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Abstract Numerical techniques for simulation of electromagnetic wave propaga-
tion within fiber amplifiers are discussed. Since a full-featured simulation using
the Maxwell system on a realistic fiber is beyond reach, simplified models using
Coupled Mode Theory (CMT) form the state of the art. This work presents a novel
concept of an equivalent short fiber, namely an artificial fiber which imitates a longer
fiber in essential characteristics. A CMT simulation on an equivalent short fiber
requires only a fraction of the computational resources needed to simulate the full
length fiber.

1 Fiber Amplifiers

The ability of solid-state fiber laser amplifiers to deliver high output power has
been exploited and studied over the last few decades [4]. Currently, the main
roadblock to power scaling these amplifiers is the transverse mode instability
(TMI), a sudden breakdown in beam quality at high power operation, first observed
experimentally [2]. These observations have led to intensive speculations on the
cause of TMI, the prevailing theory being that the cause is a temperature-induced
grating. Reliable numerical simulation of TMI and other nonlinear optical effects
within fibers can provide important insights for validating or rejecting various
physical hypotheses put forth to explain these effects. The simulation techniques
must however be able to numerically solve the field propagation within a long fiber
a vast number of times.
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While numerical modeling of fiber amplifiers has been effectively used by
many [5, 6, 9], accurate simulation of full length fibers remains cumbersome due
to its high demands on computational resources and long simulation times. A full
Maxwell simulation of Raman gain in a fiber was attempted in [7]: more than five
million degrees of freedom was needed to simulate a fiber 80 wavelengths long (less
than 0.0001 m). Clearly, a full Maxwell model of a realistically long (∼10 m) fiber is
beyond the reach of today’s simulation capabilities. The need for simplified models
is evident. Indeed the state of the art in fiber amplifier simulation consists of beam
propagation methods and simplified CMT-based models (see Sect. 2). Yet, even
these simplified models are computationally too demanding. This paper contributes
to the search for a faster numerical technique by developing a new concept of
equivalent short fiber (see Sect. 3) that can speed up these computations a 1000-
fold.

The highest power beam combinable amplifiers are large mode area (LMA)
circularly symmetric step-index fibers. They have a cylindrical core (usually
doped—see Example 2 below) of radius rcore and a cladding region enveloping the
core extending to radius rclad. We set up our axes so that the longitudinal direction of
the fiber is the z-axis. The transverse coordinates will be denoted x, y while using
Cartesian coordinates. The refractive index n of the fiber is a piecewise constant
function that equals ncore in the core and nclad in the cladding. There is also a
polymer coating surrounding the inner cladding; however, this will be ignored in
our model, which focuses on the guided light in the core region.

At its inlet (z = 0 cross section), the fiber core region is seeded by a continuous
wave input of highly coherent laser light, which is typically denoted as the “signal”.
We are interested in how the signal light is amplified by energy transfer from
“pump” light while it propagates through the fiber, through the process called
“gain”. The pump light is also injected at the beginning of the fiber in a “co-pumped”
configuration. The signal light is injected into the core, while the pump light goes
into both the core and the cladding.

Let Es,Hs and Ep,Hp denote the electric and magnetic fields of the signal
and pump light, respectively. They are time harmonic of frequencies ωs and
ωp, respectively, i.e., E�(x, y, z, t) = Re

[
E�(x, y, z)e−iω�t

]
,H�(x, y, z, t) =

Re
[
H�(x, y, z)e−iω�t

]
, for � ∈ {s, p}, so we may focus on their spatial dependence.

We assume that the signal field Es,Hs and the pump field Ep,Hp each satisfy
the time-harmonic Maxwell system and that they are coupled only through a
polarization term P� ≡ P�(Es,Ep):

curlE� − iω�μ0H� = 0, curlH� + iω�ε0E� = −iω�P�, � ∈ {s, p},

where ε0 is the electric permittivity and μ0 is the magnetic permeability (in
vacuum).

Since the fiber is a dielectric medium, the standard linear background polar-
ization term must be taken into account: Pbg

� = ε0(n
2 − 1)E�. We set the total

polarization P� to P� = P
bg
� − iε0E�ng�c/ω� where the gain term g� depends
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nonlinearly on Es ,Ep and c = 1/
√

ε0μ0 is the speed of light. Examples of g� are
given below.

Eliminating H�, we obtain the second order equation curl curlE� −ω2
�ε0μ0E� =

ω2
�μ0P� for the electric field alone, which by virtue of the expression for P� simpli-

fies to curl curlE�−k2
�n

2E�+ ik�ng�E� = 0 with k� = ω�/c. A further assumption,
frequently used in the theory of fiber optics, is that E� is linearly polarized, i.e.,
using êx to denote the unit vector in the x-direction, E�(x, y, z) = U�(x, y, z)êx.

Its also standard to neglect grad div(U�êx) since the dominant variations in E� are
in the z-direction. These assumptions yield the scalar Helmholtz equation for U�,

− ΔU� − k2
�n

2U� + ik�ng�U� = 0. (1)

Examples (below) of g� we have in mind are expressed in terms of the irradiance
I� = n|U�|2/μ0c. Light of high irradiance can perturb the refractive index causing
many interesting nonlinear effects in optical fibers, such as in Example 1 below.
However, of primary interest to us in the simulation of fiber amplifiers is active
gain, occurring in fibers whose core is doped with lanthanide rare-earth metallic
elements, such as Thulium (Tm) or Ytterbium (Yb)—see Example 2. They result
in much larger gain due to the pump light driving dopant ions to excited radiative
states followed by stimulated emission into signal photons.

Example 1 (Raman Gain) As described in [7, 10], the nonlinear Raman gain can be
modeled using a measurable “bulk Raman gain coefficient” gR by

g� = Υ�gRI�c , � ∈ {s, p} (2)

where Υp = −ωp/ωs , Υs = 1, and �c ∈ {s, p} \ {�}, the complementary index of �.

Example 2 (Ytterbium-Doped Fiber) Yb-doped fiber amplifiers are usually pumped
at λp =976 nm to move ions from a ground state (manifold 2F7/2) to an excited state
(manifold 2F5/2) [3, 8]. After undergoing a rapid non-radiative transition to a lower
energy state, the amplifier can lase around λs =1064 nm very efficiently. Denoting
the constant, uniformly distributed ion population as Ntotal = Nexcited +Nground, the
active gain can be modeled by

g� = σ ems
� Nexcited − σ abs

� Nground = Ntotal
[
σ ems

� ε − σ abs
� (1 − ε)

]
(3)

where the excited ion fraction ε = Nexcited/Ntotal is calculated in terms of a
radiative lifetime (τ ), and absorption and emission cross sections (σ abs

� , σ ems
� )

as ε = cabs/(cabs + cems + τ−1), where ce/a = σ e/a
p Ip/h̄ωp + σ e/a

s Is/h̄ωs,

for e/a ∈ {ems, abs} and ω� = 2πc/λ�. A commercial Yb-doped fiber, branded
Nufern™ (nufern.com), offers realistic parameters for our numerical simulations:
ncore = 1.45097, nclad = 1.44973, rcore = 12.5 μm, rclad = 16rcore. (Other
parameters: τ = 8e-4 s; σ abs

p , σ abs
s , σ ems

p , σ ems
s = 1.429e-24, 6e-27, 1.776e-24,

3.58e-25 m2/ion; Ntotal = 6.25e25 ions/m3.)
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2 CMT Model

Coupled Mode Theory (CMT) uses the transverse core modes of the fiber to con-
struct an electric field ansatz. These fiber modes ϕl(x, y) are non-trivial functions
that, together with their accompanying (positive) propagation constants βl, solve
the eigenproblem (Δxy + k2

s n
2)ϕl = β2

l ϕl, where Δxy = ∂xx + ∂yy denote the
transverse Laplacian. Since the modes we expect to see decay exponentially in
the cladding region, the eigenproblem may be supplemented with zero Dirichlet
boundary conditions. There can only be finitely many such modes, which we index
using l = 1, 2, . . . ,M . For step-index fibers, these modes are called the linearly
polarized (LP) transverse guided core modes [1]. The field ansatz is

Us(x, y, z) =
M∑

m=1

Am(z)ϕm(x, y)eiβmz. (4)

Furthermore, we assume that each Am is so slowly varying in z that we may
neglect the second derivative d2Am/dz2 for all m = 1, . . . ,M . Since we may
precompute the modes ϕl , the ansatz (4) reduces the field computation to the
numerical computation of Al(z). Substituting (4) into (1) and simplifying using
the L2 orthogonality of the modes, we find that Al satisfies the system of ordinary
differential equations (ODE)

dAl

dz
=

M∑

m=1

ei(βm−βl)z Klm(A, Ip) Am, 0 < z < L, (5)

for l = 1, . . . ,M, where the mode coupling coefficient Klm is given by

Klm(A, Ip) = ks

2βl

∫

�z

gs(Is(x, y,A), Ip) n(x, y)ϕm(x, y)ϕl(x, y) dx dy. (6)

Here �z represents the fiber cross section having the constant longitudinal coordi-
nate value of z. Note that Is depends on x, y and also on z through A ≡ {Al},
i.e., Is ≡ Is(x, y,A) = n

μ0c
| ∑M

m=1 Am(z)eiβmzϕm(x, y)|2. Note that the “mode

beating” term on the right hand side of (5), namely ei(βm−βl)z, oscillates at a
wavelength not smaller than the mode beat length 2π/ maxl,m |βm − βl |. An ODE
solver must take enough steps per mode beat length to safeguard accuracy.

As in previous works [6, 9], we use a drastically simplified model of pump light:
the effect of pump is modeled only through its irradiance Ip(z) after assuming it to
be independent of x and y, leading to the ODE

dIp

dz
= 〈gp〉Ip (7)
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Fig. 1 Results from simulation of the full length (L = 10 m) Nufern fiber

where 〈gp〉(z) denotes the mean value of gp over �z.
Equations (5)–(7) were solved numerically for a 10 m long Nufern fiber of

Example 2. This fiber has 4 modes, LP01, LP02, LP11 and LP21, enumerated as
ϕ1, . . . , ϕ4, respectively. We set initial values Am(0) such that 25 W of power is
injected into the LP01 mode, while the remaining modes receive no power at inlet.
Pump light is injected at 1000 W at z = 0. Lagrange finite elements of degree 5 were
used to approximate ϕl and the mode overlap integral. All our simulations used 50
steps of the 4th order Runge-Kutta scheme per mode beat length. Over 400,000 ODE
steps were needed to traverse 10 m. Results are shown in Fig. 1. Clearly, the signal
power amplifies as z increases, while the power in pump light depletes.

3 A Scale Model: Equivalent Short Fiber

Physical or numerical scale models of an object preserve some of the important
properties of the object while not preserving the original dimensions of the object.
In the context of fiber amplifiers, a miniature scale model that reduces fiber length
(while preserving the remaining dimensions) would be highly valuable in numerical
computations. By reducing the number of steps within the ODE solver, an equivalent
shorter fiber can bring about drastic reductions in computational cost.

At the outset, consider a quick dimensional analysis of (5). Its left hand side has
dimension V/m (Volts per meter), so Klm must have units of m−1. Therefore, by
writing out a non-dimensional formulation, we suspect that a shorter fiber of L̃ � L

might, in some ways, behave similarly to the original fiber of length L, provided its
coupling coefficient is magnified by L/L̃.

We need to understand better in what way the behaviour is similar and what
properties need not be preserved. Let ζ(z̃) = z̃L/L̃. A fiber of length L, under
the variable change z̃ = ζ−1(z) = zL̃/L becomes one of length L̃. The
original system (5)–(7) under the variable change, becomes dIp(z̃L/L̃)/dz̃ =
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(L/L̃)〈gp〉Ip(z̃L/L̃) and

d

dz̃
Al(z̃L/L̃) =

M∑

m=1

L

L̃
Klm(A(z̃L/L̃), Ip(z̃L/L̃)) ei(βm−βl)(L/L̃)z̃ Am(z̃L/L̃),

(8)

for all 0 < z̃ < L̃. Letting Âl = Al ◦ ζ and Îp = Ip ◦ ζ , we may rewrite these as

dÂl

dz̃
=

M∑

m=1

ei(βm−βl)Lz̃/L̃ L

L̃
Klm(Â, Îp) Âm,

dÎp

dz̃
= L

L̃
〈gp〉Îp, 0 < z̃ < L̃.

(9)

Thus, (9) on the shorter domain 0 < z̃ < L̃ is completely equivalent to (5)–(7).
(Same initial data at z = z̃ = 0 is assumed throughout.) Indeed, its solution Âl, after
changing variables is the same as the original solution Al of (5). Unfortunately, (9) is
not an improvement over (5) for numerical simulation. This is because the mode beat
length is now reduced by L̃/L in (9). Therefore an ODE solver, keeping the same
number of steps per mode beat length, must now perform L/L̃ times the number of
original steps, thus destroying the advantage of shortening the fiber to length L̃.

Hence we formulate another mode coupling system on the shorter fiber, with the
same mode beat length as the original system (5)

dÃl

dz̃
=

M∑

m=1

ei(βm−βl)z̃
L

L̃
Klm(Ã, Ĩp)Ãm,

dĨp

dz̃
= L

L̃
〈gp〉Ĩp, 0 < z̃ < L̃. (10)

Since the phase factors in (9) and (10) are different, we cannot expect Ãl(z̃) to be the
same as the pullback Al ◦ ζ of the original solution Al . Thus (10) is not completely
equivalent to the original system (5): it does not preserve the solution. Yet the
phase information lost in this new formulation is not of significant importance
experimentally. Hence, we proceed to argue that (10) is a practically useful scale
model of (5) by showing that it preserves some features of the solution under certain
conditions.

Let al(z) = Al(z)e
iβlz. Elementary calculations show that (5) implies

d|al|2
dz

= 2
M∑

m=1

Re
[
Klm(A, Ip) alam

]
. (11)

Let P be the vector function whose lth component, Pl(z), is the power contained
in the lth mode, namely Pl(z) = ∫

�z

n
μ0c

|Al(z)ϕl(x, y)|2 dx dy = |al|2Φl , where
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Φl = ∫
�z

n
μ0c

|ϕl |2 dx dy. Equation (11) can be expressed using Pl as

1

2

dPl

dz
= Kll(A, Ip)Pl + Φl

∑

m
=l

Re
[
Klm(A, Ip) alam

]
. (12)

Recall that Klm(A, Ip) is defined using gs(Is(x, y,A), Ip)—see (6). In some
circumstances (see below), Is(x, y,A) = n

μ0c
| ∑M

m=1 amϕm|2 can be approximated
by

Is(P ) =
M∑

m=1

n

μ0c
|amϕm|2 =

M∑

m=1

n

μ0cΦm

Pm |ϕm|2 .

Let γ�(P, Ip) = g�(Is(P ), Ip) for � ∈ {s, p} and let κlm be defined exactly as Klm

but with gs replaced by γs . Then (12) may be rewritten as

1

2

dPl

dz
= κll(P )Pl + ηl, l = 0, 1, . . . ,M, where (13)

ηl =
[
Kll(A, Ip) − κll(P )

]
Pl + Φl

∑

m
=l

Re

[
Klm(A, Ip) alam

]
(14)

for l = 1, . . . ,M . For the index l = 0, we set P0(z) = ∫
�z

Ip(z) dxdy, the pump

power, thereby absorbing (7) into (13) after setting η0 = 1
2

[〈gp〉 − 〈γp〉]P0. We
are interested in the case of small ηl . Then (13) is a perturbation of an autonomous
system.

Repeating the same procedure starting from (10) using ãl(z) = Ãl(z)e
iβlz, we

find that the corresponding powers P̃l = |ãl|2Φl and P̃0 = ∫
�z

Ĩp dx dy satisfy

1

2

dP̃l

dz̃
= L

L̃
κll(P̃ )P̃l + η̃l , l = 0, 1, . . . ,M, where (15)

η̃l =
[

L

L̃
Kll(Ã, Ĩp) − L

L̃
κll(P̃ )

]
P̃l + Φl

∑

m
=l

Re

[
L

L̃
Klm(Ã, Ĩp) ãl ãm

]
.

To compare (15) with (13), we apply the change of variable ζ to (13) to find that
1
2 d(Pl ◦ ζ )/dz̃ = (L/L̃)κll(Pl ◦ ζ )Pl ◦ ζ + (L/L̃)ηl ◦ ζ. This means that when η and
η̃ are small, Pl ◦ ζ and P̃l solve approximately the same equation, so Pl ◦ ζ ≈ P̃l .

For this reason we shall call (10) an equivalent short fiber model, even if the
electric fields generated are generally not the same. Note that, when considering
real fiber amplifiers, power is the quantity of interest (measurable experimentally),
not the electric field amplitude and phase. To summarize, in the equivalent short
fiber, the power Pl contained in the lth mode is preserved from the original fiber
model (5) through a change of variable, under the above assumptions. Moreover, by
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estimating η̃ in equivalent fiber computations, we can gauge the reliability of the
equivalent short fiber model a posteriori.

To simulate the equivalent short fiber model (10), we only need to multiply Klm

and 〈gp〉 by L/L̃. In Example 1, this is accomplished by scaling the bulk Raman
gain coefficient, i.e., replace the physical gR by g̃R = gRL/L̃ in (2). Whereas
for an active gain amplifier (like that of Example 2) this may be accomplished by
scaling the total number of dopant ions, i.e., by replacing the physical Ntotal by
Ñtotal = NtotalL/L̃.

One scenario where the assumption that η is small is justified is when most of
the power is carried in one mode. Indeed, typical experimental setups of LMA fiber
amplifiers do operate them as near-single mode fibers by filtering out the higher-
order modes through differential bend losses induced by fiber coiling. When all
except one ai is small, cross terms involving ālam are small for all l 
= m, so the last
term in (14) is small. Moreover, the approximation of Is by Is where similar cross
terms are neglected, is also accurate, so all terms defining (14) are small.

Figure 2 shows simulation results from the equivalent short fiber model of length
L̃ = 0.01 m mimicking the physical Nufern fiber of length L = 10 m we
simulated at the end of Sect. 2. We see that the power distribution plots (bottom
row) are identical to that of the physical fiber in Fig. 1. The cost of computation
has however been reduced by a factor of L̃/L = 1/1000 (keeping the same number
of ODE steps per mode beat length, see Sect. 2). When L̃ is changed to 0.005—
see Fig. 3—we obtain similar power distribution plots again, although the solution
components (Am) have notably changed, in agreement with our analysis above. In
further experiments (unreported here for brevity), we observed good performance

Fig. 2 Results from a short fiber of length L̃ = 0.01 equivalent to an L = 10 m Nufern fiber
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Fig. 3 Results from a short fiber of length L̃ = 0.005 equivalent to an L = 10 m Nufern fiber

of equivalent fiber of length 0.1 m even when power was distributed equally among
the modes. Note that all our simulations considered the worst-case scenario of no
differential mode bend loss, i.e., any tendency of a bent fiber toward single-mode
operation is left unmodeled.
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