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Abstract We establish a sharp lower bound on the first non-trivial eigenvalue
of the Laplacian on a metric graph equipped with natural (i.e., continuity and
Kirchhoff) vertex conditions in terms of the diameter and the total length of the
graph. This extends a result of, and resolves an open problem from, [J. B. Kennedy,
P. Kurasov, G. Malenová and D. Mugnolo, Ann. Henri Poincaré 17 (2016), 2439–
2473, Section 7.2], and also complements an analogous lower bound for the
corresponding eigenvalue of the combinatorial Laplacian on a discrete graph. We
also give a family of corresponding lower bounds for the higher eigenvalues under
the assumption that the total length of the graph is sufficiently large compared with
its diameter. These inequalities are sharp in the case of trees.
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1 Introduction

Let G be a connected, compact metric graph with a finite number of edges and
let −� denote the Laplacian operator on L2(G) with natural (i.e., continuity and
Kirchhoff) vertex conditions.1 Since −� can be shown by standard means to be a

1We recall that these conditions are also called standard, Neumann–Kirchhoff or even just
Neumann conditions in the literature.
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self-adjoint operator with compact resolvent, one obtains the existence of a discrete
sequence of eigenvalues of this operator, which we think of as eigenvalues of the
quantum graph itself, having the form

0 = μ1(G) < μ2(G) ≤ μ3(G) ≤ . . . → ∞; (1.1)

the corresponding eigenfunctions may be chosen to form an orthonormal basis of
L2(G). We refer to the monographs [12, 30] and the seminal review article [20] as
well as Sect. 2 for more details.

It is a major preoccupation of spectral geometry to investigate how the sequence
of eigenvalues (1.1) of a differential operator such as the Laplacian depends on the
structure, be it total size, shape, degree of connectivity etc., of the underlying object
on which it is defined. For operators on domains and manifolds, this goes back at
least to conjectures of Saint Venant and Lord Rayleigh in the mid-to-late nineteenth
century (see [33]; we refer also to [21, 22] for more modern overviews of the field).
In the case of quantum graphs, that is, metric graphs with a differential operator
defined on them, the first work in this direction appeared about 30 years ago [32],
where it was proved that the first non-trivial eigenvalue μ2(G) of the Laplacian with
natural conditions on a graph whose total length, i.e., the sum of all its edge lengths,
is L > 0 satisfies

μ2(G) ≥ π2

L2 , (1.2)

the right-hand side corresponding to the first non-trivial eigenvalue on an interval
of the same total length L as G. After a lull in the 1990s and early 2000s, in
the last few years there seems to have been an explosion of interest in the topic,
as witnessed by the long list of works establishing bounds on some or all of the
eigenvalues (1.1), for example in terms of the total length, diameter, number of
edges or vertices, edge connectivity,. . . of the graph, or establishing properties
of extremising graphs realising the bounds, or developing tools with which the
eigenvalues can be manipulated, or else considering similar problems for related
nonlinear operators. We refer to [1–4, 6, 8, 10, 11, 16, 18, 24–27, 34–36] and mention
in particular the generalisation of (1.2) to the higher eigenvalues [18]

μk(G) ≥ π2(k − 1)2

L2
, (1.3)

with equality if and only if G is an equilateral k-star, a graph consisting of k edges
of equal length L/k, all joined together at exactly one common vertex.

The goal of the present contribution is to give lower a bound on μk(G) in terms
of the total length L ∈ (0,∞) of the graph G and its diameter

D := diam(G) := sup{dist(x, y) : x, y ∈ G} ∈ (0, L],
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where the distance is with respect to the canonical (Euclidean) metric in G, i.e., the
shortest Euclidean path within G connecting the points x and y, and the supremum
is in fact a maximum since G is assumed to be compact.

For k = 2, this problem was first studied in [24, Section 7.2], where a non-trivial
but non-sharp lower bound for μ2 was given, and the question of obtaining the best
possible bound was left open (see Remark 7.3(a) there). Here, by using some more
advanced tools developed recently in [10] (which we call surgery principles), we
can give a complete answer: our main theorem is as follows.

Theorem 1.1 Assume that G is a connected, compact metric graph with a finite
number of edges of total length L > 0 and diameter diam(G) = D ∈ (0, L). Then
μ2(G) is larger than the square ω2 of the smallest positive solution ω > 0 of the
transcendental equation

cos

(
ωD

2

)
= ω(L − D)

2
sin

(
ωD

2

)
; (1.4)

the number ω2 satisfies the two-sided bound

1

LD
< ω2 <

12

LD
. (1.5)

Equality is never attained on any fixed graph, but there is a sequence of graphs Dn

each of length L and diameter D such that μ2(Dn) → ω2 as n → ∞.

To describe our result for the higher eigenvalues μk , k ≥ 3, we first recall that
the (first) Betti number β = β(G) of the graph G is defined to be the number of
independent cycles of G; equivalently, if G has E edges and V vertices, then it is
given by β = E − V + 1. In particular, we have β = 0 if and only if G is a tree. We
will require that L be “large” compared with D in the sense that the quantity

γ (L,D, k, β) :=
{

L
k−β

− D
2 if k > β,

L
k

− D
2 otherwise,

(1.6)

will be assumed to be positive.

Theorem 1.2 Assume that G is a connected, compact metric graph with a finite
number of edges of total length L > 0 and diameter diam(G) = D ∈ (0, L), and
that the quantity γ = γ (L,D, k, β) defined by (1.6) is strictly positive. Further
assume that no loop2 in G is longer than D. Then μk(G) is larger than the square
ω2

k,β of the smallest positive solution ω = ωk,β > 0 of the transcendental equation

cos

(
ωD

2

)
= ωγ sin

(
ωD

2

)
; (1.7)

2By a loop we mean an edge which starts and ends at the same vertex, possibly after the suppression
of vertices of degree two. A precise definition is given in [13, Definition 3.1].



216 J. B. Kennedy

the number ω2
k,β satisfies the two-sided bound

2

Dγ + D2

2

≤ ω2 ≤ 2

Dγ − D2

6

. (1.8)

There is a sequence of tree graphs Tn each of length L and diameter D such that
μk(Tn) → ω2

k,0 as n → ∞.

While Theorem 1.2 is essentially optimal for trees, we expect that improvements
may be possible if β ≥ 1. We give some remarks to this effect in Sect. 5.

To describe concrete sequences Dn and Tn of optimisers, and at the same time to
explain the meaning of (1.4) and (1.7), we first need to introduce a particular class
of graphs, which will also play a role in the proofs.

Definition 1.3 Fix suitable numbers n ∈ N, n ≥ 2, and 0 < D ≤ L. We denote by

Sn = S(L,D, n)

the unique star graph having n + 1 edges, total length L and total diameter D, such
that there is one distinguished edge e0 of length �0 = (nD − L)/(n − 1) and n

identical edges of length �1 = (L−D)/(n− 1) each, all joined at a common vertex
(see Fig. 1).

Of interest will be the smallest eigenvalue

λ1(Sn)

of the Laplacian with a Dirichlet (zero) condition at the degree-one vertex v0 at the
end of e0 and natural conditions at all other vertices (see Sect. 2 for more details on
our notation). Observe that, for fixed L and D, as n → ∞ the length �0 of the edge
e0 to D, and the other edges contract to a point: in the limit, we have an interval
of length D with a kind of point mass of size L − D at one endpoint. Henceforth,
whenever we speak of stars, we shall always mean stars of this form.

The link to Theorem 1.1 is that the graphs Sn with length L/2 and diameter D/2
are the “building blocks” for a sequence of limiting domains Dn. More precisely,
we can form Dn by gluing together two copies of Sn at their respective Dirichlet
vertices (the corresponding domain, a symmetric star dumbbell in the language of

e0 e0v0 v0

Fig. 1 The stars S7 (left) and S11 (right), for given L and D. The white circles at v0 indicate
Dirichlet vertex conditions
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[24, Section 7.2], is pictured in Fig. 3 in Sect. 3); we then have μ2(Dn) = λ1(Sn)

and each copy of Sn corresponds to a nodal domain of the eigenfunction of μ2(Dn)

(see Sect. 3 for more details). Similarly, the domains Tn can be formed by taking
k copies of Sn (each now with length L/k and diameter D/2) and joining them at
their common Dirichlet vertex; then μk(Tn) = λ1(Sn). As n → ∞, the Tn converge
to an equilateral k-star with diameter D and a point mass of size γ at each vertex
of degree one, thus recalling the equilateral k-stars which were the optimisers in the
inequality (1.3).

The next proposition summarises the properties of these stars Sn, and in
particular provides a rigorous justification of the formulae (1.4) and (1.7); it also
implies the bounds on ω2 given in (1.5) in Theorem 1.1, and on ω2

k,β in (1.8) in
Theorem 1.2 (where Sn is chosen to have diameter D/2 and length L/(k − β) if
k > β or L/k otherwise).

Proposition 1.4 Suppose L > 0 and D ∈ (0, L] are given and, for n ≥ 2, Sn is
the star graph described in Definition 1.3 having length L and diameter D. Denote
by λ1(Sn) the first eigenvalue of the Laplacian on Sn with a Dirichlet condition at
the degree one vertex v0 of the edge e0 and natural conditions at all other vertices.
Then

(1) the sequence (λ1(Sn))n≥1 is strictly decreasing in n, and as n → ∞, the
eigenvalue λ1(Sn) converges from above to the square ω2 of the smallest
positive solution ω > 0 of the transcendental equation

cos(ωD) = ω(L − D) sin(ωD); (1.9)

(2) the number ω2 from (1) is the smallest (strictly) positive eigenvalue of the
problem

−u′′(x) = ω2u(x) in (0,D),

u(0) = 0,

u′′(D) + 2

L − D
u′(D) = 0;

(1.10)

(3) for fixed L, the number ω2 from (1) is a strictly decreasing function of D ∈
(0, L];

(4) the number ω2 from (1) satisfies the bounds

4

LD
<

4

LD − D2

2

≤ ω2 ≤ 48

3LD − 2D2 <
48

LD
.

The condition in (1.10), which is usually called a generalised Wentzell-type
boundary condition, reflects the concentration of mass at one endpoint of the star
Sn as n → ∞. (The term Wentzell boundary condition is usually used to describe
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the situation where the differential operator, in this case the Laplacian, itself appears
in the boundary condition. We refer to [5, 31] for more information in the case of
the Laplacian on domains.)

Remark 1.5

(a) The stars Sn are not the only building blocks we could use to construct suitable
Dn and Tn: in principle, we simply need a sequence of domains converging
in an appropriate sense to an interval of given diameter, with a suitable point
mass at one end described by the Wentzell condition in (1.10). These could, for
example, be suitably chosen stowers (see [8, Example 1.5]) with one long edge
e0 and short loops in place of short pendant edges. We will use stars as they are
easier to handle in our context.

(b) In [24, Section 7.2], in place of (1.4) the lower bound is the square ω̃2 of the
smallest positive solution of

cos(2ω̃D) = (L − 2D)ω̃ sin(2ω̃D)

as long as D ≤ L/2; this number satisfies ω̃2 > 1/(2LD).3 There, proofs of
statements corresponding to Proposition 1.4(1) and (2) are given (in a slightly
different form). The derivation of Eq. (1.10) from (1.9) is also described there;
see [24, Remark 7.3(c)]. However, the proof of Theorem 1.1 uses an essentially
different set of tools from the proof of the corresponding main result [24,
Theorem 7.2]. Indeed, here we will make use of both a new transplantation
principle and an Hadamard-type length perturbation formula (see Sect. 2 for
details).

Finally, we remark that Theorem 1.1 and Proposition 1.4 recall very much results
for the first non-trivial eigenvalue of discrete graph Laplacians (this eigenvalue is
often called the algebraic connectivity of the discrete graph), in terms of the number
of vertices of the graph–the discrete equivalent of its size, i.e., length–as well as the
(now integer-valued) diameter. We reproduce the statements here in our language
for ease of comparison.

Proposition 1.6 ([17], Corollary 3.3) Let T be any (discrete) tree with diameter
D ≥ 3 and V ≥ 4 vertices. Assume that V −D is odd. Then the smallest non-trivial
discrete Laplacian eigenvalue of T is at least as large as that of a symmetric star
dumbbell formed by a chain of edges (“handle”) of length D−2, with (V −D+1)/2
pendant edges attached to each end. (If V − D is even, one edge must be removed
from one of the pendant stars.)

In fact, it seems plausible to expect that this result should hold for all graphs on
V vertices, not only trees (just as our result holds independently of the topology of
the graph). To the best of our knowledge this has not been proved; however, there

3There was an arithmetic error in the upper bound in [24, Remark 7.3(a)]; namely, it was too small
by a factor of 4.
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is a slightly older result which is valid for all graphs, which very much recalls our
estimate (1.5), and which is at least asymptotically optimal as V → ∞.

Proposition 1.7 ([29], Theorem 4.2 and Example After It) Let G be any discrete
graph with diameter D ≥ 1 and V ≥ 2 vertices. Then its smallest non-trivial
Laplacian eigenvalue is at least as large as 4/(DV ). Equality is achieved in the
limit as V → ∞ for fixed D by discrete analogues of the symmetric star dumbbells
described in Proposition 1.6.

In fact, this bound was extended very recently to infinite discrete graphs equipped
with a probability measure in place of the usual one (so that the total “length” is one)
and finite diameter; see [28, Corollary 3.7]. It would be interesting to know whether
the latter result could be extended to quantum graphs, and to know what happens
in the case of the higher eigenvalues. We thank Delio Mugnolo for bringing these
results to our attention.

In Sect. 2 we will recall from [10] the elementary but powerful technical tools we
will need for the proofs; for the sake of readability we will provide proof sketches
here but refer to [10] for full details. In Sect. 3 we give the proof of Proposition 1.4
together with a detailed analysis of the stars Sn as well as their counterparts, the
symmetric star dumbbells Dn, and how their eigenvalues depend on parameters
like length and diameter. These will be needed in the proofs of Theorem 1.1
and 1.2, which are in Sect. 4. Finally, in Sect. 5, we discuss the role of some of
the assumptions in Theorem 1.2, and the possibility that they may be weakened.

2 Background Results: Surgical Tools

In this section we recall both the formal definition of the Laplacian on a quantum
graph and the characterisation of its eigenvalues, as well as the “surgery” tools we
shall need from [10].

Formally, the metric graph G is taken to consist of a set of edges E =
{e1, . . . , eM }, each of which may be identified with an interval ej ∼ [0, �j ],
j = 1, . . . ,M , and a set of vertices V = {v1, . . . , vN }; we write ei ∼ ej if ei

and ej are adjacent (share a vertex), and in a slight abuse of notation e ∼ v if the
vertex v is incident with the edge e, and e ∼ vw if e runs from v to w (i.e., both
are incident with e). We always assume our graph to be connected, but we explicitly
allow it to have loops (e ∼ vv for some v ∈ V) and multiple edges running between
two given vertices; in the latter case we speak of parallel edges. A pendant edge is
any edge which ends at a vertex of degree one; the latter may be referred to as a
pendant vertex.

We consider the operator associated with the bilinear form a : H 1(G)×H 1(G) →
R,

a(f, g) :=
∫
G

f ′g′ dx ≡
∑
e∈E

∫
e

f ′g′ dx, (2.1)
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where

L2(G) 

⊕
e∈E

L2(e), H 1(G) = {f ∈ L2(G) : f ′ ∈ L2(G)}.

Here f ′ is to be interpreted in the distributional sense, and the space H 1(G) ↪→
C(G) in particular encodes both the vertex incidence relations and the vertex
conditions. Indeed, the corresponding operator is given by the negative Laplacian
(negative of the second derivative) on each edge. Its operator domain consists of
those H 1-functions which, in addition to being automatically continuous across the
vertices as members of H 1(G), also satisfy the Kirchhoff condition

∑
e∼v

f |′e(v) = 0

at every vertex v ∈ V , where f |′e is the derivative of the function along the edge
e pointing into v. The associated smallest non-trivial eigenvalue μ2(G), often also
called the spectral gap since μ1(G) = 0, admits the variational characterisation4

μ2(G) = inf

{∫
G |f ′|2 dx∫
G |f |2 dx

: 0 �= f ∈ H 1(G),

∫
G

f dx = 0

}
(2.2)

with equality if and only if f is a corresponding eigenfunction, which we will tend
to denote by ψ . For the higher eigenvalues, the usual min-max characterisation of
Courant–Fischer type is available: we have

μk(G) = inf
M⊂H 1(G)

max
0 �=f ∈M

∫
G |f ′|2 dx∫
G |f |2 dx

, (2.3)

where the infimum is taken over all subspaces of H 1(G) of dimension k, and equality
is achieved by any set M consisting of k linearly independent eigenfunctions
corresponding to μ1, . . . , μk (see [10, Sections 2 and 4.1], also for a characterisation
of the sets achieving equality in (2.3), which is more complicated than for μ2 and
seems little known).

If instead we wish to consider the Laplacian with Dirichlet (zero) vertices on a
subset VD ⊂ V , our form is still given by (2.1) but our form domain changes to
H 1

0 (G) := {f ∈ H 1(G) : f (v) = 0 for all v ∈ VD} (the set VD being clear from the

4Note that we use the numbering convention from [10]. Both the notation and the numbering
condition in [24] are different; there, λ1(G) > 0 is the smallest non-trivial eigenvalue of the
Laplacian with natural vertex conditions.
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context). In this case, we will denote the eigenvalues by 0 < λ1(G) < λ2(G) ≤ . . .,
where the smallest eigenvalue is given by

λ1(G) = inf

{∫
G |f ′|2 dx∫
G |f |2 dx

: f ∈ H 1
0 (G)

}
; (2.4)

again, there is equality if and only if f is a corresponding eigenfunction. As is
standard, we shall call the quotient appearing in (2.2)–(2.4) the Rayleigh quotient
(of the function f ).

Finally, if ψ is an eigenfunction associated with any one of the eigenvalues μk(G)

or λk(G), k ≥ 1, then we call the closures of the connected components of the set

{x ∈ G : ψ(x) �= 0}

the nodal domains of the function ψ . (Any edges on which ψ vanishes identically
are considered not to lie in any nodal domain.) If k ≥ 2, then ψ must change
sign in G, since it is orthogonal in L2(G) to the eigenfunction associated with the
smallest eigenvalue, which does not change sign and can easily be shown not to
vanish anywhere (except on the set of Dirichlet vertices in the case of λ1).

We refer to both the monographs [12, 20, 30] as well as the introductions and
preliminary sections of [10, 11, 24] etc. for more details on these preliminaries.

We now collect the tools that we will need in the sequel. These are all based
purely on the variational characterisations (2.2), (2.4) of the eigenvalues; most are
from [10] although some have appeared in various guises throughout the recent
literature. We start with the most elementary, which we take from [10, Theorem 3.4]
but which has also appeared elsewhere.

Lemma 2.1 Suppose the graph G̃ is formed from G by gluing together two vertices
v1, v2 ∈ V(G), i.e., every edge that had v1 or v2 as an endpoint in G has a new
common vertex v0 ∈ V(G̃). Then λk(G̃) ≥ λk(G) and μk(G̃) ≥ μk(G) for all k ≥ 1.
For λ1 (corresp. μ2) equality holds if and only if there is an eigenfunction ψ of
λ1(G) (corresp. μ2(G)) such that ψ(v1) = ψ(v2). In this case, the image of ψ

under the gluing procedure remains an eigenfunction of λ1(G̃) (corresp. μ2(G̃)).

Proof The inequality follows from the identification of H 1(G̃) as a subspace of
H 1(G), but such that the form (2.1) itself is the same. The characterisation of
equality follows from the fact that the minimum in (2.2) (corresp. (2.4)) is achieved
if and only if the function is a corresponding eigenfunction. This is also a special
case of [10, Theorem 3.4]; the inequality itself has appeared in multiple places
including [12, Theorem 3.1.8]. �
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Lemma 2.2 Suppose the graph G̃ is formed from G by lengthening an edge in G.
Then λ1(G̃) ≤ λ1(G) and μ2(G̃) ≤ μ2(G). Each of the inequalities is strict if there
is a corresponding eigenfunction on G which does not vanish identically on the edge
in question.

Proof This is contained in [10, Corollary 3.12(1)]. �
Lemma 2.3 Suppose ψ is an eigenfunction corresponding to μk(G), k ≥ 2, and
suppose ψ has m ≥ 2 nodal domains, which we denote by G1, . . . ,Gm. If we equip
each of the Gi with Dirichlet conditions on the (finite) set Gi ∩ {x ∈ G : ψ(x) = 0},
then μk(G) = λ1(Gi ) and ψ |Gi

is an eigenfunction corresponding to λ1(Gi ), for all
i = 1, . . . , m.

Proof Fix i = 1, . . . , m. Since ψ |Gi
∈ H 1

0 (Gi ) is a valid test function on Gi , whose
Rayleigh quotient is seen to be equal to its Rayleigh quotient on G, i.e., μk(G). Thus
μk(G) ≥ λ1(Gi ). Conversely, since ψ |Gi

satisfies the strong form of the eigenvalue
equation, including the zero condition, it must be an eigenfunction of λj (Gi ) for
some j ≥ 1. But it does not change sign on Gi ; in fact, it is strictly different
from zero everywhere on Gi outside the set of Dirichlet vertices. Now λ1(Gi ) is
immediately seen to have an eigenfunction ϕi not changing sign on Gi (if ϕ is
an eigenfunction, just replace it by |ϕ| in (2.4)). Hence the L2(Gi )-inner product
of ψ |Gi

and ϕi is not zero. Since both are eigenfunctions of the same Dirichlet
eigenvalue problem, they must belong to the same eigenspace. It follows that ψ |Gi

corresponds to λ1(Gi ) and μk(G) = λ1(Gi ). �
We also have the following statement, which is complementary to Lemma 2.3

and an immediate consequence of the min-max principle (2.3). It relates μk(G) to
k-partitions of G. In the context of domains and manifolds, there is a large literature
relating such partitions to the eigenvalues of the underlying domain or manifold
and the nodal count of the associated eigenfunctions. We refer to [14] for a recent
survey; for quantum graphs less has been done, but we refer to [7, 23].

Lemma 2.4 Suppose H1,H2, . . . ,Hk form a partition of G, that is, H1,H2, . . . ,Hk

are closed graphs whose intersection is at most a finite set. Assume that
∂Hi = {x ∈ G : x ∈ Hi ∩ G \ Hi} is equipped with Dirichlet conditions,
i = 1, 2, . . . , k. Then μk(G) ≤ max{λ1(H1), λ1(H2), . . . , λ1(Hk)}.
Proof Denote by ϕi ∈ H 1

0 (Hi ) any eigenfunction corresponding to λ1(Hi ), i =
1, . . . , k. Extend ϕi by zero on the rest of G to obtain a function ϕ̃i in H 1(G) whose
Rayleigh quotient is still λ1(Hi ). Note that for i �= j the sets where ϕ̃i �= 0 and
ϕ̃j �= 0 are disjoint in G, so in particular the functions are linearly independent. The
desired inequality now follows immediately upon taking M := span{ϕ̃1, . . . , ϕ̃k}
in (2.3). �

We already observed that when k = 2, any corresponding eigenfunction ψ

has (at least) two nodal domains. In the case k ≥ 3, the precise number of nodal
domains will be important to us. We thus recall the following general result from [9,
Theorem 2.6].
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Lemma 2.5 Fix k ≥ 1 and suppose μk(G) is simple and its eigenfunction ψ does
not vanish at any vertex v ∈ V . Then the number m of nodal domains of ψ is
bounded by

k − β ≤ m ≤ k, (2.5)

where we recall that β = |E | − |V| + 1 is the (first) Betti number of G.

We now give two surgery lemmata which will be central to the proof of
Theorem 1.1. The first shows us that altering a graph by transferring “mass” from
where its eigenfunction is smaller to where it is larger lowers the eigenvalue, and is
adapted from [10, Theorem 3.18(1)].

Lemma 2.6 (Transplantation Lemma) Suppose ψ ≥ 0 is an eigenfunction
corresponding to λ1(G). Suppose there is a vertex v ∈ V(G) and edges e1, . . . , ek ∈
E(G) such that

sup{ψ(x) : x ∈ e1 ∪ . . . ∪ ek} ≤ ψ(v), (2.6)

and the total length of these edges is |e1| + . . . + |ek| = � > 0. Form a new graph
G̃ from G by deleting the edges e1, . . . , ek (deleting also any vertices of degree one)
and inserting new pendant edges at v and/or lengthening existing edges in G to
which v is incident; any Dirichlet vertices in G not deleted should be preserved in
G̃. Suppose that the total length of the additions and extensions is equal to or greater
than �. Then λ1(G̃) ≤ λ1(G). The inequality is strict provided ψ(v) > 0.

By deleting an edge, we always mean removing the edge in question without
gluing its endpoints together; in particular, this process could disconnect the graph.
See Fig. 2.

Proof This is actually an easy special case of [10, Theorem 3.18(1)], which is also
valid for μ2, for more general transplantation procedures, and for more general
vertex conditions. Here, this follows simply by constructing a test function

ϕ(x) :=
{

ψ(x) if x ∈ G ∩ G̃,

ψ(v) if x ∈ G̃ \ G.

v v

Fig. 2 The graph on the left is transformed into the graph on the right by transplantation to v. On
the left, the dashed lines indicate the edges to be deleted, while on the right, they represent the
insertion of new, and lengthening of existing, edges. These are chosen in such a way that the total
length is preserved, or increased
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Then condition (2.6) guarantees that ‖ϕ‖L2(G̃) ≥ ‖ψ‖L2(G); while since ϕ is

constant on G̃ \ G and identical to ψ elsewhere, we obviously have ‖ϕ′‖L2(G̃) ≤
‖ψ‖L2(G). The inequality now follows from (2.4).

The strictness if ψ(v) > 0 holds because in this case ϕ, being locally equal to
a nonzero constant, cannot be an eigenfunction of G̃; hence it has strictly larger
Rayleigh quotient than λ1(G̃). �

We finish with a perturbation formula giving the rate of change of a simple
eigenvalue with respect to a perturbation of the edge lengths; such a formula is often
referred to as being of Hadamard type, by way of analogy with the formulae for the
derivative of an eigenvalue on a domain with respect to shape perturbations. The
following formula has appeared in the literature multiple times, possibly beginning
with [19].

Lemma 2.7 (Hadamard-Type Formula) Let λ be a simple eigenvalue of the
Laplacian (with either all natural or some natural and some Dirichlet vertices),
with eigenfunction ψ normalised to have L2-norm 1. Then the quantity

Ee := λψ(x)2 + ψ ′(x)2, x ∈ e, (2.7)

is constant on each edge e ∈ E . Moreover,

(1) The derivative of λ with respect to the edge length |e| exists and equals

dλ

d|e| = −Ee.

(2) In particular, the rate of change of λ with respect to lengthening e1 and
shortening e2 by the same amount is strictly negative if and only if

Ee1 > Ee2 .

The quantity (2.7) is called the Prüfer amplitude (of the eigenfunction ψ on the
edge e).

Proof The formula in (1) may be found in [19], [15, Appendix A] and [8,
Lemma 5.2] (probably among others). Part (2) is an immediate application, and
can at any rate be found, together with (1), in [10, Section 3.2]. �

3 Properties of Stars and Dumbbells

In addition to the stars Sn of Definition 1.3 we will need a second, related class of
graphs, which also appeared in [24].
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Fig. 3 A star dumbbell with n = 7 (left); the symmetric star dumbbell D11 (right): the handle has
length (11D − L)/10, while all 22 short pendant edges have length (L − D)/20 each

Definition 3.1

(1) Fix suitable numbers n ∈ N and �0 > 0, �1, �2 ≥ 0. A star dumbbell will for
us be a graph consisting of a finite edge (a handle) e0 of length �0 connecting
two distinct vertices v1 and v2, to each of which are attached n pendant edges
each of length �1 at v1, and a further n pendant edges of length �2 at v2. We will
denote such a graph by D = D(�0, �1, �2, n). The set of n pendant edges at vi

of length �i each will be denoted by Pi , i = 1, 2.
(2) A symmetric star dumbbell is a star dumbbell with the additional property that

�1 = �2.

See Fig. 3. If L > 0 and D ∈ (0, L) are fixed, for n ≥ 2 sufficiently large the
symmetric star dumbbell of the form

Dn = Dn(L,D) := D
(

nD − L

n − 1
,

L − D

2(n − 1)
,

L − D

2(n − 1)
, n

)
(3.1)

has total length L and diameter D, and is seen to consist of two identical copies
of Sn = S(L

2 , D
2 , n) imagined as being glued together at their respective Dirichlet

vertices.
The link between Sn and Dn is made more precise in Lemma 3.4; first, we need

two lemmata describing the relevant eigenfunctions of Sn and Dn.

Lemma 3.2 Let S = S(L,D, n) be any star with n ≥ 2 and 0 < D ≤ L. The
eigenfunction associated with λ1(S), when chosen positive, is strictly increasing
away from the Dirichlet vertex v0, with vanishing derivative only at the Kirchhoff
vertices of degree one, and is invariant with respect to permutations of the n

identical edges of length �1.

Proof Note that λ1(S) is simple as it is the smallest eigenvalue and denote by ψ

the corresponding eigenfunction, chosen non-negative in S . Let e1, . . . , en be the n

equal edges of length �1; then the function ϕ ∈ H 1(S) given by the average value

ϕ = 1

n

n∑
j=1

ψ |ej
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on each of e1, . . . , en and ϕ|e0 = ψ |e0 is invariant under permutations of the edges
e1, . . . , en, and immediately seen to satisfy the (classical) eigenvalue equation for
λ1(S). Since λ1(S) is simple, the only possibility is that ϕ = ψ everywhere.

To show that ψ is strictly monotone, it suffices to show that ψ ′ cannot vanish
identically at any interior point (at the central vertex v1, this means ruling out
ψ |′ej

(v1) = 0 edgewise). Since ψ cannot change sign on S , nor be identically equal
to a nonzero constant on a set of positive measure, if ψ ′ vanishes, then ψ has a strict
interior maximum. In this case, it must reach a non-negative local minimum at either
an interior point of one of the edges or a (Neumann–Kirchhoff) vertex v. In the first
case, the (one-dimensional) maximum principle is violated directly. In the second
case, since we certainly have ψ |′ej

(v) = 0 for all edges ej ∼ v, we may equally
apply the one-dimensional maximum principle to obtain a contradiction. �
Lemma 3.3 Suppose D = D(�0, �1, �2, n) is any star dumbbell, �0, �1, �2 > 0,
n ≥ 1. Assume that �0 > max{�1, �2}, i.e., the handle is longer than the
pendant edges, or that �1 = �2, i.e., D is symmetric. Then μ2(D) is simple and
its eigenfunction ψ , unique up to scalar multiples, is invariant with respect to
permutations of the edges within each pendant collection of edges Pi , i = 1, 2.

Proof Fix one of the Pi . Then we may choose a basis of L2(D) made of eigen-
functions such that each either takes the value 0 at the central vertex vi of Pi (the
eigenfunction is “odd”), or it is invariant with respect to permutations of the edges
in Pi (it is “even”). (Indeed, if ψ is any eigenfunction and e1, . . . , en are the edges
of Pi , then it suffices to consider instead the eigenfunction (ψ |e1 + . . . + ψ |en)/n

as in Lemma 3.2, together with its orthogonal complement in the span of ψ .) We do
this for both Pi .

Equipped with this basis, we note that the eigenfunctions which are “even” with
respect to both Pi are all simple within the space of all such “even” eigenfunctions,
since their value at any point depends only on that point’s position along any path of
D realising the diameter (and thus they correspond to one-dimensional problems).
Hence, to prove the lemma, it is sufficient to show that the smallest non-constant
of these has a smaller eigenvalue than any of the “odd” eigenfunctions, each of the
latter being supported without loss of generality only on one of the Pi . Indeed,
under the assumption �1 ≥ �2, the smallest eigenvalue associated with an odd
eigenfunction is π2/�2

1, corresponding to an eigenfunction each of whose two nodal
domains corresponds to exactly one pendant edge of S1. If �0 > �1 or if �1 = �2,
an elementary calculation shows that the (unique) zero of the even eigenfunction ψ

with the smallest eigenvalue must lie in the interior of the handle e0. In particular,
each edge of P1 is strictly contained in one the nodal domains of ψ ; and thus the
eigenvalue of ψ is strictly smaller than π2/�2

1. �
Lemma 3.4 Fix 0 < D ≤ L and n ≥ 2. Denote by Dn(L,D) the symmetric star
dumbbell with total length L and diameter D. Then

μ2(Dn(L,D)) = λ1

(
S

(
L

2
,
D

2
, n

))
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and the two copies of S(L
2 , D

2 , n) embedded in Dn(L,D) are the two nodal domains
of the eigenfunction corresponding to μ2(Dn(L,D)).

Proof This follows immediately from Lemmata 3.2 and 3.3, the latter in the
form valid for symmetric star dumbbells. Alternatively, this statement is contained
implicitly in [24, Proof of Lemma 7.6]. �

With this background, we can now give the proof of Proposition 1.4. As
mentioned in the introduction, (1) and (2) were proved in [24] (in a slightly different
form), and to avoid repetition of the somewhat tedious calculations we will not give
their proofs again here.

Proof of Proposition 1.4

(1) and (2) For all n ≥ 2, as shown in Lemma 3.4, we have

λ1(Sn) = μ2(Dn)

where Dn is the symmetric star graph having total length 2L and diameter 2D.
The statements (1) and (2) now follow from [24, Lemma 7.6 and its proof] and
[24, Remark 7.3(c)], respectively, bearing in mind that diam(Dn) = 2D and
|Dn| = 2L. For an alternative proof of (1), see Lemma 3.5(1).

(3) We introduce the notation

F(ω,D) := cos(ωD) − ω(L − D) sin(ωD).

and wish to show that the derivative of ω with respect to D is negative when
L > D:

∂ω

∂D
= − ∂F

∂D

/∂F

∂ω
= ω sin(ωD) − ω sin(ωD) + ω2(L − D) cos(ωD)

−D sin(ωD) − (L − D) sin(ωD) − ω(L − D)D cos(ωD)

= − ω2(L − D) cos(ωD)

L sin(ωD) + ω(L − D)D cos(ωD)
.

Using the relation cos(ωD) = ω(L − D) sin(ωD), i.e., F(ω,D) ≡ 0, which in
particular implies that neither cos(ωD) nor sin(ωD) can be zero, we have

∂ω

∂D
= − ω3(L − D)2 sin(ωD)

(L + ω2(L − D)2D) sin(ωD)
= − ω3(L − D)2

L + ω2(L − D)2D
< 0

since ω > 0 by assumption.
(4) See [24, Remark 7.3(a) and proof of Theorem 7.2]. �

We next give two lemmata showing how the eigenvalues of stars and star
dumbbells depend on changes in the parameters (total length, diameter etc.). The
key tool in both is the Hadamard formula, Lemma 2.7.
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Lemma 3.5

(1) For fixed L > 0 and D ∈ (0, L), the function

n �→ λ1 (S (L,D, n))

is strictly decreasing in n ≥ 2.
(2) For fixed L > 0 and n ≥ 2, the function

D �→ λ1(S(L,D, n))

is strictly decreasing in D ∈ (0, L).
(3) Fix L > 0, D > 0 and n ≥ 2. Then for each L1 > L there exists n1 ≥ n such

that

λ1(S(L1,D, n1)) < λ1(S(L,D, n)).

Proof

(1) Although this could be derived from an analysis of the corresponding secular
equation, cf. the proof of Proposition 1.4, we will show how it can be obtained
via the transplantation lemma 2.6. Essentially the same proof will also yield
(3).
Fix any numbers n2 > n1 ≥ 2. Denote by ψ the eigenfunction of
λ1(S(L,D, n1)), chosen positive, by v1 the central vertex (i.e., of degree
n1 + 1) of S(L,D, n1), and by

�1 := L − D

n1 − 1
>

L − D

n2 − 1
=: �2

the lengths of the identical edges of S(L,D, n1) and S(L,D, n2), respec-
tively. Now by Lemma 3.2, we know that ψ takes on the same value at the n1
points at distance �2 to a degree one Kirchhoff vertex of S(L,D, n1). Hence,
by Lemma 2.1, if we glue these points together to create a new vertex v2
of degree 2n1 (see Fig. 4), λ1(S(L,D, n1)) is unaffected and ψ is still the
eigenfunction; in particular, it is still a monotonically increasing function of
the distance to the Dirichlet vertex.
We now create S(L,D, n2) out of this graph by deleting n1 − 1 of the n1
parallel edges of length �2 − �1 each between v1 and v2 and, in their place,
inserting n2 − n1 pendant edges of length �2 each at v2. Since ψ was smaller
on the deleted parallel edges than at v2, Lemma 2.6 yields

λ1(S(L,D, n2)) ≤ λ1(S(L,D, n1)).

In fact, since ψ(v2) > 0 by Lemma 3.2, this inequality is strict.
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v1 v1 v2

Fig. 4 The star S(L,D, n1) with the points to be glued together marked in red (left); the graph
obtained after the gluing (right). To create S(L,D, n2) out of the right-hand graph, we remove all
but one of the edges between v1 and v2 and, in their place, create new pendant edges at the red
vertex v2

(2) We use the Hadamard formula, Lemma 2.7. Write S for S(L,D, n), for given
L,D, n. Noting that the simple eigenvalue λ1 is a differentiable function of
the edge lengths at S , if we write �0 for the length of the Dirichlet edge e0 and
�1 for the common length of each of the other n edges, then we see that

d

dD
λ1(S) = d

d�0
λ1(S) − n

(
1

n
· d

d�1
λ1(S)

)
(3.2)

since increasing D while holding L and n constant is equivalent to lengthening
e0 while shortening the n other edges by 1/nth of that amount each. As before,
let v1 denote the central vertex, e1, . . . , en the n identical edges and ψ the
eigenfunction. By Lemma 2.7, we have

d

d�0
λ1(S) = −Ee0 = −

(
λ1(S)ψ(v1)

2 + ψ |′e0
(v1)

2
)

,

where we recall ψ |′e0
(v1) is the (normal) derivative of ψ on e0 at v1; while

by Lemma 2.7, the continuity–Kirchhoff condition at v1 and the symmetry
property of ψ from Lemma 3.2,

d

d�1
λ1(S) = −

(
λ1(S)ψ(v1)2 + ψ |′ej

(v1)2
)

= −
(
λ1(S)ψ(v1)2 +

(
1

n
ψ |′e0

(v1)

)2
)

(for any fixed j = 1, . . . , n). Inserting these expressions into (3.2), we obtain

d

dD
λ1(S) =

(
1

n2 − 1

)
ψ |′e0

(v1)
2.

This last expression is strictly negative since n ≥ 2 and ψ ′ does not vanish at
v1 on any edge with which v1 is incident by Lemma 3.2.

(3) The proof is similar to the proof of (1), so we only sketch it. Choose any
n1 ≥ n such that the n1 identical edges of S(L1,D, n1) are shorter than the n

identical edges of S(L,D, n), that is, such that

L1 − D

n1 − 1
<

L − D

n − 1
.
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As in (1), we may glue the n vertices of S(L,D, n) at distance (L1−D)/(n1−
1) from a degree one Kirchhoff vertex to form v2 without affecting the
eigenvalue or eigenfunction. We may now transplant the surplus parallel edges
from v1 to v2 to pendant edges at v2 of the right length to create S(L1,D, n1)

and strictly lower the eigenvalue in the process.

�
Lemma 3.6 For fixed total length L, fixed �0 ≥ � > 0 and fixed n ≥ 1 consider the
family of star dumbbells D = D(�0, �1, � − �1, n), where �1 ∈ [0, �]. Then

(1) d
d�1

μ2(D) exists for all �1 ∈ (0, �) and is strictly negative if �1 ∈ (0, �/2) and
strictly positive if �1 ∈ (�/2, �).

(2) In particular, μ2(D) reaches its unique global minimum over �1 ∈ [0, �] at
�1 = �/2.

In words, a symmetric star dumbbell has the lowest first eigenvalue among all
star dumbbells having the same total length, diameter and number of pendant edges
at each side. While the proof is similar to (parts of) the proof of Lemma 3.5, the
latter lemma does not directly imply Lemma 3.6 because, while the nodal domains
of the eigenfunction of μ2(D) will be stars, it would require more work to study
their dependence on the edge lengths of μ2(D); so instead we give a direct proof.

Proof

(1) The existence of the derivative follows immediately from Lemma 2.7, which
is applicable since μ2(D) is always simple by Lemma 3.3. By symmetry, it
suffices to restrict attention to �1 ∈ (0, �/2) and prove that

d

d�1
μ2(D) < 0 if � ∈ (0, �1/2). (3.3)

Denote by ψ the corresponding eigenfunction, which is unique up to scalar
multiples by Lemma 3.3. Then by Lemma 2.7 ψ is identical on all edges
within each of the stars, and to prove (3.3) it suffices to prove that if e1 is
an edge in P1 and e2 is an edge in P2, then �1 = |e1| < |e2| = �2 implies
Ee1 > Ee2 . By Lemma 2.7, this in turn is equivalent to showing

μ2(D)ψ(v1)
2 + ψ |′e1

(v1)
2 > μ2(D)ψ(v2)

2 + ψ |′e2
(v2)

2,

i = 1, 2. Denote by e0 the handle, so that e1 and e0 are adjacent at v1, and
e2 and e0 are adjacent at v2. Note that since �0 ≥ � > max{�1, � − �1} the
eigenfunction ψ has exactly one zero, and this is on the handle e0.

Claim The zero of ψ is strictly closer to v2 than v1.

To prove the claim: if the claim does not hold, then, supposing the star D+ :=
{x ∈ D : ψ(x) ≥ 0} to contain P2, and noting that μ2(D) = λ1(D+) by
Lemma 2.3, we may reflect D+ across the set {x ∈ D : ψ(x) = 0} to obtain a
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new (symmetric) star dumbbell D̃ such that, by symmetry, μ2(D̃) = λ1(D+).
But the handle of D̃ is at least as long as e0 and, since �1 < �/2, the pendant
edges of its other star are strictly longer than those of D. But by Lemma 2.2,
this means that μ2(D̃) < μ2(D), a contradiction. This proves the claim.
It follows from the claim that ψ(v1)

2 > ψ(v2)
2; correspondingly, since,

again, the Prüfer amplitude is constant on each edge, we also have
ψ |′e0

(v1)
2 < ψ |′e0

(v2)
2, so that

− (n − 1)ψ |′e0
(v1)

2 > −(n − 1)ψ |′e0
(v2)

2. (3.4)

Now by the Kirchhoff condition and the fact that ψ is identical on all pendant
edges within each star,

μ2(D)ψ(v1)
2 + nψ |′e1

(v1)
2 = μ2(D)ψ(v1)

2 + ψ |′e0
(v1)

2

= μ2(D)ψ(v2)
2 + ψ |′e0

(v2)
2 = μ2(D)ψ(v2)

2 + nψ |′e2
(v2)

2.

Adding (3.4) yields

μ2(D)ψ(v1)
2 + ψ |′e1

(v1)
2 > μ2(D)ψ(v2)

2 + ψ |′e2
(v2)

2,

as desired.
(2) This follows immediately from (1), also using the continuity of μ2 as �1 → 0

or �, for fixed �0 and n. �

We finish this section with a kind of symmetrisation or balancing result for stars
which we will need for the proof of Theorem 1.2. This is closely related to the
minimisation result of Lemma 3.6(2) when combined with Lemma 3.4.

Lemma 3.7 Suppose S1 and S2 are stars with diameter D1, D2 and total length
L1 ≥ D1, L2 ≥ D2, respectively. Assume that both stars have n identical shorter
edges (each of length (L1 − D1)/n ≥ 0 and (L2 − D2)/n ≥ 0, respectively).5

Denote by S∗ the star with diameter (D1 + D2)/2, total length (L1 + L2)/2, and
n identical shorter edges, and by D∗ the symmetric star dumbbell with diameter
D1 + D2 and total length L1 + L2, formed by gluing together two copies of S∗ at
their respective vertices. Then

max{λ1(S1), λ1(S2)} ≥ μ2(D∗) = λ1(S∗). (3.5)

The inequality is strict if S1 �= S2.

5When we say shorter, we are including the assumption that these edges are shorter than the
respective (n+1)st edges equipped with the Dirichlet condition; that is, Li−Di

2(n−1)
≤ nDi−Li

n−1 , i = 1, 2.
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Proof We glue S1 and S2 together at their Dirichlet points to create a (non-
symmetric) star dumbbell D having total length L1 +L2 and diameter D1 +D2. By
Lemma 2.4 we have μ2(D) ≤ max{λ1(S1), λ1(S2). Denote by D∗ the symmetric
star dumbbell having the same length and diameter as D. Then μ2(D∗) ≤ μ2(D)

by Lemma 3.6(2). Appealing to Lemma 3.4 completes the proof of (3.5).
Now suppose that S1 �= S2. We consider two cases: (1) the respective shorter

edges have different lengths, i.e., L1 − D1 �= L2 − D2. In this case, D �= D∗
and Lemma 3.6(2) yields the strict inequality μ2(D∗) < μ2(D); or (2) we have
L1 − D1 = L2 − D2 so that D = D∗. In this case, since S1 �= S2, we may assume
without loss of generality that L1 < L2. In this case, S1 is strictly contained in
the star S∗ having length (L1 + L2)/2 and diameter (D1 + D2)/2, that is, S∗ can
be obtained from S1 by strictly lengthening the edge of the latter equipped with
the Dirichlet vertex. The strictness statement in Lemma 2.2 now yields λ1(S∗) <

λ1(S1). �

4 Proof of the Main Theorems

We now turn to the proof of Theorems 1.1 and 1.2. The key to both is the following
observation.

Lemma 4.1 Suppose H is a connected, compact graph with a finite number of
edges, and with total length L > 0 and equipped with a non-empty set of Dirichlet
vertices VD, and set

d := sup
x∈H

dist(x,VD).

Let Sn = S(L, d, n) be the star having n ≥ 2 identical edges, total length L and
diameter d. Then there exists n0 ≥ 1 such that

λ1(Sn) ≤ λ1(H) (4.1)

for all n ≥ n0. Equality in (4.1) for some n ≥ 1 implies that L = d and H is a
path graph (interval) of length d with a Dirichlet condition at one endpoint and a
Neumann condition at the other.

We explicitly remark that H is itself allowed to be a star graph of the type we are
considering; in this case, the lemma contains a proof of the statement that λ1(Sn) <

λ1(Sm) if n > m is sufficiently large (where D and L are fixed).

Proof We may assume without loss of generality that VD = {v0} consists of a single
vertex of degree possibly larger than one, by formally gluing together all vertices in
VD if necessary. Denote by ψ the eigenfunction of λ1(H), chosen positive, and let
v be any point in H at which ψ ∈ H 1(H) ↪→ C(H) reaches a global maximum in
H; we assume without loss of generality that v is a vertex.
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By definition of d, there exists a path p in H from v to v0 which has no self-
intersections and length at most d. Assume that H is itself not a path (i.e., not an
interval), so that p �= H and |p| < L. Fix n0 ≥ 1, to be specified precisely later, but
large enough that n0 > deg v and the shortest edge in H is longer than

ε := L − |p|
n0

> 0.

We let S̃ be the star having one edge of length |p| − ε (equipped with a Dirichlet
condition at the far end) and n shorter edges of length ε each: then by construction,
|S̃| = L and diam(S̃) = |p| ≤ d.

We claim that λ1(S̃) < λ1(H); we will use the transplantation principle,
Lemma 2.6, to prove this. The lemma will then follow from Lemma 3.5: more
precisely, part (2) yields the inequality λ1(Sn0) ≤ λ1(S̃), while part (1) yields
λ1(Sn) ≤ λ1(Sn0) for n ≥ n0.

To prove the claim, we look at the value

m := max{ψ(x) : x ∈ H and dist(x, v) = ε} > 0.

We glue together all points x ∈ H such that ψ(x) = m (of which there are only
finitely many), to create a new vertex vε. In accordance with Lemma 2.1, this does
not affect λ1 or ψ , so in a slight abuse of notation we will call the new graph H.

Now the set {ψ ≥ m} ⊂ H consists of a pumpkin (collection of parallel edges)
running from vε to v, such that each edge of this pumpkin has length at most ε; and
v still lies on p (or, more precisely, on its image under the gluing, which we will still
denote by p). Note that the number of edges of this pumpkin is simply deg v < n0.

We now apply the transplantation lemma 2.6. We remove every edge of H not
on p and not part of the pumpkin between vε and v. In their place we first lengthen
any edges between vε and v if necessary, so that each has exactly length ε. We then
attach additional pendant edges each of length ε to vε until the new graph has total
length L. (Note that the choice of ε and the fact that the pumpkin has fewer than n0
edges means that there is always enough material being transplanted to guarantee
that all these edges can be made to have length exactly ε.)

We finally de-glue (cut through) v to produce a graph having only pendant edges
at vε. This graph is by construction S̃ , and we have

λ1(S̃) ≤ λ1(H) (4.2)

by Lemmata 2.1 (applied in reverse) and 2.6. But under the assumption that H was
not a path graph, the transplantation was nontrivial and so Lemma 2.6 in fact yields
strict inequality in (4.2). Combined with our earlier statements, this completes the
proof. �
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We can now give the proof of Theorem 1.1. In fact, in light of Proposition 1.4,
more precisely, the fact that λ1(Sn) forms a decreasing sequence in n, which
converges to ω2, it suffices to prove:

Theorem 4.2 Suppose G is any, connected compact graph with a finite number of
edges, and with total length L > 0 and diameter D ∈ (0, L). Then there exists
some n ≥ 1 such that the star graph Sn having total length L/2 and diameter D/2
satisfies

λ1(Sn) < μ2(G).

Proof of Theorem 4.2, and hence of Theorem 1.1 Let ψ be any eigenfunction asso-
ciated with μ2(G) and denote by G+ and G− any two nodal domains of ψ . Then, by
Lemma 2.3,

μ2(G) = λ1(G+) = λ1(G−)

(where the Dirichlet vertices correspond to the points where ψ = 0), and with ψ |G±
being the corresponding eigenfunctions. Moreover, |G+| + |G−| ≤ L and, if

d+ := sup{dist(x,VD(G+)) : x ∈ G+}
≡ sup{dist(x, {ψ = 0}) : x ∈ G+}

d− := sup{dist(x,VD(G−)) : x ∈ G−}
(4.3)

(where it makes no difference whether we take the distance in G or in G±), then,
since the distance from any point in G+ to any point in G− is at most D = diam(G),
we have

d+ + d− ≤ D.

By Lemma 4.1, there exist stars S+
n and S−

n (for some n sufficiently large, which is
the same for both stars) with total lengths |G+| and |G−| and diameters d+ and d−,
respectively, such that λ1(S±

n ) ≤ λ1(G±). By Lemma 3.5(2) and (3), we may in fact
assume without loss of generality that |S+

n |+|S−
n | = L and d++d− = D (possibly

at the cost of making n larger). Now, by Lemma 3.7 (or by a direct application of
Lemmata 2.4 and 3.6(2) to the union of S+

n and S−
n ), we conclude that

μ2(G) ≥ max{λ1(S+
n ), λ1(S−

n )} ≥ λ1(Sn), (4.4)

where Sn is now the star with length L/2 and diameter D/2.
It remains to prove that at least one inequality in (4.4) is strict. Since D < L by

assumption, G is not a path. Suppose first that at least one of its nodal domains G±
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is also not a path. If neither is a path with one Dirichlet and one Neumann endpoint,
then Lemma 4.1 already yields the strict inequality

μ2(G) > max{λ1(S+
n ), λ1(S−

n )}.

If one is a path with one Dirichlet and one Neumann endpoint, say G+, then since
the same is not true of G−, the star S+

n is trivially equal to the path G+, while S−
n

is nontrivial (not a path). Since S+
n �= S−

n , Lemma 3.7 implies that the second
inequality in (4.4) is strict.

Finally, we deal with the case where G is not a path but it only has nodal domains
which are paths: in this case, we must have |G+| + |G−| < L and hence |S+

n | +
|S−

n | < L. Assuming Sn still to have length L/2, strict inequality in Lemma 3.5(3)
leads to strict inequality in the second inequality in (4.4). �

We conclude with the proof of Theorem 1.2.

Proof of Theorem 1.2 Suppose first that μk(G) is simple and its eigenfunction ψ

does not vanish identically on any edge of G. Then by Lemma 2.5 ψ has m ≥ k −β

nodal domains G1, . . . ,Gm, which by Lemma 2.3 satisfy

μk(G) = λ1(G1) = . . . = λ1(Gm)

(with the Dirichlet vertices at the points where ψ = 0, and ψ |Gi
is, up to scalar

multiples, the unique eigenfunction on Gi , i = 1, . . . , m. Note that

m∑
i=1

|Gi | = L

since ψ does not vanish identically on any edge. For each i, analogous to (4.3), set

di := sup{dist(x,VD(Gj )) : x ∈ Gi};

then, as in the case k = 2, for each pair i �= j , we have

di + dj ≤ D; (4.5)

Fix n ≥ 1 sufficiently large. Then by Lemma 4.1, for each i there exists a star S i
n

(as usual having n identical shorter sides and one longer Dirichlet side) such that
|Si

n| = |Gi |, diam(S i
n) = di , and μk(G) ≥ λ1(S i

n).

Now choose any pair i1 �= j1 and apply Lemma 3.7 to S
i1
n and S

j1
n , replacing

them with the resulting stars which have the same total length and whose sum of
diameters is the same, but which have smaller eigenvalues. Now choose a different
pair (i2, j2) �= (i1, j1) and repeat.

Repeating this process arbitrarily often and passing to the limit, the stars converge
(and their eigenvalues converge from above) to m copies of the star Sn with total
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length L/m and diameter no larger than D/2 (by (4.5)); by Lemma 3.5(2) we
may assume without loss of generality that actually diam(Sn) = D/2; and by
Lemma 3.7, we also have

μk(G) ≥ max{λ1(S1
n), . . . , λ1(Sm

n )} ≥ λ1(Sn).

Since m ≥ k − β and, by Lemma 3.5(3), λ1(Sn) is a decreasing function of
increasing its length L/m �→ L/(k − β) if its diameter D/2 is fixed (possibly
at the cost of increasing n at the same time), we obtain the statement of the theorem
under the assumption that μk(G) is simple and ψ does not vanish identically on any
edge.

In the general case, we use a standard approximation argument. Let G be a
connected, compact graph with a finite number of edges, such that G does not
contain any loops longer than D. Firstly, if G does in fact contain any loops, we
cut through the midpoint of each loop. Our assumption on the maximal loop length
implies that this does not change either L or D and can only lower μk by Lemma 2.1.
So we may assume without loss of generality that G does not contain any loops at
all.

Now, by [13, Theorem 3.6], there exists a sequence of graphs Gi having the same
topology as G, such that all edge lengths of Gi converge to those of G, meaning in
particular that Di := diam(Gi ) → D and Li := |Gi | → L; and, for each i, we have
that μk(Gi ) is simple and its eigenfunction does not vanish identically on any edge
of Gi . Now μk(Gi ) satisfies the eigenvalue bound of Theorem 1.2 for all i (with Li

and Di in place of L and D); but, since this bound depends smoothly on L and D,
passing to the limit we obtain the desired bound for G. �

5 Concluding Remarks

The idea of the proofs of Theorems 1.1 and 1.2 consists in comparing each of
the nodal domains of a graph G (more precisely, the nodal domains of a given
eigenfunction ψ associated with μk(G)) with a corresponding star graph having
the same total length and a possibly smaller diameter; this is the idea behind
Lemma 4.1. To obtain the overall infimum, the balancing results of Sect. 3 show that
the minimum over the m stars obtained from the m nodal domains of ψ is achieved
when the stars all have the same total length (L/m each) and diameter (D/2 each).
These copies can be pasted together at their respective Dirichlet vertices to form the
graphs which, in the limit, converge to m-stars with point masses of size L/m−D/2
at each pendant vertex. The assumption that L be sufficiently large compared with
D is, we believe, natural: it is necessary to ensure that these point masses actually
have positive mass; in the borderline case where L/m = D/2, we obtain exactly
the equilateral star which in accordance with (1.3) is minimising for μm(G) among
all graphs G having given total length but without any constraint on the diameter.
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The shortcoming in Theorem 1.2 is that in general we cannot expect that m = k,
i.e., that the eigenfunction ψ have k nodal domains. Instead, we rely on the (sharp)
lower bound m ≥ k − β in Lemma 2.5, which is also only valid “generically”, that
is, possibly after an arbitrarily small perturbation of the edge lengths, and for graphs
without loops (in the presence of loops, there will always be special eigenfunctions
supported on the loops, which cannot be eliminated by a perturbation argument).

In the case of trees, Lemma 2.5 and hence Theorem 1.2 is sharp; all we lose
via the edge perturbation argument is the ability to conclude that the inequality is
always strict, that is, that there is no actual tree whose eigenvalue is equal to the
square of the solution of (1.7). (However, we strongly expect this conclusion to be
true.)

For non-trees, we do not expect Theorem 1.2 to be sharp. Indeed, simple
examples such as loops and tadpoles suggest that Theorem 1.2 should be true in
a sharper form, namely without the presence of β and without the assumption that
G not contain any long loops:

Conjecture 5.1 Let G be any connected, compact graph with total length L and
diameter D, where L/k > D/2. Then μk(G) is strictly larger than the square of the
smallest positive solution ω > 0 of the equation

cos

(
ωD

2

)
= ω

(
L

k
− D

2

)
sin

(
ωD

2

)
. (5.1)

(Here, again, we see the necessity of the assumption L/k > D/2 in (5.1) in order
for this result to make sense.)

In other contexts, such as the proof of (1.3) or the related [11, Theorem 4.7], one
typically circumvents the problem of having too few nodal domains by first cutting
through cycles in G to obtain a tree with the same total length, smaller eigenvalues
(cf. Lemma 2.1), and (generically) the correct number of nodal domains. Here, this
is generally impossible since by cutting through a cycle one may increase the total
diameter (see Fig. 5 for an example). Actually, one only needs to guarantee the
weaker property (4.5) of the nodal domains of the cut graph, but there seems no
reasonable way to arrange this.

We therefore leave Conjecture 5.1 as an open problem; we also leave completely
open the question of determining what happens when the assumption L/k > D/2
is not satisfied.

Fig. 5 An example of a
graph with a cycle, such that
cutting the cycle at any point
would increase the diameter
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