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Abstract. A simple model for diabetes has been considered and represented
mathematically in terms of reaction rate equations. The diabetic states deter-
mined by the relative intensities of reaction parameters included in the model
have been investigated by numerical calculations. This mathematical model
could realize the diabetic and non-diabetic states, namely, the change in states
according to dietary intake, insulin secretion, and physical activity. Based on
these analyses, it has been proposed that, if the parameter set in the model was
evaluated for individuals and saved as a clinical database, it could be used for
diagnosis, treatment, and risk prediction for diabetes pathogenesis.

Keywords: Mathematical modelling � Diabetes � Disease risk

1 Introduction

The morbidity of diabetes has been expanding worldwide during these decades, evoking
the necessity of measures to this disease. The index of the modern standard diagnosis for
diabetes are the blood glucose level, glycated hemoglobin (HbA1c), glycoalbumin
(GA), C-peptide index, body mass index (BMI), abdominal circumference and so on.
The genomic medicine is in progress for identifying overall diabetes-relating genes as an
end in view, and thereby implementing personalized medicine and risk prediction of
diabetes pathogenesis. In this context, the present study has proposed another type of
index by mathematical modelling and computer analysis of a simple metabolic system
that regulates carbohydrate metabolism. It is distinctive of this novel type of index that
the index does not represent extensive variables indicating amount of substance such as
blood glucose but intensive variables indicating metabolic ability of a person.

2 Simple Metabolic Model for Diabetes

Figure 1 illustrates a metabolic model for diabetes. The insulin is secreted into blood,
following increase in blood glucose, and promotes taking glucose into adipocytes.
However, excessive dietary intake gives rise to hypertrophy of adipocytes, and the
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enlarged adipocytes induce the secretion of inflammatory cytokines [1, 2]. These
cytokines hinder the function of insulin, leading to inability of taking glucose into
adipocytes (insulin resistance) [2] and decrease in one’s weight. In addition, long-time
duration of high blood-glucose state is responsible for disorder of insulin secretion
(glucotoxicity) [3]. Diabetes develops via such processes.

3 Mathematical Modelling

The processes shown in Fig. 1 can be described as reactions and written as

Gþ fþ S � X ! Fþ S ð1Þ

Sþ I � Y ð2Þ

iþ F � Z ! Iþ F ð3Þ

where G, S, f, F, i, and I denote the amount of blood glucose, insulin, the mass of
normal and enlarged adipocytes, and the amount of unreleased and released inflam-
matory cytokines, respectively, and X, Y, and Z are transient products.

These reactions are written mathematically in terms of rate equations; namely, the
time evolution of these variables are described by differential equations [4–6]. Here, the
rate equations are approximated by functions of the Michaelis-Menten type which is
known as a model for enzyme kinetics, and written as

_G ¼ kG � rTkaGf
1þ kaGf þ kbIð Þ ; ð4Þ

Fig. 1. Model of insulin resistance, glucose toxicity, and diabetes. The laterally directed arrows
describe reactions or changes, and the vertical arrows denote activation of reactions. The T-shape
symbols denote inhibition.
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_F ¼ rTkaGf
1þ kaGf þ kbIð Þ � kFF ð5Þ

_I ¼ iTkcF
1þ kcFð Þ � kII ð6Þ

where ka, kb, kc, kF, and kI denote parameters obtained from reaction rates, and we
assume that the amounts of secreted insulin, adipocytes, and unreleased inflammatory
cytokines are constant, i.e., S(t) = rT, f(t) + F(t) = fT, and i(t) = iT.

Equations (4)–(6) provide the zero-growth isoclines (nullclines):

kaGf ¼ kG
rT � kG

kbIþ 1ð Þ ð7Þ

kaGf ¼ kFkI I kbIþ 1ð Þ
�kII rT þ kFð Þþ rT iT

ð8Þ

The fixed point (I0, G0) obtained from the intersection of these nullclines is

I0;G0ð Þ ¼ kGiT
kI kG þ kFð Þ ;

kG kbI0 þ 1ð Þ
rT � kGð Þ fT � kG=kFð Þ

� �
ð9Þ

This expression of the fixed point reveals that the relative intensities among kG, kF,
and rT are important, determining the sign for the G0 element of the fixed point, and the
location in the variable space.

4 Diabetic States and Numerical Calculations

The expression of the fixed point, Eq. (9), provides non-diabetic and diabetic states,
depending on the relative intensities of rT, kG, fT, and kF. The qualitative features are
classified into four cases.

Case I: rT > kG and fT > kG/kF
When the dietary intake is normal and the insulin secretion is sufficient, the meta-

bolic system stays in the. non-diabetic state. Figure 2 shows the G-I plane of the variable
space. In Case I (Fig. 2(a)), the fixed point is located in the first quadrant (positive area)
of the plane. It is found that the fixed point acts as an absorber for the trajectories (thin
solid curves), (I(t), G(t)) where t denotes time. The trajectories approach the null cline,
Eq. (7), and merge on it; then, they are eventually absorbed into the fixed point. This
behavior on the G-I plane implies that the amounts of blood glucose and inflammatory
cytokines are regulated to be finite values in the non-diabetic state.

Case II: rT < kG and fT > kG/kF
When the dietary intake exceeds the supply of insulin, the diabetic state appears.

The fixed point sinks under the G = 0 line so that the trajectories cannot approach the
fixed point (Fig. 2(b)). Instead, they approach the nullcline Eq. (8) (thick solid line),
and clime it from the right-hand side. This behavior represents that the blood glucose
increases in the state of high-calory diet.
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Case III: rT > kG and fT < kG/kF
Despite normal dietary intake, if the decay rate of enlarged adipocytes kF is small,

the fixed point sinks under the G = 0 line. The trajectories assemble from the right and
left sides, and climb upwards. It may be possible to consider that the small value of kF
indicates deficiency of physical activity.

Case IV: rT < kG and fT < kG/kF
The worst case for a human occurs when the dietary intake exceeds the insulin

secretion and the decay rate of enlarged adipocytes is small. In this case, the fixed point
is located in the positive region of the G-I plane; however, it does not function as an
absorber of the trajectories. The trajectories assemble and merge near the singular line
(broken line) on which the denominator of the null cline Eq. (8) equals zero. Then, they
climb along the singular line. This case also exhibits increase in blood glucose with
time, i.e., pathogenesis of diabetes.

Fig. 2. Four types of diabetic states on the G-I plane of the variable space. The null clines and
fixed points are shown by thick solid lines and solid circles, respectively. The broken lines are the
singular lines on which the denominator of the null cline Eq. (8) equals zero. The trajectories
calculated numerically are depicted by thin solid lines. The arrows on the trajectories indicate the
direction of time evolution. The parameters are set to kA = kB = k = kI = 1.0 and fT = 4.0.
(a) rT > kG and fT > kG/kF: (kG, kF, rT) = (1.0, 1.0, 3.0), (b) rT < kG and fT > kG/kF: (kG, kF,
rT) = (0.5, 0.4 0.2), (c) rT > kG and fT < kG/kF: (kG, kF, rT) = (1.0, 0.2, 3.0), and (d) rT < kG and
fT < kG/kF: (kG, kF, rT) = (3.0, 0.6, 1.0).
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5 Index for Diabetes Diagnosis, Treatment, and Risk
Assessment

The precise location of the fixed point must be determined by more quantitative
evaluation of the parameters, (ka, kb, kc, kF, kI), included in the rate equations. This
parameter set may be used for diagnosis, treatment, and risk prediction for diabetes.
Actual remedy targeting human would require to measure and evaluate these param-
eters in detail; they seem to be implemented by medical testing or biological experi-
ments. For example, hypertrophy in adipocytes can be examined by periodic sampling
of adipocytes, and thereby the variation rate for the hypertrophy can be evaluated. The
variation rate for inflammatory cytokines can be also investigated in the same way. In
addition, it is expected that, following such actual measurements, the mathematical
model can be improved and updated, and vice versa.

The parameter set varies person to person, and therefore, statistical analyses of
many private records for the parameter set would be very useful for diagnosis, treat-
ment, and risk assessment. It is desirable that the results of the statistical analyses are
saved as a clinical database so that not only hospitals but individuals can access it for
medical purposes. Clearly, such a medical system could be applied to other diseases; an
important point is the construction of mathematical models with good quality.

6 Concluding Remarks

The present study has considered a mathematical model for diabetes, and the diabetic
states determined by the relative intensities of reaction parameters have been investi-
gated by numerical calculations. It has been proposed that the parameter set could be
used for risk prediction of diabetes as well as diagnosis and treatment.

This mathematical model is based on many simplifications, whereas it is better that
rough estimates provide good suggestions than that too exact calculations reveal use-
less results. Interactions between mathematics and medicine would open up possibil-
ities, providing novel types of therapy.
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