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Abstract. Manifold learning, a non-linear approach of dimensionality
reduction, assumes that the dimensionality of multiple datasets is artifi-
cially high and a reduced number of dimensions is sufficient to maintain
the information about the data. In this paper, a large scale comparison
of manifold learning techniques is performed for the task of classification.
We show the current standing of genetic programming (GP) for the task
of classification by comparing the classification results of two GP-based
manifold leaning methods: GP-Mal and ManiGP - an experimental man-
ifold learning technique proposed in this paper. We show that GP-based
methods can more effectively learn a manifold across a set of 155 different
problems and deliver more separable embeddings than many established
methods.
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1 Introduction

Dimensionality reduction has been a very important area of research over the
past few years because of its pivotal role in machine learning (ML) and related
fields. Feature extraction, which is determining the most informative and non-
redundant features derived from the original features, reduces the feature space
and allows multiple ML methods to be applied to increasingly large datasets. It
also allows to create human interpretable visualization of the data in two or three
dimensional space and to better understand underlying associations between the
features. An extensive review of different dimensionality reduction approaches
can be found in the literature [8,9,14,16,18,22,36,48].

Over the years, multiple methods of dimensionality reduction have been
developed. The most popular linear dimensionality reduction methods include
principal component analysis (PCA) [30,39], linear discriminant analysis (LDA)
[12,33], canonical correlations analysis [17] and factor analysis (FA) [37].
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Manifold learning is one of the approaches for non-linear dimensional-
ity reduction. The most popular approaches include multidimensional scaling
(MDS) [4,40], locally linear embeddings (LLE) [35], Laplacian eigenmaps [2],
isomaps [38], local tangent space alignment (LTSA) [47], maximum variance
unfolding [44], diffusion maps [7], and t-distributed stochastic neighbor embed-
ding (t-SNE) [25]. Apart from visualization purposes, manifold learning has been
also used as a preprocessing step before classification [41,42].

Among multiple dimensionality reduction techniques, a couple of notable
methods of feature extraction exist that use genetic algorithms (GA) [34,45]
or genetic programming (GP) [6,15]. Over the recent years multiple attempts
were also taken to use genetic programming for classification [3,11,20]. The main
advantage of GP-based approaches is delivering a fully interpretable model that
could be used for describing the data structure. In a recent paper Lensen et al.
proposed a manifold learning method based on GP called GP-MaL. The method
was shown to outperform other popular manifold learning techniques in terms of
accuracy in at least half of 10 datasets considered [23]. This approach inspired
us to design a study on separability of data using manifold learning techniques.
We designed a GP-based method focusing in optimizing the same goal used in
benchmarking the methods, which is providing observable separation of classes
in the embedded space.

The major contribution of this paper is performing a large-scale comparison
of different manifold learning methods with their sets of parameters on the large
collection of 155 datasets from Penn Machine Learning Benchmark (PMLB) [27].
To our knowledge, this is the largest and the most comprehensive comparison of
manifold learning techniques on the collection of real world problems. As man-
ifold learning methods are usually applied to create convincing visualizations,
we check if manifold learning methods can deliver easily separable embeddings
in two dimensional space. To measure the performance of the methods, we used
unsupervised clustering algorithm and verified the performance of the methods
for the task of classification, for which the ground truth is already known. As
some of the considered datasets in PMLB are multi-class problems with different
numbers of instances per class, a balanced accuracy score [5] is used in order to
account for the class imbalance. Type of the data (e.g. categorical or ordinal)
was not taken into account.

The second contribution of the paper is providing a convenient open-source
framework for testing new manifold learning methods. All source code for our
analysis is available at https://github.com/athril/manigp. An important input
here is providing a scikit-learn friendly wrapper for GP-MaL, a GP-based man-
ifold learning method proposed at EuroGP track of EvoStar 2019, which inves-
tigated application of genetic programming to manifold learning.

Thirdly, we propose a novel manifold learning technique based on genetic
programming called ManiGP which uses a multi-tree representation, a popular
k-means clustering [24] and balanced accuracy to verify their integrity. The pro-
posed method could be considered a thought experiment that would answer a
question if a method intentionally designed to exploit the benchmark has unfair

https://github.com/athril/manigp
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advantage over its competitors. We show over a large collection of problems that,
albeit its extensive running time, a method based on genetic programming can
learn a manifold significantly better than multiple other techniques. Therefore,
we touch on a broader subject of the fairness of comparisons of the methods
which feature GP.

2 Methods

In our study we covered eight well established manifold learning methods and
two methods that use GP: GP-MaL, a winner of a best paper award at EvoStar
2019, and ManiGP, which is introduced in this paper. All the methods were
benchmarked against the collection of 155 datasets from Penn Machine Learning
Benchmark (PMLB). The input data was standardized using RobustScaler and
split into training and test set with stratification maintained. Manifold learning
method were launched with different combinations of input parameters (apart
from GP-MaL, which was launched with default parameters). The embeddings
provided by the methods were later clustered using K-Means, a popular clus-
tering algorithm. Hungarian (Kuhn-Munkres) algorithm was used for obtaining
optimal assignment of clusters to the actual classes [26]. The distance to the
nearest centroid served as a basis for predicting a class label for unseen data
points. Balanced accuracy was used as a metric for measuring performance (i.e
separability) of the embeddings. As the major application of manifold learn-
ing is visualization, we have focused on distinction between the classes in two
dimensional space. The detailed information on the design of the experiment is
provided in the methodology section.

2.1 Manifold Learning Methods

We have included the methods that are part of scikit-learn [31], a popular
machine learning library. We have also adapted the source code GP-MaL and
created a Python wrapper.

Isomap is a manifold learning method partly based on MDS [38]. Isomap
improves on standard MDS by aiming to preserve geodesic distances between
points instead of straight-line distances. This change leads to the creation of
more adequate embeddings compared to MDS for manifolds with characteristics
akin to the Swiss Roll for which the small euclidean distance between two points
does not imply that they are similar. Isomap is computationally efficient and
scales well to high-dimensional datasets.

Locally Linear Embedding (LLE) is based on a premise that finding linear trans-
formations preserving local structures and applying them to overlaying neighbor-
hoods can retain a non-linear global structure of a dataset [35]. Local structures
are maintained by expressing each data instance as a linear combination of its
neighbors using the same weights in high and low-dimensional space. LLE can
perform poorly when data is separated and has tendencies to collapse the low-
dimensional mapping to a single point.
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Hessian Locally Linear Embedding (HLLE) is a variant of LLE that uses
quadratic form based on Hessian matrix to preserve the local structure of the
data [10]. HLLE was shown to perform better on non-convex manifolds than
standard LLE, but it suffers from high computational complexity and does not
scale well to large datasets, partly due to the necessity of estimating second order
derivatives.

Modified Locally Linear Embedding (MLLE) is a variant of LLE that looks for
more than one linear combinations of every point’s neighbors to embed the data
in a low-dimensional space while maintaining the local structure of a manifold
[46]. This change results in a more robust embedding compared to standard LLE.

Local Tangent Space Alignment (LTSA) is a modification of LLE that repre-
sents local structures using tangent spaces and aligns them in a global structure
to derive a coordinate system to describe manifold [47]. Similarly to LLE, the
method is susceptible to the noise.

Mutidimensional Scaling (MDS) is one of the oldest methods which can be
applied to non-linear dimensionality reduction [4]. It focuses on maintaining the
euclidean distances between the points in the low-dimensional embedding. This
approach works well if distance is a good measure of similarity between points,
because then related points are grouped together.

Laplacian Eigenmaps - Spectral embedding (SE) is another manifold learning
method which focuses on preserving the local structures of the data [2]. This
is achieved by representing the dataset as a graph and using the eigenvectors
of the Laplacian matrix of that graph for dimensionality reduction. Laplacian
Eigenmaps have also been used for data clustering.

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a popular method for
visualizing high-dimensional datasets [25]. Similarity of points in the dataset is
evaluated using conditional probabilities which measure how likely a certain
point would be to choose another point as its neighbor. The method looks
for a low-dimensional embedding of the dataset that minimizes the difference
between the distributions of high and low-dimensional sets which is expressed
by Kullback-Leibler divergence [19]. t-SNE was shown to create high quality
visualizations of high-dimensional datasets [25]. In addition, it is a powerful tool
for data exploration and can be used after feature extraction to assess what
characteristics of the data the extraction really captured. Nonetheless, t-SNE
has some disadvantages. Firstly, it is not easily interpretable [43]. Secondly, new
points cannot be embedded in low-dimensional space1.

1 https://lvdmaaten.github.io/tsne/.

https://lvdmaaten.github.io/tsne/
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GP-MaL is a recently proposed manifold learning method based on genetic pro-
gramming [23]. The method uses interpretable trees to evolve mappings from
high to low dimensional space. The mappings are measured on how well they
maintain dataset’s structure with a similarity metric based on neighbor ordering.
GP-Mal was shown to be a competitive dimensionality reduction technique for
the tasks of classification, data visualization and establishing feature importance.
The mappings produced by the method while interpretable, suffered from exces-
sive complexity. GP-MaL demonstrated the potential of GP in dimensionality
reduction and manifold learning applications.

2.2 ManiGP - A New Manifold Learning Method Based on Genetic
Programming

ManiGP is a manifold learning method which, similar to GP-MaL, uses a multi-
tree representation of an individual and focuses on delivering highly separable
mappings of distinct classes.

Motivation. The intuition behind the method is as follows. As manifold learning
techniques are primarily used for creating convincing visualizations, our aim
was to provide a highly interpretable method, which would clearly distinguish
classes for the task of classification and also have potential for being adapted
to unsupervised data analysis. Thus, despite its susceptibility to outliers and
noise, a k-means clustering [24] was chosen as a base for finding groupings of
the instances in the embedded space. The number of clusters is always set to
the number of classes in the data. Each of the clusters was later assigned to the
closest classes using Hungarian algorithm. Finally, a balanced accuracy metric is
used as a fitness score for each of the individual in order to become independent
of the size of each class in the original data. The goal of the method is maximizing
the fitness score, which should lead to higher separability of the classes and thus
to more convincing visualizations. The predictions for the unseen instances were
made based on the distance to the closest centroid.

Allowable Operators. The primitive set of a GP syntax tree for ManiGP com-
prises various mathematical operations, random ephemeral constants and termi-
nals equal to 0 or 1. The allowable operations are addition, subtraction, multi-
plication, safe division (to prevent division by 0), modulo, modulo-2 summation;
equal, not equal, less than, greater than comparisons; logical and, or, xor and
not; bitwise and, or and xor; abs, factorial, power, logarithm a of b, permutation,
choose; left, right, min and max. A maximal permissible height is used as a bloat
control to prevent the excessive growth of trees.

The Method. The concept of the method is visualized on the example of the
appendicitis dataset in Fig. 1. Each point represents an instance of the original
dataset, which was mapped into a new space. The color of the point corresponds
to its original class. The coordinates of the new space are determined by syntax
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Fig. 1. A concept of ManiGP. A population of the algorithm contains evolving tuples
of trees that create a manifold to separate classes.

trees which were evolved using GP. Each of the trees is responsible for construct-
ing a single embedding in a low-dimensional space. This means that the number
of trees in the individual is equal to the dimensionality of the reduced dataset.
In this example, the balanced accuracy on the training dataset is equal to 93.7%,
whereas on the testing data 80.9% (both were plotted in the same chart).

The evolution process in ManiGP is set up as follows.

1. A number of best individuals from the previous population is selected to
the next generation. The selection operator sorts the individuals by their
fitness function values in descending order and then chooses the ones from
the beginning of the list. The number of individuals chosen is equal to the
size of the initial population.

2. The population is randomly shuffled and individuals are assigned to pairs
based on their position in the population. Specifically, the first individual on
the list is paired with the second one, the third one with the fourth one and
so on.

3. A crossover operator is applied on each pair of individuals with a certain
probability. Corresponding coordinates of the trees are crossed over using a
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one point crossover operator which chooses random nodes in each of the two
trees and swaps the subtrees that have a root in that randomly chosen node
creating two new trees. In this way, two new individuals are created. If all
of the trees comprising the new individual are of admissible height, then the
individual is added to the population. The resulting population contains both
parents and children.

4. Each individual in the population - including the children created with a
crossover operator - is mutated with a certain probability. Each tree of an
individual is mutated using the mutation operator. Within each of the trees,
the operator chooses randomly a subtree and swaps it with a randomly gen-
erated one.

5. A bloat control check (i.e. verification of the height of the tree) is performed
before admitting it to the population.

6. Each of the instances is mapped into the new space using trees. On the
reduced space, a k-means clustering is run to find groupings of instances. The
number of clusters used in k-means is equal to the number of classes. As clus-
tering does not use information on the class labels, an additional assignment
needs to be made in order to match clusters to classes. This is performed
using Hungarian algorithm [26].

7. The fitness function of each individual is defined as a balanced accuracy across
all classes.

8. The evolution stops after a predefined number of iterations. If the predefined
number of iterations is not met, the next population is created using selection
of best individuals2. Otherwise, the instances of the data are transformed
using the individual with the highest fitness.

Implementation. ManiGP was implemented in Python using Distributed Evo-
lutionary Algorithms in Python (DEAP) framework [13,32] and other popular
Python libraries such as NumPy, pandas, and sklearn.

Related Work. GP and nearest centroid classifiers were shown to be powerful
tools for improving classification accuracy and feature selection [1]. Although in
some ways similar, the approach taken in this study applies GP and K-means
in a different context than in the research conducted by Al-Madi et al., which
focused more on improving classification results derived from GP with a k-means
based algorithm. The design of the method used in this paper is very closely
related to M4GP, the method of dimensionality reduction by La Cava et al.
[20] with four major differences. Firstly, the representation of the individual is
different. ManiGP represents individual as multi-tree structure, whereas M4GP
use a stack-based representation. Secondly, ManiGP uses the simplest possible
strategies (e.g. selection of best individuals), whereas M4GP uses advanced selec-
tion operators, such as epsilon lexicase selection and Age-fitness Pareto survival.

2 Empirical tests have surprisingly shown the superior performance of this technique
in comparison to tournament selection.
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Thirdly, the fitness objective is different [20]. Finally, ManiGP presets the result-
ing dimensionality, whereas M4GP dynamically determines it in the course of
evolution.

It needs to be emphasized, that ManiGP by no means was designed to be
a fully fledged classifier. It emerged as an experiment during designing a fair
methodology for the comparison of the methods. Our hypothesis was that it is
possible to design a method that would work at least as well as the state-of-the-
art methods for a large set of problems, if it is given a leverage and optimizes
the same metric used later in benchmarking. This, in our opinion, not only puts
the method in favourable position over the others, but also adds an interesting
layer in the discussion on existence of the objective comparison methodology.

2.3 Datasets

Penn Machine Learning Benchmark (PMLB) is one of the largest available col-
lections of publicly available dataset for classification and regression. Multiple
problems included in the benchmark suite were pulled from popular reposito-
ries, such as UCI, OpenML or Kaggle and transformed into a machine learning
friendly format [27]. In this paper our focus was classification task, for which we
pulled 166 classification datasets. The following 11 datasets were excluded from
the comparison because of issues with convergence or running times exceeding
168 h for at least 2 methods: ‘adult’, ‘connect-4’, ‘fars’, ‘kddcup’, ‘krkopt’, ‘let-
ter’, ‘magic’, ‘mnist’, ‘poker’, ‘shuttle’, and ‘sleep’. As the result, the collection
included in this analysis contained 155 different datasets.

2.4 Methodology of Comparison

One of the greatest challenges in benchmarking manifold learning methods is the
fact that not every method supports mapping of the previously unseen data. For
example a very popular t-SNE learns a non-parametric mapping, which means
there is no function learned that would map the point from the input space to the
embedded one. A similar issue involves also MDS and Spectral Embeddings, two
other popular manifold learning techniques. This has far-reaching consequences,
as the performance of the methods on test data can’t be reported for the method.
It also means that cross-validation can’t be used for finding the optimal setting
of the input parameters.

There are two potential ways of getting around this fact, but none of them
could be considered a good strategy. First, a regressor could be proposed which
for each of the samples in the test data finds the closest sample (or samples) and
assigns its score (or performs a form of majority voting). Unfortunately, this
may be erroneous for some of the datasets, which contain categorical, or ordinal
values. The second approach is learning manifold on full data and reporting the
score only for the test points. In this scenario, however, testing data is used in
training, which creates additional bias. After consideration we have decided not
to report the performance of aforementioned methods on test data. This resulted
in abandoning k-fold cross validation in favor of running method with 5 different
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random seeds with a grid of the parameters and using the best performance
within training data for testing.

The second challenge was proposing an objective metric for assessing perfor-
mance. After learning the manifold, multiple existing classifiers could be adapted
and trained on the data with reduced dimensionality. Our choice was using k-
means, a popular clustering technique. This unsupervised technique could be
considered as unbiased measure of separability of the classes as it does not use
real class labels for the analysis. The correct assignments to the classes are han-
dled using Hungarian algorithm in similar way as in Orzechowski and Boryczko
[28]. Although we are aware that k-means isn’t perfect, as doesn’t handle well
clusters of different densities, irregular shapes as well as outliers, the simplicity
and linear division of the classes in the embedded space were the reasons why
k-means was chosen as the base for the analysis.

The workflow for benchmarking manifold learning method was constructed
as follows:

1. For each of the datasets 5 different randomly initialized seeds were selected.
The seeds were used for splitting each of the dataset to train and testing sets
with proportion 75%–25%. Stratified split was used to maintain the propor-
tion of the representatives of each class in both training and testing set and
RobustScaler was used for preprocessing data.

2. Each manifold learning method was initialized with the same random seed.
For each of the methods we have used a grid of input parameters. The methods
with their parameters are presented in Table 1.

3. In order to better understand separability of the classes, the resulting two
dimensional embedding from each manifold learning methods served as a
base for performing k-means clustering with the number of clusters equal to
the number of classes.

4. Hungarian algorithm [26] was used to assign class label to the clusters.
5. For the methods that allow projection of a test set, the distance to the center

of the nearest cluster was used to assign label to the point.
6. As class imbalance is an issue with different datasets, a popular metric called

balanced accuracy was used as a measure of performance.
7. For each of the methods and a given seed the highest balanced accuracy score

was considered across a grid of the parameters.

3 Results

For benchmarking we have included all of the manifold learning methods
described in the previous chapter. For the sake of clarity, we have narrowed
down our analysis to manifold learning methods only and decided not to include
linear dimensionality reduction techniques, as they remain out of scope for this
paper. The detailed results of the analysis have been added to our project repos-
itory3.
3 https://github.com/athril/manigp/.

https://github.com/athril/manigp/
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Table 1. Parameters settings of the analyzed methods. The names of the parameters
refer to scikit-learn implementation.

Algorithm Parameter Values

ManiGP ‘(xover rate, mut rate)’ {(0.9,0.1), (0.5,0.5), (0.1,0.9)}
‘generations’ 500

‘pop size’ 100

GP-MaL ‘generations’ 1000

pop size 1024

Isomap ‘n neighbors’ [5,6,7,8,9,10,15,20],

‘eigen solver’ [‘arpack’,‘dense’],

LLE ‘reg’ [1e−4, 1e−3, 0.001, 0.1, 1, 10]

‘n neighbors’ [5,6,7,8,9,10,15,20]

‘eigen solver’ [‘dense’]

Hessian ‘reg’ [1e−4, 1e−3, 0.001, 0.1, 1, 10]

‘n neighbors’ [5,6,7,8,9,10,15,20]

‘eigen solver’ [‘dense’]

Modified LLE ‘reg’ [1e−4, 1e−3, 0.001, 0.1, 1, 10]

‘n neighbors’ [5,6,7,8,9,10,15,20]

‘eigen solver’ [‘dense’]

LTSA ‘reg’ [1e−4, 1e−3, 0.001, 0.1, 1, 10]

‘n neighbors’ [5,6,7,8,9,10,15,20]

‘eigen solver’ [‘dense’]

MDS ‘max iter’ [300,500]

‘metric’ [True,False]

‘dissimilarity’ [‘euclidean’]

Spectral ‘affinity’ [‘nearest neighbors’]

‘n neighbors’ [5,6,7,8,9,10]

‘eigen solver’ [None, ‘arpack’, ‘lobpcg’,‘amg’]

or

‘affinity’ [‘rbf’]

‘eigen solver’ [None, ‘arpack’, ‘lobpcg’,‘amg’]

t-SNE ‘perplexity’ [5,10,15,20,25,30,35,40,45,50]

‘n iter’ [1000,5000]

All of the methods were run starting from 5 different seeds on a reduced
PMLB benchmark suite with grid of the parameters presented in Table 1. For
each of the seeds, the setting with the highest balanced accuracy score on the
training data was chosen for the subsequent analysis. The median score across
the seeds served for ranking the methods.

The performance for the task of classification on the training dataset is pre-
sented in Fig. 2. This analysis compares the methods on separating labeled data,
what makes it a good benchmark for providing clarity of visualization.
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Fig. 2. The ranking of the manifold learning on the training dataset. The lower, the
better.

Three of the methods, namely MDS and SE and t-SNE are not suitable
for making predictions for the unseen data. Thus, they were removed from the
assessment in the test data, which is presented in Fig. 3. This analysis shows the
potential of the methods to be used as dimensionality reduction techniques.

Fig. 3. The ranking of the manifold learning on the testing dataset. The lower, the
better. Some of the methods (PCA, t-SNE and SE) had to be excluded as they don’t
provide the mapping that would allow to make predictions for unseen data.

To inspect the significant differences, we ran a Friedman test using balanced
accuracy scores for the test data. As the number of datasets is large, the analysis
has higher statistical power. P-values less than 0.005 suggest significant differ-
ences between the methods. Post-hoc pairwise tests are presented in Table 2.

Summary. Ranking the methods on the training data shows ManiGP as the
leader, followed by t-SNE and LLE. The other methods performed visibly worse,
with a few exceptions of MDS and GP-MaL.
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Table 2. Friedman’s asymptotic general symmetry test. P-values lower than 0.005
were boldfaced.

GPMaL Isomap LLE HLLE MLLE LTSA

ManiGP 2.2e−16 2.2e−16 3.3e−14 2.2e−16 2.2e−16 2.2e−16

GPMaL – 0.99 2.0e−02 6.6e−03 4.1e−02 2.9e−02

Isomap – – 4.8e−03 0.02 0.12 0.09

LLE – – – 4.6e−10 3.5e−09 2.0e−09

HLLE – – – – 0.99 0.99

MLLE – – – – – 0.99

Considering the results on testing data, the clear leader is again ManiGP,
which statistically outperformed each of the considered methods. The runner
up is LLE, which significantly outperformed all methods, but ManiGP and GP-
MaL. The remaining comparisons showed no significant differences.

Considering running times, both GP methods were a couple of orders of mag-
nitude slower than the rest of approaches. Additionally, ManiGP was far slower
than GP-MaL. GP-MaL was run for 1000 iterations with population of 1024 and
was faster than ManiGP, which was run for 500 iterations with population of 100.
The other methods had comparable running times, counted in seconds/minutes
instead of hours/dozens of hours, as was the case with GP approaches. Notice
however, that for the fairness all the methods were run with a single thread and
GP methods could be run in parallel. Among the non-GP methods, MDS and
t-SNE were an order of magnitude slower than the remaining approaches.

4 Conclusions

In this paper a comparison of 10 different manifold learning methods was per-
formed on a large collection of real world datasets. The comparison was per-
formed using rigorous machine learning standards [21,29] over a large collection
of 155 datasets from PMLB [27]. The study aimed at empirical verification of
how well the manifold learning approaches separate instances for the task of
classification. All the source code of our analysis is open source and publicly
available. Two of the methods included in the study were based on genetic pro-
gramming: GP-MaL and ManiGP. To perform this study, we have created an
open source framework for benchmarking of manifold learning techniques, as
well as created a wrapper for GP-MaL.

Due to the nature of some of the manifold learning methods, such as MDS, SE
and t-SNE, which are unable to transform an unseen instance, our benchmark is
split into two parts: the training part, which could be considered benchmarking
of potential of manifold learning techniques for visualization, and the testing
part, in which the potential of the methods to serve as dimensionality reduction
techniques could be more thoroughly assessed.
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As for the visualization purposes, we have confirmed that ManiGP – an exper-
imental technique proposed in this paper – delivers the most separable charts
in comparison to any other manifold learning technique for the vast majority
of datasets. Due to its excessive time however, its practical use remains highly
limited. Among the methods with reasonable execution time, t-SNE can be con-
sidered the first choice and LLE the second.

Taking into account potential of using the methods toward further data anal-
ysis, ManiGP provides by far more separable results than any other manifold
learning technique included in the comparison. The obtained results of ManiGP
in terms of balanced accuracy were also significantly better compared to any
other method included in the study. Another advantage of the method is inter-
pretability, as it uses two (or more) syntax trees with arithmetic-logical opera-
tions. This makes the method easily adaptable to an unseen data. The greatest
downside of the method is excessive running time, which we consider not feasi-
ble for larger datasets. On the other hand, the method wasn’t optimized for the
purpose of this study and a couple possible improvements might be taken out of
the box. The further experiments suggest that the results are also comparable
with some of the leading machine learning classifiers in the field. Once again,
we would emphasize that the development of a method wasn’t the major goal
of this study and this method shouldn’t be considered a valid classifier, which
could be used in production.

Our analysis showed that GP-based approaches are capable of delivering
fully interpretable, better separable and even significantly better results than
multiple well established manifold learning approaches. Despite its excessive run
times for larger datasets, ManiGP proposed in this paper outperformed other
methods, although it used only very basic evolutionary techniques and evaluated
over 20 times less individuals than GP-MaL. Among non-GP methods, consid-
ering potential of using a method to predict an unseen data, we believe that
LLE remains a good trade off between the speed and performance, as it offers
superior results to multiple other manifold learning methods within reasonable
time frame. For the pure aspect of visualization, t-SNE remains a convenient
approach, as it provides better separation.

Finally, we would like to elaborate more on the fairness of the presented
comparison. One of the aspects of our study was proposing a method that delib-
erately optimizes the same score used later for evaluation. We have discovered
that this approach performed statistically better than the approaches based on
other merits. The question that should be asked is how objective could any com-
parison be considered, assuming that one method intentionally used the evalua-
tion metric. The answer is not straightforward; it is necessary however that the
designers of the study put as much effort as possible into designing as objective
a comparison as possible with support for their results from multiple tests.

In summary, we believe that this paper set new standards in benchmarking
manifold learning techniques and addresses not only their visualization potential,
but far beyond. An important findings in this study are as follows: (1) not every
manifold learning method provides the possibility to analyze unseen data, (2) the
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advantage of GP in manifold learning lies in providing interpretable results, (3)
because of excessive running time of GP-based methods, their potential of creat-
ing convincing visualizations is highly limited, (4) application of GP in manifold
learning is justified if the focus of the study is interpretability of the model and
excessive running time will later be rewarded by instantaneous testing, (5) the
fairness of benchmarking requires further research. Even those benchmarks that
seem to be objective may be exploited by the methods that purposefully exploit
the design of the study.
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A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 1–13. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12148-7 1

4. Borg, I., Groenen, P.: Modern multidimensional scaling: theory and applications.
J. Educ. Meas. 40(3), 277–280 (2003)

5. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accu-
racy and its posterior distribution. In: 2010 20th International Conference on Pat-
tern Recognition, pp. 3121–3124. IEEE (2010)

6. Cano, A., Ventura, S., Cios, K.J.: Multi-objective genetic programming for feature
extraction and data visualization. Soft. Comput. 21(8), 2069–2089 (2015). https://
doi.org/10.1007/s00500-015-1907-y

7. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1),
5–30 (2006)

8. Cunningham, J.P., Ghahramani, Z.: Linear dimensionality reduction: survey,
insights, and generalizations. J. Mach. Learn. Res. 16(1), 2859–2900 (2015)

9. De Backer, S., Naud, A., Scheunders, P.: Non-linear dimensionality reduction tech-
niques for unsupervised feature extraction. Pattern Recogn. Lett. 19(8), 711–720
(1998)

10. Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques
for high-dimensional data. Proc. Nat. Acad. Sci. 100(10), 5591–5596 (2003)

11. Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic
programming to classification. IEEE Trans. Syst. Man Cybern. Part C (Appl.
Rev.) 40(2), 121–144 (2009)

12. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugen. 7(2), 179–188 (1936)

https://doi.org/10.1007/978-3-642-12148-7_1
https://doi.org/10.1007/s00500-015-1907-y
https://doi.org/10.1007/s00500-015-1907-y


Benchmarking Manifold Learning Methods on a Large Collection of Datasets 149

13. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
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