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Abstract. Program synthesis is an emerging research topic in the field
of EC with the potential to improve real-world software development.
Grammar-guided approaches like GE are suitable for program synthesis
as they can express common programming languages with their required
properties. This work uses common software metrics (lines of code,
McCabe metric, size and depth of the abstract syntax tree) for an analy-
sis of GE’s search behavior and the resulting problem structure. We find
that GE is not able to solve program synthesis problems, where correct
solutions have higher values of the McCabe metric (which means they
require conditions or loops). Since small mutations of high-quality solu-
tions strongly decrease a solution’s fitness and make a high percentage of
the solutions non-executable, the resulting problem constitutes a needle-
in-a-haystack problem. To us, one of the major challenges of future GP
research is to come up with better and more adequate fitness functions
and problem specifications to turn the current needle-in-a-haystack prob-
lems into problems that can be solved by guided search.

Keywords: Program synthesis · Genetic programming · Grammatical
evolution · Software engineering · Needle-in-a-haystack

1 Introduction

Program synthesis, a technique to generate source code in a high-level program-
ming language that meets a certain specification [9], is a relevant research topic
in the field of evolutionary computation (EC) with the potential to improve real-
world software development. An example showing this potential is the work by
Harman et al. [10] in which a translation feature was synthesized by using EC
and automatically integrated into the Pidgin instant messaging system.

Grammatical evolution (GE) [22] is a variant of genetic programming (GP)
that is suitable for program synthesis, because the used Backus-Naur-Form
(BNF) grammar allows GE to express high-level programming languages or sub-
sets of these languages with all their required properties (e.g., conditions, loops,
or typing constraints). Inspired by the benchmark suite by Helmuth et al. [13,14],
which contains several program synthesis problems selected from introductory
programming tasks, some recent work uses grammar-guided approaches for solv-
ing program synthesis problems [5,6,15]. For example, Forstenlechner et al. [7]
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sorted and classified the problems of the benchmark suite according to the suc-
cess of G3P, a grammar-guided approach. They found that some problems were
easy, whereas others could not be solved a single time. As the reasons for these
huge differences in performance are unclear, the next logical step is to study the
complexity of the problems and what makes difficult problems difficult for GE.

This work analyzes the behavior of GE as well as the structure of a repre-
sentative set of program synthesis benchmark problems with common metrics
from the EC and software development domains. In a first step, we analyze how
robust human-designed reference implementations (solutions that correctly solve
a given benchmark problem) are with respect to small modifications of its geno-
type. In the second step, we analyze by using common and standard software
metrics the functions generated by GE during search as well as the resulting
problem structure and problem complexity.

Section 2 presents work relevant to the domain of program synthesis with GE.
In Sect. 3, we describe the used software metrics, the selected program synthesis
problems from the benchmark suite, and the structure of the used GE approach.
Following this, in Sect. 4, we describe our experimental setting and discuss the
findings. Section 5 concludes the paper.

2 Related Work

There are two major trends for the synthesis of source code with EC: grammar-
guided approaches [5–7,15,24] in contrast to approaches based on the stack-
based programming language Push [11,12,17]. Both types of methods support
the use of multiple data types (e.g., Boolean, integer, float, or string). Grammar-
guided approaches, like GE [22], enforce syntax rules and the typing of a pro-
gramming language by using a BNF grammar, whereas Push [25] ensures correct
typing by using separate stacks for each required data type.

For program synthesis with EC, Krawiec [18] already identified some chal-
lenges. The most obvious challenge is the large search space. Every additional
programming language construct (e.g., a control structure, or a function) leads to
a dramatic increase of possible combinations. Even worse, the influence of a pro-
gramming language construct on the program’s behavior is context-dependent
as the same instruction in a different setting may lead to completely different
results. Furthermore, in a programming language, desired functionality can be
expressed in multiple ways (see the multiple-attractor problem [1]). This makes
it hard for guided evolutionary search to find a program with the desired func-
tionality and structure. This is also relevant if the evolved program should be
improved or maintained by human software developers as they expect human-
readable code and not overly complex, but correct, synthesized program code.
Therefore, evolved code should not only have the desired functionality but also
follow a human-like coding style [24]. Another unsolved problem is how to mea-
sure whether a program has the desired functionality. For example, the well-
known benchmark suite for program synthesis [13,14] checks the correctness of a
program with large sets of test cases. Unfortunately, the use of test cases does not
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allow to appropriately measure generalization as even Dijkstra [2, p. 864] pointed
out that “program testing can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their absence”.

A variety of GE papers analyzed different aspects of the algorithm, like the
influence of grammars [16,20], the genotype-phenotype mapping [4,21], or the
initialization method [3,24]. However, to our knowledge, there is no work so far
that performs a systematic analysis of GE’s behavior on a representative set of
program synthesis benchmark problems using standard and common software
metrics.

3 Methodology

This section presents the software metrics required for analysis, the selected
benchmark problems, and the structure of the GE approach.

3.1 Software Metrics

In our experiments, we use software metrics that are directly applied to a func-
tion’s source code as well as metrics that measure properties of a function’s
abstract syntax tree (AST). For generating the AST from a given Python func-
tion, we use the Python module astdump1. We use the following software metrics:

– Lines of code (LOC): the number of lines of a function’s source code includ-
ing the function’s signature. Comments and empty lines are not relevant in
this work because the used grammar does not support them.

– McCabe metric: the number of decision branches defined by a piece of
code added to the minimum value which is one [19]. Decision branches arise
in source code, e.g., through conditions and loops. For calculating the McCabe
metric, we use the Python module radon2.

– AST depth: the number of edges on the path from an AST root node to its
deepest leaf node.

– AST nodes: the number of nodes in an AST.

3.2 Program Synthesis Problems

For our experiments, we selected four problems from the 29 problems defined in
the program synthesis benchmark suite [13,14]. To obtain a representative subset
of test problems, we selected problems with different complexity and different
data types necessary for a correct solution. We selected the following problems:

– Number IO: return the sum of a given integer and a float.
– Small or Large: for a given integer n, return “small” if n < 1, 000, “large”

if n ≥ 2, 000, and an empty string if 1, 000 ≤ n < 2, 000.
1 https://pypi.org/project/astdump/.
2 https://pypi.org/project/radon/.

https://pypi.org/project/astdump/
https://pypi.org/project/radon/
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– Count Odds: return the number of odds in a given vector of integers.
– Smallest: return the smallest of four given integers.

The training sets consist of 100 cases for each problem, except for Number IO
where it consists of 25 and Count Odds where it consists of 200. The test sets
consist of 1, 000 cases for each problem, except for Count Odds (2, 000).

def count_odds(numlist0 ):

num0 = num1 = num2 = num3 = num4 = 0 # Initialization

for num1 in numlist0:

if num1 % 2 == 1:

num0 = num0 + 1

return num0

Fig. 1. The reference implementation for the Count Odds problem. We shortened the
initialization part.

For each of the considered benchmark problems, we defined a hand-written
reference implementation that correctly solves the problem and which resembles
a solution written by a human software developer. Figure 1 exemplarily shows
the reference implementation for the Count Odds problem. Since the reference
implementations are consistent with the BNF grammar used in the experiments
(see Sect. 3.3), they also contain an initialization part for all possible variables
(shortened for readability in the figure). For reproducibility, all reference imple-
mentations are available online3.

Table 1. Properties of the reference implementations. The values in brackets are with-
out the not required part of the initialization.

Benchmark problem LOC McCabe metric AST depth AST nodes

Number IO 12 (3) 1 (1) 5 (5) 74 (19)

Small or Large 18 (9) 3 (3) 6 (6) 92 (35)

Count Odds 13 (6) 3 (3) 7 (7) 84 (34)

Smallest 12 (3) 1 (1) 7 (7) 85 (34)

To assess the structure and complexity of the problems, Table 1 shows the
calculated software metrics (see Sect. 3.1) for our reference implementations. The
values in brackets show the software metrics without the not required part of
the variable initialization.

As we can see, the selected benchmark problems cover a range from 12 to 18
LOC, respectively 3 to 9 LOC without the not required part of the initialization.
3 https://gitlab.rlp.net/dsobania/ge-program-synthesis/tree/master/reference.

https://gitlab.rlp.net/dsobania/ge-program-synthesis/tree/master/reference
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The complexity, measured by the McCabe metric, ranges from 1 to 3. The AST-
based metrics are distributed in a similar way. As expected, the initialization
part has no influence on the McCabe metric and the AST depth.

3.3 GE Grammar and Fitness Function

For our experiments, we use a standard GE approach with a BNF grammar.
Since the GE only uses the training set during a run (which means that we make
no assumptions on the type of problem), we created a very expressive grammar
which supports all 29 problems from the program synthesis benchmark suite
[13,14]. The resulting BNF grammar consists of 31 production rules and supports
conditions, loops, numbers, strings, Booleans, and lists. Slicing of strings and
lists is also possible. Figure 2 shows an excerpt of the used BNF grammar. For
reproducibility, the complete grammar is available online4.

<main > ::= def small_or_large(num0): NEWLINE INDENT num1 = num2 =

num3 = num4 = 0 NEWLINE bool0 = bool1 = bool2 = False

NEWLINE numlist0 = [] NEWLINE numlist1 = [] NEWLINE

numlist2 = [] NEWLINE str0 = str1 = str2 = "" NEWLINE

strlist0 = [] NEWLINE strlist1 = [] NEWLINE

strlist2 = [] NEWLINE <stmt > return <expr_string >

<stmt > ::= <stmt > <stmt > | <var_numeric > = <expr_numeric > NEWLINE |

<var_bool > = <expr_bool > NEWLINE | ...

Fig. 2. An excerpt of the used BNF grammar. The shown first production rule is
designed for the Small or Large benchmark problem.

The only problem-specific adaptation of the BNF grammar is the first pro-
duction rule, which defines – for each considered problem – the function argu-
ments, ensures an initialization of all variables, and defines the return type. For
example, Fig. 2 lists inter alia the first production rule for the Small or Large
benchmark problem. The rest of the grammar is identical for all problems. The
indentation style, which is mandatory in the Python programming language, is
realized by newline, indent, and dedent markers in the grammar. These markers
are replaced before the evaluation.

For the evaluation of a solution (function), we use the same fitness function
for all benchmark problems defined as

f(S, T, pinv, perr) =

⎧
⎪⎨

⎪⎩

pinv |T | if S is invalid,
perr |T | if S causes a run-time error,∑

ti∈T

d(S, ti) else,
(1)

where S is a candidate solution (a generated Python function), T is the training
set, ti is the ith element of T , pinv is the penalty for invalid solutions, perr
4 https://gitlab.rlp.net/dsobania/ge-program-synthesis/tree/master/grammar.

https://gitlab.rlp.net/dsobania/ge-program-synthesis/tree/master/grammar
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is the penalty for candidate solutions causing a run-time error, and d(S, ti) is a
function that returns 0 if the candidate solution produces the correct output and
1 otherwise. Thus, the fitness of a candidate solution is increased by 1 for every
element of the training set that is not correctly solved. If a candidate solution
is invalid, because the genotype-phenotype mapping is not successful, we assign
the penalty pinv to all elements of the training set. If a candidate solution causes
a run-time error (e.g., an index error, a division by zero error, or an endless
loop), we apply analogously the penalty perr.

4 Experiments and Discussion

Sections 4.1 and 4.2 analyze the neighborhood (fitness and structure) of the ref-
erence implementations for the selected program synthesis problems. Section 4.3
analyzes the properties of the Python functions evolved during a GE run. In
Sect. 4.4, we study how the fitness of solutions depend on the number of AST
nodes, the AST depth, and the McCabe metric.

4.1 Robustness of Reference Implementations: Part I

We use random walks to study how robust the reference implementations are
with respect to small modifications of the genotype. A problem (or more precise,
the GE genotype of a reference implementation of a problem) is robust if small
modifications of the genotype have only low effect on the properties and fitness
of the corresponding phenotype. We use robustness in the sense of locality [21],
where small changes of a genotype should correspond to small changes of the
phenotype.

For our study, we created a corresponding GE genotype for each of the ref-
erence implementations (phenotypes). Then, we iteratively apply random muta-
tions to the active codons of the GE genotype. After each mutation, we calculate
the fitness (Eq. 1) of the solution, the number of not correctly solved training
cases as well as the percentage of invalid solutions, solutions that cause a run-
time error, and solutions that are still executable.

Since we have defined a large and expressive BNF grammar, we use an
integer-based genome with a length of 250 (number of codons) and a codon
size of 1, 000. As we do not need all codons of the genotype for encoding a refer-
ence implementation, we fill all non-used (inactive) codons with random integers.
As the mutations may introduce endless loops, we limit the fitness evaluation to
3 s. If the evaluation is not completed within this time, it will be aborted and
the solution counts as a run-time error. In all experiments, we set the invalid
penalty pinv = 2 and the run-time error penalty perr = 1.5. Furthermore, we use
no wrapping in the genotype-phenotype mapping process.

Figures 3, 4, 5, 6, 7, 8, 9 and 10 show results for all four benchmark problems.
The plots on the left show the average fitness as well as the average number of
not correctly solved training cases (denoted as wrong cases) over the number
of random mutations. For the fitness plot, we consider all solutions including
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the ones that cause a run-time error or are invalid. For the plots showing the
number of not correctly solved training cases, we consider only solutions that
are executable. We average results over 5, 000 runs. In each run, we iteratively
apply a finite number of random mutation steps starting from the (correctly
working) reference implementation. As intended, the reference implementations
always have a fitness of zero. The worst solutions, which are functions that are
invalid, have a fitness of pinv times the number of training cases. The plots on
the right show the percentage of invalid solutions, solutions causing a run-time
error, and executable solutions over the number of random mutations (averaged
over 5, 000 runs).

The fitness plots (left) show similar behavior for all problems. Even very
few changes of the GE genotype of only one or two mutations strongly decrease
the fitness of a solution. For example, one or two mutations applied to the
reference implementation of the Small or Large problem reduces the average
fitness from 0 (reference implementation) to 85 or 128, respectively. After a
few more mutations, the average fitness is close to 200, which indicate invalid
solutions. There are small differences in how fast the solutions become infeasible
depending on the considered problem. For example, the fitness slope for the
Smallest problem (Fig. 9) is slightly lower compared to the other benchmark

Fig. 3. Fitness/wrong cases over muta-
tions for the Number IO problem.

Fig. 4. Percentage of result types over
mutations for the Number IO problem.

Fig. 5. Fitness/wrong cases over muta-
tions for the Small or Large problem.

Fig. 6. Percentage of result types over
mutations for the Small or Large problem.
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Fig. 7. Fitness/wrong cases over muta-
tions for the Count Odds problem.

Fig. 8. Percentage of result types over
mutations for the Count Odds problem.

Fig. 9. Fitness/wrong cases over muta-
tions for the Smallest problem.

Fig. 10. Percentage of result types over
mutations for the Smallest problem.

problems. Since the number of invalid solutions and run-time errors strongly
influence a solution’s fitness, we also plot the average number of wrongly solved
training cases (denoted as wrong cases). For the Number IO (Fig. 3) and the
Count Odds problem (Fig. 7), only a few mutations strongly increase the number
of wrongly solved training cases; for the Small or Large (Fig. 5) and the Smallest
problem (Fig. 9), the mutations have a slightly lower negative influence.

The figures on the right side plotting the percentage of invalid solutions,
solutions with a run-time error, and executable solutions confirm the findings
and show that after only a few mutations, a large percentage of the solutions are
non-executable. For example, for the Small or Large problem, two random muta-
tions of the genotype lead to an average percentage of less than 50% executable
solutions. One reason for this high percentage of invalids is the large grammar
with many non-terminals. To make the grammar more robust, Schweim et al.
[23] suggest to reduce the grammar’s average branching factor, e.g., by a lower
arity of the functions or adding more terminals to the grammar. Another way to
downsize the grammar is the use of domain knowledge, e.g. the textual problem
description of the program to be synthesized (cf. Hemberg et al. [15]).

In summary, the reference solutions are not robust against small changes of
the genotype. Step-wise random mutations strongly reduce the percentage of
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executable functions. After about 10 mutations, less than 20% of the solutions
are executable. We expect that the high percentage of non-executable solutions
in the neighborhood of the reference implementations make it difficult for guided
search approaches like GE to find correct solutions.

4.2 Robustness of Reference Implementations: Part II

We also present results for the robustness of the reference implementations with
respect to the software metrics defined in Sect. 3.1. For the same experimental
setting and identical experimental runs as described in the previous section,
we now present results on how the structure and complexity (measured by the
software metrics presented in Sect. 3.1) of the reference implementations change
when applying subsequent mutations.

Figures 11, 12, 13 and 14 present the average LOC, McCabe metric, number
of AST nodes, and AST depth over the number of random mutations. The
software metrics are calculated for the complete functions including the variable
initialization part (e.g., for Number IO the smallest possible value of LOC is
12). For the analysis, we excluded invalid solutions because for such solutions no
well-formed phenotype exists.

The results show only small changes of LOC and McCabe metric over the
number of mutations. We observe a slight difference between the Number IO
problem (Fig. 11) and Smallest Problem (Fig. 14) on the one hand, where the ref-
erence implementations have low LOC and McCabe metric values, and the more
complex Small or Large problem (Fig. 12) and Count Odds problem (Fig. 13)
on the other hand, where the reference implementations have slightly higher
values for LOC and McCabe metric. For the easier problems (Number IO and
Smallest), iterative mutations do not significantly change the LOC and McCabe
metric values; for the more complex problems (Small or Large and Count Odds),
mutations slightly decrease LOC and McCabe metric. For example, for the Small
or Large problem, the average LOC decreases from 18 to around 15. Thus, on

Fig. 11. Software metrics over muta-
tions for the Number IO problem.

Fig. 12. Software metrics over muta-
tions for the Small or Large problem.
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Fig. 13. Software metrics over muta-
tions for the Count Odds problem.

Fig. 14. Software metrics over muta-
tions for the Smallest problem.

average small iterative random changes of the genotype of the reference imple-
mentations tend to either reduce or keep constant a solution’s size measured by
LOC and complexity measured by the McCabe metric.

In contrast, iterative random mutations of the reference implementation
strongly increase the average number of AST nodes as well as AST depth for
all benchmark problems. 20 random mutations increase the average number of
AST nodes by more than 25 nodes; analogously, average AST depth goes up
by about 4 nodes. For example, the largest AST depth values of the reference
implementations is 7 (Count Odds and Smallest), which increases to more than
10 after about 18 mutations.

Thus, random mutations do not significantly increase the number of lines of
code of a function but strongly increase the average length and complexity of each
line of code. This leads to more complex and long lines of code. The resulting
programs (with high complexity and length of a line of code) are difficult to
understand (and not really maintainable) by human programmers.

4.3 Search Behavior of GE

Human programmers that develop correct solutions for the existing benchmark
problems often make use of conditions and loops (compare Table 1 for the result-
ing properties of our – human-coded – reference implementations). This section
studies the metrics of functions evolved during a GE run.

The GE uses a population of 25, 000 individuals, an integer-based genome of
length 250 with a codon size of 1, 000. As before, we use no wrapping. We use
tournament selection of size 7 and set the crossover probability to 0.7 and the
mutation probability to 0.03. As before, we stop the evaluation of a solution after
3 s and set pinv = 2.0 and perr = 1.5. We stop each GE run after 50 generations.

Table 2 shows the number of test cases, the average and the standard devi-
ation of correctly solved test cases, and the success rate (number of runs that
found a correct solution) for the benchmark problems. Results are averaged over
100 runs. We show results for the best solution found during a run.



Challenges of Program Synthesis with Grammatical Evolution 221

Table 2. GE performance for the benchmark problems.

Benchmark problem #Test cases #Correctly solved cases Success rate

Average Std. dev.

Number IO 1000 1000.0 0.0 100

Small or Large 1000 531.5 20.2 0

Count Odds 2000 243.9 81.6 0

Smallest 1000 805.5 106.2 14

For the Number IO problem, all GE runs find a correct solution; for the
Smallest problem, only 14% of the runs find a correct solution. For the two other
benchmark problems, GE does not find a correct solution, nevertheless, evolves
solutions that solve some of the test cases. Thus, GE finds correct solutions only
for relatively simple problems (Number IO and Smallest), where the reference
implementation has a McCabe metric value of one (see Table 1). For the two
other, more difficult, problems, where the reference solutions implemented by a
human programmer have a McCabe metric of three (see Table 1), GE is not able
to evolve a single solution that solves the problem.

Fig. 15. Software metrics over genera-
tions for the Smallest problem.

Fig. 16. Software metrics over genera-
tions for the Small or Large problem.

To better understand the differences in GE performance, we analyze the
development of the software metrics during a GE run. Figures 15 and 16 plot
the average LOC, McCabe metric, number of AST nodes, and AST depth of
the solutions evolved by the GE over the number of generations for the Smallest
and the Small or Large problem. For both problems, LOC, McCabe metric, and
AST depth slightly decrease in the first generations. Afterwards, these values
remain about constant. More interestingly, the average number of AST nodes
slightly decreases in the first generations (from around 95 down to 87) followed
by a slight increase approaching a value lower than the initial one. Compar-
ing these findings with the metrics of the reference implementations (Table 1),
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the GE finds solutions with similar values of LOC, AST depth, and number
of AST nodes. A major difference lies in the McCabe metric, where the GE
only evolves solutions with average McCabe metrics of around one. However, to
solve the (more difficult) Small or Large problem, higher McCabe metric values
would be necessary. For the Smallest problem, the reference implementation has
a McCabe metric of only one, which makes the problem easy and allows GE
to sometimes solve the problem. The results for the other studied benchmark
problems are similar, but are omitted due to space limitations.

The results indicate that evolutionary search is not able to generate more
complex solutions with a higher McCabe metric. Thus, GE has problems to
correctly use conditions and loops within a solution. Indeed, to evolve a solution
with high fitness that uses a condition or loop, many elements of a programming
language must fit together and the parameters of the condition or loop must be
appropriately set.

def smallest(num1 , num2 , num3 , num4):

# Initialization

numlist0.append (5)

return min((num1), min(min(( num4), num3), num2))

Fig. 17. Correct solution found for the Smallest problem (initialization part is omitted).

def small_or_large(num0):

num1 = num2 = num3 = num4 = 0 # Initialization

numlist0 = list(reversed(list(range(num0 + num2 + (-1000), 2))))

return "small"[:len(numlist0 )]

Fig. 18. Best solution found for the Small or Large problem (shortened initialization).

Consequently, we perform a visual inspection of the source code of the solu-
tions found by GE. Figure 17 shows an example of a (correct) solution found for
the Smallest problem. A solution for this problem should return the smallest of
four given integers. Unfortunately, the BNF grammar only contains a minimum
function min(a, b) that accepts two inputs a and b. Thus, the solutions evolved
by GE combines min() multiple times with the four input variables as parame-
ters. The solution found by GE is similar to the reference implementation.

Figure 18 shows the best found solution for the Small or Large problem. To
solve this problem, a human programmer would use conditions. GE is not able to
solve the problem, but only finds solutions that are correct for some cases. In none
of the solutions returned by the GE, conditions have been used in some useful
way. Instead, GE finds solutions that mimic conditions by performing many
nested simple operations on inputs. For example, the shown example solution
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uses string slicing and the length of a generated list to return either “small” or
an empty string solving correctly around two thirds of the test cases.

In summary, problems are difficult for evolutionary search if they require the
usage of conditions and loops (solutions with a higher McCabe metric). Finding
such structures is difficult for GE as correct solutions with conditions and loops
are difficult to construct (many variables and programming language constructs
have to be set correctly to get a useful condition or loop) and solutions using
loops easily become non-executable when applying mutations.

4.4 Search for the Needle in a Haystack

To better understand what makes a problem difficult for GE, we study how
the fitness of solutions depend on the number of AST nodes, the AST depth,
and the McCabe metric. For the Smallest problem, Figs. 19, 20 and 21 plot the
average as well as the absolute best fitness of all visited solutions of all 100 runs
over the number of AST nodes, AST depth, and McCabe metric, respectively.
Figures 22, 23 and 24 show results for the Small or Large problem. We also plot
the position of the reference implementation (with fitness 0). The plots include
all non-invalid solutions that have been generated during the 100 GE runs.

For the Smallest problem, the reference implementation has a McCabe met-
ric of only 1, an AST size of 85, and an AST depth of 7. The plots show that
GE finds many solutions that have similar metric values compared to the refer-
ence implementation and high fitness (relevant is the best solution found for a
given number of AST nodes, depth, or McCabe metric). Solutions with lower or
higher values of AST nodes and depth tend to be worse (higher fitness values).
Analogously, a higher value of the McCabe metric leads to worse solutions.

The situation is different for the more difficult Small or Large problem, where
the reference implementation has a McCabe metric of 3, an AST size of 92, and
an AST depth of 6. GE finds solutions with similar values for AST size and depth
as well as McCabe metric, but none of the found solutions has high fitness.
Instead, for a given value of a metric, all best found solutions have relatively
high fitness values independently of the value of the McCabe metric, number of
AST nodes, and AST depth. Thus, the fitness landscape (with respect to metrics

Fig. 19. Fitness over AST
nodes (Smallest problem).

Fig. 20. Fitness over AST
depth (Smallest problem).

Fig. 21. Fitness over McCabe
metric (Smallest p.).
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Fig. 22. Fitness over num-
ber of AST nodes (Small or
Large problem).

Fig. 23. Fitness over AST
depth (Small or Large
problem).

Fig. 24. Fitness over
McCabe metric (Small or
Large problem).

measuring size, complexity, or structure of a solution) does not guide (in contrast
to the Smallest problem) evolutionary search towards promising solutions but the
problem of finding a correct solution is a needle-in-a-haystack problem [8]. When
searching through the search space, GE cannot exploit relevant information on
where promising solutions are, but finding a correct solution becomes the task
of finding a solution with fitness 0 (the needle) in a search space where all other
solutions have a fitness of around 50 or worse (the haystack).

5 Conclusions

Program synthesis is an emerging EC research topic with the potential to
improve real-world software development. Grammar-guided approaches like GE
are suitable for program synthesis as they can express high-level programming
languages or subsets of these languages with all their required properties like
conditions, loops, or typing constraints. However, program synthesis is a com-
plex problem and researchers as well as practitioners should know about the
challenges of this domain. Therefore, this work analyzed the behavior of GE on
a representative set of program synthesis benchmark problems using standard
and common software metrics like LOC, McCabe metric, or the number of nodes
and depth of an AST.

First, we analyzed how robust reference implementations – where each of the
hand-written implementations is a correct solution for a benchmark problem –
are with respect to small modifications of its genotype. We found that small
changes strongly decrease a solution’s fitness, make a high percentage of the
solutions non-executable, and also have a negative impact on a solution’s struc-
ture measured by the software metrics. Iterative mutations generate solutions
with sometimes a lower number of LOC and McCabe metric but simultaneously
strongly increase the number of AST nodes and AST depth. Such solutions do
not make use of conditions or loops but contain complex and long code lines.

Second, we studied the properties of functions generated during a GE run.
We found that GE is not able to solve program synthesis problems, where correct
solutions have higher values of the McCabe metric (which means they require
conditions or loops). Evolving such high-quality solutions with higher values of
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the McCabe metric is a difficult task for GE, as a reasonable use of conditions
or loops requires the correct and simultaneous setting of many variables and
programming language constructs. Our analysis shows that finding high-quality
solutions with a McCabe metric larger than one becomes the task of finding a
solution with fitness 0 (the needle) in a search space where all other solutions
have a worse fitness value (the haystack).

We conclude that program synthesis is a highly relevant problem and the col-
lection and formulation of program synthesis benchmark problems provides the
EC researchers relevant goals. However, the current problem specification and
especially the definition of the fitness functions do not allow guided search as
the resulting problem constitutes a needle-in-a-haystack problem. The structure
of the search space provides no meaningful information for heuristic search to
evolve more complex optimal solutions that require conditions or loops. There-
fore, we see one of the main challenges for future GP research to come up with
better fitness functions and problem specifications to turn the current needle-in-
a-haystack problems into problems that can be solved by guided search.
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