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Abstract The Wigner transport equation can be solved stochastically by Monte
Carlo simulations, based on the generation and annihilation of particles. This
creation mechanism has been recently understood in terms of the Markov jump
process, producing new stochastic algorithms. One of this has been used to
investigate the quantum transport through a double potential barrier.

1 Introduction

The Wigner transport equation is a full quantum transport model able to capture
the relevant physics in next generation of quantum semiconductor devices. It is
well known that the pure state Wigner equation is an equivalent phase-space
reformulation of the Schrödinger equation. At the same time the Wigner equation
can be augmented by a Boltzmann-like collision operator accounting for the process
of decoherence. However, this equation has represented a numerically daunting task
and it has raised more problems than solutions.

In literature, we find a range of proposed techniques to tackle this problem.
Deterministic solvers, based on finite difference method (FDM) for time-dependent
Wigner simulations, has been introduced for the first time in the mid 1980s (see
[2] for a review). In order to tackle the oscillatory components introduced by the
Wigner kernel and the diffusion term, recently more sophisticated solvers have been
developed [1, 4, 6, 7, 13, 14, 16].

In alternative particle Monte Carlo (MC) techniques can be introduced (see [12]
for a review). In this paper, we have focused in the so called Signed Monte Carlo
method [11], where the Wigner potential is treated as a scattering source which

O. Muscato (�)
Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Catania, Italy
e-mail: orazio.muscato@unict.it

© Springer Nature Switzerland AG 2020
G. Nicosia, V. Romano (eds.), Scientific Computing in Electrical Engineering,
Mathematics in Industry 32, https://doi.org/10.1007/978-3-030-44101-2_15

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44101-2_15&domain=pdf
mailto:orazio.muscato@unict.it
https://doi.org/10.1007/978-3-030-44101-2_15


162 O. Muscato

determines the electron-potential interaction, and consequently new particles with
different signs are stochastically added to the system. Recently this method has
been also be understood in terms of the Markov jump process theory [8–10, 15],
producing a class of new stochastic algorithms. In this paper a thorough validation
of one of these algorithms will be presented in the already traditional benchmark
experiment of a double well potential barrier.

2 The Wigner Function Formalism

The Wigner formulation of quantum mechanics offers a description of the electron
state in terms of a phase-space function fw(x, k, t), where x ∈ R

d is the particle
position, k ∈ R

d the wave vector (and h̄k the momentum). The Wigner equation
has the form

∂fw

∂t
+ h̄

m∗ k · ∇xfw = Q(fw) (1)

which includes the quantum evolution term

Q(fw) =
∫

Vw(x, k − k′)fw(x, k′) dk′ (2)

where Vw is the Wigner potential

Vw(x, k) = 1

ih̄(2π)d

∫
dx ′ e−ik·x ′

[
V

(
x + x ′

2

)
− V

(
x − x ′

2

)]
(3)

and V (x) the potential energy. The Wigner potential is a non-local potential operator
which is responsible of the quantum transport, is real-valued, and anti-symmetric
with respect to k. The solution fw is real valued, but not necessarily nonnegative,
and it can therefore not be interpreted as a probability density, but as a quasi-
distribution of particles. It is related to the solution of the Schrödinger equation
ψ(x, t) via the Wigner-Weyl transform [5] and, under some restrictions on ψ , the
function fw satisfies

n(x, t) =
∫

fw(x, k) dk = |ψ(x, t)|2 ≥ 0 (4)

where n is the mean density.
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3 The Signed Particle Monte Carlo Method

Among MC solution techniques, we have considered the so called Signed particle
Monte Carlo approach [11]. This technique is based on the observation that the
quantum evolution term (2) looks like the Gain term of a collisional operator in
which the Loss term is missing. But the Wigner potential (3) is not always positive
and cannot be considered a scattering term. For this reason, it can be separated into
a positive and negative parts V +

w , V −
w such that

Vw = V +
w − V −

w , V +
w , V −

w ≥ 0 . (5)

In this way, we can define an integrated scattering probability per unit time as

γ (x) =
∫

dk′ V +
w (x, k − k′) =

∫
dk′ V −

w (x, k − k′) (6)

and rewrite the quantum evolution term as the difference between Gain and Loss
terms, i.e.

Q(fw) =
∫

dk′w(k′, k)fw(x, k′) − γ (x)fw(x, k) (7)

w(k′, k) = V +
w (x, k − k′) − V −

w (x, k − k′) + γ (x)δ(k − k′). (8)

The term w(k′, k) defines a new scattering mechanism whose effect is the produc-
tion of pair of signed particles. An initial parent particle with sign u evolves on a
free-flight trajectory and, according to a generation rate given by the function γ (x),
two new signed particles, one positive and one negative, are generated with one
momentum state generated with a probability equal to V +

w (x, k)/γ (x). The main
drawback of such technique is the exponential grow of the particle number.

To limit this number, a cancellation procedure must be introduced in such a way,
if the total number of particles exceeds a certain bound Ncanc, then pairs of particles
with similar positions and wave vectors, but with opposite signs, are removed from
the system. Recently, the previous creation process has been understood in terms of
the Markov jump process theory, providing that functionals of the solution of the
Wigner equation (1) are expressed in terms of the particle system [15].

Moreover a time-splitting scheme has been introduced in [9] in order to separate
the transport (i.e. movement in the position space) and the generation process, as
follows

1. Transport step
All particles (xi(t), ki(t), ui(t)) move according to

xi → xi + Δt
h̄

m∗ ki (9)

The components ui and ki do not change.
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2. Generation step
According to probabilistic rules (to be determined below), all particles create new
particles that are added to the system.

3. Cancellation step
If the total number of particles exceeds a certain bound,

N > Ncanc (10)

then pairs of particles with similar positions and wave-vectors, but with opposite
signs,are removed from the system.

In the following, we shall introduce a cutoff c > 0 which assures finiteness of
the integrals (6) with respect to the wave vector. The generation step is based on a
majorant V̂w(x, k) of the Wigner potential (3)

|Vw(x, k)| ≤ V̂w(x, k) ∀x, k (11)

and the creation rate

γ̂ (x, k) = 1

2

∫ c

−c

V̂w(x, k) dk. (12)

The splitting time step Δt is assumed to satisfy

Δt <
[
supxγ̂ (x, c)

]−1
. (13)

This is the generation algorithm:

s0. For each j-th particle
s1. Let be r ∈ U [0, 1]

if r < 1 − γ̂ (xj , c)Δt (14)

do not create anything, next particle GOTO s0.
s2. Otherwise generate a random parameter k̃ uniformly on the interval [−c, c].
s3. Let be r ∈ U [0, 1]

if r < 1 − |Vw(xj , k̃)|
V̂w(xj , k̃)

(15)

do not create anything, next particle GOTO 2.0
s4. Otherwise generate a couple of particle

(xj , kj + k̃, ũ) , (xj , kj − k̃,−ũ) , ũ = uj sign

[
Vw(xj , k̃)

V̂w(xj , k̃)

]
(16)

next particle GOTO s0.
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4 The Double Potential Barrier Benchmark

Let us introduce the double barrier, which is symmetric with respect to the y-axis,
the height is a (in eV), the centers in ±|d|, and the amplitude b (see Fig. 1). The
well potential length is

bw = 2

(
|d| − b

2

)
. (17)

In the double barrier case we have:

Vw(x, k) = 4a

h̄πk
sin(2kx) sin(kb) cos(2k|d|) (18)

V̂w(x, k) = 4ab

h̄π
, γ̂ (x, c) = 4ab

h̄π
c , Δt <

h̄π

4abc
(19)

and we have considered a double barrier with the following parameters:

b = 2.2 nm, |d| = 5.1 nm, bw = 8 nm. (20)
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Fig. 1 The double barrier
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If the barrier height a goes to infinity, the Schrödinger equation gives a well known
analytic solution (see Appendix) where, the lowest energy eigenstate with l = 1 is

E1 = π2h̄2

2m∗b2
w

= 1.8361 10−2eV (21)

and the corresponding eigenfunction ψ(x, t) is shown in (35). According to Eq. (4),
we have (for the infinite well)

n(x, t) = |ψ(x, t)|2 = 2C2

bw

cos2
(

πx

bw

)
. (22)

The previous solution does not depend on time, consequently if the system is
prepared initially in this state, then it will remain in it throughout.

Our goal is to study how the our Wigner MC scheme, for large values of the
barrier height, approaches to the Schrödinger one in the case of infinite well.

In particular we want to reproduce the density solution (22) for the lowest energy
eigenstate. To achieve that, we have to use the right initial condition for the Wigner
equation. Since, for pure state, Schrödinger and Wigner equations are equivalent, we
have taken as initial condition the Wigner function corresponding to the Schrödinger
one in the lowest energy state [3].

In the x-space we have considered an uniform mesh [−20, 20] (nm) with Nx =
200 grid-points; also in the k-space we have an uniform mesh [−7.78, 7.78] (nm−1)
with Nk = 256. We have chosen absorption boundary conditions, i.e. if a particle is
out of the mesh then it is erased. The cutoff has been fixed c = 7.68 nm−1, the initial
particle number is Nini = 160,000, the cancellation parameter Ncanc = 480,000.

We plot in Fig. 2 the density (4) at the simulation times of 20 fsec, obtained
with a = 0.3, 0.6, 1.2, 2.4, 4.8 eV, and compared with the solution (22). The
penetration into the barrier decreases as the height a increases, while the MC
solution approaches to the Schrödinger one.

Due to the limitation on the time step Δt (19), the higher the barrier height a, the
smaller the time step will be. Consequently a huge CPU consumption is measured,
as shown in Table 1, which limits de facto the convergence of the MC solution to
the analytic one. The results presented have been obtained using an AMD Phenom
II X6 1090T 3.2 GHz and 8 Gb RAM.

Table 1 CPU and particle
number at the final simulation
time 20 fs

a (eV) Δt (fs) Final Npart CPU (s)

0.3 0.05 420,000 4691

0.6 0.05 590,000 7482

1.2 0.025 749,000 16,758

2.4 0.0125 780,000 31,659

4.8 0.00625 1,200,000 90,060
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Fig. 2 The particle density (4) versus position a t = 20 fs, for same values of the barrier height a

and the corresponding Schrödinger solution for an infinite barrier

5 Conclusions

The Wigner equation has been solved by using the Signed particle Monte Carlo
method, where new pair of particles characterized by a sign are created randomly
and added to the system. This creation mechanism has been recently understood in
terms of the Markov jump process, producing a class of new stochastic algorithms
[9]. One of these algorithms has been implemented and applied to the double
potential barrier benchmark, and compared to the corresponding analytic solution
of the Schrödinger equation for the infinite well. The results show that the MC data,
for large values of the barrier height, converges to the analytic solution of the infinite
well, but the accuracy is limited by a huge computational effort.
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Appendix

Let us consider a particle of mass m∗ inside a box, surrounded by an infinite square
well with potential given by

V (x) =
⎧⎨
⎩

0, |x| ≤ bw/2

∞ |x| > bw/2
(23)

We want to describe the motion of this particle free to move in a small space
surrounded by impenetrable barriers. To do that, let us introduce Schrödinger
equation

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m∗ Δxψ(x, t) + V (x)ψ(x, t) (24)

where V the potential energy, and Δx the Laplace operator, and the wavefunction
ψ(x, t) satisfying the condition

∫
R

|ψ(x, t)|2 dx = 1. (25)

In the case of infinite square-well potential, the natural boundary conditions for
Eq. (24) are

ψ(−bw/2, t) = ψ(bw/2, t) = 0 (26)

and we want to solve the following problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ih̄
∂ψ(x,t)

∂t
= − h̄2

2m∗ Δxψ(x, t)

ψ(−bw/2,−t) = ψ(bw/2, t) = 0

V (x) = 0 ∀x ∈ [−bw/2,+bw/2]

(27)

Since the potential does not depend on the time, we can look for solutions of the
kind

ψ(x, t) = φ(x) χ(t) (28)

then we have

ih̄

χ

∂χ(t)

∂t
= − h̄2

2m∗
1

φ
Δxφ(t, x) + V (x) = const. = E (29)
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obtaining two separate equations:

ih̄

χ

∂χ(t)

∂t
= E, − h̄2

2m∗
1

φ
Δxφ(t, x) + V (x) = E. (30)

The solution of the first equation is:

χ(t) = C exp(−iEt/h̄) (31)

whereas the second equation yields

[
− h̄2

2m∗
∂2

∂x2 + V (x)

]
φ(x) = E φ(x) (32)

which gives the particle energy spectrum. For the square-well barrier potential (23),
using the b.c. (26), one obtains a discrete energy spectrum

El = h̄2k2
l

2m∗ , kl = πl

bw

l ∈ N (33)

φl(x) =
√

2

bw

sin

(
πlx

bw

)
l even, φl(x) =

√
2

bw

cos

(
πlx

bw

)
l odd (34)

and, for l odd, we have:

ψ(x, t) = C exp

(
− iElt

h̄

)
φl(x) = ψ1(x, t) + i ψ2(x, t) (35)

ψ1(x, t) = C

√
2

bw

cos

(
πlx

bw

)
cos

(
h̄π2l2

2m∗b2
w

t

)
, (36)

ψ2(x, t) = −C

√
2

bw

cos

(
πlx

bw

)
sin

(
h̄π2l2

2m∗b2
w

t

)
. (37)

Finally the density is

n(x, t) = |ψ(x, t)|2 = ψ2
1 (x, t) + ψ2

2 (x, t) = 2C2

bw

cos2
(

πlx

bw

)
l odd. (38)
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