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Preface

The cooperation group “Discrete and Continuous Methods in the Theory of
Networks” was granted financial support by

Zentrum für interdisziplinäre Forschung (Centre for Interdisciplinary Research) at
Bielefeld University in the summer of 2012 and has begun its investigations in the
spring of 2013.

When originally designing this programme, our goal was twofold: on the one
hand, we wanted to investigate the possibility of formalising questions from applied
sciences—including, but not limited to, theoretical physics and biology—in a graph-
or network-based language, making them feasible by mathematical methods. On
the other hand, we wanted to bridge the distance between the analysis of difference
operators on graphs and differential operators on metric graphs, which 10 years ago
used to be studied by different and mostly disconnected communities active in the
areas of spectral graph theory, potential theory, spectral geometry, Dirichlet form
theory, stochastic analysis, semigroup theory, or dynamical systems.

In the framework of this cooperation group, we have organised a series of short,
regular meetings spread all over the 5 years our group was supported. This format
has allowed us to work intensively, concentrating meeting-wise on a specific subject;
to elaborate our thoughts over time, multiplying our output and adapting our topics
to the newest circumstances of research in the fields related to network science; to
rebuild our team of collaborators according to our previous experiences, especially
promoting productive attitude, interest in/ability at interactions with other group
members, intellectual curiosity, promising ideas. We—three mathematicians—have
been on our mettle to adapt and respect different scientific cultures concerning
diverse issues like speed of publication, hierarchy of research work by graduate
students, readiness for idea exchanges before publications, understanding of what
kind of advances are worth a publication, and what the main content of an article

xv



xvi Preface

should be (Simply a proof? A new experiment? A new phenomenon observed
heuristically?).

Throughout the years, we have invited to attend our meetings at the ZiF
physicists, mathematicians, biologists, neuroscientists, theoreticians of complex
networks, a linguist, a logistician, a computer scientist. Reflecting the interdis-
ciplinary mission and the agreeable lack of output pressure of ZiF, these open
discourses have provided the group with new challenges. Many scientific dis-
cussions were led within our group, which highly profited from the stimulating
atmosphere at ZiF: the activity of dozens of invited scientists resulted in over a
hundred published articles. The current volume collects a selection of interesting,
original contributions based on scientific questions aroused during the workshops
or on topics presented at the conclusive conference held in Bielefeld in December
2017.

In spite of the interdisciplinary nature of our past activities, when planning this
volume we have decided to rather focus on our programme’s mathematical core:
we believe that our knowledge and skills are the best we can contribute to other
scientific fields as well as to other mathematical areas.

Selecting papers for this publication was also a way to reflect the current status of
the theory of networks and its manifold applications as well as to indicate research
directions which we consider most interesting and promising in the medium term.
Especially, the last decade saw the birth and the development of investigations on
spectral estimates for quantum graphs, much along the lines of classical spectral
geometry for manifolds; it is not immodest to say that our programme at ZiF was
partially responsible for the outburst of this topic. We are glad to present, among
others, five papers from this ever-growing area. Also, the dichotomy between graphs
and metric graphs has been surpassed and the distance between the theories of finite
and infinite graphs is being progressively bridged.

The topics of the papers in this volume can be roughly clustered as follows:

• Spectral quantum graph geometry: papers by J.B. Kennedy; by J. Rohleder and
C. Seifert; by N. Nicolussi;

• Spectral theory of discrete graphs: papers by H. Ge, B. Hua, and A. Lin; by
S. Liu, N. Peyerimhoff, and A. Vdovina;

• Quantum graphs as chaotic systems: papers by M. Ławniczak, M. Białous, V.
Yunko, S. Bauch, and L. Sirko; by H.A. Weidenmüller;

• Approximations of quantum graphs: paper by C. Cacciapuoti;
• Zeta functions for graphs: paper by A. Karlsson;
• Few-body systems on metric graphs: papers by J. Bolte and J. Kerner; by

S. Egger;
• Non-linear differential equations on metric graphs: papers by S. Dovetta and

L. Tentarelli; by J. von Below and J.A. Lubary;
• Complex networks: papers by M.-T. Hütt and A. Lesne; by K. Taglieber and

U. Freiberg.
• Applications of networks: papers by S. Bonaccorsi and S. Turri (epidemics); by

M.T. Fairhurst (social networks).
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Most of the contributions have direct implications in the study of fundamental
problems in natural sciences (close to applications), while also more traditional
topics often contain radical ideas opening new perspectives in research.

ZiF’s generous support to our research may have ended, but this does certainly
not imply the end of our scientific collaborations. We continue to work on the related
subjects, keeping contacts established during our meetings at ZiF.

This is also the right place to thank all our invitees of the last years, without
whom our project could have never be so successful: Riccardo Adami, Felix Ali
Mehmeti, Lior Alon, Patricia Alonso Ruiz, Ramy Badr, Rami Band, Moritz Beber,
Till Becker, Joachim von Below, Gregory Berkolaiko, Ginestra Bianconi, Türker
Biyikoǧlu, Jens Bolte, Stefano Bonaccorsi, Jonathan Breuer, Claudio Cacciapuoti,
Radu C. Cascaval, Vsevolod Chernyshev, Andrea Corli, Taskin Deniz, Simone
Dovetta, Sebastian Egger, Merle Fairhurst, Mareike Fischer, Uta Freiberg, Christoph
Fretter, Júlia Gallinaro, Nebojša Gašparović, Federica Gregorio, Jiao Gu, Michael
Hinz, Matthias Hofmann, Danijela Horak, Bobo Hua, Marc-Thorsten Hütt, Dina
Irofti, Patrick Joly, Jürgen Jost, Stojan Jovanović, Maryna Kachanovska, Cristopher
Kaiser-Bunbury, Michael Kaplin, Anders Karlsson, Moritz Kaßmann, Matthias
Keller, James Kennedy, Joachim Kerner, Kosmas Kosmidis, Aleksey Kostenko,
Maria Kozlova, Marjeta Kramar Fijavž, Hafida Laasri, Francisco Lacerda, Fereshteh
Lagzi, Michał Ławniczak, Corentin Léna, Annick Lesne, Jiří Lipovský, Shiping
Liu, Wenlian Lu, Alexander Lück, Yuri Maistrenko, Gabriela Malenová, Claudio
Marchi, Benjamin Mauroy, Bojan Mohar, Fumito Mori, Jacob Muller, Anna
Muranova, Serge Nicaise, Noema Nicolussi, Diego Noja, Philipp-Jens Ostermeier,
Gábor Pete, Mats-Erik Pistol, Matteo Polettini, Mason A. Porter, Olaf Post,
Jonathan Rohleder, Stefan Rotter, Mostafa Sabri, Sadrah Sadeh, Ruben Sanchez
Garcia, Holger Schanz, Jonathan Schiefer, Marcel Schmidt, Michael Schwarz,
Andrea Serio, Leszek Sirko, Uzy Smilansky, Adrian Spener, Rune Suhr, Klemens
Taglieber, Lorenzo Tentarelli, Christiane Tretter, Françoise Truc, Konstantinous
Tsougkas, Francesco Tudisco, Hande Tunçel Gölpek, Stephen J. Watson, Hans
Arwed Weidenmüller, Melchior Wirth, Wolfgang Woess, and Verena Wolf.

Last but not least, we would like to express our warmest thanks to the whole
staff of the ZiF and in particular to the executive secretary Dr Britta Padberg,
who throughout these years provided us with an exceptional and highly stimulating
environment for research and exchange of ideas and skills—and did so in a
competent, interested, and hearty way; to the research secretary Ms Mo Tschache
and to the academic coordinator Dr Marc Schalenberg, who constantly supported
us with the planning and the everyday management of our workshops; and to Ms
Trixi Valentin and Ms Marina Hoffmann of the conference office for their invaluable
assistance as the conference was organised and then carried out.

Ankara, Turkey Fatihcan M. Atay
Stockholm, Sweden Pavel B. Kurasov
Hagen, Germany Delio Mugnolo
December 2019
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Stability Matters for
Reaction–Diffusion–Equations on Metric
Graphs Under the Anti-Kirchhoff Vertex
Condition

Joachim von Below and José A. Lubary

Abstract The stability properties of stationary nonconstant solutions of reaction–
diffusion–equations ∂tuj = ∂2

j uj + f (uj ) on the edges kj of a finite metric graph
G under the so–called anti–Kirchhoff condition (KC) at the vertices vi of the graph
are investigated. The latter one consists in the following two requirements at each
node.

∑

vi∈kj
uj (vi, t) = 0,

kj ∩ ks = {vi} �⇒ dij ∂juj (vi , t) = dis∂sus(vi , t),

where dij ∂juj (vi , t) denotes the outer normal derivative of uj at vi on the edge kj .
Though on any finite metric graph there is a simple nonlinearity leading to a unique
stable nonconstant stationary solution, there are classes of reaction-terms allowing
only stable stationary solutions that are constant on each edge. For example, odd
nonlinearities allow only such stable stationary solutions, in particular they only
allow the trivial solution as stable one on trees.

The second author was supported by the MINECO grant MTM2017-84214-C2-1-P and is part of
the Catalan research group 2017 SGR 1392.
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Among the classical and often considered transition conditions at the nodes of a
metric graph we find the continuity condition at the ramification nodes

∀vi ∈ Vr : kj ∩ ks = {vi} �⇒ uj (vi) = us(vi), (1)

and Kirchhoff’s flow law at all the nodes vi

N∑

j=1

dij ∂juj (vi , ·) = 0 for 1 ≤ i ≤ n. (2)

We shall cite both conditions (1) and (2) together as (CK). They have been treated
by many authors, including generalizations as weighted Kirchhoff conditions and
dynamical ones, and are of interest in many settings and applications.

However, when treating wave dispersion or splitting problems on graphs e.g.,
or as in many other quantum graph problems, the (CK)-condition is not suitable
and should be replaced by its orthogonal condition, the so-called anti-Kirchhoff
condition (KC), see [1, 9, 12, 14] and the references therein. It is given by the
continuity of the outer normal derivatives at the ramification nodes (5) and by
vanishing potential sums at all vertices (4). Mathematically it stems from the self-
adjoint orthogonal boundary condition in the sense of the Y -boundary conditions
associated to corresponding Bochner-spaces, see [9].

As for the condition (CK), the fundamental paper by E. Yanagida [19] contains
a list of five exceptional graphs that do not allow stable nonconstant stationary
solutions. Moreover, he established some basic instability tools, as the instability
criterion in the presence of two different critical points in one edge. In 2015
the authors [7] showed that the same exclusion result for any metric graph with
sufficiently small edge lengths, as well as for any metric graph for the cubic balanced
case f (u) = u− u3, for f (u) = η sin(u) and for some other nonlinearities. Other
recent instability criteria, also for dynamical Kirchhoff conditions, can be found in
[10]. Finally, the authors [8] showed that in the fully autonomous case, there are no
stable stationary nonconstant solutions at all.

The present paper deals with the stability of stationary solutions of the flow on a
metric graph governed by autonomous reaction-diffusion edge equations under the
anti-Kirchhoff condition. To be more specific, on the edges kj of a metric graph we
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consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

uj ∈ C(
[
0, �j

]× [0,∞)) ∩ C2,1(
[
0, �j

]× (0,∞)) for 1 ≤ j ≤ N,

∂tuj = ∂2
j uj + f (uj ) on kj for 1 ≤ j ≤ N,

u = (
uj

)
N×1 satisfies (4) and (5)

(3)

with the transition condition at the vertices vi

∑

vi∈kj
uj (vi, t) = 0 for 1 ≤ i ≤ n, (4)

kj ∩ ks = {vi} �⇒ dij ∂juj (vi , t) = dis∂sus(vi, t) for 1 ≤ i ≤ n. (5)

Conceivably, we shall cite both conditions (4) and (5) together as (KC). Note
that (4) reduces to the 0-Dirichlet condition at boundary vertices.

The presentation is organized as follows. After some prerequisites and graph
theoretical preliminaries in Sects. 1 and 2 presents some basic facts about stationary
solutions, while Sect. 3 presents basic tools for the stability analysis for stationary
solutions. In particular, instability criteria in connection with the Rayleigh quotient
of the linearized eigenvalue equations at a stationary solution will be presented.
In Sect. 4 nonlinearities vanishing at 0 will be treated, in particular on trees and
non bipartite unicyclic graphs. In Sect. 5 it will be shown that on any finite metric
graph G, there is a nonlinearity such that there exists a stable nonconstant stationary
solution on G. This exhibits a remarkable difference with the (CK)-case, where
Yanagida’s exceptional graphs or others do never allow such solutions. In Sect. 6 it
will be shown that odd nonlinearities always exclude stable nonconstant stationary
solution eventually except those solutions that are constant on each edge and
belong to the kernel of the signless incidence matrix. This implies that on trees,
odd nonlinearities allow only the trivial solution as stable one. Finally, under the
condition f (0) = 0, it will be shown in Sect. 7 that problem (3) never has stable
nontrivial stationary solutions on a loop.

1 Metric Graphs

For any graph � = (V ,E,∈), the vertex set is denoted by V = V (�), the edge
set by E = E(�) and the incidence relation by ∈⊂ V × E. The valency of each
vertex v is denoted by γ (v) = #{k ∈ E v ∈ k}. Unless otherwise stated, all graphs
considered in this paper are assumed to be nonempty, connected and finite with

n = #V, N = #E.
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The vertices will be numbered by v1, . . . , vn, the respective valencies by γ1, . . . , γn,
and the edges by k1, . . . , kN . The boundary vertices Vb = {vi ∈ V γi = 1} will
be distinguished from the ramification nodes Vr = {vi ∈ V γi ≥ 2} and the
essential ramification nodes Vess = {vi ∈ V γi ≥ 3}. By definition, a circuit is
a connected and regular graph of valency 2. A path is a connected graph with two
distinct vertices of valency 1 while the other vertices are all of valency 2. For further
graph theoretical terminology we refer to [11, 18].

Moreover, we consider each graph as a connected topological graph in R
m, i.e.

V (�) ⊂ R
m and the edge set consists in a collection of Jordan curves

E(�) = {πj : [0, �j ] → R
m 1 ≤ j ≤ N}

with the following properties: Each support kj := πj

([0, �j ]
)

has its endpoints in
the set V (�), any two vertices in V (�) can be connected by a path with arcs in
E(�), and any two edges kj �= kh satisfy kj ∩ kh ⊂ V (�) and #(kj ∩ kh) ≤ 2.
The arc length parameter of an edge kj is denoted by xj . Unless otherwise stated,
we identify the graph � = (V ,E,∈) with its associated metric graph, network or
quantum graph

G =
N⋃

j=1

πj

([0, �j ]
)
,

especially each edge πj with its support kj . Throughout it will be assumed that all
πj ∈ C2([0, �j ],Rm). Thus, endowed with the induced topology G is a connected
and compact space in R

m. Throughout, we shall denote the total graph length by

L = L(�) =
N∑

j=1

�j .

The orientation of the graph � is given by the incidence matrix D(�) = (dik)n×N

with

dij =

⎧
⎪⎪⎨

⎪⎪⎩

1 if πj (�j ) = vi,

−1 if πj (0) = vi,

0 otherwise.

For functions defined on the edges uj : [0, �j ] → C we use the abbreviations

uj (vi) := uj (π
−1
j (vi)), ∂juj (vi) := ∂

∂xj
uj (xj )

∣∣∣
π−1
j (vi)

etc.
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Moreover, using u := (
uj

)
N×1, we shall abbreviate

∫

G

u dx =
N∑

j=1

∫ �j

0
uj (xj ) dxj .

Endowed with a usual product norm we introduce the following vector spaces for
k ∈ N and p ∈ [1,∞].

Vk(G) =
N∏

j=1

Ck[0, �j ], Ck(G) = {u ∈ Vk(G) u satisfies (1)},

Lp(G) =
N∏

j=1

Lp(0, �j ), H k(G) =
N∏

j=1

Hk(0, �j ),

Hk
KC(G) =

{
u ∈ Hk(G) u = (

uj

)
N×1 satisfies (4) and (5)

}
,

Hk
K0

(G) =
{
u ∈ Hk(G) u = (

uj

)
N×1 satisfies (4)

}
.

The validity of the anti-Kirchhoff conditions (4) and (5) in a function space will
be indicated by the subscript (KC), the one of (4) only by the subscript K0. The
validity of the classical Kirchhoff flow condition in spaces of continuous functions
on G will be indicated by the subscript K , e.g. C1

K(G) etc.
Note that V0

K0
(G) is a closed subspace of V0(G) endowed with the norm of

uniform convergence. As
{
u ∈ C1[0, 1] u′(0) = u′(1) = 0

}
is a dense subspace of

C[0, 1], V1
KC(G) is a dense subspace of V0

K0
(G). This will permit to minimize the

Rayleigh quotient introduced in (9) in H1
K0

(G) or in suitable subspaces of it.

2 Stationary Solutions

In the present context of reaction–diffusion–equations, a stationary solution is by
definition a solution that does not depend on time. Stationary solutions of Problem 3
satisfy

∫
G
f (u)dx = 0 in the (CK)-case. This is no longer true under (KC). Set

νi = dij ∂juj (vi , t) (6)

for some incident edge kj with vi .
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Lemma 2.1 A stationary solution u of (3) satisfies
∫

G

f (u)dx = −
n∑

i=1

γiνi and

∫

G

f (u) u dx = ‖u‖2
H 1

0 (G)
.

Proof The first assertion follows readily from the edge differential equations. As
for the second one, we conclude

∑

j

∫ �j

0
f (uj ) uj dxj =

∑

j

∫ �j

0

(
∂juj

)2
dxj −

∑

j

[
∂j uj (xj ) uj (xj )

]�j
0

=
∑

j

∫ �j

0

(
∂juj

)2
dxj −

∑

i

νi
∑

vi∈ej
uj (vi) =

∑

j

∫ �j

0

(
∂juj

)2
dxj .

�
Lemma 2.2 A stationary solution u of (3) on a bipartite graph satisfies

∫

G

∂u dx = 0.

Proof Using a source-sink-orientation of �, we conclude

∫

G

∂u dx =
∑

j

[
uj (xj )

]�j
0 =

∑

j

(
uj (�j )− uj (0)

) = 0.

�
Closing this section we pursue a Lyapunov-energy-calculus with

E(u) =
∫

G

(∂u)2

2
− F(u) dx, F (s) =

∫ s

0
f (η) dη.

Lemma 2.3 Let u be a solution of (3). Along u the energy decreases:

Ė(u) := d

dt
E(u) = −

∫

G

(∂tu)
2 dx.
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Proof We can follow a standard density argument using conditions (4) and (5):

Ė(u) =
∫

G

∂xtu∂xu− f (u)∂tu dx

=
∑

j

[
∂tuj ∂juj

]�j
0

︸ ︷︷ ︸
=0

−
∫

G

∂tu
(
∂2
xu+ f (u)

)

︸ ︷︷ ︸
∂t u

dx = −
∫

G

(∂tu)
2 dx,

since

∑

j

[
∂tuj ∂juj

]�j
0 =

∑

i

∑

j

dij ∂juj (vi, t)︸ ︷︷ ︸
νi (t)

∂t uj (vi, t) =
∑

i

νi (t)∂t
(∑

j

d2
ij uj (vi, t)

︸ ︷︷ ︸
=0

) = 0.

�
In order to establish the application of Lasalle’s principle, we have to add an extra
condition on F . For example, under the hypothesis

{
z ∈ R F(z) ≥ 0

}
bounded (7)

we obtain with M := maxR F+ < ∞ that E(u) ≥ − ∫
G
F(u) dx ≥ −ML. This

enables the application of Lasalle’s Principle [2] in order to conclude the following

Corollary 2.4 Under condition (7) the solutions u belonging to C
([0,∞);H 1(�)

)

∩ C1
(
(0,∞);H1

KC(�)
)

of (3) tend to stationary solutions as t → ∞ with respect
to ‖u‖H 1(�), since their ω-limits belong to the set of functions satisfying Ė(u) = 0.

3 Stability

Throughout, we use Lyapunov’s notion of stability. Conceivably, a stationary
solution w of problem (3) is called stable with respect to some norm ‖·‖G on G

if for each ε > 0, there exists a δ > 0 such that, for each initial data u0 ∈ C(G) with
‖u0 −w‖G < δ the solution of (3) exists in [0,∞) and satisfies

∀t > 0 : ‖u(·, t) −w‖G < ε.

Unless otherwise stated, we shall consider stability with respect to the L∞-norm.
Some important instability criteria can be established with the aid of the Rayleigh
quotient R(ϕ; u) of the linearized eigenvalue problem (8) at a stationary solution u



8 J. von Below and J. A. Lubary

as under (CK):

{
ϕ ∈ H2

KC(G),

∂2
j ϕj + f ′(uj )ϕj = −λϕj on kj , 1 ≤ j ≤ N,

(8)

R(ϕ; u) =

N∑

j=1

∫ �j

0

(
∂jϕj

)2 − f ′(uj )ϕ
2
j dxj

N∑

j=1

∫ �j

0
ϕ2
j dxj

. (9)

Negative values of the Rayleigh quotient lead to instability of u. Note that the
only possible equilibrium under (KC) is the trivial solution, whether � contains
boundary vertices or not. However, in contrast to the (CK)-case, we can allow
(KC)-test functions here that are constant on each edge. Introduce

�+(�) =
⎧
⎨

⎩c = (
cj
)
N×1 ∈ R

N ∀i ∈ {1, . . . , n} :
N∑

j=1

d2
ij cj = 0

⎫
⎬

⎭ (10)

In fact, �+(�) is the kernel of the signless incidence matrix of �, see also Sect. 4. Its
dimension amounts to N −n+c+(�), where c+(�) denotes the number of bipartite
connected components of �.

Lemma 3.1 Let u be a stationary solution of (3).

(a) If �+(�) �= {0} and

M = M(�) := max

⎧
⎨

⎩

N∑

j=1

c2
j

∫ �j

0
f ′(uj )dxj c ∈ �+,

N∑

j=1

c2
j = 1

⎫
⎬

⎭ > 0,

then u is unstable.

(b) If � contains an even circuit ζ such that
∫

ζ

f ′(u)dx > 0, then u is unstable.

(c) If � contains an Eulerian bipartite subgraph Z such that
∫

Z

f ′(u)dx > 0, then

u is unstable.
(d) If � contains a subgraph � with M(�) > 0, then M(�) > 0, and u is unstable.

Proof

(a) By compactness, the maximum M is attained for some c ∈ �+ with ‖c‖2 = 1.
Then R(c) < 0, and u has to be unstable.

(b) Under the hypothesis, �+ contains an alternating element belonging to �+
with entries ±1 along its support ζ that leads to M > 0.
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(c) By hypothesis, Z is the superposition of edge disjoint even circuits. The proof
is the same as for (b) with Z replacing ζ and an element belonging to �+ with
entries ±1 along its support Z that leads to M > 0.

(d) A maximizer c� of M on � can be extended to an admissible element to the
remaining edges in � by 0 leading to M(�) > 0. �

This clearly suggests that stability of a stationary solution is a rare property. The
Lemma applies e.g. to the nonlinearities f (u) = u2k+1. Note that (d) does not mean
that M is strictly increasing with respect to the subgraph relation. Moreover, one

cannot conclude from
∫ �j

0 f ′(uj )dxj > 0 on a sole edge kj that M(�) > 0, since
on a single edge graph �+ reduces to {0}. As

N∏

j=1

H 1
0 (0, �j ) ≤ H1

K0
(�),

a negative value of one sole edge Rayleigh quotient

∫ �j

0

(
∂jϕj

)2 − f ′(uj )ϕ
2
j dxj

∫ �j
0 ϕ2

j dxj

leads to instability of a stationary solution of (3), since the zero extension of ϕj to
� is an admissible function for R(ϕ; u). Thus we can state the following

Corollary 3.2 Let u be a stationary solution of (3).

(a) If on some edge kj there exists ϕj ∈ H 1
0 [0, �j ] such that

∫ �j

0

(
∂jϕj

)2 − f ′(uj )ϕ
2
j dxj < 0,

then u is unstable.
(b) If f ′(uj ) >

π2

�2
j

on some edge kj , then u is unstable.

Proof It remains to show (b). Let ϕ be an eigenfunction of ϕ′′ +λ1ϕ = 0 on [0, �j ]
belonging to λ1 = π2

�2
j

with ϕ(0) = ϕ(�j ) = 0 and
∫ �j

0 ϕ2 dxj = 1. Extend ϕ to �

by 0. Then ϕ is admissible for R(·; u) and

R(ϕ; u) =
∫ �j

0

(
∂jϕj

)2 − f ′(uj )ϕ
2
j dxj =

∫ �j

0

{
λ1 − f ′(uj )

}
ϕ2
j dxj < 0.

Now (a) permits to conclude. �
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We note in passing that the last assertions are also valid under (CK).

Lemma 3.3 If a stationary solution u of (3) satisfies

∫

G

f ′(u) u2dx >

∫

G

f (u) udx,

then u is unstable.

Proof

‖u‖2
L2(G)

R(u; u) =
∫

G
(∂u)2 dx −

∫

G
f ′(u) u2dx =

∫

G
f (u)udx −

∫

G
f ′(u) u2dx < 0.

�
This applies e.g. to the nonlinearity f (u) = u3 − u, since

∫
G
f ′(u) u2 −

f (u) udx = 2
∫
G u4dx. Thus, there is no stable stationary solution of (3) except the

equilibrium 0, whose domain of attraction contains all solutions u of (3) belonging
to

∏
j C

([
0, �j

]× [0,∞); [−α, α]) ∩ C2,1
([

0, �j
]× (0,∞)

)
for all [−α, α] ⊂

(−1, 1). This can be seen with the aid of the L2-norm as follows. Set

y(t) = ‖u(·, t)‖2
L2(G)

and y0 = y(0) = ‖u0‖2
L2(G)

,

multiply all edge differential equations by u, integrate over G and use ‖u‖4
L4(G)

≤
yα2 in order to get

1

2
ẏ =

∫

G

u∂2
xu+u4−u2 dx = −‖u(·, t)‖2

H 1
0 (G)

+‖u(·, t)‖4
L4(G)

−y ≤
(
α2 − 1

)
y.

Thus,

y(t) ≤ y0 e2
(
α2−1

)
t

and limt→∞ y(t) = 0. As the ω-limit of t �→ u(·, t) belongs to H 1
0

[
0, �j

]
on each

edge, see Corollary 2.4, we conclude

lim
t→∞‖u(·, t)‖∞,G = 0.

Next, we carry over Yanagida’s Two Points Lemma under (CK) [7, 8, 19] to the
anti-Kirchhoff condition (KC).
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Lemma 3.4 Suppose that u is a stationary solution of (3) that is nonconstant on
some edge kj . If there are two points on kj with 0 ≤ z1 < z2 ≤ �j such that

∂juj (z1) = ∂juj (z2) = 0,

then u is unstable.

Proof Define ψ ∈ ∏
k H

1
0 [0, �k] by

ψk(xk) =
{
∂juj (xj ) if j = k and z1 ≤ xk ≤ z2,

0 otherwise.

Then ψ is admissible in the Rayleigh quotient of u, and R(ψ; u) vanishes since its
numerator amounts to
∫ z2

z1

(∂jψj )
2 − f ′

j (uj )ψ
2
j dxj =

[
∂2
j uj ∂j uj

]z2

z1
−

∫ z2

z1

∂j

{
∂2
j uj + f (uj )

}
ψjdxj = 0.

Now consider the edge kj separately, on which ψj solves the linearized equation
∂2
j ψj + f ′(uj )ψj = 0 in H 1

0 [0, �j ]. Thus, ψj is an eigenfunction belonging to the

eigenvalue 0 in H 1
0 [0, �j ]. If

z2 − z1 < �j ,

ψj cannot belong to the minimal eigenvalue λ1 of the operator ∂2
j + f ′(uj ) in

H 1
0 [0, �j ], since the simple eigenvalue λ1 possesses an eigenfunction η ∈ H 1

0 [0, �j ]
that is positive in (0, �j ). Thus, λ1 < 0 and

∫ �j

0

(
∂jη

)2 − f ′(uj )η
2dxj = λ1

∫ �j

0
η2dxj < 0.

Now Corollary 3.2 permits to conclude in the case z2 − z1 < �j . If

z1 = 0, z2 = �j ,

then we have to apply a different argument. Note that an argument with a positive
eigenfunction in the whole graph does not apply, since the smallest eigenvalue of

the operator
(
∂2
j + f ′(uj )

)

N×1
on � is not simple in general, see [9] and Sect. 4.

However, if λ0 = min
{
R(ϕ; u) ϕ ∈ H1

K0
(G)

}
= 0, then ψ is not only an

eigenfunction as above, but a minimizer of R(·; u) and, thereby, satisfies (KC).
This can be seen as follows. Choose an arbitrary ξ ∈ H1

K0
(G). Then the minimizer
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property leads to

d

ds
R (ψ + sξ; u) s=0 = 0

and
∫

G

∂ψ∂ξ − f ′(u)ψξ dx = R(ψ; u)
∫

G

ψξ dx. (11)

For the special case of the eigenfunction ψ fulfilling the linearized edge equations
this leads to

∀ξ ∈ H1
K0

(G) : ∂jψj (�j ) ξj (�j )− ∂jψj (0) ξj (0) = 0.

Thus, ψ fulfills (KC), in particular ∂jψj (�j ) = ∂jψj (0) = 0. Consequently, as a
solution of a linear 2nd order equation, ψ has to vanish on kj which is impossible.
Again λ0 < 0, and in both cases u is shown to be unstable. �
We note in passing that (11) is a key step in showing that a minimizer of R(·; u)
satisfies (KC) using the Y -boundary condition setting [9].

Lemma 3.5 Suppose that the nonlinearity f is an odd function and that u is a
stationary solution of (3) that is nonconstant on some edge kj . If there are two
points on kj with 0 ≤ z1 < z2 ≤ �j such that

uj (z1)∂juj (z1) = 0 = uj (z2)∂juj (z2),

then u is unstable.

Proof Write v1 := πj (0) and v2 := πj (�j ). In the mixed case uj (z1) = ∂juj (z2) =
0, we construct a modified graph �̃ as follows, (see Fig. 1). Omit kj , add at v1 an
edge kN+1 of length z1 with boundary vertex vn+1. On kN+1 define u by restricting
uj to [0, z1] correspondingly.

At v2 replace uj by ũj on a new edge kj of length �̃j = �j − 3z1 + 2z2 between
v2 and a new boundary vertex vn+2 = πj (0) as follows:

ũj (x̃j ) =

⎧
⎪⎪⎨

⎪⎪⎩

−uj

(
x̃j + z1

)
if 0 ≤ x̃j ≤ z2 − z1,

−uj

(
2z2 − z1 − x̃j

)
if z2 − z1 ≤ x̃j ≤ 2z2 − 2z1,

uj

(
x̃j − 2z2 + 3z1

)
if 2z2 − 2z1 ≤ x̃j ≤ �j + 2z2 − 3z1.

Note that −uj is a solution of the same elliptic equation on kj since f is odd.
Moreover, ũj displays even reflexion of uj at x̃j = z2 − z1 and odd reflexion of uj

at x̃j = 2z2 − 2z1. By the imposed conditions, ũj ∈ C2[0, �̃j ]. On the remaining
edges ũ is defined by u. Now ũ is well-defined on the resulting graph �̃, in which
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old

v2 v2

z2 3(z2 – z1)

2(z2 – z1)

z2 – z1

z1

v1 v1

u’ = 0

u = 0

new

˜ z2

˜ z1

˜ z2

˜ z1

˜ z1
vn+2

vn+1

kN+1

Fig. 1 Proof of Lemma 3.5. On the l.h.s.: the edge kj in �; on the r.h.s. replacing kj by two edges
incident to boundary vertices in �̃

∂j ũj has two distinct zeros 0 < z2 − z1 and 3z2 − 3z1 on the new kj . Thus, by
Lemma 3.4, ũ cannot be stable on �̃, neither u can do so on �, since (KC) at
a boundary vertex reduces to the 0-Dirichlet condition, and, thereby, the stability
notions under (KC) on �̃ and � are equivalent.

In the case uj (z1) = uj (z2) = 0, ∂juj vanishes at some z3 ∈ [z1, z2] and the
mixed case shown above permits to conclude. �

Note that without the hypothesis on f being odd, the assertion of Lemma 3.5
is no longer true as it is well displayed by Example 5.1. A first application of
Lemma 3.5 settles the case when some uj vanishes in the nodes incident to the
edge kj .

Corollary 3.6 Let the nonlinearity f be odd. If uj ∈ H 1
0 [0, �j ] is nontrivial and

belongs to a stationary solution u of problem (3), then u is unstable.

Proof As uj cannot be constant, ∂juj has a zero in [0, �j ] which permits to
conclude with lemma (3.5) or with Picard–Lindelöff’s Theorem if the zero coincides
with one of the vertices of kj . �

In particular, with an odd nonlinearity f ,
∏N

j=1 H 1
0 (0, �j ) can never contain a stable

nontrivial stationary solution of the flow defined by problem (3) in H1
K0

(�). On
the other hand, they can occur under even nonlinearities, as it is well displayed by
Example 5.1. Moreover, nontrivial stable stationary solutions belonging to �+ can
occur under odd f , see Sect. 6.
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4 Nonlinearities Vanishing at 0

It is well-known [9] that

λ0(�) := min σ
(
−�KC;�

)

satisfies λ0(�) = λ1 > 0 if and only if � is a tree or a non bipartite unicyclic graph
and λ0(�) = 0 in all the other cases.

Lemma 4.1 Suppose f (0) = 0. If f ′(0) > 0, then the equilibrium 0 is unstable. If
f ′(0) < −λ0, then 0 is linearly stable.

Proof The linearized eigenvalue edge equations read ∂jϕj = (−λ− f ′(0)
)
ϕj . In

the first case minR(ϕ; 0) < 0, while in the second one minR(ϕ; 0) > 0. �
In fact, there is a much better result, though, in general, a comparison principle [5–7]
as under (CK) is not available under (KC).

Theorem 4.2 Suppose f (0) = 0 and f ′(0) < 0. Then 0 is a local attractor in
V0 (G; [−1, 1]) = ∏N

j=1 C0
([0, �j ]; [−1, 1]). More precisely, there are constants

β > 0 and 1 > δ > 0 such that for all 2 ≤ p < ∞ and for all solutions belonging
to V0 (G; [−δ, δ])

‖u‖Lp(G) < δL
1
p exp

(
−2β

p
t

)
.

In particular, 0 is stable with respect to ‖·‖Lp(G) for all 2 ≤ p ≤ ∞, and for all
solutions belonging to V0 (G; [−δ, δ]),

lim
t→∞‖u(·, t)‖∞,G = 0.

Proof As f ′(0) < 0, there are constants β > 0 and 0 < δ < 1 such that

f (z)

z
≤ −β < 0 for all |z| ≤ δ.

In particular, for functions taking their values in [−δ, δ] we have

f (u)u ≤ −βu2.

Set y(t) = ‖u(·, t)‖2
L2(G)

and y0 := y(0) = ‖u0‖2
L2(G)

. Then by (KC) as above,

1

2
ẏ =

∫

G

u∂2
xu+ f (u)u dx ≤ −βy.
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This shows that

0 ≤ y(t) ≤ y0 e−2βt ≤ y0 < δ2L

and limt→∞ y(t) = 0. Moreover, working with functions taking their values in

[−1, 1] and using ‖u‖Lp(G) < y
1
p , we get

‖u‖Lp(G) < δ
2
p L

1
p exp

(
−2β

p
t

)
.

This shows first that all ‖u‖Lp(G) are uniformly bounded from above by δ max {1, L}
and for all t ≥ 0, which in turn implies that

∀t ≥ 0 : lim
p→∞‖u(·, t)‖Lp(G) = ‖u(·, t)‖∞,G ≤ δ max {1, L} .

This shows that 0 is stable. Moreover, as the ω-limit of t �→ u(·, t) belongs to
H 1

0

[
0, �j

]
on each edge, see Sect. 2, we conclude

lim
t→∞‖u(·, t)‖∞,G = 0.

�
Remark 4.3 The stability result for 0 in Theorem 4.2 would follow readily by
considering a local positive maximum or a negative minimum and the edge
differential equations if a control at the nodes by a comparison principle would
be possible. Clearly one would like to conclude from ‖u0‖∞,G < δ alone that
‖u(·, t)‖∞,G < δ for t > 0, where u is a solution of problem (3) with initial
data u0. But, as typical for parabolic systems, this is very crucial. In fact, using
the classical invariance principle for parabolic systems, see e.g. [17], we can replace
the requirement u(·, t) ∈ V0 (G; [−δ, δ]) by

u(·, t) ∈
{
ϕ ∈ V0 (G) max

{|ϕ(vi)| 1 ≤ i ≤ n
} ≤ δ

}
for t ≥ 0,

since the flow generated by ż = f (z) has 0 as a global attractor in S := [−δ, δ]N
and since a.e. on ∂S, the scalar product of f with the outer normal vector field of
∂S is nonpositive.

It has been shown in [9] that 0 is not an eigenvalue of �KC on trees or on non
bipartite unicyclic graphs, since its algebraic multiplicity amounts to N−n+1 or to
N − n, according to its parity. The proof given there is readily extended to arbitrary
edge lengths. First, we note that a harmonic function on an arbitrary finite metric
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graph under (KC) is constant on each edge, since

0 =
∑

j

∫ �j

0

(
∂2
j uj

)
ujdxj = −

∑

j

∫ �j

0

(
∂juj

)2
dxj +

∑

i

νi
∑

vi∈kj
uj (vi)

= −
∑

j

∫ �j

0

(
∂juj

)2
dxj .

Thus, the eigenspace belonging to 0 of the Laplacian under (KC) is

E0(�;�KC) = �+(�).

Denote the adjacency relation between vertices by ∼ and introduce

M(�) = {
M M = (mih)n×n , ∀i, h ∈ {1, . . . , n} : vi �∼ vh ⇒ mih = 0

}

and, using e = (1)n×1,

M+(�) = {
M ∈ M(�) M∗ = M, Me = 0

}
.

Using [3, Section 6] we are led to the following conclusion.

Lemma 4.4 If � is a finite connected graph, then the geometric and algebraic
multiplicity of 0 as eigenvalue of �KC amount to

m(0) = dimM+(�) =
{
N − n+ 1 if � is bipartite,

N − n if � is not bipartite.

In particular, there are no nontrivial harmonic functions under (KC) if and only if
� is a tree or a non bipartite unicyclic graph.

Thus, the minimal eigenvalue λ1 of the Laplacian under (KC) of these graphs is
positive. This permits to deduce an unrestricted Poincaré inequality. As it stands, the
general case is more complicated than in the (KC)-case. Conceivably, we restrict
ourselves to the considered graph class. For the homogeneous eigenvalue problem

{
u ∈ H2

KC(G),

∂2
j uj = −λuj on kj for 1 ≤ j ≤ N,

the minimal Laplacian eigenvalue λ1 > 0 on � is given by

λ1 = min

⎧
⎨

⎩‖u‖
−2
L2(G)

N∑

j=1

∫ �j

0
(∂juj )

2dxj u ∈ H1
K0

(G)

⎫
⎬

⎭ .
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Thus, we can state the following

Lemma 4.5 Let � be a tree or a non bipartite unicyclic graph. Then u ∈ H1
K0

(�)

satisfies

‖u‖2
L2(�)

=
∫

�

u2dx ≤ 1

λ1

N∑

j=1

∫ �j

0
(∂j uj )

2dxj = 1

λ1
‖u‖2

H 1
0 (�)

.

This enables the following exclusion of nonconstant stationary solutions.

Theorem 4.6 Let � be a tree or a non bipartite unicyclic graph. Suppose f (0) =
0. Let Lip(f ) denote the Lipschitz constant of f in some interval [zmin, zmax]
containing 0. Then for all real η with

0 < η <
λ1

Lip(f )
(12)

the elliptic problem

{
u ∈ H2

KC(�),

∂2
j uj + ηf (uj ) = 0 on kj , 1 ≤ j ≤ N,

(13)

has no nontrivial solution taking values in [zmin, zmax]. In particular, problem (13)
cannot have nontrivial stable stationary solutions with the latter property.

Proof Let u be a solution of (13). According to Lemmas 2.1 and 4.5,

∑

j

∫ �j

0

(
∂juj

)2
dxj = η

∑

j

∫ �j

0
f (uj )uj dxj = η

∑

j

∫ �j

0

(
f (uj )− f (0)

)
ujdxj

≤ η Lip(f ) ‖u‖2
L2(�)

≤ η Lip(f )

λ1

∑

j

∫ �j

0

(
∂juj

)2
dxj .

This permits to conclude that u is constant on each edge, i.e. u ∈ �+. But for a tree
or a non bipartite unicyclic graph �+ = {0}, which permits to conclude. �
With the same rescaling technique as in [7, Corollary 4.9] we are led to the following

Corollary 4.7 Let � be a tree or a non bipartite unicyclic graph. Suppose f (0) =
0. If the edge lengths of the metric graph G are sufficiently small, then the elliptic
problem

{
u ∈ H2

KC(�),

∂2
j uj + f (uj ) = 0 on kj , 1 ≤ j ≤ N,
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has no nontrivial solution. In particular, there are no nonconstant, stationary
(stable) solutions of the parabolic problem (3).

For graphs of higher corank, the dimension of the eigenspace belonging to 0 can
be rather high by Lemma 4.4, and its orthogonal complement in L2(G) does not
allow a simple characterization as in the (CK)-case unless the tautological one in
order to get a suitable Poincaré inequality. We omit the details of the corresponding
exclusion result. Moreover, it seems that the condition f (0) = 0 is essential, as will
be illustrated in the following section.

5 Constant Nonlinearities

Example 5.1 Let � be a graph with all edge lengths equal to �. Suppose f ≡ C

with a non zero constant C, and consider on � the parabolic problem

⎧
⎪⎪⎨

⎪⎪⎩

uj ∈ C([0, �] × [0,∞)) ∩ C2,1([0, �] × (0,∞)) for 1 ≤ j ≤ N,

∂tuj = ∂2
j uj + C on kj for 1 ≤ j ≤ N,

u = (
uj

)
N×1 satisfies (KC).

(14)

Then w = (
wj

)
N×1 defined by

wj(x) = C

2
x(�− x)

is the only stationary solution of (14). This follows readily by considering u′′ = −C

on a single edge and on a circuit. Then reason by recurrence on N for the general
case.

Consider first the case that � is a tree or a non bipartite unicyclic graph with all
edge lengths equal to �. Then, in fact, w is a global attractor in V0(G) (or L2(G)),
and thereby stable, since for every solution u of (14),

δ := u−w ∈
(
C([0, �] × [0,∞)) ∩ C2,1([0, �] × (0,∞))

)N

solves the heat equation

{
∂tδj = ∂2

j δj on [0, �] for 1 ≤ j ≤ N,

δ = (
δj
)
n×1 satisfies (KC).

But the minimal eigenvalue of the Laplacian under (KC) on � satisfies λ1 > 0.
Thus, eigenfunction expansion and Dirichlet’s Theorem yield

‖u(·, t) −w‖∞,G ≤ const. e−λ1t ‖u(·, 0)− w‖∞,G .
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If � is neither a tree, nor a non bipartite unicyclic graph, then the minimal eigenvalue
of the Laplacian under (KC) is 0, and w is still seen to be stable, since

‖u(·, t)−w‖∞,G ≤ const. ‖u(·, 0)−w‖∞,G .

We note in passing that for C = 0, the trivial solution clearly is stable on any graph.
On the energy level, though we cannot apply Lasalle’s Principle, we calculate

E(u(·, t)) ↘ E(w) = N

(
C2

24
− C

12

)
.

Note that w is the only stationary solution of (14) on any finite metric graph with
equal edge lengths. This leads to the following

Corollary 5.2 On each finite metric graph with equal edge lengths, there is a
nonlinearity such that problem (3) has a stable stationary nonconstant solution.
More precisely, if � is a tree or a non bipartite unicyclic graph, then (14) has a
global attractor belonging to

∏N
j=1 H 1

0 (0, �j ) that is the only stationary solution.
If � is neither a tree nor unicyclic non bipartite, then (14) has a unique stationary
solution belonging to

∏N
j=1 H 1

0 (0, �j ) that is stable and nonconstant.

Thus, there are no exceptional abstract graphs under (KC), in contrast to Condition
(CK). According to a result by Yanagida [19] there are five exceptional graphs
that do not allow any stable stationary nonconstant solutions for any nonlinearity f

under (CK). But, we can also show the above result without the edge restriction.

Theorem 5.3 On each finite metric graph � there is a nonlinearity such that
problem (3) has a stable stationary nonconstant solution. More precisely, if � is
a tree or a non bipartite unicyclic graph, then the parabolic problem

⎧
⎪⎪⎨

⎪⎪⎩

uj ∈ C(
[
0, �j

]× [0,∞)) ∩ C2,1(
[
0, �j

]× (0,∞)) for 1 ≤ j ≤ N,

∂tuj = ∂2
j uj + C on kj for 1 ≤ j ≤ N,

u = (
uj

)
N×1 satisfies (KC)

(15)

with an arbitrary nonvanishing constant C, has a global attractor that is the only
stationary solution. If � is neither a tree nor unicyclic non bipartite, then (15) has
a unique stationary solution that is stable and nonconstant.

Proof In order to establish the existence of a unique stationary solution, the edge
differential equations lead to the following ansatz with w = (

wj

)
N×1 defined by

wj (xj ) = −C

2
x2
j + bjxj + cj
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with suitable coefficients bj and cj . Condition (4) leads at each vertex vi to

∑

dij=−1

cj +
∑

dij=1

[
bj�j + cj

] = C

2

∑

dij=1

�2
j (16)

Denoting the edges incident with the ramification node vi by ki1, . . . , kiγi , condi-
tion (5) leads at each such vi to

∀ν ∈ {2, . . . , γi} : di,i1bi1 − di,iνbiν = 1 + di,iν

2
�iν − 1 + di,i1

2
�i1, (17)

bearing in mind that

dij ∂jwj (vi) = 1 + dij

2
�j + dij bj =

⎧
⎪⎪⎨

⎪⎪⎩

−bj if dij = −1

bj − �j if dij = 1

0 otherwise.

Write the coefficients bj and cj in one 2N-column vector

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
...

bN

c1
...

cN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Equations (16) and (17) form 2N linear inhomogeneous equations that define a
2N × 2N-matrix M by the Hand Shaking Lemma. It is well-known [4, 6, 15, 16]
that M has full rank, since M is equivalent with a block diagonal matrix composed
by n blocks, each of them corresponding to a vertex vi and being of the form

⎛
⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ · · · ∗
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
. . .

. . . 0
1 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎠

γi×γi

.

The symbol ∗ stands for the entries 1 and �j stemming from (16). Thus, there is a
unique solution of My = g, where g stands for the corresponding inhomogeneous
terms defined by the edges lengths and the incidence factors contained in (16)
and (17). In turn, there is a unique nonconstant stationary solution w of (15).
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It remains to show the attractor and stability assertions about w, but as this proof
is identical with the argument in Example 5.1, we omit the details and conclude. �
Note that in Example 5.1 the vector y is given by bj = 1

2C and cj = 0. Note
furthermore that under (CK) there are no stationary solutions u ∈ C2

K(G) of
problem (15) at all on any finite metric graph, since such a solution would have
to fulfill

∫
G ∂2u dx = 0 by the Kirchhoff condition (2).

6 Odd Nonlinearities

If the nonlinearity f is an odd function, then u is a solution of (3) if and only if −u

shares the same property, and u is a stable stationary solution if and only if −u is
such a solution. If � consists in a single edge, we are looking for stationary solutions
of ∂tu = ∂2u+ f (u) in C2

0 [0, �]. Then Rolle’s Theorem and Lemma 3.5 or Picard–
Lindelöff’s Theorem lead to the exclusion of nontrivial stable stationary solutions
on an interval. In fact, it will be shown that on any finite graph, odd nonlinearities
admit only stable stationary solution u of (3) that belong to �+(�), in particular, for
�+(�) = {0}, only the trivial solution can be stable. In order to illustrate the anti-
Kirchhoff condition (KC), let us anticipate the proof for star graphs. If #Vess(�) =
1, then u = 0 at Vb(�) and the identical d1j ∂juj (v1) at the ramification node v1
lead to a zero of some ∂juj on some edge kj . Then Lemma 3.5 permits to conclude.
Next, the general bipartite case will be treated.

Theorem 6.1 If the nonlinearity f is an odd function, and if � is bipartite, then
a stable stationary solution u of (3) belongs to �+(�), i.e. u is constant on each
edge.

Proof As a bipartite graph, we can endow � with a sink-source-orientation, i.e. at
each node vi either all incident dij = −1 or all incident dij = 1. Let w be a stable
stationary solution of (3) on � that is nonconstant on some edges. On these edges
∂w vanishes at most once. Moreover, a sign change of ∂w cannot take place in a
vertex, unless all the incident derivatives vanish there.

By (KC) and by the sink–source–orientation, ∂w defines a continuous function
on �. Accordingly, � can be decomposed into connected components, where ∂w is
of constant sign. Thus, adding to V (�) the interior edge points where ∂w vanishes
at the boundary of such a connected component, we get an enlarged graph, that is
bipartite since on a circuit the number of sign changes of ∂w has to be even. Now
replace w by −w on appropriate components in order to achieve ∂w̃ ≥ 0 on an
enlarged bipartite graph �̃, where all the entities on the new graph will be marked
by .̃ Clearly, at the new nodes w̃ fulfills (KC), and w̃ is a stable stationary solution
of (3) on �̃. By connectedness of � and �̃, not counting the edges on which w̃ is
constant, it follows that ∂w̃ > 0 on all remaining edges of � except at most N

points. This is absurd, since
∫
G̃ ∂w̃ dx̃ = 0 by Lemma 2.2. �
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=

w1 w1

w
2

w
3

w
2 w

3

â

b̂

Γ’ Γ̂

a

b =

Fig. 2 Proof of Theorem 6.3. Constructing the graph �̃1 by identifying a with b̂ and b with â

Corollary 6.2 If the nonlinearity f is an odd function, and if � is a tree, then a
stable stationary solution u of (3) vanishes on the whole tree �.

Theorem 6.3 If the nonlinearity f is an odd function, then a stable stationary
solution u of (3) belongs to �+(�), i.e. u is constant on each edge.

Proof We have to find a bipartite enlargement �̃ of � such that a presumed
stationary solution w of (3) on � is unstable if its extension w̃ is unstable on �̃.
This can be achieved by using the fact that a graph is bipartite if and only if it
contains only circuits of even lengths. In fact, we can apply a well-known bipartite
covering technique form abstract graph theory (see Fig. 2). Suppose that � contains
an odd circuit ζ with M edges and vertices numbered by 1, . . . ,M such that vi and
vi+1 are adjacent, and such that the incidence mod M is given by

dij =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if i = j,

1 if i = j + 1,

0 otherwise.

(18)

Split the node vM into two nodes a and b of a modified graph �′ such that a =
πM−1(�M−1) is a boundary vertex and such that b = πM(0) has valency γM(�)− 1
in �′. Let π denote the path formed by the edges of ζ of length M in �′. Now take
a copy �̂ of �′ whose entities are all indicated by ˆ and on which w is identically
copied, i.e. ŵj = wj for all 1 ≤ j ≤ N . Next, identify a with b̂ and b with â and
get a new graph �̃1, in which π and π̂ form a circuit of length 2M . Moreover, by
construction, w̃(1) ∈ V2

KC(�̃1) is well-defined by w and ŵ, and w is stable on � if
and only if w̃ is stable on �̃1.
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If �̃1 is not yet bipartite, choose an odd circuit ξ and the corresponding ξ̂ and
proceed with both of them in one step in order to get a graph �̃2, in which ξ and ξ̂

are replaced by circuits of double length, and on which w̃(2) ∈ V2
KC(�̃2) is stable if

and only if w is stable on �.
If the original graph � has r odd circuits, then repeating this construction in

at most r steps leads to the desired bipartite graph �̃ on which the corresponding
stationary solution w̃ is stable on �̃ if and only if w is stable on �. Note that in
the k-th step leading to �̃k , 2k copies of the same odd circuit of � are treated as
above and replaced by circuits of common double length. This guarantees that after
at most r steps, the resulting graph is bipartite.

As at each step the stability or instability of the involved stationary solution are
maintained, Theorem 6.1 permits to conclude. �
In particular, for non bipartite unicyclic graphs, only the trivial solution can be
stable. In fact, the proof of Theorem 6.3 has shown the following

Corollary 6.4 Let f be a nonlinearity such that on all bipartite graphs � all
possible stable stationary solutions of (3) can only belong to �+(�). Then the same
is true for arbitrary metric graphs.

We close the section with an example that displays exactly two attractors under
(KC), as well as under (CK). It has been shown in [7] that on each finite graph
under (CK), the only stable stationary solutions of the edge differential equations
in (3) with f (u) = u−u3 are the equilibria±1. Here, we consider the same balanced
cubic nonlinearity under (KC) on an even circuit ζ with N = n vertices and edges.
Number the vertices and the edges such that djj = −1 and dj+1,j = 1 with indices
being taken modulo N . Then Lemma 3.1(b) applies in order to show the instability
of the one and only equilibrium 0. Moreover, � : C1

K(ζ ) → V1
KC(ζ ) defined by

�(w) =
(
(−1)jwj

)

N×1

establishes an isometric isomorphism with respect to the norms ‖·‖L∞(ζ ), ‖·‖L2(ζ ),

‖·‖H 1(ζ ) and ‖·‖H 1
0 (ζ )

. As f is an odd function, u ∈ C2,1
K (ζ × [0, T ]) is a solution

of all edge equations

∂tuj = ∂2
j uj + uj − u3

j , (19)

if and only if �(u) ∈ V2,1
KC (ζ × [0, T ]) solves all Eqs. (19). Thus, under (KC),

�(1) and �(−1) are the only stable stationary solutions on the even circuit ζ , and
the asymptotic solution behaviour under (CK) and (KC) correspond to each other
by the mapping �.

Clearly, this reasoning seems to be rather specific to even circuits and not to
be available on more general Eulerian graphs. However, it helps in determining
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the domains of attraction of �(1) = (
(−1)j

)
N×1 ∈ �+(ζ ) and �(−1) =(

(−1)j+1
)
N×1 ∈ �+(ζ ). Using the results from [7], those turn out to be

D (�(−1)) =
{
w0 ∈ V0

K0
(ζ ) lim

t→∞

∫

ζ

� (w(·, t)) dx = −L(ζ )

}
,

D (�(1)) =
{
w0 ∈ V0

K0
(ζ ) lim

t→∞

∫

ζ

� (w(·, t)) dx = L(ζ )

}
.

Besides these two attractors, however, there are solutions tending to the unstable
equilibrium 0, namely

D (0) =
{
w0 ∈ V0

K0
(ζ ) lim

t→∞ E(w(·, t)) = 0

}
.

7 Loops

If � is a loop, then the stationary case of problem (3) reduces to the antiperiodic
ordinary BVP on the interval [0, �]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u ∈ C2([0, �])

u′′ + f (u) = 0 on [0, �]
u(0) = −u(�)

u′(0) = −u′(�)

(20)

According to [13, p. 214], the minimal eigenvalue of the linearized EVP

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ ∈ H 2[0, �]
ϕ′′ + f ′(u)ϕ = −λϕ on [0, �]
ϕ(0) = −ϕ(�)

ϕ′(0) = −ϕ′(�)

(21)

has only eigenfunctions with exactly one zero in [0, �), and it is the only eigenvalue
bearing this property. If f is an odd function, then Theorem 6.3 assures that
problem (20) has no stable nontrivial solution. But, here a quite elementary
argument can be applied: ψ = u′ is an eigenfunction belonging to λ = 0 and
satisfies both boundary conditions in (20) by the differential equation for u, as f

is odd. If ψ has two zeros in [0, �), then u is unstable by Lemma 3.4. Thus, ψ is
an eigenfunction belonging to the minimal eigenvalue of (21), namely 0, and has
exactly one zero z1 ∈ [0, �). Now either Lemma 3.5 and the Intermediate Value
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Theorem apply, or, in the case of a double zero z1 of u, the unique solvability of the
Cauchy problem at z1 permits to conclude.

In the case of the cubic f (u) = u − u3 e.g., the corresponding Hamiltonian
phase plane displays very well that there is no stable nontrivial stationary solution.
The part of the trajectory corresponding to the solution ϕ of (20) and connecting(
ϕ(0), ϕ′(0)

)
with − (

ϕ(0), ϕ′(0)
)

has to cross the ϕ-axis and the ϕ′-axis. Then
Lemma 3.5 settles the instability. For general f ∈ C1, the procedure is more
complicated.

Theorem 7.1 If the nonlinearity fulfills f (0) = 0, then problem (20) has no stable
nontrivial solution on a loop.

Proof Clearly, the only possible constant solution of (20) is the trivial one. Suppose
that u is a nonconstant solution of (20). If u′(0) = 0, then u′(�) = 0, and Lemma 3.4
permits to conclude. Thus we can assume

u′(0) = −u′(�) �= 0.

By the Intermediate Value Theorem, there exists 0 < z1 < � such that u′(z1) = 0,
say 0 < z1 ≤ �

2 . Then, by uniqueness of the corresponding Cauchy problems at z1,

∀x ∈ [0, z1] : u (2z1 − x) = u(x),

in particular

u (2z1) = u(0) = −u(�), u′ (2z1) = −u′(0) = u′(�).

If z1 = �
2 , then u(�) = u(0) = −u(�) and u(�) = u(0) = 0. Thus, u ∈ C0[0, �].

Then we can reduce the loop problem to a sphere S
1 of length 2� with (CK) as

follows. Clearly, u has a sign, otherwise there would be another zero of u′. Say
u < 0 in (0, �). Set

ũ(x) =
{
u(x) if 0 ≤ x ≤ �,

−u (2�− x) if � ≤ x ≤ 2�,

f̃ (z) =
{
f (z) if z ≤ 0,

−f (−z) if z ≥ 0.

Then ũ ∈ C2 [0, 2�], f̃ ∈ C1(R), and ũ solves ũ′′ + f̃ (ũ) = 0 in [0, 2�] under
the conditions ũ(0) = ũ(2�) = 0, ũ′(0) = ũ′(2�), and ũ′′(0) = ũ′′(2�). Thus, ũ
is a stationary solution on the sphere that cannot be stable according to [19]. By
construction, u must be unstable on the loop.
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Thus, we can suppose

z1 <
�

2
.

If u′ (z2) = 0 with some 2z1 ≤ z2 ≤ �, Lemma 3.4 permits to conclude that u is
unstable, since z1 < z2 by construction. This applies in particular, if u (2z1) = 0,
since then u (2z1) = u(0) = u(�) = 0, which yields another zero of u′ lying in
[2z1, �] by Rolle’s Theorem. Thus, we can assume that u (2z1) �= 0 and

∀x ∈ [2z1, �] : u′(x) �= 0.

As u (2z1) = −u(�), there exists a unique z3 ∈ (2z1, �) such that u(z3) = 0 by the
Intermediate Value Theorem. Consider the uniquely extended solution v of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v ∈ C2([−z3 + 2z1, z3])

v′′ + f (v) = 0 on [−z3 + 2z1, z3]

v(−z3 + 2z1) = v(z3) = 0

v′(−z3 + 2z1) = −v′(z3)

(22)

that coincides with u on [0, z3]. With the same reasoning as in the case z1 = �
2 , it

follows that u is unstable in C [−z3 + 2z1, z3]. In detail,

∃ε0 > 0 ∀δ > 0 ∃ϕ0 ∈ C [−z3 + 2z1, z3] : ‖ϕ0 − u‖∞,[−z3+2z1,z3] < δ

& ∃t1 > 0 : ‖ϕ(·, t1)− u‖∞,[−z3+2z1,z3] ≥ ε0.

But, u restricted to [2z1, z3] and v(−x) evaluated in [0, z3 − 2z1] coincide by
solution uniqueness for the Cauchy problems at 2z1 and 0, respectively. By the
continuity of the flow and by solution uniqueness on [0, �], we conclude that u

is unstable on the loop under (KC). �
Example 5.1 yields a global attractor w(x) = 1

2x(�− x) for the nonlinearity f ≡ 1
on the loop and shows again that condition f (0) = 0 is essential for the assertion of
Theorem 7.1.

By the scalar character of problem (20), the classical attractivity and stability
criteria as in [7, Theorem 4.1] hold correspondingly.

Theorem 7.2 Suppose there are constants A and C with −∞ < A < 0 < C ≤ ∞
such that

f (0) = 0, f ′(0) < 0, f > 0 in (A, 0) and f < 0 in (0, C). (23)
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If u ∈ C([0, �]× [0,∞))∩ C2,1
K ([0, �]× (0,∞)) is a solution of (20) with an initial

condition u(·, 0) ∈ C([0, �]; [A,C)) such that u �≡ A, then

lim
t→∞‖u(·, t)‖∞,[0,�] = 0.

Acknowledgments Joachim von Below is grateful to the research group GREDPA at UPC
Barcelona for the invitation in 2017. José A. Lubary is grateful to the LMPA Joseph Liouville
at ULCO in Calais for the invitation in 2018.

References

1. Albeverio, S., Cacciapuoti, C., and Finco, D., Coupling in the singular limit of thin quantum
waveguides. J. Math. Phys. 48 (2007) 032103.

2. Amman, H., Ordinary differential equations, de Gruyter Berlin 1990.
3. Below, J. von, A characteristic equation associated with an eigenvalue problem on C2-

networks. Lin. Algebra Appl. 71 (1985) 309–325.
4. Below, J. von, Classical solvability of linear parabolic equations on networks, J. Differential

Equ. 72 (1988) 316–337.
5. Below, J. von, A maximum principle for semilinear parabolic network equations, in: J.

A. Goldstein, F. Kappel, W. Schappacher (eds.), Differential equations with applications in
biology, physics, and engineering, Lect. Not. Pure and Appl. Math. 133, M. Dekker Inc. New
York, 1991, pp. 37–45.

6. Below, J. von, Parabolic network equations, 2nd ed. Tübingen 1994.
7. Below, J. von and Lubary, J.A., Instability of stationary solutions of reaction–diffusion–

equations on graphs. Results. Math. 68 (2015),171–201.
8. Below, J. von and Lubary, J. A., Stability implies constancy for fully autonomous

reaction–diffusion equations on finite metric graphs. Networks and Heterogeneous Media 13
(2018),691–717.

9. Below, J. von and Mugnolo, D., The spectrum of the Hilbert space valued second derivative
with general self-adjoint boundary conditions. Linear Algebra and its Applications 439 (2013)
1792–1814.

10. Below, J. von and Vasseur, B., Instability of stationary solutions of evolution equations on
graphs under dynamical node transition, in: Mathematical Technology of Networks, ed. by
Delio Mugnolo, Springer Proceedings in Mathematics & Statistics 128 (2015), 13–26.

11. Biggs, N. L., Algebraic graph theory. Cambridge Tracts Math. 67, Cambridge University Press,
1967.

12. Cardanobile, S. and Mugnolo, D., Parabolic systems with coupled boundary conditions. J.
Differ. Equ. 247 (2009) 1229–1248.

13. Coddington, Earl N. and Levinson, N.. Theory of Ordinary Differential Equations (1955) Mc
Graw Hill.

14. Fulling, S.A., Kuchment, P., and Wilson, J.H., Index theorems for quantum graphs. J. Phys. A
40 (2007) 14165–14180.

15. Lubary, J.A., Multiplicity of solutions of second order linear differential equations on networks.
Lin. Alg. Appl. 274 (1998) 301–315.

16. Lubary, J.A., On the geometric and algebraic multiplicities for eigenvalue problems on graphs,
in: Partial Differential Equations on Multistructures, Lecture Notes in Pure and Applied
Mathematics Vol. 219, Marcel Dekker Inc. New York, (2000) 135–146.



28 J. von Below and J. A. Lubary

17. Weinberger, H. F., Invariant sets for weakly coupled parabolic and elliptic systems. Rendiconti
di Mat. 8 (1975) 295–310.

18. Wilson, R. J.. Introduction to graph theory, Oliver & Boyd Edinburgh, 1972.
19. Yanagida, E., Stability of nonconstant steady states in reaction–diffusion systems on graphs.

Japan J. Indust. Appl. Math. 18 (2001) 25–42.



Many-Particle Quantum Graphs: A
Review

Jens Bolte and Joachim Kerner

Abstract In this paper we review recent work that has been done on quantum
many-particle systems on metric graphs. Topics include the implementation of
singular interactions, Bose-Einstein condensation, solvable models and spectral
properties of some simple models in connection with superconductivity in quantum
wires.

1 Introduction

Quantum graph models describe the motion of particles along the edges of a
metric graph. They have become popular models in various areas of physics and
mathematics as they combine the simplicity of one-dimensional models with the
potential complexity of graphs. One-particle quantum graphs and their applications
are described in detail in [KS99b, GS06, EKK08, BK13a].

Many-particle quantum systems are of fundamental importance in condensed
matter as well as in statistical physics, see [MR04a, Sch06, CCG11]. In par-
ticular, phenomena like Bose-Einstein condensation, Anderson localisation and
superconductivity have attracted much attention both in a phenomenological and
a mathematical context. However, those phenomena are notoriously difficult to
address, so that models that are promising to yield interesting results while still
being sufficiently accessible are in demand. This was a major reason to develop and
study quantum many-particle models on graphs. Another reason lies in the growing
importance of one-dimensional, nano-technological devices [HV16, GG08].
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Among early quantum graph examples are models of two particles with singular
interactions on simple graphs [MP95, CC07, Har07, Har08], where some basic
spectral properties were studied. Other approaches involve quantum field theory
on graphs (see, e.g., [BM06, Sch09]) where, due to the presence of vertices and
the finite lengths of edges, translation invariance is broken. This leads to the
presence of symmetry algebras that are of interest in their own right [MR04b]. In
the context of quantum integrability, these symmetry algebras play a role in the
construction of many-particle quantum models on graphs in which one can represent
eigenfunctions in terms of a Bethe-ansatz [CC07, BG17, BG18]. In this context also
extensive studies of non-linear Schrödinger equations (see, e.g., [Noj14, Cau15])
are of particular interest.

The phenomenon of Anderson localisation, which is known to occur in a large
class of systems governed by random Schrödinger operators [CFKS87, Sto01], has
been investigated for interacting particles on graphs in [Sab14].

When particles are indistinguishable, the particle exchange symmetry has to be
implemented. In three or more dimensions this leads to the well-known Fermi-
Bose alternative. However, in lower dimensions more options may become available
including, e.g., the possibility of anyons in two dimensions [LM77]. In models
of discrete quantum graphs the possible exchange symmetry representations were
identified in [HKR11, HKRS14], and a whole range of exotic options were found;
see also [MS17] for recent developments in this direction.

In this paper we mainly review our own contributions to many-particle quantum
graphs. This includes the construction of two types of singular pair interactions.
The first one [BK13b] is closely related to vertices and can be seen as a model
of interactions between particles that is mediated by the presence of an impurity
(thought of as being located in a vertex); this type of interactions is similar to
the one introduced in [MP95]. The second type of singular interactions [BK13c]
are the more familiar δ-pair interactions. They are models of very short-range, or
contact interactions. When implemented for bosons, these interactions lead to a
Lieb-Liniger gas [LL63] on a graph, and in the limit of hardcore interaction they
lead to a Tonks-Giradeau gas [Gir60]. For all of these models it has been shown that
they can be rigorously implemented with self-adjoint Hamiltonians and it has been
proven that their spectra are discrete and the eigenvalues follow a Weyl law.

Due to a well-known theorem of Hohenberg [Hoh67], free Bose gases in one
dimension are often said to not display Bose-Einstein condensation (BEC). This
statement, however, is only true if in finite volume one imposes Dirichlet or other
standard boundary conditions. It has been known though that non-standard boundary
conditions may lead to cases where a finite number of eigenvalues are negative
and remain so in the thermodynamic limit, such that in this limit a spectral gap
below the continuum develops. Such a scenario then leads to BEC into the negative-
energy ground state [LW79, Ver11]. A similar behaviour occurs for free bosons
on graphs, and it is possible to fully characterise all boundary conditions where
this is the case [BK14]. For a gas of bosons with pairwise repulsive hardcore
interactions, a suitable Fermi-Bose mapping, however, shows that no condensation
can be expected. Furthermore, it can be shown that arbitrarily small repulsive
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pair interactions prohibit a Bose gas on a graph to condense into the free ground
state [BK16].

In statistical mechanics solvable models play a significant role. In this context
solvability refers to the fact that eigenfunctions of the Hamiltonan have a simple
representation in terms of a so-called Bethe ansatz [Bet31, Gau14]. This form of the
eigenfunctions also leads to a characterisation of eigenvalues through finitely many
secular equations. The Lieb-Liniger gas [LL63] of N bosons with δ-interactions on
a circle is an example of a solvable model and its version on an interval [Gau71]
can be seen as a first example where vertices play a role. Vertices of degree two
(and higher) present obstacles to the solvability of models with δ-interactions. A
modification of the interactions that preserves solvability when one vertex of degree
two is present was found in [CC07]. The basic idea behind this construction can be
extended to arbitrarily (finitely) many vertices of any (finite) degree [BG17], as well
as to any (finite) number of particles [BG18].

In the final section we are concerned with a two-particle model on a simple
non-compact quantum graph, namely the half-line R+, which can be thought
of as a quantum wire. Besides singular interactions localised on the vertex at
zero [KM16, EK17] and contact interactions of the Lieb-Liniger type, we introduce
a binding potential that leads to a pairing of the two particles [KM17, Kerb, Ker18].
We also provide generalisations of this model by considering singular two-particle
interactions whose locations are randomly distributed along the half-line [Kera],
and by taking into account surface defects in coupling the continuous half-line to
a discrete graph [Kerc]. In all of these cases we are mainly interested in describing
spectral properties of the associated Hamiltonians. Using the acquired knowledge
about the spectrum we are able to investigate Bose-Einstein condensation of pairs.
In this sense, these results can be seen as statements related to superconductivity in
quantum wires. Note here that arguably the first results regarding the superconduc-
tivity on graphs were obtained in [dG81a, dG81b, Ale83].

2 Preliminaries

2.1 One-Particle Quantum Graphs

A quantum graph is a metric graph � with a differential operator that serves as
Hamiltonian operator describing the motion of a particle along the edges of the
graph, see [GS06, BK13a]. A metric graph is a (finite) combinatorial graph with
a metric structure that arises from assigning lengths to edges. Let V be the set of
vertices and E = Eint ∪ Eext be the set of edges. Then every e ∈ Eint, an internal
edge, is adjacent to two distinct vertices, and every e ∈ Eext, an external edge,
is adjacent to a single vertex. A metric structure is introduced by assigning finite
lengths to internal edges; external edges are considered to be of infinite length. In
this way every e ∈ Eint is identified with an interval [0, le] whereas every e ∈ Eext is
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identified with a copy of the real semi-axis [0,∞). Graphs without external edges,
E = Eint, are compact.

One now introduces functions on �,

ψ = (ψ1, . . . , ψE) , (2.1)

where E = |E | and ψe : [0, le] → C for internal edges and ψe : [0,∞) → C for
external edges. In this way one defines the Hilbert space

L2(�) :=
⊕

e∈Eint

L2(0, le)
⊕

e∈Eext

L2(0,∞) , (2.2)

as well as the Sobolev spaces

Hm(�) :=
⊕

e∈Eint

Hm(0, le)
⊕

e∈Eext

Hm(0,∞) . (2.3)

A Hamiltonian operator H = −�+V is a self-adjoint operator (in many cases with
domain D ⊂ H 2(�)) that acts on functions on an edge as

(Hψ)e = −ψ ′′
e + Veψe , (2.4)

where V = (V1, . . . , VE) is a potential function. In many quantum graph models,
however, one considers the case V = 0.

In the following we shall restrict our attention to compact graphs, although the
examples in Sect. 6 will be non-compact; the necessary modifications are more or
less obvious.

In order to characterise domains D of self-adjointness one has to impose
boundary conditions at the vertices on functions in the domain. We denote boundary
values of functions as

ψbv =
(
ψ1(0), . . . ψE(0), ψ1(l1), . . . , ψE(lE)

)
, (2.5)

and of inward derivatives as

ψ ′
bv =

(
ψ ′

1(0), . . . ψ
′
E(0),−ψ ′

1(l1), . . . ,−ψ ′
E(lE)

)
. (2.6)

Self-adjoint realisations of H can be obtained as maximal symmetric extensions of
the operator with minimal domain C∞

0 (�) (see, e.g., [KS99a]). Their domains can
be uniquely parametrised in terms of an orthogonal projector P and a self-adjoint
map L, such that P⊥LP⊥ = L, on the space C2E of boundary values, as [Kuc04]

D(P,L) = {
ψ ∈ H 2(�) : (P + L)ψbv + P⊥ψ ′

bv = 0
}
. (2.7)
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It is often useful to work with quadratic forms instead of self-adjoint operators,
making use of the fact that a semi-bounded (from below) self-adjoint operator
defines a unique, semi-bounded and closed quadratic form, and vice versa [BHE08].
The form associated with a quantum graph Laplacian −� on the domain (2.7) is
[Kuc04]

Q[ψ] =
∫

�

|∇ψ|2 dx − 〈ψbv, Lψbv〉C2E , (2.8)

with form domain

DQ = {
ψ ∈ H 1(�) : Pψbv = 0

}
. (2.9)

The boundary conditions prescribed in (2.7) and (2.9) do not necessarily respect the
connectivity of the combinatorial graph. The latter will, however, be the case for
local boundary conditions, where

P =
⊕

v∈V
Pv and L =

⊕

v∈V
Lv , (2.10)

and Pv , Lv act on the subspace Cdv of boundary values at the edge ends adjacent to
the vertex v ∈ V . Here dv is the degree of the vertex v.

A quantum graph Hamiltonian H = −�+ V defined on a domain (2.7) is self-
adjoint, bounded from below, and has compact resolvent (note that the latter fails
to hold for non-compact graphs). Hence its spectrum is real, bounded from below,
discrete and eigenvalues accumulate only at infinity. In the most relevant case of
V = 0, one can characterise eigenvalues through a secular determinant. One first
defines a (vertex) scattering matrix

S(k) := −P − (L+ ikP⊥)−1(L− ikP⊥) , (2.11)

where k ∈ C is such that k2 is a spectral parameter for −�, and then a matrix

T (k) :=
(

0 eikl

eikl 0

)
(2.12)

encoding the metric information about �. Here eikl is a diagonal E×E matrix with
diagonal entries eikle , e = 1, . . . , E. Defining U(k) := S(k)T (k), one can show
[KS06] that k2 is a non-zero eigenvalues of −� of multiplicity m(k), iff k is a zero
of

det
(
1− U(k)

)
(2.13)
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of order m(k). An eigenvalue zero has to be treated separately, see [KS06, BE09,
BES15]. A similar, slightly more complicated condition can be obtained for
operators of the form H = −�+ V , see [BER15].

The secular equation (2.13) can be used to derive a trace formula [Rot83,
KS99b, KN05, Win08, BE09] that expresses spectral functions in terms of sums
over periodic orbits on the graph.

2.2 Many-Particle Kinematics

Following the general construction of systems of several (distinguishable) particles
from given one-particle systems in quantum mechanics, the Hilbert space of N

distinguishable particles on a metric graph � is

HN = L2(�)⊗ · · · ⊗ L2(�) . (2.14)

Vectors in the tensor product are collections of functions ψe1...eN ∈ L2([0, le1] ×
· · · × [0, leN ]). These are functions of N variables describing the positions of the
particles on the N edges e1, . . . , eN , which do not need to be all different. In a
slight abuse of notation we shall view these collections of functions as functions on
the domain

D
(N)
� :=

⋃

e1...eN

(0, le1)× · · · × (0, leN ) , (2.15)

such that we shall also use the notation HN = L2(D
(N)
� ).

N-particle observables are self-adjoint operators on HN . An operator O that
respects the tensor product structure (2.14) of the Hilbert space,

O =
N∑

i=1

1⊗ · · · ⊗ 1⊗Oi ⊗ 1 · · · ⊗ 1 , (2.16)

does not detect any correlations or interactions between particles. A Hamiltonian
describing particle interactions, therefore, cannot be of this product form. In other
words, particle interactions will be implemented by choosing a Hamiltonian that
does not have the product structure. This can be achieved either in the form of, say,
a potential

V (x1, . . . , xN) =
N∑

i,j=1

Vp(xi, xj ) (2.17)
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with explicit pair interactions. However, one can also implement interactions by
choosing an operator domain for an N-particle Laplacian −�N , acting as

(−�Nψ)e1...eN = −∂2ψe1...eN

∂x2
e1

− · · · − ∂2ψe1...eN

∂x2
eN

, (2.18)

that does not respect the tensor product structure for the operator.
When the N particles are indistinguishable, the exchange symmetry has to be

implemented in the kinematic set up of the quantum system. If one adopts the Bose-
Fermi alternative, the only relevant representations of the symmetric group will
be the totally symmetric one (for bosons) and the totally anti-symmetric one (for
fermions). The quantum state spaces then are the totally symmetric and the totally
anti-symmetric subspaces HN,B and HN,F , respectively, of (2.14).

3 Singular Pair Interactions

A possible way of introducing interactions is to violate the tensor product struc-
ture (2.16) with boundary conditions, either at the boundaries of the domains
[0, le1] × · · · × [0, leN ], or at additional boundaries introduced for the purpose of
generating other types of interactions. Typically, such boundary conditions will lead
to singular interactions that can formally be expressed in terms of δ-functions, see
e.g. [BEKS94, BMLL13].

3.1 Vertex-Induced Singular Interactions

Boundary conditions imposed at the boundaries of [0, le1] × · · · × [0, leN ] alone
correspond to interactions that act when at least one particle sits in a vertex
(corresponding to xej = 0 or xej = lej ). Hence we say that such interactions are
vertex induced. An example for a pair of particles on the same edge (of length l)
would be the two-dimensional Laplacian plus a formal potential of the form

v(x1, x2)
[
δ(x1)+ δ(x1 − l)+ δ(x2)+ δ(x2 − l)

]
. (3.1)

A version of such an interaction on a Y -shaped graph can be found in [MP95].
Constructing N-particle Laplacians with boundary conditions is not as straight

forward as for one-particle Laplacians. The reason for this is that the minimal
symmetric operator, which is an N-particle Laplacian with domain C∞

0 (D
(N)
� ), does

not have finite deficiency indices. For that reason it is more appropriate to construct
self-adjoint realisations of the N-particle Laplacian via their associated sesqui-linear
forms.



36 J. Bolte and J. Kerner

In the following we restrict our attention to N = 2, noting that this case
contains all the essential steps in order to construct N-particle Hamiltonians with
pair interactions. As a first step we simplify the notation in that we define

ψe1e2(xe1, ye2) = ψe1e2(le1x, le2y) (3.2)

with x, y ∈ (0, 1). The 4E2 boundary values of functions ψ ∈ H 1(D
(2)
� ) and

derivatives of functions ψ ∈ H 2(D
(2)
� ) then are

ψbv(y) =

⎛

⎜⎜⎜⎝

√
le2ψe1e2(0, le2y)√
le2ψe1e2(le1 , le2y)√
le1ψe1e2(le1y, 0)√
le1ψe1e2(le1y, le2)

⎞

⎟⎟⎟⎠ and ψ ′
bv(y) =

⎛

⎜⎜⎜⎝

√
le2ψe1e2,x (0, le2y)

−√
le2ψe1e2,x (le1 , le2y)√
le1ψe1e2,y (le1y, 0)

−√
le1ψe1e2,y (le1y, le2)

⎞

⎟⎟⎟⎠ .

(3.3)

Here y ∈ [0, 1] and the indices e1e2 run over all E2 possible pairs with e1, e2 =
1, . . . , E.

With the one-particle form domain (2.9) in mind we now introduce bounded and
measurable maps P,L : [0, 1] → M(4E2,C) such that for a.e. y ∈ [0, 1],
1. P(y) is an orthogonal projector,
2. L(y) is a self-adjoint endomorphism on kerP(y).

With these maps we can define the quadratic form,

Q
(2)
P ,L[ψ] := 〈∇ψ,∇ψ〉L2(D�)

− 〈ψbv, L(·)ψbv〉L2(0,1)⊗C4E2

=
E∑

e1,e2=1

∫ le2

0

∫ le1

0

(∣∣ψe1e2,x(x, y)
∣∣2 + ∣∣ψe1e2,y(x, y)

∣∣2
)

dx dy

−
∫ 1

0
〈ψbv(y), L(y)ψbv(y)〉

C4E2 dy ,

(3.4)

and prove the following result [BK13b].

Theorem 3.1 Given maps P,L : [0, 1] → M(4E2,C) as above that are bounded
and measurable, the quadratic form (3.4) with domain

DQ(2) = {ψ ∈ H 1(D�) : P(y)ψbv(y) = 0 for a.e. y ∈ [0, 1]} (3.5)

is closed and semi-bounded (from below).

The semi-bounded, self-adjoint operator associated with this form via the
representation theorem for quadratic forms [BHE08] can be identified as a self-
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adjoint realisation of the Laplacian when its domain is contained in H 2(D
(2)
� ); in

this case the form is said to be regular.
In order to identify regular forms we need to impose further restrictions on the

maps P and L. The first one is that they are block-diagonal, in the form

M(y) =
(
M̃(y) 0

0 M̃(y)

)
, (3.6)

with respect to an arrangement of the components of (3.3) where the upper two
components for all pairs e1, e2 are separated from the lower two components. Then
we obtain the following result [BK13b].

Theorem 3.2 Let L be Lipschitz continuous on [0, 1] and let P be of the block-
diagonal form (3.6). Assume that the matrix entries of P̃ are in C3(0, 1) and possess
extensions of class C3 to some interval (−η, 1 + η), η > 0. Moreover, when y ∈
[0, ε1] ∪ [l − ε2, l], with some ε1, ε2 > 0, suppose that L(y) = 0 and that P̃ (y) is
diagonal with diagonal entries that are either zero or one. Then the quadratic form
Q

(2)
P ,L is regular. The associated semi-bounded, self-adjoint operator is a Laplacian

with domain

D2(P,L) := {ψ ∈ H 2(D
(2)
� ) : (P (y)+L(y))ψbv (y)+P⊥(y)ψ ′

bv(y) = 0 for a.e. y ∈ [0, 1]} .
(3.7)

Note the similarity of (3.7) with (2.7).
As one would expect from a quantum systems with a configuration space of

finite volume, the spectrum of a two-particle Laplacian with domain (3.7) is discrete.
Moreover, a Weyl law for the eigenvalue count holds: Let λn, n ∈ N, denote the
eigenvalues of the operator, then

N(λ) := #{n ∈ N : λn ≤ λ} ∼ L2

4π
, λ →∞ , (3.8)

where L = le1 + · · · + leE is the total length of the metric graph, see [BK13b].
The constructions above can be carried over to bosonic or fermionic systems in

a straight forward manner; for details see [BK13b].

3.2 Contact Interactions

Realistic two-particle interactions are often of the form (2.17). When the range of
the interaction is small one can model the pair potential with a Dirac-δ, so that the
formal N-particle Hamiltonian is

HN = −�N + α
∑

i<j

δ(xi − xj ) . (3.9)
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Here �N denotes the N-particle Laplacian and α ∈ R is a constant determining
the interaction strength. In this way an interaction takes place when (at least) two
particles are at the same position and, therefore, one speaks of a contact interaction.
In order to implement contact interactions in a self-adjoint operator one has to
impose boundary conditions along hyperplanes in the configuration space of N

particles that are characterised by equations xi = xj . Contact interactions for
bosons on a circle have, e.g., been studied in much detail in the form of the Lieb-
Liniger model [LL63], and for distinguishable particles on infinite star graphs in
[Har07, Har08].

A self-adjoint operator representing the formal expression (3.9) can be defined
as an extension of the N-particle Laplacian with domain C∞

0 (D
(N)
� ). This can be

done much in the same way as above for the vertex-induced singular interactions
after additional boundaries have been introduced to the domain (2.15). As contact
interactions require two particles to be on the same edge, components in (2.15)
where e1, . . . , eN are N distinct edges do not contribute. Taking the example of
N = 2 as for the vertex-induced singular interactions above, one introduces the
subdivision

Dee := [0, le] × [0, le] = D+
ee ∪D−

ee , (3.10)

of diagonal domains, where

D+
ee := {(x, y) ∈ Dee : x ≥ y} and D−

ee := {(x, y) ∈ Dee : x ≤ y} . (3.11)

These subdivisions modify the total domain D
(2)
� , see (2.15). The resulting domain

with the additional boundaries is denoted as D
∗(2)
� .

Boundary values of components ψe1e2 of functions ψ ∈ H 2(D
∗(2)
� ) and their

derivatives are as in (3.3) when e1 �= e2. For the remaining components, however,
the additional boundaries lead to the boundary values

ψee,bv(y) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
leψ

−
ee(0, ley)√

leψ
+
ee(le, ley)√

leψ
+
ee(ley, 0)√

leψ
−
ee(ley, le)√

leψ
+
ee(ley, ley)√

leψ
−
ee(ley, ley)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and ψ ′
ee,bv(y) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
leψ

−
ee,x(0, ley)

−√leψ
+
ee,x(le, ley)√

leψ
+
ee,y(ley, 0)

−√leψ
−
ee,y(ley, le)√

2leψ+
ee,n(ley, ley)√

2leψ−
ee,n(ley, ley)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.12)

for y ∈ [0, 1]. Here ψ±
ee : D±

ee → C and

ψ±
ee,n :=

±1√
2

(
ψ±

ee,x − ψ±
ee,y

)
(3.13)

is the normal derivative along the diagonal part of the boundary.
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The space C
n(E), n(E) = 4E2 + 2E, of boundary values decomposes into a

4E2-dimensional subspace Wvert of vertex-induced boundary values as in Sect. 3.1,
and a 2E-dimensional subspace Wcont of boundary values on diagonals associated
with contact interactions. Introducing maps P and L on [0, 1] that take values in
the orthogonal projectors and self adjoint maps on Wvert ⊕ Wcont , respectively, in
the same way as in Sect. 3.1, their restrictions to Wvert should satisfy the same
properties as above. The restrictions to the edge-e subspace of Wcont should take
the form

Pcont,e = 1

2

(
1 −1
−1 1

)
and Lcont,e = −1

2
α(y)12 , (3.14)

where α : [0, 1] → R is a possibly varying, Lipschitz-continuous interaction
strength. With boundary conditions as described in (3.7) this choice implies
continuity of functions across diagonals,

ψ+
ee(ley, ley) = ψ−

ee(ley, ley) , (3.15)

and satisfies jump conditions for the normal derivatives,

ψ+
ee,n(ley, ley)+ ψ−

ee,n(ley, ley) =
1√
2
α(y)ψ±

ee(ley, ley) . (3.16)

These conditions ensure a rigorous, self-adjoint realisation of the δ-type contact
interactions (3.9). The operator is a two-particle Laplacian with domain (3.7), where
now

P = Pvert ⊕ Pcont and L = Lvert ⊕ Lcont . (3.17)

Hardcore contact interactions correspond to Dirichlet conditions along all diagonal
boundaries. These conditions follow from δ-type interactions by taking the limit
α → ∞ (the convergence is in the sense of forms, see [Kat95]). For more detail
see [BK13c].

As in the case of vertex-induced singular interactions, the spectrum of the two-
particle Laplacian with domain (3.7) and (3.17) is discrete and the Weyl law (3.8)
holds [BK13c].

3.3 A Lieb-Liniger Model on Graphs

The contact interactions of Sect. 3.2 offer an opportunity to extend the Lieb-Liniger
model of N bosons with δ-interactions on a circle to arbitrary metric graphs.
Implementing bosonic symmetry first requires to restrict the N-particle Hilbert
space HN , see (2.14), to its totally symmetric subspace HN,B . The projector �B
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to that subspace acts on vector ψ ∈ HN as

(�Bψ)e1...eN = 1

N !
∑

π∈SN
ψeπ(1)...eπ(N)

, (3.18)

where SN denotes the symmetric group. In order to implement δ-type contact
interactions one has to dissect the hyper-rectangles (0, le1) × · · · × (0, leN ) with
at least two coinciding edges, ei = ej with i �= j , along the hyperplanes xei = xej .

The resulting configuration space is D∗(N)
� . On the hyperplanes we impose boundary

conditions that are equivalent to (3.15)–(3.16).
The remaining, vertex related boundary values can be simplified by making use

of the particle exchange symmetry. For functions � ∈ H 1
B(D

∗(N)
� ) they are

ψbv,vert (y) =
( √

le2 . . . leN ψe1...eN (0, le2y1, . . . , leN yN−1)√
le2 . . . leN ψe1...eN (le1, le2y1, . . . , leN yN−1)

)
, (3.19)

and for derivatives,

ψ ′
bv,vert (y) =

( √
le2 . . . leNψe1...eN ,x1

e1
(0, le2y1, . . . , leN yN−1)

−√
le2 . . . leNψe1...eN ,x1

e1
(le1 , le2y1, . . . , leN yN−1)

)
, (3.20)

where y = (y1, . . . , yN−1) ∈ [0, 1]N−1.
Introducing maps Lvert , Pvert : [0, 1]N−1 → M(2EN,C) in analogy to (3.17),

we are now in a position to introduce the quadratic form

Q
(N)
B [ψ] = N

∑

e1...eN

∫ le1

0
. . .

∫ leN

0
|ψe1...eN ,xe1

(xe1 , . . . , xeN )|2 dxeN . . . dxe1

−N

∫

[0,1]N−1
〈ψbv,vert , Lvert (y)ψbv,vert 〉

C2EN dy

+ N(N − 1)

2

∑

e2...eN

∫

[0,1]N−1
α(y1) |

√
le2 . . . leN ψe2e2...eN (le2y1, ly)|2 dy ,

(3.21)

where ly = (le2y1, le3y2, . . . , leN yN−1), with form domain

D
Q

(N)
B

= {ψ ∈ H 1
B(D

∗(N)
� ); Pvert (y)ψbv,vert (y) = 0 for a.e. y ∈ [0, 1]N−1} .

(3.22)

The first two lines in (3.21) define a bosonic N-particle Laplacian with vertex-
related boundary conditions, whereas the last line yields pairwise, δ-type contact
interactions.



Many-Particle Quantum Graphs: A Review 41

The hardcore limit, α → ∞ (see above), of the Lieb-Liniger gas is the so-called
Tonks-Girardeau gas [Gir60].

4 Bose-Einstein Condensation

One of the most interesting questions arising for bosonic many-particle systems
is whether they show the phenomenon of Bose-Einstein condensation (BEC). This
occurs when below a critical temperature the particles condense into the same one-
particle state [PO56]. The original version of BEC [Ein25] was found for free,
i.e., non-interacting bosons in three dimensions that are confined to box of finite
volume and whose wave functions satisfy standard conditions at the boundary of
the box; it occurs in the thermodynamic limit of increasing the particle number and
the volume of the box while keeping the particle density fixed. One can readily show
that this form of BEC does not occur in one dimension as long as standard boundary
conditions are imposed. However, it has long been known that BEC for free bosons
does occur in one dimension when the boundary conditions are changed in such
a way that the free, one-particle Hamiltonian has a negative eigenvalue and in the
thermodynamic limit a gap remains in the spectrum between the ground state and
the continuum above zero [LW79, Ver11].

4.1 Free Bosons

In a many-particle system of N free bosons, the Hamiltonian is a symmetrised
version of an operator with the tensor product structure (2.16). Its eigenvalues
are of the form k2

n1
+ · · · + k2

nN
, where k2

n is an eigenvalue of the one-particle
Hamiltonian, which we assume to be a Laplacian with domain (2.7). The number of
negative eigenvalues is controlled by the self-adjoint map L in the characterisation
of the domain [BL10], and this determines whether or not BEC is found in the
thermodynamic limit. In this limit the volume growth is achieved by stretching all
edge lengths with the same factor, le �→ ηle, η > 0. Hence, the thermodynamic
limit can be performed by sending the total length L = ∑

e le to infinity.
The first result required in order to prove BEC establishes a gap in the spectrum

[BK14].

Proposition 4.1 Let −� be a one-particle Laplacian on a compact metric graph
with domain (2.7). Assume that L has at least one positive eigenvalue and let Lmax

be the largest eigenvalue. Then the ground state eigenvalue k2
0(L) of the Laplacian

at total length L converges to −Lmax in the thermodynamic limit L →∞.
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In the grand canonical ensemble of statistical mechanics (see, e.g., [Sch06] for
details), the density of particles ρn(β,μL) in an eigenstate with eigenvalue k2

n(L) is

ρn(β,μL) = 1

L
1

eβ(k2
n(L)−μL) − 1

, (4.1)

where β = 1/kBT is the inverse temperature and μL ≤ k2
0(L) is the so-called

chemical potential which itself depends on L. More explicitly, μL is chosen such
that

ρ = 1

L

∞∑

n=0

1

eβ(k2
n(L)−μL) − 1

(4.2)

is the fixed density of particles on the graph for all values of L.

Definition 4.2 We say that an eigenstate with eigenvalue k2
n(L) is macroscopically

occupied in the thermodynamic limit if

lim sup
L→∞

ρn(β,μL) > 0 . (4.3)

If such an eigenstate exists we say that there is BEC into this eigenstate.

For a more general definition of BEC that also holds for interacting systems,
see [PO56]. With these observations one is able to obtain a complete characterisa-
tion of free Bose gases on compact graphs in terms of BEC [BK14].

Theorem 4.3 Let � be a compact metric graph with one-particle Laplacian defined
on the domain (2.7). If L is negative semi-definite, no BEC occurs at finite
temperature in the thermodynamic limit.

If, however, L has at least one positive eigenvalue, there exists a critical
temperature Tc > 0 such that BEC occurs below Tc in the thermodynamic limit.

The one-particle ground state eigenfunction into which all particles condense
below the critical temperature is peaked around the vertices and hence is not
homogeneous, as it would be in the classical case of particles in a box with Dirichlet
boundary conditions, see also [LW79].

4.2 Interacting Bosons

For interacting bosons it is much harder to prove that BEC either holds or is
absent (see, e.g., [LS02, LVZ03] for a discussion of BEC in interacting systems
with a mean-field scaling). In the case of the Tonks-Girardeau gas [Gir60] of
particles with hardcore interactions on a graph, however, one can use a Fermi-Bose
mapping in order to prove the absence of phase transitions which then indicates an
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absence of BEC. The Fermi-Bose mapping is a bijection between the set of bosonic
many-particle Laplacians with hardcore interactions and the set of free fermionic
Laplacians on the same compact, metric graph. The fermionic N-particle Hilbert
space HN,F is the totally antisymmetric subspace of HN , i.e., the image of the
projector

(�Fψ)e1...eN = 1

N !
∑

π∈SN
(−1)sgnπψeπ(1)...eπ(N)

, (4.4)

compare (3.18). One notices that the antisymmetry implies that continuous
fermionic functions vanish along diagonal hyperplanes xei = xej , where ei = ej
but i �= j , as do functions in the domain of a bosonic Laplacian with hardcore
interactions. Using appropriate permutations of edges one can construct a bijection
between bosonic and fermionic functions in such a way that the latter are in the
domain of a fermionic quadratic form that is associated with a free fermionic
Laplacians. As the forms coincide, the Fermi-Bose mapping is isospectral. For
details of the construction we refer to [BK14]. In fermionic systems BEC is well
known to be absent. In the present case one calculates the free-energy density of free
fermions (with Dirichlet boundary conditions in the vertices) in the thermodynamic
limit,

fD,F (β,μ) = lim sup
L→∞

1

βL Tr e−βHN = − 1

β

∫ ∞

0
log(1 + e−β(k2−μ)) dk, (4.5)

see [BK14]. This energy density is smooth and has no singularities in β which shows
that there is no phase transition, consequently indicating an absence of BEC.

Other forms of (repulsive) interactions can be modelled by pair potentials of the
type (2.17). On a metric graph this takes the form

(VN,Lψ)e1...eN (xe1, . . . , xeN ) =
∑

i<j

Vp,L(xei − xej )ψe1...eN (xe1, . . . , xeN ) ,

(4.6)

and gives rise to the (bosonic) N-particle Hamiltonian

HN = −�N + VN,L . (4.7)

The pair potentials are repulsive when the functions Vp,L are non-negative, and
for technical reasons we assume that for all L > 0 there exist AL > 0 and
εL > 0 such that Vp,L(x) ≥ εL for all x ∈ [−AL, AL]. Moreover, the L1-norm
of Vp,L is assumed to be independent of L. These assumptions are consistent with
choosing functions Vp,L that are a δ-series in the thermodynamic limit L → ∞.
One can, e.g., take Vp,L(x) = Lv(Lx) with v ∈ C∞

0 (R), v ≥ 0 and ‖v‖1 = α

so that limL→∞ Vp,L(x) = αδ(x). With this choice the Lieb-Liniger model will be
recovered in the thermodynamic limit.
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A Gibbs state at inverse temperature β > 0 is defined via

ωβ(O) := Tr
(
O e−βHN

)

Tr e−βHN
, (4.8)

where O is a (bounded) observable, i.e., a (bounded and) self-adjoint operator.
If now ψ0 is the ground state of the free bosonic system, i.e., composed of the
ground state eigenfunctionφ0 of the one-particle Laplacian and N(φ0) is the particle
number operator in this ground state one can infer from Theorem 4.3 whether or not
the non-interacting system shows BEC. Assuming this to be the case, one can ask
what the effect of adding a repulsive interaction (4.6) is. It can be shown [BK16]
that in the theromodynamic limit the occupation of this ground state vanishes,

lim sup
L→∞

ωβ(N(φ0))

L = 0 . (4.9)

According to a direct analogue of Definition 4.2, this means that there is no BEC
into the free ground state. Hence, although BEC into the ground state was present in
the free bosonic system, even the smallest perturbation by repulsive pair interactions
of the type (2.17) make this condensation disappear.

Summarising, although free bosons on a compact metric graph may display BEC,
an addition of repulsive interactions is likely to destroy the condensate. The BEC
that can occur is caused by δ-type, attractive, one-particle potentials in the vertices
and the associated condensate is not homogeneous, but concentrated around the
vertices.

5 Exactly Solvable Many-Particle Quantum Graphs

Much of the success of one-particle quantum graph models relies on the fact that
eigenvalues possess a simple characterisation in terms of a secular equation based
on the finite-dimensional determinant (2.13). On the one hand this enables one to
compute eigenvalues by searching for zeros of a low-dimensional determinant, and
on the other hand it leads to a trace formula that is an identity [Rot83, KS99b, BE09]
rather than a semiclassical approximation as in other, typical models of quantum
systems (see, e.g., [Gut90]).

The secular equation rests on the fact that the edge-e component of an eigenfunc-
tion must be of the form

ψe(xe) = ae eikxe + be e−ikxe , (5.1)

with some coefficients ae, be ∈ C. It provides a sufficient condition that the 2E
coefficients must satisfy in order to yield an eigenfunction. Components of N-
particle eigenfunctions with eigenvalue λ are functions of N variables, xe1, . . . , xeN ,



Many-Particle Quantum Graphs: A Review 45

so that, in general, they are of the form

ψe1...en (xe1, . . . , xeN ) =
∫

RN

ae1...en(k1, . . . , kN) δ(k2
1 + · · · + k2

N − λ)

ei(k1xe1+···+kNxeN ) dNk . (5.2)

Hence, instead of the need to determine constants, in generic cases with N ≥ 2
a replacement for the secular equation needs to determine coefficient functions
ae1...en (·). This would therefore be a condition imposed on elements of an infinite
dimensional space.

However, under certain circumstances such conditions may collapse to a finite
dimensional subspace. This, indeed, will be the case if certain integrability condi-
tions are satisfied which imply that eigenfunctions can be represented by a so-called
Bethe-ansatz [Gau14]. In essence, a Bethe-ansatz is a finite sum of plane waves,

ψBethe(x1, . . . , xN) =
∑

α∈J
Aα ei(kα1 x1+···+kαNxN) , (5.3)

where J is a finite index set, such that the vectors (kα1 , . . . , k
α
N) with (kα1 )

2 + · · · +
(kαN)2 = λ are drawn from a finite subset of RN . Contrasting this with the general
form (5.2) of an N-particle eigenfunction suggests that a Bethe-ansatz will only
be possible under some strict conditions. These integrability conditions (see, e.g.,
[Gau14, CC07]) are also behind the Lieb-Liniger model, for which it has long
been known that eigenfunctions can be characterised in terms of a finite number
of coefficients [LL63] and take a Bethe-ansatz form (5.3). The first example of a
quantum graph with a non-trivial vertex where a Bethe-ansatz was shown to work is
a particle on a line or ring with one vertex, where non-Kirchhoff conditions are
imposed [CC07]. Since N particles on a graph have a configuration space that
is composed of subsets of R

N , a further class of examples in this spirit where a
Bethe-ansatz for the eigenfunctions is known to exist is given by the Dirichlet- or
Neumann Laplacian on a fundamental domain for the action of a Weyl group [B8́0].
Indeed, the mechanism behind these examples can be carried over to a class of
quantum graph models, generalising the approach of [CC07]. This has been done in
[BG17, BG18], and in the following we will review those results.

The simplest example is that of two bosons on an interval [0, l] with Dirichlet
boundary conditions at the interval ends and a δ-interaction (3.9) between the
particles. This is a modification of the Lieb-Liniger model first studied by Gaudin
[Gau71]. The two-particle Hilbert space is

H2 = L2(0, l)⊗ L2(0, l) ∼= L(D) , (5.4)
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where D is the square (3.10) that will be dissected as in (3.11). Accordingly, ψ± ∈
L2(D±), for which the Bethe-ansatz

ψ±(x1, x2) =
∑

P∈W2

A±
P ei(kP(1)x1+kP(2)x2) , (5.5)

can be shown to lead to eigenfunctions. Here W2 is a Weyl group, which is a finite
group with eight elements. The fact that the ansatz (5.5) is consistent comes from
the conditions an eigenfunction has to satisfy:

(i) −�ψ = λψ;
(ii) ψ(x1, x2) = ψ(x2, x1);

(iii)
(

∂
∂x1

− ∂
∂x2

)
ψ(x, x) = αψ(x, x);

(iv) ψ(0, x) = ψ(l, x) = 0.

These conditions are compatible with the plane-wave form A ei(k1x1+k2x2) and only
require substitutions of the wave vectors (k1, k2) with either (k2, k1), (−k1, k2), or
combinations thereof. These operations, seen as an action of a group onR2, generate
the action of the Weyl group W2 = Z/2Z� S2. An interesting interpretation of this
in terms of reflected rays can be found in [McG64]. The conditions (i)–(iv) also
yield a restriction on the allowed wave vectors,

e−2iknl = kn + km − iα

kn + km + iα

kn − km − iα

kn − km + iα
, (5.6)

for all n �= m ∈ {1, 2}. Solutions (k1, k2) �= (0, 0) with 0 ≤ k1 ≤ k2 then give
eigenvalues λ = k2

1 + k2
2.

The above model, for N bosons, was first studied by Gaudin [Gau71, Gau14].
The original Lieb-Liniger model [LL63], however, was formulated for particles on
a circle. Instead of the Dirichlet conditions (iv) one then has to require periodic
boundary conditions, which renders the reflection (k1, k2) �→ (−k1, k2) expendable.
The Bethe ansatz for the Lieb-Liniger model, therefore, only requires a summation
over the symmetric group S2, rather than over the Weyl group W2 = Z/2Z � S2
as in (5.5). Hence, one concludes that the boundaries of the interval are responsible
for the additional reflections necessary in the Bethe ansatz. In a graph language,
the interval ends are vertices of degree one. Adding a vertex of degree two in the
context of a Bethe ansatz was first done in [CC07], where is was found that this
is incompatible with δ-pair interactions. Instead, the interactions were modified
to include another contribution that formally looks like δ(x1 + x2). This means
that the particles do not only interact when they touch, but also when they are the
same distance away from the vertex on either of the edges connected by the vertex.
If then this interaction is provided with a variable strength that is supported in a
neighbourhood of the vertex, this will still be a localised interaction.

An extension of this method to arbitrary metric graphs with generalisations of
the interactions introduced in [CC07] has been done in [BG17], and an extension
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to N particles can be found in [BG18]. The first step is to define the singular pair
interactions, and this is most clearly done on a star graph of d half-lines. Then a
given metric graph is first converted into its star representation, consisting of |V |
star graphs, i.e., one for each v ∈ V of degree dv . A Bethe ansatz is made for each
star graph, and then the boundary conditions that represent the pair interactions on
each star, as well as the matching conditions that allow to recover the original graph
from its star representation imply conditions that characterise eigenvalues of the
Laplacian with the singular pair interactions.

If now �v is the star graph with dv half-lines that is associated with the vertex
v ∈ V , the Hilbert space is ⊕ee′L2(Dee′ ); here e and e′ are edge labels and Dee′ =
R

2+ is the two-particle configuration space when one particle is on edge e and the
other one on e′. These configuration spaces are dissected into D+

ee′ and D−
ee′ , which

are defined in analogy to (3.11), and the restrictions of functions ψee′ to D±
ee′ are

denoted as ψ±
ee′ . One then requires that

ψ+
ee′ (x, x) = ψ−

e′e(x, x) ,
(

∂

∂x1
− ∂

∂x2
− 2α

)
ψ+

ee′ (x, x) =
(

∂

∂x1
− ∂

∂x2

)
ψ−

e′e(x, x) .
(5.7)

These conditions are similar to those generating δ-interactions. However, they apply
to all pairs of edges, not only the diagonal ones. Hence there is a singular interaction,
also across edges, whenever two particles are the same distance away from the
vertex. A Bethe ansatz (5.5) is then introduced for the functions ψ±

ee′ , with the yet
to be determined coefficients A±

P,ee′ . In a next step one has to cut the edges of the
stars to the finite lengths that are required and then glue the stars to finally yield
the original compact graph. In this glueing process it has to be ensured that the
interactions only take place when two edges are connected in the same vertex, and
not arbitrarily across the graph. In addition to (5.7), this yields conditions to be
imposed on the coefficients A±

P,ee′ . These conditions can be formulated in terms of
secular equations involving determinants

Z(k1, k2) = det
(
1− U(k1, k2)

)
, (5.8)

where

U(k1, k2) = E(k2)Y (k2 − k1)(12 ⊗ S(k2)⊗ 12E)Y (k1 + k2), (5.9)

and

Y (k) = 1

k + iα

(−iα k

k −iα

)
⊗ α +

(
0 1
1 0

)
⊗ (1E2 − α)TE2

E(k) = 14E ⊗
(

0 1
1 0

)
⊗ eikl;

(5.10)
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Here TE2 is a permutation matrix, and α is a diagonal matrix with the interaction
strengths (which could, in principal, be different for each pair of edges) αee′ on the
diagonal. More details can be found in [BG17]. The final result is the following
statement.

Theorem 5.1 Let−�2 be a two-particle Laplacian on a compact metric graph with
pair interactions as described above. Then the zeros (k1, k2), where 0 ≤ k1 ≤ k2, of
Z(ki, kj ) for i �= j ∈ {1, 2} of order m correspond to eigenvalues k1

1 + k2
2 of −�2.

We note that, with (5.8) in mind, the secular equations are reminiscent of the one-
particle case (2.13). Some special cases and numerical results in some example can
be found in [BG17]. The generalisation to N particles follows the same lines and is
contained in [BG18].

6 Many-Particle Models on a Quantum Wire

In this section we are concerned with interacting two-particle systems on a simple
non-compact quantum graph, namely the positive half-line R+ = (0,∞) which
can be seen as a quantum wire. More specifically, the Hamiltonian has several
contributions: a hard-wall binding potential and two singular contributions, one
of which is of the vertex-induced type defined in Sect. 3.1 and the other one
representing the contact interactions introduced in Sect. 3.2. The Hamiltonian is
formally given by

H = − ∂2

∂x2 −
∂2

∂y2 +vb(|x−y|)+v(x, y) [δ(x)+ δ(y)] +α(y)δ(x−y) , (6.1)

where vb : R+ → R is a (hard-wall) binding potential that is (formally) defined via

vb(x) :=
{

0 for x < d ,

∞ otherwise ,
(6.2)

where d > 0 characterises the size of the pair. We realise this formal potential by
requiring Dirichlet boundary conditions at |x − y| = d . Furthermore, v : R2+ → R

is supposed to be a real-valued, symmetric and bounded potential, v ∈ L∞(R2+).
Note that setting d = ∞ corresponds to the case where no binding potential in (6.1)
is added. Also note that we always assume α(·) ∈ L∞(R+).

It is important to note that interactions of the form (6.1) generically break
translation invariance, even with potentials v(x, y) = v(|x − y|), and consequently
lead to non-separable many-body problems. Although only rarely discussed in the
literature, they have important applications in various areas of physics [Gla93,
GN05].
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Other important situations in which singular interactions of the above form are
expected can be found in solid-state physics. For example, similar to the Cooper
pairing mechanism of superconductivity [Coo56], two electrons in a metal can
effectively interact with each other through the interaction of each individual particle
with the lattice via electron-phonon-electron interactions. Hence, if a metal exhibits
spatially localised defects, there will be effective, spatially localised two-particle
interactions.

Furthermore, the idea to consider a binding potential in (6.1), which effectively
leads to a ‘molecule’, or a pair of particles, also originated from Cooper’s work
[Coo56]; another example can be found in [QU16], where the scattering of a bound
pair of particles at mirrors is investigated. As a matter of fact, it was Cooper who
realised that electrons in a metal will form pairs (Cooper pairs), if the metal is in
the superconducting phase, i.e., is cooled below some critical temperature [BCS57,
MR04a]. Hence, the Hamiltonian (6.1), or versions thereof, provide toy models to
investigate bound pairs of particles in a quantum wire with defects [KM17, Kera].
Most importantly, in this model one can derive rigorous results related to the
superconducting behaviour of quantum wires [Kerb, Kerc, Ker18].

6.1 The Model Without Hard-Wall Binding Potential

In this subsection we present results regarding the Hamiltonian (6.1) without
binding potential, i.e., vb ≡ 0. For more detail, we refer to [BK13b, BK13c, KM16,
EK17] from which most of the results are taken.

In a first step one has to give a rigorous meaning to the Hamiltonian (6.1), which
is only formally defined due the δ-distributions. This requires a suitable variant
of Theorem 3.1 and Sect. 3.2. (Note that here the two-particle configuration space
without binding potential is R2+). In order to do this one constructs a quadratic form
on L2(R2+),

q∞α,σ [ϕ] :=
∫

R
2+
|∇ϕ|2 dx−

∫ ∞

0
σ(y)|γ (ϕ)|2dy+

∫ ∞

0
α(y)|ϕ(y, y)|2 dy , (6.3)

where σ(y) := −v(0, y) is a real-valued boundary potential and γ (ϕ) :=
(ϕ(y, 0), ϕ(0, y))T are the boundary values of ϕ ∈ H 1(R2+), which are well-defined
in L2(∂R2+) due to the trace theorem for Sobolev functions [Dob05]. In the same
way one defines ϕ|x=y as the trace of ϕ ∈ H 1(R2+) along the diagonal x = y.

Theorem 6.1 For any given σ, α ∈ L∞(R+) the form
(
q∞α,σ ,H 1(R2+)

)
is bounded

from below and closed.

Hence, according to the representation theorem for quadratic forms [BHE08] there
exists a unique self-adjoint operator associated with the form q∞α,σ . We denote this
operator by −�d=∞

σ,α . Since the only volume term in (6.3) is associated with the
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∇-operator, this operator acts as the standard two-dimensional Laplacian −� on
functionsϕ ∈ D(−�d=∞

σ,α ) ⊂ H 1(R2+). The boundary integrals in (6.3), on the other
hand, reflect boundary conditions. More explicitly, one has coordinate-dependent
Robin conditions along ∂R2+, and coordinate-independent jump conditions along
the diagonal x = y, see [BK13c, KM16] for more details.

In a next step we characterise the spectrum of the self-adjoint operator −�d=∞
σ,α .

Theorem 6.2 For any given σ, α ∈ L∞(R+) one has [0,∞) ⊂ σess(−�d=∞
σ,α ).

Furthermore, if σ(y), α(y) → 0 as y →∞ one has σess(−�d=∞
σ,α ) = [0,∞).

Proof We adapt [Theorem 3.1, [KM16]] where the case α = 0 has been considered.
In order to show that [0,∞) is contained in the essential spectrum, we construct a
suitable Weyl sequence: Let τ : R → R be a smooth test function such that τ ≥ 0,
τ (t) = 1 for t ≥ 1 and τ (t) = 0 for t ≤ 0. We define, for aR, bR > 0 and any
k ∈ [0,∞),

ϕaR,bR,k(x, y) := τ (x − (aR − 1)) τ (y − (bR − 1)) eik(x+y)τ ((2aR + 1)− x)

τ ((2bR + 1)− x) .

Hence, ϕaR,bR,k is supported on the rectangle [aR−1, 2aR+1]×[bR−1, 2bR+1].
We now choose aR and bR such that they tend to infinity as R → ∞ and such that
the support of ϕaR,bR,k excludes the diagonal x = y.

Regarding the norm we obtain

‖ϕaR,bR,k‖2
L2(R2+)

≥ aRbR/2 ,

for R large enough. A direct calculation then shows that, using a shorthand notation,

(∂xxϕaR,bR,k)(x, y) =− k2τ (·) τ (·) eik(x+y)τ (·) τ (·) + τ ′′(·)τ (·) eik(x+y)τ(·)τ (·)
+ 2ikτ ′(·)τ (·) eik(x+y)τ(·)τ (·) − 2ikτ(·)τ (·) eik(x+y)τ ′(·)τ (·)
− 2τ ′(·)τ (·) eik(x+y)τ ′(·)τ (·)+ τ(·)τ (·) eik(x+y)τ ′′(·)τ (·) .

A similar expression is obtained for ∂yyϕaR,bR,k . Since the derivatives of τ appearing
are bounded and non-zero only over a interval of length one, we directly obtain

‖ −�ϕaR,bR,k − 2k2ϕaR,bR,k‖2
L2(R2+)

‖ϕaR,bR,k‖2
L2(R2+)

→ 0 ,

as R → ∞. This proves that 2k2 ∈ σess(−�d=∞
σ,α ) and hence the statement.
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The second part of the statement is proved via a bracketing argument. In a first
step one writes R2+ = BR(R

2+)∪ (R2+\BR(R
2+)) where BR(R

2+) := {(x, y) ∈ R
2+ :

x2 + y2 < R2} and introduces the comparison operator

−�BR(R2+) ⊕−�
R

2+\BR(R2+) (6.4)

which is a direct sum of two two-dimensional Laplacians with the same boundary
conditions as −�d=∞

σ,α , except for additional Neumann boundary conditions along
the dissecting line. The first Laplacian in (6.4) has purely discrete spectrum only
and hence does not contribute to the essential spectrum. Furthermore, for any ϕ ∈
H 1(R2+) one has the estimates

∣∣∣∣
∫ ∞

R

σ(y)|γ (ϕ)|2dy

∣∣∣∣ ≤ ‖σχ[R,∞)]‖∞
(
c1‖∇ϕ‖2

L2(R2+)
+ c2‖ϕ‖2

L2(R2+)

)

and
∣∣∣∣
∫ ∞

R

α(y)|ϕ(y, y)|2dy

∣∣∣∣ ≤ ‖αχ[R,∞)]‖∞
(
c1‖∇ϕ‖2

L2(R2+)
+ c2‖ϕ‖2

L2(R2+)

)

for some constants 0 < c1 < 1 and c2 > 0; e.g., see [BK13b, BK13c]. Hence, with
1 denoting the identity operator, we obtain

−�
R

2+\BR(R2+) ≥ −c2
(‖σχ[R,∞)]‖∞ + ‖αχ[R,∞)]‖∞

) · 1

and since R > 0 can be chosen arbitrarily, we conclude that inf σess(−�d=∞
σ,α ) = 0.

�
The discrete part of the spectrum, i.e., isolated eigenvalues with finite multiplic-

ity, is characterised in the following statement.

Theorem 6.3 Assume that σ, α ∈ L1(R+)∩L∞(R+) and that inf σess(−�d=∞
σ,α ) =

0. Then, if

∫

R+
[2σ(y)− α(y)] dy > 0 , (6.5)

negative eigenvalues will exist.

Proof As in the proof of [Theorem 3.3, [KM16]] one picks the test function
ϕε(r) := e−rε , ε > 0, defined in polar coordinates. Evaluating q∞α,σ [ϕε] one
performs the limit ε → 0 to conclude that q∞α,σ [ϕε] < 0 for small enough ε. The
statement then follows by the variational principle [BHE08]. Note that the factor of
2 is due to the fact the there are two boundary segments of R2+. �
Lemma 6.4 Assume that σ, α ∈ L∞(R+) have bounded support. Then there exist
only finitely many negative eigenvalues.
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Proof The statement follows from a bracketing argument, see [BHE08] for a
general discussion and [KM16, KM17] for applications of this technique.

In a first step one writes R2+ = BR(R
2+) ∪ (R2+ \ BR(R

2+)) where BR(R
2+) :=

{(x, y) ∈ R
2+ : x2 + y2 < R2}. The comparison operator then is a direct sum of two

two-dimensional Laplacians, i.e.,

−�BR(R2+) ⊕−�
R

2+\BR(R2+) (6.6)

with the same boundary conditions as −�d=∞
σ,α , except for additional Neumann

boundary conditions along the dissecting line. We then choose R large enough so
that σ = α = 0 in R

2+ \BR(R
2+). Accordingly,−�

R
2+\BR(R

2+) is a positive operator.
On the other hand, −�BR(R2+) is defined on a bounded Lipschitz domain and hence
has purely discrete spectrum, i.e., its essential spectrum is empty and there are only
finitely many negative eigenvalues. Consequently, the operator bracketing

−�BR(R2+) ⊕−�
R

2+\BR(R2+) ≤ −�d=∞
σ,α (6.7)

implies the statement. �

6.2 The Model with a Hard-Wall Binding Potential

The model with non-vanishing binding potential, but vanishing contact interaction,
was first studied in [KM17]. The first important difference to the case where vb ≡
0 is that the two-particle configuration space is reduced from R

2+ to the ‘pencil-
shaped’ domain

� := {(x, y) ∈ R
2+ : |x − y| < d} . (6.8)

Hence, the underlying Hilbert space is L2(�) rather than L2(R2+). As before, a
rigorous realisation of (6.1) is obtained via the form

qd
α,σ [ϕ] :=

∫

�

|∇ϕ|2 dx −
∫ d

0
σ(y)|γ (ϕ)|2dy +

∫ ∞

0
α(y)|ϕ(y, y)|2 dy , (6.9)

which is defined on Dq := {ϕ ∈ H 1(�) : ϕ|∂�D = 0}, where ∂�D := {(x, y) ∈
R

2+ : |x − y| = d}. Note that the Dirichlet boundary conditions along ∂�D are due
to the choice of the hard-wall binding potential.

Theorem 6.5 For every σ, α ∈ L∞(R+) the form
(
qd
α,σ ,Dq

)
is bounded from

below and is closed.
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As before, the representation theorem of forms assures the existence of a unique
self-adjoint operator associated with qd

α,σ which shall be denoted by −�d
σ,α.

Again, this operator acts as the standard two-dimensional Laplacian with coordinate
dependent Robin boundary conditions along the boundary segments with x = 0
or y = 0 as well as a jump condition along the diagonal x = y as before, see
[Remark 1, [KM17]] for a more details.

So far the presence of a binding potential made no difference. However, as
soon as we characterise the spectrum of −�d

σ,α, the effect of the binding potential
becomes obvious.

Theorem 6.6 Assume that σ, α ∈ L∞(R+) are given. Then [2π2/d2,∞) ⊂
σess(−�d

σ,α). Furthermore, if α(y) → 0 as y → ∞ one has σess(−�d
σ,α) =

[π2/2d2,∞).

Proof We only add some remarks, see [Theorem 2, [KM17]] and the proof of
Theorem 6.2 for more details. We also note that the first part readily follows from
the proof of second part as presented below.

In a first step we note that we can equivalently consider the Laplacian on the
domain �̃ that is obtained from � by a clockwise rotation about an angle π/4. On
this domain we consider the Weyl sequence, R > 0 large enough and k ∈ [0,∞),

ϕR,k(x, y) := ψ0(y)τ (x − (R − 1)) eikxτ ((2R + 1)− x) ,

where τ : R → R is a smooth function with τ (x) = 0 for x ≤ 0, τ (x) = 1 for x ≥ 1
and τ (x) ≥ 0 otherwise. Furthermore,ψ0 is the ground state of the one-dimensional
Dirichlet-Laplacian on the interval [−d/

√
2,+d/

√
2].

One has ‖ϕR,k‖2
L2(�̃)

> R/2 for R large enough. Furthermore, using a shorthand
notation, we calculate

−�ϕR,k = −∂xxϕR,k + π2

2d2
ϕR,k

= ψ0(y)(−k2τ(·)eikxτ(·) + τ ′′(·)eikxτ(·) + τ(·)eikxτ ′′(·)+ 2ikτ ′(·)eikxτ(·)

− 2τ ′(·)eikxτ ′(·)− 2ikτ(·)eikxτ ′(·))+ π2

2d2
ϕR,k .

Hence,

‖ −�ϕR,k −
(
k2 + π2

2d2

)
ϕR,k‖2

L2(�̃)

‖ϕR,k‖2
L2(�̃)

→ 0
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as R → ∞. Consequently, for any ψ ∈ H 1(�̃) that fulfils Dirichlet boundary
conditions along the corresponding line segments and R large enough,

s(ϕR,k, ψ) =
∫

�̃

∇ϕR,k(x)∇ψ(x) dx + 1√
2

∫ ∞

R−1
α(x)ϕR,k(x, 0)ψ(x, 0) dx

= −
∫

�̃

�ϕR,k(x)ψ(x) dx + 1√
2

∫ ∞

R−1
α(x)ϕR,k(x, 0)ψ(x, 0) dx ,

using an integration by parts. Note that s(·, ·) denotes the sesquilinear form
associated with the rotated version of the quadratic form. Using the estimate, with
some constant c > 0,

∣∣∣∣
∫ ∞

R−1
α(x)ϕR,k(x, 0)ψ(x, 0) dx

∣∣∣∣ ≤ c‖αχ[R−1,∞)‖∞‖ϕR,k‖H 1(�̃)‖ψ‖H 1(�̃)

we conclude that

sup
ψ

∣∣∣∣∣s
(

ϕR,k

‖ϕR,k‖L2(�̃)

, ψ

)
−

(
k2 + π2

2d2

) 〈 ϕR,k

‖ϕR,k‖L2(�̃)

, ψ
〉

L2(�̃)

∣∣∣∣∣ → 0 ,

as R → ∞ by Hölder’s inequality. Note here that the supremum is taken
over all functions in the form domain with form norm smaller or equal to one,

see [Proposition 5.1, [PS12]]. This shows that k2 + π2

2d2 ∈ σess(−�d
σ,α) for any

k ∈ [0,∞). �
Theorem 6.6 illustrates that, as long as the contact interaction strength converges

to zero, the binding potential leads to a shift of the essential spectrum by at least
π2/2d2. As for the effect on the discrete spectrum we first note that whenever
d = ∞, by Theorem 6.2 this is trivial for σ = α = 0. From a physical point of
view this seems reasonable since there is no attractive potentials that could lead to
bound states. However, quite surprisingly, for d < ∞ and σ = α = 0 we have the
following result [Theorem 3, [KM17]].

Theorem 6.7 Consider the self-adjoint operator −�d
σ=0,α=0, i.e., we assume that

σ = α = 0. Then

σd(−�d
σ=0,α=0) �= ∅ . (6.10)

In other words, there exist eigenvalues below π2/2d2.

Note that the existence of eigenvalues smaller than π2/2d2 for vanishing
boundary and contact potential is a purely quantum mechanical effect. Furthermore,
it is a geometrical effect since no non-trivial discrete spectrum would exist if one
considered the two-particle system on the full line R instead of the half-line R+, see
[Remark 4, [KM17]].
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Of course, if one assumes that σ(y) ≥ 0 for a.e. y ∈ [0, d], and α(y) ≤ 0
for a.e. y ∈ [0,∞), the discrete spectrum will also be non-empty since the
boundary integrals in qd

α,σ are negative (note here the minus sign in the definition
of the boundary potential σ ). However, one may ask what happens when a positive
boundary potential σ becomes large. Since this implies a strong repulsive singular
two-particle interaction localised at the origin, bound states may no longer exist.
Indeed, we have the following result.

Theorem 6.8 There exists a constant γ < 0 such that σd(−�d
σ,α) = ∅ whenever

σ(y) ≤ γ for a.e. y ∈ [0, d], α(y) ≥ 0 for a.e. y ∈ [0,∞) and α(y) → 0 as
y → ∞.

Proof Without contact potential α this result has been shown in [Theorem 4,
[KM17]].

Now, by Theorem 6.6 we conclude that inf σess(−�d
σ,α) = π2/2d2. Fur-

thermore, since α is assumed to be strictly positive, the corresponding operator
is larger (in the sense of an operator bracketing) than the operator with same
boundary potential σ , but without contact potential. Consequently, if there existed
an eigenvalue smaller than π2/2d2 the same would hold for the operator without
contact potential. This, however, is in contradiction with [Theorem 4, [KM17]].

�
Theorem 6.8 shows that strong singular interactions at the origin (without contact

interaction) destabilise the system in the sense that no discrete spectrum is present
anymore when compared to the free system with σ = α = 0.

6.3 Random Singular Pair Interactions

In this subsection we consider a generalisation of the Hamiltonian (6.1) in the sense
that the singular, vertex-induced pair interactions are not only present in the origin
or the vertex of the graph. This seems desirable since, as described previously,
localised two-particle interactions can be associated with defects in the metal and
such defects occur, of course, not only at the origin but everywhere in the wire. We
note that this model was formulated in [Kera] to which we also refer for more detail.

Since the spatial positions of defects in a real metal varies from metal to
metal it seems reasonable not to work with a specific (deterministic) two-particle
Hamiltonian, but with a random one. In other words, in this section we enter the
realm of random Schrödinger operators which have become an important research
area [Sto01, Kir08]. Most importantly, using the language of random Schrödinger
operators, one has been able to give a rigorous description of various phenomena in
physics such as Anderson localisation [And58, CFKS87].
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Turning to our model, we consider a system of two particles on the half-line R+
whose random Hamiltonian shall formally be given by

Hω = − ∂2

∂x2 − ∂2

∂y2 + vb(|x − y|)+
∞∑

i=1

vi(x, y) [δ(x − ai(ω))+ δ(y − ai(ω))] ,

(6.11)

where (ai(ω))i∈N are the random positions of the defects, called atoms in the
sequel. As before we assume that (vi)i∈N are real-valued, bounded and symmetric,
vi(x, y) = vi(y, x). Furthermore, we define li(ω) := ai(ω)−ai−1(ω) for i ≥ 1 and
set a0(ω) := 0. In other words, li(ω) is the random distance between the i − 1-st
and the i-th atom.

Now we consider the lengths (li (ω))i∈N as a family of independent random
variables over some probability space (�, ξ,P) generated by a Poisson process,
see [Sto95] for more detail. More explicitly, we assume that the probability for the
length li (ω) to be in the interval [a, b] is given by

P [li ∈ [a, b]] = ν

∫ b

a

e−νldl , (6.12)

with ν > 0 denoting the Poisson density.
Again, due to the presence of δ-potentials in (6.11) we shall use a suitable

quadratic form to rigorously construct a self-adjoint operator that is associated with
the formal expression (6.11). We introduce

qω[ϕ] =
∫

�

|∇ϕ|2 dx +
∞∑

i=1

∫

�i(ω)

σi(y)|γi(ϕ)|2 dy , (6.13)

where γi(ϕ) denotes the restriction (in the sense of traces of Sobolev functions) to

�i(ω) := {(x, y) ∈ � : x = ai(ω) or y = ai(ω)} . (6.14)

Furthermore, we set σi(y) := −vi(0, y). Due to the infinite sum appearing in (6.13)
it may not be possible to define qω on all H 1(�). Since we want to find a closed
realisation of the form qω we have to guess a suitable sub-domain. Indeed, one has
the following result [Theorem 2.1, [Kera]].

Theorem 6.9 Let (σi(ω))i∈N ⊂ L∞(R+) be given. Then the form qω on the domain

Dq(ω) = {ϕ ∈ H 1(�) : qω[ϕ] < ∞} (6.15)

is positive and closed for almost every ω ∈ �.

We denote the unique self-adjoint operator associated with the form qω as
−�σ(ω).
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The random Schrödinger operators usually considered in the literature have
an astonishing property, namely that the spectrum is almost surely non-random
[PF92, Kir08], which is due to a certain ergodicity property of the models. For
our model, we will see that only the essential part of the spectrum is non-random.
The discrete part, however, is random. Indeed we have the following results
[Theorem 3.1, Lemma 3.4, Theorem 3.5 [Kera]].

Theorem 6.10 Let (σi(ω))i∈N ⊂ L∞(R+) be given. Then

σess(−�σ(ω)) = [π2/2d2,∞) (6.16)

almost surely.

The discrete part of the spectrum, on the other hand, is random. More explicitly,
we obtain the following result.

Theorem 6.11 Let (σi(ω))i∈N ⊂ L∞(R+) be given. Then

P[σd(−�σ (ω)) �= ∅] > 0 . (6.17)

Furthermore, there exists a constant γ = γ (d) > 0 such that if inf σk > γ for one
k ∈ N then

P[σd(−�σ (ω)) = ∅] > 0 . (6.18)

Theorem 6.11 tells us that the discrete part of the spectrum is destroyed with finite
probability as well as conserved with finite probability. This leads to an interesting
physical implication: In general, disorder is associated with a suppression of
transport as in the Anderson localisation phenomenon due to the presence of a
dense pure point spectrum. In the above model, however, disorder may lead to
an improvement of transport through the destruction of the discrete part of the
spectrum. Indeed, according to ‘Fermi’s golden rule’ the transition rate of going
from one state to another depends on the density of final states. Hence, if no discrete
spectrum is present, a transition is possible also for small excitation energies since
there does not exist a finite energy gap in the spectrum.

6.4 The Condensation of Electron Pairs in a Quantum Wire

In this subsection we want to report on the results that were obtained in [Kerb,
Kerc, Ker18]. Since we are interested in pairs of particles, we consider the case
where d < ∞, i.e., we assume that a hard-wall binding potential vb is present. In
the previous sections we worked on the full Hilbert space L2(�) describing two
distinguishable and spinless particles. However, since we are interested in applying
the Hamiltonian (6.1) to understand phenomena related to superconductivity, and



58 J. Bolte and J. Kerner

which involves electrons, we need to implement the exchange symmetry of identical
particles.

In this review we restrict ourselves to the case considered in [Kerb] where the
two electrons are assumed to have the same spin. This leads to the requirement that
the two-particle wave function has to be anti-symmetric. The case of opposite spin,
which is realised in actual Cooper pairs, is considered in [Ker18]. We only mention
here that the results regarding the condensation there are comparable.

In order to ensure anti-symmetry of the wave function we work in the anti-
symmetric subspace

L2
a(�) := {ϕ ∈ L2(�) : ϕ(x, y) = −ϕ(y, x)} . (6.19)

We then introduce the quadratic form

qd
σ [ϕ] :=

h̄2

2me

∫

�

|∇ϕ|2 dx −
∫ d

0
σ(y)|γ (ϕ)|2dy , (6.20)

where σ ∈ L∞(R+), on this subspace. Here we added physical constants with
me denoting the electron mass. The domain of the form is given by Dq := {ϕ ∈
H 1(�) ∩ L2

a(�) : ϕ|∂�D = 0 and ϕ(x, x) = 0}. Again, this form is closed and
bounded from below, and hence there exists a unique self-adjoint operator associated
with this form. This is the Hamiltonian of our two-particle system. We denote this
operator, which again acts as the standard two-dimensional Laplacian, as −�d

σ .

Theorem 6.12 ([Kerb]) One has

σess(−�d
σ ) = [h̄2π2/med

2,∞) . (6.21)

Furthermore, if σ = 0 then

σd(−�d
σ=0) = {E0} , (6.22)

i.e., there is exactly one eigenvalue with multiplicity one below the bottom of the
essential spectrum. In addition, one has

0.25 · h̄
2π2

med2 ≤ E0 ≤ 0.93 · h̄
2π2

med2 . (6.23)

Theorem 6.12 has an interesting physical consequence: one important measur-
able quantity associated with the superconducting phase of a metal is the so-called
spectral gap � > 0, see [MR04a]. This spectral gap is responsible, for example, for
the exponential decay of the specific heat at temperatures lower than the critical one.
It is one of the successes of the BCS-theory that the spectral gap can be interpreted as
the binding energy of a single Cooper pair. In other words, the spectral gap measures
the energy necessary to break up one Cooper pair. Due to the choice of the hard-wall
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binding potential, in our model the pair cannot be broken up. However, it is possible
to excite a pair. Since, as we will see later, the pairs condense into the ground state
it seems reasonable to identify the spectral gap as the excitation of a pair from the
ground state to the first excited states. In other words, in our model one obtains the
relation

� = �(d) ∼ h̄2π2

med2 (6.24)

for the spectral gap. This relation establishes a direct link between the spatial
extension of a pair and the spectral gap. In particular, since the spectral gap in
superconducting metals is of order 10−3 eV [MR04a], the relation (6.24) implies
that d is of the order 10−6 m. Interestingly, this agrees with Cooper’s estimate as
presented in [Coo56].

In order to study the condensation phenomenon (similar to BEC as in Sect. 4) of
electron pairs one has to employ methods from quantum statistical mechanics (see,
e.g., [Sch06]). In particular, one has to perform a thermodynamic limit as in Sect. 4,
and this requires to restrict the system from the half-line to the interval (0, L). The
underlying Hilbert space then is L2

a(�L), with

�L := {(x, y) ∈ � : 0 < x, y < L} . (6.25)

The natural generalisation of (6.20) is defined on the domain DqL := {ϕ ∈
H 1(�L) ∩ L2

a(�L) : ϕ|∂�L,D = 0 and ϕ(x, x) = 0} with ∂�L,D := {(x, y) ∈
∂�L : |x − y| = d or x = L or y = L}. In other words, one introduces additional
Dirichlet boundary conditions along the dissecting lines x = L and y = L. We
denote the associated self-adjoint operator by −�d

σ,L.

Since �L is a bounded Lipschitz domain, −�d
σ,L has purely discrete spec-

trum. We denote its corresponding eigenvalues, counted with multiplicity, by
{Eσ

n (L)}n∈N0 .

Lemma 6.13 Assume that σ = 0. Then

lim
L→∞Eσ=0

0 (L) = E0 . (6.26)

Furthermore, Eσ=0
n (L) ≥ h̄2π2

med2 for all n ≥ 1 and L > d .

Lemma 6.13 implies the existence of a finite spectral gap in the thermodynamic
limit which eventually is responsible for the condensation of the pairs.

Recalling Definition 4.2, we can now establish the main result of this section.

Theorem 6.14 For σ = 0 there exists a critical density ρcrit (β) such that the
ground state is macroscopically occupied in the thermodynamic limit for all pair
densities ρ > ρcrit (β). Furthermore, there exists a constant γ < 0 such that, for all
pair densities ρ > 0, no eigenstate is macroscopically occupied if ‖σ‖∞ < γ .
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Proof For the proof see the proofs of [Theorems 3.3 and 3.6, [Kerb]] as well as
[Theorem 4.4, [Ker18]]. �

Theorem 6.14 shows that the pairs condense in the quantum wire given that there
are no repulsive singular two-particle interactions localised at the origin. However,
if the singular interactions are strong enough, the condensate in the ground state will
be destroyed. Hence, if one identifies a ‘superconducting phase’ with the presence of
a condensate of pairs (here in an eigenstate for non-interacting pairs), Theorem 6.14
shows that a superconducting phase in a quantum wire can be destroyed by singular
two-particle interactions.

6.5 The Impact of Surface Defects on a Condensate of
Electrons

In this final section we report on yet another application of the two-particle model
introduced above which was presented in [Kerc]. More explicitly, we extend the
model characterised by the form (6.20) and the associated Hamiltonian −�d

σ

defined on the anti-symmetric Hilbert space L2
a(�). However, we will only consider

the case where there are no singular, vertex-induced two-particle interactions at the
origin, i.e., we set σ = 0.

In Sect. 6.4 we investigated the (Bose-Einstein) condensation of pairs of elec-
trons. Theorem 6.14 shows that the pairs condense into the ground state if no
singular interactions are present and given the pair density ρ > 0 is large
enough. Also, the presence of condensation is paramount for the existence of the
superconducting phase. Real metals are never perfect and there exist defects that
affect the behaviour of electrons in the bulk. However, besides defects in the bulk,
a real metal will also exhibit defects on the surface, i.e., a real surface will not be
arbitrarily smooth. Note that the existence of a surface is, to a first approximation,
not taken into account in most discussions in solid state physics, since the solid is
modelled to be infinitely extended in order to conserve periodicity. However, it has
also long become clear that surface effects cannot be neglected altogether [FS04].
It is the aim of this section to introduce a model to investigate the effect of surface
defects on a condensate of electron pairs as described in the previous section.

In order to take surface defects into account we have to extend our Hilbert space.
More explicitly, we set

H := L2
a(�)⊕ �2(N) , (6.27)

where �2(N) is the space of square-summable sequences. Consequently, a given
pair of electrons is described by a state of the form (ϕ, f )T , with ϕ ∈ L2

a(�) and
f ∈ �2(N). This means that we model the surface defects as the vertices of the
discrete graph N, which seems reasonable in a regime where the spatial extension
of those defects is small compared to the bulk.
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The Hamiltonian of a free pair of electrons on H is given by

Hp := −�d
σ=0 ⊕ L(γ ) , (6.28)

where L(γ ) is the (weighted) discrete Laplacian acting via

(L(γ )f )(n) =
∞∑

m=1

γmn (f (m)− f (n)) , (6.29)

with (γ )mn =: γmn = δ|n−m|,1en for n ≥ m, γ = γ T , and (en)n∈N ⊂ R+.
Now, since we are interested in the condensation phenomenon we have to restrict

the system to a finite volume as we have done in the previous section. More
explicitly, the finite volume Hilbert space is given by

HL := L2
a(�L)⊕C

n(L) , (6.30)

where n(L) ∈ N denotes the number of surface defects in the interval [0, L]. On
this Hilbert space one considers HL

p , i.e., the restriction of Hp to the finite-volume
Hilbert space HL. This operator has purely discrete spectrum and the eigenvalues
are the union of those coming from −�d

σ |L2
a(�L)

(where this operator is defined as
in the previous section) and L(γ )|

Cn(L) .
In order to formulate the model it is convenient to use the formalism of second

quantisation [MR04a]. This means that one works on the Fock space over HL, rather
than on HL itself. The second quantisation of HL

p is given by

�(HL
p ) =

∞∑

n=0

Eσ=0
n (L)a∗nan +

n(L)∑

k=1

λk(L)b∗kbk , (6.31)

where (Eσ=0
n (L))n∈N0 are the eigenvalues of −�d

σ=0|L2
a(�L)

and (λk(L))k=1,...,n(L)

are the eigenvalues of L(γ )|
Cn(L) , counted with multiplicity. Furthermore, (a∗n, an)

are the creation and annihilation operators of the states ϕn ⊕ 0, where ϕn ∈ L2
a(�L)

are the corresponding eigenstate of −�d
σ=0|L2

a(�L)
. In contrast, (b∗k , bk) are the

creation and annihilation operators of the states 0 ⊕ fn, where fn ∈ C
n(L) are

the corresponding eigenstates of L(γ )|
Cn(L) . To obtain the full Hamiltonian of the

model we extend the free Hamiltonian (6.31) and write

HL(ρs, α, λ) = �(HL
p )− α

n(L)∑

k=1

b∗kbk + λρs(μL,L)

n(L)∑

k=1

b∗kbk , (6.32)

where α ≥ 0 describes the surface tension; λ ≥ 0 is an interaction strength
associated with the repulsion of the pairs in the surface defects and ρs(μL,L) is
the density of pairs on C

n(L), see the equation below. Note here that
∑n(L)

k=1 b∗kbk is
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the (surface-) number operator whose expectation value equals the number of pairs
in the surface defects. Also, the third term in (6.32) is added to take into account
repulsive interactions between electron pairs accumulating in the surface defects
which are expected since the surface defects are imagined to be relatively small.
The explicit form of this term follows from a simplification of standard mean-field
considerations where the interaction term is generally of the form λN̂2/V , where N̂

is the number operator and V is the volume of the system. In other words, we have
replaced N̂/V by the density ρs(μL,L) for which

ρs(μL,L) :=
ω

HL(ρs,α,λ)
β,μL

(∑n(L)
k=1 b∗kbk

)

n(L)
(6.33)

holds with ω
HL(ρs ,α,λ)
β,μL

(·) denoting the Gibbs state of the grand-canonical ensemble
at inverse temperature β = 1/T and chemical potential μL.

The advantage of the Hamiltonian H(ρs, α, λ) is that it can be rewritten as

HL(ρs, α, λ) =
∞∑

n=0

Eσ=0
n (L)a∗nan +

n(L)∑

k=1

(λk(L)+ λρs(μL,L)− α) b∗kbk ,

(6.34)

which yields an effective, non-interacting many-pair model with shifted eigenvalues
for the discrete part. Note that, in particular, (6.34) implies μL < min{λρs(μL,L)−
α,E0(L)}, taking into account that λ1(L) = 0.

The goal then is to investigate the macroscopic occupation of the ground
state ϕ0 ⊕ 0 in a suitable thermodynamic limit (see [Kerc] for details) for the
Hamiltonian (6.34). It turns out that a key quantity is the inverse density of surface
defects δ > 0 defined as

δ := lim
L→∞

L

n(L)
. (6.35)

One obtains the following result.

Theorem 6.15 If

2λ · δ · ρ < E0 + α (6.36)

holds, no eigenstate ϕn ⊕ 0 is macroscopically occupied in the thermodynamic
limit. This means, in particular, that the condensate is destroyed for arbitrary pair
densities whenever λ = 0.

Theorem 6.15 has the remarkable consequence that the condensation is destroyed
for all pair densities ρ > 0 in the following cases: the pairs do not repel each other
which allows them to accumulate in the surface defects or the number of surface
defects is very large.
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Finally, we obtain the following result.

Theorem 6.16 Assume that δ, λ > 0. Then there exists a critical pair density
ρcrit = ρcrit (β, δ, α, λ) > 0 such that for all pair densities ρ > ρcrit the state
ϕ0 ⊕ 0 is macroscopically occupied in the thermodynamic limit.

Theorem 6.16 shows that the condensate can be recovered given the interaction
strength λ > 0 is non-zero and, most importantly, given the number of surface
impurities is not too large.
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Deterministic and Stochastic Mean-Field
SIRS Models on Heterogeneous Networks

Stefano Bonaccorsi and Silvia Turri

Abstract In this paper we study a model for the spread of an SIRS-type epidemics
on a network, both in a deterministic setting and under the presence of a random
environment, that enters in the definition of the infection rates of the nodes.
Accordingly, we model the infection rates in the form of independent stochastic
processes. To analyze the problem, we apply a mean field approximation that is
known in the literature as NIMFA model, which allows to get a differential equation
for the probability of infection in each node. We discover a sufficient condition
which guarantees the extinction of the epidemics both in the deterministic and in
the stochastic setting.

1 Introduction

Differential models for population dynamics are necessary tools to make predictions
and analysis in many fields of science, starting from the early contributions in
epidemic models due to Kermack and McKendrick [11] which were concerned with
the spread of infectious diseases.

The name epidemic model, that in the origin was actually referred to the spread
of infections in human populations, is currently used to cover the spreading of many
other threats in a population, cultural beliefs [5, 25], drug and alcohol addictions
[19], as well as digital populations: diffusion of computer viruses and worms,
spreading of informations (news, rumors, messages) in on-line social networks [23].

The epidemic models generally assume that individuals are divided into classes
that represent the status of the individual itself. The main classes are: susceptibles
(S), that are healthy and can contract the infection, infected and infectious (I)
and recovered and immune (R). In general, the model assumes that susceptible
individuals can get infected, usually, through interaction with other infected indi-
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viduals. An infected individual remains in such state for a certain period of time,
and then recovers: in classical SIS models, the recovered individual returns to the
class of susceptibles, while in SIR models it becomes immune for the remaining
time (perfect vaccination). In this paper, we consider a SIRS model, that is an
intermediate case between SIS and SIR dynamics. The recovered individual receives
a temporary immunity, i.e. the immunity wanes after some time (called latency
period) before the individual returns to the susceptible class [2, 8]. In order to
introduce heterogeneity of the population it is necessary to introduce a network-
based approach, where inhomogeneous contact rates and individual responses to
the infection are introduced [4, 14, 18].

Under some standard mathematical simplification, we can describe the epidemic
spreading using the theory of Markov chains in discrete and continuous time [1].
This approach is often use to describe epidemic models based on their deterministic
formulations. In most cases, the deterministic model is a good representation of the
process, however, is important to include in the analysis also a stochastic effect in
order to cover more realistic situations.

There are different possible way to include stochasticity in the model, both
from a mathematical and a biological perspective, one of the approaches is to
consider stochastic differential equations [1]. Another way to introduce a stochastic
perturbation consists of replacing one or more parameters of the deterministic model
by the corresponding stochastic counterparts, indeed, the parameters may have a
great variability [6, 16].

Our epidemic spreading process is described by an individual-based mean-field
approximation [20]. The idea is to write down the equations of the evolution in time
of the probability of every node to be in each class assuming independence between
the state of every couples of nodes.

After a mean-field approximation, the non linear system considered has two
different solutions, the first is the trivial one that represent the absorbing state,
the second is the nonzero steady-state solution called metastable state [13, 20].
This behaviour depends on the effective infection rate τ = β/δ, the ratio between
infection rate and curing rate. If this quantity is above a critical threshold τc i.e.,
τ > τc, the infection spreads and there exist a nonzero fraction of infected nodes,
while, if τ ≤ τc, the epidemic dies out quickly.

Computing the critical threshold for the SIRS mean-field model in the discrete
homogeneous case, we observe that it coincides with the critical threshold for the
SIS model and the metastable state of the SIRS case is proportional to that of the
SIS model.

Throughout the paper we shall discuss the long time behaviour of the solution
both in deterministic and stochastic case finding conditions which guarantee the
extinction of the epidemics. For the asymptotic stability of the stochastic case we
use a result in [17] and we found a sufficient condition for the exponential stability
of the solution. Since the condition is only sufficient, in some cases the solution
wanes even if the condition is not satisfied; we analyse this behaviour by means of
some simulations in a given graph.
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The paper is organized as follows. In Sect. 2 we describe the SIRS model in
the deterministic case and we introduce the related individual-based mean-field
approximation that we use to obtain a system of differential equation for each node.
Then, in Sect. 3 we study the behaviour of the solution over time, finding the stability
properties of the system obtained. At first, we consider the homogeneous case and
we study the epidemic spreading to changing the effective infection rate which is the
ratio between the infection rate β and the recovery rate δ. Then we extend the results
to the heterogeneous setting. In Sect. 5 we include stochasticity in the parameters of
the model, we prove that the unique global solution remains in (0, 1)3N whenever
it starts from this region and we study the stability properties. Finally, in Sect. 4
we provide some numerical results for the heterogeneous case in order to better
investigate the behaviour of the solution.

2 The Deterministic Model

The spatial structure of the population is encoded by a network, i.e., an undirected
graph G(E,V ) with set of vertices (nodes) V = {v1, . . . , vN } (N being the total
amount of the population) and set of links E. The geometry of the network is
described by the symmetric adjacency matrix A, in which the element aij = aji
is either 1 if the nodes vi and vj are connected, or 0 otherwise. We shall further
denote di the degree of the node vi .

In a classical SIS model, the state of an individual at time t is represented by a
Bernoulli random variable Xi(t), where Xi = 0 represents the healthy, susceptible
state and Xi = 1 the infected state. Therefore, the state of the system can be
represented by the quantity pi(t) = P(Xi(t) = 1), which represents the probability
that the i-individual is infectious at time t .

On the other hand, in a SIRS model the random variable Xi(t) needs to take three
different values (which represent the states S, I and R, respectively) and the state is
described by three quantities, xi(t) = P(Xi(t) = S), yi(t) = P(Xi(t) = I) and
zi(t) = P(Xi(t) = R). The total probability theorem implies that

xi(t)+ yi(t)+ zi(t) = 1 (1)

for every time t ≥ 0.
The infection of an individual i is a Poisson process with rate bi(t) which

depends on the state of the other individuals. More precisely, the probability that
a node i in a susceptible state receives infections from its neighbors is given by

bi(t) = 1 −
∏

j :j neighbors of i

(1 − βjyj (t)),



70 S. Bonaccorsi and S. Turri

Fig. 1 State transition
diagram for node vi
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where βj is the rate at which individual j tries to infect its neighbors. By means of
the adjacency matrix A, previous expression becomes

bi(t) = 1 −
N∏

j=1

(1 − aij βjyj (t)). (2)

We assume that the curing process per the node vi is a Poisson process with rate δi ,
and that the period of latency is exponentially distributed with rate λi , All involved
Poisson processes are independent (Fig. 1).

We are thus lead to the following mean field model for the SIRS epidemics

⎧
⎪⎪⎨

⎪⎪⎩

x ′i (t) =− bi(t)xi(t) + λizi(t)

y ′i (t) = bi(t)xi(t)− δiyi(t)

z′i (t) = δiyi(t)− λizi(t)

(3)

Obviously, it is sufficient to solve just two of them, thanks to (1).
A justification of Eq. (3) can be given in terms of a mean-field approximation for

the exact Markov process on the space {S, I, R}N , following the ideas in [20]. For
instance, the exact Markovian equation governing the state of individual i implies
that the transition probability for the node vi to move from the susceptible to the
infected state is given by

Bi(t) = 1 −
N∏

j=1

(
1 − βjaij1Xj(t)=I

)

where the indicator function is 1 if the node vj is in the state I at time t and it is 0
otherwise. Therefore, this coupling is a random variable, and the process is, in some
sense, “doubly stochastic” and actually not Markovian.
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Van Mieghem [20, 21] proposed to replace the actual, random infection rate Bi(t)

with its average bi(t), which can be interpreted as a mean-field approximation of the
exact model.

A different, but related, justification of Eq. (3) can be given by taking expectation
in the governing equation of transition rate for the Markov process on the space
{S, I, R}N . The equation for the probability of node i being in state I is given by

d

dt
E[1I (Xi(t))] = E

⎡

⎣−δi1I (Xi(t))

+ 1S(Xi(t))1 −
N∏

j=1

(
1 − βjaij1Xj (t)=I

)
⎤

⎦

As one can see, the equation contains the joint probabilities for the random variables
Xi(t). Therefore, the system does not contain enough equations for getting a
solution. However, instead of adding more and more equations, which should
allow to solve also for the joint probabilities, we propose to close the system by
assuming independence between the infection state of every couple of nodes. This
approximation is also called a mean-field approximation [24].

It shall be noticed that this second approach leads to a model which is formally
defined by Eq. (3), but in this case the coefficients bi(t) have a different expression,
i.e.,

b̃i(t) =
N∑

j=1

aij βjyj (t).

We shall often use, in the sequel, the following observation.

Remark 1 The function b̃i(t) is a first-order approximation of bi(t) for small values
of the parameters β.

3 The Critical Threshold

Since the early models, it is known that the time behavior of an epidemics’ spreading
depends on the ratio τ = β/δ between infection rate over the curing rate1: if this
quantity is below a critical threshold τc then the epidemics dies out exponentially

1In demography, this quantity is referred to as the basic reproduction number, [7], and in classical
SIS models without spatial structure the critical threshold is equal to 1
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fast, otherwise the epidemics becomes endemic in the population, meaning that
there exists a positive lower bound on the probability of being infected [15].

It is our interest to extend the above result to a spatially structured population. In
the analysis of a SIS epidemics in an homogeneous population, the analysis in [20]
provides the determination of the epidemic threshold τc = 1/λ1 of the mean-field
N-intertwined model as the inverse of the largest eigenvalue λ1 of the adjacency
matrix A. It is our aim the extension of this result to the SIRS epidemic model.

In the first part of this section, we provide a sufficient condition for the epidemics
to die out exponentially fast. In order to simplify the analysis, we explicitly solve
the steady state problem associated to (3) in case of constant parameters β, δ and λ.
Actually, it becomes necessary to solve the system

{
y ′i (t) =(1 − yi(t)− zi(t)) bi(t)− δyi(t)

z′i (t) =δyi(t)− λzi(t)
(4)

Since both functions yi(t) and zi(t) take values in [0, 1], we can bound the first
equation as

⎧
⎪⎪⎨

⎪⎪⎩

y ′i (t) ≤1 −
N∏

j=1

(1 − aij βyj (t))− δyi(t)

z′i (t) =δyi(t)− λzi(t)

Taking into account the first order expansion of the product in previous formula, i.e.,

N∏

j=1

(1 − aij βyj (t)) ≥ 1 −
N∑

j=1

aij βyj (t)

we obtain the following

⎧
⎪⎪⎨

⎪⎪⎩

y ′i (t) ≤β

N∑

j=1

aij yj (t)− δyi(t)

z′i (t) =δyi(t)− λzi(t)

(5)

Define the vector η = (y1, . . . , yn, z1, . . . , zn)
� ∈ R

2n and consider the block
matrix

C =
(
βA− δIn 0

δIn −λIn

)
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We consider the differential systems

η′(t) ≤ Cη(t)

η(0) = η0
(6)

and

η̃′(t) = Cη̃(t)

η̃(0) = η0
(7)

Let us recall that a comparison principle for linear equations implies that for 0 ≤
η0;i ≤ 1 then 0 ≤ ηi(t) ≤ η̃i (t) for every t > 0. Moreover, the null solution of the
linear differential system (7) is asymptotically stable if and only if the real parts of
every eigenvalue of C is negative.

Theorem 1 Assume that the ratio τ = β/δ satisfies

τ < 1/λ1(A). (8)

Then the SIRS epidemic model (3) vanishes exponentially fast for every possible
initial condition.

The proof follows from the analysis of the eigenvalues of the matrix C. The real
parts of every eigenvalue of C have to be negative.

Using the properties of block matrices we have that the eigenvalues of C are: −λ,
coming from the second block on the diagonal, that is negative, and

λi(βA− δIn) = βλi(A)− δ

and, in order to get the asymptotically stability we have to impose the following
condition

λ1(βA− δIn) = βλ1(A)− δ < 0

which reads

β

δ
<

1

λ1(A)
.

We see that the presence of a latency period does not affect the critical threshold.
We then proceed to analyse how the latency rate λ influence the model above
threshold.
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Our aim is the computation of the steady-state vector η∞(y1, . . . , yn, z1, . . . , zn)
� ∈

R
2n that satisfies

{
0 =(1 − yi − zi) bi − δyi

0 =δyi − λzi
(9)

where

bi = 1 −
N∏

j=1

(1 − aij βyj ).

We can assume that near the critical threshold the steady-state has the form

η = εη̃,

where η̃ is a vector with all positive elements (compare e.g. [22]). Then we proceed
to analyse Eq. (9). Using the second equation in system (9) we obtain that the system
is determined by the value of the projection of η on the first n components: Y =
(y1, . . . , yn)

�

δyi = (1 − (1 + δ

λ
)yi) bi

We expect yi = εỹi , hence we perform an asymptotic expansion in the small
parameter ε;

δεỹi = (1 − ε(1 + δ

λ
)ỹi)

⎛

⎝
N∑

j=1

βaij εỹj +O(ε2)

⎞

⎠ .

If we simplify previous expression and take the limit for ε → 0, we see that
under condition (8) there exists only the null solution to previous equation, while
a non trivial stable state η = εη̃ exists if τ is larger than the critical threshold. We
summarise what we’ve found in the following

Theorem 2 Under condition (8), there exists only one stable solution for the SIRS
model (3) that is the trivial one, and the system converges to the trivial solution
exponentially fast.

If the ratio τ = β/δ satisfies τ > 1/λ1(A), then the trivial steady state is
unstable and there exists a non-trivial steady state η∞ that is asymptotically stable.
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3.1 Computing the Meta-Stable State

In this section we are interested in the computation of the meta-stable state for
the SIRS model (3) in the over-critical case τ > 1/λ1(A). We shall provide a
description of the situation in either the case described by the mean field model
with infection rate bi(t) and in the first order approximation b̃i(t).

At first, we give an explicit formula for the solution in the case of the
approximating infection rate b̃i(t). In order to compute the value of η∞ = (Y,Z)�,
we consider the system

{
0 =(1 − yi − zi) b̃i − δyi

0 =δyi − λzi
(10)

Then, by the second equation we get that

zi = δ

λ
yi

and we arrive at the equation

δyi =
(
1 − (

1 + δ
λ

)
yi
)
β(AY)i

Let us introduce λ∗ = 1 + δ
λ

; then a little algebra leads to

λ∗yi = 1 − 1

1 + τ (Aλ∗y)i

The above system for the unknowns Y = (y1, . . . , yn) can be solved by means of a
recursive argument

λ∗y(k+1)
i = 1 − 1

1 + τ (Aλ∗y(k))i

which, even after a few iterations, gives a good approximation of the exact value.
Moreover, we recognize the above formula from the analog computation in the SIS
case [21].

A similar computation can be made for the SIRS model described in model (3)
with infection rate bi(t).

We aim to emphasize that the first order approximation shows a good agreement
with the mean field model. Let us consider for instance the spread of an SIRS
epidemics on the network plotted in Fig. 3a, which corresponds to a graph with
|V | = 18 nodes and |E| = 25 vertices. In Fig. 2 we provide a numerical
computation for the overall percentage of infected individuals in the meta-stable
state for the mean field approximation model (with coefficients bi(t)) and its first
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average infection

0.20

0.15

0.10

0.05

0.2 0.4 0.6 0.8 1.0

Fig. 2 In this graph, we plot the overall infected individuals in the meta-stable state as the
(uniform) infection rate in the nodes β varies between 0 and 1, in either the case of mean field
approximation model (with coefficients bi(t)) and its first order approximation (with coefficients
b̃i (t)). The underlying network is depicted in Fig. 3a. The other parameters are δ = 1 (arbitrary
units), λ = 0.5 (latency period is the double of the curing period). Critical threshold τc =
1/λ1(A) = 0.24263

order approximation (with coefficients b̃i(t)). It is apparent that these models share
the same qualitative features.

Theorem 3 The average incidence of the epidemics for the SIRS model, in the over-
threshold case τ > 1/λ1(A) (that coincides with the critical region for the SIS
model), is equal to that of the SIS model rescaled by a factor λ

λ+δ
< 1 which depends

on the latency rate λ.

In the meta-stable state, the average number of susceptible, infected and recov-
ered individuals is given by, respectively,

S =
n∑

i=1

xi(t) = N

(
1 − λ+ δ

λ

I

N

)
,

I =
n∑

i=1

yi(t), R =
n∑

i=1

zi(t) = δ

λ
I.

For a latency period going to 0 (which corresponds to λ → ∞) we get that the SIRS
model converges to the SIS model; conversely, if λ → 0 (there is no return to the
susceptible state), then the quantity of infected individuals converges to 0, as in the
SIR model.
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3.2 The Heterogeneous Case

In this section we extend the above result to the heterogeneous setting, where we
include the possibility for both the infection rates and the curing rates to be different
for each node. As we have seen before, in this case, the governing equation is given
by system (3). Actually, it is necessary to solve

{
y ′i(t) =(1 − yi(t)− zi(t)) bi(t)− δiyi(t)

z′i (t) =δiyi(t)− λizi(t)
(11)

Taking into account that yi(t) and zi(t) take values in [0, 1] and considering the first
order expansion of the product in bi(t) i.e.

N∏

j=1

(1 − aij βyj (t)) ≥ 1 −
N∑

j=1

aij βyj (t)

we obtain a generalization of the system (5)

⎧
⎪⎪⎨

⎪⎪⎩

y ′i (t) ≤
N∑

j=1

aijβjyj (t)− δiyi(t)

z′i (t) =δiyi(t)− λizi(t)

As in the homogeneous case we consider the block matrix

C =
(
A diag(βi)− diag(δi) 0

diag(δi) −diag(λi)

)

and the differential systems

η′(t) ≤ Cη(t)

η(0) = η0
(12)

and

η̃′(t) = Cη̃(t)

η̃(0) = η0
(13)

In order to understand when the null solution of the linear differential system (13) is
asymptotically stable we analyse the eigenvalue of the matrix C. We have to study
when the real part of every eigenvalue of C is negative. For the property of the
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block matrix it is sufficient to understand when the matrix Adiag(βi) − diag(δi) is
semidefinite negative.

Since the sign of the matrix Adiag(βi) − diag(δi) is equivalent to that of the
matrix A− diag(δi/βi), a sufficient condition for this matrix to be (semi-)negative
defined is

λ1(A) ≤ min

{
δi

βi

}
(14)

We can improve previous estimate. Recall that the discrete Laplacian operator L =
diag(d(vi ))−A is semi-definite positive, where d(v) is the degree of vertex v [22];
hence, writing

A− diag(δi/βi)

= [
A− diag(d(vi ))

]+ [
diag(d(vi ))− diag(δi/βi)

]

we obtain the following sufficient condition for the matrix Adiag(βi) − diag(δi) to
be (semi-)negative defined:

max

{
d(vi )− δi

βi

}
≤ 0 (15)

For a regular graph, say of degree d(v) = r , it holds that λ1(A) = r , which means
that conditions (14) and (15) coincide.

Remark 2 In order to justify our preference for condition (15), we propose the
following problem. We are given a population, whose spatial structure is described
by a graph G with adjacency matrix A. Assume that the infection rates are constant
throughout the population at a level β. Assume that a cure is available, and can
be distributed to the population, with a cost for each individual that is proportional
to the efficiency (measured in terms of the rate δi). Then, according to the policy
in (14), it is necessary to distribute (pay) a quantity proportional to Nλ1(A) units in
order to guarantee the vanishing of the epidemics.

However, according to the policy in (15), the total cost of the cure is proportional

to
N∑

i=1

d(vi ). Since Nλ1(A) ≥
N∑

i=1

d(vi ) (compare [22, Eq.(3.31)]), it follows that

condition (15) is globally better than (14).

Now, we compute the metastable state for the SIRS model in the heterogeneous
case. We consider the system

{
0 =(1 − yi − zi) b̃i − δyi

0 =δiyi − λizi
(16)
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from which we get

δiyi =
(

1 −
(

1 + δi
λi

)
yi

) N∑

j=1

aij βjyj

that yields the nodal steady state equation

N∑

j=1

aij βjyj = δiyi

1 −
(

1 + δi
λi

)
yi

We recognize the above formula from the heterogeneous SIS case [21, Eq.(6)]. In
particular, we see that for a latency period going to 0 (which corresponds to λ →∞)
we get that the SIRS model converges to the SIS model.

4 Simulations for the Deterministic Heterogeneous Case

In the first example, described in Fig. 3, we consider the sufficient condition (14). We
associate to every node a different value of the infection rate βi chosen arbitrarily
in the interval (0.1, 0.23). The sufficient condition for stability, stated in (14), is
max{βi} ≤ 1

λ1(A)
= 0.242431; therefore, our system is in the under-threshold

regime. The simulation shows that the epidemic level decreases to zero uniformly
in the whole network.

The next example shows that the sufficient conditions (15) and (14) are not nec-
essary. Consider the simple graph in Fig. 4. We observe the following behaviours,
according to the different values of the parameters βj : when the sufficient con-
dition (15) is verified, then the graph converges exponentially fast to the zero
solution (absence of infection). Otherwise, the topological structure of the graph
shall play a rôle. In both the examples depicted in Fig. 5, the system does not
satisfy the sufficient conditions above. As far as condition (14) is concerned, we
have 1

λ1(A)
= 0.306579 but max{βi} = 0.8, hence the inequality is not satisfied.

Moreover, condition (15) requires max{βid(vi )} ≤ 1. Since in (a): β4d(v4) = 4
while in (b) β6d(v6) = 1.6, condition (15) fails to hold too.

However, in the case in Fig. 5a, when the central node has a large infectivity rate,
the system converges to a metastable state where the average infection rate of the
nodes is positive (ȳ = 0.0235458), while in case (b), when the large infectivity rate
is associated with a peripheral node, the system converges to zero.
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Fig. 3 In (b), the rate of infection in the network provided in (a) as a function of time, for different
values of the initial infection rate. In the simulation we fix δ = 1, λ = 0.5 and we choose arbitrary
values βi such that max{βi} ≤ 1

λ1(A)
= 0.242431. (a) The model network for this simulation. It

contains |V | = 18 nodes and |E| = 25 edges. (b) Total rate of infection for the above network in
the under-threshold regime

5 Stochastic SIRS Model

In order to make things formal, we shall introduce a standard n-dimensional Brown-
ian motion W(t) = (w1(t), . . . , wn(t)) defined on a stochastic basis (�,F , {Ft},P)
that satisfies the standard assumptions.

In the epidemiology literature, despite the potential importance of the envi-
ronmental noise, stochastic models have received relatively little attention. In the
aggregated models, there are mainly two ways to introduce a stochastic perturbation.
In the first, one replaces one or more of the parameters of the deterministic model by
the corresponding stochastic counterparts (see for instance [16]). In a second way,
one can add randomly fluctuation affecting directly the deterministic model (see for
instance [9, 10]).
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Fig. 4 In the simulation we fix δ = 1, λ = 0.5 and the we choose arbitrary values βi such that
max{βi} ≤ 1

λ1(A)
= 0.306579. (a) The model network for this simulation. It contains |V | = 6

nodes and |E| = 9 edges. (b) Total rate of infection for the above network in the under-threshold
regime

Here, we consider the mean field model for the SIRS epidemics (3), and we
assume that the infection rate bi(t) is perturbed by a stochastic term having the form
σi

yi(t)
1+αyi(t)

ẇi(t) (compare system (2) in [12] or [6]), thus leading to the stochastic
differential system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxi(t) =[−bi(t)xi(t)+ λizi(t)] dt − σi
xi(t)yi(t)

1 + αyi(t)
dwi(t)

dyi(t) =[bi(t)xi(t)− δiyi(t)] dt + σi

xi(t)yi(t)

1 + αyi(t)
dwi(t)

dzi(t) =[δiyi(t)− λizi(t)] dt

(17)
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Fig. 5 In the simulation we fix δ = 1, λ = 0.5. In (a) we consider all βi = 0.2 except β4 = 0.8 (v4
is the central node). The system converges to a meta-stable state. In (b) we consider all βi = 0.2
except β6 = 0.8 (v6 is the rightmost node). The system converges to the null state. Sufficient
conditions for stability: (14) means max{βi} ≤ 1

λ1(A)
= 0.306579, which fails to hold, while

condition (15) requires max{βidi} ≤ 1. Since d6 = 2, condition (15) fails to hold too. (a) Total
rate of infection in the network in Fig. 4a when the central node is highly infective. (b) Total rate
of infection in the network in Fig. 4a when only a peripheral node is highly infective
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We shall denote P(t) =
(
x(t), y(t), z(t)

)
the solution of (17) with the standard

notation x = (x1, . . . , xn).

Remark 3 In (17) we have chosen the stochastic perturbation term in such a way
that the disturbance is small provided that the state of the node is far from infection.
This also implies the viability of the system in the set [0, 1]3N , since a diffusion
coefficient independent of the infection level would have implied a stochastic
variability also near the zero level, thus allowing the solution to go below zero,
which does not have any physical meaning.

Theorem 4 For any initial condition (x, y, z) ∈ D := (0, 1)3N the solution of
system (17) has an infinite life-span and, moreover, it remains inside the domain D

for all times, almost surely.

Since the coefficients of the equation are locally Lipschitz continuous, for any
given initial value P(0) = (x, y, z) there is a unique local solution on t ∈ [0, τe),
where τe is the explosion time (see for instance [3]).

To show this solution is global, we need to show that τe =∞ a.s. This is achieved
if we prove a somehow stronger property of the solution, namely that it never leaves
the domain D. The following computations are somehow standard (compare for
instance [6]). Let N0 > 0 be sufficiently large for pi(0) ≥ 1

N0
, p ∈ {x, y, z}, for all

i = 1, . . . n. For each integer N ≥ N0, define the stopping time

τN = inf

{
t ∈ [0, τe) : inf

p∈{x,y,z},i∈{1,...,n}pi(t) < 1/N

}
,

where, as customary, inf∅ = +∞ (with ∅ denoting the empty set).
Clearly τN is increasing as N → ∞ and letting τ∞ = limn→∞ τN , we have

τ∞ ≤ τe a.s. Hence we basically need to show that τ∞ = ∞ a.s; if this were not so,
there would exists a pair of constants T > 0 and ε ∈ (0, 1) such that

P {τ∞ ≤ T } > ε.

Accordingly, there is an integer N1 ≥ N0 such that

P {τN ≤ T } ≥ ε/2 ∀N ≥ N1. (18)

Now we define a function V : D → R
+ as

V (P(t)) = −
n∑

i=1

log [xi(t)yi(t)zi (t)] .
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By Itô’s formula we have

dV (P(t)) =
n∑

i=1

(
bi(t)+ δi + λi + 1

2
σ 2
i

xi(t)
2 + yi(t)

2

(1 + αyi(t))2

−λi
zi(t)

xi(t)
− bi(t)

xi(t)

yi(t)
− δi

yi(t)

zi(t)

)
dt

+
n∑

i=1

σi
yi(t)− xi(t)

1 + αyi(t)
dwi(t)

Therefore, in [0, τN) we have, by using the positivity of the components of P(t),
and the simple bounds bi(t) ≤ 1 and x2

i + y2
i ≤ 2:

V (P(t))− V (P(0)) ≤
n∑

i=1

(
1 + δi + λi + σ 2

i

)
t

+M(t)

(19)

where M(t) is the (local) martingale defined by

M(t) =
n∑

i=1

σi

∫ t

0

yi(s)− xi(s)

1 + αyi(s)
dwi(s).

Taking the expectation in (19) we arrive to

E[V (P(τn ∧ T ))] ≤ E[V (P(0))] +K E(τn ∧ T )

≤ E[V (P(0))] +KT. (20)

Set �N = {τN ≤ T } for N ≥ N1. By (18) we have P(�N) ≥ ε/2. Since for every
ω ∈ �N , there is at least one of the pi(τN , ω), p ∈ {x, y, z}, equal to 1/N , then it
holds

V (P(τN , ω)) ≥ − log
1

N
. (21)

Then from (20) and (21) it follows that

V (P(0))+KT ≥ E
[
χ�NV (P (τN , ω))

] ≥ ε/2 log (N)



Deterministic and Stochastic Mean-Field SIRS Models on Heterogeneous Networks 85

where χ�N is the indicator function of �N . Letting N →∞ we have the following
contradiction

∞ > V (P(0))+KT ≥ lim
N→∞ ε/2 log (N) = ∞,

that is a contraddiction. Hence we must have τ∞ = ∞ a.s. and the proof is complete.
The concept of asymptotic stability for dynamical system was introduced in

1892 by Lyapunov: roughly speaking, it means that the system converges to the
equilibrium solution for large time, independently by the initial condition. Later,
in the 1960s, the concept was extended to stochastic systems by Bucy, Arnold,
Has’minskii and many others. Let us briefly recall the main definitions we shall
need in this section.

Definition 5 The trivial solution of the equation

dx(t) = f (t, x(t)) dt + g(t, x(t)) dW(t)

x(0) = x0
(22)

is said to be stochastically asymptotically stable if

(i) it is stochastically stable:

P{|x(t; x0) < r for all t > 0} ≥ 1 − ε

(ii) moreover, for every ε ∈ (0, 1), there exists a δ0 = δ0(ε) > 0 such that

P{ lim
t→∞|x(t; x0) = 0} ≥ 1 − ε

whenever |x0| < δ0.

In the sequel, we adapt the presentation of Arnold [3] to our case. In particular,
we shall exploit the invariance of the domain D and consider all the following
construction restricting the functions, and inequalities, to D.

A continuous function V (x) defined on D ∩ Bh(0) is said to be positive-definite
(in the sense of Lyapunov) if V (0) = 0 and V (x) > 0 on |x| > 0.

A function V is said to be negative-definite if −V is positive-definite.
The diffusion operator associated to (22) is

Lv(x) =
(∑

fi(t, x)
∂

∂xi
+ 1

2

∑[
g(t, x)g�(t, x)

]
ij

∂2

∂ixj

)
v(x).

In order to prove asymptotic stability of the solution, we shall appeal to the
following result (compare [17, Ch.4, Thm.2.2]).
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Proposition 6 If there exists a positive-definite function V (x) such that LV (x) is
negative-definite, then the trivial solution of Eq. (22) is stochastically asymptotically
stable.

It shall be noted that in the above result the functions V and LV are given in
the whole space. However, since we only allow initial conditions in the invariant
domain D, a sufficient condition for the relevant inequality ELV (Xx

t ) ≤ 0 is LV (x)

negative defined in D.
In this section we consider the unknown P(t) = (y(t), z(t)) and the correspond-

ing equation

⎧
⎪⎨

⎪⎩

dyi (t) =[bi(t)(1 − yi (t)− zi(t))− δiyi(t)] dt + σi
(1 − yi (t)− zi(t))yi(t)

1 + αyi(t)
dwi(t)

dzi (t) =[δiyi (t)− λizi (t)]dt

(23)

In order to study asymptotic stability, we consider the function V (P) = ∑
log(1 +

yi) + ε
∑

zi on the domain D ∩ Bh(0) for some h > 0. This function is positive-
definite (in the sense of Lyapunov), hence we shall prove that LV (P) is negative-
definite, where

LV (P) =
n∑

i=1

[bi(t)(1 − yi(t)− zi(t))− δiyi(t)] 1

1 + yi(t)

−
n∑

i=1

(
σi

(1 − yi(t)− zi(t))yi(t)

1 + αyi(t)

)2 1

(1 + yi(t))2

+ ε

n∑

i=1

[δiyi(t)− λizi(t)]

Claim 1 It holds that bi(t) ≤ b̃i(t) for P ∈ D ∩ Bh(0).

Proof We compute

bi (t) =1 −
N∏

j=1

(1 − aij βj yj (t)) = 1 − (1 − ai1β1y1)(1 − ai2β2y2) . . . (1 − aiNβNyN)

=1 − (1 −
N∑

j=1

aij βj yj +
N∑

j,k=1

aij aikβjβkyj yk − . . . )

=
N∑

j=1

aij βj yj − (

N∑

j,k=1

aij aikβj βkyj yk −
N∑

j,k,l=1

aij aikailβj βkβlyj ykyl + . . . )
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where, taking into account that 0 ≤ yi ≤ h, for h small enough, we get

N∑

j,k=1

aij aikβjβkyjyk ≥
N∑

j,k,l=1

aij aikailβjβkβlyjykyl ≥ . . .

and all the differences between successive pair of sums inside the brackets are
positive. This implies that

bi(t) ≤
N∑

j=1

aijβjyj = b̃i(t)

as claimed. �
We thus estimate

LV (P) ≤−
n∑

i=1

(
−βdeg(vi )+ δi

(
1

1 + h
− ε

))
yi

− ε

n∑

i=1

λizi

(the diffusion term is negative and goes to zero as y2 hence it is negligible) and, due
to the arbitrariness of h and ε, we arrive at the following result.

Theorem 7 The sufficient condition (15) for the exponential stability of the solution
of the deterministic problem (3) is also a sufficient condition for the exponential
stability of the solution of the stochastic problem (17).

6 Conclusion

In this paper we study the behaviour of an epidemics spreading in a population
with homogeneous and inhomogeneous contact rates, where the rates at which
each individual can be infected from its neighbours are considered as independent
stochastic processes.

We start from the deterministic case obtained after a mean field approximation,
where the infection rate β between each two given individuals is either zero, if they
are not in contact, or a given constant, if they are connected.

However, since epidemic processes are usually affected by random disturbances,
we introduce in this model a stochastic heterogeneity of the population by taking
into account a variability in time of the parameters. Precisely, we assume that the
rate of receiving the infection, for each individual, varies around a common average
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value under the action of a family of independent, identically distributed Brownian
motions.

We observe that the steady state solution of the SIRS model can be exactly
mapped to that of the SIS model, via the identification of the density of infected
individuals. Therefore, all the critical properties of the SIRS model are very similar
to the SIS model.

In the last part, we consider the stochastic system and we prove that (0, 1)3N

is invariant. We study the asymptotic behaviour of the solution finding a sufficient
condition for the stochastic asymptotic stability of the solution.

Acknowledgments The authors wish to thank dr. Stefania Ottaviano and prof. Delio Mugnolo for
many interesting discussions, and the anonymous referee for the invaluable help to improve the
presentation of the paper.
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Kreı̆n Formula and Convergence
of Hamiltonians with Scaled Potentials
in Dimension One
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Abstract In this brief report we study the convergence of the Hamiltonian hε :=
−(·)′′ + V (x/ε)/ε2 in dimension one as ε goes to zero. This problem has already
been studied in several former works (also in the more general setting of metric
graphs) and the results that we present here are not new. Aim of this work is to
formulate the problem in the setting of metric graphs and to exploit an approach
based on a Kreı̆n formula for the resolvent of hε . Such a formula allows to mark out
the rôle of the zero eigenvalue for an auxiliary Hamiltonian. The existence of the
zero eigenvalue is responsible of the coupling in the limiting Hamiltonian, otherwise
hε converges in norm resolvent sense to the direct sum of two Dirichlet Laplacians
on the half-line. In a forthcoming paper such approach will be generalized to the
study of an analogous problem on metric graphs with a small compact core.
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1 Introduction

In this brief report we discuss the limit of the one-dimensional Hamiltonian

hε := − d2

dx2 + 1

ε2 V (·/ε) (1.1)

as ε goes to zero. Where V is a bounded real valued, compactly supported function.
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The results we present here are not new. Indeed, a proper understanding of the
limit of hε dates back to the paper [1], where it was shown (under the additional
assumption

∫
R
V �= 0) that the limit strongly depends on the existence of a zero

energy resonance for the unscaled Hamiltonian h ≡ hε=1.
The Hamiltonian h has a zero energy resonance if there exists a function ϕ ∈

L∞(R), such that ϕ /∈ L2(R), and hϕ = 0 in distributional sense.
If h has not a zero energy resonance the limit of hε (in norm resolvent sense)

is the Laplacian on L2(R) with domain {f ∈ H 2(R\{0})|f (0+) = f (0−) = 0}.
Note that this operator can be understood as the direct sum of two Laplacians on the
half-line with a Dirichlet condition in the origin, in this case the parts of the real line
at the right and at the left hand side of the origin are completely decoupled.

If h has a zero energy resonance, the limiting operator allows a coupling between
the right and left side of the origin. In particular, the result in [1] can be rephrased as
follows: one can define two constants c± := limx→±∞ ϕ(x) (ϕ can be chosen so that
c± are real valued and c2+ + c2− = 1), and the limiting operator (in norm resolvent
sense) is the Laplacian on the real line with domain {f ∈ H 2(R\{0})|c−f (0+) =
c+f (0−) ; c+f ′(0+) = c−f ′(0−)}.

The proof in [1] was based on the unitary equivalence between the operators
(hε−z)−1 and ε2(h−ε2z)−1. As a consequence, the limit (in norm resolvent sense)
of hε as ε → 0 can be understood by exploiting some former results by [4] on the
low energy expansion of the resolvents of one dimensional Schrödinger operators
in the presence of zero energy resonances.

The same problem has been studied in several other works, for example in [7] the
effect of an additional term λV (x/ε)/ε, λ ∈ R, is considered. We mention the work
[15] in which the authors, besides dropping the assumption

∫
R
V �= 0, note that

the condition on the existence of a zero energy resonance can also be formulated as
follows. Assume that the potential V is compactly supported in (−1, 1) and consider
the auxiliary Hamiltonian

h̊ : L2(−1, 1) → L2(−1, 1) (1.2)

D(̊h) :=
{
f ∈ H 2(−1, 1)|f ′(1) = f ′(−1) = 0

}
; h̊ := − d2

dx2
+V. (1.3)

h̊ has purely discrete spectrum moreover its eigenvalues are simple. For n ∈ N,
denote by λn its eigenvalues (arranged in increasing order) and by {ϕn}n∈N a
corresponding set of orthonormal eigenfunctions. The existence of a zero energy
resonance for h is equivalent to h̊ having zero as an eigenvalue. In particular, if
λn∗ = 0 is an eigenvalue for h̊ the constants c± defined above (up to an inessential
multiplication factor) are given by c± = ϕn∗(±1), and the limiting Hamiltonian is
the one described above. Otherwise, if zero is not an eigenvalue for h̊, the limiting
Hamiltonian is the direct sum of Dirichlet Laplacians on the half-lines. We refer to
[15], for a discussion on the limit of Hamiltonians of the form (1.1) and for further
references. The approach presented in this report was partially developed in [6].
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The aim of our report is twofold.
On one side, we want to reformulate the problem in a way that can be naturally

adapted to the study of an analogous problem on metric graphs with a “small”
compact core. For an introduction to the theory of metric graphs we refer to the
monograph [2]. Let K be a compact metric graph, and define Kε by squeezing
uniformly K, i.e., Kε = εK. Then consider the graph Gε obtained by attaching
several half-lines or edges of finite length (not dependent on ε) to Kε; we say
that Gε is a graph with a small compact core, and divide Gε in an inner part (the
compact core Kε) and an outer part (the additional edges). In a forthcoming paper
we plan to study the limit of Hamiltonians (with suitable scaling properties) defined
on L2(Gε). For this reason, in the analysis of the operator hε , we want to decompose
the Hilbert space L2(R) in an inner Hilbert space L2(−ε, ε) (playing the role of
Kε) and an outer Hilbert space L2(0,+∞) ⊕ L2(0,+∞). We note that problems
on graphs with a small compact core have been studied in several papers in the
case in which Gε is a star-graph or its outer part is made up of half-lines, see, e.g.,
[8–11, 17–19]. In particular, the rôle of zero energy resonances (or, equivalently,
zero energy eigenvalues for an auxiliary Hamiltonian) has already been pointed
out, see, e.g., [10, 11, 17–19]. In the latter series of works, it was proved that the
scaled Hamiltonian converges (in the norm resolvent sense) to a limiting one defined
through the eigenfunctions of the zero eigenvalue similarly to as described above for
hε . We also mention the recent work [3] in which the convergence of Schrödinger
operators on metric graphs with shrinking edges is analyzed. The problem studied
in [3] is closely related to the problem studied in our report, with the difference that
in [3] the potential term is scaled differently and does not affect substantially the
vertex conditions in the limiting operator.

On the other side, we want to exploit a method to study the convergence based
on a Kreı̆n formula for the resolvent of the Hamiltonian hε (more precisely, for an
equivalent Hamiltonian on the Hilbert space decomposed in inner and outer part).
Such a formula allows us to reduce the analysis to relatively simple ε-dependent
operators (in some cases these are just matrices) and to isolate the rôle of the zero
eigenvalue. In a forthcoming work, such a formula will be the main tool to study the
problem on graphs with a small compact core, also in the case in which the outer
part of the graph has edges of finite length.

The structure of the paper is the following. In Sect. 2 we set up the problem
and state the main result, see Theorem 1. In Sect. 3 we obtain the Kreı̆n resolvent
formula, see Theorem 2. In Sect. 4 we prove Theorem 1.

In what follows C denotes a generic positive constant not dependent on ε.
Given a self-adjoint operator A we denote by ρ(A) the resolvent set of A.
Given two Hilbert spaces X and Y , we denote by B(X, Y ) (or simply by B(X)

if X = Y ) the space of bounded operators from X to Y , and by ‖ · ‖B(X,Y ) the
corresponding norm. For any a ∈ R, we use the notation OB(X,Y )(ε

a) to denote a
generic operator from X to Y whose norm is bounded by Cεa for ε small enough.
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2 Main Result

As a first step we formulate the problem in a metric graph setting.
We identify the real line R with the graph Gε made up of three edges (eout1 , eout2 ,

and ein,ε) and two vertices (v1 and v2): eout1 := [0,+∞), eout2 := [0,+∞), and
ein,ε := [−ε, ε]; the points 0 ∈ eout1 and ε ∈ ein,ε are both identified with the vertex
v1; while the points 0 ∈ eout2 and −ε ∈ ein,ε are both identified with the vertex v2.

Additionally, we divide the graph Gε into an inner part and an outer part; the
inner part coincides with the edge ein,ε the outer part is constituted by the edges
eout1 and eout2 . Associated to this splitting are the Hilbert spaces

Hout := L2(eout1 )⊕ L2(eout2 ) and Hin,ε := L2(ein,ε).

The space Hε := L2(Gε) of square integrable functions on Gε can be understood
as the direct sum

Hε = Hout ⊕Hin,ε. (2.1)

Given a function f ∈ Hε we shall denote by f out and f in its components in the
decomposition (2.1), and write f = (f out , f in); moreover, we shall denote by f out

1
and f out

2 the components of f out in the decompositionHout = L2(eout1 )⊕L2(eout2 ).

We denote by Hout
2 and Hin,ε

2 the spaces

Hout
2 := H 2(eout1 )⊕H 2(eout2 ) and Hin,ε

2 := H 2(ein,ε);

and by Hε
2 the direct sum

Hε
2 := Hout

2 ⊕Hin,ε
2 .

Note that functions in Hε
2 are continuous with continuous derivative on the edges of

the graph Gε but do not need to be continuous in the vertices.
Set V ε(x) = ε−2V (x/ε), and assume that V is a bounded real valued function

with compact support in (−1, 1).
To rewrite the Hamiltonian hε (see Eq. (1.1)) as an operator in Hε, we define two

maps �ε
0 and �ε

1 as follows

�ε
0 : Hε

2 → C
4 ; �ε

1 : Hε
2 → C

4 (2.2)

�ε
0f :=

⎛

⎜⎜⎜⎝

f out
1 (0)

f out
2 (0)

f in′(ε)
−f in′(−ε)

⎞

⎟⎟⎟⎠ ; �ε
1f :=

⎛

⎜⎜⎝

f out
1

′
(0)

f out
2

′
(0)

f in(ε)

f in(−ε)

⎞

⎟⎟⎠ . (2.3)
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Let us denote by � be the 4 × 4 matrix

� :=
(
O2 I2

I2 O2

)
, (2.4)

and define the self-adjoint operator Hε as

D(Hε) := {f ∈ Hε
2|�ε

1f = ��ε
0f } (2.5)

(Hεf )out = −f out ′′ ; (Hεf )in = −f in′′ + V εf in (2.6)

(here f out ′′ denotes the function in Hout such that (f out ′′)j = f out
j

′′, j = 1, 2).
It is easy to convince oneself that Hε can be identified, through an obvious

identification map between Hε and L2(R), with the Hamiltonian hε defined by
Eq. (1.1) on the domain H 2(R). Indeed the gluing conditions �ε

1f = ��ε
0f

guarantee the continuity of the function and of its first derivative in the vertices
v1 and v2; the minus sign in the definition of the map �ε

0 takes into account the
direction of the derivatives.

In the analysis of the limit, we want to compare the Hamiltonian Hε with limiting
operators acting only on the outer Hilbert space Hout (which can obviously be
identified with L2(R) itself). As for Hε, to define such operators, we start by
defining two maps �out

0 and �out
1 as follows

�out
0 : Hout

2 → C
2 ; �out

1 : Hout
2 → C

2

�out
0 f out :=

(
f out

1 (0)
f out

2 (0)

)
; �out

1 f out :=
(
f out

1
′
(0)

f out
2

′
(0)

)
,

and denote by H̊ out the self-adjoint operator

D(H̊ out ) := {f out ∈ Hout
2 |�out

0 f out = 0} ; H̊ outf out = −f out ′′.

Indeed H̊ out is nothing else that the direct sum of two Dirichlet Laplacians on the
half-lines identified by eout1 and eout2 .

To cover all the possible limits of Hε we will need also the Hamiltonian defined
as follows. For a vector β = (β1, β2)

T ∈ C
2 let Pβ be the orthogonal projection on

its span:

Pβ := 1

|β|2
(|β1|2 β1β̄2

β2β̄1 |β2|2
)
≡ 1

|β|2 β(β, ·)C2 , (2.7)
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with |β|2 = |β1|2 + |β2|2; then Hout
β denotes the self-adjoint operator

D(Hout
β ) := {f out ∈ Hout

2 |P⊥
β �out

0 f out = 0 , Pβ�
out
1 f out = 0} Hout

β f out = −f out ′′.
(2.8)

We note that Hout
β coincides with the “coupling” Hamiltonian described in the

introduction with c+ = β1 and c− = β2 (and up to an obvious identification map).
Before stating our main result we still need to introduce: the auxiliary Hamilto-

nian, that allows us to distinguish between the decoupling and the coupling limiting
operators; some identification maps that allow us to compare Hε with H̊ out (or
Hout

β ) as they act on different Hilbert spaces, Hε and Hout respectively.

Set Hin ≡ Hε=1,in = L2(−1, 1) and define the operator

H̊ in : Hin → Hin (2.9)

D(H̊ in) := {f in ∈ Hin
2 ≡ H 2(−1, 1)|f in′(1) = f in′(−1) = 0} (2.10)

H̊ inf in := −f in′′ + Vf in (2.11)

This Hamiltonian coincides with h̊ introduced in Eqs. (1.2)–(1.3). It is well known
(see, e.g., [25, Th. 5.7]) that its spectrum consists of discrete and simple eigenvalues,
moreover the corresponding eigenfunctions form an orthonormal basis of Hin. For
n ∈ N, we denote by λn the eigenvalues of H̊ in (arranged in increasing order) and
by {ϕn}n∈N a corresponding set of orthonormal eigenfunctions.

In the analysis of the limit we distinguish two cases:

Generic (or Non-Resonant) Case. 0 is not an eigenvalue of the operator H̊ in.
Non-Generic (or Resonant) Case. 0 is an eigenvalue of the operator H̊ in.

In the non-generic case we assume that λn∗ = 0 and denote by ϕ∗ ≡ ϕn∗ the
corresponding eigenfunction (of unit norm). Moreover, we define the vector c∗ :=
(ϕ∗(1), ϕ∗(−1))T ∈ C

2, and the Hamiltonian Hc∗ , defined through c∗ according to
Eq. (2.8).

Concerning the identification maps, we denote by J the operator which maps
Hout in Hε . J is defined by

J : Hout → Hε, Ju = (u, 0) for all u ∈ Hout .

Its adjoint J ∗ maps Hε in Hout , and is given by:

J ∗ : Hε → Hout , J ∗f = f out for all f = (f out , f in) ∈ Hε.

Remark 2.1 J ∗J = I
out , where Iout is the identity in Hout .
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To analyze the convergence of operators acting on different Hilbert spaces we
use the notion of δε-quasi unitary equivalence introduced by P. Exner and O. Post in
the series of works [12–14, 22, 23], see, in particular, [14, Sec. 3.2] and [23, Ch. 4].
We remark that the approach used in [3] is also based on the notion of δε-quasi
unitary equivalence of operators acting on different Hilbert spaces (there referred to
as convergence in generalized norm resolvent sense, see [3, Sec. 5]).

Keeping in mind Rem. 2.1, we have that the operator Hε is δε-quasi unitarily
equivalent to a self-adjoint operator Hout in Hout if

∥∥(I−JJ ∗)(Hε−z)−1
∥∥B(Hε)

≤ Cδε and
∥∥J (Hout−z)−1−(Hε−z)−1J

∥∥B(Hout ,Hε)
≤ Cδε,

for some z ∈ C\R with | Im z| large enough.
Our main result is the following:

Theorem 1 In the generic case the operator Hε is ε-quasi unitarily equivalent to
the operator H̊ out ; in the non-generic case, the operator Hε is ε1/2-quasi unitarily
equivalent to the operator Hout

c∗ .
In particular, for any z ∈ C\R there exist positive constants ε0 and C such that

for all 0 < ε < ε0:

∥∥J (H̊ out − z)−1 − (Hε − z)−1J
∥∥
B(Hout ,Hε)

≤ Cε (2.12)

and

∥∥(I− JJ ∗)(Hε − z)−1
∥∥
B(Hε)

≤ Cε3/2 (2.13)

in the generic case; and

∥∥J (Hout
c∗ − z)−1 − (Hε − z)−1J

∥∥
B(Hout ,Hε)

≤ Cε1/2 (2.14)

and

∥∥(I− JJ ∗)(Hε − z)−1
∥∥
B(Hε)

≤ Cε1/2 (2.15)

in the non-generic case.

Remark 2.2 By Theorem 1 we infer that:

∥∥(H̊ out − z)−1J ∗ − J ∗(Hε − z)−1
∥∥
B(Hε,Hout )

≤ Cε (2.16)

in the generic case; and

∥∥(Hout
c∗ − z)−1J ∗ − J ∗(Hε − z)−1

∥∥
B(Hε,Hout )

≤ Cε1/2 (2.17)
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in the non-generic case. Equation (2.16) follows by the trivial inequality

∥∥(H̊ out − z)−1J ∗ − J ∗(Hε − z)−1
∥∥B(Hε,Hout )

≤∥∥J ∗(J (H̊ out − z)−1−(Hε − z)−1J
)
J ∗∥∥B(Hε,Hout )

+∥∥J ∗(Hε − z)−1(JJ ∗−I)
∥∥B(Hε,Hout )

together with the bounds (2.12) and (2.13), and by using

‖J ∗‖B(Hε,Hout ) = 1 and
∥∥(Hε−z)−1(JJ ∗−I)

∥∥
B(Hε)

= ∥∥(JJ ∗−I)(Hε−z̄)−1∥∥
B(Hε)

.

The bound (2.17), is obtained in a similar way. We refer to [23] for a comprehensive
discussion on the comparison between operators acting on different spaces.

3 Kreı̆n resolvent Formula

Aim of this section is to obtain a Kreı̆n-type formula for the resolvent of Hε, defined
as Rε(z) := (Hε − z)−1, for z ∈ ρ(Hε). We shall use some known result of self-
adjoint theory of symmetric operators and boundary triples, see, e.g, [5, 16, 20, 21,
24]. For the most we shall follow the approach and notation from [20, 21, 24].

We shall define first several operators in the outer (see Sect. 3.1) and inner (see
Sect. 3.2) space. The formula for Rε(z) is obtained in Sect. 3.3.

3.1 Operators in the Outer Space

It is well known that the resolvent set of the operator H̊ out is ρ(H̊ out) =
C\[0,+∞). For all z ∈ C\[0,+∞) we denote by R̊out (z) the resolvent of H̊ out ,
defined as R̊out (z) := (H̊ out − z)−1. The explicit form of R̊out (z) is given by

R̊out (z) = diag(r0(z), r0(z)).

By the latter formula we mean: (R̊out (z)f out)j = r0(z)f
out
j . Here r0(z) is the

resolvent of the Dirichlet Laplacian in L2(0,+∞), its integral kernel (denoted by
the same symbol) is

r0(z; x, y) = iei
√
z|x−y|

2
√
z

− iei
√
z(x+y)

2
√
z

z ∈ C\[0,+∞) , Im
√
z > 0 , x, y ∈ R+.

We define the map

Ğout (z) : Hout → C
2 ; Ğout (z) := �out

1 R̊out (z) ; z ∈ C\[0,+∞).
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Note that

(Ğout(z)f out )j = (r0(z)f
out
j )′(0) =

∫ ∞

0
ei
√
zyf out

j (y)dy j = 1, 2.

One can write Ğout(z) = diag((ei
√
z·, ·)L2(eout1 ), (e

i
√
z·, ·)L2(eout2 )). The map Ğout(z)

is bounded as an operator from Hout to C
2.

We denote by Gout(z) the adjoint of Ğout(z̄)

Gout (z) : C2 → Hout ; Gout (z) := (Ğout(z̄))∗.

It is easy to see that for any vector v ∈ C
2

(Gout (z)v)j = ei
√
zxvj , j = 1, 2 , x ∈ [0,+∞);

one can write Gout(z) = diag(ei
√
z·, ei

√
z·). The map Gout (z) is bounded as an

operator from C
2 to Hout . Finally we define the map

Qout (z) : C2 → C
2 ; Qout(z) := �out

1 Gout(z).

It is easy to see that Qout (z) is the 2 × 2 matrix given by Qout (z) = i
√
z I2.

For all z ∈ ρ(Hout
β ) we denote by Rout

β (z) the resolvent of the Hamiltonian Hout
β

defined in Eq. (2.8), Rout
β (z) := (Hout

β −z)−1. Rout
β (z) can be expressed through the

Kreı̆n formula

Rout
β (z) = R̊out (z)− 1

i
√
z
Gout(z)PβĞ

out(z). (3.1)

That Rout
β (z) is the resolvent of Hout

β can be checked by an explicit calcula-
tion, noticing that for all f out ∈ Hout one has Rout

β (z)f out ∈ D(Hout
β ) and

−(
Rout

β (z)f out
)′′ − zRout

β (z)f out = f out . It is also easy to convince oneself that
ρ(Hout

β ) = C\[0,+∞).

3.2 Operators in the Inner Space

We define two maps �
in,ε
0 and �

in,ε
1 as follows

�
in,ε
0 : Hin,ε

2 → C
2 ; �

in,ε
1 : Hin,ε

2 → C
2

�
in,ε
0 f in :=

(
f in′(ε)

−f in′(−ε)

)
; �

in,ε
1 f in :=

(
f in(ε)

f in(−ε)

)
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Let H̊ in,ε denote the self-adjoint operator

D(H̊ in,ε) := {f in ∈ Hin,ε
2 |�in,ε

0 f in = 0} ; H̊ in,εf in = −f in′′ + V εf in.

(3.2)

For all z ∈ ρ(H̊ in,ε) we denote by R̊in,ε(z) the resolvent of H̊ in,ε, defined as
R̊in,ε(z) := (H̊ in,ε − z)−1.

The spectrum of Hin,ε consists of isolated simple eigenvalues. To write down its
resolvent we use a decompositions in eigenfunctions. For n ∈ N we denote by λε

n the
eigenvalues of Hin,ε (arranged in increasing order) and by {ϕε

n}n∈N a corresponding
set of orthonormal eigenfunctions. We have that

R̊in,ε(z; x, y) =
∑

n∈N

ϕε
n(x)ϕ

ε
n(y)

λε
n − z

z ∈ C , z �= λε
n.

For any fixed ε > 0, this series converges uniformly because λε
n diverges as n2 as

n →∞ and ϕε
n are uniformly bounded, see, e.g., [26, Sec. 1.12].

We want to define maps which are analogous to Gout(z), Ğout(z), Qout (z). To
get explicit formulae we introduce the following notation: For any eigenfunction ϕε

n

we define the vector cεn := (ϕε
n(ε), ϕ

ε
n(−ε))T ∈ C

2

Next, we define the map

Ğin,ε(z) : Hin,ε → C
2 ; Ğin,ε(z) := �

in,ε
1 R̊in,ε(z) z ∈ C , z �= λε

n.

Note that

Ğin,ε(z) =
∑

n∈N

cεn(ϕ
ε
n, ·)Hin,ε

λε
n − z

.

We denote by Gin,ε(z) the adjoint of Ğε,in(z̄)

Gin,ε(z) : C2 → Hin,ε ; Gin,ε(z) := (Ğin,ε(z̄))∗,

it is easy to see that

Gin,ε(z) =
∑

n∈N

ϕε
n(c

ε
n, ·)C2

λε
n − z

.

Finally we define the map (2 × 2 z-valued matrix)

Qin,ε(z) : C2 → C
2 ; Qin,ε(z) := �

in,ε
1 Gin,ε(z).
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It is easy to see that

Qin,ε(z) =
∑

n∈N

cεn(c
ε
n, ·)C2

λε
n − z

.

3.3 Operator in the Full Space

Keeping in mind the decomposition Hε = Hout ⊕Hin,ε we note that the maps �ε
0

and �ε
1 defined in Eqs. (2.2) and (2.3) can be written as �ε

0 = diag(�out
0 , �

in,ε
0 ) and

�ε
1 = diag(�out

1 , �
in,ε
1 ).

For all z ∈ ρ(Hε) we denote by Rε(z) the resolvent of Hε , defined as Rε(z) :=
(Hε − z)−1.

We look for a Kreı̆n resolvent formula for Rε(z). To this aim we define first the
operator

H̊ε := diag(H̊ out , H̊ in,ε);

it is worth noticing that

D(H̊ε) = {f ∈ Hε
2|�ε

0f = 0}.

Moreover, since the operator is diagonal in the direct sum Hout ⊕ Hin,ε , one has
that

R̊ε(z) := (H̊ε − z)−1 = diag(R̊out (z), R̊in,ε(z)).

We define the maps

Ğε(z) : Hε → C
4 ; Ğε(z) := �ε

1 R̊ε(z)

and

Gε(z) : C4 → Hε ; Gε(z) := (Ğε(z̄))∗.

It is easy to convince oneself that

Ğε(z) = diag(Ğout (z), Ğin,ε(z)) and Gε(z) = diag(Gout(z),Gin,ε(z)).

We apply �ε
1 to Gε(z) and define the map (z-dependent 4 × 4 matrix)

Qε(z) : C4 → C
4 ; Qε(z) := �ε

1 Gε(z). (3.3)
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One has that

Qε(z) =
(
i
√
z I2 O2

O2 Qin,ε(z)

)
.

We remark that Gε(z) and Qε(z) are the gamma-field and the Weyl-function
associated to the boundary triple (C4,�ε

0,�
ε
1) for the operator Hε∗

max , we refer to
the proof of Theorem 2 below for more details.

Theorem 2 Let � be as in Eq. (2.4). For any z ∈ ρ(Hε) ∩ ρ(H̊ε) the map

(Qε(z)− �) : C4 → C
4

is invertible and the resolvent Rε(z) is given by

Rε(z) = R̊ε(z)− Gε(z)
(
Qε(z)−�

)−1Ğε(z). (3.4)

Proof Denote by Hε
min the restriction of H̊ε to the domain

D(Hε
min) := {f ∈ Hε

2|�ε
0f = 0; �ε

1f = 0}.

Hε
min is a densely defined symmetric operator on Hε. Its adjoint Hε

max := Hε∗
min is

D(Hε
max) = Hε

2

(Hε
maxf )out = −f out ′′ ; (Hε

maxf )in = −f in′′ + V εf in.

We note that (C4,�ε
0,�

ε
1) is a boundary triple for Hε∗

max , i.e.,

(f,Hε∗
maxg)Hε − (Hε∗

maxf, g)Hε = (�ε
0f,�

ε
1g)C4 − (�ε

1f,�
ε
1g)C4

for all f, g ∈ D(Hε∗
max), and the mapping �ε : D(Hε∗

max) → C
4 ⊕ C

4, �εf :=
(�ε

0f,�
ε
1f ) is surjective. For an introduction to the theory of boundary triples we

refer to [24, Ch. 14], see also [5].
In what follows we will show that the map Gε(z) is the gamma-field associated to

the triple (C4,�ε
0,�

ε
1), i.e., it is the inverse of the map �ε

0 restricted to Ker(Hε∗
max −

z), �ε
0 �Ker(Hε∗

max−z): Ker(Hε∗
max − z) → C

4, see [24, Def. 14.4].

For each z ∈ ρ(H̊ε), the map �ε
0 �Ker(Hε∗

max−z) is invertible, see [24, Lem. 14.13].
Hence, for any v ∈ C

4 there exists a unique fv ∈ Ker(Hε∗
max−z) such that �ε

0fv = v.
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For any g ∈ Hε one has that

(Gε(z)v, g)Hε = (v, Ğε(z̄)g)C4 =(�ε
0fv,�1R̊ε(z̄)g)C4

=(�ε
0fv,�1R̊ε(z̄)g)C4 − (�ε

1fv,�0R̊ε(z̄)g)C4

=(
fv, (Hε∗

max − z̄)R̊ε(z̄)g
)
Hε −

(
(Hε∗

max − z)fv, R̊ε(z̄)g
)
Hε

=(
fv, g

)
Hε

hence, Gε(z)v = fv ∈ Ker(Hε∗
max − z) for all v ∈ C

4. By the latter identity it
immediately follows that �ε

0Gε(z)v = v for all v ∈ C
4.

By [24, Def. 14.4], the map Qε(z) defined in Eq. (3.3), is the Weyl-function of
the operator H̊ε associated with the boundary triple (C4,�ε

0,�
ε
1).

By Eq. (14.13), and Th. 14.18 (see Eq. (14.43)) in [24], it follows that the map
(Qε(z) − �) : C4 → C

4 is invertible for all z ∈ ρ(Hε) ∩ ρ(H̊ε), and Rε(z) in
Eq. (3.4) is the resolvent of the operator Hε defined by Eqs. (2.5) and (2.6). �

We conclude this section by noticing that, by using the inversion formula for
block matrices, one has

(
Qε(z)−�

)−1 =
(
Qin,ε(z)(i

√
zQin,ε(z)− I2)

−1 (i
√
zQin,ε(z)− I2)

−1

(i
√
zQin,ε(z)− I2)

−1 i
√
z(i

√
zQin,ε(z)− I2)

−1

)

and that the second term in Eq. (3.4), to be understood as an operator in Hout⊕Hin,ε ,
can be written as

Gε(z)
(
Qε(z)−�

)−1Ğε(z)

=
(
Gout (z)Qin,ε(z)(i

√
zQin,ε(z)−I2)

−1Ğout (z) Gout (z)(i
√
zQin,ε(z)−I2)

−1Ğin,ε(z)

Gin,ε(z)(i
√
zQin,ε(z)− I2)

−1Ğout (z) i
√
zGin,ε(z)(i

√
zQin,ε(z)− I2)

−1Ğin,ε(z)

)
.

(3.5)

4 Limit of Rε(z)

In this section we study the limit of Rε(z) as ε → 0. To understand the limit we
must understand the asymptotic properties of the items in formula (3.5).

We start by pointing out a scaling property of the operator H̊ in,ε, see Eq. (3.2).
Recall that Hin,ε = L2(ein,ε) = L2(−ε, ε) and we have set Hin ≡ Hε=1,in. Define
the unitary scaling group

Uε : Hin → Hin,ε ; (Uεf in)(x) := ε−1/2f in(x/ε),
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and its inverse

Uε−1 : Hin,ε → Hin ; (Uε−1
f in)(x) := ε1/2f in(εx).

It is easy to check that H̊ in,ε = ε−2UεH̊ inUε−1, where H̊ in is the auxiliary
Hamiltonian defined in Eqs. (2.9)–(2.11). Due to the unitary scaling H̊ in,ε =
ε−2UεH̊ inUε−1 we have that

λε
n = ε−2λn ; ϕε

n(x) = ε−1/2ϕn(x/ε).

Hence, we can write the integral kernel of the resolvent R̊in,ε(z) as

R̊in,ε(z; x, y) = ε2
∑

n∈N

ϕε
n(x)ϕ

ε
n(y)

λn − ε2z
= ε

∑

n∈N

ϕn(x/ε)ϕn(y/ε)

λn − ε2z
x, y ∈ [−ε, ε].

(4.1)

In a similar way, we can write the operators Ğin,ε(z) and Gin,ε(z) and the matrix
Qin,ε(z). We proceed as we did in Sect. 3.2 and for any eigenfunction ϕn we
define the vector cn as cn = (ϕn(1), ϕn(−1))T ∈ C

2. Obviously, one has that
cεn = ε−1/2cn, where cεn was defined in Sect. 3.2. By using the scaling properties
in the formula for the operators we are interested in, we obtain

Ğin,ε(z) = ε3/2
∑

n∈N

cn(ϕ
ε
n, ·)Hin,ε

λn − ε2z
; Gin,ε(z) = ε3/2

∑

n∈N

ϕε
n(cn, ·)C2

λn − ε2z
,

(4.2)
and

Qin,ε(z) = ε
∑

n∈N

cn(cn, ·)C2

λn − ε2z
. (4.3)

These formulae will be used in the study of the limit of Rε(z).

4.1 Limiting Hamiltonian: Generic Case

In this section we study the limit of the relevant quantities and prove Theorem 1 in
the generic case.

Proposition 4.1 Let z ∈ C\R. In the generic case,

R̊in,ε(z) = OB(Hin,ε)(ε
2); (4.4)

Ğin,ε(z) = OB(Hin,ε ,C2)(ε
3/2) ; Gin,ε(z) = OB(C2,Hin,ε)(ε

3/2). (4.5)
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Proof We prove first claim (4.4). For any f in ∈ Hin,ε , since {ϕε
n}n∈N is an

orthonormal set of eigenfunctions in Hin,ε , and by Eq. (4.1), we infer

‖R̊in,ε(z)f in‖Hin,ε = ε2

(
∑

n∈N

|(ϕε
n, f

in)Hin,ε |2
|λn − ε2z|2

)1/2

≤ Cε2‖f in‖Hin,ε ,

where in the latter inequality we used the bound 1/|λn − ε2z|2 ≤ 4
|λn|2 ≤ C, which

holds true in the generic case because |λn − ε2z| ≥ |λn|/2 ≥ C for all n ∈ N and ε

small enough.
To prove the first claim in Eq. (4.5), note that for any f in ∈ Hin,ε , by Eq. (4.2)

and Cauchy-Schwarz inequality, one has

‖Ğin,ε(z)f in‖C2 ≤ ε3/2‖f in‖Hin,ε

(
∑

n∈N

‖cn‖2
C2

|λn − ε2z|2
)1/2

≤ C ε3/2‖f in‖Hin,ε ,

because ‖cn‖2
C2 ≤ C and

∑
n∈N 1

|λn−ε2z|2 ≤ C
∑

n∈N 1
|λn|2 ≤ C. This proves the

first statement in claim (4.5). The second claim is trivial, being Gin,ε(z) the adjoint
of Ğin,ε(z̄). �
Proposition 4.2 Let z ∈ C\R. In the generic case,

Qin,ε(z) = OB(C2)(ε).

Proof We note that
∣∣∣
∑

n∈N
ϕn(±1)ϕn(±1)

λn−ε2z

∣∣∣ ≤ C
∑

n∈N 1
|λn−ε2z| ≤ C, hence, by

Eq. (4.3), it follows that ‖Qin,ε(z)‖B(C2) ≤ C ε. �
We are now ready to prove the main theorem on the convergence of the resolvent

in the generic case.

Proof of Theorem 1: Generic Case We prove first that

J R̊out (z)− Rε(z)J = OB(Hout ,Hε)(ε). (4.6)

We note that in this case (i
√
zQin,ε(z)− I2)

−1 = OB(C2)(1). Moreover we have the
identity

J R̊out(z)− Rε(z)J = Gε(z)
(
Qε(z)−�

)−1Ğε(z)J.

Hence, see Eq. (3.5), claim (4.6) follows from

Gout(z)Qin,ε(z)(i
√
zQin,ε(z)− I2)

−1Ğout (z) = OB(Hout ,Hout )(ε)
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and

Gin,ε(z)(i
√
zQin,ε(z)− I2)

−1Ğout(z) = OB(Hout ,Hin,ε)(ε
3/2). (4.7)

We are left to prove that

(I− JJ ∗)Rε(z) = OB(Hε)(ε
3/2). (4.8)

We start by noticing the identity (I−JJ ∗)Rε(z)f = (0, (Rε(z)f )in), from which it
follows that ‖(I−JJ ∗)Rε(z)f ‖Hε = ‖(Rε(z)f )in‖Hin,ε , for all f = (f out , f in) ∈
Hε. Next, note that by Eqs. (3.4) and (3.5) it follows that

(Rε(z)f )in =R̊in,ε(z)f in − i
√
zGin,ε(z)(i

√
zQin,ε(z)− I2)

−1Ğin,ε(z)f in

−Gin,ε(z)(i
√
zQin,ε(z)− I2)

−1Ğout(z)f out .

(4.9)

The latter term at the r.h.s. is bounded by Cε3/2‖f out‖Hout by Eq. (4.7). Concerning
the first two terms at the r.h.s., we note that

R̊in,ε(z)− i
√
zGin,ε(z)(i

√
zQin,ε(z)− I2)

−1Ğin,ε(z) = OB(Hin,ε)(ε
2)+OB(Hin,ε)(ε

3)

= OB(Hin,ε)(ε
2)

by Proposition 4.1 and since (i
√
zQin,ε(z)− I2)

−1 = OB(C2)(1).
This concludes the proof of Theorem 1 in the generic case. The non-generic Case

is analyzed in the next section. �

4.2 Limiting Hamiltonian: Non-generic Case

In this section we study the limit of the relevant quantities and prove Theorem 1 in
the non-generic case.

Proposition 4.3 Let z ∈ C\R. In the non-generic case

R̊in,ε(z) =− ϕε∗(ϕε∗, ·)Hin,ε

z
+OB(Hin,ε)(ε

2); (4.10)

Ğin,ε(z) =− c∗(ϕε∗, ·)Hin,ε

ε1/2z
+OB(Hin,ε ,C2)(ε

3/2); (4.11)

Gin,ε(z) =− ϕε∗(c∗, ·)C2

ε1/2z
+OB(C2,Hin,ε)(ε

3/2). (4.12)



Kreı̆n Formula and Convergence of Hamiltonians with Scaled Potentials in. . . 107

Proof We prove first claim (4.10). By Eq. (4.1), we infer

R̊in,ε(z) = −ϕε∗(ϕε∗, ·)Hin,ε

z
+ ε2

∑

n∈N,n�=n∗

ϕε
n(ϕ

ε
n, ·)Hin,ε

λn − ε2z
.

Taking into account the fact that {ϕε
n}n∈N in an orthonormal set of eigenfunctions in

Hε, it follows that, for all f in ∈ Hin,ε ,

∥∥∥∥∥∥
ε2

∑

n∈N,n �=n∗

ϕε
n(ϕ

ε
n, f

in)Hin,ε

λn − ε2z

∥∥∥∥∥∥Hin,ε

= ε2

⎛

⎝
∑

n∈N,n �=n∗

|(ϕε
n, f

in)Hin,ε |2
|λn − ε2z|2

⎞

⎠
1/2

≤ Cε2‖f in‖Hin,ε ,

see also the proof of claim (4.4).
To prove claim (4.11), we start by noticing that by Eq. (4.2)

Ğin,ε(z) = −c∗(ϕε∗, ·)Hin,ε

ε1/2z
+ ε3/2

∑

n∈N,n�=n∗

cn(ϕ
ε
n, ·)Hin,ε

λn − ε2z
,

and reason in the same way as in the proof of Proposition 4.1. Claim (4.12) follows
straightforwardly, being Gin,ε(z) the adjoint of Ğin,ε(z̄). �

We denote by Pc∗ the projection obtained by setting β = c∗ in Eq. (2.7).

Proposition 4.4 Let z ∈ C\R. In the non-generic case,

Qin,ε(z) = −|c∗|2
εz

Pc∗ +OB(C2)(ε). (4.13)

Moreover,

(i
√
zQin,ε(z)− I2)

−1 = iε
√
z

|c∗|2
Pc∗ +OB(C2)(ε

2)− P⊥
c∗ (I2 +OB(C2)(ε)),

(4.14)

= iε
√
z

|c∗|2
Pc∗ +OB(C2)(ε

2)− (I2 +OB(C2)(ε))P
⊥
c∗ ,

(4.15)

and

Qin,ε(z)(i
√
zQin,ε(z)− I2)

−1 = 1

i
√
z
Pc∗ +OB(C2)(ε). (4.16)
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Proof Claim (4.13) immediately follows after noticing that

Qin,ε(z) = −c∗(c∗, ·)C2

εz
+ ε

∑

n∈N,n�=n∗

cn(cn, ·)C2

λn − ε2z
.

Next we prove claim (4.14). We start by noticing the a-priori bound

(i
√
zQin,ε(z)− I2)

−1 = OB(C2)(1). (4.17)

To prove bound (4.17) we use the trivial identity

(i
√
zQin,ε(z)− I2)

−1 = −i(Qin,ε(z)+ iI2/
√
z)−1/

√
z,

and the identities

Qin,ε(z)−Qin,ε(z̄) = 2i Ğin,ε(z̄)Gin,ε(z) Im z, (Qin,ε(z))∗ = Qin,ε(z̄),

see, e.g., [24, Prop. 14.15] or [20, Eqs. (5) and (7.1)]. The latter identities, taking
into account also Gin,ε(z) = (Ğin,ε(z̄))∗ and the expansion (4.12), give

Im(v,Qin,ε(z)v)C2 =
(
v, (Qin,ε(z)−Qin,ε(z̄))v

)
C2

2i
= ‖Gin,ε(z)v‖2

Hin,ε Im z

=|(c∗, v)C2|2
ε|z|2 Im z+O(ε).

Hence,

|(v, (Qin,ε(z)+ iI2/
√
z)v)C2 | ≥| Im(v, (Qin,ε(z)+ iI2/

√
z)v)C2 |

=
∣∣∣∣
|(c∗, v)C2|2

ε|z|2 Im z+O(ε)+ ‖v‖2
C2

|z| Re
√
z

∣∣∣∣.

(4.18)

Recalling that z ∈ C\R and that our choice for the determination of the square root
is Im

√
z > 0, we have that Im z and Re

√
z are both not zero and have the same

sign. From the latter considerations, and from the lower bound (4.18), we infer that
for ε small enough

|(v, (Qin,ε(z)+ iI2/
√
z)v)C2 | ≥ 1

2

∣∣∣∣
|(c∗, v)C2 |2

ε|z|2 Im z+ ‖v‖2
C2

|z| Re
√
z

∣∣∣∣ > 0

for all v �= 0, which in turn implies (4.17).
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To obtain (4.14), we use the identity

(i
√
zQin,ε(z)− I2)

−1 =
(
i
√
z

(
Qin,ε(z)+ |c∗|2

εz
Pc∗

)
− i|c∗|2

ε
√
z
Pc∗ − I2

)−1

=−
(
i|c∗|2
ε
√
z
Pc∗ + I2

)−1

+ i
√
z

(
i|c∗|2
ε
√
z
Pc∗ + I2

)−1

(
Qin,ε(z)+ |c∗|2

εz
Pc∗

)
(i
√
zQin,ε(z)− I2)

−1.

Since

(
i|c∗|2
ε
√
z
Pc∗ + I2

)−1

=
(
i|c∗|2
ε
√
z
+ 1

)−1

Pc∗ + P⊥
c∗ = − iε

√
z

|c∗|2
Pc∗ +OB(C2)(ε

2)+ P⊥
c∗ ,

and by using the expansion (4.13) and the a-priori bound (4.17), we obtain

(i
√
zQin,ε(z)− I2)

−1

= iε
√
z

|c∗|2
Pc∗ +OB(C2)(ε

2)− P⊥
c∗ +

(
− iε

√
z

|c∗|2
Pc∗ +OB(C2)(ε

2)+ P⊥
c∗

)
OB(C2)(ε)

= iε
√
z

|c∗|2
Pc∗ +OB(C2)(ε

2)− P⊥
c∗ (I2 +OB(C2)(ε)).

Since (Qin,ε(z̄))∗ = Qin,ε(z) and i
√
z̄ = i

√
z, we have that (i

√
z̄Qin,ε(z̄) −

I2)
−1∗ = (i

√
zQin,ε(z)− I2)

−1, from which we obtain formula (4.15).
Claim (4.16) follows immediately by taking into account expansions (4.13)

and (4.14). �
We are now ready to prove the main theorem on the convergence of the resolvent in
the non-generic case.

In what follows we denote by Rout
c∗ (z) the resolvent of the Hamiltonian Hout

c∗ , its
expression is obtained by setting β = c∗ in Eq. (3.1).

Proof of Theorem 1: Non-generic Case We start by proving the bound (2.14), i.e.,
that

JRout
c∗ (z)− Rε(z)J = OB(Hout ,Hε)(ε

1/2). (4.19)

We have the identity

JRout
c∗ (z)− Rε(z)J = Gε(z)

(
Qε(z)−�

)−1Ğε(z)J − J
1

i
√
z
Gout(z)Pc∗Ğ

out (z),
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which is a direct consequence of Eqs. (3.1) (with β = c∗) and Eq. (3.4). Taking into
account the explicit formula (3.5), claim (4.19) follows from

Gout(z)

(
Qin,ε(z)(i

√
zQin,ε(z)− I2)

−1 − 1

i
√
z
Pc∗

)
Ğout(z) = OB(Hout ,Hout )(ε)

and

Gin,ε(z)(i
√
zQin,ε(z)− I2)

−1Ğout(z) = OB(Hout ,Hin,ε)(ε
1/2). (4.20)

Note that in the latter step we used the fact that the term P⊥
c∗OB(C2)(1) in

Eq. (4.14) does not produce a factor ε−1/2 from the expansion in Eq. (4.12) because
(c∗, P⊥

c∗ v)C2 = 0 for all v ∈ C
2.

We are left to prove the bound (2.15), i.e., that

(I− JJ ∗)Rε(z) = OB(Hε)(ε
1/2).

Reasoning as in the proof of claim (4.8), see also Eq. (4.9), we have that a
contribution of order ε1/2 comes from the term in Eq. (4.20). For the remaining
terms in Eq. (4.9) we have the bound

R̊in,ε(z)− i
√
zGin,ε(z)(i

√
zQin,ε(z)− I2)

−1Ğin,ε(z) = OB(Hin,ε)(ε). (4.21)

To prove the latter, we use expansions (4.11), (4.12), and (4.14) to obtain

i
√
zGin,ε(z)(i

√
zQin,ε(z)− I2)

−1Ğin,ε(z)

= i
√
z

(
−ϕε∗(c∗, ·)C2

ε1/2z
+OB(C2,Hin,ε)(ε

3/2)

)

(
iε
√
z

|c∗|2
Pc∗ +OB(C2)(ε

2)+ P⊥
c∗OB(C2)(1)

)

(
−c∗(ϕε∗, ·)Hin,ε

ε1/2z
+OB(Hin,ε ,C2)(ε

3/2)

)
.

Taking into account the fact that (c∗, P⊥
c∗ v)C2 and Pc∗c∗ = c∗, we obtain

i
√
zGin,ε(z)(i

√
zQin,ε(z)− I2)

−1Ğin,ε(z)

= i
√
z

(
− iε1/2

|c∗|2
√
z
ϕε∗(c∗, ·)C2 +OB(C2,Hin,ε)(ε

3/2)

)

(
−c∗(ϕε∗, ·)Hin,ε

ε1/2z
+OB(Hin,ε ,C2)(ε

3/2)

)

= −ϕε∗(ϕε∗, ·)Hin,ε

z
+OB(Hin,ε)(ε),
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which together with expansion (4.10), gives Eq. (4.21) and concludes the proof of
the non-generic case in Theorem 1. �
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Ground States of the L2-Critical NLS
Equation with Localized Nonlinearity
on a Tadpole Graph

Simone Dovetta and Lorenzo Tentarelli

Abstract The paper aims at giving a first insight on the existence/nonexistence
of ground states for the L2-critical NLS equation on metric graphs with localized
nonlinearity. As a consequence, we focus on the tadpole graph, which, albeit being
a toy model, allows to point out some specific features of the problem, whose
understanding will be useful for future investigations. More precisely, we prove that
there exists an interval of masses for which ground states do exist, and that for large
masses the functional is unbounded from below, whereas for small masses ground
states cannot exist although the functional is bounded.

Keywords Minimization · Metric graphs · Critical growth · Nonlinear
Schrödinger equation · Localized nonlinearity

AMS Subject Classification 5R02, 35Q55, 81Q35, 49J40

1 Introduction

The study of evolution equations on metric graphs or networks has gained a great
popularity in recent years, since they represent effective models for the study of the
dynamics of physical systems living in branched spatial structures (see, e.g., [10, 12]
and the references therein). More precisely, a particular interest has been addressed
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to the investigation of the focusing nonlinear Schrödinger (a.k.a. NLS) equation,
namely

ıψ̇ = −ψ ′′ − |ψ|p−2 ψ (p ≥ 2) (1)

with suitable boundary conditions at the vertices of the graph, as it is supposed to
well approximate, for p = 4, the behavior of Bose–Einstein condensates in ramified
traps (see, e.g., [22]).

From the mathematical point of view, the discussion is mainly focused on the
study of the stationary solutions of (1), that is functions of the form ψ(t, x) =
eiλt u(x), with λ ∈ R, solving the stationary equation associated to (1)

u′′ + |u|p−2 u = λu .

In this perspective, the first pioneering works (e.g., [1–3], and subsequently [4])
concern the study of the so-called infinite N-star graph (see Fig. 1), with boundary
conditions of δ-type or δ′-type.

On the other hand, in the case of Kirchhoff conditions, that is functions with the
sum of the derivatives equal to zero at the vertices (see (7) below), more complex
topologies have been managed (e.g., Fig. 2). In [7–9, 23] there is a discussion of the
existence of ground states, namely solutions of (1) arising as global minimizers of
the NLS energy functional

E(u) := 1

2

∫

G
|u′|2 dx − 1

p

∫

G
|u|p dx (2)

among functions with fixed mass μ > 0, i.e.
∫
G |u|2 dx = μ. Precisely, [7, 8]

investigate the so-called L2-subcritical regime p ∈ (2, 6), while [9] treats the critical
case p = 6. Furthermore, in [11, 15, 27, 28] the investigation has been extended
to more general stationary solutions that do not necessarily minimize the energy
functional.

A modification of this model, proposed e.g. by Gnutzmann et al. [21] and Noja
[26], arises when one assumes that the nonlinearity affects only the compact core

Fig. 1 Infinite N-star graph
(N = 4)
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Fig. 2 A general noncompact metric graph

Fig. 3 The compact core of the graph in Fig. 2

K of the graph, namely the subgraph consisting of all its bounded edges (e.g., the
compact core of Fig. 1 is empty, while the one of Fig. 2 is given by Fig. 3). In this
case, the stationary equation of interest reads as

u′′ + χK|u|p−2 u = λu (+ Kirch. cond.) , (3)

with χK denoting the characteristic function of K.
The existence of solutions to this problem has been widely investigated in the L2-

subcritical case in [30–32]. In particular, [32] discusses the existence of the ground
states of the modified energy functional

E(u,K) := 1

2

∫

G
|u′|2 dx − 1

p

∫

K
|u|p dx, (4)

while [30, 31] manage more general stationary solutions.
In this paper we aim at giving a first insight on the existence/nonexistence of

ground states of the problem with the localized nonlinearity in the critical case p =
6. In particular, as a preliminary study, we explore a specific graph, the tadpole
graph (see Fig. 4), which allows to point out some peculiar features of the problem
whose understanding will suggest interesting perspectives for future investigations.
More precisely, in our main result (namely, Theorem 2.1) we prove, first, that there
exists a threshold mass μ1 under which ground states cannot exist even though the
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Fig. 4 A tadpole graph K

H
v

functional E(·,K) is bounded from below. Therefore, we establish the existence of
another threshold μ2 ≥ μ1 such that, if μ ∈ [μ2, μR] (where μR is the critical mass
of the real line defined by (8)), then a ground state does exist; and, finally, that, for
all μ > μR, E(·,K) is unbounded from below.

For the sake of completeness we also mention some other recent works on the
stationary solutions of the NLS equation on graphs. Problems with a wide class
of δ-type conditions and external potentials are managed in [14, 16]. On the other
hand, [18, 24] discuss compact graphs, while [5, 6, 20, 29] focus on periodic graphs
(i.e., graphs whose noncompactness is not due to the presence of half-lines, but to
the infinite number of edges). Finally, it is worth quoting three further works on
evolution equations on graphs. The former is [19], where is presented a preliminary
result of Control Theory on graphs for the bi-linear Schrödinger equation; then [25]
introduces the study of the Airy equation (thus opening to the application of metric
graphs in hydrodynamics); and, finally, [13] discusses the bound states of another
important dispersive equation on graph, the NonLinear Dirac (NLD) equation.

The paper is organized as follows. In Sect. 2 we present a precise setting of the
problem and we state our main result (Theorem 2.1). In Sect. 3 we show some
preliminary results, mainly concerning compactness issues, while Sect. 4 provides
the proof of the main theorem of the paper.

2 Setting and Main Results

We consider the tadpole graph T (Fig. 4), that is a connected noncompact metric
graph consisting of a compact circle K and a half-line H (endowed with the usual
intrinsic parametrization—see [7]) incident at the vertex v.

A function u : T → R can be seen as a couple of functions (v,w), with v : K →
R and w : H → R, and thus Lebesgue and Sobolev spaces can be defined as usual

Lp(T ) := {u : T → R : v ∈ Lp(K), w ∈ Lp(H)}

and

H 1(T ) := {u : T → R continuous : v ∈ H 1(K), w ∈ H 1(H)}.



Ground States of the L2-Critical NLS Equation with Localized Nonlinearity on. . . 117

We also define, for μ > 0,

H 1
μ(T ) :=

{
u ∈ H 1(T ) :

∫

T
|u|2 dx = μ

}
.

We address the problem of the existence of a function u ∈ H 1
μ(T ) such that

E(u,K) = EK(μ), where

E(u,K) := 1

2

∫

T
|u′|2 dx − 1

6

∫

K
|u|6 dx (5)

and

EK(μ) := inf
u∈H 1

μ(T )
E(u,K). (6)

It is clear that such a minimizer u, usually called ground state, satisfies

{
v′′ + |v|4 v = λv

w′′ = λw

(for some λ > 0) and

v′(0)− v′(L)+w′(0) = 0 (7)

where L := |K| and we have considered an anti-clockwise parametrization of K,
i.e. u solves the stationary NLS equation (3) on T .

Remark 2.1 We limit ourselves to consider real valued functions in the search of
ground states since it can be shown that minimizers of the NLS energy are always
real valued up to the multiplication times a constant phase (for more see [7, 32]). It
is also possible to prove, by an easy regularity argument, that a ground state cannot
be equal to zero at any point of the graph.

Before stating the main result of the paper, it is worth recalling some well-
known facts on the ground states of the complete problem, i.e. with the nonlinearity
extended on the whole graph. Precisely, we have to introduce the concept of critical
mass, as the existence of a minimizer in the critical case p = 6 is strictly connected
to the value of the mass.

When G = R (see [17]),

inf
u∈H 1

μ(R)
E(u) =

⎧
⎨

⎩
0 if μ ≤ μR

−∞ if μ > μR

(μR =
√

3

2
π) (8)
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and the infimum is attained only at μ = μR; whereas, when G = R
+,

inf
u∈H 1

μ(R
+)

E(u) =
⎧
⎨

⎩
0 if μ ≤ μR+

−∞ if μ > μR+
(μR+ =

√
3

4
π)

and the infimum is attained only at μ = μR+ . The values μR and μR+ are said to
be the critical masses of the line and of the half-line (respectively).

Concerning the tadpole G = T , as a consequence of Theorem 3.3 in [9], it has
been proved that

inf
u∈H 1

μ(T )
E(u)

⎧
⎪⎪⎨

⎪⎪⎩

≥ 0 if μ ≤ μR+

< 0 if μ ∈ (μR+, μR]
= −∞ if μ > μR

and global minimizers of the energy exist if and only if μ ∈ (μR+, μR].
We can now present the main result of this paper.

Theorem 2.1 There exist two values μ1, μ2 ∈ (μR+, μR), with μ1 < μ2, such
that

(i) if μ ≤ μ1, then EK(μ) = 0 and it is not attained;
(ii) if μ2 ≤ μ ≤ μR, then there exists a ground state of mass μ.

(iii) if μ > μR, then EK(μ) = −∞.

Furthermore, ground states always realize strictly negative energy levels.

We point out that the previous result displays a different phenomenology with
respect to the analogous in the everywhere nonlinear problem. Indeed, even though
ground states are proved to exist only for some intervals of masses in both cases,
Theorem 2.1 suggests that these intervals are actually different. Specifically, it
appears that concentrating the nonlinearity on the compact core does not allow the
presence of global minimizers if the mass is too close to μR+ , and a new lower
threshold must arise. However, we are not able to detect the sharp values of μ1
and μ2 at the moment, so that it is still an open problem to determine μ∗ such that
ground states with concentrated nonlinearity exist if and only if [μ∗, μR]. We will
address this issue in a forthcoming paper.

3 Preliminaries and Compactness

First, let us recall some previous results on noncompact metric graphs, highlighting
the consequences they have on the problem we discuss in the paper.
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It is well-known (see for instance [7, 32]) that the following Gagliardo–Nirenberg
inequalities

‖u‖6
L6(T )

≤ CT ‖u‖4
L2(T )

‖u′‖2
L2(T )

, (9)

‖u‖L∞(T ) ≤ C∞‖u‖1/2
L2(T )

‖u′‖1/2
L2(T )

(10)

hold for every u ∈ H 1(T ) (here CT , C∞ denote the optimal constants). Further-
more, a modified version of (9) has been established in [9, Lemma 4.4]. Precisely,
for every u ∈ H 1

μ(T ), there exists θu := θ(u) ∈ [0, μ], such that

‖u‖L6(T ) ≤ 3
(μ− θu

μR

)2‖u′‖2
L2(T )

+ C
√
θu (11)

with C > 0 independent of u.
In addition, recalling the definition of the complete NLS energy given by (2) with

G = T , we know (again from [9]) that

(i) μ ≤ μR+ �⇒ E(u) > 0, ∀u ∈ H 1
μ(T );

(ii) μR+ < μ ≤ μR �⇒ −∞ < inf
u∈H 1

μ(T )
E(u) < 0

(iii) μ < μR �⇒ inf
u∈H 1

μ(T )
E(u) = −∞.

Moreover, global minimizers exist only in case (ii).
Since it is straightforward that, for every u ∈ H 1(T ),

E(u,K) ≥ E(u),

the previous observations have some relevant consequences on the problem with
localized nonlinearity too. In fact, we have that

E(u,K) > 0, ∀u ∈ u ∈ H 1
μ(T ), (12)

for every μ ≤ μ+
R

, and that

EK(μ) > −∞, ∀μ ∈ (μR+, μR]. (13)

On the other hand, arguing exactly as in [9], one can show that,

EK(μ) = −∞, ∀μ > μR,

which immediately proves item (iii) of Theorem 2.1.
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We conclude this section establishing a compactness result, valid only for
localized nonlinearities, which ensures that ground states exist if and only if the
infimum of the energy is strictly negative and finite.

Lemma 3.1 Let μ ∈ (0, μR]. If

−∞ < EK(μ) < 0 (14)

then, there exists a ground state of E( · ,K) of mass μ. If, on the contrary, E(u,K) >

0 for every u ∈ H 1
μ(T ), then

EK(μ) = 0 (15)

and it is not attained.

Proof We start by showing that, for every μ ∈ (0, μR],

EK(μ) ≤ 0 . (16)

For every n ∈ N, define

un(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

αn, if x ∈ (1, n) ∩H,

αnx, if x ∈ [0, 1] ∩H,

αn(n+ 1 − x), if x ∈ [n, n+ 1] ∩H,

0, elsewhere on T ,

where {αn}n∈N is chosen so that ‖un‖2
L2(T )

= μ, for every n ∈ N (note that this
entails αn → 0, as n → +∞). It is, then, easy to check that un → 0 strongly in
H 1(T ), thus implying that E(un,K) → 0, as n → +∞, and hence that (16) is
satisfied.

On the other hand, if E(u,K) > 0 for every u ∈ H 1
μ(T ), then (16) yields (15)

and, consequently, the infimum cannot be attained.
Finally, suppose that, on the contrary, (14) holds and let {un}n∈N ⊂ H 1

μ(T ) be a
minimizing sequence for E( · ,K). Then, for large n, E(un,K) ≤ −c, with c > 0,
and, combining with (11), this entails

1

2
‖u′n‖2

L2(T )

[
1 − (μ− θun)

2

μ2
R

]
− C

√
θun ≤ E(un,G) ≤ −c < 0

with θun ∈ [0, μ]. Thus, one finds that θun ≥ c̃ > 0, so that
(

μ−θun
μR

)2
< 1 and

hence {un}n∈N is bounded in H 1
μ(T ). As a consequence, un ⇀ u in H 1(T ) and
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un → u in L6
loc(T ) (up to subsequences), and thus

E(u,K) ≤ lim inf
n

E(un,K) = EK(μ).

It is, then, left to prove that ‖u‖2
L2(T )

=: m = μ.
First we see that, if m = 0, then u ≡ 0, and hence

EK(μ) = lim inf
n

E(un,K) ≥ E(u,K) = 0,

which contradicts (14). On the other hand, if m < μ, then there exists σ > 1
satisfying ‖σu‖2

L2(T )
= μ. However, this implies that

E(σu,K) = σ 2

2

∫

T
|u′|2 dx − σ 6

6

∫

K
|u|6 dx < σ 2E(u,K) < E(u,K),

which is again a contradiction. Hence, m = μ, which concludes the proof. �

4 Proof of Theorem 2.1

This section is devoted to the proof of items (i) and (ii) of Theorem 2.1 (item (iii)
has been already discussed in the previous section).

Proof of Theorem 2.1: Item (i) First, note that, whenever μ ≤ μR+ , combin-
ing (12) and Lemma 3.1, one easily sees that no ground state may exist.

On the other hand, assume (by contradiction) that there exists a ground state of
E( · ,K) of mass μ, for every μ ∈ (μR+, μR]. Then, let {με}ε>0 be a sequence such
that με → μR+ , as ε → 0, and let uε be (one of) the associated ground state(s).

Now, it is immediate that E(uε,K) ≤ 0. As a consequence, exploiting the
modified Gagliardo–Nirenberg inequality (11) as in the proof of Lemma 3.1, there
results

‖u′ε‖2
L2(T )

≤ μ2
ε

μ2
R

‖u′ε‖2
L2(T )

+ C
√
μR.

Therefore {uε}ε>0 is bounded in H 1(T ) and there exists u ∈ H 1(T ) such that
uε ⇀ u in H 1(T ) and uε → u in L6

loc(T ) (up to subsequences), as ε → 0.
Furthermore, using (10) and (again) the negativity of the energy, one finds

‖u′ε‖2
L2(T )

<
1

3
‖uε‖6

L6(K)
≤ L

3
‖uε‖6

L∞(K) ≤
L

3
‖uε‖6

L∞(T )

≤ C6∞L

3
‖uε‖3

L2(T )
‖u′ε‖3

L2(T )
= C6∞L

3
μ3/2

ε ‖u′ε‖3
L2(T )

,
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which yields (as ‖u′ε‖2
L2(T )

�= 0)

‖u′ε‖L2(T ) ≥
3

C6∞Lμ
3/2
R

, ∀ε > 0, (17)

thus preventing u ≡ 0. Indeed, if u ≡ 0, then uε → 0 in L∞(K) (from compact
embeddings) and, as E(uε,K) ≤ 0,

‖u′ε‖2
L2(T )

<
1

3
‖uε‖6

L6(K)
≤ 1

3
L‖uε‖6

L∞(K) → 0, as ε → 0,

but this contradicts (17).
Finally, by the weak lower semicontinuity, we have

‖u‖2
L2(T )

≤ lim inf
ε→0

με = μR+

and

E(u,K) ≤ lim inf
ε→0

E(uε,K) ≤ 0.

Hence, u is a function in H 1
m(T ), for some m ∈ (0, μR+], such that E(u,K) ≤ 0.

However, this is forbidden by (12), which (combining with Lemma 3.1) concludes
the proof. �
Proof of Theorem 2.1: Item (ii) Since by (13) the energy functional is lower
bounded (whenever μ ≤ μR), from Lemma 3.1, it is sufficient to exhibit a function
with a strictly negative energy (as the mass exceeds a certain threshold).

To this aim, fix μ ∈ (μR+, μR] and let

u(x) :=
{
c if x ∈ K
ce−αx if x ∈ H,

(18)

with c, α > 0 satisfying the mass condition

μ = ‖u‖2
L2(T )

=
∫

K
c2 dx +

∫

H
c2e−2αx dx = c2L+ c2

2α
(19)

(see also Fig. 5).

Fig. 5 Function introduced
in the proof of Theorem 2.1:
item (ii)

c

ce−αx
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Hence, u ∈ H 1
μ(T ) and its energy reads

E(u,K) = c2α

4
− c6L

6
. (20)

Now, by (19)

α = c2

2(μ− c2L)
,

so that

E(u,K) = c4

8(μ− c2L)
− c6L

6
= c4

2

( 1

4(μ− c2L)
− c2L

3

)
.

Therefore, imposing E(u,K) < 0 reduces to determine whether exists (or not) a
value c such that

1

4(μ− c2L)
− c2L

3
< 0,

namely, whether exists (or not) a value " := c2L such that

"2 − μ"+ 3

4
< 0.

However, the previous inequality is satisfied whenever

μ−√
μ2 − 3

2
< " <

μ+√
μ2 − 3

2
,

provided that

μ2 − 3 ≥ 0 ⇔ μ ≥ √
3 . (21)

Henceforth, setting μ2 := √
3, for every μ ∈ [μ2, μR], there exists u ∈ H 1

μ(T )

such that E(u,K) < 0. �
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An Asymptotic Expansion of the Trace
of the Heat Kernel of a Singular
Two-particle Contact Interaction
in One-dimension

Sebastian Egger

Abstract The regularized trace of the heat kernel of a one-dimensional Schrödinger
operator with a singular two-particle contact interaction being of Lieb-Liniger type
is considered. We derive a complete small-time asymptotic expansion in (fractional)
powers of the time, t . Most importantly, we do not invoke standard parametrix
constructions for the heat kernel. Instead, we first derive the large-energy expansion
of the regularized trace of the resolvent for the considered operator. Then, we exploit
that the resolvent may be obtained by a Laplace transformation of the heat semi-
group, and an application of a suitable inverse Watson lemma eventually delivers
the small-t asymptotic expansion of the heat-kernel trace.

1 Introduction

The classical heat kernel is the kernel of an integral operator generating the semi-
group of the heat equation on domains or manifolds. Given sufficient regularity of
the boundary and assuming that the volume of the domain is finite one may conclude
that the heat semi-group is a trace class operator. Mercer’s famous theorem tells then
that its trace may be calculated by integrating the heat kernel along its diagonal.

Minakshisundaram and Pleijel showed in their celebrated work [40, 41], that
the classical heat kernel possesses a complete small-time (small-t) asymptotic
expansion in (fractional) powers of t . They were also able to show that its
coefficients bear topological and metric information of the underlying domain or
manifold. Most notable here is the heat-kernel approach to the profound Atiyah-
Singer index theorem [2, 3, 22], which links a specific coefficient of the heat-kernel
expansion to the topological and analytic index, respectively, of an elliptic operator
acting on sections of a corresponding vector bundle.

S. Egger (�)
Department of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel
e-mail: egger@tx.technion.ac.il

© Springer Nature Switzerland AG 2020
F. M. Atay et al. (eds.), Discrete and Continuous Models in the Theory
of Networks, Operator Theory: Advances and Applications 281,
https://doi.org/10.1007/978-3-030-44097-8_6

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44097-8_6&domain=pdf
mailto:egger@tx.technion.ac.il
https://doi.org/10.1007/978-3-030-44097-8_6


128 S. Egger

Another and very interesting aspect pointed out in [40, 41] is that the small-t
asymptotics of the trace of the heat kernel and the meromorphic properties of the
spectral ζ -function corresponding to the generating Laplacian of the heat equation
are very closely related. From a physical point of view, the spectral ζ -function is
an important object in statistical physics and quantum mechanics to calculate, e.g.,
path integrals (Brownian motion) [31], spectral determinants in lattice QCD, or the
Casimir force in QED, see, e.g. [19, 34].

A standard approach to find an asymptotic expansion of the trace of the
heat kernel is to derive a parametrix, i.e., a local small-t asymptotic expansion
for the solution of the heat equation, and then integrate its position dependent
coefficients along their diagonals. The advantage of this method is that it’s rather
universally applicable and the coefficients may be identified as local invariants of
the underlying domain or manifold. Due to the overwhelming number of remarkable
results we refer here (and references therein) to [8, 23, 32, 52–54, 58] for the heat-
kernel expansion in particular and to [1, 4, 16, 17, 27, 37, 45, 47] for related modern
results regarding asymptotic properties of the heat kernel.

On metric graphs the trace of the heat kernel was first studied by Roth [50],
deriving an exact (Selberg-like) trace formula for it. After that, the (one-particle)
heat kernel has experienced an accelerated attention and analogous questions has
been asked to the manifold case [7, 15, 21, 28, 35, 42–44, 48]. The motivation of
studying contact interactions in many-particle physics for one-dimensional systems
dates back to the famous Lieb-Liniger model [38], used to test Bogoliubov’s
perturbation theory for Bose gases. Since then many-particle contact interactions
in one-dimension and graphs are well established for testing and modeling famous
phenomenons such as superconductivity or Bose-Einstein condensation [10–12, 18,
20, 30, 51]. For the importance of one-dimensional contact interactions in physics
and recent experimental implementations we refer to [14]. Those above exciting
results inspired us to consider as a very first example the small-t asymptotics of the
trace of the heat kernel for a simple but non-standard Lieb-Liniger type system of a
singular but non-constant contact interaction on the real line, R.

More precisely, the operator which we consider is the one-dimensional two-
particle Schrödinger operator given by the formal expression

−�ρ := −∂2
x1
− ∂2

x2
+ ρ(x1, x2)δ(x1 − x2) , (1)

with L2(R2) as the two-particle Hilbert space and a position dependent δ-potential
modulated by a potential ρ. We assume that the modulating potential, ρ, is smooth
and possesses compact support. The heat semi-group, et�ρ , satisfies ∂tet�ρ |t=0 =
�ρ in a strong sense, and the heat kernel, kρ(t)(·, ·), t ∈ R, is the integral kernel
generating et�ρ by

(et�ρψ)(x) =
∫

R2

kρ(t)(x, y)ψ(y)dy . (2)
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However, since the underlying configuration space is non-compact the Schrödinger
operator (1) possesses an essential spectrum, and we have to regularize the heat
semi-group in order to make it a trace-class operator.

In this paper, we follow the method of [7] and don’t derive a parametrix
expansion for the heat semi-group. Instead, we exploit that the resolvent and
the heat semi-group are related via a Laplace transformation. This approach is
similar to [32], where the authors used the so-called Agmon-Kannai method to
derive an asymptotic expansion for the resolvent kernel of the corresponding
Schrödinger operator. The Agmon-Kannai method, in turn, is a tool to obtain a series
representation of the resolvent with operator-valued coefficients and is based on a
recursive construction involving commutators of the free and the full resolvent of
the considered operator [46].

We don’t use the Agmon-Kannai method here, but we exploit that the resolvent
of our system allows a rather explicit representation in terms of suitable integral
operators which is based on a more-general formula of Kreı̆n. We start by first
establishing an asymptotic expansion for large but negative energies of the regular-
ized trace of the resolvent. Then, we use a suitable version of the converse Watson
lemma to deduce the small-t asymptotics of the regularized trace of the heat semi-
group (and heat kernel). In general, our method is taking advantage of the symmetry
properties of the underlying system, and the advantage of our method is that it allows
a compact, explicit and quick formulation of the heat-kernel coefficients.

Finally, we refer to Appendix 1, where we recall standard notations and
definitions used in this paper.

2 Preliminaries

We begin our investigations by implementing a rigorous version of the formal
Schrödinger operator (1). To obtain a well-defined operator in L2(R2) corre-
sponding to this operator it is convenient to associate with (1) a quadratic form
being complete and semi-bounded from below. Then, there is a unique self-adjoint
operator corresponding to the quadratic form [55, Section 4.2], which then may be
regarded as a rigorous version of (1).

To get the quadratic form of the operator (1) we first realize that due to the δ-
potential the modulation potential ρ has only to be known on the diagonal (one-
dimensional submanifold)

D := {(x, x) : x ∈ R} ⊂ R
2 . (3)

Now, using the identification ρ(x, x) = ρ(x) we restrict our considerations in this
paper to compactly supported and smooth potential, i.e., ρ ∈ C∞

0 (R). To identify
the associated quadratic form and operator we are proceeding as in [9, Section 3.1],
replacing the interval [0, 1] with R to obtain our case related to (1). We follow the
steps of [9, Section 3.1] and to do so, we use D and partition R

2 into the two disjoint
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open sets D+ and D− by

R
2 = D− ∪̇ D ∪̇ D+ , D+ = {(x1, x2) : x1 < x2} , D− := {(x1, x2) : x1 > x2} .

(4)

Moreover, since D is a straight line, and hence a smooth curve, we may define the
trace maps see, e.g. [29, Theorem 1.5.1.1]

bv± : H 1(D±) → H
1
2 (D). (5)

Both above maps are continuous linear maps. In the same way, the gradients

∇ : H 2(D±) → H 1(D±)⊕H 1(D±) (6)

are well-defined and continuous maps. Therefore, the inward normal derivatives, ∂n,
w.r.t. the boundary D of the domains D± act as

∂n : H 2(D+)⊕H 2(D−) → H
1
2 (D)⊕H

1
2 (D) , (7)

and are well-defined by

∂n(ψ+ ⊕ ψ−) := ψn,+ ⊕ ψn,− , (8)

and

ψn,± := ∓(∂x1 − ∂x2)ψ± . (9)

With these technical tools at hand, we may now use [9, p. 6] allowing a
proper identification of the two-particle and one-dimensional Schrödinger operator
in (1) with a one-particle and two-dimensional operator acting on R

2. For the
readers convenience we denote this operator by −�ρ as well. The functions of the
corresponding operator domain,D(�ρ), obey the following regularity and boundary
conditions. If ψ ∈ D(�ρ) then ψ ∈ H 2(D+) ⊕ H 2(D−) ⊂ L2(R2) and the
following boundary conditions are satisfied in a L2-sense [9, p. 6]:

bv+ ψ = bv− ψ =: � , ψn,+ + ψn,− = ρ� . (10)

Moreover, by Bolte and Kerner [9, p. 6] the operator −�ρ is associated with the
quadratic form (qρ,H

1(R2)) defined by

qρ(ψ) :=
∫

R2

〈∇ψ,∇ψ〉R2 dx +
∫

D

ρ�dx , (11)
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where we used (4). On the other hand, given (qρ,H
1(R2)) then the associated

operator is −�ρ and is self-adjoint and bounded from below [13, Theorem 4.2].
We denote by λmin,ρ := inf{λ ∈ R : λ ∈ σ(−�ρ)} the bottom of the spectrum
σ(−�ρ) of the Schrödinger operator, and we recall the well-known fact λmin,0 = 0.

3 The Resolvent Kernel

At the beginning of this section, we derive an explicit expression of the resolvent,
λ /∈ σ(−�ρ),

Rρ(λ) := (−�ρ − λ)−1 . (12)

To do so, we follow [13], and in the following, we choose
√
λ = k ∈ C such that

Im k > 0. We introduce the integral kernels

G0(k)(x1, x2, y1, y2) := 1

2π
K0(−ik

√
(x1 − y1)2 + (x2 − y2)2) , (13)

and

g(k)(x, y) := 1

2π
K0(−i

√
2k|x − y|) . (14)

The integral kernel G0(k) corresponds for Im k > 0 to a bounded operator R0(k) :
L2(R2) → L2(R2) and g(k) to a bounded operator g(k) : L2(R) → L2(R),
respectively. That may be deduced from the asymptotic behavior of the K0-Bessel
function for large arguments [39, p. 139]. It is worth mentioning that the logarithmic
singularity of the K0-Bessel function at the origin [39, p, 65], doesn’t affect the
boundedness of R0 and g due to Young’s inequality. Note that R0(k) is the (free)
resolvent of the pure Laplacian on R

2. To write down the resolvent explicitly we
need one more integral operator connecting L2(R2) and L2(R). We introduce

b(k)(x, y1, y2) := 1

2π
K0(−ik

√
(x − y1)2 + (x − y2)2) , (15)

and those integral kernel generates for Im k > 0 a bounded operator b(k) :
L2(R2) → L2(R). Finally, we make the simple observation that any potential
ρ ∈ C∞

0 (R), or only ρ ∈ L∞(R), generates a bounded multiplication operator
ρ : L2(R) → L2(R).

With these operators at hand, we now invoke [13, Corollary 2.1] saying that the
resolvent Rρ(λ) may be written as

Rρ(λ) = R0(k)− b
(
k
)∗

(1+ ρg(k))−1ρb(k) , (16)
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where we put k = √
λ. In the following, it is convenient to denote by Cα , α < π

2 ,
the cone around the positive imaginary axis iR+ and with opening angle 2α, i.e.,

Cα :=
{
z ∈ C : | arg(z)− π

2
| < α

}
. (17)

Then, for k ∈ Cα , α < π
2 , and |k| large enough one has [13, Corollary 2.2],

‖ρg(k)‖ < 1 . (18)

Now, we introduce the regularized resolvent R
reg
ρ (k), k ∈ Cα , α < π

2 , and
|k| sufficiently large, defined as R

reg
ρ (k) := Rρ(k

2) − R0(k
2). Due to the semi-

boundedness of qρ (and q0) the operator Rreg
ρ (k) exists for k ∈ Cα , α < π

2 and |k|
sufficiently large. We will show that Rreg

ρ (k) is also a trace class operator. For this,
it is advantageous to ‘shift’ a square root of the potential in (16) from right to left.
This will eventually reveal that the supports of the integral kernels are compact w.r.t.
appropriate variables, and will be exploited to estimate the integrals from above.
Specifically, the following rearrangement of Rreg

ρ (k) is possible.

Lemma 3.1 For k ∈ Cα , α < π
2 , and |k| sufficiently large, we have

R
reg
ρ (k) = −

(√|ρ|b (k)
)∗

(1+ sgnρ
√|ρ|g(k)√|ρ|)−1 sgnρ

√|ρ|b(k) . (19)

Proof Using (18) we may write (1+ ρg(k))−1 as a Neumann series. Now,

(ρg(k))nρ = √|ρ|(sgnρ
√|ρ|g(k)√|ρ|)n sgnρ

√|ρ| (20)

for every n ∈ N0 proves the claim. �

3.1 Trace Class Property of the Regularized Resolvent

Now, we are in the position to prove that the regularized resolvent is actually a trace
class operator.

Proposition 3.2 For k ∈ Cα , α < π
2 , and |k| sufficiently large, Rreg

ρ (k) is a trace
class operator.

Proof We want to employ [55, Satz 3.23] saying that it’s enough to show that
R

reg
ρ (k) can be factorized as

R
reg
ρ (k) = AB (21)
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by two Hilbert-Schmidt operators A : L2(R) → L2(R2) and B : L2(R2) → L2(R).
Looking at (19) we are tempted to identify

A = −
(√|ρ|b (k)

)∗
, (22)

and

B = (1+ sgnρ
√|ρ|g(k)√|ρ|)−1 sgn ρ

√|ρ|b(k) . (23)

Indeed, by [55, Satz 3.18] the Hilbert-Schmidt property is closed under taking
the adjoint. Moreover, by [55, Satz 3.20] we may neglect the operator (1 +
sgnρ

√|ρ|g(k)√|ρ|)−1 sgn ρ, and it remains to show that
√|ρ|b (k) is of Hilbert-

Schmidt class. We proceed to show that the integral kernel of
√|ρ|b (k) is in

L2(R × R
2) which then proves by [55, Satz 3.19] the claim. We recall (15) and

calculate

(2π)2
∫

R

∫

R2

|ρ(x)||b (k) (x, y1, y2)|2dxdy1dy2

=
∫

suppρ

∫

BR(0)

|ρ(x)||K0

(
−ik

√
(x − y1)2 + (x − y2)2

)
|2dxdy1dy2

+
∫

suppρ

∫

R2\BR(0)

|ρ(x)||K0

(
−ik

√
(x − y1)2 + (x − y2)2

)
|2dxdy1dy2 ,

(24)

where BR(0) is a ball with sufficient large radius R such that

x ∈ suppρ ⇒ y1 �= x or y2 �= x (25)

holds in R
2 \BR(0). Such a radius, R, exists as the support of ρ is bounded. By the

same reason and due to the asymptotic behavior (80) we have that

∫

suppρ

∫

BR(0)

|ρ(x)||K0

(
−ik

√
(x − y1)2 + (x − y2)2

)
|2dxdy1dy2

< C

∫

suppρ

∫

BR(0)

| ln(kr)|2rdrdx < ∞
(26)

with some C > 0. By (81) a similarly estimates to (26) also holds for the second
integral on the r.h.s. in (24) proving the claim. �
In order to evaluate the trace of the heat kernel, we want to employ a generalized
version of Mercer’s theorem. To achieve this, we first have to show that the heat
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kernel exists and then to work out suitable continuity and decay properties satisfied
by the integral kernel.

Lemma 3.3 Given k ∈ Cα , α < π
2 , and |k| sufficiently large, Rreg

ρ (k) is an integral
operator with an continuous and exponentially decaying kernel for large arguments.

Proof First, we choose for our convenience an appropriate −ik ∈ R
+, and the

remaining cases may then be similarly proven. With a similar argument as in the
proof of Proposition 3.2, using the (absolute) integrability of the logarithm, we may
regard

√|ρ|b(k) as a map

b̃ : (R2, ‖ · ‖
R2) → L2(R) , (27)

defined by

(b̃(y1, y2))(x) :=
√|ρ(x)|b(k)(x, y1, y2) . (28)

To see that b̃ is continuous we first take into account that the support of ρ is finite
and therefore we only have to investigate singular points of (28) w.r.t. the argument.
Looking at (15) we see that the singularity is in the logarithm of (80) where x =
y1 = y2. We may choose y1 = y2 = 0, y ′1 = y ′2 =: y ′ > 0 and the other cases are
similar. We are going to use that for every ε > 0 there is a δ(ε) such that

‖(0, 0)− (y ′, y ′)‖
R2 ≤ δ(ε), and (x, x) /∈ B2δ(ε)(0, 0)

⇒ | ln ‖(x, x)‖
R2 − ln ‖(y ′ − x, y ′ − x)‖

R2| ≤ ε .
(29)

Hence, choosing ε suitable small gives

∫

suppρ

| ln ‖(x, x)‖R2 − ln ‖(y ′ − x, y ′ − x)‖R2 |2dx

=
∫

{(x,x)/∈B2δ(ε)(0,0)}∩suppρ

| ln ‖(x, x)‖
R2 − ln ‖(y ′ − x, y ′ − x)‖

R2 |2dx

+
∫

{(x,x)∈B2δ(ε)(0,0)}∩suppρ

| ln ‖(x, x)‖R2 − ln ‖(y ′ − x, y ′ − x)‖R2 |2dx

≤ Cε + C′
2δ(ε)∫

0

| ln |1 − y ′

x
||2dx,

≤ Cε + C′
∞∫

y ′(2δ(ε))−1

y ′

x2 | ln |1 − x||2dx = Cε + O(y ′),

(30)



An Asymptotic Expansion of the Trace of the Heat Kernel of a Singular Two-. . . 135

where in the last line we performed the substitution x → y
x

, and we used [49,
pp. 240,241]. Observing that C, C′ > 0 only depend on the size of | suppρ|1 and
choosing y ′ sufficiently close 0 proves the claim.

In the same way as above, we view (
√|ρ|b(k))∗ as a continuous map from (R2, ‖·

‖R2) to L2(R). This gives the same integral kernel b̃ as in (28) since −ik ∈ R
+ and

then the K0-Bessel function is real valued, but the R
2-variables are now indicated

by (x1, x2). We denote for convenience, see (19),

q = (1+ sgnρ
√|ρ|g(k)√|ρ|)−1 : L2(R) → L2(R) , (31)

and since q is continuous we observe that the integral kernel rρ(k)((x1, x2), (y1, y2))

of Rreg
ρ (k) is given by

rρ(k)((x1, x2), (y1, y2)) = 〈b̃(x1, x2), qb̃(y1, y2)〉L2(R) . (32)

Now, the algebraic identity

rρ(k)((x1, x2), (y1, y2))− rρ(k)((x
′
1, x

′
2), (y

′
1, y2)

′)

= 〈b̃(x1, x2), qb̃(y1, y2)〉L2(R) − 〈b̃(x′1, x′2), qb̃(y′1, y′2)〉L2(R)

= 〈(b̃(x1, x2)− b̃(x′1, x′2)), qb̃(y1, y2)〉L2(R) + 〈b̃(x′1, x′2), q(b̃(y1, y2)− b̃(y′1, y′2))〉L2(R) ,

(33)

and a suitable application of Hölder’s inequality prove the first part of the claim.
To see the exponential decay we recall that the operators b̃ in (32) involve the

kernel
√|ρ(x)|b(k)(x, y1, y2) given in (15). As before, it’s enough to assume x ∈

suppρ, and since the support of ρ is finite we have for sufficiently large ‖(y1, y2)‖R2

the inequality

‖(y1 − x, y2 − x)‖R2 >
1

2
‖(y1, y2)‖R2 . (34)

We obtain, using Hölder’s inequality,

|rρ(k)((x1, x2), (y1, y2))| = |〈b̃(x1, x2), qb̃(y1, y2)〉L2(R)|
≤ ‖b̃(x1, x2)‖L2(R)‖q‖‖b̃(y1, y2)‖L2(R) ,

(35)

where ‖q‖ is the L2-operator norm of q . For sufficiently large ‖(y1, y2)‖R2 we may
use (81) for (15). Together with (34) we then obtain

‖b̃(y1, y2)‖L2(R) ≤ C

∫

suppρ

e−k
√

(x−y1)2+(x−y2)2
dx

≤ C′e−k 1
2

√
y2

1+y2
2

(36)

with some C, C′ > 0. Plugging (36) in (35) proves the second part of the claim.
�
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Having established the existence of a (continuous) integral kernel we take over the
notation of the above proof. We denote for k ∈ Cα , α < π

2 , and |k| sufficiently
large, the integral kernel of Rreg

ρ (k) by rρ(k)(·, ·).
The following proposition tells us how we may calculate the trace of the

regularized resolvent.

Proposition 3.4 The trace of the regularized resolvent may be calculated by, k ∈
Cα , α < π

2 , and |k| sufficiently large,

TrRreg
ρ (k) =

∫

R2

rρreg(k)(x, x)dx . (37)

Proof The claim follows by an application of [24, p. 117] saying that the properties
of R

reg
ρ (k) and of its kernel rρreg(k) derived in Proposition 3.2 and Lemma 3.3 are

sufficient to deduce the claim. �
The above (trace-class) result tempts us to define the regularized trace of the
resolvent as the trace of the regularized resolvent

Definition 3.5 The regularized trace of the resolvent Rρ(λ) is defined as

Trreg Rρ(λ) := Tr Rreg
ρ (

√
λ) , (38)

with λ such that k = √
λ satisfies the assumption of Proposition 3.4.

3.2 An Asymptotic Analysis of the Trace of the Regularized
Resolvent

To determine the asymptotic expansion of the trace of the regularized resolvent we
have to introduce a couple of auxiliary objects and notations permitting a closed
presentation.

We start with defining a diffeomorphism, n ∈ N0,

φ : Rn+1 → R
n+1 , (39)

by

wl = φ(y0, . . . , yn)l = yl − yl+1 , l ∈ {0, . . . , n− 1} ,
wn = φ(y0, . . . , yn)n = yn + y0 .

(40)

Note that for n = 0 we have w0 = 2y0. The inverse map (diffeomorphism)

φ−1 : Rn+1 → R
n+1 (41)
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reads as

yl = φ−1(w0, . . . , wn)l = 1

2
[

n∑

m=l

wm −
l−1∑

l=0

wm], l ∈ {0, . . . , n} , (42)

and, in particular, for n = 0 we have y0 = 1
2w0. Moreover, we are going to utilize

the following (combinatorial) set of maps, n ∈ N0,

Sn :=
{
{s : s : {0, . . . , n− 1} → {1,−1}} , n ∈ N ,

∅ , n = 0 .
(43)

In addition, we employ the multy-index notation

αn := (α0, . . . , αn−1) , αl ∈ N0, l ∈ {0, . . . , n− 1} . (44)

together with

|αn| :=
n−1∑

l=0

αl . (45)

We remark here that αn is only defined for n �= 0.
For any ρ ∈ C∞

0 (R) the maps φ−1 in (41) and s ∈ Sn, n ∈ N0, in (43) are
employed to generate a smooth and compactly supported map ρn,s from R

n+1 to R,
i.e., ρn,s ∈ C∞

0 (Rn+1,R), defined by, (w0, . . . , wn) ∈ R
n+1,

ρn,s(w0, . . . , wn) :=

⎧
⎪⎨

⎪⎩

n∏
l=0

ρ((φ−1(s(0)w0, . . . , s(n − 1)wn−1, wn))l) , n ∈ N ,

ρ(w0
2 ) , n = 0 .

(46)

Our asymptotic analysis also deploys the following notations of partial derivatives
of ρn,s , using (46) and (44),

∂αnρn,s(w0, . . . , wn−1, wn) := (
∂ |αn|

∂
α0
w0 . . . ∂

αn−1
wn−1

ρn,s)(w0, . . . , wn−1, wn) . (47)
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Finally, fixing ρ ∈ C∞
0 (R), the following functions will turn out of particular

interest

cαn,s,l

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

R+n

∫

R

dξdt0...dtn−1

(1+ξ2)
3
2 (
√

2((cosh(t0)+iξs(n−1)))α
n
0+1

...(
√

2(cosh(tn−1)+iξs(n−1)))
αn
n−1+1

, n ∈ N ,

∫

R

dξ

(1+ξ2)
3
2
, n = 0 , l = 0 ,

0 , else ,

(48)

and, l ∈ N0,

bn,l :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
|αn |=l,
s∈Sn

cαn,s,l

∫

R

∂αnρn,s(0, . . . , 0, y)dy , n ∈ N ,

∫

R

2ρ(y2 )dy , n = 0, l = 0 ,

0, else ,

(49)

where we incorporated [25, 3.251 11.] and S0 = ∅, (43). We remark that by [25,
3.252 11.]

cα0,s,0 = 2 . (50)

Equipped with the above identities, we are now able to determine the large-λ
asymptotic expansion of the regularized trace of the resolvent. For this, we remind
that Cα is a sector with opening angle α around the positive imaginary axis, (17).

Theorem 3.6 The regularized trace of the resolvent Trreg Rρ(λ) possesses for
|λ| → ∞ and k := √−λ ∈ Cα with α < π

2 a complete asymptotic expansion
in integer powers of k of the form

Trreg Rρ(−λ) ∼
∞∑

m=0

bmλ−( m2 +1) , (51)

where the coefficients bm are given by

bm = 1

8

∑

n,l,
l+n=m

(−2π)−(n+1)bn,l . (52)
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The first two coefficients read as

b0 = − 1

4π

∫

R

ρ(y)dx , b1 =
√

2

32

∫

R

ρ(y)2dy . (53)

Remark 3.7 The condition on λ implies that λ has to be in a cone around the positive
axis R+ with opening angle smaller than 2π . Moreover, we point out that for m ≥ 2
integrals of derivatives of ρ appear in (52) for bm.

Proof For our convenience we choose k = √−λ and consider only the case
k̃ := −ik ∈ R

+, |k| sufficiently large. The general case k ∈ Cα may be treated
analogously. We also remark that in the following every interchange of the order of
integration is justified by Fubini’s theorem [5, 23.7 Corollary].

We are going to use the resolvent representation (16). First, we expand (1 +
ρg(k))−1 into a Neumann series and attain

Trreg Rρ(−λ) = −Tr(b
(
k
)∗

(1+ ρg(k))−1ρb(k))

=
∞∑

n=0

(−1)n+1 Tr(b
(
k
)∗

(ρg(k))nρb(k)) .
(54)

It is possible to get a large-k asymptotic expansion of Tr(b
(
k
)∗

(ρg(k))nρb(k)) for
every n ∈ N0, and then we rearrange the terms w.r.t. powers of k̃ in (54). To see the
first part of the afore mentioned, we use the integral kernels (14) and (15) for b(k)
and g(k), and we use the notation Y = (y0, y1, . . . , yn) ∈ R

n+1, giving

Tr(b
(
k
)∗

(ρg(k))nρb(k))

= (2π)−(n+2)
∫

R2

∫

Rn+1

K0(k̃

√
(x1 − y0)2 + (x2 − y0)2)ρ(y0) ∗ . . .

. . . ∗K0(
√

2k̃|y0 − y1|)ρ(yn−1)K0(
√

2k̃|yn−1 − yn|) ∗ . . .

. . . ∗ ρ(yn)K0(k̃

√
(yn − x1)2 + (yn − x2)2)dYdx1dx2 .

(55)

Now, by slight abuse of notation, we apply the (orthogonal) coordinate transforma-
tion

(x1, x2) → 1√
2
(x1 + x2, x1 − x2) , (56)
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followed by an insertion of (82) in (55), using the notation T = (t0, . . . , tn−1) ∈
R
+n, and (92) in (55) which yields

Tr(b
(
k
)∗

(ρg(k))nρb(k))

= (2π)−(n+2)
∫

Rn

∫

Rn+1

∫

R2

K0(k̃

√
(x1 −

√
2y0)2 + x2

2)ρ(y0) ∗ . . .

. . . ∗ e−
√

2k̃|y0−y1| cosh(t)ρ(yn−1)e−
√

2k̃|yn−1−yn| cosh(t) ∗ . . .

. . . ∗ ρ(yn)K0(k̃

√
(
√

2yn − x1)2 + x2
2)dx1dx2dYdT

= π

2k̃2
(2π)−(n+2)

∫

R+n

∫

R

∫

Rn+1

e−i
√

2k̃ξ(y0−yn)

(1 + ξ2)
3
2

ρ(y0)e−
√

2k̃|y0−y1| cosh(t0) ∗ . . .

. . . ∗ ρ(yn−1)e−
√

2k̃|yn−1−yn| cosh(tn−1)ρ(yn)dYdξdT .

(57)
For n = 0 we directly calculate the trace and obtain

Tr(b
(
k
)∗

ρb(k)) = 1

8πk̃2

∫

R

∫

R

1

(1 + ξ2)
3
2

ρ(y0)dξdy0

= 1

4πk̃2

∫

R

ρ(y0)dy0 ,

(58)

where in the last line we used [25, 3.252 11.]. For n �= 0 we want to invoke for our
asymptotic analysis the integration by parts method. For this, it is expedient to first
use (41) as an appropriate substitution of variables. This transformation implies

n−1∑

l=0

wl = y0 − yn , (59)

and the determinant of the Jacobian det J (φ−1) of this coordinate transformation
is constant, and given by detJ (φ−1) = 1

2 . Hence, changing the variables in (57),
using (40), (59) and W = (w0, . . . , wn−1) ∈ R

n, delivers

∫

R+n

∫

R

∫

Rn+1

e−ik̃ξ(y0−yn)

(1 + ξ2)
3
2

ρ(y0)e−
√

2k̃|y0−y1| cosh(t0) ∗ . . .

. . . ∗ ρ(yn−1)e−
√

2k̃|yn−1−yn| cosh(tn−1)ρ(yn)dYdξdT
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= 1

2

∫

R+n

∫

R

∫

R

∫

Rn+1

1

(1 + ξ2)
3
2

ρ(φ−1(w0, . . . , wn)0)e−
√

2k̃(|w0| cosh(t0)+iξw0) ∗ . . .

. . . ∗ ρ(φ−1(w0, . . . , wn)n−1)e−
√

2k̃(|wn−1| cosh(tn−1)+iξwn−1)∗
∗ ρ(φ−1(w0, . . . , wn)n)dWdwndξdT

=
∑

s∈Sn

1

2

∫

R+n

∫

R

∫

R

∫

Rn

1

(1 + ξ2)
3
2

∗ . . .

. . . ∗ e−
√

2k̃(sgn(w0) cosh(t0)+iξ)w0 . . . e−
√

2k̃(sgn(wn−1) cosh(tn−1)+iξ)wn−1∗

∗
n∏

l=0

ρ((φ−1(w0, . . . , wn−1, wn))l)dWdwndξdT

=
∑

s∈Sn

1

2

∫

R+n

∫

R

∫

R

∫

R+n

1

(1 + ξ2)
3
2

ρn,s(w0, . . . , wn)∗

∗ e−
√

2k̃(cosh(t0)+iξs(0))w0 . . . e−
√

2k̃(cosh(tn−1)+iξs(n−1))wn−1dWdwndξdT .

(60)

It is for the following integration by parts method important that in the last line
of (60) only the variables wl with l ∈ {0, . . . , n − 1} appear in the exponential
function. We perform an integration by parts w.r.t. the W variables. The obtained
terms which don’t possess any W integrals anymore may then be ordered w.r.t. the
powers of k̃. Using our notation (45) and (47), we obtain, l ∈ N0,

∫

R+n

∫

R

∫

R

∫

R+n

1

(1 + ξ2)
3
2

ρn,s(w0, . . . , wn)∗

∗ e−
√

2k̃(cosh(t0)+iξρ(0))w0 . . . e−
√

2k̃(cosh(tn−1)+iξs(n−1))wn−1dWdwndξdT

=
∑

αn,
|αn |≤l

k̃−|αn|−n

∫

R+n

∫

R

∫

R+

1

(1 + ξ2)
3
2

∂αnρn,s(0, . . . , 0, wn)∗

∗ dwndξdT

(
√

2(cosh(t0)+ iξs(n− 1)))α
n
0+1 . . . (

√
2(cosh(tn−1)+ iξs(n − 1)))α

n
n−1+1

+ O(k̃−(l+n+1)) .

(61)

The last line follows by integration by parts and observing that every partial
derivative evaluated at (0, . . . , 0, wn) is generated exactly once. Moreover, we used
that the T and ξ integration don’t affect the order estimate O(k̃−(l−n+1)).
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Now, sorting (61) w.r.t. powers of k̃ by making use of our definitions (48) and (49)
we get

Tr(b
(
k
)∗

(ρg(k))nρb(k)) = 1

8k̃2

1

(2π)n+1

l∑

l′=0

1

k̃l
′+n

bn,l′ +O(k̃−(l+n+1)) .

(62)

Note that (62) is conform with (58) for l = n = 0.
Finally, we use (54) plugging in there the asymptotic expansion (62), and we

sort the obtained sum again w.r.t. to powers of k̃. This then yields the asymptotic
expansion w.r.t. powers of ik̃ = k = √−λ, (52). The calculations of the first two
coefficients are as follows

b0 = − 1

16π
b0,0 , b1 = − 1

16π
b0,1 + 1

32π2 b1,0 , (63)

and it remains to calculate the three coefficients in (63) by (49). The first two ones
are simple and given by, (49),

b0,0 = 4
∫

R

ρ(y)dy , b0,1 = 0 , (64)

where we used (50). For b1,0 we get by (49)

b1,0 = cαn,s+,0

∫

R

ρ0,s+(0, y)dy + cαn,s−,0

∫

R

ρ0,s−(0, y)dy , (65)

where s+(0) := 1 and s−(0) := −1. We have for |α1| = 0 the simple relations

ρ0,s±(0, y) = (ρ(
1

2
y))2 , (66)

and, |α1| = 0,

cα1,s±,0 =
1√
2

∫

R+

∫

R

1

(ξ2 + 1)
3
2

cosh(t0)∓ iξ

cosh(t0)2 + ξ2 dt0dξ . (67)

Taking into account that the imaginary part cancels out in (67) we are only interested
on the real part of (67) given by [49, 2.5.49. 3.],

cα1,s±,0 = Re cα1,s±,0 =
π√

2

∫

R

1

(1 + ξ2)2
dξ = π2

2
√

2
. (68)
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Hence, inserting (68) and (66) into (65) gives

b1,0 = π2

√
2

∫

R

ρ(
1

2
x)2dx = √

2π2
∫

R

ρ(x)2dx . (69)

Now, plugging (69) and (64) into (63) proves the claim. �
Regarding Theorem 3.6, we make the following remark.

Remark 3.8 On the r.h.s. of formula (48) only the real part is essential as the
imaginary part vanishes.

4 The Asymptotic Expansion of the Regularized Trace of the
Heat Kernel

Armed with all the results inferred in our paper so far we are now in the position
to deduce the existence of the heat kernel and to conclude the small-t asymptotic
expansion of the regularized trace of the heat semi-group et�ρ (and heat kernel).

We are going to exploit that the resolvent of a contraction semi-group
admits a representation as a Laplace transformation of the heat semi-group [56,
Satz VII.4.10]. As for the resolvent, the heat semi-group et�ρ isn’t a trace-
class operator due to the presence of an essential spectrum of −�ρ . Again, we
may regularize the trace of the heat semi-group analogously to Definition 3.5 by
subtracting the free heat semi-group, i.e., {et�ρ }reg := et�ρ − et�0 , t > 0.

To see that {et�ρ }reg is trace class as well, and how we may calculate its trace,
we prove the following lemma.

Lemma 4.1 The operator {et�ρ }reg is for t > 0 a trace-class integral operator with
kernel kρreg(t)(·, ·) ∈ C∞(R2 ×R

2) ∩ L∞(R2 × R
2). Its trace is given by

Tr{et�ρ }reg =
∫

R2

kρreg(t)(x, x)dx . (70)

Proof With the same Dunford-Pettis argument as in [36, Lemma 6.1] we may infer
that {et�ρ }reg is an integral operator possessing a smooth and bounded kernel for
t > 0. We shall use the Dunford-Taylor integral identity [33, Section IX.1.6],

{et�ρ }reg = i

2π

∫

γ

e−λtR
reg
ρ (

√
λ)dλ , (71)

where γ is a suitable contour encircling the spectrum of −�ρ in a positively
orientated way. With a similar method as in the proof of Lemma 3.3 we may infer
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that R
reg
ρ (

√
λ) is continuous in trace norm for suitable γ ’s. Furthermore, due to

the asymptotics (51) we conclude that the integral converges in trace norm. Now,
[55, Satz 3.22] proves the first part of the claim. The second part my be proven
analogously to Proposition 3.4 incorporating the above properties of the integral
kernel kρreg(t). �
It is reasonable to define the regularized trace of the heat semi-group (and heat
kernel) analogously to (38).

Definition 4.2 The regularized trace of the heat semi-group (heat kernel) is defined
as

Trreg et�ρ := Tr{et�ρ }reg =
∫

R2

kρreg(t)(x, x)dx , t > 0 . (72)

We are now ready to present the result concerning our desired small-t asymptotic
expansion of the regularized trace of the heat semi-group (heat kernel).

Theorem 4.3 Let ρ ∈ C∞
0 (R). Then, the regularized trace of the heat semi-group

resp. heat kernel possesses a complete asymptotic expansion in powers of t given
by, t → 0,

Trreg et�ρ ∼
∞∑

n=0

ant
n
2 , (73)

where

a2n = b2n

n! , n ∈ N0 , a2n+1 = n!22n+1b2n+1

(2n+ 1)!√π
, n ∈ N0 , (74)

and the bn’s are given in (52).

Proof In view of Lemma 4.1, we may utilize the well-known identity [56,
Satz VII.4.10],

Trreg Rρ(−λ) =
∫

R+
e−λt Trreg et�ρ dt , (75)

with Re λ > 0 and λ > |λmin,ρ | (sufficiently large). Now, we want to apply
the converse Watson lemma, Lemma 2.5. For this, we observe that the condition
| arg(|λmin,σ | − λ|) ≤ π

2 is equivalent to k ∈ Cα with α ≤ π
4 . Hence, we may apply

Lemma 4.1 and use the asymptotic expansion of Trreg Rσ (−λ) in Theorem 3.6.
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Comparing (51) with (98) we infer that λn = n
2 + 1. Finally, we use [39, pp. 2,3] to

calculate

�(n+ 3

2
) = (n+ 1

2
)�(n+ 1

2
) = (2n+ 1)

√
π

n!22n+1
, (76)

and we plug (76) together with the bn’s, (52), in (98). That reveals the identity (74).
�
We end this paper with a comparison of our heat kernel asymptotics with known
results for a Schrödinger operator onR2, however, with a smooth potential, V . Using
the Theorems 4.3 and 3.6 we obtain for our system the leading asymptotic estimate

Trreg et�σ = − 1

4π

∫

R

σ(x)dx +
√

2
√
t

16
√
π

∫

R

σ 2(x)dx + O(t) , t → 0 . (77)

On the other hand, for a Schrödinger operator of the form −� + V (·) with V ∈
C∞

0 (R2) the result on [32, p, 405] is (using an analogous notation), t → 0+,

Trreg et (�−V (·)) = − 1

4π

∫

R2

V (x)dx + t

24π

∫

R2

(3V 2(x)−�V (x))dx . (78)

We see that the first coefficients and the power of t agree, but not the second
coefficient and the corresponding power of t owing to the fact that the potential
is supported only on a codimension one submanifold.

Acknowledgments The author is very grateful to Ram Band for helpful discussions and com-
ments and he is indebted to Frank Steiner for pointing out various useful relations of Bessel
functions. The work has been supported by ISF (Grant No. 494/14).

Appendix 1: Notations

First, we introduce some notations and denote by 〈·, ·〉R2 and ‖ · ‖R2 the standard
inner product and the standard Euclidean norm on R

2, respectively. To ease notation
we denote by bold letters points in R

2, e.g., x = (x1, x2). We put 0 ≤ arg z < 2π
as the range of the argument for z ∈ C, and set the branch cut of the square root

√·
on R

+ such that
√
z = i

√|z| for −z ∈ R
+. By | · |1 we denote the one-dimensional

Hausdorff measure. The spectrum of an operator O is denoted by σ(O) and by
‖O‖ we refer to the standard operator norm [55, Sections 2.1, 5.1]. Moreover, we
use standard notations for the set of n-times continuously differentiable functions
(possessing compact support), Cn(Rm) (Cn

0 (R
m)), on R

m, and for the set of square
Lebesgue-integrable functions, L2(Rm), on R

m.
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We put the Fourier transform Ff of a suitable function f on R as

(Ff )(ξ) := 1√
2π

∫

R

e−iξxf (x)dx . (79)

We also remind that by Plancherel’s theorem the Fourier transform generates a
unitary map on L2(R) [26, Section 2.2.3]. In addition, by �(·) we identify the
Gamma function and by K0(·) the K0-Bessel function (Mcdonald function)) [39,
pp. 1,66].

Appendix 2: Integral Identities for the K0-Macdonald
Function

First, we remind the asymptotic behavior of the K0-Macdonald function for large
and small arguments, γ Euler-Mascheroni constant [39, p. 69],

K0(z) = −(ln(
z

2
)+ γ )(1 + O(z)) , −z �= R

+ , (80)

and [39, p. ,139], δ > 0,

K0(z) =
√

π

2z
e−z(1 + O(z−1)) , |z| → ∞ , | arg z| < 3

2
π − δ . (81)

In addition, we invoke for our analysis the following integral identity [39, p. 85],
x, ξ ∈ R,

K0(

√
x2 + ξ2) =

∞∫

0

e−x cosh(t) cos(ξ sinh(t))dt . (82)

The following easy lemma will be used.

Lemma 2.1 For κ > 0 and η ∈ R we have, ξ ∈ R,

(F e−κ|·−η|)(ξ) =
√

2

π

2κ

κ2 + ξ2
e−iμξ . (83)
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Proof We first treat the case η = 0:

(F e−κ|·|)(ξ) = 1√
2π

∫

R

eixξe−κ|x|dx = 1√
2π

∫

R+
(eixξ + e−ixξ )e−κ|x|dx

=
√

2

π

κ

κ2 + ξ2 .

(84)

Now, for η �= 0 we use the identity (Ff (· − μ))(ξ) = (Ff )(ξ)e−iμξ giving (83).
�
Proposition 2.2 For y, y ′, x2 ∈ R we have

∫

R

K0(k

√
(x1 − y)2 + x2

2 )K0(k

√
(x1 − y ′)2 + x2

2)dx1

= 2

πk

∫

R

∫

R+

∫

R+

cosh(t) cosh(t ′) cos(x2 sinh(t)) cos(x2 sinh(t ′))
((cosh(t))2 + ξ2)((cosh(t ′))2 + ξ2)

e−iξ(y−y ′)dtdt ′dξ .

(85)

Proof We use Plancherel’s theorem and Lemma 2.1 to calculate

∫

R

e−k|x1−(y−y ′)| cosh(t)e−k|x1| cosh(t ′)dx1

= 2

π

∫

R

k2 cosh(t) cosh(t ′)
((k cosh(t))2 + ξ2)((k cosh(t ′))2 + ξ2)

e−iξ(y−y ′)dξ .

(86)

Now, we use (82) and then Fubini’s theorem [5, 23.7 Corollary], for an interchange
of the x1, t and t ′ integration. Moreover, we are going to use the coordinate
transformation ξ → kξ giving

∫

R

K0(k

√
(x1 − y)2 + x2

2)K0(k

√
(x1 − y′)2 + x2

2 )dx1

=
∫

R

∫

R+

∫

R+
e−k|x1−(y−y′)| cosh(t) cos(kx2 sinh(t))e−k|x1| cosh(t ′) cos(kx2 sinh(t ′))dtdtdx1

= 2

πk

∫

R

∫

R+

∫

R+

cosh(t) cosh(t ′) cos(kx2 sinh(t)) cos(kx2 sinh(t ′))
((cosh(t))2 + ξ2)((cosh(t ′))2 + ξ2)

e−ikξ(y−y′)dtdt ′dξ .

(87)
�
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We investigate the decay properties of the integral in (85) for large x2. To ease
notation we introduce

F(t, t ′, ξ) := cosh(t) cosh(t ′)
((cosh(t))2 + ξ2)((cosh(t ′))2 + ξ2)

, (88)

and we obtain

Lemma 2.3 The following estimate

∣∣∣∣∣∣

∫

R

∫

R+

∫

R+
F(t, t ′, ξ) cos(kx2 sinh(t)) cos(kx2 sinh(t ′))e−iξ(y−y ′)dtdt ′dξ

∣∣∣∣∣∣

≤ 1

(kx2)2

∫

R+

∫

R+

∣∣(∂t,t ′F(t, t ′, ξ))
∣∣

cosh(t) cosh(t ′)
dtdt ′dξ

(89)

holds.

Proof We first observe that F , ∂lF , l = t , t ′, and ∂t,t ′F are integrable. Then, we
treat the t integration with the integration by parts method and arrive at

∫

R+
F(t, t ′, ξ) cos(kx2 sinh(t))dt =

∫

R+

F(t, t ′, ξ) cosh(t)

cosh(t)
cos(kx2 sinh(t))dt

= 1

kx2

∫

R+

(∂tF (t, t ′, ξ))
cosh(t)

sin(kx2 sinh(t))dt .

(90)

Doing the same w.r.t. the t ′ integration and exploiting that | sin(τ )| ≤ |eiτ | =
|e−ξ(y−y ′)| = 1, τ ∈ R, gives

|
∫

R+

F(t, t ′, ξ) cos(kx2 sinh(t)) cos(kx2 sinh(t ′))e−ikξ(y−y ′)dtdt ′dξ |

= 1

(kx2)
2 |

∫

R+

∂t,t ′F(t, t ′, ξ)
cosh(t) cosh(t ′)

sin(kx2 sinh(t)) sin(kx2 sinh(t ′))e−ikξ(y−y ′)dtdt ′dξ |

≤ 1

(kx2)
2

∫

R+

∣∣∂t,t ′F(t, t ′, ξ)
∣∣

cosh(t) cosh(t ′)
dtdt ′dξ .

(91)
�
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We are now able to perform an x2-integration in (85), and we remark that in the
following appearing integrals the order of integration is cruical.

Proposition 2.4 For y, y ′ ∈ R we have

∫

R

∫

R

K0(k

√
(x1 − y)2 + x2

2)K0(k

√
(x1 − y ′)2 + x2

2)dx1dx2

=
∫

R

π

2k2(1 + ξ2)
3
2

e−ikξ(y−y ′)dξ .

(92)

Proof Due to Lemma 2.3 the x2-integral exists. We perform in (85) the substi-
tution t, t ′ → arsinh(t), arsinh(t ′), use ( d

dt sinh(t)) = (cosh(arsinh(t)))−1 =
(
√

1 + t2)−1, cos(x) cos(y) = 1
2 (cos(x+y)+cos(x−y)) and make the substitution

x2 → x2
k

. This gives

∫

R

∫

R+2

∫

R

cosh(t) cosh(t ′) cos(kx2 sinh(t)) cos(kx2 sinh(t ′))
((cosh(t))2 + ξ2)((cosh(t ′))2 + ξ2)

e−ikξ(y−y ′)dξdtdt ′dx2

= 1

k

∫

R

∫

R+2

∫

R

cos(x2(t + t ′))+ cos(x2(t − t ′))
2(t2 + 1 + ξ2)(t ′2 + 1 + ξ2)

e−ikξ(y−y ′)dξdtdt ′dx2 .

(93)

Due to decay property proven in Lemma 2.3 it is not hard to see that we may extend
the setting on [6, p. 36] to our case. Hence, we may use the δ-identity [6, pp. 33,34],

1

2π

∫

R

cos(ξ(x − x0))dξ = δ(x − x0) . (94)

We arrive at
∫

R

K0(k

√
(x1 − y)2 + x2

2)K0(k

√
(x1 − y ′)2 + x2

2)dx1dx2

=
∫

R+

∫

R

2

k2(t2 + 1 + ξ2)2 e−ikξ(y−y ′)dξdt

=
∫

R

π

2k2(1 + ξ2)
3
2

e−ikξ(y−y ′)dξ ,

(95)

where in the last line we used [25, 3.241 4.]. �
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2.1 A Converse Watson Lemma

To connect the large-λ (or large-k) asymptotics of the resolvent with the small-t
asymptotics of the heat kernel the following lemma will be used, which may be
obtained by replacing an by an

�(λn)
on [57, p. 31].

Lemma 2.5 (Converse Watson Lemma) Let f be a continuous function in
(0,∞), f (t) = 0 for t < 0, and e−c·f (·) ∈ L1(0,∞). Let F be the Laplace
transform of f , i.e.,

F(z) :=
∞∫

0

f (t)e−ztdt . (96)

If F possesses the uniform asymptotic expansion

F(z) ∼
∞∑

n=0

anz
−λn , |z| → ∞, arg(z− c) ≤ π

2
, (97)

and λn →∞ monotonously as n → ∞, then

f (t) ∼
∞∑

n=0

an

�(λn)
tλn−1 , t → 0+ . (98)
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Modeling Dynamic Coupling in Social
Interactions

Merle T. Fairhurst

Abstract Whether negotiating the price of an item in a foreign marketplace or
temporally coordinating actions within a musical ensemble, the basis of any social
interaction must be the exchange of relevant information allowing for co-actors to
become more or less aligned in body and mind. Although in humans, there are
obvious daily examples of verbal exchanges, from infancy and beyond, we depend
significantly on non-verbal exchanges. In most cases of social interaction, it is these
non-verbal exchanges such as a hand gesture, a shift of gaze, a change in action
timing, that allow us to predict, respond and adapt to one another, that is to become
aligned. Both the experience and the process of becoming aligned is dynamic in
nature, that is alignment happens and the degree of alignment changes across time.
As such, an improved understanding of how we do things together, requires both a
revised theoretical construct and dynamic timecourse models for predicting social
behaviour between interconnected agents. The following is a summary of the work
done as part of the interdisciplinary cooperation Group “Discrete and Continuous
Models in the theory of Networks” at the Centre for Interdisciplinary Research
(ZiF, Bielefeld University) to devise appropriate dynamic timecourse models. These
models will be based on theoretical concepts of alignment as well as empirical
testing of healthy individuals in which traditional measures of the degree of coupling
will be used to compare instances where group size and richness of available
social information is varied. Of specific interest will be phase transitions along a
spectrum of self-organisation (negotiation, alignment, uncoupling). It is intended
that the models will be used in conjunction with and compared with acquired and
simulated data. Exploring the exchange of non-verbal information in a network of
interconnected agents and bridging the gap between cognitive neuroscience and
mathematics, this paper puts forward specific ways in which the use of dynamic
timecourse modelling can further our understanding of the cognitive and neural
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underpinnings of social interactions. Specifically, findings will be translated to
extend existing general sociological concepts of group behaviour and dynamics as
well as specific applications in networks of individuals ranging from small groups
like a string quartet or a football team to a large crowd at a political rally.

1 Introduction

From rowers to dancers, musicians to construction workers, social interactions
require individuals working or playing together to coordinate intentions and actions.
A central function of the human brain is to mediate these social interactions, whether
for communication or more physical examples of joint action [1]. How one brain
interacts with another has been said to depend on social cognition, theoretical
models of which can be summarized as being based broadly in either mindreading
or non-mindreading accounts, with an historical bias on the former [2]. With
concepts such as ‘theory of mind’ or simulation, these mindreading models suggest
that one creates a representation of another’s thoughts or actions by inferring,
simulating or projecting the behavior of another to respond appropriately. These
more representationalist theories align social cognition with social understanding
where a model of how someone might act allows for intersubjectivity. As elegantly
described by Frith and Frith [3], these representations of another’s actions, mental
state, intentions or goals create shared representations of self and other [4] and
can be very useful for the alignment of cooperating individuals. Calls from those
working in the field of social cognition and neuroscience however have stipulated
the need for the use and study of more interactive tasks in which information
is exchanged in real time between interacting [5, 6]. In more interactive tasks,
individuals are required to predict, respond and adapt to another person’s actions
in a so-called second person perspective [7]. This is certainly true in instances
where the task demands the precise synchronisation of one person’s movements with
another’s. Temporal synchronization is an essential part of many forms of social
interaction where one must coordinate the timing of one’s actions with an external
stimulus, say for instance the tones produced by a fellow musician [8]. Beyond
the obvious musical examples, consider for example an Olympic rowing team
that speeds up to overtake a competing team based on the rhythmical calls of the
coxswain or, when trying to navigate a busy sidewalk, you adapt your walking pace
(and trajectory) to avoid colliding with other walkers. The process of synchronizing
relies heavily on an interdependence or coupling of the actions and indeed intentions
of the interacting agents: “will you go first, or shall I?”, “are you slowing down,
should I?”.

Interestingly, in both the theoretical account of social cognition and in the
preceding description of the temporal synchronisation of joint actions, one notices
a tension between and the need for both interactive, online adaptation (are you
slowing down?) and feedforward, predictive mechanisms (will you go first?) for
interacting individuals to coordinate successfully. To date, the use of temporal
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synchronisation tasks has been used to more generally describe the instances in
which interacting agents/individuals were either “in” or “out” of synch (e.g. playing
the musical piece temporally together) [9]. From personal experience though, we
encounter a far broader and richer range of types of social interaction [10]. It is, one
might say, the getting in synch, that motivates us to engage in social interactions:
not the fact that we reach a certain goal (optimal temporal synchronisation) but
rather that we are doing something together through time. The dynamic nature
of social interactions, that the way we interact with others evolves through time,
is something less likely to be captured by many of the more observational social
cognition paradigms. Moreover, even sensorimotor synchronisation tasks where
individuals coordinate across time, are often described using limited correlational
methods. In the following, with a focus on sensorimotor synchronisation (SMS)
tasks, we discuss the potential advantage offered by model-based computational
approaches. By probing both the nature of the exchange and the nature of the
information that is exchanged between interacting agents, we describe how we will
create and test (based on real data and a minimalist theory of alignment) models
of changing degrees of coupling within a network of coordinating individuals in
dynamic interactions. More generally, these models and the theoretical advances
they will facilitate may better characterise the self-organising character of the
individuals within the network.

2 Coupling and Information Exchange

Early investigations of social cognition have employed observation tasks in which
participants assessed a recorded social interaction between two other people [11–
13]. These third person perspective designs however offer little insight into more
direct or second person interactive social situations which require individuals to
adapt and coordinate their actions in real time. Others have therefore implemented
online gaming paradigms where participants play with an invisible, virtual partner
[14–17]. Naturally, these designs offer the advantage of allowing one side of the
interacting dyad to be controlled by the experimenter. With the advent of so-
called two-brain social neuroscience, setups involving dyads of interacting agents
have allowed for the measurement of temporal coordination behaviour, subsequent
affiliation and associated brain activity to detail the nature of dyadic interactions
[18]. Even the most recent studies of coordination or cooperation however tend to
be limited by the choice of the task and, as a result, the lack of ongoing, objective
outcome measures that quantify the degree of coupling, that is the relationship
strength between interacting individuals.

Along with others, we have suggested the need for a shift in focus to studying and
measuring the nature of the interaction rather than a focus on the task (identifying
joint tasks that model social interaction) [10]. Specifically, we have suggested
that rather than determine whether a certain interaction is social by virtue of the
task used, we propose that quantifying the degree and nature coupling between
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Fig. 1 A second person perspective account of social cognition. Future models of social cognition
as well as the experimental paradigms used to test these should allow for both observational and
predictive (how would I/she behave in this context) as well as online, dynamically interactive

interacting individuals, allows one to describe social interactions in terms of a
spectrum ranging minimal or weak instances of coupling (e.g. walking in step
along a pavement without consciously adapting to one another, much like the
physical coupling observed in birds or fireflies and other dynamical systems) to
strong and rich instances of coupling (e.g. group music making where alignment
is seen at intentional, mental, emotional and physical levels). In so doing one can
differentiate between two cases: imagine, for example, two people sitting side by
side on an airplane, raising their glasses in a coordinated fashion. This temporally
correlated, one shot, coordinated behaviour however need not rely on or result from
a bidirectional or reciprocal exchange of information but simply be an inadvertent
coincidence and as such would not correspond to a coupling between the two
systems but rather to a lack of independence between them. The major risk would
be to draw incorrect inferences as to the social nature of this observed behaviour
based on what could be described as “the spectre of ‘spurious’ correlations” [19]
(Fig. 1).

3 Dynamic Exchanges and Coupling in Sensorimotor
Synchronisation

A more enactive description of social cognition suggests that in most interactions,
socially relevant information is monitored and extracted [20, 21] which has aptly
been described as participatory sense making [22]. In these situations where
individuals actively and directly interact with one another, it has been put forward
that this reciprocal information exchange establishes a subject-subject relationship
(rather than a subject-object relationship) and as such a so-called second-person
perspective is taken [7, 23]. Moreover, it has been suggested that in ongoing
dynamic scenarios, a more interactive form of social exchange is required [24].
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Fig. 2 Dynamic social interactions. Exploring the more interactive exchange of information in
tasks such as those require temporal coordination across time will allow for a better description
and quantification of the coupling of paired timecourses from interacting agents. The recursive
information exchange that results in coupling may produce patterns of reciprocal adaptation

To successfully coordinate, rather than merely predicting how a partner might act,
ongoing predictions and appropriate responses are derived based on how the partner
is behaving and how the behavior of one partner changes over time with respect
to the actions of the other. This coordination behaviour is a prime example of
reciprocity, that is the mutual adaptation of interacting agents through the reciprocal
exchange of information (Fig. 2a). The behaviour of one player results in a change
in behaviour of the other in a reciprocal fashion.

This adaptive behavior significantly overlaps conceptually with the sensorimotor
coupling and subsequent physical alignment which has been extensively studied
within the field of sensorimotor research [25]. From the same body of literature,
it has been shown that this reciprocal exchange of information results in physical
alignment, which in turn results in greater degrees of affiliation and greater
mental alignment [26–28]. In the ecological example of group music making, the
sight of a conductor’s baton or the tone onset of a fellow player prompts other
players to commence their part. In these instances of temporal synchronisation
and coordination as well as real-world scenarios they model, observed physical
alignment in time and space is said to depend on cognitive models of adaptation
[8, 28, 29] and thus on reciprocal interactions [30–32]. Using simplified models
of interaction, cognitive theories of enaction and dynamical system approaches
have been used to describe the dynamical coupling of cognitive agents with their
environment and other agents. These paradigms therefore offer various advantages
including the relevance of the findings to our understanding of the development and
functioning of the social brain [33].

Experimentally, SMS is typically studied in a reduced fashion by requiring an
individual to coordinate simple movements, such as finger taps [34], with an audi-
tory sequence produced by a computer or a co-acting partner [8]. The instruction
is typically to synchronize simple movements, such as finger taps, as accurately
and precisely as possible with a pacing signal. Through variations on a theme, this
task has been varied to include pacing signals that are isochronous (unchanging), at
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varying tempos and others that include intermittent tempo perturbations. In all cases
however, the instructed task infers and results in a coupling of two timecourses: that
of the pacing signal and that of the human tapper (see Fig. 2b). These tasks have
been expanded to investigate the SMS behavior of interacting, mutually adaptive
dyads with measured coordination of a human tapper with either a virtual [35]
or another human partner [36]. In each case, the information exchanged is, by
design, reduced to temporal onset information. It should be noted that similar work
has explored other, richer forms of non-verbal sensory information exchange, for
example by including visual cues through face-to-face contact. By recording the
tapping behavior of both partners, provide an objective read-out of the interaction.

How factors such as the richness of available coordination cues (e.g. only
auditory information or both auditory and visual information) or the nature of the
partner with whom one is tapping (e.g. leader vs. follower, tracker vs. predictor
or minimally or overly adaptive) alters tapping behaviour is typically measured
as a function of synchronization performance. Most basically, synchronisation
tasks and measures have been used to model and describe instances in which
interacting dyads were simply either “in” or “out” of synch [9]. Typically, this will
include descriptions of measures of the mean asynchrony which can be used as
an inverse measure of SMS accuracy, and the variability (i.e., standard deviation)
of the signed asynchronies which serves an inverse measure of SMS precision.
Measures of synchrony, influence, error correction mechanisms (26) and individual
synchronization strategies are all easily derived from the simple self and other
tap onsets [8]. Though not necessarily captured by current methodologies, the
dynamic nature of these tasks potentially allows one to experimentally measure
coordination across time including going beyond a mere description of whether
(overall) interacting individuals are “in sync” but instead to describe, for example,
phase shifts from coupled to uncoupled states (see Sect. 6).

4 Quantifying Interactive Coupling

A host of methods exist for quantifying the coupling that results from a dynamic,
exchange of information between socially interacting individuals. Typically, these
methods use concurrently acquired pairs of data and probe them with analyses
which compare and correlate the timeseries [37, 38]. Mutual information is a
quantity that measures the mutual dependence of the two random variables.
Intuitively, it measures the information content that the two variables share, that
is, how much knowing one of these variables reduces uncertainty about the other
[39]. This method has therefore successfully been employed by our group as a
measure of interpersonal coordination [40]. Both behavioural and brain data have
been investigated using mutual information and cross-recurrence quantification
(CRQA). For example, work by Konvalinka and colleagues implemented CRQA
methods to explore commonalities in arousal levels, as a measure of emotional
contagion (or influence). Specifically, they investigated synchronization of galvanic



Modeling Dynamic Coupling in Social Interactions 159

skin responses between firewalkers and spectators [41]. Similarly, neural coupling
between interacting individuals has previously been investigated using hyper phase
locking value as a measure of synchrony [42].

From the SMS literature, one finds a diverse array of methods that are system-
atically used to quantify the strength of serial dependencies between successive
asynchronies during paced finger tapping [43]. In instances of temporal coordi-
nation, participating individuals must respond and adapt to changes in behavior
made by their partner(s) but this will be most efficiently done if combining the
reactive error corrections processes with anticipatory, predictive mechanisms (e.g.
[44, 45]. This work has provided insight into both the adaptive and predictive
mechanisms that underlie coordination during SMS tasks. From the adaptive side,
error correction estimates have been obtained by fitting models to asynchrony time
series [29, 45–48] and used as a proxy for degree of coupling [49, 50]. Looking
more towards the predictive aspect of temporal coordination during SMS, using
temporal data from the inter-tap-intervals (ITIs from the human tapper) and inter-
onset-intervals (IOIs of the pacing signal), Pecenka and Keller (2011) used the
ratio between the lag-0 and lag-1 cross-correlations of ITIs and IOIs (a prediction-
tracking P/T ratio) as a measure of prediction in SMS with tempo changing tapping
tasks [51]. Based on several studies, it has been shown that a PT-ratio larger than
1 reflects an individual’s tendency to predict tempo changes, while a ratio smaller
than 1 indicates a tendency to copy (track) tempo changes. The PT-ratio has been
found to correlate positively with musical experience, tapping abilities and neural
activation in brain networks comprising cortico-cerebellar motor-related areas and
medial cortical areas [51, 52]. Extending the original (adaptive) correction models
[53], van der Steen and colleagues employed simulation techniques to create and
test the Adaptation and Anticipation Model (ADAM) of SMS which incorporates
both reactive and predictive elements [45].

5 Applying Dynamic Timecourse Models to Sensorimotor
Synchronisation Data

To date, concurrently acquired pairs of data have typically been probed with
analyses which compare and correlate the timeseries [42]. However, within the
SMS literature, there have been successful applications of models to describe
the nature of the interaction between coordinating individuals. A model is a
(theoretical) machine that itself outputs a timeseries. If the model’s output matches
or resembles the measured behavioural or neural output to a reasonable extent, then
the machine is “a good model” and can be used to test specific hypotheses regarding
cognitive processing related to the task. The use of a dynamical model offers
various advantages over more traditional approaches which are purely information-
theoretic, i.e. that is one doesn’t need to know how the system works. In mutual
information, for example, one simply observes signals and calculates how much
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information from one variable is contained in the second variable. Two random
variables are independent if and only if their mutual information is zero. As part of
an ongoing collaboration, bridging the gap between neuroscience and mathematics,
we are developing a set of specialized prediction-based models to more specifically
investigate coordination behavior in SMS tasks. These methods will be used to probe
both behavioral and neural data to quantify the degree of coupling between the
interacting agents but also, more importantly, to identify what precisely within the
individual timecourses becomes coupled (e.g. amplitude, phase). Different factors
such as the nature of the partner and the nature of the information exchanged can
contribute to the observation of a temporally coherent link between two dynamical
systems.

5.1 Nature of the Partner

Based on a Kuramoto model of dynamical systems [54], the first model under
development investigates the interdependence of the two information streams
(shared between two interacting agents, player 1 and player 2). This would be
compared against experimental data from finger tapping experiments of human-
metronome, human-virtual partner or human-human dyads. We posit firstly that
player 1’s response will depend on a comparison of his/her state and that of
their interacting partner and secondly that the importance or weighting (“k”) of
this comparison should differ between leaders and followers. From existing SMS
literature, the nature of the individuals that make up the interacting dyad can affect
synchronisation strategies, tapping behaviour and synchronisation performance
[49, 50]. By varying the model, we can test for example whether the temporal
“leader” within the pair predicts or has some quantifiable influence over the
observed behavior of the co-acting partner.

5.2 Nature of the Information Being Exchanged

This weighting (“k”) may also vary as a function of the reliability of the infor-
mation pertaining to “other”. Previous SMS studies have explored differences in
synchronisation performance as a function of the type of sensory information that
is exchanged [55–57]. While the Kuramoto model is valid in cases in which indi-
viduals are always aware of the movements of the other, our second Winfree-based
model allows for relative phase adjustments based on varying “other” information
[58]. The width of the function (f (θ1)) can be varied as the richness/availability
of socially relevant cues is manipulated. Specifically, one can imagine ecological
instances and experimental setups in which agents have varying degrees of access
to their partner and as such socially relevant information that aids coordination may
or may not be available (e.g. playing a video game with someone online, tapping
studies in which the participant either sees, hears or sees and hears their partner).
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Both of these models can logically be extended using a time-delay function
which assumes and explores the effect of a temporal (processing) delay in the
information shared between interacting partners [59, 60]. This enhancement of the
models may more accurately describe brain processing specifically in terms of the
known importance of this type of delay in the sensorimotor loop. Beyond this, we
may add further parameters, as suggested by theoretical shifts as well as further
relevant empirical work.

6 Network Structures in Sensorimotor
Synchronisation Tasks

As this project continues to evolve, the timecourse models will need to be developed
in such a way as to capture various aspects of social behavioural dynamics that
have been cursorily introduced above but which will become ever more important
with the use of tasks that rely on interactive and iterative exchanges between the
coordinating agents. These will include a more specific description of the way in
which information is exchanged reciprocally between agents and how these will
vary as a function of the size of the interacting groups (and considering cases
of interaction beyond the simple dyad). This extension of the project will almost
certainly require network-based methods which provide a rigorous framework and
structure to the aggregate of pairwise relationships between individuals

6.1 Phase Shifts, Decoupling and the Importance
of Transitions

A clear advantage of exploring dynamic social interactions is that they allow for
a more comprehensive description of the evolution over time of an interaction
between social agents. Two strangers decide to dance together at a party. Not
knowing each other, their physical distance may impair clear, reliable sensorimotor
coordination (through an impoverished exchange of useful sensory cues). Perhaps
as the dance continues, as they stand closer together, as they start to understand
how each other moves, such as how they signal a change in direction (to avoid
another couple), the exchange of information is greater and richer as is the degree
of coupling. Even in the reduced SMS finger tapping tasks, such phase shifts can
be observed in the raw timecourse data and future models should attempt to capture
these transitions (Fig. 3).

Of particular interest, new models might be used to further explore the concept
of uncoupling (or “Exit from synchrony”, see Fig. 4a) [61]. By way of inspiration,
Dahan and colleagues have already suggested and tested a modelling approach
which goes beyond other rather extensive work on so-called zero-phase synchrony.
A further rationale for exploring these phase shifts might be that the resulting



162 M. T. Fairhurst

Fig. 3 Dynamic timecourse models. Proposed timecourse models to better capture both the nature
of the exchange of information between interacting agents

Fig. 4 Phase shifts in dynamic social interactions. (a) In most social scenarios, individuals may
transition between states of coupling and uncoupling. (b) The nature of the transitions, including
the slope of the change from a coupled to uncoupled stated, may provide further details as the
nature of the information exchange and partners exchanging this information
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changes in degrees of coupling may vary as a function of learning or experience,
something that could be tested experimentally. This would build on work by Lior
and colleagues that shows that the slope of these transitions may vary as a function
of expertise (Fig. 4b) [62].

6.2 Beyond the Dyad

In the preceding paragraphs and as a reflection of the state of the art in social
cognition, most studies of temporal coordination explore dyadic interactions. Only
a few human studies have explored group interactions beyond the dyad, for example
looking at phase correction in a string quartet [63]. From personal experience, we
encounter a far broader and richer range of social interactions with varying degrees
of coupling [10]. Imagine how coupling may differ in a context where we coordinate
with larger groups of partners such as in a musical ensemble. The first violinist sets
the tempo for the others to follow but with a handover of the melodic line to the
cello, the group structure and the specific nature of the coupling links between the
players changes as a result. Recent work by Alderisio and colleagues neatly shows
how models might help to understand the self-organisation of groups coordinating
a hand motion through visual exchanges of information [64].

As part of a new line of research, we have started investigating how individuals
coordinate their actions in a group walking task [65]. While coordinating one’s
footsteps with those of others, we hypothesize that the nature of who and how many
individuals we are walking with, how much sensory information we have about their
movements and how close we feel or physically are to our partners, will vary not
only our synchronisation performance but also objective and subjective measures of
coupling: that is the relationship strength between the interacting agents.

Much like the more basic SMS tasks described previously, the group walking
paradigm requires participants to walk in synchrony with a pacing tone while
listening to the sounds of eight virtual “others” walking around them (Fig. 5a). The
sensorimotor synchronization task therefore is a dynamic, goal directed activity dur-
ing which individuals must coordinate their actions with a pacing signal but may be
swayed by the sounds of the group of others. This new paradigm offers a new set of
questions that might be answered by more advanced dynamic modelling approaches.
These might include exploring the nature of the links between the human walker and
the pacing signal and how this weakens as a function of the varying synchronicity
of the group of virtual others (Fig. 5b). With the overwhelming power of the group,
will the human walker opt instead to follow the temporal leader of the group or
perhaps an average of the group and the pacing signal and couple to this timeseries?

As group size increases, the complexity of the multi-way interactions that may
be involved must be captured sufficiently by the appropriate network models [66].
Many of the basic models are lacking in their ability to depict, for example,
functional sub-groups or indeed whether the exchange of information between
interacting agents occurred across all members of the group, or whether they
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Fig. 5 Interacting in groups. Using an extension of basic SMS paradigms in which a simple motor
response is triggered by a sensory cue, (a) we present a group walking task in which a human
participant (dark blue figure) is instructed to walk in synchrony with a pacing signal while listening
to the sound of an array of (8) virtual partners (light blue). (b) The design allows for iterations in
which the exchange of information and coupling across time may vary as function of the presence
of a global leader (green figure), (c) number of virtual partners or distance between interacting
agents

occurred as several independent pairwise transfers of information. Future iterations
of the proposed dynamic timecourse models must look at implementing more
complex network frameworks to analyse higher order social interactions.

6.3 Reciprocity, Recursivity and Group Structural
Organisation

Our proposal for using SMS paradigms as a proxy for real-world social interactions
rests on the premise that in these (as in most social scenarios), we coordinate with
others through the exchange of knowledge among members of social groups, and
specifically via dyadic networks. Traditional computational models of SMS and the
dynamic timecourse models introduced in the previous section aim to elucidate the
nature of these exchanges. We have introduced and used the term coupling (for a
review and further analysis of the usefulness of the term, see [67]) to describe the
strength of the connections between interacting members of a group. This coupling
however may vary in the degree of reciprocity, that is to say that the strength of the
overall coupling between two individuals need not be symmetrical in nature (e.g. an
interaction between a leader and a follower, see [49]). Additionally, as the nature of
the task may vary over the course of an interaction, one might see changes in the
degree of reciprocity between two individuals as they instead uncouple and become
coupled with another agent.

An existing SMS paradigm requires two human tappers to first synchronise with
a pacing signal (synchronisation phase) and then, when the external timekeeper is
removed, to continue at the original tempo as previously prescribed by the pacing
signal (Fig. 6). In the two-person version of this task, we see a clear opportunity
to explore structural re-organisation of the three-vertice network. Coupling during
the synchronisation phase for both P1 and P2 will consist of strong bonds with
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Fig. 6 Structural reorganization of interacting social agents. Depending on the reliability of the
partner as well as the instructed task, the degree of coupling and who/what one couples with may
vary across time

the external pacing signal (metronome-P1 and metronome-P2) and weaker bonds
between the human tappers (P1-P2). By contrast, in the continuation phase, the
tappers might show a decoupling from the metronome and instead show increased
coupling between each other (P1-P2).

7 Conclusions

Every day we coordinate our intentions and actions with others. In many interactive
tasks, this may require us not only to predict, respond and adapt to another person’s
actions but to precisely synchronize our movements with theirs and to do so in
a recursive manner. The development and use of novel network-based modelling
approaches is essential to our pushing beyond both dyadic interactions and binary
descriptions of the rich timeseries data that is made available through, for example,
sensorimotor synchronisation paradigms.
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A Note on Cheeger Inequalities
for Piecewise Flat Surfaces

Huabin Ge, Bobo Hua, and Aijin Lin

Abstract Any geometric triangulation of a compact surface with a flat cone metric
induces a weighted graph structure and the associated discrete Laplacian is called
cotangent Laplacian. In this note, we introduce some geometric quantities, so-called
the Cheeger constant and their higher order versions, to control the eigenvalues of
cotangent Laplacians.

1 Introduction

Let S be a compact surface, V a finite subset of S, and g a flat cone metric on S

whose cone points are contained in V. We call the triple (S, V, g) a piecewise flat
surface, PF surface in short. Let T = (V ,E, F ) be a (topological) triangulation of
(S, V ) with the vertex set V , edge set E and face set F of (S, V ). The couple (T , l)

is called a geometric triangulation of (S, V, g) if T is a triangulation and

l : E → (0,+∞)

ij �→ lij
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such that the metric obtained by gluing Euclidean triangles of side length lij , ljk, lki
for all {i, j, k} ∈ F along the edges is isometric to the metric g, see e.g. [4] for
the definition of gluing metrics. We consider the so-called cotangent (discrete)
Laplacian on (T , l), which has been extensively studied in the literature, see
e.g. [3, 9–11, 18, 19]. In this note, we study eigenvalue problems for cotangent
Laplacians on PF surfaces. As is well-known, the main difficulty for studying the
cotangent Laplacian is the lack of the maximum principle. To circumvent it, we
adopt an idea of using the existence of Delaunay triangulations of PF surfaces, see
e.g. [2, 8, 13, 21].

For the Laplace-Beltrami operator on a closed manifold, Cheeger [6] introduced
an isoperimetric constant, now called Cheeger constant, to estimate the first
nontrivial eigenvalue. This estimate has been generalized to the setting of graphs
by Dodziuk [12] and Alon-Milman [1] respectively. Recently, Lee, Oveis Gharan
and Trevisan [17] proved the Cheeger-type estimates for higher eigenvalues. In this
note, we introduce various Cheeger constants and derive Cheeger-type estimates
for higher eigenvalues of contangent Laplacians, see Theorem 6 in Sect. 3. There
are close relations between eigenvalues of the Laplacian on a smooth manifold and
those of the (discrete) Laplacian on some proper discretization of the manifold, see
e.g. [5].

2 The Setting of Weighted Graph

A finite weighted graph G is a triple (V ,w,μ) where V is a finite set of vertices,
w : V × V → R is an edge weight which satisfies wij = wji for all i, j ∈ V and
μ : V → (0,∞) is vertex measure. Note that in our setting, the edge weight wij

could be negative. If wij �= 0, we say that vertices i and j are connected by an edge
with the weight wij and write i ∼ j . We denote by E := {ij : i ∼ j } the set of
(undirected) edges. For any vertex i ∈ V, we define the weighted degree at i by
Deg(i) = 1

μi

∑
j∈V :j∼i wij and set

Dw := sup
i∈V

Deg(i). (1)

So that w and μ can be regarded as (signed) measures on E and V respectively:
For any � ⊂ V , its μ-measure is defined by μ(�) := ∑

i∈� μi; for any A ⊂ E,
its w-measure is given by w(A) := ∑

ij∈A wij . We denote by �2(V ,μ) the Hilbert
space with inner product 〈f, g〉 := ∑

i∈V figiμi for any functions f, g on V. In
this note, we fix the vertex measure μ and let the edge measure w vary in cases.
The canonical choice of the vertex measure is μ ≡ 1, which corresponds to the
combinatorial setting. For simplicity, we will indicate the dependence of the edge
measure w and omit that of the vertex measure μ in the following.
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For a weighted graph (V ,w,μ), we denote, as usual, by C(V ) the set of real
functions defined on V. For any f ∈ C(V ) we define the Dirichlet energy of f by

Dw(f ) :=
∑

ij∈E
wij (fi − fj )

2,

which only depends on the edge measure w. In this note, we only consider weighted
graphs satisfying the following positivity property:

Dw(f ) ≥ 0, ∀f ∈ C(V ). (Positivity)

This defines a nonnegative quadratic form on �2(V ,μ) which by variational method
induces an operator �w, called the Laplacian on (V ,w,μ),

�wfi = 1

μi

∑

j∼i

wij (fj − fi), ∀f ∈ C(V ), i ∈ V, (2)

satisfying

Dw(f ) = −〈f,�wf 〉, ∀f ∈ C(V ).

One readily sees that �w is nonnegative self-adjoint operator on �2(V ,μ). We
denote by

0 = λw
1 ≤ λw

2 ≤ λw
3 · · · ≤ λw

N,

the eigenvalues of �w where N = $V . The Rayleigh quotient characterization of
λw
k reads as

λw
k = min

W⊂C(V ),
dimW=k

max
f∈W,
f �≡0

Dw(f )

‖f ‖2
�2(V ,μ)

. (3)

For any subsets A,B, we write the set of edges between A and B as

E(A,B) := {ij ∈ E : i ∈ A, j ∈ B}.

For any � ⊂ V , its edge boundary is defined as ∂� := E(�,V \�). The Cheeger
constant of the weighted graph (V ,w,μ) is defined by

hw = inf
�⊂V, μ(�)≤ 1

2 μ(V )

w(∂�)

μ(�)
. (4)
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In other words, h is the largest constant such that w(∂�) ≥ hwμ(�) for any subset
� of V satisfying μ(�) ≤ 1

2μ(V ). Moreover, for 1 ≤ k ≤ $V, the k-way Cheeger
constant of (V ,w), see e.g. [15, 17], is defined as

hk,w = min
S1,S2,··· ,Sk

max
1≤j≤k

w(∂Sj )

μ(Sj )
, (5)

where the minimum is taken over the collection of all nonempty, disjoint subsets
{Sj }kj=1 in V. Note that the Cheeger constant hw, defined in (4), is equal to h2,w.

For weighted graphs (V ,w,μ) with nonnegative edge weights, i.e. wij ≥ 0 for
i, j ∈ V. The well-known Cheeger-Buser type inequality states that

h2
w

2Dw

≤ Dw −
√
D2

w − h2
w ≤ λw

2 ≤ 2hw, (6)

where Dw is defined in (1).
Furthermore, a higher order Cheeger estimate was proved by Lee, Oveis Gharan

and Trevisan [17, Theorem 1.1], see also [14, Theorem 5.1].

Theorem 1 ([17]) Let (V ,w,μ) be a weighted graph with nonnegative edge
weights. Then there exists a universal constant C such that for any 1 ≤ k ≤ $V,

C

k4Dw

h2
k,w ≤ λw

k ≤ 2hk,w, (7)

where hk,w is defined in (5) and Dw is defined in (1).

3 Graphs Induced by Geometric Triangulations

Given a compact connected surface S and a finite non-empty set V ⊂ S, we call
(S, V ) a marked surface. Define a PL metric on (S, V ) as a flat cone metric g on S

whose cone points are contained in V . The triple (S, V, g) will be referred to as a
PF surface. For instance, the boundary of a compact convex polyhedral in R

3 is a
PL metric on the 2-sphere with all its vertices as cone points. For our purposes, we
fix a vertex measure μ : V → (0,∞).

Let T = (V ,E, F ) be a (topological) triangulation of (S, V ) with the vertex
set V , edge set E and face set F of (S, V ). The pair (T , l) is called a geometric
triangulation if T is a triangulation and

l : E → (0,+∞)

ij �→ lij
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is an edge length function which assigns each edge {ij } ∈ E the length lij such
that for each triangle {ijk} ∈ F it satisfies the triangle inequalities for lij , ljk and
lik. In this way, we identify each triangle {ijk} ∈ F in T with a Euclidean triangle
with edge length given by lij , ljk, lik and glue them together along common edges.
This induces a PL-metric g on (S, V ). In this note, given a PF surface (S, V, g), we
consider all geometric triangulations (T , l) which induces the given metric g, and
call them geometric triangulations of (S, V, g).

From now on, we fix a PF surface (S, V, g). Let (T , l) be a geometric
triangulation of (S, V, g). One can define an edge weight wcot : E → R as follows.
For each edge ij in E, set

wcot
ij =

⎧
⎨

⎩

1
2 cotαk

ij , if ij is a boundary edge,
1
2 (cotαk

ij + cotαl
ij ), if ij is an interior edge.

(8)

This induces a weighted graph (V ,wcot, μ). Note that the weights wcot
ij might be

negative when αk
ij + αl

ij > π which causes some difficulties in analysis, where αk
ij

denotes the angle at the vertex k in the triangle {i, j, k}. In particular, the maximum
principle doesn’t apply in this case. As in Sect. 2, for the weighted graph (V ,w,μ)

the Dirichlet energy of a function f is given by

Dwcot
(f ) =

∑

ij∈E
wcot

ij (fi − fj )
2.

This is a nonnegative quadratic form. In fact, one can extend the function f on V to
S, fT : S → R, by the piecewise linear interpolation of f, i.e. fT is linear on each
face of T . Then one readily check that

Dwcot
(f ) = 1

2

∫

S

|∇fT |2. (9)

Note that D(f ) = 0 if and only if f is constant. For the weights in (8), we have the
cotangent (discrete) Laplacian

�wcotfi = 1

μi

∑

j∼i

wcot
ij (fj − fi), i ∈ V, (10)

which is self-adjoint in �2(V ,μ), often called finite element discrete Laplacian
[3, 9–11, 18, 19]. This type of discrete Laplacian is often used in discrete geometry,
computational geometry and especially in the field of engineering. It plays a central
role in many areas, such as signal and image processing and numerical analysis
of geometric PDEs on surfaces. Xu [22, 23] proved that suitably “normalized”
cotangent discrete Laplacians converge to the smooth Laplace-Beltrami operator



174 H. Ge et al.

as the size of surface mesh goes to zero. We denote by

0 = λwcot

1 ≤ λwcot

2 ≤ · · · ≤ λwcot

N ,

the eigenvalues of the cotangent Laplacian �wcot where N = $V .

The aim of the note is to estimate the eigenvalues by geometric quantities.
In order to get the upper bound for the eigenvalues of cotangent Laplacian, we
introduce a modified Cheeger constant. For the edge weight wcot : E → R, we
define the absolute-value weight |wcot| : E → R, by |wcot|ij = |wcot

ij | for any
i, j ∈ V. For 1 ≤ k ≤ $V, the k-way Cheeger constant of (V ,wcot) is defined as

h̃k,wcot = min
S1,S2,··· ,Sk

max
1≤j≤k

wcot(∂Sj )+∑
1≤l≤k,l �=j |wcot|(E(Sl, Sj ))

μ(Sj )
, (11)

where the minimum is taken over the collection of all nonempty, disjoint subsets
{Sj }kj=1 in V. One readily sees that h̃k,wcot ≤ 2hk,|wcot |.

Theorem 2 Let (T , l) be a geometric triangulation of (S, V, g). Then for any 2 ≤
k ≤ $V,

λwcot

k ≤ h̃k,wcot,

where h̃k,wcot is defined as in (11).

Proof Let {Sj }kj=1 attains the minimum in (11). We write T = V \ (∪k
j=1Sj ). For

any aj ∈ R, j = 1, · · · , k, set

f (x) =
{
aj , x ∈ Sj

0, otherwise,

Then by the min-max characterization (3) of λwcot

k , we have

λwcot

k ≤ max
ai∈R,1≤i≤k,∑

i a
2
i �=0

∑
1≤j<l≤k(aj − al)

2wcot(E(Sj , Sl))+∑
j a

2
jw

cot(E(Sj , T ))
∑

j a
2
jμ(Sj )

,

= max
ai∈R,1≤i≤k,∑

i a
2
i �=0

∑
j a

2
jw

cot(∂Sj )− 2
∑

j<l aj alw
cot(E(Sj , Sl))

∑
j a

2
jμ(Sj )

≤ max
ai∈R,1≤i≤k,∑

i a
2
i �=0

∑
j a

2
j

(
wcot(∂Sj )+∑

1≤l≤k,l �=j |wcot|(E(Sl, Sj ))
)

∑
j a

2
jμ(Sj )

≤ h̃k,wcot .

This proves the theorem. �
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For any PF surface (S, V, g), there exists a cotangent Laplacian of particular
interests, introduced by Bobenko, and Springborn [2]. We say that a geometric
triangulation (TD, lD) of (S, V, g) is a Delaunay triangulation if for any interior
edge ij,

αk
ij + αl

ij ≤ π, where {ijk}, {ij l} ∈ F. (12)

The existence of Delaunay triangulation for a PF surface (S, V, g) can be obtained
by the edge flipping algorithm, see e.g. Proposition 12 in [2]. As before, for (TD, lD)

we write the weights w∗
ij for any ij ∈ E as in (8) and obtain the weighted graph

(V ,w∗, μ) and the corresponding cotangent Laplacian �w∗ as in (10). It is easy to
check that the weights w∗ are nonnegative by (12). One can show that the weighted
graph structure (V ,w∗, μ) is independent of the choice of Delaunay triangulation
which may not be unique. In fact, there exists a unique Delaunay tessellation on the
PF surface (S, V, g) whose faces are polygons in R

2 satisfying the property that
all vertices on any face are co-circular. Any Delaunay triangulation of (S, V, g) is
obtained from the Delaunay tessellation by triangulating all non-triangular faces. We
refer to [13] and [16] for more discussions on Delaunay tessellations and Delaunay
triangulations on surfaces. Hence, any two Delaunay triangulations of (S, V, g)

differ only by a finite steps of edge flipping. Hence the edge weight w∗
ij for any edge

ij which triangulates a non-triangular face in the Delaunay tessellation vanishes. So
that all Delaunay triangulations induce unique edge weights w∗ and hence a unique
Laplacian �w∗ . We denote by

Dw∗
(f ) =

∑

ij∈E
w∗

ij (fi − fj )
2,

the Dirichlet energy of a function of f for a Delaunay triangulation, and by

0 = λw∗
1 ≤ λw∗

2 ≤ · · · ≤ λw∗
N ,

the eigenvalues of the corresponding Laplacian where N = $V .

Rippa [20] proved that the Dirichlet energy of a function of a Delaunay
triangulation attains the minimum among all geometric triangulations for a PF
surface (S, V, g).

Theorem 3 ([20]) Let (T , l) be a geometric triangulation of (S, V, g) and (TD, lD)

be a Delaunay triangulation of (S, V, g). Then for any function f on V,

Dwcot
(f ) ≥ Dw∗

(f ).

We adopt the arguments as in [7] to obtain the comparison result for these
associated eigenvalues.
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Theorem 4 Let (T , l) be a geometric triangulation of (S, V, g) and (TD, lD) be a
Delaunay triangulation of (S, V, g). Then for any 1 ≤ k ≤ $V,

λwcot

k ≥ λw∗
k .

Proof This follows from the min-max characterization of k-th eigenvalue (3) and
Theorem 3. �

Since the weights w∗ are nonnegative, by Theorem 1 we have the following
corollary.

Corollary 5 Let (TD, lD) be a Delaunay triangulation of (S, V, g). Then there
exists a universal constant C such that for any 2 ≤ k ≤ $V,

C

k4Dw∗
h2
k,w∗ ≤ λw∗

k ≤ 2hk,w∗ . (13)

By combining the results in Theorems 2, 4 and Corollary 5, we obtain the
following theorem.

Theorem 6 Let (T , l) be a geometric triangulation of (S, V, g) and (TD, lD) be a
Delaunay triangulation of (S, V, g). Then for any 2 ≤ k ≤ $V,

C

k4Dw∗
h2
k,w∗ ≤ λwcot

k ≤ h̃k,wcot,

where hk,w∗ is defined as in (5), h̃k,wcot is defined as in (11) and Dw∗ is defined as
in (1).

In particular, for the first nontrivial eigenvalue λ2,wcot, we obtain the following
estimate by Theorems 2, 4 and the Cheeger estimate (6).

Theorem 7 Let (T , l) be a geometric triangulation of (S, V, g) and (TD, lD) be a
Delaunay triangulation of (S, V, g). Then

h2
w∗

2Dw∗
≤ Dw∗ −

√
D2

w∗ − h2
w∗ ≤ λwcot

2 ≤ h̃2,wcot .
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Unravelling Topological Determinants
of Excitable Dynamics on Graphs Using
Analytical Mean-field Approaches

Marc-Thorsten Hütt and Annick Lesne

Abstract We present our use of analytical mean-field approaches in investigating
how the interplay between graph topology and excitable dynamics produce spatio-
temporal patterns. We first detail the derivation of mean-field equations for a
few simple model situations, mainly 3-state discrete-time excitable dynamics with
an absolute or a relative excitation threshold. Comparison with direct numerical
simulation shows that their solution satisfactorily predicts the steady-state excitation
density. In contrast, they often fail to capture more complex dynamical features,
however we argue that the analysis of this failure is in itself insightful, by pinpoint-
ing the key role of mechanisms neglected in the mean-field approach. Moreover,
we show how second-order mean-field approaches, in which a topological object
(e.g. a cycle or a hub) is considered as embedded in a mean-field surrounding, allow
us to go beyond the spatial homogenization currently associated with plain mean-
field calculations. The confrontation between these refined analytical predictions
and simulation quantitatively evidences the specific contribution of this topological
object to the dynamics.
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1 Introduction

The original mean-field approach has been introduced in statistical physics for
the analysis of ferromagnetism [28]. Its insight is to approximately describe the
effect of specific couplings between a given atom and its neighbors (actually
all reduced to their spin) as the influence of their average magnetization, acting
as an homogeneous external magnetic field (the mean field). It has lead to a
general class of methods, involving similar ‘mean-field’ ansatzes [19, 20]. In the
context of dynamics on graphs, it has for example been applied to self-organized
criticality [8], reaction-diffusion processes on networks for one-component [7] and
multi-component systems [27], voter model [26], or excitable dynamics [6, 17, 18].
A general discussion of the accuracy of such methods can be found in [14] and the
monograph [2]. The forest-fire model in [15] is the first attempt to take into account
graph topology in a mean-field approach, via shortcut density.

In all dynamic models where nodes of the graph can be in a finite number of
states, the general spirit of mean-field approaches is a space-implicit description
in terms of the probability (in physical terms, the density) of each state. Such
approaches provide an average view over space, initial conditions and stochasticity
of the dynamics, based on ignoring spatial correlations and inhomogeneities. The
validity of mean-field approximations thus requires weak correlations and statistical
homogeneity. While standard mean-field approaches in continuous systems are
shown to be valid above a critical dimension dc, the situation is different on a graph,
where mean-field failure is presumed to originate in the inherent heterogeneities
of its topology and the way they influence the dynamics. In the context of
processes on graphs, mean-field equations are usually not derived bottom-up from
a microscopic stochastic description, but rather proposed straightforwardly in view
of the qualitative features of the local dynamics, e.g. how many excited neighbors
are required to excite a node in case of excitable dynamics [3, 4, 24, 25].

We will present in Sect. 2 the derivation of mean-field equations for two instances
of discrete-time excitable dynamics on graphs. In both models, a node i of the graph
can be either susceptible S, excited E, or refractory R. The dynamics is defined
as a 3-state cellular automaton S → E → R → S according to the following
rules: an excited node at time t becomes refractory at time t + 1, a refractory node
at time t becomes susceptible at time t + 1 with a recovery probability p (else
it remains refractory), and a susceptible node becomes excited according to the
state at time t of the neighboring nodes on the graph. For the absolute threshold
model, a susceptible node at time t becomes excited at time t + 1 if it has at least
q excited neighbors (we will mostly consider the simplest case q = 1), while for
the relative threshold model, a susceptible node becomes excited at time t + 1 if at
least a fraction κ of its neighbors are excited at time t . Additionally, spontaneous
excitations can occur at susceptible nodes with probability f per time step. When
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p < 1 (stochastic recovery) and/or f > 0 (spontaneous excitations), the dynamics is
stochastic. An additional level of stochasticity comes from the randomness of initial
conditions. What thus makes sense is to describe average behaviors. These two
models are reminiscent of SIS and SIR models [4, 16], however no simple mapping
can be drawn (excitation propagation is a stochastic step in SIS and SIR, involving
a transmission probability), and their behaviors differ. As for the underlying graphs,
we actually consider ensembles of graphs defined by current models, from Erdős-
Rényi random graphs [10] to Barabási-Albert scale-free graphs [1] to Molloy-Reed
configuration model that samples graphs with any prescribed degree distribution, to
hierarchical or modular complex networks [5].

To evaluate the validity of a mean-field approach and its limits, we have
compared in Sect. 3 the analytical mean-field predictions and the numerical imple-
mentation of our two models of excitable dynamics on graphs. Failure of a
mean-field approach means that either correlations between the nodes, or local
network features, or both, matter. We will discuss the insights than can be gained
from the analysis of this failure. Section 4 is devoted to the analytical strategies
we have devised to go beyond basic mean-field approaches and take into account
some specific topological features of the graph, in order to gain some general
understanding of the interplay between graph topology and its excitable dynamics.

2 Mean-field Equations for Excitable Dynamics on Graphs

2.1 Principle of Mean-field Approximation(s)

Denoting xi(t) the state of node i at discrete time t , the standard mean-field
approach for describing the average graph dynamics actually comprises two dif-
ferent approximations, whatever the considered model of dynamics. The first one
is a spatial de-correlation of the node states when computing statistical averages:
〈xi(t)xj (t)〉 ≈ 〈xi(t)〉〈xj (t)〉. The second one is a spatial homogenization, con-
sidering that 〈xi(t)〉 is independent of the node i. These two approximations will
allow us to derive autonomous, deterministic and space-implicit equations for the
densities cα(t) = Prob[xi(t) = α], with here α = E, S,R.

2.2 Absolute Threshold q = 1 for Excitation Propagation

Mean-field dynamics is derived by identifying the probability that a given neighbor
is not excited with the average and node-independent quantity 1 − cE(t). A
decorrelation approximation lies in considering an average quantity, while its node-
independence amounts to an homogenization. Another homogenization arises in
replacing the number of direct neighbors of a node (that is, its degree) with
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the average degree 〈k〉. This latter approximation is applied in particular to the
probability that a node has at least an excited neighbor at time t , which is the
condition for its excitation by neighbors in the absolute-threshold model. This
probability is accordingly estimated as 1 − B(0, 〈k〉, cE(t)), where the binomial
distribution can be explicitly expressed B(0, 〈k〉, cE(t)) = (1 − cE(t))〈k〉. This
probability has then to be multiplied by (1 − f ) (no overriding spontaneous
excitation) and by the homogenized probability cS(t) that the node is susceptible.
Overall, mean-field evolution equations for the state densities are:

⎧
⎨

⎩

cE(t + 1) = cS(t)
[
f + (1 − f )[1 − (1 − cE(t))〈k〉]]

cR(t + 1) = cE(t)+ (1 − p)cR(t)

cS(t + 1) = 1 − cE(t + 1)− cR(t + 1)
(2.1)

In the regimes where cE(t) ' 1, the term 1 − (1 − cE(t))
〈k〉 simply reduces to

〈k〉 cE(t). Note that the average degree 〈k〉 is usually not an integer: while the
probabilistic reasoning makes sense only for integral 〈k〉, the resulting formula can
be interpolated and extended to any real value of 〈k〉.

Fixed points of (2.1), i.e. cα(t + 1) = cα(t) = c∗α for α = E, S,R, correspond
to steady states. For all mean-field fixed points, we have the equations: p c∗R = c∗E
and p(1−c∗S) = c∗E(1+p), whatever the excitation probability model and the value
of f . For f = 0, there is a trivial (unstable) fixed point (coE = 0, coR = 0, coS = 1)
whatever the value of p. Still for f = 0, there is also a non trivial fixed point:

c∗E = p (〈k〉 − 1)

〈k〉(p + 1)
, c∗S = 1

〈k〉 , c∗R = 〈k〉 − 1

〈k〉(p + 1)
(2.2)

provided the consistency condition 〈k〉c∗E ' 1 holds. Else we have to solve
numerically the non-linear equation:

c∗E = [
1 − c∗E(1 + 1/p)

] [
f + (1 − f )[1 − (1 − c∗E)〈k〉]

]
(2.3)

2.3 Relative Threshold κ for Excitation Propagation

In case of a relative excitation threshold κ , the most basic mean-field approximation
states that a susceptible node of degree k gets excited if its average number of excited
neighbors, kcE , is larger than kκ , that is if cE ≥ κ whatever the node degree k. This
leads to the simple evolution equations, where H is the Heaviside function:

⎧
⎨

⎩

cE(t + 1) = cS(t) [f + (1 − f )H [cE(t)− κ]]
cR(t + 1) = cE(t)+ (1 − p)cR(t)

cS(t + 1) = 1 − cE(t + 1)− cR(t + 1)
(2.4)
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A refined set of equations can be obtained using combinatoric probabilistic argu-
ments, and considering for all nodes the same homogenized degree, equal to the
average degree 〈k〉. We define n̄κ as the smallest integer larger or equal to κ〈k〉,
that is, n̄κ = (κ 〈k〉). Excitation propagation at a susceptible node then requires
that it has at least n̄κ excited neighbors, whatever its actual degree. The mean-field
evolution equations for a relative excitation threshold κ then coincide with those
obtained for an absolute excitable threshold q = n̄κ . The factor [1− (1− cE(t))

〈k〉]
in the above mean-field evolution Eqs. (2.1) is now to be replaced with:

(〈k〉)−n̄κ∑

j=0

( (〈k〉)
n̄κ + j

)
cE(t)n̄κ+j (1 − cE(t))(〈k〉)−n̄κ−j (2.5)

Note that 〈k〉 is usually not an integer, and has to be replaced by (〈k〉) for the
binomial coefficient to make sense. For κ → 0, we have n̄κ = 1, and the mean-
field equations for an absolute threshold q = 1 are satisfactorily recovered. Overall,
we obtain the coupled equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cE(t + 1) = f cS(t)

+(1−f )cS(t)
∑(〈k〉)−n̄κ

j=0

( (〈k〉)
n̄κ + j

)
cE(t)

n̄κ+j (1−cE(t))
(〈k〉)−n̄κ−j

cR(t + 1) = cE(t)+ (1 − p)cR(t)

cS(t + 1) = 1 − cE(t + 1)− cR(t + 1)

(2.6)

When cE(t) ' 1, the term for j = 0 dominates and the above sum can be replaced
in the numerical implementation by the proxy:

( (〈k〉)
n̄κ

)
cE(t)

n̄κ (2.7)

For f = 0, the evolution described by the simple Eqs. (2.4) has a non trivial
stable fixed point:

c∗E = p

2p + 1
, c∗S =

p

2p + 1
, c∗R = 1

2p + 1
(2.8)

provided κ < c∗E , i.e. κ < p/(2p + 1). When κ > p/(2p + 1), the stable fixed
point becomes: c∗E = 0, c∗S = 1, c∗R = 0. When the evolution is described by the
refined mean-field equations (2.6) with the simplification (2.7), the fixed points in
the absence of spontaneous excitations (f = 0) correspond to the solutions of:

c∗E =
( (〈k〉)

n̄κ

)
(c∗E)n̄κ (1 − c∗E(1 + 1/p)) (2.9)
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satisfying he condition 0 ≤ c∗E ≤ p/(p + 1), so that c∗R ≥ 0 and c∗S ≥ 0. This
yields a trivial fixed point (coE = 0, coR = 0, coS = 1) whatever the value of p. This
fixed point is stable for n̄κ ≥ 2 (the stability analysis is easily done by reducing the
evolution to two coupled equations, e.g. for cE(t) and cR(t), and determining for
which values of κ the eigenvalues of the Jacobian matrix have a modulus strictly
lower than 1). For n̄κ = 1, i.e. for κ < 1/〈k〉, the stable fixed point is associated to
the nontrivial solution of (2.9).

For f > 0, we have to numerically solve the fixed point equations. However, at
small f , a simple approximation is to identify the average excitation density with
coE = f (instead of coE = 0) at large values of κ , while the non trivial value c∗E
at low values of κ is considered to be unaffected by a small rate of spontaneous
excitations. The good accuracy of these various analytical predictions for the steady-
state excitation density is presented below n Sect. 3 and associated figures.

2.4 Evolution for Degree Classes

In the basic mean-field equations (2.1) and (2.6), graph topology is involved only
through the average degree 〈k〉. It is possible to better take into account a broad
degree distribution by considering degree classes, that is, subsets of nodes of a given
degree. We denote cE(k, t) the average excitation density of nodes of degree k (and
similarly cS(k, t) and cR(k, t), for susceptible and refractory states). In the mean-
field approximation for an excitable dynamics with absolute threshold q = 1, a
node in the class of degree k has k cE(t) excited neighbors and a probability equal
to 1 − (1 − cE(t)]k to have at least one excited neighbor: some node heterogeneity
is now included in the mean-field dynamics. Evolution equations become:

⎧
⎨

⎩

cE(k, t + 1) = cS(k, t)
[
f + (1 − f ) [1 − (1 − cE(t)]k

]

cR(k, t + 1) = ckE(k, t)+ (1 − p)cR(k, t)

cS(k, t + 1) = 1 − cE(k, t + 1)− cR(k, t + 1)
(2.10)

The overall excitation density is related to these partial densities by the relation∑
k ρ(k) cE(k, t) = cE(t) directly involving the degree distribution ρ(k). However,

several mean-field approximations are still present: at the dynamic level, we still
ignore correlations between the states of the nodes, and at the network level,
we neglect degree-degree correlations and consider the degree-average state for
neighboring nodes.

In case of excitable dynamics with a relative threshold κ , we introduce nκ(k) as
the smallest integer larger or equal to κk. The equation for cE(k, t) is the same as
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for an absolute threshold q = nκ(k):

cE(k, t + 1) = f cS(k, t)+ (1 − f ) cS(k, t)

k∑

j=nκ (k)

(
k

j

)
cE(t)j (1 − cE(t))

k−j

(2.11)

In a finite graph (hence having a bounded maximal degree), equations for an
absolute threshold q = 1 are recovered in the limit κ → 0, when all nκ(k) reduce
to 1.

A refinement is to take into account degree-degree correlations (see e.g. [4, 23]
for application to SIS epidemic model and [27] for application to diffusion-
annihilation process). An analysis of mean-field validity in the case where degree-
degree correlations cannot be ignored is presented in [14], suggesting that the mean
first-neighbor degree d is a good predictor of the validity (the more reliable the larger
d); d reduces to the average degree 〈k〉 in uncorrelated networks. Degree-degree
correlations are described by the conditional probability ρ(k′|k) that the degree of a
neighbor of a node of degree k is k′. For an excitable model with absolute threshold
q = 1, the probability for a node of degree k to have at least an excited neighbor
becomes 1− (1−∑

k′ ρ(k
′|k) cE(k′, t))k , replacing 1− (1− cE(t))k in (2.10). The

mean excitation field of a node,
∑

k′ ρ(k
′|k) cE(k′, t) ≡ cE(nn(k), t), now depends

on the node degree k. This modification of cE(t) into a degree-dependent local field
cE(nn(k), t) also holds in (2.11) for the model with a relative excitation threshold κ .

2.5 Pair-correlation Equations

Identifying the probability that two neighboring nodes are simultaneously excited
with [cE(t)]2 is often too crude. This approximation can be circumvented by
introducing a quantity cE,E(t), describing the probability that two neighbors are
simultaneously excited, and similar quantities for the other pair correlations [9, 22].
The evolution of state densities cα(t) can be written in a less approximate way
by involving these additional variables. For an excitable model with an absolute
threshold q = 1, it comes:

cE(t + 1) = f cS(t)+ (1 − f )cS(t)

[
1 −

(
1 − cE,S(t)

cS(t)

)〈k〉]
(2.12)

cR(t + 1) = cE(t)+ (1 − p)cR(t) (2.13)

cS(t + 1) = 1 − cE(t + 1)− cR(t + 1) (2.14)
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While spatial homogenization remains, the mean-field decorrelation approximation
is relaxed and displaced at a higher order. The approximation is now involved in a
closure relation of the form 〈xxyy〉 = 〈xx〉〈yy〉 required to get an autonomous set
of equations of evolution for the pair-correlations, as follows:

cE,S(t + 1) = fp cS,R(t)+ (1 − f )p
cS,R(t)cE,S(t)

cS(t)

+(1 − f )f cS,S(t)

(
1 − cE,S(t)

cS(t)

)〈k〉−1

(2.15)

+(1 − f )2cS,S(t)

(
1 − cE,S(t)

cS(t)

)〈k〉−1
[

1 −
(

1 − cE,S(t)

cS(t)

)〈k〉−1
]

This evolution equation for c(E, S, t) contains four terms: the probability that in a
pair of neighbors (S,R), the first one gets spontaneously excited and the second one
recovers; the probability that in a pair of neighbors (S, S), the first one gets excited
due to its excited neighbors and the second one recovers; the probability that in a
pair of neighbors (S, S), the first one gets spontaneously excited and the second one
escapes both spontaneous and neighbor-induced excitation and remains susceptible;
the probability that in a pair of neighbors (S, S), the first one gets excited due to
its excited neighbors and the second one escapes both spontaneous and neighbor-
induced excitation and remains susceptible. Similar equations can be written for the
other joint densities cE,R and cS,R:

cE,R(t + 1) = cS,R(t)

[
(1 − p)f + (1 − p)(1 − f )

[
1 −

(
1 − cE,S(t)

cS(t)

)〈k〉]]

+cE,S(t)

[
(f + (1 − f )

[
1 −

(
1 − cE,S(t)

cS(t)

)〈k〉]]
(2.16)

cS,R(t + 1) = cS,R(t) (1 − p)(1 − f )

(
1 − cE,S(t)

cS(t)

)〈k〉
+ (1 − p)p cR,R(t)

+ p cE,R(t) + (1 − f ) cE,S(t)

(
1 − cE,S(t)

cS(t)

)〈k〉
(2.17)

supplemented with the equations cS(t + 1) = 1 − cE(t + 1) − cR(t + 1),
cS,S(t + 1) = cS(t + 1) − cS,E(t + 1) − cS,R(t + 1) and similar relationships
for cE,E(t + 1) and cR,R(t + 1). Such pair-correlation equations have been used
for instance to investigate co-activation and pinpoint its topological determinants,
through a comparison of analytical predictions and numerical simulations [17].
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3 Successes and Failures of Mean-field Approaches:
Numerical Checks

3.1 A Remarkable Power to Predict Excitation Density
in Random Graphs

An implicit step in the practical use of mean-field approaches is to identify
empirical space averages that can be measured in experiments and simulation,
with the statistical averages cα(t) involved in the equations (here α = E, S,R).
The validity of this identification directly follows from the applicability of the
law of large numbers, which has the same conditions of validity as the mean-
field approximations, namely it also requires weak correlations and statistical
homogeneity.

To evaluate the validity of mean-field approximations, we implemented numeri-
cally the two models of excitable dynamics on graph described in the introduction.
They are specially suitable for a numerical analysis, since they actually take the form
of three-state cellular automata. The initial condition is generally taken at random,
with equal fractions of susceptible, excited and refractory nodes spanning the graph.
All the spatio-temporal correlations and network heterogeneities are by construction
taken into account in the simulation. We compared the steady-state mean-field
excitation density c∗E predicted analytically and its numerical value, observed in the
simulation after discarding initial transients and performing a suitable time average.

As seen on Fig. 1, for excitable dynamics on a highly connected random graph
(Erdős-Rényi graph of average degree 10), the simulated time-average excitation
density lies around the mean-field prediction, with some fluctuations of relatively
low amplitude. The goodness of the basic mean-field approach on highly connected
random graphs relies (1) on the spatial homogeneity of these graphs, (2) the fact
that they are locally similar to a tree, and (3) the large enough number of neighbors.
Consequently it is respectively valid (1) to identify the node degrees with the
average degree, (2) to consider that there is no correlations between the states
of node neighbors as if the topology around each node were star-like, and (3) to
identify the excitation probability of the neighbors of a given node with the average
excitation density. When the graph connectivity decreases, the prediction quality
decreases, as seen on Fig. 2.

Considering scale-free graphs yields a prediction quality similar to that observed
for low-connectivity random graph, as seen on Fig. 3. However, a marked difference
is the range and nature of fluctuations, which now exhibit spikes. This latter feature
is presumably due to the spatial heterogeneity of the network, where nodes of both
small and high degree are present, and the fact that high-degree nodes may nucleate
coherent waves of activation (see below, Sect. 4.3 and [17]).

In the case of a relative excitation threshold, Fig. 4 shows the good agreement
of both the mean-field prediction (2.8) and the stationary solution of mean-field
equations (2.6) and (2.7) with the numerical steady-state. Both correctly predicts
the exchange of stability between the non-trivial fixed point and the value coE = f
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Fig. 1 Mean-field excitation density and its simulated counterpart on a highly connected random
graph, for an absolute excitation threshold q = 1. Simulation has been performed with a
spontaneous excitation rate f = 0.01, on a random graph (Erdős-Rényi) with 100 nodes and 500
links. The upper panel displays a simulated trajectory for a recovery probability p = 0.3 (highly
fluctuating black line), its moving average (light grey dashes), the approximate fixed point given
by (2.2) and the steady-state solution of mean-field equations (2.1). The lower panel compares the
excitation density obtained in the simulation, the fixed point (2.2) and the steady-state solution
of (2.1) for varying values of the recovery probability p. Error bars on simulation points have been
obtained from the last 250 time steps of a 500 time-step simulation starting from random initial
conditions

corresponding to the extinction of excitation propagation. We have shown in [11]
that a sustained activity (corresponding to the non trivial steady state) occurs up to
a value κm that can be roughly estimated from the graph topology as the maximal
degree kmax of the graph, in agreement with the upper bound 1/〈k〉 (larger that
1/kmax) predicted here using mean-field analysis. The observed lower bound c∗E can
be explained as a fluctuation effect: the actual number of excited neighbors of a node
of degree k can be higher than kc∗E , which accommodates excitation propagation for
relative threshold values higher than κ = c∗E .
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Fig. 2 Mean-field excitation density and its simulated counterpart on a low-connectivity random
graph, for an absolute excitation threshold q = 1. Same as Fig. 1 now on a random graph (Erdős-
Rényi) with 100 nodes and 200 links

3.2 Insightful Failures

Numerical simulations, Fig. 3, show that basic mean-field equations fail to describe
the full complexity of excitable dynamics on graphs with a very broad degree
distribution. They miss self-organized formation of coherent patterns of excitation,
responsible of the spikes apparent on the time evolution of the overall excitation
density. In showing the limits of considering the same average degree for all nodes,
they indirectly demonstrate the central role of hubs in the dynamics of scale-free
graphs. Actually, a sounder approximation is to consider that hubs act as organizing
centers of the excitable dynamics, see Sect. 4.3. An another numerical observation
is the fact that plain mean-field description accounts for the excitation density but
not at all for the correlation between co-activation patterns and graph topology [21].
Finally, mean-field equations provide an average view of the dynamics: they do not
reflect dynamical features of individual trajectories.

Mean-field analysis alone is not reliable enough to grasp understanding of
dynamics on complex networks. In general there is no internal way to delineate
which results are correct and which are by far different from the actual behavior.
On the other hand, numerical simulation alone is often as complex and intricate as
an experiment on the real system, and it may prove difficult to dissect and identify
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Fig. 3 Mean-field excitation density and its simulated counterpart on a scale-free graph for an
absolute excitable threshold q = 1. Same as Fig. 2 now on a a scale-free graph (Barabási-Albert)
with 100 nodes and 197 links (corresponding to m = 2 links being added per node during
preferential attachment)

0.0 0.1 0.2 0.3 0.4
0.00

0.05

0.10

0.15

0.20

relative threshold

ex
ci

ta
tio

n
de

ns
ity

f = 0.01, p = 0.2

simulation

Eq. (2.6)
Eq. (2.8)
Eq. (2.7)

Fig. 4 Mean-field excitation density and its simulated counterpart on a random graph, in case of
relative excitation threshold. Simulation has been performed with a recovery probability p = 0.2,
a spontaneous excitation rate f = 0.01, on a random graph (Erdős-Rényi) with 100 nodes and 200
links. The time-averaged excitation density obtained in the simulation (black dots) is compared for
various values of the relative threshold κ with the fixed point (2.8) and the steady-state solution of
mean-field equations (2.6) and (2.7). Error bars on simulation points have been obtained from the
last 250 time steps of a 500 time-step simulation starting from random initial conditions. The first
step (blue line, Eq. (2.8)) is located at κ = p/(2p + 1) and the second step (red continuous and
dashed lines, Eqs. (2.6) and (2.7)) is at the higher value κ = 1/〈k〉, indicated by the gray dashed
vertical line



Unravelling Topological Determinants of Excitable Dynamics on Graphs Using. . . 191

the local features and basic mechanisms responsible of the observed behavior. We
claim that a reliable understanding can be gained by the conjunction of mean-field
analysis and numerical simulation.

4 Second-Order Mean-field Approach for Topological
Devices

4.1 Principle

Mean-field approaches described above all involved a spatial homogenization over
the nodes (or subsets of nodes) of the graph. This is obviously a critical gap for
investigating the interplay between graph topology and excitable dynamics. To
circumvent this gap, we devised a refined analytical approach involving a more
detailed account of the topology. The contribution of a specific topological motif
(for instance a triangle, a cycle, a shell of nodes at the same distance from a given
hub, a module) to the overall dynamical behavior can be computed by considering
it as a device embedded in a surrounding described by mean-field densities. This
approach amounts to use a second-order mean-field approximation, in which the
(local) probability that neighbors of the motif are excited is given by the (global)
steady-state mean-field excitation density c∗E .

This general idea of mean-field for embedded devices is specially fruitful when
considering the contribution of cycles (i.e. closed paths) to the overall dynamical
behavior. Indeed, cycles are a feature not accounted in standard nor even in refined
(pair-correlations or degree-classes) mean-field approaches, while they play a key
role in excitable dynamics by contributing to excitation amplification and sustained
activity [11–13]. In the case of an absolute excitation threshold q = 1, we detail
below in Sect. 4.2 how to compute the average success rate of a cycle, by considering
that it is embedded in a mean-field environment. We also sketch below in Sect. 4.3
the application of this methodology to study co-activation, by using a shell model
around a hub [17].

4.2 Excitation of a Cycle

In a cycle of length L (i.e. a closed path of L nodes), a cycling excitation vanishes as
soon as it meets a refractory node. Only long cycles can persistently store excitation:
cycles should be long enough so that excitation always faces a susceptible substrate.
Quantitatively, the probability πL that a site R as recovered after L−2 steps, in time
to accommodate the cycling excitation, should be close enough to 1. The simple
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computation (which ignores the correlations with the surroundings) yields πL =∑L−3
j=0 (1−p)jp = 1− (1−p)L−2. Failure of re-excitation thus occurs on average

after a time

τbreak(p,L) = 1

(1 − πL)
= 1

(1 − p)L−2 (4.1)

The quantity τ (L, p) = L − 1 + τbreak(p,L) provides an estimate of the average
runtime of the cycle. Using a similar reasoning, the probability that there is exactly
N re-excited nodes in a row in the cycle is πN

L (1−πL). The time after which failure
of re-excitation occurs thus follows exactly a geometric distribution with parameter
1−πL. Accordingly, the corresponding variance, which coincides with the variance
of the cycle runtime, is equal to πL/(1 − πL)

2. In particular, πL = p for a triangle
(L = 3), and the runtime is predicted to be equal to 2 + 1/(1 − p) with a standard
deviation

√
p/(1 − p)2. The good accuracy of this simple analysis is shown on

Fig. 5.
A more detailed analysis shows that a cycle that is initially all susceptible

and receives an excitation does not trigger a cycling excitation. It should also
contain a refractory node, otherwise two waves of excitation will propagate in
opposite direction and ultimately annihilate, which does not correspond to a cycling
excitation. The probability that excitation of a cycle sets in is thus difficult to
compute, as it essentially depends on the initial condition of the cycle. This difficulty
has been circumvented above by computing the number of re-excitations Nreex ,
defined as the number of excitations following in a row the completion of a cycle.
Nreex = 1 if the cycle excitation only closes onto itself, Nreex = L + 1 if a second
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Fig. 5 Cycling excitation in a triangle. Considering the runtime of an excitation in a triangle, with
initial condition (E, S,R), the figure compares the analytical prediction of this runtime τ(L, p) =
L− 1 + τbreak(L, p) for L = 3, with τbreak(L, p) given in (4.1), continuous red line, plus/minus
the corresponding standard deviation

√
p/(1 − p)2, dashed red lines, with the simulation result

(black dots). Errors bars on the numerical estimates have been computed with 100 runs
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full turn is completed. Nreex is a number that is not a multiple of L in case of
incomplete turns.

We can provide a refined estimate of the probability of continued excitation of a
cycle, i.e. re-excitation of its nodes, using the second-order mean-field methodology
described above. For simplicity we consider the case with no spontaneous excita-
tions (f = 0). To get re-excited nodes, we have to consider that they do not fail to
recover in time, and once recovered, that they do not receive a perturbing external
excitations. Considering all the possible timings j between 1 and L − 2 steps for
the recovery, and the subsequent absence of external inputs during the L − 2 − j

remaining steps, we obtain the probability γ (L, p) of a re-excitation:

γ (L, p) =
L−2∑

j=1

p(1 − p)j−1[(1 − c∗E)〈k〉−2]L−2−j

= p × [(1 − c∗E)〈k〉−2]L−2 − (1 − p)L−2

(1 − c∗E)〈k〉−2 − (1 − p)
(4.2)

Note that for a triangle, L = 3, the sum (correctly) contains a single term, yielding
γ (L, p) = p: there is no way to perturb a cycling excitation along a triangle
ESR except by a lack of recovery, the effect of which is analyzed in Fig. 5. In
this mean-field approach, γ (L, p)N is the cumulative probability to have at least
N re-excitations in a row, while the probability to have exactly N re-excitations in
a row is (1 − γ (L, p))γ (L, p)N . The average number of re-excitations following
cycle completion becomes:

〈Nreex〉 = γ (L, p)

1 − γ (L, p)
= τbreak − 1 (4.3)

In particular, (4.1) is recovered for a triangle, with L = 3 and γ (L, p) = p. Under
the assumption that re-excitations dominate cycle activity, i.e. the cycle completion
is followed by several turns of cycling re-excitation, this mean-field computation
also gives the probability that at a given time a L-cycle is active, equal to γ (L, p)L.
The computation (4.2) involves several mean-field approximations: the probability
of excitation of a cycle neighbor is taken equal to the steady-state mean-field
excitation density c∗E , the correlations between the states of the cycle neighbors
are ignored, and the degree of cycle nodes are replaced by the average degree 〈k〉.
This latter approximation could be eliminated by considering explicitly the degrees
(k1, . . . , kL) of the cycle nodes. The probability of N re-excitations following cycle
completion is then given by:

P(N,L, p) =
N∏

α=1

⎡

⎣
L−2∑

j=1

p(1 − p)j−1[(1 − c∗E)kα−2]L−2−j

⎤

⎦ (4.4)
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where the label α of the degree should be understood modulo L, starting from the
node having received the excitation. If another excitation enters the cycle at some
susceptible node before the cycling excitation arrives, a phase slip is observed [12].

4.3 Shell Model of Hub-induced Co-activation

In the case of an excitable dynamics with an absolute threshold q = 1, the
qualitative analysis of the dynamics suggests that hubs act as sources of excitation,
spreading any single excitation they have received from their numerous neighbors.
To quantitatively check whether this phenomenon actually dominates the dynamics,
we considered the graph as a set of nested shells centered on the strongest hub [17].
Nodes belonging to the same shell are by definition at the same distance to the hub
(Fig. 6). We first estimate the probability of excitation of the hub, of degree khub,
by identifying it with the mean-field excitation density c∗E for an average degree
〈k〉 = khub, given in (2.2):

cE(hub) = c∗E(khub) (4.5)

Comparison of this prediction and numerical simulation for hubs of various degrees
is shown on Fig. 7, as a function of their degree khub.

Fig. 6 Shell model for analytical estimation of co-activation. When the graph has a broad degree
distribution, the excitable dynamics with an absolute threshold q = 1 is presumably dominated
by the presence of hubs. We thus propose to represent the graph as a nested set of shells (bold
red) centered around the strongest hub. Co-activation is then approximated as the synchronous
activation of nodes in the same shell by an excitation propagating from the hub
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Fig. 7 Prediction of the steady-state excitation density of a node as a function of its degree. The
figure compares the prediction (4.5), red line, and the simulation result for various nodes (scatter
plot, black dots). The simulation has been performed for the excitable model with an absolute
threshold q = 1, with p = 0.8 and f = 0.001, on a scale-free graph (Barabási-Albert) with
100 nodes and 985 links (corresponding to m = 5 links being added per node during preferential
attachment)

Once the hub gets excited, nodes of the same shell will be reached at the same
time by the excitation wave propagating from the hub. Accordingly, they will get
excited jointly provided they are both in a susceptible state when the excitation
wave arrives. The probability of such an event for a given pair of nodes, presumed
to be the main contribution to the probability of their co-activation, can be computed
in the mean-field approximation. We have to express that each node of the two paths
from the hub to the considered nodes is susceptible when the excitation wave arrives.
When ignoring pair correlations, the co-activation probability of any given pair of
nodes in shell n can be written:

Qn = c∗hub(E)[c∗(S)]2n (4.6)

The comparison of this analytical prediction with the co-activation probability
observed in the simulation has shown that excitations are more strongly coordinated
in space and time than accounted in the derivation of (4.6). Dynamic correlations
between neighbors should also be taken into account, for instance using the pair-
correlation mean-field equations detailed above in Sect. 2.5, see [17] for details.
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5 Conclusion

Mean-field approaches provide an analytical way to get some insights on excitable
dynamics on graphs. They involve a closure relation, namely they ignore some
correlations, and some kind of spatial homogenization, namely they also ignore
most spatial structures and heterogeneities. Sometimes, a self-consistent validity
check is possible. However, we claim that the most interesting insights come
from either the agreement or the discrepancies between mean-field predictions and
what is observed in numerical experiments. In this regard, analytical approaches
are used as null models, as a way of hypothesis testing, to check the validity of
their assumptions by comparing their predictions with direct simulation. Mean-
field approaches presented above thus offer a sequence of nested null models,
increasingly taking into account graph topological features.

Our previous and present investigations have shown that the validity and accuracy
of mean-field approaches strongly depend on the observable. They are in general
satisfactory for describing excitation density, but of more limited validity for
investigating complex features like co-activation or sustained activity. Mean-field
failure reveals the presence and key role of collective patterns of activity. When these
collective patterns are rooted in some topological motifs, we propose a methodology
based on mean-field-embedded devices, that is, the detailed description of the
activity of a subset of nodes, given that their surrounding is described by mean-
field densities. Beyond the examples detailed above for excitable dynamics with
an absolute threshold q = 1, we also successfully implemented this mean-
field methodology in the case of a relative excitation threshold, for instance to
compute the contribution of multiple excitations meeting at a node and increasing
the probability that this node gets excited and propagates the excitation [11].
This original methodology circumvents the limitation coming from the spatial
homogenization involved in more basic mean-field approaches, and provides an
analytical access to the interplay between dynamics and the underlying network
topology. Joining these analytical results and simulation at the same time validates
our analytical understanding and guides the interpretation of the detailed numerical
results.

Mean-field approaches can be applied to a variety of other dynamical processes
on graphs. What we have described using the formalism of graphs and excitable
dynamics can be extended to numerous other settings, for instance reaction-
diffusion on a structured substrate, in surface chemistry, or colonization-extinction
processes on a heterogeneous landscape, in ecology.
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Spectral Zeta Functions

Anders Karlsson

Abstract This paper discusses the simplest examples of spectral zeta functions,
especially those associated with graphs, a subject which has not been much studied.
The analogy and the similar structure of these functions, such as their parallel
definition in terms of the heat kernel and their functional equations, are emphasized.
Another theme is to point out various contexts in which these non-classical
zeta functions appear. This includes Eisenstein series, the Langlands program,
Verlinde formulas, Riemann hypotheses, Catalan numbers, Dedekind sums, and
hypergeometric functions. Several open-ended problems are suggested with the
hope of stimulating further research.

1 Introduction

Euler observed the following product formula:

∞∑

n=1

1

ns
=

∏

p

(1 − p−s )−1

where the product is taken over the prime numbers. This function of the complex
variable s is called the Riemann zeta function, denoted ζ(s), and the expressions
above are convergent for Re(s) > 1. The right hand side inspired several general-
izations, by Artin, Hasse, Weil, Selberg, Ihara, Artin, Mazur, Ruelle, and others, see
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[IK04, Te10] and references therein. The most far-reaching frameworks for Euler
products might be provided by the insights of Grothendieck and Langlands. The left
hand side found generalizations by Dirichlet, Dedekind, Hurwitz, Epstein and others
in number theory, but also in another direction in the work of Carleman [Ca34], later
extended in [MP49], where instead of the integers one takes Laplacian eigenvalues:

∑

λ �=0

1

λs

convergent in some right half-plane. The purpose of the present note is to survey a
few recent investigations of these latter functions, spectral zeta functions, in cases
where the Laplacian is less classical, instead coming from graphs or p-adics. As in
one of Riemann’s arguments, to get the analytic continuation one rather defines the
zeta function via the heat kernel, so the Mellin transform of the heat trace (removing
the constant term whenever necessary) and divide by �(s). This has the advantage
of also making sense when the spectrum has continuous part.

One intriguing aspect that we mention is the functional equation of the type s vs
1 − s that appears also for these non-classical zeta functions. Notably one has

ξZ(1 − s) = ξZ(s),

see below, and the equivalence of certain asymptotic functional equations to the
Riemann hypotheses for ζ(s) and certain Dirichlet L-functions [FK17, F16].

Although there are a few instances in the literature where such function are
introduced for graphs, it seems that the first more systematic effort to study spectral
zeta functions of graphs appear in my paper with Friedli [FK17]. As it turns out,
via asymptotic considerations, these functions are intimately related to certain zeta
functions from number theory. In what follows we will moreover point out that
spectral zeta functions for graphs appear incognito in, or are connected to, a rich set
of topics:

• Eisenstein series, continuous spectrum of surfaces, Langlands program,
• Riemann hypotheses
• Dedekind sums and Verlinde formulas,
• hypergeometric functions of Appell and Lauricella
• Catalan numbers
• Fuglede-Kadison determinants

Although each of these connections may not be of central importance for the
corresponding topic, still, in view of the variety of such appearances, I think that
the subject of graph spectral zeta functions deserves more attention. This note can
also be viewed as a modest update to parts of the discussion in Jorgenson-Lang
[JL01] originally entitled Heat kernels all over the place. Throughout the text, I will
suggest some questions and further directions for research.
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2 Continuous Case

2.1 R and R/Z

This case has been recorded in so many places and there is no need to repeat it here.
But for comparison with the other contexts, we recall the formulas. The heat kernel
on R is

KR(t, x) = 1√
4πt

e−x2/t .

The heat kernel on the circle R/Z is

KR/Z(t, x) =
∑

n∈Z
e−4π2n2t e2πinx .

This expression comes from spectral considerations and equals the following
periodization (i.e. one sums over the discrete group Z to obtain a function on the
quotient R/Z, like in the proof of the Poisson summation formula):

1√
4πt

∑

m∈Z
e−(x+n)2/4t .

Setting x = 0 in the former expression, removing 1, and taking the Mellin transform
and dividing by �(s) yields

ζR/Z(s) := 2 · 4−sπ−2sζ(2s),

which is the spectral zeta function of the circle R/Z. If we replace s by s/2 we have

2 · (2π)−sζ(s).

By defining the completed zeta function (in particular by multiplying back the
gamma factor)

ξ(s) := 1

2
2sπs/2�(s/2)ζR/Z(s/2)
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and equating the two heat kernel expressions (Poisson summation formula) one gets
the fundamental functional equation in this form

ξ(1 − s) = ξ(s),

known in the physics literature as the reflection formula for ζ(s).
The identity with the two heat kernel expressions are known to contain moreover

a wealth of theorems, such as the modularity of theta functions and the law of
quadratic reciprocity, see [K12] for a discussion.

2.2 A Few Comments on Further Examples

As recalled in the introduction the definition of spectral zeta function was perhaps
first in [Ca34], in fact he had more general functions using also the eigenfunctions.
This was used for the study of asymptotic properties of the spectrum using
techniques from analytic number theory. Another application is for the purpose of
defining determinants of Laplacians, in topology this was done by Seeley, Ray and
Singer in the definition of analytic torsion, see [R97], and in physics by Dowker,
Critchley, and Hawking [DC76, Ha77], useful in several contexts, see [E12]. A
referee suggested that in this context one can also make reference to the important
heat kernel approach to index theorems, see [BGV92], and to the connection with
Arakelov geometry, see [So92].

The determinant of the Laplacian is defined in the following way, assuming the
analytic continuation of the zeta function to s = 0,

det�X := e−ζ ′X(0).

For the numbers 1, 2, 3, . . . (essentially the circle spectrum) the corresponding
determinant, which formally would be 1 · 2 · 3 . . . = ∞!, has the value

√
2π thanks

to the corresponding well-known special value of ζ(s), and this value is coherent
with the asymptotics of the factorial function n! by de Moivre and Stirling. In fact it
was exactly this constant that Stirling determined.

For tori the corresponding spectral zeta function are Epstein zeta functions.
There are also some studies of spheres with explicit formulas. Osgood, Phillips,
Sarnak [OPS88] showed that the determinant of the Laplacian is a proper function
on the moduli spaces of Riemann surfaces, and could conclude that the set of
isospectral surfaces is pre-compact. In string theory it was important to study how
the determinant of laplacian changes when varying the metric on surfaces.

Spectral functions of Riemannian manifolds will appear in the limit of spectral
zeta functions for certain sequences of graphs. The first more substantial example,
the case of tori, can be found in [FK17].
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3 Discrete Case

To avoid confusion, let me right away emphasize that I am not considering the Ihara
zeta function or any related function. Therefore I do not give references for this
zeta function, other than the book by Terras [Te10], our paper [CJK15] and another
recent reference for the Ihara zeta function of quantum graphs [Sm07].

On the other hand, what is more relevant in our context here, but will not be
discussed, are the spectral zeta functions of quantum metric graphs studied by
Harrison, Kirsten and Weyand, see [HK11, HWK16, HW18] and references therein.
The paper [HW18] even discusses the spectral zeta functions of discrete graphs
exactly in our sense.

Other related papers on spectral functions of (especially finite cyclic) graphs
are those of Knill [Kn13, Kn18] which contain a wealth of interesting ideas, and
some considerations close to topics in [FK17] (we do not however understand his
Theorem 1c in [Kn13], the convergence to a non-vanishing function in the critical
strip, see also his Theorem 10; for us this limiting function is the Riemann zeta
function which of course has zeros.) Knill also defines a function c(s) that coincides
with our ζZ(s) perhaps without connecting it to the graph Z. The asymptotics for
cyclic graphs considered in [Kn13] and [FK17] were also deduced in [Si04]. The re-
proof of Euler’s formulas for ζ(2n) via such asymptotics also appears in [CJK10],
but also here there are earlier references, for example [W91], in view of the form of
Verlinde’s formulas, discussed below.

3.1 Z and Z/nZ

Using the heat kernel on Z in terms of the I -Bessel function, see for example
[KN06] where it is rediscovered, the spectral zeta function of the graph Z is

ζZ(s) = 1

�(s)

∫ ∞

0
e−2t I0(2t)ts

dt

t
, (1)

where it converges as it does for 0 < Re(s) < 1/2. From this definition it is not
immediate that it admits a meromorphic continuation and a functional equation very
similar to classical zetas. However, the following was shown in [FK17]:

Theorem 1 For all s ∈ C it holds that

ζZ(s) = 1

4s
√
π

�(1/2 − s)

�(1 − s)
.

The function

ξZ(s) = 2s cos(πs/2)ζZ(s/2),
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is entire and satisfies for all s ∈ C

ξZ(s) = ξZ(1 − s).

Jérémy Dubout [Du16] observed that in fact one can write this function as
follows:

ζZ(s) =
(−2s
−s

)
. (2)

This makes a connection to the Catalan numbers

Cn = 1

n+ 1

(
2n
n

)

which are ubiquitous in combinatorics (214 such manifestations are listed in the
book by Stanley [St12]).

Problem Could the other ζZd (−n) be thought of as generalizations of the Catalan
numbers?

Note also that (2) immediately shows, what is not a priori clear from the defini-
tion (1), that at negative integers this zeta function takes rational (indeed integral)
values. This is analogous to Riemann zeta function and other Dedekind zeta
functions, by theorems of Hecke, Klingen, Siegel, Deligne and Ribet. I refer to
[Du16] for a fuller discussion on this topic in the graph setting.

Eisenstein series are functions which appear already in classical number theory
as well as in the spectral theory of surfaces with cusps. Our function ζZ(s) can be
seen to be an important fudge factor (also called scattering determinant) for the
Eisenstein series, this comes from Selberg but he does not realize that it is itself a
spectral zeta function and writes just

√
π�(s−1/2)/�(s), see [Se56] We think that

ζZ(s) is undeniably present, the question is whether its appearance is incidental or
part of a general structure. Evidence for the more structural picture could be that for
surfaces Z appears as the fundamental group of the cusps. This leads to the question
whether in higher dimensional Eisenstein series, for example in Langlands’ work
[La76], other graph spectral zeta functions occur. In this context, the Langlands
program, we observe that our function ζZ(s) (or products thereof) is essentially the
value in the Bhanu-Murty-Gindikin-Karpelevich formula at the archimedian place,
see [Bh60, FGKP16, Ch. 8] related to the Harish-Chandra c-function.

Problem Understand the role played by ζZ(s), and perhaps other spectral zeta
functions, in the theory of Eisenstein series and the Langlands program. For
example, ζZ(s) and all the p-adic zeta functions in the last section might appear
together in the Langlands constant term, or Langlands p-adic Gindikin-Karpelevich
formula in [La71].
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The spectral zeta function of the finite cyclic graph Z/nZ (see e.g. [CJK10, FK17]
for details) is

ζZ/nZ(s) = 1

4s

n−1∑

k=1

1

sin2s(πk/n)
.

There exists some literature on finite trigonometric sums, which in our context
appears as the special values

ζZ/nZ(m)

for integral m. Some of these special values are recorded in [FK17]. In particular
since we can transform sin−2 z to cot2 z we have special cases of Dedekind sums
(which again leads into the theory of Eisenstein series as I learnt from Claire Burrin),
see [Z73]. In another context, in the first of the Verlinde formulas, such sums
appear, see [Sz93, Z96] for mathematical discussions. Let Ng,n,d denote the moduli
space of semi-stable n-dimensional vector bundles over a fixed Riemann surface
of genus g and having as determinant bundle a fixed line bundle of degree d . The
formula reads

dimC H 0(Ng,2,0,Lm) = (m + 2)g−1

2g−1

m+1∑

k=1

1

sin2g−2 πk
m+2

.

The right hand side can in our terminology be written as

(m+ 2)g−12g−1ζZ/(m+2)Z(g − 1).

The lead term in the asymptotics as m → ∞ was considered by Witten [W91] to
evaluate the volume of the moduli space in question and here the well-known special
values ζ(2(g−1)) of the Riemann zeta function appears. This is consistent with the
results in [FK17] and indeed earlier in a numerical analysis paper [Si04].

Problem Is the appearance of the special values of spectral zeta function of cyclic
graphs just a coincidence, or are there other cases of the Verlinde formulas that allow
interpretations as spectral zeta functions of graphs? If so, this would be intriguing
and demand for an explanation.

In [FK17], using some of the methods in [CJK10, CJK12], we study the asymptotics
of the spectral zeta function of Zd/AnZ

d as n → ∞ motivated in particular by
statistical physics. One sees there how in the asymptotics, the spectral zeta functions
of the infinite graphs and manifold spectral zeta functions appear. In [FK17]
and [F16] relations to analytic number theory are discussed. Notably there are
reformulations of the Riemann hypothesis and the generalized Riemann hypothesis
for certain Dirichlet L-functions. For example in [F16]: Let m ≥ 3 and let χ be a
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primitive and even Dirichlet character modulo m. For n ≥ 1, define the cyclic graph
L-function

Ln(s, χ) :=
mn−1∑

k=1

χ(k)

sins(πk/mn)
.

Let "n(s, χ) = n−s (π/k)s/2�(s/2)Ln(s, χ). Recall the classical Dirichlet L-
function

L(s, χ) =
∞∑

k=1

χ(k)

ks
.

Friedli’s theorem relates the Riemann hypothesis, on the location of the zeros of this
latter function to a functional relation for the graph functions that imitates the well-
known one for L itself. (This extension of [FK17] seems to me rather surprising.)

Theorem 2 ([F16]) The following two statements are equivalent:

1. For all s with 0 < Re(s) < 1 and Im(s) ≥ 8 we have

lim
n→∞

|"n(s, χ)|
|"n(1 − s, χ)| = 1;

2. In the region 0 < Re(s) < 1 and Im(s) ≥ 8, all zeros of L(s, χ) have real part
1/2.

The first statement holds in any case for all s where L does not vanish. The
appearance of a restriction on the imaginary part has a substantial reason, see
Lemma 3.1 in the proof of the theorem in [F16]. A related lemma with a similar
restriction was proved in the case of the Riemann zeta function and the restriction
was shown to be essential [FK17].

3.2 A Few Comments on Further Examples

As it is pointed out in [FK17] the spectral zeta functions of such fundamental
infinite graphs as the regular trees Tq+1 and the standard lattices Z

d lead into
hypergeometric functions of several variables, more precisely, specializations of
these functions.

The spectral zeta function of Zd is

ζ
Zd (s) = d−s+1/2

√
2π

�((s + 1)/2)

�(s)
F

(d)
C

(s/2, (s + 1)/2; 1, 1, . . . , 1; 1/d2, 1/d2, . . . , 1/d2),
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where F
(d)
C is one of the Lauricella hypergeometric functions in d variables.

Problem It is remarked in [Ex76, p. 49] that no integral representation of Euler
type has been found for FC . We note that if one instead of the heat kernel starts with
the spectral measure in defining ζZd (s), we do get such an integral representation,
at least for special parameters. Does this lead to the missing Euler-type integral
representation formula?

The (q + 1)-regular tree (or Bethe lattice in physics parlance) is the universal
covering of (q + 1)-regular graphs and is therefore a fundamental graph. In
[FK17] an expression for the corresponding zeta function is found, interestingly
via an Euler-type integral that Picard considered and which leads into Appell’s
hypergeometric function F1:

ζTq+1(s) =
q(q + 1)

(q − 1)2(
√
q − 1)2s F1(3/2, s + 1, 1, 3; u, v),

with u = −4
√
q/(

√
q − 1)2 and v = 4

√
q/(

√
q + 1)2.

Problem What functional equations do these spectral zeta functions have? In view
of the many symmetries that such hypergeometric functions have, could one hope
for an s vs 1 − s symmetry or similar identities?

The determinant of the Laplacian (of course removing the trivial eigenvalue 0 from
the product) of a finite graph is known to count the number of spanning trees (with
a root) of the graph. This is called Kirchhoff’s matrix-tree theorem. For infinite
graphs the corresponding determinant is sometimes related to Mahler measures (in
number theory) and more generally to Fuglede-Kadison determinants (in operator
algebras). See [Ly10, CJK10, CJK12] for more about these connections. A famous
value is the determinant of the graph Z

2 which is 4/π times Catalan’s constant;
one my wonder if there are other such values in terms of special values of Dirichlet
L-functions.

4 Totally Disconnected Case

4.1 Qp and Qp/Zp

This follows [CZ17] and the recent master thesis of Mårten Nilsson [Ni18], see these
two sources for further references. Let Qp denote the p-adic numbers and Zp the p-
adic integers. Let dy be the Haar measure on the locally compact additive group Qp

normalized so that the measure of Zp is 1. The Taibleson-Vladimirov Laplacian can
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be defined like pseudo-differential operators via the Fourier transform, alternatively
it is explicitly given as an integral as follows:

�f (x) = p2 − 1

1 − p−3

∫

Qp

f (x)− f (y)

|x − y|3p
dy

for suitable functions f : Qp → C. This gives rise in the usual ways to a heat
equation and a heat kernel, which in this case turns out to be:

Kp(x, t) =
∞∑

k=−∞

(
e−tp2k − e−tp2k+2

)
pkCp−k (x),

where Cpn denotes the characteristic function of the the ball Bpn ={
x ∈ Qp : |x|p ≤ pn

}
. There is another formula for this function:

Kp(x, t) =
∞∑

m=0

(−1)mtm

m!
1 − p2m

1 − p−2m−1
|x|−2m−1

p ,

valid for x �= 0. Now passing to the quotient Qp/Zp (which is analogous to the
periodization done above and is here an integral over Zp), and after that taking the
Mellin transform dividing by �(s), leads to the corresponding spectral zeta function
which is

ζp(s) = (1 − p−1)
p1−2s

1 − p1−2s = p1−2s − p−2s

1 − p1−2s = p − 1

p2s − p
.

Here we complete this function in the following manner:

ξp(s) = sin(2πs)psζp(s),

then we obtain a functional equation of the usual type in the most symmetric form:

ξp(1 − s) = ξp(s).

Since the zeta functions became so simple this relation is more trivial than what we
saw in the other contexts. But still, we see a pattern: From the line R and the circle
R/Z, to the graphs Z and Z/nZ, and now Qp and Qp/Zp, their associated spectral
zeta functions have a non-obvious symmetry s vs 1 − s.

In another direction taking the Laplace transform of the two heat kernel
expressions, Nilsson derives an identity valid for Re(s) > (p/ |x|p)2:

1

s |x|p
∞∑

m=0

(−1)m

sm |x|2mp
1 − p2m

1 − p−2m−1 =
∞∑

k=−∞

p2 − 1

(1 + p2ks)(p2 + p2ks)
pkCpk (x).
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Specializing to certain x gives an identity without p-adics, but only involving
ordinary integers. For example, with x = 1 and s > p2,

1

s

∞∑

m=0

(−1)m

sm

1 − p2m

1 − p−2m−1 =
∞∑

k=0

p2 − 1

(1 + p2ks)(p2 + p2ks)
· pk.

It is natural to compare these considerations with the celebrated Tate’s thesis,
where Tate in particular after a Mellin transform, obtains for each p the local Euler
factor (1 − p−s )−1, instead of our ζp(s). This brings us back to the first paragraph
of this paper.
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A Family of Diameter-Based Eigenvalue
Bounds for Quantum Graphs

J. B. Kennedy

Abstract We establish a sharp lower bound on the first non-trivial eigenvalue
of the Laplacian on a metric graph equipped with natural (i.e., continuity and
Kirchhoff) vertex conditions in terms of the diameter and the total length of the
graph. This extends a result of, and resolves an open problem from, [J. B. Kennedy,
P. Kurasov, G. Malenová and D. Mugnolo, Ann. Henri Poincaré 17 (2016), 2439–
2473, Section 7.2], and also complements an analogous lower bound for the
corresponding eigenvalue of the combinatorial Laplacian on a discrete graph. We
also give a family of corresponding lower bounds for the higher eigenvalues under
the assumption that the total length of the graph is sufficiently large compared with
its diameter. These inequalities are sharp in the case of trees.

Keywords Quantum graphs · Spectral geometry of quantum graphs · Bounds on
spectral gaps
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1 Introduction

Let G be a connected, compact metric graph with a finite number of edges and
let −� denote the Laplacian operator on L2(G) with natural (i.e., continuity and
Kirchhoff) vertex conditions.1 Since −� can be shown by standard means to be a

1We recall that these conditions are also called standard, Neumann–Kirchhoff or even just
Neumann conditions in the literature.

J. B. Kennedy (�)
Grupo de Física Matemática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande,
Lisboa, Portugal
e-mail: jbkennedy@fc.ul.pt

© Springer Nature Switzerland AG 2020
F. M. Atay et al. (eds.), Discrete and Continuous Models in the Theory
of Networks, Operator Theory: Advances and Applications 281,
https://doi.org/10.1007/978-3-030-44097-8_11

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44097-8_11&domain=pdf
mailto:jbkennedy@fc.ul.pt
https://doi.org/10.1007/978-3-030-44097-8_11


214 J. B. Kennedy

self-adjoint operator with compact resolvent, one obtains the existence of a discrete
sequence of eigenvalues of this operator, which we think of as eigenvalues of the
quantum graph itself, having the form

0 = μ1(G) < μ2(G) ≤ μ3(G) ≤ . . . →∞; (1.1)

the corresponding eigenfunctions may be chosen to form an orthonormal basis of
L2(G). We refer to the monographs [12, 30] and the seminal review article [20] as
well as Sect. 2 for more details.

It is a major preoccupation of spectral geometry to investigate how the sequence
of eigenvalues (1.1) of a differential operator such as the Laplacian depends on the
structure, be it total size, shape, degree of connectivity etc., of the underlying object
on which it is defined. For operators on domains and manifolds, this goes back at
least to conjectures of Saint Venant and Lord Rayleigh in the mid-to-late nineteenth
century (see [33]; we refer also to [21, 22] for more modern overviews of the field).
In the case of quantum graphs, that is, metric graphs with a differential operator
defined on them, the first work in this direction appeared about 30 years ago [32],
where it was proved that the first non-trivial eigenvalue μ2(G) of the Laplacian with
natural conditions on a graph whose total length, i.e., the sum of all its edge lengths,
is L > 0 satisfies

μ2(G) ≥ π2

L2 , (1.2)

the right-hand side corresponding to the first non-trivial eigenvalue on an interval
of the same total length L as G. After a lull in the 1990s and early 2000s, in
the last few years there seems to have been an explosion of interest in the topic,
as witnessed by the long list of works establishing bounds on some or all of the
eigenvalues (1.1), for example in terms of the total length, diameter, number of
edges or vertices, edge connectivity,. . . of the graph, or establishing properties
of extremising graphs realising the bounds, or developing tools with which the
eigenvalues can be manipulated, or else considering similar problems for related
nonlinear operators. We refer to [1–4, 6, 8, 10, 11, 16, 18, 24–27, 34–36] and mention
in particular the generalisation of (1.2) to the higher eigenvalues [18]

μk(G) ≥ π2(k − 1)2

L2 , (1.3)

with equality if and only if G is an equilateral k-star, a graph consisting of k edges
of equal length L/k, all joined together at exactly one common vertex.

The goal of the present contribution is to give lower a bound on μk(G) in terms
of the total length L ∈ (0,∞) of the graph G and its diameter

D := diam(G) := sup{dist(x, y) : x, y ∈ G} ∈ (0, L],



A Family of Eigenvalue Bounds for Quantum Graphs 215

where the distance is with respect to the canonical (Euclidean) metric in G, i.e., the
shortest Euclidean path within G connecting the points x and y, and the supremum
is in fact a maximum since G is assumed to be compact.

For k = 2, this problem was first studied in [24, Section 7.2], where a non-trivial
but non-sharp lower bound for μ2 was given, and the question of obtaining the best
possible bound was left open (see Remark 7.3(a) there). Here, by using some more
advanced tools developed recently in [10] (which we call surgery principles), we
can give a complete answer: our main theorem is as follows.

Theorem 1.1 Assume that G is a connected, compact metric graph with a finite
number of edges of total length L > 0 and diameter diam(G) = D ∈ (0, L). Then
μ2(G) is larger than the square ω2 of the smallest positive solution ω > 0 of the
transcendental equation

cos

(
ωD

2

)
= ω(L−D)

2
sin

(
ωD

2

)
; (1.4)

the number ω2 satisfies the two-sided bound

1

LD
< ω2 <

12

LD
. (1.5)

Equality is never attained on any fixed graph, but there is a sequence of graphs Dn

each of length L and diameter D such that μ2(Dn) → ω2 as n →∞.

To describe our result for the higher eigenvalues μk , k ≥ 3, we first recall that
the (first) Betti number β = β(G) of the graph G is defined to be the number of
independent cycles of G; equivalently, if G has E edges and V vertices, then it is
given by β = E − V + 1. In particular, we have β = 0 if and only if G is a tree. We
will require that L be “large” compared with D in the sense that the quantity

γ (L,D, k, β) :=
{

L
k−β

− D
2 if k > β,

L
k
− D

2 otherwise,
(1.6)

will be assumed to be positive.

Theorem 1.2 Assume that G is a connected, compact metric graph with a finite
number of edges of total length L > 0 and diameter diam(G) = D ∈ (0, L), and
that the quantity γ = γ (L,D, k, β) defined by (1.6) is strictly positive. Further
assume that no loop2 in G is longer than D. Then μk(G) is larger than the square
ω2
k,β of the smallest positive solution ω = ωk,β > 0 of the transcendental equation

cos

(
ωD

2

)
= ωγ sin

(
ωD

2

)
; (1.7)

2By a loop we mean an edge which starts and ends at the same vertex, possibly after the suppression
of vertices of degree two. A precise definition is given in [13, Definition 3.1].
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the number ω2
k,β satisfies the two-sided bound

2

Dγ + D2

2

≤ ω2 ≤ 2

Dγ − D2

6

. (1.8)

There is a sequence of tree graphs Tn each of length L and diameter D such that
μk(Tn) → ω2

k,0 as n →∞.

While Theorem 1.2 is essentially optimal for trees, we expect that improvements
may be possible if β ≥ 1. We give some remarks to this effect in Sect. 5.

To describe concrete sequences Dn and Tn of optimisers, and at the same time to
explain the meaning of (1.4) and (1.7), we first need to introduce a particular class
of graphs, which will also play a role in the proofs.

Definition 1.3 Fix suitable numbers n ∈ N, n ≥ 2, and 0 < D ≤ L. We denote by

Sn = S(L,D, n)

the unique star graph having n+ 1 edges, total length L and total diameter D, such
that there is one distinguished edge e0 of length �0 = (nD − L)/(n − 1) and n

identical edges of length �1 = (L−D)/(n− 1) each, all joined at a common vertex
(see Fig. 1).

Of interest will be the smallest eigenvalue

λ1(Sn)

of the Laplacian with a Dirichlet (zero) condition at the degree-one vertex v0 at the
end of e0 and natural conditions at all other vertices (see Sect. 2 for more details on
our notation). Observe that, for fixed L and D, as n →∞ the length �0 of the edge
e0 to D, and the other edges contract to a point: in the limit, we have an interval
of length D with a kind of point mass of size L − D at one endpoint. Henceforth,
whenever we speak of stars, we shall always mean stars of this form.

The link to Theorem 1.1 is that the graphs Sn with length L/2 and diameter D/2
are the “building blocks” for a sequence of limiting domains Dn. More precisely,
we can form Dn by gluing together two copies of Sn at their respective Dirichlet
vertices (the corresponding domain, a symmetric star dumbbell in the language of

e0 e0v0 v0

Fig. 1 The stars S7 (left) and S11 (right), for given L and D. The white circles at v0 indicate
Dirichlet vertex conditions
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[24, Section 7.2], is pictured in Fig. 3 in Sect. 3); we then have μ2(Dn) = λ1(Sn)

and each copy of Sn corresponds to a nodal domain of the eigenfunction of μ2(Dn)

(see Sect. 3 for more details). Similarly, the domains Tn can be formed by taking
k copies of Sn (each now with length L/k and diameter D/2) and joining them at
their common Dirichlet vertex; then μk(Tn) = λ1(Sn). As n →∞, the Tn converge
to an equilateral k-star with diameter D and a point mass of size γ at each vertex
of degree one, thus recalling the equilateral k-stars which were the optimisers in the
inequality (1.3).

The next proposition summarises the properties of these stars Sn, and in
particular provides a rigorous justification of the formulae (1.4) and (1.7); it also
implies the bounds on ω2 given in (1.5) in Theorem 1.1, and on ω2

k,β in (1.8) in
Theorem 1.2 (where Sn is chosen to have diameter D/2 and length L/(k − β) if
k > β or L/k otherwise).

Proposition 1.4 Suppose L > 0 and D ∈ (0, L] are given and, for n ≥ 2, Sn is
the star graph described in Definition 1.3 having length L and diameter D. Denote
by λ1(Sn) the first eigenvalue of the Laplacian on Sn with a Dirichlet condition at
the degree one vertex v0 of the edge e0 and natural conditions at all other vertices.
Then

(1) the sequence (λ1(Sn))n≥1 is strictly decreasing in n, and as n → ∞, the
eigenvalue λ1(Sn) converges from above to the square ω2 of the smallest
positive solution ω > 0 of the transcendental equation

cos(ωD) = ω(L−D) sin(ωD); (1.9)

(2) the number ω2 from (1) is the smallest (strictly) positive eigenvalue of the
problem

−u′′(x) = ω2u(x) in (0,D),

u(0) = 0,

u′′(D)+ 2

L−D
u′(D) = 0;

(1.10)

(3) for fixed L, the number ω2 from (1) is a strictly decreasing function of D ∈
(0, L];

(4) the number ω2 from (1) satisfies the bounds

4

LD
<

4

LD − D2

2

≤ ω2 ≤ 48

3LD − 2D2
<

48

LD
.

The condition in (1.10), which is usually called a generalised Wentzell-type
boundary condition, reflects the concentration of mass at one endpoint of the star
Sn as n → ∞. (The term Wentzell boundary condition is usually used to describe
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the situation where the differential operator, in this case the Laplacian, itself appears
in the boundary condition. We refer to [5, 31] for more information in the case of
the Laplacian on domains.)

Remark 1.5

(a) The stars Sn are not the only building blocks we could use to construct suitable
Dn and Tn: in principle, we simply need a sequence of domains converging
in an appropriate sense to an interval of given diameter, with a suitable point
mass at one end described by the Wentzell condition in (1.10). These could, for
example, be suitably chosen stowers (see [8, Example 1.5]) with one long edge
e0 and short loops in place of short pendant edges. We will use stars as they are
easier to handle in our context.

(b) In [24, Section 7.2], in place of (1.4) the lower bound is the square ω̃2 of the
smallest positive solution of

cos(2ω̃D) = (L− 2D)ω̃ sin(2ω̃D)

as long as D ≤ L/2; this number satisfies ω̃2 > 1/(2LD).3 There, proofs of
statements corresponding to Proposition 1.4(1) and (2) are given (in a slightly
different form). The derivation of Eq. (1.10) from (1.9) is also described there;
see [24, Remark 7.3(c)]. However, the proof of Theorem 1.1 uses an essentially
different set of tools from the proof of the corresponding main result [24,
Theorem 7.2]. Indeed, here we will make use of both a new transplantation
principle and an Hadamard-type length perturbation formula (see Sect. 2 for
details).

Finally, we remark that Theorem 1.1 and Proposition 1.4 recall very much results
for the first non-trivial eigenvalue of discrete graph Laplacians (this eigenvalue is
often called the algebraic connectivity of the discrete graph), in terms of the number
of vertices of the graph–the discrete equivalent of its size, i.e., length–as well as the
(now integer-valued) diameter. We reproduce the statements here in our language
for ease of comparison.

Proposition 1.6 ([17], Corollary 3.3) Let T be any (discrete) tree with diameter
D ≥ 3 and V ≥ 4 vertices. Assume that V −D is odd. Then the smallest non-trivial
discrete Laplacian eigenvalue of T is at least as large as that of a symmetric star
dumbbell formed by a chain of edges (“handle”) of length D−2, with (V−D+1)/2
pendant edges attached to each end. (If V − D is even, one edge must be removed
from one of the pendant stars.)

In fact, it seems plausible to expect that this result should hold for all graphs on
V vertices, not only trees (just as our result holds independently of the topology of
the graph). To the best of our knowledge this has not been proved; however, there

3There was an arithmetic error in the upper bound in [24, Remark 7.3(a)]; namely, it was too small
by a factor of 4.
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is a slightly older result which is valid for all graphs, which very much recalls our
estimate (1.5), and which is at least asymptotically optimal as V →∞.

Proposition 1.7 ([29], Theorem 4.2 and Example After It) Let G be any discrete
graph with diameter D ≥ 1 and V ≥ 2 vertices. Then its smallest non-trivial
Laplacian eigenvalue is at least as large as 4/(DV ). Equality is achieved in the
limit as V → ∞ for fixed D by discrete analogues of the symmetric star dumbbells
described in Proposition 1.6.

In fact, this bound was extended very recently to infinite discrete graphs equipped
with a probability measure in place of the usual one (so that the total “length” is one)
and finite diameter; see [28, Corollary 3.7]. It would be interesting to know whether
the latter result could be extended to quantum graphs, and to know what happens
in the case of the higher eigenvalues. We thank Delio Mugnolo for bringing these
results to our attention.

In Sect. 2 we will recall from [10] the elementary but powerful technical tools we
will need for the proofs; for the sake of readability we will provide proof sketches
here but refer to [10] for full details. In Sect. 3 we give the proof of Proposition 1.4
together with a detailed analysis of the stars Sn as well as their counterparts, the
symmetric star dumbbells Dn, and how their eigenvalues depend on parameters
like length and diameter. These will be needed in the proofs of Theorem 1.1
and 1.2, which are in Sect. 4. Finally, in Sect. 5, we discuss the role of some of
the assumptions in Theorem 1.2, and the possibility that they may be weakened.

2 Background Results: Surgical Tools

In this section we recall both the formal definition of the Laplacian on a quantum
graph and the characterisation of its eigenvalues, as well as the “surgery” tools we
shall need from [10].

Formally, the metric graph G is taken to consist of a set of edges E =
{e1, . . . , eM }, each of which may be identified with an interval ej ∼ [0, �j ],
j = 1, . . . ,M , and a set of vertices V = {v1, . . . , vN }; we write ei ∼ ej if ei
and ej are adjacent (share a vertex), and in a slight abuse of notation e ∼ v if the
vertex v is incident with the edge e, and e ∼ vw if e runs from v to w (i.e., both
are incident with e). We always assume our graph to be connected, but we explicitly
allow it to have loops (e ∼ vv for some v ∈ V) and multiple edges running between
two given vertices; in the latter case we speak of parallel edges. A pendant edge is
any edge which ends at a vertex of degree one; the latter may be referred to as a
pendant vertex.

We consider the operator associated with the bilinear form a : H 1(G)×H 1(G) →
R,

a(f, g) :=
∫

G
f ′g′ dx ≡

∑

e∈E

∫

e

f ′g′ dx, (2.1)
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where

L2(G) *
⊕

e∈E
L2(e), H 1(G) = {f ∈ L2(G) : f ′ ∈ L2(G)}.

Here f ′ is to be interpreted in the distributional sense, and the space H 1(G) ↪→
C(G) in particular encodes both the vertex incidence relations and the vertex
conditions. Indeed, the corresponding operator is given by the negative Laplacian
(negative of the second derivative) on each edge. Its operator domain consists of
those H 1-functions which, in addition to being automatically continuous across the
vertices as members of H 1(G), also satisfy the Kirchhoff condition

∑

e∼v

f |′e(v) = 0

at every vertex v ∈ V , where f |′e is the derivative of the function along the edge
e pointing into v. The associated smallest non-trivial eigenvalue μ2(G), often also
called the spectral gap since μ1(G) = 0, admits the variational characterisation4

μ2(G) = inf

{∫
G |f ′|2 dx
∫
G |f |2 dx

: 0 �= f ∈ H 1(G),
∫

G
f dx = 0

}
(2.2)

with equality if and only if f is a corresponding eigenfunction, which we will tend
to denote by ψ . For the higher eigenvalues, the usual min-max characterisation of
Courant–Fischer type is available: we have

μk(G) = inf
M⊂H 1(G)

max
0 �=f∈M

∫
G |f ′|2 dx
∫
G |f |2 dx

, (2.3)

where the infimum is taken over all subspaces of H 1(G) of dimension k, and equality
is achieved by any set M consisting of k linearly independent eigenfunctions
corresponding to μ1, . . . , μk (see [10, Sections 2 and 4.1], also for a characterisation
of the sets achieving equality in (2.3), which is more complicated than for μ2 and
seems little known).

If instead we wish to consider the Laplacian with Dirichlet (zero) vertices on a
subset VD ⊂ V , our form is still given by (2.1) but our form domain changes to
H 1

0 (G) := {f ∈ H 1(G) : f (v) = 0 for all v ∈ VD} (the set VD being clear from the

4Note that we use the numbering convention from [10]. Both the notation and the numbering
condition in [24] are different; there, λ1(G) > 0 is the smallest non-trivial eigenvalue of the
Laplacian with natural vertex conditions.
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context). In this case, we will denote the eigenvalues by 0 < λ1(G) < λ2(G) ≤ . . .,
where the smallest eigenvalue is given by

λ1(G) = inf

{∫
G |f ′|2 dx
∫
G |f |2 dx

: f ∈ H 1
0 (G)

}
; (2.4)

again, there is equality if and only if f is a corresponding eigenfunction. As is
standard, we shall call the quotient appearing in (2.2)–(2.4) the Rayleigh quotient
(of the function f ).

Finally, if ψ is an eigenfunction associated with any one of the eigenvaluesμk(G)
or λk(G), k ≥ 1, then we call the closures of the connected components of the set

{x ∈ G : ψ(x) �= 0}

the nodal domains of the function ψ . (Any edges on which ψ vanishes identically
are considered not to lie in any nodal domain.) If k ≥ 2, then ψ must change
sign in G, since it is orthogonal in L2(G) to the eigenfunction associated with the
smallest eigenvalue, which does not change sign and can easily be shown not to
vanish anywhere (except on the set of Dirichlet vertices in the case of λ1).

We refer to both the monographs [12, 20, 30] as well as the introductions and
preliminary sections of [10, 11, 24] etc. for more details on these preliminaries.

We now collect the tools that we will need in the sequel. These are all based
purely on the variational characterisations (2.2), (2.4) of the eigenvalues; most are
from [10] although some have appeared in various guises throughout the recent
literature. We start with the most elementary, which we take from [10, Theorem 3.4]
but which has also appeared elsewhere.

Lemma 2.1 Suppose the graph G̃ is formed from G by gluing together two vertices
v1, v2 ∈ V(G), i.e., every edge that had v1 or v2 as an endpoint in G has a new
common vertex v0 ∈ V(G̃). Then λk(G̃) ≥ λk(G) and μk(G̃) ≥ μk(G) for all k ≥ 1.
For λ1 (corresp. μ2) equality holds if and only if there is an eigenfunction ψ of
λ1(G) (corresp. μ2(G)) such that ψ(v1) = ψ(v2). In this case, the image of ψ

under the gluing procedure remains an eigenfunction of λ1(G̃) (corresp. μ2(G̃)).

Proof The inequality follows from the identification of H 1(G̃) as a subspace of
H 1(G), but such that the form (2.1) itself is the same. The characterisation of
equality follows from the fact that the minimum in (2.2) (corresp. (2.4)) is achieved
if and only if the function is a corresponding eigenfunction. This is also a special
case of [10, Theorem 3.4]; the inequality itself has appeared in multiple places
including [12, Theorem 3.1.8]. �
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Lemma 2.2 Suppose the graph G̃ is formed from G by lengthening an edge in G.
Then λ1(G̃) ≤ λ1(G) and μ2(G̃) ≤ μ2(G). Each of the inequalities is strict if there
is a corresponding eigenfunction on G which does not vanish identically on the edge
in question.

Proof This is contained in [10, Corollary 3.12(1)]. �
Lemma 2.3 Suppose ψ is an eigenfunction corresponding to μk(G), k ≥ 2, and
suppose ψ has m ≥ 2 nodal domains, which we denote by G1, . . . ,Gm. If we equip
each of the Gi with Dirichlet conditions on the (finite) set Gi ∩ {x ∈ G : ψ(x) = 0},
then μk(G) = λ1(Gi ) and ψ|Gi

is an eigenfunction corresponding to λ1(Gi ), for all
i = 1, . . . ,m.

Proof Fix i = 1, . . . ,m. Since ψ|Gi
∈ H 1

0 (Gi ) is a valid test function on Gi , whose
Rayleigh quotient is seen to be equal to its Rayleigh quotient on G, i.e., μk(G). Thus
μk(G) ≥ λ1(Gi ). Conversely, since ψ|Gi

satisfies the strong form of the eigenvalue
equation, including the zero condition, it must be an eigenfunction of λj (Gi ) for
some j ≥ 1. But it does not change sign on Gi ; in fact, it is strictly different
from zero everywhere on Gi outside the set of Dirichlet vertices. Now λ1(Gi ) is
immediately seen to have an eigenfunction ϕi not changing sign on Gi (if ϕ is
an eigenfunction, just replace it by |ϕ| in (2.4)). Hence the L2(Gi )-inner product
of ψ|Gi

and ϕi is not zero. Since both are eigenfunctions of the same Dirichlet
eigenvalue problem, they must belong to the same eigenspace. It follows that ψ|Gi

corresponds to λ1(Gi ) and μk(G) = λ1(Gi ). �
We also have the following statement, which is complementary to Lemma 2.3

and an immediate consequence of the min-max principle (2.3). It relates μk(G) to
k-partitions of G. In the context of domains and manifolds, there is a large literature
relating such partitions to the eigenvalues of the underlying domain or manifold
and the nodal count of the associated eigenfunctions. We refer to [14] for a recent
survey; for quantum graphs less has been done, but we refer to [7, 23].

Lemma 2.4 SupposeH1,H2, . . . ,Hk form a partition of G, that is, H1,H2, . . . ,Hk

are closed graphs whose intersection is at most a finite set. Assume that
∂Hi = {x ∈ G : x ∈ Hi ∩ G \Hi} is equipped with Dirichlet conditions,
i = 1, 2, . . . , k. Then μk(G) ≤ max{λ1(H1), λ1(H2), . . . , λ1(Hk)}.
Proof Denote by ϕi ∈ H 1

0 (Hi ) any eigenfunction corresponding to λ1(Hi ), i =
1, . . . , k. Extend ϕi by zero on the rest of G to obtain a function ϕ̃i in H 1(G) whose
Rayleigh quotient is still λ1(Hi ). Note that for i �= j the sets where ϕ̃i �= 0 and
ϕ̃j �= 0 are disjoint in G, so in particular the functions are linearly independent. The
desired inequality now follows immediately upon taking M := span{ϕ̃1, . . . , ϕ̃k}
in (2.3). �

We already observed that when k = 2, any corresponding eigenfunction ψ

has (at least) two nodal domains. In the case k ≥ 3, the precise number of nodal
domains will be important to us. We thus recall the following general result from [9,
Theorem 2.6].
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Lemma 2.5 Fix k ≥ 1 and suppose μk(G) is simple and its eigenfunction ψ does
not vanish at any vertex v ∈ V . Then the number m of nodal domains of ψ is
bounded by

k − β ≤ m ≤ k, (2.5)

where we recall that β = |E | − |V | + 1 is the (first) Betti number of G.

We now give two surgery lemmata which will be central to the proof of
Theorem 1.1. The first shows us that altering a graph by transferring “mass” from
where its eigenfunction is smaller to where it is larger lowers the eigenvalue, and is
adapted from [10, Theorem 3.18(1)].

Lemma 2.6 (Transplantation Lemma) Suppose ψ ≥ 0 is an eigenfunction
corresponding to λ1(G). Suppose there is a vertex v ∈ V(G) and edges e1, . . . , ek ∈
E(G) such that

sup{ψ(x) : x ∈ e1 ∪ . . . ∪ ek} ≤ ψ(v), (2.6)

and the total length of these edges is |e1| + . . .+ |ek| = � > 0. Form a new graph
G̃ from G by deleting the edges e1, . . . , ek (deleting also any vertices of degree one)
and inserting new pendant edges at v and/or lengthening existing edges in G to
which v is incident; any Dirichlet vertices in G not deleted should be preserved in
G̃. Suppose that the total length of the additions and extensions is equal to or greater
than �. Then λ1(G̃) ≤ λ1(G). The inequality is strict provided ψ(v) > 0.

By deleting an edge, we always mean removing the edge in question without
gluing its endpoints together; in particular, this process could disconnect the graph.
See Fig. 2.

Proof This is actually an easy special case of [10, Theorem 3.18(1)], which is also
valid for μ2, for more general transplantation procedures, and for more general
vertex conditions. Here, this follows simply by constructing a test function

ϕ(x) :=
{
ψ(x) if x ∈ G ∩ G̃,
ψ(v) if x ∈ G̃ \ G.

v v

Fig. 2 The graph on the left is transformed into the graph on the right by transplantation to v. On
the left, the dashed lines indicate the edges to be deleted, while on the right, they represent the
insertion of new, and lengthening of existing, edges. These are chosen in such a way that the total
length is preserved, or increased
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Then condition (2.6) guarantees that ‖ϕ‖L2(G̃) ≥ ‖ψ‖L2(G); while since ϕ is

constant on G̃ \ G and identical to ψ elsewhere, we obviously have ‖ϕ′‖L2(G̃) ≤
‖ψ‖L2(G). The inequality now follows from (2.4).

The strictness if ψ(v) > 0 holds because in this case ϕ, being locally equal to
a nonzero constant, cannot be an eigenfunction of G̃; hence it has strictly larger
Rayleigh quotient than λ1(G̃). �

We finish with a perturbation formula giving the rate of change of a simple
eigenvalue with respect to a perturbation of the edge lengths; such a formula is often
referred to as being of Hadamard type, by way of analogy with the formulae for the
derivative of an eigenvalue on a domain with respect to shape perturbations. The
following formula has appeared in the literature multiple times, possibly beginning
with [19].

Lemma 2.7 (Hadamard-Type Formula) Let λ be a simple eigenvalue of the
Laplacian (with either all natural or some natural and some Dirichlet vertices),
with eigenfunction ψ normalised to have L2-norm 1. Then the quantity

Ee := λψ(x)2 + ψ ′(x)2, x ∈ e, (2.7)

is constant on each edge e ∈ E . Moreover,

(1) The derivative of λ with respect to the edge length |e| exists and equals

dλ

d|e| = −Ee.

(2) In particular, the rate of change of λ with respect to lengthening e1 and
shortening e2 by the same amount is strictly negative if and only if

Ee1 > Ee2 .

The quantity (2.7) is called the Prüfer amplitude (of the eigenfunction ψ on the
edge e).

Proof The formula in (1) may be found in [19], [15, Appendix A] and [8,
Lemma 5.2] (probably among others). Part (2) is an immediate application, and
can at any rate be found, together with (1), in [10, Section 3.2]. �

3 Properties of Stars and Dumbbells

In addition to the stars Sn of Definition 1.3 we will need a second, related class of
graphs, which also appeared in [24].
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Fig. 3 A star dumbbell with n = 7 (left); the symmetric star dumbbell D11 (right): the handle has
length (11D − L)/10, while all 22 short pendant edges have length (L−D)/20 each

Definition 3.1

(1) Fix suitable numbers n ∈ N and �0 > 0, �1, �2 ≥ 0. A star dumbbell will for
us be a graph consisting of a finite edge (a handle) e0 of length �0 connecting
two distinct vertices v1 and v2, to each of which are attached n pendant edges
each of length �1 at v1, and a further n pendant edges of length �2 at v2. We will
denote such a graph by D = D(�0, �1, �2, n). The set of n pendant edges at vi
of length �i each will be denoted by Pi , i = 1, 2.

(2) A symmetric star dumbbell is a star dumbbell with the additional property that
�1 = �2.

See Fig. 3. If L > 0 and D ∈ (0, L) are fixed, for n ≥ 2 sufficiently large the
symmetric star dumbbell of the form

Dn = Dn(L,D) := D
(
nD − L

n− 1
,

L−D

2(n− 1)
,

L−D

2(n− 1)
, n

)
(3.1)

has total length L and diameter D, and is seen to consist of two identical copies
of Sn = S(L2 ,

D
2 , n) imagined as being glued together at their respective Dirichlet

vertices.
The link between Sn and Dn is made more precise in Lemma 3.4; first, we need

two lemmata describing the relevant eigenfunctions of Sn and Dn.

Lemma 3.2 Let S = S(L,D, n) be any star with n ≥ 2 and 0 < D ≤ L. The
eigenfunction associated with λ1(S), when chosen positive, is strictly increasing
away from the Dirichlet vertex v0, with vanishing derivative only at the Kirchhoff
vertices of degree one, and is invariant with respect to permutations of the n

identical edges of length �1.

Proof Note that λ1(S) is simple as it is the smallest eigenvalue and denote by ψ

the corresponding eigenfunction, chosen non-negative in S. Let e1, . . . , en be the n

equal edges of length �1; then the function ϕ ∈ H 1(S) given by the average value

ϕ = 1

n

n∑

j=1

ψ|ej
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on each of e1, . . . , en and ϕ|e0 = ψ|e0 is invariant under permutations of the edges
e1, . . . , en, and immediately seen to satisfy the (classical) eigenvalue equation for
λ1(S). Since λ1(S) is simple, the only possibility is that ϕ = ψ everywhere.

To show that ψ is strictly monotone, it suffices to show that ψ ′ cannot vanish
identically at any interior point (at the central vertex v1, this means ruling out
ψ|′ej (v1) = 0 edgewise). Since ψ cannot change sign on S, nor be identically equal
to a nonzero constant on a set of positive measure, if ψ ′ vanishes, then ψ has a strict
interior maximum. In this case, it must reach a non-negative local minimum at either
an interior point of one of the edges or a (Neumann–Kirchhoff) vertex v. In the first
case, the (one-dimensional) maximum principle is violated directly. In the second
case, since we certainly have ψ|′ej (v) = 0 for all edges ej ∼ v, we may equally
apply the one-dimensional maximum principle to obtain a contradiction. �
Lemma 3.3 Suppose D = D(�0, �1, �2, n) is any star dumbbell, �0, �1, �2 > 0,
n ≥ 1. Assume that �0 > max{�1, �2}, i.e., the handle is longer than the
pendant edges, or that �1 = �2, i.e., D is symmetric. Then μ2(D) is simple and
its eigenfunction ψ , unique up to scalar multiples, is invariant with respect to
permutations of the edges within each pendant collection of edges Pi , i = 1, 2.

Proof Fix one of the Pi . Then we may choose a basis of L2(D) made of eigen-
functions such that each either takes the value 0 at the central vertex vi of Pi (the
eigenfunction is “odd”), or it is invariant with respect to permutations of the edges
in Pi (it is “even”). (Indeed, if ψ is any eigenfunction and e1, . . . , en are the edges
of Pi , then it suffices to consider instead the eigenfunction (ψ|e1 + . . . + ψ|en )/n
as in Lemma 3.2, together with its orthogonal complement in the span of ψ .) We do
this for both Pi .

Equipped with this basis, we note that the eigenfunctions which are “even” with
respect to both Pi are all simple within the space of all such “even” eigenfunctions,
since their value at any point depends only on that point’s position along any path of
D realising the diameter (and thus they correspond to one-dimensional problems).
Hence, to prove the lemma, it is sufficient to show that the smallest non-constant
of these has a smaller eigenvalue than any of the “odd” eigenfunctions, each of the
latter being supported without loss of generality only on one of the Pi . Indeed,
under the assumption �1 ≥ �2, the smallest eigenvalue associated with an odd
eigenfunction is π2/�2

1, corresponding to an eigenfunction each of whose two nodal
domains corresponds to exactly one pendant edge of S1. If �0 > �1 or if �1 = �2,
an elementary calculation shows that the (unique) zero of the even eigenfunction ψ

with the smallest eigenvalue must lie in the interior of the handle e0. In particular,
each edge of P1 is strictly contained in one the nodal domains of ψ; and thus the
eigenvalue of ψ is strictly smaller than π2/�2

1. �
Lemma 3.4 Fix 0 < D ≤ L and n ≥ 2. Denote by Dn(L,D) the symmetric star
dumbbell with total length L and diameter D. Then

μ2(Dn(L,D)) = λ1

(
S
(
L

2
,
D

2
, n

))
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and the two copies of S(L2 ,
D
2 , n) embedded in Dn(L,D) are the two nodal domains

of the eigenfunction corresponding to μ2(Dn(L,D)).

Proof This follows immediately from Lemmata 3.2 and 3.3, the latter in the
form valid for symmetric star dumbbells. Alternatively, this statement is contained
implicitly in [24, Proof of Lemma 7.6]. �

With this background, we can now give the proof of Proposition 1.4. As
mentioned in the introduction, (1) and (2) were proved in [24] (in a slightly different
form), and to avoid repetition of the somewhat tedious calculations we will not give
their proofs again here.

Proof of Proposition 1.4

(1) and (2) For all n ≥ 2, as shown in Lemma 3.4, we have

λ1(Sn) = μ2(Dn)

where Dn is the symmetric star graph having total length 2L and diameter 2D.
The statements (1) and (2) now follow from [24, Lemma 7.6 and its proof] and
[24, Remark 7.3(c)], respectively, bearing in mind that diam(Dn) = 2D and
|Dn| = 2L. For an alternative proof of (1), see Lemma 3.5(1).

(3) We introduce the notation

F(ω,D) := cos(ωD)− ω(L−D) sin(ωD).

and wish to show that the derivative of ω with respect to D is negative when
L > D:

∂ω

∂D
= − ∂F

∂D

/ ∂F

∂ω
= ω sin(ωD)− ω sin(ωD)+ ω2(L−D) cos(ωD)

−D sin(ωD)− (L−D) sin(ωD)− ω(L−D)D cos(ωD)

= − ω2(L−D) cos(ωD)

L sin(ωD)+ ω(L−D)D cos(ωD)
.

Using the relation cos(ωD) = ω(L − D) sin(ωD), i.e., F(ω,D) ≡ 0, which in
particular implies that neither cos(ωD) nor sin(ωD) can be zero, we have

∂ω

∂D
= − ω3(L−D)2 sin(ωD)

(L+ ω2(L−D)2D) sin(ωD)
= − ω3(L−D)2

L+ ω2(L−D)2D
< 0

since ω > 0 by assumption.
(4) See [24, Remark 7.3(a) and proof of Theorem 7.2]. �

We next give two lemmata showing how the eigenvalues of stars and star
dumbbells depend on changes in the parameters (total length, diameter etc.). The
key tool in both is the Hadamard formula, Lemma 2.7.
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Lemma 3.5

(1) For fixed L > 0 and D ∈ (0, L), the function

n �→ λ1 (S (L,D, n))

is strictly decreasing in n ≥ 2.
(2) For fixed L > 0 and n ≥ 2, the function

D �→ λ1(S(L,D, n))

is strictly decreasing in D ∈ (0, L).
(3) Fix L > 0, D > 0 and n ≥ 2. Then for each L1 > L there exists n1 ≥ n such

that

λ1(S(L1,D, n1)) < λ1(S(L,D, n)).

Proof

(1) Although this could be derived from an analysis of the corresponding secular
equation, cf. the proof of Proposition 1.4, we will show how it can be obtained
via the transplantation lemma 2.6. Essentially the same proof will also yield
(3).
Fix any numbers n2 > n1 ≥ 2. Denote by ψ the eigenfunction of
λ1(S(L,D, n1)), chosen positive, by v1 the central vertex (i.e., of degree
n1 + 1) of S(L,D, n1), and by

�1 := L−D

n1 − 1
>

L−D

n2 − 1
=: �2

the lengths of the identical edges of S(L,D, n1) and S(L,D, n2), respec-
tively. Now by Lemma 3.2, we know that ψ takes on the same value at the n1
points at distance �2 to a degree one Kirchhoff vertex of S(L,D, n1). Hence,
by Lemma 2.1, if we glue these points together to create a new vertex v2
of degree 2n1 (see Fig. 4), λ1(S(L,D, n1)) is unaffected and ψ is still the
eigenfunction; in particular, it is still a monotonically increasing function of
the distance to the Dirichlet vertex.
We now create S(L,D, n2) out of this graph by deleting n1 − 1 of the n1
parallel edges of length �2 − �1 each between v1 and v2 and, in their place,
inserting n2 − n1 pendant edges of length �2 each at v2. Since ψ was smaller
on the deleted parallel edges than at v2, Lemma 2.6 yields

λ1(S(L,D, n2)) ≤ λ1(S(L,D, n1)).

In fact, since ψ(v2) > 0 by Lemma 3.2, this inequality is strict.
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v1 v1 v2

Fig. 4 The star S(L,D, n1) with the points to be glued together marked in red (left); the graph
obtained after the gluing (right). To create S(L,D, n2) out of the right-hand graph, we remove all
but one of the edges between v1 and v2 and, in their place, create new pendant edges at the red
vertex v2

(2) We use the Hadamard formula, Lemma 2.7. Write S for S(L,D, n), for given
L,D, n. Noting that the simple eigenvalue λ1 is a differentiable function of
the edge lengths at S, if we write �0 for the length of the Dirichlet edge e0 and
�1 for the common length of each of the other n edges, then we see that

d

dD
λ1(S) = d

d�0
λ1(S)− n

(
1

n
· d

d�1
λ1(S)

)
(3.2)

since increasing D while holding L and n constant is equivalent to lengthening
e0 while shortening the n other edges by 1/nth of that amount each. As before,
let v1 denote the central vertex, e1, . . . , en the n identical edges and ψ the
eigenfunction. By Lemma 2.7, we have

d

d�0
λ1(S) = −Ee0 = −

(
λ1(S)ψ(v1)

2 + ψ|′e0
(v1)

2
)
,

where we recall ψ|′e0
(v1) is the (normal) derivative of ψ on e0 at v1; while

by Lemma 2.7, the continuity–Kirchhoff condition at v1 and the symmetry
property of ψ from Lemma 3.2,

d

d�1
λ1(S) = −

(
λ1(S)ψ(v1)

2 + ψ |′ej (v1)
2
)
= −

(
λ1(S)ψ(v1)

2 +
(

1

n
ψ |′e0

(v1)

)2
)

(for any fixed j = 1, . . . , n). Inserting these expressions into (3.2), we obtain

d

dD
λ1(S) =

(
1

n2
− 1

)
ψ|′e0

(v1)
2.

This last expression is strictly negative since n ≥ 2 and ψ ′ does not vanish at
v1 on any edge with which v1 is incident by Lemma 3.2.

(3) The proof is similar to the proof of (1), so we only sketch it. Choose any
n1 ≥ n such that the n1 identical edges of S(L1,D, n1) are shorter than the n

identical edges of S(L,D, n), that is, such that

L1 −D

n1 − 1
<

L−D

n− 1
.
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As in (1), we may glue the n vertices of S(L,D, n) at distance (L1−D)/(n1−
1) from a degree one Kirchhoff vertex to form v2 without affecting the
eigenvalue or eigenfunction. We may now transplant the surplus parallel edges
from v1 to v2 to pendant edges at v2 of the right length to create S(L1,D, n1)

and strictly lower the eigenvalue in the process.

�
Lemma 3.6 For fixed total length L, fixed �0 ≥ � > 0 and fixed n ≥ 1 consider the
family of star dumbbells D = D(�0, �1, �− �1, n), where �1 ∈ [0, �]. Then

(1) d
d�1

μ2(D) exists for all �1 ∈ (0, �) and is strictly negative if �1 ∈ (0, �/2) and
strictly positive if �1 ∈ (�/2, �).

(2) In particular, μ2(D) reaches its unique global minimum over �1 ∈ [0, �] at
�1 = �/2.

In words, a symmetric star dumbbell has the lowest first eigenvalue among all
star dumbbells having the same total length, diameter and number of pendant edges
at each side. While the proof is similar to (parts of) the proof of Lemma 3.5, the
latter lemma does not directly imply Lemma 3.6 because, while the nodal domains
of the eigenfunction of μ2(D) will be stars, it would require more work to study
their dependence on the edge lengths of μ2(D); so instead we give a direct proof.

Proof

(1) The existence of the derivative follows immediately from Lemma 2.7, which
is applicable since μ2(D) is always simple by Lemma 3.3. By symmetry, it
suffices to restrict attention to �1 ∈ (0, �/2) and prove that

d

d�1
μ2(D) < 0 if � ∈ (0, �1/2). (3.3)

Denote by ψ the corresponding eigenfunction, which is unique up to scalar
multiples by Lemma 3.3. Then by Lemma 2.7 ψ is identical on all edges
within each of the stars, and to prove (3.3) it suffices to prove that if e1 is
an edge in P1 and e2 is an edge in P2, then �1 = |e1| < |e2| = �2 implies
Ee1 > Ee2 . By Lemma 2.7, this in turn is equivalent to showing

μ2(D)ψ(v1)
2 + ψ|′e1

(v1)
2 > μ2(D)ψ(v2)

2 + ψ|′e2
(v2)

2,

i = 1, 2. Denote by e0 the handle, so that e1 and e0 are adjacent at v1, and
e2 and e0 are adjacent at v2. Note that since �0 ≥ � > max{�1, � − �1} the
eigenfunction ψ has exactly one zero, and this is on the handle e0.

Claim The zero of ψ is strictly closer to v2 than v1.

To prove the claim: if the claim does not hold, then, supposing the star D+ :=
{x ∈ D : ψ(x) ≥ 0} to contain P2, and noting that μ2(D) = λ1(D+) by
Lemma 2.3, we may reflect D+ across the set {x ∈ D : ψ(x) = 0} to obtain a
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new (symmetric) star dumbbell D̃ such that, by symmetry, μ2(D̃) = λ1(D+).
But the handle of D̃ is at least as long as e0 and, since �1 < �/2, the pendant
edges of its other star are strictly longer than those of D. But by Lemma 2.2,
this means that μ2(D̃) < μ2(D), a contradiction. This proves the claim.
It follows from the claim that ψ(v1)

2 > ψ(v2)
2; correspondingly, since,

again, the Prüfer amplitude is constant on each edge, we also have
ψ|′e0

(v1)
2 < ψ|′e0

(v2)
2, so that

− (n− 1)ψ|′e0
(v1)

2 > −(n− 1)ψ|′e0
(v2)

2. (3.4)

Now by the Kirchhoff condition and the fact that ψ is identical on all pendant
edges within each star,

μ2(D)ψ(v1)
2 + nψ|′e1

(v1)
2 = μ2(D)ψ(v1)

2 + ψ|′e0
(v1)

2

= μ2(D)ψ(v2)
2 + ψ|′e0

(v2)
2 = μ2(D)ψ(v2)

2 + nψ|′e2
(v2)

2.

Adding (3.4) yields

μ2(D)ψ(v1)
2 + ψ|′e1

(v1)
2 > μ2(D)ψ(v2)

2 + ψ|′e2
(v2)

2,

as desired.
(2) This follows immediately from (1), also using the continuity of μ2 as �1 → 0

or �, for fixed �0 and n. �

We finish this section with a kind of symmetrisation or balancing result for stars
which we will need for the proof of Theorem 1.2. This is closely related to the
minimisation result of Lemma 3.6(2) when combined with Lemma 3.4.

Lemma 3.7 Suppose S1 and S2 are stars with diameter D1, D2 and total length
L1 ≥ D1, L2 ≥ D2, respectively. Assume that both stars have n identical shorter
edges (each of length (L1 − D1)/n ≥ 0 and (L2 − D2)/n ≥ 0, respectively).5

Denote by S∗ the star with diameter (D1 + D2)/2, total length (L1 + L2)/2, and
n identical shorter edges, and by D∗ the symmetric star dumbbell with diameter
D1 + D2 and total length L1 + L2, formed by gluing together two copies of S∗ at
their respective vertices. Then

max{λ1(S1), λ1(S2)} ≥ μ2(D∗) = λ1(S∗). (3.5)

The inequality is strict if S1 �= S2.

5When we say shorter, we are including the assumption that these edges are shorter than the
respective (n+1)st edges equipped with the Dirichlet condition; that is, Li−Di

2(n−1) ≤ nDi−Li

n−1 , i = 1, 2.
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Proof We glue S1 and S2 together at their Dirichlet points to create a (non-
symmetric) star dumbbell D having total length L1 +L2 and diameter D1 +D2. By
Lemma 2.4 we have μ2(D) ≤ max{λ1(S1), λ1(S2). Denote by D∗ the symmetric
star dumbbell having the same length and diameter as D. Then μ2(D∗) ≤ μ2(D)

by Lemma 3.6(2). Appealing to Lemma 3.4 completes the proof of (3.5).
Now suppose that S1 �= S2. We consider two cases: (1) the respective shorter

edges have different lengths, i.e., L1 − D1 �= L2 − D2. In this case, D �= D∗
and Lemma 3.6(2) yields the strict inequality μ2(D∗) < μ2(D); or (2) we have
L1 −D1 = L2 −D2 so that D = D∗. In this case, since S1 �= S2, we may assume
without loss of generality that L1 < L2. In this case, S1 is strictly contained in
the star S∗ having length (L1 + L2)/2 and diameter (D1 + D2)/2, that is, S∗ can
be obtained from S1 by strictly lengthening the edge of the latter equipped with
the Dirichlet vertex. The strictness statement in Lemma 2.2 now yields λ1(S∗) <

λ1(S1). �

4 Proof of the Main Theorems

We now turn to the proof of Theorems 1.1 and 1.2. The key to both is the following
observation.

Lemma 4.1 Suppose H is a connected, compact graph with a finite number of
edges, and with total length L > 0 and equipped with a non-empty set of Dirichlet
vertices VD, and set

d := sup
x∈H

dist(x,VD).

Let Sn = S(L, d, n) be the star having n ≥ 2 identical edges, total length L and
diameter d . Then there exists n0 ≥ 1 such that

λ1(Sn) ≤ λ1(H) (4.1)

for all n ≥ n0. Equality in (4.1) for some n ≥ 1 implies that L = d and H is a
path graph (interval) of length d with a Dirichlet condition at one endpoint and a
Neumann condition at the other.

We explicitly remark that H is itself allowed to be a star graph of the type we are
considering; in this case, the lemma contains a proof of the statement that λ1(Sn) <

λ1(Sm) if n > m is sufficiently large (where D and L are fixed).

Proof We may assume without loss of generality that VD = {v0} consists of a single
vertex of degree possibly larger than one, by formally gluing together all vertices in
VD if necessary. Denote by ψ the eigenfunction of λ1(H), chosen positive, and let
v be any point in H at which ψ ∈ H 1(H) ↪→ C(H) reaches a global maximum in
H; we assume without loss of generality that v is a vertex.
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By definition of d , there exists a path p in H from v to v0 which has no self-
intersections and length at most d . Assume that H is itself not a path (i.e., not an
interval), so that p �= H and |p| < L. Fix n0 ≥ 1, to be specified precisely later, but
large enough that n0 > deg v and the shortest edge in H is longer than

ε := L− |p|
n0

> 0.

We let S̃ be the star having one edge of length |p| − ε (equipped with a Dirichlet
condition at the far end) and n shorter edges of length ε each: then by construction,
|S̃| = L and diam(S̃) = |p| ≤ d .

We claim that λ1(S̃) < λ1(H); we will use the transplantation principle,
Lemma 2.6, to prove this. The lemma will then follow from Lemma 3.5: more
precisely, part (2) yields the inequality λ1(Sn0) ≤ λ1(S̃), while part (1) yields
λ1(Sn) ≤ λ1(Sn0) for n ≥ n0.

To prove the claim, we look at the value

m := max{ψ(x) : x ∈ H and dist(x, v) = ε} > 0.

We glue together all points x ∈ H such that ψ(x) = m (of which there are only
finitely many), to create a new vertex vε . In accordance with Lemma 2.1, this does
not affect λ1 or ψ , so in a slight abuse of notation we will call the new graph H.

Now the set {ψ ≥ m} ⊂ H consists of a pumpkin (collection of parallel edges)
running from vε to v, such that each edge of this pumpkin has length at most ε; and
v still lies on p (or, more precisely, on its image under the gluing, which we will still
denote by p). Note that the number of edges of this pumpkin is simply deg v < n0.

We now apply the transplantation lemma 2.6. We remove every edge of H not
on p and not part of the pumpkin between vε and v. In their place we first lengthen
any edges between vε and v if necessary, so that each has exactly length ε. We then
attach additional pendant edges each of length ε to vε until the new graph has total
length L. (Note that the choice of ε and the fact that the pumpkin has fewer than n0
edges means that there is always enough material being transplanted to guarantee
that all these edges can be made to have length exactly ε.)

We finally de-glue (cut through) v to produce a graph having only pendant edges
at vε . This graph is by construction S̃ , and we have

λ1(S̃) ≤ λ1(H) (4.2)

by Lemmata 2.1 (applied in reverse) and 2.6. But under the assumption that H was
not a path graph, the transplantation was nontrivial and so Lemma 2.6 in fact yields
strict inequality in (4.2). Combined with our earlier statements, this completes the
proof. �
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We can now give the proof of Theorem 1.1. In fact, in light of Proposition 1.4,
more precisely, the fact that λ1(Sn) forms a decreasing sequence in n, which
converges to ω2, it suffices to prove:

Theorem 4.2 Suppose G is any, connected compact graph with a finite number of
edges, and with total length L > 0 and diameter D ∈ (0, L). Then there exists
some n ≥ 1 such that the star graph Sn having total length L/2 and diameter D/2
satisfies

λ1(Sn) < μ2(G).

Proof of Theorem 4.2, and hence of Theorem 1.1 Let ψ be any eigenfunction asso-
ciated with μ2(G) and denote by G+ and G− any two nodal domains of ψ . Then, by
Lemma 2.3,

μ2(G) = λ1(G+) = λ1(G−)

(where the Dirichlet vertices correspond to the points where ψ = 0), and with ψ|G±
being the corresponding eigenfunctions. Moreover, |G+| + |G−| ≤ L and, if

d+ := sup{dist(x,VD(G+)) : x ∈ G+}
≡ sup{dist(x, {ψ = 0}) : x ∈ G+}

d− := sup{dist(x,VD(G−)) : x ∈ G−}
(4.3)

(where it makes no difference whether we take the distance in G or in G±), then,
since the distance from any point in G+ to any point in G− is at most D = diam(G),
we have

d+ + d− ≤ D.

By Lemma 4.1, there exist stars S+
n and S−

n (for some n sufficiently large, which is
the same for both stars) with total lengths |G+| and |G−| and diameters d+ and d−,
respectively, such that λ1(S±

n ) ≤ λ1(G±). By Lemma 3.5(2) and (3), we may in fact
assume without loss of generality that |S+

n |+|S−
n | = L and d++d− = D (possibly

at the cost of making n larger). Now, by Lemma 3.7 (or by a direct application of
Lemmata 2.4 and 3.6(2) to the union of S+

n and S−
n ), we conclude that

μ2(G) ≥ max{λ1(S+
n ), λ1(S−

n )} ≥ λ1(Sn), (4.4)

where Sn is now the star with length L/2 and diameter D/2.
It remains to prove that at least one inequality in (4.4) is strict. Since D < L by

assumption, G is not a path. Suppose first that at least one of its nodal domains G±
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is also not a path. If neither is a path with one Dirichlet and one Neumann endpoint,
then Lemma 4.1 already yields the strict inequality

μ2(G) > max{λ1(S+
n ), λ1(S−

n )}.

If one is a path with one Dirichlet and one Neumann endpoint, say G+, then since
the same is not true of G−, the star S+

n is trivially equal to the path G+, while S−
n

is nontrivial (not a path). Since S+
n �= S−

n , Lemma 3.7 implies that the second
inequality in (4.4) is strict.

Finally, we deal with the case where G is not a path but it only has nodal domains
which are paths: in this case, we must have |G+| + |G−| < L and hence |S+

n | +
|S−

n | < L. Assuming Sn still to have length L/2, strict inequality in Lemma 3.5(3)
leads to strict inequality in the second inequality in (4.4). �

We conclude with the proof of Theorem 1.2.

Proof of Theorem 1.2 Suppose first that μk(G) is simple and its eigenfunction ψ

does not vanish identically on any edge of G. Then by Lemma 2.5 ψ has m ≥ k−β

nodal domains G1, . . . ,Gm, which by Lemma 2.3 satisfy

μk(G) = λ1(G1) = . . . = λ1(Gm)

(with the Dirichlet vertices at the points where ψ = 0, and ψ|Gi
is, up to scalar

multiples, the unique eigenfunction on Gi , i = 1, . . . ,m. Note that

m∑

i=1

|Gi | = L

since ψ does not vanish identically on any edge. For each i, analogous to (4.3), set

di := sup{dist(x,VD(Gj )) : x ∈ Gi};

then, as in the case k = 2, for each pair i �= j , we have

di + dj ≤ D; (4.5)

Fix n ≥ 1 sufficiently large. Then by Lemma 4.1, for each i there exists a star Si
n

(as usual having n identical shorter sides and one longer Dirichlet side) such that
|Si

n| = |Gi |, diam(Si
n) = di , and μk(G) ≥ λ1(Si

n).

Now choose any pair i1 �= j1 and apply Lemma 3.7 to S
i1
n and S

j1
n , replacing

them with the resulting stars which have the same total length and whose sum of
diameters is the same, but which have smaller eigenvalues. Now choose a different
pair (i2, j2) �= (i1, j1) and repeat.

Repeating this process arbitrarily often and passing to the limit, the stars converge
(and their eigenvalues converge from above) to m copies of the star Sn with total
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length L/m and diameter no larger than D/2 (by (4.5)); by Lemma 3.5(2) we
may assume without loss of generality that actually diam(Sn) = D/2; and by
Lemma 3.7, we also have

μk(G) ≥ max{λ1(S1
n), . . . , λ1(Sm

n )} ≥ λ1(Sn).

Since m ≥ k − β and, by Lemma 3.5(3), λ1(Sn) is a decreasing function of
increasing its length L/m �→ L/(k − β) if its diameter D/2 is fixed (possibly
at the cost of increasing n at the same time), we obtain the statement of the theorem
under the assumption that μk(G) is simple and ψ does not vanish identically on any
edge.

In the general case, we use a standard approximation argument. Let G be a
connected, compact graph with a finite number of edges, such that G does not
contain any loops longer than D. Firstly, if G does in fact contain any loops, we
cut through the midpoint of each loop. Our assumption on the maximal loop length
implies that this does not change either L or D and can only lower μk by Lemma 2.1.
So we may assume without loss of generality that G does not contain any loops at
all.

Now, by [13, Theorem 3.6], there exists a sequence of graphs Gi having the same
topology as G, such that all edge lengths of Gi converge to those of G, meaning in
particular that Di := diam(Gi ) → D and Li := |Gi | → L; and, for each i, we have
that μk(Gi ) is simple and its eigenfunction does not vanish identically on any edge
of Gi . Now μk(Gi ) satisfies the eigenvalue bound of Theorem 1.2 for all i (with Li

and Di in place of L and D); but, since this bound depends smoothly on L and D,
passing to the limit we obtain the desired bound for G. �

5 Concluding Remarks

The idea of the proofs of Theorems 1.1 and 1.2 consists in comparing each of
the nodal domains of a graph G (more precisely, the nodal domains of a given
eigenfunction ψ associated with μk(G)) with a corresponding star graph having
the same total length and a possibly smaller diameter; this is the idea behind
Lemma 4.1. To obtain the overall infimum, the balancing results of Sect. 3 show that
the minimum over the m stars obtained from the m nodal domains of ψ is achieved
when the stars all have the same total length (L/m each) and diameter (D/2 each).
These copies can be pasted together at their respective Dirichlet vertices to form the
graphs which, in the limit, converge to m-stars with point masses of size L/m−D/2
at each pendant vertex. The assumption that L be sufficiently large compared with
D is, we believe, natural: it is necessary to ensure that these point masses actually
have positive mass; in the borderline case where L/m = D/2, we obtain exactly
the equilateral star which in accordance with (1.3) is minimising for μm(G) among
all graphs G having given total length but without any constraint on the diameter.
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The shortcoming in Theorem 1.2 is that in general we cannot expect that m = k,
i.e., that the eigenfunction ψ have k nodal domains. Instead, we rely on the (sharp)
lower bound m ≥ k − β in Lemma 2.5, which is also only valid “generically”, that
is, possibly after an arbitrarily small perturbation of the edge lengths, and for graphs
without loops (in the presence of loops, there will always be special eigenfunctions
supported on the loops, which cannot be eliminated by a perturbation argument).

In the case of trees, Lemma 2.5 and hence Theorem 1.2 is sharp; all we lose
via the edge perturbation argument is the ability to conclude that the inequality is
always strict, that is, that there is no actual tree whose eigenvalue is equal to the
square of the solution of (1.7). (However, we strongly expect this conclusion to be
true.)

For non-trees, we do not expect Theorem 1.2 to be sharp. Indeed, simple
examples such as loops and tadpoles suggest that Theorem 1.2 should be true in
a sharper form, namely without the presence of β and without the assumption that
G not contain any long loops:

Conjecture 5.1 Let G be any connected, compact graph with total length L and
diameter D, where L/k > D/2. Then μk(G) is strictly larger than the square of the
smallest positive solution ω > 0 of the equation

cos

(
ωD

2

)
= ω

(
L

k
− D

2

)
sin

(
ωD

2

)
. (5.1)

(Here, again, we see the necessity of the assumption L/k > D/2 in (5.1) in order
for this result to make sense.)

In other contexts, such as the proof of (1.3) or the related [11, Theorem 4.7], one
typically circumvents the problem of having too few nodal domains by first cutting
through cycles in G to obtain a tree with the same total length, smaller eigenvalues
(cf. Lemma 2.1), and (generically) the correct number of nodal domains. Here, this
is generally impossible since by cutting through a cycle one may increase the total
diameter (see Fig. 5 for an example). Actually, one only needs to guarantee the
weaker property (4.5) of the nodal domains of the cut graph, but there seems no
reasonable way to arrange this.

We therefore leave Conjecture 5.1 as an open problem; we also leave completely
open the question of determining what happens when the assumption L/k > D/2
is not satisfied.

Fig. 5 An example of a
graph with a cycle, such that
cutting the cycle at any point
would increase the diameter
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Missing-Level Statistics in Chaotic
Microwave Networks Versus Level
Statistics of Partially Chaotic Systems

Michał Ławniczak, Małgorzata Białous, Vitalii Yunko, Szymon Bauch,
and Leszek Sirko

Abstract We present experimental and numerical studies of level statistics in
incomplete spectra obtained with fully connected microwave networks simulating
quantum chaotic graphs with preserved time reversal symmetry. We demonstrate
that, if resonance frequencies are randomly removed from the spectra, the exper-
imental results for the short-range and long-range spectral fluctuations are in
good agreement with theoretical predictions of the missing-level statistics for the
systems with preserved time reversal symmetry. The same behavior of the short-
range spectral fluctuations, e.g., the nearest-neighbor spacing distribution and the
integrated nearest-neighbor spacing distribution may be also observed for complete
spectra in partially chaotic systems. Using the Rosenzweig-Porter model which
interpolates between the chaotic and regular behavior we demonstrate that in a such
case the long-range spectral fluctuations differ significantly from the ones predicted
by the missing-level statistics.

Keywords 05.40.-a · 05.45.Mt · 05.45.Tp · 03.65.Sq

1 Introduction

The theory of quantum chaotic systems [1–3] have accounted for better under-
standing of experimental results obtained in real physical systems in the presence
of dissipation, openness and missing energy levels. In accordance with the Bohigas-
Giannoni-Schmit (BGS) conjecture [4] it was established that the fluctuations in
the spectra of quantum chaotic systems coincide with those of the eigenvalues
of random matrices [5] from the Gaussian orthogonal ensemble (GOE) and the
Gaussian unitary ensemble (GUE) for classically chaotic systems with and without
time-reversal symmetry (TRS). For quantum systems with classically regular
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dynamics the energy levels behave as if they were drawn from a Poissonian random
process [6].

A large number of theoretical and numerical studies devoted to the problems
of quantum and wave chaos have been performed so far, yet not all non-generic
features in the spectra of the real physical systems are fully understood. Exper-
imental approaches to understanding of the unsolved problems are feasible with
microwave cavities simulating two-dimensional (2D) quantum billiards [7–14]
and one-dimensional (1D) microwave networks simulating quantum graphs [15–
19], respectively. It is possible because of the formal analogies between the scalar
Helmholtz equation and the Telegraph equation and the two- and one-dimensional
Schrödinger equations, respectively. One should point out that the introduction
of one-dimensional microwave networks simulating quantum graphs extended
considerably the knowledge on quantum chaotic systems. The other systems which
lead to deeper understanding of chaotic systems include Rydberg atoms strongly
driven by microwave fields [20–26].

It should be noticed that wave chaos can be also studied using three-dimensional
(3D) microwave cavities [27]. However, in this case there is no direct analogy
between the 3D vectorial Helmholtz equation and the Schrödinger equation.

Quantum graphs were introduced by Linus Pauling [28] more than eighty years
ago. They provide a very useful tool for modelling many different systems, eg.,
quantum wires [29], optical waveguides [30] and mesoscopic quantum systems [31,
32]. Quantum graphs consist of vertices connected by 1D bonds (edges). For graphs
with bonds of incommensurable lengths the BGS conjecture was proven rigourously
[33, 34]. This was also confirmed experimentally with help of microwave networks
[15, 16, 35–40].

In order to perform statistical analysis of the spectral properties of quantum sys-
tems the complete sequences of eigenvalues belonging to the same symmetry class
are indispensable [4, 41]. Recently, a new, effective procedure to obtain information
on the degree of chaoticity of a classical system from the spectral properties of the
corresponding quantum system was developed for incomplete sequences of levels
[42–44]. Incomplete spectra pose major problems in real physical systems like, e.g.,
nuclei and molecules [45–48], which have to be overcome, so such procedures are
indispensable [49, 50]. The effect of missing levels is particularly large for long-
range spectral fluctuations. R. A. Molina et. al. demonstrated numerically [51]
that the power spectrum [52–56] is a powerful statistical measure to discriminate
between deviations caused by missing levels and by the mixing of symmetries.

In this paper we present a numerical analysis of missing level statistics for
quantum systems with preserved time reversal symmetry. In the analysis we
use as basis incomplete experimental spectra obtained with fully connected six-
vertex microwave network where, additionally, some resonance frequencies were
randomly removed. Moreover, we show that the same behavior of the short-range
spectral correlations as observed in the case of incomplete spectra may be observed
for complete spectra in partially chaotic systems. Using the Rosenzweig-Porter
model which interpolates between the GOE and Poisson behavior we demonstrate



Missing-Level Statistics in Chaotic Microwave Networks Versus Level. . . 243

that in a such situation the long-range correlation functions differ significantly from
the ones predicted by the missing-level statistics.

2 Experimental Setup and Measurements

In order to perform one-port measurements of the scattering matrix S11 we used
the experimental setup consisting of the Agilent E8364B vector network analyzer
(VNA) and a microwave network connected to the VNA via the HP 85133-616
microwave flexible cable, see Fig. 1. Quantum graphs with TRS are simulated
experimentally by networks of coaxial cables coupled by junctions at vertices. The
coaxial cables (SMA-RG402) consist of an outer concentric conductor of inner
radius r2 = 0.15 cm, which surrounds dielectric material (Teflon) and an inner
conductor of radius r1 = 0.05 cm. The dielectric constant of Teflon obtained
from the measurements is ε * 2.06. The cut-off frequency of the T E11 mode
below which only the fundamental TEM can propagate in the cable is νc *

c
π(r1+r2)

√
ε
* 33 GHz [15, 57]. In the experiment we used fully connected, six-

vertex microwave networks which were composed of fifteen bonds (coaxial cables),
four phase shifters, five five-arm joints and one six-arm joint connected to the
VNA via a flexible microwave cable. The geometric lengths of the four bonds was
varied with phase shifters (Advanced Technical Materials PNR P1507D) to obtain
10 different realizations of networks. On should point out that not the geometric
lengths Li but the optical length L

opt
i = Li

√
ε, of the microwave cables yield the

lengths of the bonds in the corresponding quantum graph. The total optical length
of the networks Lopt = ∑15

i=1 L
opt
i * 7.04± 0.02 m was kept constant.

The scattering matrix S11 of the networks was measured in the frequency window
1.0–5.7 GHz. Figure 2 shows an example of the measured reflection spectrum
in the frequency window: 4.0–5.0 GHz. According to the Weyl’s formula given
in [17] N = 2Loptν/c, where c is the speed of light in the vacuum and ν is
microwave frequency, about 220 resonances should be measured in the frequency
range 1–5.8 GHz. However, we found that on average, in all 10 network realizations,
about 3.5% of resonances were not detected, giving the fraction of observed
resonances (levels) ϕ = 0.965 ± 0.005 [50]. There are two main reasons for
missing resonances in microwave networks: overlapping with other resonances,
which increases with frequency and their small amplitudes. Despite of that the
experiments with microwave networks provide a unique chance for getting almost
complete sequences of resonance frequencies.

Before starting with the analysis of spectral properties, the resonance frequencies
need to be rescaled (unfolded) to eliminate system specific properties like the
total optical length Lopt of the graph. This is done using Weyl’s formula. The
unfolded eigenvalues determined from the resonance frequencies are given by
εi = 2Loptνi/c.
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Fig. 1 The six-vertex microwave network containing four phase shifters. The connection to a
vector network analyzer (VNA) is shown with the arrow

Fig. 2 An example of the reflection spectra |S11| measured for a microwave network in the
frequency range: 4.0–5.0 GHz
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To test more comprehensively the missing level statistics we generated new data
series from the experimental spectra by randomly removing from them resonance
frequencies, yielding sequences with the fraction of observed levels ϕ = 0.81±0.01.
The random removal of resonance frequencies was achieved with a Matlab random
number generator. These new data were rescaled to the mean spacing unity [50] of
adjacent resonance frequencies.

The most common measure of the short-range spectral correlations is the nearest-
neighbor spacing distribution NNSD describing the distribution of the spacings
between adjacent eigenvalues si = εi+1 − εi in terms of their mean value 〈s〉
and the integrated nearest-neighbor spacing distribution INNSD. For long-range
spectral correlations we present the spectral rigidity �3(L) which corresponds to
the least square deviation of the integrated spectral density of the unfolded εi from
the straight line being the best fit of it in an interval of length L. We also consider the
power spectrum, i.e., the square modulus of the Fourier transform of the deviation
δq = εq+1 − ε1 − q of the spacing between an eigenvalue and its (q + 1)st nearest
neighbor from its average value q .

3 Missing Level Statistics

In the experimental investigations [47–49] the completeness of energy spectra is a
rare situation. The problem of missing levels can be circumvented in open systems
by using the scattering matrix formalism. The fluctuation properties of the scattering
matrix elements provide sensitive measures for the chaoticity, e.g., in terms of
Wigner reaction matrix, the enhancement factor [14, 16, 58] or their correlation
functions [59, 60].

For closed or weakly open systems analytical expressions were derived for
incomplete spectra based on RMT in Ref. [50]. The fraction of observed resonances
is characterized by the parameter ϕ, where 0 < ϕ ≤ 1. For such systems the
nearest-neighbor spacing distribution p(s) can be expressed in terms of the (n+1)st
nearest-neighbor spacing distribution P(n, s

ϕ
)

p(s) =
∞∑

n=0

(1 − ϕ)nP (n,
s

ϕ
). (1)

For the GOE systems the first term in Eq. (1) is approximated by

P(0,
s

ϕ
) = π

2

s

ϕ
exp

[
−π

4

(
s

ϕ

)2
]
. (2)

In the case of complete sequences, ϕ = 1, P(0, s) reduces to the Wigner surmise
formula for the NNSD.



246 M. Ławniczak et al.

The second term P(1, s
ϕ
) is defined by the formula

P(1,
s

ϕ
) = 8

3π3

(
4

3

)5 (
s

ϕ

)4

exp

[
− 16

9π

(
s

ϕ

)2
]
. (3)

For the complete spectra, ϕ = 1, P(1, s) gives the NNSD of the symplectic ensemble
with 〈s〉 = 2.

The higher spacing distributions P(n, s
ϕ
) for n = 2, 3, . . . are well approximated

by their Gaussian asymptotic forms, centered at n+ 1

P(n,
s

ϕ
) = 1√

2πV 2(n)
exp

[
− ( s

ϕ
− n− 1)2

2V 2(n)

]
, (4)

with the variances

V 2(n) * �2(L = n)− 1

6
. (5)

The number variance �2(L) in the Eq. (5) is the variance of the number of levels
contained in an interval of length L [5].

The integrated nearest-neighbor spacing distribution I (s) plays also an important
role in the spectral analysis of the experimental data. It is used to distinguish
between the systems possessing or lacking time-reversal symmetry, e.g., described
by the GOE and GUE ones, where the sensitive dependence of I (s) at small level
separations s is important.

I (s) =
∫ s

0
p(s′)ds′. (6)

The spectral rigidity �3(L) is a measure of the long-range fluctuation properties
in the spectra. In the presence of missing levels [50] the spectral rigidity δ3(L) may
be expressed in terms of those for the complete spectra �3 (L),

δ3(L) = (1 − ϕ)
L

15
+ ϕ2�3

(
L

ϕ

)
. (7)

The results obtained for the discussed above measures are presented in Fig. 3.
The NNSD, the INNSD and the spectral rigidity are displayed in the panels (a),
(b) and (c) respectively. The results obtained for the NNSD after removing certain
number of resonances from the experimental spectra to achieve ϕ = 0.81 ± 0.01,
respectively, are presented by the histogram (black in color). In the preparation
of the histogram about 1780 eigenvalues from all 10 network realizations were
taken into account. The results were obtained by averaging the statistical measures
obtained for the individual networks. The red dash-dot, black solid and broken lines
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Fig. 3 The nearest-neighbor spacing distribution, the integrated nearest-neighbor spacing distri-
bution, the spectral rigidity, and the average power spectrum for ϕ = 0.81 ± 0.01 are shown in
the panels (a), (b), (c), and (d) respectively. The modified experimental data are denoted by bars
in the panel (a) and by empty circles in the panels (b), (c) and (d). They are compared with the
results calculated from the Eqs. (1), (6), (7), and (9), respectively, for the fraction of observed
levels ϕ = 0.81 ± 0.01 (red dash-dot lines). The RMT prediction for GOE for ϕ = 1 and Poisson
distribution are denoted by black solid and broken lines, respectively

denote the theoretical results based on random matrix theory (RMT) for incomplete
ϕ = 0.81, complete ϕ = 1 series and Poisson distribution, respectively.

4 Power Spectrum of Levels Fluctuations

The power spectrum P(k) = |δ̃k|2 is the Fourier transform of δq = εi+q − εi − q

from “time” q to k for the sequence of N levels

δ̃k = 1√
N

N−1∑

q=0

δq exp

(
−2πikq

N

)
. (8)

when considering a sequence of N levels. It was shown in Refs. [52, 53], that for k̃ =
k/N ' 1 the power spectrum of levels fluctuations for complete level sequences
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exhibits a power law dependence 〈S(k̃)〉 ∝ (k̃)−α . Here, for regular systems α = 2
and for chaotic ones α = 1 regardless whether time reversal symmetry is preserved
or not. The power spectrum and the power law behavior were studied numerically
in Refs. [54, 61–63] and experimentally in microwave billiards in Refs. [42, 55]. It
was also successfully applied to the measured molecular resonances in 166Er and
168Er [46].

It is important to point out that in practice a priori knowledge about the fraction
of observed levels ϕ is not always possible. Therefore, additionally to the discussed
above spectral rigidity of the spectrum other sensitive tests of missing levels are
of great value. It was demonstrated in Refs. [42, 43] that the power spectrum of
levels fluctuations can be used as such a remarkably sensitive measure. An analytical
expression for the power spectrum of levels fluctuations in the case of incomplete
spectra is given in Ref. [51],

〈s(k̃)〉 = ϕ

4π2

⎡

⎣
K

(
ϕk̃

)
− 1

k̃2
+

K
(
ϕ
(

1 − k̃
))

− 1

(1 − k̃)2

⎤

⎦

+ 1

4 sin2(πk̃)
− ϕ2

12
, (9)

which for ϕ = 1 yields the formula for complete spectra 〈S(k̃)〉 [52, 53]. Here, 0 ≤
k̃ ≤ 1 and K(τ) is the spectral form factor, which equals K(τ) = 2τ−τ log(1+2τ )
for the GOE systems.

The average power spectrum 〈s(k̃)〉 for the fraction of observed levels ϕ =
0.81 ± 0.01 is shown with empty circles in the panel (d) in Fig. 3. The RMT
prediction for GOE for the fraction of observed levels ϕ = 0.81, calculated from
the Eq. (9), ϕ = 1, and Poisson distribution are denoted by red dash-dot, black
solid, and broken lines, respectively. One should point out that the power spectrum
obtained for the incomplete experimental spectra of networks with broken TRS are
presented in Refs. [42, 44].

The inspection of the results presented in Fig. 3 reveals that for all mea-
sures, namely for the nearest-neighbor spacing distribution, the integrated nearest-
neighbor spacing distribution, the spectral rigidity and the power spectrum, the
experimental results are in good agreement with the RMT prediction for GOE.

5 Transition between GOE and Poisson Behavior:
Rosenzweig-Porter Model

We would like to point out that the NNSD obtained for the incomplete spectra
(missing-level statistics) may be very similar to the one calculated for the complete
spectra in partially chaotic systems. To analyze such a situation we applied the
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Rosenzweig-Porter random matrix model [64] which is often used to describe
the transition between GOE and Poisson behavior. We show that even in the
case of good agreement of the short-range correlation functions obtained in
the Rosenzweig-Porter model with the experimental and theoretical short-range
missing-level correlations, the long-range correlation functions obtained in this
model differ significantly from the ones predicted by the experiment and the
missing-level statistics. The Rosenzweig-Porter random-matrix model depends on
a parameter κ . It interpolates between random matrix ensembles, GOE for κ = N

and Poisson for κ = 0, with N denoting the dimension of the random matrices Ĥ

with matrix elements

Ĥij = Ĝij

[
δij + κ

N
(1 − δij )

]
, i, j = 1, . . . ., N. (10)

Here, the quantities Ĝij denote the entries of a real symmetric matrix from the GOE.
The parameter κ is defined in such a way that it does not depend on the dimension
N of Ĥ . We determined the value of κ = 4.35 ± 0.55 by fitting the NNSD from
the Rosenzweig-Porter model to the experimental one obtained for the fraction of
observed levels ϕ = 0.81 ± 0.01. In the calculations we generated ensembles of 99
random matrices with dimensions N = 1000. In the unfolding procedure we used
the polynomial of the fifth order.

In the panels (a) and (b) in Fig. 4 we compare the results for the NNSD (bars)
and the INNSD (empty circles) based on the Rosenzweig-Porter model (Eq. (10))
with the results obtained from the RMT calculations for ϕ = 0.81 ± 0.01, ϕ =
1, and Poisson distribution, which are denoted by red dash-dot, black solid, and
broken lines, respectively. One can easily see very good agreement between the
results based on the Rosenzweig-Porter model and the missing level statistics with
ϕ = 0.81± 0.01. We would like to point out that missing-level statistics are in very
good agreement with the experimental data presented in Fig. 3. In the panels (c)
and (d) in Fig. 4 we show the δ3 statistic and the power spectrum obtained from the
Rosenzweig-Porter calculations (empty circles) with the parameter κ = 4.35±0.55.
In both cases the Rosenzweig-Porter model fails to reproduce the experimental long-
range correlations obtained for ϕ = 0.81 ± 0.01. In the case of the δ3 statistic the
departure towards Poisson distribution is seen for L > 25. The power spectrum
is especially sensitive on the value of the parameter k. For log(k) < 1.0 the
results based on the Rosenzweig-Porter model are already very close to Poisson
distribution.

6 Conclusions

We compared the the short-range and long-range correlations calculated for incom-
plete experimental spectra of the six-vertex microwave networks with preserved
time reversal symmetry with the fraction of observed levels ϕ = 0.81 ± 0.01 to the
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Fig. 4 The nearest-neighbor spacing distribution, the integrated nearest-neighbor spacing distri-
bution, the spectral rigidity, and the average power spectrum calculated in the Rosenzweig-Porter
model (Eq. (9)) with k = 4.35 ± 0.55 are shown in the panels (a), (b), (c), and (d), respectively.
The Rosenzweig-Porter model data are denoted by bars in the panel (a) and by empty circles
in the panels (b), (c), and (d). The RMT prediction for GOE for the fraction of observed levels
ϕ = 0.81± 0.01, ϕ = 1, and for Poisson distribution are denoted by red dash-dot, black solid, and
broken lines, respectively

respective analytical formulas for missing-level statistics. The agreement between
the modified experimental data (randomly removed levels) and the analytical formu-
las for all discussed statistical measures are good or very good which clearly shows
the power of missing-level statistics. Using the Rosenzweig-Porter model (Eq. (9))
we show that the same behavior of the short-range correlations may be observed
for complete spectra in partially chaotic systems. However, the Rosenzweig-Porter
model fails to reproduce the experimental long-range correlations such as the
spectral rigidity and the power spectrum. This property of the Rosenzweig-Porter
model may be used as a tool for distinguishing between the chaotic systems with
the incomplete spectra and the partially chaotic ones with the complete spectra.

This work was partially supported by the National Science Centre, Poland, grant
UMO-2016/23/B/ST2/03979.
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Signatures, Lifts, and Eigenvalues
of Graphs

Shiping Liu, Norbert Peyerimhoff, and Alina Vdovina

Abstract We study the spectra of cyclic signatures of finite graphs and the
corresponding cyclic lifts. Starting from a bipartite Ramanujan graph, we prove the
existence of an infinite tower of 3-cyclic lifts, each of which is again Ramanujan.

1 Introduction

Constructing infinite families of (optimal) expander graphs is a very challenging
topic both in mathematics and computer science, which has received extensive
attentions, see e.g. [23]. Bilu and Linial [5] succeeded in constructing expander
graphs by taking 2-lift operations iteratively. In particular, they relate 2-lifts of a
base graph G = (V ,E) with signatures s : E → {+1,−1} on the set of edges E,
and reduce the construction problem to finding a signature s whose signed adjacency
matrix As has a small spectral radius. Furthermore, Bilu and Linial conjectured
that every d-regular graph G has a signature s : E → {+1,−1} such that all the
eigenvalues of As have absolute value at most the Ramanujan bound, 2

√
d − 1.

In a recent breakthrough, Marcus, Spielman and Srivastava [25, 27] proved Bilu
and Linial’s conjecture for bipartite graphs affirmatively, by which they obtained
an infinite family of bipartite Ramanujan graphs for every degree larger than 2 via
taking 2-lift operations iteratively, starting with a complete bipartite graph.
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In this note, by considering more general groups of signatures, especially cyclic
groups, we prove that for each i ∈ {1, 2, . . . , k − 1} where k ≥ 2, every d-regular
graph G has a k-cyclic signature s such that the maximal eigenvalue of the i-th
power of its k-cyclic signed adjacency matrix As,i in the sense of Hadamard product
is at most 2

√
d − 1 (see Theorem 2 in Sect. 5 for the general case). This generalizes

Marcus, Spielman and Srivastava’s result for {+1,−1}-signed adjacency matrices.
In particular, this enables us to show that every bipartite Ramanujan graph G can
be used as the starting point of an infinite tower of 3-cyclic lifts, · · · → Gk →
Gk−1 → Gk−2 → · · · → G1 = G, where each Gi is again Ramanujan (Theorem 4
in Sect. 5).

Besides constructing expander graphs, the ideas around (general) signatures and
lifts of graphs have been developed from various motivations, e.g. social psychol-
ogy, Heawood map-coloring problem, matroid theory, mathematical physics. We
defer a brief historical review about these interesting developments to Sect. 3.

We emphasize that the set of 3-cyclic lifts is a restrictive class of 3-lifts, which we
like to explain briefly. Let G = (V ,E) be a finite graph. For any two vertices u, v ∈
V , we denote the corresponding edge by {u, v} ∈ E if it exists. One can assign an
orientation to it, say, directing from u to v, in which case, we write e = (u, v). The
same edge with the opposite orientation is then written as ē := (v, u). The set of
oriented edges is denoted by Eor . A 3-cyclic signature is a map s : Eor → {1, ξ, ξ},
where ξ = e2πi/3 ∈ C and ξ is the conjugate of ξ , such that

s(ē) = s(e), for all e = (u, v) ∈ Eor. (1.1)

For every oriented edge e = (u, v) ∈ Eor , the three possible values of s(e)

correspond to different local cyclic lifts, as shown in the following figures.

s(e) = 1 s(e) = ξ s(e) = ξ

u0

u1

u2

v0

v1

v2

v0

v1

v2

v0

v1

v2

u0

u1

u2

u0

u1

u2

Let A,As, Â be the adjacency matrices of a graph G, its signature s, and the
corresponding lift Ĝ, respectively. We will show that the eigenvalues σ(Â) of Â

satisfy (Lemma 1)

σ(Â) = σ(A) - σ(As) - σ(As), (1.2)

where - is the multiset union and As is the conjugate of As .
We prove the existence of our construction by applying the method of interlacing

families in [25] and mixed characteristic polynomials in [26] to our setting. The
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proof does not work for k-cyclic lifts, when k ≥ 4. In this case, we have to find
a signature s, such that all Hadamard powers of the associated signed adjacency
matrix As have simultaneously all their eigenvalues in the Ramanujan interval (see
Lemma 1). For k = 3, we only need to ensure that there is one signed adjacency
matrix As which satisfies this property. This is due to the fact that (1.1) implies that
As is Hermitian and hence σ(As) = σ(As). We like to mention that the k-cyclic
lifts of a bipartite Ramanujan graph are a very special class and it is remarkable that
such special lifts are sufficient to conclude that there are Ramanujan graphs in this
class in the case k = 3.

In this note, we consider the existence problem of cyclic signatures with par-
ticular spectral properties. For the special signature group {+1,−1} more spectral
theory of signed matrices can be found, e.g., in the survey paper [35]. In [24], we
extend results on Cheeger type constants and related spectral estimates, developed
in [4], to the more general case of cyclic signatures.

Subsequent to the appearance of our note in arXiv in December 2014, Chan-
drasekaran and Velingker [7] showed the existence of 4-cyclic lifts that preserve the
Ramanujan property for bipartite graphs. The case of arbitrary r-lifts was proved
by Hall, Puder and Sawin [17]. It is still an open question whether there is always
a cyclic r-lift preserving the Ramanujan property for arbitrary r and whether the
bipartiteness condition can be dropped.

2 Basic Notions and General Framework

Given a group �, which is usually finite, a general signature is defined as follows.

Definition 1 A signature of G = (V ,E) is a map s : Eor → � satisfying

s(ē) = s(e)−1, for all e ∈ Eor. (2.1)

For an oriented edge e = (u, v) ∈ Eor , we call s(e) its signature, and write suv ,
alternatively. The signature of a cycle C := (u1, u2)(u2, u3) · · · (ul−1, ul)(ul, u1) is
defined as the conjugacy class of the element

su1u2su2u3 · · · sul−1ul sulu1 ∈ �. (2.2)

Definition 2 A signature s of G is called balanced if the signature of every cycle in
G is the identity element id ∈ �.

Switching a signature s by a function θ : V → � means replacing s by sθ , which is
given by

sθ (e) := θ(u)s(e)θ(v)−1, for all e = (u, v) ∈ Eor. (2.3)
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Two signatures s and s′ of G are called switching equivalent if there exists a function
θ : V → � such that s′ = sθ . Switching equivalence between signatures is an
equivalence relation. We denote the corresponding switching class of a signature s

by [s]. Observe that being balanced is a switching invariant property.

Proposition 1 ([34, Corollary 3.3]) A signature s of G is balanced if and only if it
is switching equivalent to the signature sid, where sid(e) := id, for all e ∈ Eor .

Signatures have interesting connections with lifts of graphs. In particular, we
consider the permutation signatures, i.e. the maps s : Eor → Sk , where Sk denotes
the group of permutations of {1, 2, . . . , k}. The k-lift Ĝ = (V̂ , Ê) of G = (V ,E)

corresponding to the permutation signature s : Eor → Sk is defined as follows: The
vertex set V̂ is given by the Cartesian product V ×{1, 2, . . . , k}. For any u ∈ V , we
call {ui := (u, i)}ki=1 ⊆ V̂ the fiber over u. Every edge (u, v) ∈ Eor gives rise to
the k edges (ui , vsuv(i)), i = 1, 2, . . . , k, in Êor .

Theorem 1 ([15, Theorems 1 and 2] and [34, Theorem 9.1]) Let G be a finite
graph. There is a 1-to-1 correspondence between the isomorphism classes of k-lifts
of G and the switching classes of signatures of G with values in Sk .

In particular, if two permutation signatures are switching equivalent, then the
corresponding two k-lifts of G are isomorphic. Observe that the k-lift of G

corresponding to a balanced permutation signature is composed of k disjoint copies
of G.

3 Historical Background

In 1953, Harary [18] introduced the concept of a signed graph, which is a graph G =
(V ,E) with a signature s : E → {+1,−1}, and the notion of balance (Definition 2)
in this setting. Harary was motivated by certain problems in social psychology, see
also [6, 19, 20]. The switching equivalence of signatures was then described by the
social psychologists Abelson and Rosenberg [1], and later discussed mathematically
by Zaslavsky [34].

Another source of the ideas around signatures and lifts is the Heawood map-
coloring problem [21] asking for the chromatic number of a surface with positive
genus, which is an extension of the famous four-color problem. The Heawood map-
coloring problem is equivalent to finding the imbedding of every complete graph
into a surface with the smallest possible genus [33]. Gustin [16] introduced the
concept of a current graph in order to solve this imbedding problem, which was
proved to be very important for the final solution due to Ringel and Youngs [29, 30].
In the 1970s, Gross and Alpert [12, 13] developed Gustin’s current graph theory
into full topological generality and interpreted Gustin’s method to construct an
imbedding of a complete graph into a surface as a lift (or covering in topological
terminology) of an imbedding of a smaller graph. Gross [11] further introduced the
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concept of a (reduced) voltage graph, which is a graph G = (V ,E) with a signature
defined in Definition 1 (Gross called it a voltage assignment). A voltage graph can be
considered as a dual graph of a current graph when both are imbedded into a certain
surface. Gross associated to each signature s : Eor → � an n-lift of the graph G

with n = |�|, the order of �. Observe that voltage graphs are natural extensions of
signed graphs of Harary. One advantage of voltage graphs over current graphs is that
their correspondence to lifts is independent of graph imbeddings, and the concept
of a voltage graph makes the understanding of certain aspects of the solution of the
Heawood map-coloring problem easier [14].

In [15], Gross and Tucker considered voltage graphs with � = Sk and established
their correspondence to all k-lifts of G. In [11], a cycle is called satisfying
Kirchhoff’s Voltage Law (KVL) if its signature is equal to the identity (compare
with balance). Both KVL and its dual, the Kirchhoff’s Current Law (KCL) in the
current graph theory [16], play crucial roles in the corresponding lift and imbedding
theory.

In 1982, motivated by a counting problem of the chambers of classical root sys-
tems, Zaslavsky [34] introduced the concepts of balance and switching equivalence
of signatures into Gross and Tucker’s theory on permutation signatures and lifts, and
he formulated the explicit 1-to-1 correspondence given in Theorem 1 above.

Connections between permutation signatures and lifts were also discussed by
Amit and Linial [3], and they employed them to introduce a new model of random
graphs. Friedman [8] first used such a random model in the quest of finding larger
Ramanujan graphs from smaller ones. This work stimulated an extensive study on
the spectral theory of random k-lifts, see the recent work of Puder [28] and the
references therein.

Agarwal, Kolla and Madan [2, Section 1.1] pointed out that another motivation of
considering permutation signatures and lifts is the famous Unique Game Conjecture
of Khot. The permutations assigned to each oriented edge satisfying (2.1) appear
naturally in the context of this conjecture.

We were led to consider general signatures and lifts by the notion of a discrete
magnetic Laplacian studied in Sunada [32] (see also Shubin [31] and the references
therein). This operator, originating from physics, is defined on a graph where
every oriented edge has a signature in the unitary group U(1) such that (2.1)
holds. Sunada [32] discussed switching equivalent signatures under a different
terminology, cohomologous weight functions.

4 Cyclic Signature, Lifts and Adjacency Matrices

Let S1
k := {ξ l | 0 ≤ l ≤ k − 1} be the cyclic group generated by the primitive

k-th root of unity, ξ = e2πi/k ∈ C. We consider cyclic signatures, that is, maps
s : Eor → S1

k . The corresponding signed adjacency matrix As is a matrix with
entries (As)uv = suv if {u, v} ∈ E and 0 otherwise, where u, v ∈ V . As is Hermitian



260 S. Liu et al.

and has, therefore, only real eigenvalues with eigenvectors orthogonal w.r.t. the inner
product 〈a, b〉 = ∑k

i=1 aib̄i .
The lift Ĝ of G corresponding to a k-cyclic signature is called a k-cyclic lift. In

particular, every edge (u, v) ∈ Eor with suv = ξ l , for some l ∈ {0, 1, . . . , k − 1},
gives rise to the following k edges in Ĝ:

(ui, vi+l (mod k)), i = 0, 1, . . . , k − 1.

The adjacency matrix Â of Ĝ can be written as

Â =

⎛
⎜⎜⎜⎜⎜⎝

A0 A1 A2 · · · Ak−1

Ak−1 A0 A1 · · · Ak−2

Ak−2 Ak−1 A0 · · · Ak−3
...

...
...

. . .
...

A1 A2 A3 · · · A0

⎞
⎟⎟⎟⎟⎟⎠

, (4.1)

where Al is the adjacency matrix for the oriented edges s−1(ξ l ) and Al = AT
k−l . For

i ∈ {0, 1, 2, . . . , k − 1}, let As,i be the Hermitian matrix with entries

(As,i)uv := ((As)uv)
i = (suv)

i ,

where u, v ∈ V . In particular, we have As,0 = A, As,1 = As . Observe that

As,i =
k−1∑

l=0

ξ ilAl, (4.2)

and

As,i = As,k−i . (4.3)

Lemma 1 The spectrum of Â is given by

σ(Â) =
k−1⊔

l=0

σ(As,i), (4.4)

where the notion
⊔

stands for the multiset union.

Remark 1 This is an extension of Bilu and Linial [5, Lemma 3.1]. We will call⊔k−1
l=1 σ(As,i) the new eigenvalues of the lift. Lemma 1 was formulated in a slightly

different form in [2, Theorem 5]. For the reader’s convenience, we present a proof
here.
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Proof For any i ∈ {0, 1, . . . , k−1}, let wi be an eigenvector of As,i with eigenvalue
λ, i.e., As,iwT

i = λwT
i . Set ŵi := (wi, ξ

iwi, ξ
2iwi, . . . , ξ

(k−1)iwi). We check that

ÂŵT
i =

⎛
⎜⎜⎜⎝

∑k−1
l=0 Alξ

ilwT
i∑k−1

l=0 Alξ
i(l+1)wT

i
...∑k−1

l=0 Alξ
i(l+k−1)wT

i

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

As,iwT
i

As,iξ iwT
i

...

As,iξ i(k−1)wT
i

⎞
⎟⎟⎟⎠ = λŵT

i . (4.5)

Therefore, λ is also an eigenvalue of Â with eigenvector ŵi .
Moreover, we have for any two eigenvectors wi,wj of As,i, As,j , respectively,

where i �= j ,

〈ŵi , ŵj 〉 = 〈wi,wj 〉(1 + ξ i−j + ξ2(i−j) + · · · + ξ(k−1)(i−j)) = 0. (4.6)

Note that the number of mutually orthogonal eigenvectors of {As,i}k−1
i=0 is k|V |.

Therefore, we have σ(Â) = ⊔k−1
l=0 σ(As,i). �

As a consequence of Lemma 1 and (4.3), most of the new eigenvalues have even
multiplicity.

Lemma 2 Let G be a finite bipartite graph. Then, for any i ∈ {0, 1, . . . , k−1} and
any s : Eor → S1

k , the spectrum σ(As,i) is symmetric w.r.t. zero.

Proof First observe that for every As,i , there exists two square matrix A1, A2 such
that

As,i =
(

0 A1

A2 0

)
. (4.7)

Furthermore, As,i is Hermitian and has only real eigenvalues. Let λ be an eigenvalue
of As,i with eigenvector w := (w1, w2)

T . Then we have

A1w2 = λw1, A2w1 = λw2, (4.8)

and we can check directly that −λ is an eigenvalue of As,i with the eigenvector
(w1,−w2)

T . �
The following lemma is an extension of the corresponding result for signatures

s : Eor → {+1,−1} in [35, Proposition II.3].

Lemma 3 Let s and s′ be switching equivalent. Then for each i ∈ {0, 1, . . . , k − 1},
the matrices As,i and As ′,i are unitary equivalent, and hence have the same
spectrum.
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Proof Let θ : V → S1
k be the function such that s′uv = θ(u)suvθ(v), for all e =

(u, v) ∈ Eor . Set Di(θ) be the diagonal matrix with entries (Di(θ))uu = θ(u)i ,
where u ∈ V . We can check that

As ′,i = Di(θ)As,iDi(θ). (4.9)

�
A set of i edges is called an i-matching if no two of them share a common vertex.

If mi denotes the number of i-matchings in G, then the matching polynomial of G
is defined as (see [10])

μG(x) :=
/N

2 0∑

i=0

(−1)imix
n−2i . (4.10)

Now we consider the signature s as a random variable with the following
properties. The signature of (u, v) ∈ Eor and its inverse (v, u) are chosen
independently from the other oriented edges. The signature suv is chosen uniformly
from S1

k and this choice determines the value of svu = suv , as well. We have the
following proposition, extending a result of Godsil and Gutman [10, Corollary 2.2]
(see also [25]).

Proposition 2 For any i ∈ {1, 2, . . . , k − 1}, the expectation of the characteristic
polynomial of As,i satisfies

Es (det(xI − As,i)) = μG(x). (4.11)

Proof We denote by Sym(S) the set of permutations of a set S, and by [N] the set
{1, 2, . . . , N}. Let (−1)|η| denote the signature of a permutation η ∈ Sym([N]). For
l ∈ {0, 1, 2, . . . , N}, we define a subset Pl of Sym([N]) to be

Pl := {η ∈ Sym([N]) : the number of indices i ∈ [N] s. t. η(i) �= i is equal to l}.

Next, we calculate the characteristic polynomials of As,i:

det(xI − As,i) =
∑

η∈Sym([N])
(−1)|η|

N∏

j=1

(xI − As,i)j,η(j)

=
N∑

l=0

∑

η∈Pl

(−1)|η|xN−l
N∏

j=1
η(j) �=j

(−As,i)j,η(j)

=
N∑

l=0

xN−l
∑

S⊆[N]
|S|=l

∑

π∈Sym(S)
π(i) �=i ∀i∈S

(−1)|π |
∏

j∈S
(−As,i)j,π(j).
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Observe that

Es ((−As,i)j,π(j)) = −1

k

k−1∑

l=0

ξ il = 0, (4.12)

and

Es ((−As,i)j,π(j)(−As,i)π(j),j ) = 1

k

k−1∑

l=0

ξ ilξ il = 1. (4.13)

Hence, we obtain

Es (det(xI − As,i)) =
N∑

l=0

xN−l
∑

S⊆[N]
|S|=l,l even

∑

π∈Sym(S)

π(i) �=i,π2(i)=i ∀i∈S

(−1)
l
2

=μG(x).

�
Heilmann and Lieb [22] proved that for every graph G, μG(x) has only real roots
and all these roots have absolute value at most 2

√
d − 1, where d is the maximal

vertex degree of G. A refinement in the irregular case was proved by Godsil [9]
leading to the following result presented in [25, Lemma 3.5].

Proposition 3 Let T be the universal cover of the graph G. Then the roots of μG(x)

are bounded in absolute value by the spectral radius ρ(T ) of T .

5 Ramanujan Properties

The following theorem is a generalization of [25, Theorem 5.3].

Theorem 2 Let G = (V ,E) be a finite connected graph. Then for any i ∈
{1, 2, . . . , k − 1}, there exists a cyclic signature si0 : Eor → S1

k such that

λmax(A
si0,i) ≤ ρ(T ), (5.1)

that is, all the eigenvalues of Asi0,i are at most the spectral radius ρ(T ) of the
universal covering tree T of G.

Remark 2 Note that by Lemma 3, all the signatures in the switching class [si0]
fulfill (5.1).
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For each i ∈ {1, 2, . . . , k−1}, we consider the following family of characteristic
polynomials:

{f s,i := det(xI − As,i) | s : Eor → S1
k }. (5.2)

By Propositions 2 and 3, it is enough to prove the following property of (5.2):

there exists one polynomial of (5.2) whose largest root is no greater

than the largest root of the sum of all polynomials in (5.2).
(5.3)

However, this property can not hold for an arbitrary family of polynomials. We apply
the method of interlacing families, developed by Marcus, Spielman and Srivastava
[25–27] to prove property (5.3).

First observe that for every signature s : Eor → S1
k , f s,i is a real-rooted

degree N polynomial with leading coefficient one. Let λ1(f
s,i) ≤ λ2(f

s,i) ≤
· · · ≤ λN(f s,i) be the N roots of f s,i . If there exists a sequence of real numbers
α1 ≤ α2 ≤ · · · ≤ αN−1 such that

λ1(f
s,i) ≤ α1 ≤ λ2(f

s,i) ≤ α2 ≤ · · · ≤ αN−1 ≤ λN(f s,i) ∀s : Eor → S1
k ,

(5.4)

then we say that {f s,i}s has a common interlacing. If the family of polynomials (5.2)
could be proved to have a common interlacing, then property (5.3) would hold by
[25, Lemma 4.2].

A systematic way to establish the existence of a common interlacing is given in
the following lemma (see, e.g., [25, Lemma 4.5]).

Lemma 4 Let g1, g2, . . . , gl be polynomials of the same degree with positive
leading coefficients. Then g1, g2, . . . , gl have a common interlacing if and only
if
∑l

i=1 pig
i is real-rooted for all convex combinations, pi ≥ 0,

∑l
i=1 pi = 1.

In fact, in order to prove (5.3), we do not prove that the polynomials {f s,i}s
have a common interlacing but that they form an interlacing family introduced by
Marcus, Spielman and Srivastava, for which we only need to consider special convex
combinations of {f s,i}s instead of all.

Definition 3 (Interlacing Families [25]) Let S1, . . . , Sm be finite index sets and
for every assignment (s1, . . . , sm) ∈ S1 × S2 × · · · × Sm, let gs1,...,sm(x) be a
real-rooted degree N polynomial with positive leading coefficient. For a partial
assignment (s1, . . . , sq ) ∈ S1 × · · · × Sl with 1 ≤ q < m, we define

gs1,...,sq :=
∑

sq+1∈Sq+1,...,sm∈Sm
gs1,...,sq,sq+1,...,sm,
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and

g∅ :=
∑

s1∈S1,...,sm∈Sm
gs1,...,sm .

The family of polynomials {gs1,...,sm}s1,...,sm is called an interlacing family if, for all
q ∈ {0, 1, . . . ,m− 1} and all given parameters s1 ∈ S1, . . . , sq ∈ Sq , the family of
polynomials

{gs1,...,sq,t }t∈Sq+1

has a common interlacing.

Marcus, Spielman and Srivastava [25, Theorem 4.4] proved the following theorem.

Theorem 3 Let S1, . . . , Sm be finite index sets and let {gs1,...,sm}s1,...,sm be an
interlacing family of polynomials. Then there exists (s1, . . . , sm) ∈ S1 × · · · × Sm

such that the largest root of gs1,...,sm is no greater than the largest root of g∅.

In order to prove property (5.3) using Theorem 3, we still need to prove the
following proposition.

Proposition 4 For each i ∈ {1, 2, . . . , k − 1}, the family of polynomials {f s,i | s :
Eor → S1

k } is an interlacing family.

Proof For notational convenience, let e1, . . . , em be all the oriented edges in Eor

and s1, . . . , sm their associated signatures, respectively. Then we can write the
family of polynomials of this proposition as

{f s,i}s=(s1,...,sm)∈(S1
k )

m .

Let pl
1, . . . , p

l
m, l = 0, 1, . . . , k − 1 be nonnegative real numbers satisfying

k−1∑

l=0

pl
j = 1, for j = 1, 2, . . . ,m. (5.5)

In order to prove this proposition, it is sufficient to prove that the following
polynomial is real-rooted for all possible choices of {pl

j } satisfying (5.5),

∑

s=(s1,...,sm)∈(S1
k )

m

⎛

⎝
m∏

j=1

p
l(sj )

j

⎞

⎠ f s,i(x), (5.6)
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where l(sj ) ∈ {0, 1, . . . , k − 1} satisfies sj = ξ l(sj ). In fact, if this real-rootedness
is true, for each q ∈ {0, . . . ,m − 1} and fixed s1 ∈ S1

k , . . . , sq ∈ S1
k , we can apply

Lemma 4 to (5.6) with

pl
q+1 ≥ 0, for l = 0, 1, . . . , k − 1,

k−1∑

l=0

pl
q+1 = 1;

pl
q+2 = · · · = pl

m = 1

k
, for l = 0, 1, . . . , k − 1;

pl
j =

{
1, if sj = ξ l;
0, otherwise,

for j = 1, 2, . . . , q,

to conclude that {f (s1,...,sq ,t),i}t∈S1
k

has a common interlacing and hence Proposi-
tion 4 holds by Definition 3.

Now we start to prove the real-rootedness of the polynomial (5.6). Observe that
the matrix As,i can be written as follows:

As,i =
m∑

j=1

rij · (rij )∗ −D. (5.7)

In the above equation, we use the following notations: D is the diagonal matrix with
Duu = du, for each u ∈ V ; rij ∈ C

N is a column vector associated to the signature
sj of the oriented edge ej . If ej = (u, v) for u, v ∈ V , we have

rij := (0, . . . , 0, αi
j , 0, . . . , 0, αi

j , 0, . . . , 0)T , (5.8)

where the non-zero entries are at the u-th and v-th positions, respectively, and

(αi
j )

2 = (sj )
i . We use the notation that (rij )

∗ := (rij )
T for simplicity.

For each edge ej ∈ Eor , we consider its signature sj as a random variable
with values chosen randomly from S1

k . All the m random variables s1, . . . , sm
are independent with possibly different distributions. In this viewpoint, the values
{pl

j }k−1
l=0 in (5.5) represent the distribution of sj . Accordingly, the vectors {rij }mj=1

are a set of independent finite-valued random column vectors in C
N . Then, the

polynomial (5.6) is equal to the following expectation of characteristic polynomial:

E(f s,i) = E(det(xI − As,i)) = E

⎛

⎝det

⎛

⎝xI +D −
m∑

j=1

rij · (rij )∗
⎞

⎠

⎞

⎠ . (5.9)

If the graph G is regular with vertex degree d , we have D = dI . Therefore E(f s,i)

is the expectation of characteristic polynomials of a sum of independent rank one
Hermitian matrices (with a shift of all roots by −d). In the terminology of [26],
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the right hand side of (5.9) without the matrix D is called the mixed characteristic
polynomial of the matrices

Ai
j := E(rij · (rij )∗), j = 1, 2, . . . ,m. (5.10)

Note that all the above matrices Ai
j are positive semi-definite. Then by [26, Corol-

lary 4.4], the mixed characteristic polynomial of positive semi-definite matrices is
real-rooted. This proves the real-rootedness of (5.9) in the regular case and hence
the proposition.

In the case that G is irregular, we can obtain the real-rootedness of (5.9) by
modifying the arguments of [26, Corollary 4.4]. For convenience, we outline the
proof here. A proof similar to the one of [26, Theorem 4.1] yields

E

⎛

⎝det

⎛

⎝xI + x ′D −
m∑

j=1

rij · (rij )∗
⎞

⎠

⎞

⎠

=
m∏

j=1

(1 − ∂zj ) det

⎛

⎝xI + x ′D +
m∑

j=1

zjA
i
j

⎞

⎠

∣∣∣∣∣∣
z1=···=zm=0

.

Therefore, we obtain

E(f s,i) = E

⎛

⎝det

⎛

⎝xI +D −
m∑

j=1

rij · (rij )∗
⎞

⎠

⎞

⎠

=
m∏

j=1

(1 − ∂zj ) det

⎛

⎝xI + x ′D +
m∑

j=1

zjA
i
j

⎞

⎠

∣∣∣∣∣∣
z1=···=zm=0,x ′=1

.

Note that det(xI + x ′D + ∑m
j=1 zjA

i
j ) is real stable by [26, Proposition 3.6] and

we conclude the real stability of E(f s,i) by [26, Corollary 3.8 and Proposition 3.9].
Since real stability coincides with real rootedness in the case of univariate polyno-
mials, we conclude that E(f s,i) is real-rooted. For more details, see [26]. �
Theorem 4 Let G be a finite connected bipartite graph. Then there exists a 3-
cyclic lift Ĝ of G such that all its new eigenvalues lie in the Ramanujan interval
[−ρ(T ), ρ(T )], where ρ(T ) is the spectral radius of the universal covering T of G.
In particular, when G is d-regular, the interval is [−2

√
d − 1, 2

√
d − 1].

Proof By Lemma 1, the new eigenvalues of the 3-cyclic lift Ĝ are eigenvalues of
either As,1 = As or As,2. From (4.3) we know As,2 = As . Since As is Hermitian,
we obtain σ(As,2) = σ(As) for any choice of s : Eor → S1

3 . Applying Theorem 2,
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we can find an s0 : Eor → S1
3 such that

λmax(A
s0) ≤ ρ(T ). (5.11)

By Lemma 2, σ(As) is symmetric w.r.t. to zero since G is bipartite. Therefore, we
arrive at

|λi(A
s0)| ≤ ρ(T ), |λi(A

s0,2)| ≤ ρ(T ), for i = 1, 2, . . . , N. (5.12)

This proves the corollary. �
Starting from the complete bipartite graph G1 := Kd,d , we can apply Theorem 4

repeatedly to obtain an infinite tower of 3-cyclic lifts · · · → Gk → Gk−1 →
Gk−2 → · · · → G1 with each Gi being Ramanujan.

As we have commented in the Introduction, the above method of finding an
infinite family of Ramanujan graphs does not work for k-lifts with k ≥ 4. In this
case, one needs to find a proper signature s0 which works simultaneously for all
i ∈ {1, 2, . . . , k − 1} in Theorem 2.
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Abstract We investigate isoperimetric constants of infinite tessellating metric
graphs. We introduce a curvature-like quantity, which plays the role of a metric
graph analogue of discrete curvature notions for combinatorial tessellating graphs.
Based on the definition in [26], we then prove a lower estimate and a criterium for
positivity of the isoperimetric constant.
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1 Introduction

Isoperimetric constants, which relate surface area and volume of sets, are among
the most fundamental tools in spectral geometry of manifolds and graphs. They
first appeared in this context in [7], where Cheeger obtained a lower bound
on the spectral gap of Laplace–Beltrami operators. For discrete Laplacians on
graphs, versions of Cheeger’s inequality are known in various settings, e.g. [1–
3, 9, 10, 13, 23, 30, 32]. They find application in many fields (such as the study
of expander graphs and random walks on graphs, see [28] and [38] for more
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In the case of tessellating graphs (i.e. edge graphs of tessellations of R2), they
have been investigated using certain notions of discrete curvature (see for example
[17, 24, 34, 37, 39]). On the other hand, the idea of plane graph curvature already
appears earlier in several unrelated works [14, 20, 36] and was also employed to
describe other geometric properties, for instance discrete analogues of the Gauss–
Bonnet formula and the Bonnet–Myers theorem, e.g. [4, 8, 19, 22, 24, 36].

Another framework for isoperimetric constants are metric graphs G, i.e. combi-
natorial graphsGd = (V, E) with vertex set V and edge set E , where each edge e ∈ E
is identified with an interval Ie = (0, |e|) of length 0 < |e| < ∞. Topologically,
G may be considered as a “network” of intervals glued together at the vertices.
The analogue of the Laplace–Beltrami operator for metric graphs is the Kirchhoff–
Neumann Laplacian H (also known as a quantum graph). It acts as an edgewise

(negative) second derivative fe �→ − d2

dx2
e
fe, e ∈ E , and is defined on edgewise H 2-

functions satisfying continuity and Kirchhoff conditions at the vertices (we refer to
[5, 6, 11, 35] for more information and references; see also [12] for the case that G
is infinite). A well-known result for finite metric graphs (i.e. V and E are finite sets)
is a spectral gap estimate for H in terms of an isoperimetric constant due to Nicaise
[33] (see also [25, 27]).

In this work, we are interested in infinite metric graphs (infinitely many vertices
and edges). A notion of an isoperimetric constant α(G) in this context was
introduced recently in [26] (see (2.5) below for a precise definition) together with
the following Cheeger-type estimate

1

4
α(G)2 ≤ λ0(H) ≤ π2

2 infe∈E |e|α(G), (1.1)

which holds for every connected, simple, locally finite, infinite metric graph. Here
λ0(H) := inf σ(H) is the bottom of the spectrum of H.

However, let us stress that explicit computation of isoperimetric constants in
general is a difficult problem (known to be NP-hard for combinatorial graphs
[31]). Hence the question arises, whether one can find bounds on α(G) in terms
of less complicated quantities. On the other hand, the definition of α(G) is purely
combinatorial and moreover α(G) is related to the isoperimetric constant αcomb(Gd )

of the combinatorial graph Gd (see [26] for further details). This strongly suggests to
use discrete methods for further study. For combinatorial tessellating graphs, such
tools are available in the form of discrete curvature and it is natural to ask whether
similar techniques also apply to metric graphs. Moreover, the class of plane graphs
contains important examples such as trees and edge graphs of regular tessellations.

Motivated by this, the subject of our paper are isoperimetric constants of
infinite tessellating metric graphs (see Definition 2.1). Our main contribution is
the definition of a characteristic value c(·) of the edges of a given metric graph
(see (2.9)), which takes over the role of the classical discrete curvature (up to sign
convention; as opposed to e.g. [17, 22, 24], our results on α(G) are formulated in
terms of positive curvature). In the simple case of equilateral metric graphs (i.e.
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|e| = 1 for all e ∈ E), c coincides with the characteristic edge value introduced by
Woess in [37]. Moreover, for a finite tessellating metric graph (Corollary 3.9),

∑

e∈E
−c(e)|e| = 1, (1.2)

which can be interpreted as a metric graph analogue of the combinatorial Gauss–
Bonnet formula known in the discrete case (see e.g. [22]).

In terms of these characteristic values, we then formulate our two main results:
Theorem 3.1 contains a criterium for positivity of α(G) based on the averaged value
of c(·) on large subgraphs G̃ ⊂ G. In Theorem 3.3, we obtain explicit lower bounds
on α(G). A simplified version of this estimate is the following inequality:

α(G) ≥ inf
e∈E

c(e). (1.3)

Theorem 3.3 can be interpreted as a metric graph analogue of the estimate in [24,
Theorem 1] and a result by McKean in the manifold case [29].

Finally, we demonstrate the use of our theory by examples. First, we consider the
case of equilateral (p, q)-regular graphs. Here, α(G) is closely related to αcomb(Gd )

and hence can be computed explicitly. It turns out for large p and q , the estimate in
Theorem 3.3 is quite close to the actual value. Second, we show how to construct an
example where α(G) and αcomb(Gd ) behave differently.

Let us finish the introduction by describing the structure of the paper. In
Sect. 2, we recall a few basic notions and give a precise definition of infinite
tessellating metric graphs. Moreover, we review the definition of α(G) and define
the characteristic values. Section 3 contains our main results and proofs. In the final
section, we consider examples.

2 Preliminaries

2.1 (Combinatorial) Planar Graphs

Let Gd = (V, E) be an infinite, unoriented graph with countably infinite sets of
vertices V and edges E . For a vertex v ∈ V , we set

Ev := {e ∈ E | e is incident to v} (2.1)

and denote by deg(v) := #Ev the combinatorial degree of v ∈ V . Throughout
the paper, #A denotes the number of elements of a given set A. We will always
assume that Gd is connected, simple (no loops or multiple edges) and locally finite
(deg(v) < ∞ for all v ∈ V).
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Moreover, we suppose that Gd is planar and consider a fixed planar embedding.
Hence Gd can be regarded as a subset of the plane R2, which we assume to be closed.
Denote by T the set of faces of Gd , i.e. the closures of the connected components of
R

2 \ Gd . Note that unbounded faces of Gd are included in T as well. Motivated by
the next definition, we will refer to the elements T ∈ T as the tiles of Gd .

Definition 2.1 A planar graph Gd is tessellating if the following additional condi-
tions hold:

(i) T is locally finite, i.e. each compact subset K in R
2 intersects only finitely

many tiles.
(ii) Each bounded tile T ∈ T is a closed topological disc and its boundary ∂T

consists of a finite cycle of at least three edges.
(iii) Each unbounded tile T ∈ T is a closed topological half-plane and its boundary

∂T consists of a (countably) infinite chain of edges.
(iv) Each edge e ∈ E is contained in the boundary of precisely two different tiles.
(v) Each vertex v ∈ V has degree ≥ 3.

Here, a subset A ⊆ R
2 is called a closed topological disc (half-plane) if it is

the image of the closed unit ball in R
2 (the closed upper half-plane) under a

homeomorphism φ : R2 → R
2. For a tile T ∈ T , we define

ET := {e ∈ E | e ⊆ ∂T }, dT (T ) := #ET , (2.2)

where the latter is called the degree of a tile T ∈ T . Notice that according to
Definition 2.1(ii), dT (T ) ≥ 3 for all T ∈ T .

The above assumptions (i)–(v) imply that T is a locally finite tessellation of R2,
i.e. a locally finite, countable family of closed subsets T ⊂ R

2 such that the interiors
are pairwise disjoint and

⋃
T ∈T T = R

2. In addition, Gd = (V, E) coincides with
the edge graph of the tessellation in the following sense: by calling a connected
component of the intersection of at least two tiles T ∈ T a T -vertex, if it has only
one point and a T -edge otherwise, we recover the vertex and edge sets V and E .

For a finite subgraph G̃ ⊂ Gd , let F(G̃) be the set of bounded faces of G̃, i.e. the
closures of all bounded, connected components of R2\G̃. By local finiteness, each
bounded face of G̃ is a finite union of bounded tiles T ∈ T . Moreover, define P(G̃)
as the set of tiles T ∈ T with ∂T ⊆ G̃. Note that always

P(G̃) ⊆ F(G̃).

2.2 Metric Graphs

After assigning each edge e ∈ E a finite length |e| ∈ (0,∞), we obtain a metric
graph G := (V, E, | · |) = (Gd , | · |). Let us stress that in general |e| is not related
to the length of the Jordan arc in R

2 representing the edge e ∈ E . For a subgraph
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G̃ = (Ṽ, Ẽ) ⊂ G, define its boundary vertices by

∂G G̃ := {
v ∈ Ṽ | degG̃(v) < deg(v)

}
, (2.3)

where degG̃(v) denotes the degree of a vertex v ∈ Ṽ with respect to G̃. For a given
finite subgraph G̃ ⊂ G we then set

deg(∂G G̃) :=
∑

v∈∂GG̃
degG̃(v). (2.4)

Following [26], the isoperimetric constant of a metric graph G is then defined by

α(G) := inf
G̃

deg(∂G G̃)
mes(G̃)

∈ [0,∞), (2.5)

where the infimum is taken over all finite, connected subgraphs G̃ ⊂ G and mes(G̃)
denotes the measure (the “total length”) of G̃ with respect to the edge length function
| · |, mes(G̃) := ∑

e∈Ẽ |e|. We will say that the metric graph G satisfies the strong
isoperimetric inequality if α(G) > 0.

Recall that for a combinatorial graph Gd = (V, E) the (combinatorial) isoperi-
metric constant αcomb(Gd ) is defined by (see, e.g., [10])

αcomb(Gd ) = inf
U⊂V

#{e ∈ E | e connects U and V \ U}∑
v∈U deg(v)

, (2.6)

where the infimum is taken over all finite subsets U ⊂ V . There is a close connection
between αcomb(Gd ) and α(G) and we refer for further details to [26].

We also need the following quantities. The weight m(v) of a vertex v ∈ V is
given by

m(v) =
∑

e∈Ev

|e|. (2.7)

Clearly, m(v) equals the measure (the “length”) of the star Ev . The perimeter p(T )

of a tile T ∈ T is defined as

p(T ) :=
{∑

e∈ET
|e|, T ∈ T is bounded

∞, T ∈ T is unbounded
. (2.8)

For every e ∈ E , we define its characteristic value c(e) by

c(e) := 1

|e| −
∑

v:v∈e

1

m(v)
−

∑

T :e⊆∂T

1

p(T )
. (2.9)
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Here we employ the convention that whenever ∞ appears in a denominator, the
corresponding fraction 1/p has to be interpreted as zero if p is infinite. Let us
mention that for equilateral metric graphs G (i.e. |e| ≡ 1 for all e ∈ E), the
characteristic value c(e) coincides with the characteristic edge value introduced in
[37] in the context of combinatorial graphs.

Finally, we need the following class of subgraphs of G. A subgraph G̃ = (Ṽ, Ẽ) ⊂
G is called star-like, if it can be written as a finite, connected union of stars. More
precisely,

Ẽ =
⋃

v∈Ũ
Ev

for some finite, connected vertex set Ũ ⊆ Ṽ.
Also, for a finite subgraph G̃ ⊂ G, we define its interior graph G̃int = (Ṽint, Ẽint)

as the set of interior vertices v ∈ Ṽint := Ṽ \ ∂G̃ together with all edges between
such vertices. We say that G̃ is complete, if F(G̃int) = P(G̃int), or equivalently if
every bounded face of G̃int consists of exactly one tile T ∈ T . Let us denote the
class of star-like complete subgraphs by S(G).

3 Strong Isoperimetric Inequality for Tessellating Quantum
Graphs

Now we are in position to formulate our main results. Our first theorem relates the
positivity of the isoperimetric constant with the positivity of the characteristic values
of a metric graph.

Theorem 3.1 Let G = (V, E, | · |) be a tessellating metric graph having infinite
volume, mes(G) = ∑

e∈E |e| = ∞. If

�∗(G) := sup
e∈E

|e| < ∞ (3.1)

and

lim inf
mes(G̃)→∞

1

mes(G̃)
∑

e∈Ẽ
c(e)|e| = lim inf

mes(G̃)→∞

∑
e∈Ẽ c(e)|e|
∑

e∈Ẽ |e|
> 0, (3.2)

then α(G) > 0. Here, the lim inf is taken over all star-like complete subgraphs
G̃ ∈ S(G).
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Remark 3.2

(i) Let us mention that (3.1) is necessary for the strong isoperimetric inequality to
hold for an arbitrary metric graph since (see, e.g., [26, Remark 3.3])

α(G) ≤ 2

�∗(G) . (3.3)

(ii) If mes(G) = ∑
e∈E |e| < ∞, then the lower bound

α(G) ≥ 2

mes(G) > 0 (3.4)

holds. In fact, if G is tessellating, then deg(∂G̃) ≥ 2 for every finite subgraph
G̃ ⊂ G and (3.4) follows immediately from (2.5).

(iii) Theorem 3.1 can be seen as the analogue of [37, Theorem 1].
(iv) As we will see below, the proof of Theorem 3.1 implies the explicit estimate

α(G) ≥ min
{ 2

�∗(G) , inf
G̃∈S

1

mes(G̃)
∑

e∈Ẽ
c(e)|e|

}
, (3.5)

however, the conditions in Theorem 3.1 are weaker than positivity of the right-
hand side in (3.5).

The next result shows that pointwise estimates for the characteristic values also
yield lower estimates for the isoperimetric constant. To this end, introduce the
following quantities

M(G) := sup
v∈V

m(v)

infe∈Ev
|e| , P (G) := sup

T ∈T
p(T )

infe∈ET
|e| , (3.6)

and set

K(G) := 1 − 1

M(G) −
2

P(G) −
1

(M(G)− 2)P (G) . (3.7)

Theorem 3.3 Let G = (V, E, | · |) be a tessellating metric graph. Suppose

c∗(G) := inf
e∈E

c(e) > 0. (3.8)

Then

α(G) ≥ c∗(G)
K(G) > 0. (3.9)
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Theorem 3.3 can be considered as the metric graph analogue of the corresponding
estimate for combinatorial graphs in [24, Theorem 1].

Remark 3.4 The following obvious estimates

M(G) ≥ sup
v∈V

deg(v) ≥ 3, P (G) ≥ sup
T ∈T

dT (T ) ≥ 3, (3.10)

imply that K(G) ≤ 1. Moreover, one can show that K(G) > 0 if c∗(G) > 0. Indeed,
noting that

m(v) ≤ deg(v)�∗(G), p(T ) ≤ dT (T )�∗(G),

we easily get the rough estimate

c∗(G) ≤ 1

�∗(G)

(
1 − 2

deg∗(G) −
2

d∗T (G)

)
, (3.11)

where deg∗(G) := supv∈V deg(v) and d∗T (G) := supT ∈T dT (T ). On the other hand,

K(G) = 1

2

(
1 − 2

M(G) −
2

P(G)

)
+ 1

2
− 1

P(G) −
1

(M(G)− 2)P (G)

≥ 1

2

(
1 − 2

deg∗(G) −
2

d∗T (G)

)
+ 1

2
− 1

d∗T (G) −
1

(deg∗(G)− 2)d∗T (G) .

If c∗(G) > 0, then so is the right-hand side in (3.11) which implies

K(G) >1

2
− 1

d∗T (G) −
1

(deg∗(G)− 2)d∗T (G)

>
1

deg∗(G) −
1

(deg∗(G)− 2)d∗T (G) ≥ 0.

To prove Theorems 3.1 and 3.3, we first show that we can restrict in (2.5) to
star-like complete subgraphs.

Lemma 3.5 Let G = (V, E, | · |) be a tessellating metric graph. Then

α(G) = min
{ 2

�∗(G) , αS (G)
}
, (3.12)

where

αS (G) := inf
G̃∈S

deg(∂G̃)
mes(G̃)

. (3.13)
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Proof

(i) First, we show that it suffices to consider subgraphs that are either star-like or
consist of a single edge. Let G̃ = (Ṽ, Ẽ) be a finite, connected subgraph of G
and Ṽint = Ṽ \ ∂G̃. We split Ṽint = ⋃n

i=1 Vi into a finite, disjoint union of
connected vertex sets Vi . Let Gi = (Vi , Ei ) ⊂ G be the subgraph with edge set

Ei =
⋃

v∈Vi

Ev.

By construction, each Gi is star-like and each edge e ∈ E belongs to at most
one Gi . Let Er = Ẽ \⋃n

i=1 Ei be the remaining edges. Then

mes(G̃) =
n∑

i=1

mes(Gi )+
∑

e∈Er

|e|.

Moreover, both vertices of an edge e ∈ Er are in ∂G̃ and ∂Gi = ∂G̃ ∩ Vi . Hence

deg(∂G̃) =
∑

v∈∂G̃

n∑

i=1

degGi
(v) + 2#Er =

n∑

i=1

deg(∂Gi )+ 2#Er .

This finally implies

deg(∂G̃)
mes(G̃)

=
∑n

i=1 deg(∂Gi )+ 2#Er∑n
i=1 mes(Gi )+∑

e∈Er
|e| ≥ min

i=1,...,n,
e∈Er

{
deg(∂Gi )

mes(Gi )
,

2

|e|
}
.

(ii) To complete the proof, it suffices to construct for every star-like subgraph G̃ a
star-like, complete subgraph Ĝ ∈ S(G) with Ĝ ⊇ G̃ and deg(∂G̃) ≥ deg(∂Ĝ).
Let G̃int = (Ṽint, Ẽint) be the interior graph of G̃. Denote by F0 the set of
bounded, open components of R2 \ G̃int and by F = {F = f | f ∈ F0} the
bounded faces of G̃int. The idea is to add “edges contained in bounded faces”.
Define the subgraph Ĝ = (V̂, Ê) by its edge set

Ê = Ẽ ∪
⋃

v∈f : f∈F0

Ev.

If an edge e ∈ E is incident to a vertex v ∈ f with f ∈ F0, then its other vertex
lies in F = f . Hence degĜ(v) = degG̃(v) for every vertex v with v /∈ K :=⋃

F∈F F . On the other hand, every vertex v ∈ K belongs to Ĝ and satisfies
degĜ(v) = degG(v). Indeed, if v ∈ F = f , then either v ∈ f or v ∈ ∂f ⊆ G̃int.
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This implies ∂Ĝ ⊆ ∂G̃ and deg(∂G̃) ≥ deg(∂Ĝ). Moreover, Ê = ∪v∈ÛEv , where

Û = Ṽint ∪
⋃

f∈F0

{v ∈ V | v ∈ f }.

Also, Û is finite by local finiteness and connected since G̃ is star-like and ∂f ⊆
G̃int for f ∈ F0. It remains to show that Ĝ is complete. Let F̂ be a bounded face
of the interior graph Ĝint. Suppose T ∈ T with T ⊆ F̂ . Then T ⊆ F̂ ⊆ F for
some bounded face F of G̃int. In particular, e ⊆ K for every edge e ⊆ ∂T . But
every vertex v ∈ K belongs to Ĝint, and hence ∂T ⊆ Ĝint and F̂ = T .

Remark 3.6 Combining (3.12) with (3.3), one concludes that the inequality

2

�∗(G) ≤ αS (G) = inf
G̃∈S

deg(∂G̃)
mes(G̃)

(3.14)

implies that

α(G) = 2

�∗(G) . (3.15)

In Example 4.3, we provide an explicit construction of a graph satisfying (3.14).

The next lemma contains the connection between c(e) and α(G).

Lemma 3.7 The following inequality

∑

e∈Ẽ
c(e)|e| ≤ deg(∂G G̃) (3.16)

holds for any star-like, complete subgraph G̃ ∈ S(G).

Proof Let G̃int = (Ṽint, Ẽint) be the interior graph and Eb := Ẽ \ Ẽint the remaining
edges. Then

∑

e∈Ẽ
c(e)|e| =

∑

e∈Ẽ
1 −

∑

v∈Ṽ

mes(Ev ∩ Ẽ)
m(v)

−
∑

T ∈T

mes(ET ∩ Ẽint)

p(T )
−

∑

T ∈T

mes(ET ∩ Eb)

p(T )

= #Eb + #Ẽint − #Ṽint − #P(G̃int)

−
∑

v∈∂G̃

mes(Ev ∩ Ẽ)
m(v)

−
∑

T ∈T ,ET �⊆Ẽint

mes(ET ∩ Ẽint)

p(T )
−

∑

T ∈T

mes(ET ∩ Eb)

p(T )
,
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where P(G̃int) is the set of tiles T ∈ T with ET ⊆ Ẽint. By Euler’s formula (see,
e.g., [16])

#Ẽint − #Ṽint − #F(G̃int) = −1,

Because G̃ is complete, F(G̃int) = P(G̃int) and
∑ |e|c(e) is equal to

#Eb − 1 −
∑

v∈∂G̃

mes(Ev ∩ Ẽ)
m(v)

−
∑

T ∈T ,ET �⊆Ẽint

mes(ET ∩ Ẽint)

p(T )
−

∑

T ∈T

mes(ET ∩ Eb)

p(T )
.

Since G̃ is star-like, there are no edges e ∈ Ẽ with both vertices in ∂G̃. Therefore,
#Eb = deg(∂G̃) and the proof is complete.

Remark 3.8 For future reference, observe that

∑

v∈∂G̃

mes(Ev ∩ Ẽ)
m(v)

+
∑

T ∈T ,ET �⊆Ẽint

mes(ET ∩ Ẽint)

p(T )
+

∑

T ∈T

mes(ET ∩ Eb)

p(T )

≥
∑

v∈∂G̃

degG̃(v)

M(G) +
∑

T ∈T ,ET �⊆Ẽint

#(ET ∩ Ẽint)

P (G) +
∑

T ∈T

#(ET ∩ Eb)

P (G) .

This implies the following estimate

∑

e∈Ẽ
c(e)|e| ≤ deg(∂G̃)

(
1 − 1

M(G) −
2

P(G)

)

− 1

P(G)
∑

e∈Ẽint

#
{
T | e ∈ ET and ET �⊆ Ẽint

} (3.17)

for every star-like, complete subgraph G̃ ∈ S(G).

Corollary 3.9 Let G = (V, E, | · |) be a finite tessellating metric graph, that is a
finite graph satisfying all the assumptions of Sect. 2.1 except (iii) of Definition 2.1.
Then

∑

e∈E
−c(e)|e| = 1. (3.18)

Proof By Euler’s formula

∑

e∈E
c(e)|e| = #E −

∑

v∈V

mes(E ∩ Ev)
m(v)

−
∑

T ∈T

mes(E ∩ ET )
p(T )

= #E − #V − #F(G) = −1.
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Remark 3.10 Formula (3.18) can be seen as the analogue of the combinatorial
Gauss–Bonnet formula known for combinatorial graphs (see [22, Proposition 1]).
Let us also mention that the difference in the right-hand side arises from our
convention p(T ) = ∞ for unbounded T ∈ T .

Theorem 3.1 now follows from Lemma 3.5 and 3.7 together with the inequality
deg(∂G̃) ≥ 1 for G̃ ∈ S(G). Moreover, we can already deduce (see (3.5) and (3.11))
the basic estimate

α(G) ≥ c∗(G). (3.19)

By improving this bound further we finally obtain Theorem 3.3.

Proof of Theorem 3.3 We start by providing a basic inequality. By Remark 3.4, we
have K(G) > 0. Let deg∗(G) := supv∈V deg(v). Then using (3.10) and (3.11), a
lengthy but straightforward calculation implies

c∗(G)
K(G) ≤

deg∗(G)− 2

deg∗(G)− 1

1

�∗(G) . (3.20)

Hence by Lemma 3.5, it suffices to show that

deg(∂G̃)
mes(G̃)

≥ c∗(G)
K(G) (3.21)

for every G̃ = (Ṽ, Ẽ) ∈ S(G).
We will obtain (3.21) by induction over #Ṽint. If #Ṽint = 1, that is, Ṽint = {v} for

some v ∈ V , then G̃ “consists of a single star”. More precisely, Ẽ = Ev and (3.20)
implies

deg(∂G̃)
mes(G̃)

≥ deg(v)

deg(v)�∗(G) ≥
c∗(G)
K(G) .

Now suppose #Ṽint = n ≥ 2 and (3.21) holds for all Ĝ ∈ S(G) with #V̂int < n. We
distinguish two cases:

(i) First, assume

#{u ∈ ∂G̃| u is connected to v} ≤ deg∗(G)− 2

for all v ∈ Ṽint. In view of (3.17), define

Ei := {e ∈ Ẽint| #{T | e ∈ ET and ET �⊆ Ẽint} = i}
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for i ∈ {1, 2}. Then

∑

e∈Ẽint

#{T | e ∈ ET and ET �⊆ Ẽint} = #E1 + 2#E2 =
∑

v∈Ṽint

δ(v),

where δ(v) := #(Ev ∩ E1)/2 + #(Ev ∩ E2) for all v ∈ V .
Now assume that v ∈ Ṽint and that v is connected to at least one vertex in

∂G̃. Since G̃ is star-like and #Ṽint ≥ 2, v is connected to another vertex in Ṽint
and hence there exists an interior edge e ∈ Ẽint incident to v. Going through the
edges incident to v in counter-clockwise direction starting from e, denote by e+
the “last” edge incident to v with e+ ∈ Ẽint. Define e− analogously by going
clockwise. Then e± ∈ E1 ∪ E2. Moreover, if e+ = e−, then e = e+ = e− ∈ E2.
Thus δ(v) ≥ 1 for every such v ∈ Ṽint. Since G̃ is star-like,

∑

v∈Ṽint

δ(v) ≥ 1

deg∗(G)− 2

∑

v∈Ṽint

#{u ∈ ∂G̃| u is connected to v}

≥ 1

M(G)− 2
deg(∂G̃),

and (3.21) follows from (3.17).
(ii) Assume that #{u ∈ ∂G̃| u is connected to v} ≥ deg∗(G) − 1 for some vertex

v ∈ Ṽint. Since #Ṽint ≥ 2, this implies deg(v) = deg∗(G) and that v is connected
to exactly one w ∈ Ṽint. We “cut out” the deg∗(G)− 1 edges between v and ∂G̃
and define Ĝ = (V̂, Ê) by its edge set

Ê = Ẽ \ {e ∈ E | e connects v and ∂G̃}.

Then Ĝ is again star-like and complete. Its interior graph Ĝint = (V̂int, Êint) is
given by V̂int = Ṽint\{v} and Êint = Ẽint\{ev,w}, where ev,w is the edge between
v and w. In particular, Ĝ satisfies (3.21).

Now assume (3.21) fails for G̃. Then

deg(∂G̃)(mes(G̃)− mes(Ĝ)) ≤ (deg∗(G)− 2)mes(G̃)

by (3.20). Consequently,

deg(∂Ĝ)
mes(Ĝ)

= #Ê − #Êint

mes(Ĝ)
= #Ẽ − #Ẽint − deg∗(G)+ 2

mes(Ĝ)

= deg(∂G̃)− deg∗(G)+ 2

mes(Ĝ)
≤ deg(∂G̃)

mes(G̃)
<

c∗(G)
K(G) ,

which is a contradiction.
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4 Examples

In this section, we illustrate the use of our results in three examples.

4.1 (p,q)-Regular Graphs

Let p ∈ Z≥3 and q ∈ Z≥3 ∪ {∞}. A tessellating (combinatorial) graph Gd = (V, E)
is called (p, q)-regular, if deg(v) = p for all v ∈ V and dT (T ) = q for all T ∈
T . Let Gp,q denote both the corresponding combinatorial graph and the associated
equilateral metric graph, that is, we put |e| ≡ 1 for all e ∈ Ep,q = E(Gp,q). Notice
that Gp,∞ is an infinite p-regular tree Tp (also known as a Cayley tree or a Bethe
lattice).

Next, by (2.9), we get

c(e) = 1 − 2

p
− 2

q
=: cp,q, (4.1)

for all e ∈ Ep,q , and the vertex curvature of the combinatorial graph Gp,q (see for
example [8, 17, 37]) is given by

κ(v) = 1 − deg(v)

2
+

∑

T :v∈T

1

dT (T )
= 1 − p

2
+ p

q
= −p

2
cp,q, (4.2)

for all v ∈ V .
Since strictly positive vertex curvature implies that Gd has only finitely many

vertices (see [8, Theorem 1.7]), the characteristic value should satisfy cp,q ≥ 0.
Clearly, cp,q = 0 exactly when (p, q) ∈ {(4, 4), (3, 6), (6, 3)} and in these cases
Gp,q is isomorphic to the square, hexagonal or triangle lattice in R

2. If cp,q > 0,
then Gp,q is isomorphic to the edge graph of a tessellation of the Poincaré disc H2

with regular q-gons of interior angle 2π/p (see [15, Remark 4.2.] and [21]). In the
latter case, Theorem 3.3 implies α(Gp,q ) > 0 and the estimate

α(Gp,q ) ≥ q(p − 2)cp,q
q(p − 1)cp,q + 1

= p − 2

p − 1
×

⎧
⎨

⎩

1
1+(q(p−1) cp,q)−1 , q < ∞
1, q = ∞

. (4.3)

Notice that in the case q = ∞, equality holds true in (4.3) (see, e.g., [26,
Example 8.3]).

It is well-known that (see [15, 18]),

αcomb(Gp,q) = p − 2

p

√

1 − 4

(p − 2)(q − 2)
. (4.4)
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By (a slight modification of) [26, Lemma 4.1],

α(G) = 2αcomb(Gd )

αcomb(Gd )+ 1
(4.5)

for every equilateral metric graph G = (V, E, | · |) with underlying combinatorial
graph Gd = (V, E). Hence

α(Gp,q) = p − 2

p − 1 + p
2

(√
(p−2)(q−2)
pq−2(p+q)

− 1
) = p − 2

p − 1
×

⎧
⎪⎨

⎪⎩

1
1+δ(q(p−1) cp,q)−1 , q < ∞

1, q = ∞
,

(4.6)

where

δ := pq − 2(p + q)

2

(√

1 + 4

pq − 2(p + q)
− 1

)
≤ 1.

Comparing (4.6) with (4.3), we conclude that the error in the estimate (4.3) is
uniformly of order 1

(pq)2 .
Finally, let us mention that using (4.5), we can turn (4.3) into a lower estimate

for αcomb(Gp,q ) as well. After a short calculation, we recover Theorem 1 from [24],

αcomb(Gp,q) ≥ p − 2

p

(
1 − 2

(p − 2)(q − 2)− 2

)
. (4.7)

4.2 Another Example

Denote by Z
2+ the square lattice of the upper half-plane, i.e. the combinatorial graph

with vertex set Z×Z≥0 and two vertices connected if and only if they are connected
in the square lattice Z2 = Z×Z. Fix k ∈ Z≥3 and let Gk be the graph obtained from
Z

2+ by attaching to each vertex v ∈ Z× {0} an infinite k-regular tree (see Fig. 1).
To assign edge lengths, we first define a partition of the edge set Ek. We denote

by Ek,tree the set of edges e ∈ Ek belonging to one of the attached trees. Also, let

Vn = {(z, n)| z ∈ Z} = Z× {n}, n ∈ Z≥0,

be the vertices on the “n-th horizontal line”. For n ∈ Z≥0, we define E+k,n as
the set of “vertical” edges between the n-th horizontal line Vn and the (n + 1)-th
horizontal line Vn+1, and E−k,n as the set of “horizontal” edges connecting vertices
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E−
k,0

E+
k,0

E−
k,1

E+
k,1

E−
k,2

E+
k,2

Ek,tree

Fig. 1 Gk for k = 3

in the n-th horizontal line Vn (see Fig. 1). Finally, we equip Gk with edge lengths in
the following way:

|e| =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, e ∈ Ek,tree

1
(2n+2)2 , e ∈ E−k,n

1
(2n+3)2 , e ∈ E+k,n

. (4.8)

Now let us compute the characteristic values. First of all, for all e ∈ Ek,tree we
have the estimate

inf
e∈Ek,tree

c(e) = 1 − 2

k
= k − 2

k
.

Next, taking into account that k ≥ 3, we get

c(e) = 4 − 2

k + 2 1
4 + 1

9

− 1
1
4 + 2 1

9 + 1
16

= 164

77
− 2

k + 11
18

> 1

for all e ∈ E−k,0, and

c(e) = 9 − 1

k + 2 1
4 + 1

9

− 1
1
9 + 1

25 + 2 1
16

− 2
1
4 + 2 1

9 + 1
16

= 8955

5467
− 1

k + 11
18

> 1

for e ∈ E+k,0. Moreover, after lengthy but straightforward calculations one can see
that

c(e) > 1
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for all e ∈ E±k,n with n ≥ 1. Thus we obtain

c∗(Gk) = inf
e∈Ek,tree

c(e) = k − 2

k
> 0, (4.9)

and hence, by Theorem 3.3, α(Gk) > 0.
Now let us compute K(Gk). If v ∈ Vn with n ≥ 1, then

sup
v∈⋃n≥1 Vn

m(v)

infe∈Ev
|e| = sup

n≥1
(2n+ 3)2

(
1

(2n+ 1)2
+ 2

(2n+ 2)2
+ 1

(2n+ 3)2

)

=
(

1 + 2

3

)2

+ 2

(
1 + 1

4

)2

+ 1 = 497

72
= 6.9027̇.

For v ∈ V0, we obtain

m(v)

infe∈Ev
|e| = 9

(
k + 2

1

4
+ 1

9

)
= 9k + 11

2
.

Moreover, for the remaining vertices v ∈ V belonging to one of the attached trees,

m(v)

infe∈Ev
|e| = k.

By assumption, k ≥ 3 and hence M(Gk) = 9k + 11
2 . In addition, P(Gk) = ∞ since

T contains unbounded tiles. Thus we obtain

K(Gk) = 1 − 1

M(Gk)
= 18k + 9

18k + 11
, (4.10)

and Theorem 3.3 implies the lower estimate

α(Gk) ≥ 18k + 11

18k + 9

k − 2

k
.

Our next goal is to derive an upper estimate. Denote by T the k-regular tree attached
to the origin o = (0, 0) ∈ R

2. For l ∈ Z≥2, let G̃l be the subgraph consisting of all
vertices in T that can be reached from o with a path using at most l edges and all
edges between such vertices. Then it is straightforward to verify

mes(G̃l ) =
l−1∑

j=0

k(k − 1)j = k((k − 1)l − 1)

k − 2
, deg(∂G̃l ) = k + k(k − 1)l−1,
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and as a consequence,

lim
l→∞

deg(∂G̃l )

mes(G̃l )
= k − 2

k − 1
= α(Tk),

where Tk is the equilateral, k-regular tree (see Example 4.1 or [26, Example 8.3]).
This implies the two-sided estimate

18k + 11

18k + 9

k − 2

k
≤ α(Gk) ≤ k − 2

k − 1
.

In particular, α(Gk) → 1 for k →∞.

Remark 4.1 The two above examples demonstrate the use of Theorem 3.3 in two
different situations. First of all, let us mention that by [26, Corollary 4.4.] the
metric graph G satisfies the strong isoperimetric inequality if �∗(G) < ∞ and the
combinatorial isoperimetric constant αcomb(Gd ) is positive,

αcomb(Gd ) > 0.

In Example 4.1, the positivity of αcomb(Gp,q) is known (see (4.4)) and hence it is a
priori clear that α(G) > 0. However, Example 4.1 shows that in certain situations
Theorem 3.3 gives a good quantitative estimate.

On the other hand, in Example 4.2 we have αcomb(Gk) = 0 (since obviously
αcomb(Z

2+) = 0), however, α(G) > 0. In particular, Theorem 3.3 shows that the
isoperimetric constants of the combinatorial and metric graph behave differently.

4.3 Non-equilateral p-Regular Trees

We conclude with an example showing the use of Remark 3.6. For p ∈ Z≥6, let
Tp be the equilateral, p-regular tree from Example 4.1. Fix an edge ê ∈ E(Tp). In
the following, we will consider Tp equipped with another choice of edge lengths.
Define the metric graph Tp := (Tp, | · |) by assigning

|e| :=
⎧
⎨

⎩
p, e = ê

1, e ∈ E(Tp) \ {ê}
.

Let G̃ ∈ S(Tp) be a star-like complete subgraph. If ê /∈ Ẽ , then mes(G̃) = #Ẽ . If
ê ∈ Ẽ , then Ṽint �= ∅ since G̃ is star-like. Hence

mes(G̃) = #Ẽ + p − 1 ≤ 2#Ẽ.
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Thus we conclude from (4.6) and Lemma 3.5 that

αS (Tp) = inf
G̃∈S

deg(∂G̃)
mes(G̃)

≥ 1

2
inf
G̃∈S

deg(∂G̃)
#Ẽ

= 1

2
α(Tp) = 1

2

p − 2

p − 1
≥ 2

5

for all p ≥ 6. On the other hand, �∗(Tp) = p ≥ 6 by assumption. Hence Remark 3.6
implies

α(Tp) = 2

�∗(Tp)
= 2

p
.
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Spectral Monotonicity for Schrödinger
Operators on Metric Graphs

Jonathan Rohleder and Christian Seifert

Abstract We study the influence of certain geometric perturbations on the spec-
tra of self-adjoint Schrödinger operators on compact metric graphs. Results are
obtained for permutation invariant vertex conditions, which, amongst others, include
δ and δ′-type conditions. We show that adding edges to the graph or joining vertices
changes the eigenvalues monotonically. However, the monotonicity properties may
differ from what is known for the previously studied cases of Kirchhoff (or standard)
and δ-conditions and may depend on the signs of the coefficients in the vertex
conditions.

Keywords Metric graphs · Schrödinger operators · Spectrum · Surgery
principles
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1 Introduction
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spectral investigation. They were applied successfully to derive Faber–Krahn type
inequalities for graph Laplacians and eigenvalue estimates depending on various
quantities of the graph such as the total length, the number of edges or vertices,
the diameter or the Betti number, see [1, 2, 4, 8–11, 14, 16], where Kirchhoff (also
called standard), δ, or Dirichlet conditions at the vertices were treated.

In the present paper two types of perturbations of the graph are considered for
a more general class of vertex conditions. More specifically, for a compact metric
graph � we focus on the change of the eigenvalues of a self-adjoint Schrödinger
operator H in L2(�) when either

(i) an edge is added to the graph, or
(ii) two vertices of the graph are joined into a single vertex.

For the case of Kirchhoff or δ vertex conditions it is known that the eigenvalues
behave non-increasing under the perturbation (i) if the additional edge connects a
vertex of � to a new vertex of degree one while no general monotonicity principle
is valid if the new edge connects two previously existing vertices, see [13]. For
the graph transformation (ii), the eigenvalues of Schrödinger operators subject to
Kirchhoff or δ-conditions are known to move non-decreasingly.

In order to study eigenvalue monotonicity under the graph transformations (i)
and (ii) for more general couplings, one needs to specify how vertex conditions
change; actually, each of these transformations leads to an increase of the vertex
degree of certain vertices. Hence, we will consider the question only for those vertex
conditions which admit a canonical or natural extension to a larger vertex degree.
This is the case if the vertex conditions are permutation invariant, i.e., different
edges incident to the same vertex are not distinguished by the vertex conditions.
Permutation invariant vertex conditions include δ- and δ′-type conditions. They are
discussed in detail and classified in Sect. 2 below; cf. Classification 2.3.

In the main results of this paper we observe that different types of permutation
invariant vertex conditions behave differently under the considered transformations.
Section 3 is devoted to the transformation (i). It turns out that there is a class of
conditions for which, in contrast to Kirchhoff or δ-conditions, all eigenvalues behave
monotonically non-increasing if an edge is added connecting two previously present
vertices; this class includes so-called anti-Kirchhoff as well as δ′-type conditions,
see Theorem 3.2. Moreover, in Theorem 3.5 it is shown that for all permutation
invariant vertex conditions the eigenvalues behave non-increasingly if an edge
connecting the specified vertex to a new vertex of degree one is added. These obser-
vations are complemented by examples. In Sect. 4 the behavior of the eigenvalues
under the transformation (ii) is studied. It turns out that this transformation divides
the permutation invariant conditions into three classes: those for which joining two
vertices leads to non-decreasing eigenvalues (as for Kirchhoff and δ-conditions),
those for which it leads, conversely, to non-increasing eigenvalues, and those for
which the monotonicity properties depend on the signs of the coefficients in the
vertex conditions. The latter applies e.g. to δ′-type conditions. The different classes
of permutation invariant vertex conditions according to Classification 2.3 are treated
in Theorems 4.1, 4.2 and 4.5. We would like to mention that all results depend
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only on the vertex conditions at those vertices which are changed by the graph
transformation. At all other vertices, general self-adjoint conditions are allowed.

The proofs of our results are all variational comparing Rayleigh quotients, which
is a standard method in obtaining eigenvalue estimates. In fact, estimates on the
quadratic form associated to the Schrödinger operator on suitable finite-dimensional
subspaces together with an application of the min-max principle yield the desired
estimates for the eigenvalues.

After conceiving the paper we learned about the manuscript [5] dealing also with
monotonicity properties for the spectrum of the Laplacian with Kirchhoff, δ, and
Dirichlet boundary conditions, but for a larger toolkit of surgery principles.

2 Schrödinger Operators with Permutation Invariant Vertex
Conditions

In this section we introduce the operators under consideration. First we recall some
general facts on self-adjoint vertex (or coupling) conditions. After that we restrict
our considerations to a subclass, the permutation invariant conditions, which is
suitable for the questions under investigation.

Let � be a finite, compact metric graph, i.e. a graph consisting of a finite vertex
set V := V (�) and a finite edge set E := E(�) that is, additionally, equipped with
a length function L : E → (0,∞). We identify each edge e ∈ E with the interval
[0, L(e)] ⊆ R and obtain a natural metric on �. For each e ∈ E we say that e has
initial vertex vi and terminal vertex vt if e is incident to vi and vt such that vi is
identified with the zero endpoint of [0, L(e)] and vt is identified with the endpoint
L(e); note that vi and vt coincide if e is a loop. Furthermore, for each vertex v ∈ V

we denote by Ev,i ⊆ E (Ev,t ⊆ E) the set of edges for which v is the initial
vertex (terminal vertex) and by deg(v) = |Ev,i| + |Ev,t| the degree of v. Finally,
by L2(�) we denote the usual L2-space on �, which coincides with the direct sum⊕

e∈E L2(0, L(e)). For f ∈ L2(�) we denote by fe the restriction of f to some
edge e ∈ E. Moreover, for k = 1, 2, . . . we make use of the Sobolev spaces

H̃ k(�) :=
⊕

e∈E
Hk(0, L(e)),

equipped with the standard Sobolev norms and inner products. Moreover, a function
f ∈ H̃ 1(�) is called continuous at a vertex v ∈ V if for any two edges e, ê ∈ E

incident to v the values of fe and fê at v coincide.
In the following we consider Schrödinger operators in L2(�) acting as

(Lf )e = −f ′′
e + qefe, e ∈ E, (2.1)

with a real-valued potential q; for simplicity, we assume that q ∈ L∞(�).
Sometimes we will impose mild sign conditions on q; cf. Remark 3.7.
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In order to write down vertex conditions we make use of the following abbrevi-
ations. For any vertex v ∈ V we fix enumerations {e1, . . . , el} and {el+1, . . . em} of
Ev,i and Ev,t, respectively, where l = |Ev,i| and m = deg(v). For each sufficiently
regular f ∈ L2(�) we write

F(v) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fe1(0)
...

fel (0)
fel+1(L(el+1))

...

fem(L(em))

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and F ′(v) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f ′
e1
(0)
...

f ′
el
(0)

−f ′
el+1

(L(el+1))

...

−f ′
em

(L(em))

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that F(v) is well-defined whenever f ∈ H̃ 1(�) and F ′(v) is well-defined for
f ∈ H̃ 2(�). The latter denotes the collection of derivatives pointing out of v into
the edges. The following description of all self-adjoint incarnations of L in L2(�)

with local vertex conditions is standard, see, e.g., [3, Theorem 1.4.4].

Proposition 2.1 Let � be a finite, compact metric graph, let q ∈ L∞(�) be real-
valued and let L be the Schrödinger differential expression in (2.1). For each vertex
v ∈ V let Pv,D, Pv,N and Pv,R be orthogonal projections in C

deg(v) with mutually
orthogonal ranges such that Pv,D + Pv,N + Pv,R = I and let "v be a self-adjoint,
invertible operator in ranPv,R. Then the operator H in L2(�) given by

Hf = Lf,

domH =
{
f ∈ H̃ 2(�) : Pv,DF(v) = 0, Pv,NF

′(v) = 0,

Pv,RF
′(v) = "vPv,RF(v) for each v ∈ V

}
,

is self-adjoint (and each self-adjoint realization of L in L2(�) subject to local vertex
conditions can be written in this form). Furthermore, the closed quadratic form h

corresponding to the operator H is given by

h[f ] =
∫

�

|f ′|2dx +
∫

�

q|f |2dx +
∑

v∈V

〈
"vPv,RF(v), Pv,RF(v)

〉
,

domh =
{
f ∈ H̃ 1(�) : Pv,DF(v) = 0 for each v ∈ V

}
.

Recall that by a standard compact embedding argument the spectrum of the
Hamiltonian H on the compact graph � is always purely discrete and bounded from
below, see, e.g., [12, Corollary 10 and Theorem 18]. In the following we denote by

λ1(H) ≤ λ2(H) ≤ . . .
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the eigenvalues of H in non-decreasing order, counted with multiplicities. We
remark that all eigenvalues are non-negative if q ≥ 0 and "v is non-negative for
each vertex v. If H acts as the Laplacian, i.e. q = 0 identically on �, and the
vertex conditions are Kirchhoff conditions at every vertex then λ1(H) = 0 and the
multiplicity of λ1(H) coincides with the number of connected components of �.

The focus of this paper is on the behavior of the spectrum under a change of the
graph, namely adding extra edges to a vertex or joining two vertices. For general
vertex conditions there is no natural extension in the case that edges are added to a
vertex. However, such an extension exists if the vertex conditions are permutation
invariant, that is, they do not distinguish between the edges incident to the vertex.
However, the only subspaces of C

deg(v) being invariant under all permutations
are {0}, Cdeg(v), span{(1, 1, . . . , 1)2} and (span{(1, 1, . . . , 1)2})⊥. Therefore in
the following we assume that each of the orthogonal projections Pv,D, Pv,N and
Pv,R involved in the vertex conditions projects onto one of these subspaces. The
orthogonal projections onto span{(1, 1, . . . , 1)2} and (span{(1, 1, . . . , 1)2})⊥ are
given by the d × d-matrices

P := Pd =
⎛

⎜⎝

1
d
. . . 1

d
...

...
1
d
. . . 1

d

⎞

⎟⎠ and Q := Qd =

⎛

⎜⎜⎜⎜⎝

d−1
d

− 1
d

. . . − 1
d

− 1
d

. . .
. . .

...
...

. . .
. . . − 1

d

− 1
d

. . . − 1
d

d−1
d

⎞

⎟⎟⎟⎟⎠
,

where d := deg(v). Moreover, in order to make the conditions permutation invariant
we assume that "v is the multiplication by a constant. Note that, under these
assumptions, if one of the projections is the identity (and, thus, the others are
zero) then the vertex conditions do not reflect the connectivity of the graph but
degenerate to decoupled Dirichlet, Neumann or Robin conditions. As we are not
interested in this situation, we are left with the following assumption for the vertices
to be changed. It comprises all permutation invariant vertex conditions that do not
decouple the vertex.

Hypothesis 2.2 For a given vertex v ∈ V we assume that Pv,D, Pv,N, Pv,R ∈
{0,P,Q} such that Pv,D, Pv,N and Pv,R are mutually distinct. Moreover, we assume
that "v is the operator of multiplication by a constant in ranPv,R.

Considering the vertex conditions in Proposition 2.1 under the additional
assumption of Hypothesis 2.2 leads to a total of six different classes of conditions.
They are described in the following.

Classification 2.3 Let Hypothesis 2.2 hold for some vertex v ∈ V . Then the vertex
conditions at v have one of the following forms.
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I. The first two cases correspond to Pv,D = Q.

(a) If Pv,N = P and Pv,R = 0 we get Kirchhoff conditions

f is continuous at v and
deg(v)∑

j=1

F ′
j (v) = 0.

(b) For Pv,N = 0, Pv,R = P and "v acting as multiplication by αv

deg(v) for some
real αv �= 0 we have δ-conditions

f is continuous at v and
deg(v)∑

j=1

F ′
j (v) = αvf (v).

II. The next two cases are Pv,N = Q.

(a) If Pv,D = P and Pv,R = 0 we have conditions which are known as anti-
Kirchhoff, namely, the vector F ′(v) is constant and

deg(v)∑

j=1

Fj (v) = 0.

(b) If Pv,D = 0, Pv,R = P and "v is multiplication by deg(v)
βv

for some real
βv �= 0 we get δ′-type conditions, i.e., the vector F ′(v) is constant (let
f ′(v) denote an arbitrary component of it) and

deg(v)∑

j=1

Fj (v) = βvf
′(v).

III. The remaining cases correspond to Pv,R = Q.

(a) For Pv,D = P , Pv,N = 0 and "v being multiplication with real Cv �= 0 the
conditions can be written as

deg(v)∑

j=1

Fj (v) = 0 and F ′
j (v)− F ′

k(v) = Cv(Fj (v)− Fk(v))

for all j, k ∈ {1, . . . , deg(v)}.
(b) If Pv,D = 0, Pv,N = P and "v is multiplication by 1

Dv
for a real Dv �= 0

we get

deg(v)∑

j=1

F ′
j (v) = 0 and Fj (v)− Fk(v) = Dv(F

′
j (v)− F ′

k(v))

for all j, k ∈ {1, . . . , deg(v)}.
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Remark 2.4 The conditions of type III in Classification 2.3 appear less frequently
in the literature. However, for instance the conditions III (b) were proposed in [6] as
an alternative to the δ′-type conditions II (b) in the description of quantum particles
on graphs, and their physical properties were discussed there.

As all proofs in the following sections will be based on calculations involving
quadratic forms, we provide the following lemma. Its proof is a simple calculation
and is left to the reader.

Lemma 2.5 Let � be a finite, compact metric graph, let H be a self-adjoint
Schrödinger operator in L2(�) as in Proposition 2.1, and let h be the corresponding
quadratic form. Furthermore, let v ∈ V and let the vertex conditions for H at v be
given in terms of Pv,D, Pv,N, Pv,R and "v . Assume that Hypothesis 2.2 holds for v.
Then the following assertions hold for each f ∈ domh, where the types refer to
Classification 2.3.

(i) If the conditions at v are of type I (a) then f is continuous at v and

〈
"vPv,RF(v), Pv,RF(v)

〉 = 0.

(ii) If the conditions at v are of type I (b) then f is continuous at v and

〈
"vPv,RF(v), Pv,RF(v)

〉 = αv |f (v)|2.

(iii) If the conditions at v are of type II (a) then
∑deg(v)

j=1 Fj (v) = 0 and

〈
"vPv,RF(v), Pv,RF(v)

〉 = 0.

(iv) If the conditions at v are of type II (b) then f does not satisfy any vertex
conditions at v and

〈
"vPv,RF(v), Pv,RF(v)

〉 = 1

βv

∣∣∣∣
deg(v)∑

j=1

Fj (v)

∣∣∣∣
2

.

(v) If the conditions at v are of type III (a) then
∑deg(v)

j=1 Fj (v) = 0 and

〈
"vPv,RF(v), Pv,RF(v)

〉 = Cv

deg(v)∑

j=1

|Fj (v)|2.

(vi) If the conditions at v are of type III (b) then f does not satisfy any vertex
conditions at v and

〈
"vPv,RF(v), Pv,RF(v)

〉 = 1

Dv

( deg(v)∑

j=1

|Fj (v)|2 − 1

deg(v)

∣∣∣∣
deg(v)∑

j=1

Fj (v)

∣∣∣∣
2)

.
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3 Attaching Edges

In this section we study the question how the spectrum of a graph Hamiltonian
changes when we attach additional edges (or, more generally, whole graphs) to
certain vertices of a given graph. This question was studied earlier for the Laplacian
with Kirchhoff vertex conditions and the first positive eigenvalue (the spectral gap)
in [13]. We provide two theorems depending on the conditions at those vertices
where the additional edge or graph is attached. In order to avoid making the
presentation over-complicated, in the theorems of this section we treat only the
case of the Laplacian, i.e., the negative second derivative with zero potentials on
the edges and discuss only adding one edge, either connecting two vertices of the
original graph or a vertex of the original graph and a new vertex. We then discuss
the general case of Schrödinger operators as well as attaching whole graphs in
Remark 3.7 below.

The notion in the following definition will be used below when graph transfor-
mations lead to an increase of the degree of a vertex.

Definition 3.1 At a graph vertex v of degree d let vertex conditions satisfying
Hypothesis 2.2 be given, that is, Pv,D, Pv,N, Pv,R ∈ {0,Pd,Qd } are distinct and
"v acts as multiplication with a constant in ranPv,R. Then the natural extension
of these conditions to a vertex ṽ of degree d̃ > d is obtained by replacing Pd by
Pd̃ and Qd by Qd̃ and letting "ṽ be the multiplication operator in ranPṽ,R with the
constant corresponding to the same interaction strength as for "v; i.e. multiplication
with αv

d̃
in case I (b), with d̃

βv
in case II (b), with Cv in case III (a) and with 1

Dv
in

case III (b).

We point out that proceeding from vertex conditions satisfying Hypothesis 2.2
to their natural extensions does not change the type of the conditions according to
Classification 2.3.

The following theorem deals with adding an edge connecting two vertices v1 and
v2 of a graph. The admissible vertex conditions include δ′-type and anti-Kirchhoff
conditions.

Theorem 3.2 Let � be a finite, compact metric graph, let v1, v2 be two distinct
vertices of � and let H be the Laplacian in L2(�) subject to arbitrary local, self-
adjoint vertex conditions at each vertex v ∈ V \ {v1, v2}, see Proposition 2.1, and
having at each of the vertices v1 and v2 conditions either of type II (a) or II (b) or
III (a) according to Classification 2.3 (not necessarily the same type at v1 and v2).
Let �̃ be the graph obtained from � by adding an extra edge of an arbitrary, finite
length connecting v1 and v2, see Fig. 1. Moreover, let H̃ be the Laplacian in L2(�̃)

having the same vertex conditions as H on all v ∈ V \ {v1, v2} and with the natural
extension of the vertex conditions for H at v1 and v2. Then

λk(H̃ ) ≤ λk(H)

holds for all k ∈ N.
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v1 v2 v1 v2

Fig. 1 The transformation of Theorem 3.2. Left: �, right: �̃, i.e. attaching an edge connecting v1
and v2

Proof Let us denote by h and h̃ the quadratic forms on L2(�) and L2(�̃)

corresponding to the operators H and H̃ , respectively, see Proposition 2.1. Let
k ∈ N and let F be a k-dimensional subspace of domh such that

h[f ] ≤ λk(H)

∫

�

|f |2dx for all f ∈ F .

For each f ∈ F denote by f̃ the extension of f by zero to �̃. Then the space F̃
formed by these extensions is k-dimensional, and F̃ ⊂ dom h̃ as the conditions for
h at v carry over to the corresponding conditions for h̃. Moreover, for each f̃ ∈ F̃
we have

h̃[f̃ ] =
∫

�

|f ′|2dx +
∑

v∈V \{v1,v2}

〈
"vPv,RF(v), Pv,RF(v)

〉

+ 〈
"̃v1 P̃v1,RF̃ (v1), P̃v1,RF̃ (v1)

〉+ 〈
"̃v2 P̃v2,RF̃ (v2), P̃v2,RF̃ (v2)

〉
.

(3.1)

Let us look at the term for v1 in more detail. Our aim is to show

〈
"̃v1 P̃v1,RF̃ (v1), P̃v1,RF̃ (v1)

〉 = 〈
"v1Pv1,RF(v1), Pv1,RF(v1)

〉
. (3.2)

Indeed, if the conditions at v1 are of type II (a) then Pv1,R = 0 and P̃v1,R = 0 so
that (3.2) follows. If the conditions at v1 are of type II (b) then by Lemma 2.5 (iv)

〈
"̃vP̃v1,RF̃ (v1), P̃v1,RF̃ (v1)

〉 = 1

βv1

∣∣∣∣
d+1∑

j=1

F̃j (v)

∣∣∣∣
2

= 1

βv1

∣∣∣∣
d∑

j=1

Fj (v)

∣∣∣∣
2

= 〈
"v1Pv1,RF(v1), Pv1,RF(v1)

〉
,

where d is the degree of v1 in �. This is (3.2). Finally, if the conditions at v1 are of
type III (a) then Lemma 2.5 (v) gives

〈
"̃vP̃v1,RF̃ (v1), P̃v1,RF̃ (v1)

〉 = Cv1

d+1∑

j=1

∣∣F̃j (v)
∣∣2 = Cv1

d∑

j=1

∣∣Fj (v)
∣∣2

= 〈
"v1Pv1,RF(v1), Pv1,RF(v1)

〉
,
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v1 v2 v1 v2

Fig. 2 The graphs in Example 3.3. Left: �, right: �̃

which is again (3.2). Finally, combining (3.1) with (3.2) and its analogous counter-
part for v1 replaced by v2 we get

h̃[f̃ ] = h[f ] ≤ λk(H)

∫

�

|f |2dx = λk(H)

∫

�̃

|f̃ |2dx for all f̃ ∈ F̃ ,

which by the min-max principle implies the assertion of the theorem.

The following example shows that Theorem 3.2 may fail for other conditions
satisfying Hypothesis 2.2. For Kirchhoff conditions this example was discussed
in [13, Example 1].

Example 3.3 Let � be the graph with two vertices v1, v2 and one edge of length 1
connecting these two, see Fig. 2. Let H be the Laplacian in L2(�) with a δ-condition
of strength α ∈ R at v1 and a Kirchhoff condition at v2. Note that both vertices have
degree one; hence, the condition at v1 is a Robin boundary condition and the one
at v2 is Neumann. Note further that for α = 0 the condition at v1 is Neumann, too.
Moreover, let �̃ be the graph obtained from � by adding another edge of length
� > 0 that also connects v1 to v2, and let H̃ be the Laplacian in L2(�̃) subject to the
natural extensions of the conditions for H , namely a δ-condition of strength α at v1
and a Kirchhoff condition at v2. We look at two different cases.

If α = 0 (see [13, Example 1]) then λk(H) = π2(k− 1)2 for all k ∈ N, and H̃ is
unitarily equivalent to the Laplacian on an interval of length 1 + � with periodic
boundary conditions, which implies λ1(H̃ ) = 0 and λ2k(H̃ ) = λ2k+1(H̃ ) =

4π2

(1+�)2 k
2 for all k ∈ N. Hence for � < 1 we observe λ2(H̃ ) > λ2(H), whereas

for � ≥ 1 we obtain λk(H̃ ) ≤ λk(H) for all k ∈ N (and even a strict inequality for
k > 2; for � > 1 the inequality is strict also for k = 2).

If α = 1 then simple calculations yield λ1(H) ≈ 0.74017. Furthermore, letting
� = 0.1 one obtains λ1(H̃ ) ≈ 0.83156, that is, λ1(H) < λ1(H̃ ). Hence, adding an
edge may increase the eigenvalues also for α �= 0.

We would like to point out that we did not find an example for conditions of type
III (b) violating the assertion of Theorem 3.2. We provide a further example that
shows that the inequality in Theorem 3.2 can be strict for all k ∈ N simultaneously.

Example 3.4 Let � and �̃ be as in the previous example, where the edge length in �

is 1 and the edge lengths in �̃ are 1 and � > 0, and let H and H̃ be the Laplacians in
L2(�) and L2(�̃), respectively, with type II (a) (anti-Kirchhoff) coupling conditions
at both v1 and v2. For � this results in Dirichlet boundary conditions and, hence,
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λk(H) = π2k2 for all k ∈ N. Moreover, H̃ is unitarily equivalent to the Laplacian Ĥ

on the interval [0, 1+�]with conditions f (1−)+f (1+) = 0, −f ′(1−) = f ′(1+),
f (0) + f (1 + �) = 0 and f ′(0) = −f ′(1 + �). Hence, f is an eigenfunction of
Ĥ if and only if g defined by g = f on [0, �) and g = −f on (�, 1 + �] is an
eigenfunction of the Laplacian on [0, 1+ �] with periodic boundary conditions. We

conclude that λ1(H̃ ) = 0 and λ2k(H̃ ) = λ2k+1(H̃ ) = 4π2

(1+�)2 k
2 for all k ∈ N. Thus,

λk(H̃ ) < λk(H) for all k ∈ N, independent of the choice of �.

In the next theorem we show that adding an edge connecting an old vertex
to a new vertex of degree one does in most cases lead to a non-increase of all
eigenvalues. For the special case of Kirchhoff vertex conditions this was discussed
in [13, Theorem 2], see also [16, Proposition 3.1]. For the sake of completeness we
indicate the proof also for this case.

Theorem 3.5 Let � be a finite, compact metric graph, let v1 be a vertex of �

and let H be the Laplacian in L2(�) subject to arbitrary local, self-adjoint vertex
conditions at each vertex v ∈ V \ {v1}, see Proposition 2.1, and with a condition
satisfying Hypothesis 2.2 at v1. Let �̃ be the graph obtained from � by adding an
extra edge of an arbitrary, finite length connecting v1 with a new vertex v2 (i.e.,
v2 /∈ V and v2 has degree one in �̃), see Fig. 3. Moreover, let H̃ be the Laplacian
in L2(�̃) having the same vertex conditions as H on all v ∈ V \ {v1}, with the
natural extension of the vertex conditions for H at v1 and with any self-adjoint,
local conditions at v2. If the conditions at v1 are of type I (a), I (b) or III (b) we
assume in addition that the condition of H̃ at v2 is a δ (i.e. Robin) condition with
αv2 ≤ 0. Then

λk(H̃ ) ≤ λk(H)

holds for all k ∈ N.

Proof If the condition at v1 is of type II (a), II (b) or III (a) then the proof is literally
the same as for Theorem 3.2, and the result is independent of the boundary condition
at the new vertex v2. For the remaining cases let k ∈ N and let F be as in the proof
of Theorem 3.2. If the condition at v1 is of type I (Kirchhoff or δ) then each f ∈ F
is continuous at v1 and we define f̃ to be the extension of f to �̃ having the constant

v1 v1

v2

Fig. 3 The transformation of Theorem 3.5. Left: �, right: �̃, i.e. adding an extra edge connecting
v1 and a new vertex v2
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value f (v1) on the new edge, and F̃ to be the collection of all such extensions of
f ∈ F . As the condition of H̃ at v2 is δ, it follows F̃ ⊂ dom h̃. Moreover, by
Lemma 2.5 (i) or (ii),

〈
"̃v1 P̃v1,RF̃ (v1), P̃v1,RF̃ (v1)

〉 = αv1 |f̃ (v1)|2 = αv1 |f (v1)|2

= 〈
"v1Pv1,RF(v1), Pv1,RF(v1)

〉
(3.3)

holds for the coefficient αv1 ∈ R of the condition at v1. Moreover, at v2 we have

〈
"̃v2 P̃v2,RF̃ (v2), P̃v2,RF̃ (v2)

〉 = αv2 |f̃ (v2)|2 ≤ 0. (3.4)

We plug (3.3) and (3.4) into (3.1), which remains valid in this situation, and obtain

h̃[f̃ ] ≤ h[f ] ≤ λk(H)

∫

�

|f |2dx ≤ λk(H)

∫

�̃

|f̃ |2dx for all f̃ ∈ F̃ . (3.5)

If the condition at v2 is of type III (b) then for each f ∈ F we denote by f̃ the
extension to �̃ being constantly equal to

1

d

d∑

j=1

Fj (v1)

on the new edge, where d is the degree of v1 in �. As above, we denote by F̃ the
space of these extensions of all functions in F . Then by Lemma 2.5 (vi)

〈
"̃v1 P̃v1,RF̃ (v1), P̃v1,RF̃ (v1)

〉 = 1

Dv1

( d+1∑

j=1

|F̃j (v1)|2 − 1

d + 1

∣∣∣∣
d+1∑

j=1

F̃j (v1)

∣∣∣∣
2)

= 1

Dv1

( d∑

j=1

|Fj (v1)|2+ 1

d2

∣∣∣∣
d∑

j=1

Fj (v1)

∣∣∣∣
2

− 1

d + 1

∣∣∣∣
d∑

j=1

Fj (v1)+ 1

d

d∑

j=1

Fj (v1)

∣∣∣∣
2)

= 1

Dv1

( d∑

j=1

|Fj (v1)|2 − 1

d

∣∣∣∣
d∑

j=1

Fj (v1)

∣∣∣∣
2)

= 〈
"v1Pv1,RF(v1), Pv1,RF(v1)

〉
.

Together with

〈
"̃v2 P̃v2,RF̃ (v2), P̃v2,RF̃ (v2)

〉 = αv2 |f̃ (v1)|2 ≤ 0

and (3.1) we arrive again at (3.5). As dim F̃ = k, the min-max principle implies the
assertion of the theorem.
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v0

0

v1

1

v0

0

v1

1

v2

2

Fig. 4 The graphs in Example 3.6. Left: �, right: �̃

The following example shows that in case we impose a Robin boundary condition
with a positive coefficient or a Dirichlet boundary condition at the new vertex v2,
the assertion of the previous theorem may be false.

Example 3.6 Let � be the graph consisting of two vertices v0 and v1 and one edge
connecting the two vertices, which is parametrised by the interval (0, 1); cf. Fig. 4.
Let us impose Kirchhoff conditions at v0 and v1. Since the degree is one in both
cases, these conditions correspond to Neumann boundary conditions for H at 0
and at 1. Hence, λk(H) = (k − 1)2π2 for all k ∈ N. Now, let us add an edge of
length one, which connects v1 with v2, see Fig. 4. At the vertex v2 we impose either
the condition f ′(2) + αf (2) = 0 for some α > 0 or a Dirichlet condition. Then
the spectrum of H̃ is nonnegative and it is easy to see by solving the respective
boundary value problem that λ1(H̃ ) �= 0. Hence

λ1(H̃ ) > 0 = λ1(H),

which shows that the assertion of Theorem 3.5 is not valid here.

Let us add some concluding remarks on generalizations of the results of this
section.

Remark 3.7

(a) As the proofs show, the statements of Theorem 3.2 and Theorem 3.5 remain true
if the Laplacian on � is replaced by a Schrödinger operator with a real-valued
potential q ∈ L∞(�). Furthermore, the statement of Theorem 3.2 remains valid
if an arbitrary bounded, measurable, real-valued potential is introduced on the
new edge, and the same is true for Theorem 3.5 if the conditions at v1 are of
type II (a), II (b) or III (a). In the remaining cases of Theorem 3.5 it is easy to
see that the statement remains true if the potential qẽ on the new edge ẽ satisfies

∫ L(̃e)

0
qẽ dx ≤ 0.

(b) Instead of just adding one edge in Theorem 3.2, the result remains valid when
one attaches a whole compact metric graph to a subset V0 ⊂ V provided the
conditions at each vertex of V0 have one of the types II (a), II (b) or III (a). Also
in the situation of Theorem 3.5 we can add a whole compact metric graph to one
vertex, but in that case appropriate assumptions on the vertex conditions of the
attached graph need to be imposed. We do not discuss this here in more detail.
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4 Joining Vertices

In this section we study the behavior of eigenvalues when joining two vertices (with
the same type of conditions) and merging their coupling conditions appropriately.
In the following we say that two vertices v1, v2 of a graph are joined to one vertex
v0 if v1 and v2 are removed from � and, instead, a vertex v0 with

Ev0,i := Ev1,i ∪ Ev2,i and Ev0,t := Ev1,t ∪ Ev2,t

is introduced. We point out that the process of joining two vertices does not affect
the edge set of a metric graph. In particular, each function on the original graph can
be identified naturally with a function on the new graph where v1 and v2 are joined
to v0, and vice versa. In particular, we will identify the spaces L2(�) and L2(�̃) if
�̃ was obtained from � by joining two vertices.

We start with the case of conditions of type I, i.e., Kirchhoff or δ-conditions.
This situation was treated in [8, Theorem 2]. For completeness we include its simple
proof here. We allow nonzero potentials on the edges as well as arbitrary self-adjoint
conditions at the vertices that are not changed, which does not complicate the proof.

Theorem 4.1 Let � be a finite, compact metric graph and let H be a Schrödinger
operator in L2(�) with real-valued potential q ∈ L∞(�) and local, self-adjoint
vertex conditions at the vertices; cf. Proposition 2.1. Assume that v1, v2 are two
distinct vertices of � and that the vertex conditions of H at v1 and v2 are of
type I according to Classification 2.3, i.e. of δ-type with coefficients αv1 , αv2 ∈ R

(coefficient zero corresponds to a Kirchhoff condition). Denote by �̃ the graph
obtained from � by joining v1 and v2 to form one single vertex v0. Let H̃ be the
self-adjoint Schrödinger operator in L2(�̃) with potential q having the same vertex
conditions as H at all vertices apart from v0 and satisfying a δ-type condition with
coefficient αv0 := αv1 + αv2 at v0. Then

λk(H) ≤ λk(H̃ ) (4.1)

holds for all k ∈ N.

Proof Let h and h̃ be the quadratic forms corresponding to the operators H and
H̃ , respectively (see Proposition 2.1). For the inequality (4.1) it suffices to show
the inequality for the quadratic forms, i.e., dom h̃ ⊂ domh and h[f ] ≤ h̃[f ] for
all f ∈ dom h̃. In fact, each function in dom h̃ is continuous at each vertex of �̃

which clearly implies continuity at each vertex of �. In particular, each f ∈ dom h̃

satisfies f (v0) = f (v1) = f (v2), and by Lemma 2.5 (i) or (ii) we get

h̃[f ] − h[f ] = αv0 |f (v0)|2 − αv1 |f (v1)|2 − αv2 |f (v2)|2 = 0,

which leads to the assertion.
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Fig. 5 The transformation of
Theorems 4.1, 4.2 and 4.5.
Left: �, right: �̃, i.e. joining
the vertices v1 and v2 to a
new vertex v0

v1 v2
v0

In the next theorem we show that joining two vertices of type II can have
a different effect on the eigenvalues, depending on the signs of the coupling
coefficients. Recall that f satisfies conditions of type II at some vertex v if F ′(v) is
a constant vector (let us call an arbitrary component f ′(v)) and

deg(v)∑

j=1

Fj (v) = βvf
′(v). (4.2)

These are δ′-type conditions for βv �= 0 and anti-Kirchhoff conditions for βv = 0.

Theorem 4.2 Let � be a finite, compact metric graph and let H be a Schrödinger
operator in L2(�) with real-valued potential q ∈ L∞(�) and local, self-adjoint
vertex conditions at the vertices; cf. Proposition 2.1. Assume that v1, v2 are two
distinct vertices of � and that each of the vertex conditions of H at v1 and v2 is of
type II according to Classification 2.3, with coefficients βv1, βv2 ∈ R. Denote by �̃

the graph obtained from � by joining v1 and v2 to form one single vertex v0 (see
Fig. 5) and let H̃ be the self-adjoint Schrödinger operator in L2(�̃) with potential q ,
having the same vertex conditions as H at all vertices apart from v0 and satisfying
conditions of the form (4.2) at v = v0 with coefficient βv0 := βv1 + βv2 at v0. Then
the following assertions hold.

(i) If βv1, βv2 > 0 then λk(H̃ ) ≤ λk(H) for all k ∈ N.
(ii) If βv1, βv2 < 0 then λk(H) ≤ λk(H̃ ) for all k ∈ N.

(iii) If βv1 · βv2 < 0 and βv0 > 0 then λk(H) ≤ λk(H̃ ) for all k ∈ N.
(iv) If βv1 · βv2 < 0 and βv0 < 0 then λk(H̃ ) ≤ λk(H) for all k ∈ N.
(v) If βv1 · βv2 < 0 and βv0 = 0 then λk(H) ≤ λk(H̃ ) for all k ∈ N.

(vi) If βv1 · βv2 = 0 then λk(H̃ ) ≤ λk(H) for all k ∈ N.

The proof of this theorem relies on the following simple lemma.

Lemma 4.3 Let a, b ∈ C, p, q, r > 0, 1
p
+ 1

q
= 1

r
. Then

r|a + b|2 ≤ p|a|2 + q|b|2.
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Proof Let y > 0. Then the Cauchy–Schwarz inequality yields

|a + b|2 =
∣∣∣∣∣

〈(√
ya

b√
y

)
,

( 1√
y√
y

)〉∣∣∣∣∣

2

≤
(
y|a|2 + |b|2

y

)(
1

y
+ y

)

=
(

1 + y2
)
|a|2 +

(
1

y2 + 1

)
|b|2.

Let y :=
√

p
q

> 0. Then 1 + y2 = 1 + p
q
= p

r
and 1

y2 + 1 = q
p
+ 1 = q

r
, and the

desired inequality follows.

Proof of Theorem 4.2 As in the proof of the previous theorem we show inequalities
for the quadratic forms h and h̃ corresponding to H and H̃ , respectively, under the
different conditions. These form inequalities will immediately imply the statements.
Let us first discuss the assertions (i)–(iv). These are the cases where the conditions
for H at both v1 and v2 are of type II (b) and the same holds for the conditions
for H̃ at v0. In particular, for functions in the form domain of h no conditions are
imposed at v1 and v2, and the same holds for h̃ and v0. Hence the domains of h and
h̃ coincide. For f ∈ domh = dom h̃ let us set

a :=
deg(v1)∑

j=1

Fj (v1) and b :=
deg(v2)∑

j=1

Fj (v2). (4.3)

Then

a + b =
deg(v0)∑

j=1

Fj (v0)

and

h̃[f ] − h[f ] = 1

βv0

|a + b|2 − 1

βv1

|a|2 − 1

βv2

|b|2. (4.4)

Now the assertions (i)–(iv) can be derived as follows:

(i) If both βv1, βv2 > 0 (and hence βv0 > 0) we set p := 1
βv1

, q := 1
βv2

and

r := 1
βv0

, and Lemma 4.3 together with (4.4) yields h̃[f ] ≤ h[f ]. Hence,

h̃ ≤ h.
(ii) If βv1, βv2 < 0 (and hence βv0 < 0) then Lemma 4.3 applied with p = − 1

βv1
,

q = − 1
βv2

and r = − 1
βv0

and (4.4) yield h[f ] ≤ h̃[f ] and, hence, h ≤ h̃.
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(iii) If βv1 > 0 and βv2 < 0 such that βv0 = βv1 + βv2 > 0 we set p := 1
βv0

,

q := − 1
βv2

and r := 1
βv1

, and by Lemma 4.3 we obtain

1

βv1

|a|2 = r|a|2 = r|a + b − b|2 ≤ p|a + b|2 + q|b|2 = 1

βv0

|a + b|2 − 1

βv2

|b|2.

Hence (4.4) yields h̃[f ] ≥ h[f ], that is, h ≤ h̃.
(iv) If βv1 > 0 and βv2 < 0 such that βv0 = βv1 + βv2 < 0 we set p := − 1

βv0
,

q := 1
βv1

and r := − 1
βv2

. Then by Lemma 4.3 we obtain

− 1

βv2

|b|2 = r|b|2 = r|a + b − a|2 ≤ p|a + b|2 + q|a|2 = − 1

βv0

|a + b|2 + 1

βv1

|a|2.

Together with (4.4) this gives h̃[f ] ≤ h[f ], that is, h̃ ≤ h.

It remains to treat the cases where zero appears as a coefficient. Under the
conditions of (v), let f ∈ dom h̃. Then clearly f ∈ domh (which does not require
any conditions at v1 or v2) and with a and b defined in (4.3) we have a + b = 0.
Thus

h̃[f ] − h[f ] = − 1

βv1

|a|2 − 1

βv2

|b|2 = −
( 1

βv1

+ 1

βv2

)
|a|2 = 0

as βv2 = −βv1 . Hence h ≤ h̃, which implies (v).
For the remaining assertion (vi) let us first look at the case βv1 = 0, βv2 �= 0.

In this situation let f ∈ domh. Then clearly f ∈ dom h̃ (no condition at v0 is
required since βv0 �= 0) and in the above notation we have a = 0. Then

h̃[f ] − h[f ] = 1

βv0

|a + b|2 − 1

βv2

|b|2 = 1

βv2

|b|2 − 1

βv2

|b|2 = 0.

Thus h̃ ≤ h. The case βv1 �= 0, βv2 = 0 is analogous. In the final case that βv0 =
βv1 = βv2 = 0 let f ∈ domh. Then in the above notation we have a = b = 0
and, in particular, a + b = 0 which implies f ∈ dom h̃. Moreover, we see directly
h[f ] − h̃[f ] = 0. Thus h̃ ≤ h. This completes the proof.

We provide an example where a strict inequality appears in the setting of
Theorem 4.2 (vi).

Example 4.4 Let � be the graph with two vertices and one edge of length 1
connecting these two and let H be the Laplacian in L2(�) with type II (a) (anti-
Kirchhoff) couplings at both vertices; since the degree of the vertices is 1, this results
in Dirichlet boundary conditions. Hence, λk(H) = π2k2 for k ∈ N. Now, let us join
the two vertices, see Fig. 6.
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Fig. 6 Left: �, right: �̃
v1

0
v2

1
v0

Then H̃ is unitarily equivalent to the Laplacian on the interval [0, 1] with
conditions f ′(0) = −f ′(1) and f (0) = −f (1), i.e. anti-periodic boundary
conditions. Hence, λ2k−1(H̃ ) = λ2k(H̃ ) = π2(2k − 1)2 for all k ∈ N. Thus, the
inequality between the eigenvalues is strict for the even indices and an equality for
the odd indices.

The following last theorem of this section deals with joining vertices with
conditions of type III (a) or (b). In view of the form of these conditions summing up
the corresponding coefficients does not seem appropriate. Instead we join vertices
with the same strength of interaction.

Theorem 4.5 Let � be a finite, compact metric graph and let H be a Schrödinger
operator in L2(�) with real-valued potential q ∈ L∞(�) and local, self-adjoint
coupling conditions at the vertices; cf. Proposition 2.1. Assume that v1, v2 are two
distinct vertices of � such that the vertex conditions of H at v1 and v2 are either both
of type III (a) according to Classification 2.3, with coefficients Cv1 = Cv2 ∈ R or
both of type III (b) with coefficientsDv1 = Dv2 �= 0. Denote by �̃ the graph obtained
from � by joining v1 and v2 to form one single vertex v0. Let H̃ be the self-adjoint
Schrödinger operator in L2(�̃) with potential q having the same vertex conditions
as H at all vertices apart from v0 and satisfying, at v0, conditions of the same
form as H satisfies at v1 and v2, with Cv0 := Cv1 = Cv2 or Dv0 := Dv1 = Dv2 ,
respectively, at v0. Then the following assertions hold.

(i) If the conditions at v1, v2, v0 are of type III (a) then λk(H̃ ) ≤ λk(H) for all
k ∈ N.

(ii) If the conditions at v1, v2, v0 are of type III (b) with coefficient Dv0 > 0 then
λk(H) ≤ λk(H̃ ) for all k ∈ N.

(iii) If the conditions at v1, v2, v0 are of type III (b) with coefficient Dv0 < 0 then
λk(H̃ ) ≤ λk(H) for all k ∈ N.

Proof Let again h and h̃ be the quadratic forms corresponding to H and H̃ ,
respectively. Let first the conditions at v1, v2, v0 be of type III (a), let f ∈ domh,
and let us set again

a :=
deg(v1)∑

j=1

Fj (v1) and b :=
deg(v2)∑

j=1

Fj (v2). (4.5)
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Then a = b = 0 and, hence, a + b = 0, so that f ∈ dom h̃. Moreover, by
Lemma 2.5 (v),

h̃[f ] − h[f ] = Cv0

deg(v0)∑

j=1

|Fj (v0)|2 − Cv1

deg(v1)∑

j=1

|Fj (v1)|2 − Cv2

deg(v2)∑

j=1

|Fj (v2)|2

= 0

as Cv0 = Cv1 = Cv2 . Hence h̃ ≤ h, which implies (i).
Assume now that the conditions at v1, v2, v0 are of type III (b). Then the domains

of h and h̃ coincide, and for each f ∈ domh = dom h̃ and a, b defined in (4.5),
Lemma 2.5 (vi) yields

h̃[f ] − h[f ] = 1

Dv0

( deg(v0)∑

j=1

|Fj (v0)|2 − 1

deg(v0)
|a + b|2

)

− 1

Dv1

( deg(v1)∑

j=1

|Fj (v1)|2 − 1

deg(v1)
|a|2

)

− 1

Dv2

( deg(v2)∑

j=1

|Fj (v2)|2 − 1

deg(v2)
|b|2

)

= 1

Dv0

(
1

deg(v1)
|a|2 + 1

deg(v2)
|b|2 − 1

deg(v0)
|a + b|2

)
.

As deg(v0) = deg(v1) + deg(v2) we can apply Lemma 4.3 in order to see that
the term in the brackets is always nonnegative. From this it follows that h ≤ h̃ if
Dv0 > 0 and h̃ ≤ h if Dv0 < 0. This leads to the assertions (ii) and (iii).
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Random Graphs and Their Subgraphs

Klemens Taglieber and Uta Freiberg

Abstract Random graphs are more and more used for modeling real world
networks such as evolutionary networks of proteins. For this purpose we look at
two different models and analyze how properties like connectedness and degree
distributions are inherited by differently constructed subgraphs. We also give a
formula for the variance of the degrees of fixed nodes in the preferential attachment
model and additionally draw a connection between weighted graphs and electrical
networks.

1 Introduction

The modeling and analysis of random graphs is a good possibility to understand and
examine real world networks. The first random graphs were introduced between
1959 and 1961 by Paul Erdős and Alfréd Rényi [4–6]. This model is connected
to percolation theory which has several applications in physics. Up until today
new models are developed such as the preferential attachment model which was
worked out by László Barabási and Réka Albert [1] in 1999. This model is suitable
for the modeling of most networks we are surrounded by such as the Internet, the
World Wide Web or friendship networks. More and more random graphs are used
in biology to analyze a variety of mechanisms like for example the spreading of
epidemics or the evolution of proteins. Looking at protein networks the question
arises if one can predict the not yet discovered proteins or even how the network
and therefore the proteins will evolve.

At first we want to look at random graphs and their subgraphs and their different
properties. We especially focus on the degree distributions which are calculated
and plotted using R [9]. We will also compare subgraphs which are constructed in
different ways and determine if this yields to different subgraphs. We finally look
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at a protein network to find out if it can be constructed with one of the presented
methods. The figures of graphs throughout the work are done with Gephi [2], a
software for visualizing graphs and networks.

As an interesting intermezzo we generalize the results from [10] to weighted
graphs.

We start in Sect. 2 by giving some basic definitions of graphs and random walks
on graphs, as well as proving some relationships between graph theory and the
theory of electrical networks. In Sect. 3 we introduce two models for constructing
random graphs and analyze these graphs and their subgraphs concerning their degree
distributions. We then investigate a protein network in Sect. 4 on the possibility of
modeling it and finally in Sect. 5 we give an overview on further possibilities to
model such protein networks.

2 Graphs

In this section we want to present some basic definitions and properties of graphs
which are found in [3]. We will also introduce Markov chains on graphs and analyze
some of their properties. Finally we look at graphs by interpreting them as electric
networks to generalize the results from [10].

Definition 2.1 A graph G is a pair of disjoint sets (V ,E) where E ⊆ V × V is
consisting of unordered pairs of elements of V . The elements in V are called nodes,
the elements of E edges. We call two nodes x, y ∈ V neighbors if {x, y} ∈ E and
denote this with x ∼ y.

We will only consider finite graphs here. A graph is called finite if V is only finitely
large, i.e. #V < ∞. For a finite graph with #V = n ∈ N we denote V = [n] :=
{1, . . . , n}.

Since in some cases we have more than one graph we will then denote V with
V (G) and E with E(G).

Definition 2.2 Let G = (V ,E) be a graph with V = [n] for some n ∈ N. Its
adjacency matrix is then an n× n-matrix A = (axy)x,y∈V where

axy := 1{{x,y}∈E} :=
{

1, if {x, y} ∈ E,

0, otherwise.

Definition 2.3 Let G = (V ,E) be a graph. The degree of a node x ∈ V is given by

D(x) :=
∑

y∈V
1{{x,y}∈E} =

∑

y∈V :y∼x

1 =:
∑

y∼x

1.
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By the definition of the adjacency matrix it follows directly for the degree of any
node x that

D(x) =
∑

y∈V
axy.

Definition 2.4 A path P = (V (P ),E(P )) is a subgraph of G = (V (G),E(G))

with edge set E(P) = {{x0, x1}, . . . , {xk−1, xk}} ⊆ E(G) and vertex set V (P) =
{x0, . . . , xk} ⊆ V (G). The length of P is given by the number of edges k = #E(P)

it contains.

A path from x to y is a path with x0 = x and xk = y. Let G = (V ,E) be a graph
and x, y ∈ V we then say that x and y are in the same component of G, if there
exists a path from x to y.

If the graph G only consists of one component, we call it connected.
We now generalize our definitions to weighted graphs.

Definition 2.5 A weighted graph G = (V ,E,C) is a graph where we assign a
weight cxy ∈ [0,∞) to every pair (x, y) ∈ V × V . We want the weights to be
symmetric, hence cxy = cyx . The set of edges is then given by

E := {{x, y} ∈ V × V : cxy > 0}.

The weights (cxy)x,y∈V , called conductances, give us analogously to the adjacency
matrix the conductance matrix C of the graph.

Definition 2.6 Let G = (V ,E,C) be a weighted graph with edge weights
(cxy)x,y∈V , then the conductance matrix C of G is given by

C = (cxy)x,y∈V .

Obviously the conductance matrix is symmetric. It is also possible to give an
adjacency matrix for weighted graphs where axy = 1{cxy>0} for all x, y ∈ V .

Definition 2.7 Let x ∈ V be a node of the weighted graph G = (V ,E,C) then the
generalized degree of x–or weight of node x–is given by

μx :=
∑

y∈V
cxy =

∑

y∼x

cxy.

If cxy ∈ {0, 1} for all x, y ∈ V the graph is not weighted and it holds μx = D(x)

for all x ∈ V .
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2.1 Properties of Graphs and Markov Chains on Graphs

In the following we will consider a weighted graph G = (V ,E,C) with V =
[n], E ⊆ V × V , where #E := m, and conductance matrix C.

Definition 2.8 For all x ∈ V let μx be the generalized degree of x. The degree
distribution of G is then given by

P(μx ≥ s) = 1

n

∑

y∈V
1{μy≥s}.

We call the degree distribution of G respectively the graph G itself scale free if for
s ∈ [0,∞), some cn ∈ (0,∞) and some τ > 1 it holds that

P(μx ≥ s) 3 cns
−(τ−1).

Equivalently we can look at the total number of nodes with degree s or more denoted
by N≥s and get

N≥s 3 c̃ns
−(τ−1) where c̃n ∈ (0,∞).

For unweighted graphs it is sufficient to look at the number of nodes with exactly
degree k ∈ N0 and the scale free property simplifies to Nk 3 ĉnk

−τ for some
ĉn ∈ (0,∞).

Definition 2.9 Let G = (V ,E,C) be a weighted graph with conductance matrix
C and (Xn)n∈N0 a homogeneous Markov chain with state space V . We then call
(Xn)n∈N0 Markov chain on G if its transition matrix P = (pxy)x,y∈V is for all
n ∈ N, x, y ∈ V given by

pxy = P(Xn = y|Xn−1 = x) := cxy∑
z∼x cxz

= cxy

μx

.

Since the initial distribution of the Markov chain is not important here we will not
worry about it.

Definition 2.10 The hitting time of y ∈ V for the Markov chain (Xn)n∈N0 on G is
defined as

τy := inf{n ≥ 0 : Xn = y}.

Definition 2.11 Let G = (V ,E,C) be a connected graph with V = [n], (Xn)n∈N0

a Markov chain on G and x ∈ V . We then call

E
x(τy) := E(τy |X0 = x)

the expected hitting time of y with start in x.
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For every x ∈ V it obviously holds that Ex(τx) = 0.

Lemma 2.12 For x �= y the expected hitting time of y with start in x satisfies

E
x(τy) = 1 +

∑

z∼x

pxzE
z(τy).

Proof By using the Markov property for the fourth equality we get

E
x(τy) = E(τy |X0 = x) =

∑

k≥1

kP(τy = k|X0 = x)

=
∑

k≥1

k
∑

z∼x

P(τy = k,X0 = x,X1 = z)

P(X0 = x)

P(X0 = x,X1 = z)

P(X0 = x,X1 = z)

=
∑

k≥1

k
∑

z∼x

P(τy = k|X0 = x,X1 = z)P(X1 = z|X0 = x)

=
∑

z∼x

pxz

∑

k≥1

kP(τy = k − 1|X0 = z)

=
∑

z∼x

pxzE
z(τy + 1) = 1 +

∑

z∼x

pxzE
z(τy).

�
With the boundary condition E

y(τy) = 0 and Lemma 2.12 we get T y
x := E

x(τy) as
the solution of

⎛
⎜⎝

T
y
1
...

T
y
n

⎞
⎟⎠ =

⎛
⎜⎝

p11 · · · p1n
...

. . .
...

pn1 · · · pnn

⎞
⎟⎠ ·

⎛
⎜⎝

T
y

1
...

T
y
n

⎞
⎟⎠+

⎛
⎜⎝

1
...

1

⎞
⎟⎠ . (1)

Let T y := (T
y

1 , . . . , T
y
n )T , 1 := (1, . . . , 1)T ∈ R

n, then we can write Eq. (1) as

T y = P · T y + 1 ⇔ (P − In) · T y = −1,

hence the expected hitting times are the solution of an inhomogeneous system of
linear equations.

By the linearity of expectations we can determine the commute time between
two nodes. Let τy

x := inf{l ≥ 0 : Xl = x and ∃k ≤ l with Xk = y} be the time
the Markov chain (Xn)n∈N0 needs to reach node y and then node x. The expected
commute time Ex(τ

y
x ) is then given by

E
x(τ

y
x ) = E

x(τy)+ E
y(τx).
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2.2 Graphs as Electrical Networks

As a short intermezzo we want to generalize the results of Tetali ’91 [10] to weighted
graphs. Therefore we want to consider the connected graph G = (V ,E,C) as an
electrical network with n nodes and m edges. The graph itself is still undirected,
even though at some points we will look at directed edges since the current on every
edge is only flowing in one direction. When the direction of an edge is important we
will consider (x, y) and (y, x) as two different edges. The conductances (cxy)x,y∈V
are the upper threshold for the current on an edge and rxy = c−1

xy is the resistance
of the edge {x, y}. The weight of a node is still the sum over all conductances of
incident edges to the node, hence

μx =
∑

y∼x

cxy.

For two adjacent nodes x and y we call ixy the current flowing from x to y. Let
x, y ∈ V be two nodes we then call Vx the potential of x and Vy the potential of y.
The potential between x and y is given by Vxy := Vx−Vy and for w, z ∈ V it holds

Vwz = Vw − Vz + Vy − Vy = Vw − Vy − (Vz − Vy) = Vwy − Vzy. (2)

By Ohm’s law, see for example [8], we have

Vxy = rxyixy for x ∼ y, (3)

and Kirchhoff’s first law states that the current flowing into an inner node of the
network is the same as the one flowing out of it, hence if the potential lies on x and
y it holds for all z ∈ V \ {x, y} that

∑

w∼z

iwz = 0. (4)

We now can proof the following lemma.

Lemma 2.13 Let G = (V ,E,C) be an electrical network with potentials Vx > 0
in x and Vy = 0 in y, hence current flowing from x to y. Then for all nodes z ∈
V \ {x, y}

Vzy =
∑

w∈V
pzwVwy.

Proof By Kirchhoff’s first law (4) and Ohm’s law (3) we get

0
(4)=

∑

w∼z

izw
(3)=

∑

w∼z

Vzw

rzw

=
∑

w∼z

Vzwczw
(2)=

∑

w∼z

(Vzy − Vwy)czw
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=
∑

w∼z

Vzyczw −
∑

w∼z

Vwyczw

= Vzyμz −
∑

w∼z

Vwyczw.

By solving for Vzy we get the desired statement

Vzy =
∑

w∼z

Vwy
czw

μz

=
∑

w∈V
pzwVwy.

�
We now want to draw a connection between random walks on graphs and electrical
networks. We therefore define a random walk on G from x to y as the stopped
Markov chain with start in x which is stopped when reaching y. Hence let (Xn)n∈N0

be a Markov chain on G, τy the hitting time of y and

N
xy
z :=

τy−1∑

k=0

1{Xk=z|X0=x} =
τy−1∑

k=1

1{Xk=z|X0=x} + 1{z=x}, z ∈ V \ {y}

the number of visits in z of a random walk from x to y.

Lemma 2.14 Let Uxy
z := E(N

xy
z ) then for all z ∈ V \ {x, y} we have

U
xy
z =

∑

w∈V
Uxy

w pwz.

Proof Since z �= x, y for Nxy
z it holds

N
xy
z =

τy−1∑

k=1

1{Xk=z|X0=x} + 1{z=y} =
τy−1∑

k=1

1{Xk=z|X0=x} + 1{Xτy=z|X0=x}

=
τy∑

k=1

1{Xk=z|X0=x}.

With that and our notation U
xy
z = E(N

xy
z ) we get

U
xy
z = E

( τy∑

k=1

1{Xk=z|X0=x}

)

=
∞∑

n=0

E

( τy∑

k=1

1{Xk=z|X0=x}

∣∣∣∣∣ τy = n

)
P(τy = n)
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=
∞∑

n=0

n∑

k=1

E
(
1{Xk=z|X0=x}

)
P(τy = n) =

∞∑

n=0

n∑

k=1

p(k)
xz P(τy = n)

=
∞∑

n=0

n∑

k=1

∑

w∈V
p(k−1)
xw pwzP(τy = n) =

∑

w∈V
pwz

∞∑

n=0

n−1∑

k=0

p(k)
xwP(τy = n)

=
∑

w∈V
pwz

∞∑

n=0

n−1∑

k=0

E
(
1{Xk=w|X0=x}

)
P(τy = n)

=
∑

w∈V
pwzE

⎛

⎝
τy−1∑

k=0

1{Xk=w|X0=x}

⎞

⎠ =
∑

w∈V
pwzU

xy
w .

�
By dividing both sides by μz we get

U
xy
z

μz

=
∑

w∈V

U
xy
w

μw

cwz

μz

for all z ∈ V \ {x, y}.

With the property of lemma 2.13 for the potential

Vzy =
∑

w∈V
pzwVwy

and by choosing Vyy = 0, Vxy = U
xy
z

μx
we get by the uniqueness of harmonic

functions that

Vzy = U
xy
z

μz

∀z ∈ V.

The current of an edge (w, z) equals

iwz = Vwz

rwz

= Vwycwz − Vzycwz = U
xy
w cwz

μw

− U
xy
z cwz

μz

= Uxy
w pwz − U

xy
z pzw

and is therefore the expected number of times the random walk traverses the edge
(w, z). A random walk starting in x is leaving this node effectively one time and
hence the total current leaving x is 1. Respectively the total current flowing into y

is also equal to 1, which means there’s a unit current flowing through the network:

∑

w∼x

ixw = 1 =
∑

z∼y

izy.
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This yields by Ohm’s law (3) that the effective resistance between x and y–denoted
by Rxy–is exactly the potential between these two nodes Vxy . Let Uw = U

xy
w +U

yx
w

be the number of times a random walk starting from x going to y and returning to x

is visiting w. We then get

Uw = Uxy
w + Uyx

w = Vwyμw − Vwxμw = (Vwy + Vxw)μw = Vxyμw = Rxyμw,

where U
yx
w = −Vwxμw since the random walk is walking in the opposite direction

in which the current flows. We also can write the expected hitting time E
x(τy) as

the expected number of times a random walk from x to y visits every node in the
network, hence

E
x(τy) =

∑

w∈V
Uxy

w .

Then for the commute time between x and y it holds

E
x(τ

y
x ) = E

x(τy)+ E
y(τx) =

∑

w∈V
Uxy

w +
∑

w∈V
Uyx

w

=
∑

w∈V
Uw = Rxy

∑

w∈V
μw. (5)

The reciprocity in electrical networks gives us that the potential Vzy for a current
flowing between x and y is the same as the potential Vxy if the current flows
between z and y (see Fig. 1). For random walks we get that the number of visits
in z proportional to its weight when walking from x to y is the same as the number
of visits in x proportional to its weight when walking from z to y, hence

Vzy = U
xy
z

μz

= U
zy
x

μx

= Vxy.

With that we are able to proof our final theorem of this section.

– +

I

V

e

f
x

z

y

–

+

I

V e

f
x

z

y

Fig. 1 Reciprocity in electrical networks (see [10])



320 K. Taglieber and U. Freiberg

Theorem 2.15 Let G = (V ,E,C) be a finite graph with n ∈ N nodes. It then holds

∑

(x,y)∈E
E
x(τy)

cxy∑
(w,u)∈E cwu

= n− 1.

Proof By using the reciprocity we get

∑

x∼y

U
xy
z cxy

μz

=
∑

x∼y

U
zy
x cxy

μx

=
∑

x∼y

U
zy
x pxy =

{
1 for z �= y

0 for z = y
,

since the expected number of times y is reached from one of its neighbors is exactly
1 if the random walk does not start in y. Summing over all possible terminal nodes
y yields

∑

y∈V

∑

x∼y

U
xy
z cxy

μz

=
∑

y∈V
1{y �=z} = n− 1, z ∈ V.

We can simplify this by considering two random walks, one going from x to y and
the other on going from y to x. This gives us

n− 1 =
∑

y∈V

∑

x∼y

U
xy
z cxy

μz

=
∑

(x,y)∈E

U
xy
z cxy

μz

=
∑

{x,y}∈E

(
U

xy
z cxy

μz

+ U
yx
z cyx

μz

)

=
∑

{x,y}∈E

Uz

μz

cxy =
∑

{x,y}∈E

Rxyμz

μz

cxy =
∑

{x,y}∈E
Rxycxy.

From equation (5) we know

E
x(τ

y
x ) = Rxy

∑

w∈V
μw.

By multiplication with cxy and summing over all edges we get

∑

{x,y}∈E
E
x(τ

y
x )cxy =

(
∑

w∈V
μw

)
·
⎛

⎝
∑

{x,y}∈E
Rxycxy

⎞

⎠ = (n− 1)
∑

w∈V
μw,

which yields

∑
{x,y}∈E

E
x(τ

y
x )cxy

∑
w∈V

μw

= n− 1.
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If we finally consider directed edges the desired equation follows:

n− 1 =
∑

{x,y}∈E
E
x(τ

y
x )

cxy∑
w∈V

∑
u∼w

cwu

=
∑

{x,y}∈E

⎛

⎜⎝E
x(τy)

cxy∑
(w,u)∈E

cwu

+ E
y(τx)

cyx∑
(w,u)∈E

cwu

⎞

⎟⎠

=
∑

(x,y)∈E
E
x(τy)

cxy∑
(w,u)∈E

cwu

.

�
For unweighted graphs the statement of Theorem 2.15 simplifies to

∑

(x,y)∈E
E
x(τy)

1

2m
= n− 1,

where m is the number of edges in the graph.

3 Models

There are different possibilities for modeling networks. We consider two models in
order to analyze the resulting graphs. Firstly the Erdős-Rényi model in which every
two nodes are independently of each other connected with the same probability and
secondly the preferential attachment model where the probability of two nodes
being connected depends on the current degrees of the nodes.

We also take a look at subgraphs of those random graphs in order to analyze if
and how certain properties are inherited from the original graph. This is useful when
considering networks where not the whole network is known like in the case of the
protein network in Sect. 4.

3.1 The Erdős-Rényi Graph

An Erdős-Rényi graph is a graph G = (V ,E) with V = [n], n ∈ N. Let
(Yij )1≤i<j≤n be i.i.d. random variables with Y12 ∼ Bin(1, p), p ∈ [0, 1]. The
edge set is then given by E = {{i, j } ∈ V × V : Yij = 1}. Let

Xij :=
⎧
⎨

⎩

Yij if i < j

0 if i = j

Yji if i > j,
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Fig. 2 Three Erdős-Rényi graphs with n = 200 nodes and edge probabilities p = 1
200 ,

2
200 ,

5
200

(left to right)

then the adjacency matrix A of G is given by A = (Xij )i,j∈V . In Fig. 2 are three
different Erdős-Rényi graphs. By above construction it is obvious that the degree
distribution of the Erdős-Rényi graph is again a binomial distribution, hence D(i) ∼
Bin(n − 1, p) for all i ∈ [n]. Further we have the mean degree in an Erdős-Rényi
graph given as E(D(i)) = (n− 1)p.

3.1.1 Subgraphs of Erdős-Rényi Graphs

We now want to analyze subgraphs of Erdős-Rényi graph and especially their degree
distribution. We consider three different mechanisms for the constructions of our
subgraphs. Let first q ∈ [0, 1] be the probability for an edge from the graph G to be
in the subgraph. We then decide for every edge of G independently if it should stay
in the subgraph, i.e.

P(DSub(i) = l|D(i) = k) =
(
k

l

)
ql(1− q)k−l, k ∈ {0, . . . , n− 1}, l ∈ {0, . . . , k}.

where DSub(i) denotes the degree of node i ∈ [n] in the subgraph. Then by the law
of total probability it follows

P(DSub(i) = l)

=
n−1∑

k=0

P(DSub(i) = l|D(i) = k)P(D(i) = k)

=
n−1∑

k=l

(
k

l

)
ql(1 − q)k−l

(
n− 1

k

)
pk(1 − p)n−1−k
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Fig. 3 On the left is the degree distribution of an Erdős-Rényi graph with n = 1000 nodes
and p = 1

100 . The dots represent the corresponding Poisson distribution with λ = (n − 1)p =
9.99. All Erdős-Rényi subgraphs are based on this Erdős-Rényi graph. On the right is the degree
distribution of a subgraph constructed by selection of edges with probability q = 0.5 again with
the corresponding Poisson distribution with λ = (n− 1)pq = 4.995

=
(
n− 1

l

)
(pq)l

n−1−l∑

k=0

(
n− 1 − l

k

)
(p − pq)k(1 − p)n−1−l−k

=
(
n− 1

l

)
(pq)l(1 − pq)n−1−l .

Hence the degree distribution of the subgraph is again binomial with parameters
n − 1 and pq . The degree distributions of an Erdős-Rényi graph and the resulting
subgraph are depicted in Fig. 3.

Next we construct subgraphs by deleting nodes from the graph. In this case we
keep an edge if both adjacent nodes are also in the subgraph. One possibility to do
this is to fix the number of nodes in the subgraph and then choosing the subgraph
from the set of all subgraph with this number of nodes.

Hence let G = (V ,E) be an Erdős-Rényi graph with V = [n]. Let further
m ∈ [n] be the number of nodes in the subgraph and

�m :=
{
ω = (ω1, . . . , ωn) ∈ {0, 1}n :

n∑

i=1

ωi = m

}
,

the set of all possibilities of choosing m nodes out of n nodes. Since every subgraph
with m nodes has the same probability to be chosen it holds for all ω ∈ �m

P({ω}) = 1(
n
m

) .
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We denote such a subgraph of the Erdős-Rényi graph by Gm
Sub = (V m

Sub,E
m
Sub). Let

i ∈ V m
Sub be a fixed node then the subset of �m giving all combinations of the other

m− 1 nodes ist given by

�i
m := {ω ∈ �m : ωi = 1}

=
⎧
⎨

⎩ω = (ω1, . . . , ωn) ∈ {0, 1}i−1 × {1} × {0, 1}n−i :
∑

j∈[n]\i
ωj = m− 1

⎫
⎬

⎭ .

Since the number of elements in �i
m is given by

(
n−1
m−1

)
the conditional degree

distribution of i is given by

P(DSub(i) = l|D(i) = k) =
(
n−1−k
m−1−l

)(
k
l

)
(
n−1
m−1

) .

By using the law of total probability again it holds for fixed i ∈ V m
Sub

P(DSub(i) = l)

=
n−1∑

k=0

P(DSub(i) = l|D(i) = k)P(D(i) = k)

=
n−1∑

k=0

(
n−1−k
m−1−l

)(
k
l

)
(
n−1
m−1

)
(
n− 1

k

)
pk(1 − p)n−1−k

=
n−1∑

k=0

(
n−m

k − l

)(
m− 1

l

)
pk−l+l (1 − p)n−1−(m−1)−(k−l)+m−1−l

=
(
m− 1

l

)
pl(1 − p)m−1−l

n−m∑

k=0

(
n−m

k

)
pk(1 − p)n−m−k

=
(
m− 1

l

)
pl(1 − p)m−1−l .

Hence we again have binomially distributed degrees with parameters m− 1 and p.
We now want to choose nodes binomially distributed to stay in the subgraph. Let

therefore be q ∈ [0, 1]. We denote the resulting subgraph by G
q
Sub = (V

q
Sub,E

q
Sub).

It then holds for m ∈ {0, . . . , n}:

P(#V q
Sub = m) =

(
n

m

)
qm(1 − q)n−m.
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Let again be i ∈ V
q
Sub be a fixed node then it holds

P(#V q
Sub = m) =

(
n− 1

m− 1

)
qm−1(1 − q)n−m, m ∈ {1, . . . , n}

and the probability for node i in the subgraph to have degree l, given D(i) = k in
the graph and #V q

Sub = m is

P(DSub(i) = l|D(i) = k, #V q
Sub = m) =

⎧
⎨

⎩

(n−1−k
m−1−l)(

k
l)

(n−1
m−1)

for i ∈ V
q
Sub,

0 for i /∈ V
q
Sub.

By the law of total probability we get

P(DSub(i) = l|#V q
Sub = m)

=
n−1∑

k=0

P(DSub(i) = l|D(i) = k, #V q
Sub = m)P(D(i) = k)

=
n−1∑

k=0

(
n−1−k
m−1−l

)(
k
l

)
(
n−1
m−1

)
(
n− 1

k

)
pk(1 − p)n−1−k =

(
m− 1

l

)
pl(1 − p)m−1−l ,

which yields

P(DSub(i) = l)

=
n∑

m=l+1

P(DSub(i) = l|#V q
Sub = m)P(#V q

Sub = m)

=
n∑

m=l+1

(
m− 1

l

)
pl(1 − p)m−1−l

(
n− 1

m− 1

)
qm−1(1 − q)n−m

=
(
n− 1

l

)
(pq)l

n−l−1∑

m=0

(
n− 1 − l

m

)
(q − pq)m(1 − q)n−1−l−m

=
(
n− 1

l

)
(pq)l(1 − pq)n−l−1.

Hence the degrees in G
q
Sub are again binomially distributed with parameters n − 1

and pq (Fig. 4). If we now choose q := m
n

then Gm
Sub and G

q
Sub are comparable by
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Fig. 4 On the left we see the degree distribution of a subgraph constructed by uniform selection
of nodes with m = 500 together with the corresponding Poisson distribution with λ = (m−1)p =
4.99. On the right is the degree distribution of a subgraph constructed by binomial selection of
nodes with probability q = m

n
= 0.5 and the corresponding Poisson distribution with λ = (n −

1)pq = 4.995
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Fig. 5 Absolute deviation of the degree distributions by constructing the Erdős-Rényi subgraphs
via the selection of nodes (black line). For subgraphs wit more than 93 nodes the absolute deviation
of the two binomial distributions is smaller than 0.002

their number of nodes, because

E(#V q
Sub) = nq = n

m

n
= m = #V m

Sub = E(#V m
Sub).

Moreover the degree distributions are comparable as Fig. 5 shows. For an Erdős-
Rényi graph with n = 1000 nodes and edge probability p = 1/100 we get, that the
degree distributions of the subgraphs only differ significantly if the subgraphs have
less than 10% of the nodes of the graph.
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By the calculations of this section we see that subgraphs of an Erdős-Rényi graph
constructed according to one of the above mechanisms have the same structure as
the graph itself and can therefore again be modeled as Erdős-Rényi graphs.

3.2 The Preferential Attachment Model

There are different possibilities to define a preferential attachment model but the
basic idea stays the same. All preferential attachment models consider a growing
graph where the degrees of the existing nodes influence the probability of a new
node connecting to them. In our model we will not allow self-loops, hence every
new node really is connected to the existing graph.

For our model we fix m ∈ N and δ ∈ (−m,∞). We then initialize our graph
with one node with m self-loops. Here the self-loops are necessary to calculate the
probabilities. Every new node has m edges which connect to existing nodes. At time
n ≥ 2 the n-th node is added to the graph.

Let Dn(i) be the degree of node i ≤ n at time n and PA
(m,δ)
n = (Vn,En) the

preferential attachment graph with parameters m ≥ 1 and δ > −m at time n.
Then the probability of node n + 1 to connect to node i, hence the probability for
{n+ 1, i} ∈ En given PA

(m,δ)
n , is given by

P({n+ 1, i} ∈ En+1|PA(m,δ)
n ) := Dn(i)+ δ

(2m+ δ)n
for i ∈ [n], n ∈ N.

Since we only consider finite graphs, we stop the construction when the graph
has the desired size. By construction the graph is connected, due to the fact that
we do not allow self-loops. In Fig. 6 we see four preferential attachment graphs
with different parameters. This leads to different structural properties. Since m is
responsible for the number of edges added with each node one will always get a tree
for m = 1. The parameter δ controls the influence of the degrees on the connection
probabilities. For δ close to −m the probability for a new node to connect to a
node with degree m is rather small which leads to a graph where early nodes are
preferred and get a much higher degree than nodes added later on. For δ large the
influence of the degrees on the connection probabilities is small which leads to a
more homogeneous graph.

3.2.1 Properties of Preferential Attachment Graphs

We now want to look at the degree distribution and because we can not determine it
exactly we are also interested in the expected degree and variance of the degree of
fixed nodes. First we get that the mean degree in a preferential attachment graph of



328 K. Taglieber and U. Freiberg

Fig. 6 Four preferential attachment graphs with n = 200 nodes and different values for m and δ.
Upper left: m = 1, δ = 10. Upper right: m = 2, δ = 10. Lower left: m = 2, δ = 0. Lower right:
m = 2, δ = −1.5

size n is given by

1

n

n∑

i=1

Dn(i) = 2nm

n
= 2m, (6)

since every node adds m edges to the graph and the sum over all degrees is twice the
number of edges. We are not able determine the degree distribution exactly, but it is
possible to show that the degree distributions converge and to give the exact limit.

Let Pk(n) := 1
n

∑n
i=1 1{Dn(i)=k}, k ∈ N0 be the ratio of nodes with degree

k at time n. Then (Pk(n))k≥0 defines the degree distribution of PA
(m,δ)
n . For
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m ≥ 1, δ > −m and all k ∈ N we define the sequence (pk)k∈N by

pk :=
⎧
⎨

⎩
0 for k ≤ m− 1,
(
2 + δ

m

) �(k+δ)�(m+2+δ+ δ
m )

�(m+δ)�(k+3+δ+ δ
m )

for k ≥ m,
(7)

where �(t) = ∫∞
0 xt−1e−xdx, t > 0 is the Gamma function. For the degree

distribution it then holds

Pk(n)
P→ pk, (n →∞).

This convergence is shown in [11]. The limit of the degree distributions is again a
probability distribution by

Theorem 3.1 The limit distribution (pk)k≥m is a probability distribution.

Proof See [11]. �
Stirling’s formula states

�(x + a)

�(x)
≈ xa.

By that we get for k sufficiently big

pk =
(

2 + δ

m

)
�(k + δ)�(m+ 2 + δ + δ

m
)

�(m+ δ)�(k + 3 + δ + δ
m
)

=
(

2 + δ

m

)
�(m+ 2 + δ + δ

m
)

�(m+ δ)

�(k + δ)

�(k + δ + 3 + δ
m
)

≈
(

2 + δ

m

)
�(m+ 2 + δ + δ

m
)

�(m+ δ)
k−(3+ δ

m )

= cm,δk
−τ ,

where cm,δ = (2+ δ
m
)
�(m+2+δ+ δ

m )

�(m+δ)
and τ = 3+ δ

m
. Hence we get that the preferential

attachment graph is scale free if the number of nodes is large.
Since we can not estimate the exact degree distribution we now look at the

expectation and variance of the degrees of fixed nodes.

Theorem 3.2 Let m ≥ 1, δ > −m, then for the expected degree of node i ∈ [n] it
holds

E(Dn(i)+ δ) = (m+ 1{i=1}m+ δ)
�(n+ m

2m+δ
)�(i)

�(i + m
2m+δ

)�(n)
.
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Proof Let m ≥ 1 and δ > −m be fixed then

E(Dn(i)+ δ|Dn−1(i)) = Dn−1(i)+ δ + E(Dn(i)−Dn−1(i)|Dn−1(i))

= Dn−1(i)+ δ +mP({n, i} ∈ En|PA
(m,δ)
n−1 )

= (Dn−1(i)+ δ)
(2m+ δ)(n− 1 + m

2m+δ
)

(2m+ δ)(n− 1)

= (Dn−1(i)+ δ)
n− 1 + m

2m+δ

n− 1
,

and obviously

E(Di(i)+ δ) = m+ 1{i=1}m+ δ for all i ≥ 1.

For E(Dn(i)+ δ) it then follows recursively

E(Dn(i)+ δ) = E(E(Dn(i)+ δ|Dn−1(i)))

= E(Dn−1(i)+ δ)
n− 1 + m

2m+δ

n− 1

...

= E(Di(i)+ δ)
n− 1 + m

2m+δ

n− 1
· . . . · i +

m
2m+δ

i

= (m+ 1{i=1}m+ δ)
�(n + m

2m+δ
)�(i)

�(i + m
2m+δ

)�(n)
.

�
Theorem 3.3 Let m ≥ 1, δ > −m, then for the variance of the degree of a fixed
node i at time n it holds

Var(Dn(i)) = (m+ 1{i=1}m+ δ)2

⎡

⎣
n−1∏

j=i

(dj − cj )−
n−1∏

j=i

dj

⎤

⎦

+
n−1∑

j=i

E(Dj (i)+ δ)
√
mcj

n−1∏

k=j+1

(dk − ck),
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where

cj = m

(2m+ δ)2j2 and dj =
(

1 + m

(2m+ δ)j

)2

,∀1 ≤ j < n.

Proof Let n ∈ N and i ≤ n as well as m ≥ 1 and δ > −m be fixed. To calculate
the variance we use the well known identity

Var(X) = E(Var(X|Y ))+ Var(E(X|Y )),

where the conditional variance is given by

Var(X|Y ) := E(X2|Y )− E(X|Y )2.

It then holds for the variance of the degree of node i at time n

Var(Dn(i)) = Var(Dn(i)+ δ)

= E(Var(Dn(i)+ δ|Dn−1(i)))+ Var(E(Dn(i)+ δ|Dn−1(i)))

= E(E((Dn(i)+ δ)2|Dn−1(i)))︸ ︷︷ ︸
I

−E((E(Dn(i)+ δ|Dn−1(i)))2)︸ ︷︷ ︸
II

+Var(E(Dn(i)+ δ|Dn−1(i)))︸ ︷︷ ︸
III

.

The different summands can be determined as follows.

(I):

E[E((Dn(i)+ δ)2|Dn−1(i))]
= E[E((Dn(i)+ δ +Dn−1(i)−Dn−1(i))2|Dn−1(i))]
= E[(Dn−1(i)+ δ)2]

+2E

[
(Dn−1(i)+ δ)m

Dn−1(i)+ δ

(2m+ δ)(n− 1)

]

+E[E((Dn(i)−Dn−1(i))2|Dn−1(i))]

= E[(Dn−1(i)+ δ)2]︸ ︷︷ ︸
=E[E((Dn−1(i)+δ)2|Dn−2(i))]

(
1 + 2m

(2m+ δ)(n− 1)

)

+E[E((Dn(i)−Dn−1(i))2|Dn−1(i))]︸ ︷︷ ︸
IV

.
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(II): With the calculations in the proof of Theorem 3.2 we get

E[E(Dn(i)+ δ|Dn−1(i))2]

= E

[(
(Dn−1(i)+ δ)

(
1 + m

(2m+ δ)(n− 1)

))2
]

= E[(Dn−1(i)+ δ)2]︸ ︷︷ ︸
=E[E((Dn−1(i)+δ)2|Dn−2(i))]

(
1 + m

(2m+ δ)(n− 1)

)2

.

(III):

Var[E(Dn(i)+ δ|Dn−1(i))]

= Var

[
(Dn−1(i)+ δ)

(
1 + m

(2m+ δ)(n− 1)

)]

= Var[Dn−1(i)+ δ]
(

1 + m

(2m+ δ)(n− 1)

)2

.

(IV): For the calculation of

E[E((Dn(i)−Dn−1(i))2|Dn−1(i))]

we use that, by construction, the number of edges between a new node and a
node already in the graph is binomially distributed, hence

Dn(i)−Dn−1(i)|Dn−1(i) ∼ Bin(m, p), where p := Dn−1(i)+ δ

(2m+ δ)(n− 1)
.

For X ∼ Bin(m, p) one gets E(X2) = mp(1 − p)+ (mp)2 and it follows

E[E((Dn(i)−Dn−1(i))2|Dn−1(i))]
= E[Dn−1(i)+ δ] m

(2m+ δ)(n− 1)

+ E[(Dn−1(i)+ δ)2]︸ ︷︷ ︸
=E[E((Dn−1(i)+δ)2|Dn−2(i))]

m(m− 1)

(2m+ δ)2(n− 1)2 .

We now introduce the following abbreviations for simplicity

Vn := Var(Dn(i)+ δ),

En := E[E((Dn(i)+ δ)2|Dn−1(i))],
Dn := E[Dn(i)+ δ].
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By putting the results into the first equation of the proof and using the abbreviations
we get

Vn = En−1

(
1 + 2m

(2m+ δ)(n− 1)

)
+ En−1

m(m− 1)

(2m+ δ)2(n− 1)2

+Dn−1
m

(2m+ δ)(n− 1)
− En−1

(
1 + m

(2m+ δ)(n− 1)

)2

+Vn−1

(
1 + m

(2m+ δ)(n− 1)

)2

= −En−1
m

(2m+ δ)2(n− 1)2
+Dn−1

m

(2m+ δ)(n− 1)

+Vn−1

(
1 + m

(2m+ δ)(n− 1)

)2

.

For j < n let

cj := m

(2m+ δ)2j2
,

dj :=
(

1 + m

(2m+ δ)j

)2

.

Then we can calculate Var(Dn(i)) with the following recursion formulas and
termination conditions

Vn = En−1(−cn−1)+Dn−1
√
mcn−1 + Vn−1dn−1,

En = En−1(dn−1 − cn−1)+Dn−1
√
mcn−1,

Vi = Var(Di(i)+ δ) = 0,

Ei = E((Di(i)+ δ)2) = (m+ 1{i=1}m+ δ)2.

Two steps of the recursion yield

Vn = En−1(−cn−1)+Dn−1
√
mcn−1 + Vn−1dn−1

= En−2(cn−1cn−2 − cn−1dn−2 − cn−2dn−1)+Dn−1
√
mcn−1

+Dn−2
√
mcn−2(dn−1 − cn−1)+ Vn−2dn−1dn−2

= En−2[(dn−1 − cn−1)(dn−2 − cn−2)− dn−1dn−2] +Dn−1
√
mcn−1

+Dn−2
√
mcn−2(dn−1 − cn−1)+ Vn−2dn−1dn−2
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= En−3(dn−3 − cn−3)[(dn−1 − cn−1)(dn−2 − cn−2)− dn−1dn−2]
+Dn−3

√
mcn−3[(dn−1 − cn−1)(dn−2 − cn−2)− dn−1dn−2]

+Dn−1
√
mcn−1 +Dn−2

√
mcn−2(dn−1 − cn−1)− En−3cn−3dn−1dn−2

+Dn−3
√
mcn−3dn−1dn−2 + Vn−3dn−1dn−2dn−3

= En−3[(dn−3 − cn−3)(dn−1 − cn−1)(dn−2 − cn−2)− dn−1dn−2dn−3]
+Dn−1

√
mcn−1 +Dn−2

√
mcn−2(dn−1 − cn−1)

+Dn−3
√
mcn−3(dn−1 − cn−1)(dn−2 − cn−2)+ Vn−3dn−1dn−2dn−3.

Hence it follows

Vn = Vi

n−1∏

j=i

dj + Ei

⎡

⎣
n−1∏

j=i

(dj − cj )−
n−1∏

j=i

dj

⎤

⎦

+
n−1∑

j=i

Dj
√
mcj

n−1∏

k=j+1

(dk − ck)

= (m+ 1{i=1}m+ δ)2

⎡

⎣
n−1∏

j=i

(dj − cj )−
n−1∏

j=i

dj

⎤

⎦

+
n−1∑

j=i

Dj
√
mcj

n−1∏

k=j+1

(dk − ck).

�
In Fig. 7 the degrees are plotted with their expectations and variances.

3.2.2 Subgraphs of Preferential Attachment Graphs

Since we can not determine the degree distribution of the preferential attachment
graphs, we will analyze them numerically. The constructions of the subgraphs are
the same as for the Erdős-Rényi graphs.

We first look at the mean degree of subgraphs of preferential attachment graphs.
For the construction of the subgraph we decide for every edge if it is deleted while
keeping all nodes. Let therefore the probability for an edge of the graph to be kept
in the subgraph be q ∈ (0, 1). It then holds for fixed i ∈ [n]

P(Dn
Sub(i) = l|Dn(i) = k) =

(
k

l

)
ql(1 − q)k−l for l ∈ {0, . . . , k}, k ≤ n.
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Fig. 7 The points are the degrees of the nodes in the order in which they were added to the graph.
The thick black line is the expected degree of the nodes of a preferential attachment graph with
n = 1000 nodes, m = 2 and δ = 0. The thin lines are the standard deviation from the mean of the
degrees

With that we can determine the degree distribution of the subgraph given the degree
distribution of the graph by

P(Dn
Sub(i) = l) =

n−1∑

k=l

P(Dn
Sub(i) = l|Dn(i) = k)P(Dn(i) = k)

=
n−1∑

k=l

(
k

l

)
ql(1 − q)k−l 1

n

n∑

i=1

1{Dn(i)=k}

= 1

n

n∑

i=1

(
Dn(i)

l

)
ql(1 − q)D

n(i)−l,

where Dn(i) ∼ Pk(n). Hence for the mean degree it holds

E(Dn
Sub(i)) =
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Fig. 8 On the left is the degree distribution of a PA graph with n = 1000, m = 2 and δ = 0.
This PA graph is used for the construction of all PA subgraphs and the analysis of the expected
degrees. On the right is the degree distribution of a subgraph constructed by selection of edges
with probability p = 0.5 and limit distribution (pk)k≥m with n = 500, m = 1 and δ = 0. The
dots in the top pictures represent the limit distribution (pk)k≥m. In the lower four pictures (pk)k≥m

is represented by the line. The preferential attachment graph is scale free with τ = 2.911, the
subgraph has power law exponent τ = 2.843

Since we are not able to determine the exact degree distributions we calculated
the empirical degree distributions. These are depicted in Fig. 8 for a preferential
attachment graph and its subgraph by selection of edges together with the limit
distribution from formula (7). By comparing the two degree distributions one
sees that they are both scale free with approximately the same exponent. But the
subgraph is not necessarily connected, whereas the preferential attachment graph
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itself is by construction. Hence it is not possible to construct the subgraph with our
preferential attachment model.

We now want to look at subgraphs of our preferential attachment graph which
are constructed by deleting nodes. We again select the nodes in the two different
ways we used for the Erdős-Rényi graphs. Hence we fix a number of nodes and
choose a subgraph of that size uniformly at random out of the set of all subgraphs
with that size. For the other mechanism we decide for every node independently of
the others if we delete it. The empirical degree distributions are depicted in Fig. 9
together with the limit distribution from formula (7). One can see that the exponent
τ of the power law stays approximately the same as in the preferential attachment
graph but the subgraphs are again not necessarily connected which is a complex
problem related to percolation theory. Additionally the mean degree does not have
to be a multiplicity of 2 which is the case in our model. Hence its not possible to
construct these subgraphs with our initial preferential attachment model used to
construct the entire graph.

4 Protein Networks

We now want to analyze a protein network in order to decide if it can be constructed
with our preferential attachment model. Proteins are sequences of amino acids. The
length of most of them is between 250 and 420 amino acids. But there are some
with lengths up to 27000 amino acids.

Proteins consist of up to 20 different amino acids. The order of the amino acids
determines the structure and function of the protein. It is obvious that not every
constellation of amino acids yields a biological sufficient protein. Yet proteins do
not necessarily loose their functionality if only few of the amino acids are replaced.

It is possible to compare proteins regarding the order of their amino acids and
assign scores according to their similarity. One could also look at the number of
mutations between two proteins as a score.

Proteins of the same family can then be connected to form a network by
connecting two proteins that differ by one mutation. The structure of such a network
is depicted in Fig. 10. We therefore took class A β-lactamases of the TEM family
which have a length between 200 and 300 amino acids. Figure 11 shows the degree
distribution of the protein network which is scale free with τ = 2.641. The question
that arises is if we can model the protein network with our preferential attachment
model. As we can see in Fig. 10 the graph is not connected and this actually is
the case for the majority of discovered protein families. Yet by construction every
graph coming from our preferential attachment model is connected. But since our
network only contains discovered proteins it still could be possible to model it with
our preferential attachment model if we had the full network with all connections.
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Fig. 9 Here we see the degree distributions of two subgraphs constructed by selection of nodes
together with the corresponding limit distributions. On the left we have uniform selection of nodes
with 500 nodes and on the right binomial selection of nodes with probability q = 0.5. The
parameters of the limit distributions are in both cases given by n = 500, m = 1 and δ = 0.
Uniform selection of nodes yields a power law exponent τ = 2.847, whereas the binomial selected
subgraph is scale free with τ = 2.756. We calculated m for the subgraphs by the identity #E = mn.
One can see that the limit distribution is a good approximation for the degree distribution in the
beginning. The large deviation at the end is due to the small number of nodes and single nodes
having a degree which occurs with a very small probability



Random Graphs and Their Subgraphs 339

Fig. 10 Graphical illustration of a protein network of 263 class A β-lactamases of the TEM family
where adjacent proteins differ by one mutation
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Fig. 11 Degree distribution of the protein network with n = 263 nodes and τ = 2.642

Lets therefore look at the average degree in our network. It is given by

1

n

n∑

i=1

D(i) ≈ 3.027,

which is not possible with our model since by Eq. (6) we always get an even degree.
As stated before we are only looking at a subgraph of the network of all existing
proteins of this family. Therefore it could still be possible to get the protein network
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as a subgraph of a preferential attachment graph if the parameters are chosen
carefully. Also one could think of a preferential attachment model which does not
yield a connected graph.

5 Outlook

The discussion in Sect. 4 did not confirm that it is possible to model protein networks
with our preferential attachment model. But like stated before there might be a
solution to this by using a different preferential attachment approach which yields
an unconnected graph with a random number of edges added every time a new node
enters the graph.

Most protein networks are scale free but there are actually many possibilities to
construct scale free graphs with different models such as the SN-Model introduced
by Frisco in 2011 [7] where the nodes itself have a structure and are connected
according to the differences in these structures. It is also possible to imitate the
construction of proteins by using a Hidden Markov Model where the overlaying
graph corresponds to the protein network.
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Massive Modes for Quantum Graphs

H. A. Weidenmüller

Abstract The spectral two-point function of chaotic quantum graphs is expected to
be universal. Within the supersymmetry approach, a proof of that assertion amounts
to showing that the contribution of non-universal (or massive) modes vanishes in
the limit of infinite graph size. Here we pay particular attention to the fact that the
massive modes are defined in a coset space. Using the assumption that the spectral
gap of the Perron-Frobenius operator remains finite in the limit, we then argue that
the massive modes are indeed negligible.

1 Motivation

According to the Bohigas-Giannoni-Schmit (BGS) conjecture [1], the spectral
fluctuation properties of Hamiltonian systems that are chaotic in the classical
limit, coincide with those of the random-matrix ensemble in the same symmetry
class (unitary, orthogonal, symplectic). Numerical simulations (see, f.i., Ref. [2])
strongly suggest that the BGS conjecture holds likewise for chaotic quantum
graphs. Analytical arguments in support of the BGS conjecture for chaotic quantum
graphs have been presented in several papers [3–6]. All these approaches use the
supersymmetry formalism and a separation of the modes of the system into the
universal (or massless or zero) mode and a number of massive modes. An essential
part of the argument then consists in showing that the contribution of massive modes
to all correlation functions vanishes in the limit of infinite graph size (number B of
bonds to ∞). That leaves only the contribution of the zero mode, and universality
of all correlation functions follows. The zero mode and the massive modes range in
a non-linear space of cosets. That fact has not been addressed explicitly in previous
work [3–6]. The problem has not gone unnoticed. Indeed, in Ref. [7] mathematical
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aspects of the non-linearity of the coset space were discussed in detail without,
however, establishing control of the contribution from the massive modes.

In the present paper we aim at filling that gap. We introduce the zero mode and
the massive modes in a manner that is consistent with the non-linear coset structure.
We do so using the strong assumption that in the limit B →∞, the spectrum of the
Perron-Frobenius operator (defined in Eq. (2) below) has a finite gap that separates
the eigenvalue λ1 = 1 from the rest. In contrast, Refs. [3] and [4] pose only the
weaker condition that the gap closes (for B → ∞) no faster than B−α with 0 ≤
α < 1/2. That is perhaps a realistic requirement: Numerical simulations [2] suggest
that chaotic graphs obeying Kirchhoff boundary conditions at each vertex possess
universal spectral correlations even though the gap closes for large B. However, we
doubt that, in the framework of a perturbative treatment of massive modes, there
exists an easy way to turn the reasoning of Refs. [3, 4] into a convincing argument
showing that the contribution of the massive modes vanishes in all orders. This is
why we settle for the stronger assumption of a gap that remains finite in the limit of
infinite graph size B. That assumption prevents us from keeping the local structure
of the quantum graph fixed in the limit B → ∞: To prevent the gap from closing,
the graph connectivity must increase as the graph size is taken to infinity.

In Sect. 2 we recall some basic facts on chaotic graphs [2]. Section 3 forms the
central piece of the paper. We introduce the universal mode and the massive modes
in a manner that is consistent with the coset structure, and we express the effective
action in terms of these variables. We use the fact that the spectrum of the Perron-
Frobenius operator possesses a gap. In Sect. 4 we address the superintegrals over
massive modes, and we argue that the contribution of these modes to the two-point
correlation function vanishes in the limit of infinite graph size. We do so under
rather restrictive assumptions concerning the matrix B that describes amplitude
propagation on the quantum graph, see Sect. 2. We assume that the elements of B
are all of order 1/

√
2B, see Eq. (47). That implies that the fluctuations of the matrix

elements about their mean values (defined by the unitarity of B) are small (of order
1/
√

2B). For a general proof of the BGS conjecture it would be necessary to lift that
assumption.

We confine ourselves to the unitary case, to closed graphs, and to the two-
point function (the correlation function of the retarded and the advanced Green’s
function).

2 Two-Point Function

To set the stage, we briefly summarize previous work [2–6] on chaotic quantum
graphs. We consider connected simple graphs with V vertices and B bonds. Each
bond has two directions d = ±. The 2B directed bonds are labeled (bd). On
every directed bond the Schrödinger wave carries the same wave number k and
a direction-dependent magnetic phase φbd that breaks time-reversal invariance.
Hermitean boundary conditions at vertex α (with α = 1, 2, . . . , V ) cause incoming
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and outgoing waves on the bonds linked to α to be related by a unitary vertex
scattering matrix σ (α). When arranged in directed-bond representation, the V

scattering matrices σ (α) form the (2B)-dimensional unitary bond scattering matrix
�(B) with elements �(B)

bd,b′d ′ . Amplitude propagation within the graph depends upon
the unitary matrix

Bbd,b′d ′ =
(
σD

1 �(B)
)

bd,b′d ′
. (1)

Here σD
1 is the first Pauli spin matrix in two-dimensional directional space. It flips

the direction of bonds, (σD
1 �(B))bd,b′d ′ = �

(B)

b−d,b′d ′ . To see how σD
1 arises (see

Refs. [5, 6]) we consider a bond connecting vertices α and β. For vertex α the bond
is denoted by (α, β) = (bd), for vertex β the bond is denoted by (β, α) = (b,−d).
The two bond directions differ. To correctly describe amplitude propagation through
the graph, the bond directions must match. That is achieved by multiplying �(B)

with σD
1 . The graph is classically chaotic if in the limit B → ∞ of infinite graph

size the spectrum of the Perron-Frobenius operator, i.e., of the matrix

Fbd,b′d ′ = |Bbd,b′d ′ |2 (2)

possesses a finite gap separating the leading eigenvalue λ1 = 1 from all other
eigenvalues λi (so that |λi | ≤ (1 − a) with a > 0). That is assumed throughout.

Unitary symmetry is realized by averaging separately and independently over
the phases φbd ranging in the interval [0, 2π]. The averages are carried out using
the supersymmetry method and the color-flavor transformation [8]. As a result, the
two-point function is written as the derivative of a generating function, an integral
in superspace. That function carries in the exponent the effective action Aeff given
here in the form of Ref. [6] (see also Refs. [3, 4]),

Aeff = −STr ln(1 − ZZ̃)+ STr ln(1 −w+B+ZB†
−w−Z̃) . (3)

Here w+ = w∗− = exp{iκL} where L is the diagonal matrix of bond lengths Lb,
and where κ (−κ) is the wave number increment in the retarded sector (the advanced
sector, respectively). The matrices B± are defined as

B± = (1 + j±
iπ

B
σ s

3 )B , (4)

with σ s
3 the third Pauli spin matrix in superspace. The average two-point function is

obtained by differentiation of the generating function with respect to j+ and j− at
j+ = 0 = j−.

The supermatrices Z = {δbb′δdd ′Zbd;ss ′} and Z̃ = {δbb′δdd ′Z̃bd;ss ′} are diagonal
in directed-bond space. For fixed indices (bd) the matrices Z and Z̃ each have
dimension two and form part of a supermatrix of dimension four,

(
0 Z

Z̃ 0

)
. (5)
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In Boson-Fermion block notation we have

Z =
(
ZBB ZBF

ZFB ZFF

)
, Z̃ =

(
Z̃BB Z̃BF

Z̃FB Z̃FF

)
, (6)

where

ZBB = Z̃∗
BB , ZFF = −Z̃∗

FF , |ZBB | < 1 . (7)

The variable transformation (1 + j+ iπ
B
σ s

3 )Z → Z, (1 + j− iπ
B
σ s

3 )Z̃ → Z̃ with
Berezinian unity is used to simplify the source terms and, after differentiation with
respect to j+ and j−, yields for the effective action

A = −STr ln(1 − ZZ̃)+ STr ln(1 −w+BZB†w−Z̃) (8)

and for the source terms

π2

B2

(
STr

[
σ s

3 (1 − ZZ̃)−1ZZ̃
]

STr
[
σ s

3 (1 − Z̃Z)−1Z̃Z
]

+STr
[
σ s

3Z(1 − Z̃Z)−1σ s
3 Z̃(1 − ZZ̃)−1]) . (9)

The terms (9) multiply exp{−A} (Eq. (8)) under the superintegral over (Z, Z̃) with
flat measure. That superintegral constitutes an exact representation of the average
two-point function.

3 Effective Action

We introduce the universal mode and the massive modes. We express the effective
action (8) and the source terms (9) as functions of these modes.

3.1 Coset Space

We first focus attention on the bare effective action, obtained from Eq. (8) by
omission of κ , i.e., by putting w+ = 1 = w−,

Abare(Z̃, Z) = −STr ln(1 − ZZ̃)+ STr ln(1 − BZB†Z̃). (10)

Using an argument of Ref. [7] we show that Abare(Z̃, Z) is defined in a coset space.
In retarded-advanced notation we define the matrices

" =
(

1 0
0 −1

)
, M =

(
B 0
0 B†

)
. (11)
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We expand the logarithms in Eq. (10), resume and obtain

Abare = −STr ln
2

1 +Q"
+ STr ln

(
1 −M

Q"− 1

Q"+ 1

)
(12)

where

Q =
(
(1 + ZZ̃)(1 − ZZ̃)−1 −2Z(1 − Z̃Z)−1

2Z̃(1 − ZZ̃)−1 −(1 + Z̃Z)(1 − Z̃Z)−1

)

= g(Z)"(g(Z))−1 (13)

and

g(Z) =
(

(1 − ZZ̃)−1/2 Z(1 − Z̃Z)−1/2

Z̃(1 − ZZ̃)−1/2 (1 − Z̃Z)−1/2

)
. (14)

The supermatrices Z and Z̃ are diagonal in directed bond space and so is, therefore,
Q.

We consider a specific set of bond indices (bd), omit these and work in four-
dimensional superspace only. The matrix Q and the bare action Abare remain
unchanged under the transformation g → gk if k commutes with ". Therefore,
Q and Abare are defined in the coset superspace G/K where g ∈ G = U(1, 1|2)
and k ∈ K = U(1|1)×U(1|1)with fundamental form Q = g"g−1 = gk"k−1g−1.
Writing

g =
(
A B

C D

)
(15)

we find from Eq. (14)

Z(Q) = B(g)(D(g))−1 = B(gk)(D(gk))−1,

Z̃(Q) = C(g)(A(g))−1 = C(gk)(A(gk))−1 (16)

for the local coordinates (Z, Z̃) of Q used in Eqs. (13). As briefly explained in the
paragraph following Eq. (22), these and the other local coordinates introduced below
are, however, not globally defined.

A group element g0 ∈ G acts on Q by Q → g0Qg−1
0 and on g ∈ G by left

multiplication. With

g0 =
(
A0 B0

C0 D0

)
and g0g =

(
A0A+ B0C A0B + B0D

D0C + C0A D0D + C0B

)
(17)
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we obtain from Eqs. (16) for the local coordinates of g0Qg−1
0

g0 · Z(Q) = (A0Z(Q)+ B0)(D0 + C0Z(Q))−1,

g0 · Z̃(Q) = (D0Z̃(Q)+ C0)(A0 + B0Z̃(Q))−1. (18)

3.2 Zero Mode Plus Fluctuations

Let g0 ∈ G in Eq. (17) be independent of the directed-bond indices (bd), and Q0 =
g0"g−1

0 . Following Eqs. (18) we define the zero mode (or universal mode) (Y, Ỹ )

by the local coordinates of Q0,

Y = g0 · 0 = B0D
−1
0 , Ỹ = g0 · 0̃ = C0A

−1
0 . (19)

Fluctuations about the zero mode are written in the sense of Eq. (18) as

Zbd = g0 · ζbd , Z̃bd = g0 · ζ̃bd . (20)

Equations (20) transform the local variables (Z, Z̃) to the local variables (Y, Ỹ ) and
(ζ, ζ̃ ). The latter are not gauge invariant. Therefore, we replace the supermatrices
(ζ, ζ̃ ) by the gauge-invariant supermatrices (ξ, ξ̃ ) defined by

ξ = A0ζD
−1
0 , ξ̃ = D0ζ̃A

−1
0 . (21)

Suppressing the directed-bond indices we use Eqs. (18) (with ζ for Z(Q) and ζ̃ for
Z̃(Q)) to express Z and Z̃ as given by Eqs. (20) as

Z = g0 · ζ = (A0ζ + B0)(D0 + C0ζ )
−1 = (Y + ξ)(1 + Ỹ ξ)−1,

Z̃ = g0 · ζ̃ = (D0ζ̃ + C0)(A0 + B0 ζ̃ )
−1 = (Ỹ + ξ̃ )(1 + Y ξ̃)−1. (22)

The transformation (22) from the variables (Z, Z̃) to the variables (Y, Ỹ ) and
(ξ, ξ̃ ) is somewhat analogous to the transformation from independent coordinates
to center-of-mass and relative coordinates. Actually, the transformation (22) is
more complicated than that because it has to respect the coset structure. We very
briefly remark on the ensuing difficulties. The variables for our coset space G/K

cannot be introduced in a globally well-defined way without using the mathematical
machinery of an atlas of coordinate charts, transition functions, etc. Therefore,
the gauge-independent variables (Z, Z̃), (Y, Ỹ ) and (ξ, ξ̃ ) are not globally defined
but serve as good local coordinates. A simplification arises because we confine
ourselves to small fluctuations of (Z, Z̃) about the “center-of-mass” coordinates
(Y, Ỹ ). That is done by linearizing the transformation (20) in the new variables
(ζ, ζ̃ ). Even in the linear regime we have to respect the coset structure, however.
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We are greatly helped by our assumption that the spectrum of the Perron-Frobenius
operator has a sufficiently large gap. By that assumption, the fluctuations of (Z, Z̃)

about the “center-of-mass” coset g0K with coordinates (g0 · 0, g0 · 0̃) are small in a
quantifiable sense, and the smallness allows us to treat the relative variables (ζ, ζ̃ )

approximately as vectors in the tangent space of G/K at g0K . Then the variables
(ξ, ξ̃ ) also lie in a vector space. That is used in what follows.

Constraints are needed because only (2B − 1) of the variables ζ and of the
variables ζ̃ appearing in Eqs. (20) (or of the variables ξ and ξ̃ appearing in Eqs. (21))
are independent. Using the assumption that (ξ, ξ̃ ) lie in a vector space we impose
the constraints

∑

bd

ξbd = 0 =
∑

bd

ξ̃bd . (23)

The transformation (22) with the constraints (23) introduces as new integration
variables the coordinates (Y, Ỹ ) of the zero mode and the independent ones among
the variables (ξ, ξ̃ ). The Berezinian of the transformation is unity.

3.3 Implementation of the New Variables

In order to express the effective action of Eq. (8) and the source terms (9) in terms of
the modes (Y, Ỹ ) and (ξ, ξ̃ ), we derive an invariance property of the bare effective
action, adapting to the present case an argument developed in Ref. [9] for a network
model of the Integer Quantum Hall Effect. With the help of the definitions and
results of Sect. 3.1 we show by explicit calculation that

STr ln(1 − (g0 · Z)(g0 · Z̃))− STr ln(1 − B(g0 · Z)B†(g0 · Z̃))

= STr ln(1 − ZZ̃)− STr ln(1 − BZB†Z̃) . (24)

The invariance property (24) holds provided that g0 · (BZB†) = B(g0 · Z)B†. We
have not used any specific properties of the matrices (Z, Z̃). Therefore, Eq. (24)
holds also for the matrices (ζ, ζ̃ ). We use Eq. (24) for the bare effective action of
Eq. (10). We replace the variables (Z, Z̃) by the transformation (20) and apply the
invariance property (24) to the resulting expression. That gives

Abare(g0 · ζ, g0 · ζ̃ ) = Abare(ζ, ζ̃ ) . (25)

The matrices A0 and D0 in Eqs. (21) commute with B. Therefore, Abare(ζ, ζ̃ ) =
Abare(ξ, ξ̃ ), and we obtain

Abare(ξ, ξ̃ ) = −STr ln(1 − ξ ξ̃ )+ STr ln(1 − BξB†ξ̃ ) . (26)
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We return to the full effective action (8). We are interested in values of κ that are
of the order of the mean level spacing � = π/

∑
b Lb . Therefore, we expand A up

to terms of first order in κ . In the first-order terms we neglect the fluctuations by
putting all ξ = 0 = ξ̃ . Since B commutes with the zero-mode variables Y and Ỹ

that gives

A ≈ Abare(ξ, ξ̃ )− 2iπκ

�
STrs

1

1 − Y Ỹ
, (27)

with Abare given by Eq. (26). The index s indicates that the supertrace extends only
over superspace. Being proportional to STr[g(Y )"(g(Y ))−1"] = STr[Q"], the
last term in Eq. (27) has the classical form for the symmetry-breaking term.

We turn to the source terms (9). The supermatrices (Z, Z̃) are diagonal in
directed bond space; we consider a fixed value of (bd) and omit these indices.
Then both Z and Z̃ have dimension two. We define the four-dimensional matrix
Q(ξ, ξ̃ ) as in Eq. (13) but with the replacements Z → ξ , Z̃ → ξ̃ . With " defined
in Eqs. (11), the source terms are written as

STrs
[
σ s

3 (1 − ZZ̃)−1ZZ̃
] = −1 + STrs

[
�(Y, Ỹ )Q(ξ, ξ̃ )"

]
,

STrs
[
σ s

3 (1 − Z̃Z)−1Z̃Z
] = −1 + STrs

[
�′(Y, Ỹ )Q(ξ, ξ̃ )"

]
,

STrs
[
σ s

3Z(1 − Z̃Z)−1σ s
3 Z̃(1 − ZZ̃)−1]

= STrs
[
�(Y, Ỹ )Q(ξ, ξ̃ )"�′(Y, Ỹ )Q(ξ, ξ̃ )"

]
. (28)

The index s indicates that the supertraces extend over superspace only. The
supermatrices � and �′ are defined as

�(Y, Ỹ ) = 1

2

(
(1 − Y Ỹ )−1 0

0 (1 − Ỹ Y )−1

)(
σ s

3 σ s
3Y

Ỹσ s
3 Ỹ σ s

3Y

)
,

�′(Y, Ỹ ) = 1

2

(
(1 − Y Ỹ )−1 0

0 (1 − Ỹ Y )−1

)(
Yσ s

3 Ỹ Yσ s
3

σ s
3 Ỹ σ s

3

)
. (29)

It is a very convenient feature of expression (28) that the contributions from
the universal mode (Y, Ỹ ) and from the massive modes (ξ, ξ̃ ) factorize. That
separation can be carried a step further. We use the decomposition Q(ξbd , ξ̃bd )" =
[Q(ξbd, ξ̃bd )" − 1] + 1. Supersymmetry must be broken for the same integration
variable in both the advanced and the retarded sector to obtain a non-vanishing
result. Therefore, terms linear in (Q" − 1) vanish upon integration, and the
contribution of the massive modes to the source terms is

π2

B2

{∑

bd

STrs
(
�(Y, Ỹ )[Q(ξbd, ξ̃bd )"− 1]�′(Y, Ỹ )[Q(ξbd, ξ̃bd )"− 1]

)
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+
∑

bd

STrs
(
�(Y, Ỹ )[Q(ξbd , ξ̃bd )"− 1]

)

×
∑

b′d ′
STrs

(
�′(Y, Ỹ )[Q(ξb′d ′, ξ̃b′d ′)"− 1]

)}
. (30)

It is our task to show that the integrals over the terms (30) with weight factor
exp{−Abare(ξ, ξ̃ )} and carried out for all (ξ, ξ̃ ) vanish for B →∞.

4 Evaluation

To argue in that direction we proceed as follows. We simplify the source terms (30)
by a suitable variable transformation. We expand the bare effective action in
powers of the new integration variables. Terms up to second order define Gaussian
superintegrals. The exponential containing terms of higher order is expanded in a
Taylor series. We perform the Gaussian superintegrals. We give an approximate
estimate of the dependence on B of the terms so generated and on that basis argue
that they vanish for B →∞.

We display the procedure for a single contribution to the source terms. The
procedure applies likewise to the remaining terms without any additional difficulties
and is not given here. We consider the last term in expression (30). We introduce
block notation, writing

� =
(
�++ �+−
�−+ �−−

)
(31)

and correspondingly for �′ and for Q(ξbd , ξ̃bd ). It is convenient to write μ for (bd)
and ν for (b′d ′). For the pair �++ �′−− the relevant contribution is

π2

B2

〈∑

μ

STrs
(
�++[Q(ξμ, ξ̃μ)"− 1]++

)

×
∑

ν

STrs
(
�′−−[Q(ξν, ξ̃ν)"− 1]−−

)〉
. (32)

The angular brackets denote the superintegration over all (ξ, ξ̃ ) with weight factor
exp{−Abare}. According to Eqs. (13) we have [Q(ξ, ξ̃ )"− 1]++ = 2ξ ξ̃ (1− ξ ξ̃ )−1

and [Q(ξ, ξ̃ )"− 1]−− = 2ξ̃ ξ(1 − ξ̃ ξ )−1.
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4.1 Variable Transformation

We simplify the form of the source term in expression (32) by defining for each set
of directed bond indices the variable transformation

ξ = ψ(1 + ψ̃ψ)−1/2, ξ̃ = ψ̃(1 + ψψ̃)−1/2, (33)

with inverse transformation

ψ = ξ(1 − ξ̃ ξ )−1/2, ψ̃ = ξ̃ (1 − ξ ξ̃ )−1/2. (34)

Calculation shows that the Berezinian of the variable transformation (33) is unity.
Instead of the constraints (23) we impose

∑

μ

ψμ = 0 =
∑

μ

ψ̃μ . (35)

To justify Eqs. (35) we observe that Eqs. (23) were introduced in an ad-hoc
fashion to guarantee that only (2B − 1) of the variables (ζμ, ζ̃μ) and (ξμ, ξ̃μ) are
independent. Equations (35) serve that same purpose.

From Eqs. (33) we have [Q(ξ, ξ̃ )" − 1]++ = 2ψψ̃ and [Q(ξ, ξ̃ )" − 1]−− =
2ψ̃ψ . Expression (32) becomes

4π2

B2

∑

μν

〈
STrs

(
�++ ψμψ̃μ

)
STrs

(
�′−− ψ̃νψν

)〉
. (36)

For the bare effective action of Eq. (26), the variable transformation (33) leads to

Abare(ψ, ψ̃) = +STr ln(1 + ψψ̃)

+STr ln
(
1 − Bψ(1 + ψ̃ψ)−1/2B†ψ̃(1 + ψψ̃)−1/2)

= STr
(
ψψ̃ − BψB†ψ̃

)+ . . . (37)

where the dots indicate terms of higher order in ψ and ψ̃ .

4.2 Gaussian Superintegrals

In the expansion of Abare in Eq. (37), we retain in the exponent only terms up to
second order in (ψ, ψ̃) (last line of Eq. (37)). With F defined in Eq. (2) these can be
written as

A0 =
∑

μν

Strs
[
ψμ(δμν − Fμν)ψ̃ν

]
. (38)
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Equation (38) defines the Gaussian part A0 of the bare effective action. The Perron-
Frobenius operator F is expanded in terms of its complex eigenvalues λk and left
and right eigenvectors 〈wk| and |uk〉 as

F =
∑

k

|uk〉λk〈wk| . (39)

These (non-real) eigenvectors satisfy the relations 〈wk|ul〉 = δkl . The matrix F is
bistochastic, its elements are positive or zero. The graph is connected. It follows
from the Perron-Frobenius theorem that there exists a non-degenerate eigenvalue
λ1 = +1. The associated left and right eigenvectors 〈w1| and |u1〉 have the
components (1/

√
2B){1, 1, . . . , 1}. All other eigenvalues λi with i ≥ 2 lie within

or on the unit circle in the complex plane. As stated below Eq. (2), we assume that
all other eigenvalues λi with 2 ≤ i ≤ 2B obey |λi | ≤ (1 − a) with a > 0 even in
the limit B → ∞. The matrix |u1〉〈w1| is an orthogonal projector. Equations (35)
guarantee that |u1〉〈w1| does not contribute to the sum on the right-hand side of
expression (38), confirming that the zero mode has been eliminated. We emphasize
that fact by defining the complementary projector P = 1−|u1〉〈w1|, and by writing
expression (38) as

A0 =
∑

μν

STrs
[
ψμ

(
P(1 − F)P

)

μν
ψ̃ν

]
. (40)

The bilinear form A0 defines the propagator of the theory. The factor exp{−A0}
defines Gaussian superintegrals. The fundamental integral is

∫
d(ψ, ψ̃)ψμ;st ψ̃ν;t ′s ′ exp{−A0} = δss ′δtt ′(−)t 〈μ|P(1 − F)−1P |ν〉 . (41)

We have written μ = (bd) as before. The range of the superindices (s, t) is (0, 1)
or, equivalently, (B, F ).

The Taylor expansion of the exponential containing the dotted terms in expres-
sion (37) generates products of supertraces each containing powers of ψ and
ψ̃ . For the Gaussian integral over the product of these with the source term in
expression (36) we use the general result

∫
d(ψ, ψ̃)

n∏

i=1

ψμi ;si ti ψ̃νi ;t ′i s ′i exp{−A0}

=
n∏

i=1

∑

perm

n∏

j=1

δsis ′j δti t ′j (−)ti 〈μi |P(1 − F)−1P |νj 〉 . (42)

The sum is over all permutations of (1, 2, . . . , n). The expressions generated by the
Gaussian integrals (42) contain products of factors 〈μ|P(1 − F)−1P |ν〉 and may
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become very lengthy. We use the abbreviations

Wμν = 〈μ|P(1 − F)−1P |ν〉 and, for n > 1 ,W(n)
μν = 〈μ|P(1 − F)−nP |ν〉 .

(43)

4.3 Qualitative Estimation

The integrals (42) generate products of matrix elements Wμν . Progress hinges on
our ability to estimate the dependence of these matrix elements and of sums of their
products on the dimension (2B) of directed-bond space for B → ∞. Postponing a
strict treatment to future work, we here settle for the simple approximation of using
averages based upon the completeness relation.

For the diagonal elements we use Eq. (39), the relation 〈wk |ul〉 = δkl , and the
completeness relation and find

〈μ|P(1 − F)−1P |μ〉 ≈ 1

2B

∑

μ

〈μ|P(1 − F)−1P |μ〉 = 1

2B

∑

k≥2

1

1 − λk

. (44)

Since F is real, the eigenvalues λk are either real or come in complex conjugate
pairs. Therefore, the sum on the right-hand side is real. By assumption, the
eigenvalues obey |λk| ≤ (1− a) with a > 0. Therefore, the expression on the right-
hand side is positive and for all B bounded from above by 1/a. We accordingly
estimate Wμμ = 〈μ|P(1 − F)−1P |μ〉 by 1/a. (Here and in what follows we use
the word “estimate” in the non-technical sense of order-of-magnitude estimate). For
terms with higher inverse powers of (1−F) we find correspondingly W

(n)
μμ ≈ 1/an.

The factor 1/an stems from the sum
∑

k 1/(1− λk)
n. In the limit B →∞ that sum

exists for all n only if the gap in the spectrum of the Perron-Frobenius operator F
does not close. That condition is also used in the estimates given below.

For the non-diagonal elements we have

〈μ|P(1−F)−1P |ν〉(1−δμν) ≈ 1

(2B)2

∑

μν

〈μ|P(1−F)−1P |ν〉(1−δμν) . (45)

Since
∑

μ〈μ|P = √
2B〈w1|P = 0 and

∑
μ P |μ〉 = √

2BP |u1〉 = 0, the first term
of (1− δμν) gives a vanishing contribution. For the second term we use Eq. (44) and
find that the typical non-diagonal element Wμν with μ �= ν is of order 1/((2B)a).

For W(n)
μν with μ �= ν and n > 1 we correspondingly have W

(n)
μν ≈ 1/((2B)an).

After integration and use of the order-of-magnitude estimate (44), the remaining
terms in the expansion may carry a product of matrix elements of the form∏n

i=1〈μi |P(1 − F)−1P |μi+1〉. In addition to the steps taken in Eqs. (44) and (45)
we use the approximation |μi〉〈μi | ≈ (1/(2B))

∑
μ |μ〉〈μ| for the intermediate
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projectors |μi〉〈μi | with 2 ≤ i ≤ n. That gives

n∏

i=1

〈μi |P(1−F)−1P |μi+1〉=
n∏

i=1

Wμiμi+1≈
1

an(2B)n−1

(
δμ1μn+1−

1

2B

)
. (46)

The relation (46) holds likewise (with appropriate changes of the power of 1/a) in
cases where one or several of the denominators (1 − F) carry powers larger than
unity.

For an estimate of the large-B dependence of expressions involving B or B†, we
use the unitarity relation

∑2B
σ=1 B†

ρσBσρ = 1. It implies that in the ergodic limit we
have

|Bμν | ≈ 1√
2B

. (47)

The estimates (42), (46) and (47) provide us with the tools needed to give an
order-of-magnitude estimate of the B-dependence of the source terms and the terms
generated by the Taylor expansion of the higher-order terms in Abare.

4.4 Source Term

In expression (36) we first disregard contributions due to the Taylor expansion of
higher-order terms in Abare. Equation (42) implies that the Gaussian integrals over
products of factors (ψ, ψ̃) lead to pairwise contractions. In the source term (36) that
results in the sum of two terms,

〈∑

t1

ψμ,s1t1ψ̃μ,t1s
′
1

∑

s2

ψ̃ν,t2s2ψν,s2t
′
2

〉

=
〈∑

t1

ψμ,s1t1ψ̃μ,t1s
′
1

〉 〈∑

s2

ψ̃ν,t2s2ψν,s2t
′
2

〉

+(−)s1+t2
∑

t1

∑

s2

〈
ψμ,s1t1ψ̃ν,t2s2

〉 〈
ψ̃μ,t1s

′
1
ψν,s2t

′
2

〉
. (48)

According to Eq. (42) the first term vanishes, and the second term equals
WμνWνμδs1s

′
1
δt2t ′2 . We have |∑ν WμνWνμ| ≤ ||WW ||op ≤ ||W ||2op ≤ a−2. The

double bars denote the operator norm. Hence |∑ν WμνWνμ| ≤ (2B)/a2. The
term (36) carries the factor 1/B2. For B →∞ it vanishes as 1/B.
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4.5 Higher-Order Contributions

Among the terms in expression (36) that arise from the Taylor expansion of higher-
order terms in Abare in Eq. (37), we first address terms that originate from STr ln(1+
ψψ̃). Except for numerical factors the general term in the Taylor expansion has the
form

4π2

B2

〈∑

μν

STrs
(
�++ ψμψ̃μ

)
STrs

(
�′−− ψ̃νψν

) m∏

i=1

STr(ψψ̃)ni
〉
, (49)

with integer m ≥ 1, ni ≥ 2. Gaussian integration as in Eq. (42) leads to pairwise
contraction of all factors ψ and ψ̃ and, thus, to k = 2 +∑

i ni factors W . A non-
vanishing result is obtained only if supersymmetry is violated in every supertrace
in expression (49). Therefore, all supertraces in expression (49) must be linked by
pairwise contractions. That, incidentally, is the reason why in Eq. (48) the first term
on the right-hand side vanishes.

We consider two examples. For m = 1, n1 = 2, the nonvanishing links yield two
terms,

(1/B2)
∑

μνρ

WμνWνρWρμWρρ = (1/B2)
∑

ρ

W(3)
ρρ Wρρ ,

(1/B2)
∑

μνρ

WμρWρμWρνWνρ = (1/B2)
∑

ρ

W(2)
ρρ W(2)

ρρ . (50)

In the first expression we use Wρρ ≈ 1/a, W(3)
ρρ ≈ 1/a3. The sum over ρ yields a

factor (2B). Altogether the term is estimated as 1/((2B)a4) and vanishes for B →
∞. In the second expression we use W

(2)
ρρ ≈ 1/a2 and find the same result. For

m = 2, n1 = 2 = n2 we correspondingly obtain the terms

(1/B2)
∑

ρτ

W(3)
ρρ WρτWτρWττ , (1/B2)

∑

ρτ

W(3)
τρ (Wρτ )

2Wτρ ,

(1/B2)
∑

ρτ

W(3)
τρ WρτWρρWττ , (1/B2)

∑

ρτ

W(2)
ρτ W(2)

τρ WρτWτρ ,

(1/B2)
∑

ρτ

W(2)
ρρ W(2)

ττ WρτWτρ , (1/B2)
∑

ρτ

W(2)
ρτ W(2)

τρ WρρWττ . (51)

We use the estimates (44, 46). The terms of leading order are the ones where two
factors W(n) with n = 1 or n = 2 or n = 3 each carry identical indices. These are
the terms number 1, 3, 5, 6. They vanish asymptotically as 1/(2B).

From these examples we deduce the following rules. (i) In expression (49),
contraction of the four factors (ψμ, ψ̃μ) and (ψν, ψ̃ν) with one another and with
corresponding factors in the product over traces yields a nonvanishing result only
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if it generates either two factors W(2) or a single factor W(3). These carry indices
of the factors in the product over traces. For every pair (ρ, σ ), the factors W

(2)
ρσ and

W
(3)
ρσ are, both for ρ = σ and for ρ �= σ , of the same order in 1/(2B) as the factor

Wρσ . For purposes of counting powers of (2B) it suffices, therefore, to disregard
the four factors (ψμ, ψ̃μ) and (ψν, ψ̃ν) together with the summation over μ and ν

and to consider only contractions within the product of supertraces. (ii) The terms of
leading order in 1/(2B) are obtained by contracting, in every supertrace STr(ψψ̃)ni ,
(ni−1) pairs (ψρ, ψ̃ρ) with one another. That is because contraction of pairs of ψ’s
in the same (in different) supertraces generates factors Wρρ ∝ 1/a (Wρσ ∝ 1/(2Ba)

with ρ �= σ , respectively). Contraction of pairs within the same supertrace generates
(ni−1) factors Wρρ and reduces each supertrace to (1/ani−1)STr(ψψ̃). These rules
imply that the only remaining contractions in expression (49) are over the term

[STr(ψψ̃)]m →
∑

μ1,...,μm

Wμ1μ2 × . . .×Wμmμ1 =
∑

μ1

W(m)
μ1

. (52)

To the extent that our approximations (of replacing fluctuating quantities by their
averages) capture the qualitative aspects of the problem, we may conclude that
expression (49) is of order 1/(2B) and vanishes for B →∞.

The general term in the Taylor expansion contains, in addition to the terms in
expression (49), also products of supertraces that contain the elements of B. Each
such supertrace has the form STr[Bψ(ψ̃ψ)mB†ψ̃(ψψ̃)n]l with l ≥ 1 and (m, n)

zero or positive integer, see Eq. (37). In contracting factors ψ and ψ̃ we apply rule
(ii). The terms of leading order are obtained by replacing in each supertrace (ψ̃ψ)m

by 1/am and (ψψ̃)n by 1/an. We proceed likewise for the product of supertraces in
expression (49). That reduces the general expression to

1

B2

〈∑

μν

STrs
(
�++ ψμψ̃μ

)
STrs

(
�′−− ψ̃νψν

)

×
{
[STr(ψψ̃)]m

k∏

i=1

STr

(
BψB†ψ̃

)li
}〉

. (53)

Here m ≥ 0 and li ≥ 1 for i = 1, . . . ,m. We require k ≥ 1 as the case
k = 0 has been considered above. We apply rule (i) and disregard the difference
between factors W(n) and W in estimating the dependence of expression (53) on
1/(2B). In other words, we confine ourselves to contractions involving elements
(ψ, ψ̃) in the curly brackets in expression (53). For m = 0, all supertraces carrying
elements of B must be connected by pairwise contractions. That generates

∑
i li

factors W . Each such factor carries a pair of summation indices. No two summation
indices in any of these factors are the same. Therefore, each factor W is of order
1/(2B). There are

∑
i li elements of B and of B†, each of order 1/

√
2B. There

are 2
∑

i li independent summations over directed-bond space. Together with the
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prefactor 1/B2, we therefore expect expression (53) to be of order 1/(2B)2 for
m = 0.

That expectation remains unaltered for m > 0. We show that first for m = 1,
writing STr(ψψ̃) = ∑

ρ STrs (ψρψ̃ρ). Contraction links the factor ψρ (the factor

ψ̃ρ ) with some factor ψ̃σ (with some factor ψτ , respectively). Both ψ̃σ and ψτ

occur in the product over i in expression (53). The result is
∑

ρ WρσWτρ = W
(2)
τσ

while for m = 0 contracting ψ̃σ and ψτ gives Wτσ . Since Wτσ and W
(2)
τσ are of the

same order, the expressions (53) with m = 0 and with m = 1 are of the same order,
too. The argument can straightforwardly be extended to m ≥ 2. This concludes our
heuristic reasoning that the general term containing matrix elements of B vanishes
for B →∞ as 1/(2B)2.

5 Summary and Discussion

We have given a brief account of an approach to chaotic quantum graphs that aims
at demonstrating the BGS conjecture using supersymmetry and the color-flavor
transformation. We have paid particular attention to the treatment of the massive
modes as these are defined in a coset space. We have used the assumption that the
spectrum of the Perron-Frobenius operator possesses a finite gap even for infinite
graph size. We have shown that the effective action and the source terms are given
by Eqs. (26) and (27) and by Eq. (30), respectively.

To evaluate the resulting generating function, we have defined Gaussian super-
integrals by expanding the effective action up to terms of second order. The
remaining terms are expanded in a Taylor series. We have carried out the Gaussian
superintegrals over the product of that series with the source terms. We have given
order-of-magnitude estimates of the resulting expressions using averages based
upon completeness and unitarity. Assuming that these approximations are valid, we
are led to the conclusion that the contribution of massive modes to the two-point
function vanishes for large graph size. Therefore, that function attains universal
form.

The rough estimates in Sect. 4.3 are based on averages and require small
fluctuations. That may be unsatisfactory. We are working on strict estimates. We
hope to be able soon to report on these, combining that with a more detailed account
of conceptual and technical aspects of the steps taken in Sect. 3 that were treated
here only cursorily.

The author is much indebted to M. R. Zirnbauer. Without his numerous useful
suggestions, especially concerning the developments in Sect. 3, this contribution
would not have come into existence.
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