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Abstract. This work uses Push GP to automatically design both local
and population-based optimisers for continuous-valued problems. The
optimisers are trained on a single function optimisation landscape, using
random transformations to discourage overfitting. They are then tested
for generality on larger versions of the same problem, and on other
continuous-valued problems. In most cases, the optimisers generalise
well to the larger problems. Surprisingly, some of them also generalise
very well to previously unseen problems, outperforming existing general
purpose optimisers such as CMA-ES. Analysis of the behaviour of the
evolved optimisers indicates a range of interesting optimisation strate-
gies that are not found within conventional optimisers, suggesting that
this approach could be useful for discovering novel and effective forms of
optimisation in an automated manner.
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1 Introduction

This work is motivated by two issues. First, due to the innate constraints and
biases of human thought, it is likely that manual design of optimisers explores
only a subspace of optimiser designs. It is unlikely that this subspace contains
optimal optimisers for all optimisation problems. Second, recent attempts to
create novel optimisers from models of natural systems have been largely unsuc-
cessful in broadening the scope of optimiser designs, instead tending only to gen-
erate variants of existing metaheuristic frameworks [9,16]. This work attempts
to address both of these issues by using Genetic Programming (GP) to explore
the broader space of optimisation algorithms, with the aim of discovering novel
optimisation behaviours that differ from those used by existing algorithms. In
order to make the optimiser search space as broad as possible, a Turing-complete
language, Push, is used to represent the optimisers, and the Push GP system is
used to optimise them [17]. In [8], this approach was used to evolve local opti-
misers that can solve continuous-valued problems. In this work, this approach is
extended to the population-based case, using Push GP to automatically design
both local and population-based optimisers from primitive instructions.

The paper is organised as follows. Section 2 reviews existing work on the
automated design of optimisers. Section 3.1 gives a brief overview of the Push
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language and the Push GP system, Sect. 3.2 describes how Push GP has been
modified to support the evolution of population-based optimisers, and Sect. 3.3
outlines how the optimisers are evaluated. Section 4 presents results and analysis.
Section 5 concludes.

2 Related Work

There is a significant history of using GP to optimise optimisers. This can be
divided into two areas: using GP to optimise GP, and using GP to optimise
other kinds of optimiser. The former approaches use a GP system to optimise
the solution generation operators of a GP framework [4,6,17]. Autoconstructive
evolution [17] is a particularly open-ended approach to doing this in which pro-
grams contains code that generates their own offspring; also notable is that, like
our work, it uses the Push language.

However, more relevant is previous work on using GP to optimise non-GP
optimisers. Much of this work has taken place within the context of hyperheuris-
tics, which involves specialising existing optimisation frameworks so that they
are better suited to solving particular problem classes. In this context, GP has
been used to re-design components of evolutionary algorithms, such as their
mutation [23], recombination [5] and selection operators [13], with the aim of
making them better adapted to particular solution landscapes. Other hyper-
heuristic approaches have used GP to generate new optimisation algorithms
by recombining the high-level building blocks of existing metaheuristic frame-
works [3,10,12,15]. Recently, this kind of approach has also been used to explore
the design space of swarm algorithms, using grammatical evolution to combine
high-level building blocks derived from existing metaheuristics [3]. Our app-
roach differs from this, and previous work in hyperheuristics, in that it focuses
on designing optimisers largely from scratch. By not reusing or building upon
components of existing optimisers, the intention is to reduce the amount of bias
in the exploration of optimiser design space, potentially allowing the exploration
of previously unexplored areas.

Another recent development, which has some similarities to our work, is the
use of deep learning to optimise optimisers [1,11,21]. So far these approaches
have focused on improving the training algorithms used by deep learners, i.e.
they are somewhat akin to using GP to optimise GP, though it is plausible that
deep learning could be applied to the task of designing optimisers for non-neural
domains. However, this is arguably an area in which GP is better suited than
deep learning, since the optimisers produced by GP are likely to be far more
efficient (in terms of runtime) than those produced by deep learning. Runtime
efficiency is an important consideration for optimisers, since the same code is
typically called over and over again during the course of an optimisation tra-
jectory. Another advantage of GP is the relative interpretability of its solutions
when compared to deep learning, and the potential that more general insights
could be made into the design of optimisers by studying the code of evolved
solutions.
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3 Methods

3.1 Push and Push GP

In this work, optimisation behaviours are expressed using the Push language.
Push was designed for use within a GP context, and has a number of features that
promote evolvability [17–19]. These include the use of stacks, a mechanism that
enables evolving programs to maintain state with less fragility than using con-
ventional indexed memory instructions [7]. However, it is also Turing-complete,
meaning that it is more expressive that many languages used within GP sys-
tems. Another notable strength is its type system, which is designed so that
all randomly generated programs are syntactically valid, meaning that (unlike
type systems introduced to more conventional forms of GP) there is no need to
complicate the variation operators or penalise/repair invalid solutions. This is
implemented by means of multiple stacks; each stack contains values of a partic-
ular type, and all instructions are typed, and will only execute when values are
present on their corresponding type stacks. There are stacks for primitive data
types (booleans, floats, integers) and each of these have both special-purpose
instructions (e.g. arithmetic instructions for the integer and float stacks, logic
operators for the boolean stack) and general-purpose stack instructions (push,
pop, swap, duplicate, rot etc.) associated with them. Another important stack
is the execution stack. At the start of execution, the instructions in a Push pro-
gram are placed onto this stack and can be manipulated by special instructions;
this allows behaviours like looping and conditional execution to be carried out.
Finally, there is an input stack, which remains fixed during execution. This pro-
vides a way of passing non-volatile constants to a Push program; when popped
from the input stack, corresponding values get pushed to the appropriate type
stack. Push programs are evolved using the Push GP system. Since a Push pro-
gram is basically a list of instructions, it can be represented as a linear array
and manipulated using genetic algorithm-like mutation and crossover operators.

3.2 Evolving Population-Based Optimisers

In order to evolve population-based optimisers, this work uses a modified version
of Psh (http://spiderland.org/Psh/), a Java implementation of Push GP. To
allow programs to store and manipulate search points, an extra vector type
has been added to the Push language. This represents search points as fixed-
length floating point vectors, and these can be manipulated using the special-
purpose vector instructions shown in Table 2; see [8] for more details about these
instructions. Evolutionary parameters are shown in Table 1.

Algorithm 1 outlines the procedure for evaluating evolved Push optimisers.
To reduce evolutionary effort, a Push program is only required to carry out a
single move, or optimisation step, each time it is called. In order to generate
an optimisation trajectory within a given search space, the Push program is
then called multiple times by an outer loop until a specified evaluation budget
has been reached. After each call, the value at the top of the Push program’s

http://spiderland.org/Psh/
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Table 1. Psh parameter settings

Population size = 200

Maximum generations = 50

Tournament size = 5

Program size limit = maximum of 100 instructions

Execution limit = maximum of 100 instruction executions per move

Instructions = boolean/float/integer/vector.{dup flush pop rand

rot shove stackdepth swap yank yankdup}; boolean.{= and fromfloat

frominteger not or xor}; exec.{= do*count do*range do*times if iflt

noop}; float.{% * + - / < = > abs cos erc exp fromboolean frominteger

ln log max min neg pow sin tan}; input.{inall inallrev index};
integer.{% * + - / < = > abs erc fromboolean fromfloat ln log max

min neg pow}; vector.{* / + - apply between dim+ dim* dprod mag pop

scale urand wrand zip}; false; true

Table 2. Vector stack instructions

Instruction Pop from Push to Description

vector.+ vector, vector vector Add two vectors

vector.- vector, vector vector Subtract two vectors

vector.* vector, vector vector Multiply two vectors

vector./ vector, vector vector Divide two vectors

vector.scale vector, float vector Scale vector by scalar

vector.dprod vector, vector float Dot product of two vectors

vector.mag vector float Magnitude of vector

vector.dim+ vector, float, int vector Add float to specified component

vector.dim* vector, float, int vector Multiply specified component by float

vector.apply vector, code vector Apply code to each component

vector.zip vector, vector, code vector Apply code to each pair of components

vector.between vector, vector, float vector Generate point between two vectors

vector.rand vector Generate random vector of floats

vector.urand vector Generate random unit vector

vector.wrand float vector Generate random vector within bounds

vector.current integer vector Get current point of given pop member

vector.best integer vector Get best point of given pop member

vector stack is popped and the corresponding search point is evaluated. The
objective value of this search point, as well as information about whether it was
an improving move and whether it moved outside the problem’s search bounds,
are then passed back to the Push program via the relevant type stacks. Since
the contents of a program’s stacks are preserved between calls, Push programs
have the capacity to build up their own internal state during the course of an
optimisation run, and consequently the potential to carry out different types of
moves as search progresses.
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Algorithm 1. Evaluating an evolved Push GP optimiser
1: fitness ← 0
2: for repeats do � Measure fitness over multiple optimisation runs
3: pbest ← ∞
4: for p ← 1, popsize do � Initialise population state
5: progp ← copy of evolved Push program
6: clearstacks(progp)
7: pointp ← random initial point within search bounds
8: valuep ← evaluate(pointp)
9: push(pointp, progp.vector) � Pass initial search point to program

10: push(valuep, progp.float) � Pass initial objective value to program
11: push(true, progp.boolean)
12: push(bounds, progp.input) � Put search space bounds on input stack
13: bestvalp ← valuep

14: if bestvalp < pbest then
15: pbest ← bestvalp, pbestindex ← p
16: end if
17: end for
18: for m ← 1,moves do
19: for p ← 1, popsize do
20: push(m, progp.integer) � Pass move number to program
21: push(p, progp.integer) � Pass population index to program
22: push(pbestindex, progp.integer) � Pass index of pbest to program
23: previous ← valuep

24: execute(progp)
25: pointp ← peek(progp.vector) � Get next search point from program
26: if pointp is within search bounds then
27: valuep ← evaluate(pointp)
28: if valuep < bestvalp then
29: bestvalp ← valuep, bestp ← pointp
30: end if
31: if valuep < previous then
32: push(true, progp.boolean) � Tell program it improved
33: else
34: push(false, progp.boolean) � Tell program it didn’t improve
35: push(bestp, progp.vector) � and remind it of its best point
36: end if
37: push(valuep, progp.float) � Pass new objective value
38: else
39: push(false, progp.boolean)
40: push(∞, progp.float) � Or indicate move was out of bounds
41: end if
42: if bestp < pbest then pbest ← bestp
43: end for
44: end for
45: fitness ← fitness + pbest
46: end for
47: fitness ← fitness/repeats � Mean of best objective values found in each repeat
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To handle population-based optimisation, multiple copies of the Push pro-
gram are run in parallel, one for each population member. Each copy of the
program has its own stacks, so population members are able to build up their
internal state independently. Population members are persistent, meaning there
is no explicit mechanism to create or destroy them during the course of an opti-
misation run. To allow coordination between population members, two extra
instructions are provided, vector.current and vector.best. These both look
up information about another population member’s search state, returning either
its current or best seen point of search. The target population member is deter-
mined by the value at the top of the integer stack (modulus the population size
to ensure a valid number); if this stack is empty, or contains a negative value,
the current or best search point of the current population member is returned.
This sharing mechanism, combined with the use of persistent search processes,
means that the evolved optimisers resemble swarm algorithms in their general
mechanics. However, there is no selective pressure to use these mechanisms in
any particular way, so evolved optimisers are not constrained by the design space
of existing swarm optimisers.

3.3 Evaluation

Evolved optimisers are evaluated using a selection of functions taken from the
widely used CEC 2005 real-valued parameter optimisation benchmarks [20].
These are all minimisation problems, meaning that the aim is to find the input
vector (i.e. the search point) that generates the lowest value when passed as an
argument to the function. The functions used during fitness evaluation, which
were selected to provide a diverse range of optimisation landscapes, are:

– F1, the sphere function, a separable unimodal bowl-shaped function. It is the
simplest of the benchmarks, and can be solved by gradient descent.

– F9, Rastrigin’s function, has a large number of regularly spaced local optima
whose magnitudes curve towards a bowl where the global minimum is found.
The difficulty of this function lies in avoiding the many local optima on the
path to the global optimum, though it is made easier by the regular spacing,
since the distance between local optima basins can in principle be learnt.

– F12, Schwefel’s problem number 2.13, is multimodal and has a small number of
peaks that can be followed down to a shared valley region. Gradient descent
can be used to find the valley, but the difficulty lies in finding the global
mimimum, since it contains multiple irregularly-spaced local optima.

– F13 is a composition of Griewank’s and Rosenbrock’s functions. This compo-
sition leads to a complex surface that is highly multimodal and irregular, and
hence challenging for optimisers to navigate.

– F14, a version of Schaffer’s F6 Function, comprises concentric elliptical ridges.
In the centre is a region of greater complexity where the global optimum lies.
It is challenging due to the lack of useful gradient information in most places,
and the large number of local optima.
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To discourage overfitting to a particular problem instance, random transforma-
tions are applied to each dimension of these functions when they are used to
measure fitness during the course of an evolutionary run. Random translations
(of up to ±50% for each axis) prevent the evolving optimisers from learning
the location of the optimum, random scalings (50–200% for each axis) prevent
them from learning the distance between features of the landscape, and random
axis flips (with 50% probability per axis) prevent directional biases, e.g. learning
which corner of the landscape contains the global optimum. Fitness is the mean
of 10 optimisation runs, each with random initial locations and random trans-
formations. The 10-dimensional versions of the problems are used for training,
with an evaluation budget of 1E+3 fitness evaluations (FEs). For the results
tables and figures shown in the following section, the best-of-run optimisers are
reevaluated over the CEC 2005 benchmark standard of 25 optimisation runs,
and random transformations are not applied.

4 Results

For a population-based optimiser, the 1E+3 evaluation budget can be split
between the population size and the number of iterations/generations in differ-
ent ways. In these experiments, splits of (population size × iterations) 50× 20,
25× 40, 5× 200 and 1× 1000 are used. The latter is included to give a compar-
ison against local search, i.e. optimisers which only use a single point of search.
Figure 1 shows the fitness distributions over 50 evolutionary runs for each of these
configurations, where fitness is the mean error when the best-of-run optimisers
are reevaluated over 25 optimisation runs. To give an idea of how these error
rates compare to established general purpose optimisers, Fig. 1 also reproduces
the mean errors achieved by two algorithms from the original CEC 2005 competi-
tion. G-CMA-ES [2] is a variant of the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) with the addition of restarts and an increasing population
size at each restart; it is a relatively complex algorithm and is generally regarded
as the overall winner of the CEC 2005 competition. Differential Evolution (DE)
[14], although less successful than G-CMA-ES in the competition, is another
example of a well-regarded population-based optimiser.

Figure 1 compares the ability of Push GP to find optimisers with different
trade-offs between population size and number of iterations. The distributions
show that this trade-off is more important for some problems than others. For
F1, better optimisers are generally found for smaller population sizes, with the
1× 1000 distribution having the lowest mean error. This makes sense, because
the unimodal F1 landscape favours intensification over diversification. For F12,
the sweet spot appears to be for 5× 200, possibly reflecting the number of peaks
in the landscape, i.e. 5. For the other problems, the differences appear rela-
tively minor, and effective optimisers could be evolved for all configurations.
In most cases, the best optimiser for a particular problem is an outlier within
the distributions, so may not reflect any intrinsic benefit of one configuration
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Fig. 1. Fitness distributions of 50 runs for each problem and configuration. The value
shown for each run is the mean fitness of the best solution over 25 reevaluations.
Published results for CMA-ES (blue) and DE (green) are also shown. (Color figure
online)
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over another. That said, four of these best-in-problem classifiers used small pop-
ulations (2 with 1× 1000 and 2 with 5× 200), so maybe it is easier to find
effective optimisers that use small populations than larger ones.

Perhaps more importantly, Fig. 1 shows that the Push GP runs found at least
one optimiser that performed better, on average, than CMA-ES and DE. For the
simplest problem F1, there was only one evolved optimiser that beat the general
purpose optimisers. For the other problems, many optimisers were found that
performed better. This reflects the results in [8], and is perhaps unsurprising
given that the capacity to overfit problems is a central motivation for existing
work on hyperheuristics. However, an important difference in this paper is the
use of random problem transformations during training, since this causes the
problems to exhibit greater generality, preventing optimisers from over-learning
specific features of the landscape. The results suggest that this does not affect
the ability of evolved optimisers to out-perform general purpose optimisers.

This ability to out-perform general purpose optimisers on the problem on
which they were trained is arguably not that important. Of more interest is how
they generalise to larger and different problems. Table 3 gives an insight into
this, showing how well the best evolved optimiser for each training problem gen-
eralises to larger instances of the same problem and to the other four problems.
Mean error rates are shown both for the 10-dimensional problems with the 1E+3
evaluation budget used in training, and for 30-dimensional versions of the same
problems and 1E+4 evaluation budgets. First of all, these figures show that the
evolved optimisers do not stop progressing after the 1E+3 solution evaluations
on which they were trained, since they make significantly more progress on the
same problem when given a budget of 1E+4 solution evaluations. Also, it is
evident that most of the optimisers generalise well to 30-dimensional versions
of the same problem. The best optimisers evolved on the 10D F12, F13 and F14

problems do particularly well in this regard, outperforming CMA-ES and DE on
both the 10D and 30D versions of the problems. The F1 optimiser is the only one
which generalises relatively poorly, being beaten by CMA-ES, DE and several
of the other optimisers on the 30D version.

The most interesting insight from Table 3 is that many of the optimisers also
generalise to other problems. For the 10D, 1E+3 evaluations case, all of the
optimisers do better than DE when their average rank is taken across all five
problems. More surprisingly, the F12 optimiser does as well as CMA-ES across
all problems, despite only having been trained on one of them. Its average rank
does drop slightly when its F12 rank is removed from the calculation of its
average rank, suggesting it does not generalise quite as well as CMA-ES on the
10D problems. However, the figures for the 30D case are even more surprising,
with the F12 optimiser doing better across the five problems (even with F12

discounted) than CMA-ES. Also notable is that the F13 optimiser comes first in
three out of the five 30D problems, though this is balanced by coming last in the
other two. CMA-ES does do slightly better than the F12 optimiser when given
a budget of 1E+4 solution evaluations, but the difference is slight, and the best
mean error rates for the four most difficult problems are found by the evolved
optimisers.
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Table 3. Generality of evolved optimisers. For each optimiser, mean errors are shown
for 25 optimisation runs on 10D and 30D problems. The mean rank including (and
excluding) the problem the optimiser was trained on is also shown, and the best result
for each combination of problem dimensionality (D) and fitness evaluation budget (FEs)
is underlined for each problem number and ranking.

D FEs Optimiser F1 F9 F12 F13 F14 Rank

10 1E+3 CMA-ES 1.70E−2 3.07E+1 3.59E+4 3.84E+0 4.28E+0 3.4

DE 4.21E+2 3.11E+1 7.48E+4 1.62E+3 4.34E+0 5.0

F1 best 2.48E−3 7.28E+1 3.29E+4 5.26E+0 4.47E+0 4.0 (4.8)

F9 best 1.32E+4 3.27E−1 9.32E+3 1.18E+0 4.86E+0 3.6 (4.3)

F12 best 3.10E+3 7.28E+0 2.79E+3 2.43E+0 4.52E+0 3.4 (4.0)

F13 best 3.56E+4 2.44E+0 4.63E+4 1.05E+0 4.82E+0 4.2 (5.0)

F14 best 4.11E+2 7.76E+1 9.97E+4 2.69E+2 4.04E+0 4.4 (5.3)

1E+4 CMA-ES 5.20E−9 6.21E+0 2.98E+3 9.71E−1 3.91E+0 2.8

DE 2.00E+1 5.49E−9 1.64E+4 9.05E+0 4.02E+0 4.2

F1 best 2.44E−6 8.05E+1 2.36E+4 3.60E+0 4.50E+0 4.8 (5.5)

F9 best 1.45E−3 2.06E−1 7.72E+3 7.04E−1 4.85E+0 3.8 (3.8)

F12 best 5.96E−4 7.47E−2 3.93E+2 4.98E−1 4.21E+0 3.0 (3.5)

F13 best 1.51E−4 3.66E−6 3.07E+4 3.45E−1 4.90E+0 4.0 (4.8)

F14 best 1.37E+1 5.16E+1 3.77E+4 1.62E+1 3.57E+0 5.4 (6.5)

30 1E+3 CMA-ES 8.16E+2 2.53E+2 1.67E+6 1.14E+2 1.42E+1 3.2

DE 2.06E+4 3.77E+2 1.53E+6 1.62E+5 1.41E+1 4.2

F1 best 7.75E+4 4.36E+2 1.07E+6 3.47E+4 1.45E+1 5.2 (5.0)

F9 best 7.63E+4 3.24E+2 1.07E+6 4.00E+3 1.45E+1 4.2 (4.3)

F12 best 5.74E+4 1.18E+2 3.46E+5 3.62E+1 1.44E+1 2.8 (3.0)

F13 best 1.63E+5 1.00E+2 1.73E+5 1.84E+1 1.47E+1 3.4 (4.0)

F14 best 2.14E+4 4.15E+2 2.19E+6 3.52E+4 1.38E+1 4.6 (5.5)

1E+4 CMA-ES 5.42E−9 4.78E+1 2.51E+5 3.80E+0 1.38E+1 2.2

DE 4.71E+0 9.85E+1 9.29E+5 1.02E+2 1.39E+1 4.0

F1 best 1.36E+2 3.68E+2 4.08E+5 4.18E+1 1.44E+1 4.8 (5.0)

F9 best 6.40E+4 3.27E+2 1.09E+6 3.52E+3 1.46E+1 6.0 (6.3)

F12 best 5.97E−2 5.76E+0 3.43E+4 5.00E+0 1.41E+1 2.4 (2.8)

F13 best 2.44E+4 5.04E−2 1.26E+5 1.42E+0 1.47E+1 3.4 (4.0)

F14 best 1.64E+2 3.33E+2 1.17E+6 3.97E+3 1.33E+1 5.2 (6.3)

Table 4 shows the evolved Push expression used by each best-in-problem opti-
miser, in each case slightly simplified by removing instructions that have no effect
on their fitness. Whilst it is difficult to understand their behaviour by looking at
these expressions alone, it is usually possible to gain more insight by observing
the interpreter’s stack states as they run, and by observing their trajectories on
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Table 4. Evolved Push expressions of best-in-problem optimisers

F1 (exec.dup float.- vector.- float.pop vector.zip vector.zip

integer.swap float.cos float.- float.cos float.- float.yank

vector.best vector.wrand float.abs float.dup float.frominteger

vector.- vector.dim*)

F9 (input.stackdepth float.frominteger vector.yank vector.wrand

boolean.dup integer.fromboolean vector.swap integer.rot

float.frominteger float.sin vector.yank vector.shove

vector.dim+ vector.yank 0.0 float.> input.inall boolean.not

1 boolean.dup vector.pop boolean.stackdepth)

F12 (vector.stackdepth vector.swap float.fromboolean

integer.fromboolean integer.rand vector.dim+ float.+

vector.swap integer.rand 0 vector.swap integer.max

integer.= vector.stackdepth integer.dup vector.- integer.dup

integer.rand vector.- vector.dim+ vector.mag float.frominteger

float.tan integer.rot vector.dim+)

F13 (integer.- float.sin vector.wrand integer.yankdup vector.dim*

vector.- input.inall float.sin vector.-)

F14 (float.< float./ vector.best vector.yankdup float.ln float.max

float.stackdepth 0.48999998 float.abs vector.between

vector.wrand vector.scale integer.yank input.index

vector.- float.rand float.neg 0.97999996 float.- 0.97999996

vector.wrand vector.scale vector.-)

2D versions of the problems on which they were trained. Figure 2 shows examples
of the latter; in almost all cases, optimisers generalise well to these easier 2D
problems, and it can be seen in each case that the global optimum is found. It
can also be seen from the trajectories that the behaviours of the five optimisers
are quite diverse, and this is reflected in their program-level behaviours:

– Each particle in the F1 optimiser looks up the population best and then adds
a random vector to this to generate a new search point. Notably, the size of
this random vector is determined using a trigonometric expression based on
the components of the particle’s current and best search points, meaning that
the move size carried out by each particle in the population is different.

– The F9 optimiser (which uses only one point of search) continually switches
between searching around the best-seen search point and evaluating a ran-
dom search point. When searching around the best point, at each iteration it
adds the sine of the move number to a single dimension, moving along two
dimensions each time; in essence, this causes it to systematically explore the
nearby search space, building up the space-filling pattern seen in Fig. 2.

– The F12 optimiser is the most complex, and its behaviour at the instruction
level is hard to understand. However, it does use the particle’s index and the
index (but not the vector) of the population best, and both the improvement
and out-of-bounds Boolean signals to determine each move. By observing its
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Fig. 2. Example trajectories of the best-in-problem optimisers (F1, F9 & F12 top, F13

& F14 bottom) on the 2D versions of the benchmark problems they were trained on.
The global minimum is shown as a black circle. The best point reached by the optimiser
is shown as a black cross. Each population member’s trajectory is shown as a separate
colour, with each search point shown as a point. Initial search points are surrounded by
small coloured circles. The search landscape is shown in the background as a contour
plot. (Color figure online)

search trajectories, it is evident that it builds up a geometric pattern that
causes it to explore moves with a power series distribution—in essence, a
novel form of variable neighbourhood search.

– The F13 optimiser, by comparison, has the simplest program. Each iteration,
it adds a random value to one of the dimensions of the best-seen search
point, cycling through the dimensions on each subsequent move (hence why
it generates a cross-shaped trajectory). The size of the move (the upper bound
of the random value) is determined by both the sine of the objective value
of the current point and the sine of the maximum dimension size, the former
causing it to vary cyclically as search progresses, and the latter allowing it to
adapt the move size to the search area.

– The F14 optimiser is the only one which uses both a larger population and the
vector.between instruction. Each iteration, it uses this to generate a new
population of search points half-way between the population best and one
of each particle’s previous positions. Interestingly, which previous position is
used for a particular particle is determined by its index; the first particle uses
its current position, higher numbered particles go back further in time. This
may allow backtracking, which could be useful for landscapes that are decep-
tive and have limited gradient information (such as F14). A small random
vector is added to each half-way point, presumably to inject further diversity.
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Fig. 3. Examples of the best evolved optimisers for each problem (top to bottom: F1,
F9, F12, F13, F14) applied to each of the other problems (left-right: F1, F9, F12, F13,
F14). See caption of Fig. 2 for more information.

Figure 3 shows examples of trajectories when each of these optimisers are
applied to 2D versions of the other four problems. These suggest that optimisers
may fail to generalise not because of intrinsic assumptions about properties of
landscapes, but because they make assumptions about the dimensions of the
search area. For example, the F9 and F13 optimisers appear to fail on the F14

landscape because they are making moves, or sampling regions, which are only
appropriate for a landscape with much smaller overall dimensions. Using a larger
range of random scalings during training might help with this.

However, these optimisers were not evolved for generality, so the fact that
most of them generalise to other problems is a fortunate bi-product. Further-
more, it is likely that the optimisers that do best on one problem are not likely
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Fig. 4. Trajectories of other evolved optimisers. One example is shown for each com-
bination of problem (top to bottom: F1, F9, F12, F13, F14) and population size (left to
right: 1, 5, 25, 50). See caption of Fig. 2 for more information.

to be the best in terms of generality. Hence, in practice there is likely to be a
benefit to looking at the best optimisers from the other 245 runs depicted in
Fig. 1. Figure 4 gives a snapshot of these, showing one example for each combi-
nation of training problem and optimiser population size. These illustrate some
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of the broad diversity seen amongst the solutions. Many of these trajectories
look nothing like conventional optimisers, so it is likely that interesting ideas
of how to do optimisation could be gained by looking more closely at them.
Another interesting direction for future work would be to consider ensembles
of optimisers. There are many potential ways of doing this. For example, early
results suggest that it may be advantageous, in terms of generality, to form a
heterogenous population-based optimiser by combining the best programs from
multiple runs.

5 Conclusions

In recent years, there has been a lot of criticism of the ad hoc design of new
optimisers through mimicry of natural phenomena. Despite early success with
evolutionary algorithms and particle swarm optimisation, this trend has increas-
ingly resulted in optimisers that are technically novel, but which differ in minor
and often arbitrary ways from existing optimisers. If we are to create new opti-
misation algorithms (and the no free lunch theorem [22] suggests a need for
diverse optimisers), then perhaps it is better to do this in a more systematic,
objective and automated manner. This paper contributes towards this direction
of research by investigating the utility of Push GP for exploring the space of
optimisers. The results show that Push GP can both discover and express opti-
misation behaviours that are effective, complex and diverse. Encouragingly, the
evolved optimisers scale to problems they did not see during training, and often
out-perform general purpose optimisers on these previously unseen problems.
The behavioural analysis shows that the evolved optimisers use a diverse range
of metaheuristic strategies to explore optimisation landscapes, using behaviours
that differ significantly from existing local and population-based optimisers. Fur-
thermore, these are only the tip of the iceberg; the evolved optimiser populations
appear to contain broad behavioural diversity, and there are many potential ways
of combining diverse optimisers to create ensembles.
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