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Abstract Future e-mobility calls for efficient electrical machines. For different
areas of operation, these machines have to satisfy certain desired properties that
often depend on their design. Here we investigate the use of multipatch Isogeometric
Analysis (IgA) for the simulation and shape optimization of the electrical machines.
In order to get fast simulation and optimization results, we use non-overlapping
domain decomposition (DD) methods to solve the large systems of algebraic
equations arising from the IgA discretization of underlying partial differential
equations. The DD is naturally related to the multipatch representation of the
computational domain, and provides the framework for the parallelization of the
DD solvers.

1 Introduction

Isogeometric Analysis (IgA) is a relatively new approach for discretizing partial
differential equations (PDEs). IgA was introduced in [2]. It can be seen as an
alternative to the more classical Finite Element Method (FEM). The idea in IgA
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is to use the same basis functions for both representing the geometry of the
computational domain and solving the PDEs. This aspect makes IgA especially
interesting for design optimization procedures. In practice, it is often the case
that one performs design optimization and geometric modeling simultaneously.
State-of-the-art computer aided design (CAD) software uses B-splines or Non-
Uniform Rational B-splines (NURBS) for the modeling process whereas the design
optimization requires an analysis suitable representation of the model. So far the
design optimization is mainly done using FEM as discretization method. Hence, the
B-spline or NURBS representation of the geometric model has to be converted into
a suitable mesh for the Finite Element Analysis. This conversion is in general very
computationally demanding. The new IgA paradigm circumvents these problems.
Therefore, IgA is very beneficial for the simulation and optimization when the
representation of the computational domain comes from CAD software; see [1, 10]
for applications to electrical machines.

Since practical optimization problems tend to be very large, the numerical
solution of the underlying PDEs becomes computationally very expensive. More-
over, in PDE-constrained shape optimization processes, there are more than one
PDE to solve. In particular, line search requires to solve the magnetostatic PDE
constraint several times. In order to get fast optimization results, we use Dual-Primal
IsogEometric Tearing and Interconnecting (IETI-DP) methods for the solution of the
linear algebraic systems arising from the IgA discretization. The IETI-DP solvers
are non-overlapping domain decomposition methods; see [5, 6]. IETI-DP methods
are closely related to the FEM-based FETI-DP methods; see, e.g., [9] and the
references therein. We show that IETI-DP methods are superior to sparse direct
solvers with respect to computational time and memory requirement. Moreover,
IETI-DP provides a natural framework for parallelization. Indeed, our numerical
experiments on a distributed memory computer show an excellent scaling behavior
of this method.

The remainder of the paper is organized as follows. In Sect. 2, we describe
our model problem and the shape optimization method that is based on the shape
derivative. Section 3 is devoted to the IETI-DP solver and its performance on parallel
computers. Finally, in Sect. 4, we use IETI-DP within the interior point optimizer
Ipopt [11] yielding an efficient shape optimization procedure.

2 Shape Optimization via Gradient Descent

2.1 Problem Description

We investigate the simulation and shape optimization of an interior permanent
magnet (IPM) electric motor by means of IgA. The IgA approach seems to be
very attractive for such practical problems. The most beneficial aspect of IgA in
the context of optimization is the fact that the same basis functions which are used
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Fig. 1 Real world IPM electric motor (see Acknowledgement section) on the left, and a quarter
of the cross section of a similar electric motor with 8 magnetic poles that is used in our numerical
tests on the right

to represent the geometry of the IPM electric motor are also exploited to solve the
underlying PDEs. In the optimization procedure, we want to optimize the shape
of the motor in order to maximize the runout performance, i.e. to maximize the
smoothness of the rotation of the motor. An example of an IPM electric motor
is given in Fig. 1 (left). One possible way to optimize the runout performance of
an IPM electric motor is to minimize the squared L2-distance between the radial
component of the magnetic flux B in the air gap and a desired smooth reference
function Bd. The resulting optimization problem is subject to the 2d magnetostatic
PDE as constraint.

Mathematically, the arising optimization problem can be expressed as follows:

min
D

J (u) :=
∫

�

|B(u) · n� − Bd|2ds =
∫

�

|∇u · τ� − Bd|2ds (1)

s.t. u ∈ H 1
0 (Ω) :

∫
Ω

νD(x)∇u · ∇η dx = 〈F, η〉 ∀η ∈ H 1
0 (Ω), (2)

where J denotes the objective function, � is the midline of the air gap, Ω denotes
the whole computational domain, and D is the domain of interest also called design
domain. The variational problem (2) is nothing but the 2d linear magnetostatic
problem with the piecewise constant magnetic reluctivity νD(x) = χΩf (D)(x)ν1 +
χΩmag(x)νmag + χΩair(D)(x)ν0. Here, Ωf , Ωmag and Ωair denote the ferromagnetic,
permanent magnet and air subdomains, respectively, and ν1, νmag and ν0 denote
the corresponding reluctivity values. Note that the shape D enters the optimization
problem via the function νD and influences the objective function via the solution
u. The right hand side F ∈ H−1(Ω) in (2) is defined by the linear functional

〈F, η〉 :=
∫

Ω

(J3η + νmagM
⊥ · ∇η) dx (3)
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for all η ∈ H 1
0 (Ω). Here, M⊥ denotes the perpendicular of the magnetization

M , which is indicated in Fig. 1 and vanishes outside the permanent magnets, and
J3 is the third component of the impressed current density in the coils. Note
that the solution u is the third component of the magnetic vector potential, i.e.
B(u) = curl((0, 0, u)T ). Moreover, nΓ = (n1, n2, 0)T and τΓ = (τ1, τ2)

T denote
the outward unit normal and unit tangential vectors along the air gap, respectively.

We are interested in the radial component of the magnetic flux density along
the air gap due to the permanent magnetization. For that reason, we set J3 = 0
and consider the coil regions as air. Figure 1 (right) shows a quarter of a cross
section of a simplified IPM electric motor that is provided by CAD software.
Hence, this geometry representation is suitable for IgA simulation. The red-brown
areas represent ferromagnetic material (Ωf ), the blue areas consist of air (Ωair),
the yellow areas are the permanent magnets (Ωmag). The air gap of the motor is
highlighted in light blue. In this initial model for the optimization, the design domain
D is the ferromagnetic area right above the permanent magnets. In order to get a
smoother rotation we are looking for a better shape of this part D.

2.2 The Shape Derivative

For the optimization of the IPM electric motor, we use gradient based optimization
techniques. Hence, we need the derivative of the objective J with respect to a
change of the current shape. The shape derivative in tensor form [4, 7, 10] of our
optimization problem is given by

dJ (D)(φ) =
∫

Ω

S(D, u, p) : ∂φdx, ∀φ ∈ H 1
0 (Ω,R2) (4)

with S(D, u, p) = (νD(x)∇u ·∇p−νmag∇p ·M⊥)I+νmag∇p⊗M⊥ −νD(x)∇p⊗
∇u − νD(x)∇u ⊗ ∇p, where I denotes the identity, the state u solves the constraint
(2), and p solves the adjoint problem

∫
Ω

νD(x)∇p · ∇η dx = −2
∫

�

(B(u) · n� − Bd)(B(η) · n�) ds ∀η ∈ H 1
0 (Ω).

(5)

In (4), S(D, u, p) : ∂φ means Frobenius’ scalar product of the 2 × 2 matrices
S(D, u, p) and ∂φ = (

∂φi

∂xj
)2
i,j=1, defined by A : B := ∑n

i=1
∑n

j=1 aij bij for

general n × n matrices A = (aij )
n
i,j=1 and B = (bij )

n
i,j=1, whereas a ⊗ b :=

(aibj )
n
i,j=1 for vectors a = (ai)

n
i=1 and b = (bj )

n
j=1 from Rn.



Isogeometric Simulation and Shape Optimization for Electrical Machines 39

Fig. 2 Initial and final design of an IPM motor

2.3 Numerical Shape Optimization

We used a continuous Galerkin (cG) IgA discretization for both the simulation and
optimization problems. The implementation is done in G+Smo.1 Figure 2 (left)
shows a possible computational domain suitable for cG. The shown multipatch
domain consists of 93 patches. For each of these patches, we used a B-spline
mapping from a reference patch with splines of degree 3. For the optimization, we
need the shape gradient ∇J ∈ V := H 1

0 (Ω,R2) which can be computed by solving
the auxiliary problem: find ∇J ∈ V such that

b(∇J,ψ) = −dJ (D)(ψ) ∀ψ ∈ V. (6)

The expression on the right hand side of (6) is the negative shape derivative whereas
the expression b(·, ·) on the left hand side is some V -elliptic, V -bounded bilinear
form which must be chosen appropriately. For our studies, we used

b(φ,ψ) =
∫

Ω

φ · ψ dx +
∫

Ω

α(∂φ : ∂ψ) dx (7)

with a patchwise constant function α ∈ L∞(Ω).
In the right picture of Fig. 2, we can see the optimized shape with respect to the

runout performance compared to the initial domain on the left. We were able to
reduce the objective from 4.236 · 10−4 down to 2.781 · 10−4.

1Mantzaflaris, A. et al.: G+Smo (geometry plus simulation modules) v0.8.1., http://gs.jku.at/gismo,
2017 Jun 19 2018.

http://gs.jku.at/gismo


40 P. Gangl et al.

3 Fast Numerical Solutions by IETI-DP

Up to now, we have solved the arising PDEs by means of a sparse direct solver.
One drawback of a direct solution method is that it is rather slow for large-scale
systems. In particular, in shape optimization, we have to solve the state equation (2),
the adjoint equation (5), and the auxiliary problem (6) for the shape gradient, which
decouples into two scalar problems, in every iteration of the optimization algorithm.
Moreover, during a line search procedure, it might be the case that the state equation
has to be solved several times. To overcome the issue of a slow performance, we
were looking for a fast and suitable solver for our simulation and optimization
processes. We chose the IETI-DP technique for solving the PDEs [5]. IETI-DP is a
non-overlapping domain decomposition technique which introduces local subspaces
which are then again coupled using additional constraints. A comparison between
the sparse direct solver SuperLU [3] and IETI-DP for solving the state equation
(2) on a full cross section of an IPM electric motor clearly shows that the recently
developed IETI-DP method [5] performs much better as can be seen in Table 1. The
numerical results displayed in Tables 1 and 2 were obtained on RADON1 (https://
www.ricam.oeaw.ac.at/hpc/overview/) a high performance computing cluster with
1168 computing cores and 10.7 TB of memory. Table 1 also shows that, with an
increasing number of degrees of freedom, the proposed IETI-DP technique solves
the problem much faster than the sparse direct solver. Moreover, it can be seen
that, with too many degrees of freedom, the sparse direct solver ran out of memory
whereas IETI-DP could provide the solution to the problem. The solution to the
state equation is shown in Fig. 3 (right).

Moreover, IETI-DP provides a natural framework for parallelization. Because
of the multipatch structure of the computational domains in IgA, each patch can
be seen as a subdomain in the IETI-DP approach. Then one can create suitable
subdomains consisting of a certain number of patches for each processor, e.g., one
possible choice is to group the patches to subdomains according to their number
of degrees of freedom which means that the degrees of freedom are almost evenly
distributed over the number of processors. Table 2 shows the strong scaling behavior
of the IETI-DP solver. In this experiment, we solved the constraint equation (2) on

Table 1 SuperLU vs.
IETI-DP on a single core

# dofs SuperLU IETI-DP speedup

72,572 36.0 s 17.0 s 2.12

250,844 193.0 s 69.8 s 2.77

928,796 1943.0 s 463.0 s 4.20

3,570,332 – 1179.0 s –

Table 2 Strong scaling with IETI-DP and 3,570,332 dofs

# cores 1 2 4 8 16 32 64 128

Time [s] 1179 577 325 164 89 43 22 14

Rate – 2.04 1.78 1.98 1.84 2.07 1.95 1.57

https://www.ricam.oeaw.ac.at/hpc/overview/
https://www.ricam.oeaw.ac.at/hpc/overview/
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Fig. 3 Whole initial cross section as well as the solution

the full cross section of an IPM electric motor with 3,570,332 degrees of freedom.
From Table 2, we can see the expected performance, i.e., if we double the number
of processors the computation time reduces nearly by a factor of two.

4 Shape Optimization Based on Ipopt and IETI-DP

In this section, we point out the usage of the interior point optimizer Ipopt [11],
for the shape optimization using IETI-DP as underlying PDE solver. If we perform
shape optimization without any additional considerations, then we might run into
troubles. More precisely, it can happen that we get self-intersections in the final
shape even if the objective decreases.

To prevent such self-intersections, we consider the Jacobian determinant of the
geometry transformation in the design domain and its neighboring air regions. The
Jacobian determinant of these patches must have the same sign in each iteration.
If the sign changes from one iteration to the next, then we reduce the step size
until the Jacobian determinant of the new design has the same sign as in the initial
configuration. In this way, we are able to ensure that the shape is technically feasible.

In the first naive approach, all control coefficients of the multipatch domain are
considered as design variables, and the vector field computed by (6) is applied
globally. The computational effort for the optimization can be reduced by applying
the computed vector field only on the important interfaces between the design
domain and the neighboring air regions. This reduces the number of design variables
from approximately 28,000 to 128 in the coarsest setting. The inner control
coefficients of the design area and the bordering air regions are rearranged via a
spring patch model [8].

In a first test setting, Ipopt stops at an optimal solution after 95 iterations using
a BFGS method. We set the NLP error tolerance to 10−6, the relative error in the
objective change to the same value, and we decided to exit the optimization loop
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Fig. 4 Optimal shape after 130 iterations with relaxed bounds (left), zoom into one of the design
regions (right)

after three iterations within these error bounds. The objective value dropped from
4.266 · 10−4 down to 2.587 · 10−4

Furthermore, we tried an additional experiment were we relaxed the bounds on
the constraints a bit. In particular, we set the bound_relax_factor in Ipopt
to 1. The result of this experiment can be seen in Fig. 4. We may observe from
Fig. 4 that we get a very smooth final shape with even a smaller objective value of
2.436 · 10−4. We point out that, if we adjust the different optimization parameters,
we may get different optimal shapes and different objective values in the end.

Acknowledgments This work was supported by the Austrian Science Fund (FWF) via the grants
NFN S117-03 and the DK W1214-04. We also acknowledge the permission to use the Photo in
Fig. 1 (left) taken by the Linz Center of Mechatronics (LCM). The motor was produced by Hanning
Elektro-Werke GmbH & Co KG.

References

1. Bontinck, Z., Corno, J., Schöps, S., De Gersem, H.: Isogeometric analysis and harmonic stator–
rotor coupling for simulating electric machines. Comput. Methods Appl. Mech. Eng. 334, 40–
55 (2018)

2. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194,
4135–4195 (2005)

3. Demmel, J.W., Eisenstat, S. C., Gilbert, J.R., Li, X.S., Liu, J. W. H.: A supernodal approach to
sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)

4. Gangl, P.: Sensitivity-based topology and shape optimization with application to electrical
machines. Ph.D. thesis, Johannes Kepler University Linz (2016)

5. Hofer, C., Langer, U.: Dual-primal isogeometric tearing and interconnecting solvers for
multipatch dG-IgA equations. Comput. Methods Appl. Mech. Eng. 316, 2–21 (2017)



Isogeometric Simulation and Shape Optimization for Electrical Machines 43

6. Kleiss, S., Pechstein, C., Jüttler B., Tomar S.L: IETI–isogeometric tearing and interconnecting.
Comput. Methods Appl. Mech. Eng. 247, 201–215 (2012)

7. Laurain, A., Sturm, K.: Distributed shape derivative via averaged adjoint method and applica-
tions. Esaim Math. Model. Numer. Anal. 50(4), 1241–1267 (2016)

8. Nguyen, D.M., Gravesen, J., Evgrafov, A.: Isogeometric analysis and shape optimization in
electromagnetism. Ph.D. thesis, Technical University of Denmark (2012)

9. Pechstein, C.: Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale
Problems. Springer, Berlin (2013)

10. Schneckenleitner, R.: Isogeometrical analysis based shape optimization. Master thesis,
Johannes Kepler University Linz (2017)

11. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line search
algorithm for large scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)


	Isogeometric Simulation and Shape Optimization with Applications to Electrical Machines
	1 Introduction
	2 Shape Optimization via Gradient Descent
	2.1 Problem Description
	2.2 The Shape Derivative
	2.3 Numerical Shape Optimization

	3 Fast Numerical Solutions by IETI-DP
	4 Shape Optimization Based on Ipopt and IETI-DP
	References


