
Seeding Grammars in Grammatical
Evolution to Improve Search Based

Software Testing

Muhammad Sheraz Anjum(B) and Conor Ryan

Biocomputing and Developmental Systems Group, Department of Computer Science
and Information Systems, Lero - The Irish Software Research Centre,

University of Limerick, Limerick, Ireland
{sheraz.anjum,conor.ryan}@ul.ie

Abstract. Software-based optimization techniques have been increas-
ingly used to automate code coverage analysis since the nineties.
Although several studies suggest that interdependencies can exist
between condition constructs in branching conditions of real life pro-
grams e.g. (i <= 100) or (i == j), etc., to date, only the Ariadne
system, a Grammatical Evolution (GE)-based Search Based Software
Testing (SBST) technique, exploits interdependencies between variables
to efficiently automate code coverage analysis.

Ariadne employs a simple attribute grammar to exploit these depen-
dencies, which enables it to very efficiently evolve highly complex test
cases, and has been compared favourably to other well-known techniques
in the literature. However, Ariadne does not benefit from the interdepen-
dencies involving constants e.g. (i <= 100), which are equally important
constructs of condition predicates. Furthermore, constant creation in GE
can be difficult, particularly with high precision.

We propose to seed the grammar with constants extracted from the
source code of the program under test in order to enhance and extend
Ariadne’s capability to exploit richer types of dependencies (involving all
combinations of both variables and constant values). We compared our
results with the original system of Ariadne against a large set of bench-
mark problems which include 10 numeric programs in addition to the
ones originally used for Ariadne. Our results demonstrate that the seed-
ing strategy not only dramatically improves the generality of the system,
as it improves the code coverage (effectiveness) by impressive margins,
but it also reduces the search budgets (efficiency) often up to an order
of magnitude.

Keywords: Automatic test case generation · Code coverage ·
Evolutionary Testing · Grammatical Evolution

1 Introduction

An important aspect of software quality assurance is software testing and, in
practice, manual testing of a software system is laborious. It has been reported in
c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 18–34, 2020.
https://doi.org/10.1007/978-3-030-44094-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_2&domain=pdf
http://orcid.org/0000-0002-3600-8931
http://orcid.org/0000-0002-7002-5815
https://doi.org/10.1007/978-3-030-44094-7_2

Seeding Grammars in Grammatical Evolution to Improve SBST 19

the various studies that manual testing can consume up to 50% of the total devel-
opment budget [1,2]. In order to reduce the associated cost, many researchers
[3–6] have been investigating the use of metaheuristic techniques to reduce the
need of human intervention in the testing process; this field of study is referred
to as Search Based Software Testing (SBST).

Genetic Algorithms (GAs) [7] are the most widely employed heuristic-based
search techniques [5,8] in SBST and this subfield of SBST is referred to as
Evolutionary Testing (ET). The most commonly targeted test adequacy criterion
in SBST is full branch coverage [5], which ensures that all parts of the code are
reachable. For the purpose of this paper, we have chosen full condition-decision
coverage as the target which is an extended and thus more challenging to achieve
as compared to branch coverage (detailed in Sect. 2).

Condition predicates of real life programs often contain interdependencies
between variables and constant values, e.g. a condition to check if two vari-
ables are equal or if the value of a particular variable is between 100 and 500,
as branching conditions often include the boundary values as constants. These
facts are well established and have been reported in several research studies,
for example, [9] studied 120 production PL/I programs and reported that 98%
expressions included less than two operators while 62% of them were relational
operators. In another study [10], 50 COBOL programs were analyzed and it was
reported that 64% of the total predicates were equality checks and 77% of the
predicates contained only a single variable; which means that majority of these
predicates contained the comparison between variables and constant values.

To the best of our knowledge, Ariadne [11] is the only SBST technique
proposed to date that exploits the interdependencies between input variables;
however, it does not benefit from interdependencies involving constants which
are equally important constructs of condition predicates as also apparent from
the studies discussed above. Furthermore, Ariadne is a Grammatical Evolu-
tion (GE) [12,13] based system and constant creation in GE can be diffi-
cult [14,15], particularly with high precision. Therefore, it can be very difficult
for Ariadne to find test data that can satisfy conditions containing any depen-
dencies on constant values, particularly in cases where search spaces are large
and complex.

GE is a grammar-based evolutionary algorithm that uses a grammar-based
mapping process to separate search space from solution space. In recent years,
GE has been successfully adopted to solve many software engineering prob-
lems from a wide variety of domains, including software effort estimation [16],
vulnerability testing [17], integration and test order problem [18], game develop-
ment [19], failure reproduction [20], software project scheduling [21] and software
product line testing [22]. To the best of our knowledge, Ariadne is the only sys-
tem proposed to date that targets the structural coverage testing of procedural
C/C++ programs.

In this paper, we propose an improved attribute grammar for Ariadne that
enhances and extends its capability to exploit interdependencies between con-
dition constructs, by harvesting constants from the code under test and then

20 M. S. Anjum and C. Ryan

seeding the grammar with them, thus making them directly available to indi-
viduals, obviating the need to evolve specific constants, and hence improving
Ariadne’s ability to achieve higher code coverage. The new design of grammar
allows variables to take values dependent on both the previously generated vari-
ables and the extracted constant values (detailed in Sect. 4), which enables the
system to exploit all kinds of interdependencies (involving both variables and
constant values) during the whole of evolutionary process.

For the purpose of our experimentation, we employed a large set of bench-
mark programs which includes 10 numeric programs (that heavily rely on con-
stant values) in addition to the ones adopted by [11]. We also created three new,
extremely difficult to test programs, which contain deep levels of nesting, com-
pound conditions and interdependencies involving both variables and constant
values. We adopted condition-decision coverage as the test adequacy criterion
to make a fair comparison with both original results of Ariadne and well-known
results from the literature [23,24].

Our results suggest that the improved grammar dramatically improves the
effectiveness of Ariadne by achieving a 100% coverage (also referred to as full
coverage) on all benchmark programs, while the original system was not able to
achieve full coverage for any of the programs that heavily used constant values.
Our results also demonstrate that the improved grammar does not trade off the
efficiency of the system to improve its generality as it further reduces the search
budgets often up to an order of magnitude.

This paper begins with an overview of search based test data generation
techniques (Sect. 2), followed by an introduction to Ariadne: A GE-based test
data generator (Sect. 3). In Sect. 4, we present our improved grammar for Ariadne
and also the philosophy behind the proposed changes in the original grammar.
Finally, in Sect. 5, we empirically evaluate the performance of our improved
system of Ariadne on a large selection of benchmark problems.

2 Background and Related Work

Structural testing inspects the code based on knowledge of its internal structure.
There are multiple code coverage criteria which are essentially conditions with
varying strictness. A coverage criterion, if met, ensures the absence of certain
types of errors in the code. For example, to achieve 100% condition-decision
coverage (also referred to as full condition-decision coverage), a piece of code
must be executed with a test suite (set of input values) such that all of both
the condition predicates and branching conditions take both possible outcomes
of TRUE and FALSE at least once.

Manually achieving any type of code coverage is a laborious and difficult
task as a human tester has to find a set of input values that can satisfy the
respective condition(s). In order to reduce this testing cost, researchers have
been trying to minimize the need for human intervention in the testing process
since the 1960s [25]. It has been the subject of increasing research interest in
recent years [26].

Seeding Grammars in Grammatical Evolution to Improve SBST 21

In any SBST technique, the goal is to heuristically search for a test suite
that satisfies a chosen test adequacy criterion for the given program. One of the
earliest SBST techniques [25] used random search for this purpose. Random test
data generation can adequately deal with simpler problems but its scalability
can be a challenge when dealing with problems having significantly complex and
large search spaces.

Another SBST paradigm, known as static test data generation, employs some
mathematical system to find the test suite. Symbolic Execution (SE) [27] is
one such technique, in which a mathematical expression is formulated by plac-
ing some symbolic values at the place of program variables. The result of this
expression is a set of input values that can satisfy the adequacy criterion. SE is
generally supposed to resolve constraints and variable interdependencies in order
to execute the required parts of the program but it has its own shortcomings
which include handling procedure calls, loops, pointers and complexity of con-
straints. Other notable static test data generation techniques include domain
reduction [28] and dynamic domain reduction [29]. These techniques address
some of the inherent challenges of SE but handling of loops and pointers remains
an open question.

A relatively more refined SBST approach found in the literature is dynamic
test data generation, which essentially involves running the program under test.
The execution behavior of the program is observed and this information is used to
guide the search towards the required test data. This approach was first proposed
by [30] and later extended/improved by various researchers [31,32]. All the above
mentioned research works employed some Local Search Algorithm (LSA) and
hence involve the inherent risk of getting stuck in some local minima.

To address some of the inherent challenges associated with LSAs, some global
search based techniques including GA-based techniques [23,33–36] and simulated
annealing-based techniques [37] have been proposed by researchers. Further, to
get the benefits of both local and global search algorithms, some Memetic Algo-
rithm (MA) based techniques [24,38] have also been investigated in the litera-
ture.

SBST techniques conventionally search for one sub-goal at a time e.g. in
the case of condition coverage, the set of input values that can result into a
particular outcome of a specific condition predicate is searched at one time.
Some proposed techniques including whole test suite generation [39], [38] and
many-objective optimization [40], search for multiple targets simultaneously.

2.1 Evolutionary Testing

In Evolutionary Testing (ET), a GA is employed to find the test suite from the
domain of all possible input values for the program under test. Each individual
in the population represents one possible set of input values and its fitness is
calculated based on the execution of target program when run with the respective
input values (test case). The code of the target program is usually instrumented
to monitor its execution behavior; this instrumentation is done in conjunction

22 M. S. Anjum and C. Ryan

with GA’s fitness function as both are designed according to the chosen test
adequacy criterion.

Many variations of fitness functions can be found in the literature, but most
of them rely on one or both of two measures, namely, branch distance and
control flow information. The interested reader can refer to [31] and [35] for the
concepts of branch distance and approximation level (control flow information)
respectively.

The earliest ET technique to use a branch distance based fitness function was
proposed by [41] and the earliest works that used control flow information for
measuring the fitness include [33] and [34]. The fitness function deployed in [33]
was primarily based on branch distance but some control flow information was
also incorporated for loop testing, whereas [34] used a purely control flow based
fitness function. Later, [35] proposed a hybrid fitness measures in order to attain
the benefits associated with both of the measures.

2.2 SBST Techniques Benefitting from Seeding

As one of the key observations underpinning this work is the exploitation of
domain knowledge in the process of test data generation, here we present some
other SBST techniques that also take advantage of some related knowledge.
In general, use of any previous knowledge to help solve a problem can also be
referred to as seeding.

There are several papers in the literature on SBST that have shown that
different seeding strategies can strongly influence the search process. For exam-
ple, [42] proposed seeding the evolutionary algorithm with structural test data
to efficiently find worst-case execution times of real-time systems. Later, [43]
proposed to extract knowledge from source code, documentation and program-
mers and seed it to reduce qualitative human oracle costs. In another study, [44]
investigated the impact of exploiting common object usage for the problem of
automatic test data generation. Soon after that, seeding strategies were also
explored in the domain of software product lines [45]. More recently [46,47]
studied the impact of injecting knowledge, through different seeding strategies,
for the problem of service composition.

Previous work has also shown that extracting and directly seeding the con-
stant values from source code of program can significantly improve the structural
coverage testing [48–51], particular for programs heavily relying on constant
values. However, the impact of seeding is prominent only in earlier phases of
search as the seeded values can be modified (through the genetic operators of
crossover and mutation) during the evolutionary process. In this paper, we pro-
pose to inject the extracted constants values in the attribute grammar of Ariadne
(described in Sect. 4). This will permit the system to evolve the required depen-
dencies involving both constants and variables throughout the search process.
In other words, seeding the grammar allows the system to exploit the provided
knowledge (i.e. the constant values) at any stage of the evolutionary process.

Seeding Grammars in Grammatical Evolution to Improve SBST 23

3 Ariadne: GE-Based Test Data Generation

Ariadne is an SBST technique that uses GE as a search algorithm to find/evolve
the required test data from the set of all possible input values for the program
under test. It uses a simple attribute grammar (presented in Sect. 3.2) to exploit
interdependencies present among input variables.

Ariadne targets full condition-decision coverage, which is an extended and
thus more challenging form of branch coverage. The overall operation of Ariadne
is shown in Fig. 1, where o1 to on represent the list of separate search objectives
consisting of TRUE and FALSE outcomes of all the branching nodes (b1 to bl)
and condition predicates (c1 to cm).

Fig. 1. System flow diagram of Ariadne: a GE-based test data generator.

Ariadne linearly selects its target from the list of search objectives and then
performs a GE-based search to find the set of input values that can satisfy the
current search objective. The GE-based search terminates as soon as the current
target is achieved, otherwise, it keeps on running until the number of allowed
generations are exhausted. This whole search process is repeated once for all
the uncovered objectives, as some of the objectives are covered serendipitously
(accidental coverage). The efficiency and effectiveness of any ET technique is
measured in terms of total number of fitness evaluations and percentage of cov-
ered search objectives, respectively.

24 M. S. Anjum and C. Ryan

3.1 Grammatical Evolution

GE is essentially a GA that separates the search space (genotype) from solution
space (phenotype) using a grammar-based mapping process. A problem-specific
grammar is designed for this purpose which is comprised of four elements, i.e.,
terminals (T), non-terminals (N), productions rules (P) and a start symbol
(S). Here, terminals are the only items that can appear in the final phenotype,
while non-terminals are intermediate elements which are associated with the
production rules. The mapping process always begins with the start symbol
and, as it proceeds, production rules direct the mapping process.

In GE, the genotype is simply a list of integers which, in general, is rep-
resented using a binary string. GE consumes the genotype (integer-by-integer)
in the process of making choices among available production rules using the
following formula:

Rule = (integer value) mod (# of choices for the non-terminal at hand)

Let us consider an example where the non-terminal of <operator> is about to
be expanded, while it is associated with the following four production rules:

<operator> ::= * [0]
| / [1]
| + [2]
| - [3]

Assume that the next integer to be consumed by GE engine is 62, then 62
mod 4=2, so option #2 is selected for the further expansion of <operator> i.e.
(<operator> ::= +). A sample grammar with a complete genotype to phenotype
mapping is presented in Fig. 2.

3.2 Grammar

In this section, we present the attribute grammar used in Ariadne [11] to exploit
the commonly found characteristics of real life programs. The start symbol, in
this case, is linked to the following production rule:

<start> ::= <var1><var2><var3> · · · <varN> (1)

where N represents the total number of input variables required by the target
program. Each of the above non-terminals of the form <varM > is further linked
with the following set of production rules:

<varM> ::=0|1| − 1| <rand> | <depvar1> | <depvar2> | . . . |
<depvarM−2> | <depvarM−1>

(2)

The first three choices of the above rule enable Ariadne to quickly satisfy the
commonly found zero, positive and negative value checks as the values of 0, 1 and
−1 represent these domains, respectively. The next production rule of <rand>
is responsible for the production of 32 bit signed random numbers.

Seeding Grammars in Grammatical Evolution to Improve SBST 25

The remaining non-terminals of the form <depvarX> implement the depen-
dency rules. These dependency rules essentially enable the system to exploit vari-
able interdependencies as they allow the input variables to take values dependent
on previously generated variables. These non-terminals of the form <depvarX>
are expanded using the following set of production options:

<depvarX>:= varX |(varX + 1)|(varX − 1) (3)

where varX refers to a previously generated variable. These newly generated
values will be equal-to, greater-than or less-than the value of some previously
generated variable; hence, the conditions involving comparisons/dependencies
between the variables can be quickly satisfied.

4 Improved Grammar

A key distinguishing feature of Ariadne is its use of GE as a search algorithm
(in place of conventional GAs). Design of a grammar is crucial and can have
huge implications on the performance of any GE system; ideally the grammar
used for test data generation should be both generic (so that it can be effectively
applied to a wide range of programs) and efficient.

This section presents our newly proposed grammar design while its implica-
tions and the underpinning philosophy are detailed below in Sect. 4.1.

In our improved design, the non-terminal of <varM> is linked to the follow-
ing set of production rules for their expansion:

<varM> ::=0|1| − 1| <const> | <rand> | <depvar1> | <depvar2>

| . . . | <depvarM−2> | <depvarM−1>
(4)

The newly introduced production rule of < const > is further associated with
the following choices of production rules:

<const> ::= 0|C1|C2|C3| . . . |CN (5)

where C1 to CN represent the list of seeded constant values which are sim-
ply extracted from the condition predicates in the source code. This innovation
allows the variables to take values directly from the pool of seeded constants by
right combinations of Rule 4 and 5. Once generated, these values become part of
the grammar and remain available to be exploited by the dependency rules of the
form <depvarX>, as described in Sect. 3.2. Consequently, the improved Ariadne
can quickly evolve test data required to satisfy complex branching conditions
that contain dependencies involving both variables and constant values.

The rest of the design is kept the same as that of the original grammar
(presented in Sect. 3.2). An example with a complete grammar and grammar-
based genotype to phenotype mapping for a program with three input variables
and nine seeded constants is presented as Fig. 2. Note that this same generic
grammar is used for all our experiments; only the number of input variables and
the list of extracted constants (seeds) were modified as per each program.

26 M. S. Anjum and C. Ryan

Fig. 2. An example with the genotype on the top, grammar on the right and the
mapping sequence on the left.

4.1 Philosophy Behind the Proposed Changes

Ariadne, by design, does not solely rely on the evolutionary process to search
for the required solution, but it also exploits variable interdependencies using
its grammar, as described in Sect. 3. Results reported in [11] demonstrate that
Ariadne clearly outperformed the well-known GA-based techniques by impressive
margins. However, the original system of Ariadne is not capable of exploiting
any dependencies involving constant values; furthermore, constant creation in
GE with such an enormous range is a very difficult task.

Dependencies involving constant values are very common as discussed in
Sect. 1. For example, a branching condition may contain a boundary value and
look like this:

x > y && z == 5000 (6)

In general, it is very difficult for a conventional GA to fortuitously generate test
data that can satisfy these kinds of branching condition, particularly when the
search space is large. It becomes even more difficult for the original system of
Ariadne as it additionally faces difficulties in the creation of constant values. To
address this problem, we proposed an improved grammar for Ariadne that is
capable of exploiting all kinds of interdependencies/comparisons involving both
variables and constant values.

It is worth noting that the seeded constants stay available (as a part of gram-
mar rules) throughout the search process; hence, they can also play their role
in the evolution of the values required for satisfying some deeper level nested

Seeding Grammars in Grammatical Evolution to Improve SBST 27

conditions, which are only reached after some initial generations of the evolution-
ary process. To conclude, our novel design greatly improves Ariadne’s capability
to exploit interdependencies present among all kinds of condition constructs by
enabling it to exploit dependencies involving constant values.

5 Experimental Results and Discussion

An empirical study was performed using three different sets of benchmark func-
tions. The first set, Set 1, contains ten numeric functions1 that heavily rely on
constant values. The second, Set 2, includes the same well-known numeric and
validity-check functions2 that were originally adopted by [11] to compare with
the earlier GA based techniques proposed in [23,36] and [24].

Set 1 contains seven real life programs and three synthetic programs of vary-
ing complexity. The real life programs include Tax Calculator, Admission Merit,
Vitamin D Levels, Birth-Time Weights, HBA1c Levels (blood glucose levels),
Grade Point Average (GPA) Calculator and Volume Discount. These programs
are well-known and self-explanatory and their branching conditions often con-
tain the boundary values (which are essentially constant values). The synthetic
programs S1, S2 and S3, are artificially created to be difficult coverage targets
of varying complexity as they contain deep nesting (up to four levels), com-
pound conditions and interdependencies among the condition constructs (involv-
ing both variables and constant values).

We employed Set 2 to make a fair comparison with the original system of
Ariadne and also with earlier well-known results from the literature [23,24]. For
the purpose of this paper, we adopted only those numeric functions that had
average search costs of at least 10 fitness evaluations in the previously reported
results [11] as the rest of the benchmark functions proved trivial for grammar-
based approach. The adopted numeric function include Days, Quadratic Formula
(QCF) and Triangle Classification which is one of the most commonly adopted
functions in SBST [23,32,34,36] etc. While two validity-check functions named
check ISBN and check ISSN are a part of an open source program, bibclean-
2.08 [52]. These all are among popular benchmark functions in SBST and their
short descriptions as well as justifications for their selection can be found in [11].

5.1 Experimental Setup

We first conducted some initial experiments to identify reasonable settings for
GE run. We noticed that the maximum of 200 generations with a population
size of 50 were found appropriate for all but some synthetic functions. So the
synthetic functions, being more complex, were run with a population size of 200
and maximum number of generations was kept at 500. For a fair comparison
1 In order to facilitate future comparisons we have made available the source code at

http://bds.ul.ie/?page id=390/.
2 The source code of these benchmark functions was made available by [11] at http://

bds.ul.ie/?page id=390/.

http://bds.ul.ie/?page_id=390/
http://bds.ul.ie/?page_id=390/
http://bds.ul.ie/?page_id=390/

28 M. S. Anjum and C. Ryan

with [11], the crossover and mutation operators (i.e. One Point Crossover & Bit
Mutation) and their probabilities (crossover: 0.9, mutation: 0.05) were kept the
same as that of original system of Ariadne.

The input values generated by our improved grammar lie in the same
range as that of the original system (i.e. from the range of −2, 147, 483, 648
to 2, 147, 483, 647) as both systems generate 32-bit signed integers. These inte-
ger values directly serve as input values for most of the benchmark functions; for
the functions of Days, check ISBN and check ISSN, an extra mod based step was
deployed by [11] to convert these integer values into valid input formats as per
the respective functions. For the sake of our experiments, we also used a similar
mapping step for both input and seeding in order to have a fair comparison with
the original system.

5.2 Detailed Analysis of Experiments

We performed 200 independent runs for all the benchmarks and present their
mean performance. We also repeated the same set of experiments using the
original grammar in order to have a better statistical comparison with [11]; our
results were very similar to the originally reported results.

We report our results in terms of three metrics, i.e., Maximum Cover-
age (MC), Success Rate (SR) and average number of fitness evaluations (AE).
MC is the best performance (maximum achieved coverage) of all 200 runs. SR
for each coverage target is the percentage of 200 runs/times that the target was
successfully covered. AE is the average number of benchmark function executions
that were performed in each run.

It can be clearly seen in Table 1 that the original system was not able to
achieve a full coverage for any of the benchmark programs from Set 1 (which
requires the generation of specific constant values). Despite being given a decent
search budget, the maximum coverages achieved by the original system remain
in the range of 25% to 75%. On the other hand, our improved system exhibited
a full coverage (i.e a 100% coverage) in all of its runs; hence achieving a 100%
SR for all the benchmark functions from Set 1.

The original system was never able to attain a full coverage as all these
benchmark functions contain boundary values in their branching conditions.
In other words, they contain interdependencies involving constant values. The
original system is neither able to exploit these interdependencies nor able to
successfully evolve constant values, therefore, it could never generate the test
data required to satisfy these branching conditions. On the other hand, our
improved system was able to exploit the presence of these boundary values as
they were directly seeded in the grammar, and hence it was able to quickly
evolve the test data containing all the dependencies (involving both variables
and constant values) needed to satisfy these branching conditions.

For all the benchmark functions from Set 2, both the original system and our
improved system were able to exhibit a 100% SR as presented in Table 2. As it
was also reported in [11] that the original system was already able to achieve a
full coverage for these programs, the purpose of adopting these benchmarks here

Seeding Grammars in Grammatical Evolution to Improve SBST 29

Table 1. A comparison of our improved Ariadne with the original system of Ari-
adne [11] on ten benchmark functions in Set 1. MC, SR and AE are maximum coverage,
success rate and average number of fitness evaluations, respectively.

Branch ID Original Ariadne [11] Improved Ariadne

MC SR AE MC SR AE

Tax Calculator 67% 0% 20108 100% 100% 27

Admission Merit 25% 0% 150759 100% 100% 827

Vitamin D Levels 63% 0% 30157 100% 100% 34

Birth-time Weights 67% 0% 20108 100% 100% 20

HBA1c Levels 75% 0% 10058 100% 100% 11

GPA Calculator 56% 0% 70359 100% 100% 96

Volume Discount 58% 0% 50259 100% 100% 57

S1 38% 0% 501003 100% 100% 134

S2 70% 0% 601223 100% 100% 2608

S3 56% 0% 801606 100% 100% 11202

was to study if our improved system was also able to retain similar good results
(both in terms of effectiveness and efficiency) for these well-known benchmarks
in SBST. In order to have a fair comparison with [11,24], the experiments for
the validity check functions were performed on the same lines and the results
were separately reported for all the non-trivial branches.

Table 2 shows that our improved system retained a 100% SR while consuming
significantly smaller search budgets, particularly for the validity-check functions
where the AE was reduced to anything just from 9% to 14% of that of the
original system. The reason behind this dramatic improvement in efficiency is
the presence of interdependencies involving constant values, which were success-
fully exploited by our improved system via seeding strategy. For example, the
validity-check functions contained many constants in the condition predicates,
which were made a part of the grammar using Rule 5. The conditions containing
comparisons/dependencies involving these (seeded) constant were quickly satis-
fied by the function of dependency rules as described in Sect. 3.2. In can also be
clearly seen that these improvements are even more impressive when compared
to other GA-based techniques.

To conclude, the results presented in this section demonstrate that the gram-
mar is made more generic without compromising on its efficiency as our improved
system clearly outperforms the original system of Ariadne as well as the other
GA based SBST techniques (both in terms of effectiveness and efficiency) by
wide margins.

30 M. S. Anjum and C. Ryan

Table 2. A comparison of our improved Ariadne with the original system of Ari-
adne [11] and with earlier GA-based techniques [23,24]. MC, SR and AE are maximum
coverage, success rate and average number of fitness evaluations, respectively.

Branch ID Conventional GAs Original ariadne [11] Improved ariadne

MC SR AE MC SR AE MC SR AE

GADGET [23]

Tri 94% N/A 8000 100% 100% 958 100% 100% 355

Days 100% N/A N/A 100% 100% 288 100% 100% 218

QCF 75% N/A N/A 100% 100% 16 100% 100% 13

Harman and McMinn [24]

B3-ISBN 100% 95% 7986 100% 100% 591 100% 100% 69

B4-ISBN 100% 95% 7986 100% 100% 581 100% 100% 69

B6-ISBN 100% 95% 8001 100% 100% 718 100% 100% 70

B7-ISBN 100% 95% 9103 100% 100% 4215 100% 100% 594

B3-ISSN 100% 98% 5273 100% 100% 525 100% 100% 47

B4-ISSN 100% 98% 5273 100% 100% 522 100% 100% 50

B6-ISSN 100% 98% 5324 100% 100% 584 100% 100% 53

B7-ISSN 100% 98% 6380 100% 100% 3755 100% 100% 344

6 Conclusion and Future Work

We have proposed to seed the grammar with constants extracted from source
code in order to improve its effectiveness/generality; this improved grammar is
capable of exploiting a richer class of dependencies (involving both variables and
constant values). We compared our results with the original system of Ariadne
against the same sets of benchmark functions that were originally used as well as
against an additional set of 10 numeric programs. The results of our experiments
show that the seeding strategy improves the effectiveness/generality of the sys-
tem by impressive margins without compromising on its efficiency as it further
reduces the search budgets often up to an order of magnitude. In other words,
the improved system clearly outperforms both the original system of Ariadne as
well as the other GA based SBST techniques both in terms of effectiveness and
efficiency.

We believe that there is much potential to further improve this GE based
SBST technique. For example, the seeding strategy can be further improved
by adding support for numeric values observed at run time (dynamic seed-
ing) and/or by exploring the possibility of accommodating other data types
such as strings, as currently only numeric values are seeded in the grammar.
The grammar can also be improved by systematically adding additional domain
knowledge. Further, we are also conducting a rigorous study to investigate the
scalability of GE-based test data generation.

Seeding Grammars in Grammatical Evolution to Improve SBST 31

This paper is the first to propose, investigate and discuss the implications
of seeding the grammars in GE. Although we have used the seeding strategy in
the area of SBST, we believe that there is huge potential to benefit from this
strategy in other GE-based systems from different domains in which constants
and other low level structures are present in the problem description.

Acknowledgments. The authors would like to thank Aidan Murphy, Muhammad
Hamad Khan and Sehrish Saeed for their help with conceptualization of the idea,
graphic designs and benchmark functions, respectively. This work is supported by the
Science Foundation of Ireland (SFI) Grant Number 16/IA/4605.

References

1. Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand Reinhold Inc.,
New York (1990). ISBN 0-442-20672-0

2. Myers, G.J., Badgett, T., Thomas, T.M., Sandler, C.: The Art of Software Testing,
vol. 2. Wiley Online Library (2004)

3. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

4. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for
non-functional system properties. Inf. Softw. Technol. 51(6), 957–976 (2009)

5. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review
of the application and empirical investigation of search-based test case generation.
IEEE Trans. Software Eng. 36(6), 742–762 (2010)

6. Anand, S., et al.: An orchestrated survey of methodologies for automated software
test case generation. J. Syst. Softw. 86(8), 1978–2001 (2013)

7. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
8. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software architec-

ture optimization methods: a systematic literature review. IEEE Trans. Software
Eng. 39(5), 658–683 (2013)

9. Elshoff, J.L.: An analysis of some commercial PL/I programs. IEEE Trans. Soft-
ware Eng. 2, 113–120 (1976)

10. Cohen, E.I.: A finite domain-testing strategy for computer program testing. Ph.D.
thesis, The Ohio State University (1978)

11. Anjum, M.S., Ryan, C.: Ariadne: evolving test data using grammatical evolu-
tion. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., Garćıa-Sánchez, P. (eds.)
EuroGP 2019. LNCS, vol. 11451, pp. 3–18. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-16670-0 1

12. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for
an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C.
(eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055930

13. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4),
349–358 (2001)

14. Dempsey, I., O’Neill, M., Brabazon, A.: Constant creation in grammatical evolu-
tion. Int. J. Innovative Comput. Appl. 1(1), 23–38 (2007)

15. Azad, R.M.A., Ryan, C.: The best things don’t always come in small packages:
constant creation in grammatical evolution. In: Nicolau, M., et al. (eds.) EuroGP
2014. LNCS, vol. 8599, pp. 186–197. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44303-3 16

https://doi.org/10.1007/978-3-030-16670-0_1
https://doi.org/10.1007/978-3-030-16670-0_1
https://doi.org/10.1007/BFb0055930
https://doi.org/10.1007/978-3-662-44303-3_16
https://doi.org/10.1007/978-3-662-44303-3_16

32 M. S. Anjum and C. Ryan

16. Barros, R.C., Basgalupp, M.P., Cerri, R., da Silva, T.S., de Carvalho, A.C.: A
grammatical evolution approach for software effort estimation. In: Proceedings of
the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1413–
1420. ACM (2013)

17. Sparks, S., Embleton, S., Cunningham, R., Zou, C.: Automated vulnerability anal-
ysis: leveraging control flow for evolutionary input crafting. In: Twenty-Third
Annual Computer Security Applications Conference (ACSAC 2007), pp. 477–486.
IEEE (2007)

18. Mariani, T., Guizzo, G., Vergilio, S.R., Pozo, A.T.: Grammatical evolution for the
multi-objective integration and test order problem. In: Proceedings of the Genetic
and Evolutionary Computation Conference 2016, pp. 1069–1076. ACM (2016)

19. Patten, J.V., Ryan, C.: Procedural content generation for games using grammatical
evolution and attribute grammars (2014)

20. Kifetew, F.M., Jin, W., Tiella, R., Orso, A., Tonella, P.: Reproducing field failures
for programs with complex grammar-based input. In: 2014 IEEE Seventh Interna-
tional Conference on Software Testing, Verification and Validation, pp. 163–172.
IEEE (2014)

21. de Andrade, J., Silva, L., Britto, A., Amaral, R.: Solving the software
project scheduling problem with hyper-heuristics. In: Rutkowski, L., Scherer, R.,
Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019.
LNCS (LNAI), vol. 11508, pp. 399–411. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-20912-4 37

22. Lima, J.A.P., Vergilio, S.R., et al.: Automatic generation of search-based algo-
rithms applied to the feature testing of software product lines. In: Proceedings of
the 31st Brazilian Symposium on Software Engineering, pp. 114–123. ACM (2017)

23. Michael, C.C., McGraw, G., Schatz, M.A.: Generating software test data by evo-
lution. IEEE Trans. Software Eng. 12, 1085–1110 (2001)

24. Harman, M., McMinn, P.: A theoretical and empirical study of search-based test-
ing: local, global, and hybrid search. IEEE Trans. Software Eng. 36(2), 226–247
(2010)

25. Sauder, R.L.: A general test data generator for COBOL. In: Proceedings of the
May 1–3, 1962, Spring Joint Computer Conference, pp. 317–323. ACM (1962)

26. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges
for search based software testing. In: 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), pp. 1–12. IEEE (2015)

27. Clarke, L.A.: A system to generate test data and symbolically execute programs.
IEEE Trans. Software Eng. 3, 215–222 (1976)

28. DeMilli, R., Offutt, A.J.: Constraint-based automatic test data generation. IEEE
Trans. Software Eng. 17(9), 900–910 (1991)

29. Offutt, A.J., Jin, Z., Pan, J.: The dynamic domain reduction procedure for test
data generation. Softw.: Pract. Exp. 29(2), 167–193 (1999)

30. Miller, W., Spooner, D.L.: Automatic generation of floating-point test data. IEEE
Trans. Software Eng. 3, 223–226 (1976)

31. Korel, B.: Automated software test data generation. IEEE Trans. Software Eng.
16(8), 870–879 (1990)

32. Ferguson, R., Korel, B.: The chaining approach for software test data generation.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 5(1), 63–86 (1996)

33. Jones, B.F., Sthamer, H.H., Eyres, D.E.: Automatic structural testing using genetic
algorithms. Softw. Eng. J. 11(5), 299–306 (1996)

34. Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-data generation using genetic algo-
rithms. Softw. Test. Verif. Reliab. 9(4), 263–282 (1999)

https://doi.org/10.1007/978-3-030-20912-4_37
https://doi.org/10.1007/978-3-030-20912-4_37

Seeding Grammars in Grammatical Evolution to Improve SBST 33

35. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic
structural testing. Inf. Softw. Technol. 43(14), 841–854 (2001)

36. Miller, J., Reformat, M., Zhang, H.: Automatic test data generation using genetic
algorithm and program dependence graphs. Inf. Softw. Technol. 48(7), 586–605
(2006)

37. Tracey, N., Clark, J., Mander, K., McDermid, J.: An automated framework for
structural test-data generation. In: ASE, p. 285. IEEE (1998)

38. Fraser, G., Arcuri, A., McMinn, P.: A memetic algorithm for whole test suite
generation. J. Syst. Softw. 103, 311–327 (2015)

39. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Software Eng.
39(2), 276–291 (2013)

40. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), pp. 1–10. IEEE (2015)

41. Xanthakis, S., Ellis, C., Skourlas, C., Le Gall, A., Katsikas, S., Karapoulios, K.:
Application of genetic algorithms to software testing. In: Proceedings of the 5th
International Conference on Software Engineering and Applications, pp. 625–636
(1992)

42. Tlili, M., Wappler, S., Sthamer, H.: Improving evolutionary real-time testing. In:
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 1917–1924. ACM (2006)

43. McMinn, P., Stevenson, M., Harman, M.: Reducing qualitative human oracle costs
associated with automatically generated test data. In: Proceedings of the First
International Workshop on Software Test Output Validation, pp. 1–4. ACM (2010)

44. Fraser, G., Zeller, A.: Exploiting common object usage in test case generation. In:
2011 Fourth IEEE International Conference on Software Testing, Verification and
Validation, pp. 80–89. IEEE (2011)

45. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Egyed, A., Alba, E.: Comparative
analysis of classical multi-objective evolutionary algorithms and seeding strategies
for pairwise testing of software product lines. In: 2014 IEEE Congress on Evolu-
tionary Computation (CEC), pp. 387–396. IEEE (2014)

46. Chen, T., Li, M., Yao, X.: On the effects of seeding strategies: a case for search-
based multi-objective service composition. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, pp. 1419–1426. ACM (2018)

47. Chen, T., Li, M., Yao, X.: Standing on the shoulders of giants: seeding search-based
multi-objective optimization with prior knowledge for software service composition.
Inf. Softw. Technol. 114, 155–175 (2019)

48. Alshahwan, N., Harman, M.: Automated web application testing using search based
software engineering. In: Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, pp. 3–12. IEEE Computer Society
(2011)

49. Fraser, G., Arcuri, A.: The seed is strong: seeding strategies in search-based soft-
ware testing. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, pp. 121–130. IEEE (2012)

50. Rojas, J.M., Fraser, G., Arcuri, A.: Seeding strategies in search-based unit test
generation. Softw. Test. Verif. Reliab. 26(5), 366–401 (2016)

34 M. S. Anjum and C. Ryan

51. Bidgoli, A.M., Haghighi, H.: A new approach for search space reduction and seeding
by analysis of the clauses. In: Colanzi, T.E., McMinn, P. (eds.) SSBSE 2018. LNCS,
vol. 11036, pp. 343–348. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99241-9 19

52. bibclean.c (1995). http://www.cs.bham.ac.uk/∼wbl/biblio/tools/bibclean.c.
Accessed 15 Sept 2019

https://doi.org/10.1007/978-3-319-99241-9_19
https://doi.org/10.1007/978-3-319-99241-9_19
http://www.cs.bham.ac.uk/~wbl/biblio/tools/bibclean.c

	Seeding Grammars in Grammatical Evolution to Improve Search Based Software Testing
	1 Introduction
	2 Background and Related Work
	2.1 Evolutionary Testing
	2.2 SBST Techniques Benefitting from Seeding

	3 Ariadne: GE-Based Test Data Generation
	3.1 Grammatical Evolution
	3.2 Grammar

	4 Improved Grammar
	4.1 Philosophy Behind the Proposed Changes

	5 Experimental Results and Discussion
	5.1 Experimental Setup
	5.2 Detailed Analysis of Experiments

	6 Conclusion and Future Work
	References

