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of Nearly Localized Particles

Omar Morandi

Abstract A quantum model based on the Gaussian-Hermite expansion of the wave
function of a system of n particles is proposed. The dynamics is described by
trajectories in a configuration space. Our method is designed to provide some
corrections to the classical motion of nearly localized particles. As an application of
our model we describe the motion of a nearly localized particle in a 2D confining
structure.

1 Introduction

During the last decade, the dynamics of molecules inside gases or nanostructures
have been extensively investigated. New concepts such as deterministic and stochas-
tic quantum trajectories have been proposed to develop new ab initio methods that
go beyond the classical description of the atomic nuclei[1–12].

Such approaches are mainly based on the Bohm interpretation of the quantum
mechanics where the concept of the deterministic trajectory of a particle is extended
to the quantum dynamics in a rigorous way [13]. One of the first attempts to apply
Bohm theory to a real nanostructure, have been proposed by Tully [14] and Wyatt
[15]. Nowadays, methods based on the Bohm formalism are very popular and are at
the basis of few general methods such as the multiconfiguration time-dependent
Hartree method [16] and the Bohm trajectories extended to the complex plane
[17]. Moreover, stochastic methods have also been employed [18]. Based on the
classical concept of Brownian and Langevin dynamics, stochastic models are able
to reproduce the quantum statistical properties of protons in harmonic traps [19].
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In this paper, we derive the motion of a system of quantum particles. We assume
that every particle is described by a Gaussian-like wave packet parametrized by a set
of numbers that depend on time. Our approach is designed to describe the motion of
heavy particles as for example neutrons and protons. We will discuss the application
of our method to the 2D motion of a particle in the presence of a confining non
harmonic potential. In particular, the connection with the Bohm interpretation of
the quantum mechanics will be discussed.

2 Particle Motion: Beyond the Gaussian Beam
Approximation

We consider the quantum mechanical evolution of a system defined by the wave
function ψ(r) ∈ L2(Rd). Our system consists of n ≤ d particles, where d is the
dimension of the space. We focus on the physical situation in which each particle
is localized around a spatial coordinate. We assume that the probability dispersion
of the particle wave function is modulated by a Gaussian function centred on mean
particle positions. Moreover, we assume that all the particles are identical and have
mass m = 1. The particles move in the presence of an external potential U(r). We
discard the direct particle-particle interaction. However, U(r) may contains some
nonlinear terms that describe the particle-particle interaction at the mean field level.
We develop a model that preserves the classical description of particle motion in
terms of trajectories. In particular, in our model the particle motion is expressed by a
system of nonlinear ODE for a set of physically relevant parameters. This is obtained
by parametrizing the particle wave function by a complete set of parameters which
extend the classical dynamical quantities position and momentum. Similarly to the
coherent state projection technique [20–22], we project the wave function of the
system on the basis set of the Harmonic oscillator shifted at the mean particle
positions. The Gaussian beam approximation is a popular method used to describe
nearly localized particles [23–25] Similarly to the Gaussian beam approximation,
our expansion procedure is based on the projection of the solution over a set
of functions which are modulated by a Gaussian whose width changes in time
according to the quantum evolution equation.

In this paper we extend the results obtained in Ref. [26], where the 1D case
with some extension to the 2D problem, was considered. In Ref. [26] the evolution
equations for the parameters have been obtained by applying a integral approach
based on the Euler-Lagrange formalism. Here, we proceed in a more direct way. We
calculate the evolution equations by using the Madelung decomposition in which the
particle wave function is expressed in polar coordinates. In particular, in Sect. 2.2
we calculate the expression of the projection of the potential on the Hermite basis
in a closed form. This is an important step toward the implementation of a efficient
numerical solver for the particle motion.
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We start by considering the time dependent Schrödinger equation of a quantum
system of dimension d

i
∂ψ

∂t
=
(

−1

2
Δr + U(r)

)
ψ . (1)

We have normalized the Planck constant h̄ = 1. According to Madelung, we repre-
sent the particle wave function in polar coordinates ψ(r) = √

n(r − s)eiχ(r−s). We
have introduced the parameter s ∈ R

d which represents the mean particle position.
In particular, s is the centre of the Hermite expansion that will be performed in the
following. The evolution equation of s (see Eq. (22) below) can be interpreted as a
Newton equation with quantum corrections. We assume that the density n(x) is a
Gaussian function modulated by the polynomial P

n(r, t) = P(r, t)e−〈σ,r〉 .

The parameter σ ∈ R
d provides the width of the Gaussian packed. For the sake

of compactness, we have introduced the notation 〈σ , r〉 .= ∑d
n=1 r2

i σi , where the
lower indexes indicate the components of the vectors along the coordinate axis. The
Madelung transform leads to the well known quantum hydrodynamic equations

∂n

∂t
= −∇ · J + ds

dt
· ∇n (2)

∂J

∂t
= −∇

(
J ⊗ J

n

)
+ n∇ (

Q + U[s]
) + ds

dt
· ∇χ . (3)

Here, we have introduced the notation U[s]
.= U(r + s), J = n∇χ is the quantum

current and Q(r) is the quantum Bohm potential

Q ≡1

2

Δ
√

n√
n

= 1

4

[
ΔP

P
− |∇P |2

2P 2 − 2
d∑

i=1

σi

ri
∂P
∂ri

P
+ 2

d∑
i=1

σi(r
2
i σi − 1)

]
.

(4)

Concerning the physical meaning of the Bohm potential, we refer to [15, 26].
By introducing the auxiliary variable R(x) = ln(P (x)), the previous expression
becomes

Q =1

4

[
ΔR + |∇R|2

2
− 2

d∑
i=1

σiri
∂R

∂ri
+ 2

d∑
i=1

σi(r
2
i σi − 1)

]
.

From Eq. (3) with some algebra we obtain to the evolution equation for the phase χ

∂χ

∂t
= −1

2
|∇χ |2 + Q + U[s] + ds

dt
· ∇χ . (5)
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The main interest of our approach is to derive the evolution equation of the
parameters obtained by expanding the functions χ and P on the Hermite polynomial
basis set. We write the expansion as follows

P(r, t) =
∞∑

{n}=0

a{n}(t)hσ{n}(r) (6)

χ(r, t) =
∞∑

{n}=0

χ{n}(t)hσ{n}(r) . (7)

We have introduced the compact notation {n} to indicate the sequence of d integers
{n} .= (n1, n2, . . . , nd) and

hσ{n}(r)
.=

d∏
i=1

hσi
ni

(ri ) . (8)

The functions h
σi
ni

(ri) are the normalized Hermite functions. For the details concern-
ing the definition of h

σi
ni

(ri) we refer to [26], Eq. (19). In order to clarify the notation,
we write explicitly Eq. (7) in the 3D case

χ(r, t) =
∞∑

nx,ny ,nz=0

χnx,ny,nz (t)h
σx
nx

(x)h
σy
ny (y)h

σz
nz (z) . (9)

By using the property of orthonormality of the Hermite functions, it is easy to invert
the previous equations. As un example, we give the inversion formula for P

a{n} =
∫

P(r)hσ{n}(r)e−〈σ ,r〉 dr . (10)

Hereafter, all the integrals are considered over all the space R
d . Finally, it is useful

to expand the variable R(x) = ln(P (x)) in the Hermite basis set

R(r) =
∑
m

R{m}hσ{m}(r) . (11)

In order to clarify our approach, in the following expression we indicate all the
parameters that we have introduced

ψ(r) = √
n(r − s)eiχ(r−s) ⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a{n} ∈ �2(Nd ) : modulus
χ{n} ∈ �2(Nd) : phase
s ∈ R

d : mean position
σ ∈ R

d : Gaussian width
R{n} = R{n}(a{n}) ∈ �2(Nd)

.
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In particular, in the last line we have indicated that the parameters Rn are not
independent and obtained by a{n}. The details concerning this point are given in
Ref. [26]. We calculate now the evolution equations for our set of parameters. We
give some technical details concerning the expansion coefficients of the phase χ .
The calculations proceed straightforwardly. We multiply Eq. (5) by hσ{n}e−〈σ ,r〉 and

we integrate over Rd . We obtain

dχ{n}
dt

= −1

2

∫
|∇χ |2 hσ{n}e−〈σ ,r〉 dr

︸ ︷︷ ︸
I

+ ds

dt
·
∫

∇χhσ{n}e−〈σ ,r〉 dr
︸ ︷︷ ︸

II

−
d∑

i=1

dσi

dt

∑
{n′}

χ{n′}
∫

hσ{n}
dhσ

{n′}
dσi

e−〈σ ,r〉 dr

︸ ︷︷ ︸
III

+
∫ (

Q + U[s]
)
hσ{n}e−〈σ ,r〉 dr .

For the first term we have

I = − 1

2

∑
{r},{s}

χ{r}χ{s}
d∑

i=1

∫ dhσ{r}
dri

dhσ{s}
dri

hσ{n}e−〈σ ,r〉 dr

= −
∑

{r},{s}
χ{r}χ{s}

d∑
i=1

σi

√
risi

∫
hσ

{r;ri→ri−1}h
σ
{s;si→si−1}h

σ{n}e−〈σ ,r〉 dr

= −
∑

{r},{s}
χ{r}χ{s}

d∑
i=1

σi

√
risiA

σi

ni ,ri−1,si−1

∏
j �=i

A
σj
nj ,rj ,sj . (12)

The matrix A is defined as

A
σ
n,r,s =π1/4

∫
R

hσ
n (x)hσ

r (x)hσ
s (x)e−x2σ dx .

Details concerning the calculation of A
σ
n,r,s are given in [26]. We have used the

following property of the Hermite functions (see Eq. (22) of Ref. [26])

dhσ{n}(r)
dri

=√
2niσih

σi

n−1(ri )

d∏
j �=i,j=1

h
σj
nj

(rj ) = √
2niσih

σ
{n;ni→ni−1}(r) . (13)

Finally, we have introduced the following notation {r; ri → a} .= (r1, . . . , ri−1, a,

ri+1, . . . , rd ) where the i-th term is substituted by a. For the second term, we have

II =
∑
{r}

χ{r}
d∑

i=1

dsi

dt

∫ dhσ
{r}

dri
hσ{n}e−〈σ ,r〉 dr =

d∑
i=1

χ{n;ni→ni+1}
dsi

dt

√
2(ni + 1)σi .

(14)
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Furthermore,

III = −
d∑

i=1

dσi

dt

(
2ni + 1

4σi

χ{n} +
√

(ni + 2)(ni + 1)

2σi

χ{n;ni→ni+2}
)

. (15)

We consider now the term that contains the Bohm potential

∫
Qhσ{n}e−〈σ ,r〉 dr =1

4

∫ [
ΔR + |∇R|2

2
− 2

d∑
i=1

σiri
∂R

∂ri
+ 2

d∑
i=1

σi(r
2
i σi − 1)

]
hσ{n}e−〈σ ,r〉 dr

By using the expansion of R we obtain the explicit form of the previous terms. After
cumbersome algebra we obtain

∫
Qhσ{n}e−〈σ ,r〉 dr =1

4

∑
{r},{s}

R{r}R{s}
d∑

i=1

σi

√
risiA

σi

ni ,ri−1,si−1

∏
j �=i

A
σj
nj ,rj ,sj −

d∑
i=1

σi

2
niR{n}

+ πd/4 1

4

d∑
i=1

σ
3/4
i

(√
2δni,2 − δni ,0

) d∏
j �=i

σ
−1/4
j δnj ,0 .

Here, δ denotes the Kronecker’s delta. The final expression of the evolution equation
for χ is given in Eq. (19). The evolution equations for a, s and σ can be obtained by
using the continuity equation. It is easy to verify that

∂n

∂t
= −∇ · J + ds

dt
· ∇n = ∇ ·

[
n

(
−∇χ + ds

dt

)]
. (16)

Proceeding in similar way as we have done for χ , from Eq. (16) we obtain

da{n}
dt

=
d∑

i=1

dσi

dt

1

2σi

[
a{n}

2ni + 1

2
+ a{n;ni→ni−2}

√
ni(ni − 1)

]

−
d∑

i=1

a{n;ni→ni−1}
dsi

dt

√
2niσi

+ 2
∑

{r},{s}
a{r}χ{s}

d∑
i=1

σi
√

nisiA
σi

ni−1,ri,si−1

∏
j �=i

A
σj
nj ,rj ,sj .

It is easy to verify that the first coefficient a{0,...,0} is directly related to the L2 norm
of ψ . It can be integrated analytically. From the previous equation we have

da{0,...,0}
dt

=
d∑

i=1

dσi

dt

1

4σi

a{0,...,0} ,
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whose solution is a{0,...,0} = π−d/4 ∏d
i=1 σ

1/4
i (t). According to the discussion of

Ref. [26], it is possible to verify that the number of expansion coefficients that
we have introduced so far is redundant. In particular, it is always possible to fix
some of the coefficients a that multiply the linear and the quadratic terms of the
expansion (6). For the linear terms, the evolution equation is

da{0,...,1,,...,0}
dt

=
d∑

j=1

dσj

dt

1

2σj

[
a{0,...,1,,...,0}

2nj + 1

2

]
−

d∑
j=1

a{n;nj →nj −1}
dsj

dt

√
2njσj

+ 2
∑

{r},{s}
a{r}χ{s}σi

√
siA

σi

0,ri ,si−1

∏
j �=i

A
σj

0,rj ,sj

= a{0,...,1,,...,0}
d∑

j=1

dσj

dt

2nj + 1

4σj

− a{0,...,0}
dsi

dt

√
2σi

+ 2σi

√
ri + 1

∏
k σ

1/4
k

πd/4

∑
{r}

a{r}χ{r;ri→ri+1} .

By imposing a{0,...,1,,...,0} = 0 we obtain the evolution equation for s

dsi

dt
=√

2σi

∑
{m}

a{m}χ{m;mi→mi+1}
√

mi + 1 .

The evolution equation of the width of the Gaussian σ is obtained by setting the
quadratic terms to zero: a{0,...,2,...,0} = 0. From

da{0,...,2,...,0}
dt

= dσi

dt

1

2σi

a{0}
√

2 +
d∑

i=1

dσi

dt

1

2σi

[
a{0,...,2,...,0}

2ni + 1

2

]

− a{0,...,1,...,0}
dsi

dt
2
√

σi

+ 2

⎛
⎝∏

j

σ
1/4
j

⎞
⎠ ∑

{r},{s}
a{r}χ{s}σi

√
2siA

1
1,ri,si−1

∏
j �=i

A
1
0,rj ,sj

,

we obtain

dσi

dt
= − 4σ 2

i

∑
{m}

a{m}
(
χ{m}mi + χ{m;mi→mi+2}

√
(mi + 1)(mi + 2)

)
.
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2.1 Evolution Equations

We give here the final form of the evolution equations for the phase χ{n}, the
modulus a{n}, the Gaussian width σ and the center of the expansion s of the particle
wave function.

dχ{n}
dt

=
⎛
⎝ d∏

j

σ
1/4
j

⎞
⎠ ∑

{r},{s}

(
−χ{r}χ{s} + 1

4
R{r}R{s}

) d∑
i=1

σi

√
ri siA

1
ni ,ri−1,si−1 (17)

×
∏
j �=i

A
1
nj ,rj ,sj

−
d∑

i=1

σi

2
niR{n} + πd/4 1

4

d∑
i=1

σ
3/4
i

(√
2δni ,2 − δni ,0

)⎛⎝ d∏
j �=i

σ
−1/4
j δnj ,0

⎞
⎠ (18)

+
d∑

i=1

χ{n;ni→ni+1}
dsi

dt

√
2(ni + 1)σi

+
∑

i

Mi

(
2ni + 1

2
χ{n} + √

(ni + 2)(ni + 1)χ{n;ni→ni+2}
)

+
∫

U[s]hσ{n}e−〈σ ,r〉 dr (19)

da{n}
dt

=
d∑

i=1

dσi

dt

1

2σi

[
a{n}

2ni + 1

2
+ a{n;ni→ni−2}

√
ni(ni − 1)

]
−

d∑
i=1

a{n;ni→ni−1}
dsi

dt
×

√
2niσi + 2

⎛
⎝ d∏

j

σ
1/4
j

⎞
⎠ ∑

{r},{s}
a{r}χ{s}

d∑
i=1

σi

√
ni siA

1
ni−1,ri ,si−1

∏
j �=i

A
1
nj ,rj ,sj

(20)

dσi

dt
= −2Miσi (21)

dsi

dt
= √

2σiSi , (22)

where Mi = 2σi

∑
{m} a{m}

(
χ{m}mi + χ{m;mi→mi+2}

√
(mi + 1)(mi + 2)

)
and

Si = ∑
{m} a{m}χ{m;mi→mi+1}

√
mi + 1.

2.2 Projection Coefficients of the Potential

By looking at the final system of evolution equations we see that the external
potential appears only in the evolution equation for the phase (19) via the term∫

U[s]hσ{n}e−〈σ ,r〉 dr which, from a mathematical point of view, represents the
projection of the potential on the Hermite basis set. In the general case, this term
can be evaluated only numerically; since its calculation can be very costly, it is
convenient to consider the case in which external potential is a polynomial. In
this case, the calculations can be done explicitly. We proceed by assuming that the



Quantum Model for the Transport of Nearly Localized Particles 155

potential U can be written in the following form which, from the point of view of
the applications, is very general

U(r) =
d∏
i

U i(xi) =
d∏
i

N∑
n

αi
nx

n
i . (23)

Here, Ui(xi)
.= ∑N

n αi
nx

n
i , αi

n are a set of given coefficients and N is the maximum
degree at which the coordinate appears in the polynomial expansion of U . We obtain

∫
U(r + s)hσ{m}e−〈σ ,r〉 =

∑
i

∫
hσi

mi
e−σiriU i(xi + si ) dxi

d∏
j �=i

∫
h

σj
mj

e−σj rj dxj

=π
d−1

4
∑

i

⎛
⎝ d∏

j �=i

σ
−1/4
j

⎞
⎠∫

hσi
mi

Ui(xi + si )e
−σiri dxi .

The previous equation can be elaborated by inserting the polynomial expansion of
Eq. (23). In particular, it is convenient to order the terms according to the degree
with respect to the parameter si . At the end of the computation, we obtain

∫
U[s]hσ

2re
−x2σ dx =π1/42rσ−1/4

√
(2r)!

⎛
⎜⎜⎝
⌊

N
2

⌋
−r∑

u=0

s2u σu22u

(2u)! Γ (u, r, σ ) + 2σ
1
2

×

⌊
N−1

2

⌋
−r∑

u=0

s2u+1 σu22u

(2u + 1)! Γ̃ (u, r, σ )

⎞
⎟⎟⎠

∫
U[s]hσ

2r+1e
−x2σ dx = π1/42rσ−3/4

√
2
√

(1 + 2r)!

⎛
⎜⎜⎝
⌊

N
2

⌋
−r∑

u=1

s2u−1 σu22u

(2u − 1)!Γ (u, r, σ ) + 2σ
1
2

×

⌊
N−1

2

⌋
−r∑

u=0

s2u 22uσu

(2u)! Γ̃ (u, r, σ )

⎞
⎟⎟⎠ ,



156 O. Morandi

where r ∈ N, the symbol �x� denotes the integer part of x and we have defined

Γ (u, r, σ )
.=

N∑
n=2(u+r)+(0,2,4,...)

αn
n!σ−n

2 2−n

(n
2 − u − r)!

Γ̃ (u, r, σ )
.=

N∑
n=2(u+r)+(1,3,5,...)

αn
n!σ−n

2 2−n

(n−1
2 − u − r)! .

The symbols under the sums indicate that the index n takes the value 2(u + r) plus
the numbers indicated inside the parenthesis (even numbers for the first equation
and odd numbers for the second equations).

3 Numerical Simulations: 2D Case

We apply the model that has been introduced in the previous sections to the motion
of heavy quantum particles (typically atoms with few protons). In this section, we
provide some motivations to our work and we describe the results obtained by
solving the evolution equations in the case of a two-dimensional system. There
exist many cases in which electrons are delocalized in a solid structure. The
electron wave function may extend over various atomic cells and has typically a
very complex shape. For this reason, the simulation of electron motion in solids
in a realistic case requires the application of complex many body full quantum
methods like the DFT [27] or the Green function approach. On the other side,
nuclei are well localized quantum particles. They are typically considered as point-
like particles which move along the classical trajectories obtained by solving the
Newton equation. The De Broglie wave length provides a simple estimate of the
degree of localization of the quantum wave function of a particle. It is well known
that De Broglie wave length provides the spatial scale on which the probability to
find a particle around the position expectation value decays. Since the Broglie wave
length is proportional to the inverse of the particle mass, heavy particles may have
very small localization length. This is the case of atoms inside a solid. For this
reason, the spread of the atomic wave function around the mean particle position is
typically neglected. However, recent theoretical and experimental studies reveal the
existence of physical conditions for which the previous approximation is violated.
They suggest that slightly bound protons and the hydrogen molecule behave as
quantum particles. In particular, we focus on the study of the phase transition of ice
of water and we analyse the so called VIII-X transition. The physical phenomena
concerns the modification of the atomic structure of the ice in the presence of an
external pressure. In particular, the VIII-X phase transition concerns the behaviour
of the protons. At low pressure, every protons of the H2O crystal remain close to
one oxygen atom. By increasing the pressure a phase transition is observed. At the
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critical pressure, the protons migrate to the middle of the O-O bound. This behaviour
is explained by assuming that the electrostatic potential between two oxygen atoms
at low pressure has a double well structure. Due to this potential profile the protons
are trapped inside one of the two minima of the potential. By increasing the pressure,
the two wells merge together and form a single central well. The equilibrium
position of the proton is thus shifted to the middle of the two atoms. Even if the
qualitative behaviour of the transition has been clarified, theoretical estimations of
the transition pressure are not in agreement with the experiments. Bronstein et al.
have shown that in order to obtain the experimental value of the transition pressure,
it is essential to include the quantum mechanical delocalization of the protons in
the numerical model [28]. Recent results [29] suggest that tunneling of protons
plays a essential role in this process. Classical simulations ignore the possibility to
overcome thin barriers by tunneling and tend to overestimate the transition pressure.
Quantum corrected model are thus essential for simulating this kind of phenomena.

In particular, in Ref. [29], ab initio calculations indicate that the shape of the
electrostatic potential around two oxygen atoms can be approximated by a simple
expression. The potential is fitted by a harmonic term plus a non harmonic correction
which is proportional to the macroscopic pressure applied to the sample.

Motivated by these results, we have applied our method to reproduce the
two-dimensional motion of a single particle in a non harmonic potential. In the
simulations we use the following double well potential

U(x, y) = − ωx

2
x2 + V4x

4 + ωy

2
y2 . (24)

We take the following values of the parameters ωx = 1, ωy = 1 V4 = 0.05. As
initial condition, we have considered a Gaussian beam localized around the left
minimum of the potential profile and initial momentum p = (0, 1). The results
of the simulations are shown in Fig. 1, where the panels refer to different times,
t = 1, 2, 3.5, 6. In our simulation, we have solved the system of Eqs. (19)–(22)
by choosing a cutoff on n1 and n2. More precisely, we evaluate the following
parameters: an1,n2 , χn1,n2 with 0 ≤ n1 ≤ 3, 0 ≤ n2 ≤ 3. We plot by solid blue
curves the contour of the solution. In order to follow the evolution of the particle,
we have represented the trajectory of the mean particle position by a solid light blue
line. In order to appreciate the difference between the classical and the quantum
corrected dynamics, we have depicted the classical trajectories obtained by solving
the Newton equation by red solid lines. Our simulations show the relevance of the
tunneling effect on the localization of the particle inside the two well structure.
We see that in the classical case the particle has not enough energy to overcome
the potential barrier. The classical trajectory is confined in the left well. Quantum
calculations show that the particle tends to bounce back and forth between the two
potential minima. This indicate, as expected, that there exists a range of pressure
in which, according to classical dynamics, the proton is trapped in a minima near
one of the oxygen atoms, while, according to quantum dynamics, the proton can be
found on the left or on the right well with similar probability.
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Fig. 1 Evolution of a initially localized Gaussian pulse inside the potential profile (24) (Coloured
lines represent the contour plot of U ). The panels refer to different times: upper-left t = 1 upper-
right t = 2 bottom-left t = 3.5 bottom-right t = 6. The contour plot of the solution is depicted
by blue lines, the trajectory of the centre of the wave function and the trajectory of the classical
motion are depicted by, respectively, light blue and red lines. Arrows depict the classical force field
(red arrows) and the Bohm force field (blue arrows)

By looking at the Bohm force we see some interesting features of the quantum
behaviour of the nearly localized particles. In Fig. 1 we have represented by red
arrows the classical force field obtained by the taking the gradient of the potential
given in Eq. (24). According to the Bohm description of quantum mechanics, the
quantum motion of a particle can be understood in terms of the evolution of a
fluid whose volume elements move along integral curves of the total force field
F = ∇(U + Q), where Q is the Bohm potential defined in Eq. (4). This point
of view provides a simple interpretation of the Bohm force field and can help to
visualize the particle motion. In our plots, the gradient of the Bohm potential is
represented by blue arrows. According to the Bohm framework every material point
is accelerated by two force fields, the classical force and the Bohm one. In particular,
the simulations show that the Bohm field is responsible of the spread of the particle
wave packed, which allows the particle to overcome the potential barrier.
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4 Conclusions

We have presented a quantum model for particles characterized by Gaussian wave
packets. The oscillations of the wave function around the mean particle positions
are represented by Hermite polynomials. The particle motion is described by a set
of time dependent parameters. Our approach shows an interesting connection with
the description of the particle motion provided by the Bohm theory. We have applied
our method to investigate the motion of a nearly localized particle in a 2D confining
structure.
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