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Abstract We present our use of analytical mean-field approaches in investigating
how the interplay between graph topology and excitable dynamics produce spatio-
temporal patterns. We first detail the derivation of mean-field equations for a
few simple model situations, mainly 3-state discrete-time excitable dynamics with
an absolute or a relative excitation threshold. Comparison with direct numerical
simulation shows that their solution satisfactorily predicts the steady-state excitation
density. In contrast, they often fail to capture more complex dynamical features,
however we argue that the analysis of this failure is in itself insightful, by pinpoint-
ing the key role of mechanisms neglected in the mean-field approach. Moreover,
we show how second-order mean-field approaches, in which a topological object
(e.g. a cycle or a hub) is considered as embedded in a mean-field surrounding, allow
us to go beyond the spatial homogenization currently associated with plain mean-
field calculations. The confrontation between these refined analytical predictions
and simulation quantitatively evidences the specific contribution of this topological
object to the dynamics.
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1 Introduction

The original mean-field approach has been introduced in statistical physics for
the analysis of ferromagnetism [28]. Its insight is to approximately describe the
effect of specific couplings between a given atom and its neighbors (actually
all reduced to their spin) as the influence of their average magnetization, acting
as an homogeneous external magnetic field (the mean field). It has lead to a
general class of methods, involving similar ‘mean-field’ ansatzes [19, 20]. In the
context of dynamics on graphs, it has for example been applied to self-organized
criticality [8], reaction-diffusion processes on networks for one-component [7] and
multi-component systems [27], voter model [26], or excitable dynamics [6, 17, 18].
A general discussion of the accuracy of such methods can be found in [14] and the
monograph [2]. The forest-fire model in [15] is the first attempt to take into account
graph topology in a mean-field approach, via shortcut density.

In all dynamic models where nodes of the graph can be in a finite number of
states, the general spirit of mean-field approaches is a space-implicit description
in terms of the probability (in physical terms, the density) of each state. Such
approaches provide an average view over space, initial conditions and stochasticity
of the dynamics, based on ignoring spatial correlations and inhomogeneities. The
validity of mean-field approximations thus requires weak correlations and statistical
homogeneity. While standard mean-field approaches in continuous systems are
shown to be valid above a critical dimension dc, the situation is different on a graph,
where mean-field failure is presumed to originate in the inherent heterogeneities
of its topology and the way they influence the dynamics. In the context of
processes on graphs, mean-field equations are usually not derived bottom-up from
a microscopic stochastic description, but rather proposed straightforwardly in view
of the qualitative features of the local dynamics, e.g. how many excited neighbors
are required to excite a node in case of excitable dynamics [3, 4, 24, 25].

We will present in Sect. 2 the derivation of mean-field equations for two instances
of discrete-time excitable dynamics on graphs. In both models, a node i of the graph
can be either susceptible S, excited E, or refractory R. The dynamics is defined
as a 3-state cellular automaton S → E → R → S according to the following
rules: an excited node at time t becomes refractory at time t + 1, a refractory node
at time t becomes susceptible at time t + 1 with a recovery probability p (else
it remains refractory), and a susceptible node becomes excited according to the
state at time t of the neighboring nodes on the graph. For the absolute threshold
model, a susceptible node at time t becomes excited at time t + 1 if it has at least
q excited neighbors (we will mostly consider the simplest case q = 1), while for
the relative threshold model, a susceptible node becomes excited at time t + 1 if at
least a fraction κ of its neighbors are excited at time t . Additionally, spontaneous
excitations can occur at susceptible nodes with probability f per time step. When
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p < 1 (stochastic recovery) and/or f > 0 (spontaneous excitations), the dynamics is
stochastic. An additional level of stochasticity comes from the randomness of initial
conditions. What thus makes sense is to describe average behaviors. These two
models are reminiscent of SIS and SIR models [4, 16], however no simple mapping
can be drawn (excitation propagation is a stochastic step in SIS and SIR, involving
a transmission probability), and their behaviors differ. As for the underlying graphs,
we actually consider ensembles of graphs defined by current models, from Erdős-
Rényi random graphs [10] to Barabási-Albert scale-free graphs [1] to Molloy-Reed
configuration model that samples graphs with any prescribed degree distribution, to
hierarchical or modular complex networks [5].

To evaluate the validity of a mean-field approach and its limits, we have
compared in Sect. 3 the analytical mean-field predictions and the numerical imple-
mentation of our two models of excitable dynamics on graphs. Failure of a
mean-field approach means that either correlations between the nodes, or local
network features, or both, matter. We will discuss the insights than can be gained
from the analysis of this failure. Section 4 is devoted to the analytical strategies
we have devised to go beyond basic mean-field approaches and take into account
some specific topological features of the graph, in order to gain some general
understanding of the interplay between graph topology and its excitable dynamics.

2 Mean-field Equations for Excitable Dynamics on Graphs

2.1 Principle of Mean-field Approximation(s)

Denoting xi(t) the state of node i at discrete time t , the standard mean-field
approach for describing the average graph dynamics actually comprises two dif-
ferent approximations, whatever the considered model of dynamics. The first one
is a spatial de-correlation of the node states when computing statistical averages:
〈xi(t)xj (t)〉 ≈ 〈xi(t)〉〈xj (t)〉. The second one is a spatial homogenization, con-
sidering that 〈xi(t)〉 is independent of the node i. These two approximations will
allow us to derive autonomous, deterministic and space-implicit equations for the
densities cα(t) = Prob[xi(t) = α], with here α = E, S,R.

2.2 Absolute Threshold q = 1 for Excitation Propagation

Mean-field dynamics is derived by identifying the probability that a given neighbor
is not excited with the average and node-independent quantity 1 − cE(t). A
decorrelation approximation lies in considering an average quantity, while its node-
independence amounts to an homogenization. Another homogenization arises in
replacing the number of direct neighbors of a node (that is, its degree) with
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the average degree 〈k〉. This latter approximation is applied in particular to the
probability that a node has at least an excited neighbor at time t , which is the
condition for its excitation by neighbors in the absolute-threshold model. This
probability is accordingly estimated as 1 − B(0, 〈k〉, cE(t)), where the binomial
distribution can be explicitly expressed B(0, 〈k〉, cE(t)) = (1 − cE(t))〈k〉. This
probability has then to be multiplied by (1 − f ) (no overriding spontaneous
excitation) and by the homogenized probability cS(t) that the node is susceptible.
Overall, mean-field evolution equations for the state densities are:

⎧
⎨

⎩

cE(t + 1) = cS(t)
[
f + (1 − f )[1 − (1 − cE(t))〈k〉]]

cR(t + 1) = cE(t) + (1 − p)cR(t)

cS(t + 1) = 1 − cE(t + 1) − cR(t + 1)

(2.1)

In the regimes where cE(t) � 1, the term 1 − (1 − cE(t))〈k〉 simply reduces to
〈k〉 cE(t). Note that the average degree 〈k〉 is usually not an integer: while the
probabilistic reasoning makes sense only for integral 〈k〉, the resulting formula can
be interpolated and extended to any real value of 〈k〉.

Fixed points of (2.1), i.e. cα(t + 1) = cα(t) = c∗
α for α = E, S,R, correspond

to steady states. For all mean-field fixed points, we have the equations: p c∗
R = c∗

E

and p(1−c∗
S) = c∗

E(1+p), whatever the excitation probability model and the value
of f . For f = 0, there is a trivial (unstable) fixed point (co

E = 0, co
R = 0, co

S = 1)

whatever the value of p. Still for f = 0, there is also a non trivial fixed point:

c∗
E = p (〈k〉 − 1)

〈k〉(p + 1)
, c∗

S = 1

〈k〉 , c∗
R = 〈k〉 − 1

〈k〉(p + 1)
(2.2)

provided the consistency condition 〈k〉c∗
E � 1 holds. Else we have to solve

numerically the non-linear equation:

c∗
E = [

1 − c∗
E(1 + 1/p)

] [
f + (1 − f )[1 − (1 − c∗

E)〈k〉]
]

(2.3)

2.3 Relative Threshold κ for Excitation Propagation

In case of a relative excitation threshold κ , the most basic mean-field approximation
states that a susceptible node of degree k gets excited if its average number of excited
neighbors, kcE , is larger than kκ , that is if cE ≥ κ whatever the node degree k. This
leads to the simple evolution equations, where H is the Heaviside function:

⎧
⎨

⎩

cE(t + 1) = cS(t) [f + (1 − f )H [cE(t) − κ]]
cR(t + 1) = cE(t) + (1 − p)cR(t)

cS(t + 1) = 1 − cE(t + 1) − cR(t + 1)

(2.4)
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A refined set of equations can be obtained using combinatoric probabilistic argu-
ments, and considering for all nodes the same homogenized degree, equal to the
average degree 〈k〉. We define n̄κ as the smallest integer larger or equal to κ〈k〉,
that is, n̄κ = 	κ 〈k〉
. Excitation propagation at a susceptible node then requires
that it has at least n̄κ excited neighbors, whatever its actual degree. The mean-field
evolution equations for a relative excitation threshold κ then coincide with those
obtained for an absolute excitable threshold q = n̄κ . The factor [1 − (1 − cE(t))〈k〉]
in the above mean-field evolution Eqs. (2.1) is now to be replaced with:

	〈k〉
−n̄κ∑

j=0

( 	〈k〉

n̄κ + j

)

cE(t)n̄κ+j (1 − cE(t))	〈k〉
−n̄κ−j (2.5)

Note that 〈k〉 is usually not an integer, and has to be replaced by 	〈k〉
 for the
binomial coefficient to make sense. For κ → 0, we have n̄κ = 1, and the mean-
field equations for an absolute threshold q = 1 are satisfactorily recovered. Overall,
we obtain the coupled equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cE(t + 1) = f cS(t)

+(1−f )cS(t)
∑	〈k〉
−n̄κ

j=0

( 	〈k〉

n̄κ + j

)

cE(t)n̄κ+j (1−cE(t))	〈k〉
−n̄κ−j

cR(t + 1) = cE(t) + (1 − p)cR(t)

cS(t + 1) = 1 − cE(t + 1) − cR(t + 1)

(2.6)

When cE(t) � 1, the term for j = 0 dominates and the above sum can be replaced
in the numerical implementation by the proxy:

( 	〈k〉

n̄κ

)

cE(t)n̄κ (2.7)

For f = 0, the evolution described by the simple Eqs. (2.4) has a non trivial
stable fixed point:

c∗
E = p

2p + 1
, c∗

S = p

2p + 1
, c∗

R = 1

2p + 1
(2.8)

provided κ < c∗
E , i.e. κ < p/(2p + 1). When κ > p/(2p + 1), the stable fixed

point becomes: c∗
E = 0, c∗

S = 1, c∗
R = 0. When the evolution is described by the

refined mean-field equations (2.6) with the simplification (2.7), the fixed points in
the absence of spontaneous excitations (f = 0) correspond to the solutions of:

c∗
E =

( 	〈k〉

n̄κ

)

(c∗
E)n̄κ (1 − c∗

E(1 + 1/p)) (2.9)
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satisfying he condition 0 ≤ c∗
E ≤ p/(p + 1), so that c∗

R ≥ 0 and c∗
S ≥ 0. This

yields a trivial fixed point (co
E = 0, co

R = 0, co
S = 1) whatever the value of p. This

fixed point is stable for n̄κ ≥ 2 (the stability analysis is easily done by reducing the
evolution to two coupled equations, e.g. for cE(t) and cR(t), and determining for
which values of κ the eigenvalues of the Jacobian matrix have a modulus strictly
lower than 1). For n̄κ = 1, i.e. for κ < 1/〈k〉, the stable fixed point is associated to
the nontrivial solution of (2.9).

For f > 0, we have to numerically solve the fixed point equations. However, at
small f , a simple approximation is to identify the average excitation density with
co
E = f (instead of co

E = 0) at large values of κ , while the non trivial value c∗
E

at low values of κ is considered to be unaffected by a small rate of spontaneous
excitations. The good accuracy of these various analytical predictions for the steady-
state excitation density is presented below n Sect. 3 and associated figures.

2.4 Evolution for Degree Classes

In the basic mean-field equations (2.1) and (2.6), graph topology is involved only
through the average degree 〈k〉. It is possible to better take into account a broad
degree distribution by considering degree classes, that is, subsets of nodes of a given
degree. We denote cE(k, t) the average excitation density of nodes of degree k (and
similarly cS(k, t) and cR(k, t), for susceptible and refractory states). In the mean-
field approximation for an excitable dynamics with absolute threshold q = 1, a
node in the class of degree k has k cE(t) excited neighbors and a probability equal
to 1 − (1 − cE(t)]k to have at least one excited neighbor: some node heterogeneity
is now included in the mean-field dynamics. Evolution equations become:

⎧
⎨

⎩

cE(k, t + 1) = cS(k, t)
[
f + (1 − f ) [1 − (1 − cE(t)]k]

cR(k, t + 1) = ckE(k, t) + (1 − p)cR(k, t)

cS(k, t + 1) = 1 − cE(k, t + 1) − cR(k, t + 1)

(2.10)

The overall excitation density is related to these partial densities by the relation∑
k ρ(k) cE(k, t) = cE(t) directly involving the degree distribution ρ(k). However,

several mean-field approximations are still present: at the dynamic level, we still
ignore correlations between the states of the nodes, and at the network level,
we neglect degree-degree correlations and consider the degree-average state for
neighboring nodes.

In case of excitable dynamics with a relative threshold κ , we introduce nκ(k) as
the smallest integer larger or equal to κk. The equation for cE(k, t) is the same as
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for an absolute threshold q = nκ(k):

cE(k, t + 1) = f cS(k, t) + (1 − f ) cS(k, t)

k∑

j=nκ (k)

(
k

j

)

cE(t)j (1 − cE(t))k−j

(2.11)

In a finite graph (hence having a bounded maximal degree), equations for an
absolute threshold q = 1 are recovered in the limit κ → 0, when all nκ(k) reduce
to 1.

A refinement is to take into account degree-degree correlations (see e.g. [4, 23]
for application to SIS epidemic model and [27] for application to diffusion-
annihilation process). An analysis of mean-field validity in the case where degree-
degree correlations cannot be ignored is presented in [14], suggesting that the mean
first-neighbor degree d is a good predictor of the validity (the more reliable the larger
d); d reduces to the average degree 〈k〉 in uncorrelated networks. Degree-degree
correlations are described by the conditional probability ρ(k′|k) that the degree of a
neighbor of a node of degree k is k′. For an excitable model with absolute threshold
q = 1, the probability for a node of degree k to have at least an excited neighbor
becomes 1 − (1 −∑

k′ ρ(k′|k) cE(k′, t))k , replacing 1 − (1 − cE(t))k in (2.10). The
mean excitation field of a node,

∑
k′ ρ(k′|k) cE(k′, t) ≡ cE(nn(k), t), now depends

on the node degree k. This modification of cE(t) into a degree-dependent local field
cE(nn(k), t) also holds in (2.11) for the model with a relative excitation threshold κ .

2.5 Pair-correlation Equations

Identifying the probability that two neighboring nodes are simultaneously excited
with [cE(t)]2 is often too crude. This approximation can be circumvented by
introducing a quantity cE,E(t), describing the probability that two neighbors are
simultaneously excited, and similar quantities for the other pair correlations [9, 22].
The evolution of state densities cα(t) can be written in a less approximate way
by involving these additional variables. For an excitable model with an absolute
threshold q = 1, it comes:

cE(t + 1) = f cS(t) + (1 − f )cS(t)

[

1 −
(

1 − cE,S(t)

cS(t)

)〈k〉]
(2.12)

cR(t + 1) = cE(t) + (1 − p)cR(t) (2.13)

cS(t + 1) = 1 − cE(t + 1) − cR(t + 1) (2.14)
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While spatial homogenization remains, the mean-field decorrelation approximation
is relaxed and displaced at a higher order. The approximation is now involved in a
closure relation of the form 〈xxyy〉 = 〈xx〉〈yy〉 required to get an autonomous set
of equations of evolution for the pair-correlations, as follows:

cE,S(t + 1) = fp cS,R(t) + (1 − f )p
cS,R(t)cE,S(t)

cS(t)

+(1 − f )f cS,S(t)

(

1 − cE,S(t)

cS(t)

)〈k〉−1

(2.15)

+(1 − f )2cS,S(t)

(

1 − cE,S(t)

cS(t)

)〈k〉−1
[

1 −
(

1 − cE,S(t)

cS(t)

)〈k〉−1
]

This evolution equation for c(E, S, t) contains four terms: the probability that in a
pair of neighbors (S, R), the first one gets spontaneously excited and the second one
recovers; the probability that in a pair of neighbors (S, S), the first one gets excited
due to its excited neighbors and the second one recovers; the probability that in a
pair of neighbors (S, S), the first one gets spontaneously excited and the second one
escapes both spontaneous and neighbor-induced excitation and remains susceptible;
the probability that in a pair of neighbors (S, S), the first one gets excited due to
its excited neighbors and the second one escapes both spontaneous and neighbor-
induced excitation and remains susceptible. Similar equations can be written for the
other joint densities cE,R and cS,R:

cE,R(t + 1) = cS,R(t)

[

(1 − p)f + (1 − p)(1 − f )

[

1 −
(

1 − cE,S(t)

cS(t)

)〈k〉]]

+cE,S(t)

[

(f + (1 − f )

[

1 −
(

1 − cE,S(t)

cS(t)

)〈k〉]]

(2.16)

cS,R(t + 1) = cS,R(t) (1 − p)(1 − f )

(

1 − cE,S(t)

cS(t)

)〈k〉
+ (1 − p)p cR,R(t)

+ p cE,R(t) + (1 − f ) cE,S(t)

(

1 − cE,S(t)

cS(t)

)〈k〉
(2.17)

supplemented with the equations cS(t + 1) = 1 − cE(t + 1) − cR(t + 1),
cS,S(t + 1) = cS(t + 1) − cS,E(t + 1) − cS,R(t + 1) and similar relationships
for cE,E(t + 1) and cR,R(t + 1). Such pair-correlation equations have been used
for instance to investigate co-activation and pinpoint its topological determinants,
through a comparison of analytical predictions and numerical simulations [17].
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3 Successes and Failures of Mean-field Approaches:
Numerical Checks

3.1 A Remarkable Power to Predict Excitation Density
in Random Graphs

An implicit step in the practical use of mean-field approaches is to identify
empirical space averages that can be measured in experiments and simulation,
with the statistical averages cα(t) involved in the equations (here α = E, S,R).
The validity of this identification directly follows from the applicability of the
law of large numbers, which has the same conditions of validity as the mean-
field approximations, namely it also requires weak correlations and statistical
homogeneity.

To evaluate the validity of mean-field approximations, we implemented numeri-
cally the two models of excitable dynamics on graph described in the introduction.
They are specially suitable for a numerical analysis, since they actually take the form
of three-state cellular automata. The initial condition is generally taken at random,
with equal fractions of susceptible, excited and refractory nodes spanning the graph.
All the spatio-temporal correlations and network heterogeneities are by construction
taken into account in the simulation. We compared the steady-state mean-field
excitation density c∗

E predicted analytically and its numerical value, observed in the
simulation after discarding initial transients and performing a suitable time average.

As seen on Fig. 1, for excitable dynamics on a highly connected random graph
(Erdős-Rényi graph of average degree 10), the simulated time-average excitation
density lies around the mean-field prediction, with some fluctuations of relatively
low amplitude. The goodness of the basic mean-field approach on highly connected
random graphs relies (1) on the spatial homogeneity of these graphs, (2) the fact
that they are locally similar to a tree, and (3) the large enough number of neighbors.
Consequently it is respectively valid (1) to identify the node degrees with the
average degree, (2) to consider that there is no correlations between the states
of node neighbors as if the topology around each node were star-like, and (3) to
identify the excitation probability of the neighbors of a given node with the average
excitation density. When the graph connectivity decreases, the prediction quality
decreases, as seen on Fig. 2.

Considering scale-free graphs yields a prediction quality similar to that observed
for low-connectivity random graph, as seen on Fig. 3. However, a marked difference
is the range and nature of fluctuations, which now exhibit spikes. This latter feature
is presumably due to the spatial heterogeneity of the network, where nodes of both
small and high degree are present, and the fact that high-degree nodes may nucleate
coherent waves of activation (see below, Sect. 4.3 and [17]).

In the case of a relative excitation threshold, Fig. 4 shows the good agreement
of both the mean-field prediction (2.8) and the stationary solution of mean-field
equations (2.6) and (2.7) with the numerical steady-state. Both correctly predicts
the exchange of stability between the non-trivial fixed point and the value co

E = f



188 M.-T. Hütt and A. Lesne

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

time

ex
ci
ta
tio
n
de
ns
ity

simulation
moving average
Eq. (2.1)
Eq. (2.2)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

recovery probability

ex
ci
ta
tio
n
de
ns
ity

simulation

Eq. (2.1)
Eq. (2.2)

Fig. 1 Mean-field excitation density and its simulated counterpart on a highly connected random
graph, for an absolute excitation threshold q = 1. Simulation has been performed with a
spontaneous excitation rate f = 0.01, on a random graph (Erdős-Rényi) with 100 nodes and 500
links. The upper panel displays a simulated trajectory for a recovery probability p = 0.3 (highly
fluctuating black line), its moving average (light grey dashes), the approximate fixed point given
by (2.2) and the steady-state solution of mean-field equations (2.1). The lower panel compares the
excitation density obtained in the simulation, the fixed point (2.2) and the steady-state solution
of (2.1) for varying values of the recovery probability p. Error bars on simulation points have been
obtained from the last 250 time steps of a 500 time-step simulation starting from random initial
conditions

corresponding to the extinction of excitation propagation. We have shown in [11]
that a sustained activity (corresponding to the non trivial steady state) occurs up to
a value κm that can be roughly estimated from the graph topology as the maximal
degree kmax of the graph, in agreement with the upper bound 1/〈k〉 (larger that
1/kmax) predicted here using mean-field analysis. The observed lower bound c∗

E can
be explained as a fluctuation effect: the actual number of excited neighbors of a node
of degree k can be higher than kc∗

E , which accommodates excitation propagation for
relative threshold values higher than κ = c∗

E .
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Fig. 2 Mean-field excitation density and its simulated counterpart on a low-connectivity random
graph, for an absolute excitation threshold q = 1. Same as Fig. 1 now on a random graph (Erdős-
Rényi) with 100 nodes and 200 links

3.2 Insightful Failures

Numerical simulations, Fig. 3, show that basic mean-field equations fail to describe
the full complexity of excitable dynamics on graphs with a very broad degree
distribution. They miss self-organized formation of coherent patterns of excitation,
responsible of the spikes apparent on the time evolution of the overall excitation
density. In showing the limits of considering the same average degree for all nodes,
they indirectly demonstrate the central role of hubs in the dynamics of scale-free
graphs. Actually, a sounder approximation is to consider that hubs act as organizing
centers of the excitable dynamics, see Sect. 4.3. An another numerical observation
is the fact that plain mean-field description accounts for the excitation density but
not at all for the correlation between co-activation patterns and graph topology [21].
Finally, mean-field equations provide an average view of the dynamics: they do not
reflect dynamical features of individual trajectories.

Mean-field analysis alone is not reliable enough to grasp understanding of
dynamics on complex networks. In general there is no internal way to delineate
which results are correct and which are by far different from the actual behavior.
On the other hand, numerical simulation alone is often as complex and intricate as
an experiment on the real system, and it may prove difficult to dissect and identify
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Fig. 3 Mean-field excitation density and its simulated counterpart on a scale-free graph for an
absolute excitable threshold q = 1. Same as Fig. 2 now on a a scale-free graph (Barabási-Albert)
with 100 nodes and 197 links (corresponding to m = 2 links being added per node during
preferential attachment)
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Fig. 4 Mean-field excitation density and its simulated counterpart on a random graph, in case of
relative excitation threshold. Simulation has been performed with a recovery probability p = 0.2,
a spontaneous excitation rate f = 0.01, on a random graph (Erdős-Rényi) with 100 nodes and 200
links. The time-averaged excitation density obtained in the simulation (black dots) is compared for
various values of the relative threshold κ with the fixed point (2.8) and the steady-state solution of
mean-field equations (2.6) and (2.7). Error bars on simulation points have been obtained from the
last 250 time steps of a 500 time-step simulation starting from random initial conditions. The first
step (blue line, Eq. (2.8)) is located at κ = p/(2p + 1) and the second step (red continuous and
dashed lines, Eqs. (2.6) and (2.7)) is at the higher value κ = 1/〈k〉, indicated by the gray dashed
vertical line
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the local features and basic mechanisms responsible of the observed behavior. We
claim that a reliable understanding can be gained by the conjunction of mean-field
analysis and numerical simulation.

4 Second-Order Mean-field Approach for Topological
Devices

4.1 Principle

Mean-field approaches described above all involved a spatial homogenization over
the nodes (or subsets of nodes) of the graph. This is obviously a critical gap for
investigating the interplay between graph topology and excitable dynamics. To
circumvent this gap, we devised a refined analytical approach involving a more
detailed account of the topology. The contribution of a specific topological motif
(for instance a triangle, a cycle, a shell of nodes at the same distance from a given
hub, a module) to the overall dynamical behavior can be computed by considering
it as a device embedded in a surrounding described by mean-field densities. This
approach amounts to use a second-order mean-field approximation, in which the
(local) probability that neighbors of the motif are excited is given by the (global)
steady-state mean-field excitation density c∗

E .
This general idea of mean-field for embedded devices is specially fruitful when

considering the contribution of cycles (i.e. closed paths) to the overall dynamical
behavior. Indeed, cycles are a feature not accounted in standard nor even in refined
(pair-correlations or degree-classes) mean-field approaches, while they play a key
role in excitable dynamics by contributing to excitation amplification and sustained
activity [11–13]. In the case of an absolute excitation threshold q = 1, we detail
below in Sect. 4.2 how to compute the average success rate of a cycle, by considering
that it is embedded in a mean-field environment. We also sketch below in Sect. 4.3
the application of this methodology to study co-activation, by using a shell model
around a hub [17].

4.2 Excitation of a Cycle

In a cycle of length L (i.e. a closed path of L nodes), a cycling excitation vanishes as
soon as it meets a refractory node. Only long cycles can persistently store excitation:
cycles should be long enough so that excitation always faces a susceptible substrate.
Quantitatively, the probability πL that a site R as recovered after L−2 steps, in time
to accommodate the cycling excitation, should be close enough to 1. The simple
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computation (which ignores the correlations with the surroundings) yields πL =∑L−3
j=0 (1 − p)jp = 1 − (1 − p)L−2. Failure of re-excitation thus occurs on average

after a time

τbreak(p, L) = 1

(1 − πL)
= 1

(1 − p)L−2
(4.1)

The quantity τ(L, p) = L − 1 + τbreak(p, L) provides an estimate of the average
runtime of the cycle. Using a similar reasoning, the probability that there is exactly
N re-excited nodes in a row in the cycle is πN

L (1−πL). The time after which failure
of re-excitation occurs thus follows exactly a geometric distribution with parameter
1−πL. Accordingly, the corresponding variance, which coincides with the variance
of the cycle runtime, is equal to πL/(1 − πL)2. In particular, πL = p for a triangle
(L = 3), and the runtime is predicted to be equal to 2 + 1/(1 − p) with a standard
deviation

√
p/(1 − p)2. The good accuracy of this simple analysis is shown on

Fig. 5.
A more detailed analysis shows that a cycle that is initially all susceptible

and receives an excitation does not trigger a cycling excitation. It should also
contain a refractory node, otherwise two waves of excitation will propagate in
opposite direction and ultimately annihilate, which does not correspond to a cycling
excitation. The probability that excitation of a cycle sets in is thus difficult to
compute, as it essentially depends on the initial condition of the cycle. This difficulty
has been circumvented above by computing the number of re-excitations Nreex ,
defined as the number of excitations following in a row the completion of a cycle.
Nreex = 1 if the cycle excitation only closes onto itself, Nreex = L + 1 if a second
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Fig. 5 Cycling excitation in a triangle. Considering the runtime of an excitation in a triangle, with
initial condition (E, S,R), the figure compares the analytical prediction of this runtime τ(L, p) =
L − 1 + τbreak(L, p) for L = 3, with τbreak(L, p) given in (4.1), continuous red line, plus/minus
the corresponding standard deviation

√
p/(1 − p)2, dashed red lines, with the simulation result

(black dots). Errors bars on the numerical estimates have been computed with 100 runs
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full turn is completed. Nreex is a number that is not a multiple of L in case of
incomplete turns.

We can provide a refined estimate of the probability of continued excitation of a
cycle, i.e. re-excitation of its nodes, using the second-order mean-field methodology
described above. For simplicity we consider the case with no spontaneous excita-
tions (f = 0). To get re-excited nodes, we have to consider that they do not fail to
recover in time, and once recovered, that they do not receive a perturbing external
excitations. Considering all the possible timings j between 1 and L − 2 steps for
the recovery, and the subsequent absence of external inputs during the L − 2 − j

remaining steps, we obtain the probability γ (L, p) of a re-excitation:

γ (L, p) =
L−2∑

j=1

p(1 − p)j−1[(1 − c∗
E)〈k〉−2]L−2−j

= p × [(1 − c∗
E)〈k〉−2]L−2 − (1 − p)L−2

(1 − c∗
E)〈k〉−2 − (1 − p)

(4.2)

Note that for a triangle, L = 3, the sum (correctly) contains a single term, yielding
γ (L, p) = p: there is no way to perturb a cycling excitation along a triangle
ESR except by a lack of recovery, the effect of which is analyzed in Fig. 5. In
this mean-field approach, γ (L, p)N is the cumulative probability to have at least
N re-excitations in a row, while the probability to have exactly N re-excitations in
a row is (1 − γ (L, p))γ (L, p)N . The average number of re-excitations following
cycle completion becomes:

〈Nreex〉 = γ (L, p)

1 − γ (L, p)
= τbreak − 1 (4.3)

In particular, (4.1) is recovered for a triangle, with L = 3 and γ (L, p) = p. Under
the assumption that re-excitations dominate cycle activity, i.e. the cycle completion
is followed by several turns of cycling re-excitation, this mean-field computation
also gives the probability that at a given time a L-cycle is active, equal to γ (L, p)L.
The computation (4.2) involves several mean-field approximations: the probability
of excitation of a cycle neighbor is taken equal to the steady-state mean-field
excitation density c∗

E , the correlations between the states of the cycle neighbors
are ignored, and the degree of cycle nodes are replaced by the average degree 〈k〉.
This latter approximation could be eliminated by considering explicitly the degrees
(k1, . . . , kL) of the cycle nodes. The probability of N re-excitations following cycle
completion is then given by:

P(N,L, p) =
N∏

α=1

⎡

⎣
L−2∑

j=1

p(1 − p)j−1[(1 − c∗
E)kα−2]L−2−j

⎤

⎦ (4.4)
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where the label α of the degree should be understood modulo L, starting from the
node having received the excitation. If another excitation enters the cycle at some
susceptible node before the cycling excitation arrives, a phase slip is observed [12].

4.3 Shell Model of Hub-induced Co-activation

In the case of an excitable dynamics with an absolute threshold q = 1, the
qualitative analysis of the dynamics suggests that hubs act as sources of excitation,
spreading any single excitation they have received from their numerous neighbors.
To quantitatively check whether this phenomenon actually dominates the dynamics,
we considered the graph as a set of nested shells centered on the strongest hub [17].
Nodes belonging to the same shell are by definition at the same distance to the hub
(Fig. 6). We first estimate the probability of excitation of the hub, of degree khub,
by identifying it with the mean-field excitation density c∗

E for an average degree
〈k〉 = khub, given in (2.2):

cE(hub) = c∗
E(khub) (4.5)

Comparison of this prediction and numerical simulation for hubs of various degrees
is shown on Fig. 7, as a function of their degree khub.

Fig. 6 Shell model for analytical estimation of co-activation. When the graph has a broad degree
distribution, the excitable dynamics with an absolute threshold q = 1 is presumably dominated
by the presence of hubs. We thus propose to represent the graph as a nested set of shells (bold
red) centered around the strongest hub. Co-activation is then approximated as the synchronous
activation of nodes in the same shell by an excitation propagating from the hub
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Fig. 7 Prediction of the steady-state excitation density of a node as a function of its degree. The
figure compares the prediction (4.5), red line, and the simulation result for various nodes (scatter
plot, black dots). The simulation has been performed for the excitable model with an absolute
threshold q = 1, with p = 0.8 and f = 0.001, on a scale-free graph (Barabási-Albert) with
100 nodes and 985 links (corresponding to m = 5 links being added per node during preferential
attachment)

Once the hub gets excited, nodes of the same shell will be reached at the same
time by the excitation wave propagating from the hub. Accordingly, they will get
excited jointly provided they are both in a susceptible state when the excitation
wave arrives. The probability of such an event for a given pair of nodes, presumed
to be the main contribution to the probability of their co-activation, can be computed
in the mean-field approximation. We have to express that each node of the two paths
from the hub to the considered nodes is susceptible when the excitation wave arrives.
When ignoring pair correlations, the co-activation probability of any given pair of
nodes in shell n can be written:

Qn = c∗
hub(E)[c∗(S)]2n (4.6)

The comparison of this analytical prediction with the co-activation probability
observed in the simulation has shown that excitations are more strongly coordinated
in space and time than accounted in the derivation of (4.6). Dynamic correlations
between neighbors should also be taken into account, for instance using the pair-
correlation mean-field equations detailed above in Sect. 2.5, see [17] for details.



196 M.-T. Hütt and A. Lesne

5 Conclusion

Mean-field approaches provide an analytical way to get some insights on excitable
dynamics on graphs. They involve a closure relation, namely they ignore some
correlations, and some kind of spatial homogenization, namely they also ignore
most spatial structures and heterogeneities. Sometimes, a self-consistent validity
check is possible. However, we claim that the most interesting insights come
from either the agreement or the discrepancies between mean-field predictions and
what is observed in numerical experiments. In this regard, analytical approaches
are used as null models, as a way of hypothesis testing, to check the validity of
their assumptions by comparing their predictions with direct simulation. Mean-
field approaches presented above thus offer a sequence of nested null models,
increasingly taking into account graph topological features.

Our previous and present investigations have shown that the validity and accuracy
of mean-field approaches strongly depend on the observable. They are in general
satisfactory for describing excitation density, but of more limited validity for
investigating complex features like co-activation or sustained activity. Mean-field
failure reveals the presence and key role of collective patterns of activity. When these
collective patterns are rooted in some topological motifs, we propose a methodology
based on mean-field-embedded devices, that is, the detailed description of the
activity of a subset of nodes, given that their surrounding is described by mean-
field densities. Beyond the examples detailed above for excitable dynamics with
an absolute threshold q = 1, we also successfully implemented this mean-
field methodology in the case of a relative excitation threshold, for instance to
compute the contribution of multiple excitations meeting at a node and increasing
the probability that this node gets excited and propagates the excitation [11].
This original methodology circumvents the limitation coming from the spatial
homogenization involved in more basic mean-field approaches, and provides an
analytical access to the interplay between dynamics and the underlying network
topology. Joining these analytical results and simulation at the same time validates
our analytical understanding and guides the interpretation of the detailed numerical
results.

Mean-field approaches can be applied to a variety of other dynamical processes
on graphs. What we have described using the formalism of graphs and excitable
dynamics can be extended to numerous other settings, for instance reaction-
diffusion on a structured substrate, in surface chemistry, or colonization-extinction
processes on a heterogeneous landscape, in ecology.
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