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Abstract Thermal effects are playing a crucial role for the design of electron
nanoscale devices. The present contribution deals with charge and phonon transport
under an applied external electric field in a suspended monolayer of graphene. A
major question is represented by the phonon-phonon collision operator involving in
general a three particle scattering mechanism. To model the phonon-phonon interac-
tions a relaxation time approximation is employed. This requires the introduction of
a local equilibrium phonon temperature whose definition is still a matter of debate
for a general non equilibrium situation. Here, two different approaches are presented
and discussed.

1 Introduction

Graphene is one of the most promising materials for future nano-electronics because
of its unique electrical and thermal properties. It has been increasingly investigated
from different points of view. A correct mathematical description of transport
phenomena in graphene is fundamental and there have been a lot of attempts
and approaches, starting from the well-established results for other traditional
semiconductor materials and devices. In particular, kinetic and macroscopic models
have been applied, see for example [1–5]. Also stochastic approaches, as the Direct
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Simulation Monte Carlo (DSMC), are consolidated methods for numerically solving
transport equations in graphene. However, many of them do not properly take into
account the Pauli exclusion principle [6], that in graphene is no longer negligible for
the high values of the electron densities. This problem has been overtaken by a new
DSMC procedure which correctly includes the Pauli principle. Cross-validations
with deterministic solutions, e.g. the Discontinuous Galerkin-based ones, confirm
that this approach is completely satisfactory [7]. The new DSMC approach allows
us to describe electron transport in graphene also in cases when graphene is on
several types of substrates [8, 9].

Together with the correct inclusion of the Pauli exclusion principle into the
charge transport simulations, to have a satisfactory and complete description of
transport phenomena in graphene, it is necessary an adequate treatment of the
phonon-phonon collision operators. Its complete form involves at least a three
particle kernel and this makes the numerics rather complicated. A way to overcome
the problem is to replace the original collision operators with a simpler relaxation
time approximation. This requires the introduction of a local phonon temperature
whose definition is still a matter of debate for a general non equilibrium situation.
In this paper two different approaches for defining the local equilbrium phonon
temperature are introduced and discussed on the basis of the results reported in [5]
and [10, 11].

2 Kinetic Model

Graphene is made of carbon atoms arranged in a honeycomb hexagonal lattice. The
most part of electrons are located in the wave vector space around the Dirac points
K and K ′, which are the vertices of the hexagonal primitive cell of the reciprocal
lattice. At the Dirac points, the valence and conduction band touch each other
and, therefore, graphene is a semimetal. In the proximity of the Dirac points the
energy bands for electrons can be approximated by a conical band structure and
the electrons behave as massless Dirac fermions [12]. We consider Fermi levels
high enough to neglect the dynamics of the electrons in the valence band, that
we consider fully occupied. This situation is similar to an n-type doping for the
traditional semiconductors. Around the equivalent Dirac points the band energy ε�

is approximated by a linear relation

ε� = h̄ vF |k − k�| , (1)

and the group velocity is given by

v� = 1

h̄
∇k ε� .

Here k is the electron wave-vector, vF is the (constant) Fermi velocity, h̄ the Planck
constant divided by 2 π , and k� is the position of the Dirac point � = K,K ′.
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In a semiclassical kinetic setting questa virgola la toglierei, for the electrons in the
conduction band, the charge transport in graphene is described by two Boltzmann
equations, for the K and K ′ valleys.

∂f�(t,x,k)

∂t
+ v� · ∇xf�(t,x,k) − e

h̄
E · ∇kf�(t,x,k) = df�

dt
(t,x,k)

∣
∣
∣
∣
e−ph

(2)

where f�(t,x,k) represents the distribution function of charge carriers in the valley
� (K or K ′), at position x, time t , and with wave-vector k. We denote by ∇x and
∇k the gradients with respect to the position and the wave-vector, respectively. e is
the elementary (positive) charge and E is the externally applied electric field.

All the scattering events between electrons and phonons are described by the
collision term, at the right hand side of (2). The scattering of electrons can be
with longitudinal or transversal, acoustic and optical phonons, LA, TA, LO and TO,
respectively. Both the acoustic and optical phonon scatterings are intra-valley and
intra-band. Eventually, one has to take into account also the scattering of electrons
with K phonons which is inter-valley and, therefore, pushes electrons from a valley
to the nearby one. The general form of the collision term can be written as

df�

dt
(t,x,k)

∣
∣
∣
∣
e−ph

=
∑

�′

[∫

B
S�′,�(k

′,k) f�′(t,x,k′) (1 − f�(t,x,k)) dk′

−
∫

B
S�,�′(k,k′) f�(t,x,k)

(

1 − f�′(t,x,k′)
)

dk′
]

,

where the total transition rate S�′,�(k′,k) is given by the sum of the contributions of
the several types of scatterings [5]:

S�′,�(k
′,k)=

∑

μ

∣
∣
∣G

(μ)

�′,�(k
′,k)

∣
∣
∣

2[(
g−

μ + 1
)

δ
(

ε�(k) − ε�′(k′) + h̄ ωμ

)

+g+
μ δ

(

ε�(k) − ε�′(k′) − h̄ ωμ

)]

. (3)

The index μ labels the μth phonon species. The
∣
∣
∣G

(μ)

�′,�(k
′,k)

∣
∣
∣

2
’s are the electron-

phonon coupling matrix elements, which describe the interaction mechanism by
which an electron goes, from the state of wave-vector k′ belonging to the valley
�′ to the state of wave-vector k belonging to the valley �, through the emission or
absorption of a μth phonon. The symbol δ denotes the Dirac distribution, ωμ is the
μth phonon frequency, gμ(q) is the phonon distribution for the μ-type phonons with
q the phonon wave-vector belonging to the Brillouin zone B. In (3), g±

μ = gμ

(

q±)

,
where q± = ± (

k′ − k
)

, stemming from the momentum conservation. The K

and K ′ valleys can be treated as equivalent and in the following we consider the
population of one single valley.
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Similarly, the dynamics of the phonon populations is described by solving the
following Boltzmann equations for the phonon distributions gμ(t,x,q)

∂gop

∂t
= Cop, op = LO, T O,K, (4)

∂gac

∂t
+ cac · ∇xgac = Cac, ac = LA, T A, (5)

cac = ∇q ωac is the acoustic phonon group velocity, h̄ωac being the phonon energy
and q the phonon wave vector.

The group velocity of the optical phonons disappears because of the Einstein
approximation h̄ωop ≈ const, which can be used for them, while, regarding the
acoustic phonons, the Debye approximation can be used: ωac = cac|q|, with cac the
sound speed of the sth acoustic branch.

In principle also the Z phonons should be included although they do not interact
with electrons but they contribute to the total crystal temperature. In the present
article the Z phonons will be neglected for the sake of simplicity.

The phonon collision term splits in two parts

Cμ = Cp−e
μ + Cp−p

μ , μ = LA, T A,LO, T O,K. (6)

C
p−e
μ represents the phonon-electron collision operator, while C

p−p
μ describes the

phonon-phonon interactions, that are a very difficult problem to deal with from a
numerical point of view. For this reason they are usually treated by means of a
Bhatnagar-Gross-Krook (BGK) approximation [13]

Cp−p
μ = −gμ − gLE

μ

τμ

.

This describes the relaxation of each phonon branch towards an equilibrium
condition, that is represented by a local equilibrium distribution gLE

μ , whose
temperature, we refer to as the local temperature TL, is the same for each phonon
population.

We assume that the local equilibrium phonon distributions are given by Bose-
Einstein distributions

gLE
μ =

[

eh̄ωμ/kBTL − 1
]−1

. (7)

The functions τμ = τμ(Tμ) are the temperature dependent phonon relaxation
times. We remark that each relaxation time is supposed to depend only on the
temperature Tμ of the same branch.

If we know the phonon distributions gμ’s, we can calculate the average phonon
energy densities

Wμ = 1

(2π)2

∫

B
h̄ωμ gμ dq, (8)



Charge and Phonon Transport in Suspended Monolayer Graphene 119

and the temperatures Tμ of each phonon branch are determined from

∫

B
h̄ωμgμ(q)dq =

∫

B
h̄ωμ

[

eh̄ωμ/kBTμ − 1
]−1

dq. (9)

From the general properties of the phonon collision operators, the relation

∑

μ

Wμ − WLE
μ

τμ

= 0 (10)

holds, where WLE
μ is calculated by means of (7). TL is obtained by numerically

solving the non linear relation arising from (10).
It is possible to prove that (10) admits a unique solution. For further details we

refer to [11] where the previous approach has been adopted to devise a simulation
scheme for the electron-phonon transport in graphene.

3 Alternative Form of the Local Temperature

The concept of non equilibrium temperature is a subtle topic and still a matter of
debate [14, 15]. In the previous section we have introduced the local temperature
by the relation (10) which stems from the properties of the phonon-phonon
collision operator. The rational is that the collision operator pushes the system,
in a characteristic time related to the relaxation times, toward an equilibrium state
with a single global temperature. However, in statistical mechanics one of the most
reasonable and adopted way to generalise the concept of temperature in a non
equilibrium state is relating TL to the Lagrange multipliers associated to the energy
constraint.

For phonon transport in graphene the approach based on the Lagrange multipliers
has been followed in [5] (to which the interested reader is referred to for the details)
within the application of the Maximum Entropy Principle (MEP) (see [16] for a
review of MEP in semiconductors). Let us recall here the main steps.

The temperature of each phonon branch is introduced as in the previous section
while the local temperature is defined as follows [13, 17]. The temperature T ∗

L is the
common temperature we must assign to each species in order to have

∑

μ

Wμ =
∑

μ

WLE
μ . (11)

In other words, T ∗
L is the common temperature each phonon species should have if

they would be in local thermodynamic equilibrium among them in order to preserve
the total energy.
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Fig. 1 Relaxation times versus the local temperature normalized with respect to the room one T0

The new and the old definitions of local temperature are equivalent if all the
relaxation times are equal, that is

τμ = τ, μ = LO, T O,LA, T A,K, (12)

but this assumption is not compatible with experimental data, as clearly indicated
by Fig. 1. As a consequence, the two definitions of temperature do not coincide.

T ∗
L is related only to the energy of the system and does not take into account

any scattering mechanism. If T ∗
L is assumed as the correct definition of local

temperature, then the relation (10) must be considered as a constraint on the
relaxation times.

In the model formulated in [5] for charge and phonon transport in graphene,
a certain number of moments of electron and phonon distributions are used as
fundamental variables, and the extra fluxes and the production terms, which appear
in the corresponding balance equations, are additional unknown quantities and
require constitutive relations in terms of the fundamental variables. By resorting
to MEP, the electron and phonon occupation numbers can be estimated by the
maximum entropy distributions fMEP and gμ,MEP , μ=LO , T O , K , LA, T A,
which solve the following maximization problem:

max
f,gμ

S[f, gμ],

under the constraint that a certain number of moments, the fundamental variables,
are known.

S[f, gμ] is the total entropy which depends on the electron and phonon distribu-
tion functions f , gμ and whose expression is reported in [5].
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If in particular for the phonons we choose the following moments

Wop = 1

(2π)2

∫

B
h̄ωopgop dq,

Pop = 1

(2π)2

∫

R2
h̄qgop dq, op = LO, T O,K, (13)

Wac = 1

(2π)2

∫

R2
h̄ωacgac dq,

Qac = 1

(2π)2

∫

R2
h̄ωaccacgac dq, ac = LA, T A, (14)

and, solving the above constrained maximization problem, we get

gop,MEP = 1

exp
(

λWopεop + h̄q · λPop

)

− 1
, op = LO, T O,K,

gac,MEP = 1

exp
(

λWac εac + εac cac · λQac

) − 1
, ac = LA, T A,

where the λ’s are the Lagrange multipliers arising from the presence of the
constraints.

In order to manage the problem of inverting the constraints, we linearize the
occupation numbers around their isotropic part, obtaining

gop,MEP ≈ 1

e
λWop εop − 1

[

1 − eλWop εop

e
λWop εop − 1

h̄q · λPop

]

, op = LO, T O,K, (15)

gac,MEP ≈ 1

eλWac εac − 1

[

1 − eλWac εac

eλWac εac − 1
εac cac · λQac

]

, ac = LA, T A. (16)

By substituting (15)–(16) into the constraints (13)–(14) and by solving them with
respect to the Lagrange multipliers, one finds

λWop = 1

εop

ln
(

1 + yεop

Wη

)

, η = LO, T O,K, (17)

λWac =
(

4πyζ(3)

h̄2c2
ac

) 1
3

W
− 1

3
ac , ac = LA, T A (18)

λPop
= − A2ε2

op

4h̄2A1

y

Wop(Wop + Ayεop)
Pop, op = LO, T O,K, (19)

λQac
= −2

3

(
4πyζ(3)

h̄2c8
ac

W−4
ac

) 1
3

Qac, ac = LA, T A, (20)
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where y = 1
(2π)2 , ζ(·) is the zeta function, A = 8

√
3

9
π2

a2
0
, A1 = 20

√
3

729
π4

a4
0
, with

a0 = 0.142 nm the nearest neighbor distance between the atoms in graphene.
At equilibrium the phonon temperatures are related to the corresponding

Lagrange multipliers by means of

Tμ = 1

kBλWμ

, μ = LO, T O,K,LA, T A.

If we assume that such relations hold even out of equilibrium, the definition of T ∗
L

can be given in terms of the Lagrangian multipliers as follows.

Definition 3.1 The local temperature of a system of two or more branches of
phonons is T ∗

L := 1
kBλWL

, where λWL is the common Lagrange multiplier the

occupation numbers of the branches, taken into account, would have if they were
in the local thermodynamic equilibrium corresponding to their total energy density,
that is

W(λWL) :=
∑

μ

Wμ(λWL) =
∑

μ

Wμ(λWμ),

where the sum is extended to the considered branches and the functions Wμ(λWμ)

are found from expressions (17)–(18).

In other words, we require that T ∗
L is such that by evaluating all the average phonon

energy densities with the Lagrange multiplier given by 1/kBT ∗
L and by summing

up, one gets the value of the total average energy density.
A comparison with experiments is not easy because it is not clear what exactly is

measured by the instruments. The comparison between TL and T ∗
L is still under

investigation by the authors. The numerical results will be the argument of a
forthcoming article.
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