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Abstract. The MQ problem, an NP-complete problem, is related to
the security of Multivariate Public Key Cryptography (MPKC). Its vari-
ant, the constrained MQ problem, was first considered in constructing
secure multivariate encryption schemes using the pq-method proposed
at ProvSec2018. In this paper, we propose an encryption scheme named
PERN, whose key space completely includes that of the pq-method. The
decryption of PERN uses methods of solving nonlinear equations over
the real numbers, which is different from the decryption of the exist-
ing encryption schemes in MPKC. The construction of PERN is fairly
flexible, which enables us to construct a multivariate encryption scheme,
whose public key consists of multivariate polynomials of degree 2, 3 or
higher degrees while constraining its public key to a reasonable size.

Keywords: Multivariate Public Key Cryptosystems · Constrained
MQ problem · MQ problem · Nonlinear equations · Post-quantum
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1 Introduction

Multivariate Public Key Cryptography (MPKC) [8], which is a candidate for
post-quantum cryptography, uses multivariate polynomial systems as its pub-
lic key, and in most cases, its security is based on the difficulty of solving a
set of multivariate polynomials. This problem of solving a set of multivariate
polynomials is called the MP problem as follows.

MP problem: For a prime number q and positive integers m,n, let
F(x) be a polynomial system of m polynomials over a finite field Fq in n
variables x = (x1, . . . , xn). Then, find x0 ∈ F

n
q such that F(x0) = 0.

The constrained MP problem is derived from the MP problem.

Constrained MP problem: For a prime number q and positive integers
m,n,L, let F(x) be a polynomial system of m polynomials over Fq in n
variables x = (x1, . . . , xn). Then, find x0 = (x0,1, . . . , x0,n) ∈ Z

n such that
F(x0) = 0 and −L

2 < x0,i ≤ L
2 (i = 1, . . . , n).

c© Springer Nature Switzerland AG 2020
J. Ding and J.-P. Tillich (Eds.): PQCrypto 2020, LNCS 12100, pp. 402–421, 2020.
https://doi.org/10.1007/978-3-030-44223-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44223-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-44223-1_22


Multivariate Encryption Schemes PERN 403

When only quadratic polynomials are used in the (constrained) MP problem,
the problem is called the (constrained) MQ problem. At ProvSec2018, Yasuda
[37] introduced the constrained MQ problem for the first time, and proposed a
method called the pq-method for constructing multivariate encryption schemes
whose security is mainly based on the difficulty of solving the constrained MQ
problem. The constrained MP problem is also related to the SIS problem. In
fact, the SSNE Problem [30] derived from the SIS problem is very similar to the
constrained MP problem.

As MPKC encryption schemes, Simple Matrix Scheme [31], EFC [29], and
HFERP [16] are known. A detailed cryptanalysis for HFERP is not yet done
since it was recently proposed. For Simple Matrix Scheme and EFC, critical
attacks have not been reported, but they require using very large parameters,
which sacrifices the performance of encryption and decryption. Because of such
circumstances, developing new encryption schemes in MPKC becomes an impor-
tant problem.

One reason that accounts for the difficulty of designing a secure MPKC
encryption scheme is the difficulty of constructing trapdoor one-way functions
given by injective polynomial maps. However, by adding a restriction on the
definition range of a polynomial map, the map can easily become injective. Con-
sequently, it is easy to construct an injective trapdoor one-way function with a
constrained polynomial map, and this function can be used to construct MPKC
encryption schemes whose security is based on the difficulty of solving the con-
strained MP problem.

Most of the MPKC encryption schemes uses a bipolar structure. The key
generation of a multivariate encryption scheme with the bipolar structure is
described as follows.

1. Choose an injective multivariate polynomial map G(x) : F
n
q → F

m
q whose

inverse can be computed efficiently.
2. Choose randomly affine isomorphisms S, T on F

n
q ,Fm

q , respectively.
3. Compute F (x) = T ◦ G(x) ◦ S : Fn

q → F
m
q .

F (x) is used as a public key, and the secret key consists of G(x), T and S. G(x)
is called the central map of this scheme. Encryption and decryption processes
are described as follows.

Encryption: For a plaintext m ∈ F
n
q , compute c = F (m). c is a ciphertext.

Decryption: For a ciphertext c ∈ F
m
q , compute (1) b1 = T−1(c), (2) b2 =

G−1(b1), (3) m′ = S−1(b2) in this order. m′ coincides with the plaintext m.

The security of the schemes using the bipolar structure is based on the dif-
ficulty of solving the (usual) MP problem. If we want to change this security
assumption to the constrained MP problem, the map G(x) : Fn

q → F
m
q should

be changed to a constrained polynomial map G(x) : I → F
m
q where I is a

proper subset of F
n
q and m should be chosen from I. Here, G(x) is sufficient

to be injective on I. Note that the definition range of F (x) is S−1(I). The pq-
method also uses the bipolar structure. (However, S is restricted as I = S−1(I).)
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The construction of G(x) in the pq-method is as follows. First, we construct
a central map G0(x) of an (previously proposed) encryption scheme (e.g. the
Matsumoto-Imai scheme [22]) over Fp, where p is enough smaller than q. G0(x)
is then lifted into a polynomial map Φ(x) with integer coefficients. Next, pre-
pare a certain polynomial map ΨR(x) with integer coefficients, G(x) is defined
by G(x) = Φ(x) + ΨR(x). (ΨR(x) is a polynomial map appended to enhance
security) In the decryption algorithm of the pq-method, the computation of
b2 = G−1(b1) is done as follows: From b1 = G(b2) = Φ(b2) + ΨR(b2), the
part ΨR(b2) can be eliminated due to its special design in the pq-method. After
that, b2 can be obtained by inverting G0(x). We can say that the pq-method
is a modifier that changes encryption schemes in MPKC over Fp to encryption
schemes over Fq. However, the pq-method requires a constraint on the domain
of G(x). Due to this constraint, G(x) can become injective. By the existence of
the constraint, the security of the pq-method is related to the constrained MQ
problem.

In this paper, we propose a new multivariate encryption scheme called PERN
(Polynomial Equations over the Real Numbers), whose security is mainly based
on the difficulty of solving the constrained MP problem. PERN resembles the
pq-method, but PERN does not use a central map of a previously proposed
encryption scheme for the construction of G(x). As a Φ(x), we can choose any
polynomial map with small integer coefficients. This implies that the key space of
PERN completely includes that of the pq-method. In the decryption of PERN, we
need to solve a system of 2n equations in n variables with integer coefficients. To
solve such a system, we use techniques of solving a system of nonlinear equations
over the real numbers, and the fact that its solution has integer components.
Since these techniques of solving a system of nonlinear equations over the real
numbers are applicable to polynomial systems of any degree, Φ(x) (and ΨR(x))
can be chosen with any degree in principle. For the first time, techniques for
solving the system of nonlinear equations over the real numbers are used for the
decryption in MPKC (Table 1).

Table 1. Different solvers used in the decryption of MPKCs

Tool Representative schemes

Power operator C∗ [22], Square [6]

Linear equation solver over Fq Rainbow [9], ABC [31]

Univariate equation solver over Fq HFE [26], Gui [27]

Multivariate equation solver over Fq Multi-HFE [4]

Nonlinear equation solver over R Proposed scheme

In the proposed scheme, the affine isomorphism S is fixed to be an iden-
tity map. Therefore, the set of monomials appearing in G(x) and F (x) can
be adjusted freely. This means that the key length can also be adjusted freely.
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Hence, we do not need to restrict the degree of polynomials to 2 or 3 due to
the key length considerations as in the previous MPKC schemes. As another
advantage of the proposed scheme, the complexity of the Gröbner basis attack
can be maximized. However, if the number of monomials appearing in G(x) and
F (x) is too few, the complexity of the Gröbner basis attack decreases and the
attack against the inhomogeneous SIS problem works effectively on the proposed
scheme. Moreover, it may increase the number of equivalent keys. Therefore, the
proposed scheme should take a large number of monomials.

2 Trapdoor Functions by Multivariate Polynomials
with Integer Coefficients

For a positive integer l, we denote the least non-negative remainder of an integer
a by a mod l, and the least absolute remainder of a by liftl(a). For a ∈ Z/lZ,
a mod l and liftl(a) are defined similarly. Il is defined by Il = (−l/2, l/2] ∩ Z,
then a mod l ∈ [0, l − 1] and liftl(a) ∈ Il.

Let x1, . . . , xn be n independent variables and x = (x1, . . . , xn). Let

Φ(x) = (φ1(x), . . . , φn(x)) ∈ Z[x]n, Ψ(x) = (ψ1(x), . . . , ψn(x)) ∈ Z[x]n

be two polynomial systems with integer coefficients of which absolute values are
small. Let L be an odd positive number, and MΦ,MΨ be positive integers such
that

MΦ ≥ max
i=1,...,n

{|φi(d̃)| ∣
∣ d̃ ∈ I n

L

}
, MΨ ≥ max

i=1,...,n

{|ψi(d̃)| ∣
∣ d̃ ∈ I n

L

}
. (1)

For example, if φ abs
i (x) (i = 1, . . . , n) are polynomials whose coefficients are

given by the absolute value of the corresponding coefficients of φi(x), then

MΦ = max
i=1,...,n

{
φ abs

i

(
L − 1

2

)}

satisfies (1). This is similar for MΨ .
Taking a (large) prime number q, we choose positive integers r1, . . . , rn (< q)

such that

2MΦ < min
k=1,...,2MΨ

{|liftq(rik)|} (i = 1, . . . , n) (2)

and define Λi = {liftq(rik) | k = 0,±1,±2, . . . ,±MΨ}. The existence of such ri

relies on q being sufficiently large. In fact, q > 4MΦMΨ is necessary. Moreover,
ri > 2MΦ is also needed.

From (2), for i = 1, . . . , n, we have

|liftq(λ − λ′)| > 2MΦ (∀λ, λ′ ∈ Λi (λ 	= λ′)). (3)

In fact, for λ = rik, λ′ = rik
′ ∈ Λi, from |k − k′| < 2MΨ ,

|liftq(λ − λ′)| = |liftq(ri(k − k′))| = |liftq(ri|k − k′|)| > 2MΦ.
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We define polynomial systems,

ΨR(x) = (r1ψ1(x), . . . , rnψn(x)) ∈ Z[x]n.

G(x) = (g1(x), . . . , gn(x)) = (Φ(x) + ΨR(x)) mod q ∈ Fq[x]n.

Then, G(x) can be regarded as a map G : Z
n → F

n
q . Regarding the relation

between Φ, Ψ and G, we have the following lemma.

Lemma 1. For d̃ ∈ I n
L , let c = (c1, . . . , cn) = G(d̃) ∈ F

n
q . Then, for i =

1, . . . , n, there is a unique λi ∈ Λi such that |liftq(ci − λi)| < MΦ. Moreover,
when we write ãi = liftq(ci − λi), b̃i = liftq(λi/ri mod q) (i = 1, . . . , n),

Φ(d̃) = (ã1, . . . , ãn), Ψ(d̃) = (b̃1, . . . , b̃n).

From this lemma, we know for any c = (c1, . . . , cn) ∈ G(I n
L )(⊂ F

n
q ), the

following holds:

d̃ ∈ I n
L is a solution of G(x) = c.

⇔ d̃ is a solution of the system of (constrained) nonlinear equations with integer
coefficients, Φ(x) = (ã1, . . . , ãn), Ψ(x) = (b̃1, . . . , b̃n) appeared in Lemma 1.

From the above, an algorithm for computing G−1(c) ∈ I n
L is obtained as

follows.

1. For all i = 1, . . . , n, find b̃i ∈ {0,±1,±2, . . . ,±MΨ} such that |liftq(ci − rib̃i)|
< MΦ, and set ãi = liftq(ci − rib̃i) ∈ Z.

2. Solve the system of constrained nonlinear equations with integer coefficients,

Φ(x) = (ã1, . . . , ãn), Ψ(x) = (b̃1, . . . , b̃n),

and output a solution d̃ ∈ I n
L .

3 Encryption Scheme PERN

3.1 Key Generation, Encryption and Decryption

Let E be a finite subset of (Z≥0)n. For e = (e1, . . . , en) ∈ E, xe denotes the
monomial xe1

1 · · · xen
n . We define

Z[x]E := Span
Z
{xe | e ∈ E}(⊂ Z[x]),

Fq[x]E := Span
Fq

{xe | e ∈ E}(⊂ Fq[x]).

Φ(x), Ψ(x) appeared in the previous section are chosen as Φ(x), Ψ(x) ∈ (Z[x]E)n.
Then, we construct G(x) in the same way as shown in the previous section.

The new encryption scheme, PERN makes use of G(x) as a trapdoor function.
Choose a random affine isomorphism T on F

n
q , then F (x) = T ◦ G(x) is the public

key of PERN.
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– Key Generation Algorithm

Let L,LG be odd positive integers, n a positive integer, and E a finite subset
of (Z≥0)n.
1. Randomly choose multivariate polynomial systems Φ(x), Ψ(x) = (ψ1(x),

. . . , ψn(x)) ∈ (Z[x]E)n whose all coefficients belong to ILG
.

2. Compute MΦ,MΨ satisfying (1), and choose an odd prime number q such
that q > 4MΦMΨ .

3. Choose positive integers (MΦ <) r1, . . . , rn (< q) such that

2MΦ < min k=1,...,2MΨ
{|liftq(rik)|} (i = 1, . . . , n).

If such r1, . . . , rn can not be found, go back to Step 2 and reselect q.
4. Compute ΨR(x) = (r1ψ1(x), . . . , rnψn(x)) ∈ (Z[x]E)n, and

G(x) = (g1(x), . . . , gn(x)) = (Φ(x) + ΨR(x)) mod q ∈ (Fq[x]E)n.

5. Choose an affine isomorphism T on F
n
q .

6. Compute F (x) = T ◦ G(x) ∈ (Fq[x]E)n.
The secret key is Φ(x), Ψ(x), {r1, . . . , rn}, T , and the public key is F (x).

– Encryption Algorithm

Let m ∈ I n
L be a plaintext.

1. Compute c = F (m) ∈ F
n
q .

Then, c is the ciphertext corresponding to m.

– Decryption Algorithm

Let c ∈ F
n
q be a ciphertext.

1. Compute c′ = (c′
1, . . . , c

′
n) = T−1(c).

2. For all i = 1, . . . , n, find b̃i ∈ {0,±1,±2, . . . ,±MΨ} satisfying |liftq(c′
i −

rib̃i)| < MΦ and compute ãi = liftq(c′
i − rib̃i) ∈ Z.

3. Solve the nonlinear equation system with a box constraint I n
L ,

Φ(x) = (ã1, . . . , ãn), Ψ(x) = (b̃1, . . . , b̃n).

The solution is denoted by m′ ∈ I n
L .

Then, m′ coincides with the plaintext m.

4 Solving Constrained Nonlinear System with Integer
Coefficients

In this section, we consider methods for solving the constrained nonlinear equa-
tion system with integer coefficients,

Φ(x) = (ã1, . . . , ãn), Ψ(x) = (b̃1, . . . , b̃n) (4)
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appeared in Step 3 of the decryption algorithm. We define H(x) : Rn → R
2n by

H(x) = (h1(x), h2(x), . . . , h2n(x)) = (Φ(x) − (ã1, . . . , ãn)) ‖ (Ψ(x) − (b̃1, . . . , b̃n)),

then the Eq. (4) is equivalent to the equation H(x) = 0.
From the structure of the proposed scheme, we know the plaintext m is a

solution of H(x) = 0.
Let us discuss whether there are other solutions of H(x) = 0 in the definition

range R
n or not. Since the coefficients of Φ(x), Ψ(x) are chosen randomly, and

by Bézout’s theorem, there is a subset S of {1, 2, . . . , 2n} of cardinality n such
that the number of the rational points of the variety defined by the ideal IS =
(hk(x) | k ∈ S) ⊂ R[x] is less than or equal to

∏
k∈S deg hk(x) (Bézout’s bound).

m is one of such rational points, and the chances of existing other rational points
satisfying hk(x) = 0 for k ∈ {1, 2, . . . , 2n}\S are really low. In fact, in our actual
experiments of 1000 trials with different parameters presented in Table 4, we had
always only obtained one rational point. Therefore, we can assume that

the system H(x) = 0has only one solution inR
n.

As explained above, if we obtain a solution of the system H(x) = 0 of
unconstrained nonlinear equations with real coefficients, it coincides with the
plaintext m. Moreover, from the fact that m has integer components, if we
obtain an approximate solution whose component-wise errors from m are within
less than 0.5, its component-wise rounding to integers becomes the exact solution
of the system.

To compute an approximate solution of H(x) = 0, we define

θ(x) =
1
2
‖H(x)‖ 2

2 =
1
2
(h2

1(x) + h2
2(x) + · · · + h2

2n(x)),

and consider the least square problem, i.e. to solve the optimization problem
of θ(x). The line search method is known as a method to solve optimization
problems. The line search method uses a point sequence x1,x2, . . . (∈ R

n) with
a cluster point. xk+1 is given by the previous term xk as

xk+1 = xk + tkdk,

where dk(∈ R
n) is called a search direction, and tk(∈ R) is called a step size. dk

is chosen to be a decent direction, i.e. dk satisfies

(∇θ(xk)dT
k ) = H(xk)JH(xk)dT

k < 0.

Here, JH(xk) is the Jacobi matrix
(

∂
∂xj

hi(x)
)

(∈ R
2n×n) of H(x). tk ∈ (0, 1) is

chosen to satisfy the Armijo condition: for an α ∈ (0, 1),

θ(xk + tkdk) − θ(xk) ≤ αtkH(xk)JH(xk)dT
k .
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Then, the sequence {xk} is globally convergent to a cluster point x∗, and x∗

becomes a stationary point, i.e. it satisfies

∇θ(x∗) = H(x∗)JH(x∗) = 0. (5)

We may assume that the rank of JH(x∗) is n, hence the dimension of ker JH(x∗)
is n. (5) implies that H(x∗) ∈ ker JH(x∗), but does not mean H(x∗) = 0
generally. Accordingly, by reselect a sequence {xk} over and over again until
H(x∗) = 0 is satisfied, we eventually obtain a (approximate) solution of
H(x) = 0.

Several methods for selecting a search direction have been proposed, and
the difference of those methods results in different properties of convergence
and efficiency of solving. In this paper, the following 4 line search methods are
considered.

1. Steepest decent method
2. Levenberg-Marquardt method
3. Quasi-Newton method
4. Newton method (for optimization problems)

In the steepest decent method, the search direction is chosen by dk = −∇θ(xk),
and in the Levenberg-Marquardt Method,

dk = −∇θ(xk)(JH(xk)TJH(xk) + wkIn)−1.

Here, w1, w2, . . . are a sequence of non-negative real numbers converging to 0,
and have the effect of making JH(xk)TJH(xk) + wkIn a positive definite sym-
metric matrix. Now, because JH(xk) is a (2n, n)-matrix, we can assume that
JH(xk)TJH(xk) is always a positive definite symmetric matrix, therefore we can
take wk = 0. In the quasi-Newton method, a sequence {Bk} of matrices are used,

dk = −∇θ(xk)Bk.

Bk+1 is defined by the BFGS update,

Bk+1 = Bk − sTkykBk + (ykBk)Tsk

(sk,yk)
+

(
1 +

(yk, Bkyk)
(sk,yk)

)
sTksk

(sk,yk)
.

Here, sk = xk+1 − xk, yk = ∇θ(xk+1) − ∇θ(xk), and ( ·, · ) denotes the usual
inner form. B1 is defined by (JH(x1)TJH(x1))−1. In the Newton method (for
optimization problems), we take dk = −∇θ(xk)(∇2θ(xk))−1 where ∇2θ(x) is
the Hessian matrix of θ(x).

For the steepest decent method, the Levenberg-Marquardt method and quasi-
Newton method, it is known that dk is a decent direction. For the Newton
method, generally, dk is not a decent direction, but we have checked that it
is a decent direction in our experiment. Table 2 compares the performance of
4 line search methods. H(x) consists of quadratic polynomials and all solu-
tions are contained in [−5, 5] ∩ Z = I11. We experimented 1,000 times for
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n = 30, 40, 50 with each method. In the table, “time” represents the average
time (unit: milli seconds) of solving, “
 seq” represents the average number of
sequences up to reaching the solution m, and “
 terms” represents the aver-
age number of the terms up to reaching a stationary point x∗ for a sequence.
Table 2 shows remarkable feature of each method, and overall, the most effi-
cient solving algorithm is the Levenberg-Marquardt method, so that we adopted
the Levenberg-Marquardt method in the decryption of the proposed scheme.
The algorithm of the Levenberg-Marquardt method is as follows. ‖ · ‖∞ repre-
sents the maximum of the absolute values of the components of a vector, and
(2-6) judges whether a sequence gets close enough to a stationary point or not.
round(x0) represents the component-wise rounding x0 to integers.

Table 2. Comparison of algorithms for solving H(x) = 0

Method n = 30 n = 40 n = 50

Time (ms) � seq � terms Time (ms) � seq � terms Time (ms) � seq � terms

SD 170.07 1.75 80.70 426.95 1.72 84.92 1202.48 1.79 91.51

L-M 4.12 2.03 14.15 10.87 2.16 15.83 25.36 2.12 17.58

Q-N 23.01 2.09 48.70 75.25 1.99 60.27 232.19 2.13 68.10

Newton 553.28 126.76 6.41 2005.96 198.57 6.93 6068.22 248.05 7.39

Levenberg-Marquardt Method

[Input] H(x), an odd number L ∈ Z>0, α, β, γ ∈ (0, 1).
[Output] A (constrained) solution of H(x) = 0 with integer components.

1. Choose x0 ∈ [−(L−1)/2, (L−1)/2]n in the range of real numbers randomly.
2. Repeat (2-1)–(2-6):

2-1. Compute e = −H(x0)JH(x0).
2-2. Compute S = JH(x0)TJH(x0).
2-3. Solve the linear equation xS = e, its solution is denoted by d0.
2-4. Compute the minimal non-negative integer l satisfying the following

condition, and set t0 = βl:

θ(x0 + βld0) − θ(x0) ≤ −αβledT
0 .

2-5. x0 ← x0 + t0d0.
2-6. If ‖t0d0‖∞ < γ then finish the loop, and move to 3.

3. x̃0 ← round(x0).
4. If H(x̃0) = 0 then output x̃0, otherwise go back to 1.

The algorithms of the steepest decent method, quasi-Newton method and New-
ton method are described in the appendix.

Remark 1. The 4 methods explained as above have the only difference of taking
the search direction dk, and other parts is common. In these methods, for any
xk, H(xk + d) is approximated by quadratic polynomials

mxk
(d) = H(x0) + d∇H(xk) +

1
2
dAkdT (Ak ∈ R

n×n),
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dk is chosen by the solution d of the (unconstrained) optimization problem of
mxk

(d). For the steepest decent method, Ak = In is taken, for the Levenberg-
Marquardt method, Ak = JH(x0)TJH(x0), for the quasi-Newton method, Ak =
B−1

k , for Newton method, Ak = ∇2θ(xk) are taken, respectively.

5 Security Analysis of the Proposed Scheme

The security of the proposed scheme is mainly based on the difficulty of solving
the constrained MP problem.

Constrained MP problem: For positive integers m,n,L, let F(x) be
a polynomial system which consists of m polynomials over Fq in variables
x = (x1, . . . , xn). Then, find x0 ∈ I n

L such that F(x0) = 0.

In this section, fixing a ciphertext c ∈ F
n
q , we consider a polynomial system

F(x) = F (x)−c for a public key F (x) constructed by the proposed scheme. With
this F(x), by solving the constrained MP problem, the plaintext corresponding
to c is obtained.

5.1 Constrained MP Problem

For F(x) = (f̂1(x), . . . , f̂n(x)), each component f̂i(x) has s = 
E monomials.
(If E does not include the constant term, s = 
E + 1.) Determining an order of
these monomials, a vector ai ∈ Z

s is defined as the vector of coefficients lifted to
integers from the coefficients of f̂i(x). The q-ary lattice generated by a1, . . . ,an

is denoted by A. We assume that by solving the Shortest Independent Vector
Problem (SIVP) for A, n linearly independent short vectors b1, . . . ,bn ∈ Z

s

in A are obtained. The polynomial over Z corresponding to the vector bi is
denoted by ĥi(x), and let H(x) = (ĥ1(x), . . . , ĥn(x)). Then, the problem solving
the equation F(x) = 0 is reduced to the problem solving the equation H(x) ≡
0 mod q. Here, let us assume that for a solution x0 of the constrained MP
problem,

|ĥi(x0)| <
q − 1

2
(i = 1, . . . , n) (6)

is satisfied. Beware that x0 is not only a solution of H(x) ≡ 0 mod q, but also
a solution of the equation over Z, H(x) = 0. Therefore, x0 can be obtained by
solving the equation over Z. Solving the equation H(x) = 0 is efficiently carried
out by combining techniques to solve approximately nonlinear equations over the
real numbers with the fact that x0 has integer components. The approximate
solution of H(x) = 0 can be obtained by, for example, the solving method of
the (constrained) optimization problem (least square problem) of the function
‖H(x)‖ 2

2 where ‖ · ‖2 is the usual Euclid norm [5,25].
First, let us consider the possibility that H(x) satisfies (6) for a general

constrained MP problem. Since vol(A) = qs−n, by the Gaussian heuristic [24],
it is expected that
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‖bi‖2 ≈
√

s

2πe
q1− n

s (i = 1, . . . , n).

Here, e is Napier’s constant. Simply, assuming that
√

s
2πe components of bi are

close to q, the probability satisfying (6) is negligible if s is sufficiently large.
Next, consider the case of the constrained MP problem obtained by the

proposed scheme. Φ(x), Ψ(x) have small coefficients, but, the distribution of
r1, . . . , rn is close to the uniformly distribution on [2MΦ, q − 2MΦ − 1]. There-
fore, taking account of the definition of G(x), any coefficient of components of
G(x) behaves as chosen randomly in [MΦ, q−MΦ −1]. Since MΦ is small enough
compared to q, similarly for general constrained MP problem, the probability
satisfying (6) must be negligible. The above argument implies that the part
ΨR(x) is indispensable in the definition of G(x).

5.2 Attack Against Inhomogeneous SIS Problem

For e ∈ E, ve denotes the row vector enumerating the coefficients with respect
to xe of components of F (x) = (f1(x), . . . , fn(x)). Taking an order on E, a
matrix A ∈ F

n×�E
q is defined by the matrix enumerating the column vector

ve (e ∈ E). Then, for a solution x0 ∈ I n
L of the constrained MP problem,

w0 = (xe
0)e∈E ∈ Z

�E is a solution of the linear equation,

Aw = c, (7)

and w0 has a considerably smaller Euclid norm among solutions of the linear
equation. This means that w0 is a solution of the inhomogeneous SIS problem
obtained from (7). Therefore, we can consider the attack as follows: First, we
gather solutions of the inhomogeneous SIS problem obtained from (7). Next, we
search w0 in the set of the solutions. The inhomogeneous SIS problem is changed
to the SVP for a lattice B of dimension 
E + 1 (or 
E), where the co-volume of
B, vol(B) = qn.

Theorem 1 ([15]). For an m-dimensional lattice L, we define

NL(r) = 
{v ∈ L | ‖v‖2 ≤ r}.

If m ≥ 5, then we have

NL(r) =
Vm

vol(L)
rm + O(rm−2).

Here, Vm is the volume of the unit sphere of Rm.

From this theorem, the number of elements of B whose Euclid norm is almost
same as r is close to

d

dr

(
Vm

vol(L)
rm

)
· 1 =

m Vm

vol(L)
rm−1.
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Going back to our setting, the number of elements of B whose Euclid norm is
almost same as ‖w0‖2 is about

b Vb ‖w0‖b−1
2

qn
=

π
b
2 b ‖w0‖b−1

2

Γ( b
2

+ 1) qn
≈

(
2πe

b

) b
2 b ‖w0‖b−1

2√
bπ qn

(b = dimB = �E + 1 or �E).

Since the solution of the constrained MP problem is unique, the complexity of the
attack is the same as this value. Moreover, if a large scale quantum computer
is available, the complexity is the 1/2-th power of this value by the Grover’s
algorithm.

5.3 Key Recovery Attack

Once the linear transformation part of the affine transformation T is known,
G(x) is also known from the public key, and r1, . . . , rn, Φ(x), Ψ(x) can be com-
puted easily from G(x), thus, the secret information which is necessary for
decryption is obtained entirely. Therefore, let us consider an attack discover-
ing the linear transformation part T1 of T .

An adversary who knows rj for some j can compute the j-th row vector of
T−1
1 by the following procedure.

1. Choose an integer t such that n < t ≤ 
E, and choose a (ordered) subset M
of E with cardinality t.

2. For F (x) = (f1(x), . . . , fn(x)) and i = 1, . . . , n, compute a vector ai ∈ Z
t of

coefficients lifted to integers from coefficients of fi(x) with respect to M . The
q-ary lattice of Zt generated by a1, . . . ,an is denoted by A.

3. Choose b = (b1, . . . , bs) ∈ I t
LG

randomly.
4. Compute the vector a in A closest to rjb. If ‖rjb − a‖∞ < L/2 is satisfied,

output the coefficient vector (c1, . . . , cn) of the linear combination a = c1a1+
· · · + cnan, and terminate. Otherwise, go back to Step 3.

Since b satisfying the inequality in Step 4 exists uniquely, even if the cost
for searching the closest vector is estimated as 1, the complexity of the above
algorithm becomes O(L t

G), which in particular, is larger than O(Ln
G).

Moreover, the above attack can exchange the roll of Φ(x) and Ψ(x). Namely,
if the above algorithm is changed by ri → 1/ri, it works as an attack. The
complexity of this attack is also O(L t

G)(> O(Ln
G)). If the Grover’s algorithm is

available, the complexity is O(L
t
2

G )(> O(L
n
2

G )).

5.4 Exhaustive Search

For a ciphertext c, the complexity of finding the solution of F (x) = c by the
exhaustive search is O(Ln). In the case of using the Grover’s algorithm, the
complexity is O(L

n
2 ).
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5.5 Algebraic Attack

The algebraic attack uses algebraic equation solver like XL [36] and Gröbner
basis technique [12,13] for solving the usual MP problem. The complexity of the
algebraic attack is estimated by the complexity of the hybrid approach [1] of
computing a Gröbner basis and exhaustive search. In the process of exhaustive
search in [1], all elements in a finite field are substituted for several variables,
but, in the proposed scheme, the finite field must be changed into IL. A solution
x0 of F = (f̂1(x), . . . , f̂n(x)) = 0 in I n

L is also a zero point of

ĝj(x) =
∏

− L−1
2 ≤a≤ L−1

2

(xj − a) (j = 1, 2, . . . , n). (8)

Therefore, the ideal we should consider is

I = 〈f̂1(x), . . . , f̂n(x), ĝ1(x), . . . , ĝn(x)〉.

For k = 0, 1, . . . , n, we randomly choose (vn−k+1, vn−k+2, . . . , vn) ∈ Ip
k.

We denote the polynomial system in n − k variables obtained by substitut-
ing (xn−k+1, . . . , xn) = (vn−k+1, . . . , vn) for F(x) by Fk(x(k)). Here, x(k) =
(x1, . . . , xn−k). Note that F0(x(0)) is the same as F(x).

For Fk(x(k)) = (f̂1(x(k)), . . . , f̂n(x(k))), the homogeneous part of f̂i(x(k)) of
the maximal degree (i = 1, . . . , n) is denoted by f̂h

i (x(k)), and the homogeneous
ideal J (k) of Fq[x(k)] is defined by

J (k) = 〈f̂h
1 (x(k)), . . . , f̂h

n (x(k))〉.

For d ≥ 0, let Fq[x(k)]d denote the subspace of Fq[x(k)] consisting of homogeneous
polynomials of degree d, and J

(k)
d = J (k) ∩ Fq[x(k)]d. The Hilbert series of the

quotient ring Fq[x(k)]/J (k) is defined by

HSFq[x(k)]/J(k)(t) =
∞∑

d=0

dimFq
(Fq[x(k)]d/J

(k)
d ) td ∈ Z[[t]].

If the Krull-dimension of J (k) is zero, HSFq[x(k)]/J(k)(t) becomes a poly-
nomial. Then, the degree of regularity, dreg(k) is defined by dreg(k) =
deg(HSFq [x(k)]/J(k)(t)) + 1. For any S(t) ∈ Z[[t]], the power series obtained
by truncating S(t) at its first non positive coefficient is denoted by [S(t)]+ ∈
Z>0[[t]]. If

HSFq[x(k)]/J(k)(t) =
[
(1 − tL)n−k

∏n
i=1(1 − tdi)

(1 − t)n−k

]

+

(9)

is satisfied, it is said that Fk(x(k)) is semi-regular. Here, di is the total degree
of f̂i(x).
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Remark 2. Taking the result in [35] into consideration, for most of random sys-
tems, the right hand side of (9) may seem to be equal to

[
(1 − tL)n−k · ∏n

i=1(1 − tdi)
(1 − t)n−k · (1 − tdiL)n

]

+

,

but, actually, the part (1 − tdiL)n is not needed. This is because, different from
the case of the usual MP problem considered in [35], in the constrained MP
problem, fi(x)L − fi(x) = 0 (i = 1, 2, . . . , n) (or this analogue) does not hold.

The complexity of the Gröbner basis computation for J (k) is described by

O
((

n − k + dreg(k) − 1
dreg(k)

)ω)
. (10)

Here, 2 ≤ ω ≤ 3 is the linear algebra constant of solving a linear system. From
(10), the complexity of the hybrid attack is described as follows [1]:

min
0≤k≤n

O
(

Lk

(
n − k + dreg(k) − 1

dreg(k)

)ω)
. (11)

If the Grover’s algorithm is used for searching elements for substitution, the
complexity is changed to

min
0≤k≤n

O
(

L
k
2

(
n − k + dreg(k) − 1

dreg(k)

)ω)
. (12)

From randomness of the coefficients of Φ(x), Ψ(x), and taking Fröberg con-
jecture [14] into consideration, it is expected that J (k) is semi-regular. In fact,
for n = 3, 4, . . . , 15, we confirmed that J (k) is semi-regular experimentally. Our
experiment used Magma. Based on the experiment result, we assume that any
Fk(x(k)) is semi-regular (in particular, for estimation of security parameters).

Remark 3. In the case of that Fk(x(k)) is semi-regular, the degree of regularity
can be computed by using (9). Moreover, in this case, it is expected that the
first fall degree dFF(k) [10] coincides with the degree of regularity. In general,
the complexity of the Gröbner basis computation for J (k) is also expressed by

O
((

n − k + dFF(k) − 1
dFF(k)

)ω)
. (13)

If dreg(k) = dFF(k), the complexity (13) is equal to the complexity (10). There-
fore, in the estimation of security parameters, we use the complexity (11), (12)
with ω = 2.

Remark 4. In the security analysis of the pq-method in [37], the algebraic attack
does not consider the polynomial (8) as one of generators of an ideal, but, this
polynomial should be considered.
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6 Security Parameters and Implementation

As a set of monomials E used to design the proposed scheme, we take E = E≤2 =
{e ∈ (Z≥0)n | deg e ≤ 2}. Here, deg (e1, . . . , en) =

∑n
i=1 ei, i.e. E≤2 corresponds

to the whole monomials of degree less than or equal to 2. Table 3 shows the secu-
rity parameters of (n,L, LG) estimated based on the security analysis in Sect. 5.
Secure parameters are estimated considering attacks on classical computers and
quantum computers.

Table 3. Security parameter (n, L, LG)

Security level Classical attack only Quantum attack

128 bits (65, 7, 5) (80, 15, 11)

192 bits (100, 7, 5) (122, 15, 9)

256 bits (135, 7, 5) (166, 15, 9)

Tables 4 and 5 show performance result of PERN with an implementation
using Intel Core i7-6700, 3.4 GHz. Our implementation used C++ programming
language with g++ compiler. |q|2 represents the average of the bit length of q.
Key gen., enc. and dec. represent the average time of key generation, encryption
and decryption (unit: milli seconds). And SK and PK represent the secret key
length and public key length (unit: kilobytes). ‖w0‖2 represents the minimal
integer of ‖w0‖2 appeared in the analysis in Sect. 5.2 to maintain the corre-
sponding security level. Moreover, in Table 5, ‖w0‖2 is estimated considering
the Grover’s algorithm.

Table 4. Performance of PERN with parameters for classical attacks)

(n,L, LG) Level |q|2 Key gen. (ms) Enc. (ms) Dec. (ms) SK (kB) PK (kB) ‖w0‖2
(65, 7, 5) 128 31.58 44.62 0.24 56.03 125 575 23

(100, 7, 5) 192 34.01 225.01 1.01 285.01 429 2,189 29

(135, 7, 5) 256 35.71 843.73 3.51 914.06 1,026 5,659 35

6.1 Implementation for Higher Degrees

For non-negative integers a, b, we define Ea,b = {a ei + b ej ∈ (Z≥0)n | 1 ≤ i, j ≤
n} where ei is the i-th fundamental vector. We implemented the PERN with
E′ = E2,1 � E≤2 and E′′ = E3,1 � E≤2 as E. The case of E′ uses cubic poly-
nomials, and the case of E′′ uses quartic polynomials. For the fixed parameter
(n,L, LG), it is expected that the PERN with E′ or E′′ is more secure than the
PERN with E≤2, but whether this is true or not is a future study issue, a per-
formance comparison of PERN for E = 2, E′, E′′ under (n,L, LG) = (65, 7, 5) is
shown in Table 6.
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Table 5. Performance of PERN (with parameters for quantum attacks)

(n,L, LG) Level |q|2 Key gen. (ms) Enc. (ms) Dec. (ms) SK (kB) PK (kB) ‖w0‖2
(80, 15, 11) 128 39.99 477.53 0.71 185.18 298 1,328 30

(122, 15, 9) 192 41.79 1499.66 1.87 828.81 1,009 4,884 35

(166, 15, 9) 256 43.55 4369.40 6.47 2526.77 2,481 12,807 43

Table 6. Comparison of PERN for E≤2, E′, E′′ ((n, L, LG) = (65, 7, 5))

E Level |q|2 Key gen. (ms) Enc. (ms) Dec. (ms) SK(kB) PK(kB)

E≤2 128 31.58 44.62 0.24 56.03 125 575

E′ - 37.27 237.29 0.54 302.83 128 665

E′′ - 41.33 404.61 0.76 529.17 130 737

7 Conclusion

We proposed an encryption scheme called PERN whose security was mainly
based on the constrained MP problem. The proposed scheme is flexible to use
multivariate polynomials of any degree in its public key. And this public key
polynomial system is semi-regular, which indicates the proposed scheme is strong
against the algebraic attack.

For inverting the central polynomial map during the decryption process of the
proposed scheme, methods for solving nonlinear equations over the real numbers
are used, which is used for the first time in MPKC. In this paper, the line search
method is used as a solving method for nonlinear equations. However, for solving
unconstrained nonlinear equations, there are several solving techniques such as
the trust region method [7,11,19–21,34,38]. Moreover, the solving method for
constrained nonlinear equations can be related to the decryption of the proposed
scheme, and in particular, for the case of the box constraint as I n

L , there are
many research results [2,3,17,18,23,28,32,33]. We, therefore, would like to work
on efficient algorithms for solving nonlinear equations from now on to improve
the decryption efficiency of the proposed scheme.

Acknowledgement. This work was supported by JSPS Grant-in-Aid for Scientific
Research(C) with KAKENHI Grant Number JP17K00197, JSPS Grand-in-Aid for
JSPS Fellows with KAKENHI Grant Number JP18J20866 and JST CREST Grant
Number JPMJCR14D6.
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A Solving Algorithms of Nonlinear Equations Except For
the Levenberg-Marquardt Method

Steepest Decent Method

[Input] H(x), an odd number L ∈ Z>0, α, β, γ ∈ (0, 1).
[Output] A (constrained) solution of H(x) = 0 with integer components.

1. Choose x0 ∈ [−(L−1)/2, (L−1)/2]n in the range of real numbers randomly.
2. Repeat (2-1)–(2-4):

2-1. Compute d0 = −H(x0)JH(x0).
2-2. Compute the minimal non-negative integer l satisfying the following

condition, and set t0 = βl.

θ(x0 + βld0) − θ(x0) ≤ −αβl‖d0‖ 2
2 .

2-3. x0 ← x0 + t0d0.
2-4. If ‖t0d0‖∞ < γ then finish the loop, and move to 3.

3. x̃0 ← round(x0).
4. If H(x̃0) = 0 then output x̃0, otherwise go back to 1.

Quasi-Newton Method

[Input] H(x), an odd number L ∈ Z>0, α, β, γ ∈ (0, 1).
[Output] A (constrained) solution of H(x) = 0 with integer components.

1. Choose x0 ∈ [−(L−1)/2, (L−1)/2]n in the range of real numbers randomly.
2. Compute e1 = −H(x0)JH(x0).
3. Compute B = (JH(x0)TJH(x0))−1.
4. Repeat (4-1)–(4-8):

4-1. Compute d0 = e1 B.
4-2. Compute the minimal non-negative integer l satisfying the following

condition, and set t0 = βl.

θ(x0 + βld0) − θ(x0) ≤ −αβle1dT
0 .

4-3. s0 = t0d0, x0 ← x0 + s0.
4-4. If ‖s0‖∞ < γ then finish the loop, and move to 5.
4-5. e2 ← e1.
4-6. Compute e1 = −H(x0)JH(x0).
4-7. y0 = e1 − e2.
4-8. B ← B − sT0 ·y0B +(y0B)T· s0

(s0,y0)
+

(
1 + (y0,By0)

(s0,y0)

)
sT0 · s0
(s0,y0)

.
5. x̃0 ← round(x0).
6. If H(x̃0) = 0 then output x̃0, otherwise go back to 1.

Newton Method

[Input] H(x), an odd number L ∈ Z>0, α, β, γ ∈ (0, 1).
[Output] A (constrained) solution of H(x) = 0 with integer components.
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1. Choose x0 ∈ [−(L−1)/2, (L−1)/2]n in the range of real numbers randomly.
2. Repeat (2-1)–(2-6):

2-1. Compute e = −H(x0)JH(x0).
2-2. Compute the Hessian matrix S = ∇2θ(x0).
2-3. Solve the linear equation xS = e in the range of real numbers, its

solution is denoted by d0.
2-4. Compute the minimal non-negative integer l satisfying the following

condition, and set t0 = βl.

θ(x0 + βld0) − θ(x0) ≤ −αβledT
0 .

2-5. x0 ← x0 + t0d0.
2-6. If ‖t0d0‖∞ < γ then finish the loop, and move to 3.

3. x̃0 ← round(x0).
4. If H(x̃0) = 0 then output x̃0, otherwise go back to 1.
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14. Fröberg, R.: An inequality for Hilbert series of graded algebras. Mathematica Scan-
dinavia 56, 117–144 (1985)

15. Götze, F.: Lattice point problems and value of quadratic forms. Invent. math. 157,
195–226 (2004)

16. Ikematsu, Y., Perlner, R., Smith-Tone, D., Takagi, T., Vates, J.: HFERP - a new
multivariate encryption scheme. In: Lange, T., Steinwandt, R. (eds.) PQCrypto
2018. LNCS, vol. 10786, pp. 396–416. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-79063-3 19

17. Kanzow, C.: An active-set type newton method for constrained nonlinear sys-
tems. In: Complementarity: Applications, Algorithms and Extensions, pp. 179–200.
Kluwer Academic (2001)

18. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg-Marquardt methods with
strong local convergence properties for solving nonlinear equations with convex
constraints. J. Comput. Appl. Math. 172(2), 375–397 (2004)

19. Kelly, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM,
Philadelphia (1995)

20. Levenberg, K.: A method for the solution of certain nonlinear problems in least
square. Quart. Appl. Math. 2, 164–166 (1944)

21. Marquardt, D.W.: An algorithm for least-square estimation on nonlinear problems.
SIAM J. Appl. Math. 11, 431–441 (1963)

22. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT
1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/
10.1007/3-540-45961-8 39

23. Monteiro, R.D.C., Pang, J.S.: A potential reduction Newton method for con-
strained equations. SIAM J. Optim. 9, 729–754 (1999)

24. Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: Nguyen, P., Vallée,
B. (eds.) The LLL Algorithm: Survey and Applications, pp. 19–69. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02295-1 2

25. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Heidelberg
(2006). https://doi.org/10.1007/978-0-387-40065-5

26. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

27. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for
HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 14

28. Qi, L., Tong, X.J., Li, D.H.: An active-set projected trust region algorithm for box
constrained nonsmooth equations. J. Optim. Theor. Appl. 120, 601–649 (2004)

29. Szepieniec, A., Ding, J., Preneel, B.: Extension field cancellation: a new central
trapdoor for multivariate quadratic systems. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 182–196. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29360-8 12

30. Szepieniec, A., Preneel, B.: Short solutions to nonlinear systems of equations. Cryp-
tology ePrint archive: report 2017/1175. https://eprint.iacr.org/2017/1175

https://doi.org/10.1007/978-3-319-79063-3_19
https://doi.org/10.1007/978-3-319-79063-3_19
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/978-3-642-02295-1_2
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/978-3-662-48797-6_14
https://doi.org/10.1007/978-3-319-29360-8_12
https://doi.org/10.1007/978-3-319-29360-8_12
https://eprint.iacr.org/2017/1175


Multivariate Encryption Schemes PERN 421

31. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In:
Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38616-9 16

32. Ulbrich, M.: Nonmonotone trust-region methods for vound-constrained semis-
mooth equations with applications to nonlinear mixed complementarity problems.
SIAM J. Optim. 11, 889–917 (2001)

33. Wang, T., Monteiro, R.D.C., Pang, J.S.: An interior point potential reduction
method for constrained equations. Math. Program. 74, 159–195 (1996)

34. Yamashita, N., Fukushima, M.: On the rate of convergence of the LM method.
In: Alefeld, G., Chen, X. (eds.) Computing Supplementa, vol. 15, pp. 237–249.
Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-7091-6217-0 18

35. Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–
288. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9 24

36. Yang, B.-Y., Chen, J.-M.: All in the XL family: theory and practice. In: Park,
C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg
(2005). https://doi.org/10.1007/11496618 7

37. Yasuda, T.: Multivariate encryption schemes based on the constrained MQ prob-
lem. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp.
129–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9 8

38. Yuan, Y.X.: Recent advances in numerical methods for nonlinear equations and
nonlinear least squares. Numer. Algebra Control Optim. 1, 15–34 (2011)

https://doi.org/10.1007/978-3-642-38616-9_16
https://doi.org/10.1007/978-3-7091-6217-0_18
https://doi.org/10.1007/978-3-540-27800-9_24
https://doi.org/10.1007/11496618_7
https://doi.org/10.1007/978-3-030-01446-9_8

	Multivariate Encryption Schemes Based on Polynomial Equations over Real Numbers
	1 Introduction
	2 Trapdoor Functions by Multivariate Polynomials with Integer Coefficients
	3 Encryption Scheme PERN
	3.1 Key Generation, Encryption and Decryption

	4 Solving Constrained Nonlinear System with Integer Coefficients
	5 Security Analysis of the Proposed Scheme
	5.1 Constrained MP Problem
	5.2 Attack Against Inhomogeneous SIS Problem
	5.3 Key Recovery Attack
	5.4 Exhaustive Search
	5.5 Algebraic Attack

	6 Security Parameters and Implementation
	6.1 Implementation for Higher Degrees

	7 Conclusion
	A Solving Algorithms of Nonlinear Equations Except For the Levenberg-Marquardt Method
	References




