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Abstract. One of the most prominent use cases of a digitized industry is pre-
dictive maintenance. Advances in sensor and data technology enable continuous
condition monitoring, thus, extending the opportunities for predictive mainte-
nance. However, so far, most approaches stick to a simplistic paradigm viewing
industrial systems as a single-component system (SCS), assuming independence
or partially neglecting interdependencies between components. However, in
practice, multiple components are coupled which interact with each other; thus,
leading to a multi-component system (MCS) view. Implementing the MCS is
challenging, but promises many advantages for predictive maintenance. We
conduct a structured literature review to investigate the current state of research
about MCS and how this can be transferred to data-driven predictive mainte-
nance. We investigate the characteristics of MCS, the promises in contrast to
SCS, the challenges of its implementation, and current application areas. Finally,
we discuss future work on MCS in the context of predictive maintenance.

Keywords: Predictive maintenance � Multi-component systems � RUL �
Stochastic dependence

1 Introduction

One of the most prominent use cases discussed in the context of digitization of industry or
Industry 4.0 is predictive maintenance [20]. Various data-driven approaches for predic-
tive maintenance in different industrial application settings can be found [32, 35, 40, 41].
This increasing interest from practice and science has three major reasons. First, main-
tenance is always a relevant topic and has huge influence on the production costs, quality,
and reliability [6]. Second, the information basis increased due to the growing availability
of cheap and powerful sensor technology [35, 44]. And finally, huge advances in data
processing capabilities and the new rise of artificial intelligence (AI) offer new oppor-
tunities to build predictive models [45].

As a result, predictive maintenance was promoted in many industry sectors [29].
Despite the advancements in this field, current approaches predominantly rely on
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the paradigm of a SCS for their predictive maintenance models, rather than MCS
[12–14, 19]. The most important reason to stick to SCS is the complexity of the system
level maintenance modeling and limited algorithmic and computational power in the
past [12–14]. Thus, SCS models and approaches are applied to complex systems
composed of multiple subsystems ignoring their interdependencies. So far, the results
are acceptable, but in practice, these assumptions are not reasonable as more precise
results could not be achieved [13, 14].

AI based models realize good results for stable production processes for which
good experience-based data sets are available. This is however changing as a result of
mass customization, more complex production processes, and shorter product life
cycles in digitized manufacturing [42]. Consequently, the production lines and their
configuration change more frequently, or many different variants of one machine can
be found in practice. Hence, data sets for one of those variants is small in most cases
and not enough for training traditional models (small data challenge) [46]. Addition-
ally, shorter product life cycles demand faster learning and a switch from experienced
based models to data driven models. All these challenges and limitations lead to the
need for new approaches which handle all these aspects properly. MCS seem promising
in this regard.

MCS models and approaches are rarely used in predictive maintenance, but gen-
erally used in other research fields, such as corrective maintenance and preventive
maintenance. However, the complexity of manufacturing systems, requires reliable
condition monitoring, thus, various sensors are embedded within these systems for
providing condition monitoring. This data can be used to predict the system health
encouraging the need for state-of-the-art predictive maintenance approaches. Hence,
this sounds promising to analyze the literature in these fields and to transfer the insights
to data driven predictive maintenance for MCS.

The aim of this paper is to investigate the state of research on how MCS models and
approaches can be used in the context of predictive maintenance. The goal is to identify
promising solutions and their characteristics, advances in contrast to SCS, application
areas and lastly, the challenges for their implementation. The next section provides an
overview of the background with regard to MCS. In Sect. 3, the methodology used to
conduct a literature review is introduced. Section 4 describes the results. Finally,
conclusions are made defining the outlines for possible future work.

2 Background

2.1 Multi Component Systems

MCS are more complex than SCS as they consider a higher degree of complexity and
dynamic behavior of the environment. MCS models represent a variety of components,
regarding both life span and purpose, and also represent interactions between sub-
components. AnMCS is defined as a system which consists of multiple components, and
these components strongly interact with each other [4, 8, 15, 17]. Therefore, depen-
dencies among system components are assumed and can be modelled. Moreover, an
MCS is often described as a complex system [15] which consist of multiple interacting
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sub-components [7]. Also, a complex system is defined as a system, which consist of
multiple components and the reliability dependency between system and components’
may not be completely known [35]. Furthermore, the term MCS is mostly used as
interchangeably to refer to both the system, which consists of multiple assets or engi-
neering assets consisting of multiple components [5]. Figure 1 shows an example of an
MCS – a welding device which is composed of several components such as cooling unit
or hosepack. In the MCS now, interdependencies between these sub- components can be
modeled and considered for analytical tasks. In the related work focusing on MCS, the
interdependencies are classified into three key categories: stochastic, economic, and
structural interdependencies [2, 6].

Stochastic interdependencies between multiple components are present within the
system; when the deterioration process of one or multiple component is affected from
the deterioration state of other components [2, 8, 11, 19]. Moreover, the deterioration
process of a component depends not only on the current state of the system and on the
operation conditions of the system but also on the current state of other components
which it is interacting with. For example, an old worn out component which interacts
with new components, will potentially accelerate the wear rate of a new one, which in
turn might have the same effect on the already worn up component [17].

Economic dependencies represent the cost relationships between components. The
assumption is that the maintenance of a group of components at once lead to different
costs than applying separate maintenance for each component [2, 11, 19]. In literature,
two types of economic dependencies exist. The first type is noted as positive economic
dependence, which provide that the joint maintenance costs for a group of components
lead to cheaper costs, compared to performed maintenance on components separately.
The second type is known as negative economic dependence, which in contrast pro-
vides that the joint maintenance costs of a group of components leads to higher costs
than performing maintenance individually [2, 6].

Structural dependencies mean that multiple components within a system are
structurally dependent [2, 3, 11, 19]. In other words, the components structurally form a
part within the MCS. Whereby a failure implies actions, such as disassembly, on the
other components too. For example, while replacing a component, it indirectly forces
other components to be dismantled or replaced as well.

Fig. 1. Multi-layer MCS structure based on hierarchical structure.
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However, in the latest trend, the possibility of the fourth type of interdependencies,
i.e., the resource dependence has been considered. Resource interdependence is
focused on describing or modeling the dependency between a component or group of
components and spare parts or even a limited number of maintenance workers [19].

2.2 Predictive Maintenance

Maintenance in industrial setting or manufacturing equipment is essential to guarantee
higher quality, productivity, sustainability, and safe working environment [20]. Tra-
ditional approaches, e.g. time-based maintenance or condition-based maintenance
usually perform maintenance based on the current state of devices. Time-based
maintenance ensures that maintenance is performed at regular basis based on prede-
fined time-interval [2, 6]. Condition-based maintenance uses the data gathered through
multiple sensors, which are assembled within the equipment for providing condition
monitoring [6].

Predictive maintenance is gaining a lot of attention in the last decade, due to the
availability of condition monitoring data [35]. The aim of predictive maintenance is to
identify the optimal time for maintenance and thus also in a proactive way. Imple-
menting effective prediction offers a variety of benefits including increase of system
reliability, machine availability, production performance, sustainability, system safety,
maintenance effectiveness and decrease maintenance costs, number of accidents, and
downtime machinery. Predictive maintenance is also defined as condition-based
maintenance followed by a prediction, which uses the knowledge derived from the
analysis of crucial parameters regarding the degradation of the device [20]. In most
cases, the aim of prediction is to estimate Remaining Useful Life (RUL) and its
confidence intervals [20].

Existing approaches rely on the SCS metaphor so far. Statistical or AI approaches
are applied without considering the interdependencies of the subcomponents explicitly.
However, the complexity of current manufacturing processes is increasing tremen-
dously. On the one hand the number of components and the interactions between these
components are increasing. Also, cheap sensors, powerful algorithms, increased
bandwidth and ever-growing storage capacity increase the available data basis signif-
icantly. As a result of digitization and mass customization, the variability with regard to
the components is increasing sharply. Usually, the number of similar product variants is
large, but the data set for one specific variant is small [3]. Hence, the challenge is to
transfer the insights and models from one variant to another. Traditional approaches
considering only the SCS which conveniently lack to handle this particular challenge
and the general requirements resulting from digitization of industry. Therefore, pre-
dictive maintenance for MCS is gaining more attention in the last years, aiming for
more realistic solutions, which are applicable in real complex use cases [35].
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3 Methodology

We conducted our structured literature review about MCS in the context of predictive
maintenance based on Webster and Watson [31]. The literature review is conducted
focusing on the period 2008 to 2019 as shown in Table 1. In order to perform the
forward and backward search, Google scholar is used. Within this process 19 relevant
keyword combinations suitable for the review were identified and applied to 11
Journals and 1 Conference. These journals and the conference are selected, since the
MCS topic is a key focus and they have great impact factor. The search is performed
with restriction to title, abstract and author-specified keywords.

To identify the most relevant papers, an abstract and conclusion scan is performed
to the 133 distinct papers identified before. All papers that focus on providing data
driven approaches to maintenance, such as preventive maintenance, time-based
maintenance, condition-based maintenance, or predictive maintenance for MCS, or
complex system are considered as relevant. Finally, 30 papers are selected as relevant.

Thus, 14 additional papers are identified in a backward and forward search
according to Webster and Watson. Consequently, 44 papers are chosen and analyzed in
detail, providing a good overview about the current research state with regard to data
driven solution for MCS. In the last step, the identified papers are scrutinized in detail
using the qualitative content analysis [43]. Here, some works are dropped after careful
analysis, because the focus of these papers did not exactly fit the goal of this literature
review, and as a result, the analysis of 31 papers is provided in the next section.

Table 1. Review Matrix for data-driven solution for MCS. In the x-axis relevant keywords are
listed. On the top of the table each journal/conference is represented as distinct column.
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4 Results

4.1 Characteristics of MCS

MCS models provide the option to describe a system in much more detail, thus,
providing a more detailed but also more complex description of reality. In the fol-
lowing we will present these core characteristics of MCS models we found in our
structured literature review.

In the literature, dependencies between components within an MCS model are well
described. These dependencies can be classified into four groups: stochastic, structural,
economic, and resource-based dependence [19].

The stochastic dependence describes the effect of the health-state of one specific
component towards all other related components [2, 8, 11, 30]. The main advantage of
considering stochastic dependencies is a higher accuracy while estimating or predicting
RUL and reliability of the system, sub-system or components. Moreover, this will
provide a valuable basis to reduce overall costs, while performing cost optimization
approaches. The challenge is to collect sufficient data to detect and then model
stochastic dependencies.

The structural dependence focuses on the structural dependence between coupled
components within a system. In this case, replacement of a component requires dis-
mantling or replacement of other components. In literature, structure dependencies are
clustered into two groups: technical dependence, where technical point of view is
considered, and performance dependence where performance point of view is inves-
tigated. Modeling structural dependence, accordingly, strongly improves maintenance
cost [2].

Managing maintenance actions is not a pure technical approach, economic aspects
like costs or benefits are crucial as well and they are represented in the economic
dependence. Economic dependence shows the impact on the costs, while considering
maintenance to related components instead of applying maintenance only to the
failed/worn out components. Combining maintenance on multiple components, could
either increase costs, heading to negative economic dependence, or decrease them,
leading to positive economic dependence. The key advantage of modeling economic
dependence is obviously the improvement on maintenance costs [2, 6].

Lastly, the resource dependence is focused on the relationship between compo-
nents and needed resources (e.g., spare parts, human resources) to perform maintenance
[1]. Typically, the following resource categories have been investigated in literature:
maintenance workers, tool parts, spare parts, transport, and budget. Maintenance
scheduling can be properly achieved, granted that the needed resources are available.
First and foremost, organizing the needed resources accordingly, helps to improve
sustainability and overall maintenance costs. In general, dependencies between com-
ponents for SCS are ignored (as shown in Table 2), thus, reducing the complexity
while modeling the systems, but missing important aspects which are present in
practice.
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Moreover, interaction of components with humans and their environments increases
the complexity further [16]. Considering these interactions, could possibly help to
improve system reliability, and fault or wear out prediction/detection accuracy. This
aspect is difficult to model, because of the unpredictable nature of human behavior and
the complex application context. Therefore, this aspect was not considered regarding
both SCS and MCS as shown in Table 2.

Another important characteristic of MCS, is the variability between components.
Usually, a system consists of a number of components, which are different regarding
key characteristics, such as life span. These characteristics are important when esti-
mating the RUL, since the prediction accuracy within this aspect is essential. Moreover,
modeling this aspect properly, could also help to improve system reliability.

In the reviewed papers, the reliability structure of an SCS is often assumed to be
deterministic, rather than stochastic [33, 35]. Further, the stochastic reliability structure
(shown in Table 2) is another important characteristic of MCSs. However, in practice,
complex MCS meets high uncertainty in the system reliability structure. Furthermore, a
capability to recognize and model this characteristic can be a big advantage, when
handling use cases in industrial practice.

4.2 Decision Support for Maintenance of MCS

Predicting the RUL for a system requires understanding of how the degradation process
of system evolves over time and accurate estimation of the deterioration state. Mod-
elling the degradation process for MCS requires modeling of MCS characteristics, such
as interdependencies to provide reasonable estimation and prediction. Therefore, in the
last decade, this topic has gained more research interest [38].

Predicting the RUL consist of two key parts, known as diagnostics and prognostics
(see Table 3). On the one hand, diagnostics aims to identify the need for modeling the
interactions between components. On the other hand, prognostics focus more on
modelling the interactions, while predicting the RUL of components, or the whole
system. In the following, we will discuss the results of various works with focus in both
diagnostics and prognostics for MCS. In particular, the deterioration relationship

Table 2. MCS characteristics in comparison with SCS.

Characteristics SCS MCS Advantages

Economic dependence No Yes Cost optimization
Structural dependence No Yes Cost optimization
Stochastic dependence No Yes Reliability, Accuracy, Cost

optimization
Resource dependence No Yes Availability, Sustainability
Interaction with human beings
and environment

No Yes Reliability, Accuracy

Variability of components Yes Yes Reliability, Accuracy
Stochastic reliability structure Yes (only

deterministic structure)
Yes Reliability, Accuracy
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between components and the advantages of interdependencies between components,
the application area, and the methods used to model interdependencies are discussed.

In literature, researchers stated the need for monitoring and modelling interactions
between MCS components in fault identification and maintenance support. Assaf et al.
[17, 36] introduced approaches on fault detection with a focus on the stochastic
interdependencies between components. Moreover, all these works focus on 1-1 mutual
deterioration relationship between components within an MCS. Results are evaluated
using both a Gearbox testing platform and a numerical example. For this purpose,
methods such as Short Time Fourier Transform (SFTF) for time frequency domain
analysis was introduced [17, 36]. The main advantage of using this method is that, it
can denoise signals, which contain data from different components (mixed nature of the
signal), thus, providing high accuracy on extracting components health indicators.
Assaf et al. [36] shows that using unsupervised methods such as Gaussian Mixture
Models, the health indicators can be extracted automatically and in an accurate way.

In the analyzed literature, the focus has not been only on diagnostics, but also on
RUL estimation for MCS. In this case, Xu et al. [39], proposes a state discretization
technique based on change point detection algorithm to model state-rate stochastic
interdependences between components. The main advantage of this method is that it
can handle multiple change point problems for multivariate time series with different
levels of dependences. The evaluation is performed using a simple Gearbox platform
which consists of two components. Furthermore, only a 1-1 mutual deterioration
relationship between components is considered.

Bian et al. [33] proposes an approach in which stochastic interdependences between
components are modeled as continuous-time stochastic, and the degradation interac-
tions as change points in signals using a change point algorithm based on Schwarz’s
criterion [34]. This enables the option to deal with linear degradation data, and discrete
type degradation rate interaction. This approach considers only 1-1 and 1-M (M > 1
and represents number of components) interactions between components.

Lee et al. [35], introduced a predictive maintenance framework for MCS based on
discrete time Markov chain models for modeling deterioration processes of compo-
nents and BN used to model the reliability structure of the system. The key advantage
of using this approach is that it can properly handle the uncertainties and component
reliability. The author did not provide explicitly the information regarding the deteri-
oration relationship within this work. Yet, using BN to model and predict the reliability
structure of the system provides enough evidence, that only 1-1 and 1-M deterioration
interdependencies between components are considered.

The literature focused on RUL estimation for MCS in real use cases, such as
Turbofan Engines and Civil Aerospace turbine [37, 38], stochastic interdependencies
are modeled using Bayesian hierarchical models. The key advantage behind this
approach is that it can handle both high uncertainty and non-linear degradation data. By
definition, the introduction of Bayesian-based models shows that the 1-M relationship
is handled accordingly.
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Rasmekomen et al. [5], models state-rate degradation between components using a
regression-based approach and is evaluated using a two-component real use case of
industrial cold box in a petrochemical plant. The approach followed within this work,
consisting of two key steps. In the first step, the deterioration behavior of each com-
ponent explicitly is modeled using a multivariate linear regression model. Next, the
Gaussian process regression is used to model the interdependencies between compo-
nents. Within this work, 1-1 and 1-M deterioration relationship was studied.

In general, the focus in this research area is more into use cases of simple MCS
(two components system), or simulation studies, rather than on real use cases of
complex MCS, which consist of multiple components, and various complex interde-
pendencies are present.

Table 3. Result’s overview of the research works with focus on modeling RUL.

Paper Method Deterioration
relationship

Application area Advantages Focus of
the
approach

[17] STFT 1-1 mutual
interaction

Gearbox testing
platform/numerical
example

Mixed nature of the
signals, high accuracy on
extracting component
health Indicators

Diagnostics

[36] STFT and
Gaussian Mixture
Models

Automatically and
accurately extract
components health
indicators

[39] State discretization
technique based on
change point
detection algorithm

Gearbox Multiple change point
problems for multivariate
time series with different
levels of dependences

Prognostics

[33] Change point
detection and
Bavesian
framework

1-1 and 1-M Simulation study Linear degradation data
and discrete type
degradation rate
interaction

[35] Markov chains and
Bavesian network
(BN)

Uncertainties and
component reliability

[37] Bayesian
hierarchical Model

Civil aerospace gas
turbine

High uncertainty and non-
linear degradation data

[38] Ratio has ed
change point
detection and
hierarchical
Bayesian model

[5] Multiple linear
regression and
Gaussian Process
Regression

Industrial cold bos
in a petrochemical
plant

Multivariate time series
data and relationship
between variables, which
is not explicitly defined
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4.3 Improve Decision Quality

Reliability and cost optimization in the context of predictive maintenance for industrial
settings are of central interest. Therefore, the key focus in our selected papers was
primarily on improving maintenance quality, but also on precise and accurate predic-
tion of fault events or RUL. In the considered papers, on the one hand, the focus is
primary on finding the optimal time for decision support. On the other hand, various
papers focus not only on improving the maintenance timing [3, 6, 8], but also on the
required type of maintenance [2, 21, 22]. Hence, in this section, we will introduce
several works and their application highlighting these aspects.

In our review we found solutions with a focus on improving decision quality by
only estimating the optimal time to perform maintenance. These solutions take the
advantages by modeling only economic dependencies, or together with structural or
stochastic dependencies. Laggoune et al. [3], proposes an opportunistic replacement
policy for MCS over hydrogen compressor in an oil refinery is introduced. The
introduced opportunistic policy considers the economic dependence between compo-
nents. Moreover, in this work, the small data challenge was successfully handled by
considering the bootstrap and Weibull technique.

Niu et al. [8], introduces an approach, which estimates the optimal maintenance time
for components within a braking system of rail vehicles was proposed. The non-
parametric modeling was applied on the component level, and later this model is used to
find the global optimization on the system level. Nguyen et al. [6], introduces a decision-
making process considering multi-level details for MCS. This approach provides high
quality decision regarding the optimal time for maintenance by considering stochastic,
structural, and economic dependencies. Do et al. [12], introduces a model for a Gearbox
system which aims for optimal maintenance time for a two-component system con-
sidering stochastic and economic dependencies. In this case, it has been shown that the
state dependence between components is important and it has a significant impact of
29.3% on the cost. Kammoun et al. [10], introduced a new approach based on data
mining to optimize selective maintenance for MCS. This approach aims to find the
optimal maintenance time by considering economic dependencies. This solution is
suitable, if only maintenance data are available and sensor data are missing. Van
Horenbeek er al. [27] introduced a new approach, which considers stochastic, structural,
and economic dependencies to provide optimal maintenance time by considering short-
term information, such as component degradation, into maintenance planning. We
found several papers, which consider only economic, or altogether with stochastic, or
structural dependence between the components and aim to improve decision quality by
taking into account only optimal maintenance time [9, 11, 13, 14, 18, 24–26, 28, 32].

The introduction of stochastic dependencies while aiming for optimal timing of
maintenance is complex. Rasmekomen et al. [5] introduced an optimization of
condition-based maintenance policy for MCS considering state-rate interactions. This
works shows that the decision quality could be improved by considering the stochastic
interdependencies between components. Feng et al. [4] provides a novel approach
based on stochastic dependencies in which one dominant/independent component and
“n” statistically dependent components are used to optimize the maintenance timing.
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In our selected papers, we found various works with focus on improving the quality
of decision support, which do not restrict their focus only on optimal time, but also
consider the required maintenance type, or the relevant sparse parts. For instance,
Verbert et al. [21], proposed a new approach for railway network case, which represent
a typical MCS. In this work, the economic and structural dependencies are investigated
and modeled providing significant impact on decision quality. Furthermore, this
approach provides decision support by considering both the optimal time, and the
required type of maintenance. Another approach for improving the decision quality for
high pressure in casting machine was introduced in [22]. Besides the optimal time for
maintenance, also the required relevant maintenance action is provided. Nguyen et al.
[2] proposes a joint optimization of optimal maintenance time and required spare parts
using the advantage of prognostic information and economic dependency. Moreover,
the structural importance together with predictive reliability is considered to improve
the decision-making process. Duan et al. [23], introduces a new approach considering
the economic dependencies for feed system of a machine tool. The aim was to improve
the decision quality by introducing both the optimal time and maintenance type. This
approach is suitable for MCS with multiple identical components.

Summarized, the focus of the papers on improving decision quality for MCS is
more focused on estimation of optimal time. However, there are various papers, which
alongside optimal time, also focus on other aspects, such as maintenance type, or the
relevant spare parts. Furthermore, several solutions are either evaluated against simple
MCS, usually consisting of two or three components, or the approaches are evaluated
using simulation studies, rather than real life use cases.

5 Conclusion and Future Work

In this paper, we investigated the application of MCS models and approaches in the
context of predictive maintenance. Our review identified different interdependencies
and their application settings. Our review provides an overview of already existing
approaches and can be used to select suitable approaches. The review also showed that
MCS are superior to SCS in terms of prediction quality and decision quality. Addi-
tionally, MCS provide advanced decision perspectives which are useful in the context
of predictive maintenance. To our best knowledge, the M-M relationship of stochastic
interdependencies were not considered in the current works and is an aspect which
requires more attention from the research community.

Our literature review also showed that research on MCS in the context of predictive
maintenance is in an early stage. Most MCS presented in the investigated papers are
simple, i.e., having 2–5 subcomponents and they are evaluated in simulation scenarios.
Thus, the work on MCS in the context of predictive maintenance can be considered as
mostly theoretical and more research on the implementation and application of MCS in
practice is needed. This can be also considered as the promising direction for future
research.

Second, researchers frequently mention that data collection and modelling of
interdependencies between MCS components is a complex task. However, so far, no
approaches helping deciders in this process can be found until now. Hence, studies,
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frameworks, guidelines supporting this modelling effort seem very useful and are
considered as a further avenue for future research.

Third, most authors highlight the advanced decision support features of MCS
models, but literature lacks work on representations or interfaces so far. However, to
evaluate this in practice, suitable approaches are needed. This is especially true as
maintenance workers also expect a certain level of explainability before they trust and
accept MCS solutions. Hence, to push the acceptance of MCS in industrial practice
more research on the presentation of MCS recommendations is needed.
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