
QC-MDPC Decoders with Several Shades
of Gray

Nir Drucker1,2(B), Shay Gueron1,2, and Dusan Kostic3

1 University of Haifa, Haifa, Israel
drucker.nir@gmail.com
2 Amazon, Seattle, USA

3 EPFL, Lausanne, Switzerland

Abstract. QC-MDPC code-based KEMs rely on decoders that have a
small or even negligible Decoding Failure Rate (DFR). These decoders
should be efficient and implementable in constant-time. One example for
a QC-MDPC KEM is the Round-2 candidate of the NIST PQC standard-
ization project, “BIKE”. We have recently shown that the Black-Gray
decoder achieves the required properties. In this paper, we define sev-
eral new variants of the Black-Gray decoder. One of them, called Black-
Gray-Flip, needs only 7 steps to achieve a smaller DFR than Black-Gray
with 9 steps, for the same block size. On current AVX512 platforms, our
BIKE-1 (Level-1) constant-time decapsulation is 1.9× faster than the
previous decapsulation with Black-Gray. We also report an additional
1.25× decapsulating speedup using the new AVX512-VBMI2 and vector-
PCLMULQDQ instructions available on “Ice-Lake” micro-architecture.

Keywords: BIKE · QC-MDPC codes · Constant-time
implementation · QC-MDPC decoders

1 Introduction

The Key Encapsulation Mechanism (KEM) called Bit Flipping Key Encapsula-
tion (BIKE) [2] is based on Quasi-Cyclic Moderate-Density Parity-Check (QC-
MDPC) codes, and is one of the Round-2 candidates of the NIST PQC Stan-
dardization Project [15]. The submission includes several variants of the KEM
and we focus here on BIKE-1-CCA Level-1 and Level-3.

The common QC-MDPC decoding algorithms are derived from the Bit-
Flipping algorithm [12] and come in two main variants.

– “Step-by-Step”: it recalculates the threshold every time that a bit is flipped.
This is an enhancement of the “in-place” decoder described in [11].

– “Simple-Parallel”: a parallel algorithm similar to that of [12]. It first calculates
some thresholds for flipping bits and then flips the bits in all of the relevant
positions, in parallel.

c© Springer Nature Switzerland AG 2020
J. Ding and J.-P. Tillich (Eds.): PQCrypto 2020, LNCS 12100, pp. 35–50, 2020.
https://doi.org/10.1007/978-3-030-44223-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44223-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-44223-1_3

36 N. Drucker et al.

BIKE uses a decoder for the decapsulation phase. The specific decoding algo-
rithm is a choice shaped by the target DFR, security, and performance. The
IND-CCA version of BIKE Round-2 [2] is specified with the “BackFlip” decoder,
which is derived from Simple-Parallel. The IND-CPA version is specified with
the “One-Round” decoder, which combines the Simple-Parallel and the Step-By-
Step decoders. In the “additional implementation” [7] we chose to use the “Black-
Gray” decoder (BG) [5,8], with the thresholds defined in [2]. This decoder (with
different thresholds) appears in the BIKE pre-Round-1 submission “CAKE” and
is due to N. Sendrier and R. Misoczki.

This paper explores a new family of decoders that combine the BG and the
Bit-Flipping algorithms in different ways. Some combinations achieve the same
or even better DFR compared to BG with the same block size, and at the same
time also have better performance.

For better security we replace the mock-bits technique of the additional
implementation [5] with a constant-time implementation that applies rotation
and bit-slice-adder as proposed in [3] (and vectorized in [13]), and enhance it with
further optimizations. We also report the first measurements of BIKE-1 on the
new Intel “Ice-Lake” micro-architecture, leveraging the new AVX512-VBMI2,
vector-AESENC and vector-PCLMULQDQ instructions [1] (see also [4,10]).

The paper is organized as follows. Section 2 defines notation and offers some
background. The Bit-Flipping and the BG algorithms are given in Sect. 3. In
Sect. 4 we define new decoders (BGF, B and BGB) and report our DFR per block
size studies in Sect. 5. We discuss our new constant-time QC-MDPC implemen-
tation in Sect. 6. Section 7 reports the resulting performance. Section 8 concludes
the paper.

2 Preliminaries and Notation

Let F2 be the finite field of characteristic 2. Let R be the polynomial ring
F2[X]/ 〈Xr − 1〉. For every element v ∈ R its Hamming weight is denoted by
wt(v), its bits length by |v|, and its support (i. e., the positions of its set bits) by
supp(v). Polynomials in R are viewed, interchangeably, also as square circulant
matrices in F

r×r
2 . For a matrix H ∈ F

r×r
2 , let Hi denote its i-th column written

as a row vector. We denote a failure by the symbol ⊥. Uniform random sam-
pling from a set W is denoted by w

$←− W . For an algorithm A, we denote its
output by out = A() if A is deterministic, and by out ← A() otherwise. Here-
after, we use the notation x.ye−z to denote the number (x + y

10) · 10−z (e. g.,
1.2e−3 = 1.2 · 10−3.
BIKE-1 IND-CCA. BIKE-1 (IND-CCA) flows are shown in Table 1. The com-
putations are executed over R, and the block size r is a parameter. The weights
of the secret key h = (h0, h1, σ0, σ1) and the errors vector e = (e0, e1), are w
and t, respectively, the public key, ciphertext, and shared secret are f = (f0, f1),
c = (c0, c1), and k, respectively. H, K denote hash functions (as in [2]). Cur-
rently, the parameters of BIKE-1 IND-CCA for NIST Level-1 are: r = 11, 779,
|f | = |c| = 23, 558, |k| = 256, w = 142, d = w/2 = 71 and t = 134.

QC-MDPC Decoders with Several Shades of Gray 37

Table 1. BIKE-1-CCA

Key generation • h0, h1
$←− R of odd weight wt(h0) = wt(h1) = w/2

• σ0, σ1
$←− R

• g
$←− R of odd weight (so wt(g) ≈ r/2)

• (f0, f1) = (gh1, gh0)

Encapsulation • m
$←− R

• (e0, e1) = H(mf0, mf1) where wt(e0) + wt(e1) = t

• (c0, c1) = (mf0 + e0, mf1 + e1)

• k = K(mf0, mf1, c0, c1)

Decapsulation • Compute the syndrome s = c0h0 + c1h1

• (e′
o, e

′
1) ← decode(s, h0, h1)

• If wt ((e′
0, e

′
1)) �= t or decoding failed then k = K(σ0, σ1, c)

• else k = K(c0 + e′
0, c1 + e′

1, c0, c1)

3 The Bit-Flipping and the Black-Gray Decoders

Algorithm 1 describes the Bit-Flipping decoder [12]. The computeThreshold
step computes the relevant threshold according to the syndrome, the errors vec-
tor, or the Unsatisfied Parity-Check (UPC) values. The original definition of [12]
takes the maximal UPC as its threshold.

Algorithm 1. e=Bit-Flipping(c, H)
Input: H ∈ F

r×n
2 (parity-check matrix), c ∈ F

n
2 (ciphertext), X (Maximal number

of iterations), u (Maximal syndrome weight)
Output: e ∈ F

n
2 (errors vector)

Exception: A “decoding failure” returns ⊥
1: procedure Bit-Flipping(c, H)
2: s = HcT , e = 0, upc[n-1:0] = 0n

3: for itr = 0 . . . X do
4: th = computeThreshold(s,e)
5: for i in 0 . . . n − 1 do
6: upc[i] = Hi · s
7: if upc[i] > th then e[i] = e[i] ⊕ 1 � Flip an error bit

8: s = H(cT + eT) � Update the syndrome

9: if (wt(s) = u) then return e
10: else return ⊥

Algorithm 2 describes the BG decoder. It is implemented in BIKE additional
code package [7]. Every iteration of BG involves three main steps. Step I calls
BitFlipIter to perform one Bit-Flipping iteration and sets the black and

38 N. Drucker et al.

gray arrays. Steps II and III call BitFlipMaskedIter. Here, another Bit-
Flipping iteration is executed, but the errors vector e is updated according to
the black/gray masks, respectively.

In Step I the decoder uses some threshold (th) to decide whether or not a
certain bit is an error bit. The probability that the bit is indeed an error bit
increases as a function of the gap (upc[i] - th). The algorithm records bits with
a small gap in the black/gray masks so that the subsequent Step II and Step
III can use the masks in order to gain more confidence in the flipped bits. In
this paper δ = 4.

Algorithm 2. e=BG(c, H)
Input: H ∈ F

r×n
2 (parity-check matrix), c ∈ F

n
2 (ciphertext), XBG (maximal

number of iterations)
Output: e ∈ F

n
2 (errors vector)

Exception: A “decoding failure” returns ⊥
1: procedure BitFlipIter(s, e, th, H)
2: black[n − 1 : 0] = gray[n − 1 : 0] = 0n

3: for i in 0 . . . n − 1 do
4: upc[i] = Hi · s
5: if upc[i] ≥ th then
6: e[i] = e[i] ⊕ 1 � Flip an error bit
7: black[i] = 1 � Update the Black set
8: else if upci >= th − δ then
9: gray[i] = 1 � Update the Gray set

10: s = H(cT + eT) � Update the syndrome
11: return (s, e, black, gray)

12: procedure BitFlipMaskedIter(s, e, mask, th, H)
13: for i in 0 . . . n − 1 do
14: upc[i] = Hi · s
15: if upc[i] ≥ th then
16: e[i] = e[i] ⊕ mask[i] � Flip an error bit

17: s = H(cT + eT) � Update the syndrome
18: return (s, e)

19: procedure Black-Gray(c, H)
20: s = HcT , e[n − 1 : 0] = 0n, δ = 4
21: for itr in 1 . . . XBG do
22: th = computeThreshold(s)
23: (s, e, black, gray) = BitFlipIter(s, e, th, H) � Step I
24: (s, e) = BitFlipMaskedIter(s, e, black, ((d + 1)/2), H) � Step II
25: (s, e) = BitFlipMaskedIter(s, e, gray, ((d + 1)/2), H) � Step III

26: if (wt(s) �= 0) then
27: return ⊥
28: else
29: return e

QC-MDPC Decoders with Several Shades of Gray 39

4 New Decoders with Different Shades of Gray

In cases where Algorithm 2 can safely run without a constant-time implemen-
tation, Step II and Step III are fast. The reason is that the UPC values are
calculated only for indices in supp(black)/supp(gray), and the number of these
indices is at most the number of bits that were flipped in Step I (certainly less
than n). By contrast, if constant-time and constant memory-access are required,
the implementation needs to access all of the n positions uniformly. In such case
the performance of Step II and Step III is similar to the performance of Step I.
Thus, the overall decoding time of the BG decoder with XBG iterations, where
each iteration is executing steps I, II, and III, is proportional to 3 · XBG.

The decoders that are based on Bit-Flipping are not perfect - they can
erroneously flip a bit that is not an error bit. The probability to erroneously
flip a “non-error” bit is an increasing function of wt(e)/n and also depends on
the threshold (note that wt(e) is changing during the execution). Step II and
Step III of BG are designed to fix some erroneously flipped bits and therefore
decrease wt(e) compared to wt(e) after one iteration of Simple-Parallel (without
the black/gray masks). Apparently, when wt(e)/n becomes sufficiently small
the black/gray technique is no longer needed because erroneous flips have low
probabilities. This observation leads us to propose several new variations of the
BG decoder (see Appendix A for their pseudo-code).

1. A Black decoder (B): every iteration consists of only Steps I, II (i. e., there is
no gray mask).

2. A Black-Gray-Flip decoder (BGF): it starts with one BG iteration and con-
tinues with several Bit-Flipping iterations.

3. A Black-Gray-Black decoder (BGB): it starts with one BG iteration and
continues with several B-iterations.

Example 1 (Counting the number of steps). Consider BG with 3 iterations. Here,
every iteration involves 3 steps (I, II, and III). The total number of practically
identical steps is 9. Consider, BGF with 3 iterations. Here, the first iteration
involves 3 steps (I, II, and III) and the rest of the iterations involve only one
step. The total number of practically identical steps is 3 + 1 + 1 = 5.

5 DFR Evaluations for Different Decoders

In this section we evaluate and compare the B, BG, BGB, and BGF decoders
under two criteria.

1. The DFR for a given number of iterations and a given value of r.
2. The value of r that is required to achieve a target DFR with a given number

of iterations.

In order to approximate the DFR we use the extrapolation method [16], and
apply two forms of extrapolation: “best linear fit” [8] and “two large r’s fit” (as
in [8][Appendix C]). We point out that the extrapolation method relies on the

40 N. Drucker et al.

assumption that the dependence of the DFR on the block size r is a concave
function in the relevant range of r. Table 2 summarizes our results. It shows the
r-value required for achieving a DFR of 2−23(≈ 10−8), 2−64, and 2−128. It also
shows the approximated DFR for r = 11, 779 (which is the value used for BIKE-
1 Level-1 CCA). Appendix B provides the full information on the experiments
and the extrapolation analysis.

Table 2. The DFR achieved by different decoders. Two extrapolation methods are
shown: “best linear fit” (as in [8]), “two large r’s fit” (as in [8][Appendix C]). The
second column shows the number of iterations for each decoder. The third column
shows the total number of (time-wise identical) executed steps.

Best linear fit Two large r’s fit

Decoder #I #S DFR =
2−23

2−64 2−128 DFR at
11, 779

DFR =
2−23

2−64 2−128 DFR at
11, 779

BG 3 9 10, 253 11, 213 12, 739 2−88 10, 253 11, 171 12, 619 2−90

4 12 10, 163 11, 003 12, 347 2−100 10, 163 10, 909 12, 107 2−110

5 15 10, 133 10, 909 12, 107 2−111 10, 133 10, 853 11, 987 2−116

BGB 4 9 10, 253 11, 093 12, 491 2−95 10, 253 11, 083 12, 491 2−96

5 11 10, 163 10, 973 12, 227 2−105 10, 163 11, 027 12, 413 2−99

6 13 10, 133 10, 973 12, 269 2−104 10, 133 10, 949 12, 197 2−107

BGF 5 7 10, 301 11, 171 12, 539 2−92 10, 301 11, 131 12, 491 2−95

6 8 10, 253 11, 027 12, 277 2−102 10, 253 10, 973 12, 197 2−107

7 9 10, 181 10, 949 12, 149 2−108 10, 181 10, 949 12, 107 2−112

B 4 8 10, 259 11, 699 13, 901 2−67 10, 301 11, 813 14, 221 2−63

5 10 10, 133 11, 437 13, 229 2−79 10, 133 11, 437 13, 451 2−76

6 12 10, 067 11, 213 13, 037 2−84 10, 067 11, 437 13, 397 2−78

Interpreting the Results of Table 2. The conclusions from Table 2 indicate
that it is possible to trade BG with 3 iterations for BGF with 6 iterations. This
achieves a better DFR and also a 9

8 = 1.125× speedup. Moreover, if the required
DFR is at most 2−64, it suffices to use BGF with only 5 iterations (and get
the same DFR as BG with 3 iterations). This achieves a factor of 9

7 = 1.28×
speedup. The situation is similar for BG with 4 iterations compared to BGB with
5 iterations: this achieves a 12

11 = 1.09× speedup. If a DFR of 2−128 is required it
is possible to trade BG with 4 iterations for BGF with 7 iterations and achieve a
12
9 = 1.33× speedup. Another interesting trade off is available if we are willing to
slightly increase the value of r. Compare BG with 4 iterations (i. e., 12 steps) and
BGF with 6 iterations (i. e., 8 steps). For a DFR of 2−64 we have rBG = 11, 003
and rBGF = 11, 027. A very small relative increase in the block size, namely
(rBGF − rBG)/rBG = 0.0022, gives a 12

8 = 1.5× speedup.

Example 2 (BGF versus BG with 3 iterations). Fig. 1 shows a qualitative com-
parison (the precise details are provided in Appendix B). The left panel indicates

QC-MDPC Decoders with Several Shades of Gray 41

that BGF has a better DFR than BG for the same number of (9) steps when
r > 9, 970. Similarly, The right panel shows the same phenomenon even with
a smaller number of BGF steps (7) when r > 10, 726 (with the best linear fit
method) and r > 10, 734 (with the two large r’s method) that correspond to a
DFR of 2−43 and 2−45, respectively. Both panels show that that crossover point
appears for values of r below the range that is relevant for BIKE.

Fig. 1. DFR comparison of BG with 3 iterations (9 steps) to BGF with: (Left panel)
7 iterations (9 steps); (Right panel) 5 iterations (7 steps). See the text for details.

6 Constant-Time Implementation of the Decoders

The mock-bits technique was introduced in [5] for side-channel protection in
order to obfuscate the (secret) supp(h0), supp(h1). Let Mi denote the mock-bits
used for obfuscating supp(hi) and let Mi = Mi � supp(hi). For example, the
implementation of BIKE-1 Level-1 used |Mi| = 62 mock-bits and thus |Mi| =
133. The probability to correctly guess the secret 71 bits of hi if the whole set
|Mi| is given is

(
133
71

)−1 ≈ 2−128. This technique was designed for ephemeral keys
but may leak information on the private key if it is used multiple times (i. e.,
if most of |Mi| can be trapped). By knowing that supp(hi) ⊂ Mi, an adversary
can learn that all the other (r − |Mi|) bits of hi are zero. Subsequently, it can
generate the following system of linear equations (h0, h1)T · (f0, f1) = 0, set
the relevant variables to zero and solve it. To avoid this, |Mi| needs to be at
least r/2 (probably more) so the system is sufficiently undetermined. However,
using more than Mi mock-bits makes this method impractical (it was used as
an optimization to begin with).

Therefore, to allow multiple usages of the private key we modify our imple-
mentation and use some of the optimizations suggested in [3] that were later vec-
torized in [13]1. Specifically, we leverage the (array) rotation technique (which
was also used in [14] for FPGAs). Here, the syndrome is rotated, d times, by
supp(hi). The rotated syndrome is then accumulated in the upc array, using a
bit-slice technique that implements a Carry Save Adder (CSA).
1 The paper [13] does not point to publicly available code.

42 N. Drucker et al.

6.1 Optimizing the Rotation of an Array

Consider the rotation of the syndrome s (of r bits) by e. g., 1, 100 positions.
It starts with “Barrel shifting” by the word size of the underlying architecture
(e. g., for AVX512 the words size is 512-bits), here twice (1, 024 positions). It
then continues with internal shifting here by 76 positions. Reference [13] shows
a code snippet (for the core functionality) for rotating by a number of positions
that is less than the word size. Figure 2 presents our optimized and simplified
snippet for the same functionality using the mm512 permutex2var epi64
instruction instead of the BLENDV and the VPALIGND.

1__m512i previous , current , a0, a1 , idx , idx1 , num_full_qw , one;
2uint64_t count64 = bitscount & 0x3f;
3
4num_full_qw = _mm512_set1_epi8(bitscount >> 6);
5one = _mm512_set1_epi64 (1);
6previous = _mm512_setzero_si512 ();
7idx = _mm512_setr_epi64 (0x0, 0x1 , 0x2, 0x3, 0x4 , 0x5, 0x6 , 0x7);
8idx = _mm512_add_epi64(idx , num_full_qw);
9idx1 = _mm512_add_epi64(idx , one);
10
11for(int i = R_ZMM; i >= 0; i--)
12{
13current = _mm512_loadu_si512(in[i]);
14a0 = _mm512_permutex2var_epi64(current , idx , previous);
15a1 = _mm512_permutex2var_epi64(current , idx1 , previous);
16a0 = _mm512_srli_epi64(a0, count64);
17a1 = _mm512_slli_epi64(a1, 64 - count64);
18_mm512_storeu_si512(out[i], _mm512_or_si512(a0 , a1));
19previous = current;
20}

Fig. 2. Right rotate of 512-bit R ZMM registers using AVX512 instructions.

The latest Intel micro-architecture “Ice-Lake” introduces a new instruction
VPSHRDVQ as part of the new AVX512-VBMI2 set. This instruction receives two
512-bit (ZMM) registers (a, b) together with another 512-bit index register (c) and
outputs in dst the following results:

1For j = 0 to 7
2i = j*64
3dst[i+63:i] := concat(b[i+63:i], a[i+63:i]) >> (c[i+63:i] & 63)

Figure 3 shows how VPSHRDVQ can be used in order to replace the three
instructions in lines 16–18 of Fig. 2.

Remark 1. Reference [13] remarks on using tables for some syndrome rotations
but mentions that it does not yield significant speedup (and in some cases even
shows a performance penalty). This is due to two bottlenecks in a constant-time
implementation: (a) extensive memory access; (b) pressure on the execution port

QC-MDPC Decoders with Several Shades of Gray 43

that the shift operations are using. In our case, the bottleneck is (a) so using
tables to reduce the number of shifts is not a remedy. For completeness, we
describe a new table method that can be implemented using Ice-Lake CPUs.
The new VPERMI2B (mm512 permutex2var epi8) instruction [1] allows to
permute two ZMMs at a granularity of bytes, and therefore to perform the rota-
tion in lines 16–18 of Fig. 2 at a granularity of 8 bits (instead of 64). To use tables
for caching: (a) initialize a table with i = 0, . . . , 7 right-shifts of the syndrome
(only 8 rows); (b) modify lines 14–15 to use VPERMI2B; (c) load (in constant-time)
the relevant row before calling the Barrel-shifter. As a result, lines 16–18 can be
removed to avoid all the shift operations. As explained above, this technique does
not improve the performance of the rotation.

1__m512i count64 = _mm512_set1_epi64(bitscount & 0x3f);
2
3for(int i = R_ZMM; i >= 0; i--)
4{
5data = _mm512_loadu_si512 (&in->qw[8 * i]);
6a0 = _mm512_permutex2var_epi64(current , idx , previous);
7a1 = _mm512_permutex2var_epi64(current , idx1 , previous);
8a0 = _mm512_shrdv_epi64(a0 , a1 , count64);
9_mm512_storeu_si512 (&out ->qw[8 * i], a0);
10previous = current;
11}

Fig. 3. Right rotate of 512-bit R ZMM registers using AVX512-VBMI2 instructions. The
initialization in Fig. 2 (lines 1–10) is omitted.

6.2 Using Vector-PCLMULQDQ and vector-AESENC

The Ice-Lake processors support the new vectorized PCLMULQDQ and AESENC
instructions [1]. We used the multiplication code presented in [9][Figure 2], and
the CTR DRBG code of [6,10], in order to improve our BIKE implementation.
We also used larger caching of random values (1, 024 bytes instead of 16) to fully
leverage the DRBG. The results are given in Sect. 7.

7 Performance Studies

We start with describing our experimentation platforms and measurements
methodology. The experiments were carried out on two platforms, (Intel R© Turbo
Boost Technology was turned off on both):

– EC2 Server: An AWS EC2 m5.metal instance with the 6th

Intel R©CoreTM Generation (Micro architecture Codename “Sky Lake” [SKL])
Xeon R©Platinum 8175M CPU 2.50 GHz. This platform has 384 GB RAM, 32K
L1d and L1i cache, 1MiB L2 cache, and 32MiB L3 cache.

– Ice-Lake: Dell XPS 13 7390 2-in-1 with the 10th Intel R©CoreTM Generation
(Micro architecture Codename “Ice Lake” [ICL]) Intel R©CoreTM i7-1065G7
CPU 1.30 GHz. This platform has 16 GB RAM, 48K L1d and 32K L1i cache,
512K L2 cache, and 8MiB L3 cache.

44 N. Drucker et al.

The Code. The code is written in C and x86-64 assembly. The implementations
use the (vector) PCLMULQDQ, AES-NI, AVX2, AVX512 and AVX512-VBMI2
instructions when available. The code was compiled with gcc (version 8.3.0) in
64-bit mode, using the “O3” Optimization level with the “-funroll-all-loops” flag,
and run on a Linux (Ubuntu 18.04.2 LTS) OS.

Measurements Methodology. The performance measurements reported here-
after are measured in processor cycles (per single core), where lower count is
better. All the results were obtained using the same measurement methodology,
as follows. Each measured function was isolated, run 25 times (warm-up), fol-
lowed by 100 iterations that were clocked (using the RDTSC instruction) and
averaged. To minimize the effect of background tasks running on the system,
every experiment was repeated 10 times, and the minimum result was recorded.

7.1 Decoding and Decapsulation: Performance Studies

Performance of BG. Table 3 shows the performance of our implementation
which uses the rotation and bit-slice-adder techniques of [3,13], and compares the
results to the additional implementation of BIKE [7]. The results show a speedup
of 3.75×−6.03× for the portable (C code) of the decoder, 1.1× speedup for the
AVX512 implementations but a 0.66× slowdown for the AVX2 implementation.
The AVX512 implementation leverages the masked store and load operations
that do not exist in the AVX2 architecture. Note that key generation is faster
because generation of mock-bits is no longer needed.

Table 4 compares our implementations with different instruction sets
(AVX512F, AVX512-VBMI2, vector-PCLMULQDQ, and vector-AES). The results
for BIKE-1 Level-1 show speedups of 1.47×, 1.28×, and 1.26× for key genera-
tion, encapsulation, and decapsulation, respectively. Even better speedups are
shown for BIKE-1 Level-3 of 1.58×, 1.39×, and 1.24×, respectively.

Consider the 6th column and the BIKE-1 Level-1 results. The ∼ 94K (93, 521)
cycles of the key generation consists of 13K, 13K, 1K, 1K, 5.5K, 26K, 26K
cycles for generating h0, h1, σ0, σ1, g, f0, f1, respectively (and some additional
overheads). Compared to the 3rd column of this table (with only AVX512F
implementation): 13.6K, 13.6K, 2K, 2K, 6K, 46K, 46K, respectively. Indeed,
as reported in [9], the use of vector-PCLMULQDQ contributes a 2× speedup to
the polynomial multiplication. Note that the vector-AES does not contribute
much, because the bottleneck in generating h0, h1 is the constant-time rejection
sampling check (if a bit is set) and not the AES calculations.

Table 5 compares our right-rotation method to the snippet shown in [13]. To
accurately measure these “short” functionalities, we ported them into separate
compilation units and compiled them separately using the “-c” flag. In addition,
the number of repetitions was increased to 10, 000. This small change improves
the rotation significantly (by 2.3×) and contributes ∼ 2% to the overall decoding
performance.

QC-MDPC Decoders with Several Shades of Gray 45

8 Discussion

Our study shows an unexpected shades-of-gray combination decoders:
BGF offers the most favorable DFR-efficiency trade off. Indeed (see Table 2), it
is possible to trade BG, which was our leading option so far, for another decoder
and have the same or even better DFR for the same block size. The advantage

Table 3. The EC2 server performance of BIKE-1 Level-1 when using the BG decoder
with 3 iterations. The cycles (in columns 4, 5) are counted in millions.

Implementation Level Op Additional
Implementa-
tion [7]

This
paper

Speedup

C-portable stand-alone Level-1 Keygen 1.67 1.37 1.22

Decaps 60 15.99 3.75

Level-3 Keygen 4.75 4.03 1.18

Decaps 242.72 64.09 3.79

C-portable + OpenSSL Level-1 Keygen 0.86 0.56 1.54

Decaps 52.38 8.68 6.03

Level-3 Keygen 2.71 1.98 1.37

Decaps 218.42 39.82 5.48

AVX2 Level-1 Keygen 0.27 0.15 1.81

Decaps 3.03 3.62 0.84

Level-3 Keygen 0.62 0.38 1.64

Decaps 10.46 15.84 0.66

AVX512 Level-1 Keygen 0.26 0.15 1.79

Decaps 2.59 1.83 1.42

Level-3 Keygen 0.57 0.37 1.57

Decaps 8.97 8.14 1.10

Table 4. BIKE-1 Level-1 using the BG decoder with 3 iterations. Performance on
Ice-Lake using various instruction sets.

Level Op AVX512F AVX512F
AVX512-VBMI2
VPCLMULQDQ

Speedup AVX512F
AVX512-VBMI2
VPCLMULQDQ, VAES

Speedup

Level-1 Keygen 137,095 95,068 1.44 93,521 1.47

Encaps 192,123 150,860 1.27 150,612 1.28

Decaps 2,192,433 1,711,127 1.28 1,737,912 1.26

Level-3 Keygen 375,604 240,350 1.56 238,198 1.58

Encaps 432,577 310,908 1.39 310,533 1.39

Decaps 9,019,103 7,201,222 1.25 7,277,357 1.24

46 N. Drucker et al.

Table 5. Rotation performance, comparison of our impl. and the snippet of [13].

Level |R| Platform Snippet
of [13]

Fig. 2 Fig. 3 AVX512
Speedup

AVX512-VBMI
Speedup

L1 11,779 EC2 server 128 105 – 1.21 –

L1 11,779 Ice-Lake 149 120 63.97 1.24 2.33

L3 24,821 EC2 server 250 205 – 1.22 –

L3 24,821 Ice-Lake 296 236 121.72 1.25 2.43

L5 40,597 EC2 server 404 329 – 1.23 –

L5 40,597 Ice-Lake 475 382 194.46 1.24 2.44

is either in performance (e. g., BGF with 6 iterations is 12
8 = 1.5× faster than

BG with 4 iterations) or in implementation simplicity (e. g., the B decoder that
does not involve gray steps).

A Comment on the Backflip Decoder. In [8] we compared Backflip with
BG and showed that it requires a few more steps to achieve the same DFR (in the
relevant range of r). We note that a Backflip iteration is practically equivalent to
Step I of BG plus the Time-To-Live (TTL) handling. It is possible to improve the
constant-time TTL handling with the bit-slicing techniques and reduce this gap.
However, this would not change the DFR-efficiency properties reported here.

Further Optimizations. The performance of BIKE’s constant-time implemen-
tation is dominated by three primitives: (a) polynomial multiplication (it remains
a significant portion of the computations even after using the vector-PCLMULQDQ
instructions); (b) polynomial rotation (that requires extensive memory access);
(c) the rejection sampling (approximately 25% of the key generation). This paper
showed how some of the new Ice-Lake features can already be used for perfor-
mance improvement. Further optimizations are an interesting challenge.

Parameter Choice Recommendations for BIKE. BIKE-1 Level-1 (IND-
CCA) [2] uses r = 11, 779 with a target DFR of 2−128, and uses the Backflip
decoder. Our paper [8] shows some problems with this decoder and therefore
recommends to use BG instead. It also shows that even if DFR = 2−128 there
is still a gap to be addressed, in order to claim IND-CCA security (roughly
speaking - a bound on the number of weak keys). We set aside this gap for now
and consider a non-weak key. If we limit the number of usages of this key to Q
and choose r such that Q · DFR < 2−µ (for some target margin μ), then the
probability that an adversary with at most Q queries sees a decoding failure is
at most 2−µ. We suggest that KEMs should use ephemeral keys (i. e., Q = 1)
for forward secrecy, and this usage does not mandate IND-CCA security (IND-
CPA suffices). Here, from the practical view-point, we only need to target a
sufficiently small DFR such that decapsulation failures would be a significant
operability impediment. However, an important property that is desired, even
with ephemeral keys, is some guarantee that an inadvertent 1 ≤ α times key
reuse (where α is presumably not too large) would not crash the security. This

QC-MDPC Decoders with Several Shades of Gray 47

suggests the option for selecting r so that α · DFR < 2−µ. For example, taking
μ = 32 and α = 232 (an extremely large number of “inadvertent” reuses), we
can target a DFR of 2−64. Using BGF with 5 iterations, we can use r = 11, 171,
which is smaller than 11, 779 that is currently used for BIKE.

Acknowledgments. We thank Ray Perlner from NIST for pointing out that the
mock-bits technique is not sufficient for security when using static keys, which drove
us to change our BIKE implementation. This research was partly supported by: The
Israel Science Foundation (grant No. 3380/19); The BIU Center for Research in Applied
Cryptography and Cyber Security, and the Center for Cyber Law and Policy at the
University of Haifa, both in conjunction with the Israel National Cyber Bureau in the
Prime Minister’s Office.

A Pseudo-Code for B, BG, BGB, BGF

A description of the B, BG, BGB, BGF decoders is given in Sect. 4. Algorithm
3 provides a formal definition of them.

Algorithm 3. e=decoder(D, c, H)
Input: D (decoder type one of {B, BG, BGB, BGF}), H ∈ F

r×n
2 (parity-check

matrix), c ∈ F
n
2 (ciphertext), X (maximal number of iterations)

Output: e ∈ F
n
2 (errors vector)

Exception: A “decoding failure” returns ⊥
1: procedure decoder(D, c, H)
2: s = HcT , e[n − 1 : 0] = 0n, δ = 3
3: for itr in 1 . . . X do
4: th = computeThreshold(s)
5: (s, e, black, gray) = BitFlipIter(s, e, th, H) � Step I
6: if (D ∈ {B, BG, BGB}) or (D = BGF and it = 1) then
7: (s, e) = BitFlipMaskedIter(s, e, black, ((d + 1)/2), H) � Step II

8: if (D ∈ {BG, BGB, BGF} and itr = 1) then
9: (s, e) = BitFlipMaskedIter(s, e, gray, ((d + 1)/2), H) � Step III

10: if (wt(s) �= 0) then
11: return ⊥
12: else
13: return e

B Additional Information on the Experiments
and Results

The following values of r were used by the best linear fit extrapolation method:

– BIKE-1 Level-1: 9349, 9547, 9749, 9803, 9859, 9883, 9901, 9907, 9923, 9941,
9949, 10037, 10067, 10069, 10091, 10093, 10099, 10133, 10139.

48 N. Drucker et al.

T
a
b
le

6
.

T
h
e
be
st

li
n
ea
r

a
n
d

th
e
tw

o
po
in
ts

ex
tr

a
p
o
la

ti
o
n

eq
u
a
ti

o
n
s,

a
n
d

th
e

es
ti

m
a
te

d
r

va
lu

es
fo

r
th

re
e

ta
rg

et
D

F
R

s.
L
ev

el
is

a
b
b
re

v
ia

te
d

to
L
v
l,

th
e

n
u
m

b
er

o
f
it

er
a
ti

o
n
s

is
a
b
b
re

v
ia

te
d

to
it

er
,
li
n
ea

r
is

a
b
b
re

v
ia

te
d

to
li
n
.,

eq
u
a
ti

o
n

is
a
b
b
re

v
ia

te
d

to
eq

.
T

h
e

L
in

.
st

a
rt

co
lu

m
n

in
d
ic

a
te

s
th

e
in

d
ex

o
f
th

e
fi
rs

t
va

lu
e

o
f

r
w

h
er

e
th

e
li
n
ea

r
fi
t

st
a
rt

s.
T

h
e

5
co

lu
m

n
(n

u
m

b
er

o
f
st

ep
s)

is
th

e
in

d
ic

a
ti

o
n

fo
r

th
e

ov
er

a
ll

p
er

fo
rm

a
n
ce

o
f
th

e
d
ec

o
d
er

(l
ow

er
is

b
et

te
r)

.

K
E
M

L
v
l

D
e
c
o
d
e
r

It
e
r

S
te

p
s

L
in

.
st

a
rt

B
e
st

li
n
.
fi
t

e
q
.
s.
t

lo
g
1
0

D
F
R
=

a
r

+
b

=
2
−

2
3

2
−

6
4

2
−

1
2
8

T
w
o

p
o
in

ts
li
n
e

e
q
.
(a

,b
)

lo
g
1
0

D
F
R
=

a
r

+
b

=
2
−

2
3

2
−

6
4

2
−

1
2
8

B
IK

E
-1

1
B
G

3
9

1
5

(−
1
.2

7
e
−

2
,
1
2
4
)

1
0
,
2
5
3

1
1
,
2
1
3

1
2
,
7
3
9

(−
1
.3

3
e
−

2
,
1
2
9
)

1
0
,
2
5
3

1
1
,
1
7
1

1
2
,
6
1
9

B
IK

E
-1

1
B
G

4
1
2

8
(−

1
.4

5
e
−

2
,
1
4
0
)

1
0
,
1
6
3

1
1
,
0
0
3

1
2
,
3
4
7

(−
1
.6

3
e
−

2
,
1
5
8
)

1
0
,
1
6
3

1
0
,
9
0
9

1
2
,
1
0
7

B
IK

E
-1

1
B
G

5
1
5

1
3

(−
1
.6

1
e
−

2
,
1
5
6
)

1
0
,
1
3
3

1
0
,
9
0
9

1
2
,
1
0
7

(−
1
.7

0
e
−

2
,
1
6
5
)

1
0
,
1
3
3

1
0
,
8
5
3

1
1
,
9
8
7

B
IK

E
-1

1
B
G

B
4

9
1
3

(−
1
.3

8
e
−

2
,
1
3
4
)

1
0
,
2
5
3

1
1
,
0
9
3

1
2
,
4
9
1

(−
1
.4

0
e
−

2
,
1
3
6
)

1
0
,
2
5
3

1
1
,
0
8
3

1
2
,
4
9
1

B
IK

E
-1

1
B
G

B
5

1
1

1
3

(−
1
.5

2
e
−

2
,
1
4
7
)

1
0
,
1
6
3

1
0
,
9
7
3

1
2
,
2
2
7

(−
1
.4

1
e
−

2
,
1
3
6
)

1
0
,
1
6
3

1
1
,
0
2
7

1
2
,
4
1
3

B
IK

E
-1

1
B
G

B
6

1
3

7
(−

1
.4

8
e
−

2
,
1
4
3
)

1
0
,
1
3
3

1
0
,
9
7
3

1
2
,
2
6
9

(−
1
.5

4
e
−

2
,
1
4
9
)

1
0
,
1
3
3

1
0
,
9
4
9

1
2
,
1
9
7

B
IK

E
-1

1
B
G

F
5

7
1
4

(−
1
.4

0
e
−

2
,
1
3
7
)

1
0
,
3
0
1

1
1
,
1
7
1

1
2
,
5
3
9

(−
1
.4

4
e
−

2
,
1
4
1
)

1
0
,
3
0
1

1
1
,
1
3
1

1
2
,
4
9
1

B
IK

E
-1

1
B
G

F
6

8
1
3

(−
1
.5

3
e
−

2
,
1
4
9
)

1
0
,
2
5
3

1
1
,
0
2
7

1
2
,
2
7
7

(−
1
.6

1
e
−

2
,
1
5
7
)

1
0
,
2
5
3

1
0
,
9
7
3

1
2
,
1
9
7

B
IK

E
-1

1
B
G

F
7

9
1
3

(−
1
.6

1
e
−

2
,
1
5
7
)

1
0
,
1
8
1

1
0
,
9
4
9

1
2
,
1
4
9

(−
1
.6

8
e
−

2
,
1
6
4
)

1
0
,
1
8
1

1
0
,
9
4
9

1
2
,
1
0
7

B
IK

E
-1

1
B

4
8

1
5

(−
8
.6

9
e
−

3
,
8
2
.4

)
1
0
,
2
5
9

1
1
,
6
9
9

1
3
,
9
0
1

(−
8
.0

5
e
−

3
,
7
5
.8

)
1
0
,
3
0
1

1
1
,
8
1
3

1
4
,
2
2
1

B
IK

E
-1

1
B

5
1
0

1
5

(−
1
.0

2
e
−

2
,
9
6
.3

)
1
0
,
1
3
3

1
1
,
4
3
7

1
3
,
2
2
9

(−
9
.5

6
e
−

3
,
8
9
.9

)
1
0
,
1
3
3

1
1
,
4
3
7

1
3
,
4
5
1

B
IK

E
-1

1
B

6
1
2

1
4

(−
1
.0

8
e
−

2
,
1
0
1
)

1
0
,
0
6
7

1
1
,
2
1
3

1
3
,
0
3
7

(−
9
.5

2
e
−

3
,
8
8
.8

)
1
0
,
0
6
7

1
1
,
4
3
7

1
3
,
3
9
7

QC-MDPC Decoders with Several Shades of Gray 49

For Level-1 studies the number of tests for every value of r is 3.84M for r ∈
[9349, 9901] and 384M for (larger) r ∈ [9907, 10139]. For the line through two
large points extrapolation method (see [8][Appendix C] and Level-1, we chose:
r = 10141 running 384M tests, and r = 10259 running ∼ 7.3 (technically 7.296)
billion tests (Table 6).

References

1. Intel R©64 and IA-32 architectures software developer’s manual. Combined volumes:
1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4, November 2019. http://www.intel.com/
content/www/us/en/processors/architectures-software-developer-manuals.html

2. Aragon, N., et al.: BIKE: Bit Flipping Key Encapsulation (2017). https://bikesuite.
org/files/round2/spec/BIKE-Spec-2019.06.30.1.pdf

3. Chou, T.: QcBits: constant-time small-key code-based cryptography. In: Gierlichs,
B., Poschmann, A.Y. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2016, pp. 280–300. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53140-2 14

4. Drucker, N., Gueron, S.: Fast multiplication of binary polynomials with the forth-
coming vectorized VPCLMULQDQ instruction. In: 2018 IEEE 25th Symposium
on Computer Arithmetic (ARITH), June 2018

5. Drucker, N., Gueron, S.: A toolbox for software optimization of QC-MDPC code-
based cryptosystems. J. Cryptographic Eng. 9, 1–17 (2019). https://doi.org/10.
1007/s13389-018-00200-4

6. Drucker, N., Gueron, S.: Fast CTR DRBG for x86 platforms, March 2019. https://
github.com/aws-samples/ctr-drbg-with-vector-aes-ni

7. Drucker, N., Gueron, S., Dusan, K.: Additional implementation of BIKE (2019).
https://bikesuite.org/additional.html

8. Drucker, N., Gueron, S., Kostic, D.: On constant-time QC-MDPC decoding with
negligible failure rate. Technical report 2019/1289, November 2019. https://eprint.
iacr.org/2019/1289

9. Drucker, N., Gueron, S., Krasnov, V.: Fast multiplication of binary polynomials
with the forthcoming vectorized VPCLMULQDQ instruction. In: 2018 IEEE 25th
Symposium on Computer Arithmetic (ARITH), pp. 115–119, June 2018. https://
doi.org/10.1109/ARITH.2018.8464777

10. Drucker, N., Gueron, S., Krasnov, V.: Making AES great again: the forthcom-
ing vectorized AES instruction. In: Latifi, S. (ed.) 16th International Conference
on Information Technology-New Generations. (ITNG 2019), pp. 37–41. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-14070-0 6

11. Eaton, E., Lequesne, M., Parent, A., Sendrier, N.: QC-MDPC: a timing attack
and a CCA2 KEM. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 47–76. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
79063-3 3

12. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28
(1962). https://doi.org/10.1109/TIT.1962.1057683

13. Guimarães, A., Aranha, D.F., Borin, E.: Optimized implementation of QC-MDPC
code-based cryptography 31(18), e5089 (2019). https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.5089

14. Maurich, I.V., Oder, T., Güneysu, T.: Implementing QC-MDPC McEliece encryp-
tion. ACM Trans. Embed. Comput. Syst. 14(3), 441–4427 (2015). https://doi.org/
10.1145/2700102

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://bikesuite.org/files/round2/spec/BIKE-Spec-2019.06.30.1.pdf
https://bikesuite.org/files/round2/spec/BIKE-Spec-2019.06.30.1.pdf
https://doi.org/10.1007/978-3-662-53140-2_14
https://doi.org/10.1007/978-3-662-53140-2_14
https://doi.org/10.1007/s13389-018-00200-4
https://doi.org/10.1007/s13389-018-00200-4
https://github.com/aws-samples/ctr-drbg-with-vector-aes-ni
https://github.com/aws-samples/ctr-drbg-with-vector-aes-ni
https://bikesuite.org/additional.html
https://eprint.iacr.org/2019/1289
https://eprint.iacr.org/2019/1289
https://doi.org/10.1109/ARITH.2018.8464777
https://doi.org/10.1109/ARITH.2018.8464777
https://doi.org/10.1007/978-3-030-14070-0_6
https://doi.org/10.1007/978-3-319-79063-3_3
https://doi.org/10.1007/978-3-319-79063-3_3
https://doi.org/10.1109/TIT.1962.1057683
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5089
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5089
https://doi.org/10.1145/2700102
https://doi.org/10.1145/2700102

50 N. Drucker et al.

15. NIST: Post-Quantum Cryptography (2019). https://csrc.nist.gov/projects/post-
quantum-cryptography. Accessed 20 Aug 2019

16. Sendrier, N., Vasseur, V.: On the decoding failure rate of QC-MDPC bit-flipping
decoders. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp.
404–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7 22

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-030-25510-7_22

	QC-MDPC Decoders with Several Shades of Gray
	1 Introduction
	2 Preliminaries and Notation
	3 The Bit-Flipping and the Black-Gray Decoders
	4 New Decoders with Different Shades of Gray
	5 DFR Evaluations for Different Decoders
	6 Constant-Time Implementation of the Decoders
	6.1 Optimizing the Rotation of an Array
	6.2 Using Vector-PCLMULQDQ and vector-AESENC

	7 Performance Studies
	7.1 Decoding and Decapsulation: Performance Studies

	8 Discussion
	A Pseudo-Code for B, BG, BGB, BGF
	B Additional Information on the Experiments and Results
	References

