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Abstract The present work aims at formulating hydrodynamic models for a proper
description of charge transport in graphene, which is extremely important for
growing technological development in CAD tools. The analysis is carried out in
two different steps. Initially a semi-classical hydrodynamic model is developed
starting from the moment system associated with Boltzmann equation and obtaining
the closure relations with the Maximum Entropy Principle. At this level quantum
effects are neglected. In the second step the model previously developed is extended
to include quantum effects by incorporating the first order quantum corrections.
To asses the validity of this model numerical simulations are under current
investigation.

1 Introduction

Graphene, a monolayer of sp2-bonded carbon atoms with zero band gap, is
not only the basis for graphite but also a new material with immense potential
in microelectronics for its exceptional electrical transport properties, like high
conductivity and high charge mobility. As a result of its promising properties, it
seems to be an ideal candidate to take over from silicon for the next generation of
faster and smaller electronic devices.

To deal with the basic kinetic transport equations remains too expensive for
real life applications. Nevertheless from transport equations it is possible to derive
simpler fluid dynamic equations for macroscopic quantities like particle, velocity,
or energy densities. They represent a good compromise between physical accuracy
and computational cost.

A standard approach to derive macroscopic models, like drift-diffusion, energy
transport or hydrodynamic ones, is the moments method. The present work aims at
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formulating hydrodynamic models of this type for a proper description of charge
transport in graphene, which is extremely important for growing technological
development in CAD tools.

The plan of the paper is as follows.
Section 2 focuses on the formulation of a semi-classical hydrodynamic model

based on the Maximum Entropy Principle (MEP) without taking into account
quantum effects. The model analyzed can be developed by taking into account fully
non linear closure relations [11], or its linearized version [2, 12].

To take into account quantum phenomena, in the second section a quantum
hydrodynamic model for charge transport in graphene is derived from a moment
expansion of the Wigner-Boltzmann equation and the needed closure relations are
obtained by adding quantum corrections based on the equilibrium Wigner function
to the semiclassical model formulated in [2, 11, 12] by exploiting the Maximum
Entropy Principle. The expression of the equilibrium Wigner function which takes
into account the energy band of graphene has been obtained by solving the
corresponding Bloch equation (see also [1, 17]). In other terms, the strategy adopted
for formulating these models combines quantum and semi-classical approaches as
shown in Fig. 1.

Quantum Transport Semiclassical
Transport

Wigner Equation Boltzmann
Equation

Quantum Hydro-
dynamic Models

Semi-classical
Hydrody-

namic Models

Quantum Cor-
rected Hydrody-
namic Models

Fig. 1 Schematic representation of the strategy adopted for developing Quantum Corrected
Hydrodynamic models
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2 A Semi-classical Hydrodynamic Model

The starting point for the derivation of semi-classical hydrodynamic models is the
semi-classical Boltzmann equation

∂f (r,k, t)

∂t
+ v · ∇rf (r,k, t) + q

h̄
∇rΦ(r) · ∇kf (r,k, t) = C[f ](r,k, t) (1)

where f (r,k, t) is the distribution of electrons in the conduction or valence band
(the dependence from the Dirac point is omitted), ∇r and ∇k are the gradients with
respect to the space variable r and wave vector respectively, q is the elementary
(positive) charge, h̄ is the reduced Planck’s constant, Φ is the electric potential
and v is the microscopic velocity which is related to the energy band by v(k) =
± 1

h̄
∇kE(k). The positive sign refers to the conductions band, the negative sign to

the valence one. C is the collision term representing the interactions of electrons
with acoustic (ac) phonons, longitudinal (LO) and transversal (TO) optical phonons
and K–phonons (for more details see [2, 11]).

Numerical solutions of Eq. (1) can be obtained, for example, via Direct Monte
Carlo Simulation (DSMC)[5, 22] or by finite difference schemes [10] or by discon-
tinuous Galerkin (DG) methods [5]. However, these simulations have been obtained
for simple cases such as pristine graphene under the effect of a constant external
electric field. With a view of more complex situations, like those represented by
a metal-oxide-semiconductor field-effect transistor (MOSFET) with a graphene
channel, it is better to benefit from simpler models like drift-diffusion, energy
transport or hydrodynamic ones. These directly provide balance equations for
macroscopic quantities like electron density, average velocity or current, average
energy, etc., and, therefore, are more suited as models for CAD tools.

The macroscopic quantities are related to the distribution function because they
represent average values of some functions of the wave vector k. For example, the
density n(r, t) is given by

n(r, t) = 2

(2π)2

∫
R2

f (r,k, t)d2k.

Similarly the average energy W(r, t) is given by the relation

n(r, t)W(r, t) = 2

(2π)2

∫
R2

f (r,k, t)E(k)d2k.

Generally speaking, given a weight function ψ(k), the corresponding macroscopic
quantity is the expectation value

M(r, t) = 2

(2π)2

∫
R2

ψ(k) f (r,k, t)d2k.
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The evolution equation for M(r, t) is deduced by multiplying Eq. (1) for ψ(k) and
by integrating with respect to k

∂M

∂t
+ ∇r ·

∫
R2

f
2ψ(k)

(2π)2 v(k)d2k − q

h̄
E ·

∫
R2

f ∇k
2ψ(k)

(2π)2 d2k

=
∫
R2

2ψ(k)

(2π)2
C[f ]d2k. (2)

Note that the moment equations depend only on the independent variables r, t . This
considerably reduces the numerical complexity.
The main issue related to any model based on balance equations deduced as moment
equations of type (2) is that there are more unknowns than introduced moments in
the evolution equations, and the so-called closure problem arises. This comes from
expressing the additional unknowns, that is the extra fluxes and production terms

∫
R2

f
2ψ(k)

(2π)2 v(k)d2k,

∫
R2

f∇k
2ψ(k)

(2π)2 d2k,

∫
R2

2ψ(k)

(2π)2 C[f ]d2k,

as functions of the basic moments.
A systematic way to get the needed closure relations is employing the Maximum

Entropy Principle (MEP). It is based on the information theory of Shannon and was
devised for application in statistical physics by Jaynes [8] (for a general review of
the application of MEP to semiconductors the interested reader is referred to [15]).
The central idea of this principle is to predict the distribution of the microstates,
which are the particle of the system, on the basis of the knowledge of some
macroscopic data. The latter information is specified in the form of some simple
moment constraints. Therefore the distribution obtained with MEP is the least biased
estimator from the knowledge of a finite number of expectation values.

Let us suppose that a certain number of moments MA(r, t), A = 1, 2, · · · , N ,
relative to the weight functions ψA(k), are known. According to MEP, the electron
distribution function is estimated with the distribution fMEP obtained by solving
the following constrained optimization problem: for fixed r and t ,

max
f∈F

S[f ] subject to the constraints:

0 < f < 1, (3)

MA = 2

(2π)2

∫
R2

ψA(k) f (r,k, t)d2k, A = 1, 2, · · · , N, (4)

where S[f ] is the entropy of the system, which in the semi-classical approximation
reads

S[f ] = −2
2kB

(2π)2

∫
R2

[f ln f + (1 − f ) ln (1 − f )] d2 k.
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Factor 2 is included to take into account the valley degeneracy. F is the space of the
function g(k) such that ψA(k)g(k) ∈ L1(R2) for A = 1, 2, · · · , N .

Here with L1(R2) we have denoted the usual Banach space of the summable
functions defined over R2.

To take into account bilateral constraints let us introduce the Lagrange multipliers
λA, A = 1, 2, · · · , N , and the Legendre transform of S

S′ = S +
∑
A

λA

(
MA − 2

(2 π)2

∫
R2

fψA(k) d2k

)
.

Let the variation of S′ with respect to f be zero, i.e.,

0 = δS′ = −2
2kB

(2π)2

∫
R2

[
ln f − ln (1 − f ) + 1

2 kB

∑
A

ψA(k)λA

]
δf d2 k.

Since δf is arbitrary, the quantity in the square brackets must be zero; we get

fMEP (r,k, t) = 1

1 + exp
[∑

A ψA(k)λA(r, t)
] ,

which also fulfills the unilateral constraints (3).
The multiplicative constant 1

2 kB
has been included into the multipliers for

simplicity.
To complete the optimization procedure, it is necessary to invert the relations (4)

and express the Lagrangian multipliers as functions of the basic variables. This can
generally be achieved only numerically or by some approximation, e.g. expanding
around the equilibrium state.

The above problem of inversion apart, once one gets fMEP , the needed closure
relations are obtained by evaluating the extra fluxes and production terms with
fMEP instead of f . At equilibrium the distribution of electrons, both in the
conduction and valence band, are given by the Fermi-Dirac distribution

fFD(r,k, t) = 1

1 + exp

(
E(k) − εF

kBTL

) , −∞ < E(k) < +∞, (5)

where εF is the Fermi energy, TL being the lattice temperature and kB the Boltzmann
constant.
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In this work we consider a 6-moment model obtained by choosing as weight
functions {1,E,v,Ev} to which the following average quantities in the conduction
bands (similar results hod for the valence band) correspond

n(r, t) = 2

(2π)2

∫
R2

f (r,k, t) dk density, (6)

n(r, t)W(r, t) = 2

(2π)2

∫
R2

f (r,k, t)E(k) dk energy density, (7)

n(r, t)V(r, t) = 2

(2π)2

∫
R2

f (r,k, t)v(k) dk linear momentum density, (8)

n(r, t)S(r, t) = 2

(2π)2

∫
R2

f (r,k, t)E(k)v(k) dk energy-flux density. (9)

The corresponding evolution equations, in the unipolar case, are given by

∂

∂t
n + ∇r (nV) = 0,

∂

∂t
(nW) + ∇r (nS) + q nE · V = nCW ,

∂

∂t
(nV) + ∇r

(
nF(0)

)
+ q nG(0) : E = nCV,

∂

∂t
(nS) + ∇r

(
nF(1)

)
+ q nG(1) : E = nCS.

Besides the average densities, velocities, energies and energy fluxes, additional
quantities appear1

nCV = 2

(2 π)2

∫
R2

v(k)C(k) d k,

nCW = 2

(2 π)2

∫
R2

E(k)C(k) d k, nCS = 2

(2 π)2

∫
R2

E(k)v(k)C(k) d k

n

(
F(0)

F(1)

)
= 2

(2 π)2

∫
R2

(
1

E(k)

)
v(k) ⊗ v(k)f (r,k, t) dk,

n

(
G(0)

G(1)

)
= 2

h̄ (2 π)2

∫
R2

f (r,k, t)∇k

(
v(k)

E(k)v(k)

)
dk,

that must be expressed as function of the basic variables n, V, W , S.

1The symbol ⊗ denotes the tensor product of vectors.
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Regarding the production terms, they are given by summing the contributions
arising from the different types of phonon scattering

CM = C
(ac)
M +

∑
s=LO,T O,K

C
(s)
M ,

with M = ρ,W,V,S.
The following expression of the distribution function deduced by MEP

fMEP (r,k, t) = 1

1 + exp(λ(r, t) + λw(r, t)E(k) + (λV(r, t) + E(k)λS(r, t)) · v(k))

(10)

has been used in the linearized form2

fMEP (r,k, t) ≈ 1

1 + eλ+λwE
− eλ+λwE

(1 + eλ+λw E)2
(λV + EλS) · v. (11)

Explicit closure relation has been obtained in [2] and [16] the crystal heating
effects have been also included. Comparisons with Direct Simulation Monte
Carlo [4–6, 13, 14, 22] have shown a good accuracy of the model. In the next
section the general guideline for getting quantum corrections to the semiclassical
hydryodynamic models will be delineated.

3 A 6-Moment Model with Quantum Corrections

To take into account quantum phenomena, the semiclassical Boltzmann equation is
not enough to describe charge transport. As a starting point for deriving the quantum
corrections to the semiclassical model, we consider the Wigner equation. At zero
order we recover the semiclassical models developed in [2, 11, 12, 16] by exploiting
the Maximum Entropy Principle (MEP). By following the idea developed in [20]
for silicon, h̄2 order corrections are obtained from the scaling of high field and
collision dominated regime. In the limit of high collisional frequency of the quantum
correction to the collision operator, this is equivalent to determine the h̄2 order
corrections with the equilibrium Wigner function, similarly to what done in [7].
The problem to find out the equilibrium Wigner function in the case of an arbitrary
energy band has been discussed in [21] where the corresponding Bloch equation is
written and solved for silicon in the Kane dispersion relation approximation. Here
the same approach is used for graphene.

2In the following the explicit dependence on r,k, t is omitted for the sake of simplifying the
notation.
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One important issue is related to the conical shape of the energy band around
the Dirac points of the first Brillouin zone. This fact makes singular some term of
the expansion if a sharp zero gap between the conduction and the valence band
is assumed. However, see for example [3], from a theoretical point of view it is
possible the presence, although very small, of a gap which is related to the first and
second neighbour hopping energy. Therefore, around the Dirac points we employ a
regularized energy band. Explicit formulas are obtained and the resulting model is
given by a set of dispersive PDEs.

Of course it is also possible to try to numerically solve directly the Wigner
equation but major computational difficulties arise and at the present time it seems
far from being a standard feasible tool for the design of electron devices. The
interested reader can see the monograph [19] and the paper [5, 18, 22] for recent
advances of the algorithms in stochastic approaches.

3.1 Wigner Equation

In the proximity of the Dirac points K (K ′), which are the vertices of the Brillouin
zone, by choosing in the k-space a reference frame centered in the considered Dirac
point, the energy dispersion relation can be considered approximately linear with
respect to the modulus of the wave-vector k. As already mentioned above it is not
clear if a small gap between the conduction and the valence band exists. Therefore
we adopt the following regularization

E(k) = ±vF

√
a2 + p2,

where p = h̄|k|, vF � 1 × 106 cm/s is the Fermi velocity, h̄ is the reduced Planck’s
constant. The sign “+” refers to the conduction band while the sign “−” refers to
the valence band. a is a small parameter related to the nearest-neighbour hopping
energy [3]. To derive a transport equation, we introduce the single electron Wigner
quasi-distribution w(x, p, t), depending on the position x, momentum p and time
t . Evolution is governed by the Wigner-Poisson system for w and the electrostatic
potential Φ

∂w(x, p, t)

∂t
+ S[E]w(x, p, t) − qθ [E]w(x, p, t) = C[w],

∇ · (ε∇Φ) = −q(ND − n),

where q is the elementary (positive) charge, ND is donor carrier concentration, C[w]
is the collision term representing the electron-phonon scattering while S[E] and θ [E]
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represent the pseudo-differential operators

S[E]w(x, p, t) = i

h̄(2π)2

∫
R

2
x′×R2

ν

[ E(p + h̄

2
ν, t)+

− E(p − h̄

2
ν, t)]w(x′, p, t)e−i(x′−x)·νdx′dν,

θ [ E]w(x, p, t) = i

h̄(2π)2

∫
R

2
p′×R2

η

[Φ(x + h̄

2
η, t)+

− Φ(x − h̄

2
η, t)]w(x, p′, t)ei(p′−p)·ηdp′dη.

In the semiclassical limit h̄ → 0, the Wigner equation reduces to Boltzmann one.

3.2 Equilibrium Wigner Function

If we denote the density matrix at equilibrium by ρeq(r, s, β), it satisfies the Bloch
equation

∂ ρeq(r, s, β)

∂β
= −1

2
[Hrρeq(r, s, β) + Hsρeq(r, s, β)].

Applying the Fourier transform to the Bloch equation, we get

∂weq(x,p, β)

∂β
= −1

2

{
1

(2π)2

∫
R

2
x′×R2

ν

E

(
p + h̄

2
ν

)
+

+ E

(
p − h̄

2
ν

)
weq(x′,p, β)e−i(x′−x)·νdx′ dν−

− q

(2π)2

∫
R

2
p′×R2

η

Φ

(
x + h̄

2
η

)
+ Φ

(
x − h̄

2
η

)
weq(x,p′, β)ei(p′−p)·ηdp′ dη

}
,

where weq(x,p, β) is the equilibrium Wigner function. We looked for solution of
the type

weq(x,p, β) = w(0)
eq (x,p, β) + h̄2w(1)

eq (x,p, β).
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After some algebra we get the equilibrium Wigner function

weq(x, p, β) = exp(qΦ(x)β) exp(−βE(p))

{
1 + qβ2h̄2

8

∂2E(p)

∂pi∂pj

∂2Φ(x)

∂xi∂xj

+

+β3h̄2

24

[
q2 ∂2 E(p)

∂pi∂pj

∂Φ(x)

∂xi

∂Φ(x)

∂xj

− q
∂2Φ(x)

∂xi∂xj

vivj

]}
+ o(h̄2).

3.3 Structure of the Model

Supposing the expansion

w = w(0) + h̄2w(1) + O(h̄4)

holds and by proceeding formally, as h̄ −→ 0 the Wigner equation gives
the semiclassical Boltzmann equation. Therefore we identify w(0)(x, p, t) with
the semiclassical distribution which has been approximated in [11, 12] with the
maximum entropy principle estimator w(0)(x, p, t) ≈ fMEP (x, p, t).

At first order in h̄2 one finds

∂w(1)(x, p, t)

∂t
+ v · ∇xw(1)(x, p, t) − 1

24

∂3E(p)

∂pi∂pj ∂pk

∂3w(0)(x, p, t)

∂xi∂xj∂xk

+

+ q∇xΦ(x)∇pw(1)(x, p, t) − q

24

∂3Φ(x)

∂xi∂xj∂xk

∂3w(0)(x, p, t)

∂pi∂pj ∂pk

= C[w(1)]

Hereafter, suppose w(1) = w
(1)
eq .

As an example, consider a 6-Moment Model based on the following moments

2

(2πh̄)2

∫
R2

w(x, p, t)dp = n(x, t) density,

2

(2πh̄)2

∫
R2

w(x, p, t)E(p)dp = n(x, t)W energy density,

2

(2πh̄)2

∫
R2

w(x, p, t)v(p)dp = n(x, t)V linear momentum density,

2

(2πh̄)2

∫
R2

w(x, p, t)E(p)v(p)dp = n(x, t)S energy-flux density.
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The corresponding evolution equations are given by3

∂

∂t
n(x, t) + ∂

∂xi

⎛
⎝n(x, t)Vi − h̄2

24

∂2
(
n(x, t)T

(0)
ijk

)

∂xj ∂xk

⎞
⎠ = 0, (12)

∂

∂t
(n(x, t)W) + ∂

∂xi

⎛
⎝n(x, t)Si − h̄2

24

∂2
(
n(x, t)T

(1)
ijk

)

∂xj ∂xk

⎞
⎠ −

−q
∂

∂xi
Φ(x) · n(x, t)Vi + qh̄2

24

∂3Φ(x)

∂xi∂xj ∂xk
n(x, t)T

(0)
ijk = CW [w(0)], (13)

∂

∂t
(n(x, t)Vi) + ∂

∂xj

⎛
⎝n(x, t)F

(0)
ij − h̄2

24

∂2
(
n(x, t)H

(0)
ijkl

)

∂xk∂xl

⎞
⎠ −

−q
∂

∂xj
Φ(x) · n(x, t)G

(0)
ij + qh̄2

24

∂3Φ(x)

∂xj ∂xk∂xl
n(x, t)L

(0)
ijkl = CVi

[w(0)], (14)

∂

∂t
(n(x, t)Si) + ∂

∂xj

⎛
⎝n(x, t)F

(1)
ij − h̄2

24

∂2
(
n(x, t)H

(1)
ijkl

)

∂xk∂xl

⎞
⎠ −

−q
∂

∂xj
Φ(x) · n(x, t)Vj · n(x, t)G

(1)
ij + qh̄2

24

∂3Φ(x)

∂xj ∂xk∂xl
n(x, t)L

(1)
ijkl = CSi

[w(0)] (15)

where Vi and Si are the significant components of macroscopic velocity V and
energy-flux S respectively.
Besides the average densities, velocities, energies and energy fluxes, additional
quantities appear

n(x, t)

(
T

(0)
ijk

T
(1)
ijk

)
= 2

(2 π h̄)2

∫
R2

(
1

E(p)

)
w(0)(x, p, t)

∂3E(p)

∂pi∂pj∂pk

dp,

n(x, t)

(
H

(0)
ijkl

H
(1)
ijkl

)
= 2

(2 π h̄)2

∫
R2

(
1

E(p)

)
w(0)(x, p, t)

∂3E(p)

∂pi∂pj ∂pk

vl dp,

n(x, t)

(
G

(0)
ij

G
(1)
ij

)
= 2

(2 π h̄)2

∫
R2

(
1

E(p)

)
w(x, p, t)

∂2E(p)

∂pi ∂pj

dp,

n(x, t)

(
L

(0)
ijkl

L
(1)
ijkl

)
= 2

(2 π h̄)2

∫
R2

(
1

E(p)

)
w(0)(x, p, t)

∂4E(p)

∂pi ∂pj ∂pk∂pl

dp,

3Einstein’s summation convention is used.
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n(x, t)

(
F

(0)
ij

F
(1)
ij

)
= 2

(2 π h̄)2

∫
R2

(
1

E(p)

)
w(x, p, t)vi vj dp.

that must be expressed as function of the basic variables n, W , V, S. Regarding
the production terms, they are given by the sum of contributions arising from the
different types of phonon scattering. Explicit closure relations have been obtained
and numerical simulations are under current investigation.

4 Conclusions and Future Work

Initially a semi-classical hydrodynamic model for charge transport in graphene
has been presented. To include quantum effects, the proposed model has been
extended by incorporating the first quantum corrections. Therefore in the last section
an example of quantum hydrodynamic model for charge transport in graphene
has been formulated. It is composed of the semiclassical model presented in
[2, 11, 12] augmented with quantum corrections at h̄2 order deduced by exploiting
the equilibrium Wigner function obtained by solving the Bloch equation in the case
of graphene. As h̄ 
→ 0, the proposed model of course reduces to the semiclassical
one which turned out to be accurate enough when comparison with DSMC results
have been performed [11, 12]. Several strategies can be found in the literature for
devising quantum hydrodynamic models (the interested reader is refereed to [9]
for a comprehensive review) but usually strong approximations on the collision
terms or on the energy bands are introduced and the semiclassical limit leads to
semiclassical models whose soundness is questionable. To asses the validity of the
proposed model numerical simulations are under current investigation and they will
be presented in a forthcoming article.
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