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Abstract In this work we present an error estimator for a class of second order
quasilinear elliptic problems in 2D. The computational domain consists of two
parts—called rotor and stator in the framework of electrical motors—separated by
a curvilinear interface. For the coupling of the rotor and the stator on the interface
we use a Nitsche technique as described in Hollaus et al. (Nitsche-type mortaring
for Maxwell’s equations, In: Progress in electromagnetics research symposium
proceedings, Cambridge, pp 397–402, 5–8 July 2010). The residual error estimator
is constructed similarly to the approach used in Houston et al. (IMA J Numer Anal
28:245–273, 2008) with adaptations due to the coupling strategy. The error estimator
takes into account the polygonal approximation of the stator and the rotor using
ideas from hierarchical error estimates.

1 Motivation and Introduction

During an optimization process of a rotating electrical machine with respect
to specific requirements on the performance many different designs have to be
simulated. In each simulation a complete rotation cycle of the motor has to be
performed. The vast amount of simulations calls for efficient concepts to reduce
the computational costs.

Our focus is on the introduction of a domain decomposition approach that allows
an independent meshing of the two motor parts. This decomposition gives us the
flexibility to simulate the whole rotation cycle without remeshing. Furthermore, to
reduce the complexity of the simulation while attaining the same accuracy of the
calculation we are interested in a mesh that is as coarse as possible and as fine as
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necessary. To achieve an optimal distribution of the degrees of freedom in our finite
element mesh we use an adaptive mesh refinement procedure.

2 Model Problem

To model the behaviour of the electrical machine we use the magnetostatic case of
Maxwell’s equations in 2D. Since we are interested in modelling a rotating electrical
machine our computational domain Ω decomposes—as already mentioned—into
two different parts. One part is fixed—we will call it stator ΩS—and one part is
moving—the rotor ΩR. Both parts consist of various material domains Ωi , i ∈ I .
In our considerations we added to the physical stator and rotor an outer and inner
air domain as well as parts of the motor-air-gap to each of them respectively.
Additionally we introduce the interface

Γ = ∂ΩS ∩ ∂ΩR,

where ∂Ωk represents the boundary of the respective domain.

Remark 1 In our application we consider only interfaces Γ that are circular (Fig. 1).

The variational formulation for the continuous problem then has the following
form: Find u ∈ H 1

0 (Ω) such that

a (u,w) = 〈f,w〉 ∀w ∈ H 1
0 (Ω) (1)

with the semi-linear form

a (u,w) =
∑

i∈I

(∫

Ωi

νi(|∇ui |)∇ui · ∇wi

)

Fig. 1 Example of the
cross-section of a motor
sector. Iron parts are colored
in gray, magnets are depicted
in yellow. Current domains
and their connections are
indicated in orange, green and
red
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and the linear form

〈f,w〉 =
∑

i∈I

(∫

Ωi

J3,iwi +
∫

Ωi

νMMi,⊥∇wi

)
.

Here ui is the restriction of the solution u to the domain Ωi . The right-hand side
includes contributions from the current J3,i in the coils of the electrical machine
and from the magnetization of domains representing permanent magnets, denoted
by Mi = (M1,i ,M2,i). The material properties in Ωi is described by the function
νi , which is non-linear in iron. In air we use a constant value ν0. Hs(Ω) and Hs

0 (Ω)

denote the usual Sobolev spaces.

2.1 Nitsche Coupling

The Nitsche coupling is a domain decomposition technique see, e.g., [2, 3]. The
idea is to penalize the jump of the solution on the two adjacent domains ΩS and ΩR

across the interface Γ. For this the trace of u on Γ is introduced as a new variable λ

(Fig. 2).

2.1.1 Discrete Problem

We approximate the domains ΩS and ΩR by admissible triangular meshes TS,h and
TR,h. We require that all nodes of an element T lie inside one material domain Ωi .
With this assumption we write νT instead of νi for this triangle. We assume that
the meshes are shape-regular. The interface Γ is subdivided by elements EΓ = {e}
with Γ = ⋃

e∈EΓ
e. Note that the elements of EΓ are curvilinear and represent Γ

accurately. So the overall mesh is described by the triple Mh = (TS,h, TR,h,EΓ)

(Fig. 3).

Fig. 2 Schema of the two
different motor parts: the
rotor and the stator with the
circular interface Γ in
between

ΩS

ΩR

Γ
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Fig. 3 Example of a
polygonal approximation Th

for the individual parts. The
meshes are separated for
better presentation, in reality
all interface vertices of rotor
and stator lie on Γ

ΩS,h

ΩR,h

EΓ

For the discretization we use continuous piece-wise linear elements, in details:
Find uh = (uS,h, uR,h, λh) ∈ Xh(Mh) = Vh

(
TS,h

) × Vh

(
TR,h

) × Wh

(
EΓ

)
, such

that

ah (uh,wh) = 〈f,wh〉 ∀wh = (wS,h,wR,h, ψh) ∈ Xh(Mh) (2)

with

Vh

(
Tk,h

) =
{
wh ∈ H 1

0,∂Ω∩∂Ωk,h
(Ωk,h) : wh T ∈ P1(T ) for T ∈ Tk,h

}
,

where P1(T ) is the space of polynomials of degree less than 1 restricted to the
element T and

Wh

(
EΓ

) =
{
wh ∈ L2(Γ ) ∩ C0(Γ ) : wh e ◦ Fe ∈ P1(̂e ) for e ∈ EΓ

}
,

where ê = [0, 1] denotes the reference element and Fe maps ê onto e. The semi-
linear form and the linear form are given by

ah (uh,wh) =
∑

k∈{R,S}

⎛

⎜⎝
∑

T ∈Tk,h

∫

T

νT (
∣∣∇uk,h

∣∣)∇uk,h · ∇wk,h

−
∑

e∈EΓ

∫

e

ν0∇uk,h · nk

(
wk,h − ψh

) + β
∑

e∈EΓ

∫

e

ν0
(
uk,h − λh

)∇wk,h · nk

(3)

+ α

h

∑

e∈EΓ

∫

e

ν0
(
uk,h − λh

) (
wk,h − ψh

)
⎞

⎠
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and

〈fh,wh〉 =
∑

k∈{R,S}

∑

T ∈Tk,h

(∫

T

J3wk,h +
∫

T

νMM⊥∇wk,h

)
.

Here nk stands for the normal vector on ∂Ωk that points in outward direction. uk,h

and wk,h denotes the extension of the function uk,h and wk,h respectively as defined
by

Definition 1 (Extensions of uh) The extension of uk,h from Ωk,h to Ωk ∪ Ωk,h is
given in the following way:

uS,h =
{

uS,h on ΩS,h

0 on ΩS \ ΩS,h

uR,h =
{

uR,h on ΩR,h

uext
R,h on ΩR \ ΩR,h,

where uext denotes the linear extension of the function on the triangle to the curved
domain.

The second term on the right-hand side in (3) is called consistency term, the third
term is the symmetry term, since in the linear case we get a symmetric bilinear form
by choosing β = −1. The last term in (3) is referred to as penalization term.

We use β = −1 and we choose the parameter α = 20. This choice results
in a symmetric, positive definite stiffness matrix. In the notation of discontinuous
Galerkin methods this corresponds to a symmetric interior penalty Galerkin (SIPG)
method.

3 A Posteriori Error Estimator

The error is estimated in the following energy norm (see [2, p.6])

‖(w,ψ)‖E(Ω,Γ ) =
⎛

⎝
∑

k∈{R,S}

∑

i∈Ik

ν2
ref,i ‖∇wi‖2

L2(Ωi)
+ ν2

0 |w − ψ|21
2 ,Γ

⎞

⎠

1
2

, (4)

where νref,i is a reference value for each material domain, and

|w|21
2 ,Γ

=
∑

k∈{S,R}

1

h
|wk|2L2(∂Ωk∩Γ )

.
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Fig. 4 M̂h with one
boundary refinement. The
two meshes that are touching
the interface are depicted
separately

̂ΩS,h

̂ΩR,h

̂EΓ

Additionally we introduce the jump notation for vector-valued functions q:

�q�e =
{

qi · ni + qj · nj for e ∈ Ωi ∩ Ωj,

qi · ni for e ∈ ∂Ω ∩ ∂Ωi.

For the error estimator we introduce another mesh M̂h which is finer near the
curvilinear boundaries than Mh (see Fig. 4). In particular we start in each part Ωk

from the mesh Tk,h and refine all elements with at least two nodes on a curvilinear
boundary uniformly. Additionally the neighbouring elements are refined in such a
way that we end up with admissible meshes. The interface elements are refined
uniformly. This refinement strategy is repeated until the boundary is approximated
sufficiently well. By ûh we will denote an approximate solution of the discrete
problem on this finer mesh (calculated by using a few steps of a symmetric Gauss-
Seidel-Iteration), extended to Ω ∪ Ω̂h as described in Definition 1.

Theorem 1 (A Posteriori Error Estimation) Let u ∈ H 1
0 (Ω) be the solution of

problem (1), and let uh ∈ Xh(Mh) denote the solution of (2) and ûh ∈ Xh(M̂h)

denotes the solution on the finer mesh. Then there exists a constant C such that for
eh = u − uh the following a posteriori error bound holds:

‖eh‖E(Ω,Γ ) ≤
⎛

⎝η2 +
∑

k∈{R,S}
Oη(fk, ûh) + O(h3)

⎞

⎠

1
2

(5)

with

η2 =
∑

k∈{R,S}

⎛

⎜⎝
∑

T ∈Tk,h

η2
T +

∑

e∈EΓ

η2
e,k

⎞

⎟⎠ ,
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where

η2
T = Ch2 ‖f ‖2

L2(T )
+

∑

T̂ ∈C(T )

⎛

⎝
∑

e∈∂T̂

C

2
h

∥∥�νT̂ (|∇ûh|)∇ûh�
∥∥2

L2(e)

+ ∥∥νref ∇ûh − νref ∇uh

∥∥
L2(T̂ )

+ 1

2
h

∑

e∈∂T̂

∥∥�νT̂ (|∇uh|)∇uh − νT̂ (|∇ûh|)∇ûh�
∥∥2

L2(e)

⎞

⎠

η2
e,k = 2Ch−1

∥∥(
ûk,h − λh

)∥∥2
L2(e)

+ ν0h
−1

∥∥(
ûk,h − λ̂h − uk,h + λh

)∥∥2
L2(e)

.

The set C(T ) consists of all child-triangles of T in T̂h,k . For the oscillation terms
Oη(fk, ûh) see [4, p.6].

Remark 2 In [1] an adaptive strategy including a posteriori controlled boundary
approximation was presented for the Poisson problem with pure Dirichlet condi-
tions. This technique cannot be adopted to the case of mixed boundary and interface
conditions.

3.1 Marking and Refinement Strategy

The constant C in Theorem 1 plays the role of a weighting factor. For the
numerical experiments C was replaced by a computable heuristic approximation
based on information on the coarsest mesh leading to corresponding computable
approximations which—for simplicity—are denoted by the same symbols ηT and
ηe,k . With these quantities we assign local error indicators η̃T , η̃e for each triangle
T and each edge e from Mh in the following way:

1. for all triangles T with at most one vertex on Γ we set η̃T = ηT ,
2. for every e ∈ EΓ we set η̃e = ηe,S + ηe,R ,
3. for the remaining triangles we set η̃T equal to ηT enlarged by contributions η̃e

from edges e ∈ EΓ weighted proportional to the length of the edge e between
the two point of T on Γ .

As marking strategy we use Dörfler marking. For refinement we used classical red-
and green-refinement.

4 Numerical Experiments

The error estimator was tested for the motor geometry shown in Fig. 1 for different
rotor-to-stator positions. The initial mesh was generated with Netgen [5] and
consists of 562 degrees of freedom. The mesh generator takes material interfaces



32 A. Fohler and W. Zulehner

into account leading to a non-uniform distribution of elements mainly concentrated
around the air gap as depicted in Fig. 5.

For the first rotor-to-stator position the final mesh after 7 refinement steps is
depicted in Fig. 6 and the reduction of the error in the energy-norm compared to the
solution on a uniform refined mesh shown in Fig. 7.

Fig. 5 Initial Mesh with 562
degrees of freedom

Fig. 6 Final Mesh for ϕ = 0,
α = 20

Fig. 7 Convergence for
ϕ = 0, α = 20
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Fig. 8 Final mesh for
ϕ = 60, α = 20

Fig. 9 Convergence for
ϕ = 60, α = 20
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Starting from the same initial mesh, with the rotor part rotated by ϕ = 60◦ we
arrive after 7 refinement steps at a mesh depicted in Fig. 8 with an error reduction
rate given in Fig. 9.

5 Conclusions

The adaptive refinement strategy show promising results. As expected due to the
varying current in the coils for different ϕ as well as the natural change in the
overall geometry the refined mesh looks quite different for different ϕ. Since it
would be preferable to have one refined mesh for all rotation angles we are working
on strategies to refine the mesh in an optimal way for the whole rotation cycle.
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