10.1007/s10669-007-9041-8
https://doi.org/10.5073/jka.2014.443.003
https://www.mapa.gob.es/va/agricultura/temas/producciones-agricolas/cultivos-herbaceos/cereales/default.aspx
https://www.mapa.gob.es/va/agricultura/temas/producciones-agricolas/cultivos-herbaceos/cereales/default.aspx
https://doi.org/10.1016/j.jtbi.2011.05.010
https://doi.org/10.1016/j.jtbi.2011.05.010
https://doi.org/10.1614/WT-D-13-00085.1
https://doi.org/10.1614/WT-D-13-00085.1


298

Sønderskov M, Fritzsche R, de Mol F, Gerowitt B, Goltermann S, Kierzek R, Rydahl P (2015) 
DSSHerbicide: Weed control in winter wheat with a decision support system in three South 
Baltic regions – field experimental results. Crop Prot 76:15–23

Streibig JC (2003) Assessment of herbicide effects. In: EWRS (ed) Herbicide interaction, pp 1–44
Streibig JC, Kudsk P, Jensen JE (1998) A general joint action model for herbicide mixtures. Pestic 

Sci 53:21–28
Torra J, Cirujeda A, Recasens J, Taberner A, Powles SB (2010) PIM (Poppy Integrated Management): 

a bio-economic decision support model for the management of Papaver rhoeas in rain-fed crop-
ping systems. Weed Res 50(2):127–139. https://doi.org/10.1111/j.1365-3180.2010.00761.x

Yu Q, Han H, Cawthray GR, Wang SF, Powles SB (2012) Enhanced rates of herbicide metabolism 
in low herbicide-dose selected resistant Lolium rigidum. Plant Cell Environ 36(4):818–827

J. M. Montull et al.

https://doi.org/10.1111/j.1365-3180.2010.00761.x


299© Springer Nature Switzerland AG 2020
G. R. Chantre, J. L. González-Andújar (eds.), Decision Support Systems for 
Weed Management, https://doi.org/10.1007/978-3-030-44402-0_14

Chapter 14
AvenaNET and VallicoNET: DSS for Avena 
sterilis and Lolium rigidum Control 
in Spanish Dryland Cereal Crops

José L. González-Andújar 

Abstract AvenaNET and VallicoNET are web-based DSS developed for Lolium 
rigidum (ryegrass) and Avena sterilis spp. ludoviciana (winter wild oat) control in 
Spanish dryland cereals. This chapter describes the rationale, structure and evalua-
tion of these DSS. Both systems present a common structure that contains an inter-
face, a database and a bioeconomic model. The interface has been kept as simple as 
possible, and it requires simple agronomic, biological and economic data. The data-
bases store information on the available herbicides for the control of A. sterilis and 
L. rigidum. The bioeconomic model contains a detailed life cycle structure includ-
ing integrated management strategies, weed-crop competition and economic sub-
models. Both DSS followed an evaluation process consisting of the verification of 
the functions contained in the system, its ergonomics and the evaluation in field 
conditions. The validation results revealed that the performance of both systems 
was satisfactory.

Keywords Winter wild oat · Ryegrass · Decision Support System (DSS) · 
Web-based DSS · Weed management · Herbicide · Bioeconomic model · Decision- 
making · Validation

14.1  The Problem

Cereals are staple crops with a wide geographical distribution, around 16% of the 
world’s useful agricultural area (Zimdahl, 2004). The production of cereals is 
affected by a series of biotic and abiotic agents that interact with the crop and 
decrease its yield (Fig. 14.1 Renton and Chauhan, 2017). More than 42% of cereal 
crop yields is decreasing due to these agents, one of the most important being the 
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presence of weeds. In Spain, the dominant weed species are winter wild oat (Avena 
sterilis) and annual ryegrass (Lolium rigidum) (Gonzalez-Andujar and 
Saavedra 2003). 

Winter wild oats have a life cycle that is highly adapted to cereals (Fernandez- 
Quintanilla et al. 1997). The emergence period covers from the end of October to 
the middle of April. Winter wild oat is a strong competitor causing substantial 
losses. High A. sterilis densities, in the 300  panicles  m−2 range, have decreased 
cereal yields by up to 50% (Torner et al. 1991).

Annual ryegrass is a winter annual grass considered to be among the most trou-
blesome weeds of cereal crops in the Mediterranean area (Reeves 1976; Gonzalez- 
Andujar and Saavedra 2003). The emergence period is mainly focused from late 
autumn to midwinter (Recasens et al. 1997). Yield losses in cereal crops can reach 
up to 80% depending on season and infestation (Izquierdo et al. 2003). The main 
method for control of both species is herbicide application. Even though herbicides 
may be effective and safe when properly applied, there is a growing concern for the 
environmental effects of using these chemicals, and the efficacy of this tactic is cur-
rently threatened by the evolution of herbicide-resistant populations (Heap 2020).
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Fig. 14.1 Biotic and abiotic factors responsible for the decline in wheat yield
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In order to assist Spanish farmers in decision-making for the control of A. sterilis 
and L. rigidum in wheat, two DSS were developed at the beginning of the twenty- 
first century—Avena-PC and Lolium-PC—designed for use in computers and 
which subsequently resulted in web-oriented DSS: AvenaNET and VallicoNET. Both 
DSS were developed for testing both the biological and economic performance of 
L. rigidum and A. sterilis integrated management strategies for dryland cereal sys-
tems in Spain.

14.2  VallicoNET and AvenaNET Description

The structure of VallicoNET and AvenaNET consists of an interface, a database and 
a model (see Chap. 2). In Fig. 14.2 the access page is shown, from which the user 
accesses the database and simulations of weed control strategies.

14.2.1  Interface

The communication between the DSS and the user is of vital importance for the 
acceptance of the tools to help decision-making. One of the characteristics that it 
must have is the ease and simplicity of information entrance. Both systems have a 
similar data entry screen (Fig.  14.3). From the initial window, the user accesses 
through simulation of control strategies to the data entry screen that is divided into 
two large sections (Fig.  14.3). The first comprises the agronomic and biological 
parameters, while the second is designed for the economic parameters. There are 
three agronomic and biological parameters that the user needs to provide to the 
system. First, users need to carry out a sampling in order to evaluate the infestation 
density of A. sterilis and L. rigidum seedlings. Then they must include an estimate 
of the expected yield potential of the crop, based on expert knowledge, and finally 

Fig. 14.2 Main page for Avena sterilis (AvenaNET) and Lolium rigidum (VallicoNET)
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they have to indicate the previous crop. In addition, the user must enter economic 
information, such as fixed costs, expected crop price in the campaign, inflation rate 
and the expected subsidy. Finally, in the last section called ‘simulation years’, they 
must indicate the time horizon (in years) to simulate. The output windows (Fig. 14.4) 
provide the results which consist of all possible management strategies, ordered by 
priority, according to the economic output (€/ha). These results can be delivered in 
an Excel file.

14.2.2  Database

The database is an important component of the DSS where all the information for 
giving recommendations is located. VallicoNET and AvenaNET integrate informa-
tion on the available herbicides: active substances; commercial name; recommended 
application rate and their effectiveness, allowing their modification and deletion; 
and the introduction of new herbicides (Fig. 14.5).

Fig. 14.3 Data entry screen for AvenaNET
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14.2.3  The Model

Both DSS are based on bioeconomic models composed of three submodels (see 
Chap. 2): population dynamics, weed-crop competition and economics.

14.2.3.1  Population Dynamic Submodels

The life cycle-based model structure is similar to other models proposed in the lit-
erature (Doyle 1991; Gonzalez-Andujar and Fernandez-Quintanilla 1993, 2004; 
Holst et al. 2007; Gonzalez-Andujar 2008) (Fig. 14.6).

The dynamics of the seed bank (S, Seeds m−2) at time t is described by:

 
S g m S sf p Pt t t+ = −( ) −( ) + −( )1 1 1 1

 
(14.1)

where each year a fraction m of seeds experiences natural mortality, while a fraction 
g emerges. Density of plants that emerge and survive until the adult stage is indi-
cated as Pt. A fraction s survives until reproduction. Each surviving plant will pro-
duce on average f viable seeds representing the seed rain that returns to the seed 

Fig. 14.4 Output of VallicoNET in short-term (left panel) and a long-term (10 years) (right panel) 
horizons
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bank. A fraction, p, of the total seed rain is assumed to be losses due to biotic and 
abiotic factors.

The effect of weed plant density on fecundity (density-dependent factor) f is 
introduced by:

Fig. 14.5 Herbicide database of AvenaNET

Fig. 14.6 Basic annual weed demographic model
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f f aPt= +( )0 1/

 
(14.2)

A fraction c of emerged plants is killed by weed control. The density of seedlings 
that survive weed control is:

 
P c gSt t= −( )1

 
(14.3)

The control measures introduced are of a chemical and cultural type (e.g. delay 
in sowing). AvenaNET and VallicoNET contemplate a total of 41 and 17 control 
strategies, respectively.

14.2.3.2  Weed-Crop Competition Submodel

Many empirical models of weed-crop competition that relate the loss of yield as a 
response to the density or biomass of weeds (X) have been developed (Cousens 
1985; Jamaica-Tenjo and Gonzalez-Andujar 2019). In this case, the popular hyper-
bolic model was chosen (Cousens 1985):

 

Y
Ix
I

A
x

L=

+1
 

(14.4)

In this model, YL represents percent yield loss as a result of competition; I is the 
percent yield loss per unit weed when x → 0; and A is the asymptotic yield loss 
when x → ∞.

The above equation can be expressed in terms of cereal yield, Y (kg ha−1), con-
templating the reduction with respect to the maximum weed-free yield (Ywf, kg ha−1) 
in the following way:
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(14.5)

14.2.3.3  Economic Submodel

To assess the DSS feasibility, a net economic return (NER, € ha−1) was calculated as:

 NER = − −YP H C  (14.6)

where Y is yield (kg ha−1), P is cereal price (€ kg−1), H is herbicide cost (€ ha−1) 
and C (€ ha−1) are variable costs associated with cereal production (tillage, fertiliz-
ing, seeding, etc.) except weed control practices.

14 AvenaNET and VallicoNET: DSS for Avena sterilis and Lolium rigidum Control…



306

The time path of expected returns over an extended period is given by the annual-
ized net return, ANR (€ ha year−l). For an n-year period, annualized net return was 
defined as:

 
ANR NER= +( ) − +( )− −

( }{ / [ }Σ t

t i
i i i1 1 1

 
(14.7)

where i (i > 0) is the annual discount factor and t is year.

14.3  Running the Model

Below is an example of the use of VallicoNET (similar to AvenaNET). The user 
enters the data on the initial data entry screen (Fig. 14.3). In this case, the agronomic 
and biological parameters are (1) the weed density of infestation (established in 
100 seedlings m−2), (2) the expected potential yield (set in 1800 kg ha−1) and (3) the 
previous crop (wheat monoculture), and the economic parameters are (4) the fixed 
costs (€ 100 ha−1), (5) the estimated price of wheat (€ 0.15 kg−1), (6) the expected 
inflation rate (3%) and (7) crop subsidy (none). The simulation periods considered 
are short term (1 year) and long term (10 years), with the objective of comparing 
both periods of time.

Figure 14.4 shows the output of the example used. The strategies considered are 
presented as being ordered according to their economic result. In our case, the best 
long-term strategy (see Fig.  14.4; right panel) is a mixed strategy of herbicide 
(diclofop-methyl) and delayed sowing. In the short term (Fig. 14.4; left panel), there 
are three strategies that offer similar economic results, two that include the use of 
herbicide (diclofop-methyl) along with cultural strategies (delayed sowing and crop 
planting density) and another that includes the herbicide at half of the recommended 
dose. Only the herbicide strategy (diclofop-methyl) together with delayed sowing 
remains solid over the time. It some cases, it is possible that the best economic strat-
egies in the short and long term do not match.

14.4  Evaluation and Current Status

In order to have operational validity, DSS must undergo an evaluation process 
(Houseman 1994) consisting of the verification of the functions contained in the 
system, the ergonomics of the system that is related to its ‘friendliness’ for the end 
user and the evaluation in field conditions.

VallicoNET and AvenaNET were evaluated in their PC versions (LOLIUM-PC 
and AVENA-PC) in commercial fields of winter wheat from agronomic, economic 
and environmental points of view (Gonzalez-Andujar et al. 2010, 2011). Different 
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trial setups were conducted from 2003 to 2005 in wheat fields in northern, central 
and eastern Spain. In general, the evaluations showed that both systems provide a 
flexible tool for potentially recommending less herbicide while providing similar 
weed control and crop yields to those obtained with the standard farmer practice. 
LOLIUM-PC recommendations provided, on average, substantial reductions in her-
bicide use (57% lower) in relation to the standard farmer practice (full dose) and 
slight reductions (14% lower) in relation to a half-dose treatment (Gonzalez- Andujar 
et al. 2011). AVENA-PC provided a substantial herbicide saving in relation to the 
standard farmer practices (65%) and 31% lower in relation to the half-dose treat-
ment (Gonzalez-Andujar et al. 2010).

In addition, surveys were conducted with 14 experienced technicians to evalu-
ate different ergonomic aspects of the systems. They were asked to mark in a 
table-like questionnaire the following criteria: (1) usefulness of the information 
provided by the DSS, (2) user-friendliness and (3) learning easiness. Average 
results for both DSS are shown in Table 14.1. The results were positive (but not 
enthusiastic) and highlighted the need for tools such as DSS to help decision-
making (Table 14.1).

Both systems remain academic products, due to the fact that neither have never 
been released to potential users. Among the main drawbacks, lack of resources, 
updating and maintenance can be mentioned. For the current use, an upgrade should 
be undertaken considering that in the past decade, there has been an important 
change in the herbicide availability for cereals in Europe and the consideration of 
new non-chemical management strategies. Likewise, a new evaluation process 
should be undertaken, particularly with regard to new management strategies for 
L. rigidum and A. sterilis herbicide resistant.

Table 14.1 Results of evaluation by technicians of some aspects of the relevance of VallicoNET 
and AvenaNET for their practical use

Questions Rate

Do you consider it necessary to have computer tools to help decision-making? 7.08
Indicate in what degree would it be useful in your professional performance? 6.66
Do you consider that the suggestions or recommendations provided by the DSS are useful 
for the advisory work?

6.15

Do you consider that the DSS would allow you to make faster decisions? 6.15
Do you consider that the use of DSS would allow you to think about a greater number of 
variables when making decisions?

6.25

Would you trust the decisions of the DSS? 6.53

The participants assessed each of the criteria in a continuum 1–10 scale, corresponding to the fol-
lowing responses: 1 as unsatisfactory and 10 as extremely satisfactory

14 AvenaNET and VallicoNET: DSS for Avena sterilis and Lolium rigidum Control…



308

14.5  Conclusions

The complexity of the information needed to manage weed populations within a 
context of sustainable agriculture requires the use of computer tools such as DSS 
that allow farmers and technicians to optimize decision-making. VallicoNET and 
AvenaNET are two DSS that have been developed for the control of A. sterilis and 
L. rigidum in Spanish dryland cereals. They have both shown their potential useful-
ness as agronomic tools for helping decision-makers. Despite this, current lack of 
financial support and a continuous need for systems’ update are among the main 
necessities that limit successful transfer of DSS-oriented models to farmers and 
other stakeholders.
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Chapter 15
A Simulation Model as the Core 
for Integrated Weed Management Decision 
Support Systems: The Case of Avena fatua- 
Winter Wheat in the Semiarid Pampean 
Region of Argentina

Franco A. Molinari, Aníbal M. Blanco, Mario R. Vigna, 
and Guillermo R. Chantre 

Abstract This chapter describes a mathematical simulation model for the multian-
nual assessment of Integrated Weed Management (IWM) strategies. The model 
allows to simulate the competitive interaction between an annual weed species and 
a grain crop. From the weed’s side, the following processes are represented: (1) 
demographic dynamics on a daily basis considering the numeric composition of the 
different phenological states, (2) intra- and interspecific competition, (3) seed 
 production and (4) the effect of different control methods. Regarding the crop, the 
following variables are computed: (1) leaf area index (LAI), (2) competition on the 
weed and (3) expected yield as a function of weed competition. The model was 
developed on Microsoft Excel® with Visual Basic complements. Results are 
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 provided for the wild oat (Avena fatua)-winter wheat (Triticum aestivum) system, a 
typical system of the south-west area of the semiarid Pampean region of Argentina. 
The model was calibrated and validated with experimental data collected along 
4 years. Several multi-year scenarios were generated to evaluate the effect of differ-
ent IWM strategies against common herbicide-based practices. Finally, possible 
improvements to the model and some guidelines towards the development of a long- 
term DSS for weed management are provided.

Keywords Integrated weed management · Agricultural system modelling · Weed 
competition · Wild oat · Barley · Wheat

15.1  Introduction

Weeds are the main cause of crop yield loss since the early stages of agriculture. It 
is widely acknowledged that in the short term, herbicide-based control methods 
play a major role in maximizing agricultural systems’ productivity, but their con-
tinuous application produces negative environmental effects. In this regard, the 
combination of both preventive (e.g. legal, cultural) and proactive (e.g. chemical, 
mechanical, physical and biological) measures has been proposed as ‘a way- 
through’ for mitigating environmental and society-derived effects (e.g. chemical 
food residues, soil and water contamination, biodiversity loss, ecotoxicity, etc.). 
Such activity is known as Integrated Weed Management (IWM). However, it should 
be highlighted that the success of IWM resides on the application of knowledge- 
based principles rooted mainly on weed biology and ecology. Thus, a precise under-
standing of demographic variables (e.g. phenological stages) and processes (e.g. 
interspecific weed-crop competition) will help to develop new approaches for long- 
term management. As suggested by Ghersa and Holt (1995), the ability to predict 
weed and crop phenology is an essential aspect for designing sustainable manage-
ment programs.

IWM can benefit from model-based Decision Support Systems. Several exam-
ples of DSSs have been presented in previous chapters of this volume (Chaps. 11–14). 
According to our knowledge, no DSS to aid in IWM in the medium term has been 
developed so far for Argentinian systems. Thus, the objective of this chapter is to 
contribute to fill this gap by proposing a simulation model for multiannual weed 
management planning, as the basis for a DSS. In this sense, this chapter integrates 
some algorithmic developments produced in our research group in the last years 
together with agronomic and biological insight gathered from extensive field exper-
imentation along the last decades.

From a practical agronomic perspective, DSS-oriented models should include 
crop-weed demography, as well as the intervening ecophysiological elements that 
will finally define crop yields and weed population dynamics. The present model 

F. A. Molinari et al.



313

allows to simulate the competitive interaction between an annual weed and a grain 
crop. From the weed’s side, the following processes are represented: (1) demo-
graphic dynamics on a daily basis considering the numeric composition of the dif-
ferent phenological stages, (2) intra- and interspecific competition, (3) seed 
production and (4) the effect of different control methods. Regarding the crop, the 
following variables are computed: (1) leaf area index (LAI), (2) crop competition 
over the weed and (3) expected yield as a function of weed-crop competition.

The wild oat-winter wheat system, typical of the South-West (SW) area of the 
semiarid Pampean region of Argentina (SPRA), was adopted as study case to illus-
trate the capabilities and overall performance of the model as the core of a DSS. Wild 
oat (Avena fatua L.) (AVEFA) is one of the most conspicuous weeds in winter cereal 
crops producing large yield losses and reducing harvest quality (Martín and Scursoni 
2018). In the SW of Buenos Aires province, in the SPRA, Avena fatua displays 
irregular field emergence patterns due to large interannual variability of precipita-
tions, seasonal temperature fluctuations and a species-specific adaptation to the 
local environment (Chantre et al. 2012, 2018). In the SPRA, A. fatua is present in 
60% of cereal plots (Scursoni et  al. 2014) producing yield losses of 20–25% in 
wheat crops (Scursoni and Benech-Arnold 1998; Scursoni et  al. 2011). AVEFA 
seeds are also grain contaminants producing a significant reduction in selling price 
(Martín and Scursoni 2018).

The model was calibrated and validated with experimental data collected along 
4  years at the Argentinian National Institute of Agricultural Technology (INTA) 
EEA-Bordenave, Buenos Aires, Argentina (37°46′08.0″S 63°05′30.5″W). Several 
multi-year scenarios were simulated to evaluate the effect of different IWM options 
against herbicide-based practices.

15.2  Simulation Model Description

The present model is of general purpose with potentiality for being adapted to dif-
ferent annual weed-crop systems. The model simulates weed management scenar-
ios within a multiannual planning horizon (tactic-strategic) using a daily time step 
for variable calculation within the agronomic season. A daily time step permits a 
high level of detail being compatible with the actual frequency of weather data 
availability and forecasts. The multiannual simulation allows the visualization of 
medium- and long-term effects of weed management decisions in the field.

For most processes, our approach follows the typical equations widely adopted 
in previous weed modelling studies reported in the literature (Gonzalez-Andujar 
2013; Lodovichi et al. 2013). In a few cases, however, some innovation was intro-
duced to represent with more detail some specific processes to better represent the 
undergoing biology.
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15.2.1  Model Insights

In Fig. 15.1, a general diagram of the simulation model considering an annual weed- 
winter cereal system is presented. On the left, a thermal timescale representing 
weed demographic stages is shown. At the base of the diagram, both chronological 
and thermal timescales for crop growth-development are included. At the top, a 
clear distinction between fallow and crop growth-development periods is made. In 
the latter, the crop sowing time, leaf area index (LAI) curve and critical competition 
period (CCP) are depicted.

The weed life cycle is represented in a simple fashion defining the most represen-
tative stage variables for an annual weed. The following stages are considered:

s = 0: seed bank
s = 1: seedling (one true leaf)
s = 2: early vegetative (two to four true leaves)
s = 3: advanced vegetative (tillering)
s = 4: initial reproductive (flowering)
s = 5: advanced reproductive (senescence)

The variables and parameters of the model are detailed in Tables 15.1, 15.2, 15.3 
and 15.4.

Fig. 15.1 General diagram illustrating the simulation model, considering a weed (winter autumn)-
winter cereal system throughout an agricultural campaign (calendar year). (See Tables 15.1–15.3 
for a description of terms)

F. A. Molinari et al.
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15.2.1.1  Seed Bank Dynamics

The weed seed bank dynamics considers the seed production from those individuals 
that reach the advanced reproductive stage (s = 5). Seed losses due to abiotic (field 
emergence) and biotic (predation, mortality and longevity) factors are accounted. 
The seed bank is considered to be composed by two seed fractions, quiescent (non- 
dormant) and dormant seeds. Thus, the daily fraction of the seed bank capable of 
producing new seedlings each day is estimated from the former fraction. The 
dynamics of the seed bank is represented by the following equations:

 
Sq = ( )

−

=−

∑
1

y L

yS
 

(15.1)

Table 15.1 Model variables

Variable Description

t Julian day
y Year
s Weed phenological stage
Ws, t Accumulated weed density in s and t
Is, t Incoming cohorts of individuals in s and t
Os, t Outcoming cohorts of individuals of s and t
Ms, t Accumulation of individuals eliminated by control actions plus those affected by 

thermal/hydric stress in s, t
θt Accumulated TT
Tt Average daily temperature in t
Sq Quiescent (non-dormant) seeds
Sy Quiescent seeds from y
Spy Total weed seed production in y
Et Proportion of emerged seedlings
ias, t Weed intraspecific competition in s and t
Wks, t Weighted weed density in s and t
iet Crop-weed interspecific competition
LAIt Leaf area index of the crop in t
r Reproductive cohorts’ group
Wr Weed density in r
Yld Expected crop yield (proportion of weed-free yield)
WC Weed-crop interspecific competition
MCs, t Number of individuals eliminated by control actions in s and t
Mstresss, t Number of individuals affected by thermal/hydric stress in s and t
Cts, t Weed mortality rate due to control in s and t
Ct01, t Weed mortality rate over a pre-seedling stage by residual herbicides in t

TT thermal time
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S Q iy y y= −( ) −( ) + ⋅( )( ) Sp ld lb sm1 1 1

 
(15.2)

where Sq represents the number of quiescent seeds at the beginning of the crop 
season at year 0 (seeds per m−2) and L is the seed bank longevity (in years). The 
expression integrates quiescent seeds from L years previous to the beginning of the 
current season. Spy is the total seed production corresponding to a given year y; ld is 
the seed loss rate during seed dispersal; lb is the seed loss rate due to biotic factors 

Table 15.3 Crop parameters

Parameter Description

te Crop emergence date (Julian day)
tm Crop maturity date (Julian day)
CCP Critical competition period
Sft Susceptibility of the crop in day t
LAIhc Value of LAI representing a highly competitive situation
Cs Standard crop density
Ca Actual crop density
Myl Maximum yield loss proportion (high interspecific 

competition)
A Crop-derived constant
K Weed competitiveness constant

Table 15.2 Weed demographic parameters

Parameter Description

ns Number of phenological stages
Tb Base temperature for TT
Ths TT required for transition from s to s + 1 of a given cohort
tf Floral induction day
L Seed bank longevity (in years)
Qy Seed fractions produced in year y that are quiescent in year 0
sm Seed bank annual mortality rate
ld Seed loss rate at natural dispersal
lb Seed loss rate by biotic factors during the first fallow 

(predation, mortality)
K Agroecosystem’s carrying capacity
Iam Intraspecific competition mortality rate
fs Competition factor for stage s
nr Number of simulated groups of reproductive cohorts
Fcr Individuals’ fecundity of r
maxr Maximum seed production of r
ta Day of adverse environmental conditions (stress)
mstresss Weed mortality rate by adverse environmental conditions in s

TT thermal time
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Table 15.4 AVEFA demographic parameters for the study case

Parameter Description Value Reference

ns Number of simulated phenological stages 5 EK
Tb Base temperature for TT accumulation 0 °C Martín and 

Scursoni (2018)
Th1 TT required for transition from s = 1 to 

s = 2
70 °Cd Martín and 

Scursoni (2018)
Th2 TT required for transition from s = 2 to 

s = 3
280 °Cd Martín and 

Scursoni (2018)
Th3 TT required for transition from s = 3 to 

s = 4
400 °Cd EK

Th4 TT required for transition from s = 4 to 
s = 5

300 °Cd EK

tf Floral induction day 258 Julian days EK
L Seed bank longevity 3 years Scursoni (2001)
Q−1 Proportion of seeds produced in year −1 

that are quiescent in year 0
0.7 Scursoni (2001).

Q−2 Proportion of seeds produced in year −2 
that are quiescent in year 0

0.2 Scursoni (2001).

Q−3 Proportion of seeds produced in year −3 
that are quiescent in year 0

0.1 Scursoni (2001).

sm Seed bank annual mortality rate 0.0732 Scursoni (2001).
ld Seed loss rate at natural dispersal 0.67 Scursoni (2001)
lb Seed loss rate by biotic factors during the 

first fallow
0.2075 Scursoni et al. 

(1999)
K Carrying capacity 250 ind m−2 EK
Iam Intraspecific competition mortality rate 1 EK
f1 Competition factor for s = 1 0.15 EK
f2 Competition factor for s = 2 0.3 EK
f3 Competition factor for s = 3 0.6 EK
f4 Competition factor for s = 4 1 EK
f5 Competition factor for s = 5 0 EK
nr Groups of reproductive cohorts 2 Adapted from 

Scursoni (2001)
Fc1 Individual fecundity of Group 1 187.2 seeds ind−1 Adapted from 

Scursoni (2001)
Fc2 Individual fecundity of Group 2 19.3 seeds ind−1 Adapted from 

Scursoni (2001)
max1 Maximum seed production of Group 1 12,000 seeds m−2 Adapted from 

Scursoni (2001)
max2 Maximum seed production of Group 2 2500 seeds m−2 Adapted from 

Scursoni (2001)
Ta Day of adverse environmental conditions 1 Julian day EK
mstress1 Weed mortality rate by adverse 

environmental conditions in s = 1
1 EK

(continued)
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during fallow; Qy is the proportion of seeds produced in year y that are quiescent in 
y = 0; sm is the seed bank annual mortality rate.

15.2.1.2  Field Emergence Modelling

The estimation of the weed seed bank proportion emerging each day is estimated 
through mathematical models based on quantitative environmental variables (i.e. 
temperature, precipitation or soil-derived environmental-based indexes). Typical 
emergence models include, for example, nonlinear regressions and artificial neural 
networks (Gonzalez-Andujar et al. 2016). For further details on available options 
for weed emergence modelling the reader is referred to Chap. 5.

15.2.1.3  Phenological Stages ( Ws)

The weed demography is simulated through daily cohorts. Each cohort is repre-
sented by the individuals which emerge simultaneously each day. The individuals of 
each cohort go through different phenological stages during the weed life cycle (see 
green rectangles in Fig. 15.1).

The weed demographic balance is given by:

 
W W I O M s ts t s t s t s t s t, , , , , ,+ = + − − ∀ ∀1  

(15.3)

where Ws, t is the accumulated density (individuals per m−2) at a given phenologi-
cal stage (s) in a given day (t); Is, t are the incoming cohorts (i.e. the group of cohorts 
that enters s in t); Os, t are the outcoming cohorts of s in t; Ms, t is the sum of individu-
als eliminated by control actions plus those affected by thermal/hydric stress in 
s and t.

The logic adopted to simulate the daily dynamics of simulated cohorts is sum-
marized in Figs. 15.2 and 15.3. As observed in Fig. 15.2, the dynamics starts with 
the cohort A as incoming cohort of stage s in t = 1 (Is, 1). Cohort A requires a given 
thermal time (TT), say Ths, to allow transition from s to s + 1 (see the flow from Is, 1 

Table 15.4 (continued)

Parameter Description Value Reference

mstress2 Weed mortality rate by adverse 
environmental conditions in s = 2

1 EK

mstress3 Weed mortality rate by adverse 
environmental conditions in s = 3

1 EK

mstress4 Weed mortality rate by adverse 
environmental conditions in s = 4

1 EK

mstress5 Weed mortality rate by adverse 
environmental conditions in s = 5

0 EK

EK expert knowledge; TT thermal time
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to Os, 3). After TT requirements are fulfilled, cohort A is affected by the intraspecific 
competition (ia(s + 1), 3)), and then a new cohort, A′, conforms the following stage 
(s + 1). Moreover, for the case of additional cohorts (B and C), emerging in different 
days (Is, 2 and Is, 3 respectively), the transition to the following state occurs simulta-
neously (Os, 5) in the considered example. To sum up, Ths required for transition 
from s to s + 1 is the same for all initial cohorts, but the rate of TT accumulation may 
be different for each one, depending on the weather conditions (see arrows).

In Fig. 15.3, in t = 3, a control action is performed over the individuals in Ws, 3 
(D + E). Cohort D is affected by the rate of control (Cts, 3) generating the D′ cohort. 
In t = 4, the same logic applies to E.

The estimation of the incoming cohorts at s = 1 in t (I1, t) is obtained as:

 
I E tt t t t t1 1 011, , ,= ⋅ ⋅ ⋅ ⋅ −( ) ∀Sq ia ie Ct

 
(15.4)

where I1, t are the incoming cohorts at s = 1,t (i.e. group of cohorts which enter W1, t); 
Sq is the amount of quiescent seeds; Et is the proportion of emerged seedlings in t; 
ia1, t is the weed intraspecific competition (as a survival rate) at s = 1, t; iet represents 
the interspecific competition of the crop over the weed in t; and Ct01, t is the weed 
mortality over the transition between germinating seeds and seedling stage, in t.

Fig. 15.2 Descriptive diagram describing cohorts’ flows between phenological stages. (See Tables 
15.1–15.3 for a description of terms)

Fig. 15.3 Descriptive diagram describing control dynamics and cohorts’ flows. (See Tables 15.1–
15.3 for a description of terms)

15 A Simulation Model as the Core for Integrated Weed Management Decision…



320

For each phenological stage, a given thermal time accumulation (Ths) is required 
to allow the transition to the next phenological stage. For TT accumulation θs, t, the 
following equation (Begon et al. 2006) is used:

 
θs t

n

i

t iT s t, ,= −( ) ∀ ∀
=

+( )∑
1

Tb
 

(15.5)

where T(t + i) is the mean daily temperature in t + i and Tb is the base temperature 
of the weed species under study.

This equation starts with Is, t and operates on a daily basis until the environmental 
requirements for transition to the next phenological stage after n days are fulfilled. 
The following expression describes this process:
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(15.6)

where I(s + 1), (t + n) is the incoming cohorts at s + 1 in t + n; Os, (t + n) is the outcoming 
cohorts of s in (t + n); and ias, t is the weed intraspecific competition (as a survival 
rate) at s in t.

Equation (15.6) applies for all phenological stages except for stage 3 where an 
additional environmental condition (minimum floral induction time) is required. 
Thus, as depicted in Eq. (15.7), weed individuals at advanced vegetative stage must 
reach the floral induction time as an additional requirement for transition to s = 4.
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(15.7)

where tf is the time of floral induction (Julian day).

15.2.1.4  Weed Intraspecific Competition

In this work, intraspecific competition of the weed was considered to depend on the 
carrying capacity of the system (K) and on the density of the present individuals 
weighted according to their specific phenological stage (Wks, t). This is indicated in 
Figs. 15.1 and 15.2 and described by Eqs. (15.8) and (15.9):
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where ias, t is the weed intraspecific competition in s and t; iam is the intraspecific 
competition mortality rate; K is the agroecosystem’s carrying capacity; Wks, t is the 
weighted weed density from actual stage s to ns in t, ns being the number of pheno-
logical stages simulated; Wi, t is the accumulated density (individuals per m−2) in i 
and t; and fi is the competition factor of i.

15.2.1.5  Crop-Weed Interspecific competition

The competitive effect of the crop over the weed (iet) is simulated as a survival rate 
on s = 1 (Fig. 15.1). The magnitude of iet depends on the crop sowing density and 
on the leaf area index (LAI). LAIt can be easily obtained with specific crop simula-
tion tools, such as the Decision Support System for Agrotechnology Transfer 
(DSSAT) software (Jones et al. 2003).

For the calculation of iet, the following equation is implemented:
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(15.10)

where iet is the proportion of individuals that survive interspecific competition; 
LAIt is the LAI in t; LAIhc is a value of LAI representing a highly competitive situ-
ation; Cs is the standard sowing density; and Ca is the actual sowing density. The 
relationship between LAI and C determines the mortality of the weed individuals. 
The minimum function establishes that iet is constrained between 0 and 1.

15.2.1.6  Weed Seed Production

Regarding seed production, several different groups of ‘reproductive cohorts’ were 
adopted. Such a modelling approach allows considering differences in the fecundity 
and maximum seed production of individuals influenced by the diverse environ-
mental conditions that occur along the season (Fig. 15.1). The following equation 
represents weed seed production:

 
Sp Fc
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= = ⋅( ){ }
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∑
r

r r rW
1
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(15.11)

where Sp is the total seed production at the end of the season; r corresponds to a 
given ‘reproductive group’; nr is the number of simulated ‘reproductive groups’; Wr 
is the density of individuals in r; Fcr is the fecundity of r; and maxr is the maximum 
seed production of r.
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15.2.1.7  Weed-Crop Interspecific Competition

The interference of the weed on the crop is taken into account for the expected yield 
calculation. In this work, the expected crop yield equation proposed by Pannell 
et al. (2004) was adopted:
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(15.12)

where Yld corresponds to the expected crop yield (as a proportion of the weed-free 
yield); Cs is the standard crop density; a is a crop-dependent constant; Ca is the 
actual crop sowing density; k is a constant which accounts for weed competitive-
ness; W is the weed density of individuals which survive control methods; and Myl 
is the maximum yield loss proportion due to high interspecific competition.

Although Eq. (15.12) considers diverse weed control options, crop sowing densi-
ties, maximum yield loss, etc., the following important factors are not explicitly 
considered: (1) phenological stages of weed individuals, (2) critical competition 
period (CCP) and (3) interspecific competition before weed management interven-
tions. In order to account for the complex competitive effect of the weed over the 
crop along the whole season, a new variable was introduced (WC) to replace W in 
Eq. (15.12). The estimation of WC is as follows:
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where WC is the sum of weed competitive effects (over the crop) at the end of the 
season; te is the crop emergence time (Julian day); tm is the time of crop maturity 
(Julian day); fs is the competition factor of stage s; and Sft is a factor that represents 
the crop susceptibility to competition in t.

15.2.2  Weed Mortality (M)

The following equation describes weed losses due to weed management and stress 
mortality:

 
M M s ts t s t s t, , , ,= + ∀ ∀MC stress

 
(15.14)

where Ms, t is the sum of individuals eliminated by control actions in s and t (MCs, t) 
and the number of individuals affected by thermal/hydric stress in s and t (Mstresss, t).
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15.2.2.1  Management Simulation

Simulation of weed management is performed according to the following equation:

 
MC Cts t s t s tW s t, , , ,= ⋅ ∀ ∀

 
(15.15)

where Cts, t is the weed mortality rate due to control interventions in s and t and 
Cts, t represents the proportion of individuals controlled by different management 
methods. Within the chemical options, two possible scenarios are considered: (1) 
weed mortality occurring after post-emergence control and (2) residual pre- 
emergence effect. For post-emergence control, different mortality rates apply on 
individuals at each phenological stage (from s = 1 to s = 5) at the time of the chemi-
cal intervention (t  = ϕ). For the residual effect, mortality is accounted over the 
transition between germinating seeds and seedling stage (Ct01, t) between t = ϕ and 
t = ϕ + Ω, where Ω is the adopted residual time span.

15.2.2.2  Weed Mortality Due to Stress

Equation (15.16) considers the environmental adverse conditions that reduce the 
survival of the weed individuals:
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where mstresss is the mortality rate due to adverse environmental conditions on stage 
s in the Julian days belonging to set Ta. Set Ta contains the specific days where 
adverse weather conditions take place.

15.3  Study Case: AVEFA-Winter Wheat System 
in the South-West Area of the Semiarid Pampean 
Region of Argentina

15.3.1  Model Parameters

The proposed study case is the simulation of AVEFA in competition with winter 
wheat (Triticum aestivum L.), a typical system in the south-west area of the semiarid 
Pampean region of Argentina. For all the purposes, weather data records generated 
by the weather station of INTA at Bordenave were adopted (https://inta.gob.ar/doc-
umentos/informacion-agrometeorologica).
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15.3.1.1  AVEFA Parameters

The emergence of AVEFA was simulated with the neural network model proposed 
in Chantre et al. (2018), which was specifically tuned and validated for the region 
under consideration.

15.3.1.2  Wheat Model Parameters

The LAI of wheat crop was simulated using DSSAT. The data generated by simula-
tion were approximated in the present work through the following simplified equa-
tion (Eq. 15.17):
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where α, ω, β,  γ,  δ,  ε are the parameters adapted from DSSAT, Dt is the 
accumulation of the crop’s thermal time (°Cd) at day t, G1 is the accumulated ther-
mal time at the day of the largest LAI, and G2 is the cumulated thermal time required 
to reach physiological maturity in wheat. The parameters of Eq. (15.17) are detailed 
in Table 15.5.

15.3.2  Weed Management

In Table 15.6, the parameters corresponding to chemical and mechanical control 
actions to simulate the AVEFA-wheat system are provided.

15.3.3  Calibration and Validation

In order to correctly estimate expected yield (Yld), parameters a and k (Eq. 15.12) 
(which depend on the crop variety and on the competitive ability of the weed over 
the crop) should be tuned for the system under consideration. In this work, these 
parameters were calculated by correlation of experimental data resulting from field 
experiments conducted at EEA-INTA Bordenave (Bordenave, Buenos Aires, 
Argentina) along 4 years (Lopez and Vigna, n.d.) totalizing a pool of 41 data points 
(N = 41).

From the available data set, 70% of the data points were randomly chosen for 
parameter estimation. The parameter estimation problem was implemented in Excel 
using the Solver tool to seek for the values of a and k that minimize the RMSE 
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Table 15.5 Wheat parameters for the study case

Parameter Description Value Source

te Crop emergence day 174 Julian days Cronotrigo@
tm Physiological crop maturity day tm = f(G2) Adapted from 

DSSAT
G1 TT at maximum LAIt 1116 °Cd Adapted from 

DSSAT
G2 TT for physiological crop maturity 2260 °Cd Adapted from 

DSSAT
CCP Critical competition period 300–320 Julian 

days
Cronotrigo@

Sft Susceptibility of the crop between day 0 
and CCP

Sft =  Min (LAIt, 1) EK

Sft Susceptibility of the crop during CCP 5 EK
Sft Susceptibility of the crop after CCP 1 EK
α LAIt parameter 0.1138 Adapted from 

DSSAT
ω LAIt parameter 3.71 E−3 Adapted from 

DSSAT
β LAIt parameter 47.98 Adapted from 

DSSAT
γ LAIt parameter 0.08012 Adapted from 

DSSAT
δ LAIt parameter 5.02 E−5 Adapted from 

DSSAT
ε LAIt parameter 1.07 E−8 Adapted from 

DSSAT

EK expert knowledge

Table 15.6 Control strategies used, detailing type of control, application time, control method 
(usual commercial formulation), residual time span (Ω) and mortality rate of control over a pre- 
seedling stage (Cr01,t) and at seedling (Ct1), early vegetative (Ct2), advanced vegetative (Ct3), initial 
reproductive (Ct4) and advanced reproductive (Ct5)

Type of 
control

Application 
time Control method

Residual 
span (Ω) 
(days)

Residual 
effect 
(Ct01, t) Ct1 Ct2 Ct3 Ct4 Ct5

Non- 
selective

Fallow Glyphosate SL 48% 
(2 L ha−1)

– – 1 1 1 0.5 0

Non- 
selective 
residual

Fallow Glyphosate SL 
48% + flumioxazin CS 
48% 
(2 L ha−1 + 0.120 L ha−1)

6 1 1 1 1 0.5 0

Tillage Fallow Ploughing – – 1 1 1 1 0
Selective Post- 

emergence
Pinoxaden EC 6%, 
0.8 L ha−1

– – 1 0.9 0.7 0.2 0

Selective 
residual

Post- 
emergence

Flucarbazone-sodium 
WG 70%, 80 g ha−1

20 0.5 1 0.9 0.3 0 0
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(Fig. 15.4a). The remaining 30% of the data points were simulated with the calcu-
lated parameters (a = 100, k = 5) obtaining the results shown in Fig. 15.4b, which 
are considered satisfactory for the purposes of this study.

15.3.4  Simulation Results

Following, the results of multiannual simulations of the AVEFA-winter wheat sys-
tem are shown to illustrate the main characteristics and outcomes of the proposed 
model. Three cases are presented, each one combining different management strate-
gies (including chemical, mechanical and cultural interventions). Chemical controls 
adopted in this work include selective and non-selective herbicides with or without 
residual effects. In the following simulation experiments, usual commercial formu-
lations are provided as examples of typical treatments.

15.3.4.1  Case I: Cultural + Mechanical Management

Wheat is sown at June first each year, at a sowing density of Ca = 200 pl m−2. The 
specific adopted variety possesses a LAIhc = 1 and a Myl = 20% whose values cor-
respond to a high competitive wheat variety (Buck Napostá) (Lopez and Vigna, 
n.d.). A mechanical control (ploughing) was performed each year, previously 
to sowing.

In Fig.  15.5, the effect of the intraspecific competition can be observed as a 
reduced number of weed individuals incorporating to the system between April and 
May of year 1. Before the wheat is sown, the ploughing produces a steep elimina-
tion of AVEFA individuals. Then, the interspecific competition generated by the 
highly competitive crop produces a reduced incorporation of weed seedlings in the 
early stages of the crop development.

Fig. 15.4 Expected wheat yield (Yld), calculated vs. observed obtained with the AVEFA-wheat 
model. (a) Train set (70% data). (b) Validation set (30% data). RMSE root mean square error
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Obtained results show a progressive reduction in the AVEFA-wheat competition 
in the third year (Fig.  15.6a). Seed production decreased in the second year but 
slightly increased in the third one (Fig. 15.6b). Regarding the crop, good yields are 
observed considering the large initial weed infestation producing an increase of 
8.7% in the third year, regarding year 1 (Fig. 15.6c).

15.3.4.2  Case II: High Use of Chemicals

Wheat is sown at June first each year, at a sowing density of Ca = 200 pl m−2. The 
specific adopted variety possesses a LAIhc = 6 and a Myl = 60%. These values cor-
respond to a low competitive wheat variety (Cooperación Nanihue) (Lopez and 
Vigna, n.d.). The results of the applied chemical and mechanical interventions are 
presented in Fig. 15.7.

Fig. 15.5 Multiannual AVEFA dynamics showing in different shades of green the relative compo-
sition of each phenological stage from a high non-dormant seed content (4500  seed m−2). The 
combined effect of mechanical control (ploughing) and cultural strategy (high competitive wheat 
variety) is simulated. The development of the wheat is observed through the LAIt (yellow line). 
Arrows indicate control dates

Fig. 15.6 Competition of AVEFA over winter wheat (WC) (a), AVEFA seed production (Sp) (b), 
expected wheat yield (Yld) (c), for the 3-year series and combination of mechanical control 
(ploughing) and cultural measure (high competitive crop variety)
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The first control is a combination of glyphosate (LS 48%, 2 L ha−1) + flumioxa-
zin (SC 48% 0.120  L  ha−1) during fallow (February) applied in the first year. 
Glyphosate effectively controlled AVEFA individuals, and the residual effect of flu-
mioxazin precluded the growth of new seedlings for a 2-month period. Then, a new 
application of glyphosate took place 30 days before sowing in year 1 and 45 days 
before sowing in years 2 and 3. Moreover, immediately before sowing, ploughing is 
also performed in each year to eliminate the remaining individuals. In post- 
emergence of wheat, applications of pinoxaden (CE 6%, 0.8 L ha−1) are performed 
in the first and third years combined with a residual herbicide (Flucarbazone-sodium 
WDG 70%, 80 g ha−1) in year 2. The application of the selective herbicides per-
formed an efficient control of AVEFA individuals avoiding competition during the 
CCP (October 25th to November 14th, CronoTrigo©).

Results show a progressive reduction of the AVEFA-wheat competition in the 
third year (Fig. 15.8a). Seed production remained low in years 2 and 3 (Fig. 15.8b). 
Crop yield was significantly reduced in year 1 due to large weed infestation, show-
ing an increment of 16% and 21% in years 2 and 3, respectively (Fig. 15.8c).

15.3.4.3  Case III: Cultural Management + Chemical Control

Wheat is sown at June first of each year, at a sowing density of Ca =400 pl m−2. The 
specific adopted variety possesses a LAIhc = 6 and a Myl = 60%, corresponding to 
a low competitive wheat variety (Cooperación Nanihue) (Lopez and Vigna, n.d.). As 

Fig. 15.7 Multiannual AVEFA dynamics showing in different shades of green the relative compo-
sition of each phenological stage from a high non-dormant seed content (4500 seed m−2). Each 
year, the combined effect of one mechanical control (ploughing) and several chemical controls is 
simulated: non-selective residual (glyphosate LS 48%, 2  L  ha−1  +  flumioxazin SC 48% 
0.120  L  ha−1), non-selective (glyphosate LS 48%, 2  L  ha−1), selective (pinoxaden CE 6%, 
0.8 L ha−1) and selective residual (Flucarbazone-sodium WDG 70%, 80 g ha−1). The development 
of the wheat is observed through the LAIt (yellow line). Arrows indicate control dates
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a cultural management option, crop density is doubled compared to previous cases. 
Several chemical controls were also applied. In particular, two applications of a 
non-selective herbicide were simulated during fallow. A non-selective herbicide 
with residual effect was added in year 1 to cope with the large initial infestation.

In the fallow of the first year, the effect of a mixture of glyphosate LS 48%, 
2 L ha−1 + flumioxazin SC 48% 0.120 L ha−1 can be observed, followed by a second 
application of glyphosate LS 48% (Fig. 15.9). Both applications coincide with those 
of Case II (Fig.  15.7). Different from Cases I and II (Figs.  15.5 and 15.7), an 

Fig. 15.8 Competition of AVEFA on wheat (WC) (a), AVEFA seed production (Sp) (b) and 
expected wheat yield (Yld) (c). Each year, the combined effect of one mechanical control (plough-
ing) and several chemical controls is simulated: non-selective residual (glyphosate LS 48%, 
2 L ha−1 + flumioxazin SC 48% 0.120 L ha−1), non-selective (glyphosate LS 48%, 2 L ha−1), selec-
tive (pinoxaden CE 6%, 0.8  L  ha−1) and selective residual (Flucarbazone-sodium WDG 70%, 
80 g ha−1)

Fig. 15.9 Multiannual AVEFA dynamics showing in different shades of green the relative compo-
sition of each phenological stage from a high non-dormant seed content (4500 seed m−2). Each 
year, the combined effect of one cultural management measure (100% increase in crop density 
regarding standard crop density) and several chemical controls is simulated: non-selective residual 
(glyphosate LS 48%, 2 L ha−1 + flumioxazin SC 48% 0.120 L ha−1) and non-selective (glyphosate 
LS 48%, 2 L ha−1). The development of the wheat is observed through the LAIt (yellow line). 
Arrows indicate control dates
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application of glyphosate is performed instead of the mechanical intervention before 
sowing each year. The effect of doubling crop density produces a reduction of new 
AVEFA individuals from September onwards.

Results show a progressive reduction of AVEFA-winter wheat competition in the 
third year (Fig.  15.10a). Seed production decreased in year 2 but moderately 
increased in year 3 (Fig. 15.10b). Similar to Case II, crop yield was considerably 
reduced due to AVEFA infestation in year 1 (Fig. 15.10c) with a yield increment of 
7% and 33% in years 2 and 3, respectively.

In general, it can be observed that acceptable yields (close to or even larger than 
90%) can be achieved in years 2 and 3 with all the three adopted control strategies 
(Cases I, II and III). However, regarding weed seed production, only Case II 
achieved a significant and sustained reduction in years 2 and 3 (<200 seeds m−2) 
which suggests a more controllable situation in forthcoming seasons. This is a rather 
expected result since Case II is the most intense control strategy including a mechan-
ical intervention before sowing, together with a selective treatment during the crop 
growing season. This is probably the most expensive and environmental impacting 
strategy. In Cases I and III, although the seed production was reduced with respect 
to year 1, the lack of application of the selective herbicide in September translates 
into a larger seed production which impacts harvest quality and contributes to seed 
bank replenishment.

Finally, it should be mentioned that in CASE II, where ploughing is performed 
before sowing, the application of chemical controls during fallow has no effect 
on the model outcome since the weed is completely killed by the mechanical 
treatment. However, a chemical application during fallow is a common practice 
in order to keep soil water content and in this case also to help to illustrate the 
effect of the residual action. In Case III, on the other hand, where a non-selective 
chemical treatment is performed before sowing, a previous chemical intervention 
precludes that some plants became large enough to escape these pre-sowing 
applications.

Fig. 15.10 Competition of AVEFA on wheat (WC) (a), AVEFA seed production (Sp) (b) and 
expected wheat yield (Yld) (c). Each year, the combined effect of one cultural management mea-
sure (100% increase in crop density regarding previous cases) and several chemical controls is 
simulated: non-selective residual (glyphosate LS 48%, 2 L ha−1 + flumioxazin SC 48% 0.120 L ha−1) 
and non-selective (glyphosate LS 48%, 2 L ha−1)
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15.4  Conclusions and Future Work

To be used for practical IWM DSS, the most relevant agronomic variables should be 
estimated along rather extensive periods, typically several years. Additionally, sig-
nificant uncertainty is present in agronomic systems, in particular associated to 
weather parameters’ forecasts (daily temperatures and rainfall). In this context, sto-
chastic studies, which demand intensive simulation, make more sound than just 
deterministic or scenario analysis. Finally, if the management option space is to be 
automatically explored, lots of simulations are usually required. Therefore, a simu-
lation model should possess a level of detail compatible with reasonable computa-
tion times. Fortunately, current computer systems and software produce very rapid 
computations allowing therefore a very deep level of detail in the underlying DSS 
model. In fact, the described model approaches weed dynamics and weed-crop 
interaction with a larger level of detail than the usually found in similar studies. The 
most relevant features of the proposed modelling framework are the following:

 1. Interspecific competition (crop-weed): The interest of the adequate representa-
tion of this process is basically related with accurately quantifying the effect of 
some cultural control measures which have a paramount importance in IWM. The 
competition of the crop on the weed, although modelled in a simplified way, 
considers both the degree of competition of the crop variety and the crop density 
through the LAI.  These factors affect the most susceptible state of the weed 
along the whole crop development period.

 2. Interspecific competition (weed-crop): It is simulated as crop yield loss, calcu-
lated as a function of a representative weed density. A somewhat innovative for-
mula was developed for its calculation which considers both the amount of the 
weed in the corresponding growth stage and the period that remains in competi-
tion with the crop. Moreover, the maximum yield loss in competition allows 
simulating the effect of more or less competitive crops (varieties).

 3. Intraspecific competition: This allows representing scenarios of high infestation 
and scarce control measures. Through the somewhat novel proposed approach, it 
is possible to simulate the competition of the weed plants within their own popu-
lation. The effect of the competition of older individuals on younger plants can 
be easily tuned through several weighting factors.

 4. Seed bank: Besides the typical elements of the seed bank dynamics (emergence, 
mortality, seed rain, etc.), the following phenomena are also modelled in this 
system: dormancy and longevity. Multiannual simulations allow quantifying the 
consequences of the different management strategies on this variable of para-
mount importance for the agroecosystem.

 5. Phenological stages: The classification of the weed life cycle in its most relevant 
growth stages allows producing more detailed simulations. The daily demo-
graphic balance of the weed in each phenological stage allows a detailed model-
ling of processes such as inter- and intraspecific competition, at the expense of a 
large number of parameters to be provided/tuned.
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 6. Seed production: Simulations provide seed production per plant. Plants are clas-
sified into reproductive groups depending on the conditions that experienced 
along growth and development. Each group possesses different fecundity. In this 
way, it is possible to investigate how different management strategies impact on 
the weed dynamics and consequently on seed production.

 7. Weed management: The model incorporates the effect of the control actions 
through mortality rates that affect in different magnitudes weed plants in differ-
ent growth stages. This allows the quantification of the impact of a certain action 
based on the relative susceptibility of the plants present the day the control is 
performed. The approach also considers the residual effect of herbicides on weed 
seedlings. This segregated way of modelling mortality hopefully provides a 
more precise computation of the effect of herbicides’ action on the agroecosys-
tem, at the expense of a more parameterized model.

However, in order to build a practical DSS from the proposed model, additional 
features are required. Specifically, the following complements should be considered 
in future developments:

 (a) Economic evaluation: The inclusion of a module for economic evaluation 
would allow the calculation of the cost of the whole management strategy as the 
integration of the costs of the individual control actions along the planning 
period, together with the income due to the selling of the produced cereal, 
which in turn will depend on the corresponding yields and qualities.

 (b) Environmental impact: This module is intended to quantify the impact of the 
different control actions, in particular of the use of chemicals, through appropri-
ate indexes such as EIQ, externalities, and other methodologies available in the 
literature.

 (c) Resistance: Weed resistance to herbicides is a complex topic and a very chal-
lenging process to model. A possible approach to incorporate resistance quite 
straightforwardly in our modelling framework is to consider the presence of a 
resistant population coexisting with the susceptible one. Each population may 
be represented by different mortality rates to herbicides, producing therefore 
different demography responses to each chemical treatment, whose extension 
and impact could be hopefully captured with long-term simulations.

 (d) Optimization module: In order to automate the exploration of control options, 
an optimization engine will be adapted aimed at optimizing the IWM problem 
regarding the two main objective functions: economic benefit and environmen-
tal impact.
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